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PREFACE 

Because the publication of this book marks my exit from the computer field and, 
therefore, my last opportunity to set the record straight, a brief historical note seems in 
order. The ideas in this book began taking form in 1963, while I was programming for 
C-E-I-R, Inc. Oater to become part of Control Data). Extraordinarily good luck put me 
on a corridor where Jack Cremeans had assembled some of the best programmers I 
would ever encounter. Somehow, despite or even because of the constant fire-fighting 
in cranking out routine business applications, we found the time to think and talk about 
what we were doing. The earliest uinvestigations" of program structure to which I of
ten refer were no more than noon-hour critiques of each other's programs and long 
afternoon debates of what might have been done differently to avoid difficulties we en
countered in debugging, maintaining, or modifying our programs. I emerged as chron
icler and organizer of the hard-earned knowledge of others and on numerous occasions 
since have become aware of how many of my ideas are but reformulations of what 
Dave Jasper and Ken MacKenzie taught me. In 1964, I first attempted to integrate into 
an article the principles we had evolved (~Towards a Theory of Program Design," Data 
Processing, December 1965). I also taught my first course, an introduction to LISP, 
while at C-E-1-R 's Washington office, becoming hooked on the magic of sharing mean
ings with others and thereby beginning the process of critical feedback from students 
which would leaven so many half-baked ideas. 

Those ideas first were mixed together in notes for H Advanced Program and Sys
tems Design, H an Institute for Advanced Technology course, which I was singularly 
unqualified to teach when I began it in 1966. Along the way I had been influenced by 
Edsger Dijkstra, by various works on "systems engineering,'' and by a manuscript on 
organizational theory by James Emery. In the latter, I saw the first promising 
intermediate-level application of general systems theory. From it, I gleaned the essen
tial concept of intercomponent coupling and firmed my commitment to a systems
theoretical view of the universe. 

Under Ray Wenig at C-E-1-R 's Boston office, I continued to stretch my skills, 
cooking up larger designs, learning the validity of many design principles more from 
failure to apply them than from anything else. By the time my own consulting firm was 
launched in 1967, the graphics for picturing program structure and a vocabulary for 
talking about structural problems had emerged. I had begun to make some original 
contributions, although I would not have recognized them as such at the time. Techni
cal memos from that era covered such concepts as modularity, hierarchy, normal and 
pathological connections, cohesion, and coupling, although without the precision or de
tail now possible. 

In July 1968, the landmark National Symposium on Modular Programming was 
held. The limited-edition Proceedings, one of the first large compilations of material on 
program structure, contained many ideas still fresh today. By that time, I had outlined , 
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vi PREFACE 

a strategy for program design, called simply ~~functional analysis,,, that significantly 
simplified the teaching of structural design. With clients' problems I had conducted 
many experiments, mostly gedanken experiments, comparing alternative structures to 
arrive at factors contributing to modularity and sound program design. 

The collapse of my company overlapped my joining the faculty of IBM's Systems 
Research Institute (SRI). Fortunately for all involved, Al Pietresanta kept me on the 
faculty even after half of my first students rated me as one of the worst instructors of 
all time. At SRI, I learned how to teach, not merely lecture, and in the process fine
tuned most of the basic concepts to their present form. "'Functional analysis'~ proved 
too difficult to learn and Htransform analysis" emerged, first as a simpler alternative, 
later as the method of choice. One of my couple of hundred SRI students, Glen 
Myers, paid me the tribute of turning lecture notes from my course into an IBM Tech
nical Memorandum and later submitted a piece to the IBM Systems Journal under the ti
tle "Composite Design.,, Still another former SRI student, Wayne Stevens, pulled me 
into the process. For yeoman service in editing and warding off open warfare, Wayne 
was awarded senior authorship of the piece that was to usher in HStructured Design,,, 
newly retitled by IBM for reasons we can only guess. At times it had seemed to me 
that the lack of such a trademark for what I was teaching may have been partly respon
sible for slow, early Hsales. ,, 

There was, of course, much more to say than was embodied in that May 1974 ar
ticle. While at SRI, I had begun to write a book, with the working title HFundamentals 
of Program Design: A Structural Approach.,, By 1970, I thought I was about halfway 
through, with 150 manuscript pages. When I left the computer field in December 
1972, I stored some 400 pages in my garage, but I was still about only half-finished! 

Eight months later, I returned to teaching systems design in order to pay accumu
lated bills and to do something to stop being haunted by the dust-laden pile of 
manuscript notes. My coauthor, Ed Yourdon, not only sieved through these to extract 
the most essential pieces, but, from teaching the material himself, has added novel 
methods of explanation and crucial links to more widely known techniques and theories. 

Thanks to Ed, and to Bob Brown who called me every month to ask when the 
book would be done, here it is. It is yours, to use, to build on, or to ignore. No more 
ghosts in the machine. I can now devote full time to the infinitely more important is
sues of people in families. Ciao! 

September 1977 Larry L. Constantine 
Acton, Massachusetts 
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FOREWORD 

In the past few years, the computer industry has been revolutionized by a number 
of new philosophies and techniques. One of the most popular of these techniques, 
structured programming, in some cases has led to order-of-magnitude improvements in 
the productivity, reliability, and maintenance costs associated with computer systems. 

More recently, though, there has been a recognition that perfect structuring of 
GOTO-less code may be of little value if the basic design of the program or. system is un
sound. Indeed, there are a number of well-known case studies, including the now
famed IBM system for The New York Times, in which maintenance problems have per
sisted despite the use of top-down structured programming techniques. In virtually all 
of these cases, the problems were due to a misunderstanding of some fundamental 
design principles. 

Concepts like Hmodular design'' and Htop-down design" have been circulating 
through the industry for more than a decade. Yet, if one watches what an average pro
grammer actually does (as compared to what he says he does), it is apparent that the 
process of designing a program or system is still art, characterized by large doses of 
folklore (e.g., "Every program has to have an initialization module, right?"), black 
magic, and occasional flashes of intuition. To say that the average programmer's design 
process is organized, or structuredt would be charitable. 

This book is an attempt to provide elements of a discipline of program and sys
tems design. We assume that the reader is familiar with the basic elements of comput
er hardware, though we rarely make reference to the particular features of specific sys
tems. We further assume that the reader is familiar with the syntax of his program
ming language, though it does not matter greatly to us whether he programs in FOR
TRAN, COBOL, PL/I, or assembly language; we will comment on programming 
languages only insofar as they influence the design of a program. Finally, we assume 
that the reader knows how to code, and is capable of writing "good" code~ we will not 
place much emphasis on structured programming, defensive programming, or the other 
"styles" of programming. 

Our concern is with the architecture of programs and systems. How should a large 
system be broken into modules? Which modules'! Which ones should be subordinate 
to which? How do we know when we have a "good" choice of modules'? and, more 
important, How do we know when we have a "bad" one? What information should be 
passed between modules? Should a module be able to access data other than that 
which it needs to know in order to accomplish its task? How should the modules be 
"packaged" into efficient executable units in a typical computer'! 

Naturally, the answers to these questions are influenced by the specific details of 
hardware, operating system, and programming language - as well as the designer's in
terest in such things as efficiency, simplicity, maintainability, and reliability. The issues 
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xii FOREWORD 

of program structure posed above are of a higher order than such detailed coding ques

tions as, Should I use a GOTO here? or, How can I write a nested lF statement to ac
complish this editing logic? 

Quotation marks are used throughout this book to highlight words that often are 

thought of as having precise, well-defined technical interpretations. On closer examina

tion, however, many of these terms - such as Hmodularity" - are often found to be 

technically undefined or used ambiguously. For example, two programmers may agree 

that good modular programming requires that each module perform a single service. 

Unfortunately, they probably wilt not agree on whether a subroutine which reads in a 

set of control cards but does not validate them is performing one service, several ser
vices, or only part of a service. Similarly, we might ask whether the suspension of pro

cessing on an end-of-file condition is a Blow-level" decision or a "high-level" decision? 

Some programmers would argue that it is a high-level decision, because it results in 

Hreturning back to the operating system", others would argue that it is a low-level deci

sion, because it Hhas to do with the detail of reading a magnetic tape." We are left 

aga-in with a matter open to debate. 

The problem is not so much with the words themselves, but rather with the 

manner in which they are used and defined (or not defined). Indeed, a number of the 

terms in quotation marks above will be used later in this book but always with the fol
lowing qualifications: They will be given precise, technical definitions before being 

used, or the context will clearly indicate that what is meant is the colloquial sense. 

In general, terminology is a major problem and occupies a central position in this 

book. Except to our former students, much of the terminology will be new. There is 
so much that may be new that the book may appear to be simply a tour de force in vo

cabulary, an attempt to foist an entirely- new set of buzzwords on a field already over

burdened with them. 

We have, however, endeavored to minimize this burden by adhering to a set of 
consistent rules. With very few exceptions, a new term is never introduced unless 110 

term for a specific concept or idea already exists. Whenever possible, equivalent or re

lated terminology is borrowed from other technical disciplines where it already is estab

lished. A well-defined set of concepts usually is described by terms that are internally 

consistent and gramatically related (thus: coincidental, logical, temporal, communica

tional, sequential, and functional cohesion, as discussed in Chapter 7). Where com

mon, general, informal words are given specific technical meanings, these are chosen to 

be consistent with and, if possible, intuitively suggested by the colloquial usage. 

In some cases, new terms have been introduced where terms have already existed. 

This has been done where the new terms are more general, more consistent with other 

terms in a set, or where prior terminology was strongly associated with a specific 

language, manufacturer, or machine - with a consequent conflict between the general 

phenomenon and the highly specialized variant intended by a specific user community. 

An example of this type of choice of terminology is the introduction of the term 

co11rouri11e to mean a module activated by another module as a parallel (simultaneous) 

process. The prefix "con" means ''with", it leads to a consistent set with the older es

tablished terms subroutine and coroutine; it does not conflict with other usage in pro

gramming. The terms "parallel routine" or "asynchronous routine" are less desirable 

because they are both clumsier and inconsistent with the related terms. The term 
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Htask" is less desirable because it already has a specific, lang1:1age-dependent, vendor
dependent definition (e.g., IBM's definition of a ~'task" in PL/I may not correspond to 
the use of the word on Hewlett-Packard, Burroughs, or Univac equipment), and be
cause ''task" is a word used informally in so many ways. 

For the most part, we have avoided usurping such common words for narrow 
technical meanings. The specific variant will always be qualified (thus, "PL/I task" or 
"ALGOL procedure,,). In no cases has a word with an almost universally accepted 
meaning been redefined. Thus, a subroutine is still a subroutine as we have all come to 
know it. Where other authors and computer scientists have provided terminology be
fore us, we have used it if at all possible (thus, "coroutine" after Mel Conway's classic 
introduction of the term~ and "incremental" module after Dove). 

Some terminology is only a convenient shorthand. One can get very tired of talk
ing about a "module that obtains its inputs from subordinates and returns its output to 
its superordinates, thus serving to bring inputs to the process as seen from the superor
dinate." The term nafferent module,, is much shorter, and anyone with a good vocab
ulary probably could guess at its technical use here. 

There are notable exceptions to the above rules, many our sole responsibility~ we 
apologize in advance for such lapses. "Function" and "functional" are used with 
several distinct specific interpretations, as well as in both the mathematical sense and 
the broad colloquial sense, simply because no other words seem to work. Similarly, we 
apologize in advance for the unfortunate implications inherent in such phrases as 
Hpathological connections" (which are not necessarily sick, as we will discuss in 
Chapter 13), and ' 4 logical cohesion" (which is not what it may seem at first glance). 
The term ''pathological connection" has been used with its present meaning in some 
organizations since 1964, has appeared in more than a dozen published papers and 
books, and has been learned by nearly 5,000 innocent students - ample reason not to 
change it now. 

In short, the vocabulary is essential~ long teaching experience has shown us that 
the subject matter of this book cannot be presented without the building of a concomi
tant vocabulary. 

All of this is reflected in the organization of the book. Section I consists of a 
number of introductory chapters that discuss certain fundamental concepts and philoso
phies, which must be understood before subsequent techniques are introduced. Section 
II lays the foundation for the structured design techniques: In addition to discussing 
program complexity from a "human information processing" point of view, it contains 
chapters on coupling and cohesion - two fundamental concepts in structured design. 
Secti9n III can be considered the ~'guts" of the book: It discusses transform analysis, 
transform-centered design, transaction analysis, top-down design, and a number of 
heuristics commonly used by the program designer. 

Section IV covers a number of the pragmatic issues in systems and program 
design~ it contains chapters on intermodular communication problems, packaging, and 
optimization of modular systems. Section V discusses advanced topics such as homolo
gous systems and incremental systems. Finally, Section VI discusses certain manage
ment and implementation issues, including the relationship between structured design 
and structured programming, as well as "top-down" versus "bottom-up" implementa
tion strategies. 
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We envision a number of uses for this book, both in academia and in industry. In 
a university curriculum, this book could be the sole text for a course in program design, 
one of the texts in a course in software design or systems design, or auxiliary reading in 
an advanced programming course. If the material is treated in depth, it probably would 
comprise a second or third course, after the usual introductory programming courses. 
Many of the basic concepts can be - and have been - introduced into elementary pro
gramming courses in such languages as FORTRAN and COBOL. With complete can
dor, however, we would have to admit that this book does not fit well into most curri
cula as they are presently organized~ in many settings, the questions answered by struc
tural design have yet to be recognized as questions. 

In industry, we expect the book to be read by experienced programmers and 
analysts - people who, unfortunately, already have well-established notions about the 
proper way to design. We have found that the most successful way of communicating 
the material to experienced people is through a lecture/workshop course in which 
programmers/analysts work on a real design problem. By selecting an appropriate prob
lem, the instructor should be able to illustrate the advantages of the "structured" tech
niques over the Hclassical" techniques. Indeed, most of the material in this book has 
been influenced by attempts to communicate it to experienced analysts and program
mers in several hundred seminars, lectures, and workshops conducted since 1964 
throughout North America, Europe, Asia, and Australia. 

The feedback from our students ha's been invaluable. During the years, they have 
hooted at our bad ideas, pointed out flaws in mediocre ones, and helped us refine and 
improve the really good ideas. Though we cannot list names, we acknowledge each one 
for helping us build the beginning of a "science" of design. Equally important, we ack
nowledge the help of many, our wives among them, who continued believing that there 
eventually would be a book during the years when the manuscript lay in Larry's garage 
and at the bottom of Ed's things-to-do list. We acknowledge our colleagues in the field, 
whose friendly spirit of competition finally motivated us to put our ideas down on paper. 
We credit our publishers with helping us avoid the normal two-year delay before a work 
appears on the booksellers' shelves. 

Finally, we owe a very great debt to some of those who taught us. Kenneth .D. 
Mackenzie and David P. Jasper must be singled out for special thanks, for being superi
or programming craftsmen who were a decade ahead of their profession, for their pro
fessionalism in thinking about the elements of their craft when most others daily rein
vented octagonal wheels, and for their patience in explaining it all a third and fourth 
time to a brash and impatient young man named Larry Constantine. 

To the Massachusetts Institute of Technology, we both give credit for beginning it 
all with a course called '~6.41" and liberal access to a PDP-I with a low serial number. 
There, we began to see the world as a system, a system whose behavior is coherent and 
understandable when viewed from an appropriate vantage point, a system explainable 
by rules and relationships. The purpose of this book is to impart a few of the rules of 
rational behavior for computer programs as designed structures. 

September 1977 L.L.C. 
E.Y. 
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SECTION I 
CONCEPT 

For most of the computer systems ever developed, the structure was not 
methodically laid out in advance - it just happened. The total collection of 
pieces and their interfaces with each other typi~ally have not been planned sys
tematically. Structured design, therefore, answers questions that have never even 
been raised in many data processing organizations. The chapters in this section 
serve to place the design of systems structure in the perspective of the total 
systems development process as conventionally practiced with traditional tools 
and orientations, and to establish the area of discourse for structured program 
design. Chapters I and 2 introduce the basic concept of structured design and 
locate it in the systems development cycle, relating questions of systems struc
ture to technical and economic goals of systems development. Basic terminolo
gy used to describe building blocks and their interrelationships is defined in 
Chapter 3, and pictorial methods for presenting program and systems structures 
are developed. In Chapter 4, structure is contrasted with procedure, and the 
relationship of structure charts to conventional flowcharts is explored. 

The lengthy introduction that this section provides is necessary to estab
lish a rich graphic and verbal language for discussing program structures and to 
avoid confusion with older issues in programming. 





CHAPTER 1 
TOWARD PROGRAM ENGINEERING 

When most programmers and analysts hear the phrase "structured design," a look 
of mild bewilderment comes over their faces. ulso't that the same as 'top-down' 
design?" they ask. Or, uDoes structured design allow us to talk to users more easily? 
Does it enable us to develop better functional specifications?" Or, considering the re
cent interest in other ''structured" disciplines, they ask, ''Isn't structured design just an 
extension of structured programming? Doesn't it just mean drawing HIPO diagrams?" 

The answer to all of these questions is no. Structured design is not equivalent to 
top-down design, though the two have some things in common. Structured design 
doesn't solve the dilemma of extracting functional specifications from the user, though 
it suggests some techniques that have led to the development of a new discipline known 
as "structured analysis." And, finally, while structured design and structured program
ming complement one another, structured design is definitely not equivalent to drawing 
HIPO diagrams. 

After saying so many things about what structured design is not, it obviously 
behooves us to discuss what structured design is. This chapter defines the area of struc
tured design, especially within the context of analysis, programming, and coding - the 
more familiar steps in the program development process. Having accomplished this, we 
give some answers to such questions as, What is structured design trying to accomplish? 
What are its objectives? 

1.1 What is structured design? 

Anyone who has been in the data processing profession for more than six months 
has certainly seen (and probably experienced) the classic approach to systems develop
ment: The boss dashes in the door and shouts to the assembled staff, '~Quick, quick! 
We've just been given the assignment to develop an on-line order entry system by next 
month! Charlie, you run upstairs and try to find out what they want the system to do 
--- and, in the meantime, the rest of you people start coding or we'll never get finished 
on fime!" 

Of course, things are not quite so disorganized in the older, larger, more estab
lished EDP organizations. Many DP managers will tell you proudly that they have 
identified a "systems development life cycle" or a "program development process" in 
their organizations. Chances are that they have developed a seven-volume "cookbookn 
that will guide the programmer/analysts through the "life cycle" --- complete with de
tailed standards for such things as file layouts, flowcharts, cost-benefit studies, and user 
sign-off and approval. 

3 



4 STRUCTURED DESIGN 

In simpler terms, we can think of the systems development life cycle as pictured 
in Fig. 1.1. We can imagine that it all begins with a user, who suddenly decides that he 
wants a new computerized system. On the real world, we know that this is not always 
so: In many cases, the EDP department comes up with the idea for a new system and 
foists it upon the unwary user.) Having perceived a need or desire for a new system 
(or for a major enhancement of an old system), the user carries on a dialogue with a 
person typically known as a "systems analyst." The systems analyst, in turn, delivers a 
set of "functional requirements'' to a "senior systems designer,'' who eventually 
delivers ~'program specifications" to a programmer. In the larger organizations, the 
programmer may ultimately deliver a stack of flowcharts to a "coder," who finally 
writes the COBOL or FORTRAN statements that make the system do what the user 
wants it to do. 

It is instructive to look more closely at the activities we have just described. First, 
note that many of the terms in the paragraph above have been enclosed in quotation 
marks, e.g., systems analyst. This is because (a) terms like systems analyst mean 
something different in every organization, and (b) a person with the title systems 
analyst may be performing one job, two jobs, or several jobs. We are more concerned 
with the jobs, or functional activities, than we are with the people or their job titles. 

Let's consider the systems analyst first. A clue to the real job performed by this 
person is that many organizations use the title ~'business systems analysf'~ the function 
being performed, then, is "business systems analysis." The same points apply to the 
engineering systems analyst, the mathematics analyst, and so forth. In plain terms, this 
person has the job of talking to the user and discovering his needs and wants - and 
then expressing them in suffic;iently well-organized terms from which someone can 
develop an appropriate computer system. As we know from a plethora of textbooks on 
the subject, the job involves studying the user's current system (if there is one), inter
viewing hordes of clerks in the user department to find out how they are presently do
ing their jobs, and using techniques like decision tables to ensure that the user's state
ment of the problem is not incomplete, redundant, or contradictory. 

The final product of the business systems analyst is, ideally, a set of functional re
quirements (otherwise known by such titles as Hsystems specifications" or "functional 
specifications") that describes, in precise terms, the inputs to be supplied by the user, 
the outputs desired by the user, and the algorithms involved in any computations 
desirnd by the user. In addition, the functional requirements generally wi'll include a 
number of constraints: Examples might be, The XYZ report must be delivered to Mr. 
Smith's office by 8:00 every morning, or The mean response time to a Type X trans
action must be less than two seconds, or The monthly cost of the computer system 
must be less than $2,000 per month in order for it to be economical. 

Ideally, the functional requirements should not specify such computer-oriented 
design decisions as: 

• number of job steps, regions, partitions, or control points* involved in the 
implementation of the system 

"'These are vendor-dependent terms, used to describe the smallest unit of work recognized by the vendor's 
operating system. 
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Figure l. I. Systems development process. 
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• record layouts, down to the last bit and byte, with a decision as to 
whether the file should be implemented with IMS, TOT AL, ADABAS, 

BDAM, or some other access technique 

• num her and type of intermediate files to be passed between programs 

• programming language to be used in the implementation of the system 

The primary reason for suggesting that such decisions should not be found in the func
tional requirements is that they have nothing to do with the user's conception of the ap
plication. Why should the user care whether the programs are implemented in COBOL 
or FORTRAN, as long as they produce the correct outputs within the specified con
straints of time and money? 

What we are saying, then, is that we do not want the systems analyst to design. 
This is somewhat unrealistic, of course, since many systems analysts were previously 
programmers or systems designers - and are thus making unconscious design decisions 
all during their discussions with the user. It is also unrealistic because the "feasibility 
study'' or "cost-effectiveness" portion of systems analysis requires the analyst to make 
some preliminary decisions about the size, power, and cost of the computer equipment 
required to solve the user's problem. 

Thus, we should expect the systems analyst to say, H Aha! It sounds like we'll 
need a 370/168 to handle that application," or "It sounds to me like the system will 
have to be an on-line IMS system - a batch system just won't satisfy the user's needs." 
We emphasize, though, that such design decisions should be made as sparingly and as 
tentatively as possible (so they can be changed later on, if necessary). 

We turn next to the "systems designer." It is interesting that some organizations 
refer to this person as a "computer systems analyst" to distinguish him from the busi
ness systems analyst whose role we discussed above. This is the person concerned with 
what we like to call the Hstructural design" of the .Program or system; that is, what are 
the appropriate subsystems, programs, or modules, and how are they interconnected? 
To put it another way, the systems designer accomplishes what some organizations call 
"general systems design": designing the major elements of the data base, the major 
components of the system, and the interfaces between them. Ideally, the final product 
of the systems designer is a document describing this structural design; in a later 
chapter, we will introduce the notion of structure charts as a convenient means of docu
menting the structural design of a program or a system. 

Once this step has been accomplished, one would expect that the programmer 
would get precise specifications of individual "modules" (a term that we will define 
carefully in Chapter 2) - specifications that include information about inputs, outputs, 
interfaces with other parts of the system, and the algorithm by which the module is to 
do its job. Thus, the programmer might be given the task of writing a module to com
pute the logarithm of an argument found in general-purpose hardware register #l with 
its output returned in general register #2. The programmer may not know why it is 
necessary for the system to include a logarithm subroutine (especially if it is a payroll 
system), or why it is necessary for the inputs and outputs to be passed through two 
general-purpose hardware registers (especially if the rest of the system is being pro
grammed in COBOL) - but these are decisions that have already been made by the 
systems designer, and are presumably beyond the scope of the programmer's job. 
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Nevertheless, the programmer often finds himself performing some design· on his 
own - or "logic design," as it is often called. In the above example of the logarithm 
subroutine, the programmer may still be required to determine the best algorithm for 
computing logarithms, within constraints such as memory and CPU time imposed upon 
him by the systems designer. He would presumably outline the logical steps through 
which one must go in order to compute a logarithm. In a small organization, he would 
then write the appropriate instructions and debug them; in a large organization, he 
might document his logic design in a flowchart, and turn the job over to a "coder" for 
final implementation. 

Of course, this description of the "systems development life cycle" does not apply 
to all organizations. We find in some organizations that one person performs all of the 
tasks outlined above. In other organizations, one person performs the task that we 
called business systems analysis as well as the task that we called systems design. Alter
natively, some organizations allow the programmer to perform the task of general sys
tems design as well as the task of logic design - once the systems analyst has deter
mined the user's needs. In still other organizations; there may be additional intermedi
ate steps in the process, with. accompanying personnel and accompanying job titles. 
Nevertheless, the cycle we have outlined seems a reasonably accurate~ albeit slightly 
superficial, model of the development cycle in most EDP organizations. 

The reason for going through this exercise is to identify that portion of the sys
tems development life cycle that we wjsh to call "structured design." Recalling our 
earlier diagram of the life cycle, we can now illustrate the areas of "analysis," 
"design," and "programming"; these are shown in Fig. 1.2. Note that they overlap in 
the diagram, ·as in fact they do in the real world. As we pointed out earlier, the analyst 
finds himself making unconscious design decisions; similarly, the systems designer finds 
himself making decisions tha.t influence the way the user looks at the system - or the 
amount of money that the user will spend for his system. While the systems designer 
is not concerned with the details of coding, his decisions obviously influence the 
manner in which the programmers write their code - primarily because of the interface 
conventions imposed upon the programmer by the systems designer. Conversely, the 
programmer may feet that he is being unnecessarily constrained by the systems designer 
- and he, in turn, may influence some of the systems designer's decisions. Partly be
cause of this, we will often use the phrase "programmer/analyst" when discussing ac
tivities that might be carried out by either a programmer or an analyst. 

We can summarize this discussion with the following definitions: 

• Structured design is the art of designing the components of a system and 
the interrelationship between those components in the best possible 
way. 

Alternatively, we can say: 

• Structured design is the process of deciding which components intercon
nected in which way will solve some well-specified problem. 
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Figure 1.2. Realm of structured design. 

By introducing a specific formal design activity to describe fully, and in advance, 
all the pieces of a system and their interrelationships, we have not created a new activi
ty in the program development cycle. Structured design merely consolidates, formalizes, 
and makes visible design activities and decisions which happen inevitably - and invisi
bly in the course of every systems development project. Instead of occurring by 
guesswork, luck, and default, these decisions can be approached deliberately as techni
cal trade-offs. 
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By pulling together all of the decisions affecting the choice of modules and in
terrelationships in a system, we necessarily affect the way in which other decisions are 
organized and resolved. Thus, some issues which have traditionally been approached in 
a certain way during the earliest phase of a project may have to be dealt with in an en
tirely difterent manner at a much later stage once the designer graduates to a structured 
design approach. 

1.2 Objectives of structured design 

"Design" means to plan or mark out the form and method of a solution. It is the 
process which determines the major characteristics of the final system, establishes the 
upper bounds in performance and quality that the best implementation can achieve, and 
may even determine what the final cost will be. As we suggested in the previous sec
tion, design is usually characterized by a large number of individual technical decisions. 
If we are to make progress toward developing programming into more of an engineering 
discipline, then we must progressively systematize those decisions, make them more 
explicit and technical, and less implicit and artful. 

All of engineering is characterized by the engineer's dissatisfaction with the 
achievement of just a solution. Engineering seeks the best solution in established 
terms, within recognized limitations, while making compromises required by working in 
the real world. 

In order to make computer systems design an engineering discipline, we need, 
first of all, to define clear technical objectives for computer programs as "systems." 
Overall systems goals ultimately determine the criteria by which individual design deci
sions are made. An understanding of the primary constraints limiting admissible solu~ 
tions is also essential. To make conscious, deliberate decisions, we must also know that 
the decision points exist, so that we can recognize them when we encounter them. Fi
nally, we need some methodology or technique which assists us in making decisions 
that increase objective goals while satisfying design constraints. Given these things -
objective goals and constraints, recognized decisions, and effective design methodology 
- we have some hope of engineering program solutions rather than snatching them out 
of the air. 

Computer programs are just systems, analogous or even equivalent to "hard" sys
tems. Naturally, we would expect to find similar objectives, similar criteria defining 
quality as in other systems. Unfortunately, most designers are at a stage where if a sys
tem appears to work (that is, if it passes a modest acceptance test and does so within 
tolerable time limits), it is a "goodH program. Indeed, many designers today behave as 
if a solution, any solution, were the solution. When someone suggests that the 
programmer/analyst return to the drawing boards to improve the design or develop an 
alternative design, the reaction often borders on paranoia. 

Where quality is an explicitly recognized concept, two variations prevail. One is 
that good programming is what appears to be tricky or non-obvious to another program
mer. Thus, the comment, ''Wow! I never would have figured out what the loop 
does," is to be interpreted as an accolade. Although other engineering fields suffer 
from some of this "cleverness" syndrome, nowhere is it as rampant as in the data pro
cessing field. Even if obscurity had no detrimental consequences in terms of external 
characteristics, its irrelevance to those goals would make it suspect. 
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The other school of thought associates quality with increased execution speed or 
decreased memory requirements. These are but superficial aspects of a broad design 
goal: efficiency. In general, we want systems and programs that are efficient - i.e., 
which make efficient use of scarce system resources. These resources include not only 
the central processor and primary memory, but also secondary and tertiary storage, 
input-output peripheral time, teleprocessing line time, on-line personnel time, and 
more. The narrower view of efficiency is a holdover from the days when the cost of the 
central processor so overshadowed other costs that any reduction was all but certain to 
represent an overall savings. Of course, it is not a savings to cut weekly run-time by 
one minute of $600/hour computer time if this adds two hours of $6/hour people time. 
The system-wide measure of technical objectives is implied throughout this book, and 
this is nowhere more critical than in the area of efficiency. 

One of the reasons why the systems view of efficiency is so important is that the 
ratio of hardware costs to software costs has been shifting for the past decade, and will 
continue to shift dramatically for some years to come. In 1971, the United States Air 
Force estimated that by 1980 only 20 percent of its data processing budget would be 
spent on hardware - the remaining 80 percent would be spent on the "people costs" 
of developing and operating the systems. 1 Similarly, a study within General Motors 2 

found that by 1970, hardware costs accounted for only 50 percent of the total data pro
cessing budget - and the ratio is expected to drop for the foreseeable future. 

Reliability is another measure of quality. This is an almost universal criterion for 
hard systems, but the special nature of failures in software has obscured the importance 
of developing reliable programs. Mean-time-between-failures (MTBF) can be translated 
into software terms in a number of ways, the most obvious of which is mean-cycles
between-faulty-data (this approach was taken by Dickson et al 3 in an attempt to derive 
a mathematical model of software reliability for a large air defense system, and has also 
been used to analyze the reliability of portions of the software for Apollo Manned 
Spacecraft missions). 

It is essential to see that, while software reliability may be viewed as a debugging 
problem, it may also - perhaps more productively - be viewed as a problem in design. 
This view has been growing in popularity in such forums as the 1975 International 
Conference on Reliable Software, 4 but there is much work to be done before it reaches 
the level of the average designer in a scientific/commercial environment (as opposed to 
the military/aerospace environment, where the need for "certifiably reliable" systems is 
acute). 

Closely related to reliability in its effect on system usefulness is maintainability. In 
fact, if we express reliability as MTBF and maintainability as the mean-time-to-repairs 
(MTTR), then we can define "systems availability" quite simply as 

Systems availability = MTBF + MTTR 

Again, as with reliability, maintainability .seems to mean something different in software 
than in hardware. We do not repair or replace worn-out instructions, but we do remove 
and correct residual bugs in the system. A system is maintainable to the extent that it 
makes the discovery, analysis, redesign, and correction of lurking bugs easier. 
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This is a very high priority design goal for several reasons. We know that a sys
tem will have~ throughout its lifespan, a number (generally quite a large number) of 
residual bugs. While the number of such extant bugs is expected to diminish with time 
(a[though that is not necessarily so), the difficulty of correct analysis, ·redesign, and 
correction has been seen to increase due to a variety of effects. Thus, there is a con
stant trickle of effort which over the entire lifespan of the system adds up to a substan
tial cost. The budget of the maintenance department and the steady stream of error 
and correction notices for systems software attest to this as a significant, although often 
ignored, systems cost. 

Indeed, only recently has the EDP industry been able to attach hard numbers to 
such phenomena as residual bugs, complexity of fixing bugs, and the cost and difficulty 
of maintenance. In a classic conference on software engineering, IBM employee M.E. 
Hopkins remarked that studies have shown every release of IBM's OS/360 contains 
1,000 bugs~ 5 similar studies have shown that IBM is by no means unique in its propen
sity for bug-ridden software. 6 Most of the studies concerning vendor-supplied software 
show the usteady-state'' behavior, after the majority .of initial bugs have been exorcised 
from the system~ the study by Dickson et al 3 suggests the initial experience with most 
systems is one of increasing bugs, until gradually programmers begin fixing bugs faster 
than users find new bugs. 

This can be illustrated in the "bug detection" graph shown in Fig. 1.3. In the 
case of the military system studied by Dickson et al, the curve peaked at approximately 
900 bugs per month, each of which required modification of an average of 17 instruc
tions in order to fix the bug! 

Bugs discovered per month 

System's lifetime 

Figure 1.3. Bug detection rate per unit time. 

Finally, we note that the programmer's chances of fixing a bug correctly on the 
first attempt are not very good~ according to a study by Boehm, 7 the programmer has a 
maximum probability of success of about 50 percent if he modifies 5-10 statements in 
his program, and the odds drop to about 20 percent if he modifies 40-50 statements. 

Maintainability affects the viability of the system in a (relatively) constant en
vironment; modifiability influences the cost of keeping the system viable in the face of 
changing requirements. In some areas, both are increased or decreased by the same 
kind of design and implementation practices~ in others, modifiability must be an explicit 
design goal in itself. 
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In most contexts, we want a system to perform a variety of tasks without having 
to undergo any modification, i.e., without having to actually change any of the existing 
programs. Flexibility represents the ease of getting a given system to perform variations 
on the same theme~ generality expresses something of the scope or range of the theme. 
Generality and flexibility have received much more attention than any other design 
goals except efficiency. However, they are often viewed as appropriate goals only for 
certain systems, so-called general-purpose systems, not as goals applicable to any sys
tem. In part, this selective focus stems from myths about the cost of generality and 
flexibility, and their relationship to efficiency. 

Again, the areas of modifiability, generality, and flexibility only lately have been 
associated with hard figures. A 1972 survey 8 indicated that the average EDP organiza
tion spends approximately 50 percent of its data processing budget on maintenance -
whiich most ·organizations define as the combination of maintenance (i.e., ongoing de
bugging) and modification~ in some organizations, the figure has been as high as 95 per
cent. Indeed, one large organization privately told the authors that they had spent $112 
million in programmer salaries during 1974, 75 percent of which was devoted to 
maintenance and modification of existing programs! 

The final test of any system is in the marketplace, which may only mean its actual 
use (or nonuse) by the ultimate customer. Utility or ease of use is one way to express a 
key criterion which receives much attention in early analysis, and somehow gets lost in 
the shuffle of actual design and implementation. Part of the problem lies with a general 
lack of understanding of human factors, part with delegation of design responsibility in 
inappropriate ways. Internal programming details frequently end up being determining 
factors for significant features of the user interface (how many .computer systems, even 
today, for example, limit some input fields to eight characters simply because it 
corresponded to a convenient double-word boundary within the computer?). Indeed, 
decisions having a profound impact on systems utility may be made, ad hoc, by a junior 
programmer. 

In short, our overall technical objective function is made up of varying amounts of 
(emphasis on) efficiency, maintainability, modifiability, generality, flexibility, and utili
ty. Another way of putting it is that these are components of objective program quality. 
For them to be usable in an engineering sense by the designer, we will have to develop 
some objective measure or characterization of each and to show just how each is 
influenced by various isolated design decisions and overall design practices. Discussion 
of the bulk of this task will be deferred until Section VI. 

In simple terms, it often is sufficient to state that our primary objective is 
"minimum-cost" systems. That is, we are interested in systems that are cheap to 
develop, cheap to operate, cheap to maintain, and cheap to modify. The relative priori
ties placed on development costs, operational costs, maintenance costs, and modification 
costs will vary from organization to organization, from user to user, and from project to 
project. In addition, the priorities wil.l continue to change as evolving technology 
changes the ratio of hardware costs to software costs. 
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1.3 Design constraints, trade-offs, and decisions 

We might view technical design objectives as constituting an objective function, as 
in an optimization problem - an objective function we want to maximize, subject to 
certain constraints. As a rule, constraints on the systems design process fall into two 
categories. Development constraints are limitations on resource consumption during 
development, and might be stated in terms of overall cost or in specific components, 
such as machine time and man-hours. Schedule limitations e'You1 ve gotta be finished 
by the first of the month.") are also in this category. Computer systems rarely go into 
mass production in the same sense that hard systems usually do, but analogous to the 
costs of manufacturing hard systems are the costs of using software systems. Other 

, operational constraints might be expressed in technical terms, such as maximum 
memory size or maximum response time for an on-line system. 

The character of many design constraints is that they are not set limits, but 44Soft 
boundaries.," which are stretched at varying cost or consequences. Indeed, in the final 
analysis, objectives and constraints blur. A real-time system may have some fixed 
upper boundaries on admissible response times and others that merely affect user frus
tration. This might be translated into a high premium on efficiency, so that the critical 
response times can be met and the users not left too unhappy. 

The very essence of design in the real world and the best characterization of 
design decisions is trade-off We rarely can have our cake and eat it, too. As we in
crease one parameter, we almost always decrease another. If we opt for more 
efficiency, we frequently sacrifice ease of maintenance. Similarly, execution speed can 
usually be gained at the expense of memory storage or secondary storage. It is the 
designer's job to be aware of what he is trading off and to select that balance which best 
reflects his overall goals. Ultimately, the goal is economic, as we have already pointed 
out - that is, lowest possible net discounted value of all future resource consumption 
or maximum net present value of future profits. Unfortunately, the designer almost 
never has either the tools or the information necessary to evaluate this kind of global 
goal. Moreover, such total economic impact, while it should be an ever-present con
sideration, is too cumbersome to be applied to each incremental technical decision. It is 
for this reason that we identify more immediate technical objectives that have some ap
proximate and predictable effect on total economics. 

A total design is the cumulative result of a large number of incremental technical 
design decisions. Though some of these are clearly global., such as random versus 
sequential file organization, most will be small and isolat~d (e.g., "Does the end-of-file 
test go here or there?"). To be able to engineer computer systems, we need to know 
just how various technical design goals are influenced by the alternatives in the incre
mental decisions, ideally without having to go through an extensive analysis for each 
decision. In short, we need a general understanding of which kinds of design decisions 
influence which design goals, on a case-by-case basis. 

Unfortunately, certain trade-offs have been perpetuated in mythological form, re
lating one design goal to another as if they were locked in a certain relationship when, 
in fact, the relationship is complex and has many "balancing points" that can be ex
ploited. Examples of these myths are: 
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• Increasing generality increases development cost. 

• Increasing generality decreases efficiency. 

• More flexible interfaces are harder to use. 

We will not be satisfied with such very general and inaccurate statements. 

1.4 Summary 

In this chapter, we have attempted to demonstrate that there are a number of im
portant roles in the systems development process - primarily, business systems 
analysis (understanding the problem), computer systems design (designing the major 
architecture of a solution to the problem), and programming (putting the design into 
code). We have concentrated (and will continue to concentrate for the remainder of 
this book) on the role of design, because we feel it is a critical area that, in many organ-· 
izations, has been ignored, or delegated to the wrong person (e.g., the junior program
mer), or performed by someone incompetent to do the job (e.g., a senior systems 
analyst whose last real experience was with an IBM 650). We have emphasized that it 
is not sufficient to find just one design for a computer system~ what we want is the best 
design, given appropriate information about the technical objectives and constraints for 
the system. 

Even more, we want an organized methodology - a "cookbook'' - that will help 
us develop "good" designs and discard "bad" designs as easily as possible. That, in a 
nutshell, is what "structured design" is all about: a collection of guidelines for distin
guishing between good designs and bad designs, and a collection of techniques, stra
tegies, and heuristics that generally leads to good designs - good in the sense of satis
fying the common technical objectives and constraints found in commercial and 
scientific environments. 

In the next chapter, we will examine some of the fundamental philosophies and 
concepts that form the basis of structured design. If it seems that we are placing ex
traordinary emphasis on philosophies and concepts, have patience: It is critically impor
tant if the subsequent chapters on techniques are to make sense. Indeed, we suggest 
that when you finish Chapter 21, you return to reread the first two chapters! 
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CHAPTER 2 
BASIC CONCEPTS OF STRUCTURED DESIGN 

In the previous chapter, we saw that design is an activity that begins when the sys
tems analyst has produced a set of functional requirements for a program or system, 
and ends when the designer has specified the components of the system and the interre
lationship between the components. We also saw that it is insufficient, in most cases, 
for the designer to consider a solution, a design. He should evaluate several alternative 
designs and choose the best - best in the sense of maximizing such technical objectives 
as efficiency, reliability, and maintainability while satisfying such design constraints as 
memory size and response time. 

In this chapter, we begin to explore the philosophies and principles of structured 
design - primarily to see how we can achieve such objectives as reliability, maintaina
bility, and low-cost implementation of systems. We also discuss some general design 
principles that seem applicable to computer systems as well as to a number of other 
hard systems. 

2.1 How do we achieve minimum-cost systems? 

When we are dealing with a simple design problem - say, a computer system that 
can be designed, coded, and tested in less than a week - most of us have little trouble 
kee.ping all elements of the problem in our heads at one time. On the other hand, 
when we are dealing with a complex design problem - say, a real-time management in
formation system that ultimately will involve more than 100,000 lines of code - then it 
is difficult to believe that anyone would be capable of keeping the entire problem, and 
its solution, in his head at one time. Successful design is based on a principle known 
since the days of Julius Caesar: Divide and conquer. 

Specifically, we suggest that the cost of implementing a computer system will be 
minimized when the parts of the problem are 

• manageably small 

• solvable separately 

Of course, everyone has a different definition of "manageably small": Some would say 
that anything that takes more than a week to design, code, and test is too large~ most 
would agree that a problem requiring more than a month to design, code, and test prob
ably should be broken into smaller pieces; certainly everyone would agree that a prob
lem requiring more than a year to implement is too big. 

Of course, many designers have made attempts to 44 Chop" a system into manage
ably small pieces; unfortunately, they have often found that implementation time in
creased rather than decreased. The key frequently lies in the second part of our stipula
tion above: The parts of the original problem must be solvable separately. In many 

16 
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computer systems, we find that this is not so: In order to in)Plement part A of the 

solution to the problem, we have to know something about part B ... and in order to 

solve part B, we have to know something about part C. 

It is precisely because of this last point that we must eventually halt our attempts 

to make pieces of the system manageably small. It seems reasonable that a problem re

quiring one year to implement could be broken into, say, a dozen smaller problems re

quiring a month each to implement; with the techniques discussed later in this book, 

we can even be reasonably certain that the one-month pieces are solvable separately. 

We might then decide to break each of the one-month pieces into four separate one

week pieces. With some extra work, we could break the one-week pieces into separate 

one-day pieces, and so forth. The problem is that we would eventually reach a point 

where the microscopic pieces of the system would no longer be solvable separately -

that is, the design of microscopic piece A would eventually depend on understanding 

microscopic piece B. We will have more to say about this in Chapter 5. 

In a similar fashion, we can argue that the cost of maintenance is minimized when 

parts of the system are 

• easily related to the application 

• manageably small 

• correctable separately 

We recall that maintenance was defined in the previous chapter as ongoing debugging, 

and we observe that, in many organizations, this thankless task is performed by some

one other than the person who designed and coded the system. · Thus, when the user 

calls on the telephone to complain that the third line of the XYZ report is wrong, it 

may not immediately be clear which part of the system is responsible for producing the 

third line of the XYZ report. Indeed, it may turn out that several obscure parts of the 

system are involved in producing the third tine of the XYZ report. The larger the sys

tem, and the more subtle the bugs, the more critical it is that maintenance personnel be 

able to relate parts of the system to parts of the user's application. 

Of course, it is still important that parts of the system be manageably small in ord

er to simplify maintenance. Attempting to find and fix a bug in a 1,000-statement 

"piece" of a system involves unraveling and modifying a large portion of it; finding and 

fixing a bug in a 20-statement module are reasonably simple because (a) we should be 

able to sight-read all 20 statements in a minute or two and comprehend their combined 

effect, or (b) in the worst case, all we have to do is throw the module away and write a 

new version. The latter philosophy, nicknamed "disposable modules,'' was formally 

employed in a recent Royal Australian Air Force project with great success. Unless the 

bug could be found in a matter of minutes, the programmer was required to throw the 

module into the wastebasket and write a new one to accomplish the same job. 

Regardless of whether we decide to throw away a piece of the system every time 

we find a bug, and regardless of how small that ·piece is, we cannot hope to minimize 

maintenance costs unless we can ensure that each piece of the system is independent of 

other pieces. In other words, we must be able to make a correction to piece A of the 

system without introducing any unanticipated side effects in piece B - and, of course, 

that is precisely the problem that plagues many maintenance programmers! If we ask 



18 STRUCTURED DESIGN 

the average maintenance programmer, "What makes your job difficult?'' we are likely 
to lhear answers such as: 

• Whenever I that midnight phone call telling me about a bug in the 
program, it takes forever to find it. The bug always turns out to be 
somewhere other than where I expected it. 

• Once I find out where the bug is, it takes a long time to figure out how 
to correct it. This is usually because the code is so tricky and compli
cated that (a) I can't figure out what it does, except that I know it's 
wrong, and (b) I can't figure out ho~ to change it to make it right. 

• When I correct the bug, I always make some dumb little mistakes -
you know, a keypunch error or something like that. It always seems 
Ii ke I have to fix the bug twice before I finally get it right. 

• When I fix one bug, it always introduces a new bug in some other part 
of the system ·- and it's always in some part of the system that I don't 
know anything about. 

It is this last problem we are concerned about, because it is so insidious. It may be a 
day, or a week, or a month before we discover that the simple little bug that we fixed 
has introduced a new bug that resulted in the printing of 100,000 incorrect paychecks. 

Finally, we suggest that the cost of modification of a system will be minimized 
when its parts are 

• easily related to the problem 

• modifiable separately 

We recall from the previous chapter that modification involves enhancing existing 
features of a system, or adding new features - generally at the request of a user who i's 
concerned with the external characteristics of the system rather than its internal 
subroutines. 

Thus, when the user comes to us and says, "I'd really appreciate it if you would 
change the system to print year-to-date sales totals as well as sales totals for the current 
month," our first job is to find out which part(s) of the ·system is involved in the calcu
lation, accumulation, and printing of sales totals. Once again, we point out that this un
pleasant job usually is done by someone other than the person who designed and imple
mented the original system - so it may not be easy. Of course, our earlier comments 
about independence still hold true: We want to be able to modify one part of a system 
without introducing any unanticipated side effects in other pieces of the system. 

In summary, then, we can state the following philosophy: Implementation, 
maintenance, and modification generally will be minimized when each piece of the system 
corresponds to exactly one small, well-defined piece of the problem, and each relationship 
between a system's pieces corresponds only to a relationship between pieces of the problem. 

This is illustrated in Fig. 2.1, in which we have represented the problem (applica
tion) as a formless amoeba, containing fas is usually true in the real world) subprob
lems, wnich contain sub-subproblems (and in that amoeba-like real world, etc., etc.). 
Thus, if there is a piece of the application naturally known as A, then there should be a 
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piece of the system which implements the A function. Similarly, if there is a natural 
relationship between part A of the problem and part D of the problem, there should be 

a similar relationship between part A of the system and part D of the solution - and 
no other extraneous relationships. 

When viewed in this graphic fashion, the problems of the maintenance program
mer are even more evident. When a bug in part A of the problem is brought to his at
tention, it is not immediately clear which part of the system is responsible for dealing 
with that part of the problem. And when he does finally locate part A of the system 
(assuming that there is such a well-defined part!), he may not have anticipated the rela
tionship between piece A of the system and piece C of the system (i.e., a relationship 
of the type that modification to piece A will necessitate a modification to piece C), be
cause there was no such relationship between piece A of the problem and piece C of 
the problem. 

2.2 How does structured design lead to minimum-cost systems? 

In the previous section, we suggested that implementation, maintenance, and 
modification would be minimized if the system could be designed in such a way that its 
pieces were small, easily related to the application, and relatively independent of one 
another. This means, then, that good design is an exercise in partitioning and organizing 

the pieces of a system. 

By partitioning we mean the division of the problem into smaller subproblems, so 
that each subproblem will eventually correspond to a piece of the system. The ques
tions are: Where and how should we divide the problem? Which aspects of the prob
lem belong in the same part of the system, and which aspects belong in different parts? 

Structured design answers these questions with two basic principles: 

• Highly interrelated parts of the problem should be in the same piece of 
the system, i.e., things that belong together should go together. 

• Unrelated parts of the problem should reside in unrelated pieces of the 
system. That is, things that have nothing to do with one another don't 

belong together. 

We discuss the details necessary to achieve this philosophy in Chapters 6 and 7. 

The other major aspect of structured design is organization of the system. That is, 

we must decide how to interrelate the parts of the system, and we must decide which 
parts belong where in relation to each other. Our objective is to organize the system so 
that no piece is larger than is necessary to solve the aspects of the problem it includes. 
Equally important, structured design involves organizing the system so that we do not 
introduce interconnections that are not part of the interrelationships in the problem. 

2 .3 The concept of black boxes 

The concept of a black box is a very powerful one, both in engineering and in 

software design. A black box is a system (or equivalently, a component) with known 

inputs, known outputs, and, generally, a known transform, but with unknown (or ir

relevant) contents. The box is black - we cannot see inside it. 
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Figure 2.1. Pieces of a problem and pieces of a solution. 
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Black boxes have numerous interesting properties, the most important of which is 
that we can use them. A true black box is a system which can be fully exploited 
without knowledge of what is inside it. Many of the hard systems we encounter in 
everyday life are essentially black boxes to their users. To the average driver, an auto
mobile is a virtual black box, transforming fuel, directional, accelerative, and decelera
tive inputs into motion at the desired speed in the desired direction. Radios, televi
sions, adding machines, stereos, and a myriad of other common systems are usable as 
and function well as black boxes. This is fortunate, for if we needed to know the in
volved electromagnetic, mechanical, hydraulic, and other techniques employed in these 
systems in order to make use of them, we would be greatly inconvenienced, if not 
paralyzed, in modern society. 

An experienced designer needs only mentally to review his own experience with 
the programs and modules developed by others to realize that most computer systems 
only approximate, at best, true black-box behavior. Very often we find that we cannot 
use or make full use of a subroutine without going inside it and examining its contents. 
Perhaps it behaves ufunny" under some circumstances - e.g., returning a zero for cer
tain values of input, when the results are still fully defined. Possibly there are certain 
temporary storage areas within the subroutine which must be re-initialized in a special 
way for each successive pass of the file. Or it may be a subroutine that determines 
whether a character is a "punctuation'' character - but when it finds certain illegal 
punctuation, such as a quotation mark in the middle of a word, it deletes it as well. 
These may all be characteristics that must be discovered through examination of the 
code within the module. 

Good documentation itself does not make a module a black box. To describe the 
quirks of some coding trick that result in a loss of precision when the previous result 
was zero, or to list the 24 cells of temporary storage that may be modified upon reentry 
to a subroutine in order to alleviate some problem, does not make our "glitchyH 
subroutine a black box. Indeed, since its contents are now exposed through the docu
mentation, we may properly call it a ~~white box." A white box is preferable to a mys
terious and ill-behaved ukludge," but it is hardly as good as a true black box. 

It should be clear that actual computer program modules may vary in the degree 
to which they approximate ideal black boxes. That is, there are ''gray boxes" of vary
ing degrees of black-boxishness~ we have not a dichotomy, but rather a continuum, a 
technical dimension along which modular systems may be distributed. 

Program black-box characteristics may be divided into two areas:' one static, the 
other dynami~. A program is more of a black box to the extent that its behavior can be 
characterized in terms of a set of immediate inputs, a set of immediate outputs, and a 
simply stated relationship between the two. Black-box behavior in program modules is 
associated with the ability, for each use of the module, to completely specify the 
sources (i.e., values) and targets for all inputs and outputs and to do this in a simple 
and consistent manner. Operationally, this is equivalent to saying that the data context 
of the module is uniquely determinable by the using module for each activation of the 
module being used. 

The requirement that the transform be simply stated need not eliminate difficult 
functions nor sophisticated methods for computation. It is as simple to state Hcumula
tive normal distribution for'~ as Hone more than twice," though the former may be 
much more difficult to define or compute. When the transform description must make 
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reference to procedure or code, to side effects and exceptions and special cases, our cri
terion is missed. 

Dynamically, we require program modules to be stable and dependable. This may 
be a matter of reliability, a separate subject to be taken up in Chapter 19. It may also 
be a matter of stubbornness. The procedure may do different things depending on what 
has been left in certain storage areas by previous activations. It may work only for the 
first 1,023 cases. Some of its input values may come from a remote source. It may 
deliver output either to specified variables, or to a special exception area without so 
much as a "by your leave." A perfect implementation of the wrong algorithm might 
lead to a random number generator that returns only zeroes after the 4,005 ,236th time. 
The function may change with time due to intermodular program modification. 

Stability of function is a subtle concept, however. Consider a module that is sup
posed to deliver an employee's background record and then his recent education record. 
These data are merged from two tapes. Any module which delivers first one, then the 
other, has a varying function, but some methods of implementation are worse than oth
ers., The rock·stable oscillator which simply flips from one to the other fails (becomes 
unpredictable) if its user inadvertently makes an odd number of requests in some sec
tion, or restarts without playing out both files in synchronism. 

To avoid the clumsiness of the term "black-boxishness, '' we will use the phrases 
"static integrity" and "dynamic integrity." As we have already suggested, integrity is a 
continuum with both static and dynamic determinants. 

Because black boxes, or modules, that are high in integrity may be used without 
our knowing or understanding their contents, they are particularly useful in the design 
stages of systems development, either as conceptual or actual entities. How they may 
be used is best understood in terms of a "rule of black boxes,'' which may be thought 
of as a general-purpose design heuristic: 

Whenever a function or capability is seen as being required during the 
design of a system, define it as a black box and make use of it in the system 
without concern for its structural or methodological realization. 

Eve:ntually, of course, each such invoked black box must in turn be designed, a process 
which may give rise to more black boxes and so on. Finally, the procedure and struc
ture of all will be determined, but in no case earlier than necessary. This increases the 
likelihood that the information necessary to optimally design any component will be 
available. It also keeps the designer working on related issues without being sidetracked 
into consideration of unnecessary details. 

While the rule of black boxes is a useful concept and guideline, it is not sufficient 
unto itself to enable the development of highly maintainable, highly modifiable, 
minimum-cost systems. In subsequent chapters, we shall see that imbedding such con
cepts in a formal strategy is the secret. 

2.4 Management parallels with structured design 

One of the fascinating aspects of program design is its relationship with human or
ganizational structures - particularly, the management hierarchy found in most large 
corporations. Whenever we wish to illustrate a particular point about program design 
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(as we will be doing in subsequent chapters), we often can do so by drawing analogies 
with a management situation. 

Suppose, for example; that you were a management consultant and that you had 
just been hired to find out why the Pribble Company is not operating efficiently. The 

company's organizational chart is shown in Fig. 2.2, and a quick glance shows that the 
president of the organization can look forward to a heart attack or an ulcer in the near 
future; at the very least, we can expect that his day-to-day work wilt be error-prone and 
inefficient. Why? Simply because the president has too many immediate subordinates. 
Consequently, his job involves too many decisions, too much data, too much complexi
ty - all of which can only lead to mistakes. 

Janitor 

Adm in. 
Asst. 

Teen. 
Adviser 

Personnel Press 
Manager Operator 

Q.C. 
Engineer 

President 

Typist V.P. of 
Sales 

Secretary 

Salesman 
1 

Figure 2.2. Organization of the Fribbte Company. 

Salesman 
2 

The point is this: If we can make such comments about a management structure, 
why can't we make similar comments about a program structure? If we see that a 
designer has organized the pieces of a system in such a way that a Hcontrol" module 
has 139 immediate subordjnate modules, then we should suspect that the control 
module is too complex - a phenomenon that will probably lead to bugs in the initial 
implementation, and will certainly lead to problems during subsequent maintenance and 
modification. 

Similarly, what would we expect a management consultant to say about the 
management structure shown in Fig. 2.3? The obvious suspicion is that the duties of 
managers A, X, Y, and Z are relatively trivial and could be compressed into a single 
manager's job. Again, if we can make such statements about management structures, 
why can't we do the same for program structures? That is, if we saw a program in 
which a high-level control module had the sole task of calling one subordinate, which in 
turn did nothing but call one immediate subordinate, whose only activity was to call one 
low-level subroutine that finally accomplished some work - if we saw such a program 
0rganization, wouldn't we be inclined to think that two or three levels of Hrnanager" 

modules were trivial and superfluous? 
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Figure 2.3. Alternative management structure. 
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In a similar vein, it is often said (sometimes cynically) that in a perfect organiza
tion, no manager ever does anything. That is, all of the work is performed by the 
lowest-level subordinates. The managers coordinate information between the subordi
nates, make decisions, and do whatever else would naturally fall under the heading of 
management. By analogy, it is often argued that the high-level modules in a program 
or system should merely coordinate and control the execution of the low-level modules 
that actually perform the computations or other work required of the system. 

Finally, we observe that in some organizations, the manager gives only as much 
information to a subordinate as the subordinate requires in order to perform his job; the 
subordinate is not allowed to see the big picture. This is seen most dramatically in mili
tary organizations, where information is provided to subordinates strictly on a need-to
know basis. The philosophy is somewhat more subtle, but equally prevalent, in large 
commercial and industrial organizations. The analogy in program design is obvious: A 
subroutine, or module, should only be allowed to access that data which it needs to per
form its assigned task. We will peal with this philosophy extensively in Chapter 13. 

When we discuss the management analogies to program design, a number of our 
students grow rather restive, and begin asking questions like, ''What theory of manage
ment are you talking about? Is that 'theory X' or 'theory Y'?'' Or, they ask, "Where 
did you learn those crazy management ideas? Is that what they teach at the Harvard 
School of Business?" Or, even worse, some students grow rather red in the face, and 
protest loudly, "That's not how I manage my people! I've always felt that my people 
should know the big picture. After all, 'they're mature, intelligent adults! They would 
be insulted by the management philosophies that you're preaching!" 
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The point is that we 're not ·preaching any management philosophies~ we are sim· 
ply observing the similarities that we see between the structure of large computer sys
tems, and the structure of large management organizations. We think it admirable that 
the team leader of a programming project keeps his people informed about what's going 
on - but we very much doubt that the president and executive officers of, say .. Ameri
can Telephone & Telegraph provide the hundreds of thousands of their bottom-level 
subordinates with all of the data which they, the managers, have available to them. 
Similarly, we think it is admirable for a programming project leader to roll up his 
sleeves and write some code, but we very much doubt that the executives of General 
Motors Corporation can afford to spend very much time working on the assembly line, 
producing next year's Chevrolets. 

In short, the comments that we make about management structures are probably 
more applicable to very large organizations, where formal interfaces and a formal hierar
chy are often necessary to keep the whole structure from collapsing. The observations 
are less applicable to small organizations, and to the bottom levels of large organiza
tions, where one must be more cognizant of and sympathetic to the idiosyncrasies of 
lluman beings. 

Nevertheless, we feel that the analogy between program structures and manage
ment structures is extremely useful, and reasonabty accurate - as long as it is not car
ried too far. Thus, if you find yourself at a loss for words and images with which to 
describe some design issue, try to draw an analogy with a format management organiza~ 
tion (perhaps one staffed by emotionless robots!). That should help you decide whether 
or not your design is reasonable. 

2.5 A collection of useful terms 

Throughout Chapters 1 and 2, we have been using terms such as "objectives," 
"heuristics," and Hgoals" rather loosely. We pause now for a moment to discuss the 
implied relationships between these different approaches to the issue of facilitating sys
tems design. 

Technical objectives are technically based measures of quality which generally re
late consistently to the overall goals of minimum cost or maximum gain. The designer 
usually evaluates decisions within the framework of technical objectives. Technical 
parameters of a system are non4 evatuative measures - that is, merely descriptions of 
certain aspects of a system. These are the things under direct control of the designer 
and which influence technical objectives. Unlike aspects of quality, "more" is not 
necessarily better; it depends. 

The designer is aided by tools, which _are models (of the system) that can be 
manipulated in useful ways. Flowcharts and decision tables are examples of design 
tools. Design principles, like the ones given in this chapter, are very broad rules that 
generally "work" in the sense that they favor increasing quality for less development 
cost. Heuristics, however, are very specific rules of thumb that also usually work but 
are not guaranteed. A strategy is a procedure or plan in which to imbed the use of 
tools, principles, and heuristics to specify system parameters in order to increase techni
cal objectives. Any questions? 
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2.6 Summary 

In this chapter we have seen that we can generally minimize the cost of imple
mentation, maintenance, and modification - three of the major technical objectives for 
current computer systems - by designing systems whose pieces are small, easily related 
to 1the application, and relatively independent of one another. We have also seen that 
structured design achieves this by focusing attention on proper partitioning of the appli
cation and by proper organization of the pieces of the system. We have also introduced 
some general design philosophies, such as the "rule of black boxes," which are ex· 
tremely basic and which will be dealt with later in the book. 

Finally, we have seen that a number of our value judgments about the design of a 
computer system can be expressed by drawing analogies to human organizations. In ad
dition to providing a convenient communications tool between designers, it allows us to 
draw upon the experience of several hundred years of studying human organizational 
structures - which, after all, are just another kind of system with many of the same 
properties as software systems. 



CHAPTER 3 
THE STRUCTURE OF COMPUTER PROGRAMS 

3.1 Programs and statements 

A computer program is a system. We noted in Chapter 2 that structure - com
ponents and interrelationships among components - is an essential, often neglected 
property of computer programs. But just what are the components of computer pro· 
grams and how are they related? 

First, we should recognize that while a program is a system, it is a very special 
kind of system. It is worthwhile to present a careful definition of ,. program,, and 
Hcomputer program" as a preliminary to the discussion of program structure. A pro
gram can be defined as 

A precise, ordered sequence of statements and aggregates of statements which, in 
total, define, describe, direct, or otherwise characterize the pe1formance of some 
task. 

A computer program is simply a program which, possibly through intermediate gyrations, 
can cause a.computer to perform the task. 

At the most elementary (and safest} level~ we observe that computer programs 
are, by definition, composed of statements. These statements are arranged (another 
way of saying structured) in a sequence. It is thus safe to identify individual statements 
as the components of computer programs, and the statement sequence as one structur
ing relationship. 

This view of programs as being constructed from statements that are precisely or
dered is essentially the classic or "algorithmic" view of programs and programming. By 
virtue of this characterization, attention is focused on the smallest unit of a program 
(i.e., the statement), on the sequential arrangement and performance of those state· 
ments, and on the required precision with which these are created and sequenced. This 
view is certainly correct~ it cannot be dismissed out of hand. However, the value of 
such a viewpoint can only be judged fairly in terms of the consequences of highlighting 
these "algorithmic" aspects at the expense of certain others. 

Computer programming is taught to novices and is very often performed by 
veterans on the basis of a procedural realization of an algorithm. Some function or task 
is given; an algorithm or ~'method of computation" is selected, discovered, or created~ 
this algorithm is translated into a language which the computer will accept. This ap
proach to programming is not restricted to mathematical functions or formal algorithms. 
Generating a weekly payroll is a function~ the. flowchart or process chart for doing so is 
an algorithm. 

27 
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Certain consequences result from this approach. The sequential, procedural, 
methodological aspects of programs are further emphasized. In this description, the 
effort is concentrated on two things - on finding a computational method and on the 
sequential statement-by-statement translation of the method. Programming in the usual 
use of the term is what we frequently referred to as "implementation" in Chapters I 
and 2. In and of itself, such a conventional view will never lead to considering the 
whole task in terms of other tasks. The task is considered only in terms of its realization 
as a sequence of steps and that, in turn, as a sequence of (ultimately) machine
recognizabte program statements. Thus, the solution of the whole problem of creating a 
program is attacked by generating, in order, successively very tiny parts of the solution. 

We have not yet said what a statement is. A careful, general definition is more 
difficult than it may seem at first. Suffice it to say that we mean any small, well
defined, complete instruction~ command, declaration or ... well, anything of that sort. 
An IBM System/370 machine instruction written in hexadecimal by a programmer mak
ing a patch, a COBOL sentence, a FOR TRAN arithmetic statement, a symbolic instruc
tion written in the COMP ASS assembly language for the CDC Cyber series computers, 
a PL/I declaration - all of these are examples of statements. 

For almost all purposes in this book, it wilt not matter whether the statement is a 
machine instruction, an assembly language statement, or a high-level language state
ment. In almost all cases, we are interested in whatever "tine" of code the program
mer writes. In many respects, all statements in any programming languages of any 
"level" are equivalent or comparable. 

To reinforce this perspective, we will introduce an ultra-simplified notation for 
wriling programs. A short, straight line will represent a line of code, or a statement -
any line of code or statement, in any language. This, of course, vastly simplifies writing 
programs and presenting examples! Here, for example, is a seven-statement program: 

At first, this degree of abstraction probably wilt be most uncomfortable; especially 
for programmers with many years of experience. Much of the rhetoric (if not the sub
stance) of programming shoptalk - even of programming literature - has depended on 
drawing sharp distinctions between high- and low-level languages, on debating this 
language against that language, or that machine repertoire against another. It will be 
worthwhile to try to accommodate viewing programs in the abstract, as, very often, 
features and aspects that otherwise would be missed can easily be seen. 

3.2 The statement structure of computer programs 

If statements are the components of programs, what is the structure of those state
ments? To answer that question, we must distinguish between different interpretations 
of the term "interrelationship," on which "structure" is based. Two statements may 
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be interrelated because they are part of the same procedure, or because they involve the 
same type of operation. Similarly, we may say that statements are interrelated because 
they are executed in sequence. Finally, some statements are interrelated because they 
actually refer to each other. 

These are examples of very different forms of structure: The first example might 
be termed conceptual structure. Such interrelationships, though important to the pro
grammer doing the detailed coding (e.g., HJeez, where are all the MOVE CORRESPONDA 

ING statements in this program - it turns out, the compiler generates incorrect object 
code for them!"), can be ignored, for they do not really exist in the program. The as
sociations are mental rather than physical. 

Implicit structure, such as that resulting from the sequential execution of program 
statements~ is more objective - though it still depends on context. The structure based 
on explicit references in one part of a program to things in other parts of the program is 
the most concrete and, it turns out, the most important from the standpoint of program 
design. We will call this simply referential structure. Other forms of structure will also 
be of interest to us. The communication structure is· the structure based on the flow of 
data between different statements and different parts o( the program. Control structure 
is based on the flow of control (successive activation or execution) between different 
statements or different parts of programs. Lexical structure is a special relationship to be 
discussed later in this chapter. 

In terms of writing, understanding, and modifying, a contiguous linear block of 
code does not behave like many small pieces, but rather like one big, tightly cemented 
piece. The term monolithic refers to any system or portion of a system which consists of 
pieces so highly interrelated that they behave like a single piece. As a rule, and in the 
absence of special features which limit the interrelationships, all continuous linear 
blocks of contiguous code are monolithic. 

It is the monolithic nature of contiguous code that is the undoing of the ' 4 myth of 
modularization." Many organizations have undertaken, at great expense, to Hmodular~ 
ize,, an already completed piece of software. This is done in the hopes of simplifying 
future maintenance or minimizing slowly spiraling costs of introducing changes. Let 
Fig. 3.1 represent such a system, perhaps an on-line inquiry system. Any change, how
ever isolated in function, requires dealing with a large percentage of the total code be
cause it is so highly interrelated. Indeed, because this structure is not (and probably 
cannot be) documented, essentially all code must be checked for possible involvement 
if a change is being introduced simply to identify which lines need not be changed. 

The command to modularize this program can only be read as "chop it into more 
pieces.,, In Fig. 3.2, the system has been thus modularized. Note that the potential im
pact of changes has not been reduced by introducing these artificial boundaries between 
sections. These remain as complex and highly interconnected as before. The program 
as a whole may be marginally more complex, for the introduction of "module boun-

, daries" introduces new elements into the system, and may require involved coding to 
accomplish the actual interfacing implied by so many intermodular references. This ex
pensive and disappointing lesson has been learned by many organizations after a sub
stantial investment. While one may not always do as badly as indicated by Fig. 3.2, it is 
all but impossible to simplify significantly the structure of an existing program or sys
tem through after-the·fact modularization. Once reduced to code, the structural com
plexity of a system is essentially fixed. It is, thus, clear that simple structures must be 
designed that way from the beginning. 
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Figure 3 .1. Structure of large 
program after modularization. 
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Figure 3.3. Modular structure consisting solely of subroutines. 
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3.3 The linguistics of modularity 

Thus far, we have been informal in our use of the term "'module" and have often 
even avoided it by using the words "section" or "part" or Hpiece" instead. Before we 

formally define the term, we must do some preliminary work. 

An analysis of program statements by function in a typical computer program will 

reveal that some of these statements serve to aggregate statements into larger program

ming elements. These statements effectively form the boundary of statements which are 

~'within" the iarger aggregate. Such statements will be termed boundary elements, and 

the positions in the program that they define are the boundaries of the aggregate. 

For example, in the following portion of a sample program, the statements with 

labels Al and A2 bound the aggregate named A. Statement B is inside A, and statement 
c is outside A. 

Al: BEGIN A 

B: 

A2: END A 
C: 

The illustration pictures the program as written, in the order and arrangement of 

statements as input to a translator (e.g., a computer or assembler). This order is known 

as the lexical order of the program, and in this context the term lexical will always mean 

"as written" or "as it appears in a listing of the translator input." (The term lexicat·has 

other meanings in the context of programming linguistics and languages in general.) 

Thus, the statement labeled B is lexically included in the aggregate named A. The state

ment c lexically follows the statement labeled A2. 

It is important to note that the lexical sequence may be independent of both the 

order in which the translation of statements appear in memory and the order in which 

the statements will be executed. The order of statements can be altered by optimizing 

compilers or by link-editors (loaders)~ the sequence of addresses in physical memory 

may depend upon virtual memory considerations~ execution order depends upon condi

tional and unconditional control transfers. 

One purpose that boundary elements serve is to control the lexical scope over 

which specific identifiers are defined and are associated with specific objects. Thus, in 

the coding that follows, the identifier B typically would be undefined at statement Nl~ 

the reference to A at statement N2 would identify the same object as that at NJ (namely, 

to the identifier defined in statement Nt), while the reference to A at statement NS 

identifies a different object - namely that defined at statement N4. 
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NI: DEFINE A 

LJ: BEGIN 
DEFINE B 

N2: USE A 

L2: END 
NJ: USE A 
LJ: BEGIN 

N4: DEFINE A 

NS: USE A 

L4: END 

The indentation in the example above serves to highlight the scope defined by the 
boundary elements BEGIN and END; it serves no other purpose, structural or otherwise. 

Note, by the way, that several programming 1anguages - ALGOL, PL/I, and 
some assembly languages - allow the programmer to formally define the scope of vari
ables in much the way we outlined above. In languages like FORTRAN and COBOL, 
the concept still exists but it is much less formal and general: COBOL subprograms 
(separately compiled and activated with a CALL) and FORTRAN external subroutines 
have natural boundary elements that serve to define the scope of variables. 

A common problem in identifier definitions is that of ucollision of identifiers." 
This occurs when the programmer uses the same identifier in different sections of his 
program with the intention of referring to different objects - when, in fact, the same 
object is being referenced. Collision of identifiers may occur, for example, when one 
aggregate with a local interpretation of, say, X (but without a local definition or declara
tion of X) is lexically included in another aggregate which defines or declares X for its 
own use. Some or all of an aggregate 's set of defined identifiers - its Hidentifier 
space" - may correspond to elements in the identifier spaces of other aggre.gates. 

An aggregate may also have associated with it an aggregate identifier, an identifier 
whose object is the entire group of bounded statements, as a whole. Program state
ments, within or outside the aggregate boundary, may refer to the aggregate identifier. 

We are now in a position to define linguistically the terms '~programming 

module," or "'module'' for short. A module is a lexically contiguous sequence of program 
statements, bounded by boundary elements, having an aggregate identifier. Another way of 
saying this is that a module is a boundetl, contiguous group of statements having a sin
gle name by which it can be referred to as a unit. 

A bounded aggregate not possessing an aggregate identifier is a segment. An ag
gregate that also has an identifier space, which is entirely a subset of that of the se
quence in which it is lexically imbedded (its lexical superordinate), may have its bound-
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.. 
ary elements removed without effect. The boundary elements serve no function what-
soever in that case. 

It should be noted that this definition encompasses not only subroutines, in the 
broadest sense, as modules (provided they are properly constructed linguistically), but 
also specific language variants such as FOR TRAN ~'subroutines," PL/I "procedures,'' 
COBOL "subprograms," COBOL usections," COBOL Hparagraphs," PL/I "tasks," 
and so forth. Our definition of module includes much more than the conventional 
subroutine mechanism; it also includes, for example, coroutines and assembler "mac
ros." This may seem like an obvious point, but it warrants emphasis. 

Consider the following FORTRAN program. The Hmain" routine activates 
GETCHR by using a CALL at statement 20; this transfers control to GETCHR, with the as
sociated condition that GETCHR, on encountering a RETURN statement, will resume exe
cution of the suspended main sequence. 

20 CALL GETCHR 

SUBROUTINE GETCHR 
30 

40 RETURN 

END 

The same result could have been achieved with the program below, which simu
lates the behavior of the one above by setting a switch. Note that the subroutine activa
tion mechanism does not explicitly transfer control to GETCHR, but is instead a simple 
GOTO statement. 

20 ASSIGN 21 TO I 
GO TO 30 

21 

c BEGIN G ETCH R 
30 

40 GOTOI 

c END GETCHR 

Note that a similar programming mechanism could have been accomplished in COBOL 
by using the ALTER statement. We will say that a language contains or includes a given 
type of module if there is a specific linguistic construct which directly realizes the ac
tivation characteristics that define the module. Thus, we say that a language contains a 
"subroutine'' type of module if there is a language construct similar to CALL or PER
FORM that allows us to activate such a module~ a language contains a coroutine type of 
module if there is an appropriate activation mechanism. 
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The characteristics of any given type of module always can be simulated in any 
language that is Turing-complete - that is, which can be used to program any comput
able function. This is true for virtually any ''real'~ programming language. 

3.4 Normal and pathological connections 

We will represent any and all modules (as defined in the previous section) with 
the graphic notation: 

Note that this is the c·onventional '~box" used to represent a procedural step in a 
flowchart. To avoid confusion~ it is necessary to distinguish between a flowchart and a 
"structural representation." In this book, diagrams consisting of connected boxes will 
be modular structures unless otherwise stated. To aid in recognizing the exceptions, 
flowcharts will always begin with a "connector~' regardless of context. Thus, we 
represent flowcharts as follows: 

The special status of the aggregate identifier as representing the entire module 
suggests the graphic convention of having references to this identifier being represented 
by arrows pointing to the box. Thus, TRANSEDIT below is a module with at least three 
exte~nat references to its aggregate identifier. 

TRANSEOIT 
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Directed line segments with arrowheads will always be used to indicate such connec
tions; the arrowhead will end at the boundary of the box representing a module.* 

Connections that are references to identifiers of entities within the module bound
aries are appropriately represented by directed line segments for which the arrowhead 
ends within the box representing the module. Below, module PUTLINE has at least one 
reference to its aggregate identifier, and two references to identifiers defined within it 

PUTUNE 

For historical reasons, t intermodular connections to internally defined identifiers 
are called pathological connections. Connections to the aggregate identifier are normal 
connections. The value judgments normally implied .by these names should be ignored; 
they are really just convenient shorthand labels for two structural variations of inter-· 
modular references. 

The simplest possible graphic for a normal connection, an arrow from one box to 
another, is reserved for the most ubiquitous (and perhaps most important) form of nor
mal reference: the simple subroutine call. In the structure of Fig. 3.3, module MAIN 

has within it subroutine calls that reference modules DIST and HYP~ DIST contains a call 
to SQRT, and HYP contains a call to SINE. 

We draw an arrow from one box to the other, starting and ending on the bounda
ry, if and only if there exists in the first module one or more calls referencing the iden
tity interface of the second module. In general, the number of such references is not of 
interest to us, and identical multiple arrows are not usually drawn between the same 
pair of boxes. 

It is important to keep in mind that the existence of a reference does not neces
sarily mean that a referent will be accessed. For example, the fact that there is a 
"subroutine call" reference from one module to another does not mean that the 
subroutine will be called. A subroutine call may or may not involve communication of 
arguments, and these may be transmitted in either direction. The subroutine LINEEND, 

for example, might compute the X-Y coordinates of the end of a line of length L, angle 
A, from initial point XI and YL A call to LINEEND might look like 

CALL LINEEND(X 1, Y l ,L.A,XE, YE) 

where XE and YE are identifiers whose values are to be set by LINEEND based on the 
values of the other identifiers. 

*Every effort has been made to make the graphics for program structure simple and intuitive. The rationale 
for the choice of graphics will usually be presented as an aid to learning. For a complete summary of suggest
ed graphics, see Appendix A. 
tSee the discussion of terminology in the Preface, and the derivation of minimally connected systems in 

Chapter 6. 
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In LINEEND, we might find code like that of Fig. 3.4. Note that the only reference 
in either module FOO or module LINEEND to an identifier defined within the scope of the 

other is the reference to LINEEND in statement ct of FOO. Thus, argument transmission 
does not introduce additional connections. Where the existence and nature of argu
ments is of interest (as it frequently is), these are indicated by small arrows and annota
tions beside the connection, as in Fig. 3.4. 

FOO 

Cl: CALL LINEEND(Xl,Yl,L,A,XE,YE) 

XE,YE 1 ! XI, YI ,L,A, 

u 
LINEEND 

ARGUMENTS XA,YA,LA,AA,XB,YB 

----

A =_XA_YA 
B= AA LA 
C=_YA __ LA 

D= AA YA 
XB = 
YB= 
RETURN 

Figure 3.4. Annotation to represent argument transmission. 

Pathological connections are distinguished as to whether they are control or data 
references. A small dot on the "tailH of an arrow always means an element of control 
is involved, while a small circle means that an element of data is involved. Pathological 

connections are also drawn beginning within the box in which the reference is found. 

The rationale for this will be appreciated after you read Chapter 6. 
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Lexical inclusion presents an unusual problem for graphic-al representation. In the 
code shown in Fig. 3.5, A is included within B, which is included within D, which is in
cluded within Q. One might reasonably choose to diagram this in a way that directly 
represents the relationships, as shown in Fig. 3.6. However, this requires many boxes 
of different size and makes clarification and interpretation difficult, especially when oth
er relationships are involved. The call from B to A, for example, looks rather peculiar. 

Q: 

D: 
B: 

A: 

END A: ..___ ____ ___, 

ENDB: '------__. 

END D: .__I _____ __, 

Figure 3.5. Example of lexically 
included code. 

Q 

Figure 3. 7. Diagramming 1exically 
included structure. 

Q 

D 

B .. 
A 

I 

Figure 3.6. Attempt to diagram lexically 
included code. · 

A 

Figure 3.8. Transform from A into 8. 
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To overcome these objections, we introduce a special graphic. The structure 
shown in Figs. 3.5 and 3.6 is much clearer when shown in the form of Fig. 3.7. The 
graphic is intended to suggest that the box for the lexical subordinate has been pulled 
out of the lexical superordinate and expanded. Note that the lexical inclusion (or 
subordination) is independent of all other relationships, which, if they exist, must be 
shown separately. 

3.5 Data flow graphs 

A number of design principles and strategies in this book will require us to stud;· 

the flow of data through the program or system. Hence, we need a method of restating 
the problem itself (i.e., "functional requirements" or "systems specifications'') in a 
manner that emphasizes the data flow and de-emphasizes (in fact, almost ignores) the 
procedural aspects of the problem. While it may seem alien at first, it turns out to be 
rather similar to the high-level ""systems flowchart" drawn by many designers as a way 
of getting started on the design. 

The data-oriented technique that we will use is called a data ffow graph. The same 
model also is known as a data flow diagram, or a program graph 1 or even a '"bubble 

chart." The elements of the data flow graph are called transforms and are represented 
graphically by small circles (or ~"bubbles," to use the colloquial term). As their name 
implies, the transforms represent transformations of data (which eventually will be ac
complished by a module, a program, or even an entire system) from one form to anoth
er form. The data elements are represented by labeled arrows connecting one 
transform bubble to another. Thus, Fig. 3.8 shows a simple transform with a single in
put stream, and a single output stream. 

A tqmsform may require (or accept) elements of more than one input data stream 
in order to produce its ou~put (s). If two adjacently pictured data streams are both re
quired for a transform, we draw an asterisk (H*,,) between the two data streams~ by 
analogy with other mathematical disciplines, we refer to the "'*H as an Band'~ operator, 
or a "conjunction" operator. Similarly, the Bring-sum" operator (Bffi ") is used to 

denote disjunction - that is, an ~·either-or" situation. Figure 3.9 illustrates a data flow 
diagram in which conjunction and disjunction have been used in the input data streams 
and the output data streams. 

The amount of detail shown in the data flow graph will vary from problem to 
problem, and from designer to designer. To illustrate this point, Fig. 3.lOa depicts the 
data now in a typical "master file update" system~ note that it shows very little detail. 

Fig. 3. lOb shows a data flow for the same system - but in much more detail. The di
agram of Fig. 3. lOa is probably extreme in the sense of not showing enough detail; the 

bubble labeled "magically transform into transactions" contains a number of internal 

subtransformations of which the designer should be aware if he is to develop a good 
structural design. On the other hand, the diagram of Fig. 3.1 Ob might be regarded as 

"extreme" in the sense of showing too much detail~ the transformation labeled "se
quence check," for example, is sufficiently uninteresting that it might be ignored by the 
designer in his "first crack" at a design. 

We will find the data flow graph useful in Chapter 7 in our discussion of a struc
tural design concept known as "cohesion." However, its primary use is that of a tool in 
a structural design strategy called '~transform analysis." Chapter 10 discusses transform 
analysis and the role of data flow graphs in developing a "transform-centered" design. 
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Master 
File tape 

Figure 3.9. Conjunction and disjunction. 

internal 

M.aster File 
records 

Figure 3. lOa. Data flow diagram with very little detail. 

updated 
records 

tape 
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card 
images 

~laster 

card 

validated 
sequenced 

card images 

logical 
tr an sac tions 

Figure 3.1 Ob. Data flow diagram with excessive detail. 

3.6 Summary 

We have seen in this chapter that computer programs are systems, and that they 
can be analyzed in a variety of ways. The most important components of a program are 
its statements, and we can recognize an inherent structure in those statements~ indeed, 
unless we do recognize the statement structure, our attempts to modularize a program 
by chopping it into pieces usually will be unsuccessful. 

Most of the emphasis in this chapter has been on the definition of terms and con
cepts used throughout the rest of the book. In addition to defining terms that are not 
part of the average designer's vocabulary - e.g., normal and pathological connections 
- we have attempted a careful, technical definition of words like module. 
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4.0 Introduction 

CHAPTER 4 
STRUCTURE AND PROCEDURE 

Neophytes and veterans alike often find it difficult to comprehend the difference 
between procedure and structure in computer programs and systems. Even more seri
ous is the failure to understand the relationship between coding and '~structural" 

design. The choice of structure can substantially influence the simplicity of coding. 
Conversely, selection of a particular coding technique may have predetermined major 
portions of the structure. This chapter explores relationships between the two by study
ing examples and by elaborating on various ways of modeling the same system. 

The first thing to recognize is that structure is not something new that we are ad
ding to the ken of programmers and analysts~ it is not a concept or added neologism 
which systems did not ever have. Every computer system has structure - that is, it is 
made up of components that are interconnected. Even the degenerate case of the 
single-module system can be examined in terms of its statement structure (as we did in 
the previous chapter). Regardless of how a system was developed, whether its structure 
was designed or determined by accident, we can document the modular structure. 

The definitions in the last chapter lead to an obvious discip1ine for ''discovering" 
the modular structure of an existing system. It is helpful to identify a top-level or main 
module as a starting point. On a "structure chart," that starting point is represented by 
the top box. Every reference to an identifier defined outside its scope is an intermodu
lar reference for which an arrow can be drawn to another box. When we have 
identified the name of the module in which the referent is found, we can insert the 
module name in the target box. The code for each such box is examined in the same 
manner as the first module, giving rise to further connections and the discovery of addi
tional modules to be drawn as boxes and analyzed in turn. In most programming 
languages, this procedure is so straightforward that it can easily be done by a program. 

For example, an analysis of the code shown in Fig. 4.1 leads to a diagram like that 
shown in Fig. 4.2. Note especially how normal and pathological connections have been 
distinguished. A code has been provided to simplify associating the graphic model with 
the code~ in the code, each connection bearing a number identifies the reference with 
which it is associated. 

While any actual code has but a single, valid, complete structural representation, 
the mapping from a structure chart to code is not singJe .. valued. As any programmer 
knows, there are an infinite number (well, in any case, a large number!) of ways of 
coding a module, even when its structural representation has already been determined. 
All that can be said of the code base.d on a structural representation is that somewhere 
within the coding for a particular module, references of a certain type must be present. 
Thus, based on the structure, we infer certain contents of modules. We know, for ex-

42 
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ample, that a pathological connection directly references a data label defined within 
some module. If it is shown passing data opposite to the direction of connection we 
know it must be accessed as a "load" or Hfetch" rather than as a 44Store." Ty~ical 
statements or instructions then follow. 

BOTTOM: BEGIN SUBROUTINE 
ARGUMENTS X, Y 
DEFINE BA, BB, BC 
GLOBAL QQ, ST2 

TOP: 

MID: 

STI: 

ST2: 

STORE QQ 

STOREY 

RETURN 

FETCH X 

GO TO ST2 
END 
BEG IN ROUTINE 
DEFINE TA, TB, QQ, RR G) 
ACCESSIBLE QQ, RR 

CALL MID 

END 
BEGIN SUBROUTINE 
DEFINE MA 
ACCESSIBLE ST2 
GLOBAL RR 
CALL BOTTOM (RR, MA) @ 

RETURN 
END 

© 

Figure 4.1. Some code whose structure 
is to be analyzed. 

4.1 Flowcharts and structure charts 

MID 

Figure 4.2. Structural representation 
of code in Fig. 4.1. 

One way of looking at procedure and structure is to consider the relatioriship 
between the flowchart (a model of procedure) and the structure chart for the same sys
tem. Figure 4.3 is suggestive of a set of flowcharts, one for each module or section of 
code. This is the standard or "hierarchical" ·method of flowcharting in which the top
level flowchart reflects the gross overall processing, some of which is expanded in the 
next level of flowcharts, and so on. In essence, the set of flowcharts is a series of hor
izontal slices of the system, with time (as a rule) increasing from left to right, and "cal
ling" represented in the dimension into the paper. 
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J k--------

Figure 4.3. Hierarchical set of flowcharts as a model of a system. 
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As shown in Fig. 4.4, the structure chart is essentially a vertical slice in the plane 
of the paper; Figs. 4.3 and 4.4 are really just orthogonal views of the same system. It 
should be recalled, however, that the structure chart is a time-independent model of a 
system. By convention, we represent subordinations in the same order left to right as 
they appear lexically. This means that, as a rule, reading across the subordinations em
erging from any given module approximates the time order of their execution. This can 
only be a rough indication, however, for the actual order in which calls are accessed on 
any particular execution may vary considerably due to differing outcomes of conditional 
statements. Thus, interpreting the subordinating references at any level as a rough 
flowchart only works well if the procedure is very simple. 

It should be emphasized that this is merely a graphic convention. For example, 
the two structures of Fig. 4.5 are equivalent~ they both represent the same information. 
We stress this point because, among other reasons, we often find that a real-world 
structure chart is sufficiently complex that we must rearrange the left-to-right placement 
of modules to avoid a tangle of crossed lines on the chart. Figure 4.6a, for example, 
shows a structure chart in which we might imagine that module A is executed first, 
module B is executed second, and module c is executed third (all subordinate to MAIN, 
of course)~ Fig. 4.6b shows a structurally equivalent diagram whose connecting arrows 
are a bit easier to follow. 

While it is easy to appreciate that the left-to-right order in a structural representa
tion has no intrinsic implications for the order of execution of the subordinates, it is far 
less obvious that the vertical dimension of the structure chart is also time-independent. 
Of course, if we have a complete structure and disregard errors, and if A is not superor
dinate to B and B is superordinate to A, then A cannot receive control for the first time 
until B receives control for the first time. However, in order to fully understand what is 
happening, we must look at the processing accomplished by a module - its "body" -
rather than merely its receipt of control or its activation of other modules. 

As an example, suppose we had modules P, Q, and R, and suppose that P is im
mediately superordinate to Q, which is immediately superordinate to R. The code for PP, 
QQ, and RR can be executed in any one of six different orders depending on the details 
of the logic within modules P, Q, and R. The most obvious order of execution is PP first, 
then QQ, then RR~ this would involve code of the sort shown in Fig. 4.7. However, it is 
also possible that the execution sequence is PP first, RR second, and QQ third~ this would 
involve the code shown in Fig. 4.8. The other four variations are obvious - the last be
ing RR first, QQ second, and PP third. 

So, once again, our point is this: When we examine a structure chart, we should 
be exceedingly cautious about making any assumptions regarding the sequence of exe
cution. It is somewhat dangerous to assume not only that the modules in a structure 
chart will execute in a left-to-right sequence, but also that the body of code in a high
Ievel module will be executed before the body of the code in a low-level module. Of 
course, in a simpfe structure chart, the top-to-bottom sequence and the lefMo-right se
quence will frequently occur - but there will be enough exceptions in real-world struc
ture charts that we should learn to read the structure chart for the information it was 
intended to give: structural; architectural information. 
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1f00 
J 

1FvM 
! 

Figure 4.4. Structure chart as a vertical slice into the system. 
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TOP 

LEFT CENTER RIGHT 

FIRST SECOND 

TOP 

RIGHT LEFT CENTER 

SECOND FIRST 

Figure 4.5. Two equivalent representations of the same structure. 
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A 

MAIN 

Figure 4.6a. Structure with crossed lines. 

P: 
I CODE FOR PP 

CALLQ 
RETURN 

Q: 
CODE FOR QQ I 
CALL R 
RETURN 

R: 
CODE FOR RR I 
RETURN 

Figure 4. 7. Coding for one 
sequence of PP, QQ, and RR. 

A 

A2 Al Rl 82 

Figure 4.6b. Equivalent structure. 

P: 
CODE FOR ppl 
CALLQ 
RETURN 

Q: 

CODE i-:GR QQ 
RETURN 

R: 
CODE FOR RR I 

Figure 4.8. Coding for a second 
sequence of PP, QQ, and RR. 
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Of course, there will be times when the designer wishes to communicate certain 
important procedural information to those reading his structure chart - not the trivial 
loops, decisions, and sequencing operations, but the critical ones of which the designer 
feels others should be aware. Certain major loops or decisions, for example, could have 
a major effect on the efficiency of the program and might well influence the manner in 
which the designer (or the programmer) Hpackages"* the modules into physically exe
cutable units (e.g., ''load modules," "job steps,,, ''overlays,,, or "segments," depend
ing on the terminology of the computer vendor). 

There are a number of conventions for showing procedural matters in a structure 
chart. These are discussed in detail in Appendix A, but the major conventions - one- , 
shot executions, iteration, and conditional decisions - can be summarized here. If, for 
example, we wish to show that a subordinate module is not re-executed upon successive 
activation of the superordinate, we so indicate with a small numeral "one n within the 
superordinate box and adjacent to the tail of the arrow connecting it tb the subordinate. 
Thus, Fig. 4.9 shows a subordinate module REWIND which is activated as part of an ini
tialization procedure on the first activation of supe~ordinate module MANAGE, but not 
thereafter. 

Subordinates activated repeatedly as the result of iterative execution of their calls 
would be shown as in Fig. 4.10. Alt of the modules activated within a common loop are 
shown with their references emerging from the same "looping arrow," and the nesting 
of loops is illustrated appropriately. In Fig. 4.10, PROC and NEXT are executed in a loop 
which, along with a call to ADJUST, is imbedded in an outer loop. 

IMAIN 

1 

Figure 4.9. Notation for one-shot modules. Figure 4.10. Notation for loops. 

The familiar diamond figure is used to show conditionally activated calls. Each de
cision is represented by a separate diamond~ alternate outcomes (typically, the binary 
"TRUE" and "FALSE") emanate from each diamond. Thus, we would expect to see 
two arrows emanating from the diamond (e.g., a "TRUE " arrow and a "FALSE" arrow) 
if the code for the diamond corresponded to the classical IF-THEN-ELSE construct of most 
high-level languages~ we would expect to see only one arrow if the code for the dia
mond corresponded to the degenerate IF-THEN construct~ and we could expect to see a 
multitude of arrows emanating from the diamond if the code for the diamond 
corresponded to the CASE construct found in languages like ALGOL. 

*Packaging is discussed extensively in Chapter 14. 
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Where several calls are made as the result of the same outcome (e.g., the TRUE 

outcome), these are shown by allowing the appropriate arrow (e.g., the TRUE arrow) to 

"split" into a number of branches. For example, in the structure shown in Fig. 4.11, 

modules A, P, and x are activated based on different decisions. Modules p and Qare the 

alternate actions of one decision. In the final decision, module x is invoked on one out

come, and both modules Y and z are invoked on the other outcome. 

M 

A Q x 

y z 

Figure 4.1 L Alternate outcomes of decisions. 

The procedural annotations for one-shot, iterative, and conditional access may be 

used with any structural relationship; they are not restricted to subroutine calls, though 

that seems to be their most common use. For example, we can show a conditionally 

used pathological data access, as is illustrated by Fig. 4.12. 

Figure 4.12. Conditionally used pathological data access. 

This could derive from code within the referencing module, such as the following: 

IF C THEN FETCH H 

The one-shot, iterative, and conditional indicators should be regarded as annota

tions which enhance the usefulness of the structure chart as a model for designing and 

documenting but which are not part of the model itself. They are very useful, howev

,er, and the experienced designer often can understand a great deal about the relevant 

behavior of a system from an "extended" structure chart - that is, a structure chart 

with procedural annotations. 
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4.2 Interactions of procedure and structure: an example 

The best way to get a firm grasp on the influence of choice of structure on pro
cedural contents is through a concrete example. Of necessity, this must be a fairly 
lengthy and detailed example in order to contain interesting design issues, even in rudi
mentary form. We will first look at~ this example, known as the Personnel Master Entry 
Getter, in the context of a simple design problem. 

Our task is to develop an afferent subsystem (one that delivers its output upward 
to superordinates*) that will supply complete, ready-to-process compound items called 
Personnel Master Entries (PME). Each activation is to result in returning one PME -
the next one - until no more exist, at which time an EOF flag is to be set and returned. 
The module that performs this task, when called, is to be named GETPME; it may have 
any number of subordinates in any substructure. 

Each PME is constructed of from one to ten records: a key record and up to nine 
continuation records. These records normally have a. blocking factor of eight on' the in
coming file (i.e., eight logical records for each physical ~'block" on the tape or disk 
file). However, there are short blocks indicated by a '~short block indicator." (Blocking 
is a physical input-output issue for the purposes of this exercise, and is unrelated to the 
organization of records into items.) 

Deblocked records are combined into PMEs based on several factors. Normally, 
successive records will contain a "continuation code" indicating that the current record 
is part of the same PME as the previous record. A record containing a "first code'.' indi
cates that the previous record was the last in that PME, and that this record is the first in 
the next PME. A record may or may not contain an "end flag," indicating that it is the 
last record of the current PME. The 'ninth continuation record is assumed to have an 
"end flag." Obviously, an EOF must be treated the same as a record without a continua
tion code -· that is, it ends the previous Personnel Master Entry with the previous 
record. Each complete PME must be put through a special process in order to make it 
ready for further processing. 

We will not yet consider how the designer derives an appropriate structure for 
such a subsystem, but we will consider the consequences of that choice, inclu~ing some 
common mistakes. 

In skeletal form, the total processing for this function is rather simple. The de
tails of all the individual elements could be comparatively complex. Even if it is possi
ble to code the entire problem in a single module at reasonable cost, it may not be 
advisable. Certain functions, perhaps the deblocking process or the end-of-PME 
analysis, might be generally useful in other related applications; as modules, they could 
be activated by any part of this system or related systems. In any event, we may save 
significantly on the cost of developing the system because of the advantages of smaller 
modules. 

•Afferent modules are discussed in Chapter 8. 
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We may think of the GETPME function as realizable in terms of combinations of a 
number of smaller functions, each representing (probably) a non-trivial sequence of 
code. The basic functions are: 

ADD 
LOCATE 

READ 
TEST 

MAKE 

add a record to a PME being built. 
locate the next record in a block or indicate that there is none in the block; initially 
there is none. I 
get the next block of records in the file or indicate that there are no more in the file. 
determine whether a record constitutes the end of a PME, the beginning of a new 
PME, or neither. 
make a series of records in the same PME into a processable item. 

This overall process is simple enough to identify only two major algorithmic varia
tions on a design. The "'sequential machine derivation n is presented m Fig. 4.13. The 

other major variation uses two record areas and always deals with a pair of contiguous 
records. This avoids duplicating some of the operations as well as some of the sequen
tial decision-making. As an exercise, you may want to develop the flowchart for this 

variation. It is difficult to argue objective overall differences between the two designs 

and we shall be content, for our discussion, with the flowchart shown in Fig. 4.13. 

Of interest to us is the structural representation of the system whose procedural 
representation was shown in Fig. 4.13. In order to draw the structure chart, we first 
recognize that the entire flowchart of Fig. 4.13 is itself a module - that is, the GETPME 

module. Also, the ADD, LOCATE, READ, TEST, and MAKE functions described above are 
modules - subordinate modules to the top-level GETPME module. The relationship -
and, in particular, the data flow - among all of the modules is perhaps easier to see if 
we write some sample code On "computer Esperanto") as an implementation of the 
flowchart~ this is shown in Fig. 4.14. 

Studying this, we have little difficulty deriving the structure chart shown in Fig. 

4.15. Note that we have chosen to show the loops in the structure chart that were 

present in the original flowchart (and the code, too, obviously) but not the decisions. 
Why? Simply a personal decision on the part of the authors: While studying the struc

tural aspects of the program, we felt that the decisions were relatively trivial, but that 
the loops were of some interest. 

Actually, there are several things about the structure chart that are interesting. 

First of all, notice its "pancake" structure: That is, it consists of one "boss" module 
and five immediately subordinate "worker" modules. When we drew analogies 
between program structures and management structures in Chapter 2, we suggested that 
if a boss had too many immediate subordinates, his job probably would become too 

complicated - and that similar comments could be made about program structures. 
We are not yet in a position to decide whether the structure chart of Fig. 4.15 is "bad" 

in this respect~ we simply observe at this point that all of the "control logic" has been 

pull into one level of Hmanager" module - namely GETPME. 

One could argue that this is not entirely true. In most cases, GETPME acts as the 
boss - that is, it tells the other low-level modules what to do. However, there are 

times when one of the "workers" - DEBLOC - tells the boss what to do. Notice that 
GETPME passes a block to DEBLOC, with the expectation of receiving a record in return. 
However, if the block has been exhausted, DEBLOC sends back an EOB flag - in effect, 

DEBLOC tells the boss, GETPME, that it should read another record. We will see in more 
detail in Chapter 9 that this uinversion of authority" frequently leads to extra flags and 

switches as well as other undesirable structural characteristics. 
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Figure 4.13. Sequential machine derivation of PME problem. 
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GETPME: 

DE: 

TEST: 

NEXT: 

START: 

FINISH: 
MAKE:. 

RTNEOF: 

SUBROUTINE, ARGUMENTS ITEM, ENDFILE 
IF EOFNXT GO TO RTNEOF 
lF NOREC GO TO TEST 
CALL DEBLOC (BLOC, REC, EOB) 
IF NOT EOB GO TO TEST -
CALL GETBLOC (~, ,Wf) 
IF EOF GO TO RTNEOF 
GOTO DE 
CALL MORTEST (REC, END, NEW) 
IF END GO TO FINISH - -

IF NEW GO TO ST ART 
CALL BUILDITEM (REC, ITM, ITM) 
CALL DEBLOC (BLOC, REC, EOB} 
IF NOT EOB GO TO TEST 
CALL GETBLOC (BLOC, fillf) 
IF NOT EOF GO TO NEXT 
SET EOFNXT 
GOTO MAKE 
SET NOREC 
GOTO MAKE 
CALL BUILDITEM (REC, ITM, ITM) 
CALL MAKEREADY(ITM, ITM)
RETURN 
SET ENDFILE 
RETURN 
END 

Figure 4.14. One possible implementation of code for GETPME. 

Figure 4.15. "'Pancake" structure for GETPME. 



GETPME: 

TEST: 

MORE: 

MAKE: 

START: 

FINISH: 

RTNEOF: 

STRUCTURE AND PROCEDURE 5$ 

Figure 4.16. An alternative structure for GETPME. 

SUBROUTINE. ARGUMENTS ITEM. ENDFILE 
IF EOFNXT GO TO RTNEOF --
IF NOREC GO TO TEST 
CALL GETREC (REC, EOF) 
IF EOF GO TO RTNEOF 
CODE FOR TEST 
EXIT TO FINISH, START. OR MORE 
CALL ADD (REC, ITM, .lil:P 
CALL GETREC (REC, EOF) 
IF NOT EOF GO ToTEST 
SET EOFNXT 
CODE FOR MA KE 
RETURN 
SET NOREC 
GOTO MAKE 
CALL ADD (REC, ITM. !IM) 
GOTO MAKE 
SET ENDFILE 
RETURN 
END· 

Figure 4.17. Possible code for structure shown in Fig. 4.16. 
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Finally, note that the structure that we have shown in Fig. 4.15 has two nested 

loops. Within the inner loop, the primary activity is to extract a record from a block 

and add it to a partially constructed PME. The outer loop exists for the purpose of read

ing more blocks, as required. Unfortunately, the loops are somewhat complicated by 

the possibility that MORTEST will exit from both levels of loops when it discovers that it 

has a complete PME. At this point, though, we simply observe that there are two levels 
of loops in GETPME. 

While it may appear that we are criticizing the structure of Fig. 4.15, we are doing 

so cautiously, for we are not yet in a position to state authoritatively what is "good" 

and what is "bad" about such a design. However, it is safe to speculate that there may 

be alternative designs, from a structural point of view; with characteristics worthy of in

vestigation. The analogies with workers and bosses can lead us to such an alternative 

structure if we reason as follows: All the boss wants to do is obtain a record and, if it is 

of an appropriate type, add it to a partially constructed PME. The details of blocking, de

blocking, and reading are important, of course, but they should not be of any concern 
to the boss. 

This leads us to the structure shown in Fig. 4.16. Note that the code for the TEST 

function has been included in the GETPME module itself. Note also that there are more 

levels of control in this structure than in the previous one - that is, GETREC serves as a 

"junior manager," hiding the details of blocking and de blocking from GETPME. Note 

also that the EOB flag has disappeared as it is no longer necessary. Finally, note that the 

new structure has only one loop in GETPME. Lest you think this a trick, we hasten to 

point out that there are no loops hidden within GETREC; each time that GETREC is 

called, it determines whether it is necessary to make another call to GETBLOC. 

It should be clear from this example that the choice of modular structure does 

indeed affect the complexity of both internal code and intermodular communication~ 

how much it does so can be appreciated simply by.comparing Fig. 4.15 and Fig. 4.16. 

The new structure has fewer modules, yet those modules are each simpler and smaller 

when compared to equivalent portions of the earlier structure. Table 4. 1 compares the 

two structures in terms of a number of objective indications which we might relate to 

quality or simplicity. Of special interest is the uspan," or communication path length 

- that is, the number of intermodular connections each data argument must traverse. 

We may deduce that "effective" modularity may well be associated with "efficient" 

modularity, for each unit of total communication path length has some non-zero execu

tion time cost associated with it - indeed, most programmers are aware that passing of 

data and parameters can be a very expensive proposition in some high-level program

ming languages. 

One of the things we conclude from this exercise is that, in practice, it is not 

feasible to develop several general total flowcharts - indeed, it usually is not feasible to 

develop even one - to use as a guideline for evaluating a large number of different 

structures until one with reasonably good characteristics is found. The flowchart to 

serve this purpose generally would be unmanageably large, for it would have to be a to

tally detailed flowchart --- not a rough or overall one. If a high-level or overall flowchart 

is used to guide structure derivation, there is just as much chance of running into 

difficult-to-assess sub-optima1 structures as if no guide had been used. 
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Table 4.1 

Comparison of Two Designs for GETPME System 

Number of Data Input Arguments 
Number of Data Output Arguments 
Number of Control Arguments (Flags) 
Span: Maximum Path Length 

Average Path Length 
Number of Switches 
Number of Duplicated Decisions 
Estimated Lines of Code 

(Estimated 80 lines if coded 
from Fig. 4.13) 

Fig. 4.15 

5.00 
4.00 
4.00 
3.00 
2.25 
3.00 
3.00 

93.00 

Fig. 4.16. 

2.00 
3.00 
2.00 
2.00 
1.33 
2.00 
2.00 

74.00 

The question of how good structures are to be found, derived, invoked, or other~ 
wise brought into being is one that requires not only substantial knowledge of purely 
physical aspects of modular structures, but also a technical elaboration of "good." We 
will thoroughly discuss the characteristics of '~good"' modular structures and "bad" 
modular structures in Chapters 5, 6, and 7; beginning in Chapter 8, we will see how 
Hgood" structures can be derived for a wide class of program design problems. 

4.3 Summary 

We have seen in this chapter that a flowchart is a model of the procedural flow of 
a program, whereas a structure chart is a time-independent model of the hierarchical re
lationships of modules within a program or system. This distinction is an important 
one, and needs to be emphasized over and over again to designers who are more fami
liar with "flowchart-thinking.'' For example, it is important to emphasize to such 
designers that one usually cannot infer from a structure chart the order in which 
modules are executed. 

On the other hand, we do have some tools for highlighting certain procedural de
tails on a structure chart. The techniques discussed in this chapter - graphic notations 
for loops and decisions - will be valuable in the discussions in the following chapters. 





SECTION II 
FOUNDATION 

Our approach to structured design is based on a formal, though not (as 
yet) mathematical, theory of the complexity of computer systems and pro
grams. In our view, the cost of systems development is a function of problem 
and program complexity as measured in terms of human error. For a given 
problem, the human error production and, therefore, the cost of coding, debug
ging, maintenance, and modification are minimized when the problem is <subdi
vided into the smallest functional units that can be treated independently. The 
elements of this theory - comprising definitions of ''small," "functional," and 
"independent" - are presented in this section. 

Chapter 5 considers some well-established principles of human problem
solving as they relate to the question of systems complexity. The factors contri
buting to interactions between systems components are described in Chapter 6 
on "cou piing." The cohesion of individual systems components is discussed in 
Chapter 7. Chapters 6 and 7., taken together, represent not just elements of a 
theory, but also operational methods for evaluating alternative designs in terms 
of probable cost of implementation, maintenance, and modification. Successive 
sections rest on the foundation built here. 





CHAPTER 5 
HUMAN INFORMATION PROCESSING 

AND PROGRAM SIMPLICITY 

5.1 The economics of systems development 

An understanding of the basic economic structure of the systems development 
process is essential in developing better, more efficient methods of systems production 
- as well as better, more efficient systems. Some of the key figures concerning the 
costs of systems development - such as the estimate that maintenance accounts for 50 
percent of the average organization's EDP budget - were mentioned in Chapter 1. 
However, the detailed figures, impressive as they may be, should not concern us: They 
change with time and are subject to debate. What is important are the underlying 
characteristics, the fundamental phenomena, that give rise to these fluctuating figures. 

We might begin by asking where the data processing money goes. Basically, it 
goes for people and machines - programmer/analysts and computer time - and little 
else. To a limited extent, person-hours and computer-hours behave reciprocally. There 
are ways by which we trade one for the other within some narrow range. For the most 
part, however, they vary together: More programmer/analyst time to develop a given 
system means more machine-time used. One should note that it is the programmer/an
alyst who generates the machine-time - so, it is the programmer/analyst who is the 
essential link in the economic chain. 

It has been documented in a number of places l.2·3 that testing and debugging ac
count for most of the cost of systems development~ the common estimate is that 50 
percent of a data processing project is devoted to these activities. White this may be a 
bitter pill for the proud programmer/analyst to swallow~ it is a real one - and if the. 
medicine remains unswallowed, the pain will continue. While '~testing" and Hdebug
ging" are defined variously by different organizations, we will point out that the true 
cost of debugging is the cost of everything the programmer/analyst does in the develop
ment of a system beyond what would be necessary if he made no mistakes~ that is, over 
and above initial writing of the code, setup, and review of the first compilation or as
sembly, and setup and review of the last test-run (the one that confirms that the system 
is acceptable). In other words, the cost of debugging accounts for most of the cost of 
both the person and the machine. 

That most of the cost of systems development today is due to errors is not some
thing to be denied, but rather an insight to be traded upon. Indeed, this is so vital that 
no theory of programming or programs, no technique or practice for programming or 
systems design, which does not give central recognition to the role of bugs and debug
ging, can be of much value in the practical amelioration of the pains in the field. 

61 
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5.2 The fundamental theorem of software engineering 

We will attempt, in this section, to develop what may be regarded as a kind of 
fundamental theorem of systems development. First, we note that it takes longer to 

write a long program than it takes to write a short one. This is always true if we mea

sure long and short in the proper units. Clearly, "number of instructions" is not quite 

the right measure since some instructions are harder than others. This borders on the 
tautological, as we are really trying to say that it is harder to solve a harder problem. If 
we assume that we have an appropriate measure of the size of a problem p (for an in
teresting discussion of this area, see Halstead's study 4), say M(P), then the cost of pro
gramming P, which we might call C(P), obeys the rule: 

IF M(P) > M(Q) THEN C(P) > C(Q). 

That is, cost is a monotonically increasing function of problem size. 

We might try taking· two separate problems and, instead of writing two programs, 

create a combined program, Putting two problems together makes them bigger than the 

two problems taken separately. The primary reason for not combining problems is that, 
as human beings, we do not deal well with great complexity. As the complexity of a 

problem increases, we make disproportionately more mistakes; when problems are com
bined, we must solve not only each individual problem, but also the interactions 
between the two (which may involve preventing or avoiding interactions). Thus, 

M(P + Q) > M{P) + M(Q) 

and, as we would expect, 

C(P + Q) > C(P) + C(Q) 

It is always easier (and cheaper) to create two small pieces rather than one big piece if 

the two small pieces do the same job as the single piece. 

This phenomenon is not unique to the computer field. Indeed, it seems true of 

any field of problem-solving: mathematics, physics, or naval warfare. In all of these 

fields, we find that we can increase the complexity of the problem from very trivial to 
trivial to not-quite-so-trivial with a correspondingly small increase in the number of er

rors - but sooner or later, the errors begin to increase more rapidly. Thus, for pro

gram design, systems design, and for all those other problem-solving disciplines that are 

beyond the realm of this book, we should expect to see an error curve of the sort 
shown in Fig. 5.1. 

The psychologist-mathematician George Miller, 5 in a summary of a very large 

body of research, first described the human information processing limitations that give 
rise to this effect. It appears that people can mentally juggle, deal with, or keep track of 

only about seven objects, entities, or concepts at a time. In effect, the immediate recir

culating memory needed for problem-solving with multiple elements has a capacity of 

about 7 ±2 entities. Above that number, errors in the process increase disproportionate
ly. It matters not what the ''somethings" are people to be managed, state variables 

to be remembered, subroutine calls to be understood - if there are more than about 

7 of them, the errors generated rise sharply and non-linearly. This is a very funda

mental and well-established property of human information processing that underlies all 

strategies for segmenting, factoring, or decomposing problems into subproblems. It is 
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this relationship between problem elements and error generati-0n that assures us that 

C(P + Q) > C(P) + C(Q) 

Clearly, once the problem becomes non-trivial, there is a great incentive to break 
the problem into smaller pieces. We can state this rather dramatically by making the 
appropriate substitutions in the equation above and writing what we (tongue in cheek) 
will call the Fundamental Theorem of Software Engineering: 

C(P) > ('hP) + C(l/2P) 

Basically, this just says that we can win if we can divide any task into independent sub
tasks. If the subtasks are not truly independent of one another, then we are not solving 
just the two subtasks - for in the ,solution of non-independent parts, we also are simul
taneously dealing with some aspects of the other parts. 

This last point is crucial. Unless we deal with it, we will always have to contend 
with the objection that the authors have heard from several hundred skeptical designers: 
''Yeah, but the problem of chopping a system into small modules (sic) is that I can in
troduce even more bugs - I always get the calling sequence wrong, or pass the wrong 
arguments to the module ... and besides, it takes so much time to write out all the de
tails of the calling sequence!" 

Suppose we have factored a problem P into two parts of equal complexity~ let us 
call the two parts P'= 1/iP and P"== 1/2P. If they are not independent, then the cost of solv
ing the entire problem is 

C(P' + I x P') + C(P" + I x P") . 1 2 

where 11 is a fraction representing the interaction of P' with P". Whenever 11 and 12 are 
non-zero, it is obvious that 

C(p' + 11 x P") + C(P" + l2 x P") > C(1hP + C1hP) 

If 11 and 12 are both small - which we would expect if the designer has done a 
good job of modularizing his system - then we should still expect that 

C(P) > C(P' + 11 x P") + C(P'' + 12 x P') 

Clearly, there are also sufficiently pessimistic solutions, which would make a divided 
task cost much more than a combined task. 

It is a pleasant fantasy to consider chopping a task into more and more pieces, and 
- if they are independent reducing the cost to the vanishing point. However, it is 
obvious that we cannot create a system from an infinite number of nothings. For rea
sons that we discussed in Chapter 3 (when we looked at the statement structure of a 
program), the limiting case of a system developed as a very large number of separate 
and increasingly interdependent pieces is that it behaves precisely like the same system 
developed as a single piece. 

The introduction of modularity into design introduces its own source of bugs. 
The programmer/analyst frequently finds himself making mistakes when coding the 
LINKAGE SECTION of a COBOL program; he finds himself writing the wrong argument 
declarations in a PL/I procedure or a FORTRAN subroutine~ he finds himself saving 
and restoring the wrong general registers in an assembly language program. 
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Errors 

generally becomes 
unmanageable at 7 ±2 

1 2 3 4 5 6 7 8 

Number of elements of the problem that 
must be dealt with simultaneously 

Figure 5.1. Error curve for normal problem-solving. 

Errors 

/ 

/ 
/ 

.,.,,... / Errors that occur as a result of breaking 
·,,,.,/. '-.the problem into smaller subproblems 

l 2 3 4 5 6 7 8 9 

Number of elements of the problem that 
must be dealt with simultaneously 

Figure 5.2. Error curve when problems are broken into pieces. 

Number of modules or module size 

~ 
Intermodule effects increase 
as the number of modules 
grows 

lnlramodute effects decrease 
as the 
modules get smaller 

Figure 5.3. Opposing influences of intramodule errors and intermodule errors. 
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We might counter that this is because the designer was never properly trained to 
use those features of his language (which is generally true in most organizations), but 
that is not the point. Of course, the designer will make mistakes when designing and 
coding the references and connections between modules! Writing a subroutine call is 
subject to the same error probabilities as writing other statements. Along with all of the 
potential errors listed above, we still have to contend with keypunch errors, spelling er
rors, and a variety of other errors so trivial as to be dismissed with a wave of the hand. 

If we factor a problem into pieces that are relatively independent, we will find that 
the "chopping" process introduces some errors, but they tend to be relatively straight
forward and obvious - and most important, relatively local in nature. In return, we 
greatly reduce the insidious, non-trivial errors found in big modules - e.g., the sort of 
error that occurs when the 3,279th statement in the module destroys, through three 
levels of indirect addressing, a storage area carefully set up by the 13th statement in the 
module. What we are saying, then, is that the factoring process if done well - tends 
to uflatten" the non-linear rise of errors that we saw in Fig. 5.1, in fact, we would ex
pect to see an error curve of the sort shown in Fig. 5.2. 

As we have already suggested, chopping a system into a thousand one-statement 
modules is likely to cost as much as (and possibly even more than) a single 1,000-state
ment module to accomplish the same task. Clearly, these two alternatives are at the ex
treme ends of a spectrum of choices: We could imagine 10 modules of 100 statements 
each, or 20 modules of 50 statements each, or I 00 modules of 10 statements each, and 
so forth. As the modules get smaller and smaller (assuming, once again, that they are 
independent of one another), we would expect them to become simpler internally~ as 
we get more modules, we would expect that the problems due to intermodule bugs 
would increase. The total number of errors we commit (and thus, to a large extent, the 
cost of developing the entire system) is the sum of these two opposing influences, as il
lustrated in Fig. 5.3. 

At this point, we are not prepared to predict the size of the Hoptimally small,, 
module. Indeed, it is very doubtful that we ever will be able to make precise state
ments like, The optimal size for a module is nine statements. However, in Chapter 9 
we will discuss a number of guidelines and heuristics that should prove sufficient to 
guide the designer in most cases. All we have done in this section is to emphasize the 
following: 

• The cost of developing most systems is largely the cost of debugging 
them. 

• The cost of debugging is essentially equivalent to the cost of errors 
committed by the programmer/analyst. 

• The number of errors committed during the design, coding, and de
bugging of a system rises non-linearly as the complexity (which may be 
thought of as roughly equal to the size) of the system increases. 

• Complexity can be decreased (and, thus, errors and the cost of 
developing the system) by breaking the problem into smaller and 
smaller pieces, so long as these pieces are relatively independent of 
each other. 
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• Eventually, the process of breaking pieces of the system into smaller 
pieces will create more complexity than it eliminates~ because of inter
module dependencies - but ~his point does not occur as quickly as 
most designers would like to believe. 

A final word of caution is in order: Whenever we talk of improvements in design, 
or potential savings in costs, there will always be an implied qualification. We assume 
equal quality of implementation. It is possible to do a sufficiently poor job of imple
menting a plan or design so as to exceed any arbitrary limit in cost, time, or any mea
sure of dysfunctionality of the solution. That is to say, there is always some program
mer bad enough to screw up even the best design! 

5.3 Complexity in human terms 

We have suggested in the previous section that most of our problems in program
ming occur because human beings (we are obviously making the charitable assumption 
that all programmers and analysts are human beings) make mistakes, and that human 
beings make mistakes because of their limited capacity for complexity. This leads to an 
obvious question: What is it that humans consider complex'? In specific terms, what 
aspects of systems design and program design do programmers consider complex? 
Andt by extension, what can we do to make systems less complex? 

We have already suggested that the size of a module is one simple measure. of 
complexity~ generally, a 100-statement module will be more difficult to understand than 
a 10-statement module. There is obviously more to it than that, since some statements 
are more complex than others. Halstead 4 and others, for example, feel that decision
making statements (e.g., IF statements) are one of the prime contributors to complexity 
in a module. Another possible contributor to complexity is the Hspann of data ele
ments - i.e., the number of program statements during which the status and value of a 
data element must be remembered by the programmer in order to comprehend what 
the module is doing~ thus, a module is made more complex if a data element is loaded 
into an accumulator in the second instruction, and the data element then is not used 
until the 147th instruction. 

Another related aspect of complexity is the span of control flow - the number of 
lexically contiguous statements one must examine before one finds a black-box section 
of code that has one entry point and one exit point. It is interesting to note that the 
theories behind structured programming 6 provide a means of reducing this span to an 
almost minimal length by organizing the logic into combinations of Hsequence," HIF

THEN·ELSE," and HOO-WHILE" operations. 

All of these measures recognize that the human-perceived complexity of program 
stat,ements varies, influencing the apparent size of a module. Three factors, implicit in 
the above approaches, have been identified as affecting statement complexity: 

• the amoum of information that must be understood correctly 

• the accessibility of the information 

• the structure of the information 
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These factors determine the probability of human error in processing information of all 

kinds. While the complexity of all types of program statements can be evaluated in 

these terms, we will focus our discussion on examples of statements that establish inter
modular interfaces. 

By "amount" of information, we mean the number of bits of data, in the 

information-theoretical sense, that the programmer must deal with in order to 

comprehend the interface. In simplest terms, this is correlated with the number of ar

guments, or parameters, that are being passed in the call. All other things being equal, 

a subroutine call that involves 178 parameters will be more difficult to comprehend than 

a subroutine call with three parameters. When the programmer sees a module refer

ence (e.g., a subroutine call) in the middle of a module, he must know what the refer

ence will accomplish, and what information is being transmitted. 

Consider, for example, the programmer who has just been assigned to finish test

ing and debugging an undocumented 20-statement module written by another program

mer. Imagine that the new programmer finds, imbedded within the 20-statement 
module, the statement 

CALL SQRT{X) 

Chances are, he would immediately decide that the square root of data element x was 

being computed, and that the result was being returned in x - presumably destroying 

the original contents. If in his 20-statement module, the programmer found 

CALL SQRT (X, Y) 

he would proba·bty conclude that the SQRT module must compute the square root of its 

first argument, returning the answer in the second argument, although he could be 

wrong if the input and output arguments were inverted. But, suppose that the program

mer found the statement 

CALL SQRT(X,Y,Z) 

At. this point, he might pause, scratch his head, curse the memory of the departed au

thor of the program, and then assume that SQRT computes the square root of its first ar

gument (X), returning the answer in its second argument (Y), and an error flag in its 

third argument (Z) if the first argument (X) was negative. Here, there are still more 

ways in which the statement could be misinterpreted. 

At least, that is what one might infer ... but what if the author of a square root 

subroutine had decided, out of sheer spite, that the first argument (X) should be the er

ror flag, the second argument (Y) should be the output from the SQRT module, and the 

third argument (Z) should be the input to the module? Needless to say, the new pro

grammer could insert a number of errors into the code while trying to come to grips 

with this entirely unexpected interface. 

While the above example was contrived, the reader must admit that it smacks of 

reality. One could argue that the problem could be solved by providing appropriate doc

umentation, but aside from the fact that such a suggestion is basically unrealistic (al

most all detailed documentation in the real world is written after the code has been de

bugged~ if the programmer is forced to write the documentation before the code, it will 

surely be obsolete by the time the code is debugged; in any case, the documentation 

will be obsolete and incorrect within a month after the code is debugged), it evades the 
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basic question - what kind of information concerning the intermodule interfaces is 
least complex and least prone to errors? 

Since we will be stressing highly modular structures throughout this book, the 
question we have posed is an important one. While we agree that there are well
established standards for narrative documentation of intermodule interfaces (see, for 
example, Gray and London ,s discussion 7), we shall confine our attention to the inter
face as written in the code. 

The programmer often argues that there is nothing he can do about the number of 
parameters: ''If subroutine GETINPUT requires eight input parameters, then it requires 
eight input parameters - it doesn't help much to tell me that the interface would have 
oeen simpler if there were only seven parameters!" While this may be true, the pres
ence of a large number of parameters in a calling sequence is often a clue that the 
called module is performing more than one task. By splitting the module into smaller 
pieces, each of which accomplishes only one task, we may be able to reduce the number 
of parameters. Thus, instead of having to study the call 

CALL GETINPUT(A,B,C,D,E,F,G,H) 

We would find ourselves studying the following sort of code: 

CALL GETTRANSACTION{A,B,C,D,G) 

CALL GETMASTER{B,E,F,G,H) 

Note that each module now has five parameters in its interface; both GETTRANS

ACTION and GETMASTER require parameters B and G in order to perform their tasks. 
Cutting a module in half does not necessarily mean that the total number of parameters 
in the interfaces will be cut in half. The techniques for recognizing those modules that 
accomplish more than one task, and dividing them into smaller modules that accom
plish only one task will be discussed in Chapter 7. 

Perhaps more important than the amount of information is its accessibility. Cer
tain information about the use of the interface must be understood by the programmer 
to write or interpret the code correctly. There are four issues here: 

• The interface is less complex if the information can be accessed (by 
the programmer, not by the computer) directly; it is more complex if 
the information refers indirectly to some other data element 

• The interface is less complex if the information is presented locally -
that is, presented with the subroutine-calling statement itself. The in~ 
terface is more complex if the needed information is remote from the 
interface statement itself. 

• The interface is less complex if the necessary information is presented 
in a standard manner~ it is more complex if the information is present
ed in an unexpected manner. 
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• The interface is less complex if its nature is obv;ous, .. it is more complex 
if it is obscure. 

To illustrate the use of these concepts, consider the following example: We are to 
write a subroutine, LENGTH, which is to compute the distance between two points on a 
sheet of graph paper. The coordinates of the first point will be called xo, YO~ the coordi
nates of the second point will be called XI ,Yl. The computation that must be performed 
by LENGTH is thus the simple calculation 

LENGTH = SQRT ((YI - YO) 2 + (Xl XO) 2 ) 

Suppose we were then asked to select one of the following interfaces: 

Option 1 CALL LENGTH(XO,YO,Xl,Yl,DISTANCE) 

Option 2. CALL LENGTH(ORIGIN,END,DISTANCE) 

Option 3. CALL LENGTH(XCOORDS,YCOORDS,DIST ANCE) 

Option 4. CALL LENGTH(LINE,DISTANCE) 

Option 5. CALL LENGTH(LINET ABLE) 

Option 6. CALL LENGTH 

Which interface is the least complex to a human who must use it? On the basis 
of established results in human information processing, Option 1 is the simplest, least 
error-prone. At first glance, it may appear that Option 1 involves the most complex in
terface~ after all, we suggested earlier that the complexity is increased by the presence 
of large numbers of parameters. We did, however, insert a small qualification that may 
have gone unnoticed: Hall other things being equal." 

Option 1 involves parameters that are pr.esented in a direct fashion~ the name "XO" 

is indeed the identifier of the data element containing the value of the x-coordinate of 
the initial point. By contrast, Option 2 involves information that is presented in an in

direct fashion~ in order to comprehend the interface, we would probably have to turn to 
some other part of the program listing to find that ORIGIN is defined in terms of the 
subelements xo and YO. One might argue this point - after all, according to some pro
grammers, ORJGIN is perfectly meaningful in the direct sense, and one would not have 
to look any further to find out what it means. 

On the other hand, suppose that the module that calls LENGTH is concerned with 
several different points on the sheet of graph paper that is, there may well be vari
ables x2 and Y2, X3 and Y3, ... , Xn and Yn defined in the program. If such is the case, 
then which points are implied by the identifiers ORIGIN and END? Obviously, we will 
have to look at that part of the program that defines ORIGIN; if we are lucky, we might 
see something akin to the COBOL concept of levels of data in the DATA DIVISION: 

05 ORIGIN 
10 XO 
10 YO 

05 END 
10 XO 
lO YO 
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However, it is just as likely that we will find a definition of the sort 

05 ORIGIN 

05 

10 BEGINNING-X-COORDINATE 
10 BEGINNING-Y-COORDINATE 

END 
lO 
10 

FINAL-X-COORDINATE 
FIN AL-Y-COORD IN A TE 

in which case, we will have to look through the entire program to see the last point at 
which some data was moved into ORIGIN and END prior to the call to LENGTH which we 
are currently studying. In any case, some indirect references are certainly necessary, 
and there is no doubt that it makes the interface somewhat complex. 

It can be argued that Option 3, which takes the form 

CALL LENGTH(XCOORDS,YCOORDS,DISTANCE) 

is ev1~n more complex. Obviously, the parameters xcooRos and YCOORDS represent re
quired information indirectly. In addition, the information is being presented to the 
programmer in a nonstandard way~ this alone makes the interface somewhat more com
plex. That is, the standard way (by convention) to present information about two 
points on a sheet of graph paper is 

ORIGIN (XO,YO) 

END (Xl,Yl) 

while the following is less common: 

XCOORDS (XO,Xl) 

YCOORDS (YO, Y 1) 

A small matter, to be sure, but enough to increase the likelihood of the programmer in
serting one or two bugs into his code before he really understands the interface. 

The degree of conglomeration is further increased in Option 4. Still fewer things 
can vary independently. With any option in the general case, each use requires the set

ting up of computed values, possibly with some fixed ones. The basic issue is whether 
these are set up integrally with the call on LENGTH, as in Option 1, or remotely, as in 
the other options. 

Option 5, which suggests an interface of CALL LENGTH(LINETABLE), is still more 
complex. The identifier LINET ABLE is obscure. How many programmers would instant
ly recognize that such a variable would include not only the x-coordinates and Y

coordinates of the initial and ending points, but also the returned length? Once again, 
there conceivably could be mitigating circumstances: It is possible that throughout the 
entire program, the code requires all five, and the same five, elements of the quintuplet 
(XO,YO,Xl,Yl,DlSTANCE) for its computations. However, this hardly seems a credible ar
gument~ at the very least, it makes it much less likely that LENGTH can be used as a 
general-purpose subroutine in some other system. 

Finally, we consider Option 6, which suggests an interface of CALL LENGTH. At 

first glance, it may appear that such a subroutine call has no parameters - but we know 
better. LENGTH still requires initial (X,Y) coordinates and final (X,Y) coordinates to per-
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form its task, and it must still leave the DISTANCE information someplace useful - and 
presumably both LENGTH and the module calling it know where that information will be 
stored. The problem is that the programmer doesn't know - at least, not by looking at 
the statement CALL LENGTH. In other words, the parameters are not local to the 
subroutine-calling statement~ all the information is provided remotely, in a place whose 
whereabouts cannot be determined by looking at the CALL LENGTH statement. 

If all the arguments were set up immediately preceding the call to LENGTH, it 
would be obvious. However, it is hardly safe to assume that all programmers using the 
CALL LENGTH statement will adhere to such discipline. Eventually, the programmer be
gins taking advantage of the fact that some of the parameters naturally are set up 23 
statements earlier in the code. 

Adequate documentation itself increases the accessibility of information and de
creases the probability of errors in use. And standardization (see, for example, Gray 
and London 7) further improves things. But, remember that all documentation is less 
accessible~ when dealing with the code, than the code itself. An undocumented but in
trinsically simple sequence may be preferable to a well·documented, complicated one. 

It will be immediately obvious to the COBOL programmer that the PERFORM state
ment forces Option 6. This is an inadequacy of the language that can only be avoided 
at the present time by using the CALL statement. It is interesting to note, though, that 
the CODASYL X3J4 Programming Languages Committee is studying changes to 
COBOL that include, among other things, parameter lists on PERFORM statements. 8 

Similarly, the FORTRAN programmer is familiar with the practice of placing arguments 
in COMMON to avoid passing data through a parameter list~ the PL/I programmer and 
the ALGOL programmer accomplish the same thing by defining data in a global 
fashion. In all of these languages, the programmer often consciously avoids passing data 
explicitly through a parameter list - either by using COMMON in FORTRAN, by using 
global variables in PL/I or ALGOL, or by using PERFORM instead of CALL in COBOL. 

Why the aversion to passing data through a parameter list'! There seem to be 
three objections: It appears to require more work on the part of the programmer~ cod
ing the parameter list is an error-prone process in itself~ and it is less efficient than ac
cessing data in a global fashion. The first objection seems to be an example of the 
Hpenny wise-pound foolish" phenomenon: It may take a few more minutes (at most) 
to explicitly code the parameters as part of the calling sequence, but it could save far 
more in debugging and maintenance. We have already discussed the second objection: 
Of course, errors can be introduced when coding the parameter list in a calling se
quence, but such errors tend to be simpler and more direct than the subtle errors that 
occur when one module begins destroying the global data that belongs to another unre
lated module (we will deal with this problem in detail in the next chapter). 

The last argument - that passing data through a parameter list is inefficient - is 
probably the most common one, and the one in which programmers believe most pas
sionately. Since efficiency is still a major problem in some computer systems, and since 
programmer/analysts do feel so passionately about the subject, it is not an objection to 
be brushed away lightly~ indeed, a good part of Chapters 13, 14, and 15 deal with vari
ous aspects of efficiency. Suffice it to say at this point that argument-passing is usually 
a serious problem in only a few isolated cases~ in most cases, a subroutine call will be 
executed only a few times, and the wasted microseconds of CPU time can safely be ig
nored. In those rare instances in which the overhead is bothersome, the programmer 
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always has the option of changing the calling sequence back to a more efficient one. To 

keep things in proper perspective though, we emphasize once again that people, not 

machines, are the primary cost of today's computer systems~ we should be prepared to 
waste hours of computer time, if it will save us months or years of people time. 

As a final comment on the complexity of intermodule interfaces, we observe that 
the 

4

'structure" of information can be a key issue. The primary point here is that infor
mation is less complex if it is presented to us in a linear fashion, more complex if it is 

presented in a nested fashion. Similarly, information is less complex if it is presented 

in a positive fashion, more complex if it is presented in a negative fashion. For exam
ple, consider the following nested English sentence: 

The girl the boy the dog bit hit cried. 

The average person would have to study such a sentence for several seconds before 

comprehending its meaning; eventually, he would draw mental parentheses to recognize 
that the structure of the sentence is 

(The girl (the boy (the dog bit) hit) cried.) 

Though it may seem clumsier, the following statements would probably be regarded by 
the average person as less complex: 

The dog bit boy A. Boy A hit girl B. Girl B cried. 

The human limits in processing nested information are even sharper than in dealing 
with linear, sequential information. Whereas one can readily deal with about 7 ±2 dis

tinct entities presented in a linear or parallel fashion, the human 4 'push-down stack" 
can get overloaded at only two or three levels of nesting. 

Now, imagine that we were trying to describe the scene involving two girls, one of 

whom cried and one of whom didn't~ two boys, one of whom exhibited hostile, aggres

sive tendencies, and one of whom didn't; and two dogs, one of which was prone to bit

ing moving objects, and one of which slept through th1e entire scene. We could 

describe it thus: 

The boy the girl the dog did not bite did not hit did not cry. 

Needless to say, such a statement involving negative qualifiers is generally more com

plex than one involving positive qualifiers. 

Both of these concepts have primary application in the details of writing code. For 

example, it is well-known that certain forms of nested IF statements are considerably 

more difficult for the average person to understand than an equivalent sequence of sim

ple IF statements. Similarly, it is known that Boolean expressions involving NOT opera

tors are generally more difficult to understand than an equivalent expression without 

the NOT operator. 

There are times, though, when the philosophies of linear thinking and positive 

thinking are important for intermodule references. Suppose, for example, that the pro
grammer decided to compute the distance between two points on a sheet of graph paper 

by writing the statement 

DISTANCE SQRT (SUM (SQUARE(DIFFERENCE(Yl,YO)),SQU ARE(DIFFERENCE(X l,XO)))) 
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There is little doubt that the average programmer would write .out the linear equivalent 
of this statement in order to comprehend what it does. 

Similarly, there are times when the programmer/analyst builds some negative 
thinking into his intermodule interfaces. Suppose, for example, that the programmer 
has designed a module called SCAN, which will search through a string for a specified 
delimiter; if successful, SCAN will indicate the position in the string where the delimiter 
was first found. When designing the calling sequence, though1 the programmer/analyst 
may be thinking more of the negative case - that is, the situation in which SCAN does 
not find the specified delimiter. Indeed, when he first conceived of the notion of a 
SCAN module, he may have been dealing with a portion of the problem in which it was 
very likely that the specified delimiter would not be found - that is, the problem might 
have called for the programmer to scan through a string of normal English text, looking 
for the presence of"&" characters. 

With this in mind, the programmer/analyst might decide to design SCAN as a logi
cal function - that is, one that has the value true or false when invoked. Expecting 
failures from SCAN, he might design it in such a way' that SCAN returns a value of true if 
the delimiter is not found, and false if the delimiter is found. This would allow him to 
write code such as: 

IF SCAN (TEXTSTRING, '&') (are there any "&" characters?) 
(deal with the normal case of no "&" characters) 

ELSE 
(deal with the unusual c&se where "&" characters exist) 

Elsewhere in the system, though, other designers would presumably expect SCAN to be 
involved in the positive act of looking for delimiters; finding such delimiters normally 
would be considered a success - and the designer instinctively would assume that SCAN 

would return a value of true when the specified delimiter was found. It is somewhat 
naive to suggest that the problem could be solved by asking the author of the SCAN 

module to document the interface in a memorandum for all the other designers. Even 
if the other designers read the document, there is still a good chance that the other 
designers - in the heat of the moment, when they are actually writing the code - will 
follow their instincts1 and think positively. We should· not be surprised to find that the 
use of SCAN, as we have defined it, will lead to an inordinate number of bugs. Indeed, 
one of the authors, having designed such a negative SCAN module in the early days of 
his career, can confirm it from experience~ 

5.4 Summary 

Although it may seem that this chapter is heavy on philosophy and light on practi
cal advice, the philosophy actually forms the basis for almost all of the practical advice 
in Chapters 6 and 7 - not to mention a large portion of the rest of the book. It is ab
solutely essential that the designer realize that the major cost of developing computer 
systems is the cost of debugging, which, in turn, is the cost of human error. 

And, it is essential that we be aware of the limitations of the human mind when 
we design 'computer systems (or any other complex system). Unless we realize that the 
cost of systems development can be reduced by partitioning systems into smaller pieces, 
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we will be limited to developing systems of 100,000 lines of code or less. On the other 
hand~ there is nothing to be gained from partitioning a system into modules of one in
struct.ion each; at some point, the simplicity of each individual module is outweighed by 
the complexity of the intermodule interfaces. 
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6.0 Introduction 

CHAPTER 6 
COUPLING 

Many aspects of modularity can be understood only by examining modules in rela
tion to one another. In Chapter 5, we introduced a notion that is useful in the context 
of this discussion: independence. Two modules are totally independent if each can func
tion completely without the presence of the other. This definition implies that there are 
no interconnections between the modules - direct or indirect, explicit or implicit, obvi
ous or obscure. This establishes a zero point on the scale of "dependence" (the in
verse of independence). 

In general, the more interconnections between modules, the less independent they 
are likely to be. Of course, this is only an approximation; and before we can judge 
whether more is worse, we must ask whether the various connections between modules 
are identical, similar, or different. If two modules require six distinct, completely 
unique connections in order to function together, then they are more highly intercon
nected than if six connections of the same form would suffice. Similarly, six connec
tions must generally lead to more dependence than three comparable ones. The key 

· question is: How much of one module must be known in order to understand another 
module? The more that we must know of module B in order to understand module A, the 
more closely connected A is to B. The fact that we must know something about another 
module is a priori evidence of some degree of interconnection even if the form of the 
interconnection is not known. 

Unfortunately, the phrase "knowledge required to understand a module" is not 
very objective~ we need an operational method of approximating the degree of intercon
nection. As we have already suggested, a simple accounting of the number and variety 
of interconnections between modules is insufficie_nt to fully characterize the influence of 
the interconnections on the system's modularity. At the very least, we must be able to 
account for the fact that a long, involved calling sequence that 'interfaces with many 
internal control variables makes two modules less independent of each other than two 
equivalent modules with only a few basic input-output parameters passed in the call. 

The measure that we are seeking is known as coupling; it is a measure of the 
strength of interconnection. Thus, "highly coupled" modules are joined by strong inter
connections~ '~loosely coupled" modules are joined by weak interconnections; "uncou
pled" or "decoupled" modules have no interconnections and are, thus, independent in 
the sense that the term was used in Chapter 5. Obviously, what we are striving for is 
loosely coupled systems - that is, systems in which one can study (or debug, or main
tain) any one module without having to know very much about any other modules in 
the system. 

76 
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Coupling as an abstract concept - the degree of interdependence between 
modules -- may be operationalized as the probability that in coding, debugging, or 
modifying one module, a programmer will have to take into account something about 
another module. If two modules are highly coupled, then there is a high probability 
that a programmer trying to modify one of them will have to make a change to the oth
er. Clearly, total systems cost will be strongly influenced by the degree of coupling 
between modules. 

To see how coupling can be an important factor in total systems complexity, con
sider a system that processes records from a "customer master file"; we would expect 
such a file to have information about a customer's name, street address, city, state, ZIP 

code, telephone number, and the various financial or business data with which the sys
tem is primarily concerned. Now, suppose that one programmer is assigned the task of 
writing a module to edit the "telephone number" field within the record - that is~ to 
check the ten-digit field to ensure that it does, in fact, consist of all numeric digits, and 
that the field is nonzero. To "simplify the interfaces" (as several of our students have 
phrased it), the designer might decide to pass the entire customer record to the 
TELEPHONE~EDIT module, rather than just the field it requires. 

Now for the consequences of such a design: Suppose that Charlie, the program
mer who designs and implements the TELEPHONE-EDIT module, is very aggressive and 
eager to do a good job. It occurs to him that he can do a better job of editing the tele
phone number by cross-checking the "state" field within the customer record with the 
"area code" portion of the telephone number. Without telling anyone else in the pro
gramming team about this brilliant move (after all, he is writing a black-box module, so 
why should he have to tell anyone what the module does internally?), he sets up an 
area code/state code table internally in his module, and uses that to cross-check the 
telephone number in each customer record. 

The first thing that goes wrong is that the TELEPHONE-EDIT module begins reject
ing telephone numbers because they don't correlate with the state code - and later 
analysis shows that the state code was incorrect, not the telephone number! As a , 
result, Charlie inserts a little extra coding to make sure, as best he can, that the state 
code is reasonable before he attempts to cross-check it with the telephone area code. 
Meanwhile, the word spreads through the rest of the programming team, ~·Apparently, 
Charlie has some weird code in his TELEPHONE-EDIT module that does something with 
the state code." 

The coupling aspect of the problem becomes obvious when the user of the system 
suddenly announces that he wishes to change the state code in the customer record 
from the standard two-character abbreviation (e.g., NY, TX, and so on) to a full charac
ter string representation (e.g., NEW YORK, TEXAS, and so forth). Everyone on the 
programming team immediately panics: Which parts of the system will be affected? 
The point is obvious: In order to comprehend an aspect of the system that, on the sur
face, has nothing to do with telephone numbers, we must be familiar with Charlie's 
TELEPHONE-EDIT module. Why? Because, ultimately, Charlie's module was coupled 
with other modules in the system. 
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6.1 Factors that influence coupling 

Four major aspects of computer systems can increase or decrease intermodular 
coupling. In order of estimated magnitude of their effect on coupling, these are 

• Type of connection between modules. So-called minimally connected sys
tems have the lowest coupling, and normally connected systems have 
lower coupling than those with p~thological connections. 

• Complexity of the interface. This is approximately equal to the number 
of different items being passed (not the amount of data) - the more 
items, the higher the coupling. 

• Type of information flow along the connection. Data-coupled systems 
have lower coupling than control-coupled systems, which have lower 
coupling than hybrid-coupled systems. 

• Binding time of the connection. Connections bound to fixed referents at 
execution time result in lower coupling than binding that takes place at 
loading time, which results in lower coupling than binding that takes 
place at linkage-edit time, which in turn results in lower coupling than 
binding that takes place at compilation (or assembly) time - all of 
which result in still lower coupling than binding that takes place at cod
ing time. 

Each of these is important and is discussed separately below. 

6.1.1 Type of connection between modules 

Recall that a connection in a program is a reference by one element to the name, 
address, or identifier of another element. An intermodular connection occurs when the 
referenced element is in a different module from the referencing element. Any such 
referenced element defines an interface, a portion of the module boundary across which 
data or control flow. The interface may be regarded as residing at the referenced ele
ment~ you may think of it as a socket into which the plug, represented by the connec
tion from the referencing module, is inserted. Every interface in a module represents 
one more thing which is/must be known, understood, and properly connected by other 
modules in the system. 

Clearly, we want to minimize systems/module complexity in part by minimizing 
the number (and variety) of interfaces per module. We already know that each module 
must have at least one interface to be uniquely defined and to be tied into a system. 
But is a single identity interface sufficient to implement real functioning systems? The 
key question here is: What purpose do interfaces serve? In programs, they can only 
serve a limited variety of functional purposes. Only control and data can be passed 
among modules in a programming system. An interface can serve to transmit data into 
a module (as input parameters), or out of the module (as output results). It can be a 
name by which control is received or transmitted. Only these four generic capabilities 
are required. Any scheme which provides interfaces for all four must, by definition, be 
sufficient to realize all programmable systems. 
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By a judicious choice of conventions, we will be able to have a single interface per 
module serve all four purposes. First, we associate the identity interface of the module 
with its entry or activation interface~ that is, a single unique entry interface serves not 
only to receive control, but to identify the module. We also can transmit data to the 
module without adding interfaces by making the entry /identity interface capable of ac
cepting data as well as control. This requires that elements of data be passed dynami
cally as arguments (parameters) as part of the activation sequence, which gives control 
to a module; any static reference to data would introduce new interfaces. 

With respect to any two modules, say A and B, we have determined that the fol
lowing familiar structure is sufficient to get control and data from A into s: 

A 

B 

Unfortunately, we cannot use the same approach to get control from B to A, as that 
would define a system with more than the minimal number of interconnections between 
modules. We need the identity interface of B to serve as a path for control to be re- · 
ceived by A, as transmitted by B; this is a "return'' of control to A. We can accomplish 
this by having the control transfer from A to B be a conditioned transfer. B will thus be 
able to return implicitly to A (or any other activating module) without the introduction 
of additional interfaces. 

This also suggests a mechanism for transmitting data from B back to A without ad
ding extra interfaces: We may associate a value with the particular activation of B, and 
use this contextually in A (e.g., by making B a logical function, as we did in the SCAN 

example in Chapter 5). Alternatively, we can transmit to B parameters that define loca
tions for return of results to A. 

If all connections of a system are restricted to fully parameterized (with respect to 
inputs and outputs) conditioned transfers of control to the single, unique activation/en
try I origin/identity interface of any module, then the system is termed minimally con
nected. A minimally connected structure has the lowest number of interconnections 
and interfaces needed to define bidirectional control and information transfer between 

· communicating modules. 

It is important to realize that minimally connected structures are minimal in a fun
damental sense, and yet are sufficient for the realization of all actual program functions. 
Minimally connected modules require the least knowledge of discrete, internal features 
of the module. In addition, such systems have simple, Bnormal" behavior since the 
entire data context of a module and its precise return are established and guaranteed by 
the activa.ting module. The pattern of control transfers into and out of modules must 
define a symmetric, fully nested set, and all transfers must strictly follow the hierarchi
cal lines so established. 
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Other control relationships can be admitted which, while not satisfying the re
quirements for minimal connectedness, still preserve the normal behavior of minimally 
connected systems. We shall call a system normally connected if it is minimally connect
ed, except for one or more instances of the following: 

• There is more than one entry point to a single module, provided that 
each such entry is minimal with respect to data transfers. 

• Control returns to other than the next sequential statement in the ac
tivating module, provided that alternate returns are defined by the ac
tivating module as part of its activation process. 

• Control is transferred to a normal entry point by something other than 
a conditioned transfer of control. 

Use of multiple entry points to a module guarantees that there will be more than 
the minimum number of interconnections for the system. On the other hand, if each 
entry point still functions as a minimal (fully parameterized, conditioned transfer) con
nection as far as other modules are concerned, the behavior of the system should be 
every bit as normal as if minimally connected. We note, however, that the presence of 
multiple entry points suggests that the module is carrying out multiple functions. 
Furthermore, there is an excellent chance that the programi:ner will partially overlap the 
code for each of the functions~ this means that the functions within the multiple-entry
point module will be content-coupled (a concept discussed in Section 6.1.3). However, 
this can be regarded as an issue separate from that of using multiple-entry-point 
modules to build normally connected systems. 

In a simittar vein, alternate returns are frequently useful and are within the spirit of 
normally connected systems. Frequently, a subordinate module wishes to return binary 
or three-valued results to its superordinate - binary results representing the outcome 
of decisions in the subordinate. Minimal connectedness would require returning the 
outcome of such decisions as a datum (e.g., a parameter) to be retested in the superor
dinate. However, control characteristics would still be simple and predictable if the su
perordinate module specifies one or more alternate return locations - one of which 
must be taken by the subordinate upon completion of its processing. Depending on the 
programming language, the designer can usually provide for alternate returns by speci
fying a 4 'relative return" (i.e., a return to calling address + 1, to calling address + 2, 
and so on), or an "alternate return parameter" (where the address of a return location 
in the superordinate is passed to the subordinate). 

If a system is not minimally connected or normally connected, then some of its 
modules must have pathological connections. That is, at least some of the modules 
must make unconditioned transfers of control to labels within the boundaries of other 
modules, or they must make explicit references to data elements outside their own 
module boundaries. All such situations increase the coupling of the system by increas
ing the amount that we must know about the ''outside world'~ in order to understand 
how any one module works. All other things being equal~ then, coupling is minimized 
in a minimally connected system~ it is likely to be slightly higher with a normally con
nected system and much higher with pathological connections. The subject of patholog
ical" connections is so important that all of Chapter 13 is devoted to it. 
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6.1.2 Coinplexity of the interface 

The second dimension of coupling is complexity. The more complex a single con
nection is, the higher the coupling. This dimension is necessary to account for the 
effect of a normal subroutine call with 134 parameters specified as opposed to a call in
volving the specification of only two parameters. 

By "complexity" we mean complexity in human terms, as discussed in Chapter 5. 
There are various ways to approximate the complexity of an interface, though none is 
perfect. One simple method, for example, is to count the number of characters in the 
statement (s) involved in the connection between two modules. Obviously, this is a 
very rough approximation, since making any consistent substitution of identifiers 
throughout the program could increase or decrease the character count in the appropri
ate statements without actually affecting their complexity. 

A better approximation can be achieved by counting the number of discrete sym
bols or "language tokens" involved in the interface - that is, names, vocabulary 
words, variables, punctuation, and so on. In simple ·terms, then, we would expect that 
a subroutine-calling interface with 134 arguments in the parameter list would involve 
more coupling than an interface with only two parameters. 

6. 1.3 Information flow 

Another important aspect of coupling has to do with the type of information that is 
transmitted between superordinate and subordinate~ the kinds of information we distin
guish are data, control, and a special hybrid of data and control. Information that con
stitutes data is that which is operated upon, manipulated, or changed by a piece of pro
gram. Control information (even when represented by a "data variable") is that which 
governs how the operations upon or manipulations of other information (the data) will 
take place. 

It can be shown that the communication of data alone is necessary for functioning 
systems of modules. Control communication represents a dispensable addition found in 
most, but not necessarily all, computer programs. Coupling is, therefore, minimized 
(all other things being equal, of course) when only input data and output data flow 

across the interface between two modules. A connection establishes input-output cou
pling, or data-coupling, if it provides output data from one module that serves as input 
data to the other. Not all connections which appear to move data are necessarily of this 
type: The data might be a flag used to control certain aspects of the execution of the 
other module, or it might be a "branch-address" to be used if certain conditions arise. 
These are elements of control disguised as data. 

We should emphasize that input-output coupling bears no relationship to input
output devices. Disks, tapes, and other peripheral devices may or may not mediate the 
connection. What is essential is the purpose the connection serves. 

Input-output coupling is minimal, because no system can function without it. 
Modules cannot function as a single system performing an overall purpose, unless the 
9utputs of some modules become the inputs of others. Moreover, any system can be 
constructed in such a way that the only coupling is input-output coupling. The inescapa
ble conclusion is that all communication of control not only is extraneous, but also in

troduces needless additional coupling. 
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It is easy to see, at a high level, how a system could be constructed with only 
input-output coupling. Consider, for example, an application involving four 
"transforms" to be applied to a stream of data consisting of student names, in alphabet
ical order; associated with each student record is a list of other students (presumably 
from the same educational institution) that he/she likes best. The first transform in
volves splitting the stream of data into two separate "substreams''~ one substream con
sists of the student's name (and other biographical data), and the other substream con
sists of the names that the student has nominated as favorites. The second transform 
involves performing some computations on the first substream of student names. The 
third transform involves sorting the second substream into alphabetical order - those 
people who have been named as favorites. The fourth and firial transform is to produce 
a combined report that lists a student, appropriate biographical information (with the 
results of the computations performed by the second transform), and a list of all those 
who named him as a favorite. 

The input-output flow, or data flow, structure of this problem is shown in Fig. 6.1. 
If we have enough equipment lying around, we can program this as four fully indepen
dent programs, each of which reads inputs from paper tape and punches output on pa
per tape. Assuming that the paper tape readers have interlocks to prevent the tape 
from tearing, we could load these machines in the manner shown in Fig. 6.2, and start 
all four running. That we have achieved parallel processing is not the central point; 
what is important is that we have succeeded in constructing a system that is only input
output coupled (you should be able to see that we can always do this), and it consists of 
maximally independent modules - no control information is being passed. Q.E.D.! 
We will return to this topic, exploring it in terms of more elementary modules, in 
Chapter 18. 

In discussing input-output coupling, we noted that communication of elements of 
control represented a stronger (and, therefore, less desirable) form of coupling. Since 
control-coupling is nonessential, any system that includes it must consist of less indepen
dent modules (other things being equal, of course!). Control-coupling covers all forms 
of connection that communicate elements of control. This may involve actual transfer 
of control (e.g., activation of modules), or it may involve the passing of data that 
change, regulate, or synchronize the target module (or serve to do the same for the ori
ginating module). 

Such nsecondary" or indirect control is termed ·coordination. Coordination in
volves one module in the procedural contents of another; this may not be obvious in 
the abstract, but it should be clear in an example. For instance, a subroutine that as
sembles successive elements of data into compound elements for the superordinate may 
send a flag to the superordinate indicating whether its return is to request an additional 
data element or to deliver a completed compound item. The superordinate must con
tain a decision (in this case, binary in nature), which relates to an internal task of the 
subordinate module that assembles items (namely: Is the item assembled?). This in
volvement in the internal activities of another module means that coordinating control
coupling is stronger (and, therefore, less desirable) than "activating" control-coupling. 

The function of data and control sometimes may be even more confused than in 
coordinating control-coupling. When one module modifies the procedural contents of 
another module, we have hybrid-coupling. Hybrid-coupling is simply intermodular state
ment modification. To the target (modified) module, the connection functions as con
trol; to the modifying module, it functions as data. 
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results 

friends 
(with names) 

Figure 6.1. Input-output structure of a small problem. 

Program SPLIT 
loaded and 

Program SORT 
loaded and 
runni~ 

Program COMPUTE 
loaded and 

Program REPORT 
loaded and 
running 

Figure 6.2. System of Fig. 6.1 with only input-output coupling. 
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The degree of module interdependence associated with hybrid-coupling is clearly 
very strong, since the very function of the target module can be changed. Moreover, 

any modification or recoding of either the source or target module may affect the other 
by an extreme, even disastrous, amount. A change in the target module may eliminate 
or shift the label of the statement being modified, resulting in modification of the 
wrong statement~ similarly, changes in the source module, which are not based on full 

analysis of the possible consequences for the target module, can cause it to malfunction 

in mysterious ways. Fortunately, using hybrid-coupling is a practice that is declining 
except among systems programmers and those involved in assembly language program
ming on minicomputers or microcomputers. 

Experience has shown that direct modification of data operands, whether 
intermodular or intramodular, is less serious than modification of programming state
ments. This seems to affect hybrid-coupling as well. 

6.1.4 Binding time of intermodular connections 

"Binding" is a term commonly used in the data processing field to refer to the 
process of resolving or fixing the values of identifiers used within a system. The bind
ing of variables to values - or~ more broadly, of identifiers to specific referents - may 
take place at any of several stages or time periods in the evolution of the system. The 
time-history of the system may be thought of as a line extending from the moment of 
writing through the moment of execution. The line may be subdivided to greater or 
lesser degrees of fineness by different computer/language/compiler/operating system 

com bi nations. 

Thus, binding can take place when the programmer writes a statement on a coding 

sheet; when a module is compiled or assembled~ when the compiled or assembled code 
is processed by a "linking-loader" or "linkage-editor'' (interestingly, this process is re
ferred to as binding on some systems)~ when a '~core-image" is loaded into memory 

(this is often indistinguishable from "linkage-editing" on some systems); and, finally, 

when the system begins running. 

The concept of binding time is an important one in program and systems design. 

When the values of parameters within some piece of code are fixed late rather than ear
ly, they are more readily changed and the system becomes more adaptable to changing 
requirements. In this broad context, let us return to the customer master file system 

that we discussed at the beginning of the chapter. 

Let us imagine that one of the 'major functions of the system (which we will refer 

to as the CMF system) is to permit modifications to the "personal data,, on the master 

file - that is, provisions must be made to allow the customer to change his name, ad

dress, phone number, and so forth. Further, let us imagine that the transactions speci

fying these changes are presented to the CMF system in a 4 'free-field" format, and that 
the data is allowed to be of variable length. For example, if customer Henry Pribble in
forms us that he has changed his name to John Smith, we would expect a superordinate 
module to pass control to a subordinate module with a pointer to the beginning of the 
text string "JOHN SMITH." It is the job of the subordinate NAME~CHANGE module to 

scan this text string, looking for errors, and then to substitute the new customer name 

in place of the old one in the master record. 
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Let us imagine that Charlie has been given the assignment to design and code 

NAME~CHANGE. While studying the problem, it occurs to Charlie that one of the first 

things he must do is to scan the text string to ensure that it is terminated properly, that 

is, to ensure that there is a closing Hquotation mark', on the text string HJOHN SMITH." 

Charlie is aware that the transactions are on punched cards, and he knows that his text 

string might begin at any character position on the card. Everyone knows that punched 

cards are 80-columns long; thus, Charlie decides to test, in his NAME-CHANGE module, 

to ensure that the 44 JOHN SMITH" text string does not run past column 80. 

The first mistake that Charlie makes - from a binding point of ~iew - is to code 

the literal "80" throughout his module. Indeed, it is worse than that~ his code is li
berally sprinkled with references to the literal ''79" and the literal '481 '' - which, of 
course, realty represent • '80 - l" and q80 + 1." 

It never occurs to Charlie that not all punched cards are 80 columns long~ howev

er, the nature of the problem will become clear as soon as the user decides that he 

wishes to run the CMF system on an IBM System/3 with its 96-column cards! Note that 

if Charlie attempts to use a sophisticated text-editing package to change all occurrences 
of the literal "80" to the literal "96," he will miss the literals ' 179" and ·~g1" ... and 

if he willy-nilly changes the references to the literals ''79," ''80," and ·~s1," he may 

well end up changing things he did not want. 

Of course, this is a simple example of a parameter whose binding took place at 

coding time. It also illustrates the primary reason why this type of binding takes place: 

naivety. When confronted with the 96-column card problem, Charlie's predictable 

response is, HWell, you can't blame me for that! How was I supposed to know that you 

were going to change from 80-column cards .... n The situation will hardly be improved 

if Charlie decides to correct the problem by introducing a parameter into his program 

called NINETY-SIX, whose value is - surprise! - the literal "96." What we really want 

is a parameter called END-OF-CARD. 

Unfortunately, the trouble is not over yet. Not only does Charlie have an END

OF-CARD parameter in his module, it turns out that all of the other programmers in the 

CMF system have similar parameters in their modules. Not only do the parameters all 

have slightly different names (like MAX-CHARS-IN-CARD), but they are all local variables 

whose binding takes place when each module is compiled. Thus, when the user an

nounces a switch to a Widget computer with 85-column cards, the system's designer 

discovers that all of the CMF modules are still coupled by the Hnumber-of-columns-in

card'' data element; that is, he must change the parameter in each module (if he can 

find it), and then recompile and re-link-edit all of the modules. 

Clearly, the solution is to make the aforementioned data element "'externaI1' to all 

of the modules. That is, we easily could build a separate module that contains only 

declarations of important "systems parameters," such as the number of columns in a 

card. In this way, the binding of the parameter would be delayed until the link-editing 

process took place. 

In most EDP projects, this degree of caution would be sufficient. However, let us 

take things one step further: Suppose our user has decided to connect his original IBM 

System/370, his new IBM System/3, and his even newer Widget computer over tele

phone lines to a brand-new Frammis computer that will actually perform the CMF pro

cessing. To simplify matters, we can assume that only one of the machines - the Sys-
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tem/370, the System/3, or the Widget - will be connected to the Frammis at one time. 
As soon as the connection is established, the CMF system will be started, and it will be
gin receiving card images transmitted from the remote machine. The point is obvious: 
Since all three machines had different card formats, the binding of the "number-of
characters-in-card" parameter will have to be delayed until the CMF system actually be
gins executing. 

Now we can consider the issue of binding time in relation to intermodular connec
tions, and the manner in which this influences the degree of coupling between modules. 
Again, an interrnodular reference, which becomes fixed to refer to a specific object at, 
say, definition time, more strongly couples the referencing and referent module than if 
the~ connection were not fixed until translation time or later. 

Certain commonly encountered examples in designing systems will make this 
clear. Whenever the language/compiler/operating environment permits separate compi
lation of modules, maintaining and modifying the system are easier than when all 
modules must be coded, compiled, and recompiled as a single unit. If the linkage of 
modules is deferred until just prior to execution, implementing changes or even radical 
restructuring are made even easier. 

Because lexical relationships (compare the definitions in the Glossary) are fixed at 
definition time, the lexical structure of a program can introduce strong interdependen
cies between modules - even those with no functional interrelationship. Sometimes, 
these lexical intertelationships are referred to as co11tent-coupling. Content-coupling oc
curs when some or all of the contents of one module are included in the contents of 
another. Two forms of lexical content-coupling may be distinguished. Lexical inclusion 
of one module inside another, by itselC is a fairly mild form of coupling. While neither 
the lexical superordinate nor its subordinate can be used without the other in some 
form, the process of separating the two into lexically independent units is generally 
straightforward, unless the lexical subordinate fulfills some position-dependent function. 
This will be the case if the lexical subordinate is activated in-line (by ·~falling into" the 
code) in some circumstances. 

Partial content overlap is a more extreme form of lexical content-coupling. Con
sider the lexical structure of Fig. 6.3 on the next page. Since many programming 
languages will not permit this structure, we must ' 4 invent" one that permits direct dec
laration of partial overlap. We should emphasize, though, that in many languages, close 
approximations of this are common programming practice. In the case of Fig. 6.3, both 
module ARC and module CHORD are intimately tied with the function of the other, and 
neither can be used independently. 

Furthermore, the modifications necessary to decouple the modules are non-trivial. 
The common sections beginning at statement LL2 must be extracted and made into an 
independent module, which is activated from both ARC and CHORD in the appropriate 
places. If there is anything at all clever or tricky in the use of these common sections 
of code, this procedure could be complicated. The skeletal form of the transformation 
is shown in Fig. 6.4. 

A multiple-entry module is an example of content-coupling, and represents a spe
cial case of lexical inclusion in which the identity interface of several modules (the al
ternative functions) are defined at the same lexical level. It is usually difficult to main
tain or modify the various functions of a multiple-entry module independently. 
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LL4: 

CHORD: 
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LLJ: 

BEGJNNING OF ARC 

END LL4 
BEGINNING OF CHORD 

END LL2 

END LU 
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ENO LLJ 
ENDING OF CHORD 

Figure 6.3. Modules with partial 
overlap form of content-coupling. 
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CHORD: BEGINNING OF CHORD 
USE LL2 

LLJ: 

LL2: 

Lll: 

USE Lll 

END LU 
ENDING OF CHORD 

BEGINNING OF LL2 

ENDING OF LL2 

BEGINNING OF LL I 

ENDING OF LLI 

Figure 6.4. Modules of 
Fig. 6.3 transformed. 

In terms of usage, maintenance, and modification, the consequences of controlM 
coupling are very different from content-coupling. In Fig. 6.5, control-coupling (in this 
case, activation as a subordinate) is indicated by arrows, and content-coupling is shown 
by overlapping. We will assume that the figure is a true representation of the systen;l's 
structure. Note that we can use the module LINE without being concerned with any 
other parts of the system; that is, LINE is independent of all other modules. Similarly, 
we can use or manipulate LOOKUP without being concerned with PAGE. The two 
modules are conceptually and physically independent: Page heading and table searching 
are disjointed tasks. Because of the subordination relationships shown in Fig. 6.5, the 
use of PRINT implies the use of PAGE and LINE. 

LINE 
print a line 

PRINT 
general print 
routine 

PAGE 
print a 
header 

TAX
REPORT 

STATE 
state tax 

FICA 
F.l.C.A 
tax 

LOOKUP 
table lookup 

Figure 6.5. Modular system with content-coupling. 
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To accomplish printing by using the PRINT module in another system~ we must 
use PAGE and LINE, because page heading and detail printing are part of the same job of 
report printing. However, what if we wish to do something with STATE and FICA -

e.g., use them in another program or change them in this one'! The use of STATE re
quires the use of FICA because of the content-coupling; moreover, some changes to 
FICA will, in fact, become modifications to STATE as well. Yet, F.I.C.A. withholding and 
state tax calculations, as functions. really have nothing whatsoever to do with each other. 

Why would the designer ever create a program unit coupled by content to another 
program unit'? In the example of Fig. 6.5, we must imagine that both FICA computa
tions and STATE computations have something in common - perhaps they use the 
same tax table. To save memory and duplication of code, the designer decided that 
STATE should make use of some section internal to FICA. The practice may or may not 
b~ justified in this example~ as a general design philosophy, it is unwise. 

6.2 Common.;.environment coupling 

Whenever two or more modules interact with a common data environment, those 
modules are said to be common-environment coupled. Each pair of modules which in
teracts with the common environment is coupled - regardless of the direction of com
munication or the form of reference. A common environment may be a shared com
munication region, a conceptual file in any storage medium, a physical device or file, a 
common data base area, and so on. The common data areas in primary memory (such 
as COMMON in FORTRAN, or the DATA DIVISION in COBOL) are the most frequently 
encountered cases. Note that if two modules both originate or both access an element 
of data in a common environment, then a change in one module potentially impacts the 
other. Thus, common-environment relationships go beyond the input-output relation
ships, which depend on the flow of data. 

Common-environment coupling does not fit easily into the schema of coupling 
strengths that we have already presented. Common-environment coupling is a second
order, rather than first-order, effect. Modules A and Bare common environment by vir
tue of their references to a third entity, the common environment. The severity of the 
coupling depends upon the number of modules interacting with the common environ
ment. In the limiting case where two modules are being considered, common environ
ment coupling is either a form of input-output coupling (if one originates data accessed 
by the other) or a minor added factor (if both are transmitting or both are receiving) 
above and beyond the minimal input-output coupling. In this case, common
environment coupling probably fits, in terms of strength, between input-output coupling 
and control-coupling. 

As an example, consider the system of Fig. 6. 6. Let us add a single common en
vironment of a single data element that is common to the eight modules. This results 
in module u being coupled to module s (and vice versa), even though they may have 
no control or input-output relationship. The same is true for module u and T, u and v, 
u and w, and so forth. The complete structure of this system is now that of Fig. 6. 7. 
In total, there are 63 directed relationships. For a common environment of E elements 
shared among M modules, the total number of relationships, R, is 

R Ex M x (M-1) 

Obviously, this rises as the square· of the number of modules holding the data environ
me:nt in common. 



COUPLING 89 

The point is not that common-environment coupling is bad, or that it should be 
avoided at all cost. To the contrary, there are circumstances in which this may be the 
method of choice. However, it should be clear that a small number of elements shared 
among a few modules can enormously complicate the structure of a system - from the 
point of view of understanding it, maintaining it, or modifying it. The functioning (or 
non-functioning, in the case of bugs!) of any module potentially affects the functioning 
of every other module sharing the common environment in as many distinct ways as 
there are elements in that environment. 

Q 

T 

u 

........ Control 
relationships 

v 

w 

Figure 6.6. System without common-environment coupling. 

\ 
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Figure 6.7. Effect of common*environment coupling. 
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6.3 Decou11ling 

The concept of coupling invites the development of a reciprocal concept: decou

pling. Decoupling is any systematic method or technique by which modu1es can be 
made morn independent. Each of the forms of coupling generally suggests obvious 
methods of decoupling. The coupling caused by binding, for example, can be decou
pled by changing appropriate parameters so that they are bound at a later time, as we 
saw in the example of the CMF system. Decoupling from a functional point of view sel
dom can be accomplished except in the early design phase of a project~ as a rule, a 
design discipline that favors input-output coupling and control-coupling over content
coupling and hybrid-coupling~ and that seeks to limit the scope of common
environment coupling is the most effective approach. 

Besides these obvious techniques, there are some less obvious approaches to 
decoupling. Where there are implicit references (ones not appearing as distinct refer
ences in the code) that are necessG1y to understand the operation of a module or its re
lationship to another module, then converting the implicit references to explicit refer
ences decouples the modules. This works for the sfmple reason that what can be seen 
is more easily understood than what cannot be seen. This approach to decoupling is 
valid only for references that must be dealt with~ making explicit any references or rela
tionships that need not be known and understood only complicates the system. 

Another method to decouple modules is standardization of connection. To specify 
completely a standard connection requires on1y the specification of the exceptions of in
cremental information. 

The introduction of bq{fers for the .elements being communicated along a connec
tion - when it can be done - effectively decouples modules, too. For the purposes of 
this discussion, a ''buffer" can be thought of as a first-in-first-out (FIFO) queue, which 
preserves the order of elements in the stream. Buffers along communication paths 

make modules less time-dependent on one another. If the modules can be designed 
from the beginning on the assumption that a buffer will mediate each communication 

stream, then questions of timing, rate, speed, frequency, and so forth within one 
module will generally not affect the design of the other. 

For example, it is often difficult to design, as a whole, processes involving compli
cated ratios of input items to output items. Suppose we have one process that generates 
three output items for each input item it receives; the output items may become input 
to a second process, which must deal with them in pairs. The two processes then 
operate in a cycle - being in and out of step with one another, with a period of six 
items. While numerous simple tricks can solve this problem, most will make 'the code 
for one process dependent on the particular ratio of the other process. The situation be
comes worse for merge/explosions with several different ratios - particularly if some 
vary, perhaps dependent on the data itself. In any case, with buffers, each output . 

merely goes into the FIFO queue, and each input simply is obtained from the queue. 
Timing and ratios can be ignored so long as there is not a cumulative and irreconcilable 

disparity between inputs and outputs. 

One very essential method of decoupling is to reduce the effects of common
environment coupling by localization. In a typical real-world system, elements to be 
communicated via common environments are lumped_ together into one· or a small 
number of regions. This couples a large number of modules that otherwise would be 
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completely independent of one another. By dividing a single common region into 
several logical subregions, we often can arrange things in such a way that no module is 
coupled to any other module except those that it must be coupled to by the communica
tion requirements of the problem. 

6.4 An application 

The coupling between modules in tentative structural designs can be evaluated to 
guide the designer toward less expensive structures. To illustrate this, consider two al
ternative modular structures for the same problem. In this application, text as input 
from an on-line keyboard and text stored on a card deck are to be dissected into words, 
and combined according to codes from the keyboard and codes contained in the cards. 
Inputting is to begin with the keyboard and continue, character-by-character, until the 
ideograph "$RC" is received. At that point the reading of input from cards is to com
mence, continuing until the ideograph "//" is reached. Input from the keyboard then 
resumes. An end-of-transmission from the keyboard triggers reading the remaining 
cards. Last-card under any other circumstances is an error. The continuous stream of 
text from these two sources is to be broken into separate English words, which are then 
passed individually to a pre-existing module named PROCWORD. 

Once again, Charlie has been called upon to do the programming. Having just re
turned from a seminar on structured design, he has produced a structure chart for the 
system, as shown in Fig. 6.8a. When his fellow programmer Nadine looked at the prob
lem, she told him he should structure it as in Fig. 6.8b. Both of these structures are 
normally connected~ each consists of five modules with exactly four interconnections. 
In 1~ach design, all the word-finding logic has been isolated into a single module, but 
one design is likely to be easier to program, maintain~ and modify. The difference must 
be in the degree of coupling implied by each design. To evaluate this, we will need to 
look at the information that must be communicated along each connection between 
modules. 

SCANWORDJ 
' 

INKEY REA DC ARD 
Get next char· Input one 
acter from card 
ke board in ml 

FINDWORD 
Scan text for 
next word 

Figure 6.8a. Charlie's design for 
the word-scanning problem. 

PROCWORD 
Do something 
with the word 

SCANTEXT 

\word 

GETWORD PROCWORD 

GETCHAR GETCARD 

Figure 6.8b. Nadine's design for 
the word-scanning problem. 
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In Charlie's design of Fig. 6.8a, the INKEY module must make available to SCAN

WORD 1 a character read from the keyboard or an indicator that there are no more char

acters if the user has disconnected the terminal. Note that the indication of presence or 

absence of a character comprises an element of control information even if it is com

municated as part of the data. It is not data to be operated upon~ but is a control that 

signals how to operate. There may be many tricks a programmer can use to disguise 

this fact. A special value for the character parameter may be used to signal end-of-data. 

This, of course, has its own dangers, as an erroneous or even a legitimate character that 

turns out to have the reserved value may at some time be input. 

The point is that the control information must be known~ therefore~ it is easier to 

assess the quality of the design in terms of coupling if we make the fact obvious. No 

amount of disguising control as data will decouple the modules. This argument sug

gests that during structural design, it is good policy to regard each distinct type of data 

and each element of control, flag, signal, or state as if it were communicated via a 

separate parameter in a calling sequer:ice. Then~ counting parameters will allow the 

designer to assess degree of coupling. 

The remainder of the comparison now becomes easier. The coupling between IN

KEY and SCANWORDl is the same as between GETCHAR and GETWORD in Nadine's ver

sion. Likewise, READCARD and GETCARD are coupled equally to their superordinates. 

However, Charlie's FINDWORD module must accept either a character or a card image as 

input data, plus control elements for end-of-transmission and last-card conditions, and 

an indicator of which data are being passed. 

Like Nadine's GETWORD, Charlie's word-separating module must be able to return 

the next word in some form, but it will also have to pass control information specifying 

whether it is returning to deliver a word or to get another card image, or to request 

another keyboard character. Since the final end-of-text logic is tied up with the card 

and character reading logic, both the FINDWORD and the GETWORD modules would haye 

to be capable of signaling end-of-process to superordinates. The required parameters 

for the two systems are listed in Table 6.1. Note that Charlie's design involves two 

more data parameters and six more control parameters than Nadine ~s. 

Table 6.1 

Data and Control Information Needed in Two Designs for the Same Problem 

MODULE 

INKEY 

READCARD 

FINDWORD 

PROCWORD 

GETCHAR 

GETCARD 

GETWORD 

PROCWORD 

INPUTS 

character, end-of-transmission. 
card image, last-card, source 

word 

word 

OUTPUTS 

character, end-of-transmission 

card image. last-card 

word, end-of-words, get-character. 
~et-card, h ere:is-word 

character. end-of-transmission 

card image, ~ 

word, end·of-words 



94 STRUCTURED DESIGN 

An interesting consequence of the greater coupling in Charlie's design is that 
SCANWORDl includes coding to test and dispatch on the request by FlNDWORD for more 
input. This is an example of an "inversion of authority"~ that is, the subordinate is tel
ling the boss how to do some detail of the subordinate\s job, comparable to a janitor tel
ling the office manager to fetch a roll of towels from the stockroom so the janitor can 
put them in a holder in the washroom. Another complication in Charlie's design not 
found in Nadine's is that the FINDWORD module must be coded so that it remembers 
where it left off in scanning for a word when it returned to its superordinate for input. 
There could be many different loops or branches within the code for FINDWORD, and 
the correct one must be resumed when FINDWORD is next called. Because GETCHAR 
and GETCARD are subordinate to GETWORD, they will always return to GETWORD wher
ever it left off. The need for special facilities to maintain the state of processing in 
Charlie's design may be regarded as a defect of this particular arrangement of 
subroutines. 

6.5 Summary 

This chapter has introduced one of the most important criteria for judging the 
goodness of a design: coupling. The next chapter discusses a related concept known as 
cohesion~ together, these two concepts form the central theory of structured design. 

As we have seen, there are several factors that influence the coupling between 
modules: the type of connection, the complexity of the interface, the type of informa
tion that flows between the modules, and the binding time of intermodular connections. 
In addition, the use of uglobal" data greatly increases intermodule coupling. Attempts 
hav1~ been made to quanl(fy the strength of various types of coupling,* but it will prob
ably be several years before such quantitative measures are accepted within the data 
processing profession. 

*See, for example, Glenford J. Myers, Reliable SoJiware Through Composi1e Design (New York: 
Petrocelli/Charter, 1975), or Christopher Alexander, Notes on the Synthesis of Form (Cambridge, Mass: Har~ 
vard University Press, 1971). 



CHAPTER 7 
COHESION 
~ 

7 .0 Introduction: functional relatedness 

We already have seen that the choice of modules in a system is not arbitrary. The 
manner in which we physically divide a system into pieces (particularly in relation to 
the problem structure) can affect significantly the structural complexity of the resulting 
system, as well as the total number of intermodular references. Adapting the system's 
design to the problem structure (or "application structure") is an extremely important 
design philosophy; we generally find that problematically related processing elements 
translate into highly interconnected code. Even if this were not true, structures that 
tend to group together highly interrelated elements (from the viewpoint of the problem. 
once again) tend to be more effectively modular. 

Let us imagine, for the moment, that there is some measure of functional 
(problem-defined) relatedness between pairs of processing elements. In terms of this 
measure, the most effectively modular system is the one for which the sum of function
al relatedness between pairs of· elements not in the same module is minimized; among 
other things, this tends to minimize the required number of intermodular connections 
and the amount of intermodular coupling. 

Hlntramodular functional relatedness" is a clumsy term. What we are consideripg 
is the cohesion of each module in isolation - how tightly bound or related its internal 
elements are to one another. Other terms sometimes used to denote the same concept 
are "module strength," "binding," and Hfunctionality."* 

In the real world, a single, isolated element of processing may be functionally re
lated in varying degrees to any number of other elements. As a result, different 
designers might see different interpretations of the problem structure, and hence 
different, least-costly modular structures for the solution. The cohesion of these 
modules (and, hence, the intermodular functional relatedness, or coupling) may vary 
considerably for these different interpretations of the problem~ small shifts in elements 
among modules may substantially change the total cohesion of a module. There is 
another real-world problem that adds to the variety of interpretations of problem struc
ture and program structure: In many cases, it may be difficult to identify or evaluate 
the strength of functional relatedness of one element to another. 

*We prefer the term "cohesion, ' 1 as this is the accepted term for the identical concept in sociology, another 

discipline in which cohesion in that case, the cohesion of groups - is important. Cohesion is used in a 
variety of engineering and other scientific disciplines as well, and it almost always has the same connotation as 

our use of it in this book. 

95 
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Module cohesion may be conceptualized as the cement that holds the processing 

elements of a module together. It is a most crucial factor in structured design, and it is 

a major constituent of effective modularity. The concept represents the principal tech

nical "handle" that a designer has on the relationship of his system to the original 

problem structure. In a sense, a high degree of module cohesion is an indication of 
close approximation of inherent problem structure. . 

Clearly, cohesion and coupling are interrelated. The greater the cohesion of indi

vidual modules in the system, the lower the coupling between modules will be. In ac

tual practice, these two measures are correlated~ that is, on the average, as one in

creases, the other decreases~ but the correlation is not perfect. Maximizing the sum of 

module cohesion over all modules in a system should closely approximate the results 
one would obtain in trying to minimize coupling. However, it turns out to be easier 

both mathematically and practically to focus on cohesion. 

Mathematically computing the intramodular functional relatedness among ele

ments involves fewer pairs of processing elements to which the measure would have to 

be applied than to compute total intermodular functional relatedness. Practically speak

ing, it just turns out to be more useful to be able to answer the questions, Does this 

make sense as a distinct module? and, Do these things belong together? than to be 
able to tell whether or not to chop something at a particular point. Both coupling and 

cohesion are powerful tools in the design of modular structures, but of the two, cohe
sion emerges from extensive practice as more important. 

Cohesion represents an operational refinement over earlier concepts about func

tional relatedness. Many writers and teachers in the field have long pleaded for highly 

functional modules without tackling the fundamental problem of how to recognize a 

functional (or for that matter, a nonfunctional) module. Development of a practicable 

means of assessing functionality was frustrated until a direct investigation was undertak

en to find out why programmers and systems analysts put things where they did. 

Although a definition, or at least a characterization, of what is functional is essen

tial for a full understanding of cohesion, we will continue to use the terms function and 
functional informally until much later in the chapter when we will be able to treat the 

problem more adequately. 

Cohesion can be put into effective practice with the introduction of the idea of an 
associative principle. In deciding to put certain processing elements into a module, the 

designer, in effect, invokes a principle that certain properties or characteristics relate the 

elements possessing it. That is, the designer would state things like "Z is associated 

with this module containing X and Y, because X, Y, and Z are all related by virtue of 

having the 'glop' property." (Lest you think that this is entirely academic, be assured 

that we will spend several pages in Section 7.1 discussing some very specific glop pro

perties!) Thus, the associative principle is relational, and is usually stated in such terms 

(e.g., ''It's OK to put Z into the same module as X and Y, 'cause they're all related in 

such-and-such a manner.''), or in terms of membership in a set (e.g., Hit's OK to put Z 

into the same module as X and Y, 'cause they're all members of the glop set."). 

Ironically, this important design concept had to be developed after the fact -

when it was too late, politically or pragmatically, to change designs - by asking the 

designer/programmer why a certain processing element was combined with others into a 

module. It must be kept in mind that cohesion applies over the whole module - that 
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is, to all pairs of processing elements. Thus, even if the designer has said, ' 4Well, it's 
OK to include element X in this module, because iCs strongly related to elements Y 
and Z," the module could be low in cohesion, as X may be unrelated to elements A, B, 
and C in the same module. 

We have intentionally used the term Hprocessing element" throughout this dis
cussion, instead of the more common terms, instruction or statement. Why? First, a 
processing element may be something which must be done in a module but which has 
not yet been reduced to code. In order to design highly modular systems, we must be 
able to determine the cohesion of modules that do not yet exist. Second, processing ele
ment includes all statements that will or do appear in a module - not only the process
ing accomplished by statements executed within that module, but also that which 
results from calls on subordinates. The individual statements or elements of processing 
found within some module, FOO, which is called by module FUM, do not figure into the 
cohesion of module FUM any more than we would say that the instructions in one 
subroutine are "in'' another subroutine which calls it. But the overall processing ac-, 
complished by the call on subordinate FOO is clearly one element of processing in the 
calling module, FUM, and therefore will have to be figured into the cohesion of FUM. 

For clarification, suppose we have a module A which consists of elements X, Y, 
and Z. Suppose that element X is really a call to subordinate module X, and that the 
elements of X - say X1 , X2 , and X 3 - are highly unrelated. It may turn out, howev
er, that X1 , X2 , and X3 , while apparently unrelated to one another, are, taken togeth
er, essential to the performance of A's function, which includes Y and Z. Thus, A 
might be highly cohesive even though one of its subordinates is quite uncohesive -
and the associaNve principle would allow X1, X2 , and X3 , to be included from A's 
viewpoint. Even so, there will probably be some disagreeable consequences of the 
artificial attempt to combine X1 , X2 , and X3 into module X (as we will see in Section 
7.2), and this may degrade the design as a whole. 

7 .1 Levels of cohesion 

The first attempts to learn why designers associated things into modules* resulted 
in distinguishing only three levels of cohesion. Over the years, the list has been ex
panded and refined through experiment, theoretical argument, and the practical experi
ence of many designers. The associative principles that we will discuss are those which, 
with a single exception noted below, have stood the test of time and which in all cases 
may be given more or less precise, technical, mutually exclusive definitions. Recently, 
additional associative principles or different names for the same principles have been 
proposed, by Myers 1 among others. The "new" levels, however, are found to reduce 
to special cases of the basic principles. The names we will use are those established as 
standard by Stevens, Myers, and Constantine. 2 

There are seven levels of cohesion distinguishable by seven distinct associative 
principles. These seven levels are listed on the following page in order of increasing 
strength of cohesion, from least to most functionally related. 

*Undertaken in 1964 and 1965 by Constantine while at C~E-1-R, Inc. 
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• coincidental association 

• logical association 

• temporal association 

• procedural association 

• communicational association 

• sequential association 

• functional association 

These seven points do not constitute a linear scale. There are no data now extant that 
would permit assigning more than a rank to each level. However, when applied to sys
tems design, they have been found to behave as if the first three (coincidental, logical, 
temporal) constituted very low and generally unacceptable levels of cohesion, suggest
ing a poor, costly design, while the last three (communicational, sequential, functional) 

· produced generally acceptable levels of cohesion. We will return to the question of 
measuring cohesion in Section 7.3. Each of these seven levels is discussed in detail 
below, with examples of each. 

7.1.1 Coincidental cohesion 

Coincidental cohesion occurs when there is little or no constructive relationship 
among the elements of a module~ one is tempted to refer to such a situation as a "ran
dom module." Coincidental cohesion essentially establishes a zero point on the scale, or 
hierarchy, of cohesion. Fortunately, a module that is purely coincidentally associated is 
a relatively rare occurrence. It is more likely to result from "modularization" of code 
that has already been written - that is, when the programmer sees an opportunity to 
convert multiple occurrences of a random sequence of statements. For example, the 
following code contains the same three-statement sequence in two different places: 

R: IF TRAN-TYPE > 5 OR VALUE < 0 THEN DO TR-ERROR /edil transaction 
READ MASTER INTO Q 
ADD 3 TO REPT-LINES /bump count for 3-line entry 

S: IF TRAN-TYPE> 5 OR VALUE< 0 THEN DO TR-ERROR 
READ MASTER INTO Q 
ADD 3 TO REPT-LlNES 

One may be tempted to modularize the above code by creating a module that does 
the following: 

DO-FOO: SUBROUTINE (TR-TY, VAL, M-Q) 
IF TR-TY > 5 OR VAL< 0 THEN DO TR-ERROR 
READ MASTER INTO M-Q 
ADD 3 TO REPT-LINES 
RETURN 
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with the appropriate calls at R and s. But suppose we had unintentionally written the 
second sequence, in the original version of the program, as 

S: READ MASTER INTO Q 
IF TRAN-TYPE > 5 OR VALUE < 0 THEN DO TR-ERROR 

ADD 3 TO REPT-LINES 

Our DO-FOO function has disappeared! Indeed, the three steps probably have no rela
tionship whatsoever with one another, and we may find that two of the three statements 
are used in other parts of the code. 

It must be stressed that coincidental cohesion of modules is not being presented 
as a taboo~ we are not suggesting that lightning will immediately strike the programmer 
when he creates a coincidentally cohesive module. Indeed, a system with coincidentally 
bound modules may be more modular than a comparable system without them! Cer
tain Iy~ it would be a smaller system in te.rms of mempry requirements. If a sequence of 
code was not repeated and was instead put into something like our DO-FOO module 
above, then it could be understood, debugged, and possibly modified in only one place. 

However, problems begin to arise when each use of the coincidentally cohesive 
module does not mean the same thing in application-related terms. In this case~ a 
change to the module that makes sense in terms of the general case - that is, in terms 
of the module's purported function - may not make sense in each of the specific uses. 
Of course, this is a possibility with any module, but it is obviou_sly more probable if 
each use of the module exists only because of the coincidental association of several 
processing elements. 

Problems of this sort arise particularly frequently when a maintenance program
mer attempts to track down a bug in an unfamiliar program. For example, report page 
breaks may sometimes occur in the middle of three-item groups. In pursuit of the bug, 
the programmer might start reading through the new modularized version of our code 
above, which now reads: 

P: 

R: CALL DO-FOO (TRAN-TYPE, VALUE, Q) 

S: 
S: CALL DO-FOO (TRAN-TYPE, VALUE, Q) 

Naturally, when he reaches statement R~ his curiosity will turn to the appropriate part of 
the program listing (probably several pages away) to see what the mysterious DO-FOO 

does.* Suppose, for the sake of argument, that he finds the bug in DO-FOO. "Aha!" he 

*This is an extremely important point, though somewhat tangential to our current discussion. Since DO-FOO 
does not perform a cohesive fu11ctio11, but is instead a random collection of processing elements, it will be 
difficult (if not impossible} to practice "top-down debugging." If the programmer thinks there is a bug some
where in the sequence of code between P and S (and he must think that - otherwise,. why would he be look-
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says~ "What I really should be doing here is adding only 2 to REPT-LINES instead of 3. ,, 
If he is a typical programmer, chances are that he'll change the appropriate statement in 
DO-FOO, and then put the modified program into a six-hour production run - only to 
find that he has exchanged one bug for another, because the processing at statement s 
still wanted DO-FOO to behave in its original fashion. Once again, we observe that this 
can happen to any module - but it is far more likely to occur in a coincidentally 
cohesive module. 

Modules of this type have a propensity to appear at an early point in classroom in
troductions to "subroutinization." The practice was prevalent (and sometimes justified) 
in the early l 960's, when the available computers tended to have severe memory limi
tations. Unfortunately, even in today's world of multimegabyte computers, some 
designers persist in developing coincidentally cohesive modules in an attempt to save 
memory. Another contributing factor to the creation of a vast new supply of coinciden
tally cohesive modules is the introduction of minicomputers and microcomputers into 
EDP organizations. Not only do these machines have limited amounts of memory, but 
they also have memory addressing problems (e.g., the designer may find that he can 
directly address only 128 memory locations), which tempt the designer into creating 
coincidentally cohesive modules such as the one we saw above. 

There is a more recent influence that has tended to increase the number of un
cohe:sive modules: structured programming. Structured programming has been credit
ed with everything from reductions in dental caries to improvements in one ,s sex life -
and there is no question that it has substantially improved the quality of detailed logic 
design and coding in many organizations (for technical discussions of structured pro
gramming, see J.4.S). However, in their rush to cast out their GOTO statements and be
gin writing structured code, a number of programmers have misinterpreted some of the 
bask tenets of structured programming (not the least of which is the notion that code 
cannot be structured if it contains any GOTO statements), and they have applied other 
rules blindly. 

One such situation occurs when the programmer designs logic of the form shown 
in the flowchart in Fig. 7.1. In the "old days," the programmer would have coded the 
transfers of control (represented by the arrows in the diagram) with GOTO statements. 
Using structured programming, though, the programmer is told he should rearrange the 
logic into the form shown in Fig. 7 .2. 

ing at the code'!), then he would like to finish searching through the P-to-S code before becoming distracted 
with some other code particularly if that code, like DO-FOO, is several pages away in the program listing. 
This would be possible if DO-FOO were performing a function say. for example, a square root. In that 
case, the programmer could say to himself, "Aha, there's a call to the square root routine, the one that some 
idiot :named DO-FOO. I'll assume for now that it works correctly~ but I guess I'd better check my P-to-S code 
to make sure that it really should be calculating a square root at this point, and that I'm passing the right 

parameters to the subroutine." If the programmer could not find any bugs in his P-to-S code. then he might 
suspect that the problem lay in his DO-FOO code, and 1fle11 he could turn to the appropriate place in the listing 
w examine the code. Unfortunately, since our version of DO-FOO is 1101 a function, the programmer must 
look at it as soon as he sees its invocation in the P-to-S code. At the very least, he will find this mildly dis
tracting~ indeed, it could easily become intolerable: since DO-FOO may call another subordinate coincidentally 
cohesive module, which could call another one, and so forth. (Note that this has nothing to do with the in
famous GOTO stateme.nt, which is usually blamed for the evils of "rat's nest" code.) For further discussion, 

see Yourdon, 3 and Chapter 20. 
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Figure 7 .1. Flowchart. 

Figure 7.2. Structured version of Fig. 7. l. 
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Naturally, he complains about the increased memory requirements caused by the 
duplicated (or triplicated, or quadruplicated ... ) sequences of code. And voila! He 
creates modules for all of the duplicated sequences of code and inserts subroutine calls 
at the appropriate points. Such newly created modules are often uncohesive, even coin
cidentally cohesive in nature. The newly created modules are frequently only three or 
four statements whose relationship to one another is nil. 

This is particularly ironic since the new modules were created in the name of 
structured programming - and, of course, everything associated with structured pro
gramming must be "good"! It may turn out that the code would have been better if it 
had been left in its original form, shown in Fig. 7. L If the dup1icated sequences of 
code seen in Fig. 7.2 are each coincidentally associated or low in cohesion, a better 
design might result if they are physically duplicated in the code not with a COPY 

statement (as in COBOL) or a %INCLUDE statement (as in PL/I) or an in-line macro fa
cility., but by actually writing the code two times, three times, or as many times as 
necessary in the program.* If the duplicated code wastes enough memory to be bother
some, the programmer should search for highly cohesive modules with which to make 
efficient use of memory. 

We conclude this discussion by observing that while few modules in the real world 
are wholly coincidentally cohesive or even largely coincidentally cohesive, there are 
many that contain some coincidentally cohesive elements. This is especially true of ini
tialization and termination operations, which could just as easily be placed in the su
perordinate (initialization and termination modules will be discussed in more detail in 
Section 7. l.3). Again, the coincidental association of a few elements with a module is 
not so much a problem in itself, but it is a possible deterrent to effective maintenance, 
modification, and widespread use. 

7.1. 2 Logical cohesion 

The elements of a module are logically associated if one can think of them as fal
ling into the same logical class of similar or related functions - that is, ones that would 
logically be thought of together. This is best illustrated by examples. 

We could combine into a single module all processing elements that fall into the 
class of Hinputting" - that is, logically related by virtue of being input operations. 
Thus, we could have a single module, INPUT ALL, which performs the functions of read
ing a control card, reading exception transactions from cards, obtaining normal transac
tions from magnetic tape, and obtaining Hold" master records from a disk file. All of 
these are input operations - and the module INPUTALL is logically cohesive. 

Another example is the module that edits (validates) all incoming data, regardless 
of source, type, or use. Similarly, a module that performs all calculations or computa
tions for a system is logically associated~ indeed, one often finds modules in·real-world 
systems whose name is simply COMPUTE. Similarly, a general-purpose error-routine is 

•we observe that the optimizing compilers on maoy computers are now clever enough to recognize duplicated 
sequences of code - and they should be responsible for generating a subroutine call, if the programmer has 
requested memory optimization. Note that if the programmer changes a statement in one or the multiple oc
currences of the duplicated code, and then recompiles his program~ the compiler will be clever enough to 
recognize that the sequences of code are now different. Compilers are tireless and error-free in such matters~ 
programmers aren't! 
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typically logically associated; depending on the specific type of r;rror, it will print one of 
several different error messages, reject some of the input currently being processed, re
start other processes, or possibly shut down the entire program. 

Logical cohesion is generally stronger (that is, more cohesive and thus more desir~ 
able) than coincidental cohesion, because it represents some minimal problem-oriented 
basis for associating the elements in the module. However, it should be recognized that 
a logically cohesive module does not perform a function. The module INPUT ALL does 
not perform a single function, but rather one of several different (but logically similar) 
functions, depending on whether the caller wishes to read a control card, an exception 
transaction, a normal transaction, or an "old" master record. The potential disadvan
tages of logically associated modules are easier to see in relation to temporally associated 
modules, which are discussed below. 

7.1. 3 Temporal cohesion 

It is a common programming practice to bring into a single place - sometimes 
forming an actual subroutine - all elements having to do with "start-up." Thus, we 
typically find an initialization module that reads the control cards, rewinds tape drives 
and opens disk files, resets counters, sets accumulator areas to zero, and so forth. Such 
a module may be said to be logically associated; it is also temporally associated. Its ele
ments are related by time. However, this particular class association has special proper
ties that render a module more cohesive than other forms of logical cohesion; hence, it 
is given a special name. Temporal cohesion means that all occurrences of all elements 
of processing in a collection occur within the same limited period of time during the ex
ecution of the system. Because the processing is required or permitted to take place in 
a limited time period, temporally associated elements of processing may be combined 
into a module that executes them all at once. This property simplifies the behavior of 
the module to its superordinate: A single call at a particular time causes all related ac
tivities which should take place at that time to occur together. 

Not all logically cohesive modules consist of temporally associated elements. For 
example, elements of the INPUTALL module may have no predictable or bounded time 
relationship at all. We can get a better clue to the consequences of logical and temporal 
cohesion by asking how a programmer typically would implement the INPUTALL module. 
Assume that we have a relatively clever programmer. His module must perform 
several distinct functions, performing the right one on a given call. How does the 
module choose the right type of input operation to perform? 

First, the programmer notes that control card input will be required only once -
and that this will be the first request. So\ he writes the first few statements of INPUT

ALL to perform this function and then sets a switch to bypass these statements on sub
sequent calls. He also knows that exception transactions are obtained only after certain 
normal transactions are completed. Similarly, the programmer knows that disk refer
ences immediately follow a normal or an exception transaction and that there will be at 
most one such disk reference for each transaction. Finally, he knows that all calls for 
exception transactions occur late in the processing, and will thus be higher memory ad
dresses. Slowly, he puzzles out the various combinations and develops a "clever" 
module that always does the right thing. 
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Of course, much later (after the programmer has left the organization), the excep
tion transaction coding somehow ends up in low core (where it doesn't work so well), 
and two successive "type 1" exception transactions will be called for, and a series of 
consecutive disk references will be required. This "clever" solution is then found to be 
very difficult to maintain and modify. 

A simple-minded programmer, on the other hand, would take a different route 
and simply input everything in one magnificent blast - on the first call to INPUT ALL. 

Veteran number-crunchers, experienced in organizing FORTRAN programs, are know 
for this kind of INPUTALL. But it is obvious that one cannot deal with all input 
processes in this one··shot fashion - and it would be particularly clumsy for INPUT ALL if 
all transactions and master records were read as a block. Most programmers would 
recognize the basic contradictions between reading of control cards, reading of excep
tion transactions, reading of normal transactions, and reading of old master records -
and they would probably require the superordinate module to supply a flag indicating 
which type of input function was desired. But then one wonders why the programmer 
didn't organize four separate modules in the first place. In fact, an examination of the 
code would reveal four essentially distinct and independent sections of code entered on 
the basis of an initial four-way test. This seems to be a general property of logically 
cohesive modules. 

The implementation difficulties arise whenever processing elements in a module 
are logically associated but not (necessarily) associated in time. Computer programs are 
intrinsically sequential, time-ordered processes. Logical cohesion without temporal 
cohe:sion almost always leads to tricky, obscure, or clumsy code which is difficult to 
maintain and modify. We will say more about the consequences of this a little later. 

This is a crucial point for the designer. It often is easy to specify what appears to 
be a function (e.g., edit, calculate, input, transaction-processing, and so on) and find in
stead that one is specifying a class of functions; if such a design is translated into code, 
the result will be a logical and/or temporal cohesion in modules. But it is also fairly 
easy to develop the ability to distinguish the levels of cohesion implied by a given 
design~ that is, logical and temporal cohesion can be discovered and discussed a priori 
- not after the code has been written. The designer then can modify his design, com
pensate for the effects of low cohesion, or simply take the consequences into account. 

Temporal cohesion is stronger than logical cohesion for reasons implicit in the 
foregoing discussion. Time-relatedness, because of its process orientation and relation
ship to essential properties of programs, more strongly relates processing elements. 
Given a choice, then, one would prefer a temporally cohesive module to a logica11y 
cohesive module - and both are preferable to coincidentally cohesive modules. 

But temporal cohesion is still quite low in cohesion and implies complications to 
systems with resulting higher expected cost of maintenance and modification. For ex· 
ample, suppose we had an initialization module whose jobs included opening two files, 
setting a counter to zero, and setting the elements of two arrays to zero. The clever 
programmer, when combining these activities into one module, might be tempted to 
write code of the sort shown on the following page: 



DECLARE A AS ARRAY WITH 20 ELEMENTS 
DECLARE B AS ARRAY WITH 30 ELEMENTS 

USE SAME BUFFER AREAS FOR FILE P AND FILE Q 

OPEN FILE P 
OPEN FILE Q 

SET COUNTER 1 TO ZERO 

DO LOOP VARYING I FROM t TO 50 IN INCREMENTS OF 1 
MOVE COUNTERl TO A(I) 

END LOOP 
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It should be evident that the programmer has managed to create a number of in
terdependencies between elements of his code. First, he has arranged that file P and file 
Q will share the same input-output buffer - presumably because he thinks that the pro
gram will not be doing input-output on the two files at the same time. Second, he has 
cleverly arranged for one loop to initialize the elements of the A array, and then to '~rail 
through" the bottom of the A array and initialize the B array (such a trick actually works 
in several versions of FORTRAN and COBOL). Finally, note that he is not really set
ting the array elements to zero, but setting them equal to the contents of COUNTER l -

which happens to have been set equal to zero. We can· imagine the sort of problems 
that will occur if, at some later time~ we decide that (a) it is necessary to perform 
input-output on files P and Q at the same time, or (b) we decide to initialize COUNTERl 

to a value of -1, or (c) we decide to change the appropriate DECLARE statement to 
make array A forty elements long without remembering to change the LOOP statement. 

As before, we observe that this kind of code could be written by any programmer 
in any module. The problem really occurs when the maintenance programmer wishes 
to change one function without destroying any other function - and, if the functional 
processing elements have become intermingled within a module, this task will prove to 
be difficult. 

7.1. 4 Procedw:al cohesion 

\ 

Early in the evolution of measures of module cohesion, it was noted that when 
the designer used a flowchart of an overall process as the ~asis for deciding where to 
chop it into subroutines or other modules, the results were highly variable - but tend
ing towards characteristics typical of low cohesion. No precise definition of what might 
constitute this procedural association was forthcoming, and an adequate technical expla
nation of the variability of results continued to elude the authors for years. The key 
turned out, once again, to be the separation of data relationships (which show up in the 
stronger forms of cohesion discussed below) from control features. 
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Procedurally associated elements of processing are elements of a common pro

cedural unit~ they are combined into a module of procedural cohesion because they are 

found in the same procedural unit. The common procedural unit may be an iteration 

(loop) or decision process, or a linear sequence of steps. The latter relationship, a sim

ple succession of steps, is the weaker and shades into temporal cohesion. A temporally 

cohesive module may include various steps which may be executed in a particular time 

span, but not necessarily in a particular sequence. Initialization is an obvious example. 

The very fine ~istinction here is not of overwhelming importance, and we shall limit 

our disc'ussion to the more important cases of iteration and decision units. 

As always, to say that a module achieves only procedural cohesion, the elements 

of processing would have to be elements of some iteration, decision, or sequencing 

operation - but not also be elements of any of the stronger associative principles dis

cussed in subsequent sections of this chapter. Procedural cohesion associates processing 

elements on the basis of their procedural or algorithmic relationships. Although this 

level of cohesion can result from many practices that emphasize sequence, method, and 

efficiency, it commonly results when modular structure is derived from flowcharts or 

other models of procedure, such as Nassi-Shneiderman charts 6 (sometimes termed 
BChapin charts" 7). 

Consider the top-level flowchart in Fig. 7.3 and the modular structure suggested 

by the bracketing shown there. This organization is shown in Fig. 7.4~ note that TYPDE

CID is immediately subordinate to PLANLOOP, which is immediately subordinate to 

SIMPRO. Note also that in this organization, module PREP is temporally cohesive 

(why?), TYPDECID is procedural because its elements are part of a decision process, and 

PLANLOOP is procedural because its elements are those of the main iteration. The ele

ments within PLANLOOP and TYPDECID are related not only in time, as in the case of 

temporal cohesion, but by additional procedural dependencies. The procedure chosen 

to solve the problem is more strongly dependent on the structure of this particular prob

lem than are the general, abstract categories and classes of logical cohesion. 

Although stronger than temporal and logical cohesion, procedural cohesion has its 

problems. As an intermediate level of cohesion, we would expect that procedural 

modules would tend to be fairly strongly coupled and be somewhat clumsy to use as in

dependent entities. This is clearly exhibited in the SIMPRO system. Elements of the 

manufacturing plant simulation algorithm are found in both PLANLOOP and TYPDECID~ 

the steps that are shaded in Fig. 7 .3 have been split between these two modules. We 

expect complex, subtle interdependencies among these steps with the result that most 

changes or bugs in the simulation algorithm will probably require dealing with both 

modules. Neither PLANLOOP nor TYPDECID performs a task that stands alone very well~ 

neither is very likely to be easily used "as is" in another system or in a future version. 

PLANLOOP, for example, does not perform the complete function of simulating all 

plants, as the initialization of the loop control -condition is found elsewhere (temporally 

associated with other initialization in the PREP module). 

The general point is that procedural cohesion often cuts across functional lines. A 

module of only procedural cohesion may contain only part of a complete function, one 

or more functions plus parts of others, or even fragments of several functions. It also 

might be found, by chance, to encompass exactly one complete, separable function. It 

is thus that structural design from procedural models, such as the flowchart, leads to 

such highly variable results. 
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Figure 7.3. Flowchart for a multi-plant manufacturing simulation program, SIMPRO. 
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PREP 

SIMPRO 
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indicators 

PLAN LOOP 
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matrix, )I flags, etc. 

indicators 
TYPDECID 

Figure 7.4. Modular structure for SIMPRO based on the procedural partitioning of Fig. 7.3. 
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Figure 7.5. Another SlMPRO structure based on the partitioning of Fig. 7.6. 
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Figure 7.6. Another partitioning of the SIMPRO problem, corresponding to the structure of Fig. 7 .5. 
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ready 
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\ matrix, 
\ ~ typecode 

PLAN COMP 

Figure 7. 7. Further refinement of the SIM PRO structure 
that includes a useful procedural module, TYPANALYZE. 

The objections and potential disadvantages of the SIM PRO structure in Figs. 7 .3 and 
7.4 can be overcome with the structure of Figs. 7.5 and 7.6. This structure includes a 
SIMALL module that completes all simulations and a SIMIPLANT module that performs 
the complete simulation of one plant. While this structure might have been derived 
from the flowchart, there is nothing in the flowchart that would tell the designer how to 
accomplish this. 

It should be emphasized again that procedural cohesion is not necessarily undesir
able in all circumstances. A further subdivision suggested by the dotted line in Fig. 7 .6 
might lead to the structure of Fig. 7. 7. The TYPANALYZE module probably is properly 
described as achieving only procedural cohesion, but it implements the (potentially) 
useful, distinct task of figuring out which type of plant (whatever that means) is being 
presented. This also permits the isolation of the actual simulation computations into a 
separate single module, PLANCOMP. The cohesion of that module cannot be evaluated 
until we have completed the discussion of levels of cohesion. 

7.1. 5 Communicational cohesion 

None of the levels of cohesion discussed above is very closely tied to the structure 
of a particular problem. Communicational cohesion is the lowest level at which we en
counter a relationship among processing elements which is intrinsically problem-
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dependent. To say that a set of processing elements is communicationally associated 
means that all of the elements operate upon the same input data set and/or produce the 
same output data. Communicational cohesion is thus defined in terms of the problem 
structure as represented in the data flow graph introduced in Chapter 3. In the data 
flow graph of Fig. 7 .8, two such partitionings are shown. One, PROCESS RECORD, is 
communicationally associated on the input side; the other, GET-A/B-DATA, is communi
cationally associated on the output side. 

The data flow graph of a problem can serve as an objective means for determining 
if the elements in a module are communicationally associated. Communicational cohe
sion, though not maximal, is sufficiently high as to be generally acceptable in the ab
sence of strong counterarguments or lacking an identifiable alternative structure with 
higher cohesion. 

Communicational association is common in business and commercial applications. 
Often, it is the result of thinking in terms of all the things that can be done with a 
given item or piece of data once it is obtained or generated, or, on the other side, in 
terms of all the things that must be done to create a· given result, say, a detail line in a 
report. Putting such collections together results in a module of communicational cohe
sion. Typical examples would include 

• a module to print and punch the transaction file 

• a module that accepts data from several sources, transforming and as
sembling them into a report line 

The associative principle of communicational cohesion actually covers a wide 
range of d~~grees of relatedness, as the elements of data comprising a stream or set of 
data may themselves be interrelated in various degrees. If the designer places in one 
module all the first transformations for the various records found on a master input tape 
that intermingles all possible input to some system, the elements of processing will be 
no more related than are the elements of data in the file. It appears that communica
tional association based on both input from and output to the same data set is somewhat 
weaker than association on only one side. Conceptually, this may be seen in Fig. 7.9. 
Computations A, B, and c are more closely related to each other than to conversions x, 
Y, and z. And vice versa, of course. 

Some mixed or equivocal cases also are found in common programming practice. 
A familiar example might be the MASTERFILECONTROL module, which reads and writes 
master file records, opens or closes the file, rewinds, and backspaces. Looking at the 
elements of processing that would have to be actually programmed within MASTER~ 
FILECONTROL, one can see that the reading and opening processing elements are com
municationally associated on the input side with the writing and (possibly) the closing 
on the output side, but rewind and backspace have completely different inputs and out
puts in terms of the actually programmed processing elements. Thus, some of the asso
ciations are only logical, and this will show up at the interface of the module. It is 
probable that the superordinate would be required to pass a flag to MASTERFILECONTROL 

indicating which of its functions (opening, closing, rewinding, backspacing, reading, or 
writing) should be performed. This might be acceptable. We can imagine, for exam
ple, that the most likely modification to be made to MASTERFILECONTROL. would con
ce.rn the definition or attributes of the master file itself - and this would probably 
affect most or all of the functional processing elements in about the same way. 
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Figure 7.8. Data flow graph with two communicationally associated 
partitionings superimposed. 

Of course, we still can imagine a number of situations that would cause serious 
problems for the maintenance programmer. The most serious problems are often of a 
timipg nature - that is, the programmer assumes that he can share the same input
output buffer areas (or queue areas, or control blocks, or whatever) among the many 
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functions in the module. Sometimes this is based on the simple assumption that the 

various functions will not be utilized at the same time (whi~h, from an operational 

point of view, may not be true if one is dealing with a buffered, blocked file); some

times it is based on the more complex (and more dangerous) assumption that the vari

ous input-output functions will be used in a certain sequence (e.g., the programmer as

sumes that a "close" function will not be invoked until one or more Hread" functions 

has been invoked). Once the programmer begins acting on such assumptions, the vari

ous functional processing elements become interdependent, thus decreasing the 

effective modularity of the entire system. 

--- --

---

Figure 7.9. Data flow graph showing the relationship of input, 
output, and input-output association in communicational cohesion. 

7.1.6 Sequential cohesion 

Next higher on the scale of cohesion is sequential association in which the output 

data (or results) from one processing element serve as input data for the next process

ing element. In terms of the data flow graph of a problem, sequential cohesion com

bines a linear chain of successive (sequential) transformations of data. This is clearly a 

problem-related associative principle. That it is stronger than communicational associa

tion rests primarily on experience and a series of small-scale experiments.* The data 

*Conduc.ted by Constantine in 1968 and 1969 while at IBM's Systems Research Institute. 
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flow graph for a problem will make it obvious that sequential cohesion in general results 
in fewer, simpler intermodular relationships, which would be the expected case if it is 
taken to be a higher level of cohesion than communicational. 

As with lower levels, sequential cohesion can also result from "flowchart think
ing." We have noted before that the module structure for a system is often derived 
from initial flowcharts drawn by the programmer/designer. One or more contiguous 
steps in the flowchart is combined into a module to be made available as a subordinate 
to the process represented by the flowchart as a whole. 

The curious thing about flowcharts as used is that they often confuse data flow and 
control flow. The arrows in the flowchart represent flow of control; control flows~ for ex
ample, from "step" A to "step" B in the flowchart shown in Fig. 7.10. If it represents 
the highest level of a system, the programmer/designer will often refer to it as a 
system's flowchart. However, especially at this abstract level, the control flow in the 
flowchart of the system is likely to be more or less related to data flow. That is, step A 

(wlhich might eventually be realized as a subsystem, a job step, a program, or some ap
propriately large package of code) may involve internal loops, decisions, and complex 
procedural sub-steps. Sooner or later, it finishes its work and delivers some output 
(perhaps a sorted, edited transaction file), which immediateiy becomes input to the next 
step of the system. At least we hope that we perform procedural steps in a system in an 
order bearing some relationship to the data flow - though, as we saw in Chapters 3 and 
4, there are many procedural implementations for a given set of data flow relationships. 

Indeed, there are a number of modular structures that the designer might specify 
for the flowchart of Fig. 7.10. Let us imagine that somehow we know for certain that 
the flowchart represents two functions, one realized by steps A and B, the other by steps 
c, o, and E. Depending on the designer's mood, he may specify any of the following 
module organizations: 

• A module for each of the steps in the flowchart - that is, a module for 
A, a module for B, and so forth 

• A single module that incorporates all five steps - that is, a single 
module that includes all of the code for A, B, c, D, and E 

• An organization in which module 1 consists of step A, module 2 con
sists of steps B and c, module 3 consists of steps o and E 

• An organization in which module 1 consists of steps A, B, and c, 
module 2 consists of steps D and E 

• And so forth 

The same results are possible, though less probable, in derivations from a true data flow 
graph. The obvious point is that a sequential module may contain more than one func
tion, only part of a function, or parts of more than one function. 

For this reason, sequential cohesion is weaker than the ideal functional cohesion, 
even though it is stronger than the five levels we have already discussed. The potential 
weakness of the sequential module is similar to one of the problems of coincidental, 
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High-level flowchart for a system. 
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logical, temporal, procedural, and com
municational modules: In attempting to 
modify the code for one function found 
in whole or in part in a module, the 
programmer may find that he is inad
vertently modifying, or that he must 
consider, code for another function that 
happens to be in the same module. 
Similarly, if we find that each module 
contains only part of a function (as may 
sometimes be the case with sequentially 
cohesive modules), then arguments of 
coupling apply: In order to understand 
what one module does, we must under
stand what another module does - and 
the second module may contain other 
processing elements that have nothing 
to do with the function performed by 
the first module. 

7.1. 7 Functional cohesion 

At the upper limit of functional 
relatedness is functional association. In 
a completely functional module, every 
element of processing is an integral part 
of, and is essential to, the performance 
of a single function. This definition, 
taken by itself, is every bit as circular 
as it appears to be. However, in the 
company of the (more or less) precise 
and independent definitions of the 
lower six levels - sequential down 
through coincidental - we have an 
operational definition: 

Functional cohesion is whatev
er is not sequential, communi
cational, procedural, temporal, 
logical, or coincidental. 

Thus, a module which is purely func
tional contains no extraneous elements 
related only by sequential or weaker as
sociative principles. It would be com
forting to say that the definitional prob
lem is solved by this bit of leger
demain, but unfortunately, the hole left 
unplugged by any truly adequate 
definition of function is a structural de-
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f ect in the theory through which camels and Mack trucks could readily pass. Fortunate
ly, some examples and much practice will help the practical structural designer deal with 
this limitation easily. 

The clearest and most easily understood examples of functional association come 
from mathematics. Thus, the ubiquitous square root module is certain to be highly 
cohesive, and is probably completely functional. It is unlikely that any surplus elements 
are present beyond those absolutely essential to realize the mathematical function for 
square root - and it is unlikely that (nonempty) processing elements can be added 
without changing the computation to something other than square root. In contrast, a 
module which computes either square root or cosine is unlikely to be entirely function
ally associated. A sine/cosine subroutine is more ambiguous. 

In addition to such obvious examples from mathematics (including logarithm, ex
ponential, and third Bessel functions), we can usually recognize functional modules that 
are ' 4 elementary" in nature. Thus, a module called READ-MASTER-RECORD would 
presumably be a functionally cohesive module - as long as it did not contain additional 
code for reading records from the transaction file. Similarly, a module called EDIT-ALL

TRANSACTION-TYPE-13 would probably represent functional cohesion, whereas EDIT-ALL

TRANSACTIONS would undoubtedly be a logically associated module. 

Except for these low-level functional modules, we often identify functional 

modules by comparing functional cohesion with the lower levels of coincidental, logical, 
temporal, procedural, communicational, and sequential cohesion. That is, if we can 

demonstrate that a module is better than coincidentally associated, better than logically 
associated, then it must be functionally cohesive. 

Thus, it appears that we must identify functional modules by a process of elimina
tion - which may appear to the designer to be an unsatisfying way to go about things. 
In practice, though, it is not as bad as it seems: It is usually a fairly easy matter to ex
amine a design for potential "defects" in the form of low cohesion. 

The task is to determine whether a module has elements of coincidental, logical, 
temporal, procedural, communicational, or sequential cohesion. We find that an 
effective way of doing this is to describe, fully and accurately, the module's function in 
a single English sentence. Naturally, there is a variety - perhaps an infinite number -
of English sentences that would accurately describe any given module. However, if the 
module is functional in nature, it should be possible to describe its operation fully in an 
imperative sentence of simple structure, usually with a single transitive verb and a 
specific non-plural object. Furthermore, the following guidelines can be used to help 

distinguish nonfunctional modules: 

• If the only reasonable way of describing the module's operation is a 
compound sentence, or a sentence containing a comma, or a sentence 
containing more than one verb, then the module is probably less than 
functional. It may be sequential, communicational, or logical in terms 
of cohesion. 

• If the descriptive sentence contains such time-oriented words as 
"first," "next," Hafter," ~'then," "start," "step," ~'when," "'until," 
or "for all," then the module probably has temporal or procedural 
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cohesion~ sometimes, but less often, such words are indicative of 
sequential cohesion. 

• If the predicate of the descriptive sentence does not contain a single 
specific object following the verb, the module is probably logically 
cohesive. Thus, a functional module might be described by HProcess a 
GLOP.'' A logically bound module might be described by HProcess all 
GLOPS," or "Do things with GLOPS." 

• Words such as Binitialize, '' "clean-up," and Hhousekeeping" in the 
descriptive sentence imply temporal cohesion. 

To illustrate the use of this guideline, let's consider a number of examples. 
BESORT, for example, has been described in the following way by its designer: HBefore 
sorting, write a proof tape, add dummy items for control, and check totals." The key 
word "before" gives us the clue that BESORT is probably a temporally cohesive module: 
These are ail things done in the time period before sorting. It might reach as high as 
procedural cohesion if the module were described in the following way: "First write a 
proof tape, then add dummy items for control, then check the totals, and finally per
form a sort." BESORT is probably not sequential because the proof tape is probably not 
the input to "adding dummy items." 

Next, consider the module JOBREPT. It has been described by its designer as: 
"Produce job control reports: library file listings, operator summaries, and customer 
run report." The key word in this description is Hreports"~ JOBREPT is not producing a 
single report, but rather a class of similar reports. Hence, we conclude that JOBREPT is 
probably logically cohesive unless its designer can convince us otherwise. 

Similarly, suppose the module RUNSTAT were described to us in the following 
terms: "Collect run statistics for an application program executing on the system: 
number of system's commands executed, input-output usage, errors, and CPU time 
used." Once again, we conclude that the module is logically cohesive. It is interesting 
to note that several programmer/designers have suggested that RUNSTAT is temporally 
cohesive because it consists of a number of functions that must be executed at a certain 
point - after the application program (the one for which the statistics are being gath
ered) has finished executing. This may be true, of course, and it illustrates some of the 
difficulties in evaluating a module's cohesiveness based on a superficial examination of 
a descriptive English sentence. 

RUNSTAT, it might turn out, collects some statistics during the program's execu
tion, as well as after its execution. In any case - whether RUNSTAT is logically or tem
porally cohesive - it is fairly clear that the module is not functional, and that is the pri
mary purpose of the exercise. 

Suppose the module TIMECARD were described to us in the following way: HUp
date the master time clock record, tije employee time record, and the current pay entry 
- all from the time card." Again, it appears that the module is not performing a single 
function, but rather a collection of functions. In this case, the functions are related by 
the input data: All of them involve the time card. Hence, we would conclude that 
TIMECARD is primarily communicationally associated. 
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Next, consider the module UPNOUT, described as: "Update the current inventory 
record, and write it to the disk." Clearly, the output from the "'update" function serves 
as input to the Hwrite" function. Hence, the module is sequentially cohesive. 

It is important to remember that there are a variety of ways to describe the task of 
a module - and some of the descriptions may make the module sound as if it is func
tional when it is not (or vice versa). However, if the designer is careful in constructing 
a ·concise, descriptive English sentence which, nonetheless, fully and unambiguously 
represents all of the processing accomplished by the module, then the guidelines above 
will usually suffice to differentiate levels of cohesion. 

7 .2 Comparison of levels of cohesion 

We will use the problem represented in Fig. 7.11 to illustrate a variety of parti
tionings of the same problem, corresponding to different levels of cohesion. In this ap
plication, items from a tape and a card file are validated, merged in a one-and-two dis
cipline to create a proof listing and to compute various quantities, which are then sum
marized and delivered as two different reports. The structure of this problem is 
prnsented as a data flow graph in sufficient detail to consider different partitionings. 

It is easy to present examples of coincidental and logical cohesion by partitioning 
this data flow graph; the partitions have essentially no relationship to the structure of 
the problem. DOSOMETHINGS in Fig. 7.11 is an example of coincidental cohesion~ any 
relationship among its processing elements is purely coincidental! The proposed 
modules EDITNVALIDATE and FORM ATREPORTS are good examples of logically associated 
collections of functional activities. Note that the validation inherent in the central com
putation is implied to be included in EDITNVALIDATE. Note how this cuts across func
tional lines. 

Because the data flow graph is inherently nonprocedural, it is somewhat difficult to 
illustrate temporal and procedural cohesion in relation to it. Two possibilities are shown 
in Fig. 7.12. STARTIT is an initialization module, which incorporates parts of several 
transforms: those parts necessary to get them to work correctly the first time. It would 
contain the file opening portions of the "get'' transforms, the elements of processing 
necessary to initialize the merge for the first comparison on membership number, and 
the initialization of the loop control and accumulators for the usummarize" transform. 
From this description, STARTIT is, obviously, temporally cohesive. 

SUMLOOP combines elements of. processing in the procedural unit comprising the 
iteration that summarizes by membership region. This potentially could include por
tions of alt the transforms '~upstream" of the "summarize" transform. The partition
ing shown is reasonable~ included in the module with the looping logic itself are the 
continuing portions of the computations and merge logic. The report formatting and 
printing have been excluded since they take place after (outside) the loop. It is not ac
cidental that the temporal module ST ARTIT goes hand in hand with a procedural parti
tion. Both levels of cohesion are based on time, procedure, sequence-oriented associa
tive principles. 

Communicational and sequential cohesion are very easily represented on the data 
flow graph, as they are directly problem-oriented. In Fig. 7.13, DOCOMBO is a communi
cationally cohesive module~ GETV ALIDMASTER, a sequentially cohesive one. 



COHESION 119 

Figure 7. l l. Relationship of coincidental and fogical association to problem structures. 

Figure 7.12. Relationship of temporal and procedural association to problem structure. 
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Figure 7.13. Relationship of communicatiopal and sequential association to problem structure. 

Illustrating functional cohesion once again presents difficulties. At a superficial 
level, functional cohesion is roughly the same as each transform on the data flow graph 
corresponding to one module, but the particular arrangement of these in a hierarchy 
influences the actual cohesion of the modules. These problems can best be understood 
through the strategic concepts to be introduced in the next chapter of this book. 

7 .3 Measurement of cohesion 

Any given module - whether proposed or completely coded - is seldom a clear 
example of only one associative principle. Its elements may well be related by a mix
ture of the seven levels of cohesion. This gives rise to a continuous measure of module 
cohesiveness rather than a scale with seven discrete points. 

It should be observed that the smaller processing elements constituting a single 
function are also sequentially, communicationally, procedurally, temporally, or logically 
associated (though, by definition, not coincidentally associated). 

Where there is more than one apparent relationship between any pair of process
ing elements, the highest level of cohesion applies. Thus, if module FOO consists of a 
collection of processing elements, all of which are examples of the same logical class of 
operations (say, validity checking), but are also all related communicationally in that 
they check various kinds of validity of one type of item, then FOO is evaluated as having 
communicational cohesion among all its elements. 

What would be the cohesion of this module, FOO, if it also contained some com
pletely unrelated processing elements? In theory, it would be some kind of average of 
communicational and coincidental cohesion. For debugging, maintenance, and 
modification purposes, a module behaves as if it were Hanly as strong as its weakest 
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link."* The effect on long-term programming costs is closer to-that of the lowest level 
of cohesion applicable within a module than to the highest. That is 

The cohesion Qf a module is approximately the h;ghest level of cohesion which is 
applicable to all elements Qf processing in the module. 

(Which the really astute reader will note is the same as saying the lowest of the highest 
level relating any pair of processing elements. Whew!) 

Other factors can reduce the cohesion of a module, including the number of weak 
(less than functional) associations among processing elements, whether the module has 
"side effects" (to be discussed later), and whether the module associates fragments of 
functions or whole functions. 

A module may consist of several logically related complete functions. This is 
definitely more cohesive than a module that logically binds fragments of several func
tions. For example, compare the cohesion of the following two modules: 

• Module 1 is a logically cohesive module that performs sales tax compu
tation, income tax computation, and property tax computation. 

• Module 2 performs the multiplication/division computations associated 
with sales, income, and property taxes. 

Module 1, while pretty "loose" functionally, is considerably simpler to understand 
than module 2. Indeed, if the programmer implements module 1 perfectly (the· proba
bility of which is discussed in Section 7.4), it may present only minor maintenance and 
modification problems. 

It is not crucial for the designer who uses cohesion as a guide to simpler, less ex
pensive program structures to know exactly how cohesive a module is, to tell whether it 
has a "cohesion factor" of 6. 7 or 6.8, for example. But the relative magnitude of the 
cohesion of the various levels, even if not that of specific modules, is of fairly wide in
terest. As we stated earlier, the lowest three levels are generally indicative of unaccept
ab1e partitions, the highest three suggesting simple and inexpensive designs. There 
have been many requests for and a few suggestions of precise values that could be as
signed to each level. Myers, 1 who assigns higher numbers to lower cohesion, suggests 
that functional cohesion should have a value of 0.2, and coincidental cohesion a value 
of 0. 95. However, Myers admits, such figures 

" ... are based on educat_ed guesses .... All of these aspects of the model 
must be ·verified and refined based on data collected .... Unfortunately the 
proper historical data to validate the model is (sic) not readily available.,, f 

Even presuming that a sample of structures correlated with cost were available, the 
definitional problems would remain. Deciding which level actually applied to a module 
would require the judgment of human raters. 

*We are indebted to our colleague Robert G. Abbott for this pithy observation. 
tGlenford l Myers, Reliable Software Through Composite Design (New York: Petrocelli/Charter, 1975), p. 149. 
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We do have extensive experience and a few careful comparisons of alternative 

solutions to the same problem on which to base some judgments about the relative 

differences between various levels. Best established is that sequential cohesion is very 

close to maximal, closer to functional, than it is to communicational cohesion. Similar

ly., there is a bigger break between logical and temporal than between coincidental and 

logical. Distinguishing to orders of difference between the ranked levels seems to be 

fully justified and useful to the designer. For example, the designer knows that he gets 

a substantial improvement in going from logical to temporal organization, but only a 
modest one in making the transition from sequential to functional. If numbers are to 

be assigned, whether for purposes of research, mathematics, or mystification, this would 

suggest the following scale* of cohesion: 

0 coincidental 
1 logical 
3 temporal 
5 procedural 
7 communicational 
9 sequential 

10 functional 

No more precise measurement can be justified by the available data and experience. 

You must use any such numbers cautiously, paying heed to what constitutes appropriate 

and inappropriate use. 

To introduce such numbers now (when we have so little hard experience to go 

by) might introduce an element of magic into the whole field of structural design. 

What concerns the authors most is that programmer/designers being introduced to 

structural design for the first time could be offended by the hocus-pocus of artificial 

values being assigned to levels of cohesion, and thus conclude that the very concept of 

cohesion is suspect 

The hierarchy must thus be recognized for what it is: an incomplete tool in the 

process of evolutionary development. It represents a useful, proven way to deal con

structively with cohesiveness. It is cohesion which can be regarded as an intrinsic pro

perty of modular systems~ the hierarchy of associative principles only attempts to make 

the property visible. 

7. 3. 1 Side effects 

Some modules have simple purposes as viewed from the outside; they have a sin

gle, simple function~ they are highly cohesive. These are three ways of saying essential

ly the same thing. Sometimes, however, a module may do some things uon the side" 

which do not normally complicate the picture, but enter in only under special cir

cumstances. These so-called side effects to a module's basic purpose marginally lower 

the effective cohesion of that module. 

*This is an improvement over a simple ranking that achieves only what is called ordinal measurement. Being 

able to rank the differences between ranks results in so-called ordered metric. It still would be inappropriate to 

add or subtract such numbers, as that would require interval measurement. Coincidental association is taken 

as a zero point precisely because it is defined as the absence of any (but chance) relationship. 
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For example, consider a module GETNEXT\TRANSACTION, which always returns the 
next transaction, ready to process, to its superordinate: a simple, probably functionally 
cohesive module. So what if it also has the side effect of producing an '~80-80" list of 
transactions obtained for processing! Under most circumstances, the programmer of 
the calling module (or any other module) would not need even to know about this side 
effect to make correct use of GETNEXTTRANSACTION - not unless the programmer also 
were using the printer, which was to be loaded with expensive forms! 

Side effects operate as if they marginally lower the cohesion of any module that 
includes them. There are ubiquitous examples. All direct printing or logging of errors 
constitutes a side effect of the functions of computations in which the errors are detect
ed. If you ever saw a payroll check with SYS-ERR 126 - ZERO ARO, MATH*PAK printed 
across its face, you know what we mean! 

Side effects cannot be completely avoided, as they often are intrinsic parts of the 
problems designers try to solve. Their influence on cohesion must be taken into ac
count, however, and this suggests that the designer. should, if possible, limit the scope 
(in terms of number of modules) over which the side effect operates. 

7 .4 Implementation and cohesion 

When the designer specifies modules of low cohesion, he creates potential prob
lems during the implementation phase of the project. We invoke Murphy's Law of Pro
gramming - "if the programmer can, he will" - to analyze the consequences. 

Consider the limiting case of two functions, F and G, which are absolutely and to
tally unrelated. Let us imagine that the designer is trying to decide whether he should 
create two separate modules, F and a, or a single module FG. If we assume that there 
are no timing problems and that F and G may execute together, there would appear to 
be no basis for choosing one over the other. If F and a are logically associated, one 
might even prefer the single FG module, since one logically expects to find these func
tions associated and in the same. place. 

However, this tacitly assumes the programmer will implement functions F and a 
separately and independently and simply drop them into a container named FG. This is 
shown sch1ematically in Fig. 7 .14. In the real world though, we find that a single 
module, FG, affords the opportunity for (indeed, even encourages) casual interactions 
between the code for F and the code for G. Thus, final implementation is likely to be 
that shown in Fig. 7.15. But remember: F and a are functionally unrelated. Hence, 
the common code, or interactions between sections of code, can only be a procedural 
trick. While it may have been easier to code, the chances are that the code "F and its 
interactions with G" is more difficult to debug. In any case, F and G are now inter
dependent; future modification or independent use of either For G is hindered. 

Another cogent example involves the widespread practice of clustering all "edit 
and validation" processes into a single module. This module does the checking and 
editing necessary to ensure that all data is in the form (e.g., proper format, range, se· 
quence, and so on) for later processing within the main system; this is represented 
schematically in Fig. 7 .16. 
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Figure 7.14. Module with 
two unrelated functions. 
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Figure 7.15. Most likely implementation 
of a module with unrelated functions. 
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Figure 7.16. System involving editing and processing. 
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Note that each of the elements of EDIT relate to one (or more) functional elements of 
\1AIN. Thus, editing and checking have been ~'conveniently separated"', (to use the 
words of some designer friends of ours) from the Hguts'' of each processing function. 
:\tforeover, editing can be done as early as possible (upstream in terms of data flow), 
making it easier to relate errors to the sources of input. Also~ this type of structure 
may enable one-time validation of data that eventually will be processed by many 
different modules within MAIN. So, it would appear that the structure suggested by Fig. 
7.16 does have some advantages. 

However, we should observe that the validity of an input data element is usually 
intimately dependent on the definition of processing within MAlN. If we find it neces
sary to change the way 'in which we process an input element, we generally will have to 
change the manner in which we validate the element. In many cases, EDIT actually will 
duplicate in whole or in part some of the functional processing required in MAIN. 

Thus, even if all validation elements are programmed independently within EDIT, 
future maintenance and modification probably will require treatment of both PROCESSA 

within MAIN, and its edit operation EDITA within EDIT. On large, complex systems with 
intricate validation processing, there may be a considerable divergence - even on ini
tial implementation - between what is ·functionally acceptable within MAIN and what is 
accepted by EDIT. 

With time, inaccuracies and laziness inevitably will lead to such divergence~ each 
functional change would require modifications in two different subsystems - which 
may well have become the property of two different maintenance groups. The low 
cohesion of the logically associated EDIT module is merely indicative of the stronger 
bonds between its internal elements and the internal elements of MAIN - that is, 
between EDIT A and PROCESSA, EDITB and PROCESSB, and so on. 

7.5 Summary 

From the discussions in this chapter, you should not conclude that all logical 
modules are bad, nor that editing and validation always should be distributed 
throughout a system~ nor should you attempt to derive any other black-and-white rules 
of thumb. High cohesion is not Hgood, '' nor is coincidental cohesion HeviL ,, Module 
cohesion is associated with effective modularity~ it has certain predictable effects on 
transparency, programmability, ease of debugging, ease of maintenance, and ease of 
modification. 

Other things being equal, these qualities will improve as cohesion is increased. 
This does not mean that losses will not be incurred in other areas. For example, the 
designer may be able to save CPU time or memory, simplify the data flow, divide the 
programming task more easily, or reduce apparent duplication of effort by using rela
tively uncohesive modular organizations. The designer may save design effort, too~ 
since logical and temporal groupings are comparatively easy to identify and describe -
while complete functional cohesion may require extensive analysis and study. 

The obligation of the designer is to know the effects of varying cohesion - espe
cially the cost in terms of modularity - and to be prepared to trade this off against po
tential benefits in other areas of interest. Unless he gains more in decreasing CPU time 
than he loses in achieving long-term viability of a program, for example, he must 
choose a more functional organization. 
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SECTION III 
TECHNIQUE 

The chapters in this section all deal with methods by which the concepts 
of the preceding chapters can be put to use to design the structure of complex 
systems. Chapter 8 describes features of the shape of systems structures found 
to be related to development costs. The nex't chapter, on design heuristics, 
deals with rule-of-thumb methods for designing systems structures. Simple 
rules of thumb, although useful in identifying certain types of design flaws, 
have generally proved to be inadequate for large problems without the use of a 

· strategic framework for deriving an acceptable design, which then can be im
proved. Chapters IO and 11 develop two interdependent step-by-step methods 
for deriving acceptable, initial structured designs. The method of Chapter IO 
was developed by Constantine to yield systems of the type described in Chapter 
8. The method discussed in Chapter 11 analyzes a shortcoming of the previous 
method~ and derives from a technique originated by a group within Bell Tele
phone Company. Chapter 12 compares and contrasts our approach to other 
major models and methods of structured design. 





CHAPTER 8 
THE MORPHOLOGY OF SIMPLE SYSTEMS 

8.0 Introduction: organization and morphology 

In the context of program design and systems design, we use the word "'organiza
tion" to describe the way in which structure is used to realize a desired function. 
Another way of putting this is to say that organization is the relationship between func
tion and structure. Thus, a system structured as a hierarchy may be organized with con
trol processing at the bottom of the hierarchy. To draw an analogy, a football team 
could be considered a hierarchical structure, with the quarterback serving as the "con
trol module" during the plays~ nevertheless, the team uses various organizations (e.g., 
split-T, flying-T, and so on) to realize its basic function of winning a game. 

"Morphologyn refers to the shape of a system, with respect to structure. For ex
ample, the depth of a structure (the number of levels of subordinate modules) is a visi
ble morphological feature~ the width of a modular structure - or of certain parts of the 
structure -- is another morphological feature. 

Our purpose in this chapter is twofold. First, we wish to examine common organi
zations of modular systems, and common systems morphologies. Second, we wish to 
make some comparisons between common organizations and "good" systems - that is, 
systems with low coupling and high cohesion. This serves as a prelude to Chapters 9 
through 12, in which we explore design techniques that will produce systems with recog
nizable organizations and recognizable morphologies, as well as low coupling and high 
cohesion. 

8.1 Organization of modular systems 

On what basis does the designer decide on a particular division of his program or 
system into modules? How does he decide which portions of the total processing should 
go into a given module? 

We already know that modules combining functionally related elements are more 
cohesive (and thus result in more modular systems) than, say, modules whose elements 
have only coincidental cohesiveness. While the designer must be aware of the effects 
of cohesion, it is seldom practical for him to use this as his only organizing concept. A 
trial-and-error approach that combines pairs of processing elements and then evaluates 
the cohesion is certainly not a very orderly way to design a system - if nothing else, it 
would require an enormous amount of work! 

What we find is that a modular system usually is centered around various specific 
aspects of its function. Regardless of whether the designer explicitly recognized a par
ticular modular structure, we usually can identify an implicit organizing concept or cri
terion. In many cases, the structure literally is centered around a module with a very 
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distinctive purpose or function. Thus, we can speak of transaction-centered design, or a 
transaction-centered system. Such a system is developed around modules that perform 
the various actions associated with transactions; generalty, there is a module (or small 

group of modules) that passes all transactions to the subordinate transaction modules 
for processing. 

Some types of modular organizations have been reflected in strategies - formal 
systematic procedures for developing, from a problem description, the modular struc
ture of systems of the desired type. Thus, there is a scheme known as transaction 
analysis (to be discussed in Chapter 11), which gives rise to transaction-centered sys
tems, although they may be developed by the programmer/designer without benefit of 
the strategy. Other strategies have been developed on an ad hoc basis~ let us look at 
two of them briefly. 

Procedure-centered design is derived from procedural representations (e.g., 
flowcharts) of a system's operation. This usually results in a top-level module whose 
coding and whose calls on subordinates directly implement the overall systems level 
processing, defined initially by the systems analyst.* While every system may be regard
ed as ultimately procedure-centered, some systems have more emphasis placed on the 
"procedure orientationn than do others - and some designers apply "procedural 
analysis" earlier in the design process than do others. If the module organization was 
developed from program procedures (e.g., flowcharts) that were developed as a first step 
in the design, then it is fair to say that the system is procedure-centered. One could 
develop a formal strategy, called procedural analysis, to develop procedure-centered 
structures. t One reason for not discussing procedural analysis in this section of the book 
is that procedure-centered systems generally achieve only temporal or procedural cohe
sion (recall the discussion in Section 7 .1.4) and are thus, by definition, less cohesive 
than they might be. 

Device-centered design, which is common in portions of operating systems but oth
erwise relatively rare, focuses on a physical input-output device and its interfaces. Of 
course, it makes sense in almost any program to use one module to interface with a 
disk and a different module to interface with a magnetic tape drive. Although the bot
tom levels of any system will involve some device-oriented modules, this focus usually 
does not permeate up through the higher levels of the structure. When the entire 
design revolves around such device-centered modules, then we say that the design itself 

is device-centered. 

Every system may be thought of as involving one or more central tran~forms: ma
jor systems functions that take relatively udigested" data as input streams and create 
major output streams. Accepting this statement, we can have transform-centered sys
tems; a formal design strategy known as transform analysis (to be discussed in Chapter 

*Recall that in Chapter 1 we suggested that the primary job of the systems analyst is to derive the functional 
requirements of the system by carrying on a dialogue with the user. By drawing a systems flowchart, howev
er, the analyst is participating in the structural and procedural design of the system - sometimes with disastrous 

tffects. 
We will cover some of the elements of procedural analysis in Chapter 14, when we discuss packaging of 

modules into efficient executable units - e.g., job steps, partitions, overlays. Our emphasis there will be on 
the use of procedural analysis for efficient segmema1io11 of an already designed system, rather than as a tool for 

effective design of the system. 
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10) can be used to derive such systems. In practice, transform-centered design does 

not begin by identifying the transforms as the central modules in the systems. It is 

easier to identify everything else, and then call the remainder the '"essential" or uma

jor" transforms of the system. 

For example, consider the simple process shown in Fig. 8.1. The functions A and 

B basically are operations that, when performed in sequence, obtain the main data for 

the system. Up to the vertical dashed line marked uI, ,, data are still flowing into the 

system; after line "11,,, however, data would be thought of as flowing out of the system. 

The remaining parts of the process can be neither input nor output - hence, c is a cen

tral transform of the system. Indeed, we would describe the basic purpose of this sys

tem as computing the inverse of matrices. 

8.2 Specific models of systems organization 

Occasionally, designers make use of a specific functional or structural model as a 

guide to structural design. In a sense, such use represents a technical preconception 

about what a system will look like or what it should look like. This technical prejudice 

may be productive insofar as the specific model is both simpl{fying (in terms of reducing 

the labor of design) and general - two ostensibly conflicting criteria. However, the 

limitations of these specific models often outweigh their advantages~ indeed, most of 

the problems in this area are the result of the designer interpreting the model literally 

rather than using it as an approximation. 

One specific model of systems organization is shown, in two variants, in Fig. 8. 2. 

One could take the CIPO version as the literal structure of a system~ in this case, only 

four modules would be implemented, regardless of the size of the problem. Note that 

an INPUT module, literally implemented, probably would be only logically cohesive. 

In some organizations, this literal interpretation is taken even further. The 

designer is told that if INPUT On Fig. 8.2) has three immediate subordinates, then PRO

CESS and OUTPUT each also must have three immediate subordinates. And, if there are 

two levels of modules beneath INPUT, then, according to some designers, there should 

be two levels of modules beneath PROCESS and two levels beneath OUTPUT. The 

justification for this literal approach is often an appeal to symmetry, which we discuss in 

more detail in Section 8. 5. 

Another problem with the literal interpretation of the CIPO method is that the 

designer is left (as with any use of such a specialized model) with the problem of as

signjng processing elements to appropriate categories. Is computation of report values 

in the process category or in the output category? If the model is not interpreted as a 

literal structure but rather as a characteristic example, a problem still remains: Having 

such a model represents only marginal progress toward a complete design. What has 

one accomplished in the total structural design process if one draws the four requisite 

boxes of Fig. 8.2? The model itself guides only the initial portion of the total design 

process, leaving the designer to his own devices for elaboration and completion. 

In any case, we are faced with the possibility of an application for which the model 

is inappropriate - such as one with no processing and degenerate outputting, or with a 

purely mathematical computation. 
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Figure 8.1. Model of a simple process. 
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Figure 8.2. Two versions of a popular specific systems model. 



TTYPEl 
Do actions 
for type 1 

ACTION 1 
Do action 1 

DETAIL 1 
Do step 1 

THE MORPHOLOGY OF SIMPLE SYSTEMS 133 

PROGRAM 
et transactio , ~ 

dispatch by type 
4~-------~ 

This module is 
called the 
transaction 

center 

TTYPE2 
Do actions 
for type 2 

ACTION 2 
Do action 2 

DETAIL 2 
Do step 2 

TTYPE3 
Do actions 
for type 3 

ACTION 3 
Do action 3 

DETAIL 3 
Do step 3 

. . -

ACTION 4 
Do action 4 

DETAIL 4 
Do step 4 

Figure 8.3. Transaction-centered model of a modular system. 
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This last argument is especially strong for the transaction-centered model (dis
cussed further in Chapter I I) in Fig. 8.3. This model is representative of, and applica
ble to, many routine business applications. It also may apply to a real-time executive or 
a dedicated time-sharing application. On the other hand, it is unlikely to be an advanta
geous structural model for a compiler, and even less beneficial for a large number
crunching application. 

As we have already suggested, the general usefulness of these models increases if 
we apply them less literally. To require, for example, that every program have exactly 
four levels whose functions may be classified as in Fig. 8.3 limits the usefulness of the 
model as well as the potential modularity of the system. Restrictions such as prohibit
ing a second-level module (in Fig. 8.3) from accessing a fourth-level module are equal
ly debilitating and unnecessary. 

In gene.ral, then, while specific structural models can be developed, their simple 
- and literal - application to structural design is not recommended. Indeed, the 
designer must beware of cheap imitations that are being advertised these days as so
callecl structured design. If a textbook or a consulting firm or a computer manufactur
ing company promotes a packaged approach to structured design, with success 
guaranteed on the basis of literally following "ten easy steps" - well, perhaps the best 
advice is caveat emptor. 

8.3 Factoring 

Design by analogy is widely practiced in software design, and its most common 
example is the "program-executive,, module. Analogous to corporate organizations, 

the top-level executive module does not perform any of the systems tasks itself, but in
stead controls and coordinates their performance by lower-level modules to which they 
have been relegated. In the limiting case, the executive module of a hierarchical sys

tem contains only calls to subordinate modules imbedded in internal control elements 
G.e., iterative and conditional statements). The term "executive module" should be 
reserved for a mGdule which approximates this limiting case, and for which the iterative 
and conditional elements within this module correspond to the major loops and decision 
logic of the system. The purely structural term top-level module should be used when 
these conditions do not hold. 

The executive module accomplishes its task (as viewed from the Houtside" -
that is, from its superordinate) by using subordinates. The bulk of the actual uwork" 
- if not all of the work - is performed by the subordinates and, in turn, by their 

subordinates down to the "atomic'' modules. The system is said to be completely fac
tored if all actual processing (or computation, or data manipulation) is accomplished by 

bottom-level atomic modules, and if all non-atomic modules consist only of control and 
coordination. In a completely factored system, each non-atomic module is an executive 

with respect to its subordinates. 

Where factoring is complete or nearly complete, the non~atomic modules often 
have near-trivial contents. In a sense, such a system is a summation of trivia. It may be 
disconcerting to think of a large, complex task being accomplished by a sizable collec
tion of modules, which in themselves are trivial. Actually, nothing could be better; 
with small, simple atomic modules, we have the best of all possible worlds. Of course, 
for most real-world programs, the factoring is somewhat incomplete - if it exists at all! 
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Since transform analysis, transaction analysis, and other popular design strategies all 
favor highly factored systems, we will save our more specific examples of factoring for 
Chapters 10 and 11. 

Similar analogies with corporate organizations have led to some additional rules of 
thumb for design of the executive module. The factoring rule, as we have already seen, 
states that the executive module should not perform or directly control details. Similar
ly, the span-of-control rule limits the number of immediate subordinates for an execu
tive module~ there is an obvious analogy here to the corporate executive who becomes 
overworked and error-prone if he has too many subordinates reporting directly to him. 
This and other rules of thumb are discussed in more detail in Chapter 9. 

Based on rule-of-thumb design and on systematic strategies, well-designed systems 
tend to show a characteristic distribution of decision processing (i.e., conditional state
ments). As in Fig. 8.4, the proportion of decision elements dec.reases smoothly as we 
move toward the bottom of the hierarchy. The character of decisions should also 
change: Top-level modules should deal with total, global matters, white the lower-level 
modules should deal with sub-parts or aspects of. the higher-level decisions. 

It has also been argued that details should be distributed in a manner inversely 
proportional to that for decisions shown in Fig. 8.4. The problem, though, is defining 
exactly what we mean by "detail." If a detailed instruction is manipulative (e.g., shift
ing the contents of a register two bits to the right), communicational, or computational, 
then detail is merely equivalent to non-decision. If, on the other hand, detail is concep
tually related to low-level operation, then it either defies definition or is tautological~ it 
does us no good, for example, to state that details, i.e. low-level operations, are opera
tions performed at low levels of the hierarchy. Using the distribution of detail either as 
a design heuristic or as a means of evaluating the goodness of design is seriously 
suspect. While ndecision" is more objective, it, too, makes a poor design guideline. 
We generally observe this distribution a posteriori in a well-designed system, but we get 
into trouble if we make it into a goal. 

8.4 Afferent, efferent, transform, and coordinate flow 

In examining the modular structure .of a system, we usually observe a few basic 
categories of modules. We note, for example, that some modules obtain information 
from subordinates, and then pass it upward to their superordinate; this is illustrated in 
Fig. 8.5. We refer to this as an afferent flow of data, and we refer to the module itself 
as an afferent module. Others have drawn analogies to engineering and physics, refer~ 

ring to Fig. 8.5 as a "source flow'' (see, for example, Myers 1 and the paper by Stevens, 
Myers, and Constantine 2). The term afferent is taken from the field of biology by way 
of general systems theory; 3.4 afferent neurons carry sensory data from the bodily ex
tremities inward and upward toward the brain. Etfer'ent nerves carry motor signals from 
the brain downward and outward. In general systems terms, a sink has no output and a 
source only output. The analogy with the nervous system may seem a bit farfetched, 
but the terms afferent and efferent are descriptive of a useful distinction in a manner 
that is not only graphic but also unlikely to be confused with other overworked pro
gramming terms like input and output. 
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Figure 8.4. Distribution of decision processing in a hierarchical system. 
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If Fig. 8.5 represents an afferent flow, then it makes sense to refer to Fig. 8.6 as 
an efferent flow; the module shown in the diagram is referred to as an efferent module. 
Clearly, it takes information from its superordinate, and passes it to its subordinate. 
One can imagine that the efferent module in Fig. 8.6 probably would be involved in the 
process of outputting, while the afferent module in Fig. 8.5 probably would be involved 
in the process of inputting. 

_-f 
~-

Figure 8.5. 
Afferent flow. 

Figure 8.6. 
Efferent flow. 

Figure 8. 7. More common 
form of afferent flow. 

Note that the modules in Figs. 8.5 and 8.6 pass on the information in exactly the 
form it was given to them. That is, the afferent module in Fig. 8.5 calls a subordinate 
to obtain data element x~ it then passes x, unchanged, to its superordinate. Similarly, 
the efferent module in Fig. 8.6 receives data element x from its superordinate and 
passes it, unchanged, to its subordinate. While this is certainly possible, it is more like
ly that both the afferent and efferent modules will transform the data they receive. 
Thus, a more common form of the afferent data flow is shown in Fig. 8. 7~ presumably, 
some computations or manipulations within the module transform x into Y before 
delivering Y to its superordinate. Similarly, the more common form of the efferent data 
flow is shown in Fig. 8.8. 

Even though the afferent and efferent modules are capable of doing some 
transformations (depending on, among other things, how highly factored they are), we 
can see that their main purpose is to pass information upward or downward in the 
hierarchy. However, other modules exist solely for the sake of transforming data into 
some other form. Figure 8.9, for example, illustrates a tran~form flow; the module itself 
could be referred to as a rran~/orm module. Most of the computational modules in a typ
ical system would fall into this category. The ubiquitous square root subroutine is a 
simple example of a transform module. 

~ tx r 

y~ 

Figure 8.8. 
More common form 
of efferent data flow. 

Figure 8.9. 
Transform flow. 

Figure 8.10. 
Coordinate flow. 



138 STRUCTURED DESIGN 

Finally, we observe that some modules are primarily concerned with coordinating 
and managing the affairs of others. Figure 8.10 illustrates the coordinate flow; obvious
ly, the module is referred to as a coordinate module. Such a module could be found ei
ther in the input portion of a system, the central computational portion, or even the 
output portion. In a well-designed system, we typically would find a coordinate module 
relatively high in the hierarchy, since it represents a kind of executive calling upon 
lower-level junior executives. 

Of course, these basic types of modules may be connected and combined to such 
an extent that we may be unable to tell whether the result is afferent, efferent, 
transform, or coordinate in nature. For example, consider the partial structure shown 
in Fig. 8.11. 

y 

A 

B 

Figure 8.11. Mixture of afferent and transform modules. 

What kind of module is A? To the outside world - that is, to its superordinate - A 

appears tO be an afferent module: It has the job of delivering data element Y, which it 
presumably obtains from a subordinate source (though, of course, the superordinate 
should not tare how module A obtains data element Y). The inside view of A gives us 
the impression that it is a coordinate module - that much of A's job is concerned with 
the task of obtaining data element x from a subordinate (afferent) module and then 
passing it to module B, where it is transformed into Y. We probably would conclude 
that A is a high-level executive module involved in the process of generating input to be 
used even higher in the system's hierarchy. 

At this point, our purpose has been merely to introduce the terms and concepts of 
afferent, efferent, transform, and coordinate modules. They will be useful in the dis
cussion of systems morphology below, and we will make active use of the concepts in 
the discussion of transform-centered design in Chapter 10. 

8.5 Systems morphology 

Thus far in this chapter, we have looked at modular structures from a number of 
points of view. We have seen that the designer's orientation can motivate him to 
develop a transaction-centered design, a procedure-centered design, or one of several 
other modular organizations. Indeed, w~ have seen that specific models may influence 
the designer's choice of organization. Further, we have seen that factoring considera
tions influence the arrangement of modules, and the amount of Hintelligence" within 
each module. Finally, we have seen that another way of looking at modules is to 
characterize them as afferent, efferent, coordinate, or transform in nature. 
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Now we can put all of the pieces together, and examine the morphology - or 

shape - of the entire structure. We find that some morphological features - width 

and depth, for example - are found in all systems. Furthermore, we find that certain 

values for those features may be more or less associated with good structural design. 

That is, we may be able to say that if a modular structure is wider than this design, or 

deeper than that one, then the overall design might be considered good or bad. 

One of the most obvious morphological features is depth - that is, the number of 

levels in the hierarchy. The modular structure shown in Fig. 8.12, for example, has a 

depth of four. About the only thing we can say about depth is that it is a rough clue to 

the size and complexity of a system - just as the number of levels of assistant vice 

presidents in a management structure gives us a rough clue as to the organization's size 

and complexity. Obviously, a simple program (consisting of, say, 100 statements) 

might have a depth of only two or three - indeed, if it were implemented as a single 
module, it would have a depth of one! 

A 

Bl Cl 

x 

Figure 8.12. Depth of a system's structure. 

On the other hand, the authors have seen a number of relatively simple 300-state

meilt real-world programs with a depth of five or six - and, in those cases, the time 

and etf ort spent by the designer to set up such a hierarchy was more than repaid during 

the maintenance phase of the project. A system of moderate size and complexity can 

easily have a depth of ten or twelve - and a truly massive system conceivably could 

have a depth of fifty or more. 

The important thing to realize is that depth, by itself, is not a valid measure of the 

goodness of a design. As a rule, tow-cost, highly factored systems are deep by tradi

tional standards. There are some extremes that generally will stick out like a sore 

thumb: A 100-statement program with a depth of twenty probably would be an indica

tion of excessive zeal on the part of the designer (most of the executive modules prob

ably would be excessively trivial in nature). Similarly, a million-statement system with 
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a depth of three or four would seem excessively low. As with the factoring of decisions 

and details, we find that depth is something that usually is observed after the system 

has been designed - but depth generally is not a goal to be kept in mind during the ac
tual design process. 

Another aspect of the shape of the system might be termed width - that is, how 

many modules wide is the system? At first glance, it seems that there is not much we 

can say about width - except for the obvious comment that the larger and more com

plex the system, the wider it is likely to be. However, we observe that one of the pri

mary influences on the system's width is something that engineers refer to as "'fan-out" 

- that is, the number of immediate subordinates to a given module. In Fig. 8.13, for 

example, the average fan-out is two (we are ignoring the fact that the bottom-level 
modules Bl, Cl, c2, and CJ have a fan-out of zero). 

A 

Fan-out of A 
JI("' is two 

B c 

...-- Fan-out of B "1r"" Fan-out of C 
is one is three 

Bl 

Cl C2 

Figure 8.13. Average fan-out for a system. 

As we suggested earlier, there is reason to suspect that if the fan-out is too high 

- six or seven seems to be a threshold of some sort then the executive modules will 

tend to be too complex (because they contain too much control and coordination logic 

to look after their many subordinates), and the effective modularity of the overall sys

tem will be decreased. There are some exceptions and qualifications to this rule of 

thumb, .as we will see in Chapter 9. In a typical well-designed system, we find an aver

age fan-out of about three or four - but we emphasize once again that this should not 

be interpreted as a literal rule to be followed by the designer. 

Rather than dealing with such primitive measures as depth and width, we might 

consider the overall morphology of the system. Based on observations of a large 

number of systems during the past several years, we find that most well-designed sys

tems have a shape of the nature shown on the following page in Fig. 8.1,4. Depending 

on the vividness of one's imagination, the shape of Fig. 8.14 could be likened to a 

cigar, a flying saucer, or a mosque. 
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Higher 

~:~- "\ 

Higher fan-in 

Figure 8.14. Mosque shape for systems. 

Indeed, all of those terms have been used by designers searching for graphic 
words to describe a shape they have seen over and over again in their work. Note that 
the mosque shape characteristically has a higher fan-out in the high-level modules, and 
a higher fan-in in the bottom-level modules. Still again, we must observe that the 
overall mosque shape could be a characteristic of a well-designed system, and potential
ly· dangerous if used as a design tool. On the other hand, it is comforting to note that 
the strategies of transform analysis and transaction analysis (discussed in Chapters 10 
and 11) generally produce the mosque form. 
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Next, we present morphological features known as "skew" and "balance." Some 
programmers, for example, might describe the system in Fig. 8.15a as lopsided or 
ske:Wed. However, since only the topological relationships between modules are struc
turally relevant (as we discussed in Chapter 4), this structure is equivalent to that of 
Fig. 8. l 5b - which does not appear to be skewed. The concept of skew nevertheless 
may be useful if we can give an appropriate preferred order for drawing subordinate 
modules beneath the superordinate on a structure chart. Unfortunately, the convention 
of diagramming the subordinates in the lexical order in which they appear in the 
superordinate 's code makes any inferences on skew procedure-dependent. 

The flow of data from the origin of physical input through various transformations 
to ultimate outputs establishes just the requisite preferred orientation. If, in our exam
ple, AA is an afferent module whose output is processed through BB and cc and eventu
all~, to GG, then the system of Fig. 8.1 Sa and Fig. 8.1 Sb may be said to be skewed with 
respect to data flow. We are not suggesting that skew or balance is either good or bad, 
but merely a way of describing systems with different basic forms of structure. Systems 
may be skewed in the direction of input, as in the example in Figs. 8.1 Sa and 8. l 5b, or 
skewed in the direction of output. 

AA 

BB 

GG 

Figure 8.1 Sa. One view 
of a system's structure. 

AA 

GG 

Figure 8. l 5b. Structurally 
equivalent system. 

A system highly skewed in the direction of input obtains all of its inputs in ele
mentary (raw) physical form at or near the top of the hierarchy. All of the processing 
of inputs takes place at lower levels of the hierarchy - and, most important, in 
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branches of the hierarchy that are predominantly efferent. Indeed, the entire system is 
predominantly efferent. This traditionally has been called an input-driven system. 

Output-driven code may be viewed as philosophically different. With input-driven 
code, inputs determine what. happens in the process: Items are read first, and then the 
code decides what to do with them. However, we initially might identify an item that is 
to be produced as output of the system - and, on the basis of that, perform whatever 
processing is required to develop that item. Of course, events ultimately will occur in 
the same order, but the system's structure will be very different. 

In the extreme case of input-driven or output-driven systems, the system will ap
pear to be highly skewed when viewed at any level. Thus, the efferent branch of an 
input-driven system will~ having obtained its inputs from above, deliver them downward 
to its subordinates - and each of the subordinates will behave similarly. 

Balanced systems, with neither elementary input nor elementary output performed 
at the top of the hierarchy, generally imply that the top level has immediate con trot 
over the most significant functions in the system. Balance also could be achieved by 
having both elementary input and elementary output operations take place at or near the 
top level, but this would violate the factoring rule that we suggested earlier, because it 
involves the executive in details. 

An advantage of the balanced system based on afferent/efferent branches (which 
in Chapter 10 we call a "transform-centered" system) is that it maximizes the number 
of generally useful modules, at all levels in the hierarchy. We come closer to having all 
sensible input-like functions and sensible output-like functions when the system is bal
anced and transform-centered. 

Veteran business systems analysts frequently have argued that an ,output-driven 
system is less efficient than an equivalent input-driven system. In the final analysis, 
this is true only for very localized effects or isolated cases. It is true, for example, that 
a strictly output-driven system will activate all of its afferent modules,i down to the 
lowest level, before obtaining its first input. At first glance, this seem~ wasteful and 
unnecessary; on the other hand, the same oscillation up and down the sy~tem occurs in 
the input-driven system - except that it occurs in the efferent side of tr· e system, in
stead of the afferent side. 

Equally marginal is the fact that an input-driven system with multiple input 
streams may obtain the first input for streams that are never used on a giren execution 
of the system. If file attachment, opening, and linking for the first item a~e complicated 
processes as they may well be with certain data base management systems - this 
cost could become significant. However, neither efficiency argument is convincing, as 
they both are based on events which occur once per execution of the system. 

However, real-time applications of a certain type may favor the mor~ input-driven 
organizations. If an elementary input transaction causes a major change lin processing, 
and if the resulting action has a critical response time, then the output-p riven system 
may have difficulty responding in time. Imagine, for example, a factory yontrol system 
that produces reports based on on-line terminal commands. The system has an emer
gency command (indicated by a first character of E from the terminal) t~at requires an 
immediate response based on a completely different syntax. In an out~lut-driven sys
tem, we would expect the basic terminal input routine to be located d~ep within the 
afferent branch; we would also expect the major variations in output to be decided at or 
near the top of the structure. 
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Figure 8.16 represents a tentative structure of this type. In the worst case, the E 
command must travel alt the way from INKEY to RETREP, being checked in every inter
mediate module before it is passed to the next higher level. Thus, EMER may not be 
activated for quite a long time - that is, quite a few microseconds or milliseconds. It is 
hard to imagine a subroutine-calling mechanism so slow as to render this example criti
cal, but it is prototypical of other real-world situations in which we could have serious 
response-time problems. In contrast, the input-driven system, illustrated by the 
transaction-centered structure of Fig. 8.17, does not have this efficiency problem. 

GETINFO 
get info going 
into report 

RETREP 
retrieve and 
report 

display produce "E" 
report report 

7-
/ 

REPNORM J EMER 

~ ._____.........__J 

, , \ 
I l J \ 

* GET ANAL Yl:D I 
get syntax-
~nalyzed terminal 
m ut.co\man 

I \ 
I I \ 

1 

~ead keyboard 
lNKaE 

input 

I \ I 
I \ I 

Figure 8.16. Output-driven real-time 
system with a deep afferent branch. 

8.6 Transform-centered morphology 

\ 
\ 

RETREP 

lNKEY EMERTRAN TYPElTRAN TYPE2TRAN 
Do"E" Process type Process type 

report 1 trans 2 trans 

Figure 8.17. Transaction-centered 
input-driven system for the problem of Fig. 8.16. 

Of the morphological factors relating to systems simplicity, the morphology known 
as transform-centered organization is the most important. The transform-centered 
model, shown in the general case in Fig. 8.18, combines several morphological features 
discussed above. It is highly factored, hence, quite deep for the number of atomic 
modules. Afferent and cff erent branches are somewhat balanced; hence, the model is 
neither input-driven nor output-driven. Both afferent and efferent branches have a 
characteristic structure. In the fully factored form, this structure involves at each level a 
single transformation or set of alternative transformations performed by subordinate 
transform modules, whose inputs are supplied by the last subordinate afferent modules 
(on the afferent side), or whose outputs are fed to the next subordinate efferent 
modules (on the efferent branches). 
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Figure 8.18. Generalized representation of the transform-centered model. 
_(Dots suggest indefinite extension to more modules.) 

A model of this subtlety did not spring full-blown from some designer, who on 
completing his seventeenth structural design, shouted, "Eureka!" It was derived -empir
ically from a careful review of the morphology of systems, comparing systems that had 
proven to be cheap to implement, to maintain, and to modify with ones that had been 
expensive. The motivation for the study came from a simple but inspired request from 
a client, who, lamenting that it was so difficult to learn how to produce good, cohesive, 
uncoupled designs,* asked one of the authors, "What does the structure of a cheap sys
tem look like?" 

The original study t required looking at the structure of many systems for which 
actual implementation, maintenance, and modification costs per delivered source state
ment were known. After-the-fact structure charts with their module names omitted 
were drawn up for the most expensive and least expensive systems obtained from vari
ous sources. The investigator, who did not know which charts represented which pro
grams, simply tried to find ways of sorting the charts into two piles based on morpho-

*At the time, 1967, the principle technique being taught was a deceptively simple but unreliable strategy 
called functional analys;s. Learning to design simple structures was mostly a matter of "sit-by·Nelly." Nelly. 
you see, knew how to do it! If you were smart and the wind were right, you, too, would be able to do what 
relly does. But you wouldn't know why. 
The research was done by Constantine with the Information and Systems Institute, Inc. Regrettably, the 

original data and notes were lost or destroyed in the messy demise of the Institute. Cost figures for more 
than one hundred medium-sized systems from several organizations initially were screened to identify the 
cheapest and most costly designs. The research design, although sound, was carried out with the informality 
typical of one·man, small-scale projects. It did not seem at the time worthy of publication or even publicity. 
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logical features. The success of the morphological criteria in separating the costly from 
the cheap systems could be checked by referring back to the separate cost data. The 
umpteenth round in this game produced what came to be called the transform-centered 
model. Most of the cheap systems had it~ none of the costly systems did! Since then, 
of course, support for highly factored transform-centered design has become 
widespread, and is based on both experience and numerous studies. 

8.7 Summary 

The basic concern of this chapter is the shape of systems. We have introduced a 
number of terms and concepts regarding systems morphology that are of critical impor
tance in Chapters 9, 10, and 11. If you read through this chapter quickly, we suggest 
that you review the meanings of such terms as fan-out, depth, width, skew, input
driven systems, output-driven systems, afferent, efferent, factoring, and span of control. 

In addition to the fact that systems ·have a morphology, we have introduced the 
noi:ion that most non-trivial systems have an underlying rationale for their shape -
usually because the designer has decided to center the design of the system on some as
pect that he considers important. In many cases, this rationale has been informal and 
intuitive, and often has yielded a system with low cohesion and strong coupling. The 
purpose of the next several chapters is to introduce rationales - or design strategies 
that are based on considerations not only of systems morphology, but also of coupling 
and cohesion. 
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9.0 Introduction 

CHAPTER 9 
DESIGN HEURISTICS 

In this chapter, we develop some selected heuristics with which systems structures 
may be improved. By heuristics, we mean certain tricks which, on the average, have 
the effect of increasing the modularity of a system. They are not guaranteed to work, 

nor do they help much in generating a system's structure in the first place. None con

stitutes a hard-and-fast rule, nor can any stand alone. So, you might ask: What good 
are the heuristics? 

They are useful because they serve as checks or indicators by which a structure 

may be examined for potential improvements. Each indicator is a clue that a structure 
possibly may depart from an optimal configuration. However, we will stress repeatedly, 
as we did in the previous chapter, that the final judge of whether a heuristic should be 
applied literally is the intrinsic structure of the problem that the system is supposed to 

solve. If the system reflects the structure of the problem, then we have an invincible 
defense against any suggestion that the system's structure should be changed and im
proved based on the heuristics in this chapter. 

9.1 Module size 

We have already suggested that module size is related to modularity, though not 

necessarily in the simple manner of ''cut it into more pieces, Charlie." That is, techni

cal modularity does not necessarily increase when module size decreases, even with oth
er things being equal. For most purposes, though, modules much larger than one hun

dred statements are outside the optimal range with respect to the economy of error 
commission and correction. At the low end of the scale, the cutoff is less obvious. Ex
cept for the occasional misguided zealots who think that modularity is equivalent to 
chopping a program into one-statement modules, we find that very small modules have 

been designed consciously and deliberately - and usually for functional reasons. Nor
mally~ though, fewer than five to nine source statements might be a good point at 

which to start considering alternatives. This is especially relevant when many such very 
small modules are present in a system. However, if the code is either tricky or straight

forward, these figures may be adjusted accordingly. 

Suggestions for optimal module size have come from a variety of sources during 
the past few years~ an overview of common module sizes may be found in a recent 
book by Yourdon. 1 One of the best-known suggestions for module size comes from 
Baker, 2 who suggests that modules should consist of approximately fifty statements to 
coincide with the number of lines that one can put on a single page of a printer listing~ 

it is ironic that many consider this fifty-statement rule of thumb an "invention" of IBM 

and a necessary part of structured programming! Still another common number comes 
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from Weinberg, 3 whose studies show that a programmer's comprehension of a module 
drops quickly if the module is larger than thirty statements. Most organizations have 
their own home-grown standards in this area. In their travels during the past several 
years, the authors have found organizations enforcing module sizes ranging from five to 
five hundred statements (the latter for a U.S. Air Force project). 

Of course, very large or very small modules are not bad. Whatever the reasons, 
though, if the size goes much beyond the optimal range of ten to one hundred state
ments, we can be assured that the total system,s cost will rise above some optimal 
minimum. On the other hand, the ultimate defense is the structure of the problem. It 
is possible (though unlikely) that there exists a single self-contained function which is 
only sensibly realized as a 2,000-statement FORTRAN subroutine. One can envision 
(though only hazily) a very large, highly involved decision table application or a long, 
involved mathematical computation, all strung out and segmentable only in an arbitrary 
and artificial fashion. If that is the structure of the problem - so be it! Cutting up a 
function simply to stay within an optimal size range is likely to be an injudicious move 
- particularly if it means sacrificing a problem-oriented structure. It is equally unwise 
to abolish a widely used character-moving subroutine, because it is implemented with a 
single FORTRAN statement. 

In general, though, we should examine and defend separately each case of a very 
small or a very large module. Let's first consider the very large module. Such a 
module is often an indication of an incomplete breakdown into appropriate subordinate 
modules. Alternatively, we may find that two or more functions have been combined 
(frequently, with logical cohesion) into the same module. In the first case, we should 
examine the module to see if we can extract some subfunctions~ this is illustrated in 
Fig. 9. la. In the second case, we may be able to chop the module into its component 
functions~ as illustrated in Fig. 9.1 b. In either case, the structure chart should be used 
as a tool, and the structural modifications should be tried out on paper. The important 
thing is to give meaning to the new structure, within the context of the actual problem. 
If it is not possible to make a reasonable interpretation, then the original structure 
stands. 

Figure 9. la. Reduction of very large module 
through identification and extraction of subfunctions. 
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Figure 9.1 b. Reduction of combined functions. 

When dealing with very small modules, we must distinguish two cases: the atom
ic (bottom-level) module, and the non-atomic module. In the case of an atomic 
module, the major issues are fan-in* and the ratio of subroutine-calling overhead to 
useful processing. If there are multiple uses (high fan-in), as in the case of Fig. 9.3, 
one does not legislate the module out of existence with impunity. With but a single 
use, as in Fig. 9.2, the designer might consider compressing the module upward into its 
superordinate ABLE - though each case should be considered on its own merit. 

Eliminating a module like STRINGCOMP in Fig. 9.3 is potentially dangerous, for it 
means that STRINGCOMP's function will be separately implemented (including coding 
and debugging) in each superordinate module that formerly used it. This duplicated 
effort can be expensive, even for simple processes. Moreover, each implementation of 
the STRINGCOMP function is likely to be slightly different, making maintenance and 
modification more difficult. 

If it appears that the overhead of the subroutine-calling mechanism will be intoler
able compared to the useful work performed by the module, the designer has another 
option. In the case of Fig. 9.3, for example, the designer requires that STRINGCOMP be 
separately coded and debugged - and then included in-line in modules FIND, VALUE, 
SCAN, MOVEUNTJL, and REMOVALL. Almost all current programming languages provide 
a feature to facilitate in-line subroutines: The COPY verb in COBOL, the %INCLUDE 
statement in PL/I, and the macro facilities in most assembly languages are examples. 

"'In simple terms, the fan-in of a module is the number of superordinate modules that call upon it Thus, the 
fan-in of module STRINGCOMP in Fig. 9.3 is five. 
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- -

Figure 9.2. Elimination of very small modules through upward compression. 
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Figure 9.3. Very small atomic module with high fan-in. 
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If the facility is not found in the programming language itself, the programmer of
ten can make use of the macro facilities of preprocessors, text editors, or source pro
gram maintenance packages. In any case, it should be evident that the in-line module 
gives us the advantages of modularity without incurring any overhead at run-time 
(although there may be a negligible overhead during the compilation or during the as
sembly process). 

This example illustrates our previous suggestions that it is better to go too far in 
structured design. It is better to extract and identify the common function and have 
some choice in its implementation than never to have had any choice at all because of 
an incomplete design. In documenting "decommitments'' of this sort, the form of Fig. 
9.4 is usually preferable. 

When the very small module is non-atomic, the analysis is complicated~ the op
tions are to compress upward and to compress downward, both of which should he con
sidered. A special case is that of the so-called dummy module - one that had no con
tents except a call on its subordinate. It does no work itself and contains no control log
ic. Dummy modules are obviously the limiting case of very small. 

Presumably, the dummy module is there because it reflects some aspects of the 
problem's structure. For example, Fig. 9.5 illustrates a situation in which IMPAC re
quires the function "particle velocity'~; this is accomplished by module PARVELOC. 

When the particle velocity function is analyzed, the designer decides that it can be ap
proximated with a square root - so PARVELOC simply calls SQRT. To save CPU time 
and memory' on each call to PARVELOC, one is tempted to have IMPAC call SQRT directly. 
The temptation to eliminate the dummy PARVELOC is even greater if the module has a 
high fan-in. 

But consider what happens when it is found that, say, an approximation using 
Yamota multipliers· will give better approximations and a more accurate model of the 
particle velocity. As shown in Fig. 9.6, PARVELOC is no longer a dummy, for it coordi
nates the operation of both YA MOTA and SQRT, and calculates a formula that com bin es 
these results. Had PARVELOC been eliminated, this change would have necessitated 
modifying IMPAC, PENETRATN, RADIATN, and RMSVELOC to include more complicated, 
duplicated coding. Preservation of dummy modules often may be justified on the basis 
of simpler, more obvious future modifications. At the very least, the presence of the 
dummy module should be noted for future reference. 

Throughout this discussion, it has been assumed that the designer knows, prior to 
implementation, the approximate size of the would-be modules. Normally, this does 
not require a separate and substantial estimation process. Experience has shown that 
the comparatively small size of modules in reasonably modular systems makes the esti
mation process easy, if not automatic. In addition, the estimation process becomes 
more accurate because the designer grows more familiar with the function that various 
modules are to perform as he pursues the structural design in a systematic fashion. 
Indeed, we find that it is difficult not to be aware of the approximate number of state
ments as the design process continues. 
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Figure 9.4. Documentation of imaginary module recreated in-line for each use. 
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Figure 9.5. Part of a system with a dummy non-atomic module. 
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Figure 9.6. Modified, former dummy module with multiple fan-in. 
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9.2 Span of control 

Fan-out, or span of control> is the number of immediate subordinates of a 
module~ we sometimes refer to this simply as the span of a module. As with module 
size~ very high or very low spans are possible indicators of poor design. In Chapter 2, 
we drew an analogy with a management structure - and we observed that a 
manager's function usually becomes too complex if he has more than 7 ±2 immediate 
subordinates. In general, we want to check a span of control that exceeds 10, as well 
as those of I or 2; a high span of control is usually more of a danger signal than a low 
span of control. Frequently, very good designs, especially of the type originating with 
the strategies in the next two chapters, will include many fully justified instances of 
fan-out of only I or 2. 

A low span of control can be increased in most cases either by breaking the 
module into additional subordinate subfunctions, or by compressing the module into 
its superordinate~ these strategies are illustrated in Fig. 9. 7. As before, one should try 
to give some meaning to the new structure in the context of the specific problem that 
is being solved. For example, in Fig. 9. 8, the first transformation makes more sense, 
because validation is a useful function whose separate existence as a module is fully 
justified. 

A high span of control could be indicative of an over-zealous breakdown of a 
module into subordinates, but our experience has shown that this usually is not the 
case. High f~rn-outs frequently arise from pancaking, or a failure to define intermedi
ate levels; the structure in Fig. 9.9a illustrates just such a situation. To solve this 
problem, we consider various groups of subordinates as potentially forming a com
bined function. Our knowledge of module cohesion guides this process to help us 
avoid uncohesive modules. In the case of Fig. 9. 9a, we might introduce the inter
mediate modulP;s shown in Fig. 9.9b~ we might decide against an intermediate-level 
general-purpose COMPUTE-GROSS·PA Y module because it would be logically cohesive. 

9.3 Fan-in 

Whenever possible, we wish to maximize fan-in during the design process. 
Fan-in is the raison d'etre of modularity: Each instance of multiple fan-in means that 
some duplicate code has been avoided. However, fan-in is not to be achieved at any 
cost. It would be ridiculous, for example 1 to maximize fan-in by combining many un
related functions into an uncohesive Hsupermodule" with a high fan-in. 

Fan-in is achieved through an analytical process that accompanies the steps of 
any structured design procedure. As a new module is about to be drawn on the struc
ture chart, we ask, Is there a module already available which performs the required 
function? If so 1 we draw an arrow to the existing box on the chart rather than draw
ing a new one. From a graphic viewpoint~ this sometimes may be clumsy: A module 
that is used in many widely separated places in the structure results in a number of 
messy, crossed lines. The graphic convention shown in Fig. 9.10 is suggested as a way 
of minimizing the risk that the same function is coded twice because the implementer 
did not recognize that two boxes in the structure chart represented the same module. 
Specification of fan-in is the designer's job, not the implementer's. 
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Figure 9.7. Altering a structure with low span of control. 
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Figure 9.8. Restructuring for low span of control. 
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A 

Figure 9.10. Documenting use of modules 
in a different part of the structure. 

The problem occurs when the designer realizes that his new, would-be module is 
similar or related to an existing module, but not identical to it. If he misses the subtle 
difference between his would-be module and the existing module, things will begin to 
go wrong during the system's integration. Either the. new use of the module will 
misfire, or the old one will. Further problems will occur when the programmer at
tempts to make a de bugging correction to the common module. 

The key is to understand what makes the two instances similar or related - and 
then isolate that in a separate module. For example, suppose we have a Ql function 
that appears to be similar to Q2~ let Q represent the processing that they have in com
mon. This suggests, as a first cut, the structure show in Fig. 9. lla. However, there is 
a chance that this can be restructured into potentially more appropriate forms. If they 
are small, either or both of Ql' and Qi' might be compressed upward into their respec
tive superordinates as shown in Figs. 9.11 b, 9.1 lc, and 9.11 d. Alternatively, a compo
site QI module could be formed; it would carry out Ql for superordinate x, and Q for su
perordinate Y. We might even consider a supermodule, possibly with multiple entry 
points, which combines Ql, Q2, and Q. 

The point is that the designer originally regarded Q2 as similar to Ql - and he 
might have forced superordinate Y to call the existing Ql module in the hope that things 
would work out all right. We now see that there are a variety of alternatives that do the 
job efficiently and in a modular fashion. 

9.4 Scope of effect/scope of control 

Every decision or conditional statement (e.g., an IF statement) in a system has 
some consequences: Certain processing either happens or. does not happen as a result 
of the decision. Equivalently, we can say that certain processing is conditional upon the 
outcome of some given decision. It is important to learn where in a modular structure 
the conditional effects of a specific decision are found. In order to discuss this, we need 
to introduce two new terms: scope of effect and scope of control. 

The scope of effect of a decision is the collection of all modules containing any 
processing that is conditional upon that decision. If even a tiny part of the processing in 
a module is influenced by the decision, then the entire module is included in the scope 
of effect. If the activation of the entire module is conditional upon the outcome of the 
decision, then the module's superordinate is also included in the scope of effect: This 
makes sense when we realize that the superordinate must contain a statement to call the 
subordinate, and that CALL statement will be executed depending on the outcome of the 
decision. 
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Figure 9.1 lb. Alternate restructuring 
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Figure 9.1 ld. Alternate restructuring 
for fan-in. 
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The scope of control of a module is the module itself and all of its subordinates. 
Scope of control is a purely structural parameter independent of the module's functions. 

Now we can state a design heuristic that involves both scope of control and scope 
of effect: 

• For any given decision, the scope of effect should be a subset of the scope of 
control of the module in which the decision is localed. 

In other words, all of the modules that are affected, or influenced, by a decision should 
be subordinate ultimately to the module that makes the decision. Decision-making and 
modular structure are best interrelated when decisions are made no higher in the hierar
chy than is necessary to place the scope of effect within the scope of control. Ideally, 
the scope of effect should be limited to the module in which the decision is made and 
to those modules that are immediately subordinate. 

Thus, Fig. 9. l 2a illustrates a structure in which the scope of effect is not a subset 
of the scope of control; Fig. 9. l 2b shows a structure in which the scope of effect is con
tained within the scope of control, although one could argue that the decision is being 
made too high in the hierarchy~ Fig. 9. l 2c illustrates a structure in which the decision is 
being made just high enough in the hierarchy to include the scope of effect within the 
scope of control~ and Fig. 9 .12d demonstrates the ideal case in which the scope of effect 
module~ are immediately subordinate to the module in which the decision is made. 

DP 

y 

Figure 9.12a. Violation of 
scope of effect/scope of control. 

x IY 
I 

Figure 9.12b. Correct scope of 
effect/scope of control, but with 
the decision too ~igh in the hierarchy. 
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Figure 9.l 2c. Adequate implementation of 
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.X: 

Figure 9. l 2d. Ideal implementation of 
scope of effect/scope of control heuristic. 

As an example, consider the structure shown in Fig. 9.13. Note that a decision 
has been isolated that validates the transaction code, and divides all legitimate codes 
into Class ( and Class II. This decision, which we abbreviate as Tv/Tc (for transaction 
valid ?/transaction class?), is found in module TYPCODE. Included in its scope of effect 
are READX (if the transaction code is invalid, read another transaction, otherwise, pro
cess this one); TYPERR (which produces an error message if the transaction code is in
valid)~ mo and 1100 (activated for Type I and Type II tr.ansaction codes, respectively), 
and consequently xoo and FORBISH. 

An appropriate question to ask at this point is, How does mo gei done? Or, for 
that matter, REA DX? Or 1100? The outcome of the decision is known to TYPCODE but 
not, without special provision, to xoo. Somehow mo must get activated, but only 
under the right circumstances. One of the following things must always be true: 

(1) The decision is repeated in any module with processing in the scope of 
effect, including a superordinate whose only scope of effect processing 
is to activate a subordinate. This may not be possible if input informa
tion for the decision is unavailable. The Tv/Tc decision might not be 
possible in FORBISH, because the transaction code is not included in the 
data made available to FORBISH. Thus, special information may have to 
be passed in order to duplicate the decision. In other words, there is a 
certain cost in duplicated processing and a possible communication 
overhead. Such communication increases coupling. 
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(2) The outcome of the Tv/Tc decision is encoded (generally, in the form 
of a flag, that most favored of design gimmicks) and passed to superor
dinate modules, which retest and act accordingly. This involves some 
communication overhead and a lesser amount of duplicated processing. 
However, since it involves passing control information, coupling may 
be significantly increased. 

(3) During implementation, the structure shown in Fig. 9.13 is violated -
with pathological connections or hybrid coupling used to achieve the 
desired results. Thus, we might find that TYPCODE is programmed in 
such a way that it modifies code in FORBISH under the right conditions. 

Clearly, some revision of the structure is indicated. In general, it is best to per
form this in steps rather than to attempt one drastic modification to cure the structure 
of its ills. The final effect of such a series of modifications is usually that portions of the 
decision are moved upward in the hierarchy until the scope of effect is within the scope 
of control. We note parenthetically that this usually results in "distributed decision
making'' of the sort that we described in Chapter 8. 

Let us imagine that validation of the transaction code and classification of the 
transaction code are separable. We want TYPERR to be subordinate to the module that 
includes Tv, as only that module wi1l have full, direct information about the nature of 
an error, and will thus be able to construct a reasonable error message. But we note 
that READX is also within the scope of effect of Tv, and mo is in the scope of effect of 
Tc. Moving Tc up into XDO and making READX subordinate to the module containing 
Tv leads to the structure shown in Fig. 9.14~ note that we have renamed GETVALIDX to 
reflect the change in its function. Whether the problem with IIDO can be solved grace
fully depends on the reasons for having FORBISH~ very likely, IIDO can be made subordi
na tt~ to XDO. 

Now, consider that Tc might be a complicated process - perhaps involving a table 
lookup and some computation. Indeed, it may be so complicated that we wish to make 
it a distinct module of its own; such a module probably would be subordinate to XDO. 

While this would violate our scope of effect/scope of control heuristic, the return of a 
binary flag to XDO is probably tolerable. In Fig. 9.15, a call on TYPCLAS behaves as a 
two-way conditional instruction to XDO. Two-way flags and three-way flags, as violations 
of the scope of effect/scope of control heuristic, are much more tolerable than an n· 
valued flag. 

The solutions shown in Figs. 9.14 and 9.15 were derived on the assumption that 
Tv and Tc could be separated. If Tv/Tc is monolithic (perhaps because validity is 
determined by a failure of Tc), we could solve the problem by combining GETVALIDX 

and TYPCLAS of Fig. 9.15 into a module that we call, for lack of a better name, G ETTYP

CODEV ALIDX. 

While the example shown in Figs. 9.13, 9.14, and 9.15 may seem somewhat di
vorced from the real world, it is nevertheless true that a number of classic data process
ing problems may be analyzed in terms of scope of effect/scope of control. For exam
ple, Fig. 9.16 shows individual records being combined by some discipline into com
pound items, which are searched for parts to be summarized into groups. The numeri
cal ratio and relationship between groups, parts, items, and records vary. Note that the 
structure of Fig. 9.16 includes a system-supplied READ subroutine which exits to the 
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operating system when an end-of-file is encountered. The decision~ which we will ab
breviate as F, is whether the processing of this file is finished~ the outcome of the deci
sion is to continue or to quit. 

xvo 

Tt~f<. 

wrr~ error 
~ ...... ......., ..... (., 
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rrouss 
~tt<>t6 

Figure 9.13. Portion of system with scope of effect/scope of control conflict. 
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Figure 9.14. System of Fig. 9 .13 after partial resolution of scope of effect/scope of control conflict. 
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Figure 9.15. Final modification of Fig. 9.13. 
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Figure 9.16. A system with serious scope of etf ect problems. 
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However, suppose that the execution of PHASE2 is conditional on the completion 
of PHASEl processing. Thus, it is in the scope of effect of decision F. Unfortunately, 
ARB never has the opportunity to activate PHASE2 if READ decides to make a "panic 
abort" to the operating system. What we need to do is 

• Change READ so that when it discovers an end-of-file condition, it 
communicates a "no-more-records" condition to COMPOUND. 

• COMPOUND tests for "no-more-record'.' signal from READ. If it occurs, 
COMPOUND forces a call to MAKREADY to prepare this last compound 
item; the item is given to FINDPART. On the next call from FINDPART, 
COMPOUND returns with a "no-more-compound-items" indicator. 

• FINDPART tests for "no-more-compound-items" indicator. Upon re
ceiving it, it returns to SUMMARIZEGROUP with "no-more-parts" indi
cator. 

• When SUMMARIZEGROUP receives the "no-more-parts" signal, it uses 
WINDUP to finish the last part group, and returns that to PARSUM. On 
the next call from PARSUM, it returns with a "no-more-summaries" 
signal. 

• When PARSUM receives the "no-more-summaries'' indicator, it ac
tivates FINISH and then terminates. 

It is essential to note that each module is making a different decision (or different 
parts of the same decision). Each is testing a different condition and informing its su
perordinate of yet another condition. In the strictest sense, the same information is not 
merely being passed up the line. Each module deals only with decisions and outcomes 
tha1t are a part of its immediate function. Thus, when COMPOUND returns an end-of
compound-items indicator, it makes no assumptions about (and has no knowledge of) 
groups and parts; no module needs to know how a decision might affect the function of 
other modules. The fact that a subordinate informs its superordinate when it cannot 
perform its function is expected behavior - both in computer systems structures and in 
management structures! 

In summary of the discussion in this section, the scope of effect/scope of control 
heuristic is usually an excellent indicator that a decision has been placed in the wrong 
part of the modular structure - but it is only a heuristic! The most common example 
of violations of this heuristic is the occurrence of a relatively important decision (e.g., 
an end-of-file test or a "fatal-error" test whose outcome may result in returning patho
logically to the operating system) at or near the bottom of the hierarchy. Unfortunate
ly, violations of this heuristic are rampant (see, for example, the end-of-file logic in 
Armstrong's programming examples 4). As we have seen, the violations usually have 
one or more negative consequences: 

• duplicated decision-making 

• increased coupling from additional flags and switches being passed to 
other scope of effect modules 

• pathological control flow or data flow 



DESIGN HEURISTICS 169 

Scope of effect/scope of control problems that occur early in the design phase al
most always can be rectified easily by judicious restructuring. In general, the designer 
has three options for correcting the problems: 

• Compress a low-lev~l module into its superordinate so that the decision 
takes place high enough in the structure to solve the scope of effect 
problem. 

• Move a scope of effect module down in the hierarchy to get it within 
the scope of control. 

• Remove all or part of the decision from the low-level module and place 
it in a higher level module. 

9.5 Summary 

It must be emphasized that this chapter has discussed heuristics, not religious 
rules. Heuristics such as module size, span of control, and scope of effect/scope of con
trol can be extremely valuable if properly used, but actually can lead to poor design if 
interpreted too literally. Unfortunately, the authors have experienced several cases in 
the past few years where the design heuristics of this chapter were used blindly - and 
the results often have been catastrophic. 
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10.0 Introduction 

CHAPTER 10 
TRANSFORM ANALYSIS 

In Chapter 8, we saw that systems whose morphology - or overall shape - was 
transform-centered tend to be associated with low development costs, low maintenance 
costs, and low modification costs. We also observed that such low-cost systems tend to 
be highly factored~ that is, the high-level modules make most of the decisions, and the 
low-level modules accomplish most of the detailed work. 

Tran~/brm analysis, or tran!iform-centered design, is a strategy for deriving initial 
structural designs that usually are quite good (with respect to modularity) and generally 
require only a modest restructuring to arrive at a final design. It is a particular form of 
a top-down strategy, which takes advantage of overall or global perspective. Applied 
rigorously, transform analysis leads to structures which are fuHy, or almost fully~ fac
tored. It produces sizable numbers of modules at intermediate levels in the hierarchy, 
which represent compositions of basic functions (or compositions of compositions). 
However, even the intermediate modules avoid doing any "'work,, except to control and 
coordinate the work of subordinates. 

Overall, the purpose of the strategy is to identify the primary processing functions 
of the system, the high-level inputs to those functions, and the high-level outputs. It 
then creates high-level modules within the hierarchy to perform each of these tasks: 
creation of high-level inputs, transformation of inputs into high-level outputs, and pro
cessing of those outputs. As we will see, transform analysis is an i1~fonnatio11 flow 
model rather than a procedural model. 

The transform analysis strategy consists of the following four major steps: 

1. restating the problem as a data flow graph 

2. identifying the afferent and efferent data elements 

3. first-level factoring 

4. factoring of afferent, efferent, and transform branches 

Each of these steps is discussed in detail in subsequent sections of this chapter. 

10.1 The first step: Restate the problem as a data flow graph 

In order to carry out the strategy of transform analysis, it is necessary to study the 
flow of data through the system. That is, we must draw a data flow graph for the sys
tem we are designing. We recall that data flow graphs were presented in Chapter 3 to 
illustrate non-procedural aspects of a system~ they served that purpose in subsequent 
discussions of cohesion in Chapter 7. However, the data flow graph typically was 
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presented as an accomplished fact. What we now must do is to ask how a data flow 
graph is conceived. 

In certain trivial systems, the data flow may be perfectly obvious to the designer~ 
he instantly may be able to draw a data flow graph or' the sort shown in Fig. 10. L 
Indeed, even the simple payroll example shown in Fig. 10;2 - which involves both 
conjunction and disjunction operators - may be intuitively obvious to the designer. 
But how should we deal with more complex situations? 

There are several ways to approach this analytical process. Designers who are ex
periienced in the use of data flow graphs and who are used to non-procedural thinking 

generally start with the physical inputs (e.g., a card from the card reader, or a message 
from the terminal) and work their way downstream through successive transforms to 
the physical outputs (e.g., a printed report). Working upstream from outputs toward 
the inputs works just as well for many designers. It appears to be a matter .of taste, 
rather than a technical issue. 

Unfortunately, many newcomers to the use of data flow graphs find that these two 
approaches tend to lose them in procedural details, which must be set aside at this 
stage. An alternative is to begin with a single bubble that correctly represents the entire 
system in terms of inputs and outputs. This trivial data flow graph is then refined by 
segmenting it into several transforms so that the resulting data flow graph has two to 
four bubbles of approximately equal size or importance. In turn, this is replaced with 

yet another more detailed data flow graph for the entire application. This "middle-out" 
approach is also a useful exercise in top-down thinking. 

Whatever approach is used to develop it, the amount of detail shown in the final 
data flow graph will vary from problem to problem, and from designer to designer, but 
the beginner is advised to show the data flow in considerable detail ·until he has a feel 
for the amount of detail required by various problems. None of this effort will be wast
ed, as greater understanding of the problem at this stage in the design can greatly sim
plify some of the subsequent steps. 

To illustrate this point, we recall the master file update example that was first 
presented in Chapter 3. Figure 10.3a shows a data flow graph that is probably extreme 

in the sense of not showing enough detail~ on the other hand, the data flow graph 
shown in Fig. 10.3b is perhaps extreme in the sense of showing too much detail. If 
forced to choose between one extreme and the other, we would prefer to show too 
much detail - that is, we would prefer Fig. 10.3b. 

Generally, it is easier to follow through certain ''main" data paths dealing with 
primary inputs; minor inputs and minor outputs (e.g., error paths that emerge from a 
Hvalidaten bubble) can be ignored at first. Often, it is found that secondary inputs are 

employed in transforms deep within the data flow, and they will be picked up automati
cally when those points are reached. A final '"clean-up" sweep through the data flow 
graph can account for any unattached input or output streams. 

When drawing the data flow graph, it is essential not to become entangled in as
pects of procedure or decision-making. That is, the graph should not show (and the 
designer shoutd not worry about) such things as loops, initialization, termination, 
recovery procedures, or decisions. For example, from an information flow standpoint, 
an error detection process is not a decision branch, but a filter, which separates good 
data from bad data. 



Figure 10.1. Transform from A into B. 
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Figure 10.2 . 
Conjunction and disjunction. 

Figure 10.3a. Data flow diagram with very little detail. 
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Figure 10.3b. Data flow diagram with excessive detail. 

Figure 10.4. Validity checking as a filter. 
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Thus, in Fig. 10.4, we imagine that the process has been running forever, and will 
continue running forever~ we'll get around to the initialization and termination pro
cedures later when we 're ready to deal with procedure-oriented design. Similarly, it 
does not concern us that the bubble labeled "'check 'Skill validity" contains a decision 
(although the module that eventually realizes that transformation obviously will contain 
one or more decision-making statements). All we care about at this point is that the 
Hstream" of employee skill records has been split into two separate streams of data. 
Indeed, as we suggested above, we might not even bother showing the "bogus skill" 
path in our initial data flow diagram, since it is not the primary data stream. Note also, 
in this example, the fact that many individual employee skill records are required to 
produce a department skill summary is not represented in the data flow graph. We only 
see that the Bsummarize '' bubble transforms a stream of valid employee skill records 
(by some magical process) into a stream of department skill summaries. 

To summarize our discussion of data flow graphs, we offer the following sugges
tions to the designer: 

• Work your way consistently through the problem, from the input 
stream toward the output or vice versa, depending on your preference. 
If you get stuck somewhere in the middle, then switch. Or, you can 
use the middle-out approach described above. 

• Never try to show control logic. If you find yourself thinking in terms 
of loops and decisions, you're on the wrong track. Specifically, if you 
find yourself drawing an arrow and thinking to yourself, Now leCs go 
to this bubble and do the process again, you,re in trouble. Remember: 
The arrows represent the flow of data, not control. 

• Ignore initialization and termination. Pretend the system all runs at 
once, and that it continues running forever. 

• Omit simple error paths from each bubble to the outside world. 

• Label the data elements very carefully as they enter and leave a 
transform bubble. That is, if a data stream marked A enters a bubble, 
then the output stream that emerges from the bubble should generally 
not be marked as A. It may be called "'new-A-as-a-result-of
computations" or "the-good-A's-after-we-discarded-the-bad-ones.~, 

• Make use of ""'" and "E9" operators as appropriate. 

• Make sure that the data flow is correct for the level of detail being 
shown. If in doubt, show too much detail rather than too little. Don't 
flowchart! 

Typically, the result of this first step of transform analysis is a diagram of the sort 
shown in Fig. 10.5; this diagram illustrates a manufacturing plant simulation process. 

10.2 The second step: Identify the afferent and the efferent data elements 

In Chapter 8, we introduced the notion of afferent data flow and efferent data 
flow~ in that discussion of systems morphologies, we also saw modules that could be 
termed afferent modules, and others that could be termed efferent modules. 
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Figure 10.5. Data flow diagram for a simulation system. 

We now define afferent data elements as follows: 

(n) 

Afferent data elements are those high-level elements of data that are furthest re
moved from physical input, yet still constitute inputs to the system. 

Thus, afferent data elements are the highest level of abstraction of the term "input to 
the system.'' They represent the most aggregated, the most processed, the most 
"macro-level" inputs. 

In general, the afferent data elements will bear the least possible resemblance to 
the raw input data that were obtained from a physical input device. That is, physical 
blocking and buffering will no longer be visible; control characters (if any) will have 
been removed~ any necessary formatting and conversion of the input to a standard 
internal form will have been done; and all editing, checking, and validation will have 
been accomplished. What remains are good, clean data, ready for processing. 

We identify the afferent data elements by starting at the physical inputs to the sys
tem and moving inward along the data flow diagram until we identify a stream that can 
no longer be considered as incoming. This represents a value judgment on the part of 
the designer, but the aim is to go as far from the physical inputs as plausible. General
ly~ experienced designers will not di ff er by more than one or two transforms in their 
judgment of where the afferent transforms end. 

This process is performed for each input stream. Often, we find that several physi
cal input streams may end in the same afferent data element. In the data flow of Fig. 
10. 5, for example, the afferent data element is the "agenda table." 



TRANSFORM ANALYSIS 177 

Beginning at the other end with the physical outputs, we try to identify the efferent 
data elements. ·As the name implies, the efferent data elements are those furthest re

moved from the physical outputs which may still be regarded as outgoing. Such ele
ments might be regarded as "logical output data,, that have just been produced by the 

"main processing" part of the system and which have had the least amount of process

ing to convert them to "physical output data." We perform this process for each of the 

ultimate output streams. In the plant simulation system shown in Fig. 10.5, "sales out

put" and ''manufacturing output" are the efferent data elements. Note that we use 
brackets to designate the afferent and efferent data elements. 

This step usually leaves some transforms in the middle, between the afferent data 

elements and the efferent data elements. These are designated central transforms. They 

are the main work of the system; they transform the major inputs into the major out

puts. Occasionally, the afferent and efferent data elements will be the same, in which 
case there are no central transforms. 

It may be argued at this point that this step is an attempt to model all systems as a 
trivial input-process-output flow. Indeed, most systems are sufficiently trivial to be 

modeled in this form (for, after all, what else do most systems do but read some input, 

perform some computations, and generate some output?), but that is not the real point. 

What is important to us is that many designers do not have the instinct to follow the 

main input streams all the way in to the afferent data element. As a result, their modu

lar structures tend to be input-driven (cf. the discussion in Chapter 8). Even though it 
may seem trivial at this stage, the process of transform analysis that we are outlining 

ensures that the structure will be balanced. 

10.3 The thi-rd step: first-level factoring 

Having identified the afferent and efferent data elements of the system, we specify 
a main module which, when activated, will perform the entire task of the system by cal
ling upon subordinates. For each afferent data element feeding a central transform (in 
the example of Fig. 10.5, there is only one: the agenda tables), an afferent module is 

specified as an immediate subordinate to the main module. Its ultimate function will be 

to deliver the afferent data element to its superordinate, that is, to the main module. It 
should be clear that the afferent modules are truly afferent modules in the sense that we 

defined the term in Chapter 8: They obtain their inputs from below (by calling lower

level subordinate modules:, and they deliver that input upward. 

Similarly, for each efferent data element emerging from any central transform (in 

the example of Fig. 10.5, there are two), we define a subordinate efferent module that 

will accept the efferent data element and, ultimately, transform it into the final physical 

output. Again, it should be clear that such modules are truly efferent modules, in the 

sense of the definitions of Chapter 8. 

Finally, for each central transform or functionally cohesive composition of central 

transforms, we specify a subordinate transform module (where, once again, we have 

used the term in the sense in which it was defined in Chapter 8), which will accept 

from the main module the appropriate input data and transform it into the appropriate 

output data; of course, this output is delivered back upward to the main module. Thus, 

we can see that there is a simple (usually one-for-one) correspondence between the 

data flow graph and the initial first-level factoring. 
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The main module is the overall control, or executive, for the process. Its function 
is to control and coordinate the afferent, transform, and efferent modules dealing with 
the highest-level data of the system. It will call the immediately subordinate afferent 
modules to obtain major inputs, pass these to the appropriate transform modules, 
deliver the results to other transform modules, and deliver the final results to the 
efferent modules. These calls will, in the general case, be imbedded in the major deci
sion and iteration control logic for the overall process. 

The first-cut factoring for the system of Fig. I 0.5 is shown in Fig. 10. 6. The 
number in each module "box" refers to a transform that is similarly identified in the 
data flow diagram. 

10.4 The fourth step: factoring of afferent, efferent, and transform branches 

Three distinct substrategies are used to factor the three types of subordinate 
modules (afferent, efferent, and transform) into lower-level subordinates. There is no 
particular reason for starting with the afferent portion of the system, but many 
designers find it the most natural way of proceeding. It is not necessary to completely 
factor one branch down to the loYt'e_§t_ level of detail before working on another branch, 
but it is important to identify all of the immediate subordinates of any given module 
before turning to any other module. 

Thus, suppose we have identified MAIN, A, B, and c as a first-level factoring for 
Fig. 10.7. Suppose that our next step was to begin factoring module A, and that we 
have identified subordinate Al. We should continue defining and identifying the other 
subordinates of A (namely A2 and AJ) before exploring the subordinates of B, c, or A I. 

To see how an afferent module can be factored, ·look at the top-level afferent 
module GETAGENDATAB in Fig. 10.6. We know that GETAGENDATAB's' function, as 
viewed from the main module, is to produce agenda tables~ thus, our job is to identify 
the transform (or computations) required to produce agenda tables. This last (in the 
sense of transformation of data) transform becomes the function of a new transform 
module immediately subordinate to GET AGENDA TAB. -Obviously, this new transform 
module requires some input: For each input to this last transform, we specify a new 
afferent module immediately subordinate to GETAGENDATAB. Each of these new lower
level afferent modules is factored, recursively, in the same manner until the u1timate 
physical input is reached or the process is otherwise terminated (see Sections I 0.5 and 
10.6 below). The first-cut factoring of the afferent branch for the plant simulation sys
tem is shown in Fig. 10. 8. 

The factoring of efferent modules is essentially symmetrical to that of afferent 
modules. For a given efferent module, we are looking for the next transform to be ap
plied which will bring the data closer to its ultimate "physical" form. The transform 
module that accomplishes this transformation will be subordinate to the "top-level,, 
efferent module in the system. Thus, the transform module CROSSTAB is identified as a 
subordinate to the top-level efferent module PUTSIMRESULTS shown in Fig. 10.6. The 
output of the transform module CROSSTAB then becomes input to a new efferent 
module which is also subordinate to the original top-level efferent module PUTSIM
RESUL TS~ the process then continues. Naturally, there may be more than one ''next 
transform" and more than one subsequent efferent process. For our plant simulation 
process, the factoring of efferent modules is shown in Fig. 10. 9. 
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Figure I 0. 7. Factoring of subordinate modules. 



180 STRUCTURED DESIGN 

Figure 10.8. Factoring of an afferent branch. 
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Figure 10.9. Factoring of an efferent branch. 
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Little is known about the optimal factoring of central transform modules - that 
is, for modules like SIMSALES, SIMMACH, SIMLINE, and PLANT in our example of Fig. 
10.6. Obviously, for each transform, we are looking for sub-transforms that will com
pose the overall transform. We also are looking for compositions of the functions 
shown as the central transforms in the original data flow graph (e.g., for the central 
transforms shown in the data flow graph of Fig. I 0.5). These are inserted as intermedi
ate modules in the hierarchy - between the top level and the functions from which 
they are composed. 

Our purpose is to ensure that the subordinates of the main module represent the 
highest levels of processing and that less important details are relegated to lower levels. 
The designer's judgment and experience are guided throughout this process by the im
portant considerations of coupling and cohesion, as well as by the various design heuris
tics that were discussed in Chapter 9. For the plant simulation example, the trial factor
ing of the transform modules is shown on the following page in Fig. 10.10. 

10.5 The fifth step: departures 

The strategy thus far described assumes an orthodox structure in which the data 
flow inward or outward in any branch - but not both! Consequently, we expect that 
afferent modules will have only afferent and transform subordinates; similarly, efferent 
modules are expected to have only efferent and transform subordinates~ and transform 
modules (regardless of where they are in the structure) should have only transform 
subordinates. 

However, real-world problems frequently require exceptions to these rules if 
clumsy processing is to be avoided. For example, in our plant simulation problem, the 
"special machine table solutions" could require afferent subordinates to a transform 
module~ similarly, the "report agenda" input could require afferent subordinates to an 
efferent module. 

Let us assume, for example, that the special machine table solutions are used only 
when some detail iri the plant simulation .transform detects certain conditions. We 
would expect this step to be found quite far down in the transform structure, as we 
have, in fact, shown in Fig. 10. l 0. To place an efferent GETSPECT AB module subordi
nate to the top-level SIMPLANSYS module would be terribly artificial: It would mean ei
ther that the tables must be input in all runs of the system, just in case they are need
ed, or that the detail step SIMMACHSTEP would have to signal its superordinate, which 
would signal its superordinate - and so forth - all the way back to the top level to 
read the tables, and·then return all the way back down to continue the simulation. 

We must always keep in mind that our objective is to make the program structure 
reflect the structure of the problem as closely as possible. The detailed data flow di
agram is a guide to the problem structure, and if the problem requirements necessitate 
a departure from the orthodox transform-centered organization, it should be apparent in 
the diagram. Certainly, this is the case in the example shown in Fig. 10.5. 

When completed, the trial structural design using transform analysis will bear a 
simple, straightforward relationship to the data flow. This will be evident in our plant 
simulation example by.comparing the structures shown in Figs. 10.8, 10.9, and 10.10 
with the data flow shown in Fig. 10. 5. It must be remembered that this is a trial, first
cut structural design. The final structure, which will reflect many design trade-offs and 
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heuristics, will be derived from systematic refinements and alterations of this initial 
structure. These modifications may be made in a separate phase after completing the 
initial factoring, or (as many designers prefer) during the initial factoring. Especially 
when similar problems have been exhaustively analyzed before by the designer~ this 
concurrent approach may save considerable effort. 

For example, a final version of our plant simulation problem might look like the 
one shown in Fig. 10.11 on the following page. Again, carefully study the relationship 
between this figure and the earlier structures shown in Figs. 10.8, 10.9, and 10.10 - as 
well as the initial data flow diagram in Fig. 10.5. 
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Figure 10.10. Trial factoring of central transforms. 
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Figure I 0.11. Possible final structure of simulation system. 

10.6 General comments on factoring 

As we pointed out earlier, all of the subordinates of a module should be identified 
and defined. before any one of the subordinates is analyzed any further. Clearly, we are 
seeking th1~ smallest number of distinct modules which satisfies the appropriate 
transform. To check whether this step has been completed, we need only to ask wheth
er the available subordinates are sufficient to implement the transform. We must be 
able to see that there is at least one way to program the current module (which imple
ments the transform currently being analyzed) in terms of the subordinates plus ap
propriate control and coordination processes (decision-making, looping, communication, 
and so on). It is not necessary to detail this procedure, nor to consider more than one 
way of doing the job - as long as we are assured that at least one way exists. Obvious
ly, the designer should regard with suspicion any subordinate module which he cannot 
see as necessary to implement the current module. 

As subordinate functions are identified, the designer names them. A brief 
descriptive name or phrase is used to characterize the function of the module. This 
may be a phrase taken from a description of the superordinate's transform, or it may be 
a restatement of that description. It should fully and specifically describe what the 
module doe:s with respect to its superordinate - that is, what function it appears to per
form from the outside. 

Several heuristics concerning names of modules are useful in determining their 
effect on the module structure. Names that identify classes of operations should be 
avoided, as they frequently are associated with logical cohesion (cf. the discussion in 
Chapter 7). Names that involve many conjunctions and qualifying conditions are clues 
to low cohesion. Thus, if the name GET RECORD UNLESS FLAG OR CARD BLANK IN 
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WHlCH CASE READ CARD AND PRINT RECORD is the only correct description of the 
module (as seen from its superordinate), then it probably has very Jow cohesion. 

The consistent use of names that imply inherent communication structure will 
avoid ambiguity and subsequent unintentional changes in interpretation. Any con
sistent set will do, but the names shown in Table 10.1 are il1 fairly wide use and have 
the. added advantage of yielding subroutine calls that read like commands in a high-level 
programming language. Note that the names consist of verbs followed by a description 
of the specific process being carried out by the module. Thus, we have names like GET 

CONTROL SPECS or PRODUCE MONTHLY REPORTS. 

Table 10.l 
Suggested Module Names 

Afferent processes with external sources of data 

GET 
OBTAIN 
INPUT 

ACCEPT (usually asynchronous) 
FIND 
LOAD 

Afferent processes with internal sources of data 

SETUP 
DEVELOP 
GENERATE 

FORM 
CREATE 

. Transform processes 

ANALYZE 
TRANSFORM 
CONVERT 
DO 

COMPUTE 
CALCULATE 
PERFORM 
PROCESS 

Specific verbs like SORT, VALIDA TE, etc. 
Function-oriented nouns like SQUAREROOT, INVERSION 

Efferent processes with external targets 

PUT 
PRODUCE 
SAVE 
DELIVER 

OUTPUT 
STORE 
WRITE 

Specific verbs like PRINT, UST, PUNCH, etc. 

But some of these are somewhat ambiguous 

PROCESS (could be afferent or transform) 
CREATE (could be afferent or efferent) 
GENERATE (could be afferent or efferent) 
DO (could be anything) 
PERFORM (could be anything) 
DELIVER (could be afferent or efferent) 

Forms of names that do not imply a specific procedural implementation are pre
ferred to those names having a more specific connotation. COMBINE is a more general 
form of MERGE, and is, therefore, preferable. Certain general terms - such as UPDATE 
and VALIDATE - have specific procedural meanings to particular designers. We would 
like to avoid such procedural interpretations while we are involved in the structural 
design of the program. Similarly, device names and physical input names should be 
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avoided until it is clear that the object being dealt with can only exist in actual physical 

form. READ-TIME-CARD is usually a low-level function, for example, as compared to 
GET-TIME-ITEM. . 

References to the term FILE often tempt the designer to commit himself to file

by-file processing or to using more intermediate files than necessary. For example, the 

two top-level functions DEVELOP-EMPLOYEE-FILE and PRODUCE-EMPLOYEE-REPORT seem 

to suggest a structure in which DEVELOP-EMPLOYEE-FILE creates (or outputs) a magnetic 

tape file of employee data, which PRODUCE-EMPLOYEE-REPORT will read, format, and 

print as a report. Aggregations of data that are not the fundamental unit of processing 

should not be referenced. Names that imply processing of a single element of data 

have been found to leave more room for free choice of a processing algorithm. 

By making complete, but succinct, statements of the function of a module, the 

designer often can identify low cohesion at an early stage in the design. By using a con

sistent, restricted vocabulary, the designer avoids ambiguity and overcommitment to a 

single processing methodology. Finally, if the designer has difficulty finding a succinct 

name for a function, it may be a clue that such a module does not exist, or that it does 

not make sense in the current context, or that it does not make sense at the current 
place in the structure. 

10.7 Termination 

Various criteria may be used to determine when the functional factoring of 

modules should be terminated. The end may be reached when it is not possible to state 

a transform with any clearly discernible subtasks. When a vendor-supplied module or 

library subroutine is reached, factoring cannot proceed because the substructure has al

ready been determined (though it should not be visible to the designer if the library 

routine is truly a black box). Similarly, reaching a module that interfaces with physical 

input-output media signals the end of factoring. Finally, when we identify very small 

modules, it indicates that we have reached the bottom level of the hierarchy -

altho'ugh clearly any such signal is approximate and has exceptions. '~Very small" gen

erally means vanishingly small: a few instructions or source statements. The approxi

mate size of such modules is, by definition, obvious - hence, no distinct size

estimating process is needed. 

' It is preferable to go too far in an initial factoring, and to have recognized 

processes that are too small, too fractional, and too specialized to constitute distinct 

modules. The very tiny modules always can be combined later with a full knowledge of 

the composition of the combined module, and with a full understanding of the structur

al design consequences~ the trade-offs can be weighed, and a deliberate optimal choice 

can be made. If the design does not proceed far enough, the opportunity for conscious 

decision may be lost, and the exact nature of any resulting composite modules may 

never be known. 

10.8 An example: the FRANK system 

Consider a system to be used by a meat packer who prepares processed meat prod

ucts for discount-food stores. The company wants an appropriately headed Buying List 

report for their hot dogs to tell them which meat products to buy in order to produce 

frankfurters of a given quality at the lowest possible cost. The company is constrained 
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by Federal standards, state standards, product-consistency requirements, quality stan
dards, and so forth - all of which comprise a matrix of parameters. Some prices and 
constraints are fairly stable and will be maintained as one set of row definitions in the 
matrix; others are transient, the row definitions changing almost daily. 

In either case, it is necessary to verify the reasonableness of row definitions based 
on some fairly complex internal consistency checks~ an invalid row is corrected by an 
exception input from an on-line terminal. Both kinds of row definitions (stable and 
transient) are punched on cards in a "free-field" format, which must be checked and 
converted to a standard internal form. One, two, or three cards with the same row 
number constitute a row item. 

The two card decks (one for the stable row definitions and one for the transient 
row definitions) are read from a fast card reader (using a systems-supplied routine 
READCARD-F) and from a slow card reader (using READCARD-s). Rows are combined 
by a simple merge on row number to form the parameter mafrix. If the row numbers 
from the two card readers match, the transient row definition is used; row 999 signals 
the end of input. When the rows have been put into an ordered matrix form, the ma
trix is used to compute an optimal meat mix for frankfurters. Depending on a sophisti
cated mathematical test, this computation may sometimes require conversion of the ma
trix to a "canonical form''; this allows a short subroutine called SIMPLETON to compute 
the least-cost solution using a linear programming technique that is known as the "sim
plex" algorithm. 

10.8.1 Restatement as data flow 

The first step, as we have seen, is to restate the problem in nonprocedural form 
using the data flow graph. This is done most easily by ()roceeding systematically from 
the system's inputs to its outputs. There are four input streams to the FRANK system: 
stable parameters, transient parameters, the description file used to produce a readable 
report, and exception input. The first transform applied t<D each of these streams is the 
operation necessary to get them physically into the program. As shown in Fig. 10.12, 
the data flow graph begins at the left of the page, showing the input transform. Note 
that the streams are labeled very specifically to avoid confusion among similar streams 
or different forms of the same stream. Ignoring the description file and the exception 
input for the moment, the design continues with the successive transforms of the tran
sient and stable parameter streams, which must be reformatted and built into complete 
rows, as shown in Fig. 10.12. 

At this point, there is a choice to be made. Ultimately, the FRANK system must 
have available rows of parameters that are merged (from stable and transient streams) 
and validated. However, the statement of the problem is ambiguous as to the order in 
whiich merging and validation are to be performed. We will simply choose to perform 
validation after the merging operation. The resulting stream must be put into matrix 
form, and the matrix readied for processing with the -simplex algorithm. This results in 
the data flow diagram of Fig. 10.13. Notice that "*" and "EB" have been used in ap
propriate places. 

The results of the optimization must be combined with the descriptions of items 
(from the description file), formatted into a report, and printed. The completed data 
flow graph is presented in Fig. 10.14. 
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Figure I 0.14. Complete data flow for FRANKSYS. 

The next step is to identify the afferent and efferent data elements by locating the 
points in the data flow that are furthest away from physical input and output forms, yet 
still comprise, respectively, inward and outward flowing data. This decision may be ap
proached by asking ourselves whether it is possible to imagine a GET module for a given 
afferent stream, and a PUT module for an efferent stream. 

For example, we can easily imagine a GETTRANSIENTCARD process, or even a GET· 
NEXTVALIDROW process, or even a GETPARAMETERMATRIX process - but we probably 
cannot imagine a GETOPTIMALINGREDIENTS process as an input process. Most designers 
would draw the line defining the afferent data element between the production of the 
matrix and its use in the simplex calculation. Because the readying of the matrix is 
functionally allied with the nature of the simplex algorithm itself, we have left the 
"make-ready" transform out of the afferent portion of the data flow. 

On the efferent side, we certainly can imagine an efferent process to PUT a line, 
and we can imagine a PUTRESUL TMATRIX operation - but we would have difficulty 
imagining a PUTINPUTPARAMETERMATRIX process. The final selection of afferent and 
efferent data elements is shown in Fig. 10.15. Note that the description file constitutes 
an afferent data element - but to a separate transform center for which the efferent 
data element is the report data line. Note also that much of the detail in the data flow 
graph was unnecessary for determining the afferent and efferent data elements. Howev
er, we have already pointed out that it is better to go into too much detail than not 
enough, and this extra detail will prove advantageous in later stages of our design. 
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Figure I 0. 15. Identification of afferent and efferent data elements. 

10.8.2 The structural design 

The initial structural factoring includes one module for each central transform, 
one for each afferent data element feeding the central transforms, and one for each 
efferent data element emerging from a central transform. For the FRANK system, this 
initial breakdown is shown in Fig. 10.16. 

As we discussed earlier, each of the initially specified modules at the top level is 
factored into lower-level subordinates according to an appropriate strategy: Afferent 
modules require one strategy, efferent modules another strategy, and transform 
modules yet another. Let us begin the factoring of the afferent module GETMATRIX. 

GETMATRIX 
obtain matrix 
of parameters 

FRANKSYS 
produce buying 
list for 
frankfurters 

READYMATRIX COMPUTE 
convert matrix OPTIMAL 
to canonical compute least· 
form cost meat mix 

PUTRESULTS 
produce buying 
lisl 

Figure I 0.16. First-level factoring of FRANKSYS. 
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In order to factor GETMATRIX, we must look for the last discrete transform to be 
applied to the data stream in order to produce the afferent data element which GETMA
TRIX must deliver to FRANKSYS. In this case, the afferent data element is the input 
parameter matrix and the last transform involves the creation of the matrix from the 
same data in non-matrix form - that is, from valid row data. The valid row data must, 
in turn, be supplied by some new afferent module. The newly identified immediate 
subordinates to GETMATRIX are modules GETNEXTVALIDROW and ROWTOMATRIX. The 
latte:r eventually may prove to be a trivial function to implement, but note that in a 
functional sense it belongs here - and at this early stage in the structural design, we 
include it as a distinct module. 

Turning to the afferent module GETNEXTVALIDROW, we can see that the last 
transform required to produce a valid row is simply that of validating the row; the 
afferent data element required by this transform is the next raw unvalidated row. The 
structure of the afferent branch thus far is shown in Fig. 10.17. 

I 

Figure 10.17. Early stage in design of afferent branch. 
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Next, we examine the GETNEXTROW module. Its function is to merge two streams 
of data (the stable parameter rows and the transient parameter rows) into one stream of 
the proper order. The merge discipline is the last transform to be applied. However, 
note that this last transform has two afferent data elements: the latest stable row and 
the latest transient row. Consequently, there are three subordinates to GETNEXTROW at 
this stage in the design. We will continue the factoring of one of these three - the 
GETTRANSROW module. 

We can see that the last transform of GETTRANSROW is the completion of the row 
from one or more valid transient cards. These come from an afferent module that 
delivers, in a standard internal form, the data of valid (with respect to format) transient 
row card images. One could complete the factoring as shown in Fig. 10.18a: Card im
ages are obtained, checked for proper format, then converted from card image format 
(i.e., a character string) to the standard internal representation. The problem is that the 
format-checking process must duplicate much of the conversion process - e.g., finding 
the ends of fields, locating decimal points, testing for alphabetic/numeric character 
types, and so on. As we can see in Fig. 10. l 8b, the smallest system results from a sin
gle conversion/checking module, which performs all the necessary checking in the pro
cess of translating from external to internal format. 

With the identification of module READCARD-s, we have reached the bottom of 
this particular sub-branch - that is, we have located the ultimate source of data in this 
stream. Along the way, we have identified modules whose substructure we have yet to 
determine~ among these is the CONVERTV ALID transform module. CONVERTVALID is 
defined as a module that detects format errors in transient row card images. The origi
nal description o·r the problem specified that format errors should cause an error mes
sage to be printed on the on-line terminal, together with a request for a correction in 
card-image form. Should the error message be transmitted from CONVERTVALID or 
from GETVALIDTRANSEARD'? Which module should obtain the exception input, in 
card-image form, from the terminal? The answer suggested by the transform-centered 
strategy is that either the card image or the substitute input from the terminal is the 
afferent process feeding the last transform (validation) to produce a valid row image. 
Thus, it seems most straightforward to make GETVALIDTRANSCARD responsible for get
ting exception input from the terminal. 

What about the error message'? We note that the discovery of an error situation 
takes place in CONVERTVALID. To have the error message output by GETVALIDTRANS
CARD, the message must be passed up from CONVERTVALID to GETVALIDTRANSCARD, 
and then back down from GETVALIDTRANSCARD to an appropriate error-printing routine. 
This seems to involve unnecessary coupling; we prefer the simpler alternative of allow
ing CONVERTV ALID to call its own subordinate error-printing subroutine. 

Note that the card image from the terminal must also be validated and converted~ 
this suggests the structure of Fig. 10.19a. It would be unnecessarily clumsy to require 
SUBSTTTUTEVAUD to pass a raw line of input up to GETVALIDTRANSCARD, which would 
then pass it down to CONVERTVALID for checking and conversion. At some small execu
tion overhead, SUBSTITUTEVALID can make the call to CONVERTVALID itself, as shown in 
Fig. 10. l 9a~ note that SUBSTITUTEVALID contains a loop when valid input has finally 
been received. By moving that loop upward into GETVALIDTRANSCARD, we could 
transform the structure into that shown in Fig. 1O.l9b. However, this is a decision that 
is ·better deferred until factoring of the other afferent sub-branch has been completed. 
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Figure 10.18b. Continuation 
of the afferent branch. 

Figure 10.1 Sa. Continuation of the afferent 
branch. 



Figure I 0.19b. Alternative design 
of GETVALIDTRANSCARD. 
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Figure 1O.l9a. Handling errors 
in CONVERTVALID. 
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When we approach the factoring of GETSTABROW, we immediately wonder whether 
this isn't the same structure as the one just designed for the transient sub-branch. Be

fore we proceed, it is important to recognize that GETSTABROW and GETTRANSROW per
form different, distinct functions in the problem as defined - although this does not 

prevent us from designing a single module that accepts a parameter specifying which of 

its two functions is to be performed on a given call. Were we to follow this approach, 

we would have to recognize that the combined module would not be highly cohesive (in 

fact, it would have logical binding), and the control parameter would have to be passed 

and tested all the way down to the low-level module, which would finally decide wheth
er to call READCARD-S or READCARD-F. 

At the other extreme, we could specify totally duplicate structures. Since some of 

the functional requirements of both sub-branches are identical (such as the convert

and·-validate function), it stands to reason that we will have a simpler system if we can 

specify some shared single-function modules. The structure of Fig. 10.20 is a suitable 

compromise and will permit future modifications to be made easily to either or both 

data streams. Note how the availability of the distinct MAKEVALIDCARD module results 

in a simpler total structure than would have been possible with the design of Fig. 

10.l 9b; if we had followed that approach, the coding in GETV ALIDTRANSCARD would 
have been duplicated in GETVALIDSTABCARD. 

Moving higher in the structure of Fig. 10.20, we note that the transform module 

MAKEROW may prove to be trivial to implement in most high-level programming 

languages. Thus, we may legitimately compress ·it upward into GETTRANSROW and 
GETSTABROW. 

At th'is point, we should consider the "which-is-next" decision processing impli

citly included in the module MERGE of Fig. 10.20. The outcome of this decision deter

mines whether a new transient row, a new stable row, or both (in the case of a match) 

should be obtained. Thus, GETSTABROW and GETTRANSROW are both within the scope 

of effect of the decision, though not within the scope of control of MERGE. This conflict 

(which was discussed at length in Chapter 9) may be resolved by compressing the 

merge decision upward into GETNEXTROW. Indeed, this kind of structure is common, 

and the result of our design decision may be reduced to a rule of thumb. A module 

that represents the merge point of data streams (as shown in a data flow graph) should 

contain the merging discipline - that is, it should contain the decisions which deter

mine the merging sequence. The merging discipline should not be placed in a subordi
nate module. 

We know that the row validation function is non-trivial. We can be guided in its 

, factoring by our experience with the MAKEVALIDCARD module. The difference here is 

that we must input one or more card images from the terminal and make them into a 

row. The function MAKEVALIDCARD of Fig. 10.20 expects to test one set of inputs from 

above before deciding that it should read some input from the terminal. With this in 

mind, we see that our requirement is for an afferent module that simply gets a validated 

line from the terminal, as in the SUBSTITUTEVALID module of Fig. 10. l 9a. We back up 
to this variant and complete the structure of Fig. 10.21. At this point, we notice that, 
although we have avoided most of the duplication of coding, the procedure for combin
ing a series of row images into a row appears in three separate modules - the only 

ditforence in each case being the source. It is not hard to convince ourselves that a 

parameterized combination module would be almost as complicated as the sum of the 
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three individual modules. Such a combination module would be only communicational
ly cohesive, too. 

MAKE:~W 
~tO..t'OW 
of fll1'll>Witt<s 

Figure 10.20. Afferent branch with stable and transient sub-branches. 
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Figure 10.2 L Completion o'r lower portion of afferent branch. 
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Having completed the afferent branch, we can begin to factor the central 
transforms. Obviously, the simplex computation of optimal mix is an existing entity in 
itself. The testing of the matrix for potential conversion to canonical form together 
with the conversion procedure itself comprises the READYMATRlX function. In factoring 
central transforms, we also should consider combinations of transforms, which might 
comprise highly cohesive functions - particularly since the level of detail in the data 
flow diagram might lead us to miss intermediate-level functions. For example, SIMPLE
TON and its mathematically (and computationally) related function MAKEREADY 

comprise a function to compute results from an input matrix. A module for such a 
function would be at least sequentially cohesive if not functionally cohesive. 

Deciding whether we should have a sequentially cohesive module is essentially the 
same in all cases. Schematically, this is represented in Fig. 10.22: F and a are sequen
tially related functions due to the data element z. First, we ask whether either (or 
both) of the functions in question is functionalty related to the contents of any other 
module. Usually, this would be modules in the positions designated P, Q, and R in Fig. 
10.22. If such a structure exists, it almost always would be preferable to a sequentially 
cohesive module. 

Q 

p 

F 

Figure 10.22. Schematic representation of sequential binding decision. 
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Figure 10.23a. Complete FRANKSYS structure, first part. 



TRANSFORM ANALYSIS 199 

Second, we consider the existence, or probable future existence, of additional uses 
of the sequential combination of modules - F-G in this case. Such uses are simplified 
if the sequentially cohesive module (in this case, module s) does exist. (Note that a 
compound F-and-G module is a structure distinctly less modular than one with a su .. 
perordinate s calling subordinates F and G.) 

On the other hand, the superordinate s module adds one level of overhead on 
each activation; the costs of this overhead are the third consideration. These must be 
balanced against the implementation and storage costs of some number of "paired" 
calls to F and G individually, compared to the same number of single calls to s. Finally, 
a sequentially cohesive module may be elected for its value in conceptually organizing 
the problem if there is no functionally cohesive alternative. This final criterion is used 
to justify the specification of this system's COMPUTEOPTMIX module; see Fig. 10.23c. 

In factoring the efferent branch, we look for the next-to-follow transform, and the 
efferent process it feeds. In this case, the data for a single buy-order must be extracted 
from the result matrix, and delivered to a module that will put it into a nicely formatted 
report. In turn, this module next must combine the buy item with its description from 
the description file. Recalling that the merge decision function will be in this module, 
we specify the structure shown in Fig. 10.23d. The next transform is to add heading 
data (if needed, i.e., if there is a page overflow), and finally to print the line. Printing 
the header also involves printing lines of data. 

The finished transform-centered design for the FRANK system is shown in the four 
parts of Fig. 10.23. This structure should be studied carefully and compared with the 
original data flow shown in Fig. 10.14. 

Fi'gure 10.23b. Complete FRANKSYS 
structure, second part. 

Figure 10.23c. Complete FRANKSYS 
structure, third part. 



200 STRUCTURED DESIGN 

Figure 10.23d. Complete FRANKSYS structure, fourth part. 
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10.9 Summary 

In this chapter, we have presented one of several design strategies available to the 
designer. The next two chapters present other design strategies, but three things should 
be emphasized before we go on: 

1. The transform-centered design strategy is based on an analysis of data 
flow, as is the approach presented in the next chapter. Some of the 
strategies discussed in Chapter 12 are based, instead, on data structure. 

2. The transform-centered strategy still requires judgment and common 
sense on the part of the designer~ it does not reduce design to a series 
of mechanical steps. 

3. The transform-centered strategy is based on the assumption that the 
resulting system will consist of one hierarchical structure. As we will 
discuss in Chapter 18, that is not always necessary; it sometimes is pos
sible to stop as soon as the data flow graph has been drawn, with each 
bubble being implemented as a distinct task in a multi-tasking operat
ing system. 



11.0 Introduction 

CHAPTER 11 
TRANSACTION ANALYSIS 

In the last chapter, we explored transform analysis as a major strategy for design
ing well-structured programs and systems. Indeed, transform analysis will be the guid
ing influence on the designer for most systems. However, there are numerous situa
tions iry which additional strategies can be used to supplement - and occasionally even 
replace - the basic approach of transform analysis. One of these supplementary stra
tegies, known as transaction analysis, will be discussed in this chapter. This strategy is 
deriived from the SAPTAD structure 1 originated by Vincent and others at Bell Telephone 
of Canada. Transaction analysis is a more flexible, more sophisticated updating of the 
SAPT AD technique. 

Transaction analysis is suggested by data flow graphs resembling Fig. 11.1 - that 
is, where a transform splits an input data stream into several discrete output sub
streams. In many systems, such a transform may occur within the central transforms 
(as defined in Chapter 1 O) ~ in others, we may. find the transform shown in Fig. 11. l in 
either the afferent or efferent branch of the structure chart. 

The phrase transaction analysis suggests that we will be building a system around 
the concept of a "transaction,, - and, of course, the word transaction implies to many 
programmers that we are dealing with a business-oriented data processing system. 
Indeed, it is true that many commercial systems are at least partly transaction-oriented 
(if we use that term informally)~ as a result, transaction analysis should play an impor
tant. part in a portion of the design of such systems. However, it also can be applied to 
porltions of many real-time systems, such as process control, data acquisition, and in
teractive time-sharing systems~ to engineering applications~ to programmed control of 
nurnerically controlled machine tools~ and to many others. 

A great deal of the usefulness of transaction analysis depends on how we define 
transaction. In the most general sense, 

• A transaction is any element of data, control, signal, event, or change Qf 
state that causes, triggers, or initiates some action or sequence of actions. 

According to this definition, a large number of the situations found in normal data pro
cessing applications would be considered transactions. For example~ any of the follow
ing would be considered a transaction: 

• The operator pushing the start button on an input device 

202 
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• Some input data to a commercial system designated as add-shipment
to-inventory 

• An escape character from a terminal, indicating a need for special pro
cessing 

• A hardware interrupt on an out-of-bounds subscript reference within 
an application program 

• A customer replacing the phone on the hook, thereby terminating a 
telephone conversation being monitored by a computer system 

We are not suggesting that all data processing systems are transaction-oriented~ we 
might be able to stretch our imaginations to think of a number-crunching program as 
transaction·-oriented, but it would be awkward and artificial. Similarly, we are not sug
gesting that all parts of a typical business data processing system are transaction
oriented. As we saw in Chapter 10, a significant part of the analysis of typical business 
data processing systems involves the tracing of afferent and efferent data items through 
the system. Nevertheless, it is clear that a great deal of the work in many systems is in
volved in the identification and processing of transactions~ hence, the transaction 
analysis strategy should prove useful in a wide variety of applications. 

I 

' \ 
""' 

Figure 11.1. Data flow graph of a typical transaction center of an application. 
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11.n Transaction analysis strategy 

1 l. l.1 Transaclion center 

The transaction analysis strategy simply recognizes that data flow graphs of the 
form of Fig. 11. l can be mapped into a particular modular structure. A transaction 
center of a system must be able to 

• get (obtain or respond to) transactions in raw form 

• analyze each transaction to determine its type 

• dispatch on type of transaction 

• complete the processing of each transaction 

In its most fully factored form, the transaction center may be modularized as in 
Fig. 11.2. The head of this subsystem structure, TRANS, might be subordinate to any 
part of some much larger system. Each of the mOdules GETTRAN, ANAL YZETRAN, DO· 
TYPEt, DOTYPE2, and so on could itself be the head of an entire subsystem. Less
factored variations of this structure are readily derived from Fig. 11.2 by compressing 
one or more modules upward into its superordinate, leading, for example, to the pan
caked structure of Fig. 11.3. 

In orthodox form, the substructure below the dispatching module may be modeled 
as a four-level system. This structure is shown in Fig. 11.4. The four levels are called: 

• transaction processor (or P-level) 

• transaction level (or T-level) 

• action level (or A-level) 
\ 

• detail level (or D-level) 

Problems can arise if an attempt is made to shoehorn an entire application into the 
model of Figs. 11.2 and 11.4. These will be taken up fully at the end of this chapter. 

The span of control of the transaction processing module (whatever module con
tains the dispatch logic) should be noted. The span of control here is potentially quite 
high: one for each transaction type. However, if each transaction processing module is 
required to complete independently all processing of a particular transaction before re
turning, the dispatching logic remains simple and the module containing it still will ap
pear small to the programmer looking at it. The transaction processor module, TRANS 
in Fig. 11.4, typically is relatively uncohesive, ranging from logical to communicational 
in cohesion depending on the application. Thus, the dispatching itself may profitably be 
partitioned into strongly related subclasses in some systems. 

In the orthodox form, the transaction processor (TRANS in Fig. 11.4) would expect 
to receive a transaction from its superordinate when it is activated. A system may in
clude any number of transaction centers. A transaction center may be located in an 
afferent branch of the system, in a transform branch of the system, or in an efferent 
branch of the system. The outputs of the transaction center might consist of 

• A converted, formatted version of the input transaction - which can 
be passed upward to feed higher levels .of the afferent process 
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• A simple flag indicating whether the input transaction was valid. We 
would expect to encounter such a validate form of TRANS frequently in 
the afferent branch of a system. 

• Computed results based on the processing of the input transaction. 
The results would be passed upward to the superordinate to be used in 
other central transforms - or to be passed downward to lower levels of 
an efferent process. 

• An updated (modified) form of an element or elements of some data 
base, whether internal or external 

GETANALYZED 

TRANS 

internally 
coded 
transaction 

~ans-
~ analyzed, coded 

'aa transaction 
act:i.on ___ _.... __ 

ANALYZE TRAN DOTYPEl 

I 

DISPATCH 

DOTYPE2 DOTYPE3 

Figure 11.2. Fully factored transaction center. 

TRANS 

lei.Nii~ 1-cLJ"!.p~ ... -c~ 
I I 

Figure 11.3. Pancaked transaction center. 

DOTYPEY 
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P-level 

,.i 
T-level 

A-level 

S-level 

DZ. 

I 
I 

A) 

/\~ 
I \ v~ 
I 

Figure 11.4. Model structure chart for transaction-centered system. 

11.I.2 The strategy 

Using Figs. 1 L2 through 11.4 as models, we can outline the steps of a transaction 
analysis strategy as follows: 

1. ldentffy the sources of transactions. In many cases, the transactions will 
be mentioned explicitly in the problem definition, in which case it usu
ally can be assumed that the transactions will come from the physical 
input media. In other cases, the designer may have to recognize 
afferent, transform, or efferent modules that generate transactions; this 
may be more obvious after the first few steps of factoring of a 
transform-centered design. More than one transaction stream may 
feed the P-level module, and these may have to be merged from 
different directions (e.g., afferent and efferent). Transaction streams 
may also have to be merged with non-transaction data streams. 

2. Speedy the appropriate transaction-centered organization. Figure 11.2 usu
ally will be a good model, but the designer should feel free to alter it as 
appropriate, based on the theory and the heuristics introduced in ear
iier chapters. 
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3. ldentifY the transactions and their defining actions. Again, we often may 
find that all of the requisite information is provided in the problem 
definition; if the transactions are generated internally in the system, 
the designer must define carefully the processing to take place for each 
transaction. 

4. Note potential situations in which modules can be combined. As in the 
case of transform analysis, we often can find situations in which an 
intermediate-level module can be created from a functionally cohesive 
group of low-level modules. This combination is likely to be appropri
ate in situations in which the syntax or semantics of various transac
tions is similar. 

5. For each transaction, or cohesive collection of transactions, specifY a trans
action module to completely process it. Because the transactions in a sys
tem are often similar, there is a temptation to group the processing of 
several transactions into one module. This should be avoided if the 
resulting module has low cohesion; we want to avoid modules with 
only communicational or lower cohesion and, especially, logically 
cohesive modules. 

6. For each action in a transaction, specifY an action module subordinate to 
the appropriate transaction module(s). In essence, this is the factoring 
step that we discussed in Chapter 10. Note that there may be many 
opportunities for transaction modules to share common action 
modules. 

7. For each detailed step in an action module, specifY an appropriate detail 
module subordinate to any action module that needs it. Clearly, this is a 
continuation of the factoring process. Note that for a large system with 
complex transactions, we may have several levels of detail modules. In 
addition, keep in mind that similar action modules should share com
mon detail modules whenever possible. 

Throughout this process, the designer should be guided by the principles of cohe
sion, coupling, and the design heuristics discussed in Chapter 9. In addition, the 
designer should remember the fundamental design principle mentioned repeatedly in 
earlier chapters: The form of the systems structure should reflect, as closely as possi
ble, the form of the problem. 

It is especially important for the designer to recognize that there is nothing magi
cal about processing transactions in exactly four levels. (Remember, 7 ±2 is the only 
magical number!) Some transactions may be fully factored with only a transaction-level 
module; others might take nine or ten levels. Nor is there anything particularly sacred 
about the processing assigned to each level. If one transaction can be implemented as 
the composition of other transactions, by all means do so structurally, even though this 
makes some modules serve on both transaction and action levels. For example, an 
OPENACCOUNT transaction module might also be used as an A-level subordinate to the 
OPENBLOCK module, which opens a unique block of sequential account numbers. 
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11.:z An example of transaction analysis 

11. 2.1 Statement of the problem 

Consider a portion of a system that is designed to update selected fields in 
specified records of a Customer Master File. We will assume that the Customer Master 
File is a serial file occupying several reels of magnetic tape, and that the file is sorted in 
ascending order on a five-digit numeric customer account number.* 

Updates to the Customer Master File will be supplied to the system from cards (or 
card images) in a free-field format described below. Each card will specify the account 
number of the customer whose record is to be updated; this will be followed by a 
specification of one or more fields to be updated. For historical reasons, the user's data 
preparation group has always supplied update cards that already are sorted by customer 
account number. 

Our system, which we will call MFUP, will read the update cards, make certain 
checks for reasonableness, and then proceed to update the Customer Master File. The 
system is required to print a brief report of any errors found during its processing, as 
well as a copy of any and all records that have been successfully updated. 

We may assume that every customer has one record on the Customer Master File. 
Each record is a fixed length of 142 characters. The layout is shown in Table 11.1. 

Table 11.l 
Structure of the Customer Master File 

Alpha or May be 
Field Type of information Length numeric updated 

Account number 5 numeric no 

2 Customer name 30 alphanumeric yes 

3 Customer street address 30 alphanumeric yes 

4 City 20 alphanumeric yes 

5 State (abbreviated, standard 2 alphabetic yes 
U.S. Post Office code) 

6 ZIP code numeric yes 

7 Phone number (with area code) 10 numeric yes 

8 Customer status: active/inactive alphabetic no 

9 Salesperson handling 5 numeric yes 
this account 

10 Date of last transaction 6 numeric no 

11 Date of last payment 6 numeric no 

12 Current balance 8 numeric no 

13 Total volume of business, YTD 8 numeric no 

14 Credit limit, in dollars 6 numeric no 

*That we are using a sequential tape file is a packaging assumption that the designer should not be making at 
this early stage of the design effort~ more of the consequences of packaging will be discussed in Chapter 14. 
In the meantime, we will continue to assume a sequential tape file for the sake of simplicity~ most of our at
tention will be focused on a transaction center in the system. 
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Updates to the Master File will be supplied from cards whose format is as follows: Card 
columns 1 .. 5 will specify the account number. of the record to be updated~ columns 6-9 
are always blank and should be ignored~ beginning in column 10, there will be a vari
able number of fields of the form 

xxabcd ... pqr*xxabc ... stu*xxabc ... uvw** 

where xx represents a two-digit integer that specifies which of the 14 fields in the Mas
ter Record is to be updated, and abcd ... pqr represents the corresponding field in the 
Master Record. 

Note that each field is terminated with an asterisk (?!¢), and that the last field on 
each card is terminated with a double asterisk {**)~ thus, it is conceivable that we 
should see an update card containing the information 

12345 07abcd*02pqrs*03ijk** 

Note that the character string, which has been represented above as abed .. 
may consist of alphabetic characters, numeric characters, or a mixture of both. The 
definition of the Master File in Table 11. l tells us whether the appropriate form of data 
has been received. Note also that it is possible to have multiple cards updating the 
same Master File record. That is, the following sequence is legal: 

12345 
12345 
12345 

02abcd** 
04pqrstuvw** 
03ijk** 

Thus, there is a great deal of flexibility in the input format. However, the user 
has specified one important restriction: A field may not extend past the end of the 
card. That is, a field may not be split between one card and the next. Obviously, this 
means that each card should have a double asterisk on or before columns 79-80 (recal
ling the experiences of the unfortunate Charlie in Chapter 6, we must admit that we are 
somewhat wedded to the traditional eighty-column card!). 

As MFUP performs its updates, it should check for a number of possible errors~ if 
any are detected, they should be printed in a report whose format has not been 
specified by the user. If, for example, the account number of a card is out of sequence, 
or cannot be matched against any Master File record, then the entire record should be 
rejected and an appropriate error message should be printed.* 

Similarly, if any of the updates contain an illegal field number, an appropriate er
ror message should be printed. Since there are 14 fields defined in the Master Record, 
the update cards must specify field numbers between 1 and 14. If the field number is 
out of range, it should be rejected~ however, subsequent fields on the same card should 
be processed normally. That is, the presence of a bad field on a card does not invalidate 
the rest of the fields on that card. 

*Among other things, this means that the MFUP system will not be capable of adding new records to the file. 

This restriction, although not a terribly realistic one, is made for the sake of simplicity~ for the same reason, 

we will assume that MFUP does not allow records to be deleted from the file. 
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Naturally, the system should check to ensure that each field is of the correct type. 
That is, certain fields are specified to be of an alphabetic type, while others are numeric, 
and so on. If a field is not of the proper type, it should be rejected - but subsequent 
fields on the same card should be accepted, if they are correct. 

Table 11.1 also indicates that MFUP is not allowed to update certain fields in a 
record. We may assume that those fie1ds are established (and possibly updated) by oth
er systems but, in any case, an attempt to use MFUP to update fields 1, 8, 10, 11, 12, 
13, or 14 should be considered illegal. 

Since the update cards supply variable-length input in a free~field format, it is pos
sible that an update field will be shorter than the corresponding field on the Master File; 
in some cases, the update field may be exactly the same length as the corresponding 
Master File field; and, of course, it is possible that the update field will contain a field 
that is longer than the corresponding Master File field. The user has specified that if a 
field is too long for the Master File, it should be rejected if the field is of a numeric 
type, and truncated if the field is of an alpha or alphanumeric type. In any case, an ap
propriate message should be generated. If the update field is shorter than the 
corresponding Master File field, then the update field should be right-justified and 
zero-filled if it is numeric, and lefHustified and blank-filled if it is alphabetic or al
phanumeric. There is one exception: The ZIP code field (field 6) must be supplied as a 
five-character numeric field anything longer or shorter will be considered an error. 

11.2.2 Structural design for MFUP 

From our discussion of transform analysis in Chapter 10, recall that the first step 
in the design is to draw a data flow graph. For MFUP, a first approximation of the data 
flow graph is shown in Fig. 11.5. This data flow graph is quite detailed, as it is prefer
able to show too much detail rather than to show too little at this stage (cf. Fig. 10.3b). 

However, the transform labeled "edit fieldn is a bit superficial. Since there are 14 
distinct types of fields, it is more precise to represent the data flow in the form shown 
in Fig. 11.6. Now, it is apparent that the data flow graph is similar to the prototype for 
a transaction-oriented system shown in Fig. 11.1. We still have the job of identifying 
the afferent data element, the efferent data element, and the central transforms - but 
the important point is that we have recognized in the data flow graph the presence of 
some transaction-oriented processing. 

The normal process of transform analysis might lead to the structure chart shown 
in Fig. 11.7. You may want to verify that we have factored the afferent branch of the 
structure in the manner presented in Chapter 10, but we will not dwell on this aspect of 
the design. Similarly, we will not concern ourselves with the details of GET· 

VAUDMFRECORD, or UPDATEMF, or WRITEMF, or PRINTUPDATEREC. What concerns us 
is the design of the module labeled EDITFIELD. From our previous discussion, we can 
see that it is a module similar to the DISPATCH module· in Fig. 11.2. As input, it re
ceives a transaction (which may have one of 14 valid field codes)~ and as output, it pro
duces a flag indicating whether the field s.hould be accepted. 

A tentative design for the EDITFIELD module is shown in Fig. 11.8. Since there 
are 14 different fields on the Master Record, we specify 14 transaction modules im

mediately subordinate to EDITFIELD. 
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At this point~ it might occur to the designer that several of the transactions are 
similar - or even identical - and therefore could be combined. We note~ for exam
ple, that the ucustomer name" field and the ~~customer street address" field are both 
defined as thirty-character alphanumeric fields. Why not have a single module that will 
edit either or both fields? Similarly, we note that fields 10, 11, and 14 are defined as 
six-character numeric fields that are not allowed to be updated by MFUP. Why not pro
cess them with a single combined transaction module? The same argument could be 
made for fields 12 and 13, which are defined as eight-character numeric fields. Indeed, 
the designer might even go one step further and process fields 1, 6, and 9 with a com
bined module, since they are defined as five-character numeric fields. If we were to fol
low these instincts, we might end up with the refined structure shown in Fig. 11. 9. 

Figure 11.5. Data flow graph for Master File Update. 
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Figure 11.6. Expanded data flow graph for Master File Update. 
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Figure 11. 7. Overall structure chart for Master File Update. 
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Figure l l.8. Initial structural design of EDITFIELD. 
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Figure 11. 9. Combining some transaction modules in EDITFfELD. 
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Of course, there is a small detail that we have overlooked. We have decided, in 
Fig. 11.9, to process fields 1, 6, and 9 with a module now labeled TYPEt, because they 
are all five-character numeric fields~ however, Table 11.1 indicates that MFUP is allowed 
to update fields 6 and 9 but is not allowed to update field 1 (a perfectly reasonable re
striction: Field 1 is the account number and is the key by which the serial Customer 
Master File is sequenced). Thus, in addition to the normal processing required to edit a 
five-character numeric field, we have to make a special check to prevent an attempt to 
update field 1. In fact, things are even worse: We recall from the problem definition 
that short numeric fields are generally right-justified and zero-filled - but field 6 is a 
special case. Field 6, the ZIP code field, must always be exactly five characters of 
numeric data~ if the update field is either shorter or longer than five characters, it al
ways must be rejected. 

We could reject the TYPE! module outright on the basis of cohesion~ it is only logi
cally cohesive. But some designers still would argue that this could be handled in a sin
gle TYPEl module. When asked about the special requirements of fields 1, 6, and 9, 
they probably would reply, "Oh, that's no problem - a couple .of flags will keep all the 
logic straight." Our counter-argument is obvious: Why go to the trouble of making a 
complicated combination module when three perfectly trivial modules will do the job? 
Indeed, we would use the same argument for TYPE2, TYPEJ, andi all the other TYPEn 

modules: Why go to the labor of combining the modules when doing so may lead to in
sidious problems of the sort found in TYPEl '? 

Of course, there are no apparent problems combining the Bcustomer name" field 
and the "customer street address,, field into a single TYPE2 module~ they both are thirty 
characters in length and alphanumeric, and they both may be updated by MFUP. How
ever, what happens if six months from now the user decides that the "customer name" 
field should be strictly alphabetic, instead of alphanumeric'! All of these problems can 
be precluded by processing each transaction with a separate module~ hence, we return 
to the initial structure chart shown in Fig. 11.8. 

One might be tempted to fbrm the structure of Fig. 11.9 because of common pro

cessing in the various transactions. We still can reap the benefits of common processing 
by using common subordinate action~level modules that could be called, as needed~ by 
the 14 transaction-level modules. The common subordinate modules can be described 
in terms of the actions required to .process each transaction: From time to time, we 
need to reject a long field, reject a short field, adjust the length of a field, reject non
alphabetic fields, reject non-numeric fields, and so forth. This suggests the structure 
shown on the following page in Fig. 11.10. 

In turn, the action modules have details in common. For example, the modules 
REJECTLONG, REJECTSHORT, and ADJUSTLENGTH all need to determine the length of a 
specified update field. Similarly, we can imagine that REJECTNONALPHA, REJECTNON

NUMER[C, and REJECTNON ALPHANUMERlC accomplish their tasks by checking the update 
field on a character-by-character basis to see if there are any offending characters 

present. Thus, it would seem that all three modules could use a subordinate CHARTYPE 

module to determine the type (alphabetic, numeric, or special character) of a single 
character. In addition, it occurs to us that one of the details involved in rejecting a field 
is the printing of an error message; hence, another detail module, ERRORMESS. This 

leads us to the structure presented in Fig. 11.11. 
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Figure 11.10. Action modules for EDITFIELD transaction modules. 

Figure 11.l l. Detail modules for EDITFIELD action modules. 



TRANSACTION ANALYSIS 217 

Note that there is no action or detail module designed to reject attempts to update 
fields that, according to Table 11.1, are not supposed to be updated by MFUP. That logic 

is a function only of transaction code and would be contained within the transaction 
module~ it would be the only coding found in those modules. For example., we know 
that attempts to update field 1 should be rejected~ hence, tbe logic in module FIELDI 

could consist simply of printing an error message (via ERRORMESS) and passing an error 
flag back up to EDITFIELD. 

Thus, it seems that FIELDI - as well as FIELD8, FIELDIO~ FIELDll, FIELD12, 

FIELD13, and FIELD14 - are dummy modules, and the designer may be sorely tempted 
to eliminate them. This could be accomplisheu by moving the check for non-updatable 
fields into EDITFIELD, re~ulting in the structure shown in Fig. 11.12. 

Figure 11.12. Alternative structure for EDITFIELD. 

11.3 Special considerations in transaction processing 

The ideas behind transactions and transaction-centered systems are so familiar to 
most EDP professionals that many are tempted to use these organizing principles- to 
structure entire systems and applications. Extensive experience with various trans
action-centered design techniques has established that such systems may be easy to or
ganize in the first place, but distinctly harder to implement and modify thereafter. 

In the limiting case, the top-level executive module of a system can be made into 
the transaction center; that is, the system as a whole would be organized along the lines 

of Fig. 11.4, with each transaction subsystem having appropriate action and detail subor
dinate modules. Thus, all transactions would be consolidated at the executive module 
in an input-·driven organization. This might well mix transactions of various types and 
various levels of importance to the system, as viewed by the executive. The executive 
routine itself would be quite uncohesive, as it combines some elements of processing 
that are related only in that they deal with a particular class of data elements, namely 
transactions, and are thus only logically related. 

An executive, which is also a transaction center, does not control the overall flow 
of processing, but rather is involved in procedural details needed to accomplish some 
parts of the overall task. If it ''sees" transactions directly in input form, rather than as 
derivatives of an afferent subsystem, it becomes an even better example of a president 

handling shi.pping orders. 
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11 .3.1 State dependency in transaction processors 

A special case arises whenever the transaction processing incorporates so-called 
state-dependent or sequential decision processes. In a state-dependent decision process, 
the outcome of each application of the decision procedure depends not only on the in
coming data presented at this application of the procedure, but also on what has gone 
before. The decision outcome depends on the state of the decision procedure, including 
the state of processing invoked by previous applications of the decision procedure. For 
example, one transaction, type X, might be processed as a type X or type Y, depending 
on whether a type A was successfully completed. Or, an end-of-file transaction may re
quire completion of certain other transactions if they occurred during the processing. 

It is easy to see that state-dependent decision procedures run counter to the basic 
requirement that each transaction-level subsystem independently complete the process
ing of a given transaction so that the transaction processor (dispatch) remains simple. 
Within the purely transaction-oriented organization, none of the possible alternatives is 
partiicularly attractive. The state dependency can be removed from higher levels only at 
the expense of complicating lower ones. If the transaction processor for the example 
mentioned above always invokes transaction-level module DOTYPEX for a type X, then 
the transaction, action, or detail modules of that subsystem will require interactions and 
control-coupling with both the DOTYPEY and DOTYPEA subsystems. Alternatively, de
tails of the processing (of type A transactions) may be communicated back up to the 
transaction processor . (added control-coupling), and the dispatch made state-dependent 
(more complicated). This could even require an extra flagged call to DOTYPEA to find 
out if the type A has been finished. 

The difficulty with state-dependent decision procedures is a fundamental defect in 
the transaction-centered structure. If all transactions are consolidated around a single 
high-level transaction center, the interactive effects can become very substaritial and 
may span many levels of detail, involving the executive decision-making in minute de
tails of minor transactions. By factoring and distributing transaction processing ap
propriately, the interactive effects are localized at appropriate levels and removed from 
the ken of the executive (or subexecutives). In a system of substantial size, the results 
of careful factoring could be to create a series of several transaction centers distributed 
throughout the system as in Fig. 11.13, where transaction centers can be found on 
afferent, eff~rent, and transform branches. 

11. 3.2 Syntactic and semantic processing of transactions 

The structure first shown in Fig. 11.2 has the property of separating syntactic from 
semantic processing. By syntactic elements we mean, of course, those aspects of pro
cessing related to the form that transactions take. By semantics, we mean the resulting 
actions: the "whaf' and "how," so to speak. This is a most fortunate partitioning. By 
validating format and converting to an internal code in the afferent branch, the 
remainder of the system ..:.... DISPATCH, TRANS, and the superordinates of TRANS - can 
be written to operate independently cf the form that transactions take. Thus, it is 
easier to change the appearance and the processing of transactions independently of 
each other. In addition, the transaction-processing modules can be used to operate 
correctly on transactions obtained in other formats from completely different sources. 
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Figure 11.13. Typical large transaction-oriented system. 

DOCLASSB 

A careful and comprehensive transform analysis of a typical transaction-processing 
application can yield an even more factored generalized structure. We would again be
gin by noting that the broad class of operations denoted by edit and validate transaction 
covers various distinguishable types of validation. Note the following four points: 

• Some validation applies to transactions directly as inputted. 

• Some validation applies to the internal, converted form of transaction 
contents. 

• Some validation is completely defined on a transaction alone~ other 
validation requires data from additional sources. 
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• Some validation applies to all transactions from a given source; other 
validation depends on the type of transaction. 

The structure of Fig. 11.13 can be considered typical of the most fully factored form for 
a transaction subsystem. Such a structure maximizes the care with which many types of 
changes can be introduced. It also suggests convenient places to break the process into 
pre-edit and run phases while answering many of the technical objections which have 
been raised against separate edit-and-validation subsystems. More pancaked versions 
can be readily derived from the structure shown in Fig. 11.13. This subject will be 
reconsidered in Section 19.2.5. 

11. 3. 3 Effect of placing transaction centers at different levels in the hierarchy 

In some cases, the designer finds that he is designing a system with only one 
transaction center - but with a certain amount of choice concerning the placement of 
the transaction center within the hierarchy. As we pointed out at the beginning of Sec
tion 11.3, it is possible - and sometimes tempting - to make the top-level executive 
the transaction center. Such an extremely high placement of the transaction center is 
usually a poor idea, for reasons of coupling and cohesion; but if the transaction center is 
not placed at the top level, where should it be placed? 

Ultimately, coupling and cohesion are the best criteria for deciding what goes 
where. However, there is a philosophical aspect of this decision that the designer 
should keep in mind: Placing a transaction center high in the hierarchy reflects the 
designer's decision to allow the environment (that which exists outside the computer 
system) to control the computer system. Conversely, placing the transaction center near 
the bottom of the hierarchy reflects the designer's desire to have the computer system 
control the environment. 

Why is this so? Remember what a transaction center is: a point at which one of 
several distinct types of processing will take place, depending on the precise nature of 
an element of data. Thus, if the transaction center (the P-level module) is at the top of 
the hierarchy, it is analogous to the president of a company saying, "I don't know what 
kinds of situations will face the corporation in the next few milliseconds, but I will 
respond appropriately.'' 

If the transaction center is located near the bottom of the hierarchy, then it is 
likely that the top of the hierarchy will have been organized according to the guidelines 
of transform analysis presented in Chapter 10. In this case, the top-level module is 
more .analogous to a manager who knows precisely what data he wants from his subordi
nates, and precisely what he wants to do with the data - that is, it is more analogous to 
an environment in which the manager controls the environment, rather than allows the 
environment to control him. 

Some designers feel that this question of control over the environment is merely a 
reflection of the choice of a batch computer system or an on-line (possibly real-time) 
system. Not so! An on-line system may have its transaction center near the top or near 
the bottom of the hierarchy. If it is placed near the top of the hierarchy, it reflects the 
desitgner's desire to be as interactive and responsive as possible; that is, such an on-line 
system effectively is saying, "I have no idea what the terminal user will type on his ter
minal next, but I will carry out his commands." An on-line system with its transaction 
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center near the bottom of the hierarchy reflects the designer's desire to have the system 
~ead the terminal user through an orderly dialogue to accomplish what the svstem wants 
to accomplish. Thus, the top-level modules of such a system will coax, cajoie, and har
rass the user to provide the input that the system wants~ low-level transaction centers, 
unaware of what characters or messages the user will actually key-in next, will carry out 
the appropriate transaction-centered processing, and pass the results to some higher au
thority. In a similar fashion, a batch computer system may have its transaction centers 
either high or low in the hierarchy, depending on the designer's philosophy of how best 
to organize the system. 

We attach no value judgments to the designer's philosophies - as we have said 
repeatedly, coupling and cohesion are the final arbiters of good and bad. We do feel, 
though, that it is useful for the designer to be aware of these philosophical issues, so 
that his design truly will reflect the degree of control that he wishes his system to exert 
over the environment. Without such an awareness, it is quite easy to design a system 
whose basic architecture is quite different from what the designer intended. 

A good example of this is an on-line system designed with any commercially avail
able teleprocessing '"monitor" package - e.g., IBM's CICS package, PMI/Informatics' 
INTERCOMM package, or others of the sort. The sales literature of several of these 
packages strongly implies that the teleprocessing monitor serves as a P-Ievel module, 
with the application designer merely supplying T-level modules to carry out detailed 
processing. If this were the case, then the environment (with the assistance of the 
teleprocessing monitor) would be delivering transactions to the application subsystem 
whenever the environment wished to do so - certainly, a clear case of the environment 
controlling the computer system. To put it another way, application designers usually 
make the assumption that the transaction center of their on-line system must be at the 
top of the hierarchy, simply because the teleprocessing monitor forces them into such a 
design. 

However, it turns out that most teleprocessing monitors do give the application 
designer the option of explicitly asking for terminal input~ this usually is accomplished 
with a subroutine call that behaves very much as if one were calling to obtain input 
from a card reader or a tape file (or any other batch device). With this approach, the 
designer can arrange his system to obtain input precisely when and where it wants -
that is, he arranges his computer system so that it controls the environment. The result 
of this usually is that the transaction center (if there is one) either is lower in the 
hierarchy, or is distributed - as we suggested in the previous section - throughout the 
hierarchy, 

11.4 Summary 

We have seen in this chapter that the transaction-centered design strategy is based 
on an analysis of data flow, just as was the transform-centered strategy of Chapter l 0. 
We also have seen that the transaction-centered design strategy requires that we define 
a transaction in the broadest fashion. 

It should be emphasized that the transaction-centered strategy presented in this 
chapter requires some judgment and common sense on the part of the designer. 
Several similar strategies have failed in the past because they were too rigid and ortho
dox in their approach. 
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CHAPTER 12 
ALTERNATIVE DESIGN STRATEGIES 

12.0 Introduction 

As we have seen in Chapters 10 and 11, systems designs can be derived in a fairly 
methodical fashion by analysis of the data flow graph associated with the problem. 
Depending upon the nature of the application, transform-centered design or transform
ceniered plus transaction-centered design usually will yield a design with highly 
cohesive, loosely coupled modules. 

How1ever, these two strategies are not the only way of deriving good designs in a 
systematic manner. A number of other researchers have developed techniques different 
from the ones that we have presented in this book; in this chapter, we will discuss the 
strategies developed by Michael Jackson, Jean-Dominique Warnier, and David Parnas. 

Over the next several years, we can expect to see several more design strategies 
- some identified by the name of their inventor, some by the applications for which 
they are best suited, and some by the general nature of the strategy. We should look 
f©rward to any such design strategy with enthusiasm - we need as many as we can get. 
At the same time, we should remember that coupling and cohesion (as well as the 
heuristics of span of control, scope of effect/scope of control, and so forth) are the ulti
mate judge of whether a design strategy produces good designs or bad designs. 

It also should be kept in mind that these design strategies - those that we dis
cussed in Chapters 10 and 11, the ones that we will discuss in this chapter, and those 
that we can look forward to in the next several years - will still require the judgment, 
experience, and common sense of the designer. The situation is roughly comparable to 
a cook attempting to use a cookbook in a haute cuisine restaurant: There is no way to 
avoid those standard cookbook phrases of ''season to taste," or ''stir gently until in
gredients are thoroughly mixed." 

12.1 The data-structure design method 

One of the popular design strategies is based on analysis of data structure, rather 
than data flow; it has been discussed by Michael Jackson 1 and by Jean-Dominique War
nier.2 The strategy is summarized as follows: 

1. Define structures for the data that is to be processed. 

2. Form a program structure based on the data structures. 

3. Define the task to be performed in terms of the elementary operations 
available, and allocate eac,h of those operations to suitable components 
of the program structure. 

223 



224 STRUCTURED DESIGN 

Implicit in the data-structure approach is the fact that most EDP applications deal 
with hierarchies of data - e.g., fields within records within files. Thus, this approach 
develops a hierarchy of modules that, in some sense, is a mirror image of the hierarchy 
of data associated with the problem. For example, Fig. 12.la shows the structure of a 
simple sequential file; Fig. 12.1 b shows the structure of a program that prints the file. 

\ ' 

HEADER 
RECORD 

FILE 

DATA * 
RECORD 

TRAILER 
RECORD 

Figure 12. la. Structure 
or a sequential file. 

PRINT 
HEADER 
RECORD 

PRINT 
FILE 

PRINT 
DATA 
RECORD 

PRINT 
TRAILER 
RECORD 

Figure 12. lb. Structure of a 
program that prints a file. 

It is common for an EDP application to involve more than one set of data; unfor
tunately, the sets of data sometimes have quite different structures. Jackson em
phasizes that if such an application is to be implemented with a single program (i.e., a 
single hierarchy of modules), then there must be a one-to-one mapping, at all levels in 
the hierarchy, between data elements of each of the data sets and modules that are 
responsible for processing those data elements. For example, Fig. 12.2a shows the data 
structures for an application that merges financial and nonfinancial data for employees. 
Figure 12.2b shows the structure of the output file of composite data for each employee. 
Figure 12.2c shows the hierarchy of modules that will carry out the desired operation; 
note the one-to-one correspondence between modules in the structure chart and ele
ments of the data structure. 
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Figure l 2.2a. Data structures merging employee data. 
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Figure 12.2b. Structure of output file of employee's composite data. 
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Figure l 2.2c. Hierarchy of modules. 
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If a one-to-one mapping cannot be made between corresponding elements of the 
data structure, then a structure dash exists. This phenomenon is an important part of 
the data-structure approach. In practical terms, it means that the application cannot be 
implemented in a natural way with a single hierarchy of modules, Instead, Jackson pro
poses an approach (which he refers to as program inversion) that involves multiple pro
grams (or, more precisely, multiple hierarchies of modules). As an example, suppose 
we were required to design a report-writing program which accepted a single input file 
and produced a single output report - and suppose that the structure of the input file 
was entirely incompatible with the structure of the output report. The solution, accord
ing to Jackson, would involve two programs - one that breaks the input file into more 
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elementary chunks of data (e.g., into individual fields of data), and one that recombines 
those chunks into a form compatible with the required structure of the output report. 

One common example of a structure clash might be t.ermed an Harder clash." 
Suppose, for example that the name-and-address file shown in Fig. 12.2a above was or
dered alphabetically by employee name, while the salary file was ordered by employee 
ID number. We can safely assume that there are the same number of records in each 
file, but they do not appear in the same order; thus, we do not have a one-to-one 
correspondence at each level in the data hierarchies. An obvious solution is to sort one 
of the files so that its records are ordered on the same key as the other file - but that 
is just the point: We need two programs, not just one, to implement this application in 
a natural way. 

The other common type of structure dash is known as a "boundary dash," and 
usually is caused by the blocking characteristics of physical input-output devices. For 
example, suppose we wanted to design a program to update the name-and-address file 
shown in Fig. 12.la from an on-line terminal~ suppose, further, that the terminal 
transmits data to our program in hundred-character blocks, within which are contained 
logical transactions specifying updates to the file. Our program then would deal with 
the data structures shown in Fig. 12.3. Note that there is not a one-to-one correspon
dence between terminal data blocks and employee records: It is not necessarily true 
that a block contains an integral number of update transactions, nor does an update 
transaction necessarily require an integral number of blocks. The solution here would 
be to have one program (or hierarchy of modules) decompose a terminal data block into 
its component characters, and then another program could rebuild characters into logical 
update transactions with the same structure as that of the name-and-address file. 
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DATA FILE 
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DATA 
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* CHARACTERS 
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* EMPLOYEE 
RECORD 

EMPLOYEE . EMPLOYEE 
ID NAME 
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Figure 12.3. Data structures. 
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For small design problems, the data-structure method produces systems remark
ably similar to those produced by the transform-centered approach discussed in Chapter 
10 (see, for example, the comparison made by Plum3). However, it is important to 
note that the data-structure approach requires about the same degree of black magic as 
the data flow approach. That is, if one chooses the proper data structure for a problem, 
then one presumably will get a good design - just as one can derive a good design if 
one can draw the proper data flow diagram for a problem. Experienced designers prob
ably can use either method with ease; for beginners, though, neither approach is likely 
to be obvious. 

It is worth emphasizing that the data-structure approach seems to work best on 
relatively small systems. On larger systems, the designer must work with several sets of 
data - e.g., two or three input files, two or three reports, and two or three transaction 
files. In such a situation, there is an excellent chance that one or more structure 
clash~s will occur. Dealing with multiple structure clashes has, in the authors' experi-
ence, made the data-structure approach extremely difficult to use. I 

Indeed, this rnay point out a more fundamental problem: If the designer is forced 
to deal with the entire problem and with all of the structure clashes at once~ it usually 
will be difficult for him to see how to decompose the problem into smaller, separately 
solvable problems. Furthermore, the data-structure method advises the designer to 
defme the task to be performed in terms of the e/ementaty operations available, and allocate 
each of those operations to suitable components of the program structure (italics ours).* By 
"elementary operations," we mean the COBOL or FORTRAN statements with which 
the modules eventually will be coded; thus, it seems that the notion of levels of 
abstraction - being able to express the implementation of a large system in terms of 
smaller systems works only when the whole problem is small. 

Despite our criticism, we ,re happy to see the data-structure approach included as 
part of the bag of tricks that the designer has at his disposal. The important thing to 
remember is that the data-structure approach concentrates on only one part of the 
overall design process - namely, the strategy by which the design can be derived. If it 
works~ fine~ however, it must be included with such central concepts as coupling, cohe
sion, design heuristics, and appropriate implementation/testing strategies. Perhaps the 
greatest advantage of the data-structure method is its use as a bridge between designs 
produced by transform analysis or transaction analysis and the actual coding of the 
resulting modules. Once we have developed a data flow diagram, each bubble usually 
becomes a distinct module, and the transform-centered design strategy guides us in 
developing the appropriate hierarchy of modules. The data-structure approach then be
comes useful in the microscopic sense: If we know the structure of the data that comes 
out of a module, then we should be able to determine the structure of the code inside 

that module. 

*M.A. Jackson, Principles qf Program Design (New York: Academic Press, 1975), R 43. 
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12.2 The Parnas decomposition criteria 

Another interesting modular design approach is described by Parnas4 as a set of 
rules for the decomposition of systems into subsystems. To avoid confusion with the 
very specific terminology already established in this book, we will - simply for the sake 
of discussion in this chapter - introduce terms somewhat different from Parnas' own 
- terms which, in some cases, were defined by Parnas to be deliberately vague. 

Parnas offers guidelines for the decomposition of a total problem into design units, 
or portions of a design problem or work assignment identified by the designer. Design 
units are related by design interfaces (Parnas uses the term ~'connections") which are 
any sort of interrelationship or interdependency. Design units and their design inter
faces may or may not have any relationship to actual modules and connections as they 
need to be programmed. Parnas even suggests that we ''allow a subroutine or program 
to be an assembled collection of code from various [design units].'' 

The Parnas decomposition criteria may be paraphrased as follows: 

L Decomposition is not to be based on flowcharts or procedures. 

2. Each design interface is to contain (require) as tittle information as 
possible to correctly specify it. 

3. Each design unit is to "hide" an assumption about the solution that is 
likely to change. 

4. A design unit is to be specified to other design units (or to the pro
grammers of other design units) with neither too much nor too little 
detail. 

The first criterion obviously relates to cohesion, identifying negative consequences 
of ' 4flowchart-thinking." The second criterion clearly is equivalent to a call for reduced 
coupling, as are the last two criteria (although less directly). 

Some design decisions that are most likely to change and, therefore, ought to be 
"hidden" within a given design unit are 

l. a data structure along with its format and linkages, as well as its access, 
storage, and modification procedures* 

2. formats of control blocks 

3. character codes and collating sequences 

4. sequence in which items are processed 

*Note that this is in direct contrast to the Jackson/Warnier data-structure approach: Rather than hiding the 
data structure, Jackson and Warnier strongly argue/ that the structure of the whole program should reflect the 
data structure. Thus, Parnas points out a potential weakness in the data-structure approach: If major changes 
to the: data structure occur during maintenance of the system, it is likely that major changes will have to be 
made to the program structure as well. 
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In Plum's comparison of major design approaches, 3 it was concluded that these 
decomposition criteria do not constitute a general methodology for structural design. 
First, no procedure is offered within which to apply the criteria~ and second, the critical 
problem of translation from design units and design interfaces into programmable, in
terconnected modules is not addressed at all. 

Nevertheless, these ideas are a useful adjunct to structured design. Parnas contri
butes several broadly useful notions. For example, he draws attention to the dependen
cies created by Hshared assumptions," common to more than one module in a system. 
The approach suggests isolating each related set of shared assumptions into a cluster of 
modules to be managed as a unit. This concept, along with specific examples of design 
assumptions to be hidden, can be used after completion of an overall structural design 
to refine the interfaces and generalize the design, principally by further reductions in 
coupling. 

For example, we might note that several modules in the design of Fig. l 2.4a all 
must share assumptions about the format and linkage structure of "'text strings." A 
more generalized, more readily changed structure results if we treat these as a single 
design unit and make the format and linkage details invisible to all other modules. 
Myers5 suggests a practical way of doing this with what he calls ~'informational 
strength" modules - a multiple-entry module of communicational cohesion. An ex
ample of this is shown in Fig. 12.4b. Note that more information hiding and decoupling 
are achieved by further refinement of the interfaces to that of Fig. 12.4c, where only a 
string index (identifier) is known to any other module. 

Figure l 2.4a. Example of modules with 
visible format and linkage detail. 
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Figure l 2.4b. Example of multiple-entry module 
of communicational cohesion. 

Figure l 2.4c. Further refinement of 
multipte .. entry module. 
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SECTION IV 
PRAGMATICS 

This section takes up matters essential for turning a completed structured 
design into an implementable, efficient system. Nevertheless, highly modular 
systems, which are acceptable by standards established in earlier chapters, may 
include conflicts between the planned structure and required communication of 
data through the system. Resolution of these conflicts is analyzed in Chapter 
13, and the specific issue of normal versus pathological communication paths is 
explored in detail. The resulting designs are complete in a structural sense~ but 
before they can be coded and executed, decisions must be made as to what 
physical type of module will be used to implement each required functional en
tity. Packaging, the subject of Chapter 14, determines the physical implementa
tion of the final system aad accommodates the design to constraints imposed by 
the programming language, operating system, and machine configuration. 

The cherished topic of run-time efficiency is addressed in Chapter 15, 
which presents a systematic approach to optimization of systems. That ap
proach is entirely compatible with highly modular structural designs. 





CHAPTER 13 
COMMUNICATION IN MODULAR SYSTEMS 

13.0 Introduction 

In several previous chapters, we mentioned the concepts of normal connections 
and pathological connections: in Chapter 3, where we first introduced the notion of sys
tems structure; in Chapter 5, where we discussed the factors that influence systems 
complexity; and in Chapter 6, where we discussed coupling. Obviously, it is a 
phenomenon that affects several aspects of structural design~ consequently, we will de
vote the major portion of this chapter to a discussion of normal connections and patho
logical connections. 

We will begin by presenting a brief overview of the problem of pathological con
nections~ as we will see, pathological data connections are quite different from patholog
ical control connections. We then will discuss several different types of pathological 
data connections, since these are far more common than pathological control connec
tions. We do not intend to portray such pathological connections as an evil that must 
be avoided at all cost, but we will suggest some steps that the designer should go 
through in order to justify anything other than normal connections. Finally, we will 
make some suggestions for minimizing the coupling caused by pathological connections. 

13.1 An overview of the pathological connection problem 

As we first saw in Chapter 3, a pathological connection is a reference or an 
identifier or any entity inside a module. Such a reference could involve either data or 
control, or both. While hybrid combinations - pathological connections involving the 
combination of control and data - still are possible in most programming languages 
(e.g., the ALTER statement in COBOL), they are sufficiently unpopular in most com
petent programming organizations that we can ignore them in this discussion. We will 
examine the pathological data connections first~ pathological control-coupling will be 
dealt with later. 

13.1.1 An overview of pathological data connections 

In simple terms, a pathological data connection can be represented by Fig. 13.1. 
As we will see in the next section, there are several variations on this simple theme. A 
more important question at this point is why the designer would want to indulge in this 
kind of practice. 

The answer can be demonstrated by Fig. 13.2: The designer realizes that data ele
ment x is created by tow-level module A, and must travel all the way to the top of the 
hierarchy before being passed back to low-level module B. It is apparent to the designer 
that none of the intermediate- or high-level modules has any interest in data element x. 

235 
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Rather than incurring the overhead of passing the data through so many intermediate 
levels of modules, the designer decides to pass the data directly - pathologically -
from module A to module B. In addition to the argument of efficiency, the designer of
ten invokes an argument of simplicity: ·Why clutter up the interface of the intermedi
ate·· and high-level modules with a data element that is irrelevant to their task? 

A 

Qr----t---.. _x_o_---ll~B--1 .... 
Figure 13.1. Simple pathological connection. 

TOP 

/ 
/ 

/ 
' ' \ 

B 

Figure 13.2. Common temptation for pathological connections. 

The technical issues involve the increase in coupling contributed by the pathologi
cal connection and the consequences of this in terms of ease of maintenance and 
modification. Consider, for example, module B in Fig. 13.2. Because a portion of its 
input data context is determined directly by possibly unrelated activities in A (which set 
up or computed the last value of x), control of module A by its superordinate is incom
plete. The immediate CALL activity B does not, therefore, completely determine what B 

will do, as it would were all of B's input and output data communicated normally. 

In order to introduce a new use of module B operating on some different value of 
x, the calling module must reference datum x in module A, thus a new pathological con
nection is required. The initial decision to have some pathological connections for cer
tain purposes almost invariably generates the need for additional pathological connec
tions for others~ they tend to proliferate. Note as well that the choice of pathological 
communication requires that the programmer of a new module using B also must con
cern himsel( with module A, which may well have nothing to do with his problem. 
Clearly A and B have become coupled~ strongly so, despite the absence of any immedi
ate functional relationship between them. 

The analogy with management structure may be particularly instructive here. In 
management terms, Fig. 13. l can be interpreted as follows: If clerk A wishes to pass 
data to clerk B, he does so by passing the data through his boss. If the two clerks are in 
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widely separated departments, the data may have to pass through several layers of 

management before reaching the second clerk. If clerk A had communicated directly 

with clerk B, we probably would not have referred to his behavior as a pathological con

nection; instead, we would have said he Hwent around the boss." What we have called 

normal communication is referred to in a management structure as "going through 

channels,'' or "going through the chain of command." Particularly in the larger and 

more formalized corporations and government agencies, the normal form of communi

cation is rigorously enforced. The smaller companies and the organizations whose 

managers consider themselves progressive frequently permit - even encourage - the 
pathological form of communication. 

Unfortunately, there are disadvantages to analogies between management struc

tures and the structures of computer systems. This is particularly true here, since a 

number of workers and some managers feel quite strongly that the requirement for nor

mal communication is one of the most onerous aspects of modern corporate life. It is 

worth exploring this feeling in more detail, for it helps us see just how far we can carry 

the comparison between people and machines. Workers and managers alike quickly will 

identify three reasons for avoiding the rigorous enforcement of normal communications: 

• Inefficiency. In a large organization, a worker or junior manager com
plains that he may have to wait several days, weeks, or even months 

for his data to filter up to the higher levels of management. 
Meanwhile, he sits idle. 

• Politics. Many of the more cynical workers complain that their infor
mation is filtered and qualified as it travels upward in the hierarchy. 

Thus, if clerk A generates datum x, it may be distorted into datum Y as 
it travels up and down the hierarchy on its way to clerk B in a different 

department. 

• Human psychology. In a large organization, the worker often complains 

that he is a small cog in the machine - and that he is demoralized by 

not being able to see where his labors fit into the big picture. This is 

accentuated by the rigid form of normal communication, characterized 
by the manager who says to his worker, HHere is your input data; 

don't ask where it came from, or what I'm going to do with your out
put - just shut up and do your job." 

The issue of efficiency is obviously relevant in both management structures and 

computer systems structures. Our experience with large vendor-supplied operating sys

tems is sufficient evidence that such overhead can be truly monumental within ordinary 

applications, Knuth's study 1 suggests that the two most expensive statements in a 

high-level language program are the subroutine-calling statement (particularly when 

several parameters are passed) and formatted input-output statements. This may only 

be an indictment of the quality of implementation of these features by compiler writers. 

On the other hand, a typical computer system has only a few modules that are frequent

ly executed; the overhead in the remaining modules often can be ignored. We will 

have more to say about this in Section 13.3.2, as well as in Chapter 15 when we discuss 

optimization of modular systems. 
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Clearly, modules do not behave in a political fashion~ they do not distort data re
ceived from subordinate modules that they do not like. However, the programming 
teams that develop modules often do behave in a political manner with respect to other 
programming teams~ they may well distort the data received from subordinate modules 
implemented by a programming team they do not like. We usually can (although not 
always) assume that such problems will be exposed and resolved during testing and in
tegration. While the programming teams may continue to behave toward each other in 
a political fashion, their modules - once debugged and integrated with one another 
presumably will behave in an apolitical fashion. 

Similarly, we should not have to worry about a module in a computer system 
becoming demoralized because it does not see the big picture even though such 
morale problems may plague the programming team that develops the ,module! Indeed, 
one of the objectives of the normal form of communication is that it fosters a black-box 
approach to modules, so that each one can be considered, debugged, or modified 
without serious impact on other modules. 

It is possible, for example, that module A in Fig. 13.2 also uses datum x in some 
way other than as a value to be accessed by module B. It could have been written to ex
pect that the value remain constant between calls. (For languages that do not permit 
"ownedn or local data of this sort in subroutines, the same issues can apply to data 
passed via common or global variables.) Before the programmer can uncerimoniously 
plunk a new value into x for the alternate use of module B, the coding in module A 

would have to be inspected to insure that no such side effect or competing use of x is 
made within A. But module A ceases, thereby, to be a black box! 

In general, the use of pathological connections reduces the ability of the programmer to 

treat modules as black boxes. To some extent, normal communication justifies the ex
istence of the managers. Aside from the degenerate cases, we assume that managers 
(and superordinate modules) exist for a purpose: They control and coordinate the work 
of their subordinates. To bypass a manager by transmitting data pathologically is to 
weaken the power, effectiveness, and flexibility of the manager. To suggest that the 
manager doesn't look at the data anyway and should therefore not have the data pass 
through his hands is a somewhat subtle form of "inversion of authority": What busi
ness does the worker have telling the boss what data he should or should not receive? 
Furthermore, how does the worker really know what data the manager requires in order 
to make his decisions? 

A more specific and relevant argument relates to flexibility. The manager may 
wish to move a clerk from one department to another, with the clerk still carrying out 
the same function. Or, the manager may decide that instead of performing services for 
just one department, the clerk should be able to carry out general-purpose services for 
multiple departments. All of this is made more difficult if the clerk is transmitting 
and/or receiving data pathologically with other clerks - particularly if the manager is 
unaware that such pathological communications are taking place (and since the manager 
has presumably been ~~cut out of the loop," there is no reason to expect that he would 
be aware of such nefarious dealings behind his backD. 
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Finally, there is the argument of security: Many organizations require that data be 

communicated normally in order to ensure that it is provided on a need-to-know basis. 

This is particularly true in certain military agencies, of course, but one finds it in the 

more sensitive areas (e.g., marketing, research and development, patent work, and so 

on) of other organizations as well. One occasionally finds unusual cases in which the 

boss does not have access to certain sensitive information manipulated by his subordi

nates, but the reverse is normally true: The boss has more global access to data, and 

decides which subordinate~ should be granted local access to selected bits of data. 

13.1. 2 Overview of pathologica I control con nee/ions 

Pathological control connections are considerably less prevalent than pathological 

data connections, but they still occur sufficiently frequently to warrant some discussion. 

In simple terms, a pathological control connection can be represented in the form 

shown in Fig. 13.3. Again, our question is not so much, What do pathological control 

connections look like'! as Why do designers use pathological control connections? 

• 
Figure 13.3. Pathological control connection. 

Assuming that the system is basically modular in nature (i.e., that it consists of 

modules, which are called normally and which exit normally), we will find only a few 

limited uses of pathological control connections. Relatively infrequently, one low-level 

module transfers pathologically to another low-level module, as shown in Fig. 13.4a. 

More often, each module has a separate control connection to the other, as shown in 

Fig. l 3.4b, usually because a portion of the code or task of one module is being used by 

the other. The st:-ucture of Fig. 13 .4b suggests that the designer may be building a 

primitive homologous (or one-layer) structure, though he may not recognize it as such. 

We will discuss homologous structures in Chapter 18. · 

A more common example of pathological control connections is the "panic abort" 

exit to the operating system. This is demonstrated in Fig. 13.5a. Such a structure is 

not necessarily evil, if the designer consciously chooses a panic abort and understands 

the trade-offs. However, a number of designers do not even recognize that Fig. 13.Sa 

represents a pathological control connection. To emphasize the contrast, Fig. 13.Sb 

shows a structure that accomplishes the same thing as Fig. 13. Sa, but with normal con

tro,l connections. 

The difference between Figs. 13.Sa and 13.Sb illustrates the reason why many 

designers opt for the panic abort approach: The normal approach involves too much 

overhead in returning error flags to the top level of the structure. This may appear. to 

be a false issue, since a panic abort presumably would be executed only once. Howev

er, if every module has to check for the presence of a "fatal error" flag after each call 

to a subordinate, a considerable amount of CPU execution and memory overhead might 

be involved. The issue might also be programmer time: The programmer doesn't want 

to spend time and energy coding a fatal error flag into all of his modules. What is 

needed, of course, are simple and efficient methods of accomplishing this task. 
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Figure l 3.4a. Simple example 
of pathological control flow. 
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Figure 13.Sa. Panic abort as an 
example of pathological control flow. 

Figure l 3.4b. More common example 
of pathological control flow. 
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Figure 13.Sb. Normal version of 
the panic abort. 



COMMUNICATION IN MODULAR SYSTEMS 241 

Figure 13.6 illustrates a variation on the panic abort: A low-level module discov
ers a serious error and decides to transfer control directly to the top module - thus cir
cumventing a number of intermediate-level modules that might have been in the midst 
of some task when the low-level module began executing. This situation often occurs 
when the designer decides that the fatal error - which is discovered in the low-level 
module - should cause the system to abort a great deal of processing that was under
way. In a business data processing system, for example, the processing of a complex 
transaction could be terminated in this fashion. Sometimes, the designer carefully ar
ranges things so that the intermediate modules will "flush" the processing they were in 
the midst of, and ensures that the modules property reinitialize themselves in prepara
tion for any new processing; sometimes, he simply crosses his fingers and hopes that 
things will take care of themselves. The normal form of Fig. 13.6 would be quite simi
lar to Fig. 13.5b. 

A 

TOP 

/ 

/ 
/ 

Figure 13.6. Another example of pathological control flow. 

The problem, of course, is that, to each of the intermediate modules, the fatal er
ror flag has some meaning in terms of what aspects of the immediate processing task 
must be adjusted, reinitialized, and so on. These details should only concern and be 
known to the programmer of each particular module, and this is only possible when 
each sees the flag. 0ne can even say that an error becomes fatal by virtue of its being 
passed up the line without being intercepted and handled to become non-fatal or a 
non-error by any intermediates. The management analogy is self-evident~ the janitor, 
for example, does not tell the Chairman of the Board that it is time to dissolve the cor
poration - unless the janitor is also the majority stockholder. 

13.2 Types of pathological data connections 

We recall that the obvious form of a pathological data connection was shown in 
Fig. 13.L Examination of this structure shows us that module A is "loading" some 
data from B's domain into its own. That is, we would expect that the connection shown 
in Fig. 13 .1 would be implemented with a statement in module A of the following sort: 

MOVE B-GLOP TO A-GLOP 
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Of course, data may flow in the other direction as a result of a pathological con
nection~ that is, A may store data into B, as shown in Fig. 13. 7. Both variations are 
equally simple from a structural point of view. We often refer to the process as a direct 
pathological connection. 

A B 
x a-. 

Figure 13.7. Another form of direct pathological communication. 

An extremely popular form of pathological connection involves a common data en
vironment; this is illustrated in Fig. 13 .8. What makes the connection pathological is 
that A and B are not passing and receiving data through their superordinates. The situa
tion might be compared to two clerks communicating by storing and retrieving data 
from a publicly accessible file cabinet - but without explicitly informing their boss of 
the communication. As we discussed extensively in Chapter 6, this form of pathologi
cal connection typically leads to greatly increased coupling - not just A and B, but all of 
the modules in the system have access to the common data environment shown in Fig. 
13.8. We will make suggestions for minimizing this problem in Section 13.4. 

A B 

Figure 13.8. Common data environment pathological connection. 

One of the more subtle forms of pathological communication involves a so-called 
communicator module, as shown on the facing page in Fig. 13.9. Technically, this does 
not involve a pathological connection, since neither A nor B is explicitly referring to any
thing internal to TABLEIT. However, the communication is pathological in the sense that 
A is passing data to B without the explicit awareness of its superordinate. In addition, 
TABLEIT has relatively low cohesion; depending on the nature of the call, it will either 
store or retrieve a specified data element - and is thus communicationally cohesive. 
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A B 

TABLEIT 

Figure 13.9. TABLEIT form of pathological communication. 

We might compare this situation to the following management scenario. Manager 
P awakens clerk A from his slumbers and gives him a job to do. In the midst of per
forming his job, clerk A creates data element x. Clerk A knows that the nature of his 
job is such that his friend, clerk B who works down the hall in another department, 
eventually will be awakened to carry out a job that will require access to data element x. 
At the same time, A knows that his boss has no explicit interest in x. Consequently, 
clerk A awakens a junior clerk who has the peculiar surname of TABLEIT, and asks him 
to file data element X in a file cabinet whose location is known only to TABLEIT. 

At some later time, clerk B is awakened by his boss to carry out some task. In 
order to perform the task, B knows that he will require data element x; he also knows 
that A was active at some previous time and that he arranged for TABLEIT to store the 
vital information away. Thus, B immediately calls upon T ABLEIT to retrieve x~ this al
lows B to perform his job, and he is able to return the appropriate output to his boss. 
Note that neither A nor B knows explicitly where T ABLEIT has hidden data element x. 
They don't have to - they know that TABLEIT is trustworthy and can be counted upon 
to store and retrieve information upon command. 

It is obvious that the management has been circumvented to some extent; and it 
should be obvious that a reorganization at the upper levels of the organization could 
seriously disrupt the cozy communication between A and B. Suppose A is informed that, 
from now on, he will be awakened by one of several different managers~ he is expected 
to perform the same basic function for each. If manager P calls on him to perform a 
job, then we know that clerk B ultimately will be activated and will require data element 
x; however, if manager Q awakens A, then it may well turn out that clerk B will not be 
awakened - in which case, data element x should be stored and retrieved via TABLEIT. 

The points to recognize in this hypothetical example are (a) if clerk A does not 
know explicitly which manager is awakening him - that is, if it is an anonymous 
subroutine call - then he does not know whether or not to store data element x, and 
(b) if the higher levels of management are not aware of the shenanigans being carried 
on by A, B, and TABLEIT, they will assume that their reorganization can be implemented 
without any trouble. 
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The final form of pathological communication is known as device-coupled commun

ication and is shown in Fig. 13 .10. This can be regarded as a variation on the common 

data environment shown in Fig. 13.8. The form involves primary memory as the com

munication medium, white the latter involves secondary storage of some form - typi

cally, tape or disk. Once again, this often is regarded as an innocent practice by veteran 

designers because the modules involved are not meddling in each other,s internal code 

or storage areas. From a systems viewpoint, of course, A and B are meddling in each 

other's affairs: A should not know that its execution is in any way connected to, or cou
pled to, subsequent execution of B. 

A B 

Figure l 3.10. Device~coupled pathological communication. 

13.3 Justification of pathological communication 

As we have said several times, pathological connections are not to be considered 

evil - despite the obvious pejorative connotations of pathological. We do know that, 

all other things being equal, a system with pathological connections will tend to be more 

difficult to maintain and modify - particularly if such work is performed by program

mers other than the original development programmers. Nevertheless, the designer of

ten is influenced by other constraints and pressures, and these may be sufficient to jus

tify the pathological connections. 

Our purpose in this section is to discuss the justifications for pathological connec

tions. This can be accomplished by simply asking a few questions, each of which is list

ed separately below. 

13.3.1 How much extra programming time is involved? 

Much of the reluctance to use normal communication between modules may stem 

from the coding required for the interfaces. Programmers complain that it takes a great 

deal of extra work to code the passing of parameters, and to check fatal error flags and 

all the other encumbrances of normal communication. 
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While each case deserves to be judged on its own merits, we should make a few 
observations about the amount of time typically spent in the coding of a typical program. 
Aron, 2 Metzger, 3 and others have reported that coding typically occupies only about 
one sixth of the person-hours of a typical programming project - design accounts for 
one third of the project, and testing accounts for about one half. Once we have figured 
out what we want our system to do, we tend to spend a minimal amount of time coding 
it, and a large amount of time trying to make it work! Thus, a small amount of extra 
time to code the intermodule interfaces required for normal communication hardly can 
have much impact on the overall project schedule. Indeed, we suspect that the basis of 
the programmers' objection in this area is a combination of laziness and impatience to 
begin testing the program. 

Knuth~s study 1 indicates that CALL statements account for only 4 percent of all 
the statements in a typical FORTRAN program. The authors' observations of large 

numbers of programs, even highly modular ones, suggest that these statistics are prob
ably valid for a variety of other programming languages as well. If only 4 percent of the 

statements written by a programmer involve activation of other modules, can it really 
take that much extra work to pass and return the parameters required for normal com· 
munication? 

There will certainly be some cases in which the answer is yes. All we ask is that 
the designer and the programmer take the time to consider whether the extra coding 
time wilt be significant. 

In the final analysis, this probably is a false issue. Since the highly modular ap
proach of structured design has been proved to reduce programming, it is extremely un
likely that a central feature - namely normal subroutine calling - should increase pro

gramming over all. The truth is that the functions served by parameterized subroutine 

calling are necessary features of any solution. Whether spread around and buried as 
side effects i[n other code or concentrated and made highly visible in a long subroutine 

argument list, the programming effort is still there. 

13.3.2 ls the overhead of normal communication too high? 

Perhaps the strongest, certainly the most commonly heard, argument in favor of 
pathological communication is that of efficiency. Still, the designer should ask himself 
whether the cost of normal communication is truly unbearable compared to the total 
cost of pathological communication. If so, and if efficiency is an important issue in the 
system, then pathological communication may well be justified. 

We should point out, however, that the cost of normal communication is not so 
terribly excessive in most high-level programming languages. The statement 

CALL GLOP (A,B,C,D, .... ,X,Y,Z) 

generally involves passing one address for each of the parameters, regardless of whether 
the parameter is a triple-precision floating point number or a 256-character text string. 
If the parameter must be passed up and down through several levels of the hierarchy, 
this may amount to a considerable overhead. On the other hand, considerable overhead 
may be expended in any case - regardless of the number of parameters passed - be· 
cause of the 41 prologue/epilogue" processing associated with the entry and exit to 

modules in a high-level language: saving and restoring general registers, setting base 
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address registers, and so forth. Thus, passing one or two extra parameters may 
represent only a small incremental overhead. 

Ultimately, the proper method in which to assess communication efficiency is not 
to measure the cost of subroutine calls, which is to implicitly compare the cost of nor
mal communication to the cost of doing nothing, but to compare the costs of the alter
native. Despite prevailing programming mythology, pathological communication, say, 
via common or global variables, 4 does not come completely free. 

On the average, each use of a module requires establishing special or unique 
values for the major portion of its inputs and targeting the resulting outputs to the prop
er places. Where pathological communication has been elected, this will require, in 
many instances, the actual moving of data from sources into the global input variables 
and, on return, moving results from where they were generated by the module to 
where they ultimately are needed. Thus, the typical code is most likely to resemble the 
code below, with respect to some or all of the inputs and outputs. 

MOVE Q INTO INl 
MOVE R INTO IN2 
CALL FOO 
MOVE OUTl INTO S 

While it is true that many programmers do not always cluster these data-shuffling state
ments in the immediate vicinity of the CALL, where they would be painfully obvious, a 
thorough perusal of the code will reveal their presence. Note that such separation of 
the statement that activates the module from those that determine what it does can only 
complicate the program and increase the probability of error. 

The hidden, or at least often ignored, cost of pathological communication is in
creased when a new, alternative use of a module is introduced and the programmer 
must avoid a possible conflict with other usage of input and output data variables, as in
troduced earlier. The required coding then resembles the following: 

MOVE X INTO TEMP 
MOVE NEWX INTO X 
CALL B 
MOVE TEMP INTO X 

The saving and restoring is necessary to assure that a still-needed value of x is not ac
cidentally lost. 

When one considers that normal communication in most programming languages 
automatically establishes a complete, unique input and output data context for each 
CALL by passing pointers (which are "address site" entities), then it is not surprising 
that this often can be more efficient than the actual moving of data required in patho
logical communication. 
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In any case, we would recommend that the designer begin with the assumption 
that normal communication will not be unduly expensive - unless he has some strong 
evidence to the contrary. Having implemented the system, the designer/programmer 
can gather statistics to see if a few of the intermodule references are causing excessive 
overhead. We will touch upon this philosophy again in Chapter 15. 

133.3 Are future alternative uses likely? 

Perhaps the strongest argument against pathological connections is that they make 
future modification of the system more difficult. However, if the designer is relatively 
certain that the system will be stable (a brave designer indeed!), then he perhaps can 
justify the use of pathological communication. There are two aspects of future 
modification that concern us: future general-purpose use of the modules that currently 
are communicating pathologically, and future uses for data elements that are currently 
being transmitted pathologically. 

Thus, in Fig. 13.8 (or in any of the other forms of pathological communication), 
we are concerned with possible future uses of modules A and B, as well as possible fu
ture uses of the data element x. When the system is first designed, we can imagine 
that A and B each have only one superordinate; thus, the fact that they are communicat
ing pathologically does not bother us too much. However, we should ask ourselves 
whether there is any possibility that module A (or B) will ever be used by other superor
dinates if some future modification to the system is made. Similarly, we observe that 
data element x is hidden from the higher levels of modules in the pathological structure 
shown in Fig. 13.8~ since the superordinate modules apparently have no explicit need to 
access data element x, this may not bother us. However, we should ask whether some 
future modification to the system will require x to be transmitted to, or used by, some 
other part of the system; if so, the data should be communicated normally. Note that 
any other value of data element x requires substitution of any other value into location 
x in the pathological connection. 

This question and the others raised in this section require some deliberate judg
ment on the part of the designer. If the designer feels that every minute of coding time 
is precious, that nary a microsecond of CPU time can be wasted, and that future 
modifications to the system are unlikely at best, so be it! We are concerned only with 
the fact that many pathological communications are designed unconsciously or casually 
- or they result from a long-standing prejudice that all normal communications are bad 
because they require too much CPU time. 

13.4 Suggestions for minimizing coupling in pathological connections 

If we assume that pathological communication is sometimes justifiable in terms of 
the criteria discussed above, we should distinguish between good and bad pathological 
communications. In particular, we would like to choose pathological communications 
that aggravate intermodule coupling as little as possible. 

Perhaps the most important suggestion is that a pathological connection or other 
direct communication should be used only for communication: Local, internal uses of a 
pathologically communicated data element should be avoided wherever possible. Thus, 
we may be prepared to accept the simple pathological connection of Fig. 13.l as long as 
it serves only the purpose of transmitting a useful parameter from A to B. Module A 
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should not use data element x for local purposes internally - e.g., it should not at 
some later point use x as· a temporary storage area for saving intermediate results of cal~ 
culations. Although any pathological connection is likely to be more obscure than a 
normal connection to the maintenance programmer, a pathological connection involving 
internal uses and side effects is considerably more obscure. To assure safe use of a 
pathological connection that has a side effect, thy programmer must look inside 
modules; in this particular case, they are not black boxes. 

Since common data environments are such a prevalent form of pathological com
munication, we offer another suggestion: Whenever possible, common environments 
should be regionalized. In general, a module should not be given access via a common 
environment to any data element that it does not require in order to perform its job. 
Recall that this suggestion was made in Chapter 6~ coupling can be greatly reduced by 
careful regionalization of common environments. 

Finally, we· suggest that the designer and the programmer extensively document 
any pathological communications. Assuming that a structure chart is used as one form 
of documentation, the appropriate notation should be used to highlight any pathological 
connections that may be present. Similarly, the flowcharts or narrative documentation 
that accompanies each module should indicate any of its pathological connections. Fi
nally, the documentation that accompanies each data element (e.g., a data dictionary) 
should indicate whether the data element is transmitted or used pathologically. 

13.5 Summary 

As we have seen, there are many different types of pathological data connections 
and pathological control connections. It is especially interesting that so many analogies 
can be drawn between this aspect of software design and the structure of human organi
zations~ we recommend that you keep these in mind when discussing such questions 
with your fellow designers. 

The issues behind the use or nonuse of pathological connections are fairly obvi
ous: efficiency, convenience, and future maintenance. There are indeed circumstances 
that justify a pathological connection~ however, in today's environment of cheaper 
hardware and increasingly complex software, there are fewer and fewer cases really 
justified on rational grounds. Unfortunately, remembering the days when hardware was 
expensive and software relatively cheap, many designers continue to defend pathologi
cal connections on emotional grounds. 
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14.0 Introduction 

CHAPTER 14 
PACKAGING 

In this chapter, we consider two very practical steps in the design of a working 
modular system. Ultimately, we must make a system fit into the available physical 
memory (or occupy units of a reasonable size, for storage management purposes), and 
we must implement the various input-output processes of the system on actual devices. 
Both of these steps are concerned with the physical realization of a modular system on 
an actual computer. 

The term packaging refers to the assignment of the modules of a total system into 
sections handled as distinct physical units for execution on a machine. Each such unit 
will be called a load unit, and will be considered a portion of the system processed as a 
unit by the operating environment. For some systems, programs are the load units~ in 
others, we see the terms "overlay.s," 0 load module," "job step," and so forth. Load 
unit boundaries and module boundaries are independent theoretical constructs, though, 
in practice, they are highly correlated. 

The relationship between functional module structure and packaging may be con
sidered in either order. Traditionally, the mechanical requirements of space and time 
are weighted relatively highly as inputs to the process of modularization. In other 
words, execution speed and memory constraints traditionally have guided the modular 
design. The early intrusion of such unequivocally nonfunctional aspects of the problem 
may - and often does - substantially reduce the effective modularity of the system. 
On the other hand, we must pare the system to fit into memory, N limit the load-time 
packages to a manageable size. 

As a general rule, we cannot simultaneously minimize memory and execution 
time. The most useful expression of the problem is to find a packagi·ng arrangement 
that will minimize execution time while just satisfying an actual or arbitrary limit on 
load unit size. Packaging within this framework can be done after a complete modular 
structure has been determined. This is desirable, too, for it allows us to focus our atten
tion on increasing the modularity of the system, provided satisfactory execution speed 
can be achieved. 

When the modules of a system are small, we almost always can perform packaging 
while leaving the module boundaries intact. With small modules, the probability is high 
that the boundary of a package will be at or near a modular boundary. As suggested in 
Chapter 9, high technical modularity relates to small module size - thus, prior modular 
d(!Sign emphasizing technical modularity makes after-the-fact packaging feasible. 

250 
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With .a complete structural design, we will have additional information: the pro
cedural skeleton and the communication structure. This is precisely the information we 

need to make a good segmentation of the system into packages. Indeed~ neither the 

procedural skeleton nor the communication structure (i.e., the flow of data back and 
forth between modules) would be known with nearly as much accuracy or detail before 
the structural design. By deferring packaging to the end of the design process, we (po
tentially) improve both the efficiency and the technical modularity of the system. 

Using a strategy known as procedural analysis, we will study the problem of organ

izing systems into efficient load units. The emphasis throughout this chapter is on the 
memory requirements of the system. The discussion of optimization in Chapter 15 will 

concentrate largely on execution speed, which is best done after the system has been 
implemented and put into production. 

14.1 Procedural analysis 

Procedural analysis consists of a set of criteria to determine which modules must 
be in the same load unit for the sake of efficiency. The criteria derive originally from 
ideas of Emery 1 as refined for packaging purposes. To use this as a technique for 
designing the modular structure is technically undesirable, but it is precisely the ap
proach needed for efficient packaging. Application of these criteria generally leads to 
overdetermined systems - that is, the requirements conflict in such a way that the only 

way to satisfy all of them is to have a single load unit for the entire system, which 
would be a contradiction. In other cases (although less frequently), the packaging is 

undetermined, with some "don't-care" boundaries. In either case, we are left with an 

art, not a science. The designer must cleverly juggle conflicting desiderata. 

Procedural analysis involves three steps: 

1. Determine the expected size of each module in the structure. This 
first step is actually easier than it sounds, for with a complete modular 
design we have a good idea of the module size in most cases - and 
when we don't, the small size of most modules makes estimation easy. 

2. Apply each of several criteria discussed below to determine preferred 
groupings and a priority among preferences. 

3. Find groupings of modules such that splitting of preferred groupings by 
load unit boundaries is minimized without bringing the size of the load 
unit above the allowable maximum. This will be the most efficient 
packaging for the given structure within given memory constraints. 

The general concept is very simple: In the same load unit, we want to include 

modules connected by a reference that is used or accessed many times during an execu

tion of the system. We do this because references between load units cost something in 
overhead above the basic modular overhead; where the operating environment becomes 
involved, this cost can be substantial indeed. Between programs or job steps, communi
cation usually will require use of intermediate files, an even more expensive matter. 

There are several distinct guides for recognizing high-frequency references 

between modules. First, we look at the iteration structure - that is, the imbedding of 
subroutine calls or other intermodular references within loops. The rule of thumb is 
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that, wherever possible, we want to place a module referenced within an iteration in the 

same 
/ 
load unit as the referencing module. Since iterations often are nested either 

within the referencing module or by virtue of subordination, the preference for group

ing modules into a load unit must be given to inner (lowest-level) loops over outer 
(higher-level) loops. 

In the structure of Fig. 14. l, the highest priority is to include modules B and E in 

the same load unit. The next priority is to include B and D in the same load unit; the 

only way of accomplishing this without violating the first priority is to include B, D, and 

E in a common load unit. By a similar argument, the next lower priority would include 

A, B, D, and E in the same load unit. 

c. 

Figure 14.1. First-cut packaging based on iterative structure. 

Because other grouping criteria will be added to the one involving iteration, it is 

more useful to begin by showing the groupings of modules in pairs. For example, if we 

discover later that there is a very high priority for associating module Q (shown in Fig. 

14.1) with module B, we do not want to be misled into thinking that the highest priority 

overall grouping is B, D, E, and Q - when in fact it is B, E, and Q. 

Sometimes, it may be efficient for two modules to be in the same load unit even 

if there is not an obvious, or even explicit) iterative relationship. For example, we may 

know that module c in Fig. 14.l is invoked for every record of a 27 ,000 record file. 

Thus, a reference from A to c is made 27,000 times during the execution of the system. 

Indeed, the estimates of volume of references often are more useful than the iterative 

structure by itself. 
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We may find, for example, that the loop in module A (within which there is a call 
to module B) iterates an average of three times, if it is executed at all. Subsequent 
analysis might show that a decision within module A causes the loop to be executed 
only once out of every four times the system is run. If this is the case, the priority ob
viously would be given to the grouping of modules A and c rather than to A and B. 

The decision structure shown on an extended structure chart is a useful rough 
guide to the frequency of references. Clearly, a conditional reference reduces the fre
quency by an amount proportional to the fraction of time that the relevant condition is 
false; an unconditional reference means that the referenced module and the module 
making the referral are executed with equal frequency. Where frequency of reference 
or communication is the observable criterion, the rule of thumb is that modules related 
by high-frequency references should be in the same load unit. 

Another somewhat less useful packaging criterion is the time interval between 
references from one load unit to another. In most cases, this means that we are in
terested in the amount of time that passes between the execution of one module and 
another. The longer the time interval, the less overhead will be incurred in switching 
from one load unit to another. For example, we can think of module c in Fig. 14.1 as 
an intermediary between module A and module R. If c requires a long time to execute, 
we would not mind at all having A, c, and R in separate load units. On the other hand, 
if c executes quickly, it is preferable to have A, c, and R in the same load unit. Other
wise, the ratio of overhead to useful processing jumps considerably. 

This criterion is relevant only when volume or frequency information is not avail
able. Clearly, the same analysis should apply to an uatomic" module, based on its ex
pected execution time. 

Two special cases exist when we do not want to include modules in the same load 
unit. We define an optional function as one that, for some executions of the system, 
may not be needed at all - and one whose use (or nonuse) can be decided in advance 
of the situation in which it might be required. Run optional functions are those whose 
use (or nonuse) can be determined when the system initializes itself. Clearly, wherever 
feasible, optional functions should be placed in separate load units by themselves. The 
advantage of isolating optional functions is that under some circumstances (Le., the cir
cumstances in which the function is not used) our use of modularity costs us absolutely 
nothing - for the optional function will not even be loaded into memory. 

The other special case is for Hone-shot" functions. These are used only once per 
execution of the system, or once for some well-defined segment of the system. Obvi
ously, a one-shot function should be in a load unit by itself~ once it has been executed, 
it need no longer be kept in memory. 

An exceptional case occurs whenever a sort is required in a structure. Sorts 
represent natural breakpoints to separate load units. Indeed, this often has been a cri
terion invoked in traditional design work. 

When separation into physical packages may require the use of distinct programs 
or job steps, special attention must be given to the volume or communication on any 
transition between load units. The designer should try to identify points with the lowest 
volume and simplest data to break the structure. If the communication were to be ac
complished via input-output devices (device-coupling), then intermediate files can be 
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kept small and with simple structure. When an overlay communication region in pri
mary storage is used, the size and complexity of tables in that region are reduced. 

Table 14.1 summarizes the criteria for efficient packaging of modules with the 
rules for priority of application. When applied, these criteria typically will yield a com~ 
plex set of overlapping alternate groupings. The designer's task is to juggle possibilities 
until a group of distinct load sets has been identified. One way of looking at the prob
lem is to draw load unit boundaries so as to minimize the number of grouping prefer
ences that must be cut (properly weighted by priority). When sufficiently well defined, 
this process is analogous to certain graphic theoretical problems. Since we lack the 
space in this book to pursue such a formal graphic theoretical approach, the designer 
will have to regard this step as an art. 

Iterations 

Volume 

Frequency 

Interval 

Optional functions 

One~shot functions 

Sorts 

Table 14.1 

Criteria for Packaging by Procedural Analysis 

GROUPING 
CRITERIA 

Include in the same load 
unit modules connected 
by iterated reference. 

Include in lhe same load 
unit modules with high 
volume of access on con
necting references. 

Include in the same load 
unit module with high 
frequency of access on 
connecting references. 

Include in the same load 
unit as the superordinate 
(or the subordinate) any 
module with short interval 
of time between activation. 

ISOLATION 
CRITERIA 

Put into a separate load unit 
any optional function. 

Put into a separate load unit 
any module used only once. 

Put modules applied on input 
and output sides of a sort 
into separate load units. 

PRIORITY 
RULES 

Inner loops take precedence over 
outer loops. Loops nested within 
a module take precedence over 
nesting by subordination. 

High volume (many activations 
or many items passed) takes pre
cedence over low volume. The 
volume criterion is preferable 
to the iteration criterion, if vol
ume information is known. 

Frequent transfers of control 
or data take precedence over 
infrequent transfers. If 
known, volume and/or iteration 
criteria are pref er able. 

Short execution time has pre
cedence over long execution 
time. This is a low~priority 
priority criterion. 

In resolving conflicting requirements, there is one trick that frequently is useful. 
In Fig. 14.2, the designer has used the iteration structure to lead to two load units with 
a single conflict, in the form of the common subordinate module MM. Let us imagine 
that the maximum permissible load unit size is 450 units (bytes, words, pages, or what-
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ever - we really don't care in this discussion). Thus, we cannot combine HH-JJ~LL-MM 
with KK-NN into a single load unit to solve the problem. However, all of the require
ments can be met if we provide duplicate copies of MM for each load unit. This gen
erally is feasible when the common subordinate(s) is (are) small. Of course, we do not 
wish to duplicate the design and coding of MM, so the modular structure remains as in 
Fig. 14.2. All that we have done is make two physical copies of the same module. 

Figure 14.2. Conflicting load unit grouping with common subordinate. 

Actual realization of a pref erred packaging is another matter altogether and gen
erally will depend on the programming language, the operating system, and the comput
er hardware. Thus, the designer may have to transform modular load units into physi
cal overlays. Or, he may find that the operating system handles each module separately 
and will not permit several modules to constitute a single load unit. In such cases, the 
designer may have to lexically include subordinates within the superordinate (if that is 
possible). In some systems, compiling several modules together may cause a single 
load unit to be created by the compiler. Separate compilatibns produce separate load 
units. Or, there may be a distinct link~edit process which combines separately compiled 

modules into load units. 
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The person making the packaging decisions should have a complete catalog of 
packaging options within the language-compiler-operating environment in use. Such a 
catalog should identify, for each available type of package, the functional .characteristics 
and limitations, the operating overhead, and any peculiarities or special advantages. For 
example, a module on a structure chart may be packaged in full ANSI COBOL in many 
forms: as a paragraph or section of a main program or callable subprogram; as a main 
program; or as a callable subprogram, managed either dynamicaHy or statically. All of a 
program or subprogram may constitute a load unit, or sections can be handled as over
lays. The use of a section saves the prologue/epilogue required by a called subprogram, 
but makes all communication into and out of the module pathological via the common 
environment comprising the data division. On the other hand, COBOL subprograms 
can only pass data normally except by device-coupling. 

14.2 Packaging in practice 

Obviously, a realistic example of packaging involving division into more than a 
few load modules would be far too tedious to present in detail here. But some of the 
subtleties of packaging, especially of the advantages of deferred packaging, can best be 
appreciated through concrete example. For this reason, we will summarize the tech
niques of procedural analysis and packaging of modular program systems by a lengthy, 
but, we hope, not excessively tedious example. 

The MUL TISIM system employs a data bank of simulation parameters to define a 
variiety of simulations of c·hemical processes for the United Sodium and Sugar Com
pany. The updated contents of specified entries from the data bank are combined with 
a series of simulation instructions (an agenda) calling for that data. Represented in 
suitable form, the agenda becomes input to simulation calculations, which execute the 
agenda step by step. The results calculated by each agenda step are plotted. A sum
mary for a .complete agenda is to be entered into one of two reports depending on the 
yield in the· simulated results. These reports are to appear in another sort-order based 
on codes in the agenda itself. 

An extended structure chart for a highly factored, transform-centered version of 
this complete system is shown in Fig. 14.3. The afferent branch headed by GETSIMULA· 
TION'AGENDA delivers one complete agenda with its required parameters. The simula
tion transform, DOIAGENDASTEP, and the two efferent branches for plotted results (PUT
INTERIMRESUL TS), and the summary reports (PUTTOSUM) are called in an inner loop of 
MUL TISIM for each step. A transaction center is found at GETCOM/DATA in the afferent 
branch. The system as originally specified is assumed to be a single load unit using a 
callable sort routine with separate entry points for putting to and, after completion of 
the sorting, taking from the sort subsystem. 

A typical run involves about 2,000 transactions at the point identified as (1) in 
Fig. 14.3, about 1 AOO of which might be updates to the data bank. About half of the 
usual 600 individual agenda instructions require parameters from the data bank items 
that are being updated, the remaining involve other items. The volume of items at 
points (2) and (3) is about 600 in each case, but the data at point (3) are more com
pact, less complex. Since an average agenda comprises about three steps, the volume at 
point (4) averages only 200 items, but each item involves many fields or subitems. As 
each agenda step produces output, the volume at point (5) is, -again, typically 600. The 
agenda summaries represented at point (6) total only 200, each resulting in a page-long 
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report. Most often, only one in ten simulations has a high yield and thus would appear 
in the high-yield rtport~ the volume at (7) would be about twenty items. 

MULT:tSrM 
i 

Figure 14.3. Structure chart for the MUL TISIM system. 

This information, along with the procedural annotations on the structure chart, 
permits us to establish some preferences for grouping and separating. In Fig. 14.4, 
solid lines enclose the higher-priority groupings based on iterations~ dashed lines identi
fy points where the presence of optional or one-shot functions favors separation of load 
units. Low-priority groupings have been omitted. Clearly l the highest-priority group
ings are the ones headed by GETCOM/DAT A and NORMCOMP. The ultimate enclosure of 
both these subsystems in nested loops within MULTISIM suggests a single large program~ 
but what if together the two subsystems exceed memory limitations? The procedural 
analysis indicates the preferred point of separation to be between GETSIMULATIONAGEN
DA and MUL TISIM. This cannot be done without reprogramming (really, alterations in 
the procedural design)~ the question how much? Figure 14.5 suggests a realistic 
compromise that creates three main programs: SIM l, SIM2, and PRINTSUMYIELD. The 
soundness of the highly factored design is proven in the minor clerical nature of the 
changes that would be required. Indeed, SIM2 differs from MULTISJM only in dropping 
the call to INITIAL and in substituting a call to an input routine for the original call to 
G ETSIMULATION AG ENDA. 
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The declarations for PUTSUMYlELD will be different if it is to be a main rather than 
a subordinate program and if the call to it is omitted from PUTTOSUM. SIMI constitutes 
new coding required by the packaging, not the problem, but even it is a mere clerical 
procedure, a trivial subprogram. Most, perhaps 95 percent, of the original design has 
been preserved. A problem is posed by making SPECIALCOMP a callable subprogram. If 
STEPB is another callable subprogram that is designed to be used from both load units, 
the much-used NORMCOMP inner loop could be significantly slowed. However, the al
ternative is two copies. 

r"'!!_--

Figure 14.4. Procedural analysis for packaging of the MULTISIM system. 

Until performance statistics lead us into a post-development optimization (to be 
described in Chapter 15), the simpler option of a callable subprogram would be the 
choice. In COBOL or a similar language, all other subroutines might be packaged as 
PERFORMed SECTIONS at some loss in modularity due to the required pathological com
munication~ thirty normally communicating callable subprograms in this size application 
would very likely be far too costly both in storage and in execution overhead. 

The chosen packaging requires an intermediate file (the coded agendums) of small 
size and moderate complexity. Disk storage might be ideal for this purpose. The first 
pass, SIM 1, is essentially an update and proofing run to generate ready-to-simulate agen
dums~ error detection and processing have been omitted to simplify the structure for 
expository purposes. The addition of a listing of the finalized agendums that are written 
to the intermediate file would make it more practical to use SIM t and SIM2 separately. 
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How did we fare? Compare our packaging to the conventional one shown in Fig. 
14.6, which a systems analyst drew up based on the problem description. The division 
into runs in Fig. 14.6 is absolutely standard. Because it was based on presumptions 
about what form the solution should take rather than a thorough understanding of the 
functional structure, each full use of the traditional system will 1 be more expensive than 
each use of our packaged structured design by (1) about 300 disk search-and-reads~ (2) 
two passes (write and read) on 600 uncompressed rather than compressed agenda items~ 
(3) two passes (write and read) on the 600 item output file~ (4) sorting of 600 instead 
of 200 items~ and, if one includes as a feature of the conventional design the standard 
use of a separate sort program operating from and to files instead of a callable sort sub
system with first and last pass own coding, (5) three passes on 600 items being sorted. 

It might be possible for a sharp and unconventional systems analyst doing prepack
aging to come up with our system, but how much easier and more likely is the 
identification of efficient packages after complete structural design. Finally, it should be 
obvious that a repackaging of the structure of Fig. 14.3 to have the same intermediate 
file structure as the traditional packaging would be trivial were this deemed necessary or 
desirable, but it is not likely that the programs of the traditional design could be easily 
transformed from five separate runs into a single nest of subroutines! 

Figure 14.5. Packaging for the MULTISIM system. 
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Figure 14.6. Systems flow or conventional packaging 
for the MUL TISIM system. 

14.3 Summary 

In general, we at
tempt to satisfy me
chanical restrictions . on 
memory size or execu
tion time through pack
aging, rather than 
through modular struc
ture. This helps us 
maintain the discipline 
of a highly modular 
system through the 
design phase of a proj
ect, and allows us to 
maximize such worthy 
design goals as 
maintainability and 
modifiability. As a 
rute, this can be done. 
Indeed, experience in
dicates that packaging 
done in this manner 
leads to significantly 
mare efficient and more 
manageable systems 
than when packaging 
precedes and guides the 
structural design. 

This is a more significant point than it may seem at first. In many organizations, 
packaging is done by the systems analyst - not by the designer. This means that the 
sequence of steps in such organizations is often: packaging first, flowcharting second, 
and structural design (of the most primitive sort) last. This frequently leads to a pro
liferation of intermediate files that are passed back and forth between the various load 
units specified by the analyst. The problem is aggravated by the fact that some systems 
analysts are obsolete technicians. Thus, in the late 1970's, analysts still specify a new 
payroll system consisting of an edit package, an update package, a sort package, and 
several report-writing packages - with intermediate tape files passed between the vari
ous packages. Why? Because thaCs the way analysts accomplished the job in the early 
1960's on an IBM 1401 - and if it worked then, it should work now! 

It is difficult to impress upon many such analysts that they currently are working 
with a fourth-generation computer that has four million bytes of physical memory, plus 
the sophistication of virtual memory and a vast array of drums, disks, and other fast 
storage devices. In many cases, the entire system could be implemented as one load 
unit, with all data passed through memory in the form of arguments to modules. In 
any <~ase, we cannot overemphasize that packaging should be done as a last step in the 
structural design - not as the first step! 
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CHAPTER 15 
OPTIMIZATION OF MODULAR SYSTEMS 

15.0 Introduction 

As its title makes clear, this chapter is devoted to the optimization of modular 
program systems. The authors' decision to discuss optimization in Chapter 15, three 
fourths of the way through the book, was deliberate: Optimization is something that 
should be considered after the system has been designed, and should not be an 
influence on the design process itself. It is demonstrably cheaper to develop a simple 
working system, and speed it up, than to design a fast system and then try to make it 
work. The savings possible by delaying optimization are even greater when the design 
is highly factored and uncoupled. At the same time, it is appropriate that the chapter 
be placed in the section on pragmatics: Many systems do have to be optimized to 
reduce their use of CPU time, memory, use of peripheral devices, or other limited sys
tems resources. 

The previous chapter on packaging discussed techniques for developing reasonably 
efficient systems within given memory contraints. However, this chapter assumes that 
such a priori techniques may not have been sufficient - i.e., we still may be dealing 
with a daily system that requires 25 hours of computer time. Therefore, the primary 
emphasis in this chapter will be on the reduction of CPU time, since that is still the 
most precious of systems resources in the majority of organizations. Several of the 
techniques can be applied, with some modification, to the optimization of disk accesses, 
1/0 channel usage, and so on. 

Before discussing the techniques themselves, we will discuss some important phi
losophies of optimization. Those readers who feel they understand the proper role of 
optimization in systems development are free to skip the next section to get to the meat 
of the chapter. However, even the battle-scarred veteran is advised to reread these 
statements of "apple pie and motherhood" to reinforce the discipline that so often slips 
away in a real-world project. 

15.1 Philosophies of optimization 

An interesting paradox comes to light in most discussions about the optimization 
of modular systems: Many programmer/analysts are convinced that the techniques dis
cussed in this book contribute significantly to the inefficiency of their systems, yet they 
have no idea how much. A few crude experiments suggest that a highly modular system 
usually requires 5-10 percent more memory and CPU time than do systems implement
ed in the traditional fashion~ on the other hand, there have been occasions when modu
lar systems have been considerably more efficient than classical systems. 

262 
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To make an accurate statement about the overhead and inefficiency of modular 
systems, we would need an experiment with several thousand pairs of identical twins -
with one twin of each pair developing a highly structured modular system, and the oth
er twin developing the same system with the classical approach. Lacking the resources 
for such an experiment, we are content to use the rough approximation of 5-10 percent 
for the overhead of the modular approach. 

The estimate of 5-10 percent is small enough that many EDP professionals would 
prefer to ignore it - particularly in light of the overhead associated with modern 
operating systems, data base management systems, teleprocessing monitors, and other 
vendor-supplied software packages. However, in a large number of real-world computer 
systems, optimization is a serious business - proper tuning of a system can save an or
ganization millions of dollars. Similarly, there are still many real-time systems - par
ticularly on the growing number of minicomputer and microcomputer systems - in 
which each microsecond of computer time is critically important. Nevertheless, optimi
zation should be discussed from a rational point of view: Not every microsecond of 
computer time has to be optimized! The following philosophies are important for us to 
keep in mind as we discuss the optimization techniques in the subsequent sections of 
this chapter. 

15.1.1 The e./ficiency of a system depends 011 the competence of the designer 

There is not much point in talking about efficient systems or optimization if the 
system is being designed and/or programmed by people of only mediocre talent. Of 
course, this is a rather sensitive issue. One's ego makes it difficult to deal with one's 
own mediocrity, and one's manners make it difficult to accuse colleagues of mediocrity. 
Nevertheless, it is a fact that should be faced squarely: A surprisingly large number of 
analyst/designers design stupid systems, and an even larger number of programmers 
write horribly stupid code. 

These are blunt words, to be sure. However, a classic study by Sackman et al. 1 

pointed out that, among experienced programmers, we can find a 25:1 difference in 
design timt~ and debugging time. Equally disturbing is the fact that the resulting code 
can vary in speed and size by a factor of ten. The most depressing fact of all was that 
Sackman's study indicated that there· was no correlation between programming perfor
mance and scores on programming aptitude tests. H.L. Mencken observed that nobody 
ever went broke underestimating the intelligence of the American public. After visiting 
programming organizations around the country, the authors have concluded, somewhat 
sadly, that a similar statement could be made about programmers and designers. 

Our point is simple: There is no substitute for competence. If you want a system 
designed and implemented efficiently, make sure it is done by people who know what 
they are doing - which, by the way, has very tittle to do with the number of years they 
have been working in the computer field! 

15. 1.2 In many cases, the simple way is the ej]icient way 

A number of programmers take it for granted that efficiency in a computer prow 
gram only can be achieved with intricate, sophisticated, obscure techniques and 
language statements. Thus, the assembly language programmer feels obligated to use 
instructions with multilevel indirect addressing (with indexing at the same time, of 
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course!) in order to achieve an efficient program~ the PL/I programmer feels compelled 
to use built"in functions that probably have never been used by anyone else in his or
ganization~ the FORTRAN programmer and the COBOL programmer may feel equally 
obliged to indulge in programming tricks that are beyond the ken of their vendor's 
software representatives. 

All of these sophisticated statements have their place, but many programmers 
have found that such sophistication can gobble up large amounts of CPU time and 
memory. Quite often, the simple statements are the most efficient. More important, 
the simple modular structures often are far more efficient than the rat's-nest structures. 
One of the authors had the opportunity to observe a large rat's"nest payroll system with 
serious efficiency problems. Analysis showed that, among other things, the system 
recomputed the payroll tax for each of the 100,000 employees each time it was execut
ed. Since the tax algorithm was a third-degree polynomial involving only the 
employee's salary, there was no need to recompute cit unless the employee's salary 
changed - and the unnecessary recalculation wasted a large amount of computer time 
when applied to 100,000 people! A simple modular design probably would have made 
it perfectly obvious that the computation needed to be done only once.* 

The point that we are making is that a simple system does only what it has to do, 
without any wasted or redundant motion. A large, disorganized rat's-nest system fre
quently performs the same computations multiple times, or performs computations to
tally irrelevant to the task at hand - all because the structure is so complex that the 
designer could not see what was happening. 

15.1.3 Only a small part of a typical system has any impact on overall efficiency 

Many a programmer has been heard to mutter, "Jeez, 90 percent of the code in 
this system deals with exceptions!" Perhaps the most dramatic example of this 
phenomenon comes from AT &T's Business Information System. It is estimated that 98 
percent of the modules in that vast system consume less than one second per year of 
execution time. Similarly, Knuth's classic study 3 indicated that approximately 5 per
cent of the code in a typical program consumes approximately 50 percent of its execu
tion time. 

From this viewpoint, it is obvious that the way to win the game of efficiency is to 
find the critical 5 percent and optimize the hell out of it! The problem is that we don't 
know which 5 percent of the code will be the critical 5 percent until after we have imple
mented the system and put it into production. Of course, it will be obvious from the be
ginning that certain portions of the system will be executed frequently. Nevertheless, it 
usually is true that the run-time behavior of the system is quite different from the 
designer's expectations. Thus, we often see a programmer/analyst gather run-time 
statistics on his system, and then exclaim, ul can't believe that the system is spending 
50 percent of its time in that module!" 

•This was only one of several inefficiencies in the system. A redesigned version of the payroll system ulti
mately reduced the run-time by approximately four hours out of a fine-hour run on a Honeywell 8200 com
puter. For more discussion of this interesting project, see Yourdon. 
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15. 1.4 Simple modular systems can be optimized easily 

Throughout this book, we have stressed that highly modular systems have the ad
vantage of being easily maintained and modified. It is worth noting that optimization is 
a kind of modification: We have to modify the code within individual modules, or pos
sibly modify the structure of the complete system, in order to improve its efficiency. 
Thus, it is entirely appropriate to the theme of this book to suggest that a modular sys
tem should be optimized more easily than a monolithic system. In a system with high 
cohesion and low coupling, we should be able to change the code in one module 
without creating any adverse effects in another module. If the overall structure of the 
system is simple and well documented, then we easily should be able to make structural 
changes (of the sort discussed in Section 15.3). 

15.1. 5 Overemphasis on optimization tends to detract from other design goals 

As we have stated, a great deal of optimization can be accomplished simply and 
easily. However, a number of programmers tend to be fanatics when it comes to 
efficiency: Every possible byte of memory must be pruned. If taken too far, this fana
ticism has serious adverse consequences. The code within modules becomes too com
plicated for mere mortals to maintain, and the coupling between modules becomes too 
complex for even an Einstein. Indeed, the fanatical approach to optimization often 
backfires. In an attempt to optimize a system by introducing complex flags and sophisti
cated instructions, the programmer sometimes ends up with a less efficient system. 

These problems are much more serious if they occur during the design process. 
Once the system has been designed and built, the natural "firewalls'' of modularity will 
tend to minimize the negative effects (in terms of maintainability) caused by fanatical 
optimization. However, if the designer is strongly influenced by optimization during 
the design phase, the overall modularity of the system probably will suffer significantly. 
It is likely that the resulting system will have high coupling and low cohesion. Its 
modular structure may bear very little relationship to the inherent problem structure. 

15.1. 6 Optimization is irrelevant if the program doesn't work 

It may seem facetious to suggest that an efficient program with a bug is less valu
able than a somewhat inefficient program with no bugs. However, the authors have 
found it quite difficult to impress this upon some supposedly professional programmers 
and analysts. Actually, our point is a bit less trite: Optimizing a system usually re
quires a large amount of time and energy - especially since the optimization of code 
affords the programmer an excellent chance to introduce new bugs into the system! 

Hence, it would appear that the best strategy is to get the system working first -
even if it is inefficient. Users may howl and complain about the inefficiency, but they 
will be happier with a slow system that works than with a fast system that isn't finished. 
Besides, the system may not turn out to be inefficient after all! Or it may take such a 
small amount of computer time that nobody really cares whether the system could be 
optimized. .((the system turns out to be large and time-consuming, and {{there are in
dications that it could be optimized, then the programmer can work on the problem. 
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15.2 An approach to optimization of modules 

If our system needs to be optimized, there are two ways of approaching the prob
lem: optimizing the code within modules, or changing the overall structure of the sys
tem to improve its performance. We will discuss the former in this section~ the tech
niques of structural changes for efficiency will be discussed in Section 15.3. 

The specific techniques for optimizing code within a module are largely outside 
the scope of this book. We know that optimizing compilers are becoming increasingly 
significant. If so directed, the compilers can produce object code that is optimized for 
memory and/or CPU time. In addition, several vendor-supplied proprietary packages 
are capable of examining the object code produced by compilers in an attempt to elim
inate unnecessary instructions. We also can use a variety of hardware monitors and 
performance measurement packages to help determine where a module is spending its 
time - i.e., to find the critical 5 percent that we discussed earlier. Finally, we know 
that most programming textbooks and vendor-supplied programming manuals devote 
entire sections to the devious tr.icks for writing the world's most optimal code. Since 
these tricks are highly machine-dependent, language-dependent, and vendor-dependent, 
and since they are constantly changing, it would be inadvisable to deal with the subject, 
even in a general way, in this book. 

However, we can suggest an organized plan of attack, first published by 
Constantine, 4 for optimizing the code within modules of a large system. Our approach 
is based on our belief that although most code (recall the 5 percent phenomenon) is not 
worth optimizing because it contributes very little to the total system overhead; 
nevertheless, we probably will have to continue optimizing modules until our systems 
havt~ achieved some reasonable measure of efficiency. Thus, we need a way of assign
ing priorities to modules from the point of view of optimization. Any organized plan 
will suffice; however, the following approach has been used successfully by the authors 
in a number of projects: 

1. Determine the execution time for each module or load unit. The hardware 
monitors and the performance measurement packages mentioned pre
viously should be adequate for this step; lacking these, the 
programmer/analyst should be able to build his own instrumentation. 
Note that this is not a process of estimation as was done for the pack
aging strategy in Chapter 14: We are capturing actual statistics from a 
real system. For simplicity, we will refer to the execution time of the 
i th module in the system as T 1• 

2. Examine each module to estimate potential improvement. This step must 
involve estimation unless the programmer wishes to recode each 
module to see how much improvement can be achieved. While it is 
thus an art, it depends upon the programmer's knowledge of his 
language, his operating system, and his hardware - as well as upon his 
ability to perceive better implementations of the module. It should be 
obvious that this estimation process is made more accurate when dealM 
ing with small, independent modules. We will refer to the estimated 
potential fractional improvement in the execution time of the i th 

module in the system as Ii. 
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3. Estimate the cost involved in making the improvement. By cost, we mean 
programmer/analyst salaries, computer test-time, and other costs that 
might be involved in producing a new, optimized version of the 
module. Clearly, this is only an estimate, and its accuracy will depend 
on the ability of the programmer/analyst to forecast such work. It 
should clear, once again, that the estimating process has a better 
chance of being accurate when we are dealing with small, independent 
modules. We wi11 refer to the dollars-cost of making an improvement 
to the i th module in the system as C;. 

4. Establish priorities for making improvements to modules. We will refer to 
the priority of the i 111 module in the system, from the viewpoint of 
selecting it to be optimized, as Pi. From the discussion above, we see 
that we can rank the priorities in the following manner: 

Pi = A x I; x Ti B x c 1 

where A and B are appropriate weighting factors. 

5. Optimize the modules with the highest priority. The priority scheme is in
tended to help the designer optimize those modules from which he will 
realize the largest improvement in machine efficiency for the smallest 
amount of work. It may be entirely uneconomical to make a 50 per
cent improvement in the run-time of a module if it is going to take 
three person-years of effort. 

The priority-ranking scheme listed above probably would indicate 'that it is not 
worth the effort to improve the efficiency of a module by 50 percent if it uses only 
three milliseconds of computer time. Note that our ranking scheme not only indicates 
the optimization priority of one module relative to another~ it also indicates that certain 
modules may have a negative optimization priority (depending on the selection of 
weighting factors A and B). That is, it may indicate situations in which the cost of mak
ing an improvement to the module exceeds the savings in reduced execution time. In 
such cases, we are clearly better off leaving the module alone. 

15.3 Structural changes for efficiency 

In a small number of cases, optimization within module boundaries may not be 
sufficient to achieve the desired level of efficiency. It then may be necessary to modify 
the structure of the system. Before indulging in this kind of optimization, it is impor
tant that the designer identify the source of the inefficiency: Even though the structur
al modifications discussed in this section are relatively straightforward, one does not 
want to go through them needlessly. Thus, it is important that the designer gather 
statistics concerning intermodule transitions subroutine calls and passing of 
parameters) as well as statistics concerning intramodule execution time (as suggested in 
Section 15.2). 

It is interesting to note that the intermodule transition-time statistics probably are 
easier to capture than are statistics for execution time within each module. Indeed, the 
cost (or overhead) of subroutine calls often is published by the vendors of selected 
operating systems, programming languages, and computer hardware. 
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Fortunately, there is only a small set of structural modifications that make notice
able! improvements in execution speed (and, perhaps, in memory). We will discuss 
each in the subsections that follow. 

15.3.1 Macros or lexically included code 

Before looking into actual changes in the structure of the system, the designer 
should consider changes in module type which preserve module structure. In particular, 
the designer should remember that macros and subroutines represent trade-offs of exe
cution speed versus memory. The ~'transmission" of parameters to a macro is accom
plished during compilation time or assembly time, and context-switching (otherwise 
known as prologue/epilogue, or more simply as the saving and restoring of the 
machine) may be optimized by the compiler/assembler. Also, since the macro body be
~omes part of the lexically superordinate sequence of code, any optimization of 
hardware registers applied by the compiler within the sequence of code also should be 
applie,d across ~he macro-subordinate boundary. Finally, if the module is referenced 
only once or a few times in the structure, or has a small body compared to the 
prologue/epilogue, the use of macros probably will save both execution time and 
memory: Argument transmission, context-switching, and other types of intermodule 
overhead consume memory as well as CPU time. 

15.3. 2 Pancake structures 

A general rule is that deep structures* have more overhead than broad, shallow 
structures. However, the exceptions are so numerous and so subtle that it is never safe 
to apply this rule indiscriminately. Only after analysis reveals that the inefficiency of a 
given system may be resolved by "flattening,' or "pancaking" the structure can tech
niques for doing so be applied. 

Let us consider, as an example, a structure of two levels. These two levels consist 
of a control module and its subordinates. Each call to a subordinate module represents 
some overhead; when these are imbedded in an iterative control structure, the cumula
tive overhead can indeed be substantial. If the procedural logic in the superordifate is 
not very complex, a structure of this type can be converted to one homologous level 
joined by unconditional transfers. Thus, in Fig. 15. la, a simple endless loop is 
transformed into the structure of Fig. 15.1 b, in which each module simply transfers 
directly to the next step. Note that this process implants in GETC, COMPI, NEWM, and 
REPU elements of the overall task once realized by DOINU. Thus, the GO TO COMPI 

which must appear in GETC has nothing whatsoever to do with the function GETC. Such 
pancaked structures always result in some reduction in cohesion as well as some in
crease in coupling. 

*Recall the definition of depth in our discussion of systems morphologies in Chapter 8: The depth of a system 
i,s the number of levels in its hierarchical module structure. 
T Homologous systems are discusse'd in greater detail in Chapter 18. For now, they may be defined loosely as 
non-hierarchical systems - that is, systems in which control and data do not flow strictly up and down in the 
hierarchy. 
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Figure 15. la. Hierarchical structure. 

REPU 
report com
ponent use 

Figure 15.1 b. Pancaked homologous structure with coordinating procedure 
imbedded in modules. 

Pancaking to a homologous structure works for two reasons. First, unconditional 
transfers generally can be implemented with much greater efficiency in most languages 
and operating systems than can conditioned transfers (e.g., subroutine calls). Second, 
there are few intermodule transitions involved in the homologous structure. For exam
ple, the hierarchical structure of Fig. 15. la requires eight intermodule transitions for 
each iteration of the loop~ the homologous structure of Fig. 15. lb requires four. 

Pancaking to an equivalent, flat, hierarchical structure from a deeply nested one is 
much less likely to improve efficiency, because the above reasons do not apply. The 
conversion shown in Fig. 15.2 may, however, be the first step in an ultimate conversion 
to a homologous structure. In some cases, a few modules disappear in the process of 
pancaking as shown in Fig. 15.2. This will happen when modules in a fully factored 
hierarchy consist only of code to coordinate the subordinate modules. 

15. 3. 3 Compression 

The most ubiquitous of all structural manipulations to improve efficiency might be 
called "demodularization, ,, since it consists of compressing all of one module (or, less 
often, part of one module) into another. In the simplest possible case, this is done 
through lexical inclusion of the module, intact, in a superordinate. Depending on the 
programming language and the operating system, the gain in efficiency from this simple 
maneuver is likely to be marginal; it consists of the difference in overhead between a 
call to a lexically included subordinate, and a call to an external subordinate. 
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Figure 15.2. Pancaking to a hierarchical structure. 



OPTIMIZA TlON OF MODULAR SYSTEMS 271 

The subordinate code may be imbedded in the superordinate code with the bound
ary elements removed and the linkage elements removed or simulated. If the body of 
the subordinate is actually copied in-line at each point where the superordinate previ
ously contained a subroutine call, then there may be an increased memory requirement~ 
obviously, the analysis is similar to that required for macros. If we intend to include 
only one copy of the body of the subordinate module, some substitute for subordination 
may be used to force the one copy to function in several contexts. The most popular 
substitute is a switch mechanism. 

The effect of compression - even of the simplest form - varies tremendously, 
depending on whether the compression is accomplished before or after the system has 
been implemented. For example, the compound module AB, defined by the compres
sion of B into its ,superordinate A, may be implemented with the code for A and the 
code for B intermingled perhaps not even distinctly identifiable as A and B. If this 
takes place during the implementation of the system, then it is possible that separate 
uses of B within A will not be recognized as such - and each use of B will be solved, 
coded, and debugged separately. While there would appear to be no duplicated coding 
(the code for each use of B differs, and may be intermingled with the code for A in 
different ways), this obviously is an illusion. The possibitity of this occurring is a furth
er argument for optimization as a post-design or post-implementation process. 

As we can see in Fig. 15.3, compression upward and compression downward are 
equivalent when the entire module is involved. Most manipulations for efficiency in
volve compression downward in the hierarchy, as the goal is to reduce the number of 
intermodule transitions. Upward compression usually is only indicated when communi
cation paths may be reduced or eliminated. For example, upward compression might 
improve the efficiency of the structure shown in Fig. 15.4. The meaning of such a 
move would have to be carefully considered: The Hfunction" resulting from the 
compression might be meaningless. Furthermore, structures that have high cohesion 
and low coupling generally are fairly efficient to begin with - so upward compression is 
seldom necessary or successful. 

Lateral compression is analogous to the pancaking discussed earlier. It combines 
two or more (procedurally) adjacent subordinates into a single module. As illustrated in 
Fig. 15.5, this is equivalent to partial extraction of the coordination procedure from the 
superordinate (FOO), plus two (or more) complete upward compressions. Here again, 
the aim is to reduce the overhead of subordinations. 

15. 3. 4 Changing communication techniques 

A great deal of the overhead in intermodule transitions is involved in the passing 
of data~ consequently, some of the most popular optimization techniques involve 
minimizing the passing of such data. For example, if a data element is used in only one 
module - generally a low-level element is used in only one module - the designer 
may wish to change the communication of that element from a normal scheme to a 
pathological scheme. The ramifications of pathological communications were discussed 
extensively in Chapter 13. As we saw, one of the designer's greatest concerns should 

· be the possibility of future modifications to the system. 
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Figure 15.3. Equivalence of upward compression and downward 
compression of whole modules. 

Figure 15.4. Partial compression upward to reduce communication. 
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Foo 

Figure 15.S. Lateral compression of modules. 

Wherever there are multiple uses of a module that receives or transmits some 
data pathologically, the designer may find that it is more efficient to switch from a 
pathological communication scheme to a normal communication scheme. This would 
also be the case if a data element was being transmitted pathologically to several 
different modules - a situation that we would not expect to occur in the course of nor
mal structural design. Recall that normal communication most commonly involves 
passing of locators (addresses), while pathological communication usually involves pass
ing of data. Thus, the size of a datum relative to the size of a locator can determine 
which mode is more efficient. 

Another possibility is to change the communication from an intermediate file to 
an internal flow of data through primary memory. As we suggested in Chapter 14, un
necessary intermediate files are a common consequence of premature packaging by the 
analyst/designer. Thus, this form of optimization may simply be a rectification of a 
poor design decision. When packaging is done properly, the designer still may elect the 
use of intermediate files in order to make the system fit into a specified amount of 
memory; this usually means that various modules in the system will execute as over
lays. Thus, optimization represents a trade-off between CPU time and memory. By ex
panding the available memory for the system, the designer makes it possible for all of 
the modules to reside in primary memory simultaneously - enabling them to transmit 
data through memory rather than through tape or disk files. 

In several high-level programming languages - FORTRAN, COBOL, and PL/I in 
particular another source of overhead is the conversion of data from one format to 
another. The superordinate module, for example, may transmit a floating point number 
as an argument, while the subordinate module may be expecting an integer as its argu
ment. In some cases, the only question is whether this conversion should be performed 
explicitly (by the programmer) or implicitly (by the language or operating system)~ that 
is, it may turn out that the natural form of the data in th·e superordinate is the floating 
point, and the natural form of the data in the subordinate is integer. In many other 
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cases, though, the conversion process is the result of laziness or sloppiness on the part 
of the designer - a phenomenon that unfortunately is encouraged by the features of 
many popular high-level programming languages. 

In some cases, the designer also may increase the efficiency of his system by pass
ing arguments by value rather than by name. "Call by name," as interpreted in most 
programming languages,* means that the address of a parameter is passed from the su
perordinate to the subordinate module~ "call by value" means that the parameter itself 
is passed, usually through an accumulator or hardware register. For the subordinate 
module, the difference is one of addressing speed: The call-by-name approach requires 
an additional level of indirect addressing in order to access the parameters. The assem
bly language programmer obviously has the option of passing arguments by value or by 
name. In some implementations of FORTRAN, the programmer can specify that cer
tain parameters in a subroutine parameter list be passed by value. In all implementa
tions of COBOL known to the authors, all parameters in a CALL XYZ USING .... state
ment are passed by name. 

15.3.5 Recoding 

An option that the designer/programmer should always keep in the back of his 
mind is that selected, independent modules can be recoded into more efficient 
language. We can imagine, for example, that certain portions of a commercial applica
tion may involve extensive computations~ the appropriate modules could be recoded in 
FORTRAN. Similarly, we can imagine that various input-output operations would be 
more efficiently coded in assembly language. Indeed, we can even imagine recoding 
various modules in microcode if efficiency requirements are particularly stringent. 

The danger here is that many designers - and many programmers - have 
preconceived notions about the portions of their system that should be coded in a par
ticular language. It is a common feeling, for example, that computational logic is highly 
inefficient in COBOL, and that input-output logic is highly inefficient in any high-level 
programming language. While this may be true, we must remember that we are only 
concerned about the efficiency of a module relative to other modules in the system. 
The fact that a module's processing time can be cut in half is probably irrelevant if the 
module's current processing time accounts for only 0.0001 percent of the total process
ing time of the system. 

I 5. 3. 6 A na/ysis 

Experience has shown the value of actually drawing structural changes and consid
ering their consequences incrementally. Visual devices that suggest the nature of what 
is changing - such as Figs. 15. 3 and 15. 5 - are very useful. The structure chart is an 
extremely powerful tool in this regard. After each manipulation of the structure, a 
careful analysis should be performed to see what actual, demonstrable gains in 
efficiency and what probable sacrifices in modularity have been made. It often is possi
ble to see what kind of future changes will be more difficult and which procedures will 
be more complicated to debug and maintain as a result of the optimization. 

*We will not concern ourselves here with the subtle distinctions between Heall by name," "call by refer
enc:e," and "call by value" in such languages as ALGOL. 
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15.4 Summary 

We have tried to make several points in this chapter. Perhaps the most important 
is that efficiency is something that must be considered in the proper perspective that 
is, efficiency means more than just recoding a module to save a few microseconds. As 
we have pointed out, such optimization is irrelevant if the system doesn't work~ and 
since it is becoming more and more difficult to make our complex EDP systems work, 
we believe that the emphasis should be shifted from optimization to development of 
correct systems. At the same time, we observe that highly modularized systems usually 
are easier to optimize than monolithic rat's-nest systems. 

Most optimization can be accomplished in the simple manner suggested in this 
chapter. An analysis of the system will determine where the greatest improvements in 
efficiency can be achieved for the least cost, and will dictate which modu1e(s) should be 
recoded. Only if this approach proves inadequate should the designer consider changing 
the structure of the system to gain efficiency. 



CHAPTER 15: REFERENCES 

1. H.H. Sackman, W.J. Erickson, and E.E. Grant, ·~Exploratory Studies Comparing 
On-Line and Off-Line Programming Performance," Communications of the ACM, 
January 1968, pp. 3-11. 

2. Edward Yourdon, ~'A Case Study in Structured Programming: Redesign of a Pay
roll System," Proceedings of the 1975 IEEE Computer Society Conference, Institute 
of Electrical and Electronics Engineers, IEEE Cat. No. 75CH0988-6C. New York: 
1975, pp. 119-122. 

3. Donald E. Knuth, "An Empirical Study of FORTRAN Programs,'' Software -
Practice and Experience, Vol. 1, No. 2 (April-June 1971), pp. 105-133. 

4. Larry L. Constantine, "A Modular Approach to Program Optimization," Comput
ers and Automation, Vol. 16, No. 3 (May 1967). 



SECTION V 
EXTENSIONS 

Many problems, indeed broad classes of problems, become significantly 
simpler to eliminate when conventional modules are employed in slightly un
conventional structural arrangements, or when subroutines are replaced by less 
familiar types of modules. This section, destined to be one of the most contro
versial, extends structured design beyond the status quo. In Chapter 16, a 
typology is developed not only to encompass existing module types but a!so to 
highlight areas for future development of novel kinds of modules having highly 
desirable features. Recursive structures are discussed in Chapter 17 as a special 
case in structured design. One implication of this discussion is that re.cursion 
may be of broader utility than previously assumed by most designers. 

Chapter 18 defines and explores, in detail, two exotic types of modules, 
the coroutine and the subcoroutine. Used appropriately, these modules permit 
the decoupling of modules more completely from one another, and can elim
inate many of the problems associated with state maintenance in nested 
subroutines. 

Substantial payoffs can result from adding to the designer's tool kit the 
relatively simple mechanisms that are suggested in this section. We are con* 
vinced that some of these apparently oflbeat proposals will become standard in 
the near future. 





CHAPTER 16 
A TYPOLOGY OF SYSTEMS COMPONENTS 

16.0 Introduction 

When modularity is first introduced, one frequently hears, HOh, you mean using 
subroutines." It is true that the subroutine is the most ubiquitous type of module 
within computer systems~ fortunately, it is not the on(y type! In fact, there is a whole 
array of modules available to the designer/programmer. Not to make full use of this ar
ray is to do oneself a disservice. 

By "type" of module, we are not referring to .fimction. A complete functional 
classification of modules would be difficult - and the exercise would have very little 
value if it were not exhaustive. Establishing functional categories of modules - e.g., 
inputting, calculating, housekeeping, and so on - and then saying that modules in the 
same category are of the same type is analogous to saying that bolts, rivets, and glue 
spots are the same because they are used to fasten. Such a distinction between 
"fasteners'~ and "members'' may be important at some point, but we are more in
terested now in distinguishing bolts from rivets and in determining the relative merits 
of each in various functional applications. 

The designer obviously should know of the existence of bolts and rivets, and 
should be able to tell one from the other when he gets hit by one. More important, 
though, he should be able to select the best one for a given purpose. He should know 
and understand the problems unique to each type. He should know that a bolt is 
different from a rivet even if both are being used (are functioning) as paperweights. 
The designer should be able to recognize a nutless bolt held in place by its peen as a 
special case - a bolt u~ed as a rivet. 

An analogous physical classification of modules for computer systems is more 
difficult for several reasons. We cannot point to a module and describe its shape or' 
color. Size is no help, either: Some subroutines are larger than other programs. Fur
thermore, the software field has generated a thick fog of jargon, which confuses the is
sue. Is a PL/I "procedure" the same as an ALGOL uprocedure "? Always? One need 
not have much experience in the field to assume that a FORTRAN urunction-type sub
program" and an ALGOL procedure are essentially the same thing. Sometimes~ the 
same word denotes different types of modules, and sometimes the same module is 
called different names. Every computer manufacturer and language developer seems to 
create his own unnecessary jargon. How can we penetrate the fog of jargon and objec
tively classify modules? 
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16.1 Activation characteristics 

The idea of distinguishing modules by their control or activation characteristics 
was first suggested by Wegner. 1 When refined, this approach not only provides an ob
jective basis for classifying modules, but also suggests lines for the development of new 
types of modules. 

While other schemes are certainly possible, a three-dimensional characterization of 
activation and control has proven useful. This involves three (possibly interdependent) 
factors: time, mechanism of activation, and pattern of control flow. Modules that differ 
in any one dimension can be regarded as different module types, while modules that are 
identical in these dimensions are of the same type - regardless of the jargon with 
which they are surrounded. 

16. 1. 1 Time-history 

We first introduced the concept of a system's time-history in our discussion of in
termodular connections in Chapter 6. A specific module performing a given operation 
on particular data may become part of the control or activation stream at any point in 
the system's time-history, although most modules become part of the activation stream 
at execution time. A Hdefinition-time" module must become part of the activation 
stream and have its contents and data context determined at the lime the programmer 
writes the code. Obviously, such a module is in-line. The hand-tailored, in-line, un
named macro-like block that the programmer copies into his code from another source 
is an example of a definition-time module. We call such a module a segment. 

16. 1.2 Activation mechanism 

The basic nature or behavior of the mechanism by which a module is activated is 
another dimension for distinguishing modules. Within this dimension, basic elements 
have been identified. 

The source of activation - that is, who does (or can) activate a module - often 
determines the type of module. Two activation sources are relevant: the operating en
vironment and other modules. These sources may activate a module synchronously -
that is, by explicit command~ alternatively~ a module may be activated asynchronously 
- that is, by a signal (trap) or interrupt. Modules activated by an unbroken chain of 
explicit commands are said to be in the base load; those activated by an interrupt are 
said to be uinterrupt modules" or in the interrupt load, as are the modules they activate. 
Clearly, a module may be in both the base load and the interrupt load. 

A conditioned transJer is a jump out of the current execution sequence with the 
condition that control eventually be returned to the execution sequence from which the 
jump was made. The conditioned transfer establishes the mechanism for this return. A 
conditioned transfer always refers to a target location explicitly (by name, address, or 
other identifier). A return always transfers to the location of an instruction in the se
quence associated with the most recently conditioned transfer for which a return has not 
yet been made. Thus, the pattern of conditioned transfers and returns always defines a 
fully nested set of activations. Such a system is hierarchical since the conditioned 
transfer establishes its origin as a sequence superordinate to (having control over) the 
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target sequence. Mechanisms for implementing conditioned ~ransfers and returns, as 

we have defined them here, are numerous and will not concern us now. 

A transfer also may be unconditioned - that is, carrying no tacit condition of re

turn. Unconditioned (which could be conditional, that is, based on the outcome of a 

decision; or unconditionab transfers give up responsibility completely; hence, they do 

not define a hierarchy of subordination. Rather than giving up control (in either a con

ditioned or unconditioned fashion), the activation of a module sometimes establishes a 

new control stream, activating the module as a parallel or coordinate process. This crea

tion of a separate control stream may be realized either with genuine parallel processing 

(i.e., with multiprocessing hardware) or with simulated parallel processing (i.e., with the 

assistance of a multitasking or multiprogramming operating system). The general term 

bifurcated transfer (nforking,~ transfer) will be used to cover either case. 

16.1.3 Paffern of control.flow 

When activated, most modules begin execution '~at the beginning" - that is, at 

the origin or (lexically) first executable statement. However, a module may begin exe

cution at the point at which operation was last suspended - and that will be called its 

reentry. A module that begins execution at its reentry, or picks up where it left off, will 

be called an incremental module. Such a module may perform its task incrementally -

that is; a portion at a time, one part on each activation. Clearly, incremental and nonin

cremental modules have very distinct patterns of control flow. Note that the general 

case (more powerful) is that of incremental execution. Without resorting to program

ming tricks, an incremental module can be made to function nonincrementally simply 

by following (lexically) each transfer out of the module with an instruction to transfer 

to its origin. We will discuss incremental modules in more detail in Chapter 18. 

A module may reference another module~ not to activate it but rather to check its 

progress, guarantee completion of a certain point, or otherwise fall in step. This syn

chronization changes the pattern of control flow; hence, we distinguish synchronized 

(note, not synchronous) modules from unsynchronized ones. Any mechanism - a 

switch, a flag~ an "event variable,, as in PL/I - may be used to implement synchroniz

ing references. In its strictest sense, the referencing module is the synchronizing 

module, and the referenced module is the synchronized module (or the other way 

around in some schools). The point is that synchronized modules, being different an

imals (or rivets), have their own design problems. 

16. 1.4 Terminology 

The combinations of characteristics in these three basic dimensions yield many 

different types of modules. Not all have names or are even useful. Figure 16.l 

identifies those module types with established names. They also are the most important 

physically distinct types of modules. We can qualify those names with other factors, 

such as base-load or interrupt-load subroutines. These are different modules, with 

(somewhat) different design problems~ the interrupt-load subroutine, for example, must 

be ''transparenC' and leave all working registers in their original state when it exits. If 
it makes sense, as with "conroutine," the qualifiers synchronized or unsynchronized 

may be appended. 
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The terminology itself warrants explanation. As we pointed out in the Preface, 
the bias in this book is to favor descriptive, single-word, nonconflicting terms. When
ever possible, common nouns with a broad meaning are not usurped for a narrow 
technical purpose. Exceptions depend on consistency and precedents in other fields. In 
Fig. 16. I, the terms in parentheses are less desirable names, even though they may be 
used fairly widely. In some cases, they are strongly associated with a particular 
language or a particular computer manufacturer. All of the modules shown in Fig. 16.1 
are discussed in the section below, with the exception of subcoroutines, coroutines, and 
conroutines; these are discussed separately in Chapter 18. 

ENTRY 
MODE 

From environmen 

From modules 

UNCONDITIONED 

BIFURCATED 

Figure 16.1 

t 

NONINCREMENTO,L 

Definition Translation Execution 
time time time 

PROGRAM 
(Main routine 
job step) 

SEGMENT MACRO SUBROUTINE 
(Submodule) On-line or (Procedure, 

open subroutine subprogram) 

ROUTINE 
(Phase, 
lransfer) 

CON ROUTINE 
(Task) 

Module types. 

16.2 Common types of modules 

INCREMENT AL 

SUBCOROUTINE 
(Demand 
corou1ine) 

COROUTINE 

The most common modules are the nonincremental ones. Of those shown in Fig. 
16.1, only one is not a module~ a segment is a kind of "not quite" module. From the 
point of view of activation characteristics, a segment is a module whose code is copied 
in-·line by the programmer. It is thus entered with condition but becomes part of the 
activation stream at definition time. Although this may seem a trivial or degenerate 
case, such an approach to modularity may be useful. A definition-time module may 
achieve some of the benefits of modularity (especially in terms of avoiding duplicated 
coding), while minimizing certain costs (notably CPU-time execution costs). 

Consider a situation in which some very small function has been identified as be
ing part of a dozen or more different larger tasks. It could be so small that the over
head of calling it substantially exceeds the useful work done by the function itself. If it 
is used many times, this overhead may be unacceptable. On the other hand, leaving 
the task to each programmer of each module is a waste of human resources. Each pro
grammer, whether he realized it or not, would be coding and debugging the same se-
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quence as everyone else. Should this turn out to be a tricky a.11d error~prone sequence 

of code, the cost of duplication could be significant. The hand-tailored segment is thus 

a good compromise solution. The common operation is coded and debugged once~ 

thereafter, the body of code is copied in-line each time it is needed. 

Although segments can be usef ut, various other forms of modules are far more 

common: subroutines, programs and functions, and macros. These are discussed in 
the three subsections that follow. 

16.2. l Subroutines 

A subroutine is a module activated at execution time by a conditioned transfer. 

Its mode of execution is nonincrementaL Any module that satisfies these requirements 

is a subroutine, regardless of its jargon name, provided we find it activated from the ex

ecution stream of another module. Two special cases may be distinguished: modules 

that are subroutines except for the fact that they are activated either by the operating 

environment or, secondly, from the evaluation stream. These are artificial distinctions, 

the consequences of which will be discussed in the next subsection. 

From a control standpoint, COBOL paragraphs activated by the PERFORM verb are 

subroutines. So are ALGOL procedures and FORTRAN subroutine-type subprograms. 

Subroutines are by far the most common module for computer systems. Even 

languages that do not provide a linguistic mechanism for subroutine activation often 

provide a method for simulating it - such as the switch, or assigned transfer, features 

of some languages. 

16.2.2 Programs and.functions 

Many programmers and analysts, who distinguish daily between programs and 

subroutines in practice, find it difficult to define the two in any rigorous fashion. The 

following are all common, but inadequate. definitions: 

• Programs are larger than subroutines. (Clearly, this is not always 
true!) A program performs a complete function, while a subroutine 
performs only a partial one. (How is "cosine" any less complete than 
the first pass of a file update?) 

• Subroutines are part of programs~ programs include subroutines. (But 
a program need not have subroutines. Hinclude" is ambiguous here.) 

In truth, the distinction between programs and subroutines is whatever the 

language/compiler/operating systems conventions make it. In most cases, subroutines 

are permitted to do certain things that programs are prohibited from doing, and vice 

versa. Subroutines, as a general rule, can accept arguments, while programs cannot. In 

many systems, a program can be execut~d by jtself, but a subroutine cannot. 

These restrictions lead to very real problems in building systems. In most en

vironments, to implement modules as programs is to choose a dead-end design method

ology. Generally, one cannot write a payroll program, then later choose to call it as a 

subprocess in a corporate simulation system. Subroutines with arguments provide con

siderably more flexibility in this respect. In most second-generation systems, there was 
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no way to imbed programs A, B, and c in a loop - much less have B conditionally exe
cuted depending on the value of some output from A. Third-generation systems with 
sophisticated job control languages represent somewhat of an improvement. However, 

few if any - of the existing job control languages compare to the power and simpli
city of the following: 

DO l I TO 23 
CALL A (IN,OUT); 
CALL C 00.2,1): 
fF OUT 107.9 THEN 

CALL B (IN); 
ELSE 

CALL B (IN + 1) 
END; 

where A, B, and care subroutines. It is this ability to build larger subroutines from calls 
on smaller subroutines - and still larger subroutines, in turn that makes the 
subroutine so attractive as a basic systems building block. 

In the final analysis, all that commonly distinguishes programs from subroutines is 
that programs are entered from the operating system. However it is implemented, the 

operating system activates a program (according to the particular job control instruc
tions) with a conditioned transfer of control. It always is expected that control will be 
returned to the operating system's sequence. For a program to retain control clearly 
would be tantamount to disaster. 

In the long run, it is to the advantage of the EDP profession to abolish all distinc
tions between programs and subroutines. The same module should be activated at the 
top level of a system, or as a subordinate, depending on the requirements of the task. 
Tht~ easiest approach to this problem is to banish programs by administrative fiat! 
Every system then could be developed as a subroutine with meaningful arguments. If 
the operating system is stubborn and will digest only programs, then a small program 
readily can be written that will do nothing but call a subroutine - a subroutine that is, 
in fact, the whole system. 

The distinction that separates functions and subroutines, though leading to some 
mathematical elegance in certain proofs, is equally detrimental to software engineering. 

One way of drawing the line between functions and subroutines is to say that functions 

take on a value~ more precisely, a particular activation of a function may take on a 

value. For example, the activation of the module SQRT takes on a value that is used in 
the evaluation (hence, the term ''evaluation stream" at the end of the preceding sub

secllion) of the expression 

Z = A + SQRT(XJ - L2 

In structural terms, this is merely a matter of the communication mechanism. 

Some modules - commonly called functions - are permitted to transmit an output 
value back to the superordinate without either the superordinate or the subordinate 
naming the value. Another common characteristic is that the functions are not allowed 

to return other outputs via arguments and parameters. However, this is unnecessary 

and undesirable. 
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The context in which a module gets activated implicitly dS a result of an attempt 
to evaluate an expression may be called the evaluation stream. In most programming 
languages, it is easily - even rigorously - distinguished from the execution stream 
that flows from statement to statement. Thus, we might say that a function is a 
subroutine activated from the evaluation stream. 

For the programmer who works as a designer and/or an implementer, it is desir
able to be able to choose freely the manner in which output values are communicated. 
It is even useful to have modules only sometimes return values. Or, it might be useful 
to have the same module operate as a function or as a subroutine, depending on wheth
er its value: is of interest to the superordinate. While these abilities may make theoreti
cians shudder, they are trivial to implement, and they do not seem to be error-prone in 
use. All that is required is the ability to ignore a value, if assigned but not needed be
cause of activation from the execution stream, and the ability to supply a value if one 
has not been assigned. The null case - in which a function value is needed but has 
not been assigned - may be handled by assigning standard default values, or by treat
ing it as an error. A programmer-controlled choice is best. 

16.2.3 Macros 

Historically, subroutines were called ~~closed routines" or ·~off-line subroutinesn 
to diff erenliate them from something else that was then called a subroutine. The most 
common term today for an in-line or open subroutine is a macro. A macro is a module 
(by the strict definition given in Chapter J) whose body is effectively copied in-line dur
ing translation (e.g., compilation or assembly) as the result of being invoked by name~ 
that is, the bounded contents replace the reference to the aggregate identifier. The pro
cess of copying in-line, with or without special adaptation called '"'tailoring," is often 
called aexpansion.'' A macro is expanded as a result of being invoked. Translation of 
the macro body into target language may happen before, during, or after expansion, 
although the current trend is to prefer translation after expansion. 

In the terminology used by several computer manufacturers, there is some confu
sion between macros and subroutines. Let us say that the FETCH "'item,, ON ~'file" is a 
function which performs all necessary housekeeping in order to deliver successive logi
cal items from a particular file - including deblocking, ·aggregation, and so on. Inclu
sion of the statement 

A: FETCH PAYREC ON PAYROLL 

in a program might result in the following expansion: 

A: ICOOJ ICOOJ + I 
CALL SYSFETCH (PA YRSPEC, PAYROLL, 1024) 
MOVE BUFSY 0024, PA YREC) 

At execution time, we might find that a block of operating systems code is entered 
as the result of the call to SYSFETCH. SYSFETCH is not the macro, neither is it part of 
the macro - no more than SQRT is the subroutine FOO or is part of the subroutine FOO 
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just because we find SQRT used (referenced) in FOO. The FETCH macro happens to call a 
subroutine named SYSFETCH. Unless there are language restrictions, macros may call 
subroutines or invoke other macros. Similarly, subroutines may invoke macros. The 
three lines of code beginning at label '"A" in the above example are not the macro 
FETCH, but just one (of, possibly, many) expansions of it. The macro FETCH exists 
somewhere as a definition. In its prototype form, a macro looks like a subroutine: It 
has a declaration of its existence, a list of arguments or parameters, a body of code, and 
some boundary or boundaries. 

Because they are activated at translation time, macros may fill many purposes that 
subroutines may not. Their contents may be tailored automatically to fit the require
ments of a specific invocation. For example, some instructions may be added if a par
ticular argument is present. In their most general form as so-called context-free 
character-string macros, they may be used literally to change the appearance of the 
language in which they are defined. The linguistic extensibility features will not con
cern us in this book - not because they are unimportant or unexciting, but because 
they do not play a structural role in the design task. We will note merely that, besides 
being a type of module usable much as subroutines, macros may be a way of extending 
and changing the appearance of a programming language. 

At the point when the designer is making a rough cut of the procedural design of 
a module, it may not be important to him whether a facility is provided through mac
ros, subroutines, or some combination of the two. If he knows that at point QQl he 
wants to, say, degesmilate his data, and if he knows that there exists a module DEGEST 
that performs that function, then he is really concerned only with showing that it is the 
function of DEGEST he wants performed at that point. Thus, he would write 

QQl: DEGEST MY DATA 

In short, he does not care whether degesmilating is accomplished by a subroutine, a 
macro, or a machine instruction. His system wiJI work as long as MY DATA is degesmi
lated at QQt. The designer is concerned with the details only if he runs out of storage 
or execution time in the process of degesmilating his data. 

Other things being equal, a system composed entirely of macros will run faster but 
take more space than a system built from subroutines. It runs faster because linkage 
and argument communication are dealt with at translation time. It takes more space be
cause each invocation results in a copy of all or part of the body of the macro. 

(la programming language uses a common syntax for activating both macros and 
subroutines, then there is a particularly elegant way of trading off time and storage. Of 
course, there are myriad ways to speed up systems at the expense of primary memory, 
and vice versa~ most require extensive analysis, recoding, and debugging. However, let 
us assume that a system is built and debugged as a structure of modules. As it grows, 
let us imagine that we discover that there is insufficient memory. In such a case, we 
may simply change the declaration of some of our modules from MACRO to SUBROUTINE 

and recompile. If the system ran before, it will run now - only slower. It also will 
take less space. Most important, the effect is automatic and does not require any 
analysis, recoding, or debugging. 
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16.3 Summary 

It should be clear that macros, functions (in the sense used in this chapter), pro
grams, and subroutines are closely related physical entities. In many cases, it is to the 
programmer/designer's detriment to emphasize their differences. Ideally, we would like 
to be able to use them interchangeably, as suggested in the paragraphs above. 



CHAPTER 16: REFERENCE 

1. Peter Wegner, Programming Languages, Information Structures and Machine Organi
zation (New York: McGraw-Hill, 1968). 



CHAPTER 17 
RECURSIVE STRUCTURES 

17 .0 Introduction 

Nothing in this book so far - least of atl the mechanics of the structure chart it
self - precludes structures of the type shown in Fig. 17.1, in which the graph for the 
structure chart has cycles in it This type of structure is known as recursive. Modules F, 

G, and H all are recursive modules. From a structural standpoint, a recursive module is 
simply any module M for which we can say that M is subordinate to M. If a module is 
subordinate, but not immediately subordinate to itself, the situation traditionally has 
been referred to as simultaneous recursion; modules G and H in Fig. 17.l are simultane
ously recursive. Although it is traditional to discuss recursion from a procedural or al
gorithmic viewpoint (for a concise introduction to the subject, consult Barron 1), it is 
obvious that recursion is also a structural phenomenon and, therefore, may be explored 
in terms of structural issues, including structural design. 

The weird structures exemplified by Fig. 17.1 can arise either from deliberate 
design or by accident~ they may be sensible, even simple interpretations of many types 
of problems, or they may be mistakes. In either case, there will be special conse
quences that must be taken into account by the designer and implementers. 

Completing the task of a module by calling the module itself does not mean that 
an infinite loop will result. Careless or accidental use of recursion (see Section 17.3) 
can result in infinite recursion and those dreadful operating system messages feared by 
all advocates of recursion: PUSH-DOWN DEPTH EXCEEDED and GARBAGE COLLECTION 
FAILED. The necessary (but, alas, not always sufficient) conditions for termination of a 
recursive module are two. First, at least one call in the cycle of subordinates must be 
conditional - for example, the call on H in Fig. 17.1. Second, the exact values of input 
arguments may not repeat within recursive calls. The example below in Section 17.1 
will clarify how these conditions are met through the appropriate use of recursion. 

17 .1 Functional recursion 

Many mathematical functions are or can be defined recursively; that is, the func
tion for a given value is defined in terms of the same function of other values. If we 
can be forgiven the use of an overused example (well, it is simple and familiar), the 
factorial function can be written in computer Esperanto as: 

FACTORIAL FUNCTION ARGUMENT N: 
IF N = 0 THEN RETURN I~ 

ELSE RETURN N x FACTORIAL (N-1); 

END: 

289 
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The modular structure of this system is obviously that of Fig. 17.2. For this system to 
work correctly, each reuse of FACTORIAL must employ the proper data context (only the 
argument N in this example)~ and return to the proper location defined by the last con-

1 

ditioned transfer activating FACTORIAL, whether from within an activation of FACTORIAL 
or elsewhere. Obviously, if the procedure within module FACTORIAL were to make use 
of any temporary variables, the right (potentially, different) values for each of these 
would have to be used in each activation. 

The processing overhead requirements are well known to most programmers and 
analysts; for recursive use, each reentry of a module must ensure that the existing data 
context and control state be preserved On a LIFO queue or push-down stack), and each 
return from such a reentry must restore the last· data context and control state. These 
requirements may be met automatically by various major programming languages, in
cluding PL/I and ALGOL. The need for such overhead processing is most important to 
recognize where recursion is unintended. 

ti 

Figure 17.1. Cyclic 
(recursive) hierarchical structure. 

Figure 17.2. Structure of a recursive 
factorial routine. 



RECURSlVE STRUCTURES 291 

17. 1. 1 Recursion, reusability, and reenterability 

Some modules perform differently on each activation~ this may be useful or prob
lematical depending on the application and on whether the variation in performance was 
planned. A module that always executes in the same way on each separate activation, 
as if it were a fresh copy, is said to be reusable (or serially reusable). For a subroutine 
(or function) to be reusable, a correct new data context and control state only need to 
be established on each entry following a return from the module. This can be accom
plished with nothing more than the restriction that the module cannot "have a 
memory"~ that is, there are no variables whose values are retained from one complete 
activation to the next (OWNed or STATIC variables). Tints, any recursively usable module 
is also serially reusable, but not vice versa. As you can see, reusability is a weaker proper
ty than recursivity. 

A module is said to be reenterable if it can be reactivated correctly at any time, 
whether or not it has been suspended by a conditioned transfer or return. Reenterabili
ty is a stronger property~ hence, any module that is reenterable also can be used recur
sively, but not vice versa. A "pure procedure" - that is, a module with only constant, 
executable elements - is one (but only one) way of achieving reenterability. 

17 .2 Recm·sion by design 

The example of the FACTORIAL module given above suggests one reason why 
designers might be interested in recursion. Although the gain in that case is very mod
est, a recursive structure for many kinds of problems will be an especially ''simple" 
solution compared to the iterative alternatives. Sometimes, the best word might even 
be Helegant." Recursive structures can arise from a pure black-box approach in which 
the designer makes use of the appropriate black box for accomplishing a particular task, 
even if the black box is the one still being designed. Besides naturally recursive func
tions such as factorial (and its generalization as the gamma function) combinations, 
and such distributions as the chi square - recursion is appropriate and simplifies 
processes involving text-processing, language-processing (including compilation), 
game-playing systems, heuristic optimization techniques, analysis of graphs and net
works (e.g., critical path, PERT, transportation networks, and so on), and all forms of 
structured data. Structured data are data containing explicit structural information that 
relates, by reference, an element of data to other elements of data. The range of appliN 
cations of recursive structures is very broad and includes many kinds of conventional or 
business EDP problems. 2•3 Table 17 .1 lists some potential applications of recursion. 

Figure 17 J represents an example of one type of structured data, so-called 
configuration data, representing the configuration of physical systems. There are many 
processes that might be of interest as applied to this type of data, for example, a "parts 
explosion" that lists all parts, systems, and subsystems of the given unit. We will try a 
slight variation on parts explosion, in which all the subsystems of a system that were 
supplied by a particular vendor are to be exploded, i.e., have all parts listed out. The 
total count of all components supplied by that vendor is to be reported. The data for a 
component with a particular identification code, ID, may be obtained by RETRIEVE (ID, 
DAT A)~ VENDOR (DAT A) yields the vendor ID~ SUBCOMP (DAT A, N) yields the com
ponent ID for the Nth immediate subcomponent of DATA if it exists or zero if there is no 
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N 
111 subcomponent. VENDOROUT (DATA) enters the required information into the ven~ 

dor list report. 

Table 17.1 

Applications for Required or Useful Recursive Structures 

Algebraic and formula manipulation 
Bill-of-materials and parts explosion 
Compilers and assemblers 
Configuration data 
Critical path method and PERT analysis 
Expression evaluation 
File in version 
File management and update 
Flowcharting programs 
Game-playing programs 
Genealogical analysis 
Heuristic programming 
Information retrieval 
Interpreters 
Inventory control and analysis 

io! AoTD'iOOtLe 

Language processing and translation 
Library cataloging and processing 
List processing 
Macro preprocessors 
Mathematical optimization (e.g., "backtrack programmingH 
Network and graph analysis 
Optimization of code, program simplification 
Simplification of expressions 
Simulation (e.g., traffic networks, electrical circuits, etc.) 
Sociograms and social network analysis 
Stacistics and probability 
String and text processing 
Structure charting and analysis of program structure 
Theorem proving 
Work-breakdown data, analysis, updating, reporting 

3i7 5DDY' 

Figure 17.3. Example of configuration data for an automobile's structure. 

For data of the sort' shown above in Fig. 17.3, no strictly iterative system will work 
unless, in part, it simulates recursion through the use of stacks or a system of markers. 
A recursive structure is straightforward and easy to read. See, for example, the struc
ture on the following page. 
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VENDORREJPT: SUBROUTINE ARGUMENTS SYSTID, VENDID, VENDNAME; 
N = VENDORLIST (SYSTID, VENDID); 
PRINT "VENDOR", VENDNAME, "SUPPLIES", N; 
RETURN; 
END: 

VENDORLIST: RECURSIVE FUNCTION ARGUMENTS COMPID, VENDID~ 
RETRIEVE (COMPID, COMPDATA); 
IF VENDOR (COMPDATA) = VENDID 

THEN RETURN EXPLODE (COMPDATA): 

END; 

ELSE; 
NUM 0; 
I = 1; 
UNTIL SUBCOMP (COMPDATA, [) = 0 DO~ 

NUM = NUM + VENDORLIST (SUBCOMP(COMPDATA, I), VENDID); 
I= I+ 1 

END UNTIL; 
RETURN NUM; 

END ELSE: 

EXPLODE: RECURSIVE FUNCTION ARGUMENTS VCOMP, DATA: 
CALL VENDOROUT (VCOMPDATA); 
NUM = 1; 
I= L 
UNTIL SUBCOMP (VCOMPDATA, I)= 0 DO; 

RETRIEVE (SUBCOMP(VCOMPDATA, I), Sl/BDATA); 
NUM NUM +EXPLODE (SUBDATA); 
l =I+ 1; 

END UNTIL; 
RETURN NUM; 
END: 

The structure chart for this coding is shown in Fig. 17.4. Notice how this design direct
ly represents that EXPLODEing a part consists of EXPLODEing each of the subparts. Pro
ducing a VENDORLIST for a part consists of EXPLODEing the part if it is the right vendor, 
or doing a VENDORLIST of each of the subparts. The designer has simply invoked the 
needed function at the appropriate point. 

17. 2.1 Recurs;on and iteration 

It is always possible to transform a recursive process into a nonrecursive or itera
tive process that uses only loops rather than recursive calls. In most cases, this 
amounts to simulating the recursion by having the procedure do its own explicit stack
ing and unstacking of the data. It is possible to make some gains in efficiency in this 
way, but this must be balanced against additional pr,agramming of a sort that may be 
prone to errors, especially as the system is modified. The cost of recursion may be van
ishingly small for modules that, for other reasons, are managed dynamically and that 
have their storage allocated dynamically by the operating environment. 
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Figure 17.4. Structure of the system to explode and count all parts 
supplied by specified vendor. 
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The coding for EXPLODE uses a mixture of iteration and recursion. The loop 
iterates across the list of immediate subcomponeints and recurs down each subcom
ponent branch. Very often, the structure of the data or the way the data physically are 
stored and accessed will give a distinct advantage to recursion in one direction rather 
than the other. 3 The EXPLODE module might be rewritten as follows to iterate down 
levels and to recur across: 

EXPLODE: RECURSIVE FUNCTION ARGUMENTS VCOMPDATA, I; 
NUM 1; 
UNTIL SUBCOMP (VCOMPDATA, [) = 0 DO; 

CALL VENDOROUT (VCOMPDA TA); 
NUM = NUM +EXPLODE (VCOMPDATA, l+l); 
RETRIEVE (SUBCOMP (VCOMPDATA, [), VCOMPDATA}; 

END UNTIL~ 
RETURN NUM~ 
END; 

17 .3 Recursion by accident 

Functional recursion is not likely to occur unintentionally when a complete struc
ture chart is drawn up in advance; any cycle on the structure chart would be evident. 
Simultaneous functional recursion can appear accidentally whenever a total design is di .. 
vided between two or more designers or when the complete structure has not been laid 
out first. Perfectly good design philosophy, if not guided by good strategy or aided by 
the structure chart as a tool, can lead to some costly recursion. 

The developers of a new operating system might adopt the apparently sensible and 
innocent philosophy that (1) each separate service shall be implemented as a separate 
callable module, and (2) all modules requiring a certain service shall make use of the 
one module that is to perform that service. What could go wrong? Suppose there is to 
be a single universally used module, LETMAIN, to allocate a block of core storage under 
the dynamic storage management discipline employed in this sophisticated operating 
system. If there is insufficient core storage in the running program's allocation, LET

MAIN is to put a message to an output device designated in the program's Bactivation 
table" via the module MESSOUT. MESSOUT, designed by another designer, conforms to 
the system ''s modular design philosophy. Of course, before it can write any message to 
a device, it must set up a message buffer, and of course, the module to use is LETMAIN. 

The structure obviously is recursive without being planned that way. Should LETMAIN 

ever actually call MESSOUT because the allocation of memory is used up, an infinite re
cursion of "after you, Alphonse" will result. The potential problem would be self
evident from the structure chart of Fig. 17 .5, which should have been drawn up before 
LETMAIN and MESSOUT were programmed. 

Uses of recursion may be as near as your next sequential file update. Figure 17.6 
illustrates one structure (not the structure or even necessarily the best) for updating the 
items of a sequential file. Looking at this structure from the top down (as the designer 
must have done when first developing it), we see that the function of updating a file, 
UPDATE, is composed of an iteration on getting an un-updated item (GETOLDMFREC) 

and updating it. To UPDA TEI REC requires processing all transactions (possibly none) 
against that record. What do you do if in trying to update the record numbered 136, a 
transaction to create a record numbered 135 is encountered? The newly created record 
135 could also have transactions against it. Obviously ('?), to process a correct uinsert 
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record" transaction, you must create the record, then completely update it. There is al
ready a module in the system that will perform the latter function, namely UPDATEIREC. 
The resulting recursive structure works!* 

' ' ' ' 

LETMAIN 

I 
I 

I 
I 

Figure 17.5. Accidental recursion resulting in a deadly embrace. 

*In alt fairness, a recursive structure for this problem is overkill, since the nesting can never correctly go to 
more than one level. But the procedures would be fairly straightforward to write. 
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llf'PATE 

I I 

i- I 
~ 

Figure 17.6. Recursion in a sequential file update. 



298 STRUCTURED DESIGN 

17.3.1 Dynamic recursion 

For any procedure to be recursive, all that is required is a loop (cycle) in condi
tioned transfers of control. (By contrast, iteration involves cycles in u~onditioned 
transfers.) The conditioned transfers need not necessarily be explicitly written 
subroutine calls for the structure to be recursive and consequently require the special 
facilities for recursion. Interrupts and switching between execution of one user's active 
task and any other task operate as conditioned transfers. 

In another example from systems software, one second-generation operating sys
tem (which shall go unnamed) made use of a master routine to PRINT on an on-line 
printer - a nontrivial operation requiring code conversion and direct control of the tim
ing of the converted tabulating machine that served in this capacity. User software, as 
well as all parts of the operating system, printed on-line via PRINT. Among the modules 
that called PRINT were interrupt processing routines, such as CHEKTAPE, the routine that 
intercepted the Hmagnetic tape transfer complete" signal, checked for parity error, and 
reread or rewrote the record if necessary. A long series of parity failures on the same 
record would result in a call to PRINT to tell the operator that something was awry. The 
structure of this system is portrayed in· Fig. 17.7. · 
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Figure 17. 7. Module shared by base load and interrupt routine. 
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Since PRINT can be called by the main processing stream and from CHEKTAPE~ it is 

said to be in both the base load and the interrupt load. Any module that can be activated 

from both the base load and any interrupt load (that is, both synchronously and asynchro

nously fi'om the operating environment) ·is potentially dynamically recursive! An interrupt 

can occur at any time, including during some use of PRINT by the base load. The inter

rupt itself, which must return to the point interrupted, functions as a conditioned 
transfer. The dynamic recursion is clear in Fig. 17.8. 
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Figure 17.8. Dynamic recursion in PRINT module. 
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In our example, since on-line printing is slow relative to tape transfer, there is some not 

insignificant probability of the dynamic recursion shown. It is unlikely that this situa

tion will develop on just the 40th successive parity failure~ but if it does, the return lo

cation for PRINT to go back to FOO gets clobbered and an infinite merry-go-round is es

tablished between parts of PRINT and CHEKTAPE. As the reader can guess, such infinite 

loops did occur in using this operating system (Murphy~s Law again) without leading to 

a correction. Why'! Because correcting all of these dynamic recursions would require 

either (a) multiple copies of all routines on both base and interrupt loads (wasteful!), or 

(b) interrupt lock-out during execution of all such routines (unacceptable!), or (c) mak

ing such routines properly recursively usable, which would, of course, be inefficient to 
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say nothing of requiring too much work. The bugs remained through all umpteen ver
sions of the operating system! 

Dynamic recursion exists whenever a module (1) is shared by two or more tasks, 
even from different jobs, which can be among active jobs at the same time, (2) is used 
by routines handling different interrupts or asynchronous processes, or (3) is reachable 
from both base and interrupt loads. Usually, these modules are implemented as pure 
procedures to meet correctly the requirements of dynamic recursion~ with proper design 
of the operating environment, recursivity can be sufficient. 

17.4 Summary 

Recursive or cyclical hierarchical structures are useful for the simple realization of 
many kinds of problems. In fact, if the designer merely judiciously pursues a top-down 
design by transform analysis or some other function-centered strategy, invoking the use 
of modules as black boxes wherever appropriate, recursive structures inevitably will 
result - if the designer waits long enough and blackens all his boxes. Sooner or later, 
the designer will find himself drawing an arrow from one module down in the hierarchy 
to one somewhere above it. Whether intentional or not, recursion requires housekeep
ing to save and restore the data context and control state on each reactivation. 
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CHAPTER 18 
HOMOLOGOUS AND INCREMENTAL STRUCTURES 

18.0 Introduction 

In designing the modular structure of systems to solve varied classes of problems, 
the designer often has difficulty selecting an appropriate top level or determining what 
is to be in charge of what, or which processes are to be afferent, which efferent. These 
decisions are necessitated by the use of conventional modules, such as subroutines, that 
might be arranged in a hierarchy of subordinates and superordinates. The choices can 
be critical, in part, because modules linked by hierarchical mechanisms behave 
differently as viewed from above than from below. 

In Chapter 16, we introduced the notion of a typology of modules based on time
history, activation mechanism, and pattern of control flow. Such a typology points the 
way to module types and modular structures that avoid some of the problems of con
ventional hierarchical systems. In this chapter, we will consider some unconventional 
structures that can greatly simplify both implementation and structural design. 

18. l Homologous systems 

The questions of which module is in charge and which is the subordinate can be 
a voided altogether by employing structures that are not hierarchical. In this way, no 
design decisions need be made regarding such matters as choice of afferent, efferent, or 
executive modules. 

Homologous,* or non-hierarchical, systems arise from any control relationship that 
does not define a hierarchy of control responsibility. All modules related solely by 
homologous relationships have the same degree of control or responsibility, since the 
receipt of control by such a coordinating transfer relinquishes full responsibility for 
whatever level of control the activating module possessed. 

Responsibility appears to be a vague and informal term, but the concept can be 
made precise by noting that every outstanding unreturned subordination carries the obli
gation for eventual return - an obligation not under control of the currently active 
subordinate module. An active module may surrender control (canceling a subordina
tion), or activate new modules as subordinates with responsibility to return to the 
current module. Alternatively, it can activate new modules as coordinates, with respon
sibility for return to the superordinate (if any) or to the current module. 

*Homologous is established terminology for horizontal, rather lfan hierarchical, structures in the typology of 
organizations and groups. See, for example, Eric Berne's work. 

302 
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Obviously~ it is possible for only a portion of a system to be homologous - giving 
rise to "mixed,, systems. Normally connected (as contrasted with pathologically con
nected) mflxed systems are defined only if the definitions (and implementation) of 
homologous relationships are such that they are consistent with and do not violate 
subordinations. 

Homologous structures result from connections that transfer control without an 
implicit return condition. A series of ordinary routines or program steps connected by 
direct transfer (e.g., GOTO) to a named entry point would comprise one kind of homolo
gous system. Another type involves the use of so-called incremental modules. 

18.2 Incremental modules 

In the more common cases found in real-world systems, a module (e.g., 
subroutine) performs one complete instance of a distinct task on each c..ctivation. Un
less the module is pathologically connected, each activation physically begins execution 
at the origin, the first executable statement. Although internal coding may cause an 
immediate branch to some other part of the module and the destination of the branch 
may vary from activation to activation, this is an internal procedural property. 

We can hypothesize a type of module that executes only sume portion of its code 
(and/or function) on each activation - that is, a module that proceeds incrementally. 
In keeping with the characteristics already established in Chapter 3 for true modules, 
the exact portion to be executed is invisible to the activating module, i.e., the next por
tion to be ex~cuted is determined by the incremental module~ not its activator. This 
means that, to the activator, an incremental module can appear to be a black box as 
much as a subroutine can. As with all modules, this will depend, in the final analysis~ 
on the quality of design and coding! Incremental execution makes it possible to decou
ple one module more completely from the internal state and state maintenance mechan
isms of another module. 

I 8. 2. I Coroutines 

The coroutine may have been invented almost concurrently by several people, 
though the credit usually goes to Conway, 2 who first published a paper on the concept. 
For an interest'ing history of the development of the coroutine, as well as several pro
gramming examples, see Knuth. 3 The coroutine is a very basic module type, possibly 
every bit as important as the subroutine. 

In the abstract, a coroutine is a module whose point of activation is always the 
next sequential statement following the last point at which the module deactivated itself 
by activating another coroutine. Thus, the entry point of the coroutine floats. It must 
be stressed that a coroutine does not (normally) have more than one entry, unlike a 
multiple-entry (compound) subroutine. The coroutine has a single entry point whose 
value varies with time. Each entry of a particular coroutine z commences execution at 
the point defined by the entry. Each entry of another coroutine from z establishes a 
new value of z's entry: the next sequential statement in z. This will be used when z is 
next entered. 
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The operation of coroutines is most easily understood by assuming a typical form 
of implementation. Each coroutine may be thought of as having associated with it an 
Hentry locator": a device that always will contain a current value of the coroutine's en
try. The entry locator is assumed to be initialized to the origin of the module~ i.e., 
when a coroutine is activated for the first time, it actually does begin al the beginning. 
Thus, Fig. 18.1 conceptually represents the coroutine z in its initial state. z will be ac
tivated by an appropriate reference to its entry locator, which serves as its identity inter
face. We will use the statement ENTER. (The characteristics incremental or nonincre
me:ntal are internal details of a module. By using ENTER for either type, the detail 
remains hidden to other modules.) 

Entry locator 

Figure 18.1. Conceptual representation 
of a coroutine in initial state. 

A cotransfer from one coroutine to another (mixed systems will be discussed 
later) is conceptually a two-step process. The first step is to set a new value for the en
try locator of the currently active module. The second step is to transfer to the location 
defined by the entry locator of the coroutine to be activated. 

In Fig. 18.2 are two coroutines, called NULL and CIPHER. In NULL is a loop that 
executes, alternately, three different variations on the NULL function: the first starting 
at A, the second at B, and the third at CIPHER uses two NULLifying steps in another loop. 
Successive activations of NULL will result in values of the entry locator of S, B, c, D, B, c. 
D, . . . . Successive activations of CIPHER, on the other hand, result in values of its entry 
locator of x, Y, z, Y, z. Y, z ..... Neither module needs to uknow" the number of sec
tions in the other - or the ratio of occurrences, or which section is next to be per
formed. Each coroutine has full control over its process. Since neither is in control of 
the other nor has more responsibility, the name coroutine is indeed appropriate. 

Consider the complications that would arise if NULL and ClPHER had to be 
designed as a single integral process. The relative execution ratios would have to be 
reflected in the procedure. The entire procedure might have to be recoded to accom
modate· a change in the number of unique segments for any one of the two processes. 
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In Fig. 18.3, the system of NULL and CIPHER is represented by using standard graphics. 
Note that this coroutine chain is linked by references in both directions. 

NULL: 

S: X: 

A: 
ENTER NULL 

ENTER CIPHER Y: 

B: 

ENTER CIPHER ENTER NULL 

C: Z: GOTO X 

ENTER CIPHER 
D: GOTO A 

Figure 18.2. Conceptual representation of coroutines NULL and CIPHER. 

·~ 
Figure 18.3. NULL-CIPHER system using standard graphic notation. 

18.2.2 Brief application of coroutines 

Consider the module DO, which performs some processing on each incoming 
record on a file. The process performed by DO requires accessing the next record in, 
say, two places within the code; that is, the algorithm is linear rather than iterative with 
respect to two djstinct usages of an incoming record. We shall assume that the DO pro
cess is complex in itself, though the details need not concern us here. Its code is 
shown, in outline form, in Fig. 18.4. 

Suppose the required records reside on three magnetic tape drives - which we 
will call "unit 1," "unit 2," and "unit 3'' - and which are to be merged according to 
the following discipline: one record from unit I; two records from unit 2; then one 
record from unit 3 unless it is an exception type, in which case it should be preceded by 
another record from unit 1. 

The code for the merge discipline, though not really very complicated, is not the 
sort of thing we wish to have duplicated throughout our system. There are too many 
opportunities for error. Moreover~ the process of getting the next record in a merged 
stream is a well-defined function and is appropriately implemented as a separate 
module. The most straightforward approach is to specify a coroutine named NEXTREC: 



306 STRUCTURED DESIGN 

NEXTREC: 
MERGE: 
RI: 
LI: 
R2: 
L2: 
R3: 
LJ: 

L4: 
R4: 

RS: 

COROUTINE 
GET RECORD FROM UNIT 1 INTO REC 
ENTER DO (REC) 
GET RECORD FROM UNIT 2 INTO REC 
ENTER DO (REC) 
GET RECORD FROM UNIT 2 INTO REC 
ENTER DO (REC) 
GET RECORD FROM UNIT 3 INTO REC 
IF EXCEPTION· TYPE THEN 

GET RECORD FROM UNIT I INTO REC2 
ENTER DO (REC2) 
END IF 

ENTER DO (REC) 
GO TO MERGE 

DO: COROUTINE 

Get next record 

Get next record 

Figure 18.4. Outline of coding for the DO coroutine. 

The nature of the merge discipline is obvious from the above code. If NEXTREC 
were implemented as a subroutine, the instructions at RI, R2, RJ, R4, and RS would have 
to be replaced by switch settings followed by RETURN statements. At the entry to NEXT
REC, a five-way branch would dispatch to LI, L2, LJ, RS, or MERGE. This is the simplest 
analogy we can draw with a subroutine; it may be regarded as a simulation of a 
coroutine operation through a coding trick. 

Several points are important. First, the coroutine structure permits truly indepen
dent procedural design of each coroutine in the chain. The only intermodular relation
ships that must be taken into account are those involving demands for, or delivery of, 
data. Thus, a coroutine always can be written in such a way that it simply enters a 
udonor" coroutine when it needs the next item of data; similarly, it enters a "receiver'' 
coroutine when it has prepared an item of output. 

Of course, any module that has both its input and output functions available as 
subroutines can be written in a similar fashion. However, it is obvious that this cannot 
be done for all modules in a system; some modules will be in a subordinate position. 
For example, the afferent subroutine does ·not control its own output~ the efferent 
subroutine does not determine the point of input requests in the code - input is always 
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made available to the efferent subroutine at its ongm. However, conflicting require

ments for control over input and output processes can be resolved through a homob
gous structure using coroutines. 

Such structures are not only homologous but symmetrical with respect to control. 

Thus, NEXTREC behaves like, or appears to be, a subroutine to DO~ while no functions 

as if it were a subroutine to NEXTREC. Clearly~ this is not recursion of the sort that we 

discussed in the previous chapter. A complete, recursive performance of the entire oo 
process is not being activated (which was, in turn, activated by Do)~ only the next step 

in the whole process is being called for. Unlike the recursive process, the coordinate 

process need not "unwind" through a set of returns resulting from nested calls. 

18.2. 3 Subcoroutines 

The NEXTREC coroutine functions properly for each of the two (or N) required 

references in DO. But obtaining the next record in a merged sequence is a function 

quite likely to be of general use in the system. Suppose that there is another module~ 

D02, which may be used at times to process input records. In general, whether DO or 

D02 is to be used may be known only by DO or 002 or perhaps by another module. A 

given activation of NEXTREC must deliver its output to either DO or D02, depending on 

which activated it to obtain an item of input. If NEXTREC is a coroutine, it must know 

the criteria determining which module to reenter; that is, it must execute either the 

statement to enter DO or the one to enter 002 - it cannot enter both. 

What is needed is an incremental module, which can be subordinated and which 

will resume whatever module calls it. Such a module is known as a subcoroutine. 
Although it has also been called a ''demand coroutine" 4 (performing its funclion on 

demand for any module) and a "subordinated coroutine," the word subcoroutine is a 

more compact term carrying the proper implications. 

A subcoroutine looks like an ordinary subroutine to its superordinate - it is en

tered by a conditioned transfer - but it has a floating entry point like a coroutine. As 

with subroutines, the return location is best thought of as being stacked. The sub

coroutine deactivates itself by executing a RESUME statement which resumes its (un

named) superordinate process. This RESUME of an implicit module (the last one to call) 

establishes a new value for the subcoroutine 's entry locator. Thus, the next statement 

following the last executed RESUME serves as the entry point for the next call .to the 

subcoroutine. 

18. 2. 4 Input-output event ratios 

The advantages and applications of incremental modules also can be illustrated 

through consideration of the flow of data through conventional hierarchical nests of 

subroutines. Any transform, such as x in Fig. 18.5a, can be characterized by the ratio 

of incoming data elements, or events, to outgoing data events. In the simplest case, x 

might require a single a to produce one b. The input-output event ratio is said to be 

one to one. In such a simple case, the transform x could be as easily implemented as 

an afferent subroutine, an efferent subroutine, or, for that matter, a subroutine in any 

position in the hierarchy. In cases of non-simple input-output event ratios, a 

subroutine has a preferred direction of data flow because it is in control of subordinate, 

but not superordinate, events. If transform x were to require several inputs for each 
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output b, it would be easier to implement as an afferent subroutine than as an efferent 
one. A many-to-one event ratio might also result from fan-in, as in transform y in Fig. 
18.Sb. As an afferent module, the procedure for transform x would simply assemble as 
many a elements as needed, transforming these into a single b to be returned. Because 
a call always enters it at the origin, an efferent subroutine would have to keep track of 
some intermediate information about each a until the right number was received to pro
duce a b to be passed down to a subordinate. Each type of data flow through a module 
implies that some input-output event ratios can be programmed without any complica
tions being introduced due to the position of the subroutine~ while other ratios will be 
somewhat less straightforward to implement. 

Figure 18.Sa. Simple transform bubble. Figure 18.Sb. More complex transform bubble. 

The reader can verify that the ev.ent ratios that can be implemented most directly 
for each type of data flow through a module are as follows: 

Afferent subroutine: 
Efferent subroutine: 
Transform subroutine: 
Coordinate (top level) subroutine: 

l to 1, many to 1 
l to l, l to many 
I to 1 
l to 1, l to many, many to 1, many to many 

Any event ratio other than one to one requires additional coding in a transform module! 
Note that no coding problems would occur with any event ratio if every module could 
be written as a top-level module, which is exactly what the. use of coroutines and sub
coroutines permits. Where input-output event ratios are variable rather than fixed, the 
degree of difficulty in coding is even more marked. 

18.3 Applications of coroutines and subcoroutines 

For many applications, the use of incremental structures permits more straightfor
ward translation of the problem structure as expressed in a data flow graph than would 
be possible with strict hierarchies of subroutines. Appropriate applications are charac
terized by state dependent or sequential decision processes, asynchronous or parallel 
processing, variable input-output event ratios, or event ratios incompatible with a 
module's position in a hierarchy. Almost all instances of text- and language-processing 
fall into one or more of these areas. Even such a mundane routine as an input deblock
er is simpler as a subcoroutine than as a subroutine because of its one-in-to-many-out 
event ratio. Provided communications are handled normally, incremental modules ac
tually are easier to maintain and modify independently than conventional modules. 
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The usual use of coroutines is to have bidirectional linkages, as in Fig. l 8.6a, 
which communicate data in one direction. Circular coroutine chains also have uses in 
simulating parallel processes. The structure in Fig. l 8.6b actually was used to permit 
separate programming of routines to manage simultaneous operations of several 
mechanisms on a computer-controlled machine tool. Each module transfers to its adja
cent coroutine whenever it otherwise would have nothing to do, because it had just out
put something or was waiting for a completion signal from the machine tool. Each of 
the operations had its own unique dynamic characteristics and special progr Jmming 
problems~ by using coroutines, these could be kept separate. The subsystem could be 
activated by a call to either of its three coroutines; that is,. these appear to be 
subroutines to CONTROL, which is returned to when aH processes indicate they are done. 

Another, more complex, application using coroutines and su bcorouti nes is shown 
in Fig. 18. 7. Note how incremental modules are used for sequential decision processes 
like the statement recognizer and stack compiler for "infix,, expressions. 

Figure l 8.6a. Example of bidirectional linkage in a linear coroutine chain. 

Figure 18.6b. Example of a unidirectional linkage in a coroutine cycle. 
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Figure 18. 7. Principal modules in a one-pass compile-and-go 
system for a simple language. 

I 8.3.2 Implementation of incremental facilities 

Few contemporary languages supply facilities for declaring and using coroutines 
and subcoroutines, but they readily can be added to most languages having macros or 
macro preprocessors. Even though such implications are apt to be less than elegant, 
they still may simplify programming. 

Subcoroutines are the more useful of the two types and also the more easily ad
ded, as they require no special methods for handling activation records for separate pro
cedures to be used incrementally. Briefly, the following facilities are required: 

(a) a macro statement to "declare" a subcoroutine that looks like and 
translates into a normal procedure/subroutine declaration, but adds a 
declaration of an invisible label variable or switch to serve as entry lo
cator, plus an inserted GOTO depending on the switch as the first exe
cutable statement; the initial value of the switch is the first 
programmer-written executable statement, that is, the one following 
the switched GOTO 

(b) a RESUME macro that translates into a "set switch to next-statement" 
followed by a RETURN 

(c) if static or OWNed label variables cannot be used, then the entry locator 
can be carried as an input argument added to the argument list by a 
CALLing macro 
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18.3.3 Sample application of coroutines 

Let us consider a primitive language-processing problem involving the front-end 
of an information retrieval/report generation system. Retrieval requests are obtained, 
character-by-character from a message concentrator via module NEXCHAR. Messages 
enter in two different character codes, a standard one and a nonstandard one. A mes
sage in nonstandard code always begins with an escape character (ec). All messages end 
with an end-of-transmission character (eot). Some characters of the nonstandard code 
are to be ignored and some two-character ideographs in the nonstandard code are treat
ed as equivalent to single characters in standard code. 

The remainder of the system only "understands'' the standard character code. A 
procedural design for a STDIZE module would be very straightforward if STDIZE could 
call NEXCHAR and the rest of the system as subordinates. Proceeding in the most 
simple-minded, step-by-step manner would yield the flowchart of Fig. 18. 8a. 

The input language includes quoted matter enclosed in quotes (") and special 
two-character abbreviations designated by a period (.) preceding the abbreviation. The 
retrieval/report system itself, RETREP, accepts a character of input on each activation, 
but it does not understand the abbreviations or quotation marks. The straightforward 
procedural design of this module is presented in the Fig. l 8.8b flowchart. 

Both STDIZE and XPAND have variable, many-to-many input-output event ratios. 
They cannot both be the top-level module with the other as subordinate; implementing 
them as coroutines resolves this conflict. Each box on the flowchart invoking a 
predefined procedure would be coded as a coroutine transfer (ENTER) to the adjacent 
routine. The resulting coroutine chain is shown in Fig. 18.9a. 

Even this structure has a defect in it should some module in the system other 
than RETREP need to read expanded standardized text. Making STDIZE into a sub
coroutine as shown in Fig. 18. 9b resolves this conflict without complicating the coding. 
The resulting coding (see next page) is a simple transliteration of the procedural designs. 
of Figs. 18.8a and 18.8b, and is demonstrably simpler than what would be required if ei
ther or both modules had to be a subroutine. 

18.3.4 Separab;/ity of homologous structures 

Let us assume that the structure of Fig. 18. 9b is implemented, but that certain 
practical complications arise. As it turns out, the Kludgevac 616 minicomputer on 
which the system runs has only very limited memory and the whole system will not fit 
ih memory at once. The retrieval system is so big that only XPAND can be resident at 
one time. We need a two-pass system that will handle message traffic and later retrieve 
the requested data and produce reports. The· Kludgevac Systems Engineer suggests we 
replace all the statements PI, P2, and so on, in STDIZE with "punch a character on paper 
tape," and all statements Rl, and so on, in XPAND with "read a character from paper 
tape." The system then will punch a tape of standardized text, which can be torn off 
and read in when the second pass is loaded at the end of the day. Will it work'? Yes! 
if the system in its one-pass version also worked. This property of coroutine chains can 
be (and has been) exploited in making the same compiler work in one, two, or more 
passes, depending on available memory. 
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STDIZE: COROUTINE 
CALL NEXCHAR (CH) 
IF CH= ec 

THEN 
CALL NEXCHAR (CH) 
UNTIL CH = eot 

DO 
IF LOOKUP (CH, IGNORETABLE) 

THEN 
ELSE 

IF LOOKUP (CH, IDEOGRAFTABLE(l)) 
THEN 

CALL NEXCHAR (CH2) 
IF LOOKUP (CH2, IDEOGRAFT ABLE(2)) 

THEN 
Pl: XPAND (IDEOGRAFTABLE(J)) 

ELSE 
P2: XPAND (CH) 
P3: XPAND (CH2) 

ENDELSE 
ELSE 

P4: XPAND (CH) 
ENDELSE 

ENDELSE 
END UNTIL 

ELSE 
UNTIL CH eot 

DO 
PS: XPAND (CH} 

CALL NEXCHAR (CH) 
ENDUNTIL 

ENDELSE 
END 

XPAND: SUBCOROUTINE ARGUMENTS CHAROUT 
RI: STDIZE (CHAR) 

IF CHAR='"' 
THEN 

R2: STDIZE (CHAR) 
UNTIL CHAR - ' " ' 

DO 
CHAROUT CHAR 
RESUME 

R3: STDIZE (CHAR) 
ENDUNTIL 

ELSE 
IFCHAR = '.' 

THEN 
R4: STDIZE (CH (1)) 

RS: STDlZE (CH (2)) 
EQS = LOOKUP (CH, ABBREVT ABLE) 
I= 1 
UNTIL EQS (I) = 0 

DO 
CHAROUT = EQS (I) 

RESUME 
ENDUNTIL 

ELSE 
CHAROUT -= CHAR 
RESUME 

END ELSE 
ENDELSE 

END 
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Figure 18. 8a. Flowchart of module STDIZE to convert all incoming code to s.tandard character set. 



3l~l STRUCTURED DESIGN 

no 

es 

Figure l 8.8b. Flowchart of module XPAND to remove quotes and expand abbreviations. 
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Figure 18. 9a. Coroutine structure for the retrieval front~end. 
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Figure l 8.9b. Subcoroutine implementation of XPAND to permit alternative uses. 
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The cursed Kludgevac 616, alas, runs too slowly to get all the day's requests pro
cessed overnight. The Systems Engineer, ever alert for new sales, suggests we get a 
second 616. But how to exploit it? Simple! Wheel it in, load the retrieval package on 
it, find the leading end of the paper tape being punched by the message package on the 
old machine, fit the tape into the paper tape reader of the new machine, and press 
START. If the system worked before, it will work correctly now. The parallel processing 
is achieved without additional analysis, design, or programming. 

The property of incremental modules making these sleights-of-hand possible is 
known as separability. Structures of such modules can be separated arbitrarily into mul
tiple passes and parallel processes, provided only that they are normally connected and 
that communication is one-way (i.e., unidirectional) along the connection to be broken. 

18.4 Data-coupled systems and languages for modular systems 

The availability of coroutines and subcoroutines permits the designer to approxi
mate more directly the problem structure as represented by the data flow graph. An 
ideal situation would be achieved if the data flow graph could be programmed directly in 
the form of completely autonomous modules that accepted and passed data directly to 
each other via queues, which function as the arcs connecting transforms on the data 
flow graph. Control would not be passed between such data-coupled modules, but rath
er each module would perform its transformation whenever needed inputs became 
available. As stated in Chapter 6, data-coupled modules are minimally coupled and 
should, therefore, permit the lowest possible development and maintenance costs. 

Various mechanisms for achieving this high degree of problem correspondence 
andl module independence have been proposed, one of the earliest by Constantine. 5 In 
place of control linkages like CALL, RETURN, and ENTER, four communication state
ments are provided. Two permit the communication of data to or from another module 
explicitly identified by name. These take the following form: 

TO module-name (argument-Ii argument-2, ... , argument-NJ; 
FROM module-name (argument-], argument-2, ... , argument-NJ. 

A TO FOO in module FUM paired with a FROM FUM in FOO would function the same as a 
bidirectional coroutine link, except that the intermediate FIFO queue, if of length greater 
thain 1, would permit parallel processing. A TO followed by a FROM on the same module 
would work the same as a call. In fact, all conventional control relationships can be 
paralleled within data-coupled systems. However, the programmer/designer need only 
think in terms of generating and passing data TO another module at the earliest point, 
requesting data FROM another module only at the latest point. 

A corresponding pair of statements would permit sending and receiving data im
plicitly without reference to another module by name (as does any subordinate 
subroutine or subcoroutine). These statements allow a single module to service several 
oth1ers on demand: 

RECEIVE (argument-I, argument-2, ... , argument-N); 
SEND (argument-], argument-2, .. . , argument-NJ. 
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Besides simplifying design and programming, these constructs, in connection with 
an appropriate supporting operating environment, would permit automatic multiprocess
ing on a module-by-module basis without requiring additional analysis and design for 
exploiting para11elism. With only minor constraints, structures linked by these mecha
nisms can be guaranteed to be asynchronously reproducible (output functional), that is 
to yield the same results from the same data every time. They also are separable in the 
sense introduced in the preceding section. 

The above four types of statements have some residual disadvantages in terms of 
an ideal environment in which to minimize intermodutar coupling and, therefore, to 
maximize the degree of independent development and ease of modification. "Like con
ventional subroutine linkage constructs, they establish identity or correspondence of 
data elements by position within an argument string. Further~ since some modules 
refer to other modules explicitly by name, building a modified system can require going 
inside modules to change the named target to refer to some added module. This makes 
it less convenient to configure new systems rapidly from a pool of autonomous working 
modules, a long-time dream of computer professionals. An almost utopian situation 
would be achieved by permitting each module to be written with its own named input 
and output uports" but without identifying to what ports of what other modules these 
would be connected. Separate Hligatures" 6 in a distinct language would externally ex
press the intermodular structure. With such facilities, each small transform needed for 
some total application could be designed and implemented completely separately 
without regard to its place or uses in the total process. Then, these modules could be 
linked together systematically, using the ligature constructs~ along with preexisting 
modules into a growing system. 

For most designers, all of this is still in the realm of the academic. However, we 
are beginning to see the emergence of modern operating systems that have exactly the 
features described above. One of the most exciting of such operating systems is UNIX, 
developed at Bell Laboratories 7 for the PD P-1 l computer.* What benAaron 6 describes 
as ligatures, the UNIX system refers to as pipelines~ and it is definitely true that many 
UNIX designers (the authors included) do nothing more than program the bubbles in a 
data flow graph, without the intermediate step of converting it into a structure chart. 

18.5 Summary 

We have seen in this chapter that homologous systems in particular, systems 
based on coroutines and subcoroutines - have practical applications. The major reason 
why coroutines have not been used more frequently is the lack of appropriate facilities 
in such popular programming languages as FORTRAN, COBOL, and PL/I. 

While programming languages may not improve radically in the next few years, 
we can look forward to increasingly sophisticated operating systems that will provide 
adequate mechanisms to build homologous systems. Several such multitasking operat
ing systems are already in use; one of the most elegant, in our opinion, is the UNIX 
operating system, referred to above. 

*Coincidentally, the UNIX operating system, together with some phototypesetting software also developed at 
Bell Labs, was responsible for the typesetting of this book. 
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SECTION VI 
THE REAL WORLD 

This, the, most loosely organized of the sections, is titled, appropriately 
enough, uThe Real World." In the first chapter of this potpourri, the relation
ship of structured design to certain technical goals is explored in depth. Struc
tural issues in creating more generalized and more reliable systems are con
sidered. Eventually, designs must be translated into working code, and Chapter 
20 analyzes methods for implementing highly modular systems. Some imple
mentation issues clearly are management questions, leading us to our final 
chapter, Chapter 21, in which we discuss various interactions between rnanage
men t concerns and structural design matters. In this way, we return to the 
overall program development cycle that opened the book. 





CHAPTER 19 
STRUCTURE AND PROGRAM QUALITY 

19 .0 Introduction 

As we pointed out in Chapter 1, structured design seeks the best solution to a 
software design problem - best in terms of established criteria, recognizable limits, and 
acceptable compromises. Throughout the book, we have emphasized that we are seek
ing designs that are minimum-cost: inexpensive to implement, inexpensive to test, and 
inexpensive to maintain and modify. 

However, there are additional qualities that usually are associated with good sys
tems~ among the more common ones are generality, flexibility, and reliability. These 
three aspects of a system are the subjects of this chapter. 

19.1 Generality 

The terms "general purpose" and "systems generality" are widely used in mar
keting language. Like many other systems design objectives, generality tends to be re
garded as an innate good, and is stated largely as a religious principle. It is surrounded 
by a mythology as rich as that of systems modularity. We will examine some of these 
myths while identifying the underlying concepts and technical content of generality. 

We could informally define a general-purpose system (which might consist of a 
single isolated module) as one that is widely used or usable, solves a broad case of a 
class of problems, is readily adaptable to many variations, and will function in many 
different environments. Under the guise of a single overall definition, we have, in fact, 
subsumed a number of distinct aspects of generality. Each of these can be indepen
dently defined and discussed in terms of distinct technical factors. 

19.J.l Inclusion and exclusion 

The most persistent myth of generality and generalization is that most general sys
tems must - by religious principle - cost more to design and more to build. If we ex
amine the history of general-purpose systems, we see two divergent design philosophies 
that influence this myth in one direction or another. 

On the one hand, we see an approach best described as the inclusive philosophy. 
This philosophy is based on the concept that a general~purpose system must include 
something for everyone. The generalized system is designed, as it were, by identifying 
and examining as many distinct applications or application areas as possible - and in
cluding some feature or features to cover each of the applications. By definition, such 
generalized systems must cost more to build than a specialized system designed similar
ly to cover only one application or application area. This strategy is most evident in the 
design of contemporary general-purpose programming languages. 

321 
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On the other hand, we might approach the design of generalized systems, again by 

examining as many applications as possible, but eliminating those aspects that make the 

application special or unique. What is left is a kind of lowest common denominator -

a set of basic capabilities out of which all the applications can be structured. Successive 

exclusion of specialized facilities and unique variations potentially could lead to general

purpose systems that are cheaper than any one comparable special-purpose system. 

This analysis of the inclusive versus the exclusive approach represents, of course, 

our viewpoint~ it does not prove that, in fact, one can ever construct general-purpose 

systems that are less expensive than special-purpose systems. What we must do is 

develop some constructive technical basis, or bases, for comparing the relative costs of 
general-purpose systems and special-purpose systems. 

19. 1.2 Factors in systems generality 

To repeat our earlier informal definition, generality refers to a system's ability to 

solve the broad or general case. Or, it refers to a system's ability to be widely used and 

adaptable to many variations in application or in environment. In order to discuss this 

meaningfully, it is essential that we specifically exclude technical factors that really are 

aspects of other, potentially independent, design objectives. These design objectives 

may also be of interest to us, and they may in some cases correlate - either negatively 

or positively - with generality. 

Thus, we may well desire systems that are easy to use, and require little effort to 

understand, install, and operate. However, this is, properly speaking, an aspect of utili

ty. Similarly, the fact that a system is widely used because its code is easily changed has 

nothing to do with generality~ it is a matter of modifiability. 

"Use n does validly enter into generality in the sense that wide use is associated 

with problems of wide interest. Commonality measures how common the problem is 

that we are solving with a given system. Given equal and comparable design and im

plementation, a system that solves a common problem would be described as general 

purpose, compared with one that solves a problem of limited interest. For example, 

consider a sort program that sorts in normal collating sequence, and a program that is 

identical but sorts with the first and last half of one collating sequence reversed. Both 

have identical controls and both accomplish as many different tasks. However, the 

former is more general because it solves a more common problem; thus, it is higher in 

terms of its commonality. 

Now consider that two externally similar sorts have been developed, but one of 

the sort programs uses no features that are related to one specific machine. Obviously, 

it is more likely to be transferable to other machines. It is more general because it is 

higher in portability, a property representing ease of movement among distinct solution 

environments. Clearly, portability may refer to machine, programming language, 

hardware configuration, or organizational factors. Note that if a transfer requires 

modification to the existing code, the overall cost will depend on modifiability as well. 

However, at least part of portability is independent of the ease with which the requisite 

changes may be effected. Portability is more a function of the number and complexity 

of the requisite changes. 
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The mathematical concept of the domain of a function also relates to generality. 

The module that accepts a wider range of values for its input is more general. Again 

referring to the otherwise identical sort programs, the program that accepts two - or 

three, or any number of - magnetic tape reels of input is more general than one that 

works only on single-reel input. Similarly, a less generalized sort program might accept 

records up to a maximum of 84 characters in length~ a more general version might ac

cept records up to a maximum of 400 characters in length. For lack of a better term, 

we will call this domain generality, or mathematical generality. 

Finally, we have the system that can be used in many differ~nt ways, performing 

distinct~ possibly unusual and unanticipated, tasks. In most cases, we would prefer that 

the system's operation be governed by externally regulated factors - that is, we want 

the system to perform many different tasks without modification of code by the pro

grammer. Flexibility is a measure of the degree to which a system, as can be used in 

a variety of ways. A sort program in which the user can specify not only the length, but 

also the position of a key within a record, is more flexible than one that accepts only a 

length specification. 

Thus, in total, generality is a function of at least four independent factors: porta

bility, commonality, domain generality, and flexibility. Each of these has separate 

technical determinants. 

19 .2 Flexibility 

Flexibility itself is not a simple factor. At least three (possibly} independent 

technical factors influence the amount of flexibility in a system. As suggested by our 

analysis and model of generalization in the preceding section, external controls govern 

flexibility~ we will deal with this in Section 19.2.3. In addition, the familiar concept of 

time-histo1y* plays a role in flexibility, as we will see in Section 19.2.2. Finally, a 

system's flexibility is influenced by a new concept: the concept of locus of control. 

J 9. 2. J Locus of control 

Every aspect of the behavior of a system is determined (controlled) by something 

else. In the most primitive approach to programming, the code itself the instructions 

- directly determines the fixed behavior of the system. Everything that the system 

does, every variation, is built into the code. It generally is regarded as a more sophisti

cated design technique to allow some aspects of the system's behavior to be controlled 

by data items. Perhaps this behavior is called more sophisticated because the resulting 

system is more flexible. 

In general, control of a system is distributed among instructions, data (that is, 

data built into the system - sometimes called resident data), and the input for input 

data). The flexibility of a system is increased by the extent to which more control over 

the behavior of the system resides in the input data or the resident data rather than in 

the instructions themselves. Input-controlled behavior is more flexible than resident

data-controlled behavior, which is, in turn, more flexible than instruction-controlled 

"'The concept of a system's time-history was discussed in Chapter 6, and again in Chapter 16. 
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behavior. This observation should not be made trivial by naively trying to put all of the 

control in the input and resident data. This would, in the most extreme case, lead to a 

general-purpose-doer-of-everything module that simply executes (interprets) whatever 
stream of instructions it is given as input. 

Whether or not locus of control is a dimension of flexibility independent of the 

oth(~rs, it is nevertheless a useful concept to the designer. By knowing where control is 

located in a system's design, the designer is in a position to enhance flexibility where it 

is most desired or needed, by shifting the locus of contr~t of the appropriate factors. 

19. 2. 2 Binding time 

As we discussed in Chapter 6, every control variable (indeed every variable) be

comes bound to some value at some time. We can employ the concept of a system's 

time-history to influence binding time: A variable may become bound (to a value) at 

definition time, translation time) linkage time, load time, or execution time. The effect 

of binding on flexibility is simple and direct: The later a control variable becomes 

bound, the more flexible the system is with respect to that control variable. 

We should keep in mind that the time at which binding is done affects certain cost 

factors. For example, we increase the variable costs of using a system (i.e., costs in

curred by actually running a system) when we attempt to increase its flexibility by de

laying binding until execution time, load time, and possibly linkage-editing time. Simi

larly, we know that it costs more to change the value of parameters bound later. Thus, 

control variables bound at translation time (e.g., compilation time) will cost more to 

change than control variables bound at load time - although the former will not On 

most cases) add to run-time costs. 

When choosing the binding time for systems controls, we obviously must take 

into account the probable frequency of change. In many cases, no choice appears possi

ble. A sine/cosine routine, for example, must have its function (sine or cosine) and its 

input variable "bindable" at execution time. Or must it? Perhaps a better system (in 

this context, we mean "more efficient") would result if controls were bound, whenever 

possible, at translation time - as in the computation of the sine of a constant. 

Translation-time parameters (identifiers bound by statements of linguistic 

equivalence) are especially interesting. The actual cost, even at translation time, of 

equating a symbol with a value and then using only the symbol is very low. On the 

other hand, this approach permits considerable future tailoring of the system simply by 

changing the value assigned to the parameter. The use of translation-time parameters 

will be discussed in more detail below. 

19. 2..3 Controls 

The most important influence on flexibility is the number and variety of internal 

controls that are made externally available. In a sense, the concept of externalization is 

related to binding time: A control is not external at execution time if it is only brought 

out as far as a boundary that is available at translation time. Generally, we can circum

vent this circularity by referencing the module's lexical boundary~ things that lie close 

to the surface may, for some purposes, be thought of as externalized. Thus, a set of as

sembler equivalences (translation-time parameters typically of the form GLOP EQU 17), 
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which appear (lexically) inside a subroutine but are grouped together at the beginning, 

are effectively externalized. Such controls can be altered without dealing with the real 
body of the module. 

To appreciate that these three factors binding time, locus of control, and exter-
nalization of control - are approximately independent, consider this analysis: Assume 

that a system designed for a given task has a certain number of controls that must be 
regulated and manipulated independently of how the system is implemented - espe

cially in h~rms of flexibility. Any number of these controls could be brought out to the 

nearest module boundary as parameters. In turn, we could choose to bind these con

trols at any "event time" in its time-history - some at translation time, others at load 

time, and stiH others at execution time. Similarly, whatever it is that determines the 

value of these controls could be fixed into the coding, obtained from a table, or input 

from some external medium. While it is not possible for a translation-time parameter 
to be input-controlled, an execution-time control could be set by code, resident data, or 
input data. 

19. 2. 4 Flexibility: Less is more 

Flexibility as an aspect of generality is a structural question in that it is strongly 
influenced by the design of the module interface. Earlier, we suggested that the philo

sophy of generalization by exclusion could lead to simpler systems to solve the general 

case than to solve any specific case. Bringing internal controls out to the external inter

face as parameters in the calling sequence leaves fewer things internally specified in the 

procedural design, for example. But sometimes less is more is even more true, if we 
have made ourselves more or less clear. 

Consider the customer identification code used as the index key to a master file. 

This identification code appears on all transactions against the customer's account. It is 

generated by transforming letters to numbers, combining the first four letters of the last 

name with the last letter of the first name, a sequence number, and a check digit 
Thus, CON.stantine, Larry, becomes 

0315141925-88-2 

The transaction record is in the format shown below in Fig. 19. la. 

l3 numeric 2 alpha 15 alpha to alpha 3 numeric 10 numeric 37 alpha 

Figure 19. la. Format of transaction record to be checked for customer code validity. 

In a program that processes these data, the record is validated, which includes a 

need for a routine to check customer code. We might have a module, CHEKCUSCODE, 

operate on the transaction record and return a flag indicating whether it was okay. A 

use of this module might look like that at the top of the next page: 
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LI: CALL CHEKCUSCODE (TRANS REC OKFLAG) 
fF NOT OKFLAG THEN CALL ERRMESS (1<BOGUS CUST.", TRANSREC) 

The module CHEKCUSCODE would contain in its code a description of the record format 
of Fig. 19 .la, if not as a data description, then as field indexes in references to the cus
tomer code and name fields. If the format changes, the code in CHEKCUSCODE may 
have to be changed even if the record contents remain the same. An example might be 
a case in which the positions of the first field, customer code, and of the second field~ 
transaction type, are interchanged. This version of CHEKCUSCODE could not easily be 
usedl to validate the customer code of the master file record shown in Fig. 19.1 b. A 
dummy transaction record in the proper format would have to be constructed by copy
ing name and customer codes from the master file record. 

2 numeric 15 numeric 6 numeric 2 numeric 15 alpha 10 alpha 

Figure 19. lb. Format of a master file record that might be checked for customer code validity. 

Note that the interface with CHEKCUSCODE actually is more complex than it would 
appear to be from looking at statement L1 above, since there are seven individual data 
elements represented by each record. A simpler, less-coupled, more general-purpose 
module results if the interface communicates only data elements actually needed for the 
function, each as a separate parameter. The calling sequence in this case would include 
three parameters: a 13-digit customer code, a customer name field, and a flag to be set 
to indicate correctness. Thus 

Ll: CALL CHEKCUSCODE (TRANSREC(l), TRANSREC(3), OKFLAG) 

and check the code of a master file record 

CALL CHEKCUSCODE (MFREC2(2), MFREC2(5), MFOK) 

In general, reducing coupling and simplifying the interface between modules 
result in more flexible modules. 

For another example, consider the design of a system to print bar charts of the 
sort shown in Fig. 19 .2 from a vector of values for the bars on the chart. Assuming we 
can figure out how to set up the bars themselves from the vector of counts, how do we 
handle the printing of the headings and the labels for each bar? The most specialized 
module would include the coding to print out the specific footnotes shown. Suppose we 
want to generalize the routine BARCHART to handle data and display them in this for
mat'? We could get fancy and accept a list .of bar identifications, requiring us to worry 
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about what to do with descriptions that are too long to fit on one line without running 
into each other. But a simple generalized bar-charter can be developed by passing the 
buck up to the superordinate and requiring that the bar-charter be supplied with a cou
ple of ready-to-print header lines and a couple of ready-to-print footnote lines with 
which to label the bars. Moving the setup of these lines out of BARCHART does not 
complicate the particular application within which BARCHART is being developed, but it 
does create a smaller and more general-purpose bar-charting facility. 

Sometimes less is more! 

SALES SUMMARY 
PRODUCT LINE COSMETICS 

$2000 

xx 
xx 

1500 xx 
xx 
xx 
xx 
xx 

10()0 xx 
xx 
xx 
xx 
xx 

500 xx 
xx 
xx 
xx 
xx 

0 

NORTH~ 

EAST 

xx 
xx 
xx 

xx xx 
xx xx 
xx xx 
xx xx 
xx xx 
xx xx 
xx xx 
xx xx 

CENTRAL HOME 
OFFICE 

xx 
xx 
xx 
xx 

SPECIAL 

FEBRUARY 
PAGE 17 

Figure 19.2. Example of format to be printed by routine BARCl-IART. 

19. 2. 5 Generalized structures 

Using the techniques of structured design, we can analyze and factor the srructure 
of a generalized problem or a class of problems taken in the abstract. The benefits of 
such an approach are manifold. Having a good structural design for an entire class of 
problems means simplified design for all future specific programs of that type. Often, it 
is possible to recognize a particularly effective system's organization or ide.ntify some 
additional levels of factoring th.rough looking at a generalized, rather than specific, prob
lem. Basing specific solutions on the generalized structure increases the likelihood that 
future expansion can be achieved simply. Finally, in attacking an entire class of prob
lems, more effort in evaluating and improving coupling and cohesion and more careful 
iterative refinement of the entire structure can be justified. 

The basic idea behind generalized structural design is to iterate on the entire 
design process until the designer is convinced that, for the scope of the general case be
ing considered, the design is optimal in terms of maximal factoring, minimal average 
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coupling between modules, and maximal summed cohesion of individual modules. This 
point is reached when two successive iterations produce no changes. In doing this, the 
generalist/designer carries the factoring further and is more picayune about implied 
coupling than would be the designer of any single special application. The specialist can 
always back up from or compromise the optimal general design in the interests of 
special-purpose objectives. 

To illustrate some of the payoffs possible with a fully factored, generalized design, 
consider the strudural design for the generalized sequential file update. The easiest 
wa~' to describe this problem is to exhibit its solution. The authors do not claim that 
the structure in Figs. 19.3a and 19.3b is optimally factored, but it is at least close. 
While this structure does not cover every bell and whistle ever hung onto a sequential 
file update, it probably contains the places to hang them. This is an expansion of the 
full.Y factored transaction center introduced in Chapter 11. Any specific application can 
be tailored by striking out features not needed, or adding others where they are most 
closely bound. Some specific applications might have no cross-validation of transactions 
against data in the master file, for example, or might require merging corrections of 
previously rejected transactions with the sorted valid transactions. 

COORD 
Coordinale 
update and 
processing 

GET-A-DATA 
\ 

\ ' '\.. 

GET-UPDATED· 
MAS 

PUT-TO-MAS 

ne11.t valid 

transac~ 

GET-OLD-MAS 

CH EK-MAS 
Validate 
master data 

~~aster 
llem 

UNMATCH-00 
Process on "add 
new item" 
transaction 

trans ~ t ~aster + 6 item 

INSERT-DO 
Create new 
master item 

master 
item 

Dispatch on type 
for matched 
transactions 

TYP-1 

TYP-1-UPDATE X-CHEK-2 
Do type I 
updating of 
master dnla 

\ 
"ll 

Figure l 9.3a. Generalized, fully factored structure for sequential 
master file update process. 
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GET-NEX-OK-TRAN 
Get sorted, compleled, 
\lalidated 
transaction 

next valid 'J 
transaction&' , 

GET-NEX-TRAN SEQ-VALID 
Order-dependent 
validity checks 
on sorted 

ff sorting unnecessary 

or separate, GET-1-0K· TRAN 
lhis used rrom 
GET-UPDATED-MAS 

internal 

trans~ 

GET-OK-TRANS 

GET-I-TRANS 

ua~ 

lNPUT·TRANS 

.r. .. 'l\ 
record • 

LIST 
Create proor 
listing 

\ ok? trans\ internal 
\ !rans. 

GEN'L-CHEK 
Format \lalidily 
checks ... convert 
to internal code 

TRANSCODE 

ORDER-VALID 
Order·de1le ndent 
validity check, 
input sequence 

TYPE.CH EK 
Dispatch and 
check by lype 

............ ... I 
GEN'LOOIC·J 

••• 

I 
I 

Soning subsyste , 

Figure l 9.3b. Solution for generalized sequential file update. 

ERROR-SUB 
Error messaging 
subsystem 

OUT 
Device 
routine 

To st~e just how flexible such a generalized structure can be, let's consider some 

major changes. How about a VALIDATE TRANSACTION FILE ONLY pass'! The only new 

code required is represented by module VALIDRUN in Fig. 19.4. What about the radical 

change of introducing a disk file and going to a random access file update protocol? 

Figure 19.5 details the required changes. Different access modules for the master file 
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will be needed. A '\dictionary look,, will be needed to verify that an insertion does not 

duplicate an existing identification (IDLOOK). And the procedure in GET-UPDATED-MAST 

must be changed. For the random access method, a transaction is obtained~ if it is not 

an insertion, the corresponding master item is obtained (it may be in already), and the 

pair is handed to MATCH-DO. In other words, the difference between sequential and 

random file processing can be isolated into the procedure of a single module! 

VALIORUN 
\'•tid•I~ transac1io 
Ille. list in in1er• 
nal rorm. 

Figure 19.4. Changes to generalized update structure to create validation run. 

Further modifications to the structure are shown in Figs. 19.6 and 19.7. These 

show a trial update run, which does not actually alter the master file, and a system to 

update from an internal source of sorted, coded transactions. 

19.3 Software reliability 

Reliable operation is a major design goal in most systems development processes. 

In hard-systems engineering, reliability often is so important that formal, systematic 

strategies are used to increase reliability, including so-called statistical reliability theory. 

The techniques for developing reliable computer hardware - redundancy, self

checking data and computations, majority voting logic, duplicated systems, fall-back and 

switchover, and the like - are such that the hardware can now be made almost arbi

trarily reliable. Similar concepts in software have been almost totally absent until re

cently; within the past few years, various conference proceedings L2.3 and assorted pa

pers in technical journals 4 have awakened an interest in software reliability. 



llCllt 'llllid 

[

IN 
Disk 

,1n1errace 

STRUCTURE AND PROGRAM QUALITY 331 

COOltD 
Coordinai¢ 
upd11c and 
proc:euina 

'I Upd•tcd \ 
data 

\. "\. 

\ ' 
PUT-TO-MAS· 
ON-DISK 

... 

Figure 19.5. Sequential file update changed to random access update. 

no! valid 

tuns.t~ 

D!Yia!. 
routine 

[

IN 

TltlAL 
Run updale but 
leave mas1er lilc 

, .. 

/ \ 
I 

Figure 19.6. System to do a trial update without altering the master file. 
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ET·UPDATED· 
A.S 

INSERT-DO 
Crule new 
m.u1er item 

INTERNAL·UP 
Upda1e file from 
internal SQurcc 

I ' I 

••• 

' \ I \ 
Figure 19. 7. System to update file from internally generated transaction streani. 

Clearly, the issue is not an academic one. Consider a modern airport with landing 
and take-off traffic being all or partly controlled by a computer; such systems are in 
operation in several large international airports. Tremendous effort has been focused 
on developing ultra-reliable hardware configurations for this and other vital applications. 
It will be small comfort for the relatives of passengers to hear that the computer 
hardware functioned perfectly all through the mid-air collision of two Boeing 74 7 jets -
and that the cause of the problem was a minor bug in a program. Obviously, a system's 
failme is a system's failure, whatever the cause. 

We are witnessing an era of increased penetration of computers into what may be 
termed vital applications. A vital system is one in which a computer is in direct control 
of a situation involving responsibility for human life or valuable property. Because of 
the control function, vital systems frequently are of a real-time nature. Examples of 
suclh systems include computer control of large industrial processes, computer
controlled factory and material-handling systems, computer regulation of vehicular 
traffic flow, air-traffic control by computerized systems, medical and hospital informa
tion systems, and centralized missile and weapons control by computers. In each case, 
the computer could cause direct loss of life or destruction of valuable property through 
an action that may not (or perhaps could not) be cross-checked by humans. 

A casual survey of current literature will verify the increasing number of such vi
tal applications of computers. In fact, any time-shared computer system (e.g., order en
try, banking, airline reservations, and so on) must be assumed to be vital if the number 
of users is high enough. One can never assume that a system's crash will be inconse
quential to some user's activity. In fact, lost revenue to a company may in itself qualify 
such systems as vital. 
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It is in vital real-time computer systems that attention focuses on the availability, 
reliability, and dependability of the total system. Much effort has been concentrated on 
hardware reliability, but for the total system to be reliable, the software must also be re
liable. Redundancy, majority logic, and polymorphism are among the many dependable 
approaches to making the actual implementation of a given hardware architecture more 
reliable. The concept of hardware reliability is well understood~ the same cannot yet be 
said for software reliability. 

Although reliability is a more obvious consideration in vital computer systems, it 
is, at some level, a design objective of all systems. The monthly payroll system must 
be depended upon to function with complete reliability, or employee grievances will 
result.* Similarly, engineers will begin smashing things if the bridge beam stress 
analysis pac::kage frequently produces garbage output. 

19.3.1 Software failures 

Studies of hardware versus software failures in a service bureau environment have 
indicated that for every program blow-up traced to a hardware failure, at least four or 
five are due to systems software bugs. Any resident systems programmer charged with 
customer liaison in a large installation can attest to this. Studies by Yourdon 5 of a 

· scientific data acquisition system and several installations of a vendor-supplied operating 
system suggested that software failures accounted for approximately 50 percent of the 
total fai I ures. 

User program failures must be added to those that occur in the systems software 
(the operating system, data base management package, teleprocessing monitor, and so 
on). Unfortunately, it is more difficult to acquire figures for application program 
failures in an operational system, but these can be expected to at least equal systems 
software failures. In other words, in a system with ordinary hardware reliability and 
state-of-the-art programming, we should not be surprised to learn that nine out of ten 
systems failures were due to software. 

19.3.2 Nature of software reliability 

Reliability generally is established as a technical measure by defining it in terms of 
mean time between failures (MTBF). (See Chapter 1.) This has an obvious interpreta- , 
Hon for hard systems and for continuously operating real-time software. For other pro
grams, the interpretation is in terms of operational time, or number of discrete func
tions executed, between failures. MTBF implies an underlying stochastic behavior, 
ideally expressed in terms of a probability density function or functions. The ability to 
do this for real components and combinations of these components is what makes possi
ble quantitative reliability theory. Can we do this for software'? 

*I,n 1973, one of the authors visited a major oil company in which the workers threatened to drop their tools 
and walk out of the refinery if their paychecks were more than an hour late. Since software failures were the 
major cause of delayed paychecks, the company had, for several years, maintained an obsolete system in 
parallel with their current one. If the current system aborted and could not be quickly repaired. the company 
switched to the obsolete system in order to produce something resembling a paycheck! 
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Hard systems generally fail because one or more components have worn out. 
However, correctly designed and constructed real components have finite lifetimes, usu
ally distributed as well-behaved probability functions. For example, a light bulb fails as 
a result of a process of progressive decay set into motion when it was first activated. 

, The instructions of a program do not wear out in a similar fashion. There is no 
progressive degradation of the quality of the computation at memory location GLOP. If 
this computation fails, it fails because it has always been wrong. It did not fail before 
only because it was not executed before, or because the data on which it fails did not 
occur before. Possibly it has failed before, but the failure was not detected. 

Software components are either right or wrong for all time (given stable functional 
requirements). The probabilistic behavior of software failure arises not from an intrin
sic decay process of the components, but from the data that the software is called upon 
to process. The probability of failure during a given time span is a function of the 
number of lurking bugs (that is, wrong components), and the arrival of data that exer
cise one of those bug-ridden components. For a mathematical model based on this ap
proach, see Dickson et at. 6 

19.3.3 The ;maginary adjective "debugged" 

No software system of any realistic size is ever completely debugged - that is, · 
error-free. The dramatic proof of this is the unrelenting flow of errors noticed in so
called debugged vendor-supplied software, which has been in use for years. The pro
cess of correction is itself error-prone: Bugs can be introduced while correcting other 
bugs. For this reason, it is likely that the long-run fraction of system in error is not 
even asymptotic to zero. To the extent that corrections complicate, or increase the size 
of, the system, the fraction of system in error may not be asymptotic to any value, but 
instead may begin systematically increasing after a period of time. 

In studying maintenance histories of ''unstructured" application programs in their 
second year of use, one of the authors found that an average of 27 instructipns for 
every thousand of the original instructions had been changed or added due to discovery 
of bugs during that year. An additional three per 1,000 were corrected in the third 
year. Thus, after a year of use, at least 3 percent of the instructions in a typical pro
gram contained errors. Structured. programming and structured walkthroughs (see 
Chapters 20 and 21 )· are credited with reducing the number of bugs to the miniscule 
level of one bug per 10,000 instructions - but it is not yet clear whether those 
numbers can be achieved by the average programmer in the average data processing ap
plication. Even with one bug per 10,000 instructions, we are faced with the prospect of 
large air-defense systems and air-traffic control systems containing between l 00 and 
1,000 errors upon installation (several such systems are under development with a total 

of a million to terti million instructions!). 

19 . .3.4 Types of software failures 

When a statement containing a bug is executed, it does not necessarily mean that 
the system will fail in the sense of ceasing to operate. Sometimes, the consequence of 
the bug may be a system halt, a trap to an error routine, an exit to the operating sys
tem, a dump and abort, an infinite (or arbitrarily long) loop, the clobbering of some 
portion of the program, or the modification or processing such that most or all further 
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processing is incorrect. This type of situation is sometimes· termed a terminal failure or 
software crash. The term ~~fatal error" is also used, but will be applied here to the kind 
of data which may legitimately trigger a terminal failure. 

The opposite of a terminal failure is a localized, or nonterminal, failure. The 
scope of such a failure is limited, often only to the immediate processing, the results of 
which are dependent upon the causal data (or conditions). One cycle of processing the 
data, or one value of the output, is all that is in error. 

Error conditions of either kind may or may not be detected by the program and 
the occurrence may or may not be indicated to the environment. An unindicated error 
is more to~erable for nonterminal failures. Mysterious system crashes are equally seri
ous - but at least one knows that they have occurred! Undetected errors are, by 
definition, also unindicated. 

An observed failure in an executing software system may derive from various 
sources. Hardware failures may trigger a software failure. The software may detect and 
indicate hardware failures, either deliberately and directly (as in a conditional branch on 
a parity error after an input-output operation) or incidentally (as with redundant 
software). Computer operators (and other on-line users) may take erroneous actions. 
The incoming data may be wrong. Finally, the other components may be correct, but 
the software itself may be in error. 

For high reliability, software must be cognizant of conditions in all these areas. 
Responsibility does not necessarily extend to correcting or overcoming such error condi
tions, but it does require that the software not "do something stupid" - e.g., go into a 
terminal failure. 

19.3.5 Data and software failures 

The probability distribution of software failures is really made up of two underly
ing components deriving from the two very different kinds of data which the system 
may receive. If the data are normal or "well-behaved" (consisting of common or typi
cal cases), one distribution is observed: 

P 
/1 

= probability of failure with normal data 

When the data is pathological, a different behavior is observed: 

PP = probability of failure with pathological data 

We suggest that distinct modes of operation in the program or different aspects of 
the design are determining factors in each case. Moreover, typically PP is much greater 
than P 

/1 
~ thus, concentration on PP is more likely to significantly increase software relia

bility. It should be noted that both unindicated and terminal failures are more often as
sociated with pathological data. This should not be regarded as a disadvantage, but 
rather as a challenge to the designer: The fact that programs fail more often, and more 
seriously, because of certain kinds of data can be exploited in design, testing, and 
u~r.atronat use. 
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19.4 Software redundancy 

Achieving reliability through software redundancy is less straightforward than 
analogous techniques in hardware. Both can be regarded as relatively extreme and 
probably expensive. Redundancy should be regarded as a technique to be used when 
high reliability is a critical requirement. 

The difference between hardware redundancy and software redundancy can be ap
preciated by considering a duplicated hardware system. Performance of the same opera
tion by two machines (or machine sections) provides a dependable method of increasing 
reliability. There is a very low probability that both systems will fail simultaneously and 
in identical fashion. Thus, agreement in results generally can be taken as an absence of 
failure. However, duplexed computation provides only error detection; error correction 
must be undertaken separately. With triple redundancy, majority voting may be used to 
deliver only the correct result. In either case, the redundant facilities are duplicates of 
each other and do not entail independent design and development. 

Consider what happens when we execute two copies of the same program (or the 
same program twice). ~f the results disagree, it is indicative of a hardware failure, not a 
software failure. The single exception occurs when the failure is caused by asynchro
nous non-reproducibility - commonly known as a "timing bug.,, Also, if there is a 
bug, the usual result is that both copies of the program will have a terminal failure at 
the same time - not what we would like to see in a reliable system! Thus, it is clear 
that software redundancy must be achieved through non-identical components, implying 
a comparatively larger development cost. 

19.4.1 Self-checking procedures 

Some computations may be made inherently self-checking - that is, side effects 
to the algorithmic process itself may be used to check (or verify, or prove) the result. 
An algorithm that develops data and a checksum by independent computations within 
the: same algorithm is an example of a self-checking procedure. The results may be 
checked by proving the checksum. 

19.4.2 Reversible computations 

Some computations can be undone or performed in reverse to yield some or all of 
the original inputs. A square-root procedure can be protected redundantly by squaring 
the result and comparing it to the input argument. This approach is attractive when the 
reverse computation is substantially easier to perform than the original. Of course, not 
all computations are uniquely reversible from the outputs alone: A quotient cannot be 
used to produce the dividend without the divisor. 

In general, of course, the computations of interest are much more complex than 
extracting a square root. The analysis required to develop the inverse process could be 
very involved and could slow the execution time of the system tremendously. 
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l9.4.3 Approximations and reasonableness checks 

If a lowered probability of detection of actual errors is tolerable, then the redun

dant calculation need only involve an approximation to the actual computation. This 

approach also is acceptable if a software failure can be expected to produce a gross devi

ation rather than a minor deviation (as often is the case). The attraction of this ap

proach is that the approximation or reasonableness check is, almost by definition, a 

simpler, faster computation than another exact version. However, reasonableness 

checks are largely, though not wholly, limited to numerical computations. 

The extreme form of an approximation occurs when the result simply is checked 

for reasonableness. For example, the constant C = 186,324 miles/second might be 

used as a check for reasonableness on velocity of a gross object. Similarly, the area 

under a curve could be checked to determine that it is less than the maximum height 

ti:mes the span on the ordinate. This latter product is a quick approximation, poor 

though it may be, of the area. Reasonableness checks really are approximations 

guaranteed to exceed (or to be less than) the actual value. A pair of such approxima

tions can be used to bracket the value. 

An approximation to a computation may be compared with the actual computation 

to see if the difference is within some tolerance limit. If it can be proved that the 

difference has an upper bound for correct results, this can be used as the basis for in

creasing the probability that the actual result is correct. For example, a stepwise in

tegration with very small steps might be checked against one that has large steps and 

fewer iterations. Similarly, an extended precision floating point operation might be 

checked against a short precision duplication. 

19.5 Structure of fault-handling processes 

In prototype, a fault-handling process has four elements. The existence of a fault 

must be detected by some process for the program to be cognizant of it. Immediate ac

tion must be taken to process, bypass, or otherwise deal with the fault. Finally, provi

sion may be made for ultimate correction of the cause of the fault, or recovery from its 

consequences. 

It is an almost universal rule of thumb that faults should be detected as early as 

possible - that is, close to the source at some interface. Early fault detection protects 

the system (including its resident data) from the effects of undetected faulty data enter

ing into computations. Detection at or near the source also enables tracing the cause of 

errors to their ultimate origins in data. A test deeply imbedded in the system often 

cannot be related to causes in input data. Finally, early detection often is efficient 

detection. By definition, a specific instance of data is input only once, even though it 

may be used countless times. Error-checking at the input would be performed only 

once, while error-checking at the point (s) where the data are used would be accom

plished many times. 

There are conflicting criteria, however. Early detection procedures are separated 

from the logic of the relevant processing functions. At the same time, it is easy to see 

that the processing necessary to assign data to one of several legitimate classes must at 

least partially duplicate the processing necessary to isolate the same data falling into 

complementary illegitimate classes. For example, checking for illegitimate part 
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numbers is functionally equivalent to the process of classifying these part numbers into 
the legitimate cases. · Thus, separate detection is also duplicated processing. 

Separation of fault detection from the procedures which use the data rnay also be 
less reliable. Data which were correct can become faulty through accidental 
modification or through substitution. Later versions of the program may obtain the 
same data from alternate sources. The design philosophy that yields greater reliability is 
th 1e one that requires every function to protect itself, validating its own data. Some pro
grammers have referred to this philosophy as one of having each module build its own 
firewalls to protect itself against possible damage in other modules. 

I 

Systems programs and their components - especially operating systems and real
time/time-sharing systems - must never assume correctness of data. The same is 
probably valid for all parts of vital systems. The rub is that the very system requiring 
maximum reliability often is the one with the most stringent speed requirement. The 
designer must make his choices in these situations with great care and based on sub
stantive issues. Often a final arbiter is found in the fact that some data values will 
make a procedure malfunction. Negative values of X for an iterative computation of 
the square root of X not only may be illegal, but also may cause the procedure to cycle 
endlessly. A procedure must protect itself from all such dangerous data. 

19.6 Summary 

We have seen that the quality of a computer program usually can be described in 
terms of its generality, flexibility, and reliability - in addition to efficiency. Most of 
this chapter was devoted to defining such fuzzy words as generality in an objective, 
technical fashion. 

The lessons of this chapter already have been learned by some enterprising sys~ 
terns designers: The preferred way to build a general-purpose system is not to build one 
computer program that will do all things for all people. Instead, what one should do is 
build a large number of small, single-purpose modu1es that are flexible and that have 
extremely clean interfaces. The generality comes from the almost i.nfinite number of 
combinations of such modules - combinations that very few designers ever would have 
been able to predict. 



CHAPTER 19: REFERENCES 

1. Proceed;ngs of the 1972 Annual Reliability and Ma;ntainabi/ity Symposium, Institute 
of Electrical and Electronics Engineers, IEEE Cat. No. 72CH0577-7R. New York: 
1972. 

2. Proceedings of the 1975 International Cot{/erence on Reliable Sqfiware ACM SIG
PLAN Notices, Vol. 10, No. 6 (June 1975). 

3. Barry De Rose and Ch. W. Hamby, ~'Forecast of Software Reliability 1975-1985, H 

Proceedings of the 1975 IEEE Computer Society Co1iference, Institute of Electrical 
and Electronics Engineers, IEEE Cat. No. 75CH0988-6C. New York: 1975. 

4. Tom Gilb, "Parallel Programming," Datamation. October 1974, pp. 160-161. 

5. E. Yourdon, '~Reliability of Real-Time Systems, Part 4: Examples of Real-Time 
System Failures," Modem Data, April 1972, pp. 52-57. 

6. J.C. Dickson, J.L. Hesse, A.C. Kientz, and M.L. Shooman, HQuantitative 
Analysis of Software Reliability, Proceedings of the 1972 Annual Reliabilizy and 
Maintainability Symposium. Institute of Electrical and Electronics Engineers, IEEE 
Cat. No. 72CH0577-7R. New York: 1972, pp. 148-157. 



CHAPTER 20 
IMPLEMENTATION OF MODULAR SYSTEMS 

20 .. 0 Introduction 

Most of the emphasis throughout this book has been on the design of highly 
modular systems. We have made passing references to implementation, testing, debug
ging, installation, and other such terms, but we have given no details on the methods 
and strategies to be followed once the design work is done. 

It is particularly important that we discuss implementation strategies, since there 
has been a tendency in the field recently to assume that top-down design must always 
be associated with top-down testing. Indeed, we will see in this chapter that one can 
reasonably argue in favor of either top-down or bottom-up implementation. Much more 
important, there is a vast spectrum of "compromise" testing strategies that can be em
ployed for particular situations. It is important to understand that one is not locked into 
any one rigid implementation strategy. 

We begin this chapter by outlining the basic characteristics of more common im
plementation strategies: top-down/bottom-up and phased/incremental. We then will 
discuss some of the advantages of the top-down approach. This is followed by a discus
sion of advantages of the bottom-up approach (in an attempt to be fair to both!). We 
conclude the chapter by discussing some of the more important variations on the top
down/bottom-up theme. 

20.l Basic approaches to implementation 

There are an almost infinite number of ways to implement and test any computer 
system. Indeed, there are an almost infinite number of organized approaches to imple
mentation and testing! If we observed the development process followed by the typical 
''organized" programmer/analyst, we probably would find some variation of top-down 
design, followed by random coding, followed by bottom-up testing. The design strategy 
currently used by most organizations tends to be a rather informal version of the top
down strategy* - that is, the designer tries to design the major chunks of the system 
first, then breaks those chunks into smaller chunks, and so forth. 

However, the strategy used by many programmers to code the modules tends to be 
somewhat random. Depending on his mood, the programmer may code the top 
modules first and the bottom modules later (i.e., a top-down approach to coding). Al
ternatively, he may code from the bottom up~ if he is an optimist, he may code the 

*Of course, the more formal strategies of transform-centered design and transaction~centered design discussed 
in Chapters 10 and 11 also are top-down in nature. 
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more difficult modules first (regardless of where they appear in the hierarchy) and the 
easier modules later~ if he is a pessimist, he may code the easy modules first and the 
more difficult modules later! 

Of course, we are interested primarily in the manner in which the programmer 
tests his code. One might argue that this is determined entirely by the coding strategy. 
If the programmer codes his system in a top-down fashion, then he must be testing it 
top-down. This correlation between coding strategy and testing strategy is common, but 
not necessary: The programmer may decide to finish all of his coding in a top-down 
fashion, and then test the modules in a bottom-up fashion. We will discuss some of 
these unusual combinations in Section 20.4. 

In the testing carried out by most programmers, we can discern a choice between 
a phased and an incremental approach~ similarly, we can tell that the programmer has 
made a conscious choice of a top-down or a bottom-up approach. We will examine the 
characteristics of each of these approaches. 

20. 1.1 Phased versus incremental implementation strategies 

Much of the discussion in the current literature focuses on whether the program
mer should code and test the modules at the top of the hierarchy before coding and 
testing the modules at the bottom of the hierarchy, which is less important than the 
choice between a phased implementation and an incremental implementation. 

The phased approach to implementation could be described in the following 
(slightly tongue-in-cheek) manner: 

1. Design, code, and test each module by itself (this is commonly known 
as unit test). 

2. Throw all the modules into a large bag. 

3. Shake the bag very hard (this is commonly known as systems integra
tion and test). 

4. Cross your fingers and hope that it all works (this is commonly known 
as field test). 

While this may appear rather cynical, it probably is accurate for many small and 
medium-size projects. After all, the programmer argues, there are only a dozen 
modules in the system - what could possibly go wrong? In a larger system, we usually 
do not find the extreme approach suggested above, but we still find that large numbers 
of modules are combined and tested en masse. For example, in Fig. 20.1, it is common 
for the programmer to throw modules c, Cl, c2. CJ, and C4 into the proverbial brown pa
per bag and test them together. The traditional terms for phases of this approach are 
unit test, subsystems test, and systems integration and test. 

In contrast, some programmers follow an incremental approach to testing. This ap
proach can be paraphrased in the following manner: 

1. Design, code, and test one module by itself. 
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2. Add another module. 

3. Test and debug the combination. 

4. Repeat steps 2 and 3. 

The essential characteristic of this approach, then, is that we are adding only one new 
(and potentially "buggy") module to the system at a time. Because the system grows 
gradually to approximate the final desired system, this approach also has been called 
stepwise refi. nement. 

TOP 

A B c 

A2 Bl B2 Cl C2 CJ C4 

Figure 20.1. A typical program structure. 

One advantage of the incremental approach is immediately obvious: It makes the 
process of debugging more scientific, more organized. To under:.>tand this, it is neces
sary to distinguish between testing (the process of demonstrating that the system does 
what it is supposed to do - a process that usually involves execution of test data and 
examination of the output) and debugging (the art of identifying the location and nature 
of a bug once its existence has been made known). 

In the phased approach, the programmer observes that when 39 modules are 
thrown together in a paper bag, the combination doesn't work - however, the process 
of tracking down the bug(s) in that combination of 39 modules is much like looking for 
a needle in a haystack. The incremental approach is clearly preferable: We begin with 
a combination of N modules which apparently work (even though they still may contain 
some undetected bugs); we then add one new module, and observe the behavior cf the 
new combination of N + 1 modu1es. If the new combination does not work, the bug 
may or may not be located in the most recently added module (though frequently that 
is the case)~ what is important to us is that something about the new module has aggra

vated the system to the point where a bug exposed itself - the "Sherlock Holmes" as
pect of debugging is, thus, immensely simplified. 
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It should be clear that the decision to test the system in a phased or incremental 
fashion is entirely independent of the decision to test in a top-down fashion. Top-down 
testing strategies traditionally have been associated with development, and bottom-up 
strategies traditionally have been more phased in nature. 

20.1.2 Top-down versus bottom-up testing 

I 

For many years, bottom-up testing has been practiced without the somewhat unat-
tractive rubric of bottom-up. Instead, it was simply the best-_known series of steps in 
which testing was done: 

1. Unit testing (sometimes known as module testing, single-thread test-
ing, or program testing) 

2. Subsystems testing (also known as run testing, or multi-thread testing) 

3. Systems testing (sometimes known as volume testing) 

4. Acceptance testing (also known as field testing, or user testing) 

Regardless of the terms that are used, the fundamental characteristic of bottom-up 
testing is the sequence in which the modules are tested. In Fig. 20.1, for example, a 
bottom-up sequence would dictate that modules A, Al, and A2 be tested separately, then 
together as a package. Note that this could be accomplished either in a phased or an in
cremental fashion. Similarly, we would test B, Bl, and B2 individually and then together 
as a B package; c. Cl, and C2 would be tested to eventually produce a c package. When 
this has been accomplished, the A, B, and c packages would be combined with module 
TOP to produce an entire system. Naturally, for a larger system, there would be several 
steps in the progression from modules to packages, to super-packages, and so forth -
until we finally have the entire system. 

In most cases, bottom-up development requires the presence of so-called drivers 
- also known as "test harnesses," "test monitors,,, "test drivers," and various other 
terms. A test driver has to "exercise H the module under test, in what is basically a 
primitive simulation of what the superordinate module would do if it were available. A 
test driver can take one of two basic forms: a specialized driver or a Hskeleton coding,'' 
or outline, of the superordinate. If skeleton coding is used to drive modules, the skele
ton may be saved and used as the first cut on coding the actual superordinate when that 
stage is reached. The processing required of a test driver depends upon whether the 
module under test is an afferent, efferent, or coordinate module. Table 20.l identifies 
the requirements for drivers of each type of module. 

Top-down testing, as the name implies, proceeds in the opposite direction. If we 
use Fig. 20.1 as an example, again, the top-down approach would require TOP to be cod
ed and tested first~ coding and testing of modules A, B, and c would be accomplished 
later~ implementation of A 1, A2, BI, 82, Cl, c2, C3, and C4 would be accomplished last. 

It is important to see the interactions between levels in the hierarchy during top
down development. At the time when TOP is tested, modules A, B, and c must have 
been specified, and their interfaces with TOP must have been determined. However, A, 

B, and c have been neither tested nor coded. Indeed, it is possible that the procedural 
design has not even been accomplished for these modules. Instead, they exist as dum
my modules, or stubs. 
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The concept of a dummy module, or stub, is an important aspect of top-down im
plementation. In many cases, the dummy module simply exits - without doing any 
work at all! This implies that the programmer can exercise the superordinate with some 
of the subordinate functions totally absent~ one can sometimes regard error-checking 
modules from this point of view. Similarly, the dummy module may return a constant 
output. Thus, a tax calculation module in a payroll system might calculate a constant 
tax of $10 for all employees regardless of their salaries. 

It may also be appropriate to have the dummy module print a message to let the 
programmer know that it was invoked. The trace options in a number of high-level 
programming languages are convenient for this purpose. In an on-line environment, 
the dummy routine can even ask for help from a terminal: After displaying its input ar
guments on the terminal, the dummy module can accept appropriate outputs from the 
programmer and return them to its superordinate. In a real-time environment, it may 
sometimes be sufficient for the dummy module to execute a timing loop - that is, 
without doing any useful processing, it would chew up the amount of CPU time (and 
other systems resources) that the actual module is estimated to require. Finally, it may 
be appropriate to implement a primitive version of the actual module. Thus, the dum
my version of a binary search table-lookup module might accomplish its required func
tion with a primitive linear search. 

It is important to note, however, that to test fully the superordinate in the gen
eral, rather than exceptional, case requires a stub that can supply or accept and display 
test data needed by or created by the superordinate being tested. The requirements are 
outlined in Table 20.1. 

Table 20.l 
Processing Requirements for Stubs Versus Drivers 

INFORMATION 
FLOW 

AFFERENT 

EFFERENT 

TRANSFORM 

NULL 
(empty or no data) 

number needed 
number needed 
usin~ skeletons 

STUB 
(top-down) 

setup test case 
return to .caller 

accept input 
display 
return 
accept input 

display 
setup corresponding 

lest results 
return 

return 

modules - 1 
modules - 1 

DRIVER 
(bottom-up) 

call module 
accept results 
display 

setup test case 
cal! module 

setup lest case 
call module 
accept results 
display 

call 

modules - 1 
modules - atomic modules 
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Dummy modules, as a concept, are not restricted to top-down modules. As an 
illustration, consider the structure shown in Fig. 20.2. We could imagine the following 
boflom-up, incremental development: 

1. Code PROC. 

2. Desk-check PROC. Indulge in a structured walkthrough of PROC. Hope 
that divine guidance will reveal the presence of bugs before PROC has 
been executed on a real computer. 

3. Set up a driver for PROC. This might be a skeleton version of SUPER, 
or perhaps a general-purpose test driver. 

4. Create stubs for SUB and DUB. 

5. Debug PROC alone, on a real computer, with dummy SUB and DUB and 
the driver (internal debugging of PROc). 

6. Combine PROC with the real SUB (which has already been debugged) 
and debug the combination (interface debugging with SUB). 

7. Combine PROC-SUB with the real DUB, and debug the new combination. 

8. Combine PROC-SUB-DUB with the real SUPER, and test the combination. 

SUPER 

PROC 

SUB DUB 

Figure 20.2. Bottom-up stepwise refinement. 

To see the difference between top-down and bottom-up implementation, consider 
the example shown in Fig. 20.3. The sequence of testing for the top-down approach is 
shown in Fig. 20.4; the bottom-up approach is shown in Fig. 20.5. As we can see, the 
top-down approach requires 17 stubs~ the bottom-up approach requires either 17 
drivers, or nine skeleton drivers (outline code for some module) and 11 stubs. It is not 
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immediately apparent at this point whether one approach is easier than the other. We 
will have more to say about the relative advantages and disadvantages of top
down/bottom-up implementation in the sections below. 

F 

AA 

G M 

Figure 20.3. Top-down versus bottom-up development. 

Code/Test With Stubs 

AA BB,CC,DD 
BB F,EE 
F 
EE G 
G 
cc H,WW 
DD WW,L,ZZ 
WW XX,YY 

etc. 

Figure 20.4. Sequence of testing 
with top-down approach. 

Code/Test 

K 
M 
N 
zz 
I 
J 
xx 
K 
yy 
WW 

etc. 

With 

K,M,N 

l,J,K 

J,K 
XX,YY 

Figure 20.5. Sequence of testing with 
bottom-up approach. 
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2:0.2 Advantages of top-down implementation 

The virtues of the top-down approach have been discussed in a number of recent 

articles and at computer conferences. However, there has been a tendency to associate 

top-down testing with top-down design, chief programmer teams, structured walk

throughs, structured programming, and a variety of other ·~programmer productivity 

techniques .. ' ' Of course, in this chapter we are interested in considering top-down test

ing on its own merits. We should not credit it with ben_efits that actually are brought 

about by structured programming or other philosophies. Equally important - and gen

erally not understood by most programmers - we should not credit top-down testing 
with benefits that actually are due to incremental testing. 

Since the supposed benefits of top-down testing have been published so widely 
(see, for example, Baker 1.2 and Yourdon 3.4), the best way to proceed is to examine 
each benefit in turn. 

20. 2. 1 Top·-down testing eliminates systems testing and integration 

That top-down testing eliminates the need for systems testing and integration is 
generally true, but it is a characteristic of incremental testing, not top-down testing per 

se. We could just as easily eliminate systems testing and integration with bottom-up in

cremental testing. However, as we pointed out earlier, top-down testing tends to be 

done in an incremental fashion, while most bottom-up testing traditionally has been 
done in a phased manner. 

There is nothing to prevent the disciplined programmer from following a bottom

up incremental testing approach. Similarly, there is nothing to prevent the undisci

plined programmer from following a phased top-down testing approach! Indeed, the au

thors have observed several supposed top-down approaches recently when the impatient 

programmer threw all of the modules for one level of the hierarchy (e.g., modules A I, 

A2, Bl, B2, Cl, C2, CJ, and C4 of Fig. 20.1) into a large bag, with the hope that they would 
all work properly. 

20. 2. 2 Top-down testing tests the most important things .first 

The comment that the top-down approach tests the most important things first 

may appear to be generally true of medium-size business-oriented systems, and for a 

variety of other ordinary computer systems. However, it would be more accurate to say 

that, with top-down testing, di/ferent things are tested first. In some systems, the 

modules at the bottom of the hierarchy are critically important, and it could be advanta

geous to test them first. 

When we say that we are testing the most important things first, we usually mean 

that we want to find the most important bugs as early as possible in the implementation 

of the system. Depending on the nature of the system, the critical bugs may be either 

at the top of the hierarchy or at the bottom, or both. 

For example, in a real-time system with stringent processing requirements, the 

most critical problems may be at the bottom of the hierarchy: If a bottom-level module 

cannot accomplish its task in 48 microseconds, system's queues may begin to overflow, 

and the entire system may quickly abort. Similarly, the designer must consider the pos-
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sibility that he has erroneously specified the interface for a bottom-level module in such 

a way that the module will never be able to accomplish its task. Unless such an error is 
found early, it might ultimately require a large amount of recoding in the superordinate 
modules that call the bottom-level module. 

In most normal systems, the problems - and the bugs - tend to be of a different 
type. A major computer manufacturer's recent efforts to develop a COBOL compiler 
offer an excellent illustration of the potential problems. The COBOL compiler was 
chopped into two pieces, which appropriately were titled the front end and the back 
end. The front end of the compiler was being developed by one .team of programmers 
in a suburb of San Francisco, while the back end was being developed by another team 
in a suburb of Toronto. According to the plan, the two teams would put their halves of 
the: compiler together approximately two years after commencement of the project -
and hope that it worked correctly. 

Of course, everything should work correctly - especially if the interface between 

the: front end and the back end of the compiler has been carefully specified and docu

mented. However, the Toronto programmers and the San Francisco programmers may 
not read the interface document in quite the same way - any interface specification 
tends to have at least a little ambiguity or incompleteness. The important thing to real
ize is that some aspects of the high-level interface will filter all the way down to the 
bottom level of the hierarchy. Thus, if there is a problem in the high-level interface 

(which will be determined at a Toronto-San Francisco summit conference, otherwise 
known as systems integration), it may well propagate through all the modules. 

If interface problems of this sort are anticipated - and it is reasonable to expect 
them in any project involving more than one team of programmers - then top-down 
testing does have some distinct benefits. 

Of course, this leaves us with the situation of a large, real-time system developed 
by multiple teams in geographically remote areas of the country: We may anticipate 

seritous problems at both the bottom and at the top of the hierarchy. We have no sim
ple answers here: There may, in fact, be an argument for implementing from the top 

down and from the bottom up, at the same time. 

20.2.3 Top-down testing allows users to see a preUminary version of the system 

The ability to present users with an early version of the system often is claimed as 
the most important benefit of top-down implementation - and deservedly so in many 
cases. A skeleton version can be demonstrated to the users to ensure that the program
mers are implementing the system that the users requested. Equally important, users 
have the opportunity to provide some feedback to the design process; they may have 
ask1ed for certain features in the system without fully understanding the consequences. 
This is particularly important when an application is being computerized for the first 
time, or when a second-generation batch application is being converted to a third

generation on-line, real-time application. 

However, the Huser-feedback,' characteristic of top-down implementation is not 

particularly important if the user knows precisely what he wants, and if the 

designer/programmer is sure that he understands what the user wants. This may hap

pen, for example, when a system is converted from one machine to another, or 

redesigned internally for greater efficiency, reliability, or maintainability - all of which 

are "transparent" to the user. 
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In a sense then, top-down testing may compensate for inadequate problem 
specification or analysis. But we should point out that structured design assists the user 
and systems analyst to understand and firm up specifications. 

We also should point out that when users want a demonstration of the system -
especially a working skeleton of the system that they can use in a production sense it 
is unlikely that top-down implementation will be followed in its pure form. For exam
ple, it is unlikely that the user will be satisfied with the skeleton system shown in Fig. 
20.6a: It accepts only dummy processing, and produces its output in the form of octal 
or hexadecimal dumps. 

Figure 20.6b might represent a more realistic skeleton to show the user: Certain 
common types of real inputs are accepted by the system, though the rare input cases are 
processed by modules not yet implemented~ some of the processing modules have been 
implemented, though certain exception processing is represented by stubs; and at least 
one critical output report is produced by the system, though the formatting still may not 
be up to the user's standards. Strictly speaking, this should not be called top-down im
plementation, since some branches of the hierarchy are pursued to a greater depth than 
others~ for lack of a better name, some have referred to il as ~~left-corner design. n 

It is important to realize that if a complete structural design has been accom
plished, the programmer can choose to implement any subsystem first~ some lower-level 
subsystems may be valuable and productive to the user on a stand-alone basis. Exam
ples might be a reporting subsystem, an update subsystem, or even a collection of 
atomic modules for statistical calculations. 

20.2.4 Top-down testing allows one to deal with deadline problems more gracefully 

Most data processing managers will admit that, despite their best efforts, their 
EDP projects probably will exceed their budgets and deadlines. There are a variety of 
reasons for this, some of which will be discussed in the next chapter. All that need 
concern us now is that, in the real world, we have to admit the possibility that we will 
not finish our projects on time. 

This phenomenon of late projects is not new, of course; indeed, it has been en
demic to the industry for the past two decades. Thus, a number of user organizations 
have begun to suspect that each new EDP project is not a special case (the excuse fre
quently used by the data processing department when things go awry), and that the 
scheduling/budget problems are merely evidence of the programmer's incompetence. 
The question is: If the circumstances (which may be beyond our control) are such that 
the entire system is not finished when the deadline arrives, which parts of the system 
would we prefer to have finished and demonstrable'? 

With a traditional or phased bottom-up approach, there is a good chance that the 
programmer will have finished all of the coding and possibly all of the unit testing. 
However, there is an equally good chance that the brown-bag test will have failed -
that is, none of the pieces work together because of a bug in one or more modules. 
From the user's point of view, there is nothing tangible that works~ users typically are 
not impressed with compiler listings or the output from a module test. 
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The top-down approach, on the other hand, is more likely to result in a skeleton 
that will show some tangible evidence of working. It may not accept all of the required 
input types~ it may not completely edit the input; it may process only a few of the more 
critical types of input; and it may produce only some of the required output, possibly 
without a great deal of the formatting. Nevertheless, it generally will be capable of ac
cepting some input, performing some processing, and producing some output - all of 
which is tangible evidence to the user that the programmers eventually may produce an 
entire system. Of course, most users still will be displeased. They want the entire sys
tem to be dlelivered on the appointed deadline day. However, we must expect that their 
displeasure wil1 be far greater with a phased approach than it would have been with an 
incremental approach. 

Again, we must emphasize that these are only general observations - not state
ments of some religious principle. There are times when the user will be more-or-less 
satisfied if some of the bottom-.level modules work in a stand-alone fashion. Similarly, 
it is possible that the user will be totally dissatisfied unless the entire system with all 
its bells and whistles - is delivered on or before the deadline. In that case, the user 
won't really care whether we have developed the system top-down or bottom-up. 

20. 2. 5 Debugging is easier with top-down testing 

The ability to debug systems more easily is not really a characteristic of top-down 
implementation, but rather of incremental implementation~ as we observed in Section 
20.1, debugging is considerably easier if we add only one new module at a time to an 
existing combination of debugged modules. 

20. 2. 6 Requirements for machine test-time are distributed more evenly 
throughout a top-down prqject 

In the classic New York Times system, L2 it was observed that a constant amount 
of machine··time for testing was used from the ninth month of the project through the 
twenty-fourth month. This has been verified in a number of recent projects, and it 
represents an enormous advantage over the exponentially rising requirements for 
machine-time found in classical data processing projects. 

If we analyze the situation closely, though, we find that the phenomenon is caused 
by incremental testing - not by top-down testing per se. That is, every day we add one 
new module to the existing system and run through all the test data again - hence, we 
use about the same amount of computer test-time each day. Of course, we will prob
ably add additional test data to ensure that we have thoroughly exercised the new 
module~ and the module itself will require some additional CPU time. However, we of
ten find that such systems are input-output-bound, and thus require essen.tially the 
same amount of Hwall-cJock" time regardless of the number of modules that are being 
exercised. Similarly, we often find that the largest amount of time in a test-run is spent 
by computer operators setting up the run (e.g., mounting tapes and special forms in the 
printer) and breaking down the run. 
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20.2. 7 Programmer morale is improved 

It is not just the users and the EDP managers who are pleased by the tangible evi
dence of progress in a typical top-down project - the programmers also derive a great 
sense of satisfaction from seeing something that actually runs to end-of-job at an early 
stage in the implementation process. 

This observation must be tempered by some of the points that we made earlier: 
A system which accepts real inputs and produces real outputs probably is not being 
developed in a pure top-down fashion - the afferent and efferent branches of the 
hi1erarchy probably have been extended to a fairly low level, leaving other branches dan
gling temporarily. Also, there may well be some situations in which the programmer 
will derive a great deal of satisfaction from seeing a stand-alone bottom-level module 
that produces good output. 

20. 2. 8 Top-down coding and testing substitutes for complete design 

In the absence of a complete prior structural design, coding and testing must 
proceed entirely or essentially in a top-down manner because the bottom-level modules are 
not known! Indeed, the usual case has been one in which top-down design is accom
plished concurrently with top-down coding and testing. It is very dangerous to try to 
guess the bottom-level requirements at the start of an implementation; the correct, 
needed atomic modules can only be "discovered" by programming from the top down 
or by completing a structural design. 

Returning to Fig. 20.1, the designer/implementer, without a structure chart, is not 
even aware at the time he codes and tests TOP, that Al, A2, Bl, B2, Cl, c2, C3, or C4 even 
exists. He may have a "fuzzy" idea about some detailed processing that must be per
formed eventually - but he has not yet formalized those ideas. 

When TOP has been tested, the modules at the next level - modules A, B, and c 
- are specified, coded~ and tested. Note that this step also can be accomplished in ei
ther a phased or an incremental fashion. In order to test A, we must identify the ex
istence of modules AI and A2, and specify their interfaces with A; however, Al and A2 

exist as dummy modules when we test A. Obviously, this process continues until we 
have finished designing, coding, and testing the modules at the bottom level. 

20.3 Bottom-up development 

As we have seen, there are a number of situations in which the designer/imple
menter may consciously choose a bottom-up approach to testing. Perhaps the best 
justification for bottom-up development is the system whose low-level modules are criti
cal in some sense. However, most systems have only a few critical modules, and one 
could argue that after those modules have been tested, the project should return to a 
top-down approach. 

20. 3. I Bottom-up development as a function of resources 

Another common justification for bottom-up development is based on the 
scheduling of programmers. A structure chart for a typical system often resembles a 
pyramid, with relatively few modules at the top and relatively large numbers of simple 
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modules at the bottom. Thus, the manager might argue that the bottom-up approach is 

preferable, because it allows him to assign large numbers of programmers to work, in 
parallel, on the bottom-level modules. 

In theory, this is true~ in practice, we often find serious interface problems 

between the multitude of bottom-level modules. This usually is not the fault of the 

bottom-up approach per se, but rather because of the almost irresistible urge to accom

pany it with a phased approach: All of the programmers throw their modules into a very 

large paper bag and hope that the resulting jumble will accomplish some useful process

ing. Appropriate use of the management ideas introduced in the next chapter can avoid 
most of these problems. 

There are situations in which the programming manager finds that a large number 

of programmer.s have been assigned to his projectl against his wishes, on the first day of 

the project. One might argue that this would never happen in a rational organization; 

we can only observe that (a) it is a mistake to think that most organizations are ration

al, (b) contractual commitments with one's customers may require that the program

mers be assigned to the project as soon as it has been authorized, and (c) the manager 

may feel that if he does not assign the people to his staff when the project starts up, 

then he runs the serious risk that they will not be available when he needs them. Such 

a situation is likely to influence the manager to pursue a bottom-up development ap

proach - because it enables him to put the programmers to work more quickly. 

While these problems tend to influence the manager to pursue a bottom-up ap

proach, it probably is more accurate to say that such problems lead to a phased ap

proach. Thus, if there is no machine-time for testing, there is a good chance that the 

programmers will write all of their code with little or no testing - and, then, in a last

minute rush, all of the modules will be thrown together for a system's test. 

20.3.2 Bottom-up approach required.for generalized atomic modules 

Occasionally we find that the bottom-up approach is the only way in which we can 

generate appropriate test data for low-level modules. In Fig. 20. 7, for example, suppose 

we have just developed low-level module Bn, and that we wish to test it in a top-down 

fashion. This means that we must be able to invent an appropriate number of varia

tions of a1 data elements that will be converted to a2 elements. These will be convert

ed eventually to a" data elements, then to b1 elements, and ultimately to the b11 ele

ments with which we test our module Bn. 

The problem is that it may be very difficult to invent an appropriate number of a1 

elements that will generate an acceptable sample of b
11 

elements; quite possibly, alt of 

the distinct a1 elements that we are capable of thinking of (or generating with a test 

driver) will only generate two or three distinct b
11 

elements. Consequently, we may de

cide to follow a bottom~up testing approach, using a driver in place of module Bk. This 

assumes, of course, that a driver would be capable of generating an adequate sample of 

b
11 

data elements directly. 
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Figure 20. 7. Testing problems with the top-down approach. 
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20.4 Variations on the top-down and bottom-up approaches 

As we have seen, the programmer often is required to make a choice between 

top-down and bottom-up testing~ he also must choose between a phased approach ~nd 
an incremental approach, the latter being highly preferable for all but the most simple 

projects. What may not be obvious is that there are many different approaches -

indeed, an entire spectrum - available to the programmer. Some of the more common 

"'compromise" approaches are discussed below. 

20. 4. I The extreme approach: Design, code, and test a level at a time 

When we first introduced top-down testing in Section 20.1, we suggested that the 

design, coding, and testing of the N +I level of a hierarchy could not commence until 

the N rh level had been completed. This could be regarded as a radical top-down ap

proach~ unfortunately, it is impractical if applied literally. In Fig. 20.6a, for example, it 

is impractical to assume that the programmer could effectively test TOP if all of the 

subordinate modules were stubs. Furthermore, if we wish to introduce real input and 

produce real output, there is an implicit assumption that at least some portion of the 

afferent and efferent branches have been carried to a low level (although this is not 

necessarily true: A ·dummy version of module A in Fig. 20.6a could produce the 

afferent data element from a test file). 

20. 4. 2 The zigzag approach 

A more common approach to top-down development is suggested by Fig. 20.6b 

that is, some branches of the hierarchy have been pushed down to a lower level than 

others. For lack of a better term, this has been called a zigzag approach 3 - the pro

grammer hops around the hierarchy, first pushing module A to the next lower level, 

then pushing module Bl to a lower level, and so on. 

There are at least three obvious reasons why this approach is likely to be taken. 

First, the requirement to deal with real input and real output, as we suggested earlier, 

will influence the programmer to develop some legs of the afferent and efferent 

branches. Second, pressures from the user will dictate that certain types of processing 

and certain types of output reports be completed as early as possible. Finally, a zigzag 

development is a natural consequence of several programmers working on the project 

simultaneously: Some programmers are faster than others. 

20.4.3 Finishing the design before coding 

Earlier, we suggested that the radical approach to top-down development involved 

designing one level of the hierarchy at a time - and then immediately writing code for 

the top-level modules before one has the faintest idea of the number and nature of the 

bottom-lev<d modules. A more conservative approach suggests that the entire structural 

design should be finished (and perhaps documented in the form of a structure chart) 

before coding and testing commence. When implementation does begin, it can proceed 

in a top-down fashion - the difference is that the programmer knows what lies ahead 

of him (or below him in the hierarchy) as he codes each module. 
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There are advantages and disadvantages of this conservative approach. Perhaps 

the most important advantage is that it affords the designer an easier method of altering 

and refining the design before he begins writing code. That is, when he reaches the 

boi:tom level of his structure chart, he may observe that a minor change - propagated 

through the entire structure - would greatly enhance the quality of the design. If he is 

working with a structure chart, it usually is a simple matter of erasing a few lines and 

drawing a few others. If he already has committed himself to code, he faces the more 

arduous task of recoding, recompiling, and retesting code. More important than the 

physical labor involved is the psychological reluctance to change that which already 

works: The programmer's normal instinct is to leave it alone! 

Thus, we might argue that one of the disadvantages of the radical approach -

known by some cynics as "designing it as you go', - is that it is less likely to be 

modified during implementation. This is particularly important when several program

mers are working on the system simultaneously. If they are following the radical ap

proach, they frequently will miss the opportunity to fan-in to common low-level subor

dinate modules. Even if they become aware of the opportunity, they are less likely to 

change their code - especially if it appears to work already - than if the opportunity 

had been recognized while drawing the structure chart. Thus, the result is likely to be a 

number of similar low-level modules, which may add significantly to the problems of 

efficiency (because of increased memory requirements) and maintainability. 

On the other hand, performing a complete structural design for a large system is a 

time-consuming affair - during which there is no tangible evidence of progress, at least 

not in a form that would be appreciated by most users. As we pointed out earlier, one 

of the advantages of the radical approach or the zigzag approach is that it provides tangi

ble evidence of progress to the user - which can be extremely important if the project 

starts to fall behind schedule. 

There is another aspect of the user interaction that may argue against the conser

vative approach. As we suggested, many users do not really know what they want from 

the system, or do not understand the consequences of the system they have specified. 

Thus, we run the risk of performing a time-consuming and expensive systems analysis, 

and! a time-consuming structural design - only to find when we begin implementing 

the system, that it is entirely unacceptable to the user. The more fickle the customer, 

the stronger the argument for a "design on the fly" approach~ the less fickle the cus

tomer, the stronger the argument for the conservative approach. However, it is crucial 

to recognize that only a complete prior structural design can maximize cohesion and 

factoring, while minimizing intermodule coupling. Thus, the pre.viously designed struc

ture emerging from the conservative approach also is the most modifiable. Unless the 

customer rejects the entire system (very improbable!), the prior structural design will be 

most easily adapted to fit the real but unstated user needs. 

20.4.4 Mixed approaches 

A review of Table 20. l will suggest the possibility for a mixed strategy, which 

minimizes the task of creating or specifying stubs and test drivers. Note that the driver 

for an afferent module is simpler than an afferent stub, and that the stub for an efferent 

module is simpler than a driver. (Transform modules, once again, are the stubborn 

holdouts!) The simplest testing would result from proceeding bottom-up on afferent 

branches and top-down on efferent ones. This amounts to testing and debugging from 
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inputs through outputs. One reason this input-output stra1egy is easier is that most 
te.sting (with exceptions as noted in Section 20.3.2) can make use of real input for test 
data rat her than internal tables and generated data. 

Many mixtures of top-down and bottom-up are possible and practicable. Guided 
by a structure chart, a system even could be sensibly implemented by stepwise 
refinement from the middle outward, starting with module B in Fig. 20. l and adding 
TOP, BI, and B2 one at a time! 

The essential thing is that the choice of implementation strategy be made rational
ly rather than as a matter of religious principle. With a complete structure chart avail
able in advance, the greatest possible latitude in workable options is achieved. With a 
highly factored, cohesive, uncoupled design, errors in structural design are most easily 
corrected, even in the coded modules themselves, and testing and debugging become 
possible with minimal interactive effects between various parts of the design. Struc
tured design thus fits well with any disciplined coding, testing, and debugging strategy. 

20 .5 Summary 

We have seen in this chapter that design and implementation often are in
tertwined~ it is important to keep in mind that there are many different ways of combin
ing design and implementation. A conservative approach to building systems would be 
to accomplish almost all of the design before any implementation begins~ a more radical 
approach would allow implementation to begin as soon as a small amount of design was 
accomplished. 

Much of the attention in the popular EDP literature today is focused on the dis
tinction between top-down and bottom-up implementation. We have discussed the ad
vantages and disadvantages of both approaches in this chapter but, more important, 
we have stressed that the key to successful implementation is i11creme111al testing. 
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CHAPTER 21 
THE MANAGEMENT MILIEU 

21.0 Introduction 

Ultimately, the designer works within an environment that includes, among other 
strange creatures, the manager. Often, the professional will find himself at odds with 
management over what he sees as technical issues~ but what management obviously 
sees in another way. In this chapter, addressed both to managers and to designers, we 
will examine some ways in which technical design and management decisions interact. 
We will see that many seemingly purely management prerogatives determine the tech
nical factors of a system in subtle ways. Moreover, for systems design to be effective 
- not just in terms of theoretical systems goals, but in terms of the actual goal of 
building better systems - some of our technical objectives will have to be bent to ac
commodate the exigencies of the real world in which politics is a decisive force. 

In the face-off between managers and professional systems designers, the odds 
favor management - especially since few computer professionals are truly professional. 
Even if the professional argues that a proposed method is technically unsound or that 
some other alternative is optimal, he often does not have a rigorous, formal discipline 
to back him up. Equally damned is the manager who has the intuition to see the value 
of finishing a complete structural design before writing any code, but who ends up in a 
debate on programming style because he lacks proofs and theories. However, with the 
amount of literature that has been published recently on various aspects of structured 
design and structured programming, we can no longer be very sympathetic to this ex
cuse. We will be even less so as more rigorous theory and more conclusive empirical 
evidence builds from here. 

The basic questions to be asked in this chapter are: Should management under
stand anything about the concepts of structural design? How does structural design 
help the manager accomplish his job more effectively? We will be concerned~ as we 
have been in several previous chapters, with the job of dispelling myths. Overall, it will 
be necessary lo discard the myth that the technical and the managerial aspects of sys
tems development are separable. In reality, they are not. 

21.1 The impact of management decisions on the technical aspects of a project 

Obviously, the technical aspects of a project affect the resource utilization. A 
poorly designed system may require twice as many programmers for implementation as 
a well-designed, highly modular one. However, it is less obvious that the converse is 
true: Resource utilization, determined largely by management, can have a strong 
influence on the technical aspects of the project. 

359 
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As an illustration, consider the plight of a large national conglomerate involved in 
building a multi-company, totally integrated, on-line, real-time management informa
tion system. Their design-on-the-fly approach was clearly creating problems and, in the 
long run, would almost certainly lead to considerable duplicated effort. A consultant 
was brought in to study the situation~ he suggested that they needed a complete struc
tural design prior to any coding, and he explained what this entailed. The proposal was 
vetoed on the grounds that the complete structural design was so enormous that it 
would take more than the three years budgeted for the entire design and implementa
tion to be completed. 

Now, clearly this is faulty reasoning! The code for the system contains all of the 
information in the structure chart, plus a great deal more. Indeed, no model of the sys
tem can contain more information than is in the code since that is the whole system. If 
it would take more than three years of effort by the whole staff to design the system, 
then certainly it would take much more to code it! 

The real question is whether the cost (in dollars or time) of doing a complete, de
tailed design and then coding exceeds that of just coding from the top. As a rule, addi
tional design time saves implementation time, primarily by reducing debugging. 
Indeed, the savings almost always substantially exceeds the cost of the additional 

. design. This trade-off cannot be continued without limit, of course: Past a certain op
timum point, additional design effort, while tending to improve the system, will not al
ways reduce total cost - and may even increase it as refinements and extensions con
tinue to be introduced. 

Figure 21.1 illustrates the presumed behavior of total systems development cost as 
a function of design effort. With no prior design (especially design of a structural na
ture), the cost can be expected to be very high. More design (prior to coding) reduces 
cost at an increasing rate. The initial flatness of the curve to the left of point A is large
ly conjectural. It appears that too little design may be almost as bad as none at all; sub
minimal design could even increase the total cost somewhat - we simply do not have 
sufficient evidence to know as yet. 

Between A and B, the greatest gains are possible. Functionally, B probably 
corresponds to a complete design of a highly modular structure following the intrinsic 
problem structure, plus corresponding designs for data structure and interfaces. Neither 
design optimization nor many iterations of the design are implied at that point. As 
more design is added, we get an improved system at little increase in cost. Over some 
fairly broad range (shown as points B to c on the diagram), the total cost falls to, or 
near to, the minimum. It then begins to rise slowly, due to diminishing returns and to 

elaboration of the system. 

One aspect of the model shown by Fig. 21.1 has, in fact, been verified; under
budgeting of design increases total system's cost. As experiments, a few parallel 
developments of systems have been accomplished - and, among other things, the ones 
with greater design effort were implemented at lower total cost. This is vitally impor
ta01t to the systems analyst or the manager: Underbudgeting of design, or premature 
termination of the design effort, may be responsible for overrun of budget and time es

timates for the project. 
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Figure 21.1. Behavior of total development cost as a function of design expenditures. 

It is argued frequently that the iterations (or refinements) of design are Htoo ex
pensive n -· that is, revisions, refinements, and improvements to the structure of a 
large modular system are difficult and time-consuming. Certainly, there is an element 
of truth in this: In a large-scale system of, say, 100 or more modules, a single iteration 
of the design may involve massive rearrangement of modules and interfaces. On the 
other hand, the corresponding changes would cost many times more once the system 
has been committed to code. Expensive though such changes may be, they will never 
again be so cheap. 

Of course, some design iterations may involve refinements that would not be 
made if the system were already committed to code - for they represent options or 
marginal refinements and extensions. Failure to make these improvements during 
design probably is not serious. What is serious is the failure to develop, through suc
cessive iterations, an adequate, implementable system, thus necessitating expensive 
trial-and-error revisions during the implementation and debugging of the system. 
These types of design failures most commonly show up during the so-called systems in
tegration and test phase that we mentioned in the previous chaptec On large-scale pro
jects, this is normally one of the largest costs precisely because of insufficient design 
and planning. 

Many of these points were raised in Chapter 20, where we discussed various ap
proaches to the implementation and testing of a system. What we wish to emphasize in 
this chapter is that many of these problems are exacerbated by management pressures 
of one sort or another. For example, as the apparent or expected cost of a system goes 
up (or as time and budget constraints become tighter), there frequently is management 
pressure to solve the problem through allocation of greater resources. If one program
mer can finish a job in two years, then two programmers can finish it in one year - or 
so the reasoning goes. 
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Brooks 1 refers to this as the "mythical man-month"; that is, programming 
managers often make the assumption that people and time can be freely interchanged. 
This is roughly equivalent to suggesting that nine women r:an produce a baby in one 
month. In the programming example mentioned above, it is likely that the two pro
grammers will take two years to solve a problem that one programmer would have 
sollved in two years. 

21.1. l Project organization and modular structure 

At the 1968 National Symposium on Modular Programming, 1 consultant George 
Mealy gave a particularly dramatic example of the mythical man-month problem. His 
story involved his experience in IBM's development of OS/360. At' one point, the proj
ect had approximately 50 technical people assigned to it An analysis of progress-to
dale and the projected size of the system revealed that it would take twice as long as it 
should to complete, and consume half again as much resources as had been allocated. 
This is the picture illustrated in Fig. 21.2, the dotted line showing projected resource 
utilization. By doubling the staff, the project management hoped to be able to follow 
the dotted line. 

The staff was doubled, redoubled, doubled again, again, and nearly a fifth time -
and yet the performance was worse than that projected with 50 people! In retrospect, it 
appears that the only stratagem with much promise of completion on time, within bud
get, and with a sound technical product would have been to cut the staff in half, retain
ing the 25 best people. The larger staff created a more complex system (some would 
say inordinately so, but we will leave that for history to judge!) and created more 
management problems. 
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Figure 21.2. Representation of the effect of Mealy~s Law. 
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In formal terms, we can state Mealy's Law like this: 

There is an incremental person who, when added to a prQject, consumes more en
ergy (resources) than he or she makes available. Tlws, beyond a certain point, 
adding resources (people) slows progress in addition to increasing the cost. 

The components of this effect are myriad. Since the incremental man must, learn about 
the project, someone must train him. He must communicate with other team 
members, and thereby introduces additional managerial and technical interfaces. We do 
not say he will do no productive work. Presumably, his own overhead does not con
sume all of his own resources - but when we add up what he uses from everyone else, 
the project I oses. 

There are other ways of looking at Mealy's Law. The authors recall the story of a 
programmer assigned to write an application program on a small 12-bit minicomputer. 
His estimate of six months to complete the job was deemed unacceptable to his boss. 
When the manager assigned another programmer to the project in hopes of speeding it 
up, the original programmer responded, "But two programmers won't fit in there!" 

There is another common problem that can be traced to management decisions~ 
we 'II call it the Thousand Module Effect. If you turn 1,000 programmers loose on the 
same project before a total structural de:iign has been completed, one thing is reasonably 
certain: There will be at least 1,000 modules in the final system (counting probable du
plicates), since two programmers ~~will not fit in one module. n Indeed, there will be 
1 ~000 modules even {f it is only a 150-modufe problem. A number of large vendor
supplied operating systems, as well as some massive data processing systems developed 
by various U.S. government and military agencies, will attest to this phenomenon. 

In more general terms, we can describe the phenomenon above as a variation of 
Conway's Law:* 

The structure of a system reflects the structure qf the organization that built it. 

Thus, if a system is developed (with design done in a seat-of-the-pants fashion) by 
1,000 chimpanzees, we can expect a system with 1,000 modules - with extreme cou
pling and cohesion problems. If a system is designed by two groups in geographically 
remote locations, the final system probably wilt reflect that management organization 
rather than the inherent problem organization. If the design work is done initially by 
one person, or by a small, tightly knit team of professionals, there is some hope that 
the final system will reflect that tight-knit unity. Actually, Conway's Law has been stat
ed even more strongly: 

The structure of any system designed by an organization is isomorphic to the 
structure of the organization. 

Thus, if there are two subsystems designed by different designers or design teams who 
do not communicate with each other\ by definition, the subsystems will not communi
cate with each other or make common use of shared facilities. Connections between 
subsystems always will reflect some communication between the organizations that 
designed them. 

*So-named by participants at the 1968 National Symposium on Modular Programming. 
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21.1.2 Design of large-scale systems 

Circumventing Mealy's Law and Conway's Law can prove very difficult for large 
applications. The complete structure chart for an information system comprising 50,000 
lines of source coding would have perhaps as many as 1,200 boxes on it. If it could be 
drawn at all, it would cover an entire wall. Very few systems of this order of size have 
been implemented from complete prior structural designs. Comprehension of such a 
vast structure is difficult, and its development by any formal strategy is tedious and 
error-prone. 

There are three primary reasons for doing a single integrated design of the struc
ture of an entire application area or larger system, rather than subdividing the design 
effort. First, a subdivision of the design effort determines the interfaces between major 
subsystems by managerial fiat with the frequent result that the major subsystems are 
excessively coupled. The design efforts under such circumstances cannot really proceed 
ind1~pendently any more than can later maintenance and modification of the highly cou
pled subsystems. Second, the subdivision of structural design usually determines an ul
timate packaging into programs or ''suites'~ of programs that is suboptimal and much 
less convenient or efficient than the packaging that would be possible after a complete 
overall structural design. Third and most important, subdividing the structural design 
work inevitably leads to duplicated programming because opportunities for fan-in are 
missed in all but the most elementary cases, such as in computing square root. 

Particularly expensive are the cases where a slight change in assumptions in one 
structure and minor changes in the arrangement in another would make possible_ shar
ing of entire subsystems and deep nests of modules. These opportunities can only be 
recognized in an integral design or separate designs undertaken with extensive interac
tion between designers. We all know that as programmers and systems analysts we are 
forever reinventing the wheel~ subdividing structural design helps make this waste pos
sible. For example, it has been estimated that the integral design of a single union 
compiler that would compile FORTRAN, ALGOL, PL/I, and COBOL for a single 
machine would result in a program only about 25 percent larger than that of the PL/I 
compiler alone. The more usual situation is that FORTRAN A-level, B-level, and z
level compilers were all designed and implemented separately. The analogies in the 
average user's applications are obvious and equally painful. 

What does the project manager for a large effort do to get unstuck from between 
''thte rock and the hard place''? Several organizations have found an approach that per
mits subdividing the structural design effort into manageable subprojects while mini
mizing the negative effects cited above. A data flow graph for the entire system or ap
plication area is drawn up. To keep that task within bounds, the data flow is presented 
at a fairly high or abstract level. This data flow is examined to assure that it is com
plete, correct, and the simplest model of the problem for the level of detail employed. 

The overall data flow graph is analyzed to identify more or less independent sub
graphs that have the fewest transitions (flow lines) connecting to the remaining graph, 
where these transitions involve uncomplicated data sets or small information volumes. 
Each essentially independent (uncoupled) subgraph then becomes the initial input to a 
separate structural design project. If duplicate design or replication in code is to be 
avoided, there must be frequent mutual design walkthroughs and continual cross
checking between the various designers or design teams. Careful comparison of the 
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subgraphs may suggest areas of potential shared facilities. In this way, maximal fan-in 
can be achieved even between subsystems designed separately. 

It is possible to employ an iterative design approach which yields high-quality 
structural designs in general and is especially indicated for subsystem design of a project 
segmented in the manner outlined above. The subgraph is first refined, then used to 
derive a complete structure by transform-transaction analysis. Understanding of the 
problem gained during the design is then used to develop a new data flow graph for the 
subsystem, and the design process is repeated. Typically, significant improvements con
tinue to develop through six or seven iterations. The final subgraph can be used to 
refine and correct the total system's data flow graph. 

More than anything else, the problems discussed in this section seem to em
phasize the advantages of completing the structural design before any substantial coding 
takes place. In Chapter 20., we discussed some situations in which one could justify 
coding at an earlier stage~ however, most normal projects would benefit from complete 
prior structural design. 

21.2 Management benefits of prior structural design 

There are several management benefits to be gained from the design/implementa
tion approach that has been suggested in earlier sections and chapters. While there are 

some valid arguments for the radical approach to top-down implementation discussed in 
Chapter 20, we nevertheless suggest, for the sake of management, that a complete (or 
nearly complete) structural design be accomplished first, using all of the principles of 
coupling, cohesion, transform-centered design, and others previously discussed. When 
this has been accomplished, we suggest that coding and testing be accomplished in an 
incremental fashion~ circumstances will dictate whether the basic implementation ap
proach should be top-down or bottom-up or some combination. It can be assumed that 
nearly all modules in the resulting design are small (in the sense presented in Chapter 
9) and independent (i.e., uncoupled). 

21. 2. 1 Reliable cost estimating 

One of the most difficult aspects of managing/developing systems is predicting, in 

advance, the requirements for people time, machine test time, and other resources. 
This will always be a difficult problem, and there is no magical approach that will 

guarantee precise cost estimates. 

However, observe that estimating is an exercise in human problem-solving. Hu
man beings have a limited capacity for dealing with complex problems - and estimat
ing budget and manpower requirements for a million-statement system is certainly a 
complex problem! The probable error in any estimate will vary with the complexity of 
the problem being estimated. Since human errors rise with problem size, estimates on 
big problems will have more error in them than estimates on smaller problems. Be
cause estimation errors deviate randomly, the laws of statistics guarantee that the total 

error in a summed estimate will be less than the sum of the errors in all the little esti

mates comprising it. 
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If most of the modules are truly independent of each other and the system is im
plemented in an incremental fashion (always adding one more small, independent 
module), the cost relationships are all additive. Thus, the sum of all module develop
ment costs closely approximates the total system's development cost. With a complete 
prior structural design of small independent modules implemented incrementally, errors 
in cost estimation can therefore be reduced substantially. Moreover, the estimating 
process is simplified. 

The drawback is that these reductions in probable error are realizable only after 
the structural design is completed. This points to the advantages of two-phase design 
and implementation contracting. Even where delayed cost estimating is not possible, an 
accurate estimate provided upon completion of the design can be useful to management 
as a check against the previous estimate, and can supply fairly reliable figures on which 
to base possible reconsideration of the decision to implement all or part of the system. 

21. 2. 2 Improved scheduling, ;mproved planning 

One of the advantages of a prior structural design is that every module to be pro
grammed is identified and specified in advance. In addition, possible perturbations on 
the high-level modules (as a result of design problems in the low-level modules) have 
been resolved before coding begins. Thus, it should be relatively smooth sailing once 
the coding begins. 

In addition, prior structural design makes it easier for the manager to schedule 
adequate, but not excessive, personnel and machine requirements. Indeed, this is one 
of the disadvantages of the radical top-down approach discussed in Chapter 20: The 
managers (and the programmers) rarely know what lies below the surface of the 
modules on which they currently are working. 

21.2.3 Parallel development of acceptance and validation criteria 

On any large project, it is important to develop test data, acceptance criteria, and 
benchmarks in parallel with the development of the system itself. With a prior struc
tura.l design, this is possible because the functional requirements of every module are 
known before the coding/testing begins. With the radical top·down approach, this is 
considerably more difficult since the functional requirements for some of the modules 
will not be known until midway through the project. 

This is not to say that acceptance criteria are impossible to develop with the radi
cal top-down approach. The designer, the systems analyst, and the user must identify 
different versions of the system, each one of which will have certain features present, 
certain features absent, and certain features in a primitive form. This requires rather 
delicate coordination between several different parties - and, in the authors' experi
ence, it often breaks down completely. Because of impatience or frustration, the user 
frequently announces to the analyst and the programmer that he does not wi.sh to dis
cuss acceptance criteria until the entire system has been specified. 



THE MANAGEMENT MILIEU 367 

21.2.4 Belter project monitoring and control 

Most data processing projects are accompanied by milestones that are used by 

management to gauge the progress of the project. There are two problems with most 

milestones. The primary one is that they do not represent tangible evidence of progress. 

Thus, we often see a milestone of "'95 percent of the code has been written," which 

most programmers will claim to have accomplished on the second day of the project! 

Also, the milestones often are too far apart: The manager only learns at six-month in

tervals whether he is ahead of or behind schedule. · 

As we pointed out in Chapter 20, the top-down incremental. approach has the ad

vantage of providing tangible evidence of progress: A real skeleton system can be 

demonstrated on a real computer. Indeed, any incremental approach can be considered 

tangible, in the sense that the programmer should be able to supply test data to demon

strate that some combination of modules works. 

Hqwever, the problem with the radical top-down approach is that the manager has 

difficulty judging the propo~tion of .finished modules to u1(/inished modules. For all he 

knows, the modules that have been completed may represent only the tip of the ice

berg. By having a complete prior structural design, the manager can more readily -

and more precisely judge the fraction of the total system that has been accomplished. 

Indeed if 76 of 100 small, uncoupled modules have been implemented by stepwise 

refinement and have passed acceptance tests, then the job is approximately 76 percent 

complete. In practice, this type of simple linear projection has proven io be as good as 

rather fancy project management systems projections. 

It also should be clear that the incremental approach affords the opportunity for 

more frequent milestones. Indeed, it might be more appropriate to use the phrase 

inch-pebbles to describe the checkpoints that can be established at the completion of 

each module. 

21.3 Personnel management for implementing modular systems 

Finally, a few remarks about the problems of personnel management in large 

modular systems: As a number of a"rticles in popular journals have pointed out for 

several years, one of the supposed advantages of modularity is that it gives the manager 

the opportunity to assign different programmers to different pieces of the system. But 

does this actually work? Do the programmers really accept it? 

Consider the structure shown in Fig. 21.3. We might imagine that it represents a 

programming task large enough to require six or eight programmers. How should the 

manager assign programmers to work on different parts of the system? There seem to 

be three basic approaches, each with its own advantages and disadvantages. 

One approach is to assign a complete subsystem - perhaps the A subsystem - to 

an individual programmer. This has the advantage of enabling the programmer to see 

the big picture: He derives more job satisfaction knowing that he is working on a sub

stantial piece of the system. On the other hand, the manager runs the risk that the 

design of the A subsystem will drift from the original structural design. Even worse, 

the drift may not be discovered until the programmer has finished the entire subsystem. 

This is particularly true if the programmer works on his code in a vacuum, isolated 

from the other programmers on the project. When he finishes, we run the risk that 

there will be interfacing problems with module TOP and with module x. 
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Figure 21.3. Personnel management for management systems. 

Another approach is to assign individual programmers to work on individual 
modules. Thus, the manager might assign one programmer to work on module z; 
another programmer might work strictly on module TOP. This has the advantage of 
better control: If one programmer gets behind schedule, writes terrible code, or quits, 
the consequences are limited to one module. On the other hand, this approach has a 
definite psychological disadvantage: It makes the programmer feel that he is a small cog 
in a very large machine. He frequently finds it difficult to become motivated by the 
challenge of working on his own module. 

Finally, we have the suggestion of assigning a team - perhaps two or three pro
grammers - to work on a subsystem. This approach has been referred to recently as 
"adaptive teams," uegoless teams, n "chief programmer teams," and a variety of other 
terms. It seems to stem largely from the studies and writings of Weinberg. 3 One of 
the advantages. of this approach is that the members of the team see the overall 
scheme~ they should derive satisfaction from working on a major piece of the system. 
Because several programmers are involved, there is more of a chance for control. It 
still is possible, of course, that the design may drift, but it is less likely if several people 
are involved. The team approach also has the advantage of involving the programmers 
in each other~s code. This is usually formalized by such techniques as structured walk
throughs, in which the programmers read and critique each other's code. 
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Recently, the tendency has been towards the team approach. However, we must 
emphasize that the overall development is much more manageable if the team is 
presented with a structural design before it commences work. If the team practices a 
design-on-the-fly approach, it may be very difficult to estimate its time and manpower 
requirements - and the team may develop a system that suffers from Conway's Law. 

21.4 Summary 

The major theme of this chapter has been that management decisions can 
influence the technician's ability to develop a good design, and viee versa: The kind of 
design carried out by the technician can have an important impact on the manager's 
ability to schedule, budget, and monitor his project. 

It has been our experience that careful attention to the principles of structured 
design makes it far easier for the manager to develop accurate schedules and budgets -
for precisely the same reason that structured design enables the technician to develop, 
test, and maintain his system more easily. Developing a schedule and budget for a 
large, complex system is an extremely difficult human problem-solving process; 
developing a schedule and budget for a number of small, independent modules is con
siderably easier} and considerably less error-prone. 
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STRUCTURE CHARTS: A GUIDE 

The purpose of this guide is to describe standard charts, how to develop them, 
and how to read them. The standards promulgated here are the cumulative result of 
feedback from many users over a period of nearly ten years. They arc intended to be 
consistent, theoretically sound, but most importantly, maximally useful. It should be 
noted that these standards differ in a few significant ways from those that IBM supports. 
(The portions that differ are flagged with a triple asterisk and refer to the notes on page 
395.) Our experience indicates that the graphics presented in this Appendix significantly 
increase readability of structure charts and decrease the probability of errors in the 
design process. 

Note on graphics: The symbology of the structure chart is designed to be 
drawn with the aid of the standard Flowcharting Template (IBM, ANSI, and 
ISO standards). Generally, some sem bl a nee of compatibility is retained to 
make learning the new meanings easier. 

I. Explanation of symbols in structure charts 

The complete standard for structure charts includes, in a single interrelated set, 
facilities for representing all possible structural features of programs in any known pro
gramming language/environment. In any one programming context, a designer/pro
grammer would expect to use only a subset of the standard. 

A. Pieces of systems 

The basic building blocks of modular computer systems are modules. There are 
many kinds of modules. Some, like PL/I PROCEDURES, are activated out-of-line. Oth
ers, like COBOL PARAGRAPHS, may be executed in-line. All modules in any program
ming language have certain properties in common. 

1. A module consists of a set of lexically contiguous statements~ that is, 
statements comprising the module are written together, sequentially. 

2. A module has an identifier by which the entire module, all of its lexi
cally included statements, may be referenced as a single piece. 

A module may or may not be referred to by its identifier (although usually it will 
be, at least once). A module may receive and transmit data as parameters in a calling 
sequence such as TIME-RECORD in the statement 

CALL PROG2 USING TIME-RECORD. 
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or a module may communicate data via fixed cells or a common-data region. No matter 
how it is activated or is given data, if a piece of system consists of adjacent statements 
with an overall unit-name or identifier, it may be called a module. 

A module is represented by a simple rectangle with the module name in the 
upper-left corner: 

Fig. 1 

Such a picture represents any kind of module. Sometimes it is desirable to distinguish 
between special physical types of modules. For example, a module defining a named 
macro (to be inserted in-line at compile- or translation-time when invoked by its name) 
may be distinguished from other types. A macro, to be distinguished, is represented by 
the following: 

Fig. 2 

fi'ATRIXADfil 

I I 
L __ J *"'*(I) 

Any previously written or pre-existing module may be represented by st.riping. 
For example, the system-supplied subroutine SQRTF 

~I 
Fig.3 lL_J_ 
and the library macro procedure XREAD 

Fig. 4 

JTXREADfJ 
Ll __ _lJ "'**(I) 

Any module, regardless of type, may contain in its defining statements both exe
cutable and nonexecutable elements. A module whose only contents are data (e.g., a 
NAMED-COMMON region in FORTRAN) would be shown thus: 

Fig. 5 

DAT A DIVISION ) 

***(I) 

Often, the operating system or machine environment itself behaves as a unit of a sys
tem to and from which, both control and data may be passed. To show the operating 
environment, this symbol is used: 

Fig. 6 
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B. Connections 

In a system, a connection is a reference to an object by its identifier (name, ad
dress, label, index, and so on). An intermodular connection exists whenever a refer
ence appears within one module to an identifier not defined (or first defined, or caused 
to exist) within the module, but elsewhere. When the reference is to the identifier of 
another· module, the connection is called normal, and is shown as an arrow pointing to 
the box representing the module whose identifier is being referenced. For example, 
within module DISTANCE is found the code 

SUMSQRS = XDIF*•2 + YDIF*"'2 
ZDIS = SQRTF (SUMSQRS) 
IF (ZDIS-TOL) 14~ 15, 15 

The above includes a reference (underlined) to the identifier of module SQRTF. In this 
case, the context of the reference is that of using SQRTF as a function subroutine. 
Intermodular connections in the context of normal subroutine "calls" are as follows: 

DISTANCE 

Fig. 7 

The data being passed as arguments are shown as an annotation to the connection for a 
"call." The small annotating arrow shows the direction of flow of the data. Thus 

Fig. 8 SUMSQRS 

Or a footnote table may be used. Thus 

5 6 

COMPOCOUNT 

Fig. 9 

*Input 10 subordinate, output .from subordinate. 

DISTANCE 

result 

PARAMETERS 

• 
• • 
5 

6 

INPUT* 

PROT-NO,COMPONENTS 

ACT-NO, COMPONENTS 

OUTPUT* 

P-COUNT ,ERR 

A-COUNT ,OOPS 
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The names or identification given for data flowing as parameters to and from 
subroutines are the names as used in the call ;ng module, that is the "actual" rather 
th.an "dummy" parameter list. 

Often, it is useful to distinguish between parameters that are normal data to be 
operated upon, from parameters that are elements of control - e.g., switch settings, ex
ception flags, error or end-of-data indicators, and so on. A small dot on the tail of any 
arrow indicates "control," a small circle indicates "data." Thus 

Fig. 10 COMMAND ***(2) 

VALIDATECOMMAND 

Annotations on the connection and a parameter footnote table may be intermixed 
to produce a chart that is both uncluttered and readable, as well as complete. Thus 

Fig. 11 

employee

data 1 / 

SKILLPROFILE 

NEXTEMPL SKILANALYZE 
' 

*** (3) 

PARAMETERS 
INPUT OUTPUT 

EMP-REC,SKIL-LIST,§Qf 

2 ID,SKIL-LIST,OVFLOW SKILTAB,ILLEGAL-SK,NO-SK 

Note that control parameters have been underlined in the parameter footnote table. 

1. Pathological connections. Intermodular references to identifiers other than 
the external names of modules are called "pathological" and are shown as arrows ori
ginating within the box for the referencing module and terminating within the box for 
the referenced module. For example, a direct reference by module SEARCH to a data 
element by its name, lNPVECTOR, within another module, BUILDVECT, is shown thus: 

BUILDVECT 

4 ~ 

SEARCH uses data 

INPVE CTOR • -Fig. 12 
_ - setup by BUILDVECT 

in the array INPVECTOR 
SEARCH 

0 
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The conventions are consistent with those introduced above: The direction of the con
nection is the same as the direction of reference (pointing), i.e., from referencing 
module to referenced object (here, within module BUILDVECT): the annotation shows 
the direction of flow which may not be in the direction of connection; the small circle 
denotes data. A simple generalization yields the form for a direct transfer (GOTO) to a 
location within another module: 

Fig. 13 

An intermodular modification of code, such as an ALTER from one COBOL section 
to another or an assembly language address substitution, is shown as 

Fig. 14 

/ 
/ 

Such connections are known as hybrid connections. 

SECT-1 "ALTERS" 
paragraph ALPHA in 
SECT-2 to proceed 
to paragraph QUIT *** (1) 

2. Common environments. References to commonly held data, such as FOR

TRAN COMMON or PL/I EXTERNAL names, are pathological connections that present 
special problems in graphic representation. Consider, for example, a COBOL program 

with several SECTIONS. All of the data in a COBOL program are defined in a single, glo
bally accessible DATA DIVISION and all data are communicated pathologically, i.e., by 

direct reference. The structure chart quickly becomes cluttered with pathological data 

connections, as shown below: 

Fig. 15 
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which would hide other important structural features. A "connector" is used for this 
reason (and anywhere else to clarify the chart). Thus 

Fig. 16 

REC,DAT,PROB 

ONE 

PROGRAM 

SECTlON 
TWO 

SECTION 
NG FOUR 

EG 

SECTION 
THREE 

A connector represents a graphic break, exactly as in a flowchart~ thus, the two struc
tures below are identical: 

A 

Fig. 17 

B 3 ***(4) 

c 

Off-page connectors also may be used: 

Fig. 18 ***(4) 

1time 

COM 
page J 

page 4 
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Each named, labeled, or logically group~d collection of cc,., ir1only held data may be 
represented by a named udata only" module distinct from any other module~ thus, 

FOO reads from INJ, 

Fig. 19 1 
____ a vector in named 

I COMMON area 
I INMATRIX 

I 

rOO 0-+-1-~-3_o_~._l ..... NM:J----- Named COMMON 
region 1NMATRIX 
assumed to exist as 
distinct module 

(Note throughout this guide the use of the same standard method of displaying com
ments as in flowcharts.) 

C. Procedural annotations 

To extend the usefulness of the structure chart, certain conventions and annota

tions representing procedural aspects of the program are used. Wherever possible, con

nections are ordered left-to-right (less often, top-to-bottom) as they emerge from the 

referencing module in the same order in which they usually would be accessed (used, 
executed): -

Fig. 20 

~~T-L SPACE 

COPYSUB
LIST 

I list jumble 

COMPLEXrTY 

CALCULATE
COMPLEXITY
INDEX 

The above figure represents, by convention, that the expected order of calling is RESET

LISTSPACE, COPYSUBLJST, CALCULATECOMPLEXITYINDEX, SUMINDEX. In developing the 

initi_al structure chart, it may not always be possible to observe this convention at all 

times as the structure changes. 

When intermodular references are used repeatedly within an iterative procedure 

(loop), a procedural annotation encompassing the references may be added as in Fig. 

20, which indkates that COPYSUBLIST, CALCULATECOMPLEXITYINDEX, and SUMINuEX are 

executed rnpeatedly within an inner loop, which is in turn within a loop with RESET

LISTSPACE. 

Conditional access (use, execution) to intermodular connections is shown by en

closing the point of reference in a diamond (decision symbol) as in the case of the call 

on RESETLISTSPACE, which will be made contingent on the outcome of some decision 
process. This decision annotation may embrace several references. By convention, 
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these are assumed to be used in alternation~ that is, they are alternative outcomes of 
the decision. Thus, a dispatch on transaction type to one of several modules is shown 
as follows: 

Fig. 21 

GETTRANS
ACTION 

PROCESS
TYPEJ 

TRANSACT 

PROCESS
TYPE2 

PROCESS
TYPEJ 

***(6) 

If more than one connection is accessed as the result of one outcome, these may 
be shown as originating at the same point. For example, each of two outcomes result
ing in two calls could be shown as 

Fig. 22 message /'_ ~ inq 

PREPARE
JNQUIRY 

REPORT
INQUIRY 

MESSANALYZE 

c 

PREPARE
CHANGE 

***(6) 

PUTCHANGE 

Such procedural detail is really beyond the structural model itself, but can make the 
structure chart easier to interpret. Generally, reference should be made to the 
flowcharts or other procedural documentation to obtain details of the procedural interre
lationships between modules. 

Procedural annotations may be used with any type of connection~ for example 

Fig. 23 

A table of values 
set up element by 
element in FIT 
before it is called 

FIT 

An exception branch 
is taken if the 
input table has too 
man s urious points. 
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D. Special .symbols 

This section discusses graphics for more unusual or sophisticated structural 
features that may not be encountered by all programmer/designers. 

Some transfers of control take place automatically, asynchronously, or concurrent
ly with established processes. These are shown with a dashed connection. Examples 
are activation on program interrupt (sequence break, trap) from the operating environ-

ment. ~ TAPECHEK is on the 

Fig. 2 4 OS1380 "interrupt load"; gets control *** (1) 

.... '1TAPEC-HE. K -~ ~ ,.- on the "tape transfer 
' com lete" interrupt 

A parallel "calr' of a "subroutine," such as CALL ... TASK B in PL/I, could be 
represented as in Fig. 25: 

Fig. 25 

,-----
' 

0 
Parallel activation 
of OUT as sub~task 

***(I) 

In some programming languages, it is possible to transfer control unconditionally 
to a complete module, by name~ that is, a normal but unsubordinated transfer of con
trol (e.g., HGOTO section-name" in COBOL, or "TRANSFER subprogram-namen in 
ICETRAN). This is shown in a logically consistent manner as 

***(1) 

Fig. 26 

The comparable case for data, in which data (but not control) are communicated nor
mally to or from the identity interface of a module, has not been implemented, but has 
been proposed. This would be represented as 

Fig. 27 

x,y 

/ 
/ 

/ 

Explicitly transmit 
DATA X and Y 
module TARGET by 
NAME 

***(7) 
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1. Coroutines. When activated by name, a coroutine always resumes at the next 
sequential statement following the point at which control was last transferred out. This is 
known as incremental execution. An "entry locator," reset on each exit, serves as an 
intermediary for any activation of the coroutine. Thus, a coroutine transfer consists of 
(a) resetting the source module's entry locator, and (b) transferring to the location 
defined by the target module's entry locator. These characteristics are suggested by the 
following graphic: 

Fig. 28 ***(1) 

This models an intermodular reference to the identifier TARGET in the context of a 
coroutine transfer, such as the PROCESS statement in B8500 COBOL. 

A subordinated activation (establishing an implicit return location as in a 
subroutine call) that enters via a coroutine-type entry locator would be shown thus: 

Fig .. 29 

Subcoroutine 
activation from 
ANALYZE 

ANALYZE 

***(1) 

next token 

'\ 
GETATOKEN STDIZECHAR 

which makes GET A TOKEN a subcoroutine of ANALYZE. Of course, the return from GETA

TOKEN to ANALYZE resets the entry locator of GETATOKEN. 

(Note that a module is a certain type only in relation to some other module and 
that this typal relationship is defined by the connection. Thus, GETA TOKEN is a 
coroutine to STDIZECHAR.) 

2. Lexical relationships. The positional relationships of modules relative to each 
other as written (lexically) may constitute important structural information. In many 
programming languages, it is possible to write one module wholly within the lexical 
boundaries of another. For example, PL/I PROCEDURES may be written nested, as may 
ALGOL FORTRAN function-statements (a form of a one-statement subroutine 
module) are written within another module. Lexical inclusion, as it is called, is 
represented thus: 

Fig. 30 

SUB FU NC / 
/ 

SUBFUNC is 
written entirely 

/ within CALC 

***(I) 
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Note that lexical inclusion is shown independently of all other relationships, e.g., in a 
COBOL program with three sections: 

Fig. 31 

I 
I 

I 

COBOL sections within 
PROGRAM. SUBJ and 
SUB2 are PERFORMed 
b MAIN. 

SUBl SUB2 

...... __ - -
Where practical, lexical inclusion is shown with lighter lines than physical connections. 

Lexical adjacency - modules written contiguously - may be shown, where it is 
significant, with a simple horizontal line. (Note: No arrow!) 

Fig. 32 ***(8) 

A vertical or diagonal line for lexical adjacency should be avoided to prevent possible 
confusion with normal subroutine calling. Again, light lines should be used if practical. 
An alternative, to be used when practical, is to place the module symbols physically ad
jacent to one another: 

Fig. 33 ***(8) 

II. Relationship of structure charts to other program models 

The structure chart models the physical (referential) structure of a modular sys
tem. However, it does not directly model either the flow of control or data, since, by 
definition, these can only flow along connections~ suitable annotations reveal these rela
tionships. A flowchart models the flow of control, but nothing of the data flow and only 
implicitly any aspect of referential structure. 
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Compare the two charts in Fig. 34: 

Fig. 34 

STRUCTURE CHART 

nodes 

FLOWCHART 

Get a row 
of matrix 

GETNEXT~ ~-ro-w....__---. 
Get a arcs into matrix 
matrix row 

The "nodes" in the structure chart always are physically recognizable modules con
forming to a rigorous, although unrestrictive, definition (see p. 373). The nodes of a 
flowchart are processing steps and may correspond to the processing of a single state
ment, an arbitrary group of statements, or any part or all of a module or collection of 
modules. An "arc" on the structure chart represents the existence of one or more in
termodular references of a single type. An arc of the flowchart represents that control 
will (or can) flow from one processing step to another. 

A. Data flows 

A data flow represents successive transformations of data and the data dependen
cies interrelating these transformations. The nodes are processes that map one set of 
data into another~ an arc represents that an output set of one transformation is required 
by another: 

Fig .. 35 

The notation E9 (known as disjunction, denoted by '~exclusive or'') means that only 
one of the juxtaposed data sets is produced (or needed) per performance of the 
transformation. The notation * (known as conjunction) means that all of the juxtaposed 
data sets are produced (or are needed) per performance of the transformation. 

The data flow defines the required order intrinsic to the task, but does not show 
the flow of control nor the modular structure. It is a diagram that more closely can 
model the intrinsic structure of problems than can either the structure chart or the trad
itional flowchart. 
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Data flow may be modeled to various levels of detail, as shown below: 

Fig. 36 

It should be clear that to fully model a problem and its programmed solution, data 
flow, referential structure, and procedure must all be represented (as well as the 
structure-format of the data on which the program is defined). 

The relationships among the three models of a program can be appreciated from a 
careful study of Fig. 37. Take note that (a) each module in the structure chart has (or 
may have) a flowchart for its internal procedure (two of these flowcharts are shown)~ 
(b) each flowchart reveals only one level of the structural relationships, viz, the subor
dinate modules to be called~ (c) the flow of data through the modular structure satisfies 
the requirements inherent in the data flow model, but there is not a simple mapping 
between the two. 

B. Structure charts and Hf PO charts 

IBM has introduced a design and documentation aid they call HIPO 
(Hierarchical-Input-Process-Output). 

Figure 37a. Data flow (program graph) for the Expensive Desk Calculator interpreter program. 
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Figure 37b. Structure chart for the Expensive Desk Calculator. 
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Figure 3 7c. Flowcharts for two modules of EXDESC. 
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The structure chart supplants the HIPO hierarchical representation (also known as the 
~'visual table of contents," or VTOC), but the HIPO representation of relationship of 
inputs to outputs is a useful adjunct to structure charts. 

A completed structural design, such as shown in Fig. 37b, may include a "func
tional HIPO" chart for some modules. Such a chart looks like this: 

HIPO-.Q.2. MODULE DOCOMPUTE 

Fig. 38 

INPUT 

Parameter 
list: 
variables 

Lil era ls 

PROCESS 

Lookup values of variables with 
TABLEGET (name,VAL-TAB,value, 
NO-FIND) if NO-FIND, 
wrile error warning and quit. 

Interpret operations applied to 
variable values and literals. 
Put results with T ABLEPUT 

OUTPUT 

(result, RT AB,~) ____ ...,.new 

result 
tables 

This functional HIPO becomes a non-procedural documentation of the function 
(transform) of module DOCOMPUTE - see Fig. 37b. 

Inputs in the calling sequence of this module are listed in the INPUT column, out
put parameters in the calling sequence of this module (and/or the function value re
turned) are listed in the OUTPUT column. The PROCESS column states the functional re
lationship between data listed as INPUT and that listed as OUTPUT. Data obtained from 
or delivered to subordinates would not appear in the INPUT or OUTPUT columns of this 
module's HIPO chart but would appear as parameters in ersatz CALL statements in the 
PROCESS column; that is, transformations by subordinates are referenced as aspects of 
this module's PROCESS. Of course, in turn, the functional HIPO for each such subordi
nate would list its parameters as INPUT or OUTPUT as appropriate and would explain the 
subordinated transformation in the PROCESS column. 

When keyed to a structure chart, control inputs and outputs should be dis
tinguished by underlining, consistent with the parameter footnote table of the structure 
chart. Each module symbol on the structure chart would be keyed by page number or 
identifier to a particular HIPO. This may be done in a small window in the upper-right 
corner of the module box: 

Fig. 39 
See HIPO chart #25 
for explanation of 
ALPHA function 
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Since the interior of the box is often crowded, it is acceptable to key to HIPOs or 
flowcharts outside the box at the upper-right comer. (This corner avoids most interfer
ence with connections and procedural annotations.) 

Fig. 40 

A. Style 

DOARITHSTATE 
Analyze arithmetic 

HIPO: 009 
FLOW: A-26 

The purpose of a structure chart is to present an easily understood picture of an 
entire system. Clarity in the portrayal of salient structural features is the most impor
tant goal. Most often, these ends are advanced through style, which is both consistent 
and intuitive. In a sense, the aim is to convey information on structure in such a way 
that the first quick impression is also the correct interpretation. 

B. Hierarcl~y 

The arrangement of elements in layers is known as hierarchy, an essential proper
ty of nearly all kinds of systems. By causing a module to behave as a subfunction 
whose execution is bracketed by the execution of the superordinate, subordinating rela
tionships establish a basic hierarchy of control in any program structure. Subroutine 
calls, macro invocations, and subcoroutine calls all are subordinating relationships. 

The function and behavior of a system is clearer when superordinate modules ap
pear above their subordinates on the page. Modules related by any subordinating con
nection should be displaced vertically with respect to each other, the subordinate below 
the superordinate. Thus, Fig. 4 la is better styled than is Fig. 41 b, even though both 
model the same structure. 

c IC 
Fig.4lb _2-

L J -8 J 
Fig. 4 la 

A 

Similarly, non-subordinating (coordinating) relationships establish modules as be
ing at the same level in the control hierarchy. Examples of coordinating relationships 
are the coroutine transfer and direct normal transfer (GOTO module by name). The re
lationship between such modules is clearest when they are shown at the same level on 
the page. Thus, the mixed (hierarchical and homologous, or non-hierarchical) structure 
chart of Fig. 42 shows good style in presenting these relationships. 
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Fig. 42 

PHASE 1 
Get and 
Copy Messages 

• 
\._.CHEKSUMFAIL 

PHASE 2 
Process 

Su1T1T1ary 

t 
Message 
Stafi sties 

Because pathological connections violate (depart from) both hierarchical and 
homologous relationships, the position of a module's representation on the page should 
not be determined by them. An example is GOTO label CHEKSUMFAIL or the reading of 
message statistics in Fig. 42. 

C. Order 

As part of procedural annotation, connections usually are arranged left to right in 
the order of their expected use by the referencing module. Sometimes, particularly 
wh1:.m a module has many subordinates, it may not be possible to show all connections 
emerging along the lower margin of the module symbol. Experience has shown that the 
most easily read arrangement in this case is to use the margin of the module symbol be
ginning in the upper-left corner and proceeding counterclockwise around the margin. 
Thus, the arrangement in Fig. 43: 

Fig. 43 
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Note also in this example that when space is at a premium, not all modules subordinate 
to the same module are necessarily shown at the same level in the chart. 

Since it often corresponds to expected order of usage, inputting subordinates are 
commonly placed to the left of processing subordinates, which are to the left of output
ting subordinates. Consistent use of this rule creates inputting branches that are tilted 
toward the upper right, and outputting branches tilted the other way. Thus, input data 
flow toward the northeast and output data toward the southeast. Charts that can be 
made to conform to this convention are particularly easy to follow and interpret. An 
ex.ample, in abstract form, is shown in Fig. 44 below, with the flow of data indicated by 
the usual annotations. Note how easily the eye follows successive transforms of the 
same stream of data. 

The lexical order of connections in the source code for the referencing module, 
the expected order of use, and the input-process-output order may conflict. In this 
case, one should choose the arrangement that most clearly represents what the system 
does. For permanent documentation purposes, the lexical order, being an objective 
physical feature of the module, is probably the best choice. 

Fig. 44 
MAIN 

New Unit~ t 
. New Unitl Results ~ Results 

GETUPTODATE COMPUTE REPORT 

~ 
/New Group 

~New Group 

OUTPUT GROUP 

results '1 line 

LJ 
1 ine 

~ 

D 
GETGROIJP 

recorc1'1 

READ 

D. Multiple connections 

Any number of connections of the same type from one module to another may be 
represented by a single line on the chart, showing simply that the modules are connect
ed in a particular manner. Especially in the case of subroutine calls from one module to 
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another, only one line almost always would be shown. For example, what is usually im
portant is only that REPORT makes some use of REFORMAT. There are times when this 
practice of using only one line to represent one or more connections is impractical or 
unclear. For example, each use of module FOO from FUM may involve different actual 
parameters. Or a module might use another module in two or more completely 
different contexts. Whenever the resulting structure chart would be clearer, each con
nection from one module to another specific module should be shown separately. In 
Fig. 45 below, the same report module, STATPUT, is used in three different ways by PER
SYST~ each of these is shown separately. Note, however, that no clarity would be added 
by showing three separate .pathological data connections for EMP-ID, EDUC, and SKIL-LIST. 

Fig. 45 

GET EMPSTAT 

IN 

E. Crossing and connections 

PERSVST 

STATPUT 
Print Page o 
Employee 
stati sties 

In general, one should avoid lines that cross in a structure chart, as this is messy 
and sometimes confusing. Connectors usually are used~ but where the two ends of the 
connection are close, as in the example above, crossing lines may be preferable. The 

1 

standard form of crossing may be used, as shown in Figs. 45 and 46. 
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Fig. 46 

When using connectors, you should observe certain rules. It is permissible to show 
several "to', connectors that refer to the same target. For example 

\ 
Fig. 47 ' 

SCANLIST 

The converse, one "to" connector referring to several different targets~ as in Fig. 48 
below is not permitted. 

Fig. 48 

J 
9 

e 
~ ~OT PERMITTED 

l 

' 
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Off-page connectors should refer from one page to another, but not back again. That is, 
each separate page of a single structure chart should, if possible, present the structure 
of a complete, self-contained substructure. Both on-page and off-page connectors 
should use mnemonic, rather than arbitrary, identifiers to simplify reading the chart. 
Page numbers for off-page connectors should be added as an annotation. 

Modules with many uses scattered throughout the structure, such as an error mes
sage module, present special problems. The structure chart will be easiest to under
stand correctly when each such commonly used module is shown at the bottom of the 
chart, separated from the rest of the structure. A connector with a clear mnemonic 
identifier should be used wheiever the module is to be referenced. For example: 

Fig. 49 

/ 
® 

I 
I 

® 
\ 

COMPARESTRINGS 
FOR EQUIVALENCE 

STOREACHAR 

Never repeat the same box (module symbol) on a chart, even when representing multi
ple usage. Each distinct module should appear once, and only once, on the structure 
chart of the system, unless it specifically is intended that more than one version of the 
same module is to be implemented, in which case, an explanatory comment is essential. 
Multi-page structure charts are much harder to read and understand than are multi-page 
flowcharts, unless great care is taken in their construction. It is better to use a larger 
piece of paper than to separate a structure onto several pages. For design work, a large 
sheet of paper or a chalkboard is a must. 
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EXPLANATORY NOTES 

L Graphic symbol is not in IBM standard as presented in W.P. Stevens, G.J. Myers, 
and L.L. Constantine, "Structured Design," IBM Systems Journal, Vol. 13, No. 2 
(May 1974), pp. 115 .. 139. 

2. IBM standard provides only the unspecified (tail-less) annotating arrow. 

3. IBM standard does not provide for mixing direct and footnoted annotation of 
parameters. 

4. Use of connectors is not covered in IBM standard. 

5. Neither the Hdata only module n symbol nor its use to represent common data en
vironments is covered by IBM. 

6. IBM standard does not make clear the intended interpretation of multiple connec
tions enclosed by a single decision annotation. 

7. Although not in IBM standard, this notation is a straightforward logical extension. 

8. IBM HIPO charts do not use arrowheads and are, therefore, confusing. The IBM 
standard includes no lexical relationship. 



SUMMARY OF STANDARD GRAPHICS 
FOR PROGRAM STRUCTURE CHARTS 

I. Fundamental elements 

This section is meant to clarify the basic logic of the complete graphic model of pro
gram structure for two reasons: to aid you in learning the model and to suggest gen~ 
eralizations or extensions through combinations of fundamental elements. 

NAME 

, ____ _ 
NAME 

' 

Any module. 

An arrow pointing to a box (module) always 
denotes a reference to the identifier of the en
tire module. 

An arrow pointing into a box (module) always 
denotes a reference to the identifier of some 
element within the module, i.e., defined, de
clared, or caused to be within the lexical scope 
of the module. (Any arrow terminating within 
a box also is always shown originating within a 
box.) 

An arrow with a dot (point) on its tail always 
denotes control. 

An arrow with a small circle on its tail always 
denotes data. 

As an annotation, a plain arrow denotes either 
control, data, or both control and data. 

396 
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FOO 

FOO 

FOODA'rA 

---
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As a connection, the dotted tail always denotes 
unconditioned transfer of control, e.g., by 
GOTO. 

As a connection, the circled tail always indicates 
a data reference. 

As a connection, the plain tail always indicates 
a conditioned (subordinating) control transfer 
with or without data trar.sfer. A subordinating 
transfer is one in which continuation at the lex
ically next-sequential-statement is implicit be
cause the control transfer carries that condition 
(e.g., a normal subroutine call, a machine 
language "execute,,, and so forth.) 

A barred arrow always denotes control entry via 
a varying and automatically maintained entry 
interface, i.e., as in a coroutine or subcoroutine. 

1---
A barred tail always denotes control exit, which 
automatically maintains the entry interface of 
this module for reentry at next-sequential
statement. 

MODULES AND ENTITIES 

E-1: Any module, regardless of physical or activation 
characteristics. See definition, page 373 of Ap
pendix A. When other types of modules are dis
tinguished, the symbol is used for a normal 
subroutine. 

E-1.1: Any predefined or pre-existing module. Striping 
may be added to other module symbols, that is, 
E-3. 

E-2: Any module consisting solely of data elements. 
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rFr.i - , 
I I 

'- - - -' 

FUM 

FUM 

FOO 

' ' ' 
FOO 

E-3: A macro. Any module inserted or ex
panded in-line at compile-time (or 
transaction-time) when invoked by 
name. 

E-4: The operating environment within which 
the program runs, including, but not lim
ited to, the operating system, monitor, 
system task management, the hardware 
itself, and so on. 

E-5: Any physical input-output device/medi
um/file referenced by identifier~ e.g., 
CARD-READER~2. 

CONNECTIONS 

C-1: Subordination, normal. A reference to 
FOO exists in FUM in the context of an 
invocation that subordinates FOO to FUM, 
i.e., a subroutine call, function reference, 
or macro invocation. 

C-1.1: Asynchronous link. Parallel or asynchro
nous transfer. Dashed versions of C-1, 
C-3, C-5, C-6, C-7 indicate obvious vari
ations of asynchronous activation. 
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C-2: Data reference, pathological. A refer
ence to identifier FUDGE within FOO ap
pears in FUM in the context of usage as 
data. The arrow points in the direction 
of reference~ data may flow in either 
direction. (See A-1, A-2.) 

C-3: Control reference, pathological. A refer
ence to identifier LABEL2 within FOO ap
pears in FUM in the context of usage as 
control (e.g., "GOTO LABEL 1

'). In prac
tice, the direction of flow is the same as 
the direction of reference. 

C-4: Hybrid reference, pathological. Modifi
cation by FUM of the procedure in FOO. 

C-5: Cotransfer, normal. FUM references FOO 
as a coroutine. See page 382. 
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FUM 

FOO 

C-6: Subordinated cotransfer, normal. FUM 

references FOO as a subordinate, which is 
entered via an entry locator maintained 
by FOO on resumption of any subordinat
ing task. 

Transfer, normal. Unconditioned (un
subordinated) transfer of control to FOO 
by name. 

I---.... t ·I ____ IC-S: 
Data transfer, normal. Transmission of 
data to or from FOO by name without 
transfer of control. See Section 18.5. 

FUM 

FOO 

ANNOTATIONS 
Information Flow 

A-1: Information flow. Notation adjacent to 
any connection indicates the direction of 
flow of information (data and/or con
trol). The description may consist of 
identifiers, narrative description, and/or 
numbered footnote references (see A-4). 
Usually used for parameters to and from 
modules. Identifiers are those appearing 
in the referencing module, that is, the 
actual rather than dummy parameters. 



FUM 

x,y 

FUM 

FUM 

1 
2 
3 
4 
• • • I 

FOO 

FOO 

3 

FOO 

PARAMETERS 
Input Output 

x,y z 
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A-2: Data flow. As in A-1 except only denot
ing data. (Here: Input parameters x and 
y to Foo.) 

A-3: Control flow. As in A-1, except only 
control or elements of data used to com
municate control information are denot
ed. Here: Flag z, an output (return) 
parameter of FOO. 

A-4: Footnote reference. Index number of an 
entry in a parameter footnote table as 
shown. The input and -output columns 
list, respectively, the parameters going to 
and from the referenced module. (Here: 
As in entries for A-1, A-2, and A-3.) 
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FUM 

I 
I 

FOO 

FUM 

FOO 

this module 

COMMENTS 

A-5: Comment. Any explanatory appenda
tion. Note the dashed line without an 
arrowhead. 

written in 
assembly language 

FAR 

PROCEDURE 

A-6: Iteration. The reference indicated is im
bedded in a looping procedure. It may 
be used to enclose the origination of any 
connection. (Here: Repeated use of FOO 

as a subroutine.) 

A-7: Decision. The reference indicated is im
bedded within a decision procedure. 
(Here: Either FAR or FOO is used as a 
subroutine by FUM conditional on the 
outcome of a decision.) See also page 
380. 



FUM 

1 

FUM 

FOO 
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A-8: 0 ne-shot: The reference indicated is 
us ed only once. 

• .. FOO 

LEXICAL RELATIONSHIPS 

A-9: Lexical inclusion. FOO actually is written 
wholly within the lexical boundaries of 
FUM. 

A-10: Lexical contiguity. FEE and Fl are written 
adjacently, Fl following FEE. 

LI --l ___ FI I 
A-10.1: Lexical contiguity. Preferred alternate to 

I 
A-9 where pictorially practical. Usually 
used to denote a single module with more 
than one distinct, properly defined entry 
interface. 





access 

accessibility of information 

adjacency 

afferent data element 

afferent flow 

afferent module 

aggregate 

aggregate identifier 

A-level module 

alternate returns 

anticipatory loading 

associative principle 

GLOSSARY 

to make use of a reference~ that is, to execute the 
statement in which the reference is contained. 

one of three aspects of an intermodule interface that 
can affect its complexity. 

a term used to describe modules that execute one 
right after the other. Used as a low-priority packaging 
criterion. 

a high-level element of data that is furthest removed 
from physical input, but that still constitutes input to 
the system. 

a flow of data from low-level subordinates upward to 
higher-level superordinates. 

a module that obtains input from its subordinate and 
delivers it upward to its superordinate. 

a contiguous group of statements, bounded by bound
ary elements. 

the identifier associated with an entire aggregate. 

a second-level 4 'action,, module created as part of the 
transaction-analysis strategy. 

a module linkage convention that allows the subordi
nate to return to a location other than the normal re
turn location. 

an automatic storage management discipline that loads 
modules into memory before they actually are in
voked, based on knowledge of the hierarchy of 
modules in the system. 

a principle or concept used by a designer in associating 
processing elements together in a single module. 

405 
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atomic module 

automatic packaging 

balanced systems 

base load 

bifurcated transfer 

binding 

binding time 

black box 

bottom~up testing 

boundary clash 

boundary element 

a module with no subordinates~ a bottom-level 
module. 

the dynamic determination (usually by an operating 
system) of which modules should be loaded into pri
mary storage, and which modules should be overlaid 
and/or written onto secondary storage. 

systems that are not input-driven or output-driven~ 

such systems usually have a fairly deep hierarchy of 
modules to obtain inputs and to deliver outputs. 

a set of modules· activated by an unbroken chain of 
explicit commands. 

a transfer of control to a module such that a separate 
control stream is created~ this is accomplished with 
genuine parallel processing, or with simulated parallel 
processing (i.e., with the assistance of a multitasking 
or multiprogramming operating system). 

a common synonym for cohesion. In this book., bind
ing is used exclusively to describe the process of as
signing a value or referent to an identifier. 

the point, in the development life cycle of a program, 
at which a value or referent is assigned to an 
identifier~ binding time is a factor influencing degree 
of coupling. 

a system (or, equivalently, a component) with known 
inputs, known outputs, and generally a known 
transform, but with unknown (or irrelevant) contents. 

a testing strategy in which bottom-level modules are 
tested first, and then are integrated into higher-level 
superordinates. Usually contrasted with top-down 
testing. 

in the Jackson data-structure design technique, a par
ticular form of structure clash, usually caused by the 
blocking characteristics of physical input-output de
vices. 

a statement or other element of a language which 
serves to define the lexical limits of groups of state
ments and allows the statements so bounded to be 
used as a single entity for some purpose. 



bubble chart 

business systems analyst 

call by name 

call by value 

central transforms 

CIPO 

coding 

cohesion 

coincidental cohesion 

commonality 

common-data environment 
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synonym for data flow graph. 

a common term used to describe a person whose job it 
is to talk to the end-user of a computer system, and to 
document that user's needs so that an appropriate 
computer system can be developed. 

a means of passing data to a module by passing the 
address of the data. 

a means of passing data to a module by passing a copy 
of the data. 

central system's functions which take relatively digest
ed data (afferent data elements) as input streams, and 
which then create major output streams (efferent data 
elements). 

a specific (obsolete) model of systems organization~ 
the acronym, CIPO, stands for Control-/nput
Process-Output. 

the process of writing the computer instructions after 
procedural design has been carried out by a program
mer, after structural design has been carried out by a 
designer, and after specifications have been developed 
by a systems analyst. 

the degree of functional relatedness of processing ele
ments within a single module. 

the lowest of seven levels of cohesion, used to 
describe a module whose processing elements have no 
constructive relationship to one another. 

a measure of how common the problem (or applica
tion) is that we are solving with a given system~ one 
of the factors in program generality. 

a means of describing data such that the data can be 
accessed by any module in a system. 

common-environment coupling a form of coupling that occurs whenever two or more 
modules interact with a common-data environment. 

communication analysis a refinement of a completed structural design, in 
which appropriate means are chosen for communica
tion between modules - e.g., intermediate files, 
subroutine arguments, external variables, and so on. 
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communication structure 

communicational cohesion 

complexity of interface 

computer systems analyst 

conceptual structure 

conditioned transfer 

connection 

comoutine 

content-coupling 

control structure 

control-coupling 

the structure of a program defined by the relationship 
of transmission and reception of data. 

one of seven levels of cohesion that occurs when all of 
the processing elements of a module operate upon the 
same input data set and/or produce the same output 
data; this is the lowest level of cohesion at which 
there is a relationship among processing elements that 
is intrinsically problem-dependent. 

one of the factors influencing coupling between 
modules. The comple~ity of the interface is approxi
mately equal to the number of different items being 
passed - the more items, the higher the coupling. 

a common synonym for "systems designer.'' Used to 
describe the person who is concerned with the struc
tural design of a computer system, once its 
specifications have been determined by a business sys
tems analyst. 

the structure of a program defined by the relationships 
existing in the programmer~s mind. 

a jump out from the current execution sequence with 
the condition that control eventually be returned to 
the execution sequence from which the jump was 
made, i.e., a subroutine call. 

a reference in one part of a program to the identifier 
of another part ·(i.e., something found elsewhere). 
See intermodular connection. 

a nonincremental module activated by a bifurcated 
transfer. Also known as a task. 

a strong form of coupling that occurs when some or all 
of the contents of one module is included in the con
tents of another. 

the structure of a program defined by references 
which represent transfers of control. 

a form of coupling that occurs whenever there is any 
connection between two modules that communicates 
elements of control. 



coordinate flow 

coordinate module 

coordination 

coroutine 

cost of debugging 

cotransfer 

coupling 

data flow graph 

data-coupling 

data-structure design 
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an observation by Mel Conway that the structure of a 
system reflects the structure of the organization that 
built it. 

a flow of data from a subordinate upward to its su
perordinate, and then downward from the superordi
nate to some other subordinate. 

a module primarily concerned with coordinating and 
managing the activities of subordinates. Frequently 
referred to as an executive module. 

a form of indirect control in which one module in
volves itself in the procedural contents of another~ for 
example, a subroutine that assembles data elements 
into compound elements for a superordinate, sending 
a flag to the superordinate indicating whether its re
turn is either to request an additional data element or 
to deliver a completed compound item. 

a module whose point of activation is always the next 
sequential statement following the last point at which 
the module deactivated itself by activating another 
coroutine. 

the cost of everything the programmer does in the 
development of a program beyond the initial writing of 
the code, the first compilation or assembly, and the 
last test-run (the one that confirms that the system is 
acceptable). 

the activation of a coroutine. 

a measure of the strength of interconnection between 
one module and another. 

a graphic tool used to represent the flow of data 
streams through successive transforms. 

a form of coupling caused by an intermodule connec
tion that provides output from one module and that 
serves as input to another module. 

a type of design strategy that derives a structural 
design from consideration of the structure of data sets 
associated with the problem. 
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debugging 

d1~coupling 

demand coroutine 

demand loading 

demodularization 

design 

de:sign principles 

device-centered design 

device-coupled 
communication 

direct pathological connection 

disposable modules 

o-Ievel module 

the process of identifying a bug's location and nature. 

any systematic method or technique by which modules 
can be made more independent. 

a synonym for subcoroutine. 

a form of storage management in which nonresident 
modules are loaded into primary storage only when 
they actually have been invoked by some other 
module. Usually contrasted with anticipatory loading. 

the process of compressing all of one module (or, on 
occasion, part of one module) into another. Usually 
carried out as part of the process of optimizing the 
performance of a system. 

to plan the form and method of a solution. 

very broad principles that generally work in the sense 
that they favor increasing quality for decreased 
development cost. 

an informal (obsolete) design strategy, which focuses 
on a physical input-output device and its interface as 
the organizing principle for placing processing ele
ments within a module. 

a form of pathological communication in which 
modules pass data to one another through some 
secondary storage device, rather than passing the data 
through superordinates. 

a form of pathological connection in which a module 
refers directly to an identifier contained within another 
module. 

a maintenance strategy in which modules are thrown 
away and rewritten if they are discovered to contain 
bugs or inadequacies. 

one of the four levels of modules specified by the 
transaction analysis strategy. o-level modules are 
bottom-level ~'detail" modules, which are responsible 
for carrying out the details of the actions required to 
complete a transaction. 



domain generality 

downward compression 

driver 

dummy module 

dynamic control 

dynamic integrity 

dynamic recursion 

efferent data element 

efferent flow 

efferent module 

exclusion 
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one aspect of generality in a computer program. A 
module with a large domain - i.e., which accepts a 
wide range of values for its input - is more general 
than one with a smaller <lomain. 

a form of compression in which a superordinate 
module is copied in-line in the body of its subordi
nate; usually carried out as part of a process of optim
izing the performance of a system. 

a primitive simulation of a superordinate module, 
used in the bottom-up testing of a subordinate 
module. 

a common synonym for stub. A dummy module pro
vides a primitive simulation of a subordinate, and is 
used in the top-down testing of a superordinate. 

a packaging mechanism in which the programmer 
specifies to the operating system when a load unit ac
tually should be brought into primary memory. 

used to describe the dynamic behavior of a black-box 
module~ a module with dynamic integrity is stable and 
dependable, and carries out the same function each 
time it is invoked. 

a form of recursion that exists wherever a module is 
shared by two or more tasks that can be among active 
jobs at the same time, is used by routines handling 
different interrupts or asynchronous processes, or is 
reachable from both base and interrupt loads. 

a data element that is furthest removed from the phy
sical outputs and that still may be termed outgoing. 

a flow of data in which a superordinate passes a data 
element to its subordinate, which then passes it down
ward to its subordinate. 

a module that receives its input from a superordinate, 
and that delivers its output to a subordinate. 

a strategy for designing generalized systems in which 
the designer examines as many applications as possi
ble, but excludes those aspects that make the applica
tion special or unique. 
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explosion point 

factoring 

fan-in 

fan·-out 

feasibility study 

filter transform 

flexibility 

fully factored systems 

functional cohesion 

functional recursion 

functional requirements 

functional specification 

the point in a data flow graph at which data streams 
separate (explode). 

a process of decomposing a system into a hierarchy of 
modules. 

the number of superordinate modules which refer to a 
specified subordinate. 

the number of immediate subordinates to a specified 
module. 

a study, normally conducted at the beginning of a sys
tems development project, to determine the likelihood 
that a system can, in fact, be built within the con
straints of time, manpower, and budget 

a type of data flow graph "bubble" (transform) that 
separates a stream of input data into a stream of good 
data and a stream of bad data, passing on the good. 

a measure of the degree to which a system, as is, can 
be used in a variety of ways. 

systems in which a11 actual processing (or computation 
or data manipulation) is handled by bottom-level 
atomic modules, and in which all non-atomic modules 
consist only of control and coordination. 

the strongest form of relationship between processing 
elements in a module; occurs when every element of 
processing is an integral part of, and essential to, the 
performance of a single function. 

a means of defining certain functions, mathematical 
and otherwise~ the value of such functions, for a cer
tain input, is defined in terms of the same function of 
other inputs. 

a precise description of the requirements of a comput
er system~ includes a statement of the inputs to be 
supplied by the user, the outputs desired by the user, 
the algorithms involved in any computations desired 
by the user, and a description of such physical con
straints as response time, volumes, and so on. 

a synonym for functional requirements. 



functionality 

function-centered design 

general systems design 

generality 

general-purpose system 

gray box 

head routine 

heuristic 

HIPO chart 

homologous system 

hybrid-coupling 

identifier 

identifier space 
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a synonym for cohesion. 

an informal design strategy that attempts to derive a 
system whose modules all represent single, self
contained functions. 

an informal description of the work carried out by the 
computer systems analyst: designing the major ele
ments of the data base, the major components of a 
system, and the interfaces between them. 

a measure of the degree to which a system exhibits 
the properties of a general-purpose system. 

a system that is widely used or usable, that solves a 
broad case of a wide class of problems, that is readily 
adaptable to many variations, and/or that will function 
in many different environments. 

a system that does not have all of the desirable pro
perties of a black box, but whose contents do not have 
to be completely understood in order to be used. 

a top-level subroutine or subcoroutine, or a module 
whose data comes in from below and goes out below~ 
a coordinate module. 

a specific rule of thumb that usually works but is not 
guaranteed. 

an acronym for Hierarchy-Input-Process-Output, 
developed by IBM to document the structure of sys
tems. Similar in some ways to structure charts. 

a system developed with any control relationship that 
does not define a hierarchy of control responsibility~ 

i.e., a non-hierarchical system. 

a strong form of coupling that occurs when one 
module modifies the procedural contents of another 
module. 

the name, address~ Iabe1, or distinguishing index of an 
object in a program. 

all identifiers defined over a given lexical scope. 
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identity interface 

implicit structure 

inch-pebbles 

inclusion 

incremental implementation 

incremental module 

independence 

information hiding 

initial boundary 

input-driven system 

input-output coupling 

interface 

intermodular connection 

the interface associated with the aggregate identifier of 
a module or segment. 

structure based on implicit control and data relation
ships for which there are no references (connections). 

a useful term for describing small milestones in a 
computer project. 

a strategy for designing general-purpose systems that 
operates by identifying and examining as many distinct 
applications as possible and including some feature or 
features to cover each of the applications. 

a testing/implementation strategy for adding a new 
(potentially buggy) module to a tested collection of 
modules, and then testing the new combination. 

a module that begins its execution at the point at 
which operation was last suspended, e.g., a coroutine 
or subcoroutine. 

a term used to describe pairs of modules: Two 
modules are said to be independent if each can f unc
tion completely without the presence of the other. 

a design heuristic developed by D.L Parnas: Modules 
are formed in such a way as to hide from the rest of 
the system assumptions about the solution that are 
likely to change. 

the lexically first boundary element that begins a 
module or segment. 

a term used to characterize a system that obtains all of 
its inputs in elementary, (raw) physical form at or 
near the top of the hierarchy. 

a synonym for data-coupling. 

the point in a module or segment elsewhere refer
enced by an identifier at which control or data is reN 
ceived or transmitted. 

a reference from one module to an identifier in a 
different module. 



interrupt load 

interrupt module 

intramodular functional 
relatedness 

item-centered design 

job step 

lateral compression 

lexical 

lexical inclusion 

lexical order 

load module 

toad unit 

localization 

locus of control 

logic design 
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the set of modules activated by an interrupt. 

a module activated by an interrupt. 

a synonym for cohesion. 

an informal (obsolete) design strategy that associates 
in one place all processing for a given item of incom
ing data. 

a common (vendor-dependent) term used to describe 
a physically executable unit of code. 

a process of combining two or more procedurally adja
cent modules into a single module; usually carried out 
as part of a process of optimizing the performance of a 
system. 

of or pertaining to the program as written, as it ap

pears in a program listing. 

the property of one object (usually module or seg
. ment) being wholly con.tained within the lexical 

boundaries of another. 

the order in which statements appear as written. 

a common (vendor-dependent) term used to describe 
a physically executable unit of code. 

a common (vendor-dependent) term used to describe 
a physically executable unit of code. 

a technique of decoupling affected by subdividing the 
data elements communicated through a common en
vironment into a number of regions common to a 
smaller number of modules. 

a means of describing the extent to which control over 
the behavior of a system resides in the input data or in 
the resident data, rather than in the instructions them
selves. The flexibility of a system generally is in
creased as the locus of control shifts away from the in
structions and toward the input data and/ or the 
resident data. 

the design of the procedural logic within a single 
module. 
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logical cohesion 

macro 

maintainability 

maintenance 

Mealy's Law 

mechanically segmented 

merge point 

minimally connected 

modifiability 

modification 

module 

one of the weakest of seven levels of cohesion. A 
module is said to be logically cohesive if its processing 
elements can be considered members of the same log
ical class of similar or related functions. 

a module whose body is effectively copied in-line dur
ing translation (e.g.~ compilation or assembly) as a 
result of being invoked by name; that is, the bounded 
contents replace the reference to the aggregate 
identifier. 

the extent to which a system can be easily corrected 
when bugs are discovered during the system's produc
tive lifetime. 

the correction of bugs that are discovered in a system 
during its productive lifetime. 

the observation, by George Mealy, that there is an in
cremental person who, when added to a project, con
sumes more energy (or resources) than he or she 
makes available. 

a term used to describe a system whose structure is 
largely determined by mechanical restrictions such as 
memory page size and real-time response constraints. 

a point in a data flow graph where data streams fan-in 
(merge). 

a term used to describe a system whose connections 
are restricted to fully parameterized (with respect to 
inputs and outputs) conditioned transfers of control to 
the single, unique activation/entry/origin/interface of 
any module. 

the ability of a system to be changed or enhanced to 
meet the needs of a user during the system's produc
tive lifetime. 

the act of changing or enhancing a system to meet the 
changing needs of a user during the system's produc
tive lifetime. 

a contiguous sequence of program statements, bound
ed by boundary elements, having an aggregate 
identifier. 



module stre;ngth 

monolithic 

morphology 

mosque shape 

normal connection 

normally connected 

ongoing debugging 

order clash 

output-driven system 

overlay 

packaging 

pancake structure 

pathological connection 
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a synonym for cohesion. 

of; pertaining to, or behaving like a single piece~ 
minimal modularity. 

shape, particularly with respect to the structure of a 
system. 

a characteristic shape of well-designed systems~ also 
referred to as a cigar or a flying-saucer shape. 

a reference to an aggregate identifier of a module. 

a term used to describe a system that is minimally 
connected except for one or more instances of (a) 
multiple entry points to a single module~ provided that 
each such entry is minimal with respect to data 
transfers, (b) control returns to other than the next 
sequential statement in the activating module, provid
ed that the alternate returns are defined by the activat
ing module as part of its activation process, or (c) 
control is transferred to a normal entry point by some
thing other than a conditioned transfer of control. 

a synonym for maintenance. 

in the Jackson data-structure design technique, a par
ticular form of structure clash that occurs when a pro
gram must deal with input data sets that have been 
sorted in a different order. 

a system in which the top-level module produces the 
output of the system in elementary (or raw) form. 

a common (vendor-dependent) term to describe a 
physically executable unit of code. 

the assignment of the modules of a total system into 
sections handled as distinct physical units for execu
tion on a machine. 

an informal term used to describe a system with very 
few intermediate levels of executive modules. The 
few executive modules that do exist in such systems 
usually are characterized by a high span of control. 

a reference to an identifier other than the aggregate 
identifier of a module (i.e., a reference to an object 
within the module). 
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phase routine 

phased implementation 

P-level module 

pointer 

portability 

procedural analysis 

procedural cohesion 

procedure-centered design 

processing element 

program 

a term for a module that is activated by name by an 
unconditioned transfer of control~ that is, as a next 
step rather than as a subordinate. 

a form of testing/implementation in which several un
tested modules are combined together at once, and 
the collection tested for correctness. 

one of the four levels of modules created by the trans
action analysis strategy. The P-level module is the 
program-level module that receives a transaction and 
dispatches it to the appropriate T-level subordinate to 

completely process the transaction. 

an entity containing or having the value of an 
identifier. 

a property of a program representing ease of move
ment among distinct solution environments. 

a set of criteria to determine which modules must be 
in the same load unit for the sake of efficiency~ nor
mally considered part of the process of packaging. 

an intermediate degree of the seven levels of cohe
sion~ a module is said to be procedurally cohesive if its 
processing elements are elements of a common pro
cedural unit, either an iteration or decision process. 

an informal (obsolete) desi.gn strategy in which the 
design -of a system is derived from procedural 
representations (for example, flowcharts) -0f a 
system's operation. 

any part of the task performed. by a module - not 
only the processing accomplished by statements exe
cuted within that module, but also that which results 
from calls on subordinates. 

a system composed of precise, ordered statements and 
aggregates. Sometimes used informally as a synonym 
for module. Often used in the context of packaging 
decisions; that is, a program is often regarded as the 
smallest unit of a system that can be manipulated (ini
tiated, loaded into primary memory, overlaid, and so 
on) by the operating system. 



program development process 

program inversion 

program specifications 

programmer 

prologue/epiilogue processing 

recur.sion 

reenterable 

reentrant 

reference 
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a complete process of analyzing the requirements of a 
system, carrying out the structural design, writing the 
code, and testing the resulting product 

in the Jackson data-structure design technique, a pro
cedure for converting a pair of coroutines into a 
superordinate-subordinate relationship. Used primari
ly as a means of dealing with structure clashes in a 
programming environment that does not support 
coroutines. 

a precise description of the requirements of an indivi
dual program: It includes a statement of the inputs to 
be supplied to the program, the outputs desired, the 
algorithms involved in any computations, and a 
description of such physical constraints as execution 
speed, memory limitations, and so on. Sometimes 
used as a synonym for functiona I re qui rem en ts. 

an informal term used to describe the person who 
designs and writes the programming instructions to 
implement a module. In some organizations, pro
grammers also are responsible for the structural design 
of the system, and occasionally even for the analysis 
of the user's requirements. 

"Overhead" processing normally required upon first 
entering a module, and just prior to exiting from the 
module. Such processing usually includes saving and 
restoring of hardware registers, establishing the scope 
of identifer definition within the module, and so on. 
The prologue/epilogue processing often requires a 
considerable amount of CPU time (and memory), but 
usually is transparent to the programmer and designer; 
it usually is an issue only when optimization needs to 
be carried out. 

the act of invoking a module as a subordinate of itself~ 
a recursive module is one that calls itself. 

a synonym for reentrant. 

a module is reentrant if it can be reactivated correctly 
at any time~ whether or not it has been suspended by 
a conditioned transfer or return. 

the use (appearance lexically) within some part of a 
program of an identifier of a program entity. 
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referent 

referential structure 

reliability 

resident data 

reusable module 

reversible computation 

SAPTAD 

scope of control 

scope of effect 

scope of identifier definition 

segment 

self-checking procedure 

semantic element 

sequential cohesion 

the object identified in a reference. 

the structure based on all references (connections) 
within a program. 

a measure of the quality of a program or system~ 
sometimes expressed as mean-time-between-failures. 

data built (e.g., compiled) into a program. 

a module that always executes in the same way on 
each separate activiation, as if it were a fresh copy of 
the module. 

a computation that can be undone or performed in re
verse to yield some or all of the original inputs. 

an acronym for an earlier version of the transaction 
analysis strategy. SAPTAD, developed at Bell Tele
phone of Canada, is an acronym for System
Appl ication-Program- Transaction-Action-Lktail. 

the scope of control of a module consists of the 
module itself and all of its subordinates. 

the scope of effect of a decision is the collection of all 
modules containing any processing that is conditional 
upon that decision. 

the lexical region (scope) over which an identifier is 
defined and carries a given meaning. 

an aggregate with no aggregate identifier. 

a computation that can be made inherently self
checking - that is, side effects to the algorithmic pro
cess itself may be used to check (or verify, or prove) 
the result. 

an aspect of processing related to the action that a 
transaction requires. 

one of the strongest of the seven levels of cohesion. 
A module is said to be sequentially cohesive if the 
output data (or results) from one processing element 
serve as input data for the next processing element. 



serially reusable module 

side effects 

simultaneous recursion 

singular function 

skew 

software redundancy 

software reliability 

span of control 

span of control flow 

statement 

static control 

static integrity 
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a synonym for reusable module. 

processing, or activities, unrelated to a module's pri
mary function. 

a structure that results from a module being a subordi
nate, but not an immediate subordinate, of itself. For 
example, if module A calls module B, and module B 

calls ·module A, then A and B are said to be simultane
ously recursive. 

a function, or module, that is invoked only once dur
ing the execution of the entire system~ also known as 
"once-only" modules, or "one-shot" modules. 

a feature of the morphology or shape of a system that 
occurs when a few high-level executive modules have 
many levels of subordinates, while most of the execu
tive modules have none or only a few levels of subor
dinates. 

redundancy achieved by coding two (or more) distinct 
implementations of the modules of a system (presum
ably by different people). , 

a measure of the quality of a program or system~ 
sometimes expressed as mean-time-between-failures. 

a module's span of control is the number of its im
mediate subordinates; fan-out. 

the number of lexically contiguous statements that a 
programmer must examine before he finds a black-box 
section of code that has one entry point and one exit 
point. 

a line, sentence, or other similar well-defined con
struct of a programming language that defines, 
describes, or directs one step or part of the solution of 
the problem. 

the ability to specify which modules (or portions of 
modules) constitute load units; an aspect of packaging. 

used to describe the static behavior of a black-box 
module~ a program has more static integrity to the ex
tent that its behavior can be characterized in terms of 
a set of immediate inputs, a set of immediate outputs, 
and a simply stated relationship between the two. 
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stepwise refinement 

strategy 

structural design 

structure charts 

structure clash 

structured analysis 

structured data 

structured design 

structured programming 

stub 

subcoroutine 

subroutine 

synchronized module 

a synonym for incremental implementation. 

a procedure or plan in which to imbed the use of 
tools, principles, and heuristics to specify systems 
parameters in order to increase technical objectives. 

the design of the structure of a system: the 
specification of the pieces (e.g., modules) and the in
terconnection between the pieces. 

a documentation technique for illustrating the 
modules in a system, and the interconnections 
between modules. 

in the Jackson data-structure design technique, the ex
istence of multiple sets of data which do not have a 
one-to-one correspondence at all levels of the data 
structures. 

a set of guidelines and techniques that assists a sys
tems analyst in stating functional requirements of a 
system in logical terms. 

data which itself contains explicit structural informa
tion that relates~ by reference, an element of data to 
other elements of data. 

a set of guidelines and techniques that assists a sys
tems designer in determining which modules, inter
connected in which way, will best solve a well-stated 
problem. 

a set of guidelines and techniques for writing programs 
as a nested set of single-entry, single-exit blocks of 
code, using a restricted number of constructs. 

a primitive implementation of a subordinate module~ 
normally used in the top-down testing of a superordi
nate module. 

an incremental module which can be subordinated and 
which will resume whatever module calls it. 

a module activated at execution time by a conditioned 
transfer. 

a module which references another module, not to ac
tivate it; but to check its progress, guarantee comple
tion of a certain point, or otherwise fall in step. 
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syntactic element an aspect of processing related to the form that a 
transaction takes. 

system flowchart a physical version of a data flow graph; i.e., a diagram 
that shows physical inputs and outputs to a system, as 
well as the physical processing units Gob steps, runs, 
and so on) that transform the data. 

system specification a synonym for functional requirements. 

systems analyst an informal term for a person whose job it is to 
analyze the user's needs, and to then derive the func
tional requirements of a system. 

systems development life cycle a synonym for program development process. 

technical objectives technically based measures of quality which generally 
relate consistently to the overall goals of least-cost or 
maximum-gain. 

technical parameters 

temporal cohesion 

terminal failure 

test harness 

test monitor 

testing 

Thousand Module Effect 

T-level module 

non-evaluative measures of a system - that is, mere
ly descriptions of certain aspects of a system. 

one of the lower of seven levels of cohesion. A 
module is said to be temporally cohesive if all oc
currences of all elements of processing in the module 
occur within the same limited period of time during 
the execution of the system. 

a software error that causes a system to completely' 
stop functioning. 

_a synonym for driver. 

a synonym for driver. 

a process of demonstrating that a system carries out its 
function as specified. 

an informal observation that if 1,000 programmers are 
assigned to develop a system before a structural design 
has been completed, then there will be at least 1,000 
modules in the resulting system. 

a third-level module derived by the transaction 
analysis strategy. A T-level module, or transaction
level module, is responsible for completely processing 
a transaction. 
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top-down design 

top-down testing 

transaction 

transaction analysis 

transaction center 

transaction-centered design 

transform 

transform analysis 

transform flow 

transform module 

transform-centered design 

an informal design strategy in which the major func
tions of a system are identified, and their implementa
tion expressed in terms of lower-level primitives~ the 
design process is then repeated on the primitives, until 
the designer has identified primitives of a sufficiently 
low level that their implementation can be expressed 
trivially in terms of available program statements. 

a testing/implementation strategy in which high-level 
modules are tested before low-level modules; this usu
ally requires the use of stubs to provide a primitive 
simulation of low-level modules in order to be able to 
test the higher-level superordinate modules. 

any element of data, control, signal, event, or change 
of state which causes, triggers, or initiates some action 
or sequence of actions. 

a design strategy in which the structure of a system is 
derived from an analysis of the transactions the sys
tem is required to process. 

a portion of a system that can (a) obtain transactions 
in raw form, (b) analyze each transaction to determine 
its type, (c) dispatch on type of transaction, and (d) 
complete the processing of each transaction. 

a synonym for transaction analysis. 

the transformation of some input data into some out
put data; a mapping of inputs into outputs; the func
tion of a module~ the representation of a transform on 
a data flow graph. 

a design strategy in which the structure of a system is 
derived from an analysis of the flow of data through a 
system, and of the transformations of data. 

a flow of data into a module (as an input parameter 
from a superordinate) and then out of the module (as 
an output parameter to the superordinate) such that 
the input data is transformed into the output data. 

a module with transform flow. 

a synonym for transform analysis. 



unconditioned transfer 

upward compression 

user 

utility 

virtual memory 

white box 
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a transfer of control from one module to another with 
no tacit condition of return. 

a form of compression in which a subordinate module 
is placed in-line in its superordinate; i.e., in which the 
body of the subordinate replaces the calling statement 
in the superordinate. 

an informal term describing the person, persons, or 
organization that expects to benefit from the develop
ment of a computer system. 

trie extent to which a system is easy to use, easy to in
staH, easy to operate, and easy to understand. 

a hardware mechanism present on many third
generation and fourth-generation computers that per
mits a degree of automatic packaging. 

the opposite of a black box: a system whose contents 
must be understood in order to be usable. 
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conceptual structure, 29, 408 
conditional, 160 
control and communication structure, 29 
defined, 28, 421 
GOTO, 33, 100, 103, 310, 377, 381, 389 
interrelationship, 28-29 
lexical structure of, 29 
referential structure of, 29 
scope of language, 3 2 
structure, 28-30 
transaction analysis and problem, 208-10 

Static integrity, 21, 22, 256, 421 
Stepwise refinement, 342, 345, 357, 422 
Stevens, W.P., 97, 126, 135, 147, 395 

Stevenson, H.P., 75 
Storage: 

13, 244, 250, 258,286,405,406,410 
memory, 13 
tape, 244, 260, 273 

Strategy: 
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decision-making and modular, 162 
documentation of modular, 42 
efficiency ,and pancake, 268-69 
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