
Fundamentals of a Discipline
of Computer Program and Systems Design

Edward Y ourdon
and

Larry L. Constantine

STRUCTURED DESIGN

Fundamentals of a Discipline
of Computer Program and Systems Design

STRUCTURED DESIGN

Fundamentals of a Discipline
of Computer Program and Systems Design

Second Edition

Edward Y ourdon

and

Larry L. Constantine

YOURIDN Press
1133 Avenue of the Americas
New York, New York 10036

Copyright© 1978, 1975 by YOURIDN inc., New York, N.Y.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher.

Printed in the United States of America.

ISBN: 0-917072-llMI

This book was set in Times Roman by YOURIDN Press, using a PDP-11/45 running under the
UNlX operating system.

PREFACE

Because the publication of this book marks my exit from the computer field and,
therefore, my last opportunity to set the record straight, a brief historical note seems in
order. The ideas in this book began taking form in 1963, while I was programming for
C-E-I-R, Inc. Oater to become part of Control Data). Extraordinarily good luck put me
on a corridor where Jack Cremeans had assembled some of the best programmers I
would ever encounter. Somehow, despite or even because of the constant fire-fighting
in cranking out routine business applications, we found the time to think and talk about
what we were doing. The earliest uinvestigations" of program structure to which I of
ten refer were no more than noon-hour critiques of each other's programs and long
afternoon debates of what might have been done differently to avoid difficulties we en
countered in debugging, maintaining, or modifying our programs. I emerged as chron
icler and organizer of the hard-earned knowledge of others and on numerous occasions
since have become aware of how many of my ideas are but reformulations of what
Dave Jasper and Ken MacKenzie taught me. In 1964, I first attempted to integrate into
an article the principles we had evolved (~Towards a Theory of Program Design," Data
Processing, December 1965). I also taught my first course, an introduction to LISP,
while at C-E-1-R 's Washington office, becoming hooked on the magic of sharing mean
ings with others and thereby beginning the process of critical feedback from students
which would leaven so many half-baked ideas.

Those ideas first were mixed together in notes for H Advanced Program and Sys
tems Design, H an Institute for Advanced Technology course, which I was singularly
unqualified to teach when I began it in 1966. Along the way I had been influenced by
Edsger Dijkstra, by various works on "systems engineering,'' and by a manuscript on
organizational theory by James Emery. In the latter, I saw the first promising
intermediate-level application of general systems theory. From it, I gleaned the essen
tial concept of intercomponent coupling and firmed my commitment to a systems
theoretical view of the universe.

Under Ray Wenig at C-E-1-R 's Boston office, I continued to stretch my skills,
cooking up larger designs, learning the validity of many design principles more from
failure to apply them than from anything else. By the time my own consulting firm was
launched in 1967, the graphics for picturing program structure and a vocabulary for
talking about structural problems had emerged. I had begun to make some original
contributions, although I would not have recognized them as such at the time. Techni
cal memos from that era covered such concepts as modularity, hierarchy, normal and
pathological connections, cohesion, and coupling, although without the precision or de
tail now possible.

In July 1968, the landmark National Symposium on Modular Programming was
held. The limited-edition Proceedings, one of the first large compilations of material on
program structure, contained many ideas still fresh today. By that time, I had outlined ,

v

vi PREFACE

a strategy for program design, called simply ~~functional analysis,,, that significantly
simplified the teaching of structural design. With clients' problems I had conducted
many experiments, mostly gedanken experiments, comparing alternative structures to
arrive at factors contributing to modularity and sound program design.

The collapse of my company overlapped my joining the faculty of IBM's Systems
Research Institute (SRI). Fortunately for all involved, Al Pietresanta kept me on the
faculty even after half of my first students rated me as one of the worst instructors of
all time. At SRI, I learned how to teach, not merely lecture, and in the process fine
tuned most of the basic concepts to their present form. "'Functional analysis'~ proved
too difficult to learn and Htransform analysis" emerged, first as a simpler alternative,
later as the method of choice. One of my couple of hundred SRI students, Glen
Myers, paid me the tribute of turning lecture notes from my course into an IBM Tech
nical Memorandum and later submitted a piece to the IBM Systems Journal under the ti
tle "Composite Design.,, Still another former SRI student, Wayne Stevens, pulled me
into the process. For yeoman service in editing and warding off open warfare, Wayne
was awarded senior authorship of the piece that was to usher in HStructured Design,,,
newly retitled by IBM for reasons we can only guess. At times it had seemed to me
that the lack of such a trademark for what I was teaching may have been partly respon
sible for slow, early Hsales. ,,

There was, of course, much more to say than was embodied in that May 1974 ar
ticle. While at SRI, I had begun to write a book, with the working title HFundamentals
of Program Design: A Structural Approach.,, By 1970, I thought I was about halfway
through, with 150 manuscript pages. When I left the computer field in December
1972, I stored some 400 pages in my garage, but I was still about only half-finished!

Eight months later, I returned to teaching systems design in order to pay accumu
lated bills and to do something to stop being haunted by the dust-laden pile of
manuscript notes. My coauthor, Ed Yourdon, not only sieved through these to extract
the most essential pieces, but, from teaching the material himself, has added novel
methods of explanation and crucial links to more widely known techniques and theories.

Thanks to Ed, and to Bob Brown who called me every month to ask when the
book would be done, here it is. It is yours, to use, to build on, or to ignore. No more
ghosts in the machine. I can now devote full time to the infinitely more important is
sues of people in families. Ciao!

September 1977 Larry L. Constantine
Acton, Massachusetts

CONTENTS

Preface

Foreword

SECTION I CONCEPT

l. TOWARD PROGRAM ENGINEERING
1.1 What is structured design?
1.2 Objectives of structured design
1.3 Design constraints\ trade-offs, and decisions
1.4 Summary

References

2. BASIC CONCEPTS OF STRUCTURED DESIGN
2.1 How do we achieve minimum-cost systems'?
2.2 How does structured design lead to minimum-cost systems?
2.3 The concept of black boxes
2.4 Management parallels with structured design
2.5 A collection of useful terms
2.6 Summary

3. THE STRUCTURE OF COMPUTER PROGRAMS
3. l Programs and statements
3.2 The statement structure of computer programs
3.3 The linguistics of modularity
3 .4 Normal and pathological connections
3.5 Data flow graphs
3.6 Summary

Reference

4. STRUCTURE AND PROCEDURE
4.0 Introduction
4.1 Flowcharts and structure charts
4.2 Interactions of procedure and structure: an example
4.3 Summary

SECTION II FOUNDATION

5. HUMAN INFORMATION PROCESSING AND PROGRAM SIMPLICITY
5.1 The economics of systems development
5.2 The fundamental theorem of software engineering
5.3 Complexity in human terms
5.4 Summary

References

vii

v

xi

3
3
9

13
14
15

16

16
19
19
22
25
26

27
27
28
31
34
38
40
41

42

42
43
51
57

59

61

61
62
66
73
75

viii CONTENTS

6. COUPLING

6.0 Introduction
6.1 Factors that influence coupling
6.2 Common-environment coupling
6.3 Decoupling
6.4 An application
6.5 Summary

7. COHESION 7

7.0 Introduction: functional relatedness
7 .1 Levels of cohesion
7.2 Comparison of levels of cohesion
7.3 Measurement of cohesion
7.4 Implementation and cohesion
7.5 Summary

References

SECTION III TECHNIQUE

8. THE MORPHOLOGY OF SIMPLE SYSTEMS

8.0 Introduction: organization and morphology
8.1 Organization of modular systems
8.2 Specific models of systems organization
8.3 Factoring
8.4 Afferent, efferent, transform, and coordinate flow
8.5 Systems morphology
8.6 Transform-centered morphology
8.7 Summary

References

9. DESIGN HEURISTICS
9.0 Introduction
9.1 Module size
9.2 Span of control
9.3 Fan-in
9.4 Scope of effect/scope of control
9.5 Summary

References

76
76
78
88
91
92
94

95

95
97

118
120
123
125
126

127

129

129
129
131
134
135
138
144
146
147

148

148
148
155
155
160
169
170

10. TRANSFORM ANALYSIS 171

10.0 Introduction 171
I 0.1 The first step: Restate the problem as a data flow graph 171
10.2 The second step: Identify the afferent and the efferent data elements 17 5
l 0.3 The third step: first-level factoring 177
10.4 The fourth step: factoring of afferent, efferent, and transform branches 17 8
IO. 5 The fifth step: departures 181
10.6 General comments on factoring 183
10. 7 Termination 185
10.8 An example: the FRANK system 185
10. 9 Summary 201

1 L TRANSACTION ANALYSIS 202

11.0 Introduction 202
1L1 Transaction analysis strategy 204

t
11.2 An example of transaction analysis
11.3 Special considerations in transaction processing
11.4 Summary

Reference

12. ALTERNATIVE DESIGN STRATEGIES
12.0 Introduction
12.1 The data-structure design method
12.2 The Parnas decomposition criteria

References

SECTION IV PRAG MA TICS

13. COMMUNICATION IN MODULAR SYSTEMS
13.0 Introduction
lJJ An overview of the pathological connection problem
13.2 Types of pathological data connections
13.3 Justification of pathologicaJ communication
13.4 Suggestions for minimizing coupling in pathological connections
13.5 Summary

References

14. PACKAGING

14.0 Introduction
14.1 Procedural analysis
14.2 Packaging in practice
I 4.3 Summar~

Reference

15. OPTIMIZATION OF MODULAR SYSTEMS

15.0 Introduction
15.1 Philosophies of optimization
15.2 An approach to optimization of modules
15 .3 Structural changes for efficiency
15.4 Summary

References

SECTION V EXTENSIONS

16. A TYPOLOGY OF SYSTEMS COMPONENTS

16.0 Introduction
16.1 Activation characteristics
16.2 Common types of modules
16.3 Summary

Reference

17. RECURSIVE STRUCTURES

17.0 Introduction
17. I Functional recursion
17.2 Recursion by design
17 .3 Recursion by accident
17.4 Summary

References

CONTENTS ix

208
217
221
222

223
223
223
228
231

233

235
235
235
241
244
247
248
249

250

250
251
256
259
261

262
262
262
266
267
275
276

277

279
279
280
282
287
288

289

289
289
291
295
300
301

x CONTENTS

18. HOMOLOGOUS AND INCREMENTAL STRUCTURES 302

18.0 Introduction 302
18.1 Homologous systems 302
18.2 Incremental modules 303
18.3 Applications of coroutines and subcoroutines 308
18.4 Data-coupled systems and languages for modular systems 316
18.5 Summary 317

References 318

SECTION VI THE REAL WORLD 319

19. STRUCTURE AND PROGRAM QUALITY 321

19.0 Introduction 3 21
19. l Generality 321
19.2 Flexibility 323
19.3 Software reliability 330
19.4 Software redundancy 336
19.5 Structure of fault-handling processes 337
19.6 Summary 338

References 339

20. IMPLEMENTATION OF MODULAR SYSTEMS 340

20.0 Introduction 340
20.1 Basic approaches to implementation 340
20.2 Advantages of top-down implementation 34 7
20.3 Bottom-up development 3 52
20.4 Variations on the top~down and bottom-up approaches 355
20.5 Summary 357

References 358

21. THE MANAGEMENT MILIEU 359

21.0 Introduction 359
21.l The impact of management decisions on the technical aspects of a project 359
21.2 Management benefits of prior structural design 365
21.3 Personnel management for implementing modular systems 367
21.4 Summary 369

References 370

APPENDICES 371

A. STRUCTURE CHARTS: A GUIDE 373

L Explanation of symbols in structure charts 373
II. Relationships of structure charts to other program models 383

Explanatory notes 395

B. SUMMARY OF STANDARD GRAPHICS 396
FOR PROGRAM STRUCTURE CHARTS

GLOSSARY 405

INDEX 427

FOREWORD

In the past few years, the computer industry has been revolutionized by a number
of new philosophies and techniques. One of the most popular of these techniques,
structured programming, in some cases has led to order-of-magnitude improvements in
the productivity, reliability, and maintenance costs associated with computer systems.

More recently, though, there has been a recognition that perfect structuring of
GOTO-less code may be of little value if the basic design of the program or. system is un
sound. Indeed, there are a number of well-known case studies, including the now
famed IBM system for The New York Times, in which maintenance problems have per
sisted despite the use of top-down structured programming techniques. In virtually all
of these cases, the problems were due to a misunderstanding of some fundamental
design principles.

Concepts like Hmodular design'' and Htop-down design" have been circulating
through the industry for more than a decade. Yet, if one watches what an average pro
grammer actually does (as compared to what he says he does), it is apparent that the
process of designing a program or system is still art, characterized by large doses of
folklore (e.g., "Every program has to have an initialization module, right?"), black
magic, and occasional flashes of intuition. To say that the average programmer's design
process is organized, or structuredt would be charitable.

This book is an attempt to provide elements of a discipline of program and sys
tems design. We assume that the reader is familiar with the basic elements of comput
er hardware, though we rarely make reference to the particular features of specific sys
tems. We further assume that the reader is familiar with the syntax of his program
ming language, though it does not matter greatly to us whether he programs in FOR
TRAN, COBOL, PL/I, or assembly language; we will comment on programming
languages only insofar as they influence the design of a program. Finally, we assume
that the reader knows how to code, and is capable of writing "good" code~ we will not
place much emphasis on structured programming, defensive programming, or the other
"styles" of programming.

Our concern is with the architecture of programs and systems. How should a large
system be broken into modules? Which modules'! Which ones should be subordinate
to which? How do we know when we have a "good" choice of modules'? and, more
important, How do we know when we have a "bad" one? What information should be
passed between modules? Should a module be able to access data other than that
which it needs to know in order to accomplish its task? How should the modules be
"packaged" into efficient executable units in a typical computer'!

Naturally, the answers to these questions are influenced by the specific details of
hardware, operating system, and programming language - as well as the designer's in
terest in such things as efficiency, simplicity, maintainability, and reliability. The issues

xi

xii FOREWORD

of program structure posed above are of a higher order than such detailed coding ques

tions as, Should I use a GOTO here? or, How can I write a nested lF statement to ac
complish this editing logic?

Quotation marks are used throughout this book to highlight words that often are

thought of as having precise, well-defined technical interpretations. On closer examina

tion, however, many of these terms - such as Hmodularity" - are often found to be

technically undefined or used ambiguously. For example, two programmers may agree

that good modular programming requires that each module perform a single service.

Unfortunately, they probably wilt not agree on whether a subroutine which reads in a

set of control cards but does not validate them is performing one service, several ser
vices, or only part of a service. Similarly, we might ask whether the suspension of pro

cessing on an end-of-file condition is a Blow-level" decision or a "high-level" decision?

Some programmers would argue that it is a high-level decision, because it results in

Hreturning back to the operating system", others would argue that it is a low-level deci

sion, because it Hhas to do with the detail of reading a magnetic tape." We are left

aga-in with a matter open to debate.

The problem is not so much with the words themselves, but rather with the

manner in which they are used and defined (or not defined). Indeed, a number of the

terms in quotation marks above will be used later in this book but always with the fol
lowing qualifications: They will be given precise, technical definitions before being

used, or the context will clearly indicate that what is meant is the colloquial sense.

In general, terminology is a major problem and occupies a central position in this

book. Except to our former students, much of the terminology will be new. There is
so much that may be new that the book may appear to be simply a tour de force in vo

cabulary, an attempt to foist an entirely- new set of buzzwords on a field already over

burdened with them.

We have, however, endeavored to minimize this burden by adhering to a set of
consistent rules. With very few exceptions, a new term is never introduced unless 110

term for a specific concept or idea already exists. Whenever possible, equivalent or re

lated terminology is borrowed from other technical disciplines where it already is estab

lished. A well-defined set of concepts usually is described by terms that are internally

consistent and gramatically related (thus: coincidental, logical, temporal, communica

tional, sequential, and functional cohesion, as discussed in Chapter 7). Where com

mon, general, informal words are given specific technical meanings, these are chosen to

be consistent with and, if possible, intuitively suggested by the colloquial usage.

In some cases, new terms have been introduced where terms have already existed.

This has been done where the new terms are more general, more consistent with other

terms in a set, or where prior terminology was strongly associated with a specific

language, manufacturer, or machine - with a consequent conflict between the general

phenomenon and the highly specialized variant intended by a specific user community.

An example of this type of choice of terminology is the introduction of the term

co11rouri11e to mean a module activated by another module as a parallel (simultaneous)

process. The prefix "con" means ''with", it leads to a consistent set with the older es

tablished terms subroutine and coroutine; it does not conflict with other usage in pro

gramming. The terms "parallel routine" or "asynchronous routine" are less desirable

because they are both clumsier and inconsistent with the related terms. The term

FOREWORD xiii

Htask" is less desirable because it already has a specific, lang1:1age-dependent, vendor
dependent definition (e.g., IBM's definition of a ~'task" in PL/I may not correspond to
the use of the word on Hewlett-Packard, Burroughs, or Univac equipment), and be
cause ''task" is a word used informally in so many ways.

For the most part, we have avoided usurping such common words for narrow
technical meanings. The specific variant will always be qualified (thus, "PL/I task" or
"ALGOL procedure,,). In no cases has a word with an almost universally accepted
meaning been redefined. Thus, a subroutine is still a subroutine as we have all come to
know it. Where other authors and computer scientists have provided terminology be
fore us, we have used it if at all possible (thus, "coroutine" after Mel Conway's classic
introduction of the term~ and "incremental" module after Dove).

Some terminology is only a convenient shorthand. One can get very tired of talk
ing about a "module that obtains its inputs from subordinates and returns its output to
its superordinates, thus serving to bring inputs to the process as seen from the superor
dinate." The term nafferent module,, is much shorter, and anyone with a good vocab
ulary probably could guess at its technical use here.

There are notable exceptions to the above rules, many our sole responsibility~ we
apologize in advance for such lapses. "Function" and "functional" are used with
several distinct specific interpretations, as well as in both the mathematical sense and
the broad colloquial sense, simply because no other words seem to work. Similarly, we
apologize in advance for the unfortunate implications inherent in such phrases as
Hpathological connections" (which are not necessarily sick, as we will discuss in
Chapter 13), and ' 4 logical cohesion" (which is not what it may seem at first glance).
The term ''pathological connection" has been used with its present meaning in some
organizations since 1964, has appeared in more than a dozen published papers and
books, and has been learned by nearly 5,000 innocent students - ample reason not to
change it now.

In short, the vocabulary is essential~ long teaching experience has shown us that
the subject matter of this book cannot be presented without the building of a concomi
tant vocabulary.

All of this is reflected in the organization of the book. Section I consists of a
number of introductory chapters that discuss certain fundamental concepts and philoso
phies, which must be understood before subsequent techniques are introduced. Section
II lays the foundation for the structured design techniques: In addition to discussing
program complexity from a "human information processing" point of view, it contains
chapters on coupling and cohesion - two fundamental concepts in structured design.
Secti9n III can be considered the ~'guts" of the book: It discusses transform analysis,
transform-centered design, transaction analysis, top-down design, and a number of
heuristics commonly used by the program designer.

Section IV covers a number of the pragmatic issues in systems and program
design~ it contains chapters on intermodular communication problems, packaging, and
optimization of modular systems. Section V discusses advanced topics such as homolo
gous systems and incremental systems. Finally, Section VI discusses certain manage
ment and implementation issues, including the relationship between structured design
and structured programming, as well as "top-down" versus "bottom-up" implementa
tion strategies.

xiv FOREWORD

We envision a number of uses for this book, both in academia and in industry. In
a university curriculum, this book could be the sole text for a course in program design,
one of the texts in a course in software design or systems design, or auxiliary reading in
an advanced programming course. If the material is treated in depth, it probably would
comprise a second or third course, after the usual introductory programming courses.
Many of the basic concepts can be - and have been - introduced into elementary pro
gramming courses in such languages as FORTRAN and COBOL. With complete can
dor, however, we would have to admit that this book does not fit well into most curri
cula as they are presently organized~ in many settings, the questions answered by struc
tural design have yet to be recognized as questions.

In industry, we expect the book to be read by experienced programmers and
analysts - people who, unfortunately, already have well-established notions about the
proper way to design. We have found that the most successful way of communicating
the material to experienced people is through a lecture/workshop course in which
programmers/analysts work on a real design problem. By selecting an appropriate prob
lem, the instructor should be able to illustrate the advantages of the "structured" tech
niques over the Hclassical" techniques. Indeed, most of the material in this book has
been influenced by attempts to communicate it to experienced analysts and program
mers in several hundred seminars, lectures, and workshops conducted since 1964
throughout North America, Europe, Asia, and Australia.

The feedback from our students ha's been invaluable. During the years, they have
hooted at our bad ideas, pointed out flaws in mediocre ones, and helped us refine and
improve the really good ideas. Though we cannot list names, we acknowledge each one
for helping us build the beginning of a "science" of design. Equally important, we ack
nowledge the help of many, our wives among them, who continued believing that there
eventually would be a book during the years when the manuscript lay in Larry's garage
and at the bottom of Ed's things-to-do list. We acknowledge our colleagues in the field,
whose friendly spirit of competition finally motivated us to put our ideas down on paper.
We credit our publishers with helping us avoid the normal two-year delay before a work
appears on the booksellers' shelves.

Finally, we owe a very great debt to some of those who taught us. Kenneth .D.
Mackenzie and David P. Jasper must be singled out for special thanks, for being superi
or programming craftsmen who were a decade ahead of their profession, for their pro
fessionalism in thinking about the elements of their craft when most others daily rein
vented octagonal wheels, and for their patience in explaining it all a third and fourth
time to a brash and impatient young man named Larry Constantine.

To the Massachusetts Institute of Technology, we both give credit for beginning it
all with a course called '~6.41" and liberal access to a PDP-I with a low serial number.
There, we began to see the world as a system, a system whose behavior is coherent and
understandable when viewed from an appropriate vantage point, a system explainable
by rules and relationships. The purpose of this book is to impart a few of the rules of
rational behavior for computer programs as designed structures.

September 1977 L.L.C.
E.Y.

STRUCTURED DESIGN

Fundamentals of a Discipline
of Computer Program and Systems Design

SECTION I
CONCEPT

For most of the computer systems ever developed, the structure was not
methodically laid out in advance - it just happened. The total collection of
pieces and their interfaces with each other typi~ally have not been planned sys
tematically. Structured design, therefore, answers questions that have never even
been raised in many data processing organizations. The chapters in this section
serve to place the design of systems structure in the perspective of the total
systems development process as conventionally practiced with traditional tools
and orientations, and to establish the area of discourse for structured program
design. Chapters I and 2 introduce the basic concept of structured design and
locate it in the systems development cycle, relating questions of systems struc
ture to technical and economic goals of systems development. Basic terminolo
gy used to describe building blocks and their interrelationships is defined in
Chapter 3, and pictorial methods for presenting program and systems structures
are developed. In Chapter 4, structure is contrasted with procedure, and the
relationship of structure charts to conventional flowcharts is explored.

The lengthy introduction that this section provides is necessary to estab
lish a rich graphic and verbal language for discussing program structures and to
avoid confusion with older issues in programming.

CHAPTER 1
TOWARD PROGRAM ENGINEERING

When most programmers and analysts hear the phrase "structured design," a look
of mild bewilderment comes over their faces. ulso't that the same as 'top-down'
design?" they ask. Or, uDoes structured design allow us to talk to users more easily?
Does it enable us to develop better functional specifications?" Or, considering the re
cent interest in other ''structured" disciplines, they ask, ''Isn't structured design just an
extension of structured programming? Doesn't it just mean drawing HIPO diagrams?"

The answer to all of these questions is no. Structured design is not equivalent to
top-down design, though the two have some things in common. Structured design
doesn't solve the dilemma of extracting functional specifications from the user, though
it suggests some techniques that have led to the development of a new discipline known
as "structured analysis." And, finally, while structured design and structured program
ming complement one another, structured design is definitely not equivalent to drawing
HIPO diagrams.

After saying so many things about what structured design is not, it obviously
behooves us to discuss what structured design is. This chapter defines the area of struc
tured design, especially within the context of analysis, programming, and coding - the
more familiar steps in the program development process. Having accomplished this, we
give some answers to such questions as, What is structured design trying to accomplish?
What are its objectives?

1.1 What is structured design?

Anyone who has been in the data processing profession for more than six months
has certainly seen (and probably experienced) the classic approach to systems develop
ment: The boss dashes in the door and shouts to the assembled staff, '~Quick, quick!
We've just been given the assignment to develop an on-line order entry system by next
month! Charlie, you run upstairs and try to find out what they want the system to do
--- and, in the meantime, the rest of you people start coding or we'll never get finished
on fime!"

Of course, things are not quite so disorganized in the older, larger, more estab
lished EDP organizations. Many DP managers will tell you proudly that they have
identified a "systems development life cycle" or a "program development process" in
their organizations. Chances are that they have developed a seven-volume "cookbookn
that will guide the programmer/analysts through the "life cycle" --- complete with de
tailed standards for such things as file layouts, flowcharts, cost-benefit studies, and user
sign-off and approval.

3

4 STRUCTURED DESIGN

In simpler terms, we can think of the systems development life cycle as pictured
in Fig. 1.1. We can imagine that it all begins with a user, who suddenly decides that he
wants a new computerized system. On the real world, we know that this is not always
so: In many cases, the EDP department comes up with the idea for a new system and
foists it upon the unwary user.) Having perceived a need or desire for a new system
(or for a major enhancement of an old system), the user carries on a dialogue with a
person typically known as a "systems analyst." The systems analyst, in turn, delivers a
set of "functional requirements'' to a "senior systems designer,'' who eventually
delivers ~'program specifications" to a programmer. In the larger organizations, the
programmer may ultimately deliver a stack of flowcharts to a "coder," who finally
writes the COBOL or FORTRAN statements that make the system do what the user
wants it to do.

It is instructive to look more closely at the activities we have just described. First,
note that many of the terms in the paragraph above have been enclosed in quotation
marks, e.g., systems analyst. This is because (a) terms like systems analyst mean
something different in every organization, and (b) a person with the title systems
analyst may be performing one job, two jobs, or several jobs. We are more concerned
with the jobs, or functional activities, than we are with the people or their job titles.

Let's consider the systems analyst first. A clue to the real job performed by this
person is that many organizations use the title ~'business systems analysf'~ the function
being performed, then, is "business systems analysis." The same points apply to the
engineering systems analyst, the mathematics analyst, and so forth. In plain terms, this
person has the job of talking to the user and discovering his needs and wants - and
then expressing them in suffic;iently well-organized terms from which someone can
develop an appropriate computer system. As we know from a plethora of textbooks on
the subject, the job involves studying the user's current system (if there is one), inter
viewing hordes of clerks in the user department to find out how they are presently do
ing their jobs, and using techniques like decision tables to ensure that the user's state
ment of the problem is not incomplete, redundant, or contradictory.

The final product of the business systems analyst is, ideally, a set of functional re
quirements (otherwise known by such titles as Hsystems specifications" or "functional
specifications") that describes, in precise terms, the inputs to be supplied by the user,
the outputs desired by the user, and the algorithms involved in any computations
desirnd by the user. In addition, the functional requirements generally wi'll include a
number of constraints: Examples might be, The XYZ report must be delivered to Mr.
Smith's office by 8:00 every morning, or The mean response time to a Type X trans
action must be less than two seconds, or The monthly cost of the computer system
must be less than $2,000 per month in order for it to be economical.

Ideally, the functional requirements should not specify such computer-oriented
design decisions as:

• number of job steps, regions, partitions, or control points* involved in the
implementation of the system

"'These are vendor-dependent terms, used to describe the smallest unit of work recognized by the vendor's
operating system.

TOWARD PROGRAM ENGINEERING 5

Figure l. I. Systems development process.

6 STRUCTURED DESIGN

• record layouts, down to the last bit and byte, with a decision as to
whether the file should be implemented with IMS, TOT AL, ADABAS,

BDAM, or some other access technique

• num her and type of intermediate files to be passed between programs

• programming language to be used in the implementation of the system

The primary reason for suggesting that such decisions should not be found in the func
tional requirements is that they have nothing to do with the user's conception of the ap
plication. Why should the user care whether the programs are implemented in COBOL
or FORTRAN, as long as they produce the correct outputs within the specified con
straints of time and money?

What we are saying, then, is that we do not want the systems analyst to design.
This is somewhat unrealistic, of course, since many systems analysts were previously
programmers or systems designers - and are thus making unconscious design decisions
all during their discussions with the user. It is also unrealistic because the "feasibility
study'' or "cost-effectiveness" portion of systems analysis requires the analyst to make
some preliminary decisions about the size, power, and cost of the computer equipment
required to solve the user's problem.

Thus, we should expect the systems analyst to say, H Aha! It sounds like we'll
need a 370/168 to handle that application," or "It sounds to me like the system will
have to be an on-line IMS system - a batch system just won't satisfy the user's needs."
We emphasize, though, that such design decisions should be made as sparingly and as
tentatively as possible (so they can be changed later on, if necessary).

We turn next to the "systems designer." It is interesting that some organizations
refer to this person as a "computer systems analyst" to distinguish him from the busi
ness systems analyst whose role we discussed above. This is the person concerned with
what we like to call the Hstructural design" of the .Program or system; that is, what are
the appropriate subsystems, programs, or modules, and how are they interconnected?
To put it another way, the systems designer accomplishes what some organizations call
"general systems design": designing the major elements of the data base, the major
components of the system, and the interfaces between them. Ideally, the final product
of the systems designer is a document describing this structural design; in a later
chapter, we will introduce the notion of structure charts as a convenient means of docu
menting the structural design of a program or a system.

Once this step has been accomplished, one would expect that the programmer
would get precise specifications of individual "modules" (a term that we will define
carefully in Chapter 2) - specifications that include information about inputs, outputs,
interfaces with other parts of the system, and the algorithm by which the module is to
do its job. Thus, the programmer might be given the task of writing a module to com
pute the logarithm of an argument found in general-purpose hardware register #l with
its output returned in general register #2. The programmer may not know why it is
necessary for the system to include a logarithm subroutine (especially if it is a payroll
system), or why it is necessary for the inputs and outputs to be passed through two
general-purpose hardware registers (especially if the rest of the system is being pro
grammed in COBOL) - but these are decisions that have already been made by the
systems designer, and are presumably beyond the scope of the programmer's job.

TOW ARD PROO RAM ENGINEERING 7

Nevertheless, the programmer often finds himself performing some design· on his
own - or "logic design," as it is often called. In the above example of the logarithm
subroutine, the programmer may still be required to determine the best algorithm for
computing logarithms, within constraints such as memory and CPU time imposed upon
him by the systems designer. He would presumably outline the logical steps through
which one must go in order to compute a logarithm. In a small organization, he would
then write the appropriate instructions and debug them; in a large organization, he
might document his logic design in a flowchart, and turn the job over to a "coder" for
final implementation.

Of course, this description of the "systems development life cycle" does not apply
to all organizations. We find in some organizations that one person performs all of the
tasks outlined above. In other organizations, one person performs the task that we
called business systems analysis as well as the task that we called systems design. Alter
natively, some organizations allow the programmer to perform the task of general sys
tems design as well as the task of logic design - once the systems analyst has deter
mined the user's needs. In still other organizations; there may be additional intermedi
ate steps in the process, with. accompanying personnel and accompanying job titles.
Nevertheless, the cycle we have outlined seems a reasonably accurate~ albeit slightly
superficial, model of the development cycle in most EDP organizations.

The reason for going through this exercise is to identify that portion of the sys
tems development life cycle that we wjsh to call "structured design." Recalling our
earlier diagram of the life cycle, we can now illustrate the areas of "analysis,"
"design," and "programming"; these are shown in Fig. 1.2. Note that they overlap in
the diagram, ·as in fact they do in the real world. As we pointed out earlier, the analyst
finds himself making unconscious design decisions; similarly, the systems designer finds
himself making decisions tha.t influence the way the user looks at the system - or the
amount of money that the user will spend for his system. While the systems designer
is not concerned with the details of coding, his decisions obviously influence the
manner in which the programmers write their code - primarily because of the interface
conventions imposed upon the programmer by the systems designer. Conversely, the
programmer may feet that he is being unnecessarily constrained by the systems designer
- and he, in turn, may influence some of the systems designer's decisions. Partly be
cause of this, we will often use the phrase "programmer/analyst" when discussing ac
tivities that might be carried out by either a programmer or an analyst.

We can summarize this discussion with the following definitions:

• Structured design is the art of designing the components of a system and
the interrelationship between those components in the best possible
way.

Alternatively, we can say:

• Structured design is the process of deciding which components intercon
nected in which way will solve some well-specified problem.

8 STRUCTURED DESIGN

use~

@
SYSTEMS
1)€51~

Figure 1.2. Realm of structured design.

By introducing a specific formal design activity to describe fully, and in advance,
all the pieces of a system and their interrelationships, we have not created a new activi
ty in the program development cycle. Structured design merely consolidates, formalizes,
and makes visible design activities and decisions which happen inevitably - and invisi
bly in the course of every systems development project. Instead of occurring by
guesswork, luck, and default, these decisions can be approached deliberately as techni
cal trade-offs.

TOW ARD PROGRAM ENGINEERING 9

By pulling together all of the decisions affecting the choice of modules and in
terrelationships in a system, we necessarily affect the way in which other decisions are
organized and resolved. Thus, some issues which have traditionally been approached in
a certain way during the earliest phase of a project may have to be dealt with in an en
tirely difterent manner at a much later stage once the designer graduates to a structured
design approach.

1.2 Objectives of structured design

"Design" means to plan or mark out the form and method of a solution. It is the
process which determines the major characteristics of the final system, establishes the
upper bounds in performance and quality that the best implementation can achieve, and
may even determine what the final cost will be. As we suggested in the previous sec
tion, design is usually characterized by a large number of individual technical decisions.
If we are to make progress toward developing programming into more of an engineering
discipline, then we must progressively systematize those decisions, make them more
explicit and technical, and less implicit and artful.

All of engineering is characterized by the engineer's dissatisfaction with the
achievement of just a solution. Engineering seeks the best solution in established
terms, within recognized limitations, while making compromises required by working in
the real world.

In order to make computer systems design an engineering discipline, we need,
first of all, to define clear technical objectives for computer programs as "systems."
Overall systems goals ultimately determine the criteria by which individual design deci
sions are made. An understanding of the primary constraints limiting admissible solu~
tions is also essential. To make conscious, deliberate decisions, we must also know that
the decision points exist, so that we can recognize them when we encounter them. Fi
nally, we need some methodology or technique which assists us in making decisions
that increase objective goals while satisfying design constraints. Given these things -
objective goals and constraints, recognized decisions, and effective design methodology
- we have some hope of engineering program solutions rather than snatching them out
of the air.

Computer programs are just systems, analogous or even equivalent to "hard" sys
tems. Naturally, we would expect to find similar objectives, similar criteria defining
quality as in other systems. Unfortunately, most designers are at a stage where if a sys
tem appears to work (that is, if it passes a modest acceptance test and does so within
tolerable time limits), it is a "goodH program. Indeed, many designers today behave as
if a solution, any solution, were the solution. When someone suggests that the
programmer/analyst return to the drawing boards to improve the design or develop an
alternative design, the reaction often borders on paranoia.

Where quality is an explicitly recognized concept, two variations prevail. One is
that good programming is what appears to be tricky or non-obvious to another program
mer. Thus, the comment, ''Wow! I never would have figured out what the loop
does," is to be interpreted as an accolade. Although other engineering fields suffer
from some of this "cleverness" syndrome, nowhere is it as rampant as in the data pro
cessing field. Even if obscurity had no detrimental consequences in terms of external
characteristics, its irrelevance to those goals would make it suspect.

10 STRUCTURED DESIGN

The other school of thought associates quality with increased execution speed or
decreased memory requirements. These are but superficial aspects of a broad design
goal: efficiency. In general, we want systems and programs that are efficient - i.e.,
which make efficient use of scarce system resources. These resources include not only
the central processor and primary memory, but also secondary and tertiary storage,
input-output peripheral time, teleprocessing line time, on-line personnel time, and
more. The narrower view of efficiency is a holdover from the days when the cost of the
central processor so overshadowed other costs that any reduction was all but certain to
represent an overall savings. Of course, it is not a savings to cut weekly run-time by
one minute of $600/hour computer time if this adds two hours of $6/hour people time.
The system-wide measure of technical objectives is implied throughout this book, and
this is nowhere more critical than in the area of efficiency.

One of the reasons why the systems view of efficiency is so important is that the
ratio of hardware costs to software costs has been shifting for the past decade, and will
continue to shift dramatically for some years to come. In 1971, the United States Air
Force estimated that by 1980 only 20 percent of its data processing budget would be
spent on hardware - the remaining 80 percent would be spent on the "people costs"
of developing and operating the systems. 1 Similarly, a study within General Motors 2

found that by 1970, hardware costs accounted for only 50 percent of the total data pro
cessing budget - and the ratio is expected to drop for the foreseeable future.

Reliability is another measure of quality. This is an almost universal criterion for
hard systems, but the special nature of failures in software has obscured the importance
of developing reliable programs. Mean-time-between-failures (MTBF) can be translated
into software terms in a number of ways, the most obvious of which is mean-cycles
between-faulty-data (this approach was taken by Dickson et al 3 in an attempt to derive
a mathematical model of software reliability for a large air defense system, and has also
been used to analyze the reliability of portions of the software for Apollo Manned
Spacecraft missions).

It is essential to see that, while software reliability may be viewed as a debugging
problem, it may also - perhaps more productively - be viewed as a problem in design.
This view has been growing in popularity in such forums as the 1975 International
Conference on Reliable Software, 4 but there is much work to be done before it reaches
the level of the average designer in a scientific/commercial environment (as opposed to
the military/aerospace environment, where the need for "certifiably reliable" systems is
acute).

Closely related to reliability in its effect on system usefulness is maintainability. In
fact, if we express reliability as MTBF and maintainability as the mean-time-to-repairs
(MTTR), then we can define "systems availability" quite simply as

Systems availability = MTBF + MTTR

Again, as with reliability, maintainability .seems to mean something different in software
than in hardware. We do not repair or replace worn-out instructions, but we do remove
and correct residual bugs in the system. A system is maintainable to the extent that it
makes the discovery, analysis, redesign, and correction of lurking bugs easier.

TOW ARD PROGRAM ENGINEERING 11

This is a very high priority design goal for several reasons. We know that a sys
tem will have~ throughout its lifespan, a number (generally quite a large number) of
residual bugs. While the number of such extant bugs is expected to diminish with time
(a[though that is not necessarily so), the difficulty of correct analysis, ·redesign, and
correction has been seen to increase due to a variety of effects. Thus, there is a con
stant trickle of effort which over the entire lifespan of the system adds up to a substan
tial cost. The budget of the maintenance department and the steady stream of error
and correction notices for systems software attest to this as a significant, although often
ignored, systems cost.

Indeed, only recently has the EDP industry been able to attach hard numbers to
such phenomena as residual bugs, complexity of fixing bugs, and the cost and difficulty
of maintenance. In a classic conference on software engineering, IBM employee M.E.
Hopkins remarked that studies have shown every release of IBM's OS/360 contains
1,000 bugs~ 5 similar studies have shown that IBM is by no means unique in its propen
sity for bug-ridden software. 6 Most of the studies concerning vendor-supplied software
show the usteady-state'' behavior, after the majority .of initial bugs have been exorcised
from the system~ the study by Dickson et al 3 suggests the initial experience with most
systems is one of increasing bugs, until gradually programmers begin fixing bugs faster
than users find new bugs.

This can be illustrated in the "bug detection" graph shown in Fig. 1.3. In the
case of the military system studied by Dickson et al, the curve peaked at approximately
900 bugs per month, each of which required modification of an average of 17 instruc
tions in order to fix the bug!

Bugs discovered per month

System's lifetime

Figure 1.3. Bug detection rate per unit time.

Finally, we note that the programmer's chances of fixing a bug correctly on the
first attempt are not very good~ according to a study by Boehm, 7 the programmer has a
maximum probability of success of about 50 percent if he modifies 5-10 statements in
his program, and the odds drop to about 20 percent if he modifies 40-50 statements.

Maintainability affects the viability of the system in a (relatively) constant en
vironment; modifiability influences the cost of keeping the system viable in the face of
changing requirements. In some areas, both are increased or decreased by the same
kind of design and implementation practices~ in others, modifiability must be an explicit
design goal in itself.

i2 STRUCTURED DESIGN

In most contexts, we want a system to perform a variety of tasks without having
to undergo any modification, i.e., without having to actually change any of the existing
programs. Flexibility represents the ease of getting a given system to perform variations
on the same theme~ generality expresses something of the scope or range of the theme.
Generality and flexibility have received much more attention than any other design
goals except efficiency. However, they are often viewed as appropriate goals only for
certain systems, so-called general-purpose systems, not as goals applicable to any sys
tem. In part, this selective focus stems from myths about the cost of generality and
flexibility, and their relationship to efficiency.

Again, the areas of modifiability, generality, and flexibility only lately have been
associated with hard figures. A 1972 survey 8 indicated that the average EDP organiza
tion spends approximately 50 percent of its data processing budget on maintenance -
whiich most ·organizations define as the combination of maintenance (i.e., ongoing de
bugging) and modification~ in some organizations, the figure has been as high as 95 per
cent. Indeed, one large organization privately told the authors that they had spent $112
million in programmer salaries during 1974, 75 percent of which was devoted to
maintenance and modification of existing programs!

The final test of any system is in the marketplace, which may only mean its actual
use (or nonuse) by the ultimate customer. Utility or ease of use is one way to express a
key criterion which receives much attention in early analysis, and somehow gets lost in
the shuffle of actual design and implementation. Part of the problem lies with a general
lack of understanding of human factors, part with delegation of design responsibility in
inappropriate ways. Internal programming details frequently end up being determining
factors for significant features of the user interface (how many .computer systems, even
today, for example, limit some input fields to eight characters simply because it
corresponded to a convenient double-word boundary within the computer?). Indeed,
decisions having a profound impact on systems utility may be made, ad hoc, by a junior
programmer.

In short, our overall technical objective function is made up of varying amounts of
(emphasis on) efficiency, maintainability, modifiability, generality, flexibility, and utili
ty. Another way of putting it is that these are components of objective program quality.
For them to be usable in an engineering sense by the designer, we will have to develop
some objective measure or characterization of each and to show just how each is
influenced by various isolated design decisions and overall design practices. Discussion
of the bulk of this task will be deferred until Section VI.

In simple terms, it often is sufficient to state that our primary objective is
"minimum-cost" systems. That is, we are interested in systems that are cheap to
develop, cheap to operate, cheap to maintain, and cheap to modify. The relative priori
ties placed on development costs, operational costs, maintenance costs, and modification
costs will vary from organization to organization, from user to user, and from project to
project. In addition, the priorities wil.l continue to change as evolving technology
changes the ratio of hardware costs to software costs.

TOWARD PROGRAM ENGINEERING 13

1.3 Design constraints, trade-offs, and decisions

We might view technical design objectives as constituting an objective function, as
in an optimization problem - an objective function we want to maximize, subject to
certain constraints. As a rule, constraints on the systems design process fall into two
categories. Development constraints are limitations on resource consumption during
development, and might be stated in terms of overall cost or in specific components,
such as machine time and man-hours. Schedule limitations e'You1 ve gotta be finished
by the first of the month.") are also in this category. Computer systems rarely go into
mass production in the same sense that hard systems usually do, but analogous to the
costs of manufacturing hard systems are the costs of using software systems. Other

, operational constraints might be expressed in technical terms, such as maximum
memory size or maximum response time for an on-line system.

The character of many design constraints is that they are not set limits, but 44Soft
boundaries.," which are stretched at varying cost or consequences. Indeed, in the final
analysis, objectives and constraints blur. A real-time system may have some fixed
upper boundaries on admissible response times and others that merely affect user frus
tration. This might be translated into a high premium on efficiency, so that the critical
response times can be met and the users not left too unhappy.

The very essence of design in the real world and the best characterization of
design decisions is trade-off We rarely can have our cake and eat it, too. As we in
crease one parameter, we almost always decrease another. If we opt for more
efficiency, we frequently sacrifice ease of maintenance. Similarly, execution speed can
usually be gained at the expense of memory storage or secondary storage. It is the
designer's job to be aware of what he is trading off and to select that balance which best
reflects his overall goals. Ultimately, the goal is economic, as we have already pointed
out - that is, lowest possible net discounted value of all future resource consumption
or maximum net present value of future profits. Unfortunately, the designer almost
never has either the tools or the information necessary to evaluate this kind of global
goal. Moreover, such total economic impact, while it should be an ever-present con
sideration, is too cumbersome to be applied to each incremental technical decision. It is
for this reason that we identify more immediate technical objectives that have some ap
proximate and predictable effect on total economics.

A total design is the cumulative result of a large number of incremental technical
design decisions. Though some of these are clearly global., such as random versus
sequential file organization, most will be small and isolat~d (e.g., "Does the end-of-file
test go here or there?"). To be able to engineer computer systems, we need to know
just how various technical design goals are influenced by the alternatives in the incre
mental decisions, ideally without having to go through an extensive analysis for each
decision. In short, we need a general understanding of which kinds of design decisions
influence which design goals, on a case-by-case basis.

Unfortunately, certain trade-offs have been perpetuated in mythological form, re
lating one design goal to another as if they were locked in a certain relationship when,
in fact, the relationship is complex and has many "balancing points" that can be ex
ploited. Examples of these myths are:

14 STRUCTURED DESIGN

• Increasing generality increases development cost.

• Increasing generality decreases efficiency.

• More flexible interfaces are harder to use.

We will not be satisfied with such very general and inaccurate statements.

1.4 Summary

In this chapter, we have attempted to demonstrate that there are a number of im
portant roles in the systems development process - primarily, business systems
analysis (understanding the problem), computer systems design (designing the major
architecture of a solution to the problem), and programming (putting the design into
code). We have concentrated (and will continue to concentrate for the remainder of
this book) on the role of design, because we feel it is a critical area that, in many organ-·
izations, has been ignored, or delegated to the wrong person (e.g., the junior program
mer), or performed by someone incompetent to do the job (e.g., a senior systems
analyst whose last real experience was with an IBM 650). We have emphasized that it
is not sufficient to find just one design for a computer system~ what we want is the best
design, given appropriate information about the technical objectives and constraints for
the system.

Even more, we want an organized methodology - a "cookbook'' - that will help
us develop "good" designs and discard "bad" designs as easily as possible. That, in a
nutshell, is what "structured design" is all about: a collection of guidelines for distin
guishing between good designs and bad designs, and a collection of techniques, stra
tegies, and heuristics that generally leads to good designs - good in the sense of satis
fying the common technical objectives and constraints found in commercial and
scientific environments.

In the next chapter, we will examine some of the fundamental philosophies and
concepts that form the basis of structured design. If it seems that we are placing ex
traordinary emphasis on philosophies and concepts, have patience: It is critically impor
tant if the subsequent chapters on techniques are to make sense. Indeed, we suggest
that when you finish Chapter 21, you return to reread the first two chapters!

CHAPTER 1: REFERENCES

L Barry Boehm, "Some Information Processing Implications of Air Force Space
Missions in the l 980's," Astronautics and Aeronautics, January 1971, pp. 42~50.

2. Dr. James Elshoff, General Motors Research Center, Warren, Mich. Private com
munication, April 1975.

3. J.C. Dickson, J.L. Hesse, A.C. Kientz, and M.L. Shooman, 44 Quantitative
Analysis of Software Reliability," Proceedings of the 1972 Annual Reliability and
Ma;ntainability Symposium, Institute of Electrical and Electronics Engineers, IEEE

. Cat. No. 72CH0577-7R. New York: 1972, pp. 148"157.

4. Proceedings of the 1975 International C01~ference on Reliable Software, ACM S!G
PLAN Notices, Vol. 10, No. 6 (June 1975).

5. J.N. Buxton and B. Randell, eds., Software Engineering Techniques. NATO
Scientific Affairs Division\ Brussels 39, Belgium: April 1970,. p. 20.

6. Edward Yourdon, "Reliability Measurements for Third Generation Computer Sys
tems," Proceedings of the 1972 Annual Reliability and Maintainability Symposium.
Institute of Electrical and Electronics Engineers, IEEE Cat. No. 72CH0577- 7R.
New York: 1972, pp. 174-183.

7. Barry Boehm, ~~software and Its Impact A Quantitative Study," Datamation. Vol.
19, No. 5 (May 1973), pp. 48-59.

8. uThat Maintenance Iceberg," EDP Analyzer. VoL 10, No. 10 (October 1972).

CHAPTER 2
BASIC CONCEPTS OF STRUCTURED DESIGN

In the previous chapter, we saw that design is an activity that begins when the sys
tems analyst has produced a set of functional requirements for a program or system,
and ends when the designer has specified the components of the system and the interre
lationship between the components. We also saw that it is insufficient, in most cases,
for the designer to consider a solution, a design. He should evaluate several alternative
designs and choose the best - best in the sense of maximizing such technical objectives
as efficiency, reliability, and maintainability while satisfying such design constraints as
memory size and response time.

In this chapter, we begin to explore the philosophies and principles of structured
design - primarily to see how we can achieve such objectives as reliability, maintaina
bility, and low-cost implementation of systems. We also discuss some general design
principles that seem applicable to computer systems as well as to a number of other
hard systems.

2.1 How do we achieve minimum-cost systems?

When we are dealing with a simple design problem - say, a computer system that
can be designed, coded, and tested in less than a week - most of us have little trouble
kee.ping all elements of the problem in our heads at one time. On the other hand,
when we are dealing with a complex design problem - say, a real-time management in
formation system that ultimately will involve more than 100,000 lines of code - then it
is difficult to believe that anyone would be capable of keeping the entire problem, and
its solution, in his head at one time. Successful design is based on a principle known
since the days of Julius Caesar: Divide and conquer.

Specifically, we suggest that the cost of implementing a computer system will be
minimized when the parts of the problem are

• manageably small

• solvable separately

Of course, everyone has a different definition of "manageably small": Some would say
that anything that takes more than a week to design, code, and test is too large~ most
would agree that a problem requiring more than a month to design, code, and test prob
ably should be broken into smaller pieces; certainly everyone would agree that a prob
lem requiring more than a year to implement is too big.

Of course, many designers have made attempts to 44 Chop" a system into manage
ably small pieces; unfortunately, they have often found that implementation time in
creased rather than decreased. The key frequently lies in the second part of our stipula
tion above: The parts of the original problem must be solvable separately. In many

16

BASIC CONCEPTS OF STRUCTURED DESIGN 17

computer systems, we find that this is not so: In order to in)Plement part A of the

solution to the problem, we have to know something about part B ... and in order to

solve part B, we have to know something about part C.

It is precisely because of this last point that we must eventually halt our attempts

to make pieces of the system manageably small. It seems reasonable that a problem re

quiring one year to implement could be broken into, say, a dozen smaller problems re

quiring a month each to implement; with the techniques discussed later in this book,

we can even be reasonably certain that the one-month pieces are solvable separately.

We might then decide to break each of the one-month pieces into four separate one

week pieces. With some extra work, we could break the one-week pieces into separate

one-day pieces, and so forth. The problem is that we would eventually reach a point

where the microscopic pieces of the system would no longer be solvable separately -

that is, the design of microscopic piece A would eventually depend on understanding

microscopic piece B. We will have more to say about this in Chapter 5.

In a similar fashion, we can argue that the cost of maintenance is minimized when

parts of the system are

• easily related to the application

• manageably small

• correctable separately

We recall that maintenance was defined in the previous chapter as ongoing debugging,

and we observe that, in many organizations, this thankless task is performed by some

one other than the person who designed and coded the system. · Thus, when the user

calls on the telephone to complain that the third line of the XYZ report is wrong, it

may not immediately be clear which part of the system is responsible for producing the

third line of the XYZ report. Indeed, it may turn out that several obscure parts of the

system are involved in producing the third tine of the XYZ report. The larger the sys

tem, and the more subtle the bugs, the more critical it is that maintenance personnel be

able to relate parts of the system to parts of the user's application.

Of course, it is still important that parts of the system be manageably small in ord

er to simplify maintenance. Attempting to find and fix a bug in a 1,000-statement

"piece" of a system involves unraveling and modifying a large portion of it; finding and

fixing a bug in a 20-statement module are reasonably simple because (a) we should be

able to sight-read all 20 statements in a minute or two and comprehend their combined

effect, or (b) in the worst case, all we have to do is throw the module away and write a

new version. The latter philosophy, nicknamed "disposable modules,'' was formally

employed in a recent Royal Australian Air Force project with great success. Unless the

bug could be found in a matter of minutes, the programmer was required to throw the

module into the wastebasket and write a new one to accomplish the same job.

Regardless of whether we decide to throw away a piece of the system every time

we find a bug, and regardless of how small that ·piece is, we cannot hope to minimize

maintenance costs unless we can ensure that each piece of the system is independent of

other pieces. In other words, we must be able to make a correction to piece A of the

system without introducing any unanticipated side effects in piece B - and, of course,

that is precisely the problem that plagues many maintenance programmers! If we ask

18 STRUCTURED DESIGN

the average maintenance programmer, "What makes your job difficult?'' we are likely
to lhear answers such as:

• Whenever I that midnight phone call telling me about a bug in the
program, it takes forever to find it. The bug always turns out to be
somewhere other than where I expected it.

• Once I find out where the bug is, it takes a long time to figure out how
to correct it. This is usually because the code is so tricky and compli
cated that (a) I can't figure out what it does, except that I know it's
wrong, and (b) I can't figure out ho~ to change it to make it right.

• When I correct the bug, I always make some dumb little mistakes -
you know, a keypunch error or something like that. It always seems
Ii ke I have to fix the bug twice before I finally get it right.

• When I fix one bug, it always introduces a new bug in some other part
of the system ·- and it's always in some part of the system that I don't
know anything about.

It is this last problem we are concerned about, because it is so insidious. It may be a
day, or a week, or a month before we discover that the simple little bug that we fixed
has introduced a new bug that resulted in the printing of 100,000 incorrect paychecks.

Finally, we suggest that the cost of modification of a system will be minimized
when its parts are

• easily related to the problem

• modifiable separately

We recall from the previous chapter that modification involves enhancing existing
features of a system, or adding new features - generally at the request of a user who i's
concerned with the external characteristics of the system rather than its internal
subroutines.

Thus, when the user comes to us and says, "I'd really appreciate it if you would
change the system to print year-to-date sales totals as well as sales totals for the current
month," our first job is to find out which part(s) of the ·system is involved in the calcu
lation, accumulation, and printing of sales totals. Once again, we point out that this un
pleasant job usually is done by someone other than the person who designed and imple
mented the original system - so it may not be easy. Of course, our earlier comments
about independence still hold true: We want to be able to modify one part of a system
without introducing any unanticipated side effects in other pieces of the system.

In summary, then, we can state the following philosophy: Implementation,
maintenance, and modification generally will be minimized when each piece of the system
corresponds to exactly one small, well-defined piece of the problem, and each relationship
between a system's pieces corresponds only to a relationship between pieces of the problem.

This is illustrated in Fig. 2.1, in which we have represented the problem (applica
tion) as a formless amoeba, containing fas is usually true in the real world) subprob
lems, wnich contain sub-subproblems (and in that amoeba-like real world, etc., etc.).
Thus, if there is a piece of the application naturally known as A, then there should be a

BASIC CONCEPTS OF STRUCTURED DESIGN 19

piece of the system which implements the A function. Similarly, if there is a natural
relationship between part A of the problem and part D of the problem, there should be

a similar relationship between part A of the system and part D of the solution - and
no other extraneous relationships.

When viewed in this graphic fashion, the problems of the maintenance program
mer are even more evident. When a bug in part A of the problem is brought to his at
tention, it is not immediately clear which part of the system is responsible for dealing
with that part of the problem. And when he does finally locate part A of the system
(assuming that there is such a well-defined part!), he may not have anticipated the rela
tionship between piece A of the system and piece C of the system (i.e., a relationship
of the type that modification to piece A will necessitate a modification to piece C), be
cause there was no such relationship between piece A of the problem and piece C of
the problem.

2.2 How does structured design lead to minimum-cost systems?

In the previous section, we suggested that implementation, maintenance, and
modification would be minimized if the system could be designed in such a way that its
pieces were small, easily related to the application, and relatively independent of one
another. This means, then, that good design is an exercise in partitioning and organizing

the pieces of a system.

By partitioning we mean the division of the problem into smaller subproblems, so
that each subproblem will eventually correspond to a piece of the system. The ques
tions are: Where and how should we divide the problem? Which aspects of the prob
lem belong in the same part of the system, and which aspects belong in different parts?

Structured design answers these questions with two basic principles:

• Highly interrelated parts of the problem should be in the same piece of
the system, i.e., things that belong together should go together.

• Unrelated parts of the problem should reside in unrelated pieces of the
system. That is, things that have nothing to do with one another don't

belong together.

We discuss the details necessary to achieve this philosophy in Chapters 6 and 7.

The other major aspect of structured design is organization of the system. That is,

we must decide how to interrelate the parts of the system, and we must decide which
parts belong where in relation to each other. Our objective is to organize the system so
that no piece is larger than is necessary to solve the aspects of the problem it includes.
Equally important, structured design involves organizing the system so that we do not
introduce interconnections that are not part of the interrelationships in the problem.

2 .3 The concept of black boxes

The concept of a black box is a very powerful one, both in engineering and in

software design. A black box is a system (or equivalently, a component) with known

inputs, known outputs, and, generally, a known transform, but with unknown (or ir

relevant) contents. The box is black - we cannot see inside it.

20 STRUCTURED DESIGN

\
\

D

1j

. " . , . . , "'

... -

••••• "" -... _ .-. ..,_ __ .. -..

~ -= --...

Figure 2.1. Pieces of a problem and pieces of a solution.

BASIC CONCEPTS OF STRUCTURED DESIGN 21

Black boxes have numerous interesting properties, the most important of which is
that we can use them. A true black box is a system which can be fully exploited
without knowledge of what is inside it. Many of the hard systems we encounter in
everyday life are essentially black boxes to their users. To the average driver, an auto
mobile is a virtual black box, transforming fuel, directional, accelerative, and decelera
tive inputs into motion at the desired speed in the desired direction. Radios, televi
sions, adding machines, stereos, and a myriad of other common systems are usable as
and function well as black boxes. This is fortunate, for if we needed to know the in
volved electromagnetic, mechanical, hydraulic, and other techniques employed in these
systems in order to make use of them, we would be greatly inconvenienced, if not
paralyzed, in modern society.

An experienced designer needs only mentally to review his own experience with
the programs and modules developed by others to realize that most computer systems
only approximate, at best, true black-box behavior. Very often we find that we cannot
use or make full use of a subroutine without going inside it and examining its contents.
Perhaps it behaves ufunny" under some circumstances - e.g., returning a zero for cer
tain values of input, when the results are still fully defined. Possibly there are certain
temporary storage areas within the subroutine which must be re-initialized in a special
way for each successive pass of the file. Or it may be a subroutine that determines
whether a character is a "punctuation'' character - but when it finds certain illegal
punctuation, such as a quotation mark in the middle of a word, it deletes it as well.
These may all be characteristics that must be discovered through examination of the
code within the module.

Good documentation itself does not make a module a black box. To describe the
quirks of some coding trick that result in a loss of precision when the previous result
was zero, or to list the 24 cells of temporary storage that may be modified upon reentry
to a subroutine in order to alleviate some problem, does not make our "glitchyH
subroutine a black box. Indeed, since its contents are now exposed through the docu
mentation, we may properly call it a ~~white box." A white box is preferable to a mys
terious and ill-behaved ukludge," but it is hardly as good as a true black box.

It should be clear that actual computer program modules may vary in the degree
to which they approximate ideal black boxes. That is, there are ''gray boxes" of vary
ing degrees of black-boxishness~ we have not a dichotomy, but rather a continuum, a
technical dimension along which modular systems may be distributed.

Program black-box characteristics may be divided into two areas:' one static, the
other dynami~. A program is more of a black box to the extent that its behavior can be
characterized in terms of a set of immediate inputs, a set of immediate outputs, and a
simply stated relationship between the two. Black-box behavior in program modules is
associated with the ability, for each use of the module, to completely specify the
sources (i.e., values) and targets for all inputs and outputs and to do this in a simple
and consistent manner. Operationally, this is equivalent to saying that the data context
of the module is uniquely determinable by the using module for each activation of the
module being used.

The requirement that the transform be simply stated need not eliminate difficult
functions nor sophisticated methods for computation. It is as simple to state Hcumula
tive normal distribution for'~ as Hone more than twice," though the former may be
much more difficult to define or compute. When the transform description must make

22 STRUCTURED DESIGN

reference to procedure or code, to side effects and exceptions and special cases, our cri
terion is missed.

Dynamically, we require program modules to be stable and dependable. This may
be a matter of reliability, a separate subject to be taken up in Chapter 19. It may also
be a matter of stubbornness. The procedure may do different things depending on what
has been left in certain storage areas by previous activations. It may work only for the
first 1,023 cases. Some of its input values may come from a remote source. It may
deliver output either to specified variables, or to a special exception area without so
much as a "by your leave." A perfect implementation of the wrong algorithm might
lead to a random number generator that returns only zeroes after the 4,005 ,236th time.
The function may change with time due to intermodular program modification.

Stability of function is a subtle concept, however. Consider a module that is sup
posed to deliver an employee's background record and then his recent education record.
These data are merged from two tapes. Any module which delivers first one, then the
other, has a varying function, but some methods of implementation are worse than oth
ers., The rock·stable oscillator which simply flips from one to the other fails (becomes
unpredictable) if its user inadvertently makes an odd number of requests in some sec
tion, or restarts without playing out both files in synchronism.

To avoid the clumsiness of the term "black-boxishness, '' we will use the phrases
"static integrity" and "dynamic integrity." As we have already suggested, integrity is a
continuum with both static and dynamic determinants.

Because black boxes, or modules, that are high in integrity may be used without
our knowing or understanding their contents, they are particularly useful in the design
stages of systems development, either as conceptual or actual entities. How they may
be used is best understood in terms of a "rule of black boxes,'' which may be thought
of as a general-purpose design heuristic:

Whenever a function or capability is seen as being required during the
design of a system, define it as a black box and make use of it in the system
without concern for its structural or methodological realization.

Eve:ntually, of course, each such invoked black box must in turn be designed, a process
which may give rise to more black boxes and so on. Finally, the procedure and struc
ture of all will be determined, but in no case earlier than necessary. This increases the
likelihood that the information necessary to optimally design any component will be
available. It also keeps the designer working on related issues without being sidetracked
into consideration of unnecessary details.

While the rule of black boxes is a useful concept and guideline, it is not sufficient
unto itself to enable the development of highly maintainable, highly modifiable,
minimum-cost systems. In subsequent chapters, we shall see that imbedding such con
cepts in a formal strategy is the secret.

2.4 Management parallels with structured design

One of the fascinating aspects of program design is its relationship with human or
ganizational structures - particularly, the management hierarchy found in most large
corporations. Whenever we wish to illustrate a particular point about program design

BASIC CONCEPTS OF STRUCTURED DESIGN 23

(as we will be doing in subsequent chapters), we often can do so by drawing analogies
with a management situation.

Suppose, for example; that you were a management consultant and that you had
just been hired to find out why the Pribble Company is not operating efficiently. The

company's organizational chart is shown in Fig. 2.2, and a quick glance shows that the
president of the organization can look forward to a heart attack or an ulcer in the near
future; at the very least, we can expect that his day-to-day work wilt be error-prone and
inefficient. Why? Simply because the president has too many immediate subordinates.
Consequently, his job involves too many decisions, too much data, too much complexi
ty - all of which can only lead to mistakes.

Janitor

Adm in.
Asst.

Teen.
Adviser

Personnel Press
Manager Operator

Q.C.
Engineer

President

Typist V.P. of
Sales

Secretary

Salesman
1

Figure 2.2. Organization of the Fribbte Company.

Salesman
2

The point is this: If we can make such comments about a management structure,
why can't we make similar comments about a program structure? If we see that a
designer has organized the pieces of a system in such a way that a Hcontrol" module
has 139 immediate subordjnate modules, then we should suspect that the control
module is too complex - a phenomenon that will probably lead to bugs in the initial
implementation, and will certainly lead to problems during subsequent maintenance and
modification.

Similarly, what would we expect a management consultant to say about the
management structure shown in Fig. 2.3? The obvious suspicion is that the duties of
managers A, X, Y, and Z are relatively trivial and could be compressed into a single
manager's job. Again, if we can make such statements about management structures,
why can't we do the same for program structures? That is, if we saw a program in
which a high-level control module had the sole task of calling one subordinate, which in
turn did nothing but call one immediate subordinate, whose only activity was to call one
low-level subroutine that finally accomplished some work - if we saw such a program
0rganization, wouldn't we be inclined to think that two or three levels of Hrnanager"

modules were trivial and superfluous?

24 STRUCTURED DESIGN

V.P.
A

x

y

z

President

V.P.
B

p

QI

V.P.
c

Q

Q2

Figure 2.3. Alternative management structure.

R

QJ

In a similar vein, it is often said (sometimes cynically) that in a perfect organiza
tion, no manager ever does anything. That is, all of the work is performed by the
lowest-level subordinates. The managers coordinate information between the subordi
nates, make decisions, and do whatever else would naturally fall under the heading of
management. By analogy, it is often argued that the high-level modules in a program
or system should merely coordinate and control the execution of the low-level modules
that actually perform the computations or other work required of the system.

Finally, we observe that in some organizations, the manager gives only as much
information to a subordinate as the subordinate requires in order to perform his job; the
subordinate is not allowed to see the big picture. This is seen most dramatically in mili
tary organizations, where information is provided to subordinates strictly on a need-to
know basis. The philosophy is somewhat more subtle, but equally prevalent, in large
commercial and industrial organizations. The analogy in program design is obvious: A
subroutine, or module, should only be allowed to access that data which it needs to per
form its assigned task. We will peal with this philosophy extensively in Chapter 13.

When we discuss the management analogies to program design, a number of our
students grow rather restive, and begin asking questions like, ''What theory of manage
ment are you talking about? Is that 'theory X' or 'theory Y'?'' Or, they ask, "Where
did you learn those crazy management ideas? Is that what they teach at the Harvard
School of Business?" Or, even worse, some students grow rather red in the face, and
protest loudly, "That's not how I manage my people! I've always felt that my people
should know the big picture. After all, 'they're mature, intelligent adults! They would
be insulted by the management philosophies that you're preaching!"

BASIC CONCEPTS OF STRUCTURED DESIGN 25

The point is that we 're not ·preaching any management philosophies~ we are sim·
ply observing the similarities that we see between the structure of large computer sys
tems, and the structure of large management organizations. We think it admirable that
the team leader of a programming project keeps his people informed about what's going
on - but we very much doubt that the president and executive officers of, say .. Ameri
can Telephone & Telegraph provide the hundreds of thousands of their bottom-level
subordinates with all of the data which they, the managers, have available to them.
Similarly, we think it is admirable for a programming project leader to roll up his
sleeves and write some code, but we very much doubt that the executives of General
Motors Corporation can afford to spend very much time working on the assembly line,
producing next year's Chevrolets.

In short, the comments that we make about management structures are probably
more applicable to very large organizations, where formal interfaces and a formal hierar
chy are often necessary to keep the whole structure from collapsing. The observations
are less applicable to small organizations, and to the bottom levels of large organiza
tions, where one must be more cognizant of and sympathetic to the idiosyncrasies of
lluman beings.

Nevertheless, we feel that the analogy between program structures and manage
ment structures is extremely useful, and reasonabty accurate - as long as it is not car
ried too far. Thus, if you find yourself at a loss for words and images with which to
describe some design issue, try to draw an analogy with a format management organiza~
tion (perhaps one staffed by emotionless robots!). That should help you decide whether
or not your design is reasonable.

2.5 A collection of useful terms

Throughout Chapters 1 and 2, we have been using terms such as "objectives,"
"heuristics," and Hgoals" rather loosely. We pause now for a moment to discuss the
implied relationships between these different approaches to the issue of facilitating sys
tems design.

Technical objectives are technically based measures of quality which generally re
late consistently to the overall goals of minimum cost or maximum gain. The designer
usually evaluates decisions within the framework of technical objectives. Technical
parameters of a system are non4 evatuative measures - that is, merely descriptions of
certain aspects of a system. These are the things under direct control of the designer
and which influence technical objectives. Unlike aspects of quality, "more" is not
necessarily better; it depends.

The designer is aided by tools, which _are models (of the system) that can be
manipulated in useful ways. Flowcharts and decision tables are examples of design
tools. Design principles, like the ones given in this chapter, are very broad rules that
generally "work" in the sense that they favor increasing quality for less development
cost. Heuristics, however, are very specific rules of thumb that also usually work but
are not guaranteed. A strategy is a procedure or plan in which to imbed the use of
tools, principles, and heuristics to specify system parameters in order to increase techni
cal objectives. Any questions?

26 :STRUCTURED DESIGN

2.6 Summary

In this chapter we have seen that we can generally minimize the cost of imple
mentation, maintenance, and modification - three of the major technical objectives for
current computer systems - by designing systems whose pieces are small, easily related
to 1the application, and relatively independent of one another. We have also seen that
structured design achieves this by focusing attention on proper partitioning of the appli
cation and by proper organization of the pieces of the system. We have also introduced
some general design philosophies, such as the "rule of black boxes," which are ex·
tremely basic and which will be dealt with later in the book.

Finally, we have seen that a number of our value judgments about the design of a
computer system can be expressed by drawing analogies to human organizations. In ad
dition to providing a convenient communications tool between designers, it allows us to
draw upon the experience of several hundred years of studying human organizational
structures - which, after all, are just another kind of system with many of the same
properties as software systems.

CHAPTER 3
THE STRUCTURE OF COMPUTER PROGRAMS

3.1 Programs and statements

A computer program is a system. We noted in Chapter 2 that structure - com
ponents and interrelationships among components - is an essential, often neglected
property of computer programs. But just what are the components of computer pro·
grams and how are they related?

First, we should recognize that while a program is a system, it is a very special
kind of system. It is worthwhile to present a careful definition of ,. program,, and
Hcomputer program" as a preliminary to the discussion of program structure. A pro
gram can be defined as

A precise, ordered sequence of statements and aggregates of statements which, in
total, define, describe, direct, or otherwise characterize the pe1formance of some
task.

A computer program is simply a program which, possibly through intermediate gyrations,
can cause a.computer to perform the task.

At the most elementary (and safest} level~ we observe that computer programs
are, by definition, composed of statements. These statements are arranged (another
way of saying structured) in a sequence. It is thus safe to identify individual statements
as the components of computer programs, and the statement sequence as one structur
ing relationship.

This view of programs as being constructed from statements that are precisely or
dered is essentially the classic or "algorithmic" view of programs and programming. By
virtue of this characterization, attention is focused on the smallest unit of a program
(i.e., the statement), on the sequential arrangement and performance of those state·
ments, and on the required precision with which these are created and sequenced. This
view is certainly correct~ it cannot be dismissed out of hand. However, the value of
such a viewpoint can only be judged fairly in terms of the consequences of highlighting
these "algorithmic" aspects at the expense of certain others.

Computer programming is taught to novices and is very often performed by
veterans on the basis of a procedural realization of an algorithm. Some function or task
is given; an algorithm or ~'method of computation" is selected, discovered, or created~
this algorithm is translated into a language which the computer will accept. This ap
proach to programming is not restricted to mathematical functions or formal algorithms.
Generating a weekly payroll is a function~ the. flowchart or process chart for doing so is
an algorithm.

27

28 STRUCTURED DESIGN

Certain consequences result from this approach. The sequential, procedural,
methodological aspects of programs are further emphasized. In this description, the
effort is concentrated on two things - on finding a computational method and on the
sequential statement-by-statement translation of the method. Programming in the usual
use of the term is what we frequently referred to as "implementation" in Chapters I
and 2. In and of itself, such a conventional view will never lead to considering the
whole task in terms of other tasks. The task is considered only in terms of its realization
as a sequence of steps and that, in turn, as a sequence of (ultimately) machine
recognizabte program statements. Thus, the solution of the whole problem of creating a
program is attacked by generating, in order, successively very tiny parts of the solution.

We have not yet said what a statement is. A careful, general definition is more
difficult than it may seem at first. Suffice it to say that we mean any small, well
defined, complete instruction~ command, declaration or ... well, anything of that sort.
An IBM System/370 machine instruction written in hexadecimal by a programmer mak
ing a patch, a COBOL sentence, a FOR TRAN arithmetic statement, a symbolic instruc
tion written in the COMP ASS assembly language for the CDC Cyber series computers,
a PL/I declaration - all of these are examples of statements.

For almost all purposes in this book, it wilt not matter whether the statement is a
machine instruction, an assembly language statement, or a high-level language state
ment. In almost all cases, we are interested in whatever "tine" of code the program
mer writes. In many respects, all statements in any programming languages of any
"level" are equivalent or comparable.

To reinforce this perspective, we will introduce an ultra-simplified notation for
wriling programs. A short, straight line will represent a line of code, or a statement -
any line of code or statement, in any language. This, of course, vastly simplifies writing
programs and presenting examples! Here, for example, is a seven-statement program:

At first, this degree of abstraction probably wilt be most uncomfortable; especially
for programmers with many years of experience. Much of the rhetoric (if not the sub
stance) of programming shoptalk - even of programming literature - has depended on
drawing sharp distinctions between high- and low-level languages, on debating this
language against that language, or that machine repertoire against another. It will be
worthwhile to try to accommodate viewing programs in the abstract, as, very often,
features and aspects that otherwise would be missed can easily be seen.

3.2 The statement structure of computer programs

If statements are the components of programs, what is the structure of those state
ments? To answer that question, we must distinguish between different interpretations
of the term "interrelationship," on which "structure" is based. Two statements may

THE STRUCTURE OF COMPUTER PROGRAMS 29

be interrelated because they are part of the same procedure, or because they involve the
same type of operation. Similarly, we may say that statements are interrelated because
they are executed in sequence. Finally, some statements are interrelated because they
actually refer to each other.

These are examples of very different forms of structure: The first example might
be termed conceptual structure. Such interrelationships, though important to the pro
grammer doing the detailed coding (e.g., HJeez, where are all the MOVE CORRESPONDA

ING statements in this program - it turns out, the compiler generates incorrect object
code for them!"), can be ignored, for they do not really exist in the program. The as
sociations are mental rather than physical.

Implicit structure, such as that resulting from the sequential execution of program
statements~ is more objective - though it still depends on context. The structure based
on explicit references in one part of a program to things in other parts of the program is
the most concrete and, it turns out, the most important from the standpoint of program
design. We will call this simply referential structure. Other forms of structure will also
be of interest to us. The communication structure is· the structure based on the flow of
data between different statements and different parts o(the program. Control structure
is based on the flow of control (successive activation or execution) between different
statements or different parts of programs. Lexical structure is a special relationship to be
discussed later in this chapter.

In terms of writing, understanding, and modifying, a contiguous linear block of
code does not behave like many small pieces, but rather like one big, tightly cemented
piece. The term monolithic refers to any system or portion of a system which consists of
pieces so highly interrelated that they behave like a single piece. As a rule, and in the
absence of special features which limit the interrelationships, all continuous linear
blocks of contiguous code are monolithic.

It is the monolithic nature of contiguous code that is the undoing of the ' 4 myth of
modularization." Many organizations have undertaken, at great expense, to Hmodular~
ize,, an already completed piece of software. This is done in the hopes of simplifying
future maintenance or minimizing slowly spiraling costs of introducing changes. Let
Fig. 3.1 represent such a system, perhaps an on-line inquiry system. Any change, how
ever isolated in function, requires dealing with a large percentage of the total code be
cause it is so highly interrelated. Indeed, because this structure is not (and probably
cannot be) documented, essentially all code must be checked for possible involvement
if a change is being introduced simply to identify which lines need not be changed.

The command to modularize this program can only be read as "chop it into more
pieces.,, In Fig. 3.2, the system has been thus modularized. Note that the potential im
pact of changes has not been reduced by introducing these artificial boundaries between
sections. These remain as complex and highly interconnected as before. The program
as a whole may be marginally more complex, for the introduction of "module boun-

, daries" introduces new elements into the system, and may require involved coding to
accomplish the actual interfacing implied by so many intermodular references. This ex
pensive and disappointing lesson has been learned by many organizations after a sub
stantial investment. While one may not always do as badly as indicated by Fig. 3.2, it is
all but impossible to simplify significantly the structure of an existing program or sys
tem through after-the·fact modularization. Once reduced to code, the structural com
plexity of a system is essentially fixed. It is, thus, clear that simple structures must be
designed that way from the beginning.

30 STRUCTURED DESIGN

Figure 3 .1. Structure of large
program after modularization.

DIST

SQRT

MAIN

Figure 3.2. Statement structure
for large program.

HYP

SINE

Figure 3.3. Modular structure consisting solely of subroutines.

THE STRUCTURE OF COMPUTER PROGRAMS 31

3.3 The linguistics of modularity

Thus far, we have been informal in our use of the term "'module" and have often
even avoided it by using the words "section" or "part" or Hpiece" instead. Before we

formally define the term, we must do some preliminary work.

An analysis of program statements by function in a typical computer program will

reveal that some of these statements serve to aggregate statements into larger program

ming elements. These statements effectively form the boundary of statements which are

~'within" the iarger aggregate. Such statements will be termed boundary elements, and

the positions in the program that they define are the boundaries of the aggregate.

For example, in the following portion of a sample program, the statements with

labels Al and A2 bound the aggregate named A. Statement B is inside A, and statement
c is outside A.

Al: BEGIN A

B:

A2: END A
C:

The illustration pictures the program as written, in the order and arrangement of

statements as input to a translator (e.g., a computer or assembler). This order is known

as the lexical order of the program, and in this context the term lexical will always mean

"as written" or "as it appears in a listing of the translator input." (The term lexicat·has

other meanings in the context of programming linguistics and languages in general.)

Thus, the statement labeled B is lexically included in the aggregate named A. The state

ment c lexically follows the statement labeled A2.

It is important to note that the lexical sequence may be independent of both the

order in which the translation of statements appear in memory and the order in which

the statements will be executed. The order of statements can be altered by optimizing

compilers or by link-editors (loaders)~ the sequence of addresses in physical memory

may depend upon virtual memory considerations~ execution order depends upon condi

tional and unconditional control transfers.

One purpose that boundary elements serve is to control the lexical scope over

which specific identifiers are defined and are associated with specific objects. Thus, in

the coding that follows, the identifier B typically would be undefined at statement Nl~

the reference to A at statement N2 would identify the same object as that at NJ (namely,

to the identifier defined in statement Nt), while the reference to A at statement NS

identifies a different object - namely that defined at statement N4.

32 STRUCTURED DESIGN

NI: DEFINE A

LJ: BEGIN
DEFINE B

N2: USE A

L2: END
NJ: USE A
LJ: BEGIN

N4: DEFINE A

NS: USE A

L4: END

The indentation in the example above serves to highlight the scope defined by the
boundary elements BEGIN and END; it serves no other purpose, structural or otherwise.

Note, by the way, that several programming 1anguages - ALGOL, PL/I, and
some assembly languages - allow the programmer to formally define the scope of vari
ables in much the way we outlined above. In languages like FORTRAN and COBOL,
the concept still exists but it is much less formal and general: COBOL subprograms
(separately compiled and activated with a CALL) and FORTRAN external subroutines
have natural boundary elements that serve to define the scope of variables.

A common problem in identifier definitions is that of ucollision of identifiers."
This occurs when the programmer uses the same identifier in different sections of his
program with the intention of referring to different objects - when, in fact, the same
object is being referenced. Collision of identifiers may occur, for example, when one
aggregate with a local interpretation of, say, X (but without a local definition or declara
tion of X) is lexically included in another aggregate which defines or declares X for its
own use. Some or all of an aggregate 's set of defined identifiers - its Hidentifier
space" - may correspond to elements in the identifier spaces of other aggre.gates.

An aggregate may also have associated with it an aggregate identifier, an identifier
whose object is the entire group of bounded statements, as a whole. Program state
ments, within or outside the aggregate boundary, may refer to the aggregate identifier.

We are now in a position to define linguistically the terms '~programming

module," or "'module'' for short. A module is a lexically contiguous sequence of program
statements, bounded by boundary elements, having an aggregate identifier. Another way of
saying this is that a module is a boundetl, contiguous group of statements having a sin
gle name by which it can be referred to as a unit.

A bounded aggregate not possessing an aggregate identifier is a segment. An ag
gregate that also has an identifier space, which is entirely a subset of that of the se
quence in which it is lexically imbedded (its lexical superordinate), may have its bound-

THE STRUCTURE OF COMPUTER PROGRAMS 33

..
ary elements removed without effect. The boundary elements serve no function what-
soever in that case.

It should be noted that this definition encompasses not only subroutines, in the
broadest sense, as modules (provided they are properly constructed linguistically), but
also specific language variants such as FOR TRAN ~'subroutines," PL/I "procedures,''
COBOL "subprograms," COBOL usections," COBOL Hparagraphs," PL/I "tasks,"
and so forth. Our definition of module includes much more than the conventional
subroutine mechanism; it also includes, for example, coroutines and assembler "mac
ros." This may seem like an obvious point, but it warrants emphasis.

Consider the following FORTRAN program. The Hmain" routine activates
GETCHR by using a CALL at statement 20; this transfers control to GETCHR, with the as
sociated condition that GETCHR, on encountering a RETURN statement, will resume exe
cution of the suspended main sequence.

20 CALL GETCHR

SUBROUTINE GETCHR
30

40 RETURN

END

The same result could have been achieved with the program below, which simu
lates the behavior of the one above by setting a switch. Note that the subroutine activa
tion mechanism does not explicitly transfer control to GETCHR, but is instead a simple
GOTO statement.

20 ASSIGN 21 TO I
GO TO 30

21

c BEGIN G ETCH R
30

40 GOTOI

c END GETCHR

Note that a similar programming mechanism could have been accomplished in COBOL
by using the ALTER statement. We will say that a language contains or includes a given
type of module if there is a specific linguistic construct which directly realizes the ac
tivation characteristics that define the module. Thus, we say that a language contains a
"subroutine'' type of module if there is a language construct similar to CALL or PER
FORM that allows us to activate such a module~ a language contains a coroutine type of
module if there is an appropriate activation mechanism.

34 STRUCTURED DESIGN

The characteristics of any given type of module always can be simulated in any
language that is Turing-complete - that is, which can be used to program any comput
able function. This is true for virtually any ''real'~ programming language.

3.4 Normal and pathological connections

We will represent any and all modules (as defined in the previous section) with
the graphic notation:

Note that this is the c·onventional '~box" used to represent a procedural step in a
flowchart. To avoid confusion~ it is necessary to distinguish between a flowchart and a
"structural representation." In this book, diagrams consisting of connected boxes will
be modular structures unless otherwise stated. To aid in recognizing the exceptions,
flowcharts will always begin with a "connector~' regardless of context. Thus, we
represent flowcharts as follows:

The special status of the aggregate identifier as representing the entire module
suggests the graphic convention of having references to this identifier being represented
by arrows pointing to the box. Thus, TRANSEDIT below is a module with at least three
exte~nat references to its aggregate identifier.

TRANSEOIT

THE STRUCTURE OF COMPUTER PROGRAMS 35

Directed line segments with arrowheads will always be used to indicate such connec
tions; the arrowhead will end at the boundary of the box representing a module.*

Connections that are references to identifiers of entities within the module bound
aries are appropriately represented by directed line segments for which the arrowhead
ends within the box representing the module. Below, module PUTLINE has at least one
reference to its aggregate identifier, and two references to identifiers defined within it

PUTUNE

For historical reasons, t intermodular connections to internally defined identifiers
are called pathological connections. Connections to the aggregate identifier are normal
connections. The value judgments normally implied .by these names should be ignored;
they are really just convenient shorthand labels for two structural variations of inter-·
modular references.

The simplest possible graphic for a normal connection, an arrow from one box to
another, is reserved for the most ubiquitous (and perhaps most important) form of nor
mal reference: the simple subroutine call. In the structure of Fig. 3.3, module MAIN

has within it subroutine calls that reference modules DIST and HYP~ DIST contains a call
to SQRT, and HYP contains a call to SINE.

We draw an arrow from one box to the other, starting and ending on the bounda
ry, if and only if there exists in the first module one or more calls referencing the iden
tity interface of the second module. In general, the number of such references is not of
interest to us, and identical multiple arrows are not usually drawn between the same
pair of boxes.

It is important to keep in mind that the existence of a reference does not neces
sarily mean that a referent will be accessed. For example, the fact that there is a
"subroutine call" reference from one module to another does not mean that the
subroutine will be called. A subroutine call may or may not involve communication of
arguments, and these may be transmitted in either direction. The subroutine LINEEND,

for example, might compute the X-Y coordinates of the end of a line of length L, angle
A, from initial point XI and YL A call to LINEEND might look like

CALL LINEEND(X 1, Y l ,L.A,XE, YE)

where XE and YE are identifiers whose values are to be set by LINEEND based on the
values of the other identifiers.

*Every effort has been made to make the graphics for program structure simple and intuitive. The rationale
for the choice of graphics will usually be presented as an aid to learning. For a complete summary of suggest
ed graphics, see Appendix A.
tSee the discussion of terminology in the Preface, and the derivation of minimally connected systems in

Chapter 6.

36 STRUCTURED DESIGN

In LINEEND, we might find code like that of Fig. 3.4. Note that the only reference
in either module FOO or module LINEEND to an identifier defined within the scope of the

other is the reference to LINEEND in statement ct of FOO. Thus, argument transmission
does not introduce additional connections. Where the existence and nature of argu
ments is of interest (as it frequently is), these are indicated by small arrows and annota
tions beside the connection, as in Fig. 3.4.

FOO

Cl: CALL LINEEND(Xl,Yl,L,A,XE,YE)

XE,YE 1 ! XI, YI ,L,A,

u
LINEEND

ARGUMENTS XA,YA,LA,AA,XB,YB

A =_XA_YA
B= AA LA
C=_YA __ LA

D= AA YA
XB =
YB=
RETURN

Figure 3.4. Annotation to represent argument transmission.

Pathological connections are distinguished as to whether they are control or data
references. A small dot on the "tailH of an arrow always means an element of control
is involved, while a small circle means that an element of data is involved. Pathological

connections are also drawn beginning within the box in which the reference is found.

The rationale for this will be appreciated after you read Chapter 6.

THE STRUCTURE OF COMPUTER PROGRAMS 37

Lexical inclusion presents an unusual problem for graphic-al representation. In the
code shown in Fig. 3.5, A is included within B, which is included within D, which is in
cluded within Q. One might reasonably choose to diagram this in a way that directly
represents the relationships, as shown in Fig. 3.6. However, this requires many boxes
of different size and makes clarification and interpretation difficult, especially when oth
er relationships are involved. The call from B to A, for example, looks rather peculiar.

Q:

D:
B:

A:

END A: ..___ ____ ___,

ENDB: '------__.

END D: .__I _____ __,

Figure 3.5. Example of lexically
included code.

Q

Figure 3. 7. Diagramming 1exically
included structure.

Q

D

B ..
A

I

Figure 3.6. Attempt to diagram lexically
included code. ·

A

Figure 3.8. Transform from A into 8.

38 STRUCTURED DESIGN

To overcome these objections, we introduce a special graphic. The structure
shown in Figs. 3.5 and 3.6 is much clearer when shown in the form of Fig. 3.7. The
graphic is intended to suggest that the box for the lexical subordinate has been pulled
out of the lexical superordinate and expanded. Note that the lexical inclusion (or
subordination) is independent of all other relationships, which, if they exist, must be
shown separately.

3.5 Data flow graphs

A number of design principles and strategies in this book will require us to stud;·

the flow of data through the program or system. Hence, we need a method of restating
the problem itself (i.e., "functional requirements" or "systems specifications'') in a
manner that emphasizes the data flow and de-emphasizes (in fact, almost ignores) the
procedural aspects of the problem. While it may seem alien at first, it turns out to be
rather similar to the high-level ""systems flowchart" drawn by many designers as a way
of getting started on the design.

The data-oriented technique that we will use is called a data ffow graph. The same
model also is known as a data flow diagram, or a program graph 1 or even a '"bubble

chart." The elements of the data flow graph are called transforms and are represented
graphically by small circles (or ~"bubbles," to use the colloquial term). As their name
implies, the transforms represent transformations of data (which eventually will be ac
complished by a module, a program, or even an entire system) from one form to anoth
er form. The data elements are represented by labeled arrows connecting one
transform bubble to another. Thus, Fig. 3.8 shows a simple transform with a single in
put stream, and a single output stream.

A tqmsform may require (or accept) elements of more than one input data stream
in order to produce its ou~put (s). If two adjacently pictured data streams are both re
quired for a transform, we draw an asterisk (H*,,) between the two data streams~ by
analogy with other mathematical disciplines, we refer to the "'*H as an Band'~ operator,
or a "conjunction" operator. Similarly, the Bring-sum" operator (Bffi ") is used to

denote disjunction - that is, an ~·either-or" situation. Figure 3.9 illustrates a data flow
diagram in which conjunction and disjunction have been used in the input data streams
and the output data streams.

The amount of detail shown in the data flow graph will vary from problem to
problem, and from designer to designer. To illustrate this point, Fig. 3.lOa depicts the
data now in a typical "master file update" system~ note that it shows very little detail.

Fig. 3. lOb shows a data flow for the same system - but in much more detail. The di
agram of Fig. 3. lOa is probably extreme in the sense of not showing enough detail; the

bubble labeled "magically transform into transactions" contains a number of internal

subtransformations of which the designer should be aware if he is to develop a good
structural design. On the other hand, the diagram of Fig. 3.1 Ob might be regarded as

"extreme" in the sense of showing too much detail~ the transformation labeled "se
quence check," for example, is sufficiently uninteresting that it might be ignored by the
designer in his "first crack" at a design.

We will find the data flow graph useful in Chapter 7 in our discussion of a struc
tural design concept known as "cohesion." However, its primary use is that of a tool in
a structural design strategy called '~transform analysis." Chapter 10 discusses transform
analysis and the role of data flow graphs in developing a "transform-centered" design.

card
images

THE STRUCTURE OF COMPUTER PROGRAMS 39

Master
File tape

Figure 3.9. Conjunction and disjunction.

internal

M.aster File
records

Figure 3. lOa. Data flow diagram with very little detail.

updated
records

tape

40 STRUCTURED DESIGN

card
images

~laster

card

validated
sequenced

card images

logical
tr an sac tions

Figure 3.1 Ob. Data flow diagram with excessive detail.

3.6 Summary

We have seen in this chapter that computer programs are systems, and that they
can be analyzed in a variety of ways. The most important components of a program are
its statements, and we can recognize an inherent structure in those statements~ indeed,
unless we do recognize the statement structure, our attempts to modularize a program
by chopping it into pieces usually will be unsuccessful.

Most of the emphasis in this chapter has been on the definition of terms and con
cepts used throughout the rest of the book. In addition to defining terms that are not
part of the average designer's vocabulary - e.g., normal and pathological connections
- we have attempted a careful, technical definition of words like module.

CHAPTER 3: REFERENCE

1. David Martin and Gerald Estrin, "Models of Computations and Systems -
Evaluation of Vertex Probabilities in Graph Models of Computations," Journal of
the ACM, Vol. 14, No. 2 (April 1967), pp. 281-299.

4.0 Introduction

CHAPTER 4
STRUCTURE AND PROCEDURE

Neophytes and veterans alike often find it difficult to comprehend the difference
between procedure and structure in computer programs and systems. Even more seri
ous is the failure to understand the relationship between coding and '~structural"

design. The choice of structure can substantially influence the simplicity of coding.
Conversely, selection of a particular coding technique may have predetermined major
portions of the structure. This chapter explores relationships between the two by study
ing examples and by elaborating on various ways of modeling the same system.

The first thing to recognize is that structure is not something new that we are ad
ding to the ken of programmers and analysts~ it is not a concept or added neologism
which systems did not ever have. Every computer system has structure - that is, it is
made up of components that are interconnected. Even the degenerate case of the
single-module system can be examined in terms of its statement structure (as we did in
the previous chapter). Regardless of how a system was developed, whether its structure
was designed or determined by accident, we can document the modular structure.

The definitions in the last chapter lead to an obvious discip1ine for ''discovering"
the modular structure of an existing system. It is helpful to identify a top-level or main
module as a starting point. On a "structure chart," that starting point is represented by
the top box. Every reference to an identifier defined outside its scope is an intermodu
lar reference for which an arrow can be drawn to another box. When we have
identified the name of the module in which the referent is found, we can insert the
module name in the target box. The code for each such box is examined in the same
manner as the first module, giving rise to further connections and the discovery of addi
tional modules to be drawn as boxes and analyzed in turn. In most programming
languages, this procedure is so straightforward that it can easily be done by a program.

For example, an analysis of the code shown in Fig. 4.1 leads to a diagram like that
shown in Fig. 4.2. Note especially how normal and pathological connections have been
distinguished. A code has been provided to simplify associating the graphic model with
the code~ in the code, each connection bearing a number identifies the reference with
which it is associated.

While any actual code has but a single, valid, complete structural representation,
the mapping from a structure chart to code is not singJe .. valued. As any programmer
knows, there are an infinite number (well, in any case, a large number!) of ways of
coding a module, even when its structural representation has already been determined.
All that can be said of the code base.d on a structural representation is that somewhere
within the coding for a particular module, references of a certain type must be present.
Thus, based on the structure, we infer certain contents of modules. We know, for ex-

42

STRUCTURE AND PROCEDURE 43

ample, that a pathological connection directly references a data label defined within
some module. If it is shown passing data opposite to the direction of connection we
know it must be accessed as a "load" or Hfetch" rather than as a 44Store." Ty~ical
statements or instructions then follow.

BOTTOM: BEGIN SUBROUTINE
ARGUMENTS X, Y
DEFINE BA, BB, BC
GLOBAL QQ, ST2

TOP:

MID:

STI:

ST2:

STORE QQ

STOREY

RETURN

FETCH X

GO TO ST2
END
BEG IN ROUTINE
DEFINE TA, TB, QQ, RR G)
ACCESSIBLE QQ, RR

CALL MID

END
BEGIN SUBROUTINE
DEFINE MA
ACCESSIBLE ST2
GLOBAL RR
CALL BOTTOM (RR, MA) @

RETURN
END

©

Figure 4.1. Some code whose structure
is to be analyzed.

4.1 Flowcharts and structure charts

MID

Figure 4.2. Structural representation
of code in Fig. 4.1.

One way of looking at procedure and structure is to consider the relatioriship
between the flowchart (a model of procedure) and the structure chart for the same sys
tem. Figure 4.3 is suggestive of a set of flowcharts, one for each module or section of
code. This is the standard or "hierarchical" ·method of flowcharting in which the top
level flowchart reflects the gross overall processing, some of which is expanded in the
next level of flowcharts, and so on. In essence, the set of flowcharts is a series of hor
izontal slices of the system, with time (as a rule) increasing from left to right, and "cal
ling" represented in the dimension into the paper.

44 STRUCTURED DESIGN

J k--------

Figure 4.3. Hierarchical set of flowcharts as a model of a system.

STRUCTURE AND PROCEDURE 45

As shown in Fig. 4.4, the structure chart is essentially a vertical slice in the plane
of the paper; Figs. 4.3 and 4.4 are really just orthogonal views of the same system. It
should be recalled, however, that the structure chart is a time-independent model of a
system. By convention, we represent subordinations in the same order left to right as
they appear lexically. This means that, as a rule, reading across the subordinations em
erging from any given module approximates the time order of their execution. This can
only be a rough indication, however, for the actual order in which calls are accessed on
any particular execution may vary considerably due to differing outcomes of conditional
statements. Thus, interpreting the subordinating references at any level as a rough
flowchart only works well if the procedure is very simple.

It should be emphasized that this is merely a graphic convention. For example,
the two structures of Fig. 4.5 are equivalent~ they both represent the same information.
We stress this point because, among other reasons, we often find that a real-world
structure chart is sufficiently complex that we must rearrange the left-to-right placement
of modules to avoid a tangle of crossed lines on the chart. Figure 4.6a, for example,
shows a structure chart in which we might imagine that module A is executed first,
module B is executed second, and module c is executed third (all subordinate to MAIN,
of course)~ Fig. 4.6b shows a structurally equivalent diagram whose connecting arrows
are a bit easier to follow.

While it is easy to appreciate that the left-to-right order in a structural representa
tion has no intrinsic implications for the order of execution of the subordinates, it is far
less obvious that the vertical dimension of the structure chart is also time-independent.
Of course, if we have a complete structure and disregard errors, and if A is not superor
dinate to B and B is superordinate to A, then A cannot receive control for the first time
until B receives control for the first time. However, in order to fully understand what is
happening, we must look at the processing accomplished by a module - its "body" -
rather than merely its receipt of control or its activation of other modules.

As an example, suppose we had modules P, Q, and R, and suppose that P is im
mediately superordinate to Q, which is immediately superordinate to R. The code for PP,
QQ, and RR can be executed in any one of six different orders depending on the details
of the logic within modules P, Q, and R. The most obvious order of execution is PP first,
then QQ, then RR~ this would involve code of the sort shown in Fig. 4.7. However, it is
also possible that the execution sequence is PP first, RR second, and QQ third~ this would
involve the code shown in Fig. 4.8. The other four variations are obvious - the last be
ing RR first, QQ second, and PP third.

So, once again, our point is this: When we examine a structure chart, we should
be exceedingly cautious about making any assumptions regarding the sequence of exe
cution. It is somewhat dangerous to assume not only that the modules in a structure
chart will execute in a left-to-right sequence, but also that the body of code in a high
Ievel module will be executed before the body of the code in a low-level module. Of
course, in a simpfe structure chart, the top-to-bottom sequence and the lefMo-right se
quence will frequently occur - but there will be enough exceptions in real-world struc
ture charts that we should learn to read the structure chart for the information it was
intended to give: structural; architectural information.

46 STRUCTURED DESIGN

1f00
J

1FvM
!

Figure 4.4. Structure chart as a vertical slice into the system.

STRUCTURE. AND PROCEDURE 47

TOP

LEFT CENTER RIGHT

FIRST SECOND

TOP

RIGHT LEFT CENTER

SECOND FIRST

Figure 4.5. Two equivalent representations of the same structure.

48 STRUCTURED DESIGN

A

MAIN

Figure 4.6a. Structure with crossed lines.

P:
I CODE FOR PP

CALLQ
RETURN

Q:
CODE FOR QQ I
CALL R
RETURN

R:
CODE FOR RR I
RETURN

Figure 4. 7. Coding for one
sequence of PP, QQ, and RR.

A

A2 Al Rl 82

Figure 4.6b. Equivalent structure.

P:
CODE FOR ppl
CALLQ
RETURN

Q:

CODE i-:GR QQ
RETURN

R:
CODE FOR RR I

Figure 4.8. Coding for a second
sequence of PP, QQ, and RR.

STRUCTURE AND PROCEDURE 49

Of course, there will be times when the designer wishes to communicate certain
important procedural information to those reading his structure chart - not the trivial
loops, decisions, and sequencing operations, but the critical ones of which the designer
feels others should be aware. Certain major loops or decisions, for example, could have
a major effect on the efficiency of the program and might well influence the manner in
which the designer (or the programmer) Hpackages"* the modules into physically exe
cutable units (e.g., ''load modules," "job steps,,, ''overlays,,, or "segments," depend
ing on the terminology of the computer vendor).

There are a number of conventions for showing procedural matters in a structure
chart. These are discussed in detail in Appendix A, but the major conventions - one- ,
shot executions, iteration, and conditional decisions - can be summarized here. If, for
example, we wish to show that a subordinate module is not re-executed upon successive
activation of the superordinate, we so indicate with a small numeral "one n within the
superordinate box and adjacent to the tail of the arrow connecting it tb the subordinate.
Thus, Fig. 4.9 shows a subordinate module REWIND which is activated as part of an ini
tialization procedure on the first activation of supe~ordinate module MANAGE, but not
thereafter.

Subordinates activated repeatedly as the result of iterative execution of their calls
would be shown as in Fig. 4.10. Alt of the modules activated within a common loop are
shown with their references emerging from the same "looping arrow," and the nesting
of loops is illustrated appropriately. In Fig. 4.10, PROC and NEXT are executed in a loop
which, along with a call to ADJUST, is imbedded in an outer loop.

IMAIN

1

Figure 4.9. Notation for one-shot modules. Figure 4.10. Notation for loops.

The familiar diamond figure is used to show conditionally activated calls. Each de
cision is represented by a separate diamond~ alternate outcomes (typically, the binary
"TRUE" and "FALSE") emanate from each diamond. Thus, we would expect to see
two arrows emanating from the diamond (e.g., a "TRUE " arrow and a "FALSE" arrow)
if the code for the diamond corresponded to the classical IF-THEN-ELSE construct of most
high-level languages~ we would expect to see only one arrow if the code for the dia
mond corresponded to the degenerate IF-THEN construct~ and we could expect to see a
multitude of arrows emanating from the diamond if the code for the diamond
corresponded to the CASE construct found in languages like ALGOL.

*Packaging is discussed extensively in Chapter 14.

50 STRUCTURED DESIGN

Where several calls are made as the result of the same outcome (e.g., the TRUE

outcome), these are shown by allowing the appropriate arrow (e.g., the TRUE arrow) to

"split" into a number of branches. For example, in the structure shown in Fig. 4.11,

modules A, P, and x are activated based on different decisions. Modules p and Qare the

alternate actions of one decision. In the final decision, module x is invoked on one out

come, and both modules Y and z are invoked on the other outcome.

M

A Q x

y z

Figure 4.1 L Alternate outcomes of decisions.

The procedural annotations for one-shot, iterative, and conditional access may be

used with any structural relationship; they are not restricted to subroutine calls, though

that seems to be their most common use. For example, we can show a conditionally

used pathological data access, as is illustrated by Fig. 4.12.

Figure 4.12. Conditionally used pathological data access.

This could derive from code within the referencing module, such as the following:

IF C THEN FETCH H

The one-shot, iterative, and conditional indicators should be regarded as annota

tions which enhance the usefulness of the structure chart as a model for designing and

documenting but which are not part of the model itself. They are very useful, howev

,er, and the experienced designer often can understand a great deal about the relevant

behavior of a system from an "extended" structure chart - that is, a structure chart

with procedural annotations.

STRUCTURE AND PROCEDURE 51

4.2 Interactions of procedure and structure: an example

The best way to get a firm grasp on the influence of choice of structure on pro
cedural contents is through a concrete example. Of necessity, this must be a fairly
lengthy and detailed example in order to contain interesting design issues, even in rudi
mentary form. We will first look at~ this example, known as the Personnel Master Entry
Getter, in the context of a simple design problem.

Our task is to develop an afferent subsystem (one that delivers its output upward
to superordinates*) that will supply complete, ready-to-process compound items called
Personnel Master Entries (PME). Each activation is to result in returning one PME -
the next one - until no more exist, at which time an EOF flag is to be set and returned.
The module that performs this task, when called, is to be named GETPME; it may have
any number of subordinates in any substructure.

Each PME is constructed of from one to ten records: a key record and up to nine
continuation records. These records normally have a. blocking factor of eight on' the in
coming file (i.e., eight logical records for each physical ~'block" on the tape or disk
file). However, there are short blocks indicated by a '~short block indicator." (Blocking
is a physical input-output issue for the purposes of this exercise, and is unrelated to the
organization of records into items.)

Deblocked records are combined into PMEs based on several factors. Normally,
successive records will contain a "continuation code" indicating that the current record
is part of the same PME as the previous record. A record containing a "first code'.' indi
cates that the previous record was the last in that PME, and that this record is the first in
the next PME. A record may or may not contain an "end flag," indicating that it is the
last record of the current PME. The 'ninth continuation record is assumed to have an
"end flag." Obviously, an EOF must be treated the same as a record without a continua
tion code -· that is, it ends the previous Personnel Master Entry with the previous
record. Each complete PME must be put through a special process in order to make it
ready for further processing.

We will not yet consider how the designer derives an appropriate structure for
such a subsystem, but we will consider the consequences of that choice, inclu~ing some
common mistakes.

In skeletal form, the total processing for this function is rather simple. The de
tails of all the individual elements could be comparatively complex. Even if it is possi
ble to code the entire problem in a single module at reasonable cost, it may not be
advisable. Certain functions, perhaps the deblocking process or the end-of-PME
analysis, might be generally useful in other related applications; as modules, they could
be activated by any part of this system or related systems. In any event, we may save
significantly on the cost of developing the system because of the advantages of smaller
modules.

•Afferent modules are discussed in Chapter 8.

52 STRUCTURED DESIGN

We may think of the GETPME function as realizable in terms of combinations of a
number of smaller functions, each representing (probably) a non-trivial sequence of
code. The basic functions are:

ADD
LOCATE

READ
TEST

MAKE

add a record to a PME being built.
locate the next record in a block or indicate that there is none in the block; initially
there is none. I
get the next block of records in the file or indicate that there are no more in the file.
determine whether a record constitutes the end of a PME, the beginning of a new
PME, or neither.
make a series of records in the same PME into a processable item.

This overall process is simple enough to identify only two major algorithmic varia
tions on a design. The "'sequential machine derivation n is presented m Fig. 4.13. The

other major variation uses two record areas and always deals with a pair of contiguous
records. This avoids duplicating some of the operations as well as some of the sequen
tial decision-making. As an exercise, you may want to develop the flowchart for this

variation. It is difficult to argue objective overall differences between the two designs

and we shall be content, for our discussion, with the flowchart shown in Fig. 4.13.

Of interest to us is the structural representation of the system whose procedural
representation was shown in Fig. 4.13. In order to draw the structure chart, we first
recognize that the entire flowchart of Fig. 4.13 is itself a module - that is, the GETPME

module. Also, the ADD, LOCATE, READ, TEST, and MAKE functions described above are
modules - subordinate modules to the top-level GETPME module. The relationship -
and, in particular, the data flow - among all of the modules is perhaps easier to see if
we write some sample code On "computer Esperanto") as an implementation of the
flowchart~ this is shown in Fig. 4.14.

Studying this, we have little difficulty deriving the structure chart shown in Fig.

4.15. Note that we have chosen to show the loops in the structure chart that were

present in the original flowchart (and the code, too, obviously) but not the decisions.
Why? Simply a personal decision on the part of the authors: While studying the struc

tural aspects of the program, we felt that the decisions were relatively trivial, but that
the loops were of some interest.

Actually, there are several things about the structure chart that are interesting.

First of all, notice its "pancake" structure: That is, it consists of one "boss" module
and five immediately subordinate "worker" modules. When we drew analogies
between program structures and management structures in Chapter 2, we suggested that
if a boss had too many immediate subordinates, his job probably would become too

complicated - and that similar comments could be made about program structures.
We are not yet in a position to decide whether the structure chart of Fig. 4.15 is "bad"

in this respect~ we simply observe at this point that all of the "control logic" has been

pull into one level of Hmanager" module - namely GETPME.

One could argue that this is not entirely true. In most cases, GETPME acts as the
boss - that is, it tells the other low-level modules what to do. However, there are

times when one of the "workers" - DEBLOC - tells the boss what to do. Notice that
GETPME passes a block to DEBLOC, with the expectation of receiving a record in return.
However, if the block has been exhausted, DEBLOC sends back an EOB flag - in effect,

DEBLOC tells the boss, GETPME, that it should read another record. We will see in more
detail in Chapter 9 that this uinversion of authority" frequently leads to extra flags and

switches as well as other undesirable structural characteristics.

STRUCTURE AND PROCEDURE 53

lollJitl
- I

Eof'

loc!k-
&2)15

!ld.. Al A ---

Figure 4.13. Sequential machine derivation of PME problem.

54 STRUCTURED DESIGN

GETPME:

DE:

TEST:

NEXT:

START:

FINISH:
MAKE:.

RTNEOF:

SUBROUTINE, ARGUMENTS ITEM, ENDFILE
IF EOFNXT GO TO RTNEOF
lF NOREC GO TO TEST
CALL DEBLOC (BLOC, REC, EOB)
IF NOT EOB GO TO TEST -
CALL GETBLOC (~, ,Wf)
IF EOF GO TO RTNEOF
GOTO DE
CALL MORTEST (REC, END, NEW)
IF END GO TO FINISH - -

IF NEW GO TO ST ART
CALL BUILDITEM (REC, ITM, ITM)
CALL DEBLOC (BLOC, REC, EOB}
IF NOT EOB GO TO TEST
CALL GETBLOC (BLOC, fillf)
IF NOT EOF GO TO NEXT
SET EOFNXT
GOTO MAKE
SET NOREC
GOTO MAKE
CALL BUILDITEM (REC, ITM, ITM)
CALL MAKEREADY(ITM, ITM)
RETURN
SET ENDFILE
RETURN
END

Figure 4.14. One possible implementation of code for GETPME.

Figure 4.15. "'Pancake" structure for GETPME.

GETPME:

TEST:

MORE:

MAKE:

START:

FINISH:

RTNEOF:

STRUCTURE AND PROCEDURE 5$

Figure 4.16. An alternative structure for GETPME.

SUBROUTINE. ARGUMENTS ITEM. ENDFILE
IF EOFNXT GO TO RTNEOF --
IF NOREC GO TO TEST
CALL GETREC (REC, EOF)
IF EOF GO TO RTNEOF
CODE FOR TEST
EXIT TO FINISH, START. OR MORE
CALL ADD (REC, ITM, .lil:P
CALL GETREC (REC, EOF)
IF NOT EOF GO ToTEST
SET EOFNXT
CODE FOR MA KE
RETURN
SET NOREC
GOTO MAKE
CALL ADD (REC, ITM. !IM)
GOTO MAKE
SET ENDFILE
RETURN
END·

Figure 4.17. Possible code for structure shown in Fig. 4.16.

56 STRUCTURED DESIGN

Finally, note that the structure that we have shown in Fig. 4.15 has two nested

loops. Within the inner loop, the primary activity is to extract a record from a block

and add it to a partially constructed PME. The outer loop exists for the purpose of read

ing more blocks, as required. Unfortunately, the loops are somewhat complicated by

the possibility that MORTEST will exit from both levels of loops when it discovers that it

has a complete PME. At this point, though, we simply observe that there are two levels
of loops in GETPME.

While it may appear that we are criticizing the structure of Fig. 4.15, we are doing

so cautiously, for we are not yet in a position to state authoritatively what is "good"

and what is "bad" about such a design. However, it is safe to speculate that there may

be alternative designs, from a structural point of view; with characteristics worthy of in

vestigation. The analogies with workers and bosses can lead us to such an alternative

structure if we reason as follows: All the boss wants to do is obtain a record and, if it is

of an appropriate type, add it to a partially constructed PME. The details of blocking, de

blocking, and reading are important, of course, but they should not be of any concern
to the boss.

This leads us to the structure shown in Fig. 4.16. Note that the code for the TEST

function has been included in the GETPME module itself. Note also that there are more

levels of control in this structure than in the previous one - that is, GETREC serves as a

"junior manager," hiding the details of blocking and de blocking from GETPME. Note

also that the EOB flag has disappeared as it is no longer necessary. Finally, note that the

new structure has only one loop in GETPME. Lest you think this a trick, we hasten to

point out that there are no loops hidden within GETREC; each time that GETREC is

called, it determines whether it is necessary to make another call to GETBLOC.

It should be clear from this example that the choice of modular structure does

indeed affect the complexity of both internal code and intermodular communication~

how much it does so can be appreciated simply by.comparing Fig. 4.15 and Fig. 4.16.

The new structure has fewer modules, yet those modules are each simpler and smaller

when compared to equivalent portions of the earlier structure. Table 4. 1 compares the

two structures in terms of a number of objective indications which we might relate to

quality or simplicity. Of special interest is the uspan," or communication path length

- that is, the number of intermodular connections each data argument must traverse.

We may deduce that "effective" modularity may well be associated with "efficient"

modularity, for each unit of total communication path length has some non-zero execu

tion time cost associated with it - indeed, most programmers are aware that passing of

data and parameters can be a very expensive proposition in some high-level program

ming languages.

One of the things we conclude from this exercise is that, in practice, it is not

feasible to develop several general total flowcharts - indeed, it usually is not feasible to

develop even one - to use as a guideline for evaluating a large number of different

structures until one with reasonably good characteristics is found. The flowchart to

serve this purpose generally would be unmanageably large, for it would have to be a to

tally detailed flowchart --- not a rough or overall one. If a high-level or overall flowchart

is used to guide structure derivation, there is just as much chance of running into

difficult-to-assess sub-optima1 structures as if no guide had been used.

STRUCTURE AND PROCEDURE 57

Table 4.1

Comparison of Two Designs for GETPME System

Number of Data Input Arguments
Number of Data Output Arguments
Number of Control Arguments (Flags)
Span: Maximum Path Length

Average Path Length
Number of Switches
Number of Duplicated Decisions
Estimated Lines of Code

(Estimated 80 lines if coded
from Fig. 4.13)

Fig. 4.15

5.00
4.00
4.00
3.00
2.25
3.00
3.00

93.00

Fig. 4.16.

2.00
3.00
2.00
2.00
1.33
2.00
2.00

74.00

The question of how good structures are to be found, derived, invoked, or other~
wise brought into being is one that requires not only substantial knowledge of purely
physical aspects of modular structures, but also a technical elaboration of "good." We
will thoroughly discuss the characteristics of '~good"' modular structures and "bad"
modular structures in Chapters 5, 6, and 7; beginning in Chapter 8, we will see how
Hgood" structures can be derived for a wide class of program design problems.

4.3 Summary

We have seen in this chapter that a flowchart is a model of the procedural flow of
a program, whereas a structure chart is a time-independent model of the hierarchical re
lationships of modules within a program or system. This distinction is an important
one, and needs to be emphasized over and over again to designers who are more fami
liar with "flowchart-thinking.'' For example, it is important to emphasize to such
designers that one usually cannot infer from a structure chart the order in which
modules are executed.

On the other hand, we do have some tools for highlighting certain procedural de
tails on a structure chart. The techniques discussed in this chapter - graphic notations
for loops and decisions - will be valuable in the discussions in the following chapters.

SECTION II
FOUNDATION

Our approach to structured design is based on a formal, though not (as
yet) mathematical, theory of the complexity of computer systems and pro
grams. In our view, the cost of systems development is a function of problem
and program complexity as measured in terms of human error. For a given
problem, the human error production and, therefore, the cost of coding, debug
ging, maintenance, and modification are minimized when the problem is <subdi
vided into the smallest functional units that can be treated independently. The
elements of this theory - comprising definitions of ''small," "functional," and
"independent" - are presented in this section.

Chapter 5 considers some well-established principles of human problem
solving as they relate to the question of systems complexity. The factors contri
buting to interactions between systems components are described in Chapter 6
on "cou piing." The cohesion of individual systems components is discussed in
Chapter 7. Chapters 6 and 7., taken together, represent not just elements of a
theory, but also operational methods for evaluating alternative designs in terms
of probable cost of implementation, maintenance, and modification. Successive
sections rest on the foundation built here.

CHAPTER 5
HUMAN INFORMATION PROCESSING

AND PROGRAM SIMPLICITY

5.1 The economics of systems development

An understanding of the basic economic structure of the systems development
process is essential in developing better, more efficient methods of systems production
- as well as better, more efficient systems. Some of the key figures concerning the
costs of systems development - such as the estimate that maintenance accounts for 50
percent of the average organization's EDP budget - were mentioned in Chapter 1.
However, the detailed figures, impressive as they may be, should not concern us: They
change with time and are subject to debate. What is important are the underlying
characteristics, the fundamental phenomena, that give rise to these fluctuating figures.

We might begin by asking where the data processing money goes. Basically, it
goes for people and machines - programmer/analysts and computer time - and little
else. To a limited extent, person-hours and computer-hours behave reciprocally. There
are ways by which we trade one for the other within some narrow range. For the most
part, however, they vary together: More programmer/analyst time to develop a given
system means more machine-time used. One should note that it is the programmer/an
alyst who generates the machine-time - so, it is the programmer/analyst who is the
essential link in the economic chain.

It has been documented in a number of places l.2·3 that testing and debugging ac
count for most of the cost of systems development~ the common estimate is that 50
percent of a data processing project is devoted to these activities. White this may be a
bitter pill for the proud programmer/analyst to swallow~ it is a real one - and if the.
medicine remains unswallowed, the pain will continue. While '~testing" and Hdebug
ging" are defined variously by different organizations, we will point out that the true
cost of debugging is the cost of everything the programmer/analyst does in the develop
ment of a system beyond what would be necessary if he made no mistakes~ that is, over
and above initial writing of the code, setup, and review of the first compilation or as
sembly, and setup and review of the last test-run (the one that confirms that the system
is acceptable). In other words, the cost of debugging accounts for most of the cost of
both the person and the machine.

That most of the cost of systems development today is due to errors is not some
thing to be denied, but rather an insight to be traded upon. Indeed, this is so vital that
no theory of programming or programs, no technique or practice for programming or
systems design, which does not give central recognition to the role of bugs and debug
ging, can be of much value in the practical amelioration of the pains in the field.

61

62 STRUCTURED DESIGN

5.2 The fundamental theorem of software engineering

We will attempt, in this section, to develop what may be regarded as a kind of
fundamental theorem of systems development. First, we note that it takes longer to

write a long program than it takes to write a short one. This is always true if we mea

sure long and short in the proper units. Clearly, "number of instructions" is not quite

the right measure since some instructions are harder than others. This borders on the
tautological, as we are really trying to say that it is harder to solve a harder problem. If
we assume that we have an appropriate measure of the size of a problem p (for an in
teresting discussion of this area, see Halstead's study 4), say M(P), then the cost of pro
gramming P, which we might call C(P), obeys the rule:

IF M(P) > M(Q) THEN C(P) > C(Q).

That is, cost is a monotonically increasing function of problem size.

We might try taking· two separate problems and, instead of writing two programs,

create a combined program, Putting two problems together makes them bigger than the

two problems taken separately. The primary reason for not combining problems is that,
as human beings, we do not deal well with great complexity. As the complexity of a

problem increases, we make disproportionately more mistakes; when problems are com
bined, we must solve not only each individual problem, but also the interactions
between the two (which may involve preventing or avoiding interactions). Thus,

M(P + Q) > M{P) + M(Q)

and, as we would expect,

C(P + Q) > C(P) + C(Q)

It is always easier (and cheaper) to create two small pieces rather than one big piece if

the two small pieces do the same job as the single piece.

This phenomenon is not unique to the computer field. Indeed, it seems true of

any field of problem-solving: mathematics, physics, or naval warfare. In all of these

fields, we find that we can increase the complexity of the problem from very trivial to
trivial to not-quite-so-trivial with a correspondingly small increase in the number of er

rors - but sooner or later, the errors begin to increase more rapidly. Thus, for pro

gram design, systems design, and for all those other problem-solving disciplines that are

beyond the realm of this book, we should expect to see an error curve of the sort
shown in Fig. 5.1.

The psychologist-mathematician George Miller, 5 in a summary of a very large

body of research, first described the human information processing limitations that give
rise to this effect. It appears that people can mentally juggle, deal with, or keep track of

only about seven objects, entities, or concepts at a time. In effect, the immediate recir

culating memory needed for problem-solving with multiple elements has a capacity of

about 7 ±2 entities. Above that number, errors in the process increase disproportionate
ly. It matters not what the ''somethings" are people to be managed, state variables

to be remembered, subroutine calls to be understood - if there are more than about

7 of them, the errors generated rise sharply and non-linearly. This is a very funda

mental and well-established property of human information processing that underlies all

strategies for segmenting, factoring, or decomposing problems into subproblems. It is

HUMAN JNFORMATION "PROCESSING AND PROGRAM SlMPLICITY 63

this relationship between problem elements and error generati-0n that assures us that

C(P + Q) > C(P) + C(Q)

Clearly, once the problem becomes non-trivial, there is a great incentive to break
the problem into smaller pieces. We can state this rather dramatically by making the
appropriate substitutions in the equation above and writing what we (tongue in cheek)
will call the Fundamental Theorem of Software Engineering:

C(P) > ('hP) + C(l/2P)

Basically, this just says that we can win if we can divide any task into independent sub
tasks. If the subtasks are not truly independent of one another, then we are not solving
just the two subtasks - for in the ,solution of non-independent parts, we also are simul
taneously dealing with some aspects of the other parts.

This last point is crucial. Unless we deal with it, we will always have to contend
with the objection that the authors have heard from several hundred skeptical designers:
''Yeah, but the problem of chopping a system into small modules (sic) is that I can in
troduce even more bugs - I always get the calling sequence wrong, or pass the wrong
arguments to the module ... and besides, it takes so much time to write out all the de
tails of the calling sequence!"

Suppose we have factored a problem P into two parts of equal complexity~ let us
call the two parts P'= 1/iP and P"== 1/2P. If they are not independent, then the cost of solv
ing the entire problem is

C(P' + I x P') + C(P" + I x P") . 1 2

where 11 is a fraction representing the interaction of P' with P". Whenever 11 and 12 are
non-zero, it is obvious that

C(p' + 11 x P") + C(P" + l2 x P") > C(1hP + C1hP)

If 11 and 12 are both small - which we would expect if the designer has done a
good job of modularizing his system - then we should still expect that

C(P) > C(P' + 11 x P") + C(P'' + 12 x P')

Clearly, there are also sufficiently pessimistic solutions, which would make a divided
task cost much more than a combined task.

It is a pleasant fantasy to consider chopping a task into more and more pieces, and
- if they are independent reducing the cost to the vanishing point. However, it is
obvious that we cannot create a system from an infinite number of nothings. For rea
sons that we discussed in Chapter 3 (when we looked at the statement structure of a
program), the limiting case of a system developed as a very large number of separate
and increasingly interdependent pieces is that it behaves precisely like the same system
developed as a single piece.

The introduction of modularity into design introduces its own source of bugs.
The programmer/analyst frequently finds himself making mistakes when coding the
LINKAGE SECTION of a COBOL program; he finds himself writing the wrong argument
declarations in a PL/I procedure or a FORTRAN subroutine~ he finds himself saving
and restoring the wrong general registers in an assembly language program.

64 STRUCTURED DESIGN

Errors

generally becomes
unmanageable at 7 ±2

1 2 3 4 5 6 7 8

Number of elements of the problem that
must be dealt with simultaneously

Figure 5.1. Error curve for normal problem-solving.

Errors

/

/
/

.,.,,... / Errors that occur as a result of breaking
·,,,.,/. '-.the problem into smaller subproblems

l 2 3 4 5 6 7 8 9

Number of elements of the problem that
must be dealt with simultaneously

Figure 5.2. Error curve when problems are broken into pieces.

Number of modules or module size

~
Intermodule effects increase
as the number of modules
grows

lnlramodute effects decrease
as the
modules get smaller

Figure 5.3. Opposing influences of intramodule errors and intermodule errors.

HUMAN INFORMATION PROCESSING AND PROGRAM SIMPLIClTY 65

We might counter that this is because the designer was never properly trained to
use those features of his language (which is generally true in most organizations), but
that is not the point. Of course, the designer will make mistakes when designing and
coding the references and connections between modules! Writing a subroutine call is
subject to the same error probabilities as writing other statements. Along with all of the
potential errors listed above, we still have to contend with keypunch errors, spelling er
rors, and a variety of other errors so trivial as to be dismissed with a wave of the hand.

If we factor a problem into pieces that are relatively independent, we will find that
the "chopping" process introduces some errors, but they tend to be relatively straight
forward and obvious - and most important, relatively local in nature. In return, we
greatly reduce the insidious, non-trivial errors found in big modules - e.g., the sort of
error that occurs when the 3,279th statement in the module destroys, through three
levels of indirect addressing, a storage area carefully set up by the 13th statement in the
module. What we are saying, then, is that the factoring process if done well - tends
to uflatten" the non-linear rise of errors that we saw in Fig. 5.1, in fact, we would ex
pect to see an error curve of the sort shown in Fig. 5.2.

As we have already suggested, chopping a system into a thousand one-statement
modules is likely to cost as much as (and possibly even more than) a single 1,000-state
ment module to accomplish the same task. Clearly, these two alternatives are at the ex
treme ends of a spectrum of choices: We could imagine 10 modules of 100 statements
each, or 20 modules of 50 statements each, or I 00 modules of 10 statements each, and
so forth. As the modules get smaller and smaller (assuming, once again, that they are
independent of one another), we would expect them to become simpler internally~ as
we get more modules, we would expect that the problems due to intermodule bugs
would increase. The total number of errors we commit (and thus, to a large extent, the
cost of developing the entire system) is the sum of these two opposing influences, as il
lustrated in Fig. 5.3.

At this point, we are not prepared to predict the size of the Hoptimally small,,
module. Indeed, it is very doubtful that we ever will be able to make precise state
ments like, The optimal size for a module is nine statements. However, in Chapter 9
we will discuss a number of guidelines and heuristics that should prove sufficient to
guide the designer in most cases. All we have done in this section is to emphasize the
following:

• The cost of developing most systems is largely the cost of debugging
them.

• The cost of debugging is essentially equivalent to the cost of errors
committed by the programmer/analyst.

• The number of errors committed during the design, coding, and de
bugging of a system rises non-linearly as the complexity (which may be
thought of as roughly equal to the size) of the system increases.

• Complexity can be decreased (and, thus, errors and the cost of
developing the system) by breaking the problem into smaller and
smaller pieces, so long as these pieces are relatively independent of
each other.

66 STRUCTURED DESIGN

• Eventually, the process of breaking pieces of the system into smaller
pieces will create more complexity than it eliminates~ because of inter
module dependencies - but ~his point does not occur as quickly as
most designers would like to believe.

A final word of caution is in order: Whenever we talk of improvements in design,
or potential savings in costs, there will always be an implied qualification. We assume
equal quality of implementation. It is possible to do a sufficiently poor job of imple
menting a plan or design so as to exceed any arbitrary limit in cost, time, or any mea
sure of dysfunctionality of the solution. That is to say, there is always some program
mer bad enough to screw up even the best design!

5.3 Complexity in human terms

We have suggested in the previous section that most of our problems in program
ming occur because human beings (we are obviously making the charitable assumption
that all programmers and analysts are human beings) make mistakes, and that human
beings make mistakes because of their limited capacity for complexity. This leads to an
obvious question: What is it that humans consider complex'? In specific terms, what
aspects of systems design and program design do programmers consider complex?
Andt by extension, what can we do to make systems less complex?

We have already suggested that the size of a module is one simple measure. of
complexity~ generally, a 100-statement module will be more difficult to understand than
a 10-statement module. There is obviously more to it than that, since some statements
are more complex than others. Halstead 4 and others, for example, feel that decision
making statements (e.g., IF statements) are one of the prime contributors to complexity
in a module. Another possible contributor to complexity is the Hspann of data ele
ments - i.e., the number of program statements during which the status and value of a
data element must be remembered by the programmer in order to comprehend what
the module is doing~ thus, a module is made more complex if a data element is loaded
into an accumulator in the second instruction, and the data element then is not used
until the 147th instruction.

Another related aspect of complexity is the span of control flow - the number of
lexically contiguous statements one must examine before one finds a black-box section
of code that has one entry point and one exit point. It is interesting to note that the
theories behind structured programming 6 provide a means of reducing this span to an
almost minimal length by organizing the logic into combinations of Hsequence," HIF

THEN·ELSE," and HOO-WHILE" operations.

All of these measures recognize that the human-perceived complexity of program
stat,ements varies, influencing the apparent size of a module. Three factors, implicit in
the above approaches, have been identified as affecting statement complexity:

• the amoum of information that must be understood correctly

• the accessibility of the information

• the structure of the information

HUMAN INFORMATION PROCESSING AND PROGRAM SIMPLICITY 67

These factors determine the probability of human error in processing information of all

kinds. While the complexity of all types of program statements can be evaluated in

these terms, we will focus our discussion on examples of statements that establish inter
modular interfaces.

By "amount" of information, we mean the number of bits of data, in the

information-theoretical sense, that the programmer must deal with in order to

comprehend the interface. In simplest terms, this is correlated with the number of ar

guments, or parameters, that are being passed in the call. All other things being equal,

a subroutine call that involves 178 parameters will be more difficult to comprehend than

a subroutine call with three parameters. When the programmer sees a module refer

ence (e.g., a subroutine call) in the middle of a module, he must know what the refer

ence will accomplish, and what information is being transmitted.

Consider, for example, the programmer who has just been assigned to finish test

ing and debugging an undocumented 20-statement module written by another program

mer. Imagine that the new programmer finds, imbedded within the 20-statement
module, the statement

CALL SQRT{X)

Chances are, he would immediately decide that the square root of data element x was

being computed, and that the result was being returned in x - presumably destroying

the original contents. If in his 20-statement module, the programmer found

CALL SQRT (X, Y)

he would proba·bty conclude that the SQRT module must compute the square root of its

first argument, returning the answer in the second argument, although he could be

wrong if the input and output arguments were inverted. But, suppose that the program

mer found the statement

CALL SQRT(X,Y,Z)

At. this point, he might pause, scratch his head, curse the memory of the departed au

thor of the program, and then assume that SQRT computes the square root of its first ar

gument (X), returning the answer in its second argument (Y), and an error flag in its

third argument (Z) if the first argument (X) was negative. Here, there are still more

ways in which the statement could be misinterpreted.

At least, that is what one might infer ... but what if the author of a square root

subroutine had decided, out of sheer spite, that the first argument (X) should be the er

ror flag, the second argument (Y) should be the output from the SQRT module, and the

third argument (Z) should be the input to the module? Needless to say, the new pro

grammer could insert a number of errors into the code while trying to come to grips

with this entirely unexpected interface.

While the above example was contrived, the reader must admit that it smacks of

reality. One could argue that the problem could be solved by providing appropriate doc

umentation, but aside from the fact that such a suggestion is basically unrealistic (al

most all detailed documentation in the real world is written after the code has been de

bugged~ if the programmer is forced to write the documentation before the code, it will

surely be obsolete by the time the code is debugged; in any case, the documentation

will be obsolete and incorrect within a month after the code is debugged), it evades the

68 STRUCTURED DESIGN

basic question - what kind of information concerning the intermodule interfaces is
least complex and least prone to errors?

Since we will be stressing highly modular structures throughout this book, the
question we have posed is an important one. While we agree that there are well
established standards for narrative documentation of intermodule interfaces (see, for
example, Gray and London ,s discussion 7), we shall confine our attention to the inter
face as written in the code.

The programmer often argues that there is nothing he can do about the number of
parameters: ''If subroutine GETINPUT requires eight input parameters, then it requires
eight input parameters - it doesn't help much to tell me that the interface would have
oeen simpler if there were only seven parameters!" While this may be true, the pres
ence of a large number of parameters in a calling sequence is often a clue that the
called module is performing more than one task. By splitting the module into smaller
pieces, each of which accomplishes only one task, we may be able to reduce the number
of parameters. Thus, instead of having to study the call

CALL GETINPUT(A,B,C,D,E,F,G,H)

We would find ourselves studying the following sort of code:

CALL GETTRANSACTION{A,B,C,D,G)

CALL GETMASTER{B,E,F,G,H)

Note that each module now has five parameters in its interface; both GETTRANS

ACTION and GETMASTER require parameters B and G in order to perform their tasks.
Cutting a module in half does not necessarily mean that the total number of parameters
in the interfaces will be cut in half. The techniques for recognizing those modules that
accomplish more than one task, and dividing them into smaller modules that accom
plish only one task will be discussed in Chapter 7.

Perhaps more important than the amount of information is its accessibility. Cer
tain information about the use of the interface must be understood by the programmer
to write or interpret the code correctly. There are four issues here:

• The interface is less complex if the information can be accessed (by
the programmer, not by the computer) directly; it is more complex if
the information refers indirectly to some other data element

• The interface is less complex if the information is presented locally -
that is, presented with the subroutine-calling statement itself. The in~
terface is more complex if the needed information is remote from the
interface statement itself.

• The interface is less complex if the necessary information is presented
in a standard manner~ it is more complex if the information is present
ed in an unexpected manner.

HUMAN INFORMATION PROCESSING AND PROGRAM SIMPLICITY 69

• The interface is less complex if its nature is obv;ous, .. it is more complex
if it is obscure.

To illustrate the use of these concepts, consider the following example: We are to
write a subroutine, LENGTH, which is to compute the distance between two points on a
sheet of graph paper. The coordinates of the first point will be called xo, YO~ the coordi
nates of the second point will be called XI ,Yl. The computation that must be performed
by LENGTH is thus the simple calculation

LENGTH = SQRT ((YI - YO) 2 + (Xl XO) 2)

Suppose we were then asked to select one of the following interfaces:

Option 1 CALL LENGTH(XO,YO,Xl,Yl,DISTANCE)

Option 2. CALL LENGTH(ORIGIN,END,DISTANCE)

Option 3. CALL LENGTH(XCOORDS,YCOORDS,DIST ANCE)

Option 4. CALL LENGTH(LINE,DISTANCE)

Option 5. CALL LENGTH(LINET ABLE)

Option 6. CALL LENGTH

Which interface is the least complex to a human who must use it? On the basis
of established results in human information processing, Option 1 is the simplest, least
error-prone. At first glance, it may appear that Option 1 involves the most complex in
terface~ after all, we suggested earlier that the complexity is increased by the presence
of large numbers of parameters. We did, however, insert a small qualification that may
have gone unnoticed: Hall other things being equal."

Option 1 involves parameters that are pr.esented in a direct fashion~ the name "XO"

is indeed the identifier of the data element containing the value of the x-coordinate of
the initial point. By contrast, Option 2 involves information that is presented in an in

direct fashion~ in order to comprehend the interface, we would probably have to turn to
some other part of the program listing to find that ORIGIN is defined in terms of the
subelements xo and YO. One might argue this point - after all, according to some pro
grammers, ORJGIN is perfectly meaningful in the direct sense, and one would not have
to look any further to find out what it means.

On the other hand, suppose that the module that calls LENGTH is concerned with
several different points on the sheet of graph paper that is, there may well be vari
ables x2 and Y2, X3 and Y3, ... , Xn and Yn defined in the program. If such is the case,
then which points are implied by the identifiers ORIGIN and END? Obviously, we will
have to look at that part of the program that defines ORIGIN; if we are lucky, we might
see something akin to the COBOL concept of levels of data in the DATA DIVISION:

05 ORIGIN
10 XO
10 YO

05 END
10 XO
lO YO

70 STRUCTURED DESIGN

However, it is just as likely that we will find a definition of the sort

05 ORIGIN

05

10 BEGINNING-X-COORDINATE
10 BEGINNING-Y-COORDINATE

END
lO
10

FINAL-X-COORDINATE
FIN AL-Y-COORD IN A TE

in which case, we will have to look through the entire program to see the last point at
which some data was moved into ORIGIN and END prior to the call to LENGTH which we
are currently studying. In any case, some indirect references are certainly necessary,
and there is no doubt that it makes the interface somewhat complex.

It can be argued that Option 3, which takes the form

CALL LENGTH(XCOORDS,YCOORDS,DISTANCE)

is ev1~n more complex. Obviously, the parameters xcooRos and YCOORDS represent re
quired information indirectly. In addition, the information is being presented to the
programmer in a nonstandard way~ this alone makes the interface somewhat more com
plex. That is, the standard way (by convention) to present information about two
points on a sheet of graph paper is

ORIGIN (XO,YO)

END (Xl,Yl)

while the following is less common:

XCOORDS (XO,Xl)

YCOORDS (YO, Y 1)

A small matter, to be sure, but enough to increase the likelihood of the programmer in
serting one or two bugs into his code before he really understands the interface.

The degree of conglomeration is further increased in Option 4. Still fewer things
can vary independently. With any option in the general case, each use requires the set

ting up of computed values, possibly with some fixed ones. The basic issue is whether
these are set up integrally with the call on LENGTH, as in Option 1, or remotely, as in
the other options.

Option 5, which suggests an interface of CALL LENGTH(LINETABLE), is still more
complex. The identifier LINET ABLE is obscure. How many programmers would instant
ly recognize that such a variable would include not only the x-coordinates and Y

coordinates of the initial and ending points, but also the returned length? Once again,
there conceivably could be mitigating circumstances: It is possible that throughout the
entire program, the code requires all five, and the same five, elements of the quintuplet
(XO,YO,Xl,Yl,DlSTANCE) for its computations. However, this hardly seems a credible ar
gument~ at the very least, it makes it much less likely that LENGTH can be used as a
general-purpose subroutine in some other system.

Finally, we consider Option 6, which suggests an interface of CALL LENGTH. At

first glance, it may appear that such a subroutine call has no parameters - but we know
better. LENGTH still requires initial (X,Y) coordinates and final (X,Y) coordinates to per-

HUMAN INFORMATION PROCESSING AND PROGRAM SIMPLICITY 71

form its task, and it must still leave the DISTANCE information someplace useful - and
presumably both LENGTH and the module calling it know where that information will be
stored. The problem is that the programmer doesn't know - at least, not by looking at
the statement CALL LENGTH. In other words, the parameters are not local to the
subroutine-calling statement~ all the information is provided remotely, in a place whose
whereabouts cannot be determined by looking at the CALL LENGTH statement.

If all the arguments were set up immediately preceding the call to LENGTH, it
would be obvious. However, it is hardly safe to assume that all programmers using the
CALL LENGTH statement will adhere to such discipline. Eventually, the programmer be
gins taking advantage of the fact that some of the parameters naturally are set up 23
statements earlier in the code.

Adequate documentation itself increases the accessibility of information and de
creases the probability of errors in use. And standardization (see, for example, Gray
and London 7) further improves things. But, remember that all documentation is less
accessible~ when dealing with the code, than the code itself. An undocumented but in
trinsically simple sequence may be preferable to a well·documented, complicated one.

It will be immediately obvious to the COBOL programmer that the PERFORM state
ment forces Option 6. This is an inadequacy of the language that can only be avoided
at the present time by using the CALL statement. It is interesting to note, though, that
the CODASYL X3J4 Programming Languages Committee is studying changes to
COBOL that include, among other things, parameter lists on PERFORM statements. 8

Similarly, the FORTRAN programmer is familiar with the practice of placing arguments
in COMMON to avoid passing data through a parameter list~ the PL/I programmer and
the ALGOL programmer accomplish the same thing by defining data in a global
fashion. In all of these languages, the programmer often consciously avoids passing data
explicitly through a parameter list - either by using COMMON in FORTRAN, by using
global variables in PL/I or ALGOL, or by using PERFORM instead of CALL in COBOL.

Why the aversion to passing data through a parameter list'! There seem to be
three objections: It appears to require more work on the part of the programmer~ cod
ing the parameter list is an error-prone process in itself~ and it is less efficient than ac
cessing data in a global fashion. The first objection seems to be an example of the
Hpenny wise-pound foolish" phenomenon: It may take a few more minutes (at most)
to explicitly code the parameters as part of the calling sequence, but it could save far
more in debugging and maintenance. We have already discussed the second objection:
Of course, errors can be introduced when coding the parameter list in a calling se
quence, but such errors tend to be simpler and more direct than the subtle errors that
occur when one module begins destroying the global data that belongs to another unre
lated module (we will deal with this problem in detail in the next chapter).

The last argument - that passing data through a parameter list is inefficient - is
probably the most common one, and the one in which programmers believe most pas
sionately. Since efficiency is still a major problem in some computer systems, and since
programmer/analysts do feel so passionately about the subject, it is not an objection to
be brushed away lightly~ indeed, a good part of Chapters 13, 14, and 15 deal with vari
ous aspects of efficiency. Suffice it to say at this point that argument-passing is usually
a serious problem in only a few isolated cases~ in most cases, a subroutine call will be
executed only a few times, and the wasted microseconds of CPU time can safely be ig
nored. In those rare instances in which the overhead is bothersome, the programmer

72 STRUCTURED DESIGN

always has the option of changing the calling sequence back to a more efficient one. To

keep things in proper perspective though, we emphasize once again that people, not

machines, are the primary cost of today's computer systems~ we should be prepared to
waste hours of computer time, if it will save us months or years of people time.

As a final comment on the complexity of intermodule interfaces, we observe that
the

4

'structure" of information can be a key issue. The primary point here is that infor
mation is less complex if it is presented to us in a linear fashion, more complex if it is

presented in a nested fashion. Similarly, information is less complex if it is presented

in a positive fashion, more complex if it is presented in a negative fashion. For exam
ple, consider the following nested English sentence:

The girl the boy the dog bit hit cried.

The average person would have to study such a sentence for several seconds before

comprehending its meaning; eventually, he would draw mental parentheses to recognize
that the structure of the sentence is

(The girl (the boy (the dog bit) hit) cried.)

Though it may seem clumsier, the following statements would probably be regarded by
the average person as less complex:

The dog bit boy A. Boy A hit girl B. Girl B cried.

The human limits in processing nested information are even sharper than in dealing
with linear, sequential information. Whereas one can readily deal with about 7 ±2 dis

tinct entities presented in a linear or parallel fashion, the human 4 'push-down stack"
can get overloaded at only two or three levels of nesting.

Now, imagine that we were trying to describe the scene involving two girls, one of

whom cried and one of whom didn't~ two boys, one of whom exhibited hostile, aggres

sive tendencies, and one of whom didn't; and two dogs, one of which was prone to bit

ing moving objects, and one of which slept through th1e entire scene. We could

describe it thus:

The boy the girl the dog did not bite did not hit did not cry.

Needless to say, such a statement involving negative qualifiers is generally more com

plex than one involving positive qualifiers.

Both of these concepts have primary application in the details of writing code. For

example, it is well-known that certain forms of nested IF statements are considerably

more difficult for the average person to understand than an equivalent sequence of sim

ple IF statements. Similarly, it is known that Boolean expressions involving NOT opera

tors are generally more difficult to understand than an equivalent expression without

the NOT operator.

There are times, though, when the philosophies of linear thinking and positive

thinking are important for intermodule references. Suppose, for example, that the pro
grammer decided to compute the distance between two points on a sheet of graph paper

by writing the statement

DISTANCE SQRT (SUM (SQUARE(DIFFERENCE(Yl,YO)),SQU ARE(DIFFERENCE(X l,XO))))

HUMAN INFORMATION PROCESSING AND PROGRAM SIMPLICITY 73

There is little doubt that the average programmer would write .out the linear equivalent
of this statement in order to comprehend what it does.

Similarly, there are times when the programmer/analyst builds some negative
thinking into his intermodule interfaces. Suppose, for example, that the programmer
has designed a module called SCAN, which will search through a string for a specified
delimiter; if successful, SCAN will indicate the position in the string where the delimiter
was first found. When designing the calling sequence, though1 the programmer/analyst
may be thinking more of the negative case - that is, the situation in which SCAN does
not find the specified delimiter. Indeed, when he first conceived of the notion of a
SCAN module, he may have been dealing with a portion of the problem in which it was
very likely that the specified delimiter would not be found - that is, the problem might
have called for the programmer to scan through a string of normal English text, looking
for the presence of"&" characters.

With this in mind, the programmer/analyst might decide to design SCAN as a logi
cal function - that is, one that has the value true or false when invoked. Expecting
failures from SCAN, he might design it in such a way' that SCAN returns a value of true if
the delimiter is not found, and false if the delimiter is found. This would allow him to
write code such as:

IF SCAN (TEXTSTRING, '&') (are there any "&" characters?)
(deal with the normal case of no "&" characters)

ELSE
(deal with the unusual c&se where "&" characters exist)

Elsewhere in the system, though, other designers would presumably expect SCAN to be
involved in the positive act of looking for delimiters; finding such delimiters normally
would be considered a success - and the designer instinctively would assume that SCAN

would return a value of true when the specified delimiter was found. It is somewhat
naive to suggest that the problem could be solved by asking the author of the SCAN

module to document the interface in a memorandum for all the other designers. Even
if the other designers read the document, there is still a good chance that the other
designers - in the heat of the moment, when they are actually writing the code - will
follow their instincts1 and think positively. We should· not be surprised to find that the
use of SCAN, as we have defined it, will lead to an inordinate number of bugs. Indeed,
one of the authors, having designed such a negative SCAN module in the early days of
his career, can confirm it from experience~

5.4 Summary

Although it may seem that this chapter is heavy on philosophy and light on practi
cal advice, the philosophy actually forms the basis for almost all of the practical advice
in Chapters 6 and 7 - not to mention a large portion of the rest of the book. It is ab
solutely essential that the designer realize that the major cost of developing computer
systems is the cost of debugging, which, in turn, is the cost of human error.

And, it is essential that we be aware of the limitations of the human mind when
we design 'computer systems (or any other complex system). Unless we realize that the
cost of systems development can be reduced by partitioning systems into smaller pieces,

74 STRUCTURED DESIGN

we will be limited to developing systems of 100,000 lines of code or less. On the other
hand~ there is nothing to be gained from partitioning a system into modules of one in
struct.ion each; at some point, the simplicity of each individual module is outweighed by
the complexity of the intermodule interfaces.

CHAPTER 5: REFERENCES

I. Edward Yourdon, Design of On-Line Computer Systems (Englewood Cliffs, N.J.:
Prentice-Hall, 1972).

2. Philip W. Metzger, Managing a Progran1ming Project (Englewood Cliffs, N.J .:
Prentice-Hall, 1973).

3. Frederick P. Brooks, Jr., The Mythical Man-Month (Reading, Mass.: Addison
Wesley, 1975).

4. M.H. Halstead, The Elements of Software Science (New York: American Elsevier,
1977}.

5. George A. Miller, aThe Magical Number Seven, Plus or Minus Two: Some Lim
its on Our Capacity for Processing Information," Psychological Review, Vol. 63
(1956), pp. 81-97.

6. Corrado Bohm and Giuseppe Jacopini, "Flow Diagrams, Turing Machines and
Languages with Only Two Formation Rules," Communications of the ACM, Vol. 9,
No. 5 (May 1966), pp. 366-371.

7. Max Gray and Keith R. London, Documentation Standards (Philadelphia: Auer
bach1 1969).

8. Henry P. Stevenson., ed., Proceedings of CODASYL Programming Language Sympo
sium on Structured Programming in COBOL - Future and Present (New York: As
sociation of Computing Machinery, 1975).

6.0 Introduction

CHAPTER 6
COUPLING

Many aspects of modularity can be understood only by examining modules in rela
tion to one another. In Chapter 5, we introduced a notion that is useful in the context
of this discussion: independence. Two modules are totally independent if each can func
tion completely without the presence of the other. This definition implies that there are
no interconnections between the modules - direct or indirect, explicit or implicit, obvi
ous or obscure. This establishes a zero point on the scale of "dependence" (the in
verse of independence).

In general, the more interconnections between modules, the less independent they
are likely to be. Of course, this is only an approximation; and before we can judge
whether more is worse, we must ask whether the various connections between modules
are identical, similar, or different. If two modules require six distinct, completely
unique connections in order to function together, then they are more highly intercon
nected than if six connections of the same form would suffice. Similarly, six connec
tions must generally lead to more dependence than three comparable ones. The key

· question is: How much of one module must be known in order to understand another
module? The more that we must know of module B in order to understand module A, the
more closely connected A is to B. The fact that we must know something about another
module is a priori evidence of some degree of interconnection even if the form of the
interconnection is not known.

Unfortunately, the phrase "knowledge required to understand a module" is not
very objective~ we need an operational method of approximating the degree of intercon
nection. As we have already suggested, a simple accounting of the number and variety
of interconnections between modules is insufficie_nt to fully characterize the influence of
the interconnections on the system's modularity. At the very least, we must be able to
account for the fact that a long, involved calling sequence that 'interfaces with many
internal control variables makes two modules less independent of each other than two
equivalent modules with only a few basic input-output parameters passed in the call.

The measure that we are seeking is known as coupling; it is a measure of the
strength of interconnection. Thus, "highly coupled" modules are joined by strong inter
connections~ '~loosely coupled" modules are joined by weak interconnections; "uncou
pled" or "decoupled" modules have no interconnections and are, thus, independent in
the sense that the term was used in Chapter 5. Obviously, what we are striving for is
loosely coupled systems - that is, systems in which one can study (or debug, or main
tain) any one module without having to know very much about any other modules in
the system.

76

COUPLING 77

Coupling as an abstract concept - the degree of interdependence between
modules -- may be operationalized as the probability that in coding, debugging, or
modifying one module, a programmer will have to take into account something about
another module. If two modules are highly coupled, then there is a high probability
that a programmer trying to modify one of them will have to make a change to the oth
er. Clearly, total systems cost will be strongly influenced by the degree of coupling
between modules.

To see how coupling can be an important factor in total systems complexity, con
sider a system that processes records from a "customer master file"; we would expect
such a file to have information about a customer's name, street address, city, state, ZIP

code, telephone number, and the various financial or business data with which the sys
tem is primarily concerned. Now, suppose that one programmer is assigned the task of
writing a module to edit the "telephone number" field within the record - that is~ to
check the ten-digit field to ensure that it does, in fact, consist of all numeric digits, and
that the field is nonzero. To "simplify the interfaces" (as several of our students have
phrased it), the designer might decide to pass the entire customer record to the
TELEPHONE~EDIT module, rather than just the field it requires.

Now for the consequences of such a design: Suppose that Charlie, the program
mer who designs and implements the TELEPHONE-EDIT module, is very aggressive and
eager to do a good job. It occurs to him that he can do a better job of editing the tele
phone number by cross-checking the "state" field within the customer record with the
"area code" portion of the telephone number. Without telling anyone else in the pro
gramming team about this brilliant move (after all, he is writing a black-box module, so
why should he have to tell anyone what the module does internally?), he sets up an
area code/state code table internally in his module, and uses that to cross-check the
telephone number in each customer record.

The first thing that goes wrong is that the TELEPHONE-EDIT module begins reject
ing telephone numbers because they don't correlate with the state code - and later
analysis shows that the state code was incorrect, not the telephone number! As a ,
result, Charlie inserts a little extra coding to make sure, as best he can, that the state
code is reasonable before he attempts to cross-check it with the telephone area code.
Meanwhile, the word spreads through the rest of the programming team, ~·Apparently,
Charlie has some weird code in his TELEPHONE-EDIT module that does something with
the state code."

The coupling aspect of the problem becomes obvious when the user of the system
suddenly announces that he wishes to change the state code in the customer record
from the standard two-character abbreviation (e.g., NY, TX, and so on) to a full charac
ter string representation (e.g., NEW YORK, TEXAS, and so forth). Everyone on the
programming team immediately panics: Which parts of the system will be affected?
The point is obvious: In order to comprehend an aspect of the system that, on the sur
face, has nothing to do with telephone numbers, we must be familiar with Charlie's
TELEPHONE-EDIT module. Why? Because, ultimately, Charlie's module was coupled
with other modules in the system.

78 STRUCTURED DESIGN

6.1 Factors that influence coupling

Four major aspects of computer systems can increase or decrease intermodular
coupling. In order of estimated magnitude of their effect on coupling, these are

• Type of connection between modules. So-called minimally connected sys
tems have the lowest coupling, and normally connected systems have
lower coupling than those with p~thological connections.

• Complexity of the interface. This is approximately equal to the number
of different items being passed (not the amount of data) - the more
items, the higher the coupling.

• Type of information flow along the connection. Data-coupled systems
have lower coupling than control-coupled systems, which have lower
coupling than hybrid-coupled systems.

• Binding time of the connection. Connections bound to fixed referents at
execution time result in lower coupling than binding that takes place at
loading time, which results in lower coupling than binding that takes
place at linkage-edit time, which in turn results in lower coupling than
binding that takes place at compilation (or assembly) time - all of
which result in still lower coupling than binding that takes place at cod
ing time.

Each of these is important and is discussed separately below.

6.1.1 Type of connection between modules

Recall that a connection in a program is a reference by one element to the name,
address, or identifier of another element. An intermodular connection occurs when the
referenced element is in a different module from the referencing element. Any such
referenced element defines an interface, a portion of the module boundary across which
data or control flow. The interface may be regarded as residing at the referenced ele
ment~ you may think of it as a socket into which the plug, represented by the connec
tion from the referencing module, is inserted. Every interface in a module represents
one more thing which is/must be known, understood, and properly connected by other
modules in the system.

Clearly, we want to minimize systems/module complexity in part by minimizing
the number (and variety) of interfaces per module. We already know that each module
must have at least one interface to be uniquely defined and to be tied into a system.
But is a single identity interface sufficient to implement real functioning systems? The
key question here is: What purpose do interfaces serve? In programs, they can only
serve a limited variety of functional purposes. Only control and data can be passed
among modules in a programming system. An interface can serve to transmit data into
a module (as input parameters), or out of the module (as output results). It can be a
name by which control is received or transmitted. Only these four generic capabilities
are required. Any scheme which provides interfaces for all four must, by definition, be
sufficient to realize all programmable systems.

COUPLING 79

By a judicious choice of conventions, we will be able to have a single interface per
module serve all four purposes. First, we associate the identity interface of the module
with its entry or activation interface~ that is, a single unique entry interface serves not
only to receive control, but to identify the module. We also can transmit data to the
module without adding interfaces by making the entry /identity interface capable of ac
cepting data as well as control. This requires that elements of data be passed dynami
cally as arguments (parameters) as part of the activation sequence, which gives control
to a module; any static reference to data would introduce new interfaces.

With respect to any two modules, say A and B, we have determined that the fol
lowing familiar structure is sufficient to get control and data from A into s:

A

B

Unfortunately, we cannot use the same approach to get control from B to A, as that
would define a system with more than the minimal number of interconnections between
modules. We need the identity interface of B to serve as a path for control to be re- ·
ceived by A, as transmitted by B; this is a "return'' of control to A. We can accomplish
this by having the control transfer from A to B be a conditioned transfer. B will thus be
able to return implicitly to A (or any other activating module) without the introduction
of additional interfaces.

This also suggests a mechanism for transmitting data from B back to A without ad
ding extra interfaces: We may associate a value with the particular activation of B, and
use this contextually in A (e.g., by making B a logical function, as we did in the SCAN

example in Chapter 5). Alternatively, we can transmit to B parameters that define loca
tions for return of results to A.

If all connections of a system are restricted to fully parameterized (with respect to
inputs and outputs) conditioned transfers of control to the single, unique activation/en
try I origin/identity interface of any module, then the system is termed minimally con
nected. A minimally connected structure has the lowest number of interconnections
and interfaces needed to define bidirectional control and information transfer between

· communicating modules.

It is important to realize that minimally connected structures are minimal in a fun
damental sense, and yet are sufficient for the realization of all actual program functions.
Minimally connected modules require the least knowledge of discrete, internal features
of the module. In addition, such systems have simple, Bnormal" behavior since the
entire data context of a module and its precise return are established and guaranteed by
the activa.ting module. The pattern of control transfers into and out of modules must
define a symmetric, fully nested set, and all transfers must strictly follow the hierarchi
cal lines so established.

80 STRUCTURED DESIGN

Other control relationships can be admitted which, while not satisfying the re
quirements for minimal connectedness, still preserve the normal behavior of minimally
connected systems. We shall call a system normally connected if it is minimally connect
ed, except for one or more instances of the following:

• There is more than one entry point to a single module, provided that
each such entry is minimal with respect to data transfers.

• Control returns to other than the next sequential statement in the ac
tivating module, provided that alternate returns are defined by the ac
tivating module as part of its activation process.

• Control is transferred to a normal entry point by something other than
a conditioned transfer of control.

Use of multiple entry points to a module guarantees that there will be more than
the minimum number of interconnections for the system. On the other hand, if each
entry point still functions as a minimal (fully parameterized, conditioned transfer) con
nection as far as other modules are concerned, the behavior of the system should be
every bit as normal as if minimally connected. We note, however, that the presence of
multiple entry points suggests that the module is carrying out multiple functions.
Furthermore, there is an excellent chance that the programi:ner will partially overlap the
code for each of the functions~ this means that the functions within the multiple-entry
point module will be content-coupled (a concept discussed in Section 6.1.3). However,
this can be regarded as an issue separate from that of using multiple-entry-point
modules to build normally connected systems.

In a simittar vein, alternate returns are frequently useful and are within the spirit of
normally connected systems. Frequently, a subordinate module wishes to return binary
or three-valued results to its superordinate - binary results representing the outcome
of decisions in the subordinate. Minimal connectedness would require returning the
outcome of such decisions as a datum (e.g., a parameter) to be retested in the superor
dinate. However, control characteristics would still be simple and predictable if the su
perordinate module specifies one or more alternate return locations - one of which
must be taken by the subordinate upon completion of its processing. Depending on the
programming language, the designer can usually provide for alternate returns by speci
fying a 4 'relative return" (i.e., a return to calling address + 1, to calling address + 2,
and so on), or an "alternate return parameter" (where the address of a return location
in the superordinate is passed to the subordinate).

If a system is not minimally connected or normally connected, then some of its
modules must have pathological connections. That is, at least some of the modules
must make unconditioned transfers of control to labels within the boundaries of other
modules, or they must make explicit references to data elements outside their own
module boundaries. All such situations increase the coupling of the system by increas
ing the amount that we must know about the ''outside world'~ in order to understand
how any one module works. All other things being equal~ then, coupling is minimized
in a minimally connected system~ it is likely to be slightly higher with a normally con
nected system and much higher with pathological connections. The subject of patholog
ical" connections is so important that all of Chapter 13 is devoted to it.

COUPLING 81

6.1.2 Coinplexity of the interface

The second dimension of coupling is complexity. The more complex a single con
nection is, the higher the coupling. This dimension is necessary to account for the
effect of a normal subroutine call with 134 parameters specified as opposed to a call in
volving the specification of only two parameters.

By "complexity" we mean complexity in human terms, as discussed in Chapter 5.
There are various ways to approximate the complexity of an interface, though none is
perfect. One simple method, for example, is to count the number of characters in the
statement (s) involved in the connection between two modules. Obviously, this is a
very rough approximation, since making any consistent substitution of identifiers
throughout the program could increase or decrease the character count in the appropri
ate statements without actually affecting their complexity.

A better approximation can be achieved by counting the number of discrete sym
bols or "language tokens" involved in the interface - that is, names, vocabulary
words, variables, punctuation, and so on. In simple ·terms, then, we would expect that
a subroutine-calling interface with 134 arguments in the parameter list would involve
more coupling than an interface with only two parameters.

6. 1.3 Information flow

Another important aspect of coupling has to do with the type of information that is
transmitted between superordinate and subordinate~ the kinds of information we distin
guish are data, control, and a special hybrid of data and control. Information that con
stitutes data is that which is operated upon, manipulated, or changed by a piece of pro
gram. Control information (even when represented by a "data variable") is that which
governs how the operations upon or manipulations of other information (the data) will
take place.

It can be shown that the communication of data alone is necessary for functioning
systems of modules. Control communication represents a dispensable addition found in
most, but not necessarily all, computer programs. Coupling is, therefore, minimized
(all other things being equal, of course) when only input data and output data flow

across the interface between two modules. A connection establishes input-output cou
pling, or data-coupling, if it provides output data from one module that serves as input
data to the other. Not all connections which appear to move data are necessarily of this
type: The data might be a flag used to control certain aspects of the execution of the
other module, or it might be a "branch-address" to be used if certain conditions arise.
These are elements of control disguised as data.

We should emphasize that input-output coupling bears no relationship to input
output devices. Disks, tapes, and other peripheral devices may or may not mediate the
connection. What is essential is the purpose the connection serves.

Input-output coupling is minimal, because no system can function without it.
Modules cannot function as a single system performing an overall purpose, unless the
9utputs of some modules become the inputs of others. Moreover, any system can be
constructed in such a way that the only coupling is input-output coupling. The inescapa
ble conclusion is that all communication of control not only is extraneous, but also in

troduces needless additional coupling.

82 STRUCTURED DESIGN

It is easy to see, at a high level, how a system could be constructed with only
input-output coupling. Consider, for example, an application involving four
"transforms" to be applied to a stream of data consisting of student names, in alphabet
ical order; associated with each student record is a list of other students (presumably
from the same educational institution) that he/she likes best. The first transform in
volves splitting the stream of data into two separate "substreams''~ one substream con
sists of the student's name (and other biographical data), and the other substream con
sists of the names that the student has nominated as favorites. The second transform
involves performing some computations on the first substream of student names. The
third transform involves sorting the second substream into alphabetical order - those
people who have been named as favorites. The fourth and firial transform is to produce
a combined report that lists a student, appropriate biographical information (with the
results of the computations performed by the second transform), and a list of all those
who named him as a favorite.

The input-output flow, or data flow, structure of this problem is shown in Fig. 6.1.
If we have enough equipment lying around, we can program this as four fully indepen
dent programs, each of which reads inputs from paper tape and punches output on pa
per tape. Assuming that the paper tape readers have interlocks to prevent the tape
from tearing, we could load these machines in the manner shown in Fig. 6.2, and start
all four running. That we have achieved parallel processing is not the central point;
what is important is that we have succeeded in constructing a system that is only input
output coupled (you should be able to see that we can always do this), and it consists of
maximally independent modules - no control information is being passed. Q.E.D.!
We will return to this topic, exploring it in terms of more elementary modules, in
Chapter 18.

In discussing input-output coupling, we noted that communication of elements of
control represented a stronger (and, therefore, less desirable) form of coupling. Since
control-coupling is nonessential, any system that includes it must consist of less indepen
dent modules (other things being equal, of course!). Control-coupling covers all forms
of connection that communicate elements of control. This may involve actual transfer
of control (e.g., activation of modules), or it may involve the passing of data that
change, regulate, or synchronize the target module (or serve to do the same for the ori
ginating module).

Such nsecondary" or indirect control is termed ·coordination. Coordination in
volves one module in the procedural contents of another; this may not be obvious in
the abstract, but it should be clear in an example. For instance, a subroutine that as
sembles successive elements of data into compound elements for the superordinate may
send a flag to the superordinate indicating whether its return is to request an additional
data element or to deliver a completed compound item. The superordinate must con
tain a decision (in this case, binary in nature), which relates to an internal task of the
subordinate module that assembles items (namely: Is the item assembled?). This in
volvement in the internal activities of another module means that coordinating control
coupling is stronger (and, therefore, less desirable) than "activating" control-coupling.

The function of data and control sometimes may be even more confused than in
coordinating control-coupling. When one module modifies the procedural contents of
another module, we have hybrid-coupling. Hybrid-coupling is simply intermodular state
ment modification. To the target (modified) module, the connection functions as con
trol; to the modifying module, it functions as data.

COUPLING 83

results

friends
(with names)

Figure 6.1. Input-output structure of a small problem.

Program SPLIT
loaded and

Program SORT
loaded and
runni~

Program COMPUTE
loaded and

Program REPORT
loaded and
running

Figure 6.2. System of Fig. 6.1 with only input-output coupling.

84 STRUCTURED DESIGN

The degree of module interdependence associated with hybrid-coupling is clearly
very strong, since the very function of the target module can be changed. Moreover,

any modification or recoding of either the source or target module may affect the other
by an extreme, even disastrous, amount. A change in the target module may eliminate
or shift the label of the statement being modified, resulting in modification of the
wrong statement~ similarly, changes in the source module, which are not based on full

analysis of the possible consequences for the target module, can cause it to malfunction

in mysterious ways. Fortunately, using hybrid-coupling is a practice that is declining
except among systems programmers and those involved in assembly language program
ming on minicomputers or microcomputers.

Experience has shown that direct modification of data operands, whether
intermodular or intramodular, is less serious than modification of programming state
ments. This seems to affect hybrid-coupling as well.

6.1.4 Binding time of intermodular connections

"Binding" is a term commonly used in the data processing field to refer to the
process of resolving or fixing the values of identifiers used within a system. The bind
ing of variables to values - or~ more broadly, of identifiers to specific referents - may
take place at any of several stages or time periods in the evolution of the system. The
time-history of the system may be thought of as a line extending from the moment of
writing through the moment of execution. The line may be subdivided to greater or
lesser degrees of fineness by different computer/language/compiler/operating system

com bi nations.

Thus, binding can take place when the programmer writes a statement on a coding

sheet; when a module is compiled or assembled~ when the compiled or assembled code
is processed by a "linking-loader" or "linkage-editor'' (interestingly, this process is re
ferred to as binding on some systems)~ when a '~core-image" is loaded into memory

(this is often indistinguishable from "linkage-editing" on some systems); and, finally,

when the system begins running.

The concept of binding time is an important one in program and systems design.

When the values of parameters within some piece of code are fixed late rather than ear
ly, they are more readily changed and the system becomes more adaptable to changing
requirements. In this broad context, let us return to the customer master file system

that we discussed at the beginning of the chapter.

Let us imagine that one of the 'major functions of the system (which we will refer

to as the CMF system) is to permit modifications to the "personal data,, on the master

file - that is, provisions must be made to allow the customer to change his name, ad

dress, phone number, and so forth. Further, let us imagine that the transactions speci

fying these changes are presented to the CMF system in a 4 'free-field" format, and that
the data is allowed to be of variable length. For example, if customer Henry Pribble in
forms us that he has changed his name to John Smith, we would expect a superordinate
module to pass control to a subordinate module with a pointer to the beginning of the
text string "JOHN SMITH." It is the job of the subordinate NAME~CHANGE module to

scan this text string, looking for errors, and then to substitute the new customer name

in place of the old one in the master record.

COUPLING 85

Let us imagine that Charlie has been given the assignment to design and code

NAME~CHANGE. While studying the problem, it occurs to Charlie that one of the first

things he must do is to scan the text string to ensure that it is terminated properly, that

is, to ensure that there is a closing Hquotation mark', on the text string HJOHN SMITH."

Charlie is aware that the transactions are on punched cards, and he knows that his text

string might begin at any character position on the card. Everyone knows that punched

cards are 80-columns long; thus, Charlie decides to test, in his NAME-CHANGE module,

to ensure that the 44 JOHN SMITH" text string does not run past column 80.

The first mistake that Charlie makes - from a binding point of ~iew - is to code

the literal "80" throughout his module. Indeed, it is worse than that~ his code is li
berally sprinkled with references to the literal ''79" and the literal '481 '' - which, of
course, realty represent • '80 - l" and q80 + 1."

It never occurs to Charlie that not all punched cards are 80 columns long~ howev

er, the nature of the problem will become clear as soon as the user decides that he

wishes to run the CMF system on an IBM System/3 with its 96-column cards! Note that

if Charlie attempts to use a sophisticated text-editing package to change all occurrences
of the literal "80" to the literal "96," he will miss the literals ' 179" and ·~g1" ... and

if he willy-nilly changes the references to the literals ''79," ''80," and ·~s1," he may

well end up changing things he did not want.

Of course, this is a simple example of a parameter whose binding took place at

coding time. It also illustrates the primary reason why this type of binding takes place:

naivety. When confronted with the 96-column card problem, Charlie's predictable

response is, HWell, you can't blame me for that! How was I supposed to know that you

were going to change from 80-column cards n The situation will hardly be improved

if Charlie decides to correct the problem by introducing a parameter into his program

called NINETY-SIX, whose value is - surprise! - the literal "96." What we really want

is a parameter called END-OF-CARD.

Unfortunately, the trouble is not over yet. Not only does Charlie have an END

OF-CARD parameter in his module, it turns out that all of the other programmers in the

CMF system have similar parameters in their modules. Not only do the parameters all

have slightly different names (like MAX-CHARS-IN-CARD), but they are all local variables

whose binding takes place when each module is compiled. Thus, when the user an

nounces a switch to a Widget computer with 85-column cards, the system's designer

discovers that all of the CMF modules are still coupled by the Hnumber-of-columns-in

card'' data element; that is, he must change the parameter in each module (if he can

find it), and then recompile and re-link-edit all of the modules.

Clearly, the solution is to make the aforementioned data element "'externaI1' to all

of the modules. That is, we easily could build a separate module that contains only

declarations of important "systems parameters," such as the number of columns in a

card. In this way, the binding of the parameter would be delayed until the link-editing

process took place.

In most EDP projects, this degree of caution would be sufficient. However, let us

take things one step further: Suppose our user has decided to connect his original IBM

System/370, his new IBM System/3, and his even newer Widget computer over tele

phone lines to a brand-new Frammis computer that will actually perform the CMF pro

cessing. To simplify matters, we can assume that only one of the machines - the Sys-

86 STRUCTURED DESIGN

tem/370, the System/3, or the Widget - will be connected to the Frammis at one time.
As soon as the connection is established, the CMF system will be started, and it will be
gin receiving card images transmitted from the remote machine. The point is obvious:
Since all three machines had different card formats, the binding of the "number-of
characters-in-card" parameter will have to be delayed until the CMF system actually be
gins executing.

Now we can consider the issue of binding time in relation to intermodular connec
tions, and the manner in which this influences the degree of coupling between modules.
Again, an interrnodular reference, which becomes fixed to refer to a specific object at,
say, definition time, more strongly couples the referencing and referent module than if
the~ connection were not fixed until translation time or later.

Certain commonly encountered examples in designing systems will make this
clear. Whenever the language/compiler/operating environment permits separate compi
lation of modules, maintaining and modifying the system are easier than when all
modules must be coded, compiled, and recompiled as a single unit. If the linkage of
modules is deferred until just prior to execution, implementing changes or even radical
restructuring are made even easier.

Because lexical relationships (compare the definitions in the Glossary) are fixed at
definition time, the lexical structure of a program can introduce strong interdependen
cies between modules - even those with no functional interrelationship. Sometimes,
these lexical intertelationships are referred to as co11tent-coupling. Content-coupling oc
curs when some or all of the contents of one module are included in the contents of
another. Two forms of lexical content-coupling may be distinguished. Lexical inclusion
of one module inside another, by itselC is a fairly mild form of coupling. While neither
the lexical superordinate nor its subordinate can be used without the other in some
form, the process of separating the two into lexically independent units is generally
straightforward, unless the lexical subordinate fulfills some position-dependent function.
This will be the case if the lexical subordinate is activated in-line (by ·~falling into" the
code) in some circumstances.

Partial content overlap is a more extreme form of lexical content-coupling. Con
sider the lexical structure of Fig. 6.3 on the next page. Since many programming
languages will not permit this structure, we must ' 4 invent" one that permits direct dec
laration of partial overlap. We should emphasize, though, that in many languages, close
approximations of this are common programming practice. In the case of Fig. 6.3, both
module ARC and module CHORD are intimately tied with the function of the other, and
neither can be used independently.

Furthermore, the modifications necessary to decouple the modules are non-trivial.
The common sections beginning at statement LL2 must be extracted and made into an
independent module, which is activated from both ARC and CHORD in the appropriate
places. If there is anything at all clever or tricky in the use of these common sections
of code, this procedure could be complicated. The skeletal form of the transformation
is shown in Fig. 6.4.

A multiple-entry module is an example of content-coupling, and represents a spe
cial case of lexical inclusion in which the identity interface of several modules (the al
ternative functions) are defined at the same lexical level. It is usually difficult to main
tain or modify the various functions of a multiple-entry module independently.

ARC:
LL4:

CHORD:
LL2:

LLJ:

LLJ:

BEGJNNING OF ARC

END LL4
BEGINNING OF CHORD

END LL2

END LU
ENDING OF ARC

ENO LLJ
ENDING OF CHORD

Figure 6.3. Modules with partial
overlap form of content-coupling.

ARC:
LL4:

BEGl~NING OF ARC

END LL4
USE LL2
USE LLI
ENDING OF ARC

COUPLING 87

CHORD: BEGINNING OF CHORD
USE LL2

LLJ:

LL2:

Lll:

USE Lll

END LU
ENDING OF CHORD

BEGINNING OF LL2

ENDING OF LL2

BEGINNING OF LL I

ENDING OF LLI

Figure 6.4. Modules of
Fig. 6.3 transformed.

In terms of usage, maintenance, and modification, the consequences of controlM
coupling are very different from content-coupling. In Fig. 6.5, control-coupling (in this
case, activation as a subordinate) is indicated by arrows, and content-coupling is shown
by overlapping. We will assume that the figure is a true representation of the systen;l's
structure. Note that we can use the module LINE without being concerned with any
other parts of the system; that is, LINE is independent of all other modules. Similarly,
we can use or manipulate LOOKUP without being concerned with PAGE. The two
modules are conceptually and physically independent: Page heading and table searching
are disjointed tasks. Because of the subordination relationships shown in Fig. 6.5, the
use of PRINT implies the use of PAGE and LINE.

LINE
print a line

PRINT
general print
routine

PAGE
print a
header

TAX
REPORT

STATE
state tax

FICA
F.l.C.A
tax

LOOKUP
table lookup

Figure 6.5. Modular system with content-coupling.

88 STRUCTURED DESIGN

To accomplish printing by using the PRINT module in another system~ we must
use PAGE and LINE, because page heading and detail printing are part of the same job of
report printing. However, what if we wish to do something with STATE and FICA -

e.g., use them in another program or change them in this one'! The use of STATE re
quires the use of FICA because of the content-coupling; moreover, some changes to
FICA will, in fact, become modifications to STATE as well. Yet, F.I.C.A. withholding and
state tax calculations, as functions. really have nothing whatsoever to do with each other.

Why would the designer ever create a program unit coupled by content to another
program unit'? In the example of Fig. 6.5, we must imagine that both FICA computa
tions and STATE computations have something in common - perhaps they use the
same tax table. To save memory and duplication of code, the designer decided that
STATE should make use of some section internal to FICA. The practice may or may not
b~ justified in this example~ as a general design philosophy, it is unwise.

6.2 Common.;.environment coupling

Whenever two or more modules interact with a common data environment, those
modules are said to be common-environment coupled. Each pair of modules which in
teracts with the common environment is coupled - regardless of the direction of com
munication or the form of reference. A common environment may be a shared com
munication region, a conceptual file in any storage medium, a physical device or file, a
common data base area, and so on. The common data areas in primary memory (such
as COMMON in FORTRAN, or the DATA DIVISION in COBOL) are the most frequently
encountered cases. Note that if two modules both originate or both access an element
of data in a common environment, then a change in one module potentially impacts the
other. Thus, common-environment relationships go beyond the input-output relation
ships, which depend on the flow of data.

Common-environment coupling does not fit easily into the schema of coupling
strengths that we have already presented. Common-environment coupling is a second
order, rather than first-order, effect. Modules A and Bare common environment by vir
tue of their references to a third entity, the common environment. The severity of the
coupling depends upon the number of modules interacting with the common environ
ment. In the limiting case where two modules are being considered, common environ
ment coupling is either a form of input-output coupling (if one originates data accessed
by the other) or a minor added factor (if both are transmitting or both are receiving)
above and beyond the minimal input-output coupling. In this case, common
environment coupling probably fits, in terms of strength, between input-output coupling
and control-coupling.

As an example, consider the system of Fig. 6. 6. Let us add a single common en
vironment of a single data element that is common to the eight modules. This results
in module u being coupled to module s (and vice versa), even though they may have
no control or input-output relationship. The same is true for module u and T, u and v,
u and w, and so forth. The complete structure of this system is now that of Fig. 6. 7.
In total, there are 63 directed relationships. For a common environment of E elements
shared among M modules, the total number of relationships, R, is

R Ex M x (M-1)

Obviously, this rises as the square· of the number of modules holding the data environ
me:nt in common.

COUPLING 89

The point is not that common-environment coupling is bad, or that it should be
avoided at all cost. To the contrary, there are circumstances in which this may be the
method of choice. However, it should be clear that a small number of elements shared
among a few modules can enormously complicate the structure of a system - from the
point of view of understanding it, maintaining it, or modifying it. The functioning (or
non-functioning, in the case of bugs!) of any module potentially affects the functioning
of every other module sharing the common environment in as many distinct ways as
there are elements in that environment.

Q

T

u

........ Control
relationships

v

w

Figure 6.6. System without common-environment coupling.

\

90 STRUCTURED DESIGN

R

T

u

Control
•_...relationships

.........
Common
l~nvironment
Coupling

v

Q

w

Single element
Common
Environmeni;.

Figure 6.7. Effect of common*environment coupling.

COUPLING 91

6.3 Decou11ling

The concept of coupling invites the development of a reciprocal concept: decou

pling. Decoupling is any systematic method or technique by which modu1es can be
made morn independent. Each of the forms of coupling generally suggests obvious
methods of decoupling. The coupling caused by binding, for example, can be decou
pled by changing appropriate parameters so that they are bound at a later time, as we
saw in the example of the CMF system. Decoupling from a functional point of view sel
dom can be accomplished except in the early design phase of a project~ as a rule, a
design discipline that favors input-output coupling and control-coupling over content
coupling and hybrid-coupling~ and that seeks to limit the scope of common
environment coupling is the most effective approach.

Besides these obvious techniques, there are some less obvious approaches to
decoupling. Where there are implicit references (ones not appearing as distinct refer
ences in the code) that are necessG1y to understand the operation of a module or its re
lationship to another module, then converting the implicit references to explicit refer
ences decouples the modules. This works for the sfmple reason that what can be seen
is more easily understood than what cannot be seen. This approach to decoupling is
valid only for references that must be dealt with~ making explicit any references or rela
tionships that need not be known and understood only complicates the system.

Another method to decouple modules is standardization of connection. To specify
completely a standard connection requires on1y the specification of the exceptions of in
cremental information.

The introduction of bq{fers for the .elements being communicated along a connec
tion - when it can be done - effectively decouples modules, too. For the purposes of
this discussion, a ''buffer" can be thought of as a first-in-first-out (FIFO) queue, which
preserves the order of elements in the stream. Buffers along communication paths

make modules less time-dependent on one another. If the modules can be designed
from the beginning on the assumption that a buffer will mediate each communication

stream, then questions of timing, rate, speed, frequency, and so forth within one
module will generally not affect the design of the other.

For example, it is often difficult to design, as a whole, processes involving compli
cated ratios of input items to output items. Suppose we have one process that generates
three output items for each input item it receives; the output items may become input
to a second process, which must deal with them in pairs. The two processes then
operate in a cycle - being in and out of step with one another, with a period of six
items. While numerous simple tricks can solve this problem, most will make 'the code
for one process dependent on the particular ratio of the other process. The situation be
comes worse for merge/explosions with several different ratios - particularly if some
vary, perhaps dependent on the data itself. In any case, with buffers, each output .

merely goes into the FIFO queue, and each input simply is obtained from the queue.
Timing and ratios can be ignored so long as there is not a cumulative and irreconcilable

disparity between inputs and outputs.

One very essential method of decoupling is to reduce the effects of common
environment coupling by localization. In a typical real-world system, elements to be
communicated via common environments are lumped_ together into one· or a small
number of regions. This couples a large number of modules that otherwise would be

92 STRUCTURED DESIGN

completely independent of one another. By dividing a single common region into
several logical subregions, we often can arrange things in such a way that no module is
coupled to any other module except those that it must be coupled to by the communica
tion requirements of the problem.

6.4 An application

The coupling between modules in tentative structural designs can be evaluated to
guide the designer toward less expensive structures. To illustrate this, consider two al
ternative modular structures for the same problem. In this application, text as input
from an on-line keyboard and text stored on a card deck are to be dissected into words,
and combined according to codes from the keyboard and codes contained in the cards.
Inputting is to begin with the keyboard and continue, character-by-character, until the
ideograph "$RC" is received. At that point the reading of input from cards is to com
mence, continuing until the ideograph "//" is reached. Input from the keyboard then
resumes. An end-of-transmission from the keyboard triggers reading the remaining
cards. Last-card under any other circumstances is an error. The continuous stream of
text from these two sources is to be broken into separate English words, which are then
passed individually to a pre-existing module named PROCWORD.

Once again, Charlie has been called upon to do the programming. Having just re
turned from a seminar on structured design, he has produced a structure chart for the
system, as shown in Fig. 6.8a. When his fellow programmer Nadine looked at the prob
lem, she told him he should structure it as in Fig. 6.8b. Both of these structures are
normally connected~ each consists of five modules with exactly four interconnections.
In 1~ach design, all the word-finding logic has been isolated into a single module, but
one design is likely to be easier to program, maintain~ and modify. The difference must
be in the degree of coupling implied by each design. To evaluate this, we will need to
look at the information that must be communicated along each connection between
modules.

SCANWORDJ
'

INKEY REA DC ARD
Get next char· Input one
acter from card
ke board in ml

FINDWORD
Scan text for
next word

Figure 6.8a. Charlie's design for
the word-scanning problem.

PROCWORD
Do something
with the word

SCANTEXT

\word

GETWORD PROCWORD

GETCHAR GETCARD

Figure 6.8b. Nadine's design for
the word-scanning problem.

COUPLING 93

In Charlie's design of Fig. 6.8a, the INKEY module must make available to SCAN

WORD 1 a character read from the keyboard or an indicator that there are no more char

acters if the user has disconnected the terminal. Note that the indication of presence or

absence of a character comprises an element of control information even if it is com

municated as part of the data. It is not data to be operated upon~ but is a control that

signals how to operate. There may be many tricks a programmer can use to disguise

this fact. A special value for the character parameter may be used to signal end-of-data.

This, of course, has its own dangers, as an erroneous or even a legitimate character that

turns out to have the reserved value may at some time be input.

The point is that the control information must be known~ therefore~ it is easier to

assess the quality of the design in terms of coupling if we make the fact obvious. No

amount of disguising control as data will decouple the modules. This argument sug

gests that during structural design, it is good policy to regard each distinct type of data

and each element of control, flag, signal, or state as if it were communicated via a

separate parameter in a calling sequer:ice. Then~ counting parameters will allow the

designer to assess degree of coupling.

The remainder of the comparison now becomes easier. The coupling between IN

KEY and SCANWORDl is the same as between GETCHAR and GETWORD in Nadine's ver

sion. Likewise, READCARD and GETCARD are coupled equally to their superordinates.

However, Charlie's FINDWORD module must accept either a character or a card image as

input data, plus control elements for end-of-transmission and last-card conditions, and

an indicator of which data are being passed.

Like Nadine's GETWORD, Charlie's word-separating module must be able to return

the next word in some form, but it will also have to pass control information specifying

whether it is returning to deliver a word or to get another card image, or to request

another keyboard character. Since the final end-of-text logic is tied up with the card

and character reading logic, both the FINDWORD and the GETWORD modules would haye

to be capable of signaling end-of-process to superordinates. The required parameters

for the two systems are listed in Table 6.1. Note that Charlie's design involves two

more data parameters and six more control parameters than Nadine ~s.

Table 6.1

Data and Control Information Needed in Two Designs for the Same Problem

MODULE

INKEY

READCARD

FINDWORD

PROCWORD

GETCHAR

GETCARD

GETWORD

PROCWORD

INPUTS

character, end-of-transmission.
card image, last-card, source

word

word

OUTPUTS

character, end-of-transmission

card image. last-card

word, end-of-words, get-character.
~et-card, h ere:is-word

character. end-of-transmission

card image, ~

word, end·of-words

94 STRUCTURED DESIGN

An interesting consequence of the greater coupling in Charlie's design is that
SCANWORDl includes coding to test and dispatch on the request by FlNDWORD for more
input. This is an example of an "inversion of authority"~ that is, the subordinate is tel
ling the boss how to do some detail of the subordinate\s job, comparable to a janitor tel
ling the office manager to fetch a roll of towels from the stockroom so the janitor can
put them in a holder in the washroom. Another complication in Charlie's design not
found in Nadine's is that the FINDWORD module must be coded so that it remembers
where it left off in scanning for a word when it returned to its superordinate for input.
There could be many different loops or branches within the code for FINDWORD, and
the correct one must be resumed when FINDWORD is next called. Because GETCHAR
and GETCARD are subordinate to GETWORD, they will always return to GETWORD wher
ever it left off. The need for special facilities to maintain the state of processing in
Charlie's design may be regarded as a defect of this particular arrangement of
subroutines.

6.5 Summary

This chapter has introduced one of the most important criteria for judging the
goodness of a design: coupling. The next chapter discusses a related concept known as
cohesion~ together, these two concepts form the central theory of structured design.

As we have seen, there are several factors that influence the coupling between
modules: the type of connection, the complexity of the interface, the type of informa
tion that flows between the modules, and the binding time of intermodular connections.
In addition, the use of uglobal" data greatly increases intermodule coupling. Attempts
hav1~ been made to quanl(fy the strength of various types of coupling,* but it will prob
ably be several years before such quantitative measures are accepted within the data
processing profession.

*See, for example, Glenford J. Myers, Reliable SoJiware Through Composi1e Design (New York:
Petrocelli/Charter, 1975), or Christopher Alexander, Notes on the Synthesis of Form (Cambridge, Mass: Har~
vard University Press, 1971).

CHAPTER 7
COHESION
~

7 .0 Introduction: functional relatedness

We already have seen that the choice of modules in a system is not arbitrary. The
manner in which we physically divide a system into pieces (particularly in relation to
the problem structure) can affect significantly the structural complexity of the resulting
system, as well as the total number of intermodular references. Adapting the system's
design to the problem structure (or "application structure") is an extremely important
design philosophy; we generally find that problematically related processing elements
translate into highly interconnected code. Even if this were not true, structures that
tend to group together highly interrelated elements (from the viewpoint of the problem.
once again) tend to be more effectively modular.

Let us imagine, for the moment, that there is some measure of functional
(problem-defined) relatedness between pairs of processing elements. In terms of this
measure, the most effectively modular system is the one for which the sum of function
al relatedness between pairs of· elements not in the same module is minimized; among
other things, this tends to minimize the required number of intermodular connections
and the amount of intermodular coupling.

Hlntramodular functional relatedness" is a clumsy term. What we are consideripg
is the cohesion of each module in isolation - how tightly bound or related its internal
elements are to one another. Other terms sometimes used to denote the same concept
are "module strength," "binding," and Hfunctionality."*

In the real world, a single, isolated element of processing may be functionally re
lated in varying degrees to any number of other elements. As a result, different
designers might see different interpretations of the problem structure, and hence
different, least-costly modular structures for the solution. The cohesion of these
modules (and, hence, the intermodular functional relatedness, or coupling) may vary
considerably for these different interpretations of the problem~ small shifts in elements
among modules may substantially change the total cohesion of a module. There is
another real-world problem that adds to the variety of interpretations of problem struc
ture and program structure: In many cases, it may be difficult to identify or evaluate
the strength of functional relatedness of one element to another.

*We prefer the term "cohesion, ' 1 as this is the accepted term for the identical concept in sociology, another

discipline in which cohesion in that case, the cohesion of groups - is important. Cohesion is used in a
variety of engineering and other scientific disciplines as well, and it almost always has the same connotation as

our use of it in this book.

95

96 STRUCTURED DESIGN

Module cohesion may be conceptualized as the cement that holds the processing

elements of a module together. It is a most crucial factor in structured design, and it is

a major constituent of effective modularity. The concept represents the principal tech

nical "handle" that a designer has on the relationship of his system to the original

problem structure. In a sense, a high degree of module cohesion is an indication of
close approximation of inherent problem structure. .

Clearly, cohesion and coupling are interrelated. The greater the cohesion of indi

vidual modules in the system, the lower the coupling between modules will be. In ac

tual practice, these two measures are correlated~ that is, on the average, as one in

creases, the other decreases~ but the correlation is not perfect. Maximizing the sum of

module cohesion over all modules in a system should closely approximate the results
one would obtain in trying to minimize coupling. However, it turns out to be easier

both mathematically and practically to focus on cohesion.

Mathematically computing the intramodular functional relatedness among ele

ments involves fewer pairs of processing elements to which the measure would have to

be applied than to compute total intermodular functional relatedness. Practically speak

ing, it just turns out to be more useful to be able to answer the questions, Does this

make sense as a distinct module? and, Do these things belong together? than to be
able to tell whether or not to chop something at a particular point. Both coupling and

cohesion are powerful tools in the design of modular structures, but of the two, cohe
sion emerges from extensive practice as more important.

Cohesion represents an operational refinement over earlier concepts about func

tional relatedness. Many writers and teachers in the field have long pleaded for highly

functional modules without tackling the fundamental problem of how to recognize a

functional (or for that matter, a nonfunctional) module. Development of a practicable

means of assessing functionality was frustrated until a direct investigation was undertak

en to find out why programmers and systems analysts put things where they did.

Although a definition, or at least a characterization, of what is functional is essen

tial for a full understanding of cohesion, we will continue to use the terms function and
functional informally until much later in the chapter when we will be able to treat the

problem more adequately.

Cohesion can be put into effective practice with the introduction of the idea of an
associative principle. In deciding to put certain processing elements into a module, the

designer, in effect, invokes a principle that certain properties or characteristics relate the

elements possessing it. That is, the designer would state things like "Z is associated

with this module containing X and Y, because X, Y, and Z are all related by virtue of

having the 'glop' property." (Lest you think that this is entirely academic, be assured

that we will spend several pages in Section 7.1 discussing some very specific glop pro

perties!) Thus, the associative principle is relational, and is usually stated in such terms

(e.g., ''It's OK to put Z into the same module as X and Y, 'cause they're all related in

such-and-such a manner.''), or in terms of membership in a set (e.g., Hit's OK to put Z

into the same module as X and Y, 'cause they're all members of the glop set.").

Ironically, this important design concept had to be developed after the fact -

when it was too late, politically or pragmatically, to change designs - by asking the

designer/programmer why a certain processing element was combined with others into a

module. It must be kept in mind that cohesion applies over the whole module - that

COHESION 97

is, to all pairs of processing elements. Thus, even if the designer has said, ' 4Well, it's
OK to include element X in this module, because iCs strongly related to elements Y
and Z," the module could be low in cohesion, as X may be unrelated to elements A, B,
and C in the same module.

We have intentionally used the term Hprocessing element" throughout this dis
cussion, instead of the more common terms, instruction or statement. Why? First, a
processing element may be something which must be done in a module but which has
not yet been reduced to code. In order to design highly modular systems, we must be
able to determine the cohesion of modules that do not yet exist. Second, processing ele
ment includes all statements that will or do appear in a module - not only the process
ing accomplished by statements executed within that module, but also that which
results from calls on subordinates. The individual statements or elements of processing
found within some module, FOO, which is called by module FUM, do not figure into the
cohesion of module FUM any more than we would say that the instructions in one
subroutine are "in'' another subroutine which calls it. But the overall processing ac-,
complished by the call on subordinate FOO is clearly one element of processing in the
calling module, FUM, and therefore will have to be figured into the cohesion of FUM.

For clarification, suppose we have a module A which consists of elements X, Y,
and Z. Suppose that element X is really a call to subordinate module X, and that the
elements of X - say X1 , X2 , and X 3 - are highly unrelated. It may turn out, howev
er, that X1 , X2 , and X3 , while apparently unrelated to one another, are, taken togeth
er, essential to the performance of A's function, which includes Y and Z. Thus, A
might be highly cohesive even though one of its subordinates is quite uncohesive -
and the associaNve principle would allow X1, X2 , and X3 , to be included from A's
viewpoint. Even so, there will probably be some disagreeable consequences of the
artificial attempt to combine X1 , X2 , and X3 into module X (as we will see in Section
7.2), and this may degrade the design as a whole.

7 .1 Levels of cohesion

The first attempts to learn why designers associated things into modules* resulted
in distinguishing only three levels of cohesion. Over the years, the list has been ex
panded and refined through experiment, theoretical argument, and the practical experi
ence of many designers. The associative principles that we will discuss are those which,
with a single exception noted below, have stood the test of time and which in all cases
may be given more or less precise, technical, mutually exclusive definitions. Recently,
additional associative principles or different names for the same principles have been
proposed, by Myers 1 among others. The "new" levels, however, are found to reduce
to special cases of the basic principles. The names we will use are those established as
standard by Stevens, Myers, and Constantine. 2

There are seven levels of cohesion distinguishable by seven distinct associative
principles. These seven levels are listed on the following page in order of increasing
strength of cohesion, from least to most functionally related.

*Undertaken in 1964 and 1965 by Constantine while at C~E-1-R, Inc.

98 STRUCTURED DESIGN

• coincidental association

• logical association

• temporal association

• procedural association

• communicational association

• sequential association

• functional association

These seven points do not constitute a linear scale. There are no data now extant that
would permit assigning more than a rank to each level. However, when applied to sys
tems design, they have been found to behave as if the first three (coincidental, logical,
temporal) constituted very low and generally unacceptable levels of cohesion, suggest
ing a poor, costly design, while the last three (communicational, sequential, functional)

· produced generally acceptable levels of cohesion. We will return to the question of
measuring cohesion in Section 7.3. Each of these seven levels is discussed in detail
below, with examples of each.

7.1.1 Coincidental cohesion

Coincidental cohesion occurs when there is little or no constructive relationship
among the elements of a module~ one is tempted to refer to such a situation as a "ran
dom module." Coincidental cohesion essentially establishes a zero point on the scale, or
hierarchy, of cohesion. Fortunately, a module that is purely coincidentally associated is
a relatively rare occurrence. It is more likely to result from "modularization" of code
that has already been written - that is, when the programmer sees an opportunity to
convert multiple occurrences of a random sequence of statements. For example, the
following code contains the same three-statement sequence in two different places:

R: IF TRAN-TYPE > 5 OR VALUE < 0 THEN DO TR-ERROR /edil transaction
READ MASTER INTO Q
ADD 3 TO REPT-LINES /bump count for 3-line entry

S: IF TRAN-TYPE> 5 OR VALUE< 0 THEN DO TR-ERROR
READ MASTER INTO Q
ADD 3 TO REPT-LlNES

One may be tempted to modularize the above code by creating a module that does
the following:

DO-FOO: SUBROUTINE (TR-TY, VAL, M-Q)
IF TR-TY > 5 OR VAL< 0 THEN DO TR-ERROR
READ MASTER INTO M-Q
ADD 3 TO REPT-LINES
RETURN

COHESION 99

with the appropriate calls at R and s. But suppose we had unintentionally written the
second sequence, in the original version of the program, as

S: READ MASTER INTO Q
IF TRAN-TYPE > 5 OR VALUE < 0 THEN DO TR-ERROR

ADD 3 TO REPT-LINES

Our DO-FOO function has disappeared! Indeed, the three steps probably have no rela
tionship whatsoever with one another, and we may find that two of the three statements
are used in other parts of the code.

It must be stressed that coincidental cohesion of modules is not being presented
as a taboo~ we are not suggesting that lightning will immediately strike the programmer
when he creates a coincidentally cohesive module. Indeed, a system with coincidentally
bound modules may be more modular than a comparable system without them! Cer
tain Iy~ it would be a smaller system in te.rms of mempry requirements. If a sequence of
code was not repeated and was instead put into something like our DO-FOO module
above, then it could be understood, debugged, and possibly modified in only one place.

However, problems begin to arise when each use of the coincidentally cohesive
module does not mean the same thing in application-related terms. In this case~ a
change to the module that makes sense in terms of the general case - that is, in terms
of the module's purported function - may not make sense in each of the specific uses.
Of course, this is a possibility with any module, but it is obviou_sly more probable if
each use of the module exists only because of the coincidental association of several
processing elements.

Problems of this sort arise particularly frequently when a maintenance program
mer attempts to track down a bug in an unfamiliar program. For example, report page
breaks may sometimes occur in the middle of three-item groups. In pursuit of the bug,
the programmer might start reading through the new modularized version of our code
above, which now reads:

P:

R: CALL DO-FOO (TRAN-TYPE, VALUE, Q)

S:
S: CALL DO-FOO (TRAN-TYPE, VALUE, Q)

Naturally, when he reaches statement R~ his curiosity will turn to the appropriate part of
the program listing (probably several pages away) to see what the mysterious DO-FOO

does.* Suppose, for the sake of argument, that he finds the bug in DO-FOO. "Aha!" he

*This is an extremely important point, though somewhat tangential to our current discussion. Since DO-FOO
does not perform a cohesive fu11ctio11, but is instead a random collection of processing elements, it will be
difficult (if not impossible} to practice "top-down debugging." If the programmer thinks there is a bug some
where in the sequence of code between P and S (and he must think that - otherwise,. why would he be look-

100 STRUCTURED DESIGN

says~ "What I really should be doing here is adding only 2 to REPT-LINES instead of 3. ,,
If he is a typical programmer, chances are that he'll change the appropriate statement in
DO-FOO, and then put the modified program into a six-hour production run - only to
find that he has exchanged one bug for another, because the processing at statement s
still wanted DO-FOO to behave in its original fashion. Once again, we observe that this
can happen to any module - but it is far more likely to occur in a coincidentally
cohesive module.

Modules of this type have a propensity to appear at an early point in classroom in
troductions to "subroutinization." The practice was prevalent (and sometimes justified)
in the early l 960's, when the available computers tended to have severe memory limi
tations. Unfortunately, even in today's world of multimegabyte computers, some
designers persist in developing coincidentally cohesive modules in an attempt to save
memory. Another contributing factor to the creation of a vast new supply of coinciden
tally cohesive modules is the introduction of minicomputers and microcomputers into
EDP organizations. Not only do these machines have limited amounts of memory, but
they also have memory addressing problems (e.g., the designer may find that he can
directly address only 128 memory locations), which tempt the designer into creating
coincidentally cohesive modules such as the one we saw above.

There is a more recent influence that has tended to increase the number of un
cohe:sive modules: structured programming. Structured programming has been credit
ed with everything from reductions in dental caries to improvements in one ,s sex life -
and there is no question that it has substantially improved the quality of detailed logic
design and coding in many organizations (for technical discussions of structured pro
gramming, see J.4.S). However, in their rush to cast out their GOTO statements and be
gin writing structured code, a number of programmers have misinterpreted some of the
bask tenets of structured programming (not the least of which is the notion that code
cannot be structured if it contains any GOTO statements), and they have applied other
rules blindly.

One such situation occurs when the programmer designs logic of the form shown
in the flowchart in Fig. 7.1. In the "old days," the programmer would have coded the
transfers of control (represented by the arrows in the diagram) with GOTO statements.
Using structured programming, though, the programmer is told he should rearrange the
logic into the form shown in Fig. 7 .2.

ing at the code'!), then he would like to finish searching through the P-to-S code before becoming distracted
with some other code particularly if that code, like DO-FOO, is several pages away in the program listing.
This would be possible if DO-FOO were performing a function say. for example, a square root. In that
case, the programmer could say to himself, "Aha, there's a call to the square root routine, the one that some
idiot :named DO-FOO. I'll assume for now that it works correctly~ but I guess I'd better check my P-to-S code
to make sure that it really should be calculating a square root at this point, and that I'm passing the right

parameters to the subroutine." If the programmer could not find any bugs in his P-to-S code. then he might
suspect that the problem lay in his DO-FOO code, and 1fle11 he could turn to the appropriate place in the listing
w examine the code. Unfortunately, since our version of DO-FOO is 1101 a function, the programmer must
look at it as soon as he sees its invocation in the P-to-S code. At the very least, he will find this mildly dis
tracting~ indeed, it could easily become intolerable: since DO-FOO may call another subordinate coincidentally
cohesive module, which could call another one, and so forth. (Note that this has nothing to do with the in
famous GOTO stateme.nt, which is usually blamed for the evils of "rat's nest" code.) For further discussion,

see Yourdon, 3 and Chapter 20.

COHESION 101

A 13 c

t>

Figure 7 .1. Flowchart.

Figure 7.2. Structured version of Fig. 7. l.

102 STRUCTURED DESIGN

Naturally, he complains about the increased memory requirements caused by the
duplicated (or triplicated, or quadruplicated ...) sequences of code. And voila! He
creates modules for all of the duplicated sequences of code and inserts subroutine calls
at the appropriate points. Such newly created modules are often uncohesive, even coin
cidentally cohesive in nature. The newly created modules are frequently only three or
four statements whose relationship to one another is nil.

This is particularly ironic since the new modules were created in the name of
structured programming - and, of course, everything associated with structured pro
gramming must be "good"! It may turn out that the code would have been better if it
had been left in its original form, shown in Fig. 7. L If the dup1icated sequences of
code seen in Fig. 7.2 are each coincidentally associated or low in cohesion, a better
design might result if they are physically duplicated in the code not with a COPY

statement (as in COBOL) or a %INCLUDE statement (as in PL/I) or an in-line macro fa
cility., but by actually writing the code two times, three times, or as many times as
necessary in the program.* If the duplicated code wastes enough memory to be bother
some, the programmer should search for highly cohesive modules with which to make
efficient use of memory.

We conclude this discussion by observing that while few modules in the real world
are wholly coincidentally cohesive or even largely coincidentally cohesive, there are
many that contain some coincidentally cohesive elements. This is especially true of ini
tialization and termination operations, which could just as easily be placed in the su
perordinate (initialization and termination modules will be discussed in more detail in
Section 7. l.3). Again, the coincidental association of a few elements with a module is
not so much a problem in itself, but it is a possible deterrent to effective maintenance,
modification, and widespread use.

7.1. 2 Logical cohesion

The elements of a module are logically associated if one can think of them as fal
ling into the same logical class of similar or related functions - that is, ones that would
logically be thought of together. This is best illustrated by examples.

We could combine into a single module all processing elements that fall into the
class of Hinputting" - that is, logically related by virtue of being input operations.
Thus, we could have a single module, INPUT ALL, which performs the functions of read
ing a control card, reading exception transactions from cards, obtaining normal transac
tions from magnetic tape, and obtaining Hold" master records from a disk file. All of
these are input operations - and the module INPUTALL is logically cohesive.

Another example is the module that edits (validates) all incoming data, regardless
of source, type, or use. Similarly, a module that performs all calculations or computa
tions for a system is logically associated~ indeed, one often finds modules in·real-world
systems whose name is simply COMPUTE. Similarly, a general-purpose error-routine is

•we observe that the optimizing compilers on maoy computers are now clever enough to recognize duplicated
sequences of code - and they should be responsible for generating a subroutine call, if the programmer has
requested memory optimization. Note that if the programmer changes a statement in one or the multiple oc
currences of the duplicated code, and then recompiles his program~ the compiler will be clever enough to
recognize that the sequences of code are now different. Compilers are tireless and error-free in such matters~
programmers aren't!

COHESION 103

typically logically associated; depending on the specific type of r;rror, it will print one of
several different error messages, reject some of the input currently being processed, re
start other processes, or possibly shut down the entire program.

Logical cohesion is generally stronger (that is, more cohesive and thus more desir~
able) than coincidental cohesion, because it represents some minimal problem-oriented
basis for associating the elements in the module. However, it should be recognized that
a logically cohesive module does not perform a function. The module INPUT ALL does
not perform a single function, but rather one of several different (but logically similar)
functions, depending on whether the caller wishes to read a control card, an exception
transaction, a normal transaction, or an "old" master record. The potential disadvan
tages of logically associated modules are easier to see in relation to temporally associated
modules, which are discussed below.

7.1. 3 Temporal cohesion

It is a common programming practice to bring into a single place - sometimes
forming an actual subroutine - all elements having to do with "start-up." Thus, we
typically find an initialization module that reads the control cards, rewinds tape drives
and opens disk files, resets counters, sets accumulator areas to zero, and so forth. Such
a module may be said to be logically associated; it is also temporally associated. Its ele
ments are related by time. However, this particular class association has special proper
ties that render a module more cohesive than other forms of logical cohesion; hence, it
is given a special name. Temporal cohesion means that all occurrences of all elements
of processing in a collection occur within the same limited period of time during the ex
ecution of the system. Because the processing is required or permitted to take place in
a limited time period, temporally associated elements of processing may be combined
into a module that executes them all at once. This property simplifies the behavior of
the module to its superordinate: A single call at a particular time causes all related ac
tivities which should take place at that time to occur together.

Not all logically cohesive modules consist of temporally associated elements. For
example, elements of the INPUTALL module may have no predictable or bounded time
relationship at all. We can get a better clue to the consequences of logical and temporal
cohesion by asking how a programmer typically would implement the INPUTALL module.
Assume that we have a relatively clever programmer. His module must perform
several distinct functions, performing the right one on a given call. How does the
module choose the right type of input operation to perform?

First, the programmer notes that control card input will be required only once -
and that this will be the first request. So\ he writes the first few statements of INPUT

ALL to perform this function and then sets a switch to bypass these statements on sub
sequent calls. He also knows that exception transactions are obtained only after certain
normal transactions are completed. Similarly, the programmer knows that disk refer
ences immediately follow a normal or an exception transaction and that there will be at
most one such disk reference for each transaction. Finally, he knows that all calls for
exception transactions occur late in the processing, and will thus be higher memory ad
dresses. Slowly, he puzzles out the various combinations and develops a "clever"
module that always does the right thing.

104 STRUCTURED DESIGN

Of course, much later (after the programmer has left the organization), the excep
tion transaction coding somehow ends up in low core (where it doesn't work so well),
and two successive "type 1" exception transactions will be called for, and a series of
consecutive disk references will be required. This "clever" solution is then found to be
very difficult to maintain and modify.

A simple-minded programmer, on the other hand, would take a different route
and simply input everything in one magnificent blast - on the first call to INPUT ALL.

Veteran number-crunchers, experienced in organizing FORTRAN programs, are know
for this kind of INPUTALL. But it is obvious that one cannot deal with all input
processes in this one··shot fashion - and it would be particularly clumsy for INPUT ALL if
all transactions and master records were read as a block. Most programmers would
recognize the basic contradictions between reading of control cards, reading of excep
tion transactions, reading of normal transactions, and reading of old master records -
and they would probably require the superordinate module to supply a flag indicating
which type of input function was desired. But then one wonders why the programmer
didn't organize four separate modules in the first place. In fact, an examination of the
code would reveal four essentially distinct and independent sections of code entered on
the basis of an initial four-way test. This seems to be a general property of logically
cohesive modules.

The implementation difficulties arise whenever processing elements in a module
are logically associated but not (necessarily) associated in time. Computer programs are
intrinsically sequential, time-ordered processes. Logical cohesion without temporal
cohe:sion almost always leads to tricky, obscure, or clumsy code which is difficult to
maintain and modify. We will say more about the consequences of this a little later.

This is a crucial point for the designer. It often is easy to specify what appears to
be a function (e.g., edit, calculate, input, transaction-processing, and so on) and find in
stead that one is specifying a class of functions; if such a design is translated into code,
the result will be a logical and/or temporal cohesion in modules. But it is also fairly
easy to develop the ability to distinguish the levels of cohesion implied by a given
design~ that is, logical and temporal cohesion can be discovered and discussed a priori
- not after the code has been written. The designer then can modify his design, com
pensate for the effects of low cohesion, or simply take the consequences into account.

Temporal cohesion is stronger than logical cohesion for reasons implicit in the
foregoing discussion. Time-relatedness, because of its process orientation and relation
ship to essential properties of programs, more strongly relates processing elements.
Given a choice, then, one would prefer a temporally cohesive module to a logica11y
cohesive module - and both are preferable to coincidentally cohesive modules.

But temporal cohesion is still quite low in cohesion and implies complications to
systems with resulting higher expected cost of maintenance and modification. For ex·
ample, suppose we had an initialization module whose jobs included opening two files,
setting a counter to zero, and setting the elements of two arrays to zero. The clever
programmer, when combining these activities into one module, might be tempted to
write code of the sort shown on the following page:

DECLARE A AS ARRAY WITH 20 ELEMENTS
DECLARE B AS ARRAY WITH 30 ELEMENTS

USE SAME BUFFER AREAS FOR FILE P AND FILE Q

OPEN FILE P
OPEN FILE Q

SET COUNTER 1 TO ZERO

DO LOOP VARYING I FROM t TO 50 IN INCREMENTS OF 1
MOVE COUNTERl TO A(I)

END LOOP

COHESION 105

It should be evident that the programmer has managed to create a number of in
terdependencies between elements of his code. First, he has arranged that file P and file
Q will share the same input-output buffer - presumably because he thinks that the pro
gram will not be doing input-output on the two files at the same time. Second, he has
cleverly arranged for one loop to initialize the elements of the A array, and then to '~rail
through" the bottom of the A array and initialize the B array (such a trick actually works
in several versions of FORTRAN and COBOL). Finally, note that he is not really set
ting the array elements to zero, but setting them equal to the contents of COUNTER l -

which happens to have been set equal to zero. We can· imagine the sort of problems
that will occur if, at some later time~ we decide that (a) it is necessary to perform
input-output on files P and Q at the same time, or (b) we decide to initialize COUNTERl

to a value of -1, or (c) we decide to change the appropriate DECLARE statement to
make array A forty elements long without remembering to change the LOOP statement.

As before, we observe that this kind of code could be written by any programmer
in any module. The problem really occurs when the maintenance programmer wishes
to change one function without destroying any other function - and, if the functional
processing elements have become intermingled within a module, this task will prove to
be difficult.

7.1. 4 Procedw:al cohesion

\

Early in the evolution of measures of module cohesion, it was noted that when
the designer used a flowchart of an overall process as the ~asis for deciding where to
chop it into subroutines or other modules, the results were highly variable - but tend
ing towards characteristics typical of low cohesion. No precise definition of what might
constitute this procedural association was forthcoming, and an adequate technical expla
nation of the variability of results continued to elude the authors for years. The key
turned out, once again, to be the separation of data relationships (which show up in the
stronger forms of cohesion discussed below) from control features.

106 STRUCTURED DESIGN

Procedurally associated elements of processing are elements of a common pro

cedural unit~ they are combined into a module of procedural cohesion because they are

found in the same procedural unit. The common procedural unit may be an iteration

(loop) or decision process, or a linear sequence of steps. The latter relationship, a sim

ple succession of steps, is the weaker and shades into temporal cohesion. A temporally

cohesive module may include various steps which may be executed in a particular time

span, but not necessarily in a particular sequence. Initialization is an obvious example.

The very fine ~istinction here is not of overwhelming importance, and we shall limit

our disc'ussion to the more important cases of iteration and decision units.

As always, to say that a module achieves only procedural cohesion, the elements

of processing would have to be elements of some iteration, decision, or sequencing

operation - but not also be elements of any of the stronger associative principles dis

cussed in subsequent sections of this chapter. Procedural cohesion associates processing

elements on the basis of their procedural or algorithmic relationships. Although this

level of cohesion can result from many practices that emphasize sequence, method, and

efficiency, it commonly results when modular structure is derived from flowcharts or

other models of procedure, such as Nassi-Shneiderman charts 6 (sometimes termed
BChapin charts" 7).

Consider the top-level flowchart in Fig. 7.3 and the modular structure suggested

by the bracketing shown there. This organization is shown in Fig. 7.4~ note that TYPDE

CID is immediately subordinate to PLANLOOP, which is immediately subordinate to

SIMPRO. Note also that in this organization, module PREP is temporally cohesive

(why?), TYPDECID is procedural because its elements are part of a decision process, and

PLANLOOP is procedural because its elements are those of the main iteration. The ele

ments within PLANLOOP and TYPDECID are related not only in time, as in the case of

temporal cohesion, but by additional procedural dependencies. The procedure chosen

to solve the problem is more strongly dependent on the structure of this particular prob

lem than are the general, abstract categories and classes of logical cohesion.

Although stronger than temporal and logical cohesion, procedural cohesion has its

problems. As an intermediate level of cohesion, we would expect that procedural

modules would tend to be fairly strongly coupled and be somewhat clumsy to use as in

dependent entities. This is clearly exhibited in the SIMPRO system. Elements of the

manufacturing plant simulation algorithm are found in both PLANLOOP and TYPDECID~

the steps that are shaded in Fig. 7 .3 have been split between these two modules. We

expect complex, subtle interdependencies among these steps with the result that most

changes or bugs in the simulation algorithm will probably require dealing with both

modules. Neither PLANLOOP nor TYPDECID performs a task that stands alone very well~

neither is very likely to be easily used "as is" in another system or in a future version.

PLANLOOP, for example, does not perform the complete function of simulating all

plants, as the initialization of the loop control -condition is found elsewhere (temporally

associated with other initialization in the PREP module).

The general point is that procedural cohesion often cuts across functional lines. A

module of only procedural cohesion may contain only part of a complete function, one

or more functions plus parts of others, or even fragments of several functions. It also

might be found, by chance, to encompass exactly one complete, separable function. It

is thus that structural design from procedural models, such as the flowchart, leads to

such highly variable results.

P._repc\re,
p:1rc1 me +er
tnc.Jrr'}(f-or
process i

reset 1nd.kr..tus
to be(n t, Wi ti\

I fnat\ uf b..c.ruri ~ l
J_ pkud -It i. r - _-=..:::--__ -_-__. - LI

1
<Jes I

I
I
I
I

I
I

I
I
I

Qqf"-f) le-~.
.,Si fYtV lq;f\ht'\

pre.cc ss..,,

__ I_

ex: ~c.t datu..
fLy d i.clSt o Y\

"hjpt- A.

L _______ _

PRE.P

COHESION 107

-,
I

f

I ~
~"1 I t·~

I •...,,··

jT~
(') -0

Figure 7.3. Flowchart for a multi-plant manufacturing simulation program, SIMPRO.

108 STRUCTURED DESIGN

ready
matrix,

indicators -----..---....
PREP

SIMPRO

ready matrix,
indicators

PLAN LOOP

partial

'~ ~results,
matrix,)I flags, etc.

indicators
TYPDECID

Figure 7.4. Modular structure for SIMPRO based on the procedural partitioning of Fig. 7.3.

ready
matrix

PREPMAT

SIMPRO

-t ready ma tr ix

SIMALL

+ matrix

SIMlPLANT

Figure 7.5. Another SlMPRO structure based on the partitioning of Fig. 7.6.

I

'

' I
r
I
I ~

f

I
I .. --. -. - -
I
f

r

I
'-

.St ml; { £l.h..
Varia._~

B

~fh{ll~G.,
Sanu Lll:tt.o'.t\
proc.e..ss

COHESION 109

I
I

l
I

I
I

I
.1

Figure 7.6. Another partitioning of the SIMPRO problem, corresponding to the structure of Fig. 7 .5.

l 10 STRUCTURED DESIGN

ready ,,
matrix / /

PREPMAT

SIMPRO

ready

~ matrix

SIMALL

matrii,. ,C
; type

code

TYPANALYZE

\ matrix,
\ ~ typecode

PLAN COMP

Figure 7. 7. Further refinement of the SIM PRO structure
that includes a useful procedural module, TYPANALYZE.

The objections and potential disadvantages of the SIM PRO structure in Figs. 7 .3 and
7.4 can be overcome with the structure of Figs. 7.5 and 7.6. This structure includes a
SIMALL module that completes all simulations and a SIMIPLANT module that performs
the complete simulation of one plant. While this structure might have been derived
from the flowchart, there is nothing in the flowchart that would tell the designer how to
accomplish this.

It should be emphasized again that procedural cohesion is not necessarily undesir
able in all circumstances. A further subdivision suggested by the dotted line in Fig. 7 .6
might lead to the structure of Fig. 7. 7. The TYPANALYZE module probably is properly
described as achieving only procedural cohesion, but it implements the (potentially)
useful, distinct task of figuring out which type of plant (whatever that means) is being
presented. This also permits the isolation of the actual simulation computations into a
separate single module, PLANCOMP. The cohesion of that module cannot be evaluated
until we have completed the discussion of levels of cohesion.

7.1. 5 Communicational cohesion

None of the levels of cohesion discussed above is very closely tied to the structure
of a particular problem. Communicational cohesion is the lowest level at which we en
counter a relationship among processing elements which is intrinsically problem-

COHESION 111

dependent. To say that a set of processing elements is communicationally associated
means that all of the elements operate upon the same input data set and/or produce the
same output data. Communicational cohesion is thus defined in terms of the problem
structure as represented in the data flow graph introduced in Chapter 3. In the data
flow graph of Fig. 7 .8, two such partitionings are shown. One, PROCESS RECORD, is
communicationally associated on the input side; the other, GET-A/B-DATA, is communi
cationally associated on the output side.

The data flow graph of a problem can serve as an objective means for determining
if the elements in a module are communicationally associated. Communicational cohe
sion, though not maximal, is sufficiently high as to be generally acceptable in the ab
sence of strong counterarguments or lacking an identifiable alternative structure with
higher cohesion.

Communicational association is common in business and commercial applications.
Often, it is the result of thinking in terms of all the things that can be done with a
given item or piece of data once it is obtained or generated, or, on the other side, in
terms of all the things that must be done to create a· given result, say, a detail line in a
report. Putting such collections together results in a module of communicational cohe
sion. Typical examples would include

• a module to print and punch the transaction file

• a module that accepts data from several sources, transforming and as
sembling them into a report line

The associative principle of communicational cohesion actually covers a wide
range of d~~grees of relatedness, as the elements of data comprising a stream or set of
data may themselves be interrelated in various degrees. If the designer places in one
module all the first transformations for the various records found on a master input tape
that intermingles all possible input to some system, the elements of processing will be
no more related than are the elements of data in the file. It appears that communica
tional association based on both input from and output to the same data set is somewhat
weaker than association on only one side. Conceptually, this may be seen in Fig. 7.9.
Computations A, B, and c are more closely related to each other than to conversions x,
Y, and z. And vice versa, of course.

Some mixed or equivocal cases also are found in common programming practice.
A familiar example might be the MASTERFILECONTROL module, which reads and writes
master file records, opens or closes the file, rewinds, and backspaces. Looking at the
elements of processing that would have to be actually programmed within MASTER~
FILECONTROL, one can see that the reading and opening processing elements are com
municationally associated on the input side with the writing and (possibly) the closing
on the output side, but rewind and backspace have completely different inputs and out
puts in terms of the actually programmed processing elements. Thus, some of the asso
ciations are only logical, and this will show up at the interface of the module. It is
probable that the superordinate would be required to pass a flag to MASTERFILECONTROL

indicating which of its functions (opening, closing, rewinding, backspacing, reading, or
writing) should be performed. This might be acceptable. We can imagine, for exam
ple, that the most likely modification to be made to MASTERFILECONTROL. would con
ce.rn the definition or attributes of the master file itself - and this would probably
affect most or all of the functional processing elements in about the same way.

112 STRUCTURED DESIGN

PROCESS RECORD

r-·-1
I

• • • • • •••

•
•
•
•
•
•
•
•
•
•
• •

--- ·--

A/B
cards

•
•
•

•
•

results
•

•
•
• A/B
• data

•
•
•
•
• • • • ... • • • • • • •

GET-A/B-DATA

Figure 7.8. Data flow graph with two communicationally associated
partitionings superimposed.

Of course, we still can imagine a number of situations that would cause serious
problems for the maintenance programmer. The most serious problems are often of a
timipg nature - that is, the programmer assumes that he can share the same input
output buffer areas (or queue areas, or control blocks, or whatever) among the many

COHESION 113

functions in the module. Sometimes this is based on the simple assumption that the

various functions will not be utilized at the same time (whi~h, from an operational

point of view, may not be true if one is dealing with a buffered, blocked file); some

times it is based on the more complex (and more dangerous) assumption that the vari

ous input-output functions will be used in a certain sequence (e.g., the programmer as

sumes that a "close" function will not be invoked until one or more Hread" functions

has been invoked). Once the programmer begins acting on such assumptions, the vari

ous functional processing elements become interdependent, thus decreasing the

effective modularity of the entire system.

--- --

Figure 7.9. Data flow graph showing the relationship of input,
output, and input-output association in communicational cohesion.

7.1.6 Sequential cohesion

Next higher on the scale of cohesion is sequential association in which the output

data (or results) from one processing element serve as input data for the next process

ing element. In terms of the data flow graph of a problem, sequential cohesion com

bines a linear chain of successive (sequential) transformations of data. This is clearly a

problem-related associative principle. That it is stronger than communicational associa

tion rests primarily on experience and a series of small-scale experiments.* The data

*Conduc.ted by Constantine in 1968 and 1969 while at IBM's Systems Research Institute.

114 STRUCTURED DESIGN

flow graph for a problem will make it obvious that sequential cohesion in general results
in fewer, simpler intermodular relationships, which would be the expected case if it is
taken to be a higher level of cohesion than communicational.

As with lower levels, sequential cohesion can also result from "flowchart think
ing." We have noted before that the module structure for a system is often derived
from initial flowcharts drawn by the programmer/designer. One or more contiguous
steps in the flowchart is combined into a module to be made available as a subordinate
to the process represented by the flowchart as a whole.

The curious thing about flowcharts as used is that they often confuse data flow and
control flow. The arrows in the flowchart represent flow of control; control flows~ for ex
ample, from "step" A to "step" B in the flowchart shown in Fig. 7.10. If it represents
the highest level of a system, the programmer/designer will often refer to it as a
system's flowchart. However, especially at this abstract level, the control flow in the
flowchart of the system is likely to be more or less related to data flow. That is, step A

(wlhich might eventually be realized as a subsystem, a job step, a program, or some ap
propriately large package of code) may involve internal loops, decisions, and complex
procedural sub-steps. Sooner or later, it finishes its work and delivers some output
(perhaps a sorted, edited transaction file), which immediateiy becomes input to the next
step of the system. At least we hope that we perform procedural steps in a system in an
order bearing some relationship to the data flow - though, as we saw in Chapters 3 and
4, there are many procedural implementations for a given set of data flow relationships.

Indeed, there are a number of modular structures that the designer might specify
for the flowchart of Fig. 7.10. Let us imagine that somehow we know for certain that
the flowchart represents two functions, one realized by steps A and B, the other by steps
c, o, and E. Depending on the designer's mood, he may specify any of the following
module organizations:

• A module for each of the steps in the flowchart - that is, a module for
A, a module for B, and so forth

• A single module that incorporates all five steps - that is, a single
module that includes all of the code for A, B, c, D, and E

• An organization in which module 1 consists of step A, module 2 con
sists of steps B and c, module 3 consists of steps o and E

• An organization in which module 1 consists of steps A, B, and c,
module 2 consists of steps D and E

• And so forth

The same results are possible, though less probable, in derivations from a true data flow
graph. The obvious point is that a sequential module may contain more than one func
tion, only part of a function, or parts of more than one function.

For this reason, sequential cohesion is weaker than the ideal functional cohesion,
even though it is stronger than the five levels we have already discussed. The potential
weakness of the sequential module is similar to one of the problems of coincidental,

B

D

Figure 7.l 0.
High-level flowchart for a system.

CQHESION l 15

logical, temporal, procedural, and com
municational modules: In attempting to
modify the code for one function found
in whole or in part in a module, the
programmer may find that he is inad
vertently modifying, or that he must
consider, code for another function that
happens to be in the same module.
Similarly, if we find that each module
contains only part of a function (as may
sometimes be the case with sequentially
cohesive modules), then arguments of
coupling apply: In order to understand
what one module does, we must under
stand what another module does - and
the second module may contain other
processing elements that have nothing
to do with the function performed by
the first module.

7.1. 7 Functional cohesion

At the upper limit of functional
relatedness is functional association. In
a completely functional module, every
element of processing is an integral part
of, and is essential to, the performance
of a single function. This definition,
taken by itself, is every bit as circular
as it appears to be. However, in the
company of the (more or less) precise
and independent definitions of the
lower six levels - sequential down
through coincidental - we have an
operational definition:

Functional cohesion is whatev
er is not sequential, communi
cational, procedural, temporal,
logical, or coincidental.

Thus, a module which is purely func
tional contains no extraneous elements
related only by sequential or weaker as
sociative principles. It would be com
forting to say that the definitional prob
lem is solved by this bit of leger
demain, but unfortunately, the hole left
unplugged by any truly adequate
definition of function is a structural de-

116 STRUCTURED DESIGN

f ect in the theory through which camels and Mack trucks could readily pass. Fortunate
ly, some examples and much practice will help the practical structural designer deal with
this limitation easily.

The clearest and most easily understood examples of functional association come
from mathematics. Thus, the ubiquitous square root module is certain to be highly
cohesive, and is probably completely functional. It is unlikely that any surplus elements
are present beyond those absolutely essential to realize the mathematical function for
square root - and it is unlikely that (nonempty) processing elements can be added
without changing the computation to something other than square root. In contrast, a
module which computes either square root or cosine is unlikely to be entirely function
ally associated. A sine/cosine subroutine is more ambiguous.

In addition to such obvious examples from mathematics (including logarithm, ex
ponential, and third Bessel functions), we can usually recognize functional modules that
are ' 4 elementary" in nature. Thus, a module called READ-MASTER-RECORD would
presumably be a functionally cohesive module - as long as it did not contain additional
code for reading records from the transaction file. Similarly, a module called EDIT-ALL

TRANSACTION-TYPE-13 would probably represent functional cohesion, whereas EDIT-ALL

TRANSACTIONS would undoubtedly be a logically associated module.

Except for these low-level functional modules, we often identify functional

modules by comparing functional cohesion with the lower levels of coincidental, logical,
temporal, procedural, communicational, and sequential cohesion. That is, if we can

demonstrate that a module is better than coincidentally associated, better than logically
associated, then it must be functionally cohesive.

Thus, it appears that we must identify functional modules by a process of elimina
tion - which may appear to the designer to be an unsatisfying way to go about things.
In practice, though, it is not as bad as it seems: It is usually a fairly easy matter to ex
amine a design for potential "defects" in the form of low cohesion.

The task is to determine whether a module has elements of coincidental, logical,
temporal, procedural, communicational, or sequential cohesion. We find that an
effective way of doing this is to describe, fully and accurately, the module's function in
a single English sentence. Naturally, there is a variety - perhaps an infinite number -
of English sentences that would accurately describe any given module. However, if the
module is functional in nature, it should be possible to describe its operation fully in an
imperative sentence of simple structure, usually with a single transitive verb and a
specific non-plural object. Furthermore, the following guidelines can be used to help

distinguish nonfunctional modules:

• If the only reasonable way of describing the module's operation is a
compound sentence, or a sentence containing a comma, or a sentence
containing more than one verb, then the module is probably less than
functional. It may be sequential, communicational, or logical in terms
of cohesion.

• If the descriptive sentence contains such time-oriented words as
"first," "next," Hafter," ~'then," "start," "step," ~'when," "'until,"
or "for all," then the module probably has temporal or procedural

COHESION 117

cohesion~ sometimes, but less often, such words are indicative of
sequential cohesion.

• If the predicate of the descriptive sentence does not contain a single
specific object following the verb, the module is probably logically
cohesive. Thus, a functional module might be described by HProcess a
GLOP.'' A logically bound module might be described by HProcess all
GLOPS," or "Do things with GLOPS."

• Words such as Binitialize, '' "clean-up," and Hhousekeeping" in the
descriptive sentence imply temporal cohesion.

To illustrate the use of this guideline, let's consider a number of examples.
BESORT, for example, has been described in the following way by its designer: HBefore
sorting, write a proof tape, add dummy items for control, and check totals." The key
word "before" gives us the clue that BESORT is probably a temporally cohesive module:
These are ail things done in the time period before sorting. It might reach as high as
procedural cohesion if the module were described in the following way: "First write a
proof tape, then add dummy items for control, then check the totals, and finally per
form a sort." BESORT is probably not sequential because the proof tape is probably not
the input to "adding dummy items."

Next, consider the module JOBREPT. It has been described by its designer as:
"Produce job control reports: library file listings, operator summaries, and customer
run report." The key word in this description is Hreports"~ JOBREPT is not producing a
single report, but rather a class of similar reports. Hence, we conclude that JOBREPT is
probably logically cohesive unless its designer can convince us otherwise.

Similarly, suppose the module RUNSTAT were described to us in the following
terms: "Collect run statistics for an application program executing on the system:
number of system's commands executed, input-output usage, errors, and CPU time
used." Once again, we conclude that the module is logically cohesive. It is interesting
to note that several programmer/designers have suggested that RUNSTAT is temporally
cohesive because it consists of a number of functions that must be executed at a certain
point - after the application program (the one for which the statistics are being gath
ered) has finished executing. This may be true, of course, and it illustrates some of the
difficulties in evaluating a module's cohesiveness based on a superficial examination of
a descriptive English sentence.

RUNSTAT, it might turn out, collects some statistics during the program's execu
tion, as well as after its execution. In any case - whether RUNSTAT is logically or tem
porally cohesive - it is fairly clear that the module is not functional, and that is the pri
mary purpose of the exercise.

Suppose the module TIMECARD were described to us in the following way: HUp
date the master time clock record, tije employee time record, and the current pay entry
- all from the time card." Again, it appears that the module is not performing a single
function, but rather a collection of functions. In this case, the functions are related by
the input data: All of them involve the time card. Hence, we would conclude that
TIMECARD is primarily communicationally associated.

118 STRUCTURED DESIGN

Next, consider the module UPNOUT, described as: "Update the current inventory
record, and write it to the disk." Clearly, the output from the "'update" function serves
as input to the Hwrite" function. Hence, the module is sequentially cohesive.

It is important to remember that there are a variety of ways to describe the task of
a module - and some of the descriptions may make the module sound as if it is func
tional when it is not (or vice versa). However, if the designer is careful in constructing
a ·concise, descriptive English sentence which, nonetheless, fully and unambiguously
represents all of the processing accomplished by the module, then the guidelines above
will usually suffice to differentiate levels of cohesion.

7 .2 Comparison of levels of cohesion

We will use the problem represented in Fig. 7.11 to illustrate a variety of parti
tionings of the same problem, corresponding to different levels of cohesion. In this ap
plication, items from a tape and a card file are validated, merged in a one-and-two dis
cipline to create a proof listing and to compute various quantities, which are then sum
marized and delivered as two different reports. The structure of this problem is
prnsented as a data flow graph in sufficient detail to consider different partitionings.

It is easy to present examples of coincidental and logical cohesion by partitioning
this data flow graph; the partitions have essentially no relationship to the structure of
the problem. DOSOMETHINGS in Fig. 7.11 is an example of coincidental cohesion~ any
relationship among its processing elements is purely coincidental! The proposed
modules EDITNVALIDATE and FORM ATREPORTS are good examples of logically associated
collections of functional activities. Note that the validation inherent in the central com
putation is implied to be included in EDITNVALIDATE. Note how this cuts across func
tional lines.

Because the data flow graph is inherently nonprocedural, it is somewhat difficult to
illustrate temporal and procedural cohesion in relation to it. Two possibilities are shown
in Fig. 7.12. STARTIT is an initialization module, which incorporates parts of several
transforms: those parts necessary to get them to work correctly the first time. It would
contain the file opening portions of the "get'' transforms, the elements of processing
necessary to initialize the merge for the first comparison on membership number, and
the initialization of the loop control and accumulators for the usummarize" transform.
From this description, STARTIT is, obviously, temporally cohesive.

SUMLOOP combines elements of. processing in the procedural unit comprising the
iteration that summarizes by membership region. This potentially could include por
tions of alt the transforms '~upstream" of the "summarize" transform. The partition
ing shown is reasonable~ included in the module with the looping logic itself are the
continuing portions of the computations and merge logic. The report formatting and
printing have been excluded since they take place after (outside) the loop. It is not ac
cidental that the temporal module ST ARTIT goes hand in hand with a procedural parti
tion. Both levels of cohesion are based on time, procedure, sequence-oriented associa
tive principles.

Communicational and sequential cohesion are very easily represented on the data
flow graph, as they are directly problem-oriented. In Fig. 7.13, DOCOMBO is a communi
cationally cohesive module~ GETV ALIDMASTER, a sequentially cohesive one.

COHESION 119

Figure 7. l l. Relationship of coincidental and fogical association to problem structures.

Figure 7.12. Relationship of temporal and procedural association to problem structure.

120 STRUCTURED DESIGN

Figure 7.13. Relationship of communicatiopal and sequential association to problem structure.

Illustrating functional cohesion once again presents difficulties. At a superficial
level, functional cohesion is roughly the same as each transform on the data flow graph
corresponding to one module, but the particular arrangement of these in a hierarchy
influences the actual cohesion of the modules. These problems can best be understood
through the strategic concepts to be introduced in the next chapter of this book.

7 .3 Measurement of cohesion

Any given module - whether proposed or completely coded - is seldom a clear
example of only one associative principle. Its elements may well be related by a mix
ture of the seven levels of cohesion. This gives rise to a continuous measure of module
cohesiveness rather than a scale with seven discrete points.

It should be observed that the smaller processing elements constituting a single
function are also sequentially, communicationally, procedurally, temporally, or logically
associated (though, by definition, not coincidentally associated).

Where there is more than one apparent relationship between any pair of process
ing elements, the highest level of cohesion applies. Thus, if module FOO consists of a
collection of processing elements, all of which are examples of the same logical class of
operations (say, validity checking), but are also all related communicationally in that
they check various kinds of validity of one type of item, then FOO is evaluated as having
communicational cohesion among all its elements.

What would be the cohesion of this module, FOO, if it also contained some com
pletely unrelated processing elements? In theory, it would be some kind of average of
communicational and coincidental cohesion. For debugging, maintenance, and
modification purposes, a module behaves as if it were Hanly as strong as its weakest

COHESION 121

link."* The effect on long-term programming costs is closer to-that of the lowest level
of cohesion applicable within a module than to the highest. That is

The cohesion Qf a module is approximately the h;ghest level of cohesion which is
applicable to all elements Qf processing in the module.

(Which the really astute reader will note is the same as saying the lowest of the highest
level relating any pair of processing elements. Whew!)

Other factors can reduce the cohesion of a module, including the number of weak
(less than functional) associations among processing elements, whether the module has
"side effects" (to be discussed later), and whether the module associates fragments of
functions or whole functions.

A module may consist of several logically related complete functions. This is
definitely more cohesive than a module that logically binds fragments of several func
tions. For example, compare the cohesion of the following two modules:

• Module 1 is a logically cohesive module that performs sales tax compu
tation, income tax computation, and property tax computation.

• Module 2 performs the multiplication/division computations associated
with sales, income, and property taxes.

Module 1, while pretty "loose" functionally, is considerably simpler to understand
than module 2. Indeed, if the programmer implements module 1 perfectly (the· proba
bility of which is discussed in Section 7.4), it may present only minor maintenance and
modification problems.

It is not crucial for the designer who uses cohesion as a guide to simpler, less ex
pensive program structures to know exactly how cohesive a module is, to tell whether it
has a "cohesion factor" of 6. 7 or 6.8, for example. But the relative magnitude of the
cohesion of the various levels, even if not that of specific modules, is of fairly wide in
terest. As we stated earlier, the lowest three levels are generally indicative of unaccept
ab1e partitions, the highest three suggesting simple and inexpensive designs. There
have been many requests for and a few suggestions of precise values that could be as
signed to each level. Myers, 1 who assigns higher numbers to lower cohesion, suggests
that functional cohesion should have a value of 0.2, and coincidental cohesion a value
of 0. 95. However, Myers admits, such figures

" ... are based on educat_ed guesses All of these aspects of the model
must be ·verified and refined based on data collected Unfortunately the
proper historical data to validate the model is (sic) not readily available.,, f

Even presuming that a sample of structures correlated with cost were available, the
definitional problems would remain. Deciding which level actually applied to a module
would require the judgment of human raters.

*We are indebted to our colleague Robert G. Abbott for this pithy observation.
tGlenford l Myers, Reliable Software Through Composite Design (New York: Petrocelli/Charter, 1975), p. 149.

J 22 STRUCTURED DESIGN

We do have extensive experience and a few careful comparisons of alternative

solutions to the same problem on which to base some judgments about the relative

differences between various levels. Best established is that sequential cohesion is very

close to maximal, closer to functional, than it is to communicational cohesion. Similar

ly., there is a bigger break between logical and temporal than between coincidental and

logical. Distinguishing to orders of difference between the ranked levels seems to be

fully justified and useful to the designer. For example, the designer knows that he gets

a substantial improvement in going from logical to temporal organization, but only a
modest one in making the transition from sequential to functional. If numbers are to

be assigned, whether for purposes of research, mathematics, or mystification, this would

suggest the following scale* of cohesion:

0 coincidental
1 logical
3 temporal
5 procedural
7 communicational
9 sequential

10 functional

No more precise measurement can be justified by the available data and experience.

You must use any such numbers cautiously, paying heed to what constitutes appropriate

and inappropriate use.

To introduce such numbers now (when we have so little hard experience to go

by) might introduce an element of magic into the whole field of structural design.

What concerns the authors most is that programmer/designers being introduced to

structural design for the first time could be offended by the hocus-pocus of artificial

values being assigned to levels of cohesion, and thus conclude that the very concept of

cohesion is suspect

The hierarchy must thus be recognized for what it is: an incomplete tool in the

process of evolutionary development. It represents a useful, proven way to deal con

structively with cohesiveness. It is cohesion which can be regarded as an intrinsic pro

perty of modular systems~ the hierarchy of associative principles only attempts to make

the property visible.

7. 3. 1 Side effects

Some modules have simple purposes as viewed from the outside; they have a sin

gle, simple function~ they are highly cohesive. These are three ways of saying essential

ly the same thing. Sometimes, however, a module may do some things uon the side"

which do not normally complicate the picture, but enter in only under special cir

cumstances. These so-called side effects to a module's basic purpose marginally lower

the effective cohesion of that module.

*This is an improvement over a simple ranking that achieves only what is called ordinal measurement. Being

able to rank the differences between ranks results in so-called ordered metric. It still would be inappropriate to

add or subtract such numbers, as that would require interval measurement. Coincidental association is taken

as a zero point precisely because it is defined as the absence of any (but chance) relationship.

COHESION 123

For example, consider a module GETNEXT\TRANSACTION, which always returns the
next transaction, ready to process, to its superordinate: a simple, probably functionally
cohesive module. So what if it also has the side effect of producing an '~80-80" list of
transactions obtained for processing! Under most circumstances, the programmer of
the calling module (or any other module) would not need even to know about this side
effect to make correct use of GETNEXTTRANSACTION - not unless the programmer also
were using the printer, which was to be loaded with expensive forms!

Side effects operate as if they marginally lower the cohesion of any module that
includes them. There are ubiquitous examples. All direct printing or logging of errors
constitutes a side effect of the functions of computations in which the errors are detect
ed. If you ever saw a payroll check with SYS-ERR 126 - ZERO ARO, MATH*PAK printed
across its face, you know what we mean!

Side effects cannot be completely avoided, as they often are intrinsic parts of the
problems designers try to solve. Their influence on cohesion must be taken into ac
count, however, and this suggests that the designer. should, if possible, limit the scope
(in terms of number of modules) over which the side effect operates.

7 .4 Implementation and cohesion

When the designer specifies modules of low cohesion, he creates potential prob
lems during the implementation phase of the project. We invoke Murphy's Law of Pro
gramming - "if the programmer can, he will" - to analyze the consequences.

Consider the limiting case of two functions, F and G, which are absolutely and to
tally unrelated. Let us imagine that the designer is trying to decide whether he should
create two separate modules, F and a, or a single module FG. If we assume that there
are no timing problems and that F and G may execute together, there would appear to
be no basis for choosing one over the other. If F and a are logically associated, one
might even prefer the single FG module, since one logically expects to find these func
tions associated and in the same. place.

However, this tacitly assumes the programmer will implement functions F and a
separately and independently and simply drop them into a container named FG. This is
shown sch1ematically in Fig. 7 .14. In the real world though, we find that a single
module, FG, affords the opportunity for (indeed, even encourages) casual interactions
between the code for F and the code for G. Thus, final implementation is likely to be
that shown in Fig. 7.15. But remember: F and a are functionally unrelated. Hence,
the common code, or interactions between sections of code, can only be a procedural
trick. While it may have been easier to code, the chances are that the code "F and its
interactions with G" is more difficult to debug. In any case, F and G are now inter
dependent; future modification or independent use of either For G is hindered.

Another cogent example involves the widespread practice of clustering all "edit
and validation" processes into a single module. This module does the checking and
editing necessary to ensure that all data is in the form (e.g., proper format, range, se·
quence, and so on) for later processing within the main system; this is represented
schematically in Fig. 7 .16.

124 STRUCTURED DESIGN

Figure 7.14. Module with
two unrelated functions.

DIT
EDITA

EDI TB

EDI TC

MAIN

PROCESSA

FG

1~
J

Figure 7.15. Most likely implementation
of a module with unrelated functions.

EDI TE

EDITF

rDITO

ROCESSB

PROCESSD

PROCESSF

Figure 7.16. System involving editing and processing.

COHESION 125

Note that each of the elements of EDIT relate to one (or more) functional elements of
\1AIN. Thus, editing and checking have been ~'conveniently separated"', (to use the
words of some designer friends of ours) from the Hguts'' of each processing function.
:\tforeover, editing can be done as early as possible (upstream in terms of data flow),
making it easier to relate errors to the sources of input. Also~ this type of structure
may enable one-time validation of data that eventually will be processed by many
different modules within MAIN. So, it would appear that the structure suggested by Fig.
7.16 does have some advantages.

However, we should observe that the validity of an input data element is usually
intimately dependent on the definition of processing within MAlN. If we find it neces
sary to change the way 'in which we process an input element, we generally will have to
change the manner in which we validate the element. In many cases, EDIT actually will
duplicate in whole or in part some of the functional processing required in MAIN.

Thus, even if all validation elements are programmed independently within EDIT,
future maintenance and modification probably will require treatment of both PROCESSA

within MAIN, and its edit operation EDITA within EDIT. On large, complex systems with
intricate validation processing, there may be a considerable divergence - even on ini
tial implementation - between what is ·functionally acceptable within MAIN and what is
accepted by EDIT.

With time, inaccuracies and laziness inevitably will lead to such divergence~ each
functional change would require modifications in two different subsystems - which
may well have become the property of two different maintenance groups. The low
cohesion of the logically associated EDIT module is merely indicative of the stronger
bonds between its internal elements and the internal elements of MAIN - that is,
between EDIT A and PROCESSA, EDITB and PROCESSB, and so on.

7.5 Summary

From the discussions in this chapter, you should not conclude that all logical
modules are bad, nor that editing and validation always should be distributed
throughout a system~ nor should you attempt to derive any other black-and-white rules
of thumb. High cohesion is not Hgood, '' nor is coincidental cohesion HeviL ,, Module
cohesion is associated with effective modularity~ it has certain predictable effects on
transparency, programmability, ease of debugging, ease of maintenance, and ease of
modification.

Other things being equal, these qualities will improve as cohesion is increased.
This does not mean that losses will not be incurred in other areas. For example, the
designer may be able to save CPU time or memory, simplify the data flow, divide the
programming task more easily, or reduce apparent duplication of effort by using rela
tively uncohesive modular organizations. The designer may save design effort, too~
since logical and temporal groupings are comparatively easy to identify and describe -
while complete functional cohesion may require extensive analysis and study.

The obligation of the designer is to know the effects of varying cohesion - espe
cially the cost in terms of modularity - and to be prepared to trade this off against po
tential benefits in other areas of interest. Unless he gains more in decreasing CPU time
than he loses in achieving long-term viability of a program, for example, he must
choose a more functional organization.

CHAPTER 7: REFERENCES

1. Glenford J. Myers, Reliable So./fware Through Composite Design (New York:
Petrocel Ii/Charter, 197 5).

2. W.P. Stevens, G.J. Myers, and L.L. Constantine, 4 ~Structured Design," IBM Sys
tems Journal, Vol. 13, No. 2 (May 1974), pp. 115-139.

3. Edward Yourdon, Techniques of Program Structure and Design (Englewood Cliffs,
N .J .: Prentice-Hall, 197 5).

4. Edward Yourdon, "A Brief Look at Structured Programming and Top-Down Pro
gram Design," Modern Data (June 1974), pp. 30-35.

5. J.R. Dc;maldson, 4 'Structured Programming," Datamation, Vol. 19, No. 12 (De
cember 197 3), pp. 52-54.

6. L Nassi and B. Shneiderman, HFlowchart Techniques for Structured Program
ming," ACMSIGPLANNotices, Vol. 8, No. 8 (August 1973), pp.12-26.

7. N. Chapin et al., ~~structured Programming Simplified,'' Complller Decisions. Vol.
·6, No. 6 (June l 9 7 4) , pp. 2 8-3 l.

SECTION III
TECHNIQUE

The chapters in this section all deal with methods by which the concepts
of the preceding chapters can be put to use to design the structure of complex
systems. Chapter 8 describes features of the shape of systems structures found
to be related to development costs. The nex't chapter, on design heuristics,
deals with rule-of-thumb methods for designing systems structures. Simple
rules of thumb, although useful in identifying certain types of design flaws,
have generally proved to be inadequate for large problems without the use of a

· strategic framework for deriving an acceptable design, which then can be im
proved. Chapters IO and 11 develop two interdependent step-by-step methods
for deriving acceptable, initial structured designs. The method of Chapter IO
was developed by Constantine to yield systems of the type described in Chapter
8. The method discussed in Chapter 11 analyzes a shortcoming of the previous
method~ and derives from a technique originated by a group within Bell Tele
phone Company. Chapter 12 compares and contrasts our approach to other
major models and methods of structured design.

CHAPTER 8
THE MORPHOLOGY OF SIMPLE SYSTEMS

8.0 Introduction: organization and morphology

In the context of program design and systems design, we use the word "'organiza
tion" to describe the way in which structure is used to realize a desired function.
Another way of putting this is to say that organization is the relationship between func
tion and structure. Thus, a system structured as a hierarchy may be organized with con
trol processing at the bottom of the hierarchy. To draw an analogy, a football team
could be considered a hierarchical structure, with the quarterback serving as the "con
trol module" during the plays~ nevertheless, the team uses various organizations (e.g.,
split-T, flying-T, and so on) to realize its basic function of winning a game.

"Morphologyn refers to the shape of a system, with respect to structure. For ex
ample, the depth of a structure (the number of levels of subordinate modules) is a visi
ble morphological feature~ the width of a modular structure - or of certain parts of the
structure -- is another morphological feature.

Our purpose in this chapter is twofold. First, we wish to examine common organi
zations of modular systems, and common systems morphologies. Second, we wish to
make some comparisons between common organizations and "good" systems - that is,
systems with low coupling and high cohesion. This serves as a prelude to Chapters 9
through 12, in which we explore design techniques that will produce systems with recog
nizable organizations and recognizable morphologies, as well as low coupling and high
cohesion.

8.1 Organization of modular systems

On what basis does the designer decide on a particular division of his program or
system into modules? How does he decide which portions of the total processing should
go into a given module?

We already know that modules combining functionally related elements are more
cohesive (and thus result in more modular systems) than, say, modules whose elements
have only coincidental cohesiveness. While the designer must be aware of the effects
of cohesion, it is seldom practical for him to use this as his only organizing concept. A
trial-and-error approach that combines pairs of processing elements and then evaluates
the cohesion is certainly not a very orderly way to design a system - if nothing else, it
would require an enormous amount of work!

What we find is that a modular system usually is centered around various specific
aspects of its function. Regardless of whether the designer explicitly recognized a par
ticular modular structure, we usually can identify an implicit organizing concept or cri
terion. In many cases, the structure literally is centered around a module with a very

129

130 STRUCTURED DESIGN

distinctive purpose or function. Thus, we can speak of transaction-centered design, or a
transaction-centered system. Such a system is developed around modules that perform
the various actions associated with transactions; generalty, there is a module (or small

group of modules) that passes all transactions to the subordinate transaction modules
for processing.

Some types of modular organizations have been reflected in strategies - formal
systematic procedures for developing, from a problem description, the modular struc
ture of systems of the desired type. Thus, there is a scheme known as transaction
analysis (to be discussed in Chapter 11), which gives rise to transaction-centered sys
tems, although they may be developed by the programmer/designer without benefit of
the strategy. Other strategies have been developed on an ad hoc basis~ let us look at
two of them briefly.

Procedure-centered design is derived from procedural representations (e.g.,
flowcharts) of a system's operation. This usually results in a top-level module whose
coding and whose calls on subordinates directly implement the overall systems level
processing, defined initially by the systems analyst.* While every system may be regard
ed as ultimately procedure-centered, some systems have more emphasis placed on the
"procedure orientationn than do others - and some designers apply "procedural
analysis" earlier in the design process than do others. If the module organization was
developed from program procedures (e.g., flowcharts) that were developed as a first step
in the design, then it is fair to say that the system is procedure-centered. One could
develop a formal strategy, called procedural analysis, to develop procedure-centered
structures. t One reason for not discussing procedural analysis in this section of the book
is that procedure-centered systems generally achieve only temporal or procedural cohe
sion (recall the discussion in Section 7 .1.4) and are thus, by definition, less cohesive
than they might be.

Device-centered design, which is common in portions of operating systems but oth
erwise relatively rare, focuses on a physical input-output device and its interfaces. Of
course, it makes sense in almost any program to use one module to interface with a
disk and a different module to interface with a magnetic tape drive. Although the bot
tom levels of any system will involve some device-oriented modules, this focus usually
does not permeate up through the higher levels of the structure. When the entire
design revolves around such device-centered modules, then we say that the design itself

is device-centered.

Every system may be thought of as involving one or more central tran~forms: ma
jor systems functions that take relatively udigested" data as input streams and create
major output streams. Accepting this statement, we can have transform-centered sys
tems; a formal design strategy known as transform analysis (to be discussed in Chapter

*Recall that in Chapter 1 we suggested that the primary job of the systems analyst is to derive the functional
requirements of the system by carrying on a dialogue with the user. By drawing a systems flowchart, howev
er, the analyst is participating in the structural and procedural design of the system - sometimes with disastrous

tffects.
We will cover some of the elements of procedural analysis in Chapter 14, when we discuss packaging of

modules into efficient executable units - e.g., job steps, partitions, overlays. Our emphasis there will be on
the use of procedural analysis for efficient segmema1io11 of an already designed system, rather than as a tool for

effective design of the system.

THE MORPHOLOGY OF SIMPLE SYSTEMS 131

10) can be used to derive such systems. In practice, transform-centered design does

not begin by identifying the transforms as the central modules in the systems. It is

easier to identify everything else, and then call the remainder the '"essential" or uma

jor" transforms of the system.

For example, consider the simple process shown in Fig. 8.1. The functions A and

B basically are operations that, when performed in sequence, obtain the main data for

the system. Up to the vertical dashed line marked uI, ,, data are still flowing into the

system; after line "11,,, however, data would be thought of as flowing out of the system.

The remaining parts of the process can be neither input nor output - hence, c is a cen

tral transform of the system. Indeed, we would describe the basic purpose of this sys

tem as computing the inverse of matrices.

8.2 Specific models of systems organization

Occasionally, designers make use of a specific functional or structural model as a

guide to structural design. In a sense, such use represents a technical preconception

about what a system will look like or what it should look like. This technical prejudice

may be productive insofar as the specific model is both simpl{fying (in terms of reducing

the labor of design) and general - two ostensibly conflicting criteria. However, the

limitations of these specific models often outweigh their advantages~ indeed, most of

the problems in this area are the result of the designer interpreting the model literally

rather than using it as an approximation.

One specific model of systems organization is shown, in two variants, in Fig. 8. 2.

One could take the CIPO version as the literal structure of a system~ in this case, only

four modules would be implemented, regardless of the size of the problem. Note that

an INPUT module, literally implemented, probably would be only logically cohesive.

In some organizations, this literal interpretation is taken even further. The

designer is told that if INPUT On Fig. 8.2) has three immediate subordinates, then PRO

CESS and OUTPUT each also must have three immediate subordinates. And, if there are

two levels of modules beneath INPUT, then, according to some designers, there should

be two levels of modules beneath PROCESS and two levels beneath OUTPUT. The

justification for this literal approach is often an appeal to symmetry, which we discuss in

more detail in Section 8. 5.

Another problem with the literal interpretation of the CIPO method is that the

designer is left (as with any use of such a specialized model) with the problem of as

signjng processing elements to appropriate categories. Is computation of report values

in the process category or in the output category? If the model is not interpreted as a

literal structure but rather as a characteristic example, a problem still remains: Having

such a model represents only marginal progress toward a complete design. What has

one accomplished in the total structural design process if one draws the four requisite

boxes of Fig. 8.2? The model itself guides only the initial portion of the total design

process, leaving the designer to his own devices for elaboration and completion.

In any case, we are faced with the possibility of an application for which the model

is inappropriate - such as one with no processing and degenerate outputting, or with a

purely mathematical computation.

132 STRUCTURED DESIGN

A B c D

I II

Figure 8.1. Model of a simple process.

IPO Version

CONTROL

INPUT PROCESS OUTPUT

CIPO Version

Figure 8.2. Two versions of a popular specific systems model.

TTYPEl
Do actions
for type 1

ACTION 1
Do action 1

DETAIL 1
Do step 1

THE MORPHOLOGY OF SIMPLE SYSTEMS 133

PROGRAM
et transactio , ~

dispatch by type
4~-------~

This module is
called the
transaction

center

TTYPE2
Do actions
for type 2

ACTION 2
Do action 2

DETAIL 2
Do step 2

TTYPE3
Do actions
for type 3

ACTION 3
Do action 3

DETAIL 3
Do step 3

. . -

ACTION 4
Do action 4

DETAIL 4
Do step 4

Figure 8.3. Transaction-centered model of a modular system.

134 STRUCTURED DESIGN

This last argument is especially strong for the transaction-centered model (dis
cussed further in Chapter I I) in Fig. 8.3. This model is representative of, and applica
ble to, many routine business applications. It also may apply to a real-time executive or
a dedicated time-sharing application. On the other hand, it is unlikely to be an advanta
geous structural model for a compiler, and even less beneficial for a large number
crunching application.

As we have already suggested, the general usefulness of these models increases if
we apply them less literally. To require, for example, that every program have exactly
four levels whose functions may be classified as in Fig. 8.3 limits the usefulness of the
model as well as the potential modularity of the system. Restrictions such as prohibit
ing a second-level module (in Fig. 8.3) from accessing a fourth-level module are equal
ly debilitating and unnecessary.

In gene.ral, then, while specific structural models can be developed, their simple
- and literal - application to structural design is not recommended. Indeed, the
designer must beware of cheap imitations that are being advertised these days as so
callecl structured design. If a textbook or a consulting firm or a computer manufactur
ing company promotes a packaged approach to structured design, with success
guaranteed on the basis of literally following "ten easy steps" - well, perhaps the best
advice is caveat emptor.

8.3 Factoring

Design by analogy is widely practiced in software design, and its most common
example is the "program-executive,, module. Analogous to corporate organizations,

the top-level executive module does not perform any of the systems tasks itself, but in
stead controls and coordinates their performance by lower-level modules to which they
have been relegated. In the limiting case, the executive module of a hierarchical sys

tem contains only calls to subordinate modules imbedded in internal control elements
G.e., iterative and conditional statements). The term "executive module" should be
reserved for a mGdule which approximates this limiting case, and for which the iterative
and conditional elements within this module correspond to the major loops and decision
logic of the system. The purely structural term top-level module should be used when
these conditions do not hold.

The executive module accomplishes its task (as viewed from the Houtside" -
that is, from its superordinate) by using subordinates. The bulk of the actual uwork"
- if not all of the work - is performed by the subordinates and, in turn, by their

subordinates down to the "atomic'' modules. The system is said to be completely fac
tored if all actual processing (or computation, or data manipulation) is accomplished by

bottom-level atomic modules, and if all non-atomic modules consist only of control and
coordination. In a completely factored system, each non-atomic module is an executive

with respect to its subordinates.

Where factoring is complete or nearly complete, the non~atomic modules often
have near-trivial contents. In a sense, such a system is a summation of trivia. It may be
disconcerting to think of a large, complex task being accomplished by a sizable collec
tion of modules, which in themselves are trivial. Actually, nothing could be better;
with small, simple atomic modules, we have the best of all possible worlds. Of course,
for most real-world programs, the factoring is somewhat incomplete - if it exists at all!

THE MORPHOLOGY OF SIMPLE SYSTEMS 135

Since transform analysis, transaction analysis, and other popular design strategies all
favor highly factored systems, we will save our more specific examples of factoring for
Chapters 10 and 11.

Similar analogies with corporate organizations have led to some additional rules of
thumb for design of the executive module. The factoring rule, as we have already seen,
states that the executive module should not perform or directly control details. Similar
ly, the span-of-control rule limits the number of immediate subordinates for an execu
tive module~ there is an obvious analogy here to the corporate executive who becomes
overworked and error-prone if he has too many subordinates reporting directly to him.
This and other rules of thumb are discussed in more detail in Chapter 9.

Based on rule-of-thumb design and on systematic strategies, well-designed systems
tend to show a characteristic distribution of decision processing (i.e., conditional state
ments). As in Fig. 8.4, the proportion of decision elements dec.reases smoothly as we
move toward the bottom of the hierarchy. The character of decisions should also
change: Top-level modules should deal with total, global matters, white the lower-level
modules should deal with sub-parts or aspects of. the higher-level decisions.

It has also been argued that details should be distributed in a manner inversely
proportional to that for decisions shown in Fig. 8.4. The problem, though, is defining
exactly what we mean by "detail." If a detailed instruction is manipulative (e.g., shift
ing the contents of a register two bits to the right), communicational, or computational,
then detail is merely equivalent to non-decision. If, on the other hand, detail is concep
tually related to low-level operation, then it either defies definition or is tautological~ it
does us no good, for example, to state that details, i.e. low-level operations, are opera
tions performed at low levels of the hierarchy. Using the distribution of detail either as
a design heuristic or as a means of evaluating the goodness of design is seriously
suspect. While ndecision" is more objective, it, too, makes a poor design guideline.
We generally observe this distribution a posteriori in a well-designed system, but we get
into trouble if we make it into a goal.

8.4 Afferent, efferent, transform, and coordinate flow

In examining the modular structure .of a system, we usually observe a few basic
categories of modules. We note, for example, that some modules obtain information
from subordinates, and then pass it upward to their superordinate; this is illustrated in
Fig. 8.5. We refer to this as an afferent flow of data, and we refer to the module itself
as an afferent module. Others have drawn analogies to engineering and physics, refer~

ring to Fig. 8.5 as a "source flow'' (see, for example, Myers 1 and the paper by Stevens,
Myers, and Constantine 2). The term afferent is taken from the field of biology by way
of general systems theory; 3.4 afferent neurons carry sensory data from the bodily ex
tremities inward and upward toward the brain. Etfer'ent nerves carry motor signals from
the brain downward and outward. In general systems terms, a sink has no output and a
source only output. The analogy with the nervous system may seem a bit farfetched,
but the terms afferent and efferent are descriptive of a useful distinction in a manner
that is not only graphic but also unlikely to be confused with other overworked pro
gramming terms like input and output.

136 STRUCTURED DESIGN

Figure 8.4. Distribution of decision processing in a hierarchical system.

THE MORPHOLOGY OF SlMPLE SYSTEMS 137

If Fig. 8.5 represents an afferent flow, then it makes sense to refer to Fig. 8.6 as
an efferent flow; the module shown in the diagram is referred to as an efferent module.
Clearly, it takes information from its superordinate, and passes it to its subordinate.
One can imagine that the efferent module in Fig. 8.6 probably would be involved in the
process of outputting, while the afferent module in Fig. 8.5 probably would be involved
in the process of inputting.

_-f
~-

Figure 8.5.
Afferent flow.

Figure 8.6.
Efferent flow.

Figure 8. 7. More common
form of afferent flow.

Note that the modules in Figs. 8.5 and 8.6 pass on the information in exactly the
form it was given to them. That is, the afferent module in Fig. 8.5 calls a subordinate
to obtain data element x~ it then passes x, unchanged, to its superordinate. Similarly,
the efferent module in Fig. 8.6 receives data element x from its superordinate and
passes it, unchanged, to its subordinate. While this is certainly possible, it is more like
ly that both the afferent and efferent modules will transform the data they receive.
Thus, a more common form of the afferent data flow is shown in Fig. 8. 7~ presumably,
some computations or manipulations within the module transform x into Y before
delivering Y to its superordinate. Similarly, the more common form of the efferent data
flow is shown in Fig. 8.8.

Even though the afferent and efferent modules are capable of doing some
transformations (depending on, among other things, how highly factored they are), we
can see that their main purpose is to pass information upward or downward in the
hierarchy. However, other modules exist solely for the sake of transforming data into
some other form. Figure 8.9, for example, illustrates a tran~form flow; the module itself
could be referred to as a rran~/orm module. Most of the computational modules in a typ
ical system would fall into this category. The ubiquitous square root subroutine is a
simple example of a transform module.

~ tx r

y~

Figure 8.8.
More common form
of efferent data flow.

Figure 8.9.
Transform flow.

Figure 8.10.
Coordinate flow.

138 STRUCTURED DESIGN

Finally, we observe that some modules are primarily concerned with coordinating
and managing the affairs of others. Figure 8.10 illustrates the coordinate flow; obvious
ly, the module is referred to as a coordinate module. Such a module could be found ei
ther in the input portion of a system, the central computational portion, or even the
output portion. In a well-designed system, we typically would find a coordinate module
relatively high in the hierarchy, since it represents a kind of executive calling upon
lower-level junior executives.

Of course, these basic types of modules may be connected and combined to such
an extent that we may be unable to tell whether the result is afferent, efferent,
transform, or coordinate in nature. For example, consider the partial structure shown
in Fig. 8.11.

y

A

B

Figure 8.11. Mixture of afferent and transform modules.

What kind of module is A? To the outside world - that is, to its superordinate - A

appears tO be an afferent module: It has the job of delivering data element Y, which it
presumably obtains from a subordinate source (though, of course, the superordinate
should not tare how module A obtains data element Y). The inside view of A gives us
the impression that it is a coordinate module - that much of A's job is concerned with
the task of obtaining data element x from a subordinate (afferent) module and then
passing it to module B, where it is transformed into Y. We probably would conclude
that A is a high-level executive module involved in the process of generating input to be
used even higher in the system's hierarchy.

At this point, our purpose has been merely to introduce the terms and concepts of
afferent, efferent, transform, and coordinate modules. They will be useful in the dis
cussion of systems morphology below, and we will make active use of the concepts in
the discussion of transform-centered design in Chapter 10.

8.5 Systems morphology

Thus far in this chapter, we have looked at modular structures from a number of
points of view. We have seen that the designer's orientation can motivate him to
develop a transaction-centered design, a procedure-centered design, or one of several
other modular organizations. Indeed, w~ have seen that specific models may influence
the designer's choice of organization. Further, we have seen that factoring considera
tions influence the arrangement of modules, and the amount of Hintelligence" within
each module. Finally, we have seen that another way of looking at modules is to
characterize them as afferent, efferent, coordinate, or transform in nature.

THE MORPHOLOGY OF SIMPLE SYSTEMS 139

Now we can put all of the pieces together, and examine the morphology - or

shape - of the entire structure. We find that some morphological features - width

and depth, for example - are found in all systems. Furthermore, we find that certain

values for those features may be more or less associated with good structural design.

That is, we may be able to say that if a modular structure is wider than this design, or

deeper than that one, then the overall design might be considered good or bad.

One of the most obvious morphological features is depth - that is, the number of

levels in the hierarchy. The modular structure shown in Fig. 8.12, for example, has a

depth of four. About the only thing we can say about depth is that it is a rough clue to

the size and complexity of a system - just as the number of levels of assistant vice

presidents in a management structure gives us a rough clue as to the organization's size

and complexity. Obviously, a simple program (consisting of, say, 100 statements)

might have a depth of only two or three - indeed, if it were implemented as a single
module, it would have a depth of one!

A

Bl Cl

x

Figure 8.12. Depth of a system's structure.

On the other hand, the authors have seen a number of relatively simple 300-state

meilt real-world programs with a depth of five or six - and, in those cases, the time

and etf ort spent by the designer to set up such a hierarchy was more than repaid during

the maintenance phase of the project. A system of moderate size and complexity can

easily have a depth of ten or twelve - and a truly massive system conceivably could

have a depth of fifty or more.

The important thing to realize is that depth, by itself, is not a valid measure of the

goodness of a design. As a rule, tow-cost, highly factored systems are deep by tradi

tional standards. There are some extremes that generally will stick out like a sore

thumb: A 100-statement program with a depth of twenty probably would be an indica

tion of excessive zeal on the part of the designer (most of the executive modules prob

ably would be excessively trivial in nature). Similarly, a million-statement system with

140 STRUCTURED DESIGN

a depth of three or four would seem excessively low. As with the factoring of decisions

and details, we find that depth is something that usually is observed after the system

has been designed - but depth generally is not a goal to be kept in mind during the ac
tual design process.

Another aspect of the shape of the system might be termed width - that is, how

many modules wide is the system? At first glance, it seems that there is not much we

can say about width - except for the obvious comment that the larger and more com

plex the system, the wider it is likely to be. However, we observe that one of the pri

mary influences on the system's width is something that engineers refer to as "'fan-out"

- that is, the number of immediate subordinates to a given module. In Fig. 8.13, for

example, the average fan-out is two (we are ignoring the fact that the bottom-level
modules Bl, Cl, c2, and CJ have a fan-out of zero).

A

Fan-out of A
JI("' is two

B c

...-- Fan-out of B "1r"" Fan-out of C
is one is three

Bl

Cl C2

Figure 8.13. Average fan-out for a system.

As we suggested earlier, there is reason to suspect that if the fan-out is too high

- six or seven seems to be a threshold of some sort then the executive modules will

tend to be too complex (because they contain too much control and coordination logic

to look after their many subordinates), and the effective modularity of the overall sys

tem will be decreased. There are some exceptions and qualifications to this rule of

thumb, .as we will see in Chapter 9. In a typical well-designed system, we find an aver

age fan-out of about three or four - but we emphasize once again that this should not

be interpreted as a literal rule to be followed by the designer.

Rather than dealing with such primitive measures as depth and width, we might

consider the overall morphology of the system. Based on observations of a large

number of systems during the past several years, we find that most well-designed sys

tems have a shape of the nature shown on the following page in Fig. 8.1,4. Depending

on the vividness of one's imagination, the shape of Fig. 8.14 could be likened to a

cigar, a flying saucer, or a mosque.

THE MORPHOLOGY OF SIMPLE SYSTEMS 141

Higher

~:~- "\

Higher fan-in

Figure 8.14. Mosque shape for systems.

Indeed, all of those terms have been used by designers searching for graphic
words to describe a shape they have seen over and over again in their work. Note that
the mosque shape characteristically has a higher fan-out in the high-level modules, and
a higher fan-in in the bottom-level modules. Still again, we must observe that the
overall mosque shape could be a characteristic of a well-designed system, and potential
ly· dangerous if used as a design tool. On the other hand, it is comforting to note that
the strategies of transform analysis and transaction analysis (discussed in Chapters 10
and 11) generally produce the mosque form.

142 STRUCTURED DESIGN

Next, we present morphological features known as "skew" and "balance." Some
programmers, for example, might describe the system in Fig. 8.15a as lopsided or
ske:Wed. However, since only the topological relationships between modules are struc
turally relevant (as we discussed in Chapter 4), this structure is equivalent to that of
Fig. 8. l 5b - which does not appear to be skewed. The concept of skew nevertheless
may be useful if we can give an appropriate preferred order for drawing subordinate
modules beneath the superordinate on a structure chart. Unfortunately, the convention
of diagramming the subordinates in the lexical order in which they appear in the
superordinate 's code makes any inferences on skew procedure-dependent.

The flow of data from the origin of physical input through various transformations
to ultimate outputs establishes just the requisite preferred orientation. If, in our exam
ple, AA is an afferent module whose output is processed through BB and cc and eventu
all~, to GG, then the system of Fig. 8.1 Sa and Fig. 8.1 Sb may be said to be skewed with
respect to data flow. We are not suggesting that skew or balance is either good or bad,
but merely a way of describing systems with different basic forms of structure. Systems
may be skewed in the direction of input, as in the example in Figs. 8.1 Sa and 8. l 5b, or
skewed in the direction of output.

AA

BB

GG

Figure 8.1 Sa. One view
of a system's structure.

AA

GG

Figure 8. l 5b. Structurally
equivalent system.

A system highly skewed in the direction of input obtains all of its inputs in ele
mentary (raw) physical form at or near the top of the hierarchy. All of the processing
of inputs takes place at lower levels of the hierarchy - and, most important, in

THE MORPHOLOGY OF SIMPLE SYSTEMS 143

branches of the hierarchy that are predominantly efferent. Indeed, the entire system is
predominantly efferent. This traditionally has been called an input-driven system.

Output-driven code may be viewed as philosophically different. With input-driven
code, inputs determine what. happens in the process: Items are read first, and then the
code decides what to do with them. However, we initially might identify an item that is
to be produced as output of the system - and, on the basis of that, perform whatever
processing is required to develop that item. Of course, events ultimately will occur in
the same order, but the system's structure will be very different.

In the extreme case of input-driven or output-driven systems, the system will ap
pear to be highly skewed when viewed at any level. Thus, the efferent branch of an
input-driven system will~ having obtained its inputs from above, deliver them downward
to its subordinates - and each of the subordinates will behave similarly.

Balanced systems, with neither elementary input nor elementary output performed
at the top of the hierarchy, generally imply that the top level has immediate con trot
over the most significant functions in the system. Balance also could be achieved by
having both elementary input and elementary output operations take place at or near the
top level, but this would violate the factoring rule that we suggested earlier, because it
involves the executive in details.

An advantage of the balanced system based on afferent/efferent branches (which
in Chapter 10 we call a "transform-centered" system) is that it maximizes the number
of generally useful modules, at all levels in the hierarchy. We come closer to having all
sensible input-like functions and sensible output-like functions when the system is bal
anced and transform-centered.

Veteran business systems analysts frequently have argued that an ,output-driven
system is less efficient than an equivalent input-driven system. In the final analysis,
this is true only for very localized effects or isolated cases. It is true, for example, that
a strictly output-driven system will activate all of its afferent modules,i down to the
lowest level, before obtaining its first input. At first glance, this seem~ wasteful and
unnecessary; on the other hand, the same oscillation up and down the sy~tem occurs in
the input-driven system - except that it occurs in the efferent side of tr· e system, in
stead of the afferent side.

Equally marginal is the fact that an input-driven system with multiple input
streams may obtain the first input for streams that are never used on a giren execution
of the system. If file attachment, opening, and linking for the first item a~e complicated
processes as they may well be with certain data base management systems - this
cost could become significant. However, neither efficiency argument is convincing, as
they both are based on events which occur once per execution of the system.

However, real-time applications of a certain type may favor the mor~ input-driven
organizations. If an elementary input transaction causes a major change lin processing,
and if the resulting action has a critical response time, then the output-p riven system
may have difficulty responding in time. Imagine, for example, a factory yontrol system
that produces reports based on on-line terminal commands. The system has an emer
gency command (indicated by a first character of E from the terminal) t~at requires an
immediate response based on a completely different syntax. In an out~lut-driven sys
tem, we would expect the basic terminal input routine to be located d~ep within the
afferent branch; we would also expect the major variations in output to be decided at or
near the top of the structure.

144 STRUCTURED DESIGN

Figure 8.16 represents a tentative structure of this type. In the worst case, the E
command must travel alt the way from INKEY to RETREP, being checked in every inter
mediate module before it is passed to the next higher level. Thus, EMER may not be
activated for quite a long time - that is, quite a few microseconds or milliseconds. It is
hard to imagine a subroutine-calling mechanism so slow as to render this example criti
cal, but it is prototypical of other real-world situations in which we could have serious
response-time problems. In contrast, the input-driven system, illustrated by the
transaction-centered structure of Fig. 8.17, does not have this efficiency problem.

GETINFO
get info going
into report

RETREP
retrieve and
report

display produce "E"
report report

7-
/

REPNORM J EMER

~ ._____.........__J

, , \
I l J \

* GET ANAL Yl:D I
get syntax-
~nalyzed terminal
m ut.co\man

I \
I I \

1

~ead keyboard
lNKaE

input

I \ I
I \ I

Figure 8.16. Output-driven real-time
system with a deep afferent branch.

8.6 Transform-centered morphology

\
\

RETREP

lNKEY EMERTRAN TYPElTRAN TYPE2TRAN
Do"E" Process type Process type

report 1 trans 2 trans

Figure 8.17. Transaction-centered
input-driven system for the problem of Fig. 8.16.

Of the morphological factors relating to systems simplicity, the morphology known
as transform-centered organization is the most important. The transform-centered
model, shown in the general case in Fig. 8.18, combines several morphological features
discussed above. It is highly factored, hence, quite deep for the number of atomic
modules. Afferent and cff erent branches are somewhat balanced; hence, the model is
neither input-driven nor output-driven. Both afferent and efferent branches have a
characteristic structure. In the fully factored form, this structure involves at each level a
single transformation or set of alternative transformations performed by subordinate
transform modules, whose inputs are supplied by the last subordinate afferent modules
(on the afferent side), or whose outputs are fed to the next subordinate efferent
modules (on the efferent branches).

• • •

THE MORPHOLOGY OF SIMPLE SYSTEMS 145

Figure 8.18. Generalized representation of the transform-centered model.
_(Dots suggest indefinite extension to more modules.)

A model of this subtlety did not spring full-blown from some designer, who on
completing his seventeenth structural design, shouted, "Eureka!" It was derived -empir
ically from a careful review of the morphology of systems, comparing systems that had
proven to be cheap to implement, to maintain, and to modify with ones that had been
expensive. The motivation for the study came from a simple but inspired request from
a client, who, lamenting that it was so difficult to learn how to produce good, cohesive,
uncoupled designs,* asked one of the authors, "What does the structure of a cheap sys
tem look like?"

The original study t required looking at the structure of many systems for which
actual implementation, maintenance, and modification costs per delivered source state
ment were known. After-the-fact structure charts with their module names omitted
were drawn up for the most expensive and least expensive systems obtained from vari
ous sources. The investigator, who did not know which charts represented which pro
grams, simply tried to find ways of sorting the charts into two piles based on morpho-

*At the time, 1967, the principle technique being taught was a deceptively simple but unreliable strategy
called functional analys;s. Learning to design simple structures was mostly a matter of "sit-by·Nelly." Nelly.
you see, knew how to do it! If you were smart and the wind were right, you, too, would be able to do what
relly does. But you wouldn't know why.
The research was done by Constantine with the Information and Systems Institute, Inc. Regrettably, the

original data and notes were lost or destroyed in the messy demise of the Institute. Cost figures for more
than one hundred medium-sized systems from several organizations initially were screened to identify the
cheapest and most costly designs. The research design, although sound, was carried out with the informality
typical of one·man, small-scale projects. It did not seem at the time worthy of publication or even publicity.

146 STRUCTURED DESJGN

logical features. The success of the morphological criteria in separating the costly from
the cheap systems could be checked by referring back to the separate cost data. The
umpteenth round in this game produced what came to be called the transform-centered
model. Most of the cheap systems had it~ none of the costly systems did! Since then,
of course, support for highly factored transform-centered design has become
widespread, and is based on both experience and numerous studies.

8.7 Summary

The basic concern of this chapter is the shape of systems. We have introduced a
number of terms and concepts regarding systems morphology that are of critical impor
tance in Chapters 9, 10, and 11. If you read through this chapter quickly, we suggest
that you review the meanings of such terms as fan-out, depth, width, skew, input
driven systems, output-driven systems, afferent, efferent, factoring, and span of control.

In addition to the fact that systems ·have a morphology, we have introduced the
noi:ion that most non-trivial systems have an underlying rationale for their shape -
usually because the designer has decided to center the design of the system on some as
pect that he considers important. In many cases, this rationale has been informal and
intuitive, and often has yielded a system with low cohesion and strong coupling. The
purpose of the next several chapters is to introduce rationales - or design strategies
that are based on considerations not only of systems morphology, but also of coupling
and cohesion.

CHAPTER 8: REFERENCES

1. Glenford J. Myers, Reliable Software Through Composite Design (New York:
Petrocelli/Charter, 197 5).

2. W.P. Stevens, G.J. Myers, and L.L. Constantine, HStructured Design," IBM
tems Journal. Vol. 13, No. 2, pp. 115-139.

3. Ludwig von Bertatanffy, General Systems Theory (New York: George Braziller~
1969).

4. Gerald Weinberg~ An lmroduction to General Systems Thinking (New York: John
Wiley & Sons, 1976).

9.0 Introduction

CHAPTER 9
DESIGN HEURISTICS

In this chapter, we develop some selected heuristics with which systems structures
may be improved. By heuristics, we mean certain tricks which, on the average, have
the effect of increasing the modularity of a system. They are not guaranteed to work,

nor do they help much in generating a system's structure in the first place. None con

stitutes a hard-and-fast rule, nor can any stand alone. So, you might ask: What good
are the heuristics?

They are useful because they serve as checks or indicators by which a structure

may be examined for potential improvements. Each indicator is a clue that a structure
possibly may depart from an optimal configuration. However, we will stress repeatedly,
as we did in the previous chapter, that the final judge of whether a heuristic should be
applied literally is the intrinsic structure of the problem that the system is supposed to

solve. If the system reflects the structure of the problem, then we have an invincible
defense against any suggestion that the system's structure should be changed and im
proved based on the heuristics in this chapter.

9.1 Module size

We have already suggested that module size is related to modularity, though not

necessarily in the simple manner of ''cut it into more pieces, Charlie." That is, techni

cal modularity does not necessarily increase when module size decreases, even with oth
er things being equal. For most purposes, though, modules much larger than one hun

dred statements are outside the optimal range with respect to the economy of error
commission and correction. At the low end of the scale, the cutoff is less obvious. Ex
cept for the occasional misguided zealots who think that modularity is equivalent to
chopping a program into one-statement modules, we find that very small modules have

been designed consciously and deliberately - and usually for functional reasons. Nor
mally~ though, fewer than five to nine source statements might be a good point at

which to start considering alternatives. This is especially relevant when many such very
small modules are present in a system. However, if the code is either tricky or straight

forward, these figures may be adjusted accordingly.

Suggestions for optimal module size have come from a variety of sources during
the past few years~ an overview of common module sizes may be found in a recent
book by Yourdon. 1 One of the best-known suggestions for module size comes from
Baker, 2 who suggests that modules should consist of approximately fifty statements to
coincide with the number of lines that one can put on a single page of a printer listing~

it is ironic that many consider this fifty-statement rule of thumb an "invention" of IBM

and a necessary part of structured programming! Still another common number comes

148

DESIGN HEURISTICS 149

from Weinberg, 3 whose studies show that a programmer's comprehension of a module
drops quickly if the module is larger than thirty statements. Most organizations have
their own home-grown standards in this area. In their travels during the past several
years, the authors have found organizations enforcing module sizes ranging from five to
five hundred statements (the latter for a U.S. Air Force project).

Of course, very large or very small modules are not bad. Whatever the reasons,
though, if the size goes much beyond the optimal range of ten to one hundred state
ments, we can be assured that the total system,s cost will rise above some optimal
minimum. On the other hand, the ultimate defense is the structure of the problem. It
is possible (though unlikely) that there exists a single self-contained function which is
only sensibly realized as a 2,000-statement FORTRAN subroutine. One can envision
(though only hazily) a very large, highly involved decision table application or a long,
involved mathematical computation, all strung out and segmentable only in an arbitrary
and artificial fashion. If that is the structure of the problem - so be it! Cutting up a
function simply to stay within an optimal size range is likely to be an injudicious move
- particularly if it means sacrificing a problem-oriented structure. It is equally unwise
to abolish a widely used character-moving subroutine, because it is implemented with a
single FORTRAN statement.

In general, though, we should examine and defend separately each case of a very
small or a very large module. Let's first consider the very large module. Such a
module is often an indication of an incomplete breakdown into appropriate subordinate
modules. Alternatively, we may find that two or more functions have been combined
(frequently, with logical cohesion) into the same module. In the first case, we should
examine the module to see if we can extract some subfunctions~ this is illustrated in
Fig. 9. la. In the second case, we may be able to chop the module into its component
functions~ as illustrated in Fig. 9.1 b. In either case, the structure chart should be used
as a tool, and the structural modifications should be tried out on paper. The important
thing is to give meaning to the new structure, within the context of the actual problem.
If it is not possible to make a reasonable interpretation, then the original structure
stands.

Figure 9. la. Reduction of very large module
through identification and extraction of subfunctions.

150 STRUCTURED DESIGN

Figure 9.1 b. Reduction of combined functions.

When dealing with very small modules, we must distinguish two cases: the atom
ic (bottom-level) module, and the non-atomic module. In the case of an atomic
module, the major issues are fan-in* and the ratio of subroutine-calling overhead to
useful processing. If there are multiple uses (high fan-in), as in the case of Fig. 9.3,
one does not legislate the module out of existence with impunity. With but a single
use, as in Fig. 9.2, the designer might consider compressing the module upward into its
superordinate ABLE - though each case should be considered on its own merit.

Eliminating a module like STRINGCOMP in Fig. 9.3 is potentially dangerous, for it
means that STRINGCOMP's function will be separately implemented (including coding
and debugging) in each superordinate module that formerly used it. This duplicated
effort can be expensive, even for simple processes. Moreover, each implementation of
the STRINGCOMP function is likely to be slightly different, making maintenance and
modification more difficult.

If it appears that the overhead of the subroutine-calling mechanism will be intoler
able compared to the useful work performed by the module, the designer has another
option. In the case of Fig. 9.3, for example, the designer requires that STRINGCOMP be
separately coded and debugged - and then included in-line in modules FIND, VALUE,
SCAN, MOVEUNTJL, and REMOVALL. Almost all current programming languages provide
a feature to facilitate in-line subroutines: The COPY verb in COBOL, the %INCLUDE
statement in PL/I, and the macro facilities in most assembly languages are examples.

"'In simple terms, the fan-in of a module is the number of superordinate modules that call upon it Thus, the
fan-in of module STRINGCOMP in Fig. 9.3 is five.

DESIGN HEURISTICS 151

- -

Figure 9.2. Elimination of very small modules through upward compression.

\
\

VALUE \
\

\
\

Figure 9.3. Very small atomic module with high fan-in.

\ /
\ I

I

\
\

152 STRUCTURED DESIGN

If the facility is not found in the programming language itself, the programmer of
ten can make use of the macro facilities of preprocessors, text editors, or source pro
gram maintenance packages. In any case, it should be evident that the in-line module
gives us the advantages of modularity without incurring any overhead at run-time
(although there may be a negligible overhead during the compilation or during the as
sembly process).

This example illustrates our previous suggestions that it is better to go too far in
structured design. It is better to extract and identify the common function and have
some choice in its implementation than never to have had any choice at all because of
an incomplete design. In documenting "decommitments'' of this sort, the form of Fig.
9.4 is usually preferable.

When the very small module is non-atomic, the analysis is complicated~ the op
tions are to compress upward and to compress downward, both of which should he con
sidered. A special case is that of the so-called dummy module - one that had no con
tents except a call on its subordinate. It does no work itself and contains no control log
ic. Dummy modules are obviously the limiting case of very small.

Presumably, the dummy module is there because it reflects some aspects of the
problem's structure. For example, Fig. 9.5 illustrates a situation in which IMPAC re
quires the function "particle velocity'~; this is accomplished by module PARVELOC.

When the particle velocity function is analyzed, the designer decides that it can be ap
proximated with a square root - so PARVELOC simply calls SQRT. To save CPU time
and memory' on each call to PARVELOC, one is tempted to have IMPAC call SQRT directly.
The temptation to eliminate the dummy PARVELOC is even greater if the module has a
high fan-in.

But consider what happens when it is found that, say, an approximation using
Yamota multipliers· will give better approximations and a more accurate model of the
particle velocity. As shown in Fig. 9.6, PARVELOC is no longer a dummy, for it coordi
nates the operation of both YA MOTA and SQRT, and calculates a formula that com bin es
these results. Had PARVELOC been eliminated, this change would have necessitated
modifying IMPAC, PENETRATN, RADIATN, and RMSVELOC to include more complicated,
duplicated coding. Preservation of dummy modules often may be justified on the basis
of simpler, more obvious future modifications. At the very least, the presence of the
dummy module should be noted for future reference.

Throughout this discussion, it has been assumed that the designer knows, prior to
implementation, the approximate size of the would-be modules. Normally, this does
not require a separate and substantial estimation process. Experience has shown that
the comparatively small size of modules in reasonably modular systems makes the esti
mation process easy, if not automatic. In addition, the estimation process becomes
more accurate because the designer grows more familiar with the function that various
modules are to perform as he pursues the structural design in a systematic fashion.
Indeed, we find that it is difficult not to be aware of the approximate number of state
ments as the design process continues.

\
\
\

\
'N

\

DESIGN HEURISTICS 153

\
\

I
I

I
r

Rt:J'r\CVALL

Figure 9.4. Documentation of imaginary module recreated in-line for each use.

IMP AC

,,
PARVELOC
Dummy
modute

--
,,

SQRT

SQRT is used here
to ·approximate
particle velocity
directly

Figure 9.5. Part of a system with a dummy non-atomic module.

154 STRUCTURED DESIGN

\
\
\

\
\
\

\
\
\

I
I

Figure 9.6. Modified, former dummy module with multiple fan-in.

DESIGN HEURISTICS 155

9.2 Span of control

Fan-out, or span of control> is the number of immediate subordinates of a
module~ we sometimes refer to this simply as the span of a module. As with module
size~ very high or very low spans are possible indicators of poor design. In Chapter 2,
we drew an analogy with a management structure - and we observed that a
manager's function usually becomes too complex if he has more than 7 ±2 immediate
subordinates. In general, we want to check a span of control that exceeds 10, as well
as those of I or 2; a high span of control is usually more of a danger signal than a low
span of control. Frequently, very good designs, especially of the type originating with
the strategies in the next two chapters, will include many fully justified instances of
fan-out of only I or 2.

A low span of control can be increased in most cases either by breaking the
module into additional subordinate subfunctions, or by compressing the module into
its superordinate~ these strategies are illustrated in Fig. 9. 7. As before, one should try
to give some meaning to the new structure in the context of the specific problem that
is being solved. For example, in Fig. 9. 8, the first transformation makes more sense,
because validation is a useful function whose separate existence as a module is fully
justified.

A high span of control could be indicative of an over-zealous breakdown of a
module into subordinates, but our experience has shown that this usually is not the
case. High f~rn-outs frequently arise from pancaking, or a failure to define intermedi
ate levels; the structure in Fig. 9.9a illustrates just such a situation. To solve this
problem, we consider various groups of subordinates as potentially forming a com
bined function. Our knowledge of module cohesion guides this process to help us
avoid uncohesive modules. In the case of Fig. 9. 9a, we might introduce the inter
mediate modulP;s shown in Fig. 9.9b~ we might decide against an intermediate-level
general-purpose COMPUTE-GROSS·PA Y module because it would be logically cohesive.

9.3 Fan-in

Whenever possible, we wish to maximize fan-in during the design process.
Fan-in is the raison d'etre of modularity: Each instance of multiple fan-in means that
some duplicate code has been avoided. However, fan-in is not to be achieved at any
cost. It would be ridiculous, for example 1 to maximize fan-in by combining many un
related functions into an uncohesive Hsupermodule" with a high fan-in.

Fan-in is achieved through an analytical process that accompanies the steps of
any structured design procedure. As a new module is about to be drawn on the struc
ture chart, we ask, Is there a module already available which performs the required
function? If so 1 we draw an arrow to the existing box on the chart rather than draw
ing a new one. From a graphic viewpoint~ this sometimes may be clumsy: A module
that is used in many widely separated places in the structure results in a number of
messy, crossed lines. The graphic convention shown in Fig. 9.10 is suggested as a way
of minimizing the risk that the same function is coded twice because the implementer
did not recognize that two boxes in the structure chart represented the same module.
Specification of fan-in is the designer's job, not the implementer's.

156 STRUCTURED DESIGN

A

A
I

Figure 9.7. Altering a structure with low span of control.

GETVALID
TRANSACT IO

READ

OR.

READ

SUPER

GETVALID

TRANS

DESIGN HEURISTICS 157

GETVALID

RANSACTION

EDIT
TRANSACT! N

Figure 9.8. Restructuring for low span of control.

158 STRUCTURED DESIGN

ET PAY

DATA

OR HOURLY

WORKERS

FOR
SALARIED

COMPUTE

NET PAY

HONORARIUM
FOR OUTSID

WORKERS

DEDUCTIONS
FOR OUTSIDE

WORKERS

NORMAL

DEDUCTIONS

OUTSIDE

WORKERS

NORMAL FI A

TAXES

Figure 9. 9a. Modular structure with pancaking.

~PAY
~A

OR HOURLY

ORKERS

NORMAL

TAXES

DESIGN HEURISTICS 159

OMPUTE

NET PAY

NET PAY FO
SALARIED

WORKERS

GROSS PAY

SALARIED

WORKERS

NORMAL

DEDUCTIONS

HONORARIUM

FOR OUTSID

WORKERS
UTSIDE
WORKERS

Figure 9. 9b. Solution to the pancaking problem.

ET PAY FOR
OUTSIDE

DEDUCTIONS

FOR OUTSID
WORKERS

160 STRUCTURED DESIGN

A

Figure 9.10. Documenting use of modules
in a different part of the structure.

The problem occurs when the designer realizes that his new, would-be module is
similar or related to an existing module, but not identical to it. If he misses the subtle
difference between his would-be module and the existing module, things will begin to
go wrong during the system's integration. Either the. new use of the module will
misfire, or the old one will. Further problems will occur when the programmer at
tempts to make a de bugging correction to the common module.

The key is to understand what makes the two instances similar or related - and
then isolate that in a separate module. For example, suppose we have a Ql function
that appears to be similar to Q2~ let Q represent the processing that they have in com
mon. This suggests, as a first cut, the structure show in Fig. 9. lla. However, there is
a chance that this can be restructured into potentially more appropriate forms. If they
are small, either or both of Ql' and Qi' might be compressed upward into their respec
tive superordinates as shown in Figs. 9.11 b, 9.1 lc, and 9.11 d. Alternatively, a compo
site QI module could be formed; it would carry out Ql for superordinate x, and Q for su
perordinate Y. We might even consider a supermodule, possibly with multiple entry
points, which combines Ql, Q2, and Q.

The point is that the designer originally regarded Q2 as similar to Ql - and he
might have forced superordinate Y to call the existing Ql module in the hope that things
would work out all right. We now see that there are a variety of alternatives that do the
job efficiently and in a modular fashion.

9.4 Scope of effect/scope of control

Every decision or conditional statement (e.g., an IF statement) in a system has
some consequences: Certain processing either happens or. does not happen as a result
of the decision. Equivalently, we can say that certain processing is conditional upon the
outcome of some given decision. It is important to learn where in a modular structure
the conditional effects of a specific decision are found. In order to discuss this, we need
to introduce two new terms: scope of effect and scope of control.

The scope of effect of a decision is the collection of all modules containing any
processing that is conditional upon that decision. If even a tiny part of the processing in
a module is influenced by the decision, then the entire module is included in the scope
of effect. If the activation of the entire module is conditional upon the outcome of the
decision, then the module's superordinate is also included in the scope of effect: This
makes sense when we realize that the superordinate must contain a statement to call the
subordinate, and that CALL statement will be executed depending on the outcome of the
decision.

x q
AtoO~l.S I

-\1J oJJ \ I

Qi

Figure 9.1 la. Analysis of
similar modules for fan-in.

x

__ L_1
lQZ, I
r---. I
L_L_t

y

Figure 9.1 lc. Alternate restructuring
for fan-in.

DESIGN HEURISTICS 161

x y

Qi'

Figure 9.1 lb. Alternate restructuring
for fan-in.

x

Figure 9.1 ld. Alternate restructuring
for fan-in.

162 STRUCTURED DESIGN

The scope of control of a module is the module itself and all of its subordinates.
Scope of control is a purely structural parameter independent of the module's functions.

Now we can state a design heuristic that involves both scope of control and scope
of effect:

• For any given decision, the scope of effect should be a subset of the scope of
control of the module in which the decision is localed.

In other words, all of the modules that are affected, or influenced, by a decision should
be subordinate ultimately to the module that makes the decision. Decision-making and
modular structure are best interrelated when decisions are made no higher in the hierar
chy than is necessary to place the scope of effect within the scope of control. Ideally,
the scope of effect should be limited to the module in which the decision is made and
to those modules that are immediately subordinate.

Thus, Fig. 9. l 2a illustrates a structure in which the scope of effect is not a subset
of the scope of control; Fig. 9. l 2b shows a structure in which the scope of effect is con
tained within the scope of control, although one could argue that the decision is being
made too high in the hierarchy~ Fig. 9. l 2c illustrates a structure in which the decision is
being made just high enough in the hierarchy to include the scope of effect within the
scope of control~ and Fig. 9 .12d demonstrates the ideal case in which the scope of effect
module~ are immediately subordinate to the module in which the decision is made.

DP

y

Figure 9.12a. Violation of
scope of effect/scope of control.

x IY
I

Figure 9.12b. Correct scope of
effect/scope of control, but with
the decision too ~igh in the hierarchy.

B

Figure 9.l 2c. Adequate implementation of
scope of effect/scope of control heuristic.

DESIGN HEURISTICS 163

.X:

Figure 9. l 2d. Ideal implementation of
scope of effect/scope of control heuristic.

As an example, consider the structure shown in Fig. 9.13. Note that a decision
has been isolated that validates the transaction code, and divides all legitimate codes
into Class (and Class II. This decision, which we abbreviate as Tv/Tc (for transaction
valid ?/transaction class?), is found in module TYPCODE. Included in its scope of effect
are READX (if the transaction code is invalid, read another transaction, otherwise, pro
cess this one); TYPERR (which produces an error message if the transaction code is in
valid)~ mo and 1100 (activated for Type I and Type II tr.ansaction codes, respectively),
and consequently xoo and FORBISH.

An appropriate question to ask at this point is, How does mo gei done? Or, for
that matter, REA DX? Or 1100? The outcome of the decision is known to TYPCODE but
not, without special provision, to xoo. Somehow mo must get activated, but only
under the right circumstances. One of the following things must always be true:

(1) The decision is repeated in any module with processing in the scope of
effect, including a superordinate whose only scope of effect processing
is to activate a subordinate. This may not be possible if input informa
tion for the decision is unavailable. The Tv/Tc decision might not be
possible in FORBISH, because the transaction code is not included in the
data made available to FORBISH. Thus, special information may have to
be passed in order to duplicate the decision. In other words, there is a
certain cost in duplicated processing and a possible communication
overhead. Such communication increases coupling.

164 STRUCTURED DESIGN

(2) The outcome of the Tv/Tc decision is encoded (generally, in the form
of a flag, that most favored of design gimmicks) and passed to superor
dinate modules, which retest and act accordingly. This involves some
communication overhead and a lesser amount of duplicated processing.
However, since it involves passing control information, coupling may
be significantly increased.

(3) During implementation, the structure shown in Fig. 9.13 is violated -
with pathological connections or hybrid coupling used to achieve the
desired results. Thus, we might find that TYPCODE is programmed in
such a way that it modifies code in FORBISH under the right conditions.

Clearly, some revision of the structure is indicated. In general, it is best to per
form this in steps rather than to attempt one drastic modification to cure the structure
of its ills. The final effect of such a series of modifications is usually that portions of the
decision are moved upward in the hierarchy until the scope of effect is within the scope
of control. We note parenthetically that this usually results in "distributed decision
making'' of the sort that we described in Chapter 8.

Let us imagine that validation of the transaction code and classification of the
transaction code are separable. We want TYPERR to be subordinate to the module that
includes Tv, as only that module wi1l have full, direct information about the nature of
an error, and will thus be able to construct a reasonable error message. But we note
that READX is also within the scope of effect of Tv, and mo is in the scope of effect of
Tc. Moving Tc up into XDO and making READX subordinate to the module containing
Tv leads to the structure shown in Fig. 9.14~ note that we have renamed GETVALIDX to
reflect the change in its function. Whether the problem with IIDO can be solved grace
fully depends on the reasons for having FORBISH~ very likely, IIDO can be made subordi
na tt~ to XDO.

Now, consider that Tc might be a complicated process - perhaps involving a table
lookup and some computation. Indeed, it may be so complicated that we wish to make
it a distinct module of its own; such a module probably would be subordinate to XDO.

While this would violate our scope of effect/scope of control heuristic, the return of a
binary flag to XDO is probably tolerable. In Fig. 9.15, a call on TYPCLAS behaves as a
two-way conditional instruction to XDO. Two-way flags and three-way flags, as violations
of the scope of effect/scope of control heuristic, are much more tolerable than an n·
valued flag.

The solutions shown in Figs. 9.14 and 9.15 were derived on the assumption that
Tv and Tc could be separated. If Tv/Tc is monolithic (perhaps because validity is
determined by a failure of Tc), we could solve the problem by combining GETVALIDX

and TYPCLAS of Fig. 9.15 into a module that we call, for lack of a better name, G ETTYP

CODEV ALIDX.

While the example shown in Figs. 9.13, 9.14, and 9.15 may seem somewhat di
vorced from the real world, it is nevertheless true that a number of classic data process
ing problems may be analyzed in terms of scope of effect/scope of control. For exam
ple, Fig. 9.16 shows individual records being combined by some discipline into com
pound items, which are searched for parts to be summarized into groups. The numeri
cal ratio and relationship between groups, parts, items, and records vary. Note that the
structure of Fig. 9.16 includes a system-supplied READ subroutine which exits to the

DESIGN HEURISTICS 165

operating system when an end-of-file is encountered. The decision~ which we will ab
breviate as F, is whether the processing of this file is finished~ the outcome of the deci
sion is to continue or to quit.

xvo

Tt~f<.

wrr~ error
~, (.,

IIDO
rrouss
~tt<>t6

Figure 9.13. Portion of system with scope of effect/scope of control conflict.

166 STRUCTURED DESIGN

FORBISH

GETVALIDX

~

REA DX TYPERR

Figure 9.14. System of Fig. 9 .13 after partial resolution of scope of effect/scope of control conflict.

FORBISH

xoo

ne;Aox

Figure 9.15. Final modification of Fig. 9.13.

ARB

PHASE%

PARS UM

SUMMARIZE
GROUP
aggregate

INDPART

ocate part

code

OMPOUND
ake compou d

READ

FINISH

cleanup

WINDUP

inish
group

MAK READY

DESIGN HEURISTICS 167

PHASE2

Figure 9.16. A system with serious scope of etf ect problems.

168 STRUCTURED DESIGN

However, suppose that the execution of PHASE2 is conditional on the completion
of PHASEl processing. Thus, it is in the scope of effect of decision F. Unfortunately,
ARB never has the opportunity to activate PHASE2 if READ decides to make a "panic
abort" to the operating system. What we need to do is

• Change READ so that when it discovers an end-of-file condition, it
communicates a "no-more-records" condition to COMPOUND.

• COMPOUND tests for "no-more-record'.' signal from READ. If it occurs,
COMPOUND forces a call to MAKREADY to prepare this last compound
item; the item is given to FINDPART. On the next call from FINDPART,
COMPOUND returns with a "no-more-compound-items" indicator.

• FINDPART tests for "no-more-compound-items" indicator. Upon re
ceiving it, it returns to SUMMARIZEGROUP with "no-more-parts" indi
cator.

• When SUMMARIZEGROUP receives the "no-more-parts" signal, it uses
WINDUP to finish the last part group, and returns that to PARSUM. On
the next call from PARSUM, it returns with a "no-more-summaries"
signal.

• When PARSUM receives the "no-more-summaries'' indicator, it ac
tivates FINISH and then terminates.

It is essential to note that each module is making a different decision (or different
parts of the same decision). Each is testing a different condition and informing its su
perordinate of yet another condition. In the strictest sense, the same information is not
merely being passed up the line. Each module deals only with decisions and outcomes
tha1t are a part of its immediate function. Thus, when COMPOUND returns an end-of
compound-items indicator, it makes no assumptions about (and has no knowledge of)
groups and parts; no module needs to know how a decision might affect the function of
other modules. The fact that a subordinate informs its superordinate when it cannot
perform its function is expected behavior - both in computer systems structures and in
management structures!

In summary of the discussion in this section, the scope of effect/scope of control
heuristic is usually an excellent indicator that a decision has been placed in the wrong
part of the modular structure - but it is only a heuristic! The most common example
of violations of this heuristic is the occurrence of a relatively important decision (e.g.,
an end-of-file test or a "fatal-error" test whose outcome may result in returning patho
logically to the operating system) at or near the bottom of the hierarchy. Unfortunate
ly, violations of this heuristic are rampant (see, for example, the end-of-file logic in
Armstrong's programming examples 4). As we have seen, the violations usually have
one or more negative consequences:

• duplicated decision-making

• increased coupling from additional flags and switches being passed to
other scope of effect modules

• pathological control flow or data flow

DESIGN HEURISTICS 169

Scope of effect/scope of control problems that occur early in the design phase al
most always can be rectified easily by judicious restructuring. In general, the designer
has three options for correcting the problems:

• Compress a low-lev~l module into its superordinate so that the decision
takes place high enough in the structure to solve the scope of effect
problem.

• Move a scope of effect module down in the hierarchy to get it within
the scope of control.

• Remove all or part of the decision from the low-level module and place
it in a higher level module.

9.5 Summary

It must be emphasized that this chapter has discussed heuristics, not religious
rules. Heuristics such as module size, span of control, and scope of effect/scope of con
trol can be extremely valuable if properly used, but actually can lead to poor design if
interpreted too literally. Unfortunately, the authors have experienced several cases in
the past few years where the design heuristics of this chapter were used blindly - and
the results often have been catastrophic.

CHAPTER 9: REFERENCES

1. Edward Yourdon, Techniques of Program Structure and Design (Englewood Cliffs,
N.J .: Prentice~Hall, 1975).

2. F.T. Baker, "Chief Programmer Team Management of Production Program
ming,,, IBM Systems Journal, Vol. 11, No. 1, pp. 56-73.

3. Gerald M. Weinberg, PL/I Programming: A Manual of Style (New York:
McGraw-Hill, 1970).

4. Russell Armstrong, Modular Programming in COBOL (New York: John Wiley &
Sons, 1973).

10.0 Introduction

CHAPTER 10
TRANSFORM ANALYSIS

In Chapter 8, we saw that systems whose morphology - or overall shape - was
transform-centered tend to be associated with low development costs, low maintenance
costs, and low modification costs. We also observed that such low-cost systems tend to
be highly factored~ that is, the high-level modules make most of the decisions, and the
low-level modules accomplish most of the detailed work.

Tran~/brm analysis, or tran!iform-centered design, is a strategy for deriving initial
structural designs that usually are quite good (with respect to modularity) and generally
require only a modest restructuring to arrive at a final design. It is a particular form of
a top-down strategy, which takes advantage of overall or global perspective. Applied
rigorously, transform analysis leads to structures which are fuHy, or almost fully~ fac
tored. It produces sizable numbers of modules at intermediate levels in the hierarchy,
which represent compositions of basic functions (or compositions of compositions).
However, even the intermediate modules avoid doing any "'work,, except to control and
coordinate the work of subordinates.

Overall, the purpose of the strategy is to identify the primary processing functions
of the system, the high-level inputs to those functions, and the high-level outputs. It
then creates high-level modules within the hierarchy to perform each of these tasks:
creation of high-level inputs, transformation of inputs into high-level outputs, and pro
cessing of those outputs. As we will see, transform analysis is an i1~fonnatio11 flow
model rather than a procedural model.

The transform analysis strategy consists of the following four major steps:

1. restating the problem as a data flow graph

2. identifying the afferent and efferent data elements

3. first-level factoring

4. factoring of afferent, efferent, and transform branches

Each of these steps is discussed in detail in subsequent sections of this chapter.

10.1 The first step: Restate the problem as a data flow graph

In order to carry out the strategy of transform analysis, it is necessary to study the
flow of data through the system. That is, we must draw a data flow graph for the sys
tem we are designing. We recall that data flow graphs were presented in Chapter 3 to
illustrate non-procedural aspects of a system~ they served that purpose in subsequent
discussions of cohesion in Chapter 7. However, the data flow graph typically was

171

172 STRUCTURED DESIGN

presented as an accomplished fact. What we now must do is to ask how a data flow
graph is conceived.

In certain trivial systems, the data flow may be perfectly obvious to the designer~
he instantly may be able to draw a data flow graph or' the sort shown in Fig. 10. L
Indeed, even the simple payroll example shown in Fig. 10;2 - which involves both
conjunction and disjunction operators - may be intuitively obvious to the designer.
But how should we deal with more complex situations?

There are several ways to approach this analytical process. Designers who are ex
periienced in the use of data flow graphs and who are used to non-procedural thinking

generally start with the physical inputs (e.g., a card from the card reader, or a message
from the terminal) and work their way downstream through successive transforms to
the physical outputs (e.g., a printed report). Working upstream from outputs toward
the inputs works just as well for many designers. It appears to be a matter .of taste,
rather than a technical issue.

Unfortunately, many newcomers to the use of data flow graphs find that these two
approaches tend to lose them in procedural details, which must be set aside at this
stage. An alternative is to begin with a single bubble that correctly represents the entire
system in terms of inputs and outputs. This trivial data flow graph is then refined by
segmenting it into several transforms so that the resulting data flow graph has two to
four bubbles of approximately equal size or importance. In turn, this is replaced with

yet another more detailed data flow graph for the entire application. This "middle-out"
approach is also a useful exercise in top-down thinking.

Whatever approach is used to develop it, the amount of detail shown in the final
data flow graph will vary from problem to problem, and from designer to designer, but
the beginner is advised to show the data flow in considerable detail ·until he has a feel
for the amount of detail required by various problems. None of this effort will be wast
ed, as greater understanding of the problem at this stage in the design can greatly sim
plify some of the subsequent steps.

To illustrate this point, we recall the master file update example that was first
presented in Chapter 3. Figure 10.3a shows a data flow graph that is probably extreme

in the sense of not showing enough detail~ on the other hand, the data flow graph
shown in Fig. 10.3b is perhaps extreme in the sense of showing too much detail. If
forced to choose between one extreme and the other, we would prefer to show too
much detail - that is, we would prefer Fig. 10.3b.

Generally, it is easier to follow through certain ''main" data paths dealing with
primary inputs; minor inputs and minor outputs (e.g., error paths that emerge from a
Hvalidaten bubble) can be ignored at first. Often, it is found that secondary inputs are

employed in transforms deep within the data flow, and they will be picked up automati
cally when those points are reached. A final '"clean-up" sweep through the data flow
graph can account for any unattached input or output streams.

When drawing the data flow graph, it is essential not to become entangled in as
pects of procedure or decision-making. That is, the graph should not show (and the
designer shoutd not worry about) such things as loops, initialization, termination,
recovery procedures, or decisions. For example, from an information flow standpoint,
an error detection process is not a decision branch, but a filter, which separates good
data from bad data.

Figure 10.1. Transform from A into B.

rt' rot
hst

Lifl"r•'V•C.., ~------_......,
ffi

TRANSFORM ANALYSIS 173

Figure 10.2 .
Conjunction and disjunction.

Figure 10.3a. Data flow diagram with very little detail.

174 STRUCTURED DESIGN

Figure 10.3b. Data flow diagram with excessive detail.

Figure 10.4. Validity checking as a filter.

TRANSFORM ANALYSIS 175

Thus, in Fig. 10.4, we imagine that the process has been running forever, and will
continue running forever~ we'll get around to the initialization and termination pro
cedures later when we 're ready to deal with procedure-oriented design. Similarly, it
does not concern us that the bubble labeled "'check 'Skill validity" contains a decision
(although the module that eventually realizes that transformation obviously will contain
one or more decision-making statements). All we care about at this point is that the
Hstream" of employee skill records has been split into two separate streams of data.
Indeed, as we suggested above, we might not even bother showing the "bogus skill"
path in our initial data flow diagram, since it is not the primary data stream. Note also,
in this example, the fact that many individual employee skill records are required to
produce a department skill summary is not represented in the data flow graph. We only
see that the Bsummarize '' bubble transforms a stream of valid employee skill records
(by some magical process) into a stream of department skill summaries.

To summarize our discussion of data flow graphs, we offer the following sugges
tions to the designer:

• Work your way consistently through the problem, from the input
stream toward the output or vice versa, depending on your preference.
If you get stuck somewhere in the middle, then switch. Or, you can
use the middle-out approach described above.

• Never try to show control logic. If you find yourself thinking in terms
of loops and decisions, you're on the wrong track. Specifically, if you
find yourself drawing an arrow and thinking to yourself, Now leCs go
to this bubble and do the process again, you,re in trouble. Remember:
The arrows represent the flow of data, not control.

• Ignore initialization and termination. Pretend the system all runs at
once, and that it continues running forever.

• Omit simple error paths from each bubble to the outside world.

• Label the data elements very carefully as they enter and leave a
transform bubble. That is, if a data stream marked A enters a bubble,
then the output stream that emerges from the bubble should generally
not be marked as A. It may be called "'new-A-as-a-result-of
computations" or "the-good-A's-after-we-discarded-the-bad-ones.~,

• Make use of ""'" and "E9" operators as appropriate.

• Make sure that the data flow is correct for the level of detail being
shown. If in doubt, show too much detail rather than too little. Don't
flowchart!

Typically, the result of this first step of transform analysis is a diagram of the sort
shown in Fig. 10.5; this diagram illustrates a manufacturing plant simulation process.

10.2 The second step: Identify the afferent and the efferent data elements

In Chapter 8, we introduced the notion of afferent data flow and efferent data
flow~ in that discussion of systems morphologies, we also saw modules that could be
termed afferent modules, and others that could be termed efferent modules.

176 STRUCTURED DESIGN

tA.aeNla,
JfTAb((S
~)

Figure 10.5. Data flow diagram for a simulation system.

We now define afferent data elements as follows:

(n)

Afferent data elements are those high-level elements of data that are furthest re
moved from physical input, yet still constitute inputs to the system.

Thus, afferent data elements are the highest level of abstraction of the term "input to
the system.'' They represent the most aggregated, the most processed, the most
"macro-level" inputs.

In general, the afferent data elements will bear the least possible resemblance to
the raw input data that were obtained from a physical input device. That is, physical
blocking and buffering will no longer be visible; control characters (if any) will have
been removed~ any necessary formatting and conversion of the input to a standard
internal form will have been done; and all editing, checking, and validation will have
been accomplished. What remains are good, clean data, ready for processing.

We identify the afferent data elements by starting at the physical inputs to the sys
tem and moving inward along the data flow diagram until we identify a stream that can
no longer be considered as incoming. This represents a value judgment on the part of
the designer, but the aim is to go as far from the physical inputs as plausible. General
ly~ experienced designers will not di ff er by more than one or two transforms in their
judgment of where the afferent transforms end.

This process is performed for each input stream. Often, we find that several physi
cal input streams may end in the same afferent data element. In the data flow of Fig.
10. 5, for example, the afferent data element is the "agenda table."

TRANSFORM ANALYSIS 177

Beginning at the other end with the physical outputs, we try to identify the efferent
data elements. ·As the name implies, the efferent data elements are those furthest re

moved from the physical outputs which may still be regarded as outgoing. Such ele
ments might be regarded as "logical output data,, that have just been produced by the

"main processing" part of the system and which have had the least amount of process

ing to convert them to "physical output data." We perform this process for each of the

ultimate output streams. In the plant simulation system shown in Fig. 10.5, "sales out

put" and ''manufacturing output" are the efferent data elements. Note that we use
brackets to designate the afferent and efferent data elements.

This step usually leaves some transforms in the middle, between the afferent data

elements and the efferent data elements. These are designated central transforms. They

are the main work of the system; they transform the major inputs into the major out

puts. Occasionally, the afferent and efferent data elements will be the same, in which
case there are no central transforms.

It may be argued at this point that this step is an attempt to model all systems as a
trivial input-process-output flow. Indeed, most systems are sufficiently trivial to be

modeled in this form (for, after all, what else do most systems do but read some input,

perform some computations, and generate some output?), but that is not the real point.

What is important to us is that many designers do not have the instinct to follow the

main input streams all the way in to the afferent data element. As a result, their modu

lar structures tend to be input-driven (cf. the discussion in Chapter 8). Even though it
may seem trivial at this stage, the process of transform analysis that we are outlining

ensures that the structure will be balanced.

10.3 The thi-rd step: first-level factoring

Having identified the afferent and efferent data elements of the system, we specify
a main module which, when activated, will perform the entire task of the system by cal
ling upon subordinates. For each afferent data element feeding a central transform (in
the example of Fig. 10.5, there is only one: the agenda tables), an afferent module is

specified as an immediate subordinate to the main module. Its ultimate function will be

to deliver the afferent data element to its superordinate, that is, to the main module. It
should be clear that the afferent modules are truly afferent modules in the sense that we

defined the term in Chapter 8: They obtain their inputs from below (by calling lower

level subordinate modules:, and they deliver that input upward.

Similarly, for each efferent data element emerging from any central transform (in

the example of Fig. 10.5, there are two), we define a subordinate efferent module that

will accept the efferent data element and, ultimately, transform it into the final physical

output. Again, it should be clear that such modules are truly efferent modules, in the

sense of the definitions of Chapter 8.

Finally, for each central transform or functionally cohesive composition of central

transforms, we specify a subordinate transform module (where, once again, we have

used the term in the sense in which it was defined in Chapter 8), which will accept

from the main module the appropriate input data and transform it into the appropriate

output data; of course, this output is delivered back upward to the main module. Thus,

we can see that there is a simple (usually one-for-one) correspondence between the

data flow graph and the initial first-level factoring.

178 STRUCTURED DESIGN

The main module is the overall control, or executive, for the process. Its function
is to control and coordinate the afferent, transform, and efferent modules dealing with
the highest-level data of the system. It will call the immediately subordinate afferent
modules to obtain major inputs, pass these to the appropriate transform modules,
deliver the results to other transform modules, and deliver the final results to the
efferent modules. These calls will, in the general case, be imbedded in the major deci
sion and iteration control logic for the overall process.

The first-cut factoring for the system of Fig. I 0.5 is shown in Fig. 10. 6. The
number in each module "box" refers to a transform that is similarly identified in the
data flow diagram.

10.4 The fourth step: factoring of afferent, efferent, and transform branches

Three distinct substrategies are used to factor the three types of subordinate
modules (afferent, efferent, and transform) into lower-level subordinates. There is no
particular reason for starting with the afferent portion of the system, but many
designers find it the most natural way of proceeding. It is not necessary to completely
factor one branch down to the loYt'e_§t_ level of detail before working on another branch,
but it is important to identify all of the immediate subordinates of any given module
before turning to any other module.

Thus, suppose we have identified MAIN, A, B, and c as a first-level factoring for
Fig. 10.7. Suppose that our next step was to begin factoring module A, and that we
have identified subordinate Al. We should continue defining and identifying the other
subordinates of A (namely A2 and AJ) before exploring the subordinates of B, c, or A I.

To see how an afferent module can be factored, ·look at the top-level afferent
module GETAGENDATAB in Fig. 10.6. We know that GETAGENDATAB's' function, as
viewed from the main module, is to produce agenda tables~ thus, our job is to identify
the transform (or computations) required to produce agenda tables. This last (in the
sense of transformation of data) transform becomes the function of a new transform
module immediately subordinate to GET AGENDA TAB. -Obviously, this new transform
module requires some input: For each input to this last transform, we specify a new
afferent module immediately subordinate to GETAGENDATAB. Each of these new lower
level afferent modules is factored, recursively, in the same manner until the u1timate
physical input is reached or the process is otherwise terminated (see Sections I 0.5 and
10.6 below). The first-cut factoring of the afferent branch for the plant simulation sys
tem is shown in Fig. 10. 8.

The factoring of efferent modules is essentially symmetrical to that of afferent
modules. For a given efferent module, we are looking for the next transform to be ap
plied which will bring the data closer to its ultimate "physical" form. The transform
module that accomplishes this transformation will be subordinate to the "top-level,,
efferent module in the system. Thus, the transform module CROSSTAB is identified as a
subordinate to the top-level efferent module PUTSIMRESULTS shown in Fig. 10.6. The
output of the transform module CROSSTAB then becomes input to a new efferent
module which is also subordinate to the original top-level efferent module PUTSIM
RESUL TS~ the process then continues. Naturally, there may be more than one ''next
transform" and more than one subsequent efferent process. For our plant simulation
process, the factoring of efferent modules is shown in Fig. 10. 9.

GETAGENDAT B

4

SIMPLANSYS

SIMSALES SIMLINE

5 8

Figure 10.6. First·cut factoring.

q
1
I '

~_t_ __
1X ~
~ I
'- - - ·- -

" " i:-~---1r I
I I
t I
L- - - ·-...J

TRANSFORM ANALYSIS 179

PLANT

9 10

Figure I 0. 7. Factoring of subordinate modules.

180 STRUCTURED DESIGN

Figure 10.8. Factoring of an afferent branch.

10

Cl l~tAf:.M/\r

'L

t5

Figure 10.9. Factoring of an efferent branch.

TRANSFORM ANALYSIS 181

Little is known about the optimal factoring of central transform modules - that
is, for modules like SIMSALES, SIMMACH, SIMLINE, and PLANT in our example of Fig.
10.6. Obviously, for each transform, we are looking for sub-transforms that will com
pose the overall transform. We also are looking for compositions of the functions
shown as the central transforms in the original data flow graph (e.g., for the central
transforms shown in the data flow graph of Fig. I 0.5). These are inserted as intermedi
ate modules in the hierarchy - between the top level and the functions from which
they are composed.

Our purpose is to ensure that the subordinates of the main module represent the
highest levels of processing and that less important details are relegated to lower levels.
The designer's judgment and experience are guided throughout this process by the im
portant considerations of coupling and cohesion, as well as by the various design heuris
tics that were discussed in Chapter 9. For the plant simulation example, the trial factor
ing of the transform modules is shown on the following page in Fig. 10.10.

10.5 The fifth step: departures

The strategy thus far described assumes an orthodox structure in which the data
flow inward or outward in any branch - but not both! Consequently, we expect that
afferent modules will have only afferent and transform subordinates; similarly, efferent
modules are expected to have only efferent and transform subordinates~ and transform
modules (regardless of where they are in the structure) should have only transform
subordinates.

However, real-world problems frequently require exceptions to these rules if
clumsy processing is to be avoided. For example, in our plant simulation problem, the
"special machine table solutions" could require afferent subordinates to a transform
module~ similarly, the "report agenda" input could require afferent subordinates to an
efferent module.

Let us assume, for example, that the special machine table solutions are used only
when some detail iri the plant simulation .transform detects certain conditions. We
would expect this step to be found quite far down in the transform structure, as we
have, in fact, shown in Fig. 10. l 0. To place an efferent GETSPECT AB module subordi
nate to the top-level SIMPLANSYS module would be terribly artificial: It would mean ei
ther that the tables must be input in all runs of the system, just in case they are need
ed, or that the detail step SIMMACHSTEP would have to signal its superordinate, which
would signal its superordinate - and so forth - all the way back to the top level to
read the tables, and·then return all the way back down to continue the simulation.

We must always keep in mind that our objective is to make the program structure
reflect the structure of the problem as closely as possible. The detailed data flow di
agram is a guide to the problem structure, and if the problem requirements necessitate
a departure from the orthodox transform-centered organization, it should be apparent in
the diagram. Certainly, this is the case in the example shown in Fig. 10.5.

When completed, the trial structural design using transform analysis will bear a
simple, straightforward relationship to the data flow. This will be evident in our plant
simulation example by.comparing the structures shown in Figs. 10.8, 10.9, and 10.10
with the data flow shown in Fig. 10. 5. It must be remembered that this is a trial, first
cut structural design. The final structure, which will reflect many design trade-offs and

182 STRUCTURED DESIGN

heuristics, will be derived from systematic refinements and alterations of this initial
structure. These modifications may be made in a separate phase after completing the
initial factoring, or (as many designers prefer) during the initial factoring. Especially
when similar problems have been exhaustively analyzed before by the designer~ this
concurrent approach may save considerable effort.

For example, a final version of our plant simulation problem might look like the
one shown in Fig. 10.11 on the following page. Again, carefully study the relationship
between this figure and the earlier structures shown in Figs. 10.8, 10.9, and 10.10 - as
well as the initial data flow diagram in Fig. 10.5.

Sl M.SA Lf:S Sl.MPLA~

.5

1

Figure 10.10. Trial factoring of central transforms.

16

READ
AGENDA
CARD].

4

DATA

CHECK/
ANALYZE

2,3

SIMPL.\NSYS

5

SI.MMACH SIMLINE

6 8

lg

GETSPECTAB

7

TRANSFORM ANALYSIS 183

PUT RESULTS

12

1 13 15

Figure I 0.11. Possible final structure of simulation system.

10.6 General comments on factoring

As we pointed out earlier, all of the subordinates of a module should be identified
and defined. before any one of the subordinates is analyzed any further. Clearly, we are
seeking th1~ smallest number of distinct modules which satisfies the appropriate
transform. To check whether this step has been completed, we need only to ask wheth
er the available subordinates are sufficient to implement the transform. We must be
able to see that there is at least one way to program the current module (which imple
ments the transform currently being analyzed) in terms of the subordinates plus ap
propriate control and coordination processes (decision-making, looping, communication,
and so on). It is not necessary to detail this procedure, nor to consider more than one
way of doing the job - as long as we are assured that at least one way exists. Obvious
ly, the designer should regard with suspicion any subordinate module which he cannot
see as necessary to implement the current module.

As subordinate functions are identified, the designer names them. A brief
descriptive name or phrase is used to characterize the function of the module. This
may be a phrase taken from a description of the superordinate's transform, or it may be
a restatement of that description. It should fully and specifically describe what the
module doe:s with respect to its superordinate - that is, what function it appears to per
form from the outside.

Several heuristics concerning names of modules are useful in determining their
effect on the module structure. Names that identify classes of operations should be
avoided, as they frequently are associated with logical cohesion (cf. the discussion in
Chapter 7). Names that involve many conjunctions and qualifying conditions are clues
to low cohesion. Thus, if the name GET RECORD UNLESS FLAG OR CARD BLANK IN

184 STRUCTURED DESIGN

WHlCH CASE READ CARD AND PRINT RECORD is the only correct description of the
module (as seen from its superordinate), then it probably has very Jow cohesion.

The consistent use of names that imply inherent communication structure will
avoid ambiguity and subsequent unintentional changes in interpretation. Any con
sistent set will do, but the names shown in Table 10.1 are il1 fairly wide use and have
the. added advantage of yielding subroutine calls that read like commands in a high-level
programming language. Note that the names consist of verbs followed by a description
of the specific process being carried out by the module. Thus, we have names like GET

CONTROL SPECS or PRODUCE MONTHLY REPORTS.

Table 10.l
Suggested Module Names

Afferent processes with external sources of data

GET
OBTAIN
INPUT

ACCEPT (usually asynchronous)
FIND
LOAD

Afferent processes with internal sources of data

SETUP
DEVELOP
GENERATE

FORM
CREATE

. Transform processes

ANALYZE
TRANSFORM
CONVERT
DO

COMPUTE
CALCULATE
PERFORM
PROCESS

Specific verbs like SORT, VALIDA TE, etc.
Function-oriented nouns like SQUAREROOT, INVERSION

Efferent processes with external targets

PUT
PRODUCE
SAVE
DELIVER

OUTPUT
STORE
WRITE

Specific verbs like PRINT, UST, PUNCH, etc.

But some of these are somewhat ambiguous

PROCESS (could be afferent or transform)
CREATE (could be afferent or efferent)
GENERATE (could be afferent or efferent)
DO (could be anything)
PERFORM (could be anything)
DELIVER (could be afferent or efferent)

Forms of names that do not imply a specific procedural implementation are pre
ferred to those names having a more specific connotation. COMBINE is a more general
form of MERGE, and is, therefore, preferable. Certain general terms - such as UPDATE
and VALIDATE - have specific procedural meanings to particular designers. We would
like to avoid such procedural interpretations while we are involved in the structural
design of the program. Similarly, device names and physical input names should be

TRANSFORM ANALYSIS 185

avoided until it is clear that the object being dealt with can only exist in actual physical

form. READ-TIME-CARD is usually a low-level function, for example, as compared to
GET-TIME-ITEM. .

References to the term FILE often tempt the designer to commit himself to file

by-file processing or to using more intermediate files than necessary. For example, the

two top-level functions DEVELOP-EMPLOYEE-FILE and PRODUCE-EMPLOYEE-REPORT seem

to suggest a structure in which DEVELOP-EMPLOYEE-FILE creates (or outputs) a magnetic

tape file of employee data, which PRODUCE-EMPLOYEE-REPORT will read, format, and

print as a report. Aggregations of data that are not the fundamental unit of processing

should not be referenced. Names that imply processing of a single element of data

have been found to leave more room for free choice of a processing algorithm.

By making complete, but succinct, statements of the function of a module, the

designer often can identify low cohesion at an early stage in the design. By using a con

sistent, restricted vocabulary, the designer avoids ambiguity and overcommitment to a

single processing methodology. Finally, if the designer has difficulty finding a succinct

name for a function, it may be a clue that such a module does not exist, or that it does

not make sense in the current context, or that it does not make sense at the current
place in the structure.

10.7 Termination

Various criteria may be used to determine when the functional factoring of

modules should be terminated. The end may be reached when it is not possible to state

a transform with any clearly discernible subtasks. When a vendor-supplied module or

library subroutine is reached, factoring cannot proceed because the substructure has al

ready been determined (though it should not be visible to the designer if the library

routine is truly a black box). Similarly, reaching a module that interfaces with physical

input-output media signals the end of factoring. Finally, when we identify very small

modules, it indicates that we have reached the bottom level of the hierarchy -

altho'ugh clearly any such signal is approximate and has exceptions. '~Very small" gen

erally means vanishingly small: a few instructions or source statements. The approxi

mate size of such modules is, by definition, obvious - hence, no distinct size

estimating process is needed.

' It is preferable to go too far in an initial factoring, and to have recognized

processes that are too small, too fractional, and too specialized to constitute distinct

modules. The very tiny modules always can be combined later with a full knowledge of

the composition of the combined module, and with a full understanding of the structur

al design consequences~ the trade-offs can be weighed, and a deliberate optimal choice

can be made. If the design does not proceed far enough, the opportunity for conscious

decision may be lost, and the exact nature of any resulting composite modules may

never be known.

10.8 An example: the FRANK system

Consider a system to be used by a meat packer who prepares processed meat prod

ucts for discount-food stores. The company wants an appropriately headed Buying List

report for their hot dogs to tell them which meat products to buy in order to produce

frankfurters of a given quality at the lowest possible cost. The company is constrained

186 STRUCTURED DESIGN

by Federal standards, state standards, product-consistency requirements, quality stan
dards, and so forth - all of which comprise a matrix of parameters. Some prices and
constraints are fairly stable and will be maintained as one set of row definitions in the
matrix; others are transient, the row definitions changing almost daily.

In either case, it is necessary to verify the reasonableness of row definitions based
on some fairly complex internal consistency checks~ an invalid row is corrected by an
exception input from an on-line terminal. Both kinds of row definitions (stable and
transient) are punched on cards in a "free-field" format, which must be checked and
converted to a standard internal form. One, two, or three cards with the same row
number constitute a row item.

The two card decks (one for the stable row definitions and one for the transient
row definitions) are read from a fast card reader (using a systems-supplied routine
READCARD-F) and from a slow card reader (using READCARD-s). Rows are combined
by a simple merge on row number to form the parameter mafrix. If the row numbers
from the two card readers match, the transient row definition is used; row 999 signals
the end of input. When the rows have been put into an ordered matrix form, the ma
trix is used to compute an optimal meat mix for frankfurters. Depending on a sophisti
cated mathematical test, this computation may sometimes require conversion of the ma
trix to a "canonical form''; this allows a short subroutine called SIMPLETON to compute
the least-cost solution using a linear programming technique that is known as the "sim
plex" algorithm.

10.8.1 Restatement as data flow

The first step, as we have seen, is to restate the problem in nonprocedural form
using the data flow graph. This is done most easily by ()roceeding systematically from
the system's inputs to its outputs. There are four input streams to the FRANK system:
stable parameters, transient parameters, the description file used to produce a readable
report, and exception input. The first transform applied t<D each of these streams is the
operation necessary to get them physically into the program. As shown in Fig. 10.12,
the data flow graph begins at the left of the page, showing the input transform. Note
that the streams are labeled very specifically to avoid confusion among similar streams
or different forms of the same stream. Ignoring the description file and the exception
input for the moment, the design continues with the successive transforms of the tran
sient and stable parameter streams, which must be reformatted and built into complete
rows, as shown in Fig. 10.12.

At this point, there is a choice to be made. Ultimately, the FRANK system must
have available rows of parameters that are merged (from stable and transient streams)
and validated. However, the statement of the problem is ambiguous as to the order in
whiich merging and validation are to be performed. We will simply choose to perform
validation after the merging operation. The resulting stream must be put into matrix
form, and the matrix readied for processing with the -simplex algorithm. This results in
the data flow diagram of Fig. 10.13. Notice that "*" and "EB" have been used in ap
propriate places.

The results of the optimization must be combined with the descriptions of items
(from the description file), formatted into a report, and printed. The completed data
flow graph is presented in Fig. 10.14.

stable
parameter

cards

transi.ent
parameter

cards

description
file

entries

terminal
corrections

stable
parameter

transient
parameter

row

stable
parameter

card

transient
parameter

card

description
file
entry

TRANSFORM ANALYSIS 187

converted
stable

converted
transient
parameter

card

stable
parameter

transient
parameter

Figure 10.12. Beginning of data flow for
FRANKSYS.

next
valid input

Figure 10.l 3. Intermediate stage of data flow.

188 STRUCTURED DESIGN

stable

tran1Jient
parar~ter

cards

stable

etc.

etc.

converted
stable

lir.e

terminal

Figure I 0.14. Complete data flow for FRANKSYS.

The next step is to identify the afferent and efferent data elements by locating the
points in the data flow that are furthest away from physical input and output forms, yet
still comprise, respectively, inward and outward flowing data. This decision may be ap
proached by asking ourselves whether it is possible to imagine a GET module for a given
afferent stream, and a PUT module for an efferent stream.

For example, we can easily imagine a GETTRANSIENTCARD process, or even a GET·
NEXTVALIDROW process, or even a GETPARAMETERMATRIX process - but we probably
cannot imagine a GETOPTIMALINGREDIENTS process as an input process. Most designers
would draw the line defining the afferent data element between the production of the
matrix and its use in the simplex calculation. Because the readying of the matrix is
functionally allied with the nature of the simplex algorithm itself, we have left the
"make-ready" transform out of the afferent portion of the data flow.

On the efferent side, we certainly can imagine an efferent process to PUT a line,
and we can imagine a PUTRESUL TMATRIX operation - but we would have difficulty
imagining a PUTINPUTPARAMETERMATRIX process. The final selection of afferent and
efferent data elements is shown in Fig. 10.15. Note that the description file constitutes
an afferent data element - but to a separate transform center for which the efferent
data element is the report data line. Note also that much of the detail in the data flow
graph was unnecessary for determining the afferent and efferent data elements. Howev
er, we have already pointed out that it is better to go into too much detail than not
enough, and this extra detail will prove advantageous in later stages of our design.

afferent
data element

~central J
transforms

TRANSFORM ANALYSIS 189

efferent
data element

secondary
afferent data

element

Figure I 0. 15. Identification of afferent and efferent data elements.

10.8.2 The structural design

The initial structural factoring includes one module for each central transform,
one for each afferent data element feeding the central transforms, and one for each
efferent data element emerging from a central transform. For the FRANK system, this
initial breakdown is shown in Fig. 10.16.

As we discussed earlier, each of the initially specified modules at the top level is
factored into lower-level subordinates according to an appropriate strategy: Afferent
modules require one strategy, efferent modules another strategy, and transform
modules yet another. Let us begin the factoring of the afferent module GETMATRIX.

GETMATRIX
obtain matrix
of parameters

FRANKSYS
produce buying
list for
frankfurters

READYMATRIX COMPUTE
convert matrix OPTIMAL
to canonical compute least·
form cost meat mix

PUTRESULTS
produce buying
lisl

Figure I 0.16. First-level factoring of FRANKSYS.

190 STRUCTURED DESIGN

In order to factor GETMATRIX, we must look for the last discrete transform to be
applied to the data stream in order to produce the afferent data element which GETMA
TRIX must deliver to FRANKSYS. In this case, the afferent data element is the input
parameter matrix and the last transform involves the creation of the matrix from the
same data in non-matrix form - that is, from valid row data. The valid row data must,
in turn, be supplied by some new afferent module. The newly identified immediate
subordinates to GETMATRIX are modules GETNEXTVALIDROW and ROWTOMATRIX. The
latte:r eventually may prove to be a trivial function to implement, but note that in a
functional sense it belongs here - and at this early stage in the structural design, we
include it as a distinct module.

Turning to the afferent module GETNEXTVALIDROW, we can see that the last
transform required to produce a valid row is simply that of validating the row; the
afferent data element required by this transform is the next raw unvalidated row. The
structure of the afferent branch thus far is shown in Fig. 10.17.

I

Figure 10.17. Early stage in design of afferent branch.

TRANSFORM ANALYSIS 191

Next, we examine the GETNEXTROW module. Its function is to merge two streams
of data (the stable parameter rows and the transient parameter rows) into one stream of
the proper order. The merge discipline is the last transform to be applied. However,
note that this last transform has two afferent data elements: the latest stable row and
the latest transient row. Consequently, there are three subordinates to GETNEXTROW at
this stage in the design. We will continue the factoring of one of these three - the
GETTRANSROW module.

We can see that the last transform of GETTRANSROW is the completion of the row
from one or more valid transient cards. These come from an afferent module that
delivers, in a standard internal form, the data of valid (with respect to format) transient
row card images. One could complete the factoring as shown in Fig. 10.18a: Card im
ages are obtained, checked for proper format, then converted from card image format
(i.e., a character string) to the standard internal representation. The problem is that the
format-checking process must duplicate much of the conversion process - e.g., finding
the ends of fields, locating decimal points, testing for alphabetic/numeric character
types, and so on. As we can see in Fig. 10. l 8b, the smallest system results from a sin
gle conversion/checking module, which performs all the necessary checking in the pro
cess of translating from external to internal format.

With the identification of module READCARD-s, we have reached the bottom of
this particular sub-branch - that is, we have located the ultimate source of data in this
stream. Along the way, we have identified modules whose substructure we have yet to
determine~ among these is the CONVERTV ALID transform module. CONVERTVALID is
defined as a module that detects format errors in transient row card images. The origi
nal description o·r the problem specified that format errors should cause an error mes
sage to be printed on the on-line terminal, together with a request for a correction in
card-image form. Should the error message be transmitted from CONVERTVALID or
from GETVALIDTRANSEARD'? Which module should obtain the exception input, in
card-image form, from the terminal? The answer suggested by the transform-centered
strategy is that either the card image or the substitute input from the terminal is the
afferent process feeding the last transform (validation) to produce a valid row image.
Thus, it seems most straightforward to make GETVALIDTRANSCARD responsible for get
ting exception input from the terminal.

What about the error message'? We note that the discovery of an error situation
takes place in CONVERTVALID. To have the error message output by GETVALIDTRANS
CARD, the message must be passed up from CONVERTVALID to GETVALIDTRANSCARD,
and then back down from GETVALIDTRANSCARD to an appropriate error-printing routine.
This seems to involve unnecessary coupling; we prefer the simpler alternative of allow
ing CONVERTV ALID to call its own subordinate error-printing subroutine.

Note that the card image from the terminal must also be validated and converted~
this suggests the structure of Fig. 10.19a. It would be unnecessarily clumsy to require
SUBSTTTUTEVAUD to pass a raw line of input up to GETVALIDTRANSCARD, which would
then pass it down to CONVERTVALID for checking and conversion. At some small execu
tion overhead, SUBSTITUTEVALID can make the call to CONVERTVALID itself, as shown in
Fig. 10. l 9a~ note that SUBSTITUTEVALID contains a loop when valid input has finally
been received. By moving that loop upward into GETVALIDTRANSCARD, we could
transform the structure into that shown in Fig. 1O.l9b. However, this is a decision that
is ·better deferred until factoring of the other afferent sub-branch has been completed.

192 STRUCTURED DESIGN

Figure 10.18b. Continuation
of the afferent branch.

Figure 10.1 Sa. Continuation of the afferent
branch.

Figure I 0.19b. Alternative design
of GETVALIDTRANSCARD.

TRANSFORM ANALYSIS 193

Figure 1O.l9a. Handling errors
in CONVERTVALID.

194 STRUCTURED DESIGN

When we approach the factoring of GETSTABROW, we immediately wonder whether
this isn't the same structure as the one just designed for the transient sub-branch. Be

fore we proceed, it is important to recognize that GETSTABROW and GETTRANSROW per
form different, distinct functions in the problem as defined - although this does not

prevent us from designing a single module that accepts a parameter specifying which of

its two functions is to be performed on a given call. Were we to follow this approach,

we would have to recognize that the combined module would not be highly cohesive (in

fact, it would have logical binding), and the control parameter would have to be passed

and tested all the way down to the low-level module, which would finally decide wheth
er to call READCARD-S or READCARD-F.

At the other extreme, we could specify totally duplicate structures. Since some of

the functional requirements of both sub-branches are identical (such as the convert

and·-validate function), it stands to reason that we will have a simpler system if we can

specify some shared single-function modules. The structure of Fig. 10.20 is a suitable

compromise and will permit future modifications to be made easily to either or both

data streams. Note how the availability of the distinct MAKEVALIDCARD module results

in a simpler total structure than would have been possible with the design of Fig.

10.l 9b; if we had followed that approach, the coding in GETV ALIDTRANSCARD would
have been duplicated in GETVALIDSTABCARD.

Moving higher in the structure of Fig. 10.20, we note that the transform module

MAKEROW may prove to be trivial to implement in most high-level programming

languages. Thus, we may legitimately compress ·it upward into GETTRANSROW and
GETSTABROW.

At th'is point, we should consider the "which-is-next" decision processing impli

citly included in the module MERGE of Fig. 10.20. The outcome of this decision deter

mines whether a new transient row, a new stable row, or both (in the case of a match)

should be obtained. Thus, GETSTABROW and GETTRANSROW are both within the scope

of effect of the decision, though not within the scope of control of MERGE. This conflict

(which was discussed at length in Chapter 9) may be resolved by compressing the

merge decision upward into GETNEXTROW. Indeed, this kind of structure is common,

and the result of our design decision may be reduced to a rule of thumb. A module

that represents the merge point of data streams (as shown in a data flow graph) should

contain the merging discipline - that is, it should contain the decisions which deter

mine the merging sequence. The merging discipline should not be placed in a subordi
nate module.

We know that the row validation function is non-trivial. We can be guided in its

, factoring by our experience with the MAKEVALIDCARD module. The difference here is

that we must input one or more card images from the terminal and make them into a

row. The function MAKEVALIDCARD of Fig. 10.20 expects to test one set of inputs from

above before deciding that it should read some input from the terminal. With this in

mind, we see that our requirement is for an afferent module that simply gets a validated

line from the terminal, as in the SUBSTITUTEVALID module of Fig. 10. l 9a. We back up
to this variant and complete the structure of Fig. 10.21. At this point, we notice that,
although we have avoided most of the duplication of coding, the procedure for combin
ing a series of row images into a row appears in three separate modules - the only

ditforence in each case being the source. It is not hard to convince ourselves that a

parameterized combination module would be almost as complicated as the sum of the

TRANSFORM ANALYSIS 195

three individual modules. Such a combination module would be only communicational
ly cohesive, too.

MAKE:~W
~tO..t'OW
of fll1'll>Witt<s

Figure 10.20. Afferent branch with stable and transient sub-branches.

196 STRUCTURED DESIGN

Figure 10.2 L Completion o'r lower portion of afferent branch.

TRANSFORM ANALYSIS 197

Having completed the afferent branch, we can begin to factor the central
transforms. Obviously, the simplex computation of optimal mix is an existing entity in
itself. The testing of the matrix for potential conversion to canonical form together
with the conversion procedure itself comprises the READYMATRlX function. In factoring
central transforms, we also should consider combinations of transforms, which might
comprise highly cohesive functions - particularly since the level of detail in the data
flow diagram might lead us to miss intermediate-level functions. For example, SIMPLE
TON and its mathematically (and computationally) related function MAKEREADY

comprise a function to compute results from an input matrix. A module for such a
function would be at least sequentially cohesive if not functionally cohesive.

Deciding whether we should have a sequentially cohesive module is essentially the
same in all cases. Schematically, this is represented in Fig. 10.22: F and a are sequen
tially related functions due to the data element z. First, we ask whether either (or
both) of the functions in question is functionalty related to the contents of any other
module. Usually, this would be modules in the positions designated P, Q, and R in Fig.
10.22. If such a structure exists, it almost always would be preferable to a sequentially
cohesive module.

Q

p

F

Figure 10.22. Schematic representation of sequential binding decision.

198 STRUCTURED DESIGN

Figure 10.23a. Complete FRANKSYS structure, first part.

TRANSFORM ANALYSIS 199

Second, we consider the existence, or probable future existence, of additional uses
of the sequential combination of modules - F-G in this case. Such uses are simplified
if the sequentially cohesive module (in this case, module s) does exist. (Note that a
compound F-and-G module is a structure distinctly less modular than one with a su ..
perordinate s calling subordinates F and G.)

On the other hand, the superordinate s module adds one level of overhead on
each activation; the costs of this overhead are the third consideration. These must be
balanced against the implementation and storage costs of some number of "paired"
calls to F and G individually, compared to the same number of single calls to s. Finally,
a sequentially cohesive module may be elected for its value in conceptually organizing
the problem if there is no functionally cohesive alternative. This final criterion is used
to justify the specification of this system's COMPUTEOPTMIX module; see Fig. 10.23c.

In factoring the efferent branch, we look for the next-to-follow transform, and the
efferent process it feeds. In this case, the data for a single buy-order must be extracted
from the result matrix, and delivered to a module that will put it into a nicely formatted
report. In turn, this module next must combine the buy item with its description from
the description file. Recalling that the merge decision function will be in this module,
we specify the structure shown in Fig. 10.23d. The next transform is to add heading
data (if needed, i.e., if there is a page overflow), and finally to print the line. Printing
the header also involves printing lines of data.

The finished transform-centered design for the FRANK system is shown in the four
parts of Fig. 10.23. This structure should be studied carefully and compared with the
original data flow shown in Fig. 10.14.

Fi'gure 10.23b. Complete FRANKSYS
structure, second part.

Figure 10.23c. Complete FRANKSYS
structure, third part.

200 STRUCTURED DESIGN

Figure 10.23d. Complete FRANKSYS structure, fourth part.

TRANSFORM ANALYSIS 201

10.9 Summary

In this chapter, we have presented one of several design strategies available to the
designer. The next two chapters present other design strategies, but three things should
be emphasized before we go on:

1. The transform-centered design strategy is based on an analysis of data
flow, as is the approach presented in the next chapter. Some of the
strategies discussed in Chapter 12 are based, instead, on data structure.

2. The transform-centered strategy still requires judgment and common
sense on the part of the designer~ it does not reduce design to a series
of mechanical steps.

3. The transform-centered strategy is based on the assumption that the
resulting system will consist of one hierarchical structure. As we will
discuss in Chapter 18, that is not always necessary; it sometimes is pos
sible to stop as soon as the data flow graph has been drawn, with each
bubble being implemented as a distinct task in a multi-tasking operat
ing system.

11.0 Introduction

CHAPTER 11
TRANSACTION ANALYSIS

In the last chapter, we explored transform analysis as a major strategy for design
ing well-structured programs and systems. Indeed, transform analysis will be the guid
ing influence on the designer for most systems. However, there are numerous situa
tions iry which additional strategies can be used to supplement - and occasionally even
replace - the basic approach of transform analysis. One of these supplementary stra
tegies, known as transaction analysis, will be discussed in this chapter. This strategy is
deriived from the SAPTAD structure 1 originated by Vincent and others at Bell Telephone
of Canada. Transaction analysis is a more flexible, more sophisticated updating of the
SAPT AD technique.

Transaction analysis is suggested by data flow graphs resembling Fig. 11.1 - that
is, where a transform splits an input data stream into several discrete output sub
streams. In many systems, such a transform may occur within the central transforms
(as defined in Chapter 1 O) ~ in others, we may. find the transform shown in Fig. 11. l in
either the afferent or efferent branch of the structure chart.

The phrase transaction analysis suggests that we will be building a system around
the concept of a "transaction,, - and, of course, the word transaction implies to many
programmers that we are dealing with a business-oriented data processing system.
Indeed, it is true that many commercial systems are at least partly transaction-oriented
(if we use that term informally)~ as a result, transaction analysis should play an impor
tant. part in a portion of the design of such systems. However, it also can be applied to
porltions of many real-time systems, such as process control, data acquisition, and in
teractive time-sharing systems~ to engineering applications~ to programmed control of
nurnerically controlled machine tools~ and to many others.

A great deal of the usefulness of transaction analysis depends on how we define
transaction. In the most general sense,

• A transaction is any element of data, control, signal, event, or change Qf
state that causes, triggers, or initiates some action or sequence of actions.

According to this definition, a large number of the situations found in normal data pro
cessing applications would be considered transactions. For example~ any of the follow
ing would be considered a transaction:

• The operator pushing the start button on an input device

202

TRANSACTION ANALYSIS 203

• Some input data to a commercial system designated as add-shipment
to-inventory

• An escape character from a terminal, indicating a need for special pro
cessing

• A hardware interrupt on an out-of-bounds subscript reference within
an application program

• A customer replacing the phone on the hook, thereby terminating a
telephone conversation being monitored by a computer system

We are not suggesting that all data processing systems are transaction-oriented~ we
might be able to stretch our imaginations to think of a number-crunching program as
transaction·-oriented, but it would be awkward and artificial. Similarly, we are not sug
gesting that all parts of a typical business data processing system are transaction
oriented. As we saw in Chapter 10, a significant part of the analysis of typical business
data processing systems involves the tracing of afferent and efferent data items through
the system. Nevertheless, it is clear that a great deal of the work in many systems is in
volved in the identification and processing of transactions~ hence, the transaction
analysis strategy should prove useful in a wide variety of applications.

I

' \
""'

Figure 11.1. Data flow graph of a typical transaction center of an application.

204 STRUCTURED DESIGN

11.n Transaction analysis strategy

1 l. l.1 Transaclion center

The transaction analysis strategy simply recognizes that data flow graphs of the
form of Fig. 11. l can be mapped into a particular modular structure. A transaction
center of a system must be able to

• get (obtain or respond to) transactions in raw form

• analyze each transaction to determine its type

• dispatch on type of transaction

• complete the processing of each transaction

In its most fully factored form, the transaction center may be modularized as in
Fig. 11.2. The head of this subsystem structure, TRANS, might be subordinate to any
part of some much larger system. Each of the mOdules GETTRAN, ANAL YZETRAN, DO·
TYPEt, DOTYPE2, and so on could itself be the head of an entire subsystem. Less
factored variations of this structure are readily derived from Fig. 11.2 by compressing
one or more modules upward into its superordinate, leading, for example, to the pan
caked structure of Fig. 11.3.

In orthodox form, the substructure below the dispatching module may be modeled
as a four-level system. This structure is shown in Fig. 11.4. The four levels are called:

• transaction processor (or P-level)

• transaction level (or T-level)

• action level (or A-level)
\

• detail level (or D-level)

Problems can arise if an attempt is made to shoehorn an entire application into the
model of Figs. 11.2 and 11.4. These will be taken up fully at the end of this chapter.

The span of control of the transaction processing module (whatever module con
tains the dispatch logic) should be noted. The span of control here is potentially quite
high: one for each transaction type. However, if each transaction processing module is
required to complete independently all processing of a particular transaction before re
turning, the dispatching logic remains simple and the module containing it still will ap
pear small to the programmer looking at it. The transaction processor module, TRANS
in Fig. 11.4, typically is relatively uncohesive, ranging from logical to communicational
in cohesion depending on the application. Thus, the dispatching itself may profitably be
partitioned into strongly related subclasses in some systems.

In the orthodox form, the transaction processor (TRANS in Fig. 11.4) would expect
to receive a transaction from its superordinate when it is activated. A system may in
clude any number of transaction centers. A transaction center may be located in an
afferent branch of the system, in a transform branch of the system, or in an efferent
branch of the system. The outputs of the transaction center might consist of

• A converted, formatted version of the input transaction - which can
be passed upward to feed higher levels .of the afferent process

GET TRAN

TRANSACTION ANALYSIS 205

• A simple flag indicating whether the input transaction was valid. We
would expect to encounter such a validate form of TRANS frequently in
the afferent branch of a system.

• Computed results based on the processing of the input transaction.
The results would be passed upward to the superordinate to be used in
other central transforms - or to be passed downward to lower levels of
an efferent process.

• An updated (modified) form of an element or elements of some data
base, whether internal or external

GETANALYZED

TRANS

internally
coded
transaction

~ans-
~ analyzed, coded

'aa transaction
act:i.on ___ _.... __

ANALYZE TRAN DOTYPEl

I

DISPATCH

DOTYPE2 DOTYPE3

Figure 11.2. Fully factored transaction center.

TRANS

lei.Nii~ 1-cLJ"!.p~ ... -c~
I I

Figure 11.3. Pancaked transaction center.

DOTYPEY

206 STRUCTURED DESIGN

P-level

,.i
T-level

A-level

S-level

DZ.

I
I

A)

/\~
I \ v~
I

Figure 11.4. Model structure chart for transaction-centered system.

11.I.2 The strategy

Using Figs. 1 L2 through 11.4 as models, we can outline the steps of a transaction
analysis strategy as follows:

1. ldentffy the sources of transactions. In many cases, the transactions will
be mentioned explicitly in the problem definition, in which case it usu
ally can be assumed that the transactions will come from the physical
input media. In other cases, the designer may have to recognize
afferent, transform, or efferent modules that generate transactions; this
may be more obvious after the first few steps of factoring of a
transform-centered design. More than one transaction stream may
feed the P-level module, and these may have to be merged from
different directions (e.g., afferent and efferent). Transaction streams
may also have to be merged with non-transaction data streams.

2. Speedy the appropriate transaction-centered organization. Figure 11.2 usu
ally will be a good model, but the designer should feel free to alter it as
appropriate, based on the theory and the heuristics introduced in ear
iier chapters.

TRANSACTION ANALYSIS 207

3. ldentifY the transactions and their defining actions. Again, we often may
find that all of the requisite information is provided in the problem
definition; if the transactions are generated internally in the system,
the designer must define carefully the processing to take place for each
transaction.

4. Note potential situations in which modules can be combined. As in the
case of transform analysis, we often can find situations in which an
intermediate-level module can be created from a functionally cohesive
group of low-level modules. This combination is likely to be appropri
ate in situations in which the syntax or semantics of various transac
tions is similar.

5. For each transaction, or cohesive collection of transactions, specifY a trans
action module to completely process it. Because the transactions in a sys
tem are often similar, there is a temptation to group the processing of
several transactions into one module. This should be avoided if the
resulting module has low cohesion; we want to avoid modules with
only communicational or lower cohesion and, especially, logically
cohesive modules.

6. For each action in a transaction, specifY an action module subordinate to
the appropriate transaction module(s). In essence, this is the factoring
step that we discussed in Chapter 10. Note that there may be many
opportunities for transaction modules to share common action
modules.

7. For each detailed step in an action module, specifY an appropriate detail
module subordinate to any action module that needs it. Clearly, this is a
continuation of the factoring process. Note that for a large system with
complex transactions, we may have several levels of detail modules. In
addition, keep in mind that similar action modules should share com
mon detail modules whenever possible.

Throughout this process, the designer should be guided by the principles of cohe
sion, coupling, and the design heuristics discussed in Chapter 9. In addition, the
designer should remember the fundamental design principle mentioned repeatedly in
earlier chapters: The form of the systems structure should reflect, as closely as possi
ble, the form of the problem.

It is especially important for the designer to recognize that there is nothing magi
cal about processing transactions in exactly four levels. (Remember, 7 ±2 is the only
magical number!) Some transactions may be fully factored with only a transaction-level
module; others might take nine or ten levels. Nor is there anything particularly sacred
about the processing assigned to each level. If one transaction can be implemented as
the composition of other transactions, by all means do so structurally, even though this
makes some modules serve on both transaction and action levels. For example, an
OPENACCOUNT transaction module might also be used as an A-level subordinate to the
OPENBLOCK module, which opens a unique block of sequential account numbers.

208 STRUCTURED DESIGN

11.:z An example of transaction analysis

11. 2.1 Statement of the problem

Consider a portion of a system that is designed to update selected fields in
specified records of a Customer Master File. We will assume that the Customer Master
File is a serial file occupying several reels of magnetic tape, and that the file is sorted in
ascending order on a five-digit numeric customer account number.*

Updates to the Customer Master File will be supplied to the system from cards (or
card images) in a free-field format described below. Each card will specify the account
number of the customer whose record is to be updated; this will be followed by a
specification of one or more fields to be updated. For historical reasons, the user's data
preparation group has always supplied update cards that already are sorted by customer
account number.

Our system, which we will call MFUP, will read the update cards, make certain
checks for reasonableness, and then proceed to update the Customer Master File. The
system is required to print a brief report of any errors found during its processing, as
well as a copy of any and all records that have been successfully updated.

We may assume that every customer has one record on the Customer Master File.
Each record is a fixed length of 142 characters. The layout is shown in Table 11.1.

Table 11.l
Structure of the Customer Master File

Alpha or May be
Field Type of information Length numeric updated

Account number 5 numeric no

2 Customer name 30 alphanumeric yes

3 Customer street address 30 alphanumeric yes

4 City 20 alphanumeric yes

5 State (abbreviated, standard 2 alphabetic yes
U.S. Post Office code)

6 ZIP code numeric yes

7 Phone number (with area code) 10 numeric yes

8 Customer status: active/inactive alphabetic no

9 Salesperson handling 5 numeric yes
this account

10 Date of last transaction 6 numeric no

11 Date of last payment 6 numeric no

12 Current balance 8 numeric no

13 Total volume of business, YTD 8 numeric no

14 Credit limit, in dollars 6 numeric no

*That we are using a sequential tape file is a packaging assumption that the designer should not be making at
this early stage of the design effort~ more of the consequences of packaging will be discussed in Chapter 14.
In the meantime, we will continue to assume a sequential tape file for the sake of simplicity~ most of our at
tention will be focused on a transaction center in the system.

TRANSACTION ANALYSIS 209

Updates to the Master File will be supplied from cards whose format is as follows: Card
columns 1 .. 5 will specify the account number. of the record to be updated~ columns 6-9
are always blank and should be ignored~ beginning in column 10, there will be a vari
able number of fields of the form

xxabcd ... pqr*xxabc ... stu*xxabc ... uvw**

where xx represents a two-digit integer that specifies which of the 14 fields in the Mas
ter Record is to be updated, and abcd ... pqr represents the corresponding field in the
Master Record.

Note that each field is terminated with an asterisk (?!¢), and that the last field on
each card is terminated with a double asterisk {**)~ thus, it is conceivable that we
should see an update card containing the information

12345 07abcd*02pqrs*03ijk**

Note that the character string, which has been represented above as abed ..
may consist of alphabetic characters, numeric characters, or a mixture of both. The
definition of the Master File in Table 11. l tells us whether the appropriate form of data
has been received. Note also that it is possible to have multiple cards updating the
same Master File record. That is, the following sequence is legal:

12345
12345
12345

02abcd**
04pqrstuvw**
03ijk**

Thus, there is a great deal of flexibility in the input format. However, the user
has specified one important restriction: A field may not extend past the end of the
card. That is, a field may not be split between one card and the next. Obviously, this
means that each card should have a double asterisk on or before columns 79-80 (recal
ling the experiences of the unfortunate Charlie in Chapter 6, we must admit that we are
somewhat wedded to the traditional eighty-column card!).

As MFUP performs its updates, it should check for a number of possible errors~ if
any are detected, they should be printed in a report whose format has not been
specified by the user. If, for example, the account number of a card is out of sequence,
or cannot be matched against any Master File record, then the entire record should be
rejected and an appropriate error message should be printed.*

Similarly, if any of the updates contain an illegal field number, an appropriate er
ror message should be printed. Since there are 14 fields defined in the Master Record,
the update cards must specify field numbers between 1 and 14. If the field number is
out of range, it should be rejected~ however, subsequent fields on the same card should
be processed normally. That is, the presence of a bad field on a card does not invalidate
the rest of the fields on that card.

*Among other things, this means that the MFUP system will not be capable of adding new records to the file.

This restriction, although not a terribly realistic one, is made for the sake of simplicity~ for the same reason,

we will assume that MFUP does not allow records to be deleted from the file.

210 STRUCTURED DESIGN

Naturally, the system should check to ensure that each field is of the correct type.
That is, certain fields are specified to be of an alphabetic type, while others are numeric,
and so on. If a field is not of the proper type, it should be rejected - but subsequent
fields on the same card should be accepted, if they are correct.

Table 11.1 also indicates that MFUP is not allowed to update certain fields in a
record. We may assume that those fie1ds are established (and possibly updated) by oth
er systems but, in any case, an attempt to use MFUP to update fields 1, 8, 10, 11, 12,
13, or 14 should be considered illegal.

Since the update cards supply variable-length input in a free~field format, it is pos
sible that an update field will be shorter than the corresponding field on the Master File;
in some cases, the update field may be exactly the same length as the corresponding
Master File field; and, of course, it is possible that the update field will contain a field
that is longer than the corresponding Master File field. The user has specified that if a
field is too long for the Master File, it should be rejected if the field is of a numeric
type, and truncated if the field is of an alpha or alphanumeric type. In any case, an ap
propriate message should be generated. If the update field is shorter than the
corresponding Master File field, then the update field should be right-justified and
zero-filled if it is numeric, and lefHustified and blank-filled if it is alphabetic or al
phanumeric. There is one exception: The ZIP code field (field 6) must be supplied as a
five-character numeric field anything longer or shorter will be considered an error.

11.2.2 Structural design for MFUP

From our discussion of transform analysis in Chapter 10, recall that the first step
in the design is to draw a data flow graph. For MFUP, a first approximation of the data
flow graph is shown in Fig. 11.5. This data flow graph is quite detailed, as it is prefer
able to show too much detail rather than to show too little at this stage (cf. Fig. 10.3b).

However, the transform labeled "edit fieldn is a bit superficial. Since there are 14
distinct types of fields, it is more precise to represent the data flow in the form shown
in Fig. 11.6. Now, it is apparent that the data flow graph is similar to the prototype for
a transaction-oriented system shown in Fig. 11.1. We still have the job of identifying
the afferent data element, the efferent data element, and the central transforms - but
the important point is that we have recognized in the data flow graph the presence of
some transaction-oriented processing.

The normal process of transform analysis might lead to the structure chart shown
in Fig. 11.7. You may want to verify that we have factored the afferent branch of the
structure in the manner presented in Chapter 10, but we will not dwell on this aspect of
the design. Similarly, we will not concern ourselves with the details of GET·

VAUDMFRECORD, or UPDATEMF, or WRITEMF, or PRINTUPDATEREC. What concerns us
is the design of the module labeled EDITFIELD. From our previous discussion, we can
see that it is a module similar to the DISPATCH module· in Fig. 11.2. As input, it re
ceives a transaction (which may have one of 14 valid field codes)~ and as output, it pro
duces a flag indicating whether the field s.hould be accepted.

A tentative design for the EDITFIELD module is shown in Fig. 11.8. Since there
are 14 different fields on the Master Record, we specify 14 transaction modules im

mediately subordinate to EDITFIELD.

TRANSACTION ANALYSIS 211

At this point~ it might occur to the designer that several of the transactions are
similar - or even identical - and therefore could be combined. We note~ for exam
ple, that the ucustomer name" field and the ~~customer street address" field are both
defined as thirty-character alphanumeric fields. Why not have a single module that will
edit either or both fields? Similarly, we note that fields 10, 11, and 14 are defined as
six-character numeric fields that are not allowed to be updated by MFUP. Why not pro
cess them with a single combined transaction module? The same argument could be
made for fields 12 and 13, which are defined as eight-character numeric fields. Indeed,
the designer might even go one step further and process fields 1, 6, and 9 with a com
bined module, since they are defined as five-character numeric fields. If we were to fol
low these instincts, we might end up with the refined structure shown in Fig. 11. 9.

Figure 11.5. Data flow graph for Master File Update.

212 STRUCTURED DESIGN

1nVd•J.L
ftdl< 1,-

Figure 11.6. Expanded data flow graph for Master File Update.

~T VALtP
CAep

TRANSACTION ANALYSIS 213

Figure 11. 7. Overall structure chart for Master File Update.

214 STRUCTURED DESIGN

0 • " 0 0

Figure l l.8. Initial structural design of EDITFIELD.

nf1::4

f:M ftei~ • •• •.
5

Figure 11. 9. Combining some transaction modules in EDITFfELD.

TRANSACTION ANALYSIS 215

Of course, there is a small detail that we have overlooked. We have decided, in
Fig. 11.9, to process fields 1, 6, and 9 with a module now labeled TYPEt, because they
are all five-character numeric fields~ however, Table 11.1 indicates that MFUP is allowed
to update fields 6 and 9 but is not allowed to update field 1 (a perfectly reasonable re
striction: Field 1 is the account number and is the key by which the serial Customer
Master File is sequenced). Thus, in addition to the normal processing required to edit a
five-character numeric field, we have to make a special check to prevent an attempt to
update field 1. In fact, things are even worse: We recall from the problem definition
that short numeric fields are generally right-justified and zero-filled - but field 6 is a
special case. Field 6, the ZIP code field, must always be exactly five characters of
numeric data~ if the update field is either shorter or longer than five characters, it al
ways must be rejected.

We could reject the TYPE! module outright on the basis of cohesion~ it is only logi
cally cohesive. But some designers still would argue that this could be handled in a sin
gle TYPEl module. When asked about the special requirements of fields 1, 6, and 9,
they probably would reply, "Oh, that's no problem - a couple .of flags will keep all the
logic straight." Our counter-argument is obvious: Why go to the trouble of making a
complicated combination module when three perfectly trivial modules will do the job?
Indeed, we would use the same argument for TYPE2, TYPEJ, andi all the other TYPEn

modules: Why go to the labor of combining the modules when doing so may lead to in
sidious problems of the sort found in TYPEl '?

Of course, there are no apparent problems combining the Bcustomer name" field
and the "customer street address,, field into a single TYPE2 module~ they both are thirty
characters in length and alphanumeric, and they both may be updated by MFUP. How
ever, what happens if six months from now the user decides that the "customer name"
field should be strictly alphabetic, instead of alphanumeric'! All of these problems can
be precluded by processing each transaction with a separate module~ hence, we return
to the initial structure chart shown in Fig. 11.8.

One might be tempted to fbrm the structure of Fig. 11.9 because of common pro

cessing in the various transactions. We still can reap the benefits of common processing
by using common subordinate action~level modules that could be called, as needed~ by
the 14 transaction-level modules. The common subordinate modules can be described
in terms of the actions required to .process each transaction: From time to time, we
need to reject a long field, reject a short field, adjust the length of a field, reject non
alphabetic fields, reject non-numeric fields, and so forth. This suggests the structure
shown on the following page in Fig. 11.10.

In turn, the action modules have details in common. For example, the modules
REJECTLONG, REJECTSHORT, and ADJUSTLENGTH all need to determine the length of a
specified update field. Similarly, we can imagine that REJECTNONALPHA, REJECTNON

NUMER[C, and REJECTNON ALPHANUMERlC accomplish their tasks by checking the update
field on a character-by-character basis to see if there are any offending characters

present. Thus, it would seem that all three modules could use a subordinate CHARTYPE

module to determine the type (alphabetic, numeric, or special character) of a single
character. In addition, it occurs to us that one of the details involved in rejecting a field
is the printing of an error message; hence, another detail module, ERRORMESS. This

leads us to the structure presented in Fig. 11.11.

216 STRUCTURED DESIGN

Figure 11.10. Action modules for EDITFIELD transaction modules.

Figure 11.l l. Detail modules for EDITFIELD action modules.

TRANSACTION ANALYSIS 217

Note that there is no action or detail module designed to reject attempts to update
fields that, according to Table 11.1, are not supposed to be updated by MFUP. That logic

is a function only of transaction code and would be contained within the transaction
module~ it would be the only coding found in those modules. For example., we know
that attempts to update field 1 should be rejected~ hence, tbe logic in module FIELDI

could consist simply of printing an error message (via ERRORMESS) and passing an error
flag back up to EDITFIELD.

Thus, it seems that FIELDI - as well as FIELD8, FIELDIO~ FIELDll, FIELD12,

FIELD13, and FIELD14 - are dummy modules, and the designer may be sorely tempted
to eliminate them. This could be accomplisheu by moving the check for non-updatable
fields into EDITFIELD, re~ulting in the structure shown in Fig. 11.12.

Figure 11.12. Alternative structure for EDITFIELD.

11.3 Special considerations in transaction processing

The ideas behind transactions and transaction-centered systems are so familiar to
most EDP professionals that many are tempted to use these organizing principles- to
structure entire systems and applications. Extensive experience with various trans
action-centered design techniques has established that such systems may be easy to or
ganize in the first place, but distinctly harder to implement and modify thereafter.

In the limiting case, the top-level executive module of a system can be made into
the transaction center; that is, the system as a whole would be organized along the lines

of Fig. 11.4, with each transaction subsystem having appropriate action and detail subor
dinate modules. Thus, all transactions would be consolidated at the executive module
in an input-·driven organization. This might well mix transactions of various types and
various levels of importance to the system, as viewed by the executive. The executive
routine itself would be quite uncohesive, as it combines some elements of processing
that are related only in that they deal with a particular class of data elements, namely
transactions, and are thus only logically related.

An executive, which is also a transaction center, does not control the overall flow
of processing, but rather is involved in procedural details needed to accomplish some
parts of the overall task. If it ''sees" transactions directly in input form, rather than as
derivatives of an afferent subsystem, it becomes an even better example of a president

handling shi.pping orders.

218 STRUCTURED DESIGN

11 .3.1 State dependency in transaction processors

A special case arises whenever the transaction processing incorporates so-called
state-dependent or sequential decision processes. In a state-dependent decision process,
the outcome of each application of the decision procedure depends not only on the in
coming data presented at this application of the procedure, but also on what has gone
before. The decision outcome depends on the state of the decision procedure, including
the state of processing invoked by previous applications of the decision procedure. For
example, one transaction, type X, might be processed as a type X or type Y, depending
on whether a type A was successfully completed. Or, an end-of-file transaction may re
quire completion of certain other transactions if they occurred during the processing.

It is easy to see that state-dependent decision procedures run counter to the basic
requirement that each transaction-level subsystem independently complete the process
ing of a given transaction so that the transaction processor (dispatch) remains simple.
Within the purely transaction-oriented organization, none of the possible alternatives is
partiicularly attractive. The state dependency can be removed from higher levels only at
the expense of complicating lower ones. If the transaction processor for the example
mentioned above always invokes transaction-level module DOTYPEX for a type X, then
the transaction, action, or detail modules of that subsystem will require interactions and
control-coupling with both the DOTYPEY and DOTYPEA subsystems. Alternatively, de
tails of the processing (of type A transactions) may be communicated back up to the
transaction processor . (added control-coupling), and the dispatch made state-dependent
(more complicated). This could even require an extra flagged call to DOTYPEA to find
out if the type A has been finished.

The difficulty with state-dependent decision procedures is a fundamental defect in
the transaction-centered structure. If all transactions are consolidated around a single
high-level transaction center, the interactive effects can become very substaritial and
may span many levels of detail, involving the executive decision-making in minute de
tails of minor transactions. By factoring and distributing transaction processing ap
propriately, the interactive effects are localized at appropriate levels and removed from
the ken of the executive (or subexecutives). In a system of substantial size, the results
of careful factoring could be to create a series of several transaction centers distributed
throughout the system as in Fig. 11.13, where transaction centers can be found on
afferent, eff~rent, and transform branches.

11. 3.2 Syntactic and semantic processing of transactions

The structure first shown in Fig. 11.2 has the property of separating syntactic from
semantic processing. By syntactic elements we mean, of course, those aspects of pro
cessing related to the form that transactions take. By semantics, we mean the resulting
actions: the "whaf' and "how," so to speak. This is a most fortunate partitioning. By
validating format and converting to an internal code in the afferent branch, the
remainder of the system ..:.... DISPATCH, TRANS, and the superordinates of TRANS - can
be written to operate independently cf the form that transactions take. Thus, it is
easier to change the appearance and the processing of transactions independently of
each other. In addition, the transaction-processing modules can be used to operate
correctly on transactions obtained in other formats from completely different sources.

TRANSACTION AN AL YSIS 219

LOTHERDATA

GETOKTRANS

ll. mixed
"ai& form

GENLFORMEDIT
edit format a
applied to al

types

GETREADYTODO

int.
form

~ int.
form

SPECFORMEDIT
dispatch for
specialized
format
anal sis

DOALLTRANS

DOCLASSA

'ROSSVALIDATE
check trans
action agains
other data

CHECKTRANSCON
content valid·
ty of trans
action alone

Figure 11.13. Typical large transaction-oriented system.

DOCLASSB

A careful and comprehensive transform analysis of a typical transaction-processing
application can yield an even more factored generalized structure. We would again be
gin by noting that the broad class of operations denoted by edit and validate transaction
covers various distinguishable types of validation. Note the following four points:

• Some validation applies to transactions directly as inputted.

• Some validation applies to the internal, converted form of transaction
contents.

• Some validation is completely defined on a transaction alone~ other
validation requires data from additional sources.

220 STRUCTURED DESlGN

• Some validation applies to all transactions from a given source; other
validation depends on the type of transaction.

The structure of Fig. 11.13 can be considered typical of the most fully factored form for
a transaction subsystem. Such a structure maximizes the care with which many types of
changes can be introduced. It also suggests convenient places to break the process into
pre-edit and run phases while answering many of the technical objections which have
been raised against separate edit-and-validation subsystems. More pancaked versions
can be readily derived from the structure shown in Fig. 11.13. This subject will be
reconsidered in Section 19.2.5.

11. 3. 3 Effect of placing transaction centers at different levels in the hierarchy

In some cases, the designer finds that he is designing a system with only one
transaction center - but with a certain amount of choice concerning the placement of
the transaction center within the hierarchy. As we pointed out at the beginning of Sec
tion 11.3, it is possible - and sometimes tempting - to make the top-level executive
the transaction center. Such an extremely high placement of the transaction center is
usually a poor idea, for reasons of coupling and cohesion; but if the transaction center is
not placed at the top level, where should it be placed?

Ultimately, coupling and cohesion are the best criteria for deciding what goes
where. However, there is a philosophical aspect of this decision that the designer
should keep in mind: Placing a transaction center high in the hierarchy reflects the
designer's decision to allow the environment (that which exists outside the computer
system) to control the computer system. Conversely, placing the transaction center near
the bottom of the hierarchy reflects the designer's desire to have the computer system
control the environment.

Why is this so? Remember what a transaction center is: a point at which one of
several distinct types of processing will take place, depending on the precise nature of
an element of data. Thus, if the transaction center (the P-level module) is at the top of
the hierarchy, it is analogous to the president of a company saying, "I don't know what
kinds of situations will face the corporation in the next few milliseconds, but I will
respond appropriately.''

If the transaction center is located near the bottom of the hierarchy, then it is
likely that the top of the hierarchy will have been organized according to the guidelines
of transform analysis presented in Chapter 10. In this case, the top-level module is
more .analogous to a manager who knows precisely what data he wants from his subordi
nates, and precisely what he wants to do with the data - that is, it is more analogous to
an environment in which the manager controls the environment, rather than allows the
environment to control him.

Some designers feel that this question of control over the environment is merely a
reflection of the choice of a batch computer system or an on-line (possibly real-time)
system. Not so! An on-line system may have its transaction center near the top or near
the bottom of the hierarchy. If it is placed near the top of the hierarchy, it reflects the
desitgner's desire to be as interactive and responsive as possible; that is, such an on-line
system effectively is saying, "I have no idea what the terminal user will type on his ter
minal next, but I will carry out his commands." An on-line system with its transaction

TRANSACTION ANALYSIS 221

center near the bottom of the hierarchy reflects the designer's desire to have the system
~ead the terminal user through an orderly dialogue to accomplish what the svstem wants
to accomplish. Thus, the top-level modules of such a system will coax, cajoie, and har
rass the user to provide the input that the system wants~ low-level transaction centers,
unaware of what characters or messages the user will actually key-in next, will carry out
the appropriate transaction-centered processing, and pass the results to some higher au
thority. In a similar fashion, a batch computer system may have its transaction centers
either high or low in the hierarchy, depending on the designer's philosophy of how best
to organize the system.

We attach no value judgments to the designer's philosophies - as we have said
repeatedly, coupling and cohesion are the final arbiters of good and bad. We do feel,
though, that it is useful for the designer to be aware of these philosophical issues, so
that his design truly will reflect the degree of control that he wishes his system to exert
over the environment. Without such an awareness, it is quite easy to design a system
whose basic architecture is quite different from what the designer intended.

A good example of this is an on-line system designed with any commercially avail
able teleprocessing '"monitor" package - e.g., IBM's CICS package, PMI/Informatics'
INTERCOMM package, or others of the sort. The sales literature of several of these
packages strongly implies that the teleprocessing monitor serves as a P-Ievel module,
with the application designer merely supplying T-level modules to carry out detailed
processing. If this were the case, then the environment (with the assistance of the
teleprocessing monitor) would be delivering transactions to the application subsystem
whenever the environment wished to do so - certainly, a clear case of the environment
controlling the computer system. To put it another way, application designers usually
make the assumption that the transaction center of their on-line system must be at the
top of the hierarchy, simply because the teleprocessing monitor forces them into such a
design.

However, it turns out that most teleprocessing monitors do give the application
designer the option of explicitly asking for terminal input~ this usually is accomplished
with a subroutine call that behaves very much as if one were calling to obtain input
from a card reader or a tape file (or any other batch device). With this approach, the
designer can arrange his system to obtain input precisely when and where it wants -
that is, he arranges his computer system so that it controls the environment. The result
of this usually is that the transaction center (if there is one) either is lower in the
hierarchy, or is distributed - as we suggested in the previous section - throughout the
hierarchy,

11.4 Summary

We have seen in this chapter that the transaction-centered design strategy is based
on an analysis of data flow, just as was the transform-centered strategy of Chapter l 0.
We also have seen that the transaction-centered design strategy requires that we define
a transaction in the broadest fashion.

It should be emphasized that the transaction-centered strategy presented in this
chapter requires some judgment and common sense on the part of the designer.
Several similar strategies have failed in the past because they were too rigid and ortho
dox in their approach.

CHAPTER II: REFERENCE

1. P. Vincent, "The System Structure Design Method," Proceedings of the 1968 Na
tional Symposium on Modular Programming, ed. Tom 0. Barnett (Cambridge,
Mass.: Information & Systems Press, 1968, out of print).

'

CHAPTER 12
ALTERNATIVE DESIGN STRATEGIES

12.0 Introduction

As we have seen in Chapters 10 and 11, systems designs can be derived in a fairly
methodical fashion by analysis of the data flow graph associated with the problem.
Depending upon the nature of the application, transform-centered design or transform
ceniered plus transaction-centered design usually will yield a design with highly
cohesive, loosely coupled modules.

How1ever, these two strategies are not the only way of deriving good designs in a
systematic manner. A number of other researchers have developed techniques different
from the ones that we have presented in this book; in this chapter, we will discuss the
strategies developed by Michael Jackson, Jean-Dominique Warnier, and David Parnas.

Over the next several years, we can expect to see several more design strategies
- some identified by the name of their inventor, some by the applications for which
they are best suited, and some by the general nature of the strategy. We should look
f©rward to any such design strategy with enthusiasm - we need as many as we can get.
At the same time, we should remember that coupling and cohesion (as well as the
heuristics of span of control, scope of effect/scope of control, and so forth) are the ulti
mate judge of whether a design strategy produces good designs or bad designs.

It also should be kept in mind that these design strategies - those that we dis
cussed in Chapters 10 and 11, the ones that we will discuss in this chapter, and those
that we can look forward to in the next several years - will still require the judgment,
experience, and common sense of the designer. The situation is roughly comparable to
a cook attempting to use a cookbook in a haute cuisine restaurant: There is no way to
avoid those standard cookbook phrases of ''season to taste," or ''stir gently until in
gredients are thoroughly mixed."

12.1 The data-structure design method

One of the popular design strategies is based on analysis of data structure, rather
than data flow; it has been discussed by Michael Jackson 1 and by Jean-Dominique War
nier.2 The strategy is summarized as follows:

1. Define structures for the data that is to be processed.

2. Form a program structure based on the data structures.

3. Define the task to be performed in terms of the elementary operations
available, and allocate eac,h of those operations to suitable components
of the program structure.

223

224 STRUCTURED DESIGN

Implicit in the data-structure approach is the fact that most EDP applications deal
with hierarchies of data - e.g., fields within records within files. Thus, this approach
develops a hierarchy of modules that, in some sense, is a mirror image of the hierarchy
of data associated with the problem. For example, Fig. 12.la shows the structure of a
simple sequential file; Fig. 12.1 b shows the structure of a program that prints the file.

\ '

HEADER
RECORD

FILE

DATA *
RECORD

TRAILER
RECORD

Figure 12. la. Structure
or a sequential file.

PRINT
HEADER
RECORD

PRINT
FILE

PRINT
DATA
RECORD

PRINT
TRAILER
RECORD

Figure 12. lb. Structure of a
program that prints a file.

It is common for an EDP application to involve more than one set of data; unfor
tunately, the sets of data sometimes have quite different structures. Jackson em
phasizes that if such an application is to be implemented with a single program (i.e., a
single hierarchy of modules), then there must be a one-to-one mapping, at all levels in
the hierarchy, between data elements of each of the data sets and modules that are
responsible for processing those data elements. For example, Fig. 12.2a shows the data
structures for an application that merges financial and nonfinancial data for employees.
Figure 12.2b shows the structure of the output file of composite data for each employee.
Figure 12.2c shows the hierarchy of modules that will carry out the desired operation;
note the one-to-one correspondence between modules in the structure chart and ele
ments of the data structure.

NAME AND
ADDRESS
FILE

* EMPLOYEE
RECORD

EMPLOYEE I EMPLOYEE

ID ---- I NAME
NU~

EMPLOYEE
ADDRESS

SALARY
FILE

* EMPLOYEE
RECORD

EMPLOYEE
ID
NUMBER

EMPLOYEE
SALARY

Figure l 2.2a. Data structures merging employee data.

ALTERNATIVE DESIGN STRATEGIES 225

COMPOSITE
DATA
FILE

* EMPLOYEE
RECORD

EMPLOYEE EMPLOYEE EMPLOYEE EMPLOYEE
ID NAME ADDRESS SALARY
NUMBER

Figure 12.2b. Structure of output file of employee's composite data.

PROOUCE
COMPOSITE
FILE FROM
INPUT FILES

GET
SALARY
RECORD

GET GET PRODUCE PRODUCE
EMPLOYE EMPLOYE EMPLOY EMPLOYE
ID SALARY ID NAME
NUMBER NUMBER

Figure l 2.2c. Hierarchy of modules.

PRODUCE
COMPOSITE
RECORD

PRODUCE PRODUCE
EMPLOYE EMPLOYE
ADDRESS SALARY

If a one-to-one mapping cannot be made between corresponding elements of the
data structure, then a structure dash exists. This phenomenon is an important part of
the data-structure approach. In practical terms, it means that the application cannot be
implemented in a natural way with a single hierarchy of modules, Instead, Jackson pro
poses an approach (which he refers to as program inversion) that involves multiple pro
grams (or, more precisely, multiple hierarchies of modules). As an example, suppose
we were required to design a report-writing program which accepted a single input file
and produced a single output report - and suppose that the structure of the input file
was entirely incompatible with the structure of the output report. The solution, accord
ing to Jackson, would involve two programs - one that breaks the input file into more

226 STRUCTURED DESIGN

elementary chunks of data (e.g., into individual fields of data), and one that recombines
those chunks into a form compatible with the required structure of the output report.

One common example of a structure clash might be t.ermed an Harder clash."
Suppose, for example that the name-and-address file shown in Fig. 12.2a above was or
dered alphabetically by employee name, while the salary file was ordered by employee
ID number. We can safely assume that there are the same number of records in each
file, but they do not appear in the same order; thus, we do not have a one-to-one
correspondence at each level in the data hierarchies. An obvious solution is to sort one
of the files so that its records are ordered on the same key as the other file - but that
is just the point: We need two programs, not just one, to implement this application in
a natural way.

The other common type of structure dash is known as a "boundary dash," and
usually is caused by the blocking characteristics of physical input-output devices. For
example, suppose we wanted to design a program to update the name-and-address file
shown in Fig. 12.la from an on-line terminal~ suppose, further, that the terminal
transmits data to our program in hundred-character blocks, within which are contained
logical transactions specifying updates to the file. Our program then would deal with
the data structures shown in Fig. 12.3. Note that there is not a one-to-one correspon
dence between terminal data blocks and employee records: It is not necessarily true
that a block contains an integral number of update transactions, nor does an update
transaction necessarily require an integral number of blocks. The solution here would
be to have one program (or hierarchy of modules) decompose a terminal data block into
its component characters, and then another program could rebuild characters into logical
update transactions with the same structure as that of the name-and-address file.

TERMINAL
DATA FILE

* TERMINAL
DATA
BLOCKS

l

* CHARACTERS

SALARY
FILE

* EMPLOYEE
RECORD

EMPLOYEE . EMPLOYEE
ID NAME
NUMBER

Figure 12.3. Data structures.

EMPLOYEE
ADDRESS

ALTERNATIVE DESIGN STRATEGIES 227

For small design problems, the data-structure method produces systems remark
ably similar to those produced by the transform-centered approach discussed in Chapter
10 (see, for example, the comparison made by Plum3). However, it is important to
note that the data-structure approach requires about the same degree of black magic as
the data flow approach. That is, if one chooses the proper data structure for a problem,
then one presumably will get a good design - just as one can derive a good design if
one can draw the proper data flow diagram for a problem. Experienced designers prob
ably can use either method with ease; for beginners, though, neither approach is likely
to be obvious.

It is worth emphasizing that the data-structure approach seems to work best on
relatively small systems. On larger systems, the designer must work with several sets of
data - e.g., two or three input files, two or three reports, and two or three transaction
files. In such a situation, there is an excellent chance that one or more structure
clash~s will occur. Dealing with multiple structure clashes has, in the authors' experi-
ence, made the data-structure approach extremely difficult to use. I

Indeed, this rnay point out a more fundamental problem: If the designer is forced
to deal with the entire problem and with all of the structure clashes at once~ it usually
will be difficult for him to see how to decompose the problem into smaller, separately
solvable problems. Furthermore, the data-structure method advises the designer to
defme the task to be performed in terms of the e/ementaty operations available, and allocate
each of those operations to suitable components of the program structure (italics ours).* By
"elementary operations," we mean the COBOL or FORTRAN statements with which
the modules eventually will be coded; thus, it seems that the notion of levels of
abstraction - being able to express the implementation of a large system in terms of
smaller systems works only when the whole problem is small.

Despite our criticism, we ,re happy to see the data-structure approach included as
part of the bag of tricks that the designer has at his disposal. The important thing to
remember is that the data-structure approach concentrates on only one part of the
overall design process - namely, the strategy by which the design can be derived. If it
works~ fine~ however, it must be included with such central concepts as coupling, cohe
sion, design heuristics, and appropriate implementation/testing strategies. Perhaps the
greatest advantage of the data-structure method is its use as a bridge between designs
produced by transform analysis or transaction analysis and the actual coding of the
resulting modules. Once we have developed a data flow diagram, each bubble usually
becomes a distinct module, and the transform-centered design strategy guides us in
developing the appropriate hierarchy of modules. The data-structure approach then be
comes useful in the microscopic sense: If we know the structure of the data that comes
out of a module, then we should be able to determine the structure of the code inside

that module.

*M.A. Jackson, Principles qf Program Design (New York: Academic Press, 1975), R 43.

228 STRUCTURED DESIGN

12.2 The Parnas decomposition criteria

Another interesting modular design approach is described by Parnas4 as a set of
rules for the decomposition of systems into subsystems. To avoid confusion with the
very specific terminology already established in this book, we will - simply for the sake
of discussion in this chapter - introduce terms somewhat different from Parnas' own
- terms which, in some cases, were defined by Parnas to be deliberately vague.

Parnas offers guidelines for the decomposition of a total problem into design units,
or portions of a design problem or work assignment identified by the designer. Design
units are related by design interfaces (Parnas uses the term ~'connections") which are
any sort of interrelationship or interdependency. Design units and their design inter
faces may or may not have any relationship to actual modules and connections as they
need to be programmed. Parnas even suggests that we ''allow a subroutine or program
to be an assembled collection of code from various [design units].''

The Parnas decomposition criteria may be paraphrased as follows:

L Decomposition is not to be based on flowcharts or procedures.

2. Each design interface is to contain (require) as tittle information as
possible to correctly specify it.

3. Each design unit is to "hide" an assumption about the solution that is
likely to change.

4. A design unit is to be specified to other design units (or to the pro
grammers of other design units) with neither too much nor too little
detail.

The first criterion obviously relates to cohesion, identifying negative consequences
of ' 4flowchart-thinking." The second criterion clearly is equivalent to a call for reduced
coupling, as are the last two criteria (although less directly).

Some design decisions that are most likely to change and, therefore, ought to be
"hidden" within a given design unit are

l. a data structure along with its format and linkages, as well as its access,
storage, and modification procedures*

2. formats of control blocks

3. character codes and collating sequences

4. sequence in which items are processed

*Note that this is in direct contrast to the Jackson/Warnier data-structure approach: Rather than hiding the
data structure, Jackson and Warnier strongly argue/ that the structure of the whole program should reflect the
data structure. Thus, Parnas points out a potential weakness in the data-structure approach: If major changes
to the: data structure occur during maintenance of the system, it is likely that major changes will have to be
made to the program structure as well.

ALTERNATIVE DESIGN STRATEGIES 229

In Plum's comparison of major design approaches, 3 it was concluded that these
decomposition criteria do not constitute a general methodology for structural design.
First, no procedure is offered within which to apply the criteria~ and second, the critical
problem of translation from design units and design interfaces into programmable, in
terconnected modules is not addressed at all.

Nevertheless, these ideas are a useful adjunct to structured design. Parnas contri
butes several broadly useful notions. For example, he draws attention to the dependen
cies created by Hshared assumptions," common to more than one module in a system.
The approach suggests isolating each related set of shared assumptions into a cluster of
modules to be managed as a unit. This concept, along with specific examples of design
assumptions to be hidden, can be used after completion of an overall structural design
to refine the interfaces and generalize the design, principally by further reductions in
coupling.

For example, we might note that several modules in the design of Fig. l 2.4a all
must share assumptions about the format and linkage structure of "'text strings." A
more generalized, more readily changed structure results if we treat these as a single
design unit and make the format and linkage details invisible to all other modules.
Myers5 suggests a practical way of doing this with what he calls ~'informational
strength" modules - a multiple-entry module of communicational cohesion. An ex
ample of this is shown in Fig. 12.4b. Note that more information hiding and decoupling
are achieved by further refinement of the interfaces to that of Fig. 12.4c, where only a
string index (identifier) is known to any other module.

Figure l 2.4a. Example of modules with
visible format and linkage detail.

230 STRUCTURED DESIGN

Figure l 2.4b. Example of multiple-entry module
of communicational cohesion.

Figure l 2.4c. Further refinement of
multipte .. entry module.

CHAPTER 12: REFERENCES

1. M.A. Jackson, Principles of Program Design (New York: Academic Press, 1975).

2. Jean-Dominique Warnier, The Logical Construction of Programs, 3rd ed., trans.
B.M. Flanagan (New York: Van Nostrand Reinhold, 1976).

3. Thomas Plum, "Structured Design Case Study Comparison," The YOURIDN Re
port, Vol. 1, No. 7, (September 1976), pp. 8-12.

4. D.L. Parnas, "On the Criteria to Be Used in Decomposing Systems into
Modules," Communications of the ACM, Vol. 15~ No. 12 (December 1972), pp.
1053-1058.

5. Glenford J. Myers, Reliable Software Through Composite Design (New York:
Petrocelli/Charter, 197 5).

SECTION IV
PRAGMATICS

This section takes up matters essential for turning a completed structured
design into an implementable, efficient system. Nevertheless, highly modular
systems, which are acceptable by standards established in earlier chapters, may
include conflicts between the planned structure and required communication of
data through the system. Resolution of these conflicts is analyzed in Chapter
13, and the specific issue of normal versus pathological communication paths is
explored in detail. The resulting designs are complete in a structural sense~ but
before they can be coded and executed, decisions must be made as to what
physical type of module will be used to implement each required functional en
tity. Packaging, the subject of Chapter 14, determines the physical implementa
tion of the final system aad accommodates the design to constraints imposed by
the programming language, operating system, and machine configuration.

The cherished topic of run-time efficiency is addressed in Chapter 15,
which presents a systematic approach to optimization of systems. That ap
proach is entirely compatible with highly modular structural designs.

CHAPTER 13
COMMUNICATION IN MODULAR SYSTEMS

13.0 Introduction

In several previous chapters, we mentioned the concepts of normal connections
and pathological connections: in Chapter 3, where we first introduced the notion of sys
tems structure; in Chapter 5, where we discussed the factors that influence systems
complexity; and in Chapter 6, where we discussed coupling. Obviously, it is a
phenomenon that affects several aspects of structural design~ consequently, we will de
vote the major portion of this chapter to a discussion of normal connections and patho
logical connections.

We will begin by presenting a brief overview of the problem of pathological con
nections~ as we will see, pathological data connections are quite different from patholog
ical control connections. We then will discuss several different types of pathological
data connections, since these are far more common than pathological control connec
tions. We do not intend to portray such pathological connections as an evil that must
be avoided at all cost, but we will suggest some steps that the designer should go
through in order to justify anything other than normal connections. Finally, we will
make some suggestions for minimizing the coupling caused by pathological connections.

13.1 An overview of the pathological connection problem

As we first saw in Chapter 3, a pathological connection is a reference or an
identifier or any entity inside a module. Such a reference could involve either data or
control, or both. While hybrid combinations - pathological connections involving the
combination of control and data - still are possible in most programming languages
(e.g., the ALTER statement in COBOL), they are sufficiently unpopular in most com
petent programming organizations that we can ignore them in this discussion. We will
examine the pathological data connections first~ pathological control-coupling will be
dealt with later.

13.1.1 An overview of pathological data connections

In simple terms, a pathological data connection can be represented by Fig. 13.1.
As we will see in the next section, there are several variations on this simple theme. A
more important question at this point is why the designer would want to indulge in this
kind of practice.

The answer can be demonstrated by Fig. 13.2: The designer realizes that data ele
ment x is created by tow-level module A, and must travel all the way to the top of the
hierarchy before being passed back to low-level module B. It is apparent to the designer
that none of the intermediate- or high-level modules has any interest in data element x.

235

236 STRUCTURED DESIGN

Rather than incurring the overhead of passing the data through so many intermediate
levels of modules, the designer decides to pass the data directly - pathologically -
from module A to module B. In addition to the argument of efficiency, the designer of
ten invokes an argument of simplicity: ·Why clutter up the interface of the intermedi
ate·· and high-level modules with a data element that is irrelevant to their task?

A

Qr----t---.. _x_o_---ll~B--1
Figure 13.1. Simple pathological connection.

TOP

/
/

/
' ' \

B

Figure 13.2. Common temptation for pathological connections.

The technical issues involve the increase in coupling contributed by the pathologi
cal connection and the consequences of this in terms of ease of maintenance and
modification. Consider, for example, module B in Fig. 13.2. Because a portion of its
input data context is determined directly by possibly unrelated activities in A (which set
up or computed the last value of x), control of module A by its superordinate is incom
plete. The immediate CALL activity B does not, therefore, completely determine what B

will do, as it would were all of B's input and output data communicated normally.

In order to introduce a new use of module B operating on some different value of
x, the calling module must reference datum x in module A, thus a new pathological con
nection is required. The initial decision to have some pathological connections for cer
tain purposes almost invariably generates the need for additional pathological connec
tions for others~ they tend to proliferate. Note as well that the choice of pathological
communication requires that the programmer of a new module using B also must con
cern himsel(with module A, which may well have nothing to do with his problem.
Clearly A and B have become coupled~ strongly so, despite the absence of any immedi
ate functional relationship between them.

The analogy with management structure may be particularly instructive here. In
management terms, Fig. 13. l can be interpreted as follows: If clerk A wishes to pass
data to clerk B, he does so by passing the data through his boss. If the two clerks are in

COMMUNICATION IN MODULAR SYSTEMS 237

widely separated departments, the data may have to pass through several layers of

management before reaching the second clerk. If clerk A had communicated directly

with clerk B, we probably would not have referred to his behavior as a pathological con

nection; instead, we would have said he Hwent around the boss." What we have called

normal communication is referred to in a management structure as "going through

channels,'' or "going through the chain of command." Particularly in the larger and

more formalized corporations and government agencies, the normal form of communi

cation is rigorously enforced. The smaller companies and the organizations whose

managers consider themselves progressive frequently permit - even encourage - the
pathological form of communication.

Unfortunately, there are disadvantages to analogies between management struc

tures and the structures of computer systems. This is particularly true here, since a

number of workers and some managers feel quite strongly that the requirement for nor

mal communication is one of the most onerous aspects of modern corporate life. It is

worth exploring this feeling in more detail, for it helps us see just how far we can carry

the comparison between people and machines. Workers and managers alike quickly will

identify three reasons for avoiding the rigorous enforcement of normal communications:

• Inefficiency. In a large organization, a worker or junior manager com
plains that he may have to wait several days, weeks, or even months

for his data to filter up to the higher levels of management.
Meanwhile, he sits idle.

• Politics. Many of the more cynical workers complain that their infor
mation is filtered and qualified as it travels upward in the hierarchy.

Thus, if clerk A generates datum x, it may be distorted into datum Y as
it travels up and down the hierarchy on its way to clerk B in a different

department.

• Human psychology. In a large organization, the worker often complains

that he is a small cog in the machine - and that he is demoralized by

not being able to see where his labors fit into the big picture. This is

accentuated by the rigid form of normal communication, characterized
by the manager who says to his worker, HHere is your input data;

don't ask where it came from, or what I'm going to do with your out
put - just shut up and do your job."

The issue of efficiency is obviously relevant in both management structures and

computer systems structures. Our experience with large vendor-supplied operating sys

tems is sufficient evidence that such overhead can be truly monumental within ordinary

applications, Knuth's study 1 suggests that the two most expensive statements in a

high-level language program are the subroutine-calling statement (particularly when

several parameters are passed) and formatted input-output statements. This may only

be an indictment of the quality of implementation of these features by compiler writers.

On the other hand, a typical computer system has only a few modules that are frequent

ly executed; the overhead in the remaining modules often can be ignored. We will

have more to say about this in Section 13.3.2, as well as in Chapter 15 when we discuss

optimization of modular systems.

238 STRUCTURED DESIGN

Clearly, modules do not behave in a political fashion~ they do not distort data re
ceived from subordinate modules that they do not like. However, the programming
teams that develop modules often do behave in a political manner with respect to other
programming teams~ they may well distort the data received from subordinate modules
implemented by a programming team they do not like. We usually can (although not
always) assume that such problems will be exposed and resolved during testing and in
tegration. While the programming teams may continue to behave toward each other in
a political fashion, their modules - once debugged and integrated with one another
presumably will behave in an apolitical fashion.

Similarly, we should not have to worry about a module in a computer system
becoming demoralized because it does not see the big picture even though such
morale problems may plague the programming team that develops the ,module! Indeed,
one of the objectives of the normal form of communication is that it fosters a black-box
approach to modules, so that each one can be considered, debugged, or modified
without serious impact on other modules.

It is possible, for example, that module A in Fig. 13.2 also uses datum x in some
way other than as a value to be accessed by module B. It could have been written to ex
pect that the value remain constant between calls. (For languages that do not permit
"ownedn or local data of this sort in subroutines, the same issues can apply to data
passed via common or global variables.) Before the programmer can uncerimoniously
plunk a new value into x for the alternate use of module B, the coding in module A

would have to be inspected to insure that no such side effect or competing use of x is
made within A. But module A ceases, thereby, to be a black box!

In general, the use of pathological connections reduces the ability of the programmer to

treat modules as black boxes. To some extent, normal communication justifies the ex
istence of the managers. Aside from the degenerate cases, we assume that managers
(and superordinate modules) exist for a purpose: They control and coordinate the work
of their subordinates. To bypass a manager by transmitting data pathologically is to
weaken the power, effectiveness, and flexibility of the manager. To suggest that the
manager doesn't look at the data anyway and should therefore not have the data pass
through his hands is a somewhat subtle form of "inversion of authority": What busi
ness does the worker have telling the boss what data he should or should not receive?
Furthermore, how does the worker really know what data the manager requires in order
to make his decisions?

A more specific and relevant argument relates to flexibility. The manager may
wish to move a clerk from one department to another, with the clerk still carrying out
the same function. Or, the manager may decide that instead of performing services for
just one department, the clerk should be able to carry out general-purpose services for
multiple departments. All of this is made more difficult if the clerk is transmitting
and/or receiving data pathologically with other clerks - particularly if the manager is
unaware that such pathological communications are taking place (and since the manager
has presumably been ~~cut out of the loop," there is no reason to expect that he would
be aware of such nefarious dealings behind his backD.

COMMUNICATION IN MODULAR SYSTEMS 239

Finally, there is the argument of security: Many organizations require that data be

communicated normally in order to ensure that it is provided on a need-to-know basis.

This is particularly true in certain military agencies, of course, but one finds it in the

more sensitive areas (e.g., marketing, research and development, patent work, and so

on) of other organizations as well. One occasionally finds unusual cases in which the

boss does not have access to certain sensitive information manipulated by his subordi

nates, but the reverse is normally true: The boss has more global access to data, and

decides which subordinate~ should be granted local access to selected bits of data.

13.1. 2 Overview of pathologica I control con nee/ions

Pathological control connections are considerably less prevalent than pathological

data connections, but they still occur sufficiently frequently to warrant some discussion.

In simple terms, a pathological control connection can be represented in the form

shown in Fig. 13.3. Again, our question is not so much, What do pathological control

connections look like'! as Why do designers use pathological control connections?

•
Figure 13.3. Pathological control connection.

Assuming that the system is basically modular in nature (i.e., that it consists of

modules, which are called normally and which exit normally), we will find only a few

limited uses of pathological control connections. Relatively infrequently, one low-level

module transfers pathologically to another low-level module, as shown in Fig. 13.4a.

More often, each module has a separate control connection to the other, as shown in

Fig. l 3.4b, usually because a portion of the code or task of one module is being used by

the other. The st:-ucture of Fig. 13 .4b suggests that the designer may be building a

primitive homologous (or one-layer) structure, though he may not recognize it as such.

We will discuss homologous structures in Chapter 18. ·

A more common example of pathological control connections is the "panic abort"

exit to the operating system. This is demonstrated in Fig. 13.5a. Such a structure is

not necessarily evil, if the designer consciously chooses a panic abort and understands

the trade-offs. However, a number of designers do not even recognize that Fig. 13.Sa

represents a pathological control connection. To emphasize the contrast, Fig. 13.Sb

shows a structure that accomplishes the same thing as Fig. 13. Sa, but with normal con

tro,l connections.

The difference between Figs. 13.Sa and 13.Sb illustrates the reason why many

designers opt for the panic abort approach: The normal approach involves too much

overhead in returning error flags to the top level of the structure. This may appear. to

be a false issue, since a panic abort presumably would be executed only once. Howev

er, if every module has to check for the presence of a "fatal error" flag after each call

to a subordinate, a considerable amount of CPU execution and memory overhead might

be involved. The issue might also be programmer time: The programmer doesn't want

to spend time and energy coding a fatal error flag into all of his modules. What is

needed, of course, are simple and efficient methods of accomplishing this task.

240 STRUCTURED DESIGN

q
/ ',

/

L \
[.. I l'------JB~

Figure l 3.4a. Simple example
of pathological control flow.

A

D
I

I
I

Figure 13.Sa. Panic abort as an
example of pathological control flow.

Figure l 3.4b. More common example
of pathological control flow.

1"rror
TOP

• ;,..;r error
•

'~
/

D
Figure 13.Sb. Normal version of
the panic abort.

COMMUNICATION IN MODULAR SYSTEMS 241

Figure 13.6 illustrates a variation on the panic abort: A low-level module discov
ers a serious error and decides to transfer control directly to the top module - thus cir
cumventing a number of intermediate-level modules that might have been in the midst
of some task when the low-level module began executing. This situation often occurs
when the designer decides that the fatal error - which is discovered in the low-level
module - should cause the system to abort a great deal of processing that was under
way. In a business data processing system, for example, the processing of a complex
transaction could be terminated in this fashion. Sometimes, the designer carefully ar
ranges things so that the intermediate modules will "flush" the processing they were in
the midst of, and ensures that the modules property reinitialize themselves in prepara
tion for any new processing; sometimes, he simply crosses his fingers and hopes that
things will take care of themselves. The normal form of Fig. 13.6 would be quite simi
lar to Fig. 13.5b.

A

TOP

/

/
/

Figure 13.6. Another example of pathological control flow.

The problem, of course, is that, to each of the intermediate modules, the fatal er
ror flag has some meaning in terms of what aspects of the immediate processing task
must be adjusted, reinitialized, and so on. These details should only concern and be
known to the programmer of each particular module, and this is only possible when
each sees the flag. 0ne can even say that an error becomes fatal by virtue of its being
passed up the line without being intercepted and handled to become non-fatal or a
non-error by any intermediates. The management analogy is self-evident~ the janitor,
for example, does not tell the Chairman of the Board that it is time to dissolve the cor
poration - unless the janitor is also the majority stockholder.

13.2 Types of pathological data connections

We recall that the obvious form of a pathological data connection was shown in
Fig. 13.L Examination of this structure shows us that module A is "loading" some
data from B's domain into its own. That is, we would expect that the connection shown
in Fig. 13 .1 would be implemented with a statement in module A of the following sort:

MOVE B-GLOP TO A-GLOP

242 STRUCTURED DESIGN

Of course, data may flow in the other direction as a result of a pathological con
nection~ that is, A may store data into B, as shown in Fig. 13. 7. Both variations are
equally simple from a structural point of view. We often refer to the process as a direct
pathological connection.

A B
x a-.

Figure 13.7. Another form of direct pathological communication.

An extremely popular form of pathological connection involves a common data en
vironment; this is illustrated in Fig. 13 .8. What makes the connection pathological is
that A and B are not passing and receiving data through their superordinates. The situa
tion might be compared to two clerks communicating by storing and retrieving data
from a publicly accessible file cabinet - but without explicitly informing their boss of
the communication. As we discussed extensively in Chapter 6, this form of pathologi
cal connection typically leads to greatly increased coupling - not just A and B, but all of
the modules in the system have access to the common data environment shown in Fig.
13.8. We will make suggestions for minimizing this problem in Section 13.4.

A B

Figure 13.8. Common data environment pathological connection.

One of the more subtle forms of pathological communication involves a so-called
communicator module, as shown on the facing page in Fig. 13.9. Technically, this does
not involve a pathological connection, since neither A nor B is explicitly referring to any
thing internal to TABLEIT. However, the communication is pathological in the sense that
A is passing data to B without the explicit awareness of its superordinate. In addition,
TABLEIT has relatively low cohesion; depending on the nature of the call, it will either
store or retrieve a specified data element - and is thus communicationally cohesive.

COMMUNICATION IN MODULAR SYSTEMS 243

A B

TABLEIT

Figure 13.9. TABLEIT form of pathological communication.

We might compare this situation to the following management scenario. Manager
P awakens clerk A from his slumbers and gives him a job to do. In the midst of per
forming his job, clerk A creates data element x. Clerk A knows that the nature of his
job is such that his friend, clerk B who works down the hall in another department,
eventually will be awakened to carry out a job that will require access to data element x.
At the same time, A knows that his boss has no explicit interest in x. Consequently,
clerk A awakens a junior clerk who has the peculiar surname of TABLEIT, and asks him
to file data element X in a file cabinet whose location is known only to TABLEIT.

At some later time, clerk B is awakened by his boss to carry out some task. In
order to perform the task, B knows that he will require data element x; he also knows
that A was active at some previous time and that he arranged for TABLEIT to store the
vital information away. Thus, B immediately calls upon T ABLEIT to retrieve x~ this al
lows B to perform his job, and he is able to return the appropriate output to his boss.
Note that neither A nor B knows explicitly where T ABLEIT has hidden data element x.
They don't have to - they know that TABLEIT is trustworthy and can be counted upon
to store and retrieve information upon command.

It is obvious that the management has been circumvented to some extent; and it
should be obvious that a reorganization at the upper levels of the organization could
seriously disrupt the cozy communication between A and B. Suppose A is informed that,
from now on, he will be awakened by one of several different managers~ he is expected
to perform the same basic function for each. If manager P calls on him to perform a
job, then we know that clerk B ultimately will be activated and will require data element
x; however, if manager Q awakens A, then it may well turn out that clerk B will not be
awakened - in which case, data element x should be stored and retrieved via TABLEIT.

The points to recognize in this hypothetical example are (a) if clerk A does not
know explicitly which manager is awakening him - that is, if it is an anonymous
subroutine call - then he does not know whether or not to store data element x, and
(b) if the higher levels of management are not aware of the shenanigans being carried
on by A, B, and TABLEIT, they will assume that their reorganization can be implemented
without any trouble.

244 STRUCTURED DESIGN

The final form of pathological communication is known as device-coupled commun

ication and is shown in Fig. 13 .10. This can be regarded as a variation on the common

data environment shown in Fig. 13.8. The form involves primary memory as the com

munication medium, white the latter involves secondary storage of some form - typi

cally, tape or disk. Once again, this often is regarded as an innocent practice by veteran

designers because the modules involved are not meddling in each other,s internal code

or storage areas. From a systems viewpoint, of course, A and B are meddling in each

other's affairs: A should not know that its execution is in any way connected to, or cou
pled to, subsequent execution of B.

A B

Figure l 3.10. Device~coupled pathological communication.

13.3 Justification of pathological communication

As we have said several times, pathological connections are not to be considered

evil - despite the obvious pejorative connotations of pathological. We do know that,

all other things being equal, a system with pathological connections will tend to be more

difficult to maintain and modify - particularly if such work is performed by program

mers other than the original development programmers. Nevertheless, the designer of

ten is influenced by other constraints and pressures, and these may be sufficient to jus

tify the pathological connections.

Our purpose in this section is to discuss the justifications for pathological connec

tions. This can be accomplished by simply asking a few questions, each of which is list

ed separately below.

13.3.1 How much extra programming time is involved?

Much of the reluctance to use normal communication between modules may stem

from the coding required for the interfaces. Programmers complain that it takes a great

deal of extra work to code the passing of parameters, and to check fatal error flags and

all the other encumbrances of normal communication.

COMMUNICATION IN MODULAR SYSTEMS 245

While each case deserves to be judged on its own merits, we should make a few
observations about the amount of time typically spent in the coding of a typical program.
Aron, 2 Metzger, 3 and others have reported that coding typically occupies only about
one sixth of the person-hours of a typical programming project - design accounts for
one third of the project, and testing accounts for about one half. Once we have figured
out what we want our system to do, we tend to spend a minimal amount of time coding
it, and a large amount of time trying to make it work! Thus, a small amount of extra
time to code the intermodule interfaces required for normal communication hardly can
have much impact on the overall project schedule. Indeed, we suspect that the basis of
the programmers' objection in this area is a combination of laziness and impatience to
begin testing the program.

Knuth~s study 1 indicates that CALL statements account for only 4 percent of all
the statements in a typical FORTRAN program. The authors' observations of large

numbers of programs, even highly modular ones, suggest that these statistics are prob
ably valid for a variety of other programming languages as well. If only 4 percent of the

statements written by a programmer involve activation of other modules, can it really
take that much extra work to pass and return the parameters required for normal com·
munication?

There will certainly be some cases in which the answer is yes. All we ask is that
the designer and the programmer take the time to consider whether the extra coding
time wilt be significant.

In the final analysis, this probably is a false issue. Since the highly modular ap
proach of structured design has been proved to reduce programming, it is extremely un
likely that a central feature - namely normal subroutine calling - should increase pro

gramming over all. The truth is that the functions served by parameterized subroutine

calling are necessary features of any solution. Whether spread around and buried as
side effects i[n other code or concentrated and made highly visible in a long subroutine

argument list, the programming effort is still there.

13.3.2 ls the overhead of normal communication too high?

Perhaps the strongest, certainly the most commonly heard, argument in favor of
pathological communication is that of efficiency. Still, the designer should ask himself
whether the cost of normal communication is truly unbearable compared to the total
cost of pathological communication. If so, and if efficiency is an important issue in the
system, then pathological communication may well be justified.

We should point out, however, that the cost of normal communication is not so
terribly excessive in most high-level programming languages. The statement

CALL GLOP (A,B,C,D, ,X,Y,Z)

generally involves passing one address for each of the parameters, regardless of whether
the parameter is a triple-precision floating point number or a 256-character text string.
If the parameter must be passed up and down through several levels of the hierarchy,
this may amount to a considerable overhead. On the other hand, considerable overhead
may be expended in any case - regardless of the number of parameters passed - be·
cause of the 41 prologue/epilogue" processing associated with the entry and exit to

modules in a high-level language: saving and restoring general registers, setting base

246 STRUCTURED DESIGN

address registers, and so forth. Thus, passing one or two extra parameters may
represent only a small incremental overhead.

Ultimately, the proper method in which to assess communication efficiency is not
to measure the cost of subroutine calls, which is to implicitly compare the cost of nor
mal communication to the cost of doing nothing, but to compare the costs of the alter
native. Despite prevailing programming mythology, pathological communication, say,
via common or global variables, 4 does not come completely free.

On the average, each use of a module requires establishing special or unique
values for the major portion of its inputs and targeting the resulting outputs to the prop
er places. Where pathological communication has been elected, this will require, in
many instances, the actual moving of data from sources into the global input variables
and, on return, moving results from where they were generated by the module to
where they ultimately are needed. Thus, the typical code is most likely to resemble the
code below, with respect to some or all of the inputs and outputs.

MOVE Q INTO INl
MOVE R INTO IN2
CALL FOO
MOVE OUTl INTO S

While it is true that many programmers do not always cluster these data-shuffling state
ments in the immediate vicinity of the CALL, where they would be painfully obvious, a
thorough perusal of the code will reveal their presence. Note that such separation of
the statement that activates the module from those that determine what it does can only
complicate the program and increase the probability of error.

The hidden, or at least often ignored, cost of pathological communication is in
creased when a new, alternative use of a module is introduced and the programmer
must avoid a possible conflict with other usage of input and output data variables, as in
troduced earlier. The required coding then resembles the following:

MOVE X INTO TEMP
MOVE NEWX INTO X
CALL B
MOVE TEMP INTO X

The saving and restoring is necessary to assure that a still-needed value of x is not ac
cidentally lost.

When one considers that normal communication in most programming languages
automatically establishes a complete, unique input and output data context for each
CALL by passing pointers (which are "address site" entities), then it is not surprising
that this often can be more efficient than the actual moving of data required in patho
logical communication.

COMMUNICATION IN MODULAR SYSTEMS 247

In any case, we would recommend that the designer begin with the assumption
that normal communication will not be unduly expensive - unless he has some strong
evidence to the contrary. Having implemented the system, the designer/programmer
can gather statistics to see if a few of the intermodule references are causing excessive
overhead. We will touch upon this philosophy again in Chapter 15.

133.3 Are future alternative uses likely?

Perhaps the strongest argument against pathological connections is that they make
future modification of the system more difficult. However, if the designer is relatively
certain that the system will be stable (a brave designer indeed!), then he perhaps can
justify the use of pathological communication. There are two aspects of future
modification that concern us: future general-purpose use of the modules that currently
are communicating pathologically, and future uses for data elements that are currently
being transmitted pathologically.

Thus, in Fig. 13.8 (or in any of the other forms of pathological communication),
we are concerned with possible future uses of modules A and B, as well as possible fu
ture uses of the data element x. When the system is first designed, we can imagine
that A and B each have only one superordinate; thus, the fact that they are communicat
ing pathologically does not bother us too much. However, we should ask ourselves
whether there is any possibility that module A (or B) will ever be used by other superor
dinates if some future modification to the system is made. Similarly, we observe that
data element x is hidden from the higher levels of modules in the pathological structure
shown in Fig. 13.8~ since the superordinate modules apparently have no explicit need to
access data element x, this may not bother us. However, we should ask whether some
future modification to the system will require x to be transmitted to, or used by, some
other part of the system; if so, the data should be communicated normally. Note that
any other value of data element x requires substitution of any other value into location
x in the pathological connection.

This question and the others raised in this section require some deliberate judg
ment on the part of the designer. If the designer feels that every minute of coding time
is precious, that nary a microsecond of CPU time can be wasted, and that future
modifications to the system are unlikely at best, so be it! We are concerned only with
the fact that many pathological communications are designed unconsciously or casually
- or they result from a long-standing prejudice that all normal communications are bad
because they require too much CPU time.

13.4 Suggestions for minimizing coupling in pathological connections

If we assume that pathological communication is sometimes justifiable in terms of
the criteria discussed above, we should distinguish between good and bad pathological
communications. In particular, we would like to choose pathological communications
that aggravate intermodule coupling as little as possible.

Perhaps the most important suggestion is that a pathological connection or other
direct communication should be used only for communication: Local, internal uses of a
pathologically communicated data element should be avoided wherever possible. Thus,
we may be prepared to accept the simple pathological connection of Fig. 13.l as long as
it serves only the purpose of transmitting a useful parameter from A to B. Module A

248 STRUCTURED DESIGN

should not use data element x for local purposes internally - e.g., it should not at
some later point use x as· a temporary storage area for saving intermediate results of cal~
culations. Although any pathological connection is likely to be more obscure than a
normal connection to the maintenance programmer, a pathological connection involving
internal uses and side effects is considerably more obscure. To assure safe use of a
pathological connection that has a side effect, thy programmer must look inside
modules; in this particular case, they are not black boxes.

Since common data environments are such a prevalent form of pathological com
munication, we offer another suggestion: Whenever possible, common environments
should be regionalized. In general, a module should not be given access via a common
environment to any data element that it does not require in order to perform its job.
Recall that this suggestion was made in Chapter 6~ coupling can be greatly reduced by
careful regionalization of common environments.

Finally, we· suggest that the designer and the programmer extensively document
any pathological communications. Assuming that a structure chart is used as one form
of documentation, the appropriate notation should be used to highlight any pathological
connections that may be present. Similarly, the flowcharts or narrative documentation
that accompanies each module should indicate any of its pathological connections. Fi
nally, the documentation that accompanies each data element (e.g., a data dictionary)
should indicate whether the data element is transmitted or used pathologically.

13.5 Summary

As we have seen, there are many different types of pathological data connections
and pathological control connections. It is especially interesting that so many analogies
can be drawn between this aspect of software design and the structure of human organi
zations~ we recommend that you keep these in mind when discussing such questions
with your fellow designers.

The issues behind the use or nonuse of pathological connections are fairly obvi
ous: efficiency, convenience, and future maintenance. There are indeed circumstances
that justify a pathological connection~ however, in today's environment of cheaper
hardware and increasingly complex software, there are fewer and fewer cases really
justified on rational grounds. Unfortunately, remembering the days when hardware was
expensive and software relatively cheap, many designers continue to defend pathologi
cal connections on emotional grounds.

CHAPTER 13: REFERENCES

1. Donald E. Knuth, H An Empirical Study of FORTRAN Programs," Software -
Practice and Experience, Vol. I, No. 2, pp. 105-133.

2. J.D. Aron, "Estimating Resources for Large Programming Systems," Software En
gineering Techniques, NATO Scientific Affairs Division (Brussels 39, Belgium:
April 1970), pp. 68-79.

3. Philip W. Metzger, Managing a Programming PrQject (Englewood Cliffs, N.J .:
Prentice-Hall, 1973).

4. W. Wulf and M. Shaw, "Global Variables Considered Harmful,H ACM S/GPLAN
Notices,. February 1973, pp. 28-34.

14.0 Introduction

CHAPTER 14
PACKAGING

In this chapter, we consider two very practical steps in the design of a working
modular system. Ultimately, we must make a system fit into the available physical
memory (or occupy units of a reasonable size, for storage management purposes), and
we must implement the various input-output processes of the system on actual devices.
Both of these steps are concerned with the physical realization of a modular system on
an actual computer.

The term packaging refers to the assignment of the modules of a total system into
sections handled as distinct physical units for execution on a machine. Each such unit
will be called a load unit, and will be considered a portion of the system processed as a
unit by the operating environment. For some systems, programs are the load units~ in
others, we see the terms "overlay.s," 0 load module," "job step," and so forth. Load
unit boundaries and module boundaries are independent theoretical constructs, though,
in practice, they are highly correlated.

The relationship between functional module structure and packaging may be con
sidered in either order. Traditionally, the mechanical requirements of space and time
are weighted relatively highly as inputs to the process of modularization. In other
words, execution speed and memory constraints traditionally have guided the modular
design. The early intrusion of such unequivocally nonfunctional aspects of the problem
may - and often does - substantially reduce the effective modularity of the system.
On the other hand, we must pare the system to fit into memory, N limit the load-time
packages to a manageable size.

As a general rule, we cannot simultaneously minimize memory and execution
time. The most useful expression of the problem is to find a packagi·ng arrangement
that will minimize execution time while just satisfying an actual or arbitrary limit on
load unit size. Packaging within this framework can be done after a complete modular
structure has been determined. This is desirable, too, for it allows us to focus our atten
tion on increasing the modularity of the system, provided satisfactory execution speed
can be achieved.

When the modules of a system are small, we almost always can perform packaging
while leaving the module boundaries intact. With small modules, the probability is high
that the boundary of a package will be at or near a modular boundary. As suggested in
Chapter 9, high technical modularity relates to small module size - thus, prior modular
d(!Sign emphasizing technical modularity makes after-the-fact packaging feasible.

250

PACKAGING 25 I

With .a complete structural design, we will have additional information: the pro
cedural skeleton and the communication structure. This is precisely the information we

need to make a good segmentation of the system into packages. Indeed~ neither the

procedural skeleton nor the communication structure (i.e., the flow of data back and
forth between modules) would be known with nearly as much accuracy or detail before
the structural design. By deferring packaging to the end of the design process, we (po
tentially) improve both the efficiency and the technical modularity of the system.

Using a strategy known as procedural analysis, we will study the problem of organ

izing systems into efficient load units. The emphasis throughout this chapter is on the
memory requirements of the system. The discussion of optimization in Chapter 15 will

concentrate largely on execution speed, which is best done after the system has been
implemented and put into production.

14.1 Procedural analysis

Procedural analysis consists of a set of criteria to determine which modules must
be in the same load unit for the sake of efficiency. The criteria derive originally from
ideas of Emery 1 as refined for packaging purposes. To use this as a technique for
designing the modular structure is technically undesirable, but it is precisely the ap
proach needed for efficient packaging. Application of these criteria generally leads to
overdetermined systems - that is, the requirements conflict in such a way that the only

way to satisfy all of them is to have a single load unit for the entire system, which
would be a contradiction. In other cases (although less frequently), the packaging is

undetermined, with some "don't-care" boundaries. In either case, we are left with an

art, not a science. The designer must cleverly juggle conflicting desiderata.

Procedural analysis involves three steps:

1. Determine the expected size of each module in the structure. This
first step is actually easier than it sounds, for with a complete modular
design we have a good idea of the module size in most cases - and
when we don't, the small size of most modules makes estimation easy.

2. Apply each of several criteria discussed below to determine preferred
groupings and a priority among preferences.

3. Find groupings of modules such that splitting of preferred groupings by
load unit boundaries is minimized without bringing the size of the load
unit above the allowable maximum. This will be the most efficient
packaging for the given structure within given memory constraints.

The general concept is very simple: In the same load unit, we want to include

modules connected by a reference that is used or accessed many times during an execu

tion of the system. We do this because references between load units cost something in
overhead above the basic modular overhead; where the operating environment becomes
involved, this cost can be substantial indeed. Between programs or job steps, communi
cation usually will require use of intermediate files, an even more expensive matter.

There are several distinct guides for recognizing high-frequency references

between modules. First, we look at the iteration structure - that is, the imbedding of
subroutine calls or other intermodular references within loops. The rule of thumb is

252 STRUCTURED DESIGN

that, wherever possible, we want to place a module referenced within an iteration in the

same
/
load unit as the referencing module. Since iterations often are nested either

within the referencing module or by virtue of subordination, the preference for group

ing modules into a load unit must be given to inner (lowest-level) loops over outer
(higher-level) loops.

In the structure of Fig. 14. l, the highest priority is to include modules B and E in

the same load unit. The next priority is to include B and D in the same load unit; the

only way of accomplishing this without violating the first priority is to include B, D, and

E in a common load unit. By a similar argument, the next lower priority would include

A, B, D, and E in the same load unit.

c.

Figure 14.1. First-cut packaging based on iterative structure.

Because other grouping criteria will be added to the one involving iteration, it is

more useful to begin by showing the groupings of modules in pairs. For example, if we

discover later that there is a very high priority for associating module Q (shown in Fig.

14.1) with module B, we do not want to be misled into thinking that the highest priority

overall grouping is B, D, E, and Q - when in fact it is B, E, and Q.

Sometimes, it may be efficient for two modules to be in the same load unit even

if there is not an obvious, or even explicit) iterative relationship. For example, we may

know that module c in Fig. 14.l is invoked for every record of a 27 ,000 record file.

Thus, a reference from A to c is made 27,000 times during the execution of the system.

Indeed, the estimates of volume of references often are more useful than the iterative

structure by itself.

P ACKAGlNG 253

We may find, for example, that the loop in module A (within which there is a call
to module B) iterates an average of three times, if it is executed at all. Subsequent
analysis might show that a decision within module A causes the loop to be executed
only once out of every four times the system is run. If this is the case, the priority ob
viously would be given to the grouping of modules A and c rather than to A and B.

The decision structure shown on an extended structure chart is a useful rough
guide to the frequency of references. Clearly, a conditional reference reduces the fre
quency by an amount proportional to the fraction of time that the relevant condition is
false; an unconditional reference means that the referenced module and the module
making the referral are executed with equal frequency. Where frequency of reference
or communication is the observable criterion, the rule of thumb is that modules related
by high-frequency references should be in the same load unit.

Another somewhat less useful packaging criterion is the time interval between
references from one load unit to another. In most cases, this means that we are in
terested in the amount of time that passes between the execution of one module and
another. The longer the time interval, the less overhead will be incurred in switching
from one load unit to another. For example, we can think of module c in Fig. 14.1 as
an intermediary between module A and module R. If c requires a long time to execute,
we would not mind at all having A, c, and R in separate load units. On the other hand,
if c executes quickly, it is preferable to have A, c, and R in the same load unit. Other
wise, the ratio of overhead to useful processing jumps considerably.

This criterion is relevant only when volume or frequency information is not avail
able. Clearly, the same analysis should apply to an uatomic" module, based on its ex
pected execution time.

Two special cases exist when we do not want to include modules in the same load
unit. We define an optional function as one that, for some executions of the system,
may not be needed at all - and one whose use (or nonuse) can be decided in advance
of the situation in which it might be required. Run optional functions are those whose
use (or nonuse) can be determined when the system initializes itself. Clearly, wherever
feasible, optional functions should be placed in separate load units by themselves. The
advantage of isolating optional functions is that under some circumstances (Le., the cir
cumstances in which the function is not used) our use of modularity costs us absolutely
nothing - for the optional function will not even be loaded into memory.

The other special case is for Hone-shot" functions. These are used only once per
execution of the system, or once for some well-defined segment of the system. Obvi
ously, a one-shot function should be in a load unit by itself~ once it has been executed,
it need no longer be kept in memory.

An exceptional case occurs whenever a sort is required in a structure. Sorts
represent natural breakpoints to separate load units. Indeed, this often has been a cri
terion invoked in traditional design work.

When separation into physical packages may require the use of distinct programs
or job steps, special attention must be given to the volume or communication on any
transition between load units. The designer should try to identify points with the lowest
volume and simplest data to break the structure. If the communication were to be ac
complished via input-output devices (device-coupling), then intermediate files can be

254 STRUCTURED DESIGN

kept small and with simple structure. When an overlay communication region in pri
mary storage is used, the size and complexity of tables in that region are reduced.

Table 14.1 summarizes the criteria for efficient packaging of modules with the
rules for priority of application. When applied, these criteria typically will yield a com~
plex set of overlapping alternate groupings. The designer's task is to juggle possibilities
until a group of distinct load sets has been identified. One way of looking at the prob
lem is to draw load unit boundaries so as to minimize the number of grouping prefer
ences that must be cut (properly weighted by priority). When sufficiently well defined,
this process is analogous to certain graphic theoretical problems. Since we lack the
space in this book to pursue such a formal graphic theoretical approach, the designer
will have to regard this step as an art.

Iterations

Volume

Frequency

Interval

Optional functions

One~shot functions

Sorts

Table 14.1

Criteria for Packaging by Procedural Analysis

GROUPING
CRITERIA

Include in the same load
unit modules connected
by iterated reference.

Include in lhe same load
unit modules with high
volume of access on con
necting references.

Include in the same load
unit module with high
frequency of access on
connecting references.

Include in the same load
unit as the superordinate
(or the subordinate) any
module with short interval
of time between activation.

ISOLATION
CRITERIA

Put into a separate load unit
any optional function.

Put into a separate load unit
any module used only once.

Put modules applied on input
and output sides of a sort
into separate load units.

PRIORITY
RULES

Inner loops take precedence over
outer loops. Loops nested within
a module take precedence over
nesting by subordination.

High volume (many activations
or many items passed) takes pre
cedence over low volume. The
volume criterion is preferable
to the iteration criterion, if vol
ume information is known.

Frequent transfers of control
or data take precedence over
infrequent transfers. If
known, volume and/or iteration
criteria are pref er able.

Short execution time has pre
cedence over long execution
time. This is a low~priority
priority criterion.

In resolving conflicting requirements, there is one trick that frequently is useful.
In Fig. 14.2, the designer has used the iteration structure to lead to two load units with
a single conflict, in the form of the common subordinate module MM. Let us imagine
that the maximum permissible load unit size is 450 units (bytes, words, pages, or what-

PACK AG ING 255

ever - we really don't care in this discussion). Thus, we cannot combine HH-JJ~LL-MM
with KK-NN into a single load unit to solve the problem. However, all of the require
ments can be met if we provide duplicate copies of MM for each load unit. This gen
erally is feasible when the common subordinate(s) is (are) small. Of course, we do not
wish to duplicate the design and coding of MM, so the modular structure remains as in
Fig. 14.2. All that we have done is make two physical copies of the same module.

Figure 14.2. Conflicting load unit grouping with common subordinate.

Actual realization of a pref erred packaging is another matter altogether and gen
erally will depend on the programming language, the operating system, and the comput
er hardware. Thus, the designer may have to transform modular load units into physi
cal overlays. Or, he may find that the operating system handles each module separately
and will not permit several modules to constitute a single load unit. In such cases, the
designer may have to lexically include subordinates within the superordinate (if that is
possible). In some systems, compiling several modules together may cause a single
load unit to be created by the compiler. Separate compilatibns produce separate load
units. Or, there may be a distinct link~edit process which combines separately compiled

modules into load units.

256 STRUCTURED DESIGN

The person making the packaging decisions should have a complete catalog of
packaging options within the language-compiler-operating environment in use. Such a
catalog should identify, for each available type of package, the functional .characteristics
and limitations, the operating overhead, and any peculiarities or special advantages. For
example, a module on a structure chart may be packaged in full ANSI COBOL in many
forms: as a paragraph or section of a main program or callable subprogram; as a main
program; or as a callable subprogram, managed either dynamicaHy or statically. All of a
program or subprogram may constitute a load unit, or sections can be handled as over
lays. The use of a section saves the prologue/epilogue required by a called subprogram,
but makes all communication into and out of the module pathological via the common
environment comprising the data division. On the other hand, COBOL subprograms
can only pass data normally except by device-coupling.

14.2 Packaging in practice

Obviously, a realistic example of packaging involving division into more than a
few load modules would be far too tedious to present in detail here. But some of the
subtleties of packaging, especially of the advantages of deferred packaging, can best be
appreciated through concrete example. For this reason, we will summarize the tech
niques of procedural analysis and packaging of modular program systems by a lengthy,
but, we hope, not excessively tedious example.

The MUL TISIM system employs a data bank of simulation parameters to define a
variiety of simulations of c·hemical processes for the United Sodium and Sugar Com
pany. The updated contents of specified entries from the data bank are combined with
a series of simulation instructions (an agenda) calling for that data. Represented in
suitable form, the agenda becomes input to simulation calculations, which execute the
agenda step by step. The results calculated by each agenda step are plotted. A sum
mary for a .complete agenda is to be entered into one of two reports depending on the
yield in the· simulated results. These reports are to appear in another sort-order based
on codes in the agenda itself.

An extended structure chart for a highly factored, transform-centered version of
this complete system is shown in Fig. 14.3. The afferent branch headed by GETSIMULA·
TION'AGENDA delivers one complete agenda with its required parameters. The simula
tion transform, DOIAGENDASTEP, and the two efferent branches for plotted results (PUT
INTERIMRESUL TS), and the summary reports (PUTTOSUM) are called in an inner loop of
MUL TISIM for each step. A transaction center is found at GETCOM/DATA in the afferent
branch. The system as originally specified is assumed to be a single load unit using a
callable sort routine with separate entry points for putting to and, after completion of
the sorting, taking from the sort subsystem.

A typical run involves about 2,000 transactions at the point identified as (1) in
Fig. 14.3, about 1 AOO of which might be updates to the data bank. About half of the
usual 600 individual agenda instructions require parameters from the data bank items
that are being updated, the remaining involve other items. The volume of items at
points (2) and (3) is about 600 in each case, but the data at point (3) are more com
pact, less complex. Since an average agenda comprises about three steps, the volume at
point (4) averages only 200 items, but each item involves many fields or subitems. As
each agenda step produces output, the volume at point (5) is, -again, typically 600. The
agenda summaries represented at point (6) total only 200, each resulting in a page-long

PACKAGING 257

report. Most often, only one in ten simulations has a high yield and thus would appear
in the high-yield rtport~ the volume at (7) would be about twenty items.

MULT:tSrM
i

Figure 14.3. Structure chart for the MUL TISIM system.

This information, along with the procedural annotations on the structure chart,
permits us to establish some preferences for grouping and separating. In Fig. 14.4,
solid lines enclose the higher-priority groupings based on iterations~ dashed lines identi
fy points where the presence of optional or one-shot functions favors separation of load
units. Low-priority groupings have been omitted. Clearly l the highest-priority group
ings are the ones headed by GETCOM/DAT A and NORMCOMP. The ultimate enclosure of
both these subsystems in nested loops within MULTISIM suggests a single large program~
but what if together the two subsystems exceed memory limitations? The procedural
analysis indicates the preferred point of separation to be between GETSIMULATIONAGEN
DA and MUL TISIM. This cannot be done without reprogramming (really, alterations in
the procedural design)~ the question how much? Figure 14.5 suggests a realistic
compromise that creates three main programs: SIM l, SIM2, and PRINTSUMYIELD. The
soundness of the highly factored design is proven in the minor clerical nature of the
changes that would be required. Indeed, SIM2 differs from MULTISJM only in dropping
the call to INITIAL and in substituting a call to an input routine for the original call to
G ETSIMULATION AG ENDA.

258 STRUCTURED DESIGN

The declarations for PUTSUMYlELD will be different if it is to be a main rather than
a subordinate program and if the call to it is omitted from PUTTOSUM. SIMI constitutes
new coding required by the packaging, not the problem, but even it is a mere clerical
procedure, a trivial subprogram. Most, perhaps 95 percent, of the original design has
been preserved. A problem is posed by making SPECIALCOMP a callable subprogram. If
STEPB is another callable subprogram that is designed to be used from both load units,
the much-used NORMCOMP inner loop could be significantly slowed. However, the al
ternative is two copies.

r"'!!_--

Figure 14.4. Procedural analysis for packaging of the MULTISIM system.

Until performance statistics lead us into a post-development optimization (to be
described in Chapter 15), the simpler option of a callable subprogram would be the
choice. In COBOL or a similar language, all other subroutines might be packaged as
PERFORMed SECTIONS at some loss in modularity due to the required pathological com
munication~ thirty normally communicating callable subprograms in this size application
would very likely be far too costly both in storage and in execution overhead.

The chosen packaging requires an intermediate file (the coded agendums) of small
size and moderate complexity. Disk storage might be ideal for this purpose. The first
pass, SIM 1, is essentially an update and proofing run to generate ready-to-simulate agen
dums~ error detection and processing have been omitted to simplify the structure for
expository purposes. The addition of a listing of the finalized agendums that are written
to the intermediate file would make it more practical to use SIM t and SIM2 separately.

PACKAGING 259

How did we fare? Compare our packaging to the conventional one shown in Fig.
14.6, which a systems analyst drew up based on the problem description. The division
into runs in Fig. 14.6 is absolutely standard. Because it was based on presumptions
about what form the solution should take rather than a thorough understanding of the
functional structure, each full use of the traditional system will 1 be more expensive than
each use of our packaged structured design by (1) about 300 disk search-and-reads~ (2)
two passes (write and read) on 600 uncompressed rather than compressed agenda items~
(3) two passes (write and read) on the 600 item output file~ (4) sorting of 600 instead
of 200 items~ and, if one includes as a feature of the conventional design the standard
use of a separate sort program operating from and to files instead of a callable sort sub
system with first and last pass own coding, (5) three passes on 600 items being sorted.

It might be possible for a sharp and unconventional systems analyst doing prepack
aging to come up with our system, but how much easier and more likely is the
identification of efficient packages after complete structural design. Finally, it should be
obvious that a repackaging of the structure of Fig. 14.3 to have the same intermediate
file structure as the traditional packaging would be trivial were this deemed necessary or
desirable, but it is not likely that the programs of the traditional design could be easily
transformed from five separate runs into a single nest of subroutines!

Figure 14.5. Packaging for the MULTISIM system.

260 STRUCTURED DESlGN

* PASSES WHICH All£ ltED\J'NDART
Ok CAil BE. MDYCED

Figure 14.6. Systems flow or conventional packaging
for the MUL TISIM system.

14.3 Summary

In general, we at
tempt to satisfy me
chanical restrictions . on
memory size or execu
tion time through pack
aging, rather than
through modular struc
ture. This helps us
maintain the discipline
of a highly modular
system through the
design phase of a proj
ect, and allows us to
maximize such worthy
design goals as
maintainability and
modifiability. As a
rute, this can be done.
Indeed, experience in
dicates that packaging
done in this manner
leads to significantly
mare efficient and more
manageable systems
than when packaging
precedes and guides the
structural design.

This is a more significant point than it may seem at first. In many organizations,
packaging is done by the systems analyst - not by the designer. This means that the
sequence of steps in such organizations is often: packaging first, flowcharting second,
and structural design (of the most primitive sort) last. This frequently leads to a pro
liferation of intermediate files that are passed back and forth between the various load
units specified by the analyst. The problem is aggravated by the fact that some systems
analysts are obsolete technicians. Thus, in the late 1970's, analysts still specify a new
payroll system consisting of an edit package, an update package, a sort package, and
several report-writing packages - with intermediate tape files passed between the vari
ous packages. Why? Because thaCs the way analysts accomplished the job in the early
1960's on an IBM 1401 - and if it worked then, it should work now!

It is difficult to impress upon many such analysts that they currently are working
with a fourth-generation computer that has four million bytes of physical memory, plus
the sophistication of virtual memory and a vast array of drums, disks, and other fast
storage devices. In many cases, the entire system could be implemented as one load
unit, with all data passed through memory in the form of arguments to modules. In
any <~ase, we cannot overemphasize that packaging should be done as a last step in the
structural design - not as the first step!

CHAPTER 14: REFERENCE

L J.C. Emery, "Modular Data Processing Systems in COBOL," Commun;cations of
the ACM, Vol. 5, No .. 5 (May 1962).

CHAPTER 15
OPTIMIZATION OF MODULAR SYSTEMS

15.0 Introduction

As its title makes clear, this chapter is devoted to the optimization of modular
program systems. The authors' decision to discuss optimization in Chapter 15, three
fourths of the way through the book, was deliberate: Optimization is something that
should be considered after the system has been designed, and should not be an
influence on the design process itself. It is demonstrably cheaper to develop a simple
working system, and speed it up, than to design a fast system and then try to make it
work. The savings possible by delaying optimization are even greater when the design
is highly factored and uncoupled. At the same time, it is appropriate that the chapter
be placed in the section on pragmatics: Many systems do have to be optimized to
reduce their use of CPU time, memory, use of peripheral devices, or other limited sys
tems resources.

The previous chapter on packaging discussed techniques for developing reasonably
efficient systems within given memory contraints. However, this chapter assumes that
such a priori techniques may not have been sufficient - i.e., we still may be dealing
with a daily system that requires 25 hours of computer time. Therefore, the primary
emphasis in this chapter will be on the reduction of CPU time, since that is still the
most precious of systems resources in the majority of organizations. Several of the
techniques can be applied, with some modification, to the optimization of disk accesses,
1/0 channel usage, and so on.

Before discussing the techniques themselves, we will discuss some important phi
losophies of optimization. Those readers who feel they understand the proper role of
optimization in systems development are free to skip the next section to get to the meat
of the chapter. However, even the battle-scarred veteran is advised to reread these
statements of "apple pie and motherhood" to reinforce the discipline that so often slips
away in a real-world project.

15.1 Philosophies of optimization

An interesting paradox comes to light in most discussions about the optimization
of modular systems: Many programmer/analysts are convinced that the techniques dis
cussed in this book contribute significantly to the inefficiency of their systems, yet they
have no idea how much. A few crude experiments suggest that a highly modular system
usually requires 5-10 percent more memory and CPU time than do systems implement
ed in the traditional fashion~ on the other hand, there have been occasions when modu
lar systems have been considerably more efficient than classical systems.

262

OPTIMIZATION OF MODULAR SYSTEMS 263

To make an accurate statement about the overhead and inefficiency of modular
systems, we would need an experiment with several thousand pairs of identical twins -
with one twin of each pair developing a highly structured modular system, and the oth
er twin developing the same system with the classical approach. Lacking the resources
for such an experiment, we are content to use the rough approximation of 5-10 percent
for the overhead of the modular approach.

The estimate of 5-10 percent is small enough that many EDP professionals would
prefer to ignore it - particularly in light of the overhead associated with modern
operating systems, data base management systems, teleprocessing monitors, and other
vendor-supplied software packages. However, in a large number of real-world computer
systems, optimization is a serious business - proper tuning of a system can save an or
ganization millions of dollars. Similarly, there are still many real-time systems - par
ticularly on the growing number of minicomputer and microcomputer systems - in
which each microsecond of computer time is critically important. Nevertheless, optimi
zation should be discussed from a rational point of view: Not every microsecond of
computer time has to be optimized! The following philosophies are important for us to
keep in mind as we discuss the optimization techniques in the subsequent sections of
this chapter.

15.1.1 The e./ficiency of a system depends 011 the competence of the designer

There is not much point in talking about efficient systems or optimization if the
system is being designed and/or programmed by people of only mediocre talent. Of
course, this is a rather sensitive issue. One's ego makes it difficult to deal with one's
own mediocrity, and one's manners make it difficult to accuse colleagues of mediocrity.
Nevertheless, it is a fact that should be faced squarely: A surprisingly large number of
analyst/designers design stupid systems, and an even larger number of programmers
write horribly stupid code.

These are blunt words, to be sure. However, a classic study by Sackman et al. 1

pointed out that, among experienced programmers, we can find a 25:1 difference in
design timt~ and debugging time. Equally disturbing is the fact that the resulting code
can vary in speed and size by a factor of ten. The most depressing fact of all was that
Sackman's study indicated that there· was no correlation between programming perfor
mance and scores on programming aptitude tests. H.L. Mencken observed that nobody
ever went broke underestimating the intelligence of the American public. After visiting
programming organizations around the country, the authors have concluded, somewhat
sadly, that a similar statement could be made about programmers and designers.

Our point is simple: There is no substitute for competence. If you want a system
designed and implemented efficiently, make sure it is done by people who know what
they are doing - which, by the way, has very tittle to do with the number of years they
have been working in the computer field!

15. 1.2 In many cases, the simple way is the ej]icient way

A number of programmers take it for granted that efficiency in a computer prow
gram only can be achieved with intricate, sophisticated, obscure techniques and
language statements. Thus, the assembly language programmer feels obligated to use
instructions with multilevel indirect addressing (with indexing at the same time, of

264 STRUCTURED DESIGN

course!) in order to achieve an efficient program~ the PL/I programmer feels compelled
to use built"in functions that probably have never been used by anyone else in his or
ganization~ the FORTRAN programmer and the COBOL programmer may feel equally
obliged to indulge in programming tricks that are beyond the ken of their vendor's
software representatives.

All of these sophisticated statements have their place, but many programmers
have found that such sophistication can gobble up large amounts of CPU time and
memory. Quite often, the simple statements are the most efficient. More important,
the simple modular structures often are far more efficient than the rat's-nest structures.
One of the authors had the opportunity to observe a large rat's"nest payroll system with
serious efficiency problems. Analysis showed that, among other things, the system
recomputed the payroll tax for each of the 100,000 employees each time it was execut
ed. Since the tax algorithm was a third-degree polynomial involving only the
employee's salary, there was no need to recompute cit unless the employee's salary
changed - and the unnecessary recalculation wasted a large amount of computer time
when applied to 100,000 people! A simple modular design probably would have made
it perfectly obvious that the computation needed to be done only once.*

The point that we are making is that a simple system does only what it has to do,
without any wasted or redundant motion. A large, disorganized rat's-nest system fre
quently performs the same computations multiple times, or performs computations to
tally irrelevant to the task at hand - all because the structure is so complex that the
designer could not see what was happening.

15.1.3 Only a small part of a typical system has any impact on overall efficiency

Many a programmer has been heard to mutter, "Jeez, 90 percent of the code in
this system deals with exceptions!" Perhaps the most dramatic example of this
phenomenon comes from AT &T's Business Information System. It is estimated that 98
percent of the modules in that vast system consume less than one second per year of
execution time. Similarly, Knuth's classic study 3 indicated that approximately 5 per
cent of the code in a typical program consumes approximately 50 percent of its execu
tion time.

From this viewpoint, it is obvious that the way to win the game of efficiency is to
find the critical 5 percent and optimize the hell out of it! The problem is that we don't
know which 5 percent of the code will be the critical 5 percent until after we have imple
mented the system and put it into production. Of course, it will be obvious from the be
ginning that certain portions of the system will be executed frequently. Nevertheless, it
usually is true that the run-time behavior of the system is quite different from the
designer's expectations. Thus, we often see a programmer/analyst gather run-time
statistics on his system, and then exclaim, ul can't believe that the system is spending
50 percent of its time in that module!"

•This was only one of several inefficiencies in the system. A redesigned version of the payroll system ulti
mately reduced the run-time by approximately four hours out of a fine-hour run on a Honeywell 8200 com
puter. For more discussion of this interesting project, see Yourdon.

OPTIMIZATION OF MODULAR SYSTEMS 265

15. 1.4 Simple modular systems can be optimized easily

Throughout this book, we have stressed that highly modular systems have the ad
vantage of being easily maintained and modified. It is worth noting that optimization is
a kind of modification: We have to modify the code within individual modules, or pos
sibly modify the structure of the complete system, in order to improve its efficiency.
Thus, it is entirely appropriate to the theme of this book to suggest that a modular sys
tem should be optimized more easily than a monolithic system. In a system with high
cohesion and low coupling, we should be able to change the code in one module
without creating any adverse effects in another module. If the overall structure of the
system is simple and well documented, then we easily should be able to make structural
changes (of the sort discussed in Section 15.3).

15.1. 5 Overemphasis on optimization tends to detract from other design goals

As we have stated, a great deal of optimization can be accomplished simply and
easily. However, a number of programmers tend to be fanatics when it comes to
efficiency: Every possible byte of memory must be pruned. If taken too far, this fana
ticism has serious adverse consequences. The code within modules becomes too com
plicated for mere mortals to maintain, and the coupling between modules becomes too
complex for even an Einstein. Indeed, the fanatical approach to optimization often
backfires. In an attempt to optimize a system by introducing complex flags and sophisti
cated instructions, the programmer sometimes ends up with a less efficient system.

These problems are much more serious if they occur during the design process.
Once the system has been designed and built, the natural "firewalls'' of modularity will
tend to minimize the negative effects (in terms of maintainability) caused by fanatical
optimization. However, if the designer is strongly influenced by optimization during
the design phase, the overall modularity of the system probably will suffer significantly.
It is likely that the resulting system will have high coupling and low cohesion. Its
modular structure may bear very little relationship to the inherent problem structure.

15.1. 6 Optimization is irrelevant if the program doesn't work

It may seem facetious to suggest that an efficient program with a bug is less valu
able than a somewhat inefficient program with no bugs. However, the authors have
found it quite difficult to impress this upon some supposedly professional programmers
and analysts. Actually, our point is a bit less trite: Optimizing a system usually re
quires a large amount of time and energy - especially since the optimization of code
affords the programmer an excellent chance to introduce new bugs into the system!

Hence, it would appear that the best strategy is to get the system working first -
even if it is inefficient. Users may howl and complain about the inefficiency, but they
will be happier with a slow system that works than with a fast system that isn't finished.
Besides, the system may not turn out to be inefficient after all! Or it may take such a
small amount of computer time that nobody really cares whether the system could be
optimized. .((the system turns out to be large and time-consuming, and {{there are in
dications that it could be optimized, then the programmer can work on the problem.

266 STRUCTURED. DESIGN

15.2 An approach to optimization of modules

If our system needs to be optimized, there are two ways of approaching the prob
lem: optimizing the code within modules, or changing the overall structure of the sys
tem to improve its performance. We will discuss the former in this section~ the tech
niques of structural changes for efficiency will be discussed in Section 15.3.

The specific techniques for optimizing code within a module are largely outside
the scope of this book. We know that optimizing compilers are becoming increasingly
significant. If so directed, the compilers can produce object code that is optimized for
memory and/or CPU time. In addition, several vendor-supplied proprietary packages
are capable of examining the object code produced by compilers in an attempt to elim
inate unnecessary instructions. We also can use a variety of hardware monitors and
performance measurement packages to help determine where a module is spending its
time - i.e., to find the critical 5 percent that we discussed earlier. Finally, we know
that most programming textbooks and vendor-supplied programming manuals devote
entire sections to the devious tr.icks for writing the world's most optimal code. Since
these tricks are highly machine-dependent, language-dependent, and vendor-dependent,
and since they are constantly changing, it would be inadvisable to deal with the subject,
even in a general way, in this book.

However, we can suggest an organized plan of attack, first published by
Constantine, 4 for optimizing the code within modules of a large system. Our approach
is based on our belief that although most code (recall the 5 percent phenomenon) is not
worth optimizing because it contributes very little to the total system overhead;
nevertheless, we probably will have to continue optimizing modules until our systems
havt~ achieved some reasonable measure of efficiency. Thus, we need a way of assign
ing priorities to modules from the point of view of optimization. Any organized plan
will suffice; however, the following approach has been used successfully by the authors
in a number of projects:

1. Determine the execution time for each module or load unit. The hardware
monitors and the performance measurement packages mentioned pre
viously should be adequate for this step; lacking these, the
programmer/analyst should be able to build his own instrumentation.
Note that this is not a process of estimation as was done for the pack
aging strategy in Chapter 14: We are capturing actual statistics from a
real system. For simplicity, we will refer to the execution time of the
i th module in the system as T 1•

2. Examine each module to estimate potential improvement. This step must
involve estimation unless the programmer wishes to recode each
module to see how much improvement can be achieved. While it is
thus an art, it depends upon the programmer's knowledge of his
language, his operating system, and his hardware - as well as upon his
ability to perceive better implementations of the module. It should be
obvious that this estimation process is made more accurate when dealM
ing with small, independent modules. We will refer to the estimated
potential fractional improvement in the execution time of the i th

module in the system as Ii.

OPTIMIZATION OF MODULAR SYSTEMS 267

3. Estimate the cost involved in making the improvement. By cost, we mean
programmer/analyst salaries, computer test-time, and other costs that
might be involved in producing a new, optimized version of the
module. Clearly, this is only an estimate, and its accuracy will depend
on the ability of the programmer/analyst to forecast such work. It
should clear, once again, that the estimating process has a better
chance of being accurate when we are dealing with small, independent
modules. We wi11 refer to the dollars-cost of making an improvement
to the i th module in the system as C;.

4. Establish priorities for making improvements to modules. We will refer to
the priority of the i 111 module in the system, from the viewpoint of
selecting it to be optimized, as Pi. From the discussion above, we see
that we can rank the priorities in the following manner:

Pi = A x I; x Ti B x c 1

where A and B are appropriate weighting factors.

5. Optimize the modules with the highest priority. The priority scheme is in
tended to help the designer optimize those modules from which he will
realize the largest improvement in machine efficiency for the smallest
amount of work. It may be entirely uneconomical to make a 50 per
cent improvement in the run-time of a module if it is going to take
three person-years of effort.

The priority-ranking scheme listed above probably would indicate 'that it is not
worth the effort to improve the efficiency of a module by 50 percent if it uses only
three milliseconds of computer time. Note that our ranking scheme not only indicates
the optimization priority of one module relative to another~ it also indicates that certain
modules may have a negative optimization priority (depending on the selection of
weighting factors A and B). That is, it may indicate situations in which the cost of mak
ing an improvement to the module exceeds the savings in reduced execution time. In
such cases, we are clearly better off leaving the module alone.

15.3 Structural changes for efficiency

In a small number of cases, optimization within module boundaries may not be
sufficient to achieve the desired level of efficiency. It then may be necessary to modify
the structure of the system. Before indulging in this kind of optimization, it is impor
tant that the designer identify the source of the inefficiency: Even though the structur
al modifications discussed in this section are relatively straightforward, one does not
want to go through them needlessly. Thus, it is important that the designer gather
statistics concerning intermodule transitions subroutine calls and passing of
parameters) as well as statistics concerning intramodule execution time (as suggested in
Section 15.2).

It is interesting to note that the intermodule transition-time statistics probably are
easier to capture than are statistics for execution time within each module. Indeed, the
cost (or overhead) of subroutine calls often is published by the vendors of selected
operating systems, programming languages, and computer hardware.

268 STRUCTURED DESIGN

Fortunately, there is only a small set of structural modifications that make notice
able! improvements in execution speed (and, perhaps, in memory). We will discuss
each in the subsections that follow.

15.3.1 Macros or lexically included code

Before looking into actual changes in the structure of the system, the designer
should consider changes in module type which preserve module structure. In particular,
the designer should remember that macros and subroutines represent trade-offs of exe
cution speed versus memory. The ~'transmission" of parameters to a macro is accom
plished during compilation time or assembly time, and context-switching (otherwise
known as prologue/epilogue, or more simply as the saving and restoring of the
machine) may be optimized by the compiler/assembler. Also, since the macro body be
~omes part of the lexically superordinate sequence of code, any optimization of
hardware registers applied by the compiler within the sequence of code also should be
applie,d across ~he macro-subordinate boundary. Finally, if the module is referenced
only once or a few times in the structure, or has a small body compared to the
prologue/epilogue, the use of macros probably will save both execution time and
memory: Argument transmission, context-switching, and other types of intermodule
overhead consume memory as well as CPU time.

15.3. 2 Pancake structures

A general rule is that deep structures* have more overhead than broad, shallow
structures. However, the exceptions are so numerous and so subtle that it is never safe
to apply this rule indiscriminately. Only after analysis reveals that the inefficiency of a
given system may be resolved by "flattening,' or "pancaking" the structure can tech
niques for doing so be applied.

Let us consider, as an example, a structure of two levels. These two levels consist
of a control module and its subordinates. Each call to a subordinate module represents
some overhead; when these are imbedded in an iterative control structure, the cumula
tive overhead can indeed be substantial. If the procedural logic in the superordifate is
not very complex, a structure of this type can be converted to one homologous level
joined by unconditional transfers. Thus, in Fig. 15. la, a simple endless loop is
transformed into the structure of Fig. 15.1 b, in which each module simply transfers
directly to the next step. Note that this process implants in GETC, COMPI, NEWM, and
REPU elements of the overall task once realized by DOINU. Thus, the GO TO COMPI

which must appear in GETC has nothing whatsoever to do with the function GETC. Such
pancaked structures always result in some reduction in cohesion as well as some in
crease in coupling.

*Recall the definition of depth in our discussion of systems morphologies in Chapter 8: The depth of a system
i,s the number of levels in its hierarchical module structure.
T Homologous systems are discusse'd in greater detail in Chapter 18. For now, they may be defined loosely as
non-hierarchical systems - that is, systems in which control and data do not flow strictly up and down in the
hierarchy.

GETC
Get cotnpon
ent record

OPTIMIZATION OF MODULAR SYSTEMS 269

DOINU

COMP I

Compute in
ventory
level

NEWM
Create new
master file

Figure 15. la. Hierarchical structure.

REPU
report com
ponent use

Figure 15.1 b. Pancaked homologous structure with coordinating procedure
imbedded in modules.

Pancaking to a homologous structure works for two reasons. First, unconditional
transfers generally can be implemented with much greater efficiency in most languages
and operating systems than can conditioned transfers (e.g., subroutine calls). Second,
there are few intermodule transitions involved in the homologous structure. For exam
ple, the hierarchical structure of Fig. 15. la requires eight intermodule transitions for
each iteration of the loop~ the homologous structure of Fig. 15. lb requires four.

Pancaking to an equivalent, flat, hierarchical structure from a deeply nested one is
much less likely to improve efficiency, because the above reasons do not apply. The
conversion shown in Fig. 15.2 may, however, be the first step in an ultimate conversion
to a homologous structure. In some cases, a few modules disappear in the process of
pancaking as shown in Fig. 15.2. This will happen when modules in a fully factored
hierarchy consist only of code to coordinate the subordinate modules.

15. 3. 3 Compression

The most ubiquitous of all structural manipulations to improve efficiency might be
called "demodularization, ,, since it consists of compressing all of one module (or, less
often, part of one module) into another. In the simplest possible case, this is done
through lexical inclusion of the module, intact, in a superordinate. Depending on the
programming language and the operating system, the gain in efficiency from this simple
maneuver is likely to be marginal; it consists of the difference in overhead between a
call to a lexically included subordinate, and a call to an external subordinate.

270 STRUCTURED DESIGN

A

x

0 c D

Figure 15.2. Pancaking to a hierarchical structure.

OPTIMIZA TlON OF MODULAR SYSTEMS 271

The subordinate code may be imbedded in the superordinate code with the bound
ary elements removed and the linkage elements removed or simulated. If the body of
the subordinate is actually copied in-line at each point where the superordinate previ
ously contained a subroutine call, then there may be an increased memory requirement~
obviously, the analysis is similar to that required for macros. If we intend to include
only one copy of the body of the subordinate module, some substitute for subordination
may be used to force the one copy to function in several contexts. The most popular
substitute is a switch mechanism.

The effect of compression - even of the simplest form - varies tremendously,
depending on whether the compression is accomplished before or after the system has
been implemented. For example, the compound module AB, defined by the compres
sion of B into its ,superordinate A, may be implemented with the code for A and the
code for B intermingled perhaps not even distinctly identifiable as A and B. If this
takes place during the implementation of the system, then it is possible that separate
uses of B within A will not be recognized as such - and each use of B will be solved,
coded, and debugged separately. While there would appear to be no duplicated coding
(the code for each use of B differs, and may be intermingled with the code for A in
different ways), this obviously is an illusion. The possibitity of this occurring is a furth
er argument for optimization as a post-design or post-implementation process.

As we can see in Fig. 15.3, compression upward and compression downward are
equivalent when the entire module is involved. Most manipulations for efficiency in
volve compression downward in the hierarchy, as the goal is to reduce the number of
intermodule transitions. Upward compression usually is only indicated when communi
cation paths may be reduced or eliminated. For example, upward compression might
improve the efficiency of the structure shown in Fig. 15.4. The meaning of such a
move would have to be carefully considered: The Hfunction" resulting from the
compression might be meaningless. Furthermore, structures that have high cohesion
and low coupling generally are fairly efficient to begin with - so upward compression is
seldom necessary or successful.

Lateral compression is analogous to the pancaking discussed earlier. It combines
two or more (procedurally) adjacent subordinates into a single module. As illustrated in
Fig. 15.5, this is equivalent to partial extraction of the coordination procedure from the
superordinate (FOO), plus two (or more) complete upward compressions. Here again,
the aim is to reduce the overhead of subordinations.

15. 3. 4 Changing communication techniques

A great deal of the overhead in intermodule transitions is involved in the passing
of data~ consequently, some of the most popular optimization techniques involve
minimizing the passing of such data. For example, if a data element is used in only one
module - generally a low-level element is used in only one module - the designer
may wish to change the communication of that element from a normal scheme to a
pathological scheme. The ramifications of pathological communications were discussed
extensively in Chapter 13. As we saw, one of the designer's greatest concerns should

· be the possibility of future modifications to the system.

272 STRUCTURED DESIGN

'DO

FOO

l'

M~

~

., ,
J:'CNf!.

Figure 15.3. Equivalence of upward compression and downward
compression of whole modules.

Figure 15.4. Partial compression upward to reduce communication.

OPTIMIZATJON OF MODULAR SYSTEMS 273

Foo

Figure 15.S. Lateral compression of modules.

Wherever there are multiple uses of a module that receives or transmits some
data pathologically, the designer may find that it is more efficient to switch from a
pathological communication scheme to a normal communication scheme. This would
also be the case if a data element was being transmitted pathologically to several
different modules - a situation that we would not expect to occur in the course of nor
mal structural design. Recall that normal communication most commonly involves
passing of locators (addresses), while pathological communication usually involves pass
ing of data. Thus, the size of a datum relative to the size of a locator can determine
which mode is more efficient.

Another possibility is to change the communication from an intermediate file to
an internal flow of data through primary memory. As we suggested in Chapter 14, un
necessary intermediate files are a common consequence of premature packaging by the
analyst/designer. Thus, this form of optimization may simply be a rectification of a
poor design decision. When packaging is done properly, the designer still may elect the
use of intermediate files in order to make the system fit into a specified amount of
memory; this usually means that various modules in the system will execute as over
lays. Thus, optimization represents a trade-off between CPU time and memory. By ex
panding the available memory for the system, the designer makes it possible for all of
the modules to reside in primary memory simultaneously - enabling them to transmit
data through memory rather than through tape or disk files.

In several high-level programming languages - FORTRAN, COBOL, and PL/I in
particular another source of overhead is the conversion of data from one format to
another. The superordinate module, for example, may transmit a floating point number
as an argument, while the subordinate module may be expecting an integer as its argu
ment. In some cases, the only question is whether this conversion should be performed
explicitly (by the programmer) or implicitly (by the language or operating system)~ that
is, it may turn out that the natural form of the data in th·e superordinate is the floating
point, and the natural form of the data in the subordinate is integer. In many other

274 STRUCTURED DESIGN

cases, though, the conversion process is the result of laziness or sloppiness on the part
of the designer - a phenomenon that unfortunately is encouraged by the features of
many popular high-level programming languages.

In some cases, the designer also may increase the efficiency of his system by pass
ing arguments by value rather than by name. "Call by name," as interpreted in most
programming languages,* means that the address of a parameter is passed from the su
perordinate to the subordinate module~ "call by value" means that the parameter itself
is passed, usually through an accumulator or hardware register. For the subordinate
module, the difference is one of addressing speed: The call-by-name approach requires
an additional level of indirect addressing in order to access the parameters. The assem
bly language programmer obviously has the option of passing arguments by value or by
name. In some implementations of FORTRAN, the programmer can specify that cer
tain parameters in a subroutine parameter list be passed by value. In all implementa
tions of COBOL known to the authors, all parameters in a CALL XYZ USING state
ment are passed by name.

15.3.5 Recoding

An option that the designer/programmer should always keep in the back of his
mind is that selected, independent modules can be recoded into more efficient
language. We can imagine, for example, that certain portions of a commercial applica
tion may involve extensive computations~ the appropriate modules could be recoded in
FORTRAN. Similarly, we can imagine that various input-output operations would be
more efficiently coded in assembly language. Indeed, we can even imagine recoding
various modules in microcode if efficiency requirements are particularly stringent.

The danger here is that many designers - and many programmers - have
preconceived notions about the portions of their system that should be coded in a par
ticular language. It is a common feeling, for example, that computational logic is highly
inefficient in COBOL, and that input-output logic is highly inefficient in any high-level
programming language. While this may be true, we must remember that we are only
concerned about the efficiency of a module relative to other modules in the system.
The fact that a module's processing time can be cut in half is probably irrelevant if the
module's current processing time accounts for only 0.0001 percent of the total process
ing time of the system.

I 5. 3. 6 A na/ysis

Experience has shown the value of actually drawing structural changes and consid
ering their consequences incrementally. Visual devices that suggest the nature of what
is changing - such as Figs. 15. 3 and 15. 5 - are very useful. The structure chart is an
extremely powerful tool in this regard. After each manipulation of the structure, a
careful analysis should be performed to see what actual, demonstrable gains in
efficiency and what probable sacrifices in modularity have been made. It often is possi
ble to see what kind of future changes will be more difficult and which procedures will
be more complicated to debug and maintain as a result of the optimization.

*We will not concern ourselves here with the subtle distinctions between Heall by name," "call by refer
enc:e," and "call by value" in such languages as ALGOL.

OPTIMIZATION OF MODULAR SYSTEMS 275

15.4 Summary

We have tried to make several points in this chapter. Perhaps the most important
is that efficiency is something that must be considered in the proper perspective that
is, efficiency means more than just recoding a module to save a few microseconds. As
we have pointed out, such optimization is irrelevant if the system doesn't work~ and
since it is becoming more and more difficult to make our complex EDP systems work,
we believe that the emphasis should be shifted from optimization to development of
correct systems. At the same time, we observe that highly modularized systems usually
are easier to optimize than monolithic rat's-nest systems.

Most optimization can be accomplished in the simple manner suggested in this
chapter. An analysis of the system will determine where the greatest improvements in
efficiency can be achieved for the least cost, and will dictate which modu1e(s) should be
recoded. Only if this approach proves inadequate should the designer consider changing
the structure of the system to gain efficiency.

CHAPTER 15: REFERENCES

1. H.H. Sackman, W.J. Erickson, and E.E. Grant, ·~Exploratory Studies Comparing
On-Line and Off-Line Programming Performance," Communications of the ACM,
January 1968, pp. 3-11.

2. Edward Yourdon, ~'A Case Study in Structured Programming: Redesign of a Pay
roll System," Proceedings of the 1975 IEEE Computer Society Conference, Institute
of Electrical and Electronics Engineers, IEEE Cat. No. 75CH0988-6C. New York:
1975, pp. 119-122.

3. Donald E. Knuth, "An Empirical Study of FORTRAN Programs,'' Software -
Practice and Experience, Vol. 1, No. 2 (April-June 1971), pp. 105-133.

4. Larry L. Constantine, "A Modular Approach to Program Optimization," Comput
ers and Automation, Vol. 16, No. 3 (May 1967).

SECTION V
EXTENSIONS

Many problems, indeed broad classes of problems, become significantly
simpler to eliminate when conventional modules are employed in slightly un
conventional structural arrangements, or when subroutines are replaced by less
familiar types of modules. This section, destined to be one of the most contro
versial, extends structured design beyond the status quo. In Chapter 16, a
typology is developed not only to encompass existing module types but a!so to
highlight areas for future development of novel kinds of modules having highly
desirable features. Recursive structures are discussed in Chapter 17 as a special
case in structured design. One implication of this discussion is that re.cursion
may be of broader utility than previously assumed by most designers.

Chapter 18 defines and explores, in detail, two exotic types of modules,
the coroutine and the subcoroutine. Used appropriately, these modules permit
the decoupling of modules more completely from one another, and can elim
inate many of the problems associated with state maintenance in nested
subroutines.

Substantial payoffs can result from adding to the designer's tool kit the
relatively simple mechanisms that are suggested in this section. We are con*
vinced that some of these apparently oflbeat proposals will become standard in
the near future.

CHAPTER 16
A TYPOLOGY OF SYSTEMS COMPONENTS

16.0 Introduction

When modularity is first introduced, one frequently hears, HOh, you mean using
subroutines." It is true that the subroutine is the most ubiquitous type of module
within computer systems~ fortunately, it is not the on(y type! In fact, there is a whole
array of modules available to the designer/programmer. Not to make full use of this ar
ray is to do oneself a disservice.

By "type" of module, we are not referring to .fimction. A complete functional
classification of modules would be difficult - and the exercise would have very little
value if it were not exhaustive. Establishing functional categories of modules - e.g.,
inputting, calculating, housekeeping, and so on - and then saying that modules in the
same category are of the same type is analogous to saying that bolts, rivets, and glue
spots are the same because they are used to fasten. Such a distinction between
"fasteners'~ and "members'' may be important at some point, but we are more in
terested now in distinguishing bolts from rivets and in determining the relative merits
of each in various functional applications.

The designer obviously should know of the existence of bolts and rivets, and
should be able to tell one from the other when he gets hit by one. More important,
though, he should be able to select the best one for a given purpose. He should know
and understand the problems unique to each type. He should know that a bolt is
different from a rivet even if both are being used (are functioning) as paperweights.
The designer should be able to recognize a nutless bolt held in place by its peen as a
special case - a bolt u~ed as a rivet.

An analogous physical classification of modules for computer systems is more
difficult for several reasons. We cannot point to a module and describe its shape or'
color. Size is no help, either: Some subroutines are larger than other programs. Fur
thermore, the software field has generated a thick fog of jargon, which confuses the is
sue. Is a PL/I "procedure" the same as an ALGOL uprocedure "? Always? One need
not have much experience in the field to assume that a FORTRAN urunction-type sub
program" and an ALGOL procedure are essentially the same thing. Sometimes~ the
same word denotes different types of modules, and sometimes the same module is
called different names. Every computer manufacturer and language developer seems to
create his own unnecessary jargon. How can we penetrate the fog of jargon and objec
tively classify modules?

279

280 STRUCTURED DESIGN

16.1 Activation characteristics

The idea of distinguishing modules by their control or activation characteristics
was first suggested by Wegner. 1 When refined, this approach not only provides an ob
jective basis for classifying modules, but also suggests lines for the development of new
types of modules.

While other schemes are certainly possible, a three-dimensional characterization of
activation and control has proven useful. This involves three (possibly interdependent)
factors: time, mechanism of activation, and pattern of control flow. Modules that differ
in any one dimension can be regarded as different module types, while modules that are
identical in these dimensions are of the same type - regardless of the jargon with
which they are surrounded.

16. 1. 1 Time-history

We first introduced the concept of a system's time-history in our discussion of in
termodular connections in Chapter 6. A specific module performing a given operation
on particular data may become part of the control or activation stream at any point in
the system's time-history, although most modules become part of the activation stream
at execution time. A Hdefinition-time" module must become part of the activation
stream and have its contents and data context determined at the lime the programmer
writes the code. Obviously, such a module is in-line. The hand-tailored, in-line, un
named macro-like block that the programmer copies into his code from another source
is an example of a definition-time module. We call such a module a segment.

16. 1.2 Activation mechanism

The basic nature or behavior of the mechanism by which a module is activated is
another dimension for distinguishing modules. Within this dimension, basic elements
have been identified.

The source of activation - that is, who does (or can) activate a module - often
determines the type of module. Two activation sources are relevant: the operating en
vironment and other modules. These sources may activate a module synchronously -
that is, by explicit command~ alternatively~ a module may be activated asynchronously
- that is, by a signal (trap) or interrupt. Modules activated by an unbroken chain of
explicit commands are said to be in the base load; those activated by an interrupt are
said to be uinterrupt modules" or in the interrupt load, as are the modules they activate.
Clearly, a module may be in both the base load and the interrupt load.

A conditioned transJer is a jump out of the current execution sequence with the
condition that control eventually be returned to the execution sequence from which the
jump was made. The conditioned transfer establishes the mechanism for this return. A
conditioned transfer always refers to a target location explicitly (by name, address, or
other identifier). A return always transfers to the location of an instruction in the se
quence associated with the most recently conditioned transfer for which a return has not
yet been made. Thus, the pattern of conditioned transfers and returns always defines a
fully nested set of activations. Such a system is hierarchical since the conditioned
transfer establishes its origin as a sequence superordinate to (having control over) the

A TYPOLOGY OF SYSTEMS COMPONENTS 281

target sequence. Mechanisms for implementing conditioned ~ransfers and returns, as

we have defined them here, are numerous and will not concern us now.

A transfer also may be unconditioned - that is, carrying no tacit condition of re

turn. Unconditioned (which could be conditional, that is, based on the outcome of a

decision; or unconditionab transfers give up responsibility completely; hence, they do

not define a hierarchy of subordination. Rather than giving up control (in either a con

ditioned or unconditioned fashion), the activation of a module sometimes establishes a

new control stream, activating the module as a parallel or coordinate process. This crea

tion of a separate control stream may be realized either with genuine parallel processing

(i.e., with multiprocessing hardware) or with simulated parallel processing (i.e., with the

assistance of a multitasking or multiprogramming operating system). The general term

bifurcated transfer (nforking,~ transfer) will be used to cover either case.

16.1.3 Paffern of control.flow

When activated, most modules begin execution '~at the beginning" - that is, at

the origin or (lexically) first executable statement. However, a module may begin exe

cution at the point at which operation was last suspended - and that will be called its

reentry. A module that begins execution at its reentry, or picks up where it left off, will

be called an incremental module. Such a module may perform its task incrementally -

that is; a portion at a time, one part on each activation. Clearly, incremental and nonin

cremental modules have very distinct patterns of control flow. Note that the general

case (more powerful) is that of incremental execution. Without resorting to program

ming tricks, an incremental module can be made to function nonincrementally simply

by following (lexically) each transfer out of the module with an instruction to transfer

to its origin. We will discuss incremental modules in more detail in Chapter 18.

A module may reference another module~ not to activate it but rather to check its

progress, guarantee completion of a certain point, or otherwise fall in step. This syn

chronization changes the pattern of control flow; hence, we distinguish synchronized

(note, not synchronous) modules from unsynchronized ones. Any mechanism - a

switch, a flag~ an "event variable,, as in PL/I - may be used to implement synchroniz

ing references. In its strictest sense, the referencing module is the synchronizing

module, and the referenced module is the synchronized module (or the other way

around in some schools). The point is that synchronized modules, being different an

imals (or rivets), have their own design problems.

16. 1.4 Terminology

The combinations of characteristics in these three basic dimensions yield many

different types of modules. Not all have names or are even useful. Figure 16.l

identifies those module types with established names. They also are the most important

physically distinct types of modules. We can qualify those names with other factors,

such as base-load or interrupt-load subroutines. These are different modules, with

(somewhat) different design problems~ the interrupt-load subroutine, for example, must

be ''transparenC' and leave all working registers in their original state when it exits. If
it makes sense, as with "conroutine," the qualifiers synchronized or unsynchronized

may be appended.

282 STRUCTURED DESIGN

The terminology itself warrants explanation. As we pointed out in the Preface,
the bias in this book is to favor descriptive, single-word, nonconflicting terms. When
ever possible, common nouns with a broad meaning are not usurped for a narrow
technical purpose. Exceptions depend on consistency and precedents in other fields. In
Fig. 16. I, the terms in parentheses are less desirable names, even though they may be
used fairly widely. In some cases, they are strongly associated with a particular
language or a particular computer manufacturer. All of the modules shown in Fig. 16.1
are discussed in the section below, with the exception of subcoroutines, coroutines, and
conroutines; these are discussed separately in Chapter 18.

ENTRY
MODE

From environmen

From modules

UNCONDITIONED

BIFURCATED

Figure 16.1

t

NONINCREMENTO,L

Definition Translation Execution
time time time

PROGRAM
(Main routine
job step)

SEGMENT MACRO SUBROUTINE
(Submodule) On-line or (Procedure,

open subroutine subprogram)

ROUTINE
(Phase,
lransfer)

CON ROUTINE
(Task)

Module types.

16.2 Common types of modules

INCREMENT AL

SUBCOROUTINE
(Demand
corou1ine)

COROUTINE

The most common modules are the nonincremental ones. Of those shown in Fig.
16.1, only one is not a module~ a segment is a kind of "not quite" module. From the
point of view of activation characteristics, a segment is a module whose code is copied
in-·line by the programmer. It is thus entered with condition but becomes part of the
activation stream at definition time. Although this may seem a trivial or degenerate
case, such an approach to modularity may be useful. A definition-time module may
achieve some of the benefits of modularity (especially in terms of avoiding duplicated
coding), while minimizing certain costs (notably CPU-time execution costs).

Consider a situation in which some very small function has been identified as be
ing part of a dozen or more different larger tasks. It could be so small that the over
head of calling it substantially exceeds the useful work done by the function itself. If it
is used many times, this overhead may be unacceptable. On the other hand, leaving
the task to each programmer of each module is a waste of human resources. Each pro
grammer, whether he realized it or not, would be coding and debugging the same se-

A TYPOLOGY OF SYSTEMS COMPONENTS 283

quence as everyone else. Should this turn out to be a tricky a.11d error~prone sequence

of code, the cost of duplication could be significant. The hand-tailored segment is thus

a good compromise solution. The common operation is coded and debugged once~

thereafter, the body of code is copied in-line each time it is needed.

Although segments can be usef ut, various other forms of modules are far more

common: subroutines, programs and functions, and macros. These are discussed in
the three subsections that follow.

16.2. l Subroutines

A subroutine is a module activated at execution time by a conditioned transfer.

Its mode of execution is nonincrementaL Any module that satisfies these requirements

is a subroutine, regardless of its jargon name, provided we find it activated from the ex

ecution stream of another module. Two special cases may be distinguished: modules

that are subroutines except for the fact that they are activated either by the operating

environment or, secondly, from the evaluation stream. These are artificial distinctions,

the consequences of which will be discussed in the next subsection.

From a control standpoint, COBOL paragraphs activated by the PERFORM verb are

subroutines. So are ALGOL procedures and FORTRAN subroutine-type subprograms.

Subroutines are by far the most common module for computer systems. Even

languages that do not provide a linguistic mechanism for subroutine activation often

provide a method for simulating it - such as the switch, or assigned transfer, features

of some languages.

16.2.2 Programs and.functions

Many programmers and analysts, who distinguish daily between programs and

subroutines in practice, find it difficult to define the two in any rigorous fashion. The

following are all common, but inadequate. definitions:

• Programs are larger than subroutines. (Clearly, this is not always
true!) A program performs a complete function, while a subroutine
performs only a partial one. (How is "cosine" any less complete than
the first pass of a file update?)

• Subroutines are part of programs~ programs include subroutines. (But
a program need not have subroutines. Hinclude" is ambiguous here.)

In truth, the distinction between programs and subroutines is whatever the

language/compiler/operating systems conventions make it. In most cases, subroutines

are permitted to do certain things that programs are prohibited from doing, and vice

versa. Subroutines, as a general rule, can accept arguments, while programs cannot. In

many systems, a program can be execut~d by jtself, but a subroutine cannot.

These restrictions lead to very real problems in building systems. In most en

vironments, to implement modules as programs is to choose a dead-end design method

ology. Generally, one cannot write a payroll program, then later choose to call it as a

subprocess in a corporate simulation system. Subroutines with arguments provide con

siderably more flexibility in this respect. In most second-generation systems, there was

284 STRUCTURED DESIGN

no way to imbed programs A, B, and c in a loop - much less have B conditionally exe
cuted depending on the value of some output from A. Third-generation systems with
sophisticated job control languages represent somewhat of an improvement. However,

few if any - of the existing job control languages compare to the power and simpli
city of the following:

DO l I TO 23
CALL A (IN,OUT);
CALL C 00.2,1):
fF OUT 107.9 THEN

CALL B (IN);
ELSE

CALL B (IN + 1)
END;

where A, B, and care subroutines. It is this ability to build larger subroutines from calls
on smaller subroutines - and still larger subroutines, in turn that makes the
subroutine so attractive as a basic systems building block.

In the final analysis, all that commonly distinguishes programs from subroutines is
that programs are entered from the operating system. However it is implemented, the

operating system activates a program (according to the particular job control instruc
tions) with a conditioned transfer of control. It always is expected that control will be
returned to the operating system's sequence. For a program to retain control clearly
would be tantamount to disaster.

In the long run, it is to the advantage of the EDP profession to abolish all distinc
tions between programs and subroutines. The same module should be activated at the
top level of a system, or as a subordinate, depending on the requirements of the task.
Tht~ easiest approach to this problem is to banish programs by administrative fiat!
Every system then could be developed as a subroutine with meaningful arguments. If
the operating system is stubborn and will digest only programs, then a small program
readily can be written that will do nothing but call a subroutine - a subroutine that is,
in fact, the whole system.

The distinction that separates functions and subroutines, though leading to some
mathematical elegance in certain proofs, is equally detrimental to software engineering.

One way of drawing the line between functions and subroutines is to say that functions

take on a value~ more precisely, a particular activation of a function may take on a

value. For example, the activation of the module SQRT takes on a value that is used in
the evaluation (hence, the term ''evaluation stream" at the end of the preceding sub

secllion) of the expression

Z = A + SQRT(XJ - L2

In structural terms, this is merely a matter of the communication mechanism.

Some modules - commonly called functions - are permitted to transmit an output
value back to the superordinate without either the superordinate or the subordinate
naming the value. Another common characteristic is that the functions are not allowed

to return other outputs via arguments and parameters. However, this is unnecessary

and undesirable.

A TYPOLOGY OF SYSTEMS COMPONENTS 285

The context in which a module gets activated implicitly dS a result of an attempt
to evaluate an expression may be called the evaluation stream. In most programming
languages, it is easily - even rigorously - distinguished from the execution stream
that flows from statement to statement. Thus, we might say that a function is a
subroutine activated from the evaluation stream.

For the programmer who works as a designer and/or an implementer, it is desir
able to be able to choose freely the manner in which output values are communicated.
It is even useful to have modules only sometimes return values. Or, it might be useful
to have the same module operate as a function or as a subroutine, depending on wheth
er its value: is of interest to the superordinate. While these abilities may make theoreti
cians shudder, they are trivial to implement, and they do not seem to be error-prone in
use. All that is required is the ability to ignore a value, if assigned but not needed be
cause of activation from the execution stream, and the ability to supply a value if one
has not been assigned. The null case - in which a function value is needed but has
not been assigned - may be handled by assigning standard default values, or by treat
ing it as an error. A programmer-controlled choice is best.

16.2.3 Macros

Historically, subroutines were called ~~closed routines" or ·~off-line subroutinesn
to diff erenliate them from something else that was then called a subroutine. The most
common term today for an in-line or open subroutine is a macro. A macro is a module
(by the strict definition given in Chapter J) whose body is effectively copied in-line dur
ing translation (e.g., compilation or assembly) as the result of being invoked by name~
that is, the bounded contents replace the reference to the aggregate identifier. The pro
cess of copying in-line, with or without special adaptation called '"'tailoring," is often
called aexpansion.'' A macro is expanded as a result of being invoked. Translation of
the macro body into target language may happen before, during, or after expansion,
although the current trend is to prefer translation after expansion.

In the terminology used by several computer manufacturers, there is some confu
sion between macros and subroutines. Let us say that the FETCH "'item,, ON ~'file" is a
function which performs all necessary housekeeping in order to deliver successive logi
cal items from a particular file - including deblocking, ·aggregation, and so on. Inclu
sion of the statement

A: FETCH PAYREC ON PAYROLL

in a program might result in the following expansion:

A: ICOOJ ICOOJ + I
CALL SYSFETCH (PA YRSPEC, PAYROLL, 1024)
MOVE BUFSY 0024, PA YREC)

At execution time, we might find that a block of operating systems code is entered
as the result of the call to SYSFETCH. SYSFETCH is not the macro, neither is it part of
the macro - no more than SQRT is the subroutine FOO or is part of the subroutine FOO

286 STRUCTURED DESIGN

just because we find SQRT used (referenced) in FOO. The FETCH macro happens to call a
subroutine named SYSFETCH. Unless there are language restrictions, macros may call
subroutines or invoke other macros. Similarly, subroutines may invoke macros. The
three lines of code beginning at label '"A" in the above example are not the macro
FETCH, but just one (of, possibly, many) expansions of it. The macro FETCH exists
somewhere as a definition. In its prototype form, a macro looks like a subroutine: It
has a declaration of its existence, a list of arguments or parameters, a body of code, and
some boundary or boundaries.

Because they are activated at translation time, macros may fill many purposes that
subroutines may not. Their contents may be tailored automatically to fit the require
ments of a specific invocation. For example, some instructions may be added if a par
ticular argument is present. In their most general form as so-called context-free
character-string macros, they may be used literally to change the appearance of the
language in which they are defined. The linguistic extensibility features will not con
cern us in this book - not because they are unimportant or unexciting, but because
they do not play a structural role in the design task. We will note merely that, besides
being a type of module usable much as subroutines, macros may be a way of extending
and changing the appearance of a programming language.

At the point when the designer is making a rough cut of the procedural design of
a module, it may not be important to him whether a facility is provided through mac
ros, subroutines, or some combination of the two. If he knows that at point QQl he
wants to, say, degesmilate his data, and if he knows that there exists a module DEGEST
that performs that function, then he is really concerned only with showing that it is the
function of DEGEST he wants performed at that point. Thus, he would write

QQl: DEGEST MY DATA

In short, he does not care whether degesmilating is accomplished by a subroutine, a
macro, or a machine instruction. His system wiJI work as long as MY DATA is degesmi
lated at QQt. The designer is concerned with the details only if he runs out of storage
or execution time in the process of degesmilating his data.

Other things being equal, a system composed entirely of macros will run faster but
take more space than a system built from subroutines. It runs faster because linkage
and argument communication are dealt with at translation time. It takes more space be
cause each invocation results in a copy of all or part of the body of the macro.

(la programming language uses a common syntax for activating both macros and
subroutines, then there is a particularly elegant way of trading off time and storage. Of
course, there are myriad ways to speed up systems at the expense of primary memory,
and vice versa~ most require extensive analysis, recoding, and debugging. However, let
us assume that a system is built and debugged as a structure of modules. As it grows,
let us imagine that we discover that there is insufficient memory. In such a case, we
may simply change the declaration of some of our modules from MACRO to SUBROUTINE

and recompile. If the system ran before, it will run now - only slower. It also will
take less space. Most important, the effect is automatic and does not require any
analysis, recoding, or debugging.

A TYPOLOGY OF SYSTEMS COMPONENTS 287

16.3 Summary

It should be clear that macros, functions (in the sense used in this chapter), pro
grams, and subroutines are closely related physical entities. In many cases, it is to the
programmer/designer's detriment to emphasize their differences. Ideally, we would like
to be able to use them interchangeably, as suggested in the paragraphs above.

CHAPTER 16: REFERENCE

1. Peter Wegner, Programming Languages, Information Structures and Machine Organi
zation (New York: McGraw-Hill, 1968).

CHAPTER 17
RECURSIVE STRUCTURES

17 .0 Introduction

Nothing in this book so far - least of atl the mechanics of the structure chart it
self - precludes structures of the type shown in Fig. 17.1, in which the graph for the
structure chart has cycles in it This type of structure is known as recursive. Modules F,

G, and H all are recursive modules. From a structural standpoint, a recursive module is
simply any module M for which we can say that M is subordinate to M. If a module is
subordinate, but not immediately subordinate to itself, the situation traditionally has
been referred to as simultaneous recursion; modules G and H in Fig. 17.l are simultane
ously recursive. Although it is traditional to discuss recursion from a procedural or al
gorithmic viewpoint (for a concise introduction to the subject, consult Barron 1), it is
obvious that recursion is also a structural phenomenon and, therefore, may be explored
in terms of structural issues, including structural design.

The weird structures exemplified by Fig. 17.1 can arise either from deliberate
design or by accident~ they may be sensible, even simple interpretations of many types
of problems, or they may be mistakes. In either case, there will be special conse
quences that must be taken into account by the designer and implementers.

Completing the task of a module by calling the module itself does not mean that
an infinite loop will result. Careless or accidental use of recursion (see Section 17.3)
can result in infinite recursion and those dreadful operating system messages feared by
all advocates of recursion: PUSH-DOWN DEPTH EXCEEDED and GARBAGE COLLECTION
FAILED. The necessary (but, alas, not always sufficient) conditions for termination of a
recursive module are two. First, at least one call in the cycle of subordinates must be
conditional - for example, the call on H in Fig. 17.1. Second, the exact values of input
arguments may not repeat within recursive calls. The example below in Section 17.1
will clarify how these conditions are met through the appropriate use of recursion.

17 .1 Functional recursion

Many mathematical functions are or can be defined recursively; that is, the func
tion for a given value is defined in terms of the same function of other values. If we
can be forgiven the use of an overused example (well, it is simple and familiar), the
factorial function can be written in computer Esperanto as:

FACTORIAL FUNCTION ARGUMENT N:
IF N = 0 THEN RETURN I~

ELSE RETURN N x FACTORIAL (N-1);

END:

289

290 STRUCTURED DESIGN

The modular structure of this system is obviously that of Fig. 17.2. For this system to
work correctly, each reuse of FACTORIAL must employ the proper data context (only the
argument N in this example)~ and return to the proper location defined by the last con-

1

ditioned transfer activating FACTORIAL, whether from within an activation of FACTORIAL
or elsewhere. Obviously, if the procedure within module FACTORIAL were to make use
of any temporary variables, the right (potentially, different) values for each of these
would have to be used in each activation.

The processing overhead requirements are well known to most programmers and
analysts; for recursive use, each reentry of a module must ensure that the existing data
context and control state be preserved On a LIFO queue or push-down stack), and each
return from such a reentry must restore the last· data context and control state. These
requirements may be met automatically by various major programming languages, in
cluding PL/I and ALGOL. The need for such overhead processing is most important to
recognize where recursion is unintended.

ti

Figure 17.1. Cyclic
(recursive) hierarchical structure.

Figure 17.2. Structure of a recursive
factorial routine.

RECURSlVE STRUCTURES 291

17. 1. 1 Recursion, reusability, and reenterability

Some modules perform differently on each activation~ this may be useful or prob
lematical depending on the application and on whether the variation in performance was
planned. A module that always executes in the same way on each separate activation,
as if it were a fresh copy, is said to be reusable (or serially reusable). For a subroutine
(or function) to be reusable, a correct new data context and control state only need to
be established on each entry following a return from the module. This can be accom
plished with nothing more than the restriction that the module cannot "have a
memory"~ that is, there are no variables whose values are retained from one complete
activation to the next (OWNed or STATIC variables). Tints, any recursively usable module
is also serially reusable, but not vice versa. As you can see, reusability is a weaker proper
ty than recursivity.

A module is said to be reenterable if it can be reactivated correctly at any time,
whether or not it has been suspended by a conditioned transfer or return. Reenterabili
ty is a stronger property~ hence, any module that is reenterable also can be used recur
sively, but not vice versa. A "pure procedure" - that is, a module with only constant,
executable elements - is one (but only one) way of achieving reenterability.

17 .2 Recm·sion by design

The example of the FACTORIAL module given above suggests one reason why
designers might be interested in recursion. Although the gain in that case is very mod
est, a recursive structure for many kinds of problems will be an especially ''simple"
solution compared to the iterative alternatives. Sometimes, the best word might even
be Helegant." Recursive structures can arise from a pure black-box approach in which
the designer makes use of the appropriate black box for accomplishing a particular task,
even if the black box is the one still being designed. Besides naturally recursive func
tions such as factorial (and its generalization as the gamma function) combinations,
and such distributions as the chi square - recursion is appropriate and simplifies
processes involving text-processing, language-processing (including compilation),
game-playing systems, heuristic optimization techniques, analysis of graphs and net
works (e.g., critical path, PERT, transportation networks, and so on), and all forms of
structured data. Structured data are data containing explicit structural information that
relates, by reference, an element of data to other elements of data. The range of appliN
cations of recursive structures is very broad and includes many kinds of conventional or
business EDP problems. 2•3 Table 17 .1 lists some potential applications of recursion.

Figure 17 J represents an example of one type of structured data, so-called
configuration data, representing the configuration of physical systems. There are many
processes that might be of interest as applied to this type of data, for example, a "parts
explosion" that lists all parts, systems, and subsystems of the given unit. We will try a
slight variation on parts explosion, in which all the subsystems of a system that were
supplied by a particular vendor are to be exploded, i.e., have all parts listed out. The
total count of all components supplied by that vendor is to be reported. The data for a
component with a particular identification code, ID, may be obtained by RETRIEVE (ID,
DAT A)~ VENDOR (DAT A) yields the vendor ID~ SUBCOMP (DAT A, N) yields the com
ponent ID for the Nth immediate subcomponent of DATA if it exists or zero if there is no

292 STRUCTURED DESIGN

N
111 subcomponent. VENDOROUT (DATA) enters the required information into the ven~

dor list report.

Table 17.1

Applications for Required or Useful Recursive Structures

Algebraic and formula manipulation
Bill-of-materials and parts explosion
Compilers and assemblers
Configuration data
Critical path method and PERT analysis
Expression evaluation
File in version
File management and update
Flowcharting programs
Game-playing programs
Genealogical analysis
Heuristic programming
Information retrieval
Interpreters
Inventory control and analysis

io! AoTD'iOOtLe

Language processing and translation
Library cataloging and processing
List processing
Macro preprocessors
Mathematical optimization (e.g., "backtrack programmingH
Network and graph analysis
Optimization of code, program simplification
Simplification of expressions
Simulation (e.g., traffic networks, electrical circuits, etc.)
Sociograms and social network analysis
Stacistics and probability
String and text processing
Structure charting and analysis of program structure
Theorem proving
Work-breakdown data, analysis, updating, reporting

3i7 5DDY'

Figure 17.3. Example of configuration data for an automobile's structure.

For data of the sort' shown above in Fig. 17.3, no strictly iterative system will work
unless, in part, it simulates recursion through the use of stacks or a system of markers.
A recursive structure is straightforward and easy to read. See, for example, the struc
ture on the following page.

RECURSIVE STRUCTURES 293

VENDORREJPT: SUBROUTINE ARGUMENTS SYSTID, VENDID, VENDNAME;
N = VENDORLIST (SYSTID, VENDID);
PRINT "VENDOR", VENDNAME, "SUPPLIES", N;
RETURN;
END:

VENDORLIST: RECURSIVE FUNCTION ARGUMENTS COMPID, VENDID~
RETRIEVE (COMPID, COMPDATA);
IF VENDOR (COMPDATA) = VENDID

THEN RETURN EXPLODE (COMPDATA):

END;

ELSE;
NUM 0;
I = 1;
UNTIL SUBCOMP (COMPDATA, [) = 0 DO~

NUM = NUM + VENDORLIST (SUBCOMP(COMPDATA, I), VENDID);
I= I+ 1

END UNTIL;
RETURN NUM;

END ELSE:

EXPLODE: RECURSIVE FUNCTION ARGUMENTS VCOMP, DATA:
CALL VENDOROUT (VCOMPDATA);
NUM = 1;
I= L
UNTIL SUBCOMP (VCOMPDATA, I)= 0 DO;

RETRIEVE (SUBCOMP(VCOMPDATA, I), Sl/BDATA);
NUM NUM +EXPLODE (SUBDATA);
l =I+ 1;

END UNTIL;
RETURN NUM;
END:

The structure chart for this coding is shown in Fig. 17.4. Notice how this design direct
ly represents that EXPLODEing a part consists of EXPLODEing each of the subparts. Pro
ducing a VENDORLIST for a part consists of EXPLODEing the part if it is the right vendor,
or doing a VENDORLIST of each of the subparts. The designer has simply invoked the
needed function at the appropriate point.

17. 2.1 Recurs;on and iteration

It is always possible to transform a recursive process into a nonrecursive or itera
tive process that uses only loops rather than recursive calls. In most cases, this
amounts to simulating the recursion by having the procedure do its own explicit stack
ing and unstacking of the data. It is possible to make some gains in efficiency in this
way, but this must be balanced against additional pr,agramming of a sort that may be
prone to errors, especially as the system is modified. The cost of recursion may be van
ishingly small for modules that, for other reasons, are managed dynamically and that
have their storage allocated dynamically by the operating environment.

294 STRUCTURED DESIGN

Figure 17.4. Structure of the system to explode and count all parts
supplied by specified vendor.

RECURSIVE STRUCTURES 295

The coding for EXPLODE uses a mixture of iteration and recursion. The loop
iterates across the list of immediate subcomponeints and recurs down each subcom
ponent branch. Very often, the structure of the data or the way the data physically are
stored and accessed will give a distinct advantage to recursion in one direction rather
than the other. 3 The EXPLODE module might be rewritten as follows to iterate down
levels and to recur across:

EXPLODE: RECURSIVE FUNCTION ARGUMENTS VCOMPDATA, I;
NUM 1;
UNTIL SUBCOMP (VCOMPDATA, [) = 0 DO;

CALL VENDOROUT (VCOMPDA TA);
NUM = NUM +EXPLODE (VCOMPDATA, l+l);
RETRIEVE (SUBCOMP (VCOMPDATA, [), VCOMPDATA};

END UNTIL~
RETURN NUM~
END;

17 .3 Recursion by accident

Functional recursion is not likely to occur unintentionally when a complete struc
ture chart is drawn up in advance; any cycle on the structure chart would be evident.
Simultaneous functional recursion can appear accidentally whenever a total design is di ..
vided between two or more designers or when the complete structure has not been laid
out first. Perfectly good design philosophy, if not guided by good strategy or aided by
the structure chart as a tool, can lead to some costly recursion.

The developers of a new operating system might adopt the apparently sensible and
innocent philosophy that (1) each separate service shall be implemented as a separate
callable module, and (2) all modules requiring a certain service shall make use of the
one module that is to perform that service. What could go wrong? Suppose there is to
be a single universally used module, LETMAIN, to allocate a block of core storage under
the dynamic storage management discipline employed in this sophisticated operating
system. If there is insufficient core storage in the running program's allocation, LET

MAIN is to put a message to an output device designated in the program's Bactivation
table" via the module MESSOUT. MESSOUT, designed by another designer, conforms to
the system ''s modular design philosophy. Of course, before it can write any message to
a device, it must set up a message buffer, and of course, the module to use is LETMAIN.

The structure obviously is recursive without being planned that way. Should LETMAIN

ever actually call MESSOUT because the allocation of memory is used up, an infinite re
cursion of "after you, Alphonse" will result. The potential problem would be self
evident from the structure chart of Fig. 17 .5, which should have been drawn up before
LETMAIN and MESSOUT were programmed.

Uses of recursion may be as near as your next sequential file update. Figure 17.6
illustrates one structure (not the structure or even necessarily the best) for updating the
items of a sequential file. Looking at this structure from the top down (as the designer
must have done when first developing it), we see that the function of updating a file,
UPDATE, is composed of an iteration on getting an un-updated item (GETOLDMFREC)

and updating it. To UPDA TEI REC requires processing all transactions (possibly none)
against that record. What do you do if in trying to update the record numbered 136, a
transaction to create a record numbered 135 is encountered? The newly created record
135 could also have transactions against it. Obviously ('?), to process a correct uinsert

296 STRUCTURED DESIGN

record" transaction, you must create the record, then completely update it. There is al
ready a module in the system that will perform the latter function, namely UPDATEIREC.
The resulting recursive structure works!*

' ' ' '

LETMAIN

I
I

I
I

Figure 17.5. Accidental recursion resulting in a deadly embrace.

*In alt fairness, a recursive structure for this problem is overkill, since the nesting can never correctly go to
more than one level. But the procedures would be fairly straightforward to write.

RECURSIVE STRUCTURES 297

llf'PATE

I I

i- I
~

Figure 17.6. Recursion in a sequential file update.

298 STRUCTURED DESIGN

17.3.1 Dynamic recursion

For any procedure to be recursive, all that is required is a loop (cycle) in condi
tioned transfers of control. (By contrast, iteration involves cycles in u~onditioned
transfers.) The conditioned transfers need not necessarily be explicitly written
subroutine calls for the structure to be recursive and consequently require the special
facilities for recursion. Interrupts and switching between execution of one user's active
task and any other task operate as conditioned transfers.

In another example from systems software, one second-generation operating sys
tem (which shall go unnamed) made use of a master routine to PRINT on an on-line
printer - a nontrivial operation requiring code conversion and direct control of the tim
ing of the converted tabulating machine that served in this capacity. User software, as
well as all parts of the operating system, printed on-line via PRINT. Among the modules
that called PRINT were interrupt processing routines, such as CHEKTAPE, the routine that
intercepted the Hmagnetic tape transfer complete" signal, checked for parity error, and
reread or rewrote the record if necessary. A long series of parity failures on the same
record would result in a call to PRINT to tell the operator that something was awry. The
structure of this system is portrayed in· Fig. 17.7. ·

l)Sel(P~

\
\ <FJ I \

stt.H

I \

I
I I _ _J

tdfcb:~
\ I tbNf''~

\ I

tHE:KTAPE:

PrtiNT

Figure 17. 7. Module shared by base load and interrupt routine.

RECURSIVE STRUCTURES 299

Since PRINT can be called by the main processing stream and from CHEKTAPE~ it is

said to be in both the base load and the interrupt load. Any module that can be activated

from both the base load and any interrupt load (that is, both synchronously and asynchro

nously fi'om the operating environment) ·is potentially dynamically recursive! An interrupt

can occur at any time, including during some use of PRINT by the base load. The inter

rupt itself, which must return to the point interrupted, functions as a conditioned
transfer. The dynamic recursion is clear in Fig. 17.8.

\

'
foO

~
I " I '\.

I '
I '

tHEKTAPE

Pl'f NT

______), I

--- ' I
\. I v

I
I

I
I

i'

Figure 17.8. Dynamic recursion in PRINT module.

I
I

I

I

I
I

J

In our example, since on-line printing is slow relative to tape transfer, there is some not

insignificant probability of the dynamic recursion shown. It is unlikely that this situa

tion will develop on just the 40th successive parity failure~ but if it does, the return lo

cation for PRINT to go back to FOO gets clobbered and an infinite merry-go-round is es

tablished between parts of PRINT and CHEKTAPE. As the reader can guess, such infinite

loops did occur in using this operating system (Murphy~s Law again) without leading to

a correction. Why'! Because correcting all of these dynamic recursions would require

either (a) multiple copies of all routines on both base and interrupt loads (wasteful!), or

(b) interrupt lock-out during execution of all such routines (unacceptable!), or (c) mak

ing such routines properly recursively usable, which would, of course, be inefficient to

300 STRUCTURED DESIGN

say nothing of requiring too much work. The bugs remained through all umpteen ver
sions of the operating system!

Dynamic recursion exists whenever a module (1) is shared by two or more tasks,
even from different jobs, which can be among active jobs at the same time, (2) is used
by routines handling different interrupts or asynchronous processes, or (3) is reachable
from both base and interrupt loads. Usually, these modules are implemented as pure
procedures to meet correctly the requirements of dynamic recursion~ with proper design
of the operating environment, recursivity can be sufficient.

17.4 Summary

Recursive or cyclical hierarchical structures are useful for the simple realization of
many kinds of problems. In fact, if the designer merely judiciously pursues a top-down
design by transform analysis or some other function-centered strategy, invoking the use
of modules as black boxes wherever appropriate, recursive structures inevitably will
result - if the designer waits long enough and blackens all his boxes. Sooner or later,
the designer will find himself drawing an arrow from one module down in the hierarchy
to one somewhere above it. Whether intentional or not, recursion requires housekeep
ing to save and restore the data context and control state on each reactivation.

CHAPTER 17: REFERENCES

1. D. W. Barron, Recursive Techniques in Programming, 2nd ed. (New York: Mac
Donald and American Elsevier, Inc., 1975).

2. Larry L. Constantine, ''Commercial Applications of Symbolic Processing and
Structured Data," Data Processing Magazine, April 1967.

3. Larry L. Constantine and V. Donnelly 1 "PER GO: A Simplified Project Manage
ment Too.I,,, Datamation, October 1967.

CHAPTER 18
HOMOLOGOUS AND INCREMENTAL STRUCTURES

18.0 Introduction

In designing the modular structure of systems to solve varied classes of problems,
the designer often has difficulty selecting an appropriate top level or determining what
is to be in charge of what, or which processes are to be afferent, which efferent. These
decisions are necessitated by the use of conventional modules, such as subroutines, that
might be arranged in a hierarchy of subordinates and superordinates. The choices can
be critical, in part, because modules linked by hierarchical mechanisms behave
differently as viewed from above than from below.

In Chapter 16, we introduced the notion of a typology of modules based on time
history, activation mechanism, and pattern of control flow. Such a typology points the
way to module types and modular structures that avoid some of the problems of con
ventional hierarchical systems. In this chapter, we will consider some unconventional
structures that can greatly simplify both implementation and structural design.

18. l Homologous systems

The questions of which module is in charge and which is the subordinate can be
a voided altogether by employing structures that are not hierarchical. In this way, no
design decisions need be made regarding such matters as choice of afferent, efferent, or
executive modules.

Homologous,* or non-hierarchical, systems arise from any control relationship that
does not define a hierarchy of control responsibility. All modules related solely by
homologous relationships have the same degree of control or responsibility, since the
receipt of control by such a coordinating transfer relinquishes full responsibility for
whatever level of control the activating module possessed.

Responsibility appears to be a vague and informal term, but the concept can be
made precise by noting that every outstanding unreturned subordination carries the obli
gation for eventual return - an obligation not under control of the currently active
subordinate module. An active module may surrender control (canceling a subordina
tion), or activate new modules as subordinates with responsibility to return to the
current module. Alternatively, it can activate new modules as coordinates, with respon
sibility for return to the superordinate (if any) or to the current module.

*Homologous is established terminology for horizontal, rather lfan hierarchical, structures in the typology of
organizations and groups. See, for example, Eric Berne's work.

302

HOMOLOGOUS AND INCREMENTAL STRUCTURES 303

Obviously~ it is possible for only a portion of a system to be homologous - giving
rise to "mixed,, systems. Normally connected (as contrasted with pathologically con
nected) mflxed systems are defined only if the definitions (and implementation) of
homologous relationships are such that they are consistent with and do not violate
subordinations.

Homologous structures result from connections that transfer control without an
implicit return condition. A series of ordinary routines or program steps connected by
direct transfer (e.g., GOTO) to a named entry point would comprise one kind of homolo
gous system. Another type involves the use of so-called incremental modules.

18.2 Incremental modules

In the more common cases found in real-world systems, a module (e.g.,
subroutine) performs one complete instance of a distinct task on each c..ctivation. Un
less the module is pathologically connected, each activation physically begins execution
at the origin, the first executable statement. Although internal coding may cause an
immediate branch to some other part of the module and the destination of the branch
may vary from activation to activation, this is an internal procedural property.

We can hypothesize a type of module that executes only sume portion of its code
(and/or function) on each activation - that is, a module that proceeds incrementally.
In keeping with the characteristics already established in Chapter 3 for true modules,
the exact portion to be executed is invisible to the activating module, i.e., the next por
tion to be ex~cuted is determined by the incremental module~ not its activator. This
means that, to the activator, an incremental module can appear to be a black box as
much as a subroutine can. As with all modules, this will depend, in the final analysis~
on the quality of design and coding! Incremental execution makes it possible to decou
ple one module more completely from the internal state and state maintenance mechan
isms of another module.

I 8. 2. I Coroutines

The coroutine may have been invented almost concurrently by several people,
though the credit usually goes to Conway, 2 who first published a paper on the concept.
For an interest'ing history of the development of the coroutine, as well as several pro
gramming examples, see Knuth. 3 The coroutine is a very basic module type, possibly
every bit as important as the subroutine.

In the abstract, a coroutine is a module whose point of activation is always the
next sequential statement following the last point at which the module deactivated itself
by activating another coroutine. Thus, the entry point of the coroutine floats. It must
be stressed that a coroutine does not (normally) have more than one entry, unlike a
multiple-entry (compound) subroutine. The coroutine has a single entry point whose
value varies with time. Each entry of a particular coroutine z commences execution at
the point defined by the entry. Each entry of another coroutine from z establishes a
new value of z's entry: the next sequential statement in z. This will be used when z is
next entered.

304 STRUCTURED DESIGN

The operation of coroutines is most easily understood by assuming a typical form
of implementation. Each coroutine may be thought of as having associated with it an
Hentry locator": a device that always will contain a current value of the coroutine's en
try. The entry locator is assumed to be initialized to the origin of the module~ i.e.,
when a coroutine is activated for the first time, it actually does begin al the beginning.
Thus, Fig. 18.1 conceptually represents the coroutine z in its initial state. z will be ac
tivated by an appropriate reference to its entry locator, which serves as its identity inter
face. We will use the statement ENTER. (The characteristics incremental or nonincre
me:ntal are internal details of a module. By using ENTER for either type, the detail
remains hidden to other modules.)

Entry locator

Figure 18.1. Conceptual representation
of a coroutine in initial state.

A cotransfer from one coroutine to another (mixed systems will be discussed
later) is conceptually a two-step process. The first step is to set a new value for the en
try locator of the currently active module. The second step is to transfer to the location
defined by the entry locator of the coroutine to be activated.

In Fig. 18.2 are two coroutines, called NULL and CIPHER. In NULL is a loop that
executes, alternately, three different variations on the NULL function: the first starting
at A, the second at B, and the third at CIPHER uses two NULLifying steps in another loop.
Successive activations of NULL will result in values of the entry locator of S, B, c, D, B, c.
D, Successive activations of CIPHER, on the other hand, result in values of its entry
locator of x, Y, z, Y, z. Y, z Neither module needs to uknow" the number of sec
tions in the other - or the ratio of occurrences, or which section is next to be per
formed. Each coroutine has full control over its process. Since neither is in control of
the other nor has more responsibility, the name coroutine is indeed appropriate.

Consider the complications that would arise if NULL and ClPHER had to be
designed as a single integral process. The relative execution ratios would have to be
reflected in the procedure. The entire procedure might have to be recoded to accom
modate· a change in the number of unique segments for any one of the two processes.

HOMOLOGOUS AND INCREMENTAL STRUCTURES 305

In Fig. 18.3, the system of NULL and CIPHER is represented by using standard graphics.
Note that this coroutine chain is linked by references in both directions.

NULL:

S: X:

A:
ENTER NULL

ENTER CIPHER Y:

B:

ENTER CIPHER ENTER NULL

C: Z: GOTO X

ENTER CIPHER
D: GOTO A

Figure 18.2. Conceptual representation of coroutines NULL and CIPHER.

·~
Figure 18.3. NULL-CIPHER system using standard graphic notation.

18.2.2 Brief application of coroutines

Consider the module DO, which performs some processing on each incoming
record on a file. The process performed by DO requires accessing the next record in,
say, two places within the code; that is, the algorithm is linear rather than iterative with
respect to two djstinct usages of an incoming record. We shall assume that the DO pro
cess is complex in itself, though the details need not concern us here. Its code is
shown, in outline form, in Fig. 18.4.

Suppose the required records reside on three magnetic tape drives - which we
will call "unit 1," "unit 2," and "unit 3'' - and which are to be merged according to
the following discipline: one record from unit I; two records from unit 2; then one
record from unit 3 unless it is an exception type, in which case it should be preceded by
another record from unit 1.

The code for the merge discipline, though not really very complicated, is not the
sort of thing we wish to have duplicated throughout our system. There are too many
opportunities for error. Moreover~ the process of getting the next record in a merged
stream is a well-defined function and is appropriately implemented as a separate
module. The most straightforward approach is to specify a coroutine named NEXTREC:

306 STRUCTURED DESIGN

NEXTREC:
MERGE:
RI:
LI:
R2:
L2:
R3:
LJ:

L4:
R4:

RS:

COROUTINE
GET RECORD FROM UNIT 1 INTO REC
ENTER DO (REC)
GET RECORD FROM UNIT 2 INTO REC
ENTER DO (REC)
GET RECORD FROM UNIT 2 INTO REC
ENTER DO (REC)
GET RECORD FROM UNIT 3 INTO REC
IF EXCEPTION· TYPE THEN

GET RECORD FROM UNIT I INTO REC2
ENTER DO (REC2)
END IF

ENTER DO (REC)
GO TO MERGE

DO: COROUTINE

Get next record

Get next record

Figure 18.4. Outline of coding for the DO coroutine.

The nature of the merge discipline is obvious from the above code. If NEXTREC
were implemented as a subroutine, the instructions at RI, R2, RJ, R4, and RS would have
to be replaced by switch settings followed by RETURN statements. At the entry to NEXT
REC, a five-way branch would dispatch to LI, L2, LJ, RS, or MERGE. This is the simplest
analogy we can draw with a subroutine; it may be regarded as a simulation of a
coroutine operation through a coding trick.

Several points are important. First, the coroutine structure permits truly indepen
dent procedural design of each coroutine in the chain. The only intermodular relation
ships that must be taken into account are those involving demands for, or delivery of,
data. Thus, a coroutine always can be written in such a way that it simply enters a
udonor" coroutine when it needs the next item of data; similarly, it enters a "receiver''
coroutine when it has prepared an item of output.

Of course, any module that has both its input and output functions available as
subroutines can be written in a similar fashion. However, it is obvious that this cannot
be done for all modules in a system; some modules will be in a subordinate position.
For example, the afferent subroutine does ·not control its own output~ the efferent
subroutine does not determine the point of input requests in the code - input is always

HOMOLOGOUS AND INCREMENTAL STRUCTURES 307

made available to the efferent subroutine at its ongm. However, conflicting require

ments for control over input and output processes can be resolved through a homob
gous structure using coroutines.

Such structures are not only homologous but symmetrical with respect to control.

Thus, NEXTREC behaves like, or appears to be, a subroutine to DO~ while no functions

as if it were a subroutine to NEXTREC. Clearly~ this is not recursion of the sort that we

discussed in the previous chapter. A complete, recursive performance of the entire oo
process is not being activated (which was, in turn, activated by Do)~ only the next step

in the whole process is being called for. Unlike the recursive process, the coordinate

process need not "unwind" through a set of returns resulting from nested calls.

18.2. 3 Subcoroutines

The NEXTREC coroutine functions properly for each of the two (or N) required

references in DO. But obtaining the next record in a merged sequence is a function

quite likely to be of general use in the system. Suppose that there is another module~

D02, which may be used at times to process input records. In general, whether DO or

D02 is to be used may be known only by DO or 002 or perhaps by another module. A

given activation of NEXTREC must deliver its output to either DO or D02, depending on

which activated it to obtain an item of input. If NEXTREC is a coroutine, it must know

the criteria determining which module to reenter; that is, it must execute either the

statement to enter DO or the one to enter 002 - it cannot enter both.

What is needed is an incremental module, which can be subordinated and which

will resume whatever module calls it. Such a module is known as a subcoroutine.
Although it has also been called a ''demand coroutine" 4 (performing its funclion on

demand for any module) and a "subordinated coroutine," the word subcoroutine is a

more compact term carrying the proper implications.

A subcoroutine looks like an ordinary subroutine to its superordinate - it is en

tered by a conditioned transfer - but it has a floating entry point like a coroutine. As

with subroutines, the return location is best thought of as being stacked. The sub

coroutine deactivates itself by executing a RESUME statement which resumes its (un

named) superordinate process. This RESUME of an implicit module (the last one to call)

establishes a new value for the subcoroutine 's entry locator. Thus, the next statement

following the last executed RESUME serves as the entry point for the next call .to the

subcoroutine.

18. 2. 4 Input-output event ratios

The advantages and applications of incremental modules also can be illustrated

through consideration of the flow of data through conventional hierarchical nests of

subroutines. Any transform, such as x in Fig. 18.5a, can be characterized by the ratio

of incoming data elements, or events, to outgoing data events. In the simplest case, x

might require a single a to produce one b. The input-output event ratio is said to be

one to one. In such a simple case, the transform x could be as easily implemented as

an afferent subroutine, an efferent subroutine, or, for that matter, a subroutine in any

position in the hierarchy. In cases of non-simple input-output event ratios, a

subroutine has a preferred direction of data flow because it is in control of subordinate,

but not superordinate, events. If transform x were to require several inputs for each

308 STRUCTURED DESIGN

output b, it would be easier to implement as an afferent subroutine than as an efferent
one. A many-to-one event ratio might also result from fan-in, as in transform y in Fig.
18.Sb. As an afferent module, the procedure for transform x would simply assemble as
many a elements as needed, transforming these into a single b to be returned. Because
a call always enters it at the origin, an efferent subroutine would have to keep track of
some intermediate information about each a until the right number was received to pro
duce a b to be passed down to a subordinate. Each type of data flow through a module
implies that some input-output event ratios can be programmed without any complica
tions being introduced due to the position of the subroutine~ while other ratios will be
somewhat less straightforward to implement.

Figure 18.Sa. Simple transform bubble. Figure 18.Sb. More complex transform bubble.

The reader can verify that the ev.ent ratios that can be implemented most directly
for each type of data flow through a module are as follows:

Afferent subroutine:
Efferent subroutine:
Transform subroutine:
Coordinate (top level) subroutine:

l to 1, many to 1
l to l, l to many
I to 1
l to 1, l to many, many to 1, many to many

Any event ratio other than one to one requires additional coding in a transform module!
Note that no coding problems would occur with any event ratio if every module could
be written as a top-level module, which is exactly what the. use of coroutines and sub
coroutines permits. Where input-output event ratios are variable rather than fixed, the
degree of difficulty in coding is even more marked.

18.3 Applications of coroutines and subcoroutines

For many applications, the use of incremental structures permits more straightfor
ward translation of the problem structure as expressed in a data flow graph than would
be possible with strict hierarchies of subroutines. Appropriate applications are charac
terized by state dependent or sequential decision processes, asynchronous or parallel
processing, variable input-output event ratios, or event ratios incompatible with a
module's position in a hierarchy. Almost all instances of text- and language-processing
fall into one or more of these areas. Even such a mundane routine as an input deblock
er is simpler as a subcoroutine than as a subroutine because of its one-in-to-many-out
event ratio. Provided communications are handled normally, incremental modules ac
tually are easier to maintain and modify independently than conventional modules.

HOMOLOGOUS AND INCREMENT AL STRUCTURES 309

The usual use of coroutines is to have bidirectional linkages, as in Fig. l 8.6a,
which communicate data in one direction. Circular coroutine chains also have uses in
simulating parallel processes. The structure in Fig. l 8.6b actually was used to permit
separate programming of routines to manage simultaneous operations of several
mechanisms on a computer-controlled machine tool. Each module transfers to its adja
cent coroutine whenever it otherwise would have nothing to do, because it had just out
put something or was waiting for a completion signal from the machine tool. Each of
the operations had its own unique dynamic characteristics and special progr Jmming
problems~ by using coroutines, these could be kept separate. The subsystem could be
activated by a call to either of its three coroutines; that is,. these appear to be
subroutines to CONTROL, which is returned to when aH processes indicate they are done.

Another, more complex, application using coroutines and su bcorouti nes is shown
in Fig. 18. 7. Note how incremental modules are used for sequential decision processes
like the statement recognizer and stack compiler for "infix,, expressions.

Figure l 8.6a. Example of bidirectional linkage in a linear coroutine chain.

Figure 18.6b. Example of a unidirectional linkage in a coroutine cycle.

310 STRUCTURED DESIGN

1:T-UfAR
~tK,l~
~SM

;~""11>'

~t
~D·(.A'fl)

Figure 18. 7. Principal modules in a one-pass compile-and-go
system for a simple language.

I 8.3.2 Implementation of incremental facilities

Few contemporary languages supply facilities for declaring and using coroutines
and subcoroutines, but they readily can be added to most languages having macros or
macro preprocessors. Even though such implications are apt to be less than elegant,
they still may simplify programming.

Subcoroutines are the more useful of the two types and also the more easily ad
ded, as they require no special methods for handling activation records for separate pro
cedures to be used incrementally. Briefly, the following facilities are required:

(a) a macro statement to "declare" a subcoroutine that looks like and
translates into a normal procedure/subroutine declaration, but adds a
declaration of an invisible label variable or switch to serve as entry lo
cator, plus an inserted GOTO depending on the switch as the first exe
cutable statement; the initial value of the switch is the first
programmer-written executable statement, that is, the one following
the switched GOTO

(b) a RESUME macro that translates into a "set switch to next-statement"
followed by a RETURN

(c) if static or OWNed label variables cannot be used, then the entry locator
can be carried as an input argument added to the argument list by a
CALLing macro

HOMOLOGOUS AND INCREMENTAL STRUCTURES 311

18.3.3 Sample application of coroutines

Let us consider a primitive language-processing problem involving the front-end
of an information retrieval/report generation system. Retrieval requests are obtained,
character-by-character from a message concentrator via module NEXCHAR. Messages
enter in two different character codes, a standard one and a nonstandard one. A mes
sage in nonstandard code always begins with an escape character (ec). All messages end
with an end-of-transmission character (eot). Some characters of the nonstandard code
are to be ignored and some two-character ideographs in the nonstandard code are treat
ed as equivalent to single characters in standard code.

The remainder of the system only "understands'' the standard character code. A
procedural design for a STDIZE module would be very straightforward if STDIZE could
call NEXCHAR and the rest of the system as subordinates. Proceeding in the most
simple-minded, step-by-step manner would yield the flowchart of Fig. 18. 8a.

The input language includes quoted matter enclosed in quotes (") and special
two-character abbreviations designated by a period (.) preceding the abbreviation. The
retrieval/report system itself, RETREP, accepts a character of input on each activation,
but it does not understand the abbreviations or quotation marks. The straightforward
procedural design of this module is presented in the Fig. l 8.8b flowchart.

Both STDIZE and XPAND have variable, many-to-many input-output event ratios.
They cannot both be the top-level module with the other as subordinate; implementing
them as coroutines resolves this conflict. Each box on the flowchart invoking a
predefined procedure would be coded as a coroutine transfer (ENTER) to the adjacent
routine. The resulting coroutine chain is shown in Fig. 18.9a.

Even this structure has a defect in it should some module in the system other
than RETREP need to read expanded standardized text. Making STDIZE into a sub
coroutine as shown in Fig. 18. 9b resolves this conflict without complicating the coding.
The resulting coding (see next page) is a simple transliteration of the procedural designs.
of Figs. 18.8a and 18.8b, and is demonstrably simpler than what would be required if ei
ther or both modules had to be a subroutine.

18.3.4 Separab;/ity of homologous structures

Let us assume that the structure of Fig. 18. 9b is implemented, but that certain
practical complications arise. As it turns out, the Kludgevac 616 minicomputer on
which the system runs has only very limited memory and the whole system will not fit
ih memory at once. The retrieval system is so big that only XPAND can be resident at
one time. We need a two-pass system that will handle message traffic and later retrieve
the requested data and produce reports. The· Kludgevac Systems Engineer suggests we
replace all the statements PI, P2, and so on, in STDIZE with "punch a character on paper
tape," and all statements Rl, and so on, in XPAND with "read a character from paper
tape." The system then will punch a tape of standardized text, which can be torn off
and read in when the second pass is loaded at the end of the day. Will it work'? Yes!
if the system in its one-pass version also worked. This property of coroutine chains can
be (and has been) exploited in making the same compiler work in one, two, or more
passes, depending on available memory.

312 STRUCTURED DESIGN

STDIZE: COROUTINE
CALL NEXCHAR (CH)
IF CH= ec

THEN
CALL NEXCHAR (CH)
UNTIL CH = eot

DO
IF LOOKUP (CH, IGNORETABLE)

THEN
ELSE

IF LOOKUP (CH, IDEOGRAFTABLE(l))
THEN

CALL NEXCHAR (CH2)
IF LOOKUP (CH2, IDEOGRAFT ABLE(2))

THEN
Pl: XPAND (IDEOGRAFTABLE(J))

ELSE
P2: XPAND (CH)
P3: XPAND (CH2)

ENDELSE
ELSE

P4: XPAND (CH)
ENDELSE

ENDELSE
END UNTIL

ELSE
UNTIL CH eot

DO
PS: XPAND (CH}

CALL NEXCHAR (CH)
ENDUNTIL

ENDELSE
END

XPAND: SUBCOROUTINE ARGUMENTS CHAROUT
RI: STDIZE (CHAR)

IF CHAR='"'
THEN

R2: STDIZE (CHAR)
UNTIL CHAR - ' " '

DO
CHAROUT CHAR
RESUME

R3: STDIZE (CHAR)
ENDUNTIL

ELSE
IFCHAR = '.'

THEN
R4: STDIZE (CH (1))

RS: STDlZE (CH (2))
EQS = LOOKUP (CH, ABBREVT ABLE)
I= 1
UNTIL EQS (I) = 0

DO
CHAROUT = EQS (I)

RESUME
ENDUNTIL

ELSE
CHAROUT -= CHAR
RESUME

END ELSE
ENDELSE

END

HOMOLOGOUS AND INCREMENTAL STRUCTURES 313

1\0

JtO

s

Figure 18. 8a. Flowchart of module STDIZE to convert all incoming code to s.tandard character set.

3l~l STRUCTURED DESIGN

no

es

Figure l 8.8b. Flowchart of module XPAND to remove quotes and expand abbreviations.

I
I

j

NEKCH.Af:...

I \

\
\

HOMOLOGOUS AND INCREMENTAL STRUCTURES 315

/
I

\
\

Figure 18. 9a. Coroutine structure for the retrieval front~end.

IN SCAN

I

'
I

•
~E:TREP

~M

'"'~ Chj{ ..

~~ ~...,,J \ =A<.frzr \ o--"'- ·e::J " 5Tt1.t~ \ , ... I

~~ dt!c.m-

Figure l 8.9b. Subcoroutine implementation of XPAND to permit alternative uses.

316 STRUCTURED DESIGN

The cursed Kludgevac 616, alas, runs too slowly to get all the day's requests pro
cessed overnight. The Systems Engineer, ever alert for new sales, suggests we get a
second 616. But how to exploit it? Simple! Wheel it in, load the retrieval package on
it, find the leading end of the paper tape being punched by the message package on the
old machine, fit the tape into the paper tape reader of the new machine, and press
START. If the system worked before, it will work correctly now. The parallel processing
is achieved without additional analysis, design, or programming.

The property of incremental modules making these sleights-of-hand possible is
known as separability. Structures of such modules can be separated arbitrarily into mul
tiple passes and parallel processes, provided only that they are normally connected and
that communication is one-way (i.e., unidirectional) along the connection to be broken.

18.4 Data-coupled systems and languages for modular systems

The availability of coroutines and subcoroutines permits the designer to approxi
mate more directly the problem structure as represented by the data flow graph. An
ideal situation would be achieved if the data flow graph could be programmed directly in
the form of completely autonomous modules that accepted and passed data directly to
each other via queues, which function as the arcs connecting transforms on the data
flow graph. Control would not be passed between such data-coupled modules, but rath
er each module would perform its transformation whenever needed inputs became
available. As stated in Chapter 6, data-coupled modules are minimally coupled and
should, therefore, permit the lowest possible development and maintenance costs.

Various mechanisms for achieving this high degree of problem correspondence
andl module independence have been proposed, one of the earliest by Constantine. 5 In
place of control linkages like CALL, RETURN, and ENTER, four communication state
ments are provided. Two permit the communication of data to or from another module
explicitly identified by name. These take the following form:

TO module-name (argument-Ii argument-2, ... , argument-NJ;
FROM module-name (argument-], argument-2, ... , argument-NJ.

A TO FOO in module FUM paired with a FROM FUM in FOO would function the same as a
bidirectional coroutine link, except that the intermediate FIFO queue, if of length greater
thain 1, would permit parallel processing. A TO followed by a FROM on the same module
would work the same as a call. In fact, all conventional control relationships can be
paralleled within data-coupled systems. However, the programmer/designer need only
think in terms of generating and passing data TO another module at the earliest point,
requesting data FROM another module only at the latest point.

A corresponding pair of statements would permit sending and receiving data im
plicitly without reference to another module by name (as does any subordinate
subroutine or subcoroutine). These statements allow a single module to service several
oth1ers on demand:

RECEIVE (argument-I, argument-2, ... , argument-N);
SEND (argument-], argument-2, .. . , argument-NJ.

HOMOLOGOUS AND INCREMENTAL STRUCTURES 317

Besides simplifying design and programming, these constructs, in connection with
an appropriate supporting operating environment, would permit automatic multiprocess
ing on a module-by-module basis without requiring additional analysis and design for
exploiting para11elism. With only minor constraints, structures linked by these mecha
nisms can be guaranteed to be asynchronously reproducible (output functional), that is
to yield the same results from the same data every time. They also are separable in the
sense introduced in the preceding section.

The above four types of statements have some residual disadvantages in terms of
an ideal environment in which to minimize intermodutar coupling and, therefore, to
maximize the degree of independent development and ease of modification. "Like con
ventional subroutine linkage constructs, they establish identity or correspondence of
data elements by position within an argument string. Further~ since some modules
refer to other modules explicitly by name, building a modified system can require going
inside modules to change the named target to refer to some added module. This makes
it less convenient to configure new systems rapidly from a pool of autonomous working
modules, a long-time dream of computer professionals. An almost utopian situation
would be achieved by permitting each module to be written with its own named input
and output uports" but without identifying to what ports of what other modules these
would be connected. Separate Hligatures" 6 in a distinct language would externally ex
press the intermodular structure. With such facilities, each small transform needed for
some total application could be designed and implemented completely separately
without regard to its place or uses in the total process. Then, these modules could be
linked together systematically, using the ligature constructs~ along with preexisting
modules into a growing system.

For most designers, all of this is still in the realm of the academic. However, we
are beginning to see the emergence of modern operating systems that have exactly the
features described above. One of the most exciting of such operating systems is UNIX,
developed at Bell Laboratories 7 for the PD P-1 l computer.* What benAaron 6 describes
as ligatures, the UNIX system refers to as pipelines~ and it is definitely true that many
UNIX designers (the authors included) do nothing more than program the bubbles in a
data flow graph, without the intermediate step of converting it into a structure chart.

18.5 Summary

We have seen in this chapter that homologous systems in particular, systems
based on coroutines and subcoroutines - have practical applications. The major reason
why coroutines have not been used more frequently is the lack of appropriate facilities
in such popular programming languages as FORTRAN, COBOL, and PL/I.

While programming languages may not improve radically in the next few years,
we can look forward to increasingly sophisticated operating systems that will provide
adequate mechanisms to build homologous systems. Several such multitasking operat
ing systems are already in use; one of the most elegant, in our opinion, is the UNIX
operating system, referred to above.

*Coincidentally, the UNIX operating system, together with some phototypesetting software also developed at
Bell Labs, was responsible for the typesetting of this book.

CHAPTER 18: REFERENCES

I. Eric Berne, The Structure and Dynamics of Organizations and Groups (New York:
Grove Press, 1966).

2. M.E. Conway, "Design of a Separable Transition-Diagram Compiler," Communi
cations of the ACM, Vol. 6 (1963), pp. 396-408.

3. Donald E. Knuth, Fundamental Algorithms: The Art of Computer Programming, Vol.
1 (Reading, Mass.: Addison-Wesley, 1968).

4. R.K. Dove, "A Modular Approach to Simulation and Language Design." Paper
presented at the National Symposium on Modular Programming, Boston, Mass.,
July 1968.

5. L.L. Constantine, "Control of Sequence and Parallelism in Modular Programs,"
AFIPS Proceedings of the 1968 Spring Joint Computer Conference, Vol. 32~ 1968.

6. M. benAaron, H An Elementary Model of a Modular Programming System," eds.
T.O. Barnett and L.L. Constantine, Modular Programming (Cambridge, Mass.: In
formation & Systems Press, 1968).

7. Dennis M. Ritchie and Ken Thompson, "The UNIX Time-Sharing System,"
Communications of the ACM, Vol. 17, No. 6, July 1974.

SECTION VI
THE REAL WORLD

This, the, most loosely organized of the sections, is titled, appropriately
enough, uThe Real World." In the first chapter of this potpourri, the relation
ship of structured design to certain technical goals is explored in depth. Struc
tural issues in creating more generalized and more reliable systems are con
sidered. Eventually, designs must be translated into working code, and Chapter
20 analyzes methods for implementing highly modular systems. Some imple
mentation issues clearly are management questions, leading us to our final
chapter, Chapter 21, in which we discuss various interactions between rnanage
men t concerns and structural design matters. In this way, we return to the
overall program development cycle that opened the book.

CHAPTER 19
STRUCTURE AND PROGRAM QUALITY

19 .0 Introduction

As we pointed out in Chapter 1, structured design seeks the best solution to a
software design problem - best in terms of established criteria, recognizable limits, and
acceptable compromises. Throughout the book, we have emphasized that we are seek
ing designs that are minimum-cost: inexpensive to implement, inexpensive to test, and
inexpensive to maintain and modify.

However, there are additional qualities that usually are associated with good sys
tems~ among the more common ones are generality, flexibility, and reliability. These
three aspects of a system are the subjects of this chapter.

19.1 Generality

The terms "general purpose" and "systems generality" are widely used in mar
keting language. Like many other systems design objectives, generality tends to be re
garded as an innate good, and is stated largely as a religious principle. It is surrounded
by a mythology as rich as that of systems modularity. We will examine some of these
myths while identifying the underlying concepts and technical content of generality.

We could informally define a general-purpose system (which might consist of a
single isolated module) as one that is widely used or usable, solves a broad case of a
class of problems, is readily adaptable to many variations, and will function in many
different environments. Under the guise of a single overall definition, we have, in fact,
subsumed a number of distinct aspects of generality. Each of these can be indepen
dently defined and discussed in terms of distinct technical factors.

19.J.l Inclusion and exclusion

The most persistent myth of generality and generalization is that most general sys
tems must - by religious principle - cost more to design and more to build. If we ex
amine the history of general-purpose systems, we see two divergent design philosophies
that influence this myth in one direction or another.

On the one hand, we see an approach best described as the inclusive philosophy.
This philosophy is based on the concept that a general~purpose system must include
something for everyone. The generalized system is designed, as it were, by identifying
and examining as many distinct applications or application areas as possible - and in
cluding some feature or features to cover each of the applications. By definition, such
generalized systems must cost more to build than a specialized system designed similar
ly to cover only one application or application area. This strategy is most evident in the
design of contemporary general-purpose programming languages.

321

322 STRUCTURED DESIGN

On the other hand, we might approach the design of generalized systems, again by

examining as many applications as possible, but eliminating those aspects that make the

application special or unique. What is left is a kind of lowest common denominator -

a set of basic capabilities out of which all the applications can be structured. Successive

exclusion of specialized facilities and unique variations potentially could lead to general

purpose systems that are cheaper than any one comparable special-purpose system.

This analysis of the inclusive versus the exclusive approach represents, of course,

our viewpoint~ it does not prove that, in fact, one can ever construct general-purpose

systems that are less expensive than special-purpose systems. What we must do is

develop some constructive technical basis, or bases, for comparing the relative costs of
general-purpose systems and special-purpose systems.

19. 1.2 Factors in systems generality

To repeat our earlier informal definition, generality refers to a system's ability to

solve the broad or general case. Or, it refers to a system's ability to be widely used and

adaptable to many variations in application or in environment. In order to discuss this

meaningfully, it is essential that we specifically exclude technical factors that really are

aspects of other, potentially independent, design objectives. These design objectives

may also be of interest to us, and they may in some cases correlate - either negatively

or positively - with generality.

Thus, we may well desire systems that are easy to use, and require little effort to

understand, install, and operate. However, this is, properly speaking, an aspect of utili

ty. Similarly, the fact that a system is widely used because its code is easily changed has

nothing to do with generality~ it is a matter of modifiability.

"Use n does validly enter into generality in the sense that wide use is associated

with problems of wide interest. Commonality measures how common the problem is

that we are solving with a given system. Given equal and comparable design and im

plementation, a system that solves a common problem would be described as general

purpose, compared with one that solves a problem of limited interest. For example,

consider a sort program that sorts in normal collating sequence, and a program that is

identical but sorts with the first and last half of one collating sequence reversed. Both

have identical controls and both accomplish as many different tasks. However, the

former is more general because it solves a more common problem; thus, it is higher in

terms of its commonality.

Now consider that two externally similar sorts have been developed, but one of

the sort programs uses no features that are related to one specific machine. Obviously,

it is more likely to be transferable to other machines. It is more general because it is

higher in portability, a property representing ease of movement among distinct solution

environments. Clearly, portability may refer to machine, programming language,

hardware configuration, or organizational factors. Note that if a transfer requires

modification to the existing code, the overall cost will depend on modifiability as well.

However, at least part of portability is independent of the ease with which the requisite

changes may be effected. Portability is more a function of the number and complexity

of the requisite changes.

STRUCTURE AND PROGRAM QUALITY 323

The mathematical concept of the domain of a function also relates to generality.

The module that accepts a wider range of values for its input is more general. Again

referring to the otherwise identical sort programs, the program that accepts two - or

three, or any number of - magnetic tape reels of input is more general than one that

works only on single-reel input. Similarly, a less generalized sort program might accept

records up to a maximum of 84 characters in length~ a more general version might ac

cept records up to a maximum of 400 characters in length. For lack of a better term,

we will call this domain generality, or mathematical generality.

Finally, we have the system that can be used in many differ~nt ways, performing

distinct~ possibly unusual and unanticipated, tasks. In most cases, we would prefer that

the system's operation be governed by externally regulated factors - that is, we want

the system to perform many different tasks without modification of code by the pro

grammer. Flexibility is a measure of the degree to which a system, as can be used in

a variety of ways. A sort program in which the user can specify not only the length, but

also the position of a key within a record, is more flexible than one that accepts only a

length specification.

Thus, in total, generality is a function of at least four independent factors: porta

bility, commonality, domain generality, and flexibility. Each of these has separate

technical determinants.

19 .2 Flexibility

Flexibility itself is not a simple factor. At least three (possibly} independent

technical factors influence the amount of flexibility in a system. As suggested by our

analysis and model of generalization in the preceding section, external controls govern

flexibility~ we will deal with this in Section 19.2.3. In addition, the familiar concept of

time-histo1y* plays a role in flexibility, as we will see in Section 19.2.2. Finally, a

system's flexibility is influenced by a new concept: the concept of locus of control.

J 9. 2. J Locus of control

Every aspect of the behavior of a system is determined (controlled) by something

else. In the most primitive approach to programming, the code itself the instructions

- directly determines the fixed behavior of the system. Everything that the system

does, every variation, is built into the code. It generally is regarded as a more sophisti

cated design technique to allow some aspects of the system's behavior to be controlled

by data items. Perhaps this behavior is called more sophisticated because the resulting

system is more flexible.

In general, control of a system is distributed among instructions, data (that is,

data built into the system - sometimes called resident data), and the input for input

data). The flexibility of a system is increased by the extent to which more control over

the behavior of the system resides in the input data or the resident data rather than in

the instructions themselves. Input-controlled behavior is more flexible than resident

data-controlled behavior, which is, in turn, more flexible than instruction-controlled

"'The concept of a system's time-history was discussed in Chapter 6, and again in Chapter 16.

324 STRUCTURED DESIGN

behavior. This observation should not be made trivial by naively trying to put all of the

control in the input and resident data. This would, in the most extreme case, lead to a

general-purpose-doer-of-everything module that simply executes (interprets) whatever
stream of instructions it is given as input.

Whether or not locus of control is a dimension of flexibility independent of the

oth(~rs, it is nevertheless a useful concept to the designer. By knowing where control is

located in a system's design, the designer is in a position to enhance flexibility where it

is most desired or needed, by shifting the locus of contr~t of the appropriate factors.

19. 2. 2 Binding time

As we discussed in Chapter 6, every control variable (indeed every variable) be

comes bound to some value at some time. We can employ the concept of a system's

time-history to influence binding time: A variable may become bound (to a value) at

definition time, translation time) linkage time, load time, or execution time. The effect

of binding on flexibility is simple and direct: The later a control variable becomes

bound, the more flexible the system is with respect to that control variable.

We should keep in mind that the time at which binding is done affects certain cost

factors. For example, we increase the variable costs of using a system (i.e., costs in

curred by actually running a system) when we attempt to increase its flexibility by de

laying binding until execution time, load time, and possibly linkage-editing time. Simi

larly, we know that it costs more to change the value of parameters bound later. Thus,

control variables bound at translation time (e.g., compilation time) will cost more to

change than control variables bound at load time - although the former will not On

most cases) add to run-time costs.

When choosing the binding time for systems controls, we obviously must take

into account the probable frequency of change. In many cases, no choice appears possi

ble. A sine/cosine routine, for example, must have its function (sine or cosine) and its

input variable "bindable" at execution time. Or must it? Perhaps a better system (in

this context, we mean "more efficient") would result if controls were bound, whenever

possible, at translation time - as in the computation of the sine of a constant.

Translation-time parameters (identifiers bound by statements of linguistic

equivalence) are especially interesting. The actual cost, even at translation time, of

equating a symbol with a value and then using only the symbol is very low. On the

other hand, this approach permits considerable future tailoring of the system simply by

changing the value assigned to the parameter. The use of translation-time parameters

will be discussed in more detail below.

19. 2..3 Controls

The most important influence on flexibility is the number and variety of internal

controls that are made externally available. In a sense, the concept of externalization is

related to binding time: A control is not external at execution time if it is only brought

out as far as a boundary that is available at translation time. Generally, we can circum

vent this circularity by referencing the module's lexical boundary~ things that lie close

to the surface may, for some purposes, be thought of as externalized. Thus, a set of as

sembler equivalences (translation-time parameters typically of the form GLOP EQU 17),

STRUCTURE AND PROGRAM QUALITY 325

which appear (lexically) inside a subroutine but are grouped together at the beginning,

are effectively externalized. Such controls can be altered without dealing with the real
body of the module.

To appreciate that these three factors binding time, locus of control, and exter-
nalization of control - are approximately independent, consider this analysis: Assume

that a system designed for a given task has a certain number of controls that must be
regulated and manipulated independently of how the system is implemented - espe

cially in h~rms of flexibility. Any number of these controls could be brought out to the

nearest module boundary as parameters. In turn, we could choose to bind these con

trols at any "event time" in its time-history - some at translation time, others at load

time, and stiH others at execution time. Similarly, whatever it is that determines the

value of these controls could be fixed into the coding, obtained from a table, or input

from some external medium. While it is not possible for a translation-time parameter
to be input-controlled, an execution-time control could be set by code, resident data, or
input data.

19. 2. 4 Flexibility: Less is more

Flexibility as an aspect of generality is a structural question in that it is strongly
influenced by the design of the module interface. Earlier, we suggested that the philo

sophy of generalization by exclusion could lead to simpler systems to solve the general

case than to solve any specific case. Bringing internal controls out to the external inter

face as parameters in the calling sequence leaves fewer things internally specified in the

procedural design, for example. But sometimes less is more is even more true, if we
have made ourselves more or less clear.

Consider the customer identification code used as the index key to a master file.

This identification code appears on all transactions against the customer's account. It is

generated by transforming letters to numbers, combining the first four letters of the last

name with the last letter of the first name, a sequence number, and a check digit
Thus, CON.stantine, Larry, becomes

0315141925-88-2

The transaction record is in the format shown below in Fig. 19. la.

l3 numeric 2 alpha 15 alpha to alpha 3 numeric 10 numeric 37 alpha

Figure 19. la. Format of transaction record to be checked for customer code validity.

In a program that processes these data, the record is validated, which includes a

need for a routine to check customer code. We might have a module, CHEKCUSCODE,

operate on the transaction record and return a flag indicating whether it was okay. A

use of this module might look like that at the top of the next page:

326 STRUCTURED DESIGN

LI: CALL CHEKCUSCODE (TRANS REC OKFLAG)
fF NOT OKFLAG THEN CALL ERRMESS (1<BOGUS CUST.", TRANSREC)

The module CHEKCUSCODE would contain in its code a description of the record format
of Fig. 19 .la, if not as a data description, then as field indexes in references to the cus
tomer code and name fields. If the format changes, the code in CHEKCUSCODE may
have to be changed even if the record contents remain the same. An example might be
a case in which the positions of the first field, customer code, and of the second field~
transaction type, are interchanged. This version of CHEKCUSCODE could not easily be
usedl to validate the customer code of the master file record shown in Fig. 19.1 b. A
dummy transaction record in the proper format would have to be constructed by copy
ing name and customer codes from the master file record.

2 numeric 15 numeric 6 numeric 2 numeric 15 alpha 10 alpha

Figure 19. lb. Format of a master file record that might be checked for customer code validity.

Note that the interface with CHEKCUSCODE actually is more complex than it would
appear to be from looking at statement L1 above, since there are seven individual data
elements represented by each record. A simpler, less-coupled, more general-purpose
module results if the interface communicates only data elements actually needed for the
function, each as a separate parameter. The calling sequence in this case would include
three parameters: a 13-digit customer code, a customer name field, and a flag to be set
to indicate correctness. Thus

Ll: CALL CHEKCUSCODE (TRANSREC(l), TRANSREC(3), OKFLAG)

and check the code of a master file record

CALL CHEKCUSCODE (MFREC2(2), MFREC2(5), MFOK)

In general, reducing coupling and simplifying the interface between modules
result in more flexible modules.

For another example, consider the design of a system to print bar charts of the
sort shown in Fig. 19 .2 from a vector of values for the bars on the chart. Assuming we
can figure out how to set up the bars themselves from the vector of counts, how do we
handle the printing of the headings and the labels for each bar? The most specialized
module would include the coding to print out the specific footnotes shown. Suppose we
want to generalize the routine BARCHART to handle data and display them in this for
mat'? We could get fancy and accept a list .of bar identifications, requiring us to worry

STRUCTURE AND PROGRAM QUALITY 327

about what to do with descriptions that are too long to fit on one line without running
into each other. But a simple generalized bar-charter can be developed by passing the
buck up to the superordinate and requiring that the bar-charter be supplied with a cou
ple of ready-to-print header lines and a couple of ready-to-print footnote lines with
which to label the bars. Moving the setup of these lines out of BARCHART does not
complicate the particular application within which BARCHART is being developed, but it
does create a smaller and more general-purpose bar-charting facility.

Sometimes less is more!

SALES SUMMARY
PRODUCT LINE COSMETICS

$2000

xx
xx

1500 xx
xx
xx
xx
xx

10()0 xx
xx
xx
xx
xx

500 xx
xx
xx
xx
xx

0

NORTH~

EAST

xx
xx
xx

xx xx
xx xx
xx xx
xx xx
xx xx
xx xx
xx xx
xx xx

CENTRAL HOME
OFFICE

xx
xx
xx
xx

SPECIAL

FEBRUARY
PAGE 17

Figure 19.2. Example of format to be printed by routine BARCl-IART.

19. 2. 5 Generalized structures

Using the techniques of structured design, we can analyze and factor the srructure
of a generalized problem or a class of problems taken in the abstract. The benefits of
such an approach are manifold. Having a good structural design for an entire class of
problems means simplified design for all future specific programs of that type. Often, it
is possible to recognize a particularly effective system's organization or ide.ntify some
additional levels of factoring th.rough looking at a generalized, rather than specific, prob
lem. Basing specific solutions on the generalized structure increases the likelihood that
future expansion can be achieved simply. Finally, in attacking an entire class of prob
lems, more effort in evaluating and improving coupling and cohesion and more careful
iterative refinement of the entire structure can be justified.

The basic idea behind generalized structural design is to iterate on the entire
design process until the designer is convinced that, for the scope of the general case be
ing considered, the design is optimal in terms of maximal factoring, minimal average

328 STRUCTURED DESIGN

coupling between modules, and maximal summed cohesion of individual modules. This
point is reached when two successive iterations produce no changes. In doing this, the
generalist/designer carries the factoring further and is more picayune about implied
coupling than would be the designer of any single special application. The specialist can
always back up from or compromise the optimal general design in the interests of
special-purpose objectives.

To illustrate some of the payoffs possible with a fully factored, generalized design,
consider the strudural design for the generalized sequential file update. The easiest
wa~' to describe this problem is to exhibit its solution. The authors do not claim that
the structure in Figs. 19.3a and 19.3b is optimally factored, but it is at least close.
While this structure does not cover every bell and whistle ever hung onto a sequential
file update, it probably contains the places to hang them. This is an expansion of the
full.Y factored transaction center introduced in Chapter 11. Any specific application can
be tailored by striking out features not needed, or adding others where they are most
closely bound. Some specific applications might have no cross-validation of transactions
against data in the master file, for example, or might require merging corrections of
previously rejected transactions with the sorted valid transactions.

COORD
Coordinale
update and
processing

GET-A-DATA
\

\ ' '\..

GET-UPDATED·
MAS

PUT-TO-MAS

ne11.t valid

transac~

GET-OLD-MAS

CH EK-MAS
Validate
master data

~~aster
llem

UNMATCH-00
Process on "add
new item"
transaction

trans ~ t ~aster + 6 item

INSERT-DO
Create new
master item

master
item

Dispatch on type
for matched
transactions

TYP-1

TYP-1-UPDATE X-CHEK-2
Do type I
updating of
master dnla

\
"ll

Figure l 9.3a. Generalized, fully factored structure for sequential
master file update process.

\master
ecord ~r

OUT
Device
routine

I

I

•

...--.----...---,
IN
De\lite
routine

STRUCTURE AND PROGRAM QUALITY 329

GET-NEX-OK-TRAN
Get sorted, compleled,
\lalidated
transaction

next valid 'J
transaction&' ,

GET-NEX-TRAN SEQ-VALID
Order-dependent
validity checks
on sorted

ff sorting unnecessary

or separate, GET-1-0K· TRAN
lhis used rrom
GET-UPDATED-MAS

internal

trans~

GET-OK-TRANS

GET-I-TRANS

ua~

lNPUT·TRANS

.r. .. 'l\
record •

LIST
Create proor
listing

\ ok? trans\ internal
\ !rans.

GEN'L-CHEK
Format \lalidily
checks ... convert
to internal code

TRANSCODE

ORDER-VALID
Order·de1le ndent
validity check,
input sequence

TYPE.CH EK
Dispatch and
check by lype

............ ... I
GEN'LOOIC·J

•••

I
I

Soning subsyste ,

Figure l 9.3b. Solution for generalized sequential file update.

ERROR-SUB
Error messaging
subsystem

OUT
Device
routine

To st~e just how flexible such a generalized structure can be, let's consider some

major changes. How about a VALIDATE TRANSACTION FILE ONLY pass'! The only new

code required is represented by module VALIDRUN in Fig. 19.4. What about the radical

change of introducing a disk file and going to a random access file update protocol?

Figure 19.5 details the required changes. Different access modules for the master file

330 STRUCTURED DESIGN

will be needed. A '\dictionary look,, will be needed to verify that an insertion does not

duplicate an existing identification (IDLOOK). And the procedure in GET-UPDATED-MAST

must be changed. For the random access method, a transaction is obtained~ if it is not

an insertion, the corresponding master item is obtained (it may be in already), and the

pair is handed to MATCH-DO. In other words, the difference between sequential and

random file processing can be isolated into the procedure of a single module!

VALIORUN
\'•tid•I~ transac1io
Ille. list in in1er•
nal rorm.

Figure 19.4. Changes to generalized update structure to create validation run.

Further modifications to the structure are shown in Figs. 19.6 and 19.7. These

show a trial update run, which does not actually alter the master file, and a system to

update from an internal source of sorted, coded transactions.

19.3 Software reliability

Reliable operation is a major design goal in most systems development processes.

In hard-systems engineering, reliability often is so important that formal, systematic

strategies are used to increase reliability, including so-called statistical reliability theory.

The techniques for developing reliable computer hardware - redundancy, self

checking data and computations, majority voting logic, duplicated systems, fall-back and

switchover, and the like - are such that the hardware can now be made almost arbi

trarily reliable. Similar concepts in software have been almost totally absent until re

cently; within the past few years, various conference proceedings L2.3 and assorted pa

pers in technical journals 4 have awakened an interest in software reliability.

llCllt 'llllid

[

IN
Disk

,1n1errace

STRUCTURE AND PROGRAM QUALITY 331

COOltD
Coordinai¢
upd11c and
proc:euina

'I Upd•tcd \
data

\. "\.

\ '
PUT-TO-MAS·
ON-DISK

...

Figure 19.5. Sequential file update changed to random access update.

no! valid

tuns.t~

D!Yia!.
routine

[

IN

TltlAL
Run updale but
leave mas1er lilc

, ..

/ \
I

Figure 19.6. System to do a trial update without altering the master file.

332 STRUCT'URED DESIGN

ET·UPDATED·
A.S

INSERT-DO
Crule new
m.u1er item

INTERNAL·UP
Upda1e file from
internal SQurcc

I ' I

•••

' \ I \
Figure 19. 7. System to update file from internally generated transaction streani.

Clearly, the issue is not an academic one. Consider a modern airport with landing
and take-off traffic being all or partly controlled by a computer; such systems are in
operation in several large international airports. Tremendous effort has been focused
on developing ultra-reliable hardware configurations for this and other vital applications.
It will be small comfort for the relatives of passengers to hear that the computer
hardware functioned perfectly all through the mid-air collision of two Boeing 74 7 jets -
and that the cause of the problem was a minor bug in a program. Obviously, a system's
failme is a system's failure, whatever the cause.

We are witnessing an era of increased penetration of computers into what may be
termed vital applications. A vital system is one in which a computer is in direct control
of a situation involving responsibility for human life or valuable property. Because of
the control function, vital systems frequently are of a real-time nature. Examples of
suclh systems include computer control of large industrial processes, computer
controlled factory and material-handling systems, computer regulation of vehicular
traffic flow, air-traffic control by computerized systems, medical and hospital informa
tion systems, and centralized missile and weapons control by computers. In each case,
the computer could cause direct loss of life or destruction of valuable property through
an action that may not (or perhaps could not) be cross-checked by humans.

A casual survey of current literature will verify the increasing number of such vi
tal applications of computers. In fact, any time-shared computer system (e.g., order en
try, banking, airline reservations, and so on) must be assumed to be vital if the number
of users is high enough. One can never assume that a system's crash will be inconse
quential to some user's activity. In fact, lost revenue to a company may in itself qualify
such systems as vital.

STRUCTURE AND PROGRAM QUALITY 333

It is in vital real-time computer systems that attention focuses on the availability,
reliability, and dependability of the total system. Much effort has been concentrated on
hardware reliability, but for the total system to be reliable, the software must also be re
liable. Redundancy, majority logic, and polymorphism are among the many dependable
approaches to making the actual implementation of a given hardware architecture more
reliable. The concept of hardware reliability is well understood~ the same cannot yet be
said for software reliability.

Although reliability is a more obvious consideration in vital computer systems, it
is, at some level, a design objective of all systems. The monthly payroll system must
be depended upon to function with complete reliability, or employee grievances will
result.* Similarly, engineers will begin smashing things if the bridge beam stress
analysis pac::kage frequently produces garbage output.

19.3.1 Software failures

Studies of hardware versus software failures in a service bureau environment have
indicated that for every program blow-up traced to a hardware failure, at least four or
five are due to systems software bugs. Any resident systems programmer charged with
customer liaison in a large installation can attest to this. Studies by Yourdon 5 of a

· scientific data acquisition system and several installations of a vendor-supplied operating
system suggested that software failures accounted for approximately 50 percent of the
total fai I ures.

User program failures must be added to those that occur in the systems software
(the operating system, data base management package, teleprocessing monitor, and so
on). Unfortunately, it is more difficult to acquire figures for application program
failures in an operational system, but these can be expected to at least equal systems
software failures. In other words, in a system with ordinary hardware reliability and
state-of-the-art programming, we should not be surprised to learn that nine out of ten
systems failures were due to software.

19.3.2 Nature of software reliability

Reliability generally is established as a technical measure by defining it in terms of
mean time between failures (MTBF). (See Chapter 1.) This has an obvious interpreta- ,
Hon for hard systems and for continuously operating real-time software. For other pro
grams, the interpretation is in terms of operational time, or number of discrete func
tions executed, between failures. MTBF implies an underlying stochastic behavior,
ideally expressed in terms of a probability density function or functions. The ability to
do this for real components and combinations of these components is what makes possi
ble quantitative reliability theory. Can we do this for software'?

*I,n 1973, one of the authors visited a major oil company in which the workers threatened to drop their tools
and walk out of the refinery if their paychecks were more than an hour late. Since software failures were the
major cause of delayed paychecks, the company had, for several years, maintained an obsolete system in
parallel with their current one. If the current system aborted and could not be quickly repaired. the company
switched to the obsolete system in order to produce something resembling a paycheck!

334 STRUCTURED DESIGN

Hard systems generally fail because one or more components have worn out.
However, correctly designed and constructed real components have finite lifetimes, usu
ally distributed as well-behaved probability functions. For example, a light bulb fails as
a result of a process of progressive decay set into motion when it was first activated.

, The instructions of a program do not wear out in a similar fashion. There is no
progressive degradation of the quality of the computation at memory location GLOP. If
this computation fails, it fails because it has always been wrong. It did not fail before
only because it was not executed before, or because the data on which it fails did not
occur before. Possibly it has failed before, but the failure was not detected.

Software components are either right or wrong for all time (given stable functional
requirements). The probabilistic behavior of software failure arises not from an intrin
sic decay process of the components, but from the data that the software is called upon
to process. The probability of failure during a given time span is a function of the
number of lurking bugs (that is, wrong components), and the arrival of data that exer
cise one of those bug-ridden components. For a mathematical model based on this ap
proach, see Dickson et at. 6

19.3.3 The ;maginary adjective "debugged"

No software system of any realistic size is ever completely debugged - that is, ·
error-free. The dramatic proof of this is the unrelenting flow of errors noticed in so
called debugged vendor-supplied software, which has been in use for years. The pro
cess of correction is itself error-prone: Bugs can be introduced while correcting other
bugs. For this reason, it is likely that the long-run fraction of system in error is not
even asymptotic to zero. To the extent that corrections complicate, or increase the size
of, the system, the fraction of system in error may not be asymptotic to any value, but
instead may begin systematically increasing after a period of time.

In studying maintenance histories of ''unstructured" application programs in their
second year of use, one of the authors found that an average of 27 instructipns for
every thousand of the original instructions had been changed or added due to discovery
of bugs during that year. An additional three per 1,000 were corrected in the third
year. Thus, after a year of use, at least 3 percent of the instructions in a typical pro
gram contained errors. Structured. programming and structured walkthroughs (see
Chapters 20 and 21)· are credited with reducing the number of bugs to the miniscule
level of one bug per 10,000 instructions - but it is not yet clear whether those
numbers can be achieved by the average programmer in the average data processing ap
plication. Even with one bug per 10,000 instructions, we are faced with the prospect of
large air-defense systems and air-traffic control systems containing between l 00 and
1,000 errors upon installation (several such systems are under development with a total

of a million to terti million instructions!).

19 . .3.4 Types of software failures

When a statement containing a bug is executed, it does not necessarily mean that
the system will fail in the sense of ceasing to operate. Sometimes, the consequence of
the bug may be a system halt, a trap to an error routine, an exit to the operating sys
tem, a dump and abort, an infinite (or arbitrarily long) loop, the clobbering of some
portion of the program, or the modification or processing such that most or all further

STRUCTURE AND PROGRAM QUALITY 335

processing is incorrect. This type of situation is sometimes· termed a terminal failure or
software crash. The term ~~fatal error" is also used, but will be applied here to the kind
of data which may legitimately trigger a terminal failure.

The opposite of a terminal failure is a localized, or nonterminal, failure. The
scope of such a failure is limited, often only to the immediate processing, the results of
which are dependent upon the causal data (or conditions). One cycle of processing the
data, or one value of the output, is all that is in error.

Error conditions of either kind may or may not be detected by the program and
the occurrence may or may not be indicated to the environment. An unindicated error
is more to~erable for nonterminal failures. Mysterious system crashes are equally seri
ous - but at least one knows that they have occurred! Undetected errors are, by
definition, also unindicated.

An observed failure in an executing software system may derive from various
sources. Hardware failures may trigger a software failure. The software may detect and
indicate hardware failures, either deliberately and directly (as in a conditional branch on
a parity error after an input-output operation) or incidentally (as with redundant
software). Computer operators (and other on-line users) may take erroneous actions.
The incoming data may be wrong. Finally, the other components may be correct, but
the software itself may be in error.

For high reliability, software must be cognizant of conditions in all these areas.
Responsibility does not necessarily extend to correcting or overcoming such error condi
tions, but it does require that the software not "do something stupid" - e.g., go into a
terminal failure.

19.3.5 Data and software failures

The probability distribution of software failures is really made up of two underly
ing components deriving from the two very different kinds of data which the system
may receive. If the data are normal or "well-behaved" (consisting of common or typi
cal cases), one distribution is observed:

P
/1

= probability of failure with normal data

When the data is pathological, a different behavior is observed:

PP = probability of failure with pathological data

We suggest that distinct modes of operation in the program or different aspects of
the design are determining factors in each case. Moreover, typically PP is much greater
than P

/1
~ thus, concentration on PP is more likely to significantly increase software relia

bility. It should be noted that both unindicated and terminal failures are more often as
sociated with pathological data. This should not be regarded as a disadvantage, but
rather as a challenge to the designer: The fact that programs fail more often, and more
seriously, because of certain kinds of data can be exploited in design, testing, and
u~r.atronat use.

336 STRUCTURED DESIGN

19.4 Software redundancy

Achieving reliability through software redundancy is less straightforward than
analogous techniques in hardware. Both can be regarded as relatively extreme and
probably expensive. Redundancy should be regarded as a technique to be used when
high reliability is a critical requirement.

The difference between hardware redundancy and software redundancy can be ap
preciated by considering a duplicated hardware system. Performance of the same opera
tion by two machines (or machine sections) provides a dependable method of increasing
reliability. There is a very low probability that both systems will fail simultaneously and
in identical fashion. Thus, agreement in results generally can be taken as an absence of
failure. However, duplexed computation provides only error detection; error correction
must be undertaken separately. With triple redundancy, majority voting may be used to
deliver only the correct result. In either case, the redundant facilities are duplicates of
each other and do not entail independent design and development.

Consider what happens when we execute two copies of the same program (or the
same program twice). ~f the results disagree, it is indicative of a hardware failure, not a
software failure. The single exception occurs when the failure is caused by asynchro
nous non-reproducibility - commonly known as a "timing bug.,, Also, if there is a
bug, the usual result is that both copies of the program will have a terminal failure at
the same time - not what we would like to see in a reliable system! Thus, it is clear
that software redundancy must be achieved through non-identical components, implying
a comparatively larger development cost.

19.4.1 Self-checking procedures

Some computations may be made inherently self-checking - that is, side effects
to the algorithmic process itself may be used to check (or verify, or prove) the result.
An algorithm that develops data and a checksum by independent computations within
the: same algorithm is an example of a self-checking procedure. The results may be
checked by proving the checksum.

19.4.2 Reversible computations

Some computations can be undone or performed in reverse to yield some or all of
the original inputs. A square-root procedure can be protected redundantly by squaring
the result and comparing it to the input argument. This approach is attractive when the
reverse computation is substantially easier to perform than the original. Of course, not
all computations are uniquely reversible from the outputs alone: A quotient cannot be
used to produce the dividend without the divisor.

In general, of course, the computations of interest are much more complex than
extracting a square root. The analysis required to develop the inverse process could be
very involved and could slow the execution time of the system tremendously.

STRUCTURE AND PROGRAM QUALITY 337

l9.4.3 Approximations and reasonableness checks

If a lowered probability of detection of actual errors is tolerable, then the redun

dant calculation need only involve an approximation to the actual computation. This

approach also is acceptable if a software failure can be expected to produce a gross devi

ation rather than a minor deviation (as often is the case). The attraction of this ap

proach is that the approximation or reasonableness check is, almost by definition, a

simpler, faster computation than another exact version. However, reasonableness

checks are largely, though not wholly, limited to numerical computations.

The extreme form of an approximation occurs when the result simply is checked

for reasonableness. For example, the constant C = 186,324 miles/second might be

used as a check for reasonableness on velocity of a gross object. Similarly, the area

under a curve could be checked to determine that it is less than the maximum height

ti:mes the span on the ordinate. This latter product is a quick approximation, poor

though it may be, of the area. Reasonableness checks really are approximations

guaranteed to exceed (or to be less than) the actual value. A pair of such approxima

tions can be used to bracket the value.

An approximation to a computation may be compared with the actual computation

to see if the difference is within some tolerance limit. If it can be proved that the

difference has an upper bound for correct results, this can be used as the basis for in

creasing the probability that the actual result is correct. For example, a stepwise in

tegration with very small steps might be checked against one that has large steps and

fewer iterations. Similarly, an extended precision floating point operation might be

checked against a short precision duplication.

19.5 Structure of fault-handling processes

In prototype, a fault-handling process has four elements. The existence of a fault

must be detected by some process for the program to be cognizant of it. Immediate ac

tion must be taken to process, bypass, or otherwise deal with the fault. Finally, provi

sion may be made for ultimate correction of the cause of the fault, or recovery from its

consequences.

It is an almost universal rule of thumb that faults should be detected as early as

possible - that is, close to the source at some interface. Early fault detection protects

the system (including its resident data) from the effects of undetected faulty data enter

ing into computations. Detection at or near the source also enables tracing the cause of

errors to their ultimate origins in data. A test deeply imbedded in the system often

cannot be related to causes in input data. Finally, early detection often is efficient

detection. By definition, a specific instance of data is input only once, even though it

may be used countless times. Error-checking at the input would be performed only

once, while error-checking at the point (s) where the data are used would be accom

plished many times.

There are conflicting criteria, however. Early detection procedures are separated

from the logic of the relevant processing functions. At the same time, it is easy to see

that the processing necessary to assign data to one of several legitimate classes must at

least partially duplicate the processing necessary to isolate the same data falling into

complementary illegitimate classes. For example, checking for illegitimate part

338 STRUCTURED DESIGN

numbers is functionally equivalent to the process of classifying these part numbers into
the legitimate cases. · Thus, separate detection is also duplicated processing.

Separation of fault detection from the procedures which use the data rnay also be
less reliable. Data which were correct can become faulty through accidental
modification or through substitution. Later versions of the program may obtain the
same data from alternate sources. The design philosophy that yields greater reliability is
th 1e one that requires every function to protect itself, validating its own data. Some pro
grammers have referred to this philosophy as one of having each module build its own
firewalls to protect itself against possible damage in other modules.

I

Systems programs and their components - especially operating systems and real
time/time-sharing systems - must never assume correctness of data. The same is
probably valid for all parts of vital systems. The rub is that the very system requiring
maximum reliability often is the one with the most stringent speed requirement. The
designer must make his choices in these situations with great care and based on sub
stantive issues. Often a final arbiter is found in the fact that some data values will
make a procedure malfunction. Negative values of X for an iterative computation of
the square root of X not only may be illegal, but also may cause the procedure to cycle
endlessly. A procedure must protect itself from all such dangerous data.

19.6 Summary

We have seen that the quality of a computer program usually can be described in
terms of its generality, flexibility, and reliability - in addition to efficiency. Most of
this chapter was devoted to defining such fuzzy words as generality in an objective,
technical fashion.

The lessons of this chapter already have been learned by some enterprising sys~
terns designers: The preferred way to build a general-purpose system is not to build one
computer program that will do all things for all people. Instead, what one should do is
build a large number of small, single-purpose modu1es that are flexible and that have
extremely clean interfaces. The generality comes from the almost i.nfinite number of
combinations of such modules - combinations that very few designers ever would have
been able to predict.

CHAPTER 19: REFERENCES

1. Proceed;ngs of the 1972 Annual Reliability and Ma;ntainabi/ity Symposium, Institute
of Electrical and Electronics Engineers, IEEE Cat. No. 72CH0577-7R. New York:
1972.

2. Proceedings of the 1975 International Cot{/erence on Reliable Sqfiware ACM SIG
PLAN Notices, Vol. 10, No. 6 (June 1975).

3. Barry De Rose and Ch. W. Hamby, ~'Forecast of Software Reliability 1975-1985, H

Proceedings of the 1975 IEEE Computer Society Co1iference, Institute of Electrical
and Electronics Engineers, IEEE Cat. No. 75CH0988-6C. New York: 1975.

4. Tom Gilb, "Parallel Programming," Datamation. October 1974, pp. 160-161.

5. E. Yourdon, '~Reliability of Real-Time Systems, Part 4: Examples of Real-Time
System Failures," Modem Data, April 1972, pp. 52-57.

6. J.C. Dickson, J.L. Hesse, A.C. Kientz, and M.L. Shooman, HQuantitative
Analysis of Software Reliability, Proceedings of the 1972 Annual Reliabilizy and
Maintainability Symposium. Institute of Electrical and Electronics Engineers, IEEE
Cat. No. 72CH0577-7R. New York: 1972, pp. 148-157.

CHAPTER 20
IMPLEMENTATION OF MODULAR SYSTEMS

20 .. 0 Introduction

Most of the emphasis throughout this book has been on the design of highly
modular systems. We have made passing references to implementation, testing, debug
ging, installation, and other such terms, but we have given no details on the methods
and strategies to be followed once the design work is done.

It is particularly important that we discuss implementation strategies, since there
has been a tendency in the field recently to assume that top-down design must always
be associated with top-down testing. Indeed, we will see in this chapter that one can
reasonably argue in favor of either top-down or bottom-up implementation. Much more
important, there is a vast spectrum of "compromise" testing strategies that can be em
ployed for particular situations. It is important to understand that one is not locked into
any one rigid implementation strategy.

We begin this chapter by outlining the basic characteristics of more common im
plementation strategies: top-down/bottom-up and phased/incremental. We then will
discuss some of the advantages of the top-down approach. This is followed by a discus
sion of advantages of the bottom-up approach (in an attempt to be fair to both!). We
conclude the chapter by discussing some of the more important variations on the top
down/bottom-up theme.

20.l Basic approaches to implementation

There are an almost infinite number of ways to implement and test any computer
system. Indeed, there are an almost infinite number of organized approaches to imple
mentation and testing! If we observed the development process followed by the typical
''organized" programmer/analyst, we probably would find some variation of top-down
design, followed by random coding, followed by bottom-up testing. The design strategy
currently used by most organizations tends to be a rather informal version of the top
down strategy* - that is, the designer tries to design the major chunks of the system
first, then breaks those chunks into smaller chunks, and so forth.

However, the strategy used by many programmers to code the modules tends to be
somewhat random. Depending on his mood, the programmer may code the top
modules first and the bottom modules later (i.e., a top-down approach to coding). Al
ternatively, he may code from the bottom up~ if he is an optimist, he may code the

*Of course, the more formal strategies of transform-centered design and transaction~centered design discussed
in Chapters 10 and 11 also are top-down in nature.

340

IMPLEMENTATION OF MODULAR SYSTEMS 341

more difficult modules first (regardless of where they appear in the hierarchy) and the
easier modules later~ if he is a pessimist, he may code the easy modules first and the
more difficult modules later!

Of course, we are interested primarily in the manner in which the programmer
tests his code. One might argue that this is determined entirely by the coding strategy.
If the programmer codes his system in a top-down fashion, then he must be testing it
top-down. This correlation between coding strategy and testing strategy is common, but
not necessary: The programmer may decide to finish all of his coding in a top-down
fashion, and then test the modules in a bottom-up fashion. We will discuss some of
these unusual combinations in Section 20.4.

In the testing carried out by most programmers, we can discern a choice between
a phased and an incremental approach~ similarly, we can tell that the programmer has
made a conscious choice of a top-down or a bottom-up approach. We will examine the
characteristics of each of these approaches.

20. 1.1 Phased versus incremental implementation strategies

Much of the discussion in the current literature focuses on whether the program
mer should code and test the modules at the top of the hierarchy before coding and
testing the modules at the bottom of the hierarchy, which is less important than the
choice between a phased implementation and an incremental implementation.

The phased approach to implementation could be described in the following
(slightly tongue-in-cheek) manner:

1. Design, code, and test each module by itself (this is commonly known
as unit test).

2. Throw all the modules into a large bag.

3. Shake the bag very hard (this is commonly known as systems integra
tion and test).

4. Cross your fingers and hope that it all works (this is commonly known
as field test).

While this may appear rather cynical, it probably is accurate for many small and
medium-size projects. After all, the programmer argues, there are only a dozen
modules in the system - what could possibly go wrong? In a larger system, we usually
do not find the extreme approach suggested above, but we still find that large numbers
of modules are combined and tested en masse. For example, in Fig. 20.1, it is common
for the programmer to throw modules c, Cl, c2. CJ, and C4 into the proverbial brown pa
per bag and test them together. The traditional terms for phases of this approach are
unit test, subsystems test, and systems integration and test.

In contrast, some programmers follow an incremental approach to testing. This ap
proach can be paraphrased in the following manner:

1. Design, code, and test one module by itself.

342 STRUCTURED DESIGN

2. Add another module.

3. Test and debug the combination.

4. Repeat steps 2 and 3.

The essential characteristic of this approach, then, is that we are adding only one new
(and potentially "buggy") module to the system at a time. Because the system grows
gradually to approximate the final desired system, this approach also has been called
stepwise refi. nement.

TOP

A B c

A2 Bl B2 Cl C2 CJ C4

Figure 20.1. A typical program structure.

One advantage of the incremental approach is immediately obvious: It makes the
process of debugging more scientific, more organized. To under:.>tand this, it is neces
sary to distinguish between testing (the process of demonstrating that the system does
what it is supposed to do - a process that usually involves execution of test data and
examination of the output) and debugging (the art of identifying the location and nature
of a bug once its existence has been made known).

In the phased approach, the programmer observes that when 39 modules are
thrown together in a paper bag, the combination doesn't work - however, the process
of tracking down the bug(s) in that combination of 39 modules is much like looking for
a needle in a haystack. The incremental approach is clearly preferable: We begin with
a combination of N modules which apparently work (even though they still may contain
some undetected bugs); we then add one new module, and observe the behavior cf the
new combination of N + 1 modu1es. If the new combination does not work, the bug
may or may not be located in the most recently added module (though frequently that
is the case)~ what is important to us is that something about the new module has aggra

vated the system to the point where a bug exposed itself - the "Sherlock Holmes" as
pect of debugging is, thus, immensely simplified.

IMPLEMENTATION OF MODULAR SYSTEMS 343

It should be clear that the decision to test the system in a phased or incremental
fashion is entirely independent of the decision to test in a top-down fashion. Top-down
testing strategies traditionally have been associated with development, and bottom-up
strategies traditionally have been more phased in nature.

20.1.2 Top-down versus bottom-up testing

I

For many years, bottom-up testing has been practiced without the somewhat unat-
tractive rubric of bottom-up. Instead, it was simply the best-_known series of steps in
which testing was done:

1. Unit testing (sometimes known as module testing, single-thread test-
ing, or program testing)

2. Subsystems testing (also known as run testing, or multi-thread testing)

3. Systems testing (sometimes known as volume testing)

4. Acceptance testing (also known as field testing, or user testing)

Regardless of the terms that are used, the fundamental characteristic of bottom-up
testing is the sequence in which the modules are tested. In Fig. 20.1, for example, a
bottom-up sequence would dictate that modules A, Al, and A2 be tested separately, then
together as a package. Note that this could be accomplished either in a phased or an in
cremental fashion. Similarly, we would test B, Bl, and B2 individually and then together
as a B package; c. Cl, and C2 would be tested to eventually produce a c package. When
this has been accomplished, the A, B, and c packages would be combined with module
TOP to produce an entire system. Naturally, for a larger system, there would be several
steps in the progression from modules to packages, to super-packages, and so forth -
until we finally have the entire system.

In most cases, bottom-up development requires the presence of so-called drivers
- also known as "test harnesses," "test monitors,,, "test drivers," and various other
terms. A test driver has to "exercise H the module under test, in what is basically a
primitive simulation of what the superordinate module would do if it were available. A
test driver can take one of two basic forms: a specialized driver or a Hskeleton coding,''
or outline, of the superordinate. If skeleton coding is used to drive modules, the skele
ton may be saved and used as the first cut on coding the actual superordinate when that
stage is reached. The processing required of a test driver depends upon whether the
module under test is an afferent, efferent, or coordinate module. Table 20.l identifies
the requirements for drivers of each type of module.

Top-down testing, as the name implies, proceeds in the opposite direction. If we
use Fig. 20.1 as an example, again, the top-down approach would require TOP to be cod
ed and tested first~ coding and testing of modules A, B, and c would be accomplished
later~ implementation of A 1, A2, BI, 82, Cl, c2, C3, and C4 would be accomplished last.

It is important to see the interactions between levels in the hierarchy during top
down development. At the time when TOP is tested, modules A, B, and c must have
been specified, and their interfaces with TOP must have been determined. However, A,

B, and c have been neither tested nor coded. Indeed, it is possible that the procedural
design has not even been accomplished for these modules. Instead, they exist as dum
my modules, or stubs.

344 STRUCTURED DESIGN

The concept of a dummy module, or stub, is an important aspect of top-down im
plementation. In many cases, the dummy module simply exits - without doing any
work at all! This implies that the programmer can exercise the superordinate with some
of the subordinate functions totally absent~ one can sometimes regard error-checking
modules from this point of view. Similarly, the dummy module may return a constant
output. Thus, a tax calculation module in a payroll system might calculate a constant
tax of $10 for all employees regardless of their salaries.

It may also be appropriate to have the dummy module print a message to let the
programmer know that it was invoked. The trace options in a number of high-level
programming languages are convenient for this purpose. In an on-line environment,
the dummy routine can even ask for help from a terminal: After displaying its input ar
guments on the terminal, the dummy module can accept appropriate outputs from the
programmer and return them to its superordinate. In a real-time environment, it may
sometimes be sufficient for the dummy module to execute a timing loop - that is,
without doing any useful processing, it would chew up the amount of CPU time (and
other systems resources) that the actual module is estimated to require. Finally, it may
be appropriate to implement a primitive version of the actual module. Thus, the dum
my version of a binary search table-lookup module might accomplish its required func
tion with a primitive linear search.

It is important to note, however, that to test fully the superordinate in the gen
eral, rather than exceptional, case requires a stub that can supply or accept and display
test data needed by or created by the superordinate being tested. The requirements are
outlined in Table 20.1.

Table 20.l
Processing Requirements for Stubs Versus Drivers

INFORMATION
FLOW

AFFERENT

EFFERENT

TRANSFORM

NULL
(empty or no data)

number needed
number needed
usin~ skeletons

STUB
(top-down)

setup test case
return to .caller

accept input
display
return
accept input

display
setup corresponding

lest results
return

return

modules - 1
modules - 1

DRIVER
(bottom-up)

call module
accept results
display

setup test case
cal! module

setup lest case
call module
accept results
display

call

modules - 1
modules - atomic modules

IMPLEMENTATION OF MODULAR SYSTEMS 345

Dummy modules, as a concept, are not restricted to top-down modules. As an
illustration, consider the structure shown in Fig. 20.2. We could imagine the following
boflom-up, incremental development:

1. Code PROC.

2. Desk-check PROC. Indulge in a structured walkthrough of PROC. Hope
that divine guidance will reveal the presence of bugs before PROC has
been executed on a real computer.

3. Set up a driver for PROC. This might be a skeleton version of SUPER,
or perhaps a general-purpose test driver.

4. Create stubs for SUB and DUB.

5. Debug PROC alone, on a real computer, with dummy SUB and DUB and
the driver (internal debugging of PROc).

6. Combine PROC with the real SUB (which has already been debugged)
and debug the combination (interface debugging with SUB).

7. Combine PROC-SUB with the real DUB, and debug the new combination.

8. Combine PROC-SUB-DUB with the real SUPER, and test the combination.

SUPER

PROC

SUB DUB

Figure 20.2. Bottom-up stepwise refinement.

To see the difference between top-down and bottom-up implementation, consider
the example shown in Fig. 20.3. The sequence of testing for the top-down approach is
shown in Fig. 20.4; the bottom-up approach is shown in Fig. 20.5. As we can see, the
top-down approach requires 17 stubs~ the bottom-up approach requires either 17
drivers, or nine skeleton drivers (outline code for some module) and 11 stubs. It is not

346 STRUCTURED DESIGN

immediately apparent at this point whether one approach is easier than the other. We
will have more to say about the relative advantages and disadvantages of top
down/bottom-up implementation in the sections below.

F

AA

G M

Figure 20.3. Top-down versus bottom-up development.

Code/Test With Stubs

AA BB,CC,DD
BB F,EE
F
EE G
G
cc H,WW
DD WW,L,ZZ
WW XX,YY

etc.

Figure 20.4. Sequence of testing
with top-down approach.

Code/Test

K
M
N
zz
I
J
xx
K
yy
WW

etc.

With

K,M,N

l,J,K

J,K
XX,YY

Figure 20.5. Sequence of testing with
bottom-up approach.

IMPLEMENTATION OF MODULAR SYSTEMS 347

2:0.2 Advantages of top-down implementation

The virtues of the top-down approach have been discussed in a number of recent

articles and at computer conferences. However, there has been a tendency to associate

top-down testing with top-down design, chief programmer teams, structured walk

throughs, structured programming, and a variety of other ·~programmer productivity

techniques .. ' ' Of course, in this chapter we are interested in considering top-down test

ing on its own merits. We should not credit it with ben_efits that actually are brought

about by structured programming or other philosophies. Equally important - and gen

erally not understood by most programmers - we should not credit top-down testing
with benefits that actually are due to incremental testing.

Since the supposed benefits of top-down testing have been published so widely
(see, for example, Baker 1.2 and Yourdon 3.4), the best way to proceed is to examine
each benefit in turn.

20. 2. 1 Top·-down testing eliminates systems testing and integration

That top-down testing eliminates the need for systems testing and integration is
generally true, but it is a characteristic of incremental testing, not top-down testing per

se. We could just as easily eliminate systems testing and integration with bottom-up in

cremental testing. However, as we pointed out earlier, top-down testing tends to be

done in an incremental fashion, while most bottom-up testing traditionally has been
done in a phased manner.

There is nothing to prevent the disciplined programmer from following a bottom

up incremental testing approach. Similarly, there is nothing to prevent the undisci

plined programmer from following a phased top-down testing approach! Indeed, the au

thors have observed several supposed top-down approaches recently when the impatient

programmer threw all of the modules for one level of the hierarchy (e.g., modules A I,

A2, Bl, B2, Cl, C2, CJ, and C4 of Fig. 20.1) into a large bag, with the hope that they would
all work properly.

20. 2. 2 Top-down testing tests the most important things .first

The comment that the top-down approach tests the most important things first

may appear to be generally true of medium-size business-oriented systems, and for a

variety of other ordinary computer systems. However, it would be more accurate to say

that, with top-down testing, di/ferent things are tested first. In some systems, the

modules at the bottom of the hierarchy are critically important, and it could be advanta

geous to test them first.

When we say that we are testing the most important things first, we usually mean

that we want to find the most important bugs as early as possible in the implementation

of the system. Depending on the nature of the system, the critical bugs may be either

at the top of the hierarchy or at the bottom, or both.

For example, in a real-time system with stringent processing requirements, the

most critical problems may be at the bottom of the hierarchy: If a bottom-level module

cannot accomplish its task in 48 microseconds, system's queues may begin to overflow,

and the entire system may quickly abort. Similarly, the designer must consider the pos-

348 STRUCTURED DESIGN

sibility that he has erroneously specified the interface for a bottom-level module in such

a way that the module will never be able to accomplish its task. Unless such an error is
found early, it might ultimately require a large amount of recoding in the superordinate
modules that call the bottom-level module.

In most normal systems, the problems - and the bugs - tend to be of a different
type. A major computer manufacturer's recent efforts to develop a COBOL compiler
offer an excellent illustration of the potential problems. The COBOL compiler was
chopped into two pieces, which appropriately were titled the front end and the back
end. The front end of the compiler was being developed by one .team of programmers
in a suburb of San Francisco, while the back end was being developed by another team
in a suburb of Toronto. According to the plan, the two teams would put their halves of
the: compiler together approximately two years after commencement of the project -
and hope that it worked correctly.

Of course, everything should work correctly - especially if the interface between

the: front end and the back end of the compiler has been carefully specified and docu

mented. However, the Toronto programmers and the San Francisco programmers may
not read the interface document in quite the same way - any interface specification
tends to have at least a little ambiguity or incompleteness. The important thing to real
ize is that some aspects of the high-level interface will filter all the way down to the
bottom level of the hierarchy. Thus, if there is a problem in the high-level interface

(which will be determined at a Toronto-San Francisco summit conference, otherwise
known as systems integration), it may well propagate through all the modules.

If interface problems of this sort are anticipated - and it is reasonable to expect
them in any project involving more than one team of programmers - then top-down
testing does have some distinct benefits.

Of course, this leaves us with the situation of a large, real-time system developed
by multiple teams in geographically remote areas of the country: We may anticipate

seritous problems at both the bottom and at the top of the hierarchy. We have no sim
ple answers here: There may, in fact, be an argument for implementing from the top

down and from the bottom up, at the same time.

20.2.3 Top-down testing allows users to see a preUminary version of the system

The ability to present users with an early version of the system often is claimed as
the most important benefit of top-down implementation - and deservedly so in many
cases. A skeleton version can be demonstrated to the users to ensure that the program
mers are implementing the system that the users requested. Equally important, users
have the opportunity to provide some feedback to the design process; they may have
ask1ed for certain features in the system without fully understanding the consequences.
This is particularly important when an application is being computerized for the first
time, or when a second-generation batch application is being converted to a third

generation on-line, real-time application.

However, the Huser-feedback,' characteristic of top-down implementation is not

particularly important if the user knows precisely what he wants, and if the

designer/programmer is sure that he understands what the user wants. This may hap

pen, for example, when a system is converted from one machine to another, or

redesigned internally for greater efficiency, reliability, or maintainability - all of which

are "transparent" to the user.

IMPLEMENTATION OF MODULAR SYSTEMS 349

In a sense then, top-down testing may compensate for inadequate problem
specification or analysis. But we should point out that structured design assists the user
and systems analyst to understand and firm up specifications.

We also should point out that when users want a demonstration of the system -
especially a working skeleton of the system that they can use in a production sense it
is unlikely that top-down implementation will be followed in its pure form. For exam
ple, it is unlikely that the user will be satisfied with the skeleton system shown in Fig.
20.6a: It accepts only dummy processing, and produces its output in the form of octal
or hexadecimal dumps.

Figure 20.6b might represent a more realistic skeleton to show the user: Certain
common types of real inputs are accepted by the system, though the rare input cases are
processed by modules not yet implemented~ some of the processing modules have been
implemented, though certain exception processing is represented by stubs; and at least
one critical output report is produced by the system, though the formatting still may not
be up to the user's standards. Strictly speaking, this should not be called top-down im
plementation, since some branches of the hierarchy are pursued to a greater depth than
others~ for lack of a better name, some have referred to il as ~~left-corner design. n

It is important to realize that if a complete structural design has been accom
plished, the programmer can choose to implement any subsystem first~ some lower-level
subsystems may be valuable and productive to the user on a stand-alone basis. Exam
ples might be a reporting subsystem, an update subsystem, or even a collection of
atomic modules for statistical calculations.

20.2.4 Top-down testing allows one to deal with deadline problems more gracefully

Most data processing managers will admit that, despite their best efforts, their
EDP projects probably will exceed their budgets and deadlines. There are a variety of
reasons for this, some of which will be discussed in the next chapter. All that need
concern us now is that, in the real world, we have to admit the possibility that we will
not finish our projects on time.

This phenomenon of late projects is not new, of course; indeed, it has been en
demic to the industry for the past two decades. Thus, a number of user organizations
have begun to suspect that each new EDP project is not a special case (the excuse fre
quently used by the data processing department when things go awry), and that the
scheduling/budget problems are merely evidence of the programmer's incompetence.
The question is: If the circumstances (which may be beyond our control) are such that
the entire system is not finished when the deadline arrives, which parts of the system
would we prefer to have finished and demonstrable'?

With a traditional or phased bottom-up approach, there is a good chance that the
programmer will have finished all of the coding and possibly all of the unit testing.
However, there is an equally good chance that the brown-bag test will have failed -
that is, none of the pieces work together because of a bug in one or more modules.
From the user's point of view, there is nothing tangible that works~ users typically are
not impressed with compiler listings or the output from a module test.

350 STRUCTURED DESIGN

A

A

At

L

/
/

rx _JL_I

I l
I I
L__

TOP

B c

I '-

/ '
I rec~ -: f c2 it._ 1

_JL _ _JL __ _j

Figure 20.6a. Zigzag development.

TOP

c

\ \
\ \

f82_4__ -,
Bl

I I
Cl

I I

lc2~--,
I I

L _J

/ ' ' ' y 17-~--,
lz I
l I
'--- _J

Figure 20.6b. Zigzag development.

IMPLEMENTATION OF MODULAR SYSTEMS 351

The top-down approach, on the other hand, is more likely to result in a skeleton
that will show some tangible evidence of working. It may not accept all of the required
input types~ it may not completely edit the input; it may process only a few of the more
critical types of input; and it may produce only some of the required output, possibly
without a great deal of the formatting. Nevertheless, it generally will be capable of ac
cepting some input, performing some processing, and producing some output - all of
which is tangible evidence to the user that the programmers eventually may produce an
entire system. Of course, most users still will be displeased. They want the entire sys
tem to be dlelivered on the appointed deadline day. However, we must expect that their
displeasure wil1 be far greater with a phased approach than it would have been with an
incremental approach.

Again, we must emphasize that these are only general observations - not state
ments of some religious principle. There are times when the user will be more-or-less
satisfied if some of the bottom-.level modules work in a stand-alone fashion. Similarly,
it is possible that the user will be totally dissatisfied unless the entire system with all
its bells and whistles - is delivered on or before the deadline. In that case, the user
won't really care whether we have developed the system top-down or bottom-up.

20. 2. 5 Debugging is easier with top-down testing

The ability to debug systems more easily is not really a characteristic of top-down
implementation, but rather of incremental implementation~ as we observed in Section
20.1, debugging is considerably easier if we add only one new module at a time to an
existing combination of debugged modules.

20. 2. 6 Requirements for machine test-time are distributed more evenly
throughout a top-down prqject

In the classic New York Times system, L2 it was observed that a constant amount
of machine··time for testing was used from the ninth month of the project through the
twenty-fourth month. This has been verified in a number of recent projects, and it
represents an enormous advantage over the exponentially rising requirements for
machine-time found in classical data processing projects.

If we analyze the situation closely, though, we find that the phenomenon is caused
by incremental testing - not by top-down testing per se. That is, every day we add one
new module to the existing system and run through all the test data again - hence, we
use about the same amount of computer test-time each day. Of course, we will prob
ably add additional test data to ensure that we have thoroughly exercised the new
module~ and the module itself will require some additional CPU time. However, we of
ten find that such systems are input-output-bound, and thus require essen.tially the
same amount of Hwall-cJock" time regardless of the number of modules that are being
exercised. Similarly, we often find that the largest amount of time in a test-run is spent
by computer operators setting up the run (e.g., mounting tapes and special forms in the
printer) and breaking down the run.

352 STRUCTURED DESIGN

20.2. 7 Programmer morale is improved

It is not just the users and the EDP managers who are pleased by the tangible evi
dence of progress in a typical top-down project - the programmers also derive a great
sense of satisfaction from seeing something that actually runs to end-of-job at an early
stage in the implementation process.

This observation must be tempered by some of the points that we made earlier:
A system which accepts real inputs and produces real outputs probably is not being
developed in a pure top-down fashion - the afferent and efferent branches of the
hi1erarchy probably have been extended to a fairly low level, leaving other branches dan
gling temporarily. Also, there may well be some situations in which the programmer
will derive a great deal of satisfaction from seeing a stand-alone bottom-level module
that produces good output.

20. 2. 8 Top-down coding and testing substitutes for complete design

In the absence of a complete prior structural design, coding and testing must
proceed entirely or essentially in a top-down manner because the bottom-level modules are
not known! Indeed, the usual case has been one in which top-down design is accom
plished concurrently with top-down coding and testing. It is very dangerous to try to
guess the bottom-level requirements at the start of an implementation; the correct,
needed atomic modules can only be "discovered" by programming from the top down
or by completing a structural design.

Returning to Fig. 20.1, the designer/implementer, without a structure chart, is not
even aware at the time he codes and tests TOP, that Al, A2, Bl, B2, Cl, c2, C3, or C4 even
exists. He may have a "fuzzy" idea about some detailed processing that must be per
formed eventually - but he has not yet formalized those ideas.

When TOP has been tested, the modules at the next level - modules A, B, and c
- are specified, coded~ and tested. Note that this step also can be accomplished in ei
ther a phased or an incremental fashion. In order to test A, we must identify the ex
istence of modules AI and A2, and specify their interfaces with A; however, Al and A2

exist as dummy modules when we test A. Obviously, this process continues until we
have finished designing, coding, and testing the modules at the bottom level.

20.3 Bottom-up development

As we have seen, there are a number of situations in which the designer/imple
menter may consciously choose a bottom-up approach to testing. Perhaps the best
justification for bottom-up development is the system whose low-level modules are criti
cal in some sense. However, most systems have only a few critical modules, and one
could argue that after those modules have been tested, the project should return to a
top-down approach.

20. 3. I Bottom-up development as a function of resources

Another common justification for bottom-up development is based on the
scheduling of programmers. A structure chart for a typical system often resembles a
pyramid, with relatively few modules at the top and relatively large numbers of simple

IMPLEMENTATION OF MODULAR SYSTEMS 353

modules at the bottom. Thus, the manager might argue that the bottom-up approach is

preferable, because it allows him to assign large numbers of programmers to work, in
parallel, on the bottom-level modules.

In theory, this is true~ in practice, we often find serious interface problems

between the multitude of bottom-level modules. This usually is not the fault of the

bottom-up approach per se, but rather because of the almost irresistible urge to accom

pany it with a phased approach: All of the programmers throw their modules into a very

large paper bag and hope that the resulting jumble will accomplish some useful process

ing. Appropriate use of the management ideas introduced in the next chapter can avoid
most of these problems.

There are situations in which the programming manager finds that a large number

of programmer.s have been assigned to his projectl against his wishes, on the first day of

the project. One might argue that this would never happen in a rational organization;

we can only observe that (a) it is a mistake to think that most organizations are ration

al, (b) contractual commitments with one's customers may require that the program

mers be assigned to the project as soon as it has been authorized, and (c) the manager

may feel that if he does not assign the people to his staff when the project starts up,

then he runs the serious risk that they will not be available when he needs them. Such

a situation is likely to influence the manager to pursue a bottom-up development ap

proach - because it enables him to put the programmers to work more quickly.

While these problems tend to influence the manager to pursue a bottom-up ap

proach, it probably is more accurate to say that such problems lead to a phased ap

proach. Thus, if there is no machine-time for testing, there is a good chance that the

programmers will write all of their code with little or no testing - and, then, in a last

minute rush, all of the modules will be thrown together for a system's test.

20.3.2 Bottom-up approach required.for generalized atomic modules

Occasionally we find that the bottom-up approach is the only way in which we can

generate appropriate test data for low-level modules. In Fig. 20. 7, for example, suppose

we have just developed low-level module Bn, and that we wish to test it in a top-down

fashion. This means that we must be able to invent an appropriate number of varia

tions of a1 data elements that will be converted to a2 elements. These will be convert

ed eventually to a" data elements, then to b1 elements, and ultimately to the b11 ele

ments with which we test our module Bn.

The problem is that it may be very difficult to invent an appropriate number of a1

elements that will generate an acceptable sample of b
11

elements; quite possibly, alt of

the distinct a1 elements that we are capable of thinking of (or generating with a test

driver) will only generate two or three distinct b
11

elements. Consequently, we may de

cide to follow a bottom~up testing approach, using a driver in place of module Bk. This

assumes, of course, that a driver would be capable of generating an adequate sample of

b
11

data elements directly.

354 STRUCTURED DESIGN

An

Al

•
•

•

A

TOP

B c

Bl

•

Figure 20. 7. Testing problems with the top-down approach.

IMPLEMENTATION OF MODULAR SYSTEMS 355

20.4 Variations on the top-down and bottom-up approaches

As we have seen, the programmer often is required to make a choice between

top-down and bottom-up testing~ he also must choose between a phased approach ~nd
an incremental approach, the latter being highly preferable for all but the most simple

projects. What may not be obvious is that there are many different approaches -

indeed, an entire spectrum - available to the programmer. Some of the more common

"'compromise" approaches are discussed below.

20. 4. I The extreme approach: Design, code, and test a level at a time

When we first introduced top-down testing in Section 20.1, we suggested that the

design, coding, and testing of the N +I level of a hierarchy could not commence until

the N rh level had been completed. This could be regarded as a radical top-down ap

proach~ unfortunately, it is impractical if applied literally. In Fig. 20.6a, for example, it

is impractical to assume that the programmer could effectively test TOP if all of the

subordinate modules were stubs. Furthermore, if we wish to introduce real input and

produce real output, there is an implicit assumption that at least some portion of the

afferent and efferent branches have been carried to a low level (although this is not

necessarily true: A ·dummy version of module A in Fig. 20.6a could produce the

afferent data element from a test file).

20. 4. 2 The zigzag approach

A more common approach to top-down development is suggested by Fig. 20.6b

that is, some branches of the hierarchy have been pushed down to a lower level than

others. For lack of a better term, this has been called a zigzag approach 3 - the pro

grammer hops around the hierarchy, first pushing module A to the next lower level,

then pushing module Bl to a lower level, and so on.

There are at least three obvious reasons why this approach is likely to be taken.

First, the requirement to deal with real input and real output, as we suggested earlier,

will influence the programmer to develop some legs of the afferent and efferent

branches. Second, pressures from the user will dictate that certain types of processing

and certain types of output reports be completed as early as possible. Finally, a zigzag

development is a natural consequence of several programmers working on the project

simultaneously: Some programmers are faster than others.

20.4.3 Finishing the design before coding

Earlier, we suggested that the radical approach to top-down development involved

designing one level of the hierarchy at a time - and then immediately writing code for

the top-level modules before one has the faintest idea of the number and nature of the

bottom-lev<d modules. A more conservative approach suggests that the entire structural

design should be finished (and perhaps documented in the form of a structure chart)

before coding and testing commence. When implementation does begin, it can proceed

in a top-down fashion - the difference is that the programmer knows what lies ahead

of him (or below him in the hierarchy) as he codes each module.

356 STRUCTURED DESIGN

There are advantages and disadvantages of this conservative approach. Perhaps

the most important advantage is that it affords the designer an easier method of altering

and refining the design before he begins writing code. That is, when he reaches the

boi:tom level of his structure chart, he may observe that a minor change - propagated

through the entire structure - would greatly enhance the quality of the design. If he is

working with a structure chart, it usually is a simple matter of erasing a few lines and

drawing a few others. If he already has committed himself to code, he faces the more

arduous task of recoding, recompiling, and retesting code. More important than the

physical labor involved is the psychological reluctance to change that which already

works: The programmer's normal instinct is to leave it alone!

Thus, we might argue that one of the disadvantages of the radical approach -

known by some cynics as "designing it as you go', - is that it is less likely to be

modified during implementation. This is particularly important when several program

mers are working on the system simultaneously. If they are following the radical ap

proach, they frequently will miss the opportunity to fan-in to common low-level subor

dinate modules. Even if they become aware of the opportunity, they are less likely to

change their code - especially if it appears to work already - than if the opportunity

had been recognized while drawing the structure chart. Thus, the result is likely to be a

number of similar low-level modules, which may add significantly to the problems of

efficiency (because of increased memory requirements) and maintainability.

On the other hand, performing a complete structural design for a large system is a

time-consuming affair - during which there is no tangible evidence of progress, at least

not in a form that would be appreciated by most users. As we pointed out earlier, one

of the advantages of the radical approach or the zigzag approach is that it provides tangi

ble evidence of progress to the user - which can be extremely important if the project

starts to fall behind schedule.

There is another aspect of the user interaction that may argue against the conser

vative approach. As we suggested, many users do not really know what they want from

the system, or do not understand the consequences of the system they have specified.

Thus, we run the risk of performing a time-consuming and expensive systems analysis,

and! a time-consuming structural design - only to find when we begin implementing

the system, that it is entirely unacceptable to the user. The more fickle the customer,

the stronger the argument for a "design on the fly" approach~ the less fickle the cus

tomer, the stronger the argument for the conservative approach. However, it is crucial

to recognize that only a complete prior structural design can maximize cohesion and

factoring, while minimizing intermodule coupling. Thus, the pre.viously designed struc

ture emerging from the conservative approach also is the most modifiable. Unless the

customer rejects the entire system (very improbable!), the prior structural design will be

most easily adapted to fit the real but unstated user needs.

20.4.4 Mixed approaches

A review of Table 20. l will suggest the possibility for a mixed strategy, which

minimizes the task of creating or specifying stubs and test drivers. Note that the driver

for an afferent module is simpler than an afferent stub, and that the stub for an efferent

module is simpler than a driver. (Transform modules, once again, are the stubborn

holdouts!) The simplest testing would result from proceeding bottom-up on afferent

branches and top-down on efferent ones. This amounts to testing and debugging from

IMPLEMENTATION OF MODULAR SYSTEMS 357

inputs through outputs. One reason this input-output stra1egy is easier is that most
te.sting (with exceptions as noted in Section 20.3.2) can make use of real input for test
data rat her than internal tables and generated data.

Many mixtures of top-down and bottom-up are possible and practicable. Guided
by a structure chart, a system even could be sensibly implemented by stepwise
refinement from the middle outward, starting with module B in Fig. 20. l and adding
TOP, BI, and B2 one at a time!

The essential thing is that the choice of implementation strategy be made rational
ly rather than as a matter of religious principle. With a complete structure chart avail
able in advance, the greatest possible latitude in workable options is achieved. With a
highly factored, cohesive, uncoupled design, errors in structural design are most easily
corrected, even in the coded modules themselves, and testing and debugging become
possible with minimal interactive effects between various parts of the design. Struc
tured design thus fits well with any disciplined coding, testing, and debugging strategy.

20 .5 Summary

We have seen in this chapter that design and implementation often are in
tertwined~ it is important to keep in mind that there are many different ways of combin
ing design and implementation. A conservative approach to building systems would be
to accomplish almost all of the design before any implementation begins~ a more radical
approach would allow implementation to begin as soon as a small amount of design was
accomplished.

Much of the attention in the popular EDP literature today is focused on the dis
tinction between top-down and bottom-up implementation. We have discussed the ad
vantages and disadvantages of both approaches in this chapter but, more important,
we have stressed that the key to successful implementation is i11creme111al testing.

CHAPTER20: REFERENCES

1. F.T. Baker, "Chief Programmer Team Management of Production Program
ming," IBM Systems Journal, Vol. 11, No. 1, 1972, pp. 56- 73.

2. F.T. Baker, "System Quality Through Structured Programming," AF/PS Proceed
ings of the 1972 Fall Joint Computer Conference, Vol. 41, Part 1, 1972.

3. Edward Yourdon, Techniques of Program Structure and Design (Englewood Cliffs,
N.J.: Prentice-Hall, 1975).

4. Edward Yourdon, "A Brief Look at Structured Programming and Top-down Pro
gram Design," Modern Data, June 1974, pp. 30-35.

CHAPTER 21
THE MANAGEMENT MILIEU

21.0 Introduction

Ultimately, the designer works within an environment that includes, among other
strange creatures, the manager. Often, the professional will find himself at odds with
management over what he sees as technical issues~ but what management obviously
sees in another way. In this chapter, addressed both to managers and to designers, we
will examine some ways in which technical design and management decisions interact.
We will see that many seemingly purely management prerogatives determine the tech
nical factors of a system in subtle ways. Moreover, for systems design to be effective
- not just in terms of theoretical systems goals, but in terms of the actual goal of
building better systems - some of our technical objectives will have to be bent to ac
commodate the exigencies of the real world in which politics is a decisive force.

In the face-off between managers and professional systems designers, the odds
favor management - especially since few computer professionals are truly professional.
Even if the professional argues that a proposed method is technically unsound or that
some other alternative is optimal, he often does not have a rigorous, formal discipline
to back him up. Equally damned is the manager who has the intuition to see the value
of finishing a complete structural design before writing any code, but who ends up in a
debate on programming style because he lacks proofs and theories. However, with the
amount of literature that has been published recently on various aspects of structured
design and structured programming, we can no longer be very sympathetic to this ex
cuse. We will be even less so as more rigorous theory and more conclusive empirical
evidence builds from here.

The basic questions to be asked in this chapter are: Should management under
stand anything about the concepts of structural design? How does structural design
help the manager accomplish his job more effectively? We will be concerned~ as we
have been in several previous chapters, with the job of dispelling myths. Overall, it will
be necessary lo discard the myth that the technical and the managerial aspects of sys
tems development are separable. In reality, they are not.

21.1 The impact of management decisions on the technical aspects of a project

Obviously, the technical aspects of a project affect the resource utilization. A
poorly designed system may require twice as many programmers for implementation as
a well-designed, highly modular one. However, it is less obvious that the converse is
true: Resource utilization, determined largely by management, can have a strong
influence on the technical aspects of the project.

359

360 STRUCTURED DESIGN

As an illustration, consider the plight of a large national conglomerate involved in
building a multi-company, totally integrated, on-line, real-time management informa
tion system. Their design-on-the-fly approach was clearly creating problems and, in the
long run, would almost certainly lead to considerable duplicated effort. A consultant
was brought in to study the situation~ he suggested that they needed a complete struc
tural design prior to any coding, and he explained what this entailed. The proposal was
vetoed on the grounds that the complete structural design was so enormous that it
would take more than the three years budgeted for the entire design and implementa
tion to be completed.

Now, clearly this is faulty reasoning! The code for the system contains all of the
information in the structure chart, plus a great deal more. Indeed, no model of the sys
tem can contain more information than is in the code since that is the whole system. If
it would take more than three years of effort by the whole staff to design the system,
then certainly it would take much more to code it!

The real question is whether the cost (in dollars or time) of doing a complete, de
tailed design and then coding exceeds that of just coding from the top. As a rule, addi
tional design time saves implementation time, primarily by reducing debugging.
Indeed, the savings almost always substantially exceeds the cost of the additional

. design. This trade-off cannot be continued without limit, of course: Past a certain op
timum point, additional design effort, while tending to improve the system, will not al
ways reduce total cost - and may even increase it as refinements and extensions con
tinue to be introduced.

Figure 21.1 illustrates the presumed behavior of total systems development cost as
a function of design effort. With no prior design (especially design of a structural na
ture), the cost can be expected to be very high. More design (prior to coding) reduces
cost at an increasing rate. The initial flatness of the curve to the left of point A is large
ly conjectural. It appears that too little design may be almost as bad as none at all; sub
minimal design could even increase the total cost somewhat - we simply do not have
sufficient evidence to know as yet.

Between A and B, the greatest gains are possible. Functionally, B probably
corresponds to a complete design of a highly modular structure following the intrinsic
problem structure, plus corresponding designs for data structure and interfaces. Neither
design optimization nor many iterations of the design are implied at that point. As
more design is added, we get an improved system at little increase in cost. Over some
fairly broad range (shown as points B to c on the diagram), the total cost falls to, or
near to, the minimum. It then begins to rise slowly, due to diminishing returns and to

elaboration of the system.

One aspect of the model shown by Fig. 21.1 has, in fact, been verified; under
budgeting of design increases total system's cost. As experiments, a few parallel
developments of systems have been accomplished - and, among other things, the ones
with greater design effort were implemented at lower total cost. This is vitally impor
ta01t to the systems analyst or the manager: Underbudgeting of design, or premature
termination of the design effort, may be responsible for overrun of budget and time es

timates for the project.

A

t'8~ --- -
~L
SYST8Y
(DST

M1rurnvm

•

~· ------

THE MANAGEMENT MILIEU 361

B

Note: Ordinate and abscissa are 1101 on 1he same scale.

Figure 21.1. Behavior of total development cost as a function of design expenditures.

It is argued frequently that the iterations (or refinements) of design are Htoo ex
pensive n -· that is, revisions, refinements, and improvements to the structure of a
large modular system are difficult and time-consuming. Certainly, there is an element
of truth in this: In a large-scale system of, say, 100 or more modules, a single iteration
of the design may involve massive rearrangement of modules and interfaces. On the
other hand, the corresponding changes would cost many times more once the system
has been committed to code. Expensive though such changes may be, they will never
again be so cheap.

Of course, some design iterations may involve refinements that would not be
made if the system were already committed to code - for they represent options or
marginal refinements and extensions. Failure to make these improvements during
design probably is not serious. What is serious is the failure to develop, through suc
cessive iterations, an adequate, implementable system, thus necessitating expensive
trial-and-error revisions during the implementation and debugging of the system.
These types of design failures most commonly show up during the so-called systems in
tegration and test phase that we mentioned in the previous chaptec On large-scale pro
jects, this is normally one of the largest costs precisely because of insufficient design
and planning.

Many of these points were raised in Chapter 20, where we discussed various ap
proaches to the implementation and testing of a system. What we wish to emphasize in
this chapter is that many of these problems are exacerbated by management pressures
of one sort or another. For example, as the apparent or expected cost of a system goes
up (or as time and budget constraints become tighter), there frequently is management
pressure to solve the problem through allocation of greater resources. If one program
mer can finish a job in two years, then two programmers can finish it in one year - or
so the reasoning goes.

362 STRUCTURED DESIGN

Brooks 1 refers to this as the "mythical man-month"; that is, programming
managers often make the assumption that people and time can be freely interchanged.
This is roughly equivalent to suggesting that nine women r:an produce a baby in one
month. In the programming example mentioned above, it is likely that the two pro
grammers will take two years to solve a problem that one programmer would have
sollved in two years.

21.1. l Project organization and modular structure

At the 1968 National Symposium on Modular Programming, 1 consultant George
Mealy gave a particularly dramatic example of the mythical man-month problem. His
story involved his experience in IBM's development of OS/360. At' one point, the proj
ect had approximately 50 technical people assigned to it An analysis of progress-to
dale and the projected size of the system revealed that it would take twice as long as it
should to complete, and consume half again as much resources as had been allocated.
This is the picture illustrated in Fig. 21.2, the dotted line showing projected resource
utilization. By doubling the staff, the project management hoped to be able to follow
the dotted line.

The staff was doubled, redoubled, doubled again, again, and nearly a fifth time -
and yet the performance was worse than that projected with 50 people! In retrospect, it
appears that the only stratagem with much promise of completion on time, within bud
get, and with a sound technical product would have been to cut the staff in half, retain
ing the 25 best people. The larger staff created a more complex system (some would
say inordinately so, but we will leave that for history to judge!) and created more
management problems.

~t.Ul.f;h / I /
iI:fJ lrL '-y l .,,,,.,

pelf / I ,,,,. '~1)1.160
/).."'

/ .,, I ---- ---,,,,,,.
/ .,,,,. I __. .--.: --.,,,,.,

"rer-th"~ / ,,,,. - -- --1
,le.,,,,,,. --- I

I
0

Figure 21.2. Representation of the effect of Mealy~s Law.

THE MANAGEMENT MILIEU 363

In formal terms, we can state Mealy's Law like this:

There is an incremental person who, when added to a prQject, consumes more en
ergy (resources) than he or she makes available. Tlws, beyond a certain point,
adding resources (people) slows progress in addition to increasing the cost.

The components of this effect are myriad. Since the incremental man must, learn about
the project, someone must train him. He must communicate with other team
members, and thereby introduces additional managerial and technical interfaces. We do
not say he will do no productive work. Presumably, his own overhead does not con
sume all of his own resources - but when we add up what he uses from everyone else,
the project I oses.

There are other ways of looking at Mealy's Law. The authors recall the story of a
programmer assigned to write an application program on a small 12-bit minicomputer.
His estimate of six months to complete the job was deemed unacceptable to his boss.
When the manager assigned another programmer to the project in hopes of speeding it
up, the original programmer responded, "But two programmers won't fit in there!"

There is another common problem that can be traced to management decisions~
we 'II call it the Thousand Module Effect. If you turn 1,000 programmers loose on the
same project before a total structural de:iign has been completed, one thing is reasonably
certain: There will be at least 1,000 modules in the final system (counting probable du
plicates), since two programmers ~~will not fit in one module. n Indeed, there will be
1 ~000 modules even {f it is only a 150-modufe problem. A number of large vendor
supplied operating systems, as well as some massive data processing systems developed
by various U.S. government and military agencies, will attest to this phenomenon.

In more general terms, we can describe the phenomenon above as a variation of
Conway's Law:*

The structure of a system reflects the structure qf the organization that built it.

Thus, if a system is developed (with design done in a seat-of-the-pants fashion) by
1,000 chimpanzees, we can expect a system with 1,000 modules - with extreme cou
pling and cohesion problems. If a system is designed by two groups in geographically
remote locations, the final system probably wilt reflect that management organization
rather than the inherent problem organization. If the design work is done initially by
one person, or by a small, tightly knit team of professionals, there is some hope that
the final system will reflect that tight-knit unity. Actually, Conway's Law has been stat
ed even more strongly:

The structure of any system designed by an organization is isomorphic to the
structure of the organization.

Thus, if there are two subsystems designed by different designers or design teams who
do not communicate with each other\ by definition, the subsystems will not communi
cate with each other or make common use of shared facilities. Connections between
subsystems always will reflect some communication between the organizations that
designed them.

*So-named by participants at the 1968 National Symposium on Modular Programming.

364 STRUCTURED DESIGN

21.1.2 Design of large-scale systems

Circumventing Mealy's Law and Conway's Law can prove very difficult for large
applications. The complete structure chart for an information system comprising 50,000
lines of source coding would have perhaps as many as 1,200 boxes on it. If it could be
drawn at all, it would cover an entire wall. Very few systems of this order of size have
been implemented from complete prior structural designs. Comprehension of such a
vast structure is difficult, and its development by any formal strategy is tedious and
error-prone.

There are three primary reasons for doing a single integrated design of the struc
ture of an entire application area or larger system, rather than subdividing the design
effort. First, a subdivision of the design effort determines the interfaces between major
subsystems by managerial fiat with the frequent result that the major subsystems are
excessively coupled. The design efforts under such circumstances cannot really proceed
ind1~pendently any more than can later maintenance and modification of the highly cou
pled subsystems. Second, the subdivision of structural design usually determines an ul
timate packaging into programs or ''suites'~ of programs that is suboptimal and much
less convenient or efficient than the packaging that would be possible after a complete
overall structural design. Third and most important, subdividing the structural design
work inevitably leads to duplicated programming because opportunities for fan-in are
missed in all but the most elementary cases, such as in computing square root.

Particularly expensive are the cases where a slight change in assumptions in one
structure and minor changes in the arrangement in another would make possible_ shar
ing of entire subsystems and deep nests of modules. These opportunities can only be
recognized in an integral design or separate designs undertaken with extensive interac
tion between designers. We all know that as programmers and systems analysts we are
forever reinventing the wheel~ subdividing structural design helps make this waste pos
sible. For example, it has been estimated that the integral design of a single union
compiler that would compile FORTRAN, ALGOL, PL/I, and COBOL for a single
machine would result in a program only about 25 percent larger than that of the PL/I
compiler alone. The more usual situation is that FORTRAN A-level, B-level, and z
level compilers were all designed and implemented separately. The analogies in the
average user's applications are obvious and equally painful.

What does the project manager for a large effort do to get unstuck from between
''thte rock and the hard place''? Several organizations have found an approach that per
mits subdividing the structural design effort into manageable subprojects while mini
mizing the negative effects cited above. A data flow graph for the entire system or ap
plication area is drawn up. To keep that task within bounds, the data flow is presented
at a fairly high or abstract level. This data flow is examined to assure that it is com
plete, correct, and the simplest model of the problem for the level of detail employed.

The overall data flow graph is analyzed to identify more or less independent sub
graphs that have the fewest transitions (flow lines) connecting to the remaining graph,
where these transitions involve uncomplicated data sets or small information volumes.
Each essentially independent (uncoupled) subgraph then becomes the initial input to a
separate structural design project. If duplicate design or replication in code is to be
avoided, there must be frequent mutual design walkthroughs and continual cross
checking between the various designers or design teams. Careful comparison of the

THE MANAGEMENT MILIEU 365

subgraphs may suggest areas of potential shared facilities. In this way, maximal fan-in
can be achieved even between subsystems designed separately.

It is possible to employ an iterative design approach which yields high-quality
structural designs in general and is especially indicated for subsystem design of a project
segmented in the manner outlined above. The subgraph is first refined, then used to
derive a complete structure by transform-transaction analysis. Understanding of the
problem gained during the design is then used to develop a new data flow graph for the
subsystem, and the design process is repeated. Typically, significant improvements con
tinue to develop through six or seven iterations. The final subgraph can be used to
refine and correct the total system's data flow graph.

More than anything else, the problems discussed in this section seem to em
phasize the advantages of completing the structural design before any substantial coding
takes place. In Chapter 20., we discussed some situations in which one could justify
coding at an earlier stage~ however, most normal projects would benefit from complete
prior structural design.

21.2 Management benefits of prior structural design

There are several management benefits to be gained from the design/implementa
tion approach that has been suggested in earlier sections and chapters. While there are

some valid arguments for the radical approach to top-down implementation discussed in
Chapter 20, we nevertheless suggest, for the sake of management, that a complete (or
nearly complete) structural design be accomplished first, using all of the principles of
coupling, cohesion, transform-centered design, and others previously discussed. When
this has been accomplished, we suggest that coding and testing be accomplished in an
incremental fashion~ circumstances will dictate whether the basic implementation ap
proach should be top-down or bottom-up or some combination. It can be assumed that
nearly all modules in the resulting design are small (in the sense presented in Chapter
9) and independent (i.e., uncoupled).

21. 2. 1 Reliable cost estimating

One of the most difficult aspects of managing/developing systems is predicting, in

advance, the requirements for people time, machine test time, and other resources.
This will always be a difficult problem, and there is no magical approach that will

guarantee precise cost estimates.

However, observe that estimating is an exercise in human problem-solving. Hu
man beings have a limited capacity for dealing with complex problems - and estimat
ing budget and manpower requirements for a million-statement system is certainly a
complex problem! The probable error in any estimate will vary with the complexity of
the problem being estimated. Since human errors rise with problem size, estimates on
big problems will have more error in them than estimates on smaller problems. Be
cause estimation errors deviate randomly, the laws of statistics guarantee that the total

error in a summed estimate will be less than the sum of the errors in all the little esti

mates comprising it.

366 STRUCTURED DESlGN

If most of the modules are truly independent of each other and the system is im
plemented in an incremental fashion (always adding one more small, independent
module), the cost relationships are all additive. Thus, the sum of all module develop
ment costs closely approximates the total system's development cost. With a complete
prior structural design of small independent modules implemented incrementally, errors
in cost estimation can therefore be reduced substantially. Moreover, the estimating
process is simplified.

The drawback is that these reductions in probable error are realizable only after
the structural design is completed. This points to the advantages of two-phase design
and implementation contracting. Even where delayed cost estimating is not possible, an
accurate estimate provided upon completion of the design can be useful to management
as a check against the previous estimate, and can supply fairly reliable figures on which
to base possible reconsideration of the decision to implement all or part of the system.

21. 2. 2 Improved scheduling, ;mproved planning

One of the advantages of a prior structural design is that every module to be pro
grammed is identified and specified in advance. In addition, possible perturbations on
the high-level modules (as a result of design problems in the low-level modules) have
been resolved before coding begins. Thus, it should be relatively smooth sailing once
the coding begins.

In addition, prior structural design makes it easier for the manager to schedule
adequate, but not excessive, personnel and machine requirements. Indeed, this is one
of the disadvantages of the radical top-down approach discussed in Chapter 20: The
managers (and the programmers) rarely know what lies below the surface of the
modules on which they currently are working.

21.2.3 Parallel development of acceptance and validation criteria

On any large project, it is important to develop test data, acceptance criteria, and
benchmarks in parallel with the development of the system itself. With a prior struc
tura.l design, this is possible because the functional requirements of every module are
known before the coding/testing begins. With the radical top·down approach, this is
considerably more difficult since the functional requirements for some of the modules
will not be known until midway through the project.

This is not to say that acceptance criteria are impossible to develop with the radi
cal top-down approach. The designer, the systems analyst, and the user must identify
different versions of the system, each one of which will have certain features present,
certain features absent, and certain features in a primitive form. This requires rather
delicate coordination between several different parties - and, in the authors' experi
ence, it often breaks down completely. Because of impatience or frustration, the user
frequently announces to the analyst and the programmer that he does not wi.sh to dis
cuss acceptance criteria until the entire system has been specified.

THE MANAGEMENT MILIEU 367

21.2.4 Belter project monitoring and control

Most data processing projects are accompanied by milestones that are used by

management to gauge the progress of the project. There are two problems with most

milestones. The primary one is that they do not represent tangible evidence of progress.

Thus, we often see a milestone of "'95 percent of the code has been written," which

most programmers will claim to have accomplished on the second day of the project!

Also, the milestones often are too far apart: The manager only learns at six-month in

tervals whether he is ahead of or behind schedule. ·

As we pointed out in Chapter 20, the top-down incremental. approach has the ad

vantage of providing tangible evidence of progress: A real skeleton system can be

demonstrated on a real computer. Indeed, any incremental approach can be considered

tangible, in the sense that the programmer should be able to supply test data to demon

strate that some combination of modules works.

Hqwever, the problem with the radical top-down approach is that the manager has

difficulty judging the propo~tion of .finished modules to u1(/inished modules. For all he

knows, the modules that have been completed may represent only the tip of the ice

berg. By having a complete prior structural design, the manager can more readily -

and more precisely judge the fraction of the total system that has been accomplished.

Indeed if 76 of 100 small, uncoupled modules have been implemented by stepwise

refinement and have passed acceptance tests, then the job is approximately 76 percent

complete. In practice, this type of simple linear projection has proven io be as good as

rather fancy project management systems projections.

It also should be clear that the incremental approach affords the opportunity for

more frequent milestones. Indeed, it might be more appropriate to use the phrase

inch-pebbles to describe the checkpoints that can be established at the completion of

each module.

21.3 Personnel management for implementing modular systems

Finally, a few remarks about the problems of personnel management in large

modular systems: As a number of a"rticles in popular journals have pointed out for

several years, one of the supposed advantages of modularity is that it gives the manager

the opportunity to assign different programmers to different pieces of the system. But

does this actually work? Do the programmers really accept it?

Consider the structure shown in Fig. 21.3. We might imagine that it represents a

programming task large enough to require six or eight programmers. How should the

manager assign programmers to work on different parts of the system? There seem to

be three basic approaches, each with its own advantages and disadvantages.

One approach is to assign a complete subsystem - perhaps the A subsystem - to

an individual programmer. This has the advantage of enabling the programmer to see

the big picture: He derives more job satisfaction knowing that he is working on a sub

stantial piece of the system. On the other hand, the manager runs the risk that the

design of the A subsystem will drift from the original structural design. Even worse,

the drift may not be discovered until the programmer has finished the entire subsystem.

This is particularly true if the programmer works on his code in a vacuum, isolated

from the other programmers on the project. When he finishes, we run the risk that

there will be interfacing problems with module TOP and with module x.

368 STRUCTURED DESIGN

Al 13i

p Q)(

P! y

Figure 21.3. Personnel management for management systems.

Another approach is to assign individual programmers to work on individual
modules. Thus, the manager might assign one programmer to work on module z;
another programmer might work strictly on module TOP. This has the advantage of
better control: If one programmer gets behind schedule, writes terrible code, or quits,
the consequences are limited to one module. On the other hand, this approach has a
definite psychological disadvantage: It makes the programmer feel that he is a small cog
in a very large machine. He frequently finds it difficult to become motivated by the
challenge of working on his own module.

Finally, we have the suggestion of assigning a team - perhaps two or three pro
grammers - to work on a subsystem. This approach has been referred to recently as
"adaptive teams," uegoless teams, n "chief programmer teams," and a variety of other
terms. It seems to stem largely from the studies and writings of Weinberg. 3 One of
the advantages. of this approach is that the members of the team see the overall
scheme~ they should derive satisfaction from working on a major piece of the system.
Because several programmers are involved, there is more of a chance for control. It
still is possible, of course, that the design may drift, but it is less likely if several people
are involved. The team approach also has the advantage of involving the programmers
in each other~s code. This is usually formalized by such techniques as structured walk
throughs, in which the programmers read and critique each other's code.

THE MANAGEMENT MILIEU 369

Recently, the tendency has been towards the team approach. However, we must
emphasize that the overall development is much more manageable if the team is
presented with a structural design before it commences work. If the team practices a
design-on-the-fly approach, it may be very difficult to estimate its time and manpower
requirements - and the team may develop a system that suffers from Conway's Law.

21.4 Summary

The major theme of this chapter has been that management decisions can
influence the technician's ability to develop a good design, and viee versa: The kind of
design carried out by the technician can have an important impact on the manager's
ability to schedule, budget, and monitor his project.

It has been our experience that careful attention to the principles of structured
design makes it far easier for the manager to develop accurate schedules and budgets -
for precisely the same reason that structured design enables the technician to develop,
test, and maintain his system more easily. Developing a schedule and budget for a
large, complex system is an extremely difficult human problem-solving process;
developing a schedule and budget for a number of small, independent modules is con
siderably easier} and considerably less error-prone.

CHAPTER 21: REFERENCES

l. Frederick P. Brooks, Jr., The Mythical Man-Month (Reading, Mass.: Addison·
Wesley, 1975).

2. Tom 0. Barnett, ed., Proceedings of the National Symposium on Modular Program
ming (Cambridge, Mass.: Information & Systems Press, 1968).

3. Gerald M. Weinberg, The Psychology of Computer Programming (New York: Van
Nostrand Reinhold, 1971).

APPENDICES

APPENDIX A Structure Charts: A Guide 373

APPENDIX B Summary of Standard Graphics
for Program Structure Charts 396

STRUCTURE CHARTS: A GUIDE

The purpose of this guide is to describe standard charts, how to develop them,
and how to read them. The standards promulgated here are the cumulative result of
feedback from many users over a period of nearly ten years. They arc intended to be
consistent, theoretically sound, but most importantly, maximally useful. It should be
noted that these standards differ in a few significant ways from those that IBM supports.
(The portions that differ are flagged with a triple asterisk and refer to the notes on page
395.) Our experience indicates that the graphics presented in this Appendix significantly
increase readability of structure charts and decrease the probability of errors in the
design process.

Note on graphics: The symbology of the structure chart is designed to be
drawn with the aid of the standard Flowcharting Template (IBM, ANSI, and
ISO standards). Generally, some sem bl a nee of compatibility is retained to
make learning the new meanings easier.

I. Explanation of symbols in structure charts

The complete standard for structure charts includes, in a single interrelated set,
facilities for representing all possible structural features of programs in any known pro
gramming language/environment. In any one programming context, a designer/pro
grammer would expect to use only a subset of the standard.

A. Pieces of systems

The basic building blocks of modular computer systems are modules. There are
many kinds of modules. Some, like PL/I PROCEDURES, are activated out-of-line. Oth
ers, like COBOL PARAGRAPHS, may be executed in-line. All modules in any program
ming language have certain properties in common.

1. A module consists of a set of lexically contiguous statements~ that is,
statements comprising the module are written together, sequentially.

2. A module has an identifier by which the entire module, all of its lexi
cally included statements, may be referenced as a single piece.

A module may or may not be referred to by its identifier (although usually it will
be, at least once). A module may receive and transmit data as parameters in a calling
sequence such as TIME-RECORD in the statement

CALL PROG2 USING TIME-RECORD.

373

374 APPENDIX A

or a module may communicate data via fixed cells or a common-data region. No matter
how it is activated or is given data, if a piece of system consists of adjacent statements
with an overall unit-name or identifier, it may be called a module.

A module is represented by a simple rectangle with the module name in the
upper-left corner:

Fig. 1

Such a picture represents any kind of module. Sometimes it is desirable to distinguish
between special physical types of modules. For example, a module defining a named
macro (to be inserted in-line at compile- or translation-time when invoked by its name)
may be distinguished from other types. A macro, to be distinguished, is represented by
the following:

Fig. 2

fi'ATRIXADfil

I I
L __ J *"'*(I)

Any previously written or pre-existing module may be represented by st.riping.
For example, the system-supplied subroutine SQRTF

~I
Fig.3 lL_J_
and the library macro procedure XREAD

Fig. 4

JTXREADfJ
Ll __ _lJ "'**(I)

Any module, regardless of type, may contain in its defining statements both exe
cutable and nonexecutable elements. A module whose only contents are data (e.g., a
NAMED-COMMON region in FORTRAN) would be shown thus:

Fig. 5

DAT A DIVISION)

***(I)

Often, the operating system or machine environment itself behaves as a unit of a sys
tem to and from which, both control and data may be passed. To show the operating
environment, this symbol is used:

Fig. 6

APPENDIX A 375

B. Connections

In a system, a connection is a reference to an object by its identifier (name, ad
dress, label, index, and so on). An intermodular connection exists whenever a refer
ence appears within one module to an identifier not defined (or first defined, or caused
to exist) within the module, but elsewhere. When the reference is to the identifier of
another· module, the connection is called normal, and is shown as an arrow pointing to
the box representing the module whose identifier is being referenced. For example,
within module DISTANCE is found the code

SUMSQRS = XDIF*•2 + YDIF*"'2
ZDIS = SQRTF (SUMSQRS)
IF (ZDIS-TOL) 14~ 15, 15

The above includes a reference (underlined) to the identifier of module SQRTF. In this
case, the context of the reference is that of using SQRTF as a function subroutine.
Intermodular connections in the context of normal subroutine "calls" are as follows:

DISTANCE

Fig. 7

The data being passed as arguments are shown as an annotation to the connection for a
"call." The small annotating arrow shows the direction of flow of the data. Thus

Fig. 8 SUMSQRS

Or a footnote table may be used. Thus

5 6

COMPOCOUNT

Fig. 9

*Input 10 subordinate, output .from subordinate.

DISTANCE

result

PARAMETERS

•
• •
5

6

INPUT*

PROT-NO,COMPONENTS

ACT-NO, COMPONENTS

OUTPUT*

P-COUNT ,ERR

A-COUNT ,OOPS

376 APPENDIX A

The names or identification given for data flowing as parameters to and from
subroutines are the names as used in the call ;ng module, that is the "actual" rather
th.an "dummy" parameter list.

Often, it is useful to distinguish between parameters that are normal data to be
operated upon, from parameters that are elements of control - e.g., switch settings, ex
ception flags, error or end-of-data indicators, and so on. A small dot on the tail of any
arrow indicates "control," a small circle indicates "data." Thus

Fig. 10 COMMAND ***(2)

VALIDATECOMMAND

Annotations on the connection and a parameter footnote table may be intermixed
to produce a chart that is both uncluttered and readable, as well as complete. Thus

Fig. 11

employee

data 1 /

SKILLPROFILE

NEXTEMPL SKILANALYZE
'

*** (3)

PARAMETERS
INPUT OUTPUT

EMP-REC,SKIL-LIST,§Qf

2 ID,SKIL-LIST,OVFLOW SKILTAB,ILLEGAL-SK,NO-SK

Note that control parameters have been underlined in the parameter footnote table.

1. Pathological connections. Intermodular references to identifiers other than
the external names of modules are called "pathological" and are shown as arrows ori
ginating within the box for the referencing module and terminating within the box for
the referenced module. For example, a direct reference by module SEARCH to a data
element by its name, lNPVECTOR, within another module, BUILDVECT, is shown thus:

BUILDVECT

4 ~

SEARCH uses data

INPVE CTOR • -Fig. 12
_ - setup by BUILDVECT

in the array INPVECTOR
SEARCH

0

APP EN DIX A 377

The conventions are consistent with those introduced above: The direction of the con
nection is the same as the direction of reference (pointing), i.e., from referencing
module to referenced object (here, within module BUILDVECT): the annotation shows
the direction of flow which may not be in the direction of connection; the small circle
denotes data. A simple generalization yields the form for a direct transfer (GOTO) to a
location within another module:

Fig. 13

An intermodular modification of code, such as an ALTER from one COBOL section
to another or an assembly language address substitution, is shown as

Fig. 14

/
/

Such connections are known as hybrid connections.

SECT-1 "ALTERS"
paragraph ALPHA in
SECT-2 to proceed
to paragraph QUIT *** (1)

2. Common environments. References to commonly held data, such as FOR

TRAN COMMON or PL/I EXTERNAL names, are pathological connections that present
special problems in graphic representation. Consider, for example, a COBOL program

with several SECTIONS. All of the data in a COBOL program are defined in a single, glo
bally accessible DATA DIVISION and all data are communicated pathologically, i.e., by

direct reference. The structure chart quickly becomes cluttered with pathological data

connections, as shown below:

Fig. 15

378 APPENDIX A

which would hide other important structural features. A "connector" is used for this
reason (and anywhere else to clarify the chart). Thus

Fig. 16

REC,DAT,PROB

ONE

PROGRAM

SECTlON
TWO

SECTION
NG FOUR

EG

SECTION
THREE

A connector represents a graphic break, exactly as in a flowchart~ thus, the two struc
tures below are identical:

A

Fig. 17

B 3 ***(4)

c

Off-page connectors also may be used:

Fig. 18 ***(4)

1time

COM
page J

page 4

APPENDIX A 379

Each named, labeled, or logically group~d collection of cc,., ir1only held data may be
represented by a named udata only" module distinct from any other module~ thus,

FOO reads from INJ,

Fig. 19 1
____ a vector in named

I COMMON area
I INMATRIX

I

rOO 0-+-1-~-3_o_~._l NM:J----- Named COMMON
region 1NMATRIX
assumed to exist as
distinct module

(Note throughout this guide the use of the same standard method of displaying com
ments as in flowcharts.)

C. Procedural annotations

To extend the usefulness of the structure chart, certain conventions and annota

tions representing procedural aspects of the program are used. Wherever possible, con

nections are ordered left-to-right (less often, top-to-bottom) as they emerge from the

referencing module in the same order in which they usually would be accessed (used,
executed): -

Fig. 20

~~T-L SPACE

COPYSUB
LIST

I list jumble

COMPLEXrTY

CALCULATE
COMPLEXITY
INDEX

The above figure represents, by convention, that the expected order of calling is RESET

LISTSPACE, COPYSUBLJST, CALCULATECOMPLEXITYINDEX, SUMINDEX. In developing the

initi_al structure chart, it may not always be possible to observe this convention at all

times as the structure changes.

When intermodular references are used repeatedly within an iterative procedure

(loop), a procedural annotation encompassing the references may be added as in Fig.

20, which indkates that COPYSUBLIST, CALCULATECOMPLEXITYINDEX, and SUMINuEX are

executed rnpeatedly within an inner loop, which is in turn within a loop with RESET

LISTSPACE.

Conditional access (use, execution) to intermodular connections is shown by en

closing the point of reference in a diamond (decision symbol) as in the case of the call

on RESETLISTSPACE, which will be made contingent on the outcome of some decision
process. This decision annotation may embrace several references. By convention,

380 APP EN DIX A

these are assumed to be used in alternation~ that is, they are alternative outcomes of
the decision. Thus, a dispatch on transaction type to one of several modules is shown
as follows:

Fig. 21

GETTRANS
ACTION

PROCESS
TYPEJ

TRANSACT

PROCESS
TYPE2

PROCESS
TYPEJ

***(6)

If more than one connection is accessed as the result of one outcome, these may
be shown as originating at the same point. For example, each of two outcomes result
ing in two calls could be shown as

Fig. 22 message /'_ ~ inq

PREPARE
JNQUIRY

REPORT
INQUIRY

MESSANALYZE

c

PREPARE
CHANGE

***(6)

PUTCHANGE

Such procedural detail is really beyond the structural model itself, but can make the
structure chart easier to interpret. Generally, reference should be made to the
flowcharts or other procedural documentation to obtain details of the procedural interre
lationships between modules.

Procedural annotations may be used with any type of connection~ for example

Fig. 23

A table of values
set up element by
element in FIT
before it is called

FIT

An exception branch
is taken if the
input table has too
man s urious points.

APPENDIX A 381

D. Special .symbols

This section discusses graphics for more unusual or sophisticated structural
features that may not be encountered by all programmer/designers.

Some transfers of control take place automatically, asynchronously, or concurrent
ly with established processes. These are shown with a dashed connection. Examples
are activation on program interrupt (sequence break, trap) from the operating environ-

ment. ~ TAPECHEK is on the

Fig. 2 4 OS1380 "interrupt load"; gets control *** (1)

.... '1TAPEC-HE. K -~ ~ ,.- on the "tape transfer
' com lete" interrupt

A parallel "calr' of a "subroutine," such as CALL ... TASK B in PL/I, could be
represented as in Fig. 25:

Fig. 25

,-----
'

0
Parallel activation
of OUT as sub~task

***(I)

In some programming languages, it is possible to transfer control unconditionally
to a complete module, by name~ that is, a normal but unsubordinated transfer of con
trol (e.g., HGOTO section-name" in COBOL, or "TRANSFER subprogram-namen in
ICETRAN). This is shown in a logically consistent manner as

***(1)

Fig. 26

The comparable case for data, in which data (but not control) are communicated nor
mally to or from the identity interface of a module, has not been implemented, but has
been proposed. This would be represented as

Fig. 27

x,y

/
/

/

Explicitly transmit
DATA X and Y
module TARGET by
NAME

***(7)

382 APPENDIX A

1. Coroutines. When activated by name, a coroutine always resumes at the next
sequential statement following the point at which control was last transferred out. This is
known as incremental execution. An "entry locator," reset on each exit, serves as an
intermediary for any activation of the coroutine. Thus, a coroutine transfer consists of
(a) resetting the source module's entry locator, and (b) transferring to the location
defined by the target module's entry locator. These characteristics are suggested by the
following graphic:

Fig. 28 ***(1)

This models an intermodular reference to the identifier TARGET in the context of a
coroutine transfer, such as the PROCESS statement in B8500 COBOL.

A subordinated activation (establishing an implicit return location as in a
subroutine call) that enters via a coroutine-type entry locator would be shown thus:

Fig .. 29

Subcoroutine
activation from
ANALYZE

ANALYZE

***(1)

next token

'\
GETATOKEN STDIZECHAR

which makes GET A TOKEN a subcoroutine of ANALYZE. Of course, the return from GETA

TOKEN to ANALYZE resets the entry locator of GETATOKEN.

(Note that a module is a certain type only in relation to some other module and
that this typal relationship is defined by the connection. Thus, GETA TOKEN is a
coroutine to STDIZECHAR.)

2. Lexical relationships. The positional relationships of modules relative to each
other as written (lexically) may constitute important structural information. In many
programming languages, it is possible to write one module wholly within the lexical
boundaries of another. For example, PL/I PROCEDURES may be written nested, as may
ALGOL FORTRAN function-statements (a form of a one-statement subroutine
module) are written within another module. Lexical inclusion, as it is called, is
represented thus:

Fig. 30

SUB FU NC /
/

SUBFUNC is
written entirely

/ within CALC

***(I)

APPENDIX A 383

Note that lexical inclusion is shown independently of all other relationships, e.g., in a
COBOL program with three sections:

Fig. 31

I
I

I

COBOL sections within
PROGRAM. SUBJ and
SUB2 are PERFORMed
b MAIN.

SUBl SUB2

...... __ - -
Where practical, lexical inclusion is shown with lighter lines than physical connections.

Lexical adjacency - modules written contiguously - may be shown, where it is
significant, with a simple horizontal line. (Note: No arrow!)

Fig. 32 ***(8)

A vertical or diagonal line for lexical adjacency should be avoided to prevent possible
confusion with normal subroutine calling. Again, light lines should be used if practical.
An alternative, to be used when practical, is to place the module symbols physically ad
jacent to one another:

Fig. 33 ***(8)

II. Relationship of structure charts to other program models

The structure chart models the physical (referential) structure of a modular sys
tem. However, it does not directly model either the flow of control or data, since, by
definition, these can only flow along connections~ suitable annotations reveal these rela
tionships. A flowchart models the flow of control, but nothing of the data flow and only
implicitly any aspect of referential structure.

384 APPENDIX A

Compare the two charts in Fig. 34:

Fig. 34

STRUCTURE CHART

nodes

FLOWCHART

Get a row
of matrix

GETNEXT~ ~-ro-w....__---.
Get a arcs into matrix
matrix row

The "nodes" in the structure chart always are physically recognizable modules con
forming to a rigorous, although unrestrictive, definition (see p. 373). The nodes of a
flowchart are processing steps and may correspond to the processing of a single state
ment, an arbitrary group of statements, or any part or all of a module or collection of
modules. An "arc" on the structure chart represents the existence of one or more in
termodular references of a single type. An arc of the flowchart represents that control
will (or can) flow from one processing step to another.

A. Data flows

A data flow represents successive transformations of data and the data dependen
cies interrelating these transformations. The nodes are processes that map one set of
data into another~ an arc represents that an output set of one transformation is required
by another:

Fig .. 35

The notation E9 (known as disjunction, denoted by '~exclusive or'') means that only
one of the juxtaposed data sets is produced (or needed) per performance of the
transformation. The notation * (known as conjunction) means that all of the juxtaposed
data sets are produced (or are needed) per performance of the transformation.

The data flow defines the required order intrinsic to the task, but does not show
the flow of control nor the modular structure. It is a diagram that more closely can
model the intrinsic structure of problems than can either the structure chart or the trad
itional flowchart.

AP PEN DIX A 385

Data flow may be modeled to various levels of detail, as shown below:

Fig. 36

It should be clear that to fully model a problem and its programmed solution, data
flow, referential structure, and procedure must all be represented (as well as the
structure-format of the data on which the program is defined).

The relationships among the three models of a program can be appreciated from a
careful study of Fig. 37. Take note that (a) each module in the structure chart has (or
may have) a flowchart for its internal procedure (two of these flowcharts are shown)~
(b) each flowchart reveals only one level of the structural relationships, viz, the subor
dinate modules to be called~ (c) the flow of data through the modular structure satisfies
the requirements inherent in the data flow model, but there is not a simple mapping
between the two.

B. Structure charts and Hf PO charts

IBM has introduced a design and documentation aid they call HIPO
(Hierarchical-Input-Process-Output).

Figure 37a. Data flow (program graph) for the Expensive Desk Calculator interpreter program.

386 APPENDIX A

U''11'n/lrl i> ..
Pl~ll'l"~

Gnc:.0110
C.r'lerits o~
tokiiHS h4 P.

C.Oro\f'IP.lllb

tC&'TATOk'r.I
J:i .. o uMll: tot:'...'tl
(wo•·d):t1 '"'r"'
c.hAr. !r.'tre,'"

PAAAMCOMV
Co"111c:f't ,...,.~

ft, 1 .. \."'"''"'
.!'1"''·~· .lt-{

E'Rlto4tPcJT

Figure 37b. Structure chart for the Expensive Desk Calculator.

l ... i ~•'4 ll?. ... +.·°"

COlll i1
4n0Kt

w..+-t
i\\t1•' iMt
t 15a't J'\fllf1111f
Oflo

-~--

Pr1.-~
s,·~..,arr
P\LSS'#a C

.;->eiT

lliLL

OOASSI"""

Cf.ILL

DoC.oniPun:

CP.LL

PUTR.fPottr

1":~ c.,.,J:·k ,,.
s-'ko.U rlNi,,.

OU"""·

CALL
(;.'°fC.OP\1)

CALL
Col'\bloo
(._."'r"I\\

C..ALL
PAR,\Mt.niJ
... (,tlfJlll~ t
p"r~M~~r1

Yn

Figure 3 7c. Flowcharts for two modules of EXDESC.

APPENDIX A 387

CA\..L.
t:RaoQ.PUT'
witt. .. IWo~tNO"
r11u11v:.•

38~: APPENDIX A

The structure chart supplants the HIPO hierarchical representation (also known as the
~'visual table of contents," or VTOC), but the HIPO representation of relationship of
inputs to outputs is a useful adjunct to structure charts.

A completed structural design, such as shown in Fig. 37b, may include a "func
tional HIPO" chart for some modules. Such a chart looks like this:

HIPO-.Q.2. MODULE DOCOMPUTE

Fig. 38

INPUT

Parameter
list:
variables

Lil era ls

PROCESS

Lookup values of variables with
TABLEGET (name,VAL-TAB,value,
NO-FIND) if NO-FIND,
wrile error warning and quit.

Interpret operations applied to
variable values and literals.
Put results with T ABLEPUT

OUTPUT

(result, RT AB,~) ____ ...,.new

result
tables

This functional HIPO becomes a non-procedural documentation of the function
(transform) of module DOCOMPUTE - see Fig. 37b.

Inputs in the calling sequence of this module are listed in the INPUT column, out
put parameters in the calling sequence of this module (and/or the function value re
turned) are listed in the OUTPUT column. The PROCESS column states the functional re
lationship between data listed as INPUT and that listed as OUTPUT. Data obtained from
or delivered to subordinates would not appear in the INPUT or OUTPUT columns of this
module's HIPO chart but would appear as parameters in ersatz CALL statements in the
PROCESS column; that is, transformations by subordinates are referenced as aspects of
this module's PROCESS. Of course, in turn, the functional HIPO for each such subordi
nate would list its parameters as INPUT or OUTPUT as appropriate and would explain the
subordinated transformation in the PROCESS column.

When keyed to a structure chart, control inputs and outputs should be dis
tinguished by underlining, consistent with the parameter footnote table of the structure
chart. Each module symbol on the structure chart would be keyed by page number or
identifier to a particular HIPO. This may be done in a small window in the upper-right
corner of the module box:

Fig. 39
See HIPO chart #25
for explanation of
ALPHA function

APPENDIX A 389

Since the interior of the box is often crowded, it is acceptable to key to HIPOs or
flowcharts outside the box at the upper-right comer. (This corner avoids most interfer
ence with connections and procedural annotations.)

Fig. 40

A. Style

DOARITHSTATE
Analyze arithmetic

HIPO: 009
FLOW: A-26

The purpose of a structure chart is to present an easily understood picture of an
entire system. Clarity in the portrayal of salient structural features is the most impor
tant goal. Most often, these ends are advanced through style, which is both consistent
and intuitive. In a sense, the aim is to convey information on structure in such a way
that the first quick impression is also the correct interpretation.

B. Hierarcl~y

The arrangement of elements in layers is known as hierarchy, an essential proper
ty of nearly all kinds of systems. By causing a module to behave as a subfunction
whose execution is bracketed by the execution of the superordinate, subordinating rela
tionships establish a basic hierarchy of control in any program structure. Subroutine
calls, macro invocations, and subcoroutine calls all are subordinating relationships.

The function and behavior of a system is clearer when superordinate modules ap
pear above their subordinates on the page. Modules related by any subordinating con
nection should be displaced vertically with respect to each other, the subordinate below
the superordinate. Thus, Fig. 4 la is better styled than is Fig. 41 b, even though both
model the same structure.

c IC
Fig.4lb _2-

L J -8 J
Fig. 4 la

A

Similarly, non-subordinating (coordinating) relationships establish modules as be
ing at the same level in the control hierarchy. Examples of coordinating relationships
are the coroutine transfer and direct normal transfer (GOTO module by name). The re
lationship between such modules is clearest when they are shown at the same level on
the page. Thus, the mixed (hierarchical and homologous, or non-hierarchical) structure
chart of Fig. 42 shows good style in presenting these relationships.

390 APPENDlX A

Fig. 42

PHASE 1
Get and
Copy Messages

•
\._.CHEKSUMFAIL

PHASE 2
Process

Su1T1T1ary

t
Message
Stafi sties

Because pathological connections violate (depart from) both hierarchical and
homologous relationships, the position of a module's representation on the page should
not be determined by them. An example is GOTO label CHEKSUMFAIL or the reading of
message statistics in Fig. 42.

C. Order

As part of procedural annotation, connections usually are arranged left to right in
the order of their expected use by the referencing module. Sometimes, particularly
wh1:.m a module has many subordinates, it may not be possible to show all connections
emerging along the lower margin of the module symbol. Experience has shown that the
most easily read arrangement in this case is to use the margin of the module symbol be
ginning in the upper-left corner and proceeding counterclockwise around the margin.
Thus, the arrangement in Fig. 43:

Fig. 43

APPENDIX A 391

Note also in this example that when space is at a premium, not all modules subordinate
to the same module are necessarily shown at the same level in the chart.

Since it often corresponds to expected order of usage, inputting subordinates are
commonly placed to the left of processing subordinates, which are to the left of output
ting subordinates. Consistent use of this rule creates inputting branches that are tilted
toward the upper right, and outputting branches tilted the other way. Thus, input data
flow toward the northeast and output data toward the southeast. Charts that can be
made to conform to this convention are particularly easy to follow and interpret. An
ex.ample, in abstract form, is shown in Fig. 44 below, with the flow of data indicated by
the usual annotations. Note how easily the eye follows successive transforms of the
same stream of data.

The lexical order of connections in the source code for the referencing module,
the expected order of use, and the input-process-output order may conflict. In this
case, one should choose the arrangement that most clearly represents what the system
does. For permanent documentation purposes, the lexical order, being an objective
physical feature of the module, is probably the best choice.

Fig. 44
MAIN

New Unit~ t
. New Unitl Results ~ Results

GETUPTODATE COMPUTE REPORT

~
/New Group

~New Group

OUTPUT GROUP

results '1 line

LJ
1 ine

~

D
GETGROIJP

recorc1'1

READ

D. Multiple connections

Any number of connections of the same type from one module to another may be
represented by a single line on the chart, showing simply that the modules are connect
ed in a particular manner. Especially in the case of subroutine calls from one module to

392 APPENDIX A

another, only one line almost always would be shown. For example, what is usually im
portant is only that REPORT makes some use of REFORMAT. There are times when this
practice of using only one line to represent one or more connections is impractical or
unclear. For example, each use of module FOO from FUM may involve different actual
parameters. Or a module might use another module in two or more completely
different contexts. Whenever the resulting structure chart would be clearer, each con
nection from one module to another specific module should be shown separately. In
Fig. 45 below, the same report module, STATPUT, is used in three different ways by PER
SYST~ each of these is shown separately. Note, however, that no clarity would be added
by showing three separate .pathological data connections for EMP-ID, EDUC, and SKIL-LIST.

Fig. 45

GET EMPSTAT

IN

E. Crossing and connections

PERSVST

STATPUT
Print Page o
Employee
stati sties

In general, one should avoid lines that cross in a structure chart, as this is messy
and sometimes confusing. Connectors usually are used~ but where the two ends of the
connection are close, as in the example above, crossing lines may be preferable. The

1

standard form of crossing may be used, as shown in Figs. 45 and 46.

AP PEN DIX A 393

Fig. 46

When using connectors, you should observe certain rules. It is permissible to show
several "to', connectors that refer to the same target. For example

\
Fig. 47 '

SCANLIST

The converse, one "to" connector referring to several different targets~ as in Fig. 48
below is not permitted.

Fig. 48

J
9

e
~ ~OT PERMITTED

l

'

394 APPENDIX A

Off-page connectors should refer from one page to another, but not back again. That is,
each separate page of a single structure chart should, if possible, present the structure
of a complete, self-contained substructure. Both on-page and off-page connectors
should use mnemonic, rather than arbitrary, identifiers to simplify reading the chart.
Page numbers for off-page connectors should be added as an annotation.

Modules with many uses scattered throughout the structure, such as an error mes
sage module, present special problems. The structure chart will be easiest to under
stand correctly when each such commonly used module is shown at the bottom of the
chart, separated from the rest of the structure. A connector with a clear mnemonic
identifier should be used wheiever the module is to be referenced. For example:

Fig. 49

/
®

I
I

®
\

COMPARESTRINGS
FOR EQUIVALENCE

STOREACHAR

Never repeat the same box (module symbol) on a chart, even when representing multi
ple usage. Each distinct module should appear once, and only once, on the structure
chart of the system, unless it specifically is intended that more than one version of the
same module is to be implemented, in which case, an explanatory comment is essential.
Multi-page structure charts are much harder to read and understand than are multi-page
flowcharts, unless great care is taken in their construction. It is better to use a larger
piece of paper than to separate a structure onto several pages. For design work, a large
sheet of paper or a chalkboard is a must.

APPENDIX A 395

EXPLANATORY NOTES

L Graphic symbol is not in IBM standard as presented in W.P. Stevens, G.J. Myers,
and L.L. Constantine, "Structured Design," IBM Systems Journal, Vol. 13, No. 2
(May 1974), pp. 115 .. 139.

2. IBM standard provides only the unspecified (tail-less) annotating arrow.

3. IBM standard does not provide for mixing direct and footnoted annotation of
parameters.

4. Use of connectors is not covered in IBM standard.

5. Neither the Hdata only module n symbol nor its use to represent common data en
vironments is covered by IBM.

6. IBM standard does not make clear the intended interpretation of multiple connec
tions enclosed by a single decision annotation.

7. Although not in IBM standard, this notation is a straightforward logical extension.

8. IBM HIPO charts do not use arrowheads and are, therefore, confusing. The IBM
standard includes no lexical relationship.

SUMMARY OF STANDARD GRAPHICS
FOR PROGRAM STRUCTURE CHARTS

I. Fundamental elements

This section is meant to clarify the basic logic of the complete graphic model of pro
gram structure for two reasons: to aid you in learning the model and to suggest gen~
eralizations or extensions through combinations of fundamental elements.

NAME

, ____ _
NAME

'

Any module.

An arrow pointing to a box (module) always
denotes a reference to the identifier of the en
tire module.

An arrow pointing into a box (module) always
denotes a reference to the identifier of some
element within the module, i.e., defined, de
clared, or caused to be within the lexical scope
of the module. (Any arrow terminating within
a box also is always shown originating within a
box.)

An arrow with a dot (point) on its tail always
denotes control.

An arrow with a small circle on its tail always
denotes data.

As an annotation, a plain arrow denotes either
control, data, or both control and data.

396

-~

FOO

FOO

FOODA'rA

APPENDIX B 397

As a connection, the dotted tail always denotes
unconditioned transfer of control, e.g., by
GOTO.

As a connection, the circled tail always indicates
a data reference.

As a connection, the plain tail always indicates
a conditioned (subordinating) control transfer
with or without data trar.sfer. A subordinating
transfer is one in which continuation at the lex
ically next-sequential-statement is implicit be
cause the control transfer carries that condition
(e.g., a normal subroutine call, a machine
language "execute,,, and so forth.)

A barred arrow always denotes control entry via
a varying and automatically maintained entry
interface, i.e., as in a coroutine or subcoroutine.

1---
A barred tail always denotes control exit, which
automatically maintains the entry interface of
this module for reentry at next-sequential
statement.

MODULES AND ENTITIES

E-1: Any module, regardless of physical or activation
characteristics. See definition, page 373 of Ap
pendix A. When other types of modules are dis
tinguished, the symbol is used for a normal
subroutine.

E-1.1: Any predefined or pre-existing module. Striping
may be added to other module symbols, that is,
E-3.

E-2: Any module consisting solely of data elements.

398 APPENDrX B

rFr.i - ,
I I

'- - - -'

FUM

FUM

FOO

' ' '
FOO

E-3: A macro. Any module inserted or ex
panded in-line at compile-time (or
transaction-time) when invoked by
name.

E-4: The operating environment within which
the program runs, including, but not lim
ited to, the operating system, monitor,
system task management, the hardware
itself, and so on.

E-5: Any physical input-output device/medi
um/file referenced by identifier~ e.g.,
CARD-READER~2.

CONNECTIONS

C-1: Subordination, normal. A reference to
FOO exists in FUM in the context of an
invocation that subordinates FOO to FUM,
i.e., a subroutine call, function reference,
or macro invocation.

C-1.1: Asynchronous link. Parallel or asynchro
nous transfer. Dashed versions of C-1,
C-3, C-5, C-6, C-7 indicate obvious vari
ations of asynchronous activation.

FUM

FOO

FUM

FOO

FUM

FOO

FUM

4')

,,

4 t

LABEL2

1 ,

49

p

HFOO

APPENDIX B 399

C-2: Data reference, pathological. A refer
ence to identifier FUDGE within FOO ap
pears in FUM in the context of usage as
data. The arrow points in the direction
of reference~ data may flow in either
direction. (See A-1, A-2.)

C-3: Control reference, pathological. A refer
ence to identifier LABEL2 within FOO ap
pears in FUM in the context of usage as
control (e.g., "GOTO LABEL 1

'). In prac
tice, the direction of flow is the same as
the direction of reference.

C-4: Hybrid reference, pathological. Modifi
cation by FUM of the procedure in FOO.

C-5: Cotransfer, normal. FUM references FOO
as a coroutine. See page 382.

400 APPENDIX B

FUM

FOO

C-6: Subordinated cotransfer, normal. FUM

references FOO as a subordinate, which is
entered via an entry locator maintained
by FOO on resumption of any subordinat
ing task.

Transfer, normal. Unconditioned (un
subordinated) transfer of control to FOO
by name.

I---.... t ·I ____ IC-S:
Data transfer, normal. Transmission of
data to or from FOO by name without
transfer of control. See Section 18.5.

FUM

FOO

ANNOTATIONS
Information Flow

A-1: Information flow. Notation adjacent to
any connection indicates the direction of
flow of information (data and/or con
trol). The description may consist of
identifiers, narrative description, and/or
numbered footnote references (see A-4).
Usually used for parameters to and from
modules. Identifiers are those appearing
in the referencing module, that is, the
actual rather than dummy parameters.

FUM

x,y

FUM

FUM

1
2
3
4
• • • I

FOO

FOO

3

FOO

PARAMETERS
Input Output

x,y z

APPENDIX B 401

A-2: Data flow. As in A-1 except only denot
ing data. (Here: Input parameters x and
y to Foo.)

A-3: Control flow. As in A-1, except only
control or elements of data used to com
municate control information are denot
ed. Here: Flag z, an output (return)
parameter of FOO.

A-4: Footnote reference. Index number of an
entry in a parameter footnote table as
shown. The input and -output columns
list, respectively, the parameters going to
and from the referenced module. (Here:
As in entries for A-1, A-2, and A-3.)

402 APPENDIX B

FUM

I
I

FOO

FUM

FOO

this module

COMMENTS

A-5: Comment. Any explanatory appenda
tion. Note the dashed line without an
arrowhead.

written in
assembly language

FAR

PROCEDURE

A-6: Iteration. The reference indicated is im
bedded in a looping procedure. It may
be used to enclose the origination of any
connection. (Here: Repeated use of FOO

as a subroutine.)

A-7: Decision. The reference indicated is im
bedded within a decision procedure.
(Here: Either FAR or FOO is used as a
subroutine by FUM conditional on the
outcome of a decision.) See also page
380.

FUM

1

FUM

FOO

APPENDIX B 403

A-8: 0 ne-shot: The reference indicated is
us ed only once.

• .. FOO

LEXICAL RELATIONSHIPS

A-9: Lexical inclusion. FOO actually is written
wholly within the lexical boundaries of
FUM.

A-10: Lexical contiguity. FEE and Fl are written
adjacently, Fl following FEE.

LI --l ___ FI I
A-10.1: Lexical contiguity. Preferred alternate to

I
A-9 where pictorially practical. Usually
used to denote a single module with more
than one distinct, properly defined entry
interface.

access

accessibility of information

adjacency

afferent data element

afferent flow

afferent module

aggregate

aggregate identifier

A-level module

alternate returns

anticipatory loading

associative principle

GLOSSARY

to make use of a reference~ that is, to execute the
statement in which the reference is contained.

one of three aspects of an intermodule interface that
can affect its complexity.

a term used to describe modules that execute one
right after the other. Used as a low-priority packaging
criterion.

a high-level element of data that is furthest removed
from physical input, but that still constitutes input to
the system.

a flow of data from low-level subordinates upward to
higher-level superordinates.

a module that obtains input from its subordinate and
delivers it upward to its superordinate.

a contiguous group of statements, bounded by bound
ary elements.

the identifier associated with an entire aggregate.

a second-level 4 'action,, module created as part of the
transaction-analysis strategy.

a module linkage convention that allows the subordi
nate to return to a location other than the normal re
turn location.

an automatic storage management discipline that loads
modules into memory before they actually are in
voked, based on knowledge of the hierarchy of
modules in the system.

a principle or concept used by a designer in associating
processing elements together in a single module.

405

406 GLOSSARY

atomic module

automatic packaging

balanced systems

base load

bifurcated transfer

binding

binding time

black box

bottom~up testing

boundary clash

boundary element

a module with no subordinates~ a bottom-level
module.

the dynamic determination (usually by an operating
system) of which modules should be loaded into pri
mary storage, and which modules should be overlaid
and/or written onto secondary storage.

systems that are not input-driven or output-driven~

such systems usually have a fairly deep hierarchy of
modules to obtain inputs and to deliver outputs.

a set of modules· activated by an unbroken chain of
explicit commands.

a transfer of control to a module such that a separate
control stream is created~ this is accomplished with
genuine parallel processing, or with simulated parallel
processing (i.e., with the assistance of a multitasking
or multiprogramming operating system).

a common synonym for cohesion. In this book., bind
ing is used exclusively to describe the process of as
signing a value or referent to an identifier.

the point, in the development life cycle of a program,
at which a value or referent is assigned to an
identifier~ binding time is a factor influencing degree
of coupling.

a system (or, equivalently, a component) with known
inputs, known outputs, and generally a known
transform, but with unknown (or irrelevant) contents.

a testing strategy in which bottom-level modules are
tested first, and then are integrated into higher-level
superordinates. Usually contrasted with top-down
testing.

in the Jackson data-structure design technique, a par
ticular form of structure clash, usually caused by the
blocking characteristics of physical input-output de
vices.

a statement or other element of a language which
serves to define the lexical limits of groups of state
ments and allows the statements so bounded to be
used as a single entity for some purpose.

bubble chart

business systems analyst

call by name

call by value

central transforms

CIPO

coding

cohesion

coincidental cohesion

commonality

common-data environment

GLOSSARY 407

synonym for data flow graph.

a common term used to describe a person whose job it
is to talk to the end-user of a computer system, and to
document that user's needs so that an appropriate
computer system can be developed.

a means of passing data to a module by passing the
address of the data.

a means of passing data to a module by passing a copy
of the data.

central system's functions which take relatively digest
ed data (afferent data elements) as input streams, and
which then create major output streams (efferent data
elements).

a specific (obsolete) model of systems organization~
the acronym, CIPO, stands for Control-/nput
Process-Output.

the process of writing the computer instructions after
procedural design has been carried out by a program
mer, after structural design has been carried out by a
designer, and after specifications have been developed
by a systems analyst.

the degree of functional relatedness of processing ele
ments within a single module.

the lowest of seven levels of cohesion, used to
describe a module whose processing elements have no
constructive relationship to one another.

a measure of how common the problem (or applica
tion) is that we are solving with a given system~ one
of the factors in program generality.

a means of describing data such that the data can be
accessed by any module in a system.

common-environment coupling a form of coupling that occurs whenever two or more
modules interact with a common-data environment.

communication analysis a refinement of a completed structural design, in
which appropriate means are chosen for communica
tion between modules - e.g., intermediate files,
subroutine arguments, external variables, and so on.

408 GLOSSARY

communication structure

communicational cohesion

complexity of interface

computer systems analyst

conceptual structure

conditioned transfer

connection

comoutine

content-coupling

control structure

control-coupling

the structure of a program defined by the relationship
of transmission and reception of data.

one of seven levels of cohesion that occurs when all of
the processing elements of a module operate upon the
same input data set and/or produce the same output
data; this is the lowest level of cohesion at which
there is a relationship among processing elements that
is intrinsically problem-dependent.

one of the factors influencing coupling between
modules. The comple~ity of the interface is approxi
mately equal to the number of different items being
passed - the more items, the higher the coupling.

a common synonym for "systems designer.'' Used to
describe the person who is concerned with the struc
tural design of a computer system, once its
specifications have been determined by a business sys
tems analyst.

the structure of a program defined by the relationships
existing in the programmer~s mind.

a jump out from the current execution sequence with
the condition that control eventually be returned to
the execution sequence from which the jump was
made, i.e., a subroutine call.

a reference in one part of a program to the identifier
of another part ·(i.e., something found elsewhere).
See intermodular connection.

a nonincremental module activated by a bifurcated
transfer. Also known as a task.

a strong form of coupling that occurs when some or all
of the contents of one module is included in the con
tents of another.

the structure of a program defined by references
which represent transfers of control.

a form of coupling that occurs whenever there is any
connection between two modules that communicates
elements of control.

coordinate flow

coordinate module

coordination

coroutine

cost of debugging

cotransfer

coupling

data flow graph

data-coupling

data-structure design

GLOSSARY 409

an observation by Mel Conway that the structure of a
system reflects the structure of the organization that
built it.

a flow of data from a subordinate upward to its su
perordinate, and then downward from the superordi
nate to some other subordinate.

a module primarily concerned with coordinating and
managing the activities of subordinates. Frequently
referred to as an executive module.

a form of indirect control in which one module in
volves itself in the procedural contents of another~ for
example, a subroutine that assembles data elements
into compound elements for a superordinate, sending
a flag to the superordinate indicating whether its re
turn is either to request an additional data element or
to deliver a completed compound item.

a module whose point of activation is always the next
sequential statement following the last point at which
the module deactivated itself by activating another
coroutine.

the cost of everything the programmer does in the
development of a program beyond the initial writing of
the code, the first compilation or assembly, and the
last test-run (the one that confirms that the system is
acceptable).

the activation of a coroutine.

a measure of the strength of interconnection between
one module and another.

a graphic tool used to represent the flow of data
streams through successive transforms.

a form of coupling caused by an intermodule connec
tion that provides output from one module and that
serves as input to another module.

a type of design strategy that derives a structural
design from consideration of the structure of data sets
associated with the problem.

410 GLOSSARY

debugging

d1~coupling

demand coroutine

demand loading

demodularization

design

de:sign principles

device-centered design

device-coupled
communication

direct pathological connection

disposable modules

o-Ievel module

the process of identifying a bug's location and nature.

any systematic method or technique by which modules
can be made more independent.

a synonym for subcoroutine.

a form of storage management in which nonresident
modules are loaded into primary storage only when
they actually have been invoked by some other
module. Usually contrasted with anticipatory loading.

the process of compressing all of one module (or, on
occasion, part of one module) into another. Usually
carried out as part of the process of optimizing the
performance of a system.

to plan the form and method of a solution.

very broad principles that generally work in the sense
that they favor increasing quality for decreased
development cost.

an informal (obsolete) design strategy, which focuses
on a physical input-output device and its interface as
the organizing principle for placing processing ele
ments within a module.

a form of pathological communication in which
modules pass data to one another through some
secondary storage device, rather than passing the data
through superordinates.

a form of pathological connection in which a module
refers directly to an identifier contained within another
module.

a maintenance strategy in which modules are thrown
away and rewritten if they are discovered to contain
bugs or inadequacies.

one of the four levels of modules specified by the
transaction analysis strategy. o-level modules are
bottom-level ~'detail" modules, which are responsible
for carrying out the details of the actions required to
complete a transaction.

domain generality

downward compression

driver

dummy module

dynamic control

dynamic integrity

dynamic recursion

efferent data element

efferent flow

efferent module

exclusion

GLOSSARY 411

one aspect of generality in a computer program. A
module with a large domain - i.e., which accepts a
wide range of values for its input - is more general
than one with a smaller <lomain.

a form of compression in which a superordinate
module is copied in-line in the body of its subordi
nate; usually carried out as part of a process of optim
izing the performance of a system.

a primitive simulation of a superordinate module,
used in the bottom-up testing of a subordinate
module.

a common synonym for stub. A dummy module pro
vides a primitive simulation of a subordinate, and is
used in the top-down testing of a superordinate.

a packaging mechanism in which the programmer
specifies to the operating system when a load unit ac
tually should be brought into primary memory.

used to describe the dynamic behavior of a black-box
module~ a module with dynamic integrity is stable and
dependable, and carries out the same function each
time it is invoked.

a form of recursion that exists wherever a module is
shared by two or more tasks that can be among active
jobs at the same time, is used by routines handling
different interrupts or asynchronous processes, or is
reachable from both base and interrupt loads.

a data element that is furthest removed from the phy
sical outputs and that still may be termed outgoing.

a flow of data in which a superordinate passes a data
element to its subordinate, which then passes it down
ward to its subordinate.

a module that receives its input from a superordinate,
and that delivers its output to a subordinate.

a strategy for designing generalized systems in which
the designer examines as many applications as possi
ble, but excludes those aspects that make the applica
tion special or unique.

412 GLOSSARY

explosion point

factoring

fan-in

fan·-out

feasibility study

filter transform

flexibility

fully factored systems

functional cohesion

functional recursion

functional requirements

functional specification

the point in a data flow graph at which data streams
separate (explode).

a process of decomposing a system into a hierarchy of
modules.

the number of superordinate modules which refer to a
specified subordinate.

the number of immediate subordinates to a specified
module.

a study, normally conducted at the beginning of a sys
tems development project, to determine the likelihood
that a system can, in fact, be built within the con
straints of time, manpower, and budget

a type of data flow graph "bubble" (transform) that
separates a stream of input data into a stream of good
data and a stream of bad data, passing on the good.

a measure of the degree to which a system, as is, can
be used in a variety of ways.

systems in which a11 actual processing (or computation
or data manipulation) is handled by bottom-level
atomic modules, and in which all non-atomic modules
consist only of control and coordination.

the strongest form of relationship between processing
elements in a module; occurs when every element of
processing is an integral part of, and essential to, the
performance of a single function.

a means of defining certain functions, mathematical
and otherwise~ the value of such functions, for a cer
tain input, is defined in terms of the same function of
other inputs.

a precise description of the requirements of a comput
er system~ includes a statement of the inputs to be
supplied by the user, the outputs desired by the user,
the algorithms involved in any computations desired
by the user, and a description of such physical con
straints as response time, volumes, and so on.

a synonym for functional requirements.

functionality

function-centered design

general systems design

generality

general-purpose system

gray box

head routine

heuristic

HIPO chart

homologous system

hybrid-coupling

identifier

identifier space

GLOSSARY 413

a synonym for cohesion.

an informal design strategy that attempts to derive a
system whose modules all represent single, self
contained functions.

an informal description of the work carried out by the
computer systems analyst: designing the major ele
ments of the data base, the major components of a
system, and the interfaces between them.

a measure of the degree to which a system exhibits
the properties of a general-purpose system.

a system that is widely used or usable, that solves a
broad case of a wide class of problems, that is readily
adaptable to many variations, and/or that will function
in many different environments.

a system that does not have all of the desirable pro
perties of a black box, but whose contents do not have
to be completely understood in order to be used.

a top-level subroutine or subcoroutine, or a module
whose data comes in from below and goes out below~
a coordinate module.

a specific rule of thumb that usually works but is not
guaranteed.

an acronym for Hierarchy-Input-Process-Output,
developed by IBM to document the structure of sys
tems. Similar in some ways to structure charts.

a system developed with any control relationship that
does not define a hierarchy of control responsibility~

i.e., a non-hierarchical system.

a strong form of coupling that occurs when one
module modifies the procedural contents of another
module.

the name, address~ Iabe1, or distinguishing index of an
object in a program.

all identifiers defined over a given lexical scope.

414 GLOSSARY

identity interface

implicit structure

inch-pebbles

inclusion

incremental implementation

incremental module

independence

information hiding

initial boundary

input-driven system

input-output coupling

interface

intermodular connection

the interface associated with the aggregate identifier of
a module or segment.

structure based on implicit control and data relation
ships for which there are no references (connections).

a useful term for describing small milestones in a
computer project.

a strategy for designing general-purpose systems that
operates by identifying and examining as many distinct
applications as possible and including some feature or
features to cover each of the applications.

a testing/implementation strategy for adding a new
(potentially buggy) module to a tested collection of
modules, and then testing the new combination.

a module that begins its execution at the point at
which operation was last suspended, e.g., a coroutine
or subcoroutine.

a term used to describe pairs of modules: Two
modules are said to be independent if each can f unc
tion completely without the presence of the other.

a design heuristic developed by D.L Parnas: Modules
are formed in such a way as to hide from the rest of
the system assumptions about the solution that are
likely to change.

the lexically first boundary element that begins a
module or segment.

a term used to characterize a system that obtains all of
its inputs in elementary, (raw) physical form at or
near the top of the hierarchy.

a synonym for data-coupling.

the point in a module or segment elsewhere refer
enced by an identifier at which control or data is reN
ceived or transmitted.

a reference from one module to an identifier in a
different module.

interrupt load

interrupt module

intramodular functional
relatedness

item-centered design

job step

lateral compression

lexical

lexical inclusion

lexical order

load module

toad unit

localization

locus of control

logic design

GLOSSARY 415

the set of modules activated by an interrupt.

a module activated by an interrupt.

a synonym for cohesion.

an informal (obsolete) design strategy that associates
in one place all processing for a given item of incom
ing data.

a common (vendor-dependent) term used to describe
a physically executable unit of code.

a process of combining two or more procedurally adja
cent modules into a single module; usually carried out
as part of a process of optimizing the performance of a
system.

of or pertaining to the program as written, as it ap

pears in a program listing.

the property of one object (usually module or seg
. ment) being wholly con.tained within the lexical

boundaries of another.

the order in which statements appear as written.

a common (vendor-dependent) term used to describe
a physically executable unit of code.

a common (vendor-dependent) term used to describe
a physically executable unit of code.

a technique of decoupling affected by subdividing the
data elements communicated through a common en
vironment into a number of regions common to a
smaller number of modules.

a means of describing the extent to which control over
the behavior of a system resides in the input data or in
the resident data, rather than in the instructions them
selves. The flexibility of a system generally is in
creased as the locus of control shifts away from the in
structions and toward the input data and/ or the
resident data.

the design of the procedural logic within a single
module.

416 GLOSSARY

logical cohesion

macro

maintainability

maintenance

Mealy's Law

mechanically segmented

merge point

minimally connected

modifiability

modification

module

one of the weakest of seven levels of cohesion. A
module is said to be logically cohesive if its processing
elements can be considered members of the same log
ical class of similar or related functions.

a module whose body is effectively copied in-line dur
ing translation (e.g.~ compilation or assembly) as a
result of being invoked by name; that is, the bounded
contents replace the reference to the aggregate
identifier.

the extent to which a system can be easily corrected
when bugs are discovered during the system's produc
tive lifetime.

the correction of bugs that are discovered in a system
during its productive lifetime.

the observation, by George Mealy, that there is an in
cremental person who, when added to a project, con
sumes more energy (or resources) than he or she
makes available.

a term used to describe a system whose structure is
largely determined by mechanical restrictions such as
memory page size and real-time response constraints.

a point in a data flow graph where data streams fan-in
(merge).

a term used to describe a system whose connections
are restricted to fully parameterized (with respect to
inputs and outputs) conditioned transfers of control to
the single, unique activation/entry/origin/interface of
any module.

the ability of a system to be changed or enhanced to
meet the needs of a user during the system's produc
tive lifetime.

the act of changing or enhancing a system to meet the
changing needs of a user during the system's produc
tive lifetime.

a contiguous sequence of program statements, bound
ed by boundary elements, having an aggregate
identifier.

module stre;ngth

monolithic

morphology

mosque shape

normal connection

normally connected

ongoing debugging

order clash

output-driven system

overlay

packaging

pancake structure

pathological connection

GLOSSARY 417

a synonym for cohesion.

of; pertaining to, or behaving like a single piece~
minimal modularity.

shape, particularly with respect to the structure of a
system.

a characteristic shape of well-designed systems~ also
referred to as a cigar or a flying-saucer shape.

a reference to an aggregate identifier of a module.

a term used to describe a system that is minimally
connected except for one or more instances of (a)
multiple entry points to a single module~ provided that
each such entry is minimal with respect to data
transfers, (b) control returns to other than the next
sequential statement in the activating module, provid
ed that the alternate returns are defined by the activat
ing module as part of its activation process, or (c)
control is transferred to a normal entry point by some
thing other than a conditioned transfer of control.

a synonym for maintenance.

in the Jackson data-structure design technique, a par
ticular form of structure clash that occurs when a pro
gram must deal with input data sets that have been
sorted in a different order.

a system in which the top-level module produces the
output of the system in elementary (or raw) form.

a common (vendor-dependent) term to describe a
physically executable unit of code.

the assignment of the modules of a total system into
sections handled as distinct physical units for execu
tion on a machine.

an informal term used to describe a system with very
few intermediate levels of executive modules. The
few executive modules that do exist in such systems
usually are characterized by a high span of control.

a reference to an identifier other than the aggregate
identifier of a module (i.e., a reference to an object
within the module).

41-8 GLOSSARY

phase routine

phased implementation

P-level module

pointer

portability

procedural analysis

procedural cohesion

procedure-centered design

processing element

program

a term for a module that is activated by name by an
unconditioned transfer of control~ that is, as a next
step rather than as a subordinate.

a form of testing/implementation in which several un
tested modules are combined together at once, and
the collection tested for correctness.

one of the four levels of modules created by the trans
action analysis strategy. The P-level module is the
program-level module that receives a transaction and
dispatches it to the appropriate T-level subordinate to

completely process the transaction.

an entity containing or having the value of an
identifier.

a property of a program representing ease of move
ment among distinct solution environments.

a set of criteria to determine which modules must be
in the same load unit for the sake of efficiency~ nor
mally considered part of the process of packaging.

an intermediate degree of the seven levels of cohe
sion~ a module is said to be procedurally cohesive if its
processing elements are elements of a common pro
cedural unit, either an iteration or decision process.

an informal (obsolete) desi.gn strategy in which the
design -of a system is derived from procedural
representations (for example, flowcharts) -0f a
system's operation.

any part of the task performed. by a module - not
only the processing accomplished by statements exe
cuted within that module, but also that which results
from calls on subordinates.

a system composed of precise, ordered statements and
aggregates. Sometimes used informally as a synonym
for module. Often used in the context of packaging
decisions; that is, a program is often regarded as the
smallest unit of a system that can be manipulated (ini
tiated, loaded into primary memory, overlaid, and so
on) by the operating system.

program development process

program inversion

program specifications

programmer

prologue/epiilogue processing

recur.sion

reenterable

reentrant

reference

GLOSSARY 419

a complete process of analyzing the requirements of a
system, carrying out the structural design, writing the
code, and testing the resulting product

in the Jackson data-structure design technique, a pro
cedure for converting a pair of coroutines into a
superordinate-subordinate relationship. Used primari
ly as a means of dealing with structure clashes in a
programming environment that does not support
coroutines.

a precise description of the requirements of an indivi
dual program: It includes a statement of the inputs to
be supplied to the program, the outputs desired, the
algorithms involved in any computations, and a
description of such physical constraints as execution
speed, memory limitations, and so on. Sometimes
used as a synonym for functiona I re qui rem en ts.

an informal term used to describe the person who
designs and writes the programming instructions to
implement a module. In some organizations, pro
grammers also are responsible for the structural design
of the system, and occasionally even for the analysis
of the user's requirements.

"Overhead" processing normally required upon first
entering a module, and just prior to exiting from the
module. Such processing usually includes saving and
restoring of hardware registers, establishing the scope
of identifer definition within the module, and so on.
The prologue/epilogue processing often requires a
considerable amount of CPU time (and memory), but
usually is transparent to the programmer and designer;
it usually is an issue only when optimization needs to
be carried out.

the act of invoking a module as a subordinate of itself~
a recursive module is one that calls itself.

a synonym for reentrant.

a module is reentrant if it can be reactivated correctly
at any time~ whether or not it has been suspended by
a conditioned transfer or return.

the use (appearance lexically) within some part of a
program of an identifier of a program entity.

420 GLOSSARY

referent

referential structure

reliability

resident data

reusable module

reversible computation

SAPTAD

scope of control

scope of effect

scope of identifier definition

segment

self-checking procedure

semantic element

sequential cohesion

the object identified in a reference.

the structure based on all references (connections)
within a program.

a measure of the quality of a program or system~
sometimes expressed as mean-time-between-failures.

data built (e.g., compiled) into a program.

a module that always executes in the same way on
each separate activiation, as if it were a fresh copy of
the module.

a computation that can be undone or performed in re
verse to yield some or all of the original inputs.

an acronym for an earlier version of the transaction
analysis strategy. SAPTAD, developed at Bell Tele
phone of Canada, is an acronym for System
Appl ication-Program- Transaction-Action-Lktail.

the scope of control of a module consists of the
module itself and all of its subordinates.

the scope of effect of a decision is the collection of all
modules containing any processing that is conditional
upon that decision.

the lexical region (scope) over which an identifier is
defined and carries a given meaning.

an aggregate with no aggregate identifier.

a computation that can be made inherently self
checking - that is, side effects to the algorithmic pro
cess itself may be used to check (or verify, or prove)
the result.

an aspect of processing related to the action that a
transaction requires.

one of the strongest of the seven levels of cohesion.
A module is said to be sequentially cohesive if the
output data (or results) from one processing element
serve as input data for the next processing element.

serially reusable module

side effects

simultaneous recursion

singular function

skew

software redundancy

software reliability

span of control

span of control flow

statement

static control

static integrity

GLOSSARY 421

a synonym for reusable module.

processing, or activities, unrelated to a module's pri
mary function.

a structure that results from a module being a subordi
nate, but not an immediate subordinate, of itself. For
example, if module A calls module B, and module B

calls ·module A, then A and B are said to be simultane
ously recursive.

a function, or module, that is invoked only once dur
ing the execution of the entire system~ also known as
"once-only" modules, or "one-shot" modules.

a feature of the morphology or shape of a system that
occurs when a few high-level executive modules have
many levels of subordinates, while most of the execu
tive modules have none or only a few levels of subor
dinates.

redundancy achieved by coding two (or more) distinct
implementations of the modules of a system (presum
ably by different people). ,

a measure of the quality of a program or system~
sometimes expressed as mean-time-between-failures.

a module's span of control is the number of its im
mediate subordinates; fan-out.

the number of lexically contiguous statements that a
programmer must examine before he finds a black-box
section of code that has one entry point and one exit
point.

a line, sentence, or other similar well-defined con
struct of a programming language that defines,
describes, or directs one step or part of the solution of
the problem.

the ability to specify which modules (or portions of
modules) constitute load units; an aspect of packaging.

used to describe the static behavior of a black-box
module~ a program has more static integrity to the ex
tent that its behavior can be characterized in terms of
a set of immediate inputs, a set of immediate outputs,
and a simply stated relationship between the two.

422 GLOSSARY

stepwise refinement

strategy

structural design

structure charts

structure clash

structured analysis

structured data

structured design

structured programming

stub

subcoroutine

subroutine

synchronized module

a synonym for incremental implementation.

a procedure or plan in which to imbed the use of
tools, principles, and heuristics to specify systems
parameters in order to increase technical objectives.

the design of the structure of a system: the
specification of the pieces (e.g., modules) and the in
terconnection between the pieces.

a documentation technique for illustrating the
modules in a system, and the interconnections
between modules.

in the Jackson data-structure design technique, the ex
istence of multiple sets of data which do not have a
one-to-one correspondence at all levels of the data
structures.

a set of guidelines and techniques that assists a sys
tems analyst in stating functional requirements of a
system in logical terms.

data which itself contains explicit structural informa
tion that relates~ by reference, an element of data to
other elements of data.

a set of guidelines and techniques that assists a sys
tems designer in determining which modules, inter
connected in which way, will best solve a well-stated
problem.

a set of guidelines and techniques for writing programs
as a nested set of single-entry, single-exit blocks of
code, using a restricted number of constructs.

a primitive implementation of a subordinate module~
normally used in the top-down testing of a superordi
nate module.

an incremental module which can be subordinated and
which will resume whatever module calls it.

a module activated at execution time by a conditioned
transfer.

a module which references another module, not to ac
tivate it; but to check its progress, guarantee comple
tion of a certain point, or otherwise fall in step.

GLOSSARY 423

syntactic element an aspect of processing related to the form that a
transaction takes.

system flowchart a physical version of a data flow graph; i.e., a diagram
that shows physical inputs and outputs to a system, as
well as the physical processing units Gob steps, runs,
and so on) that transform the data.

system specification a synonym for functional requirements.

systems analyst an informal term for a person whose job it is to
analyze the user's needs, and to then derive the func
tional requirements of a system.

systems development life cycle a synonym for program development process.

technical objectives technically based measures of quality which generally
relate consistently to the overall goals of least-cost or
maximum-gain.

technical parameters

temporal cohesion

terminal failure

test harness

test monitor

testing

Thousand Module Effect

T-level module

non-evaluative measures of a system - that is, mere
ly descriptions of certain aspects of a system.

one of the lower of seven levels of cohesion. A
module is said to be temporally cohesive if all oc
currences of all elements of processing in the module
occur within the same limited period of time during
the execution of the system.

a software error that causes a system to completely'
stop functioning.

_a synonym for driver.

a synonym for driver.

a process of demonstrating that a system carries out its
function as specified.

an informal observation that if 1,000 programmers are
assigned to develop a system before a structural design
has been completed, then there will be at least 1,000
modules in the resulting system.

a third-level module derived by the transaction
analysis strategy. A T-level module, or transaction
level module, is responsible for completely processing
a transaction.

424 GLOSSARY

top-down design

top-down testing

transaction

transaction analysis

transaction center

transaction-centered design

transform

transform analysis

transform flow

transform module

transform-centered design

an informal design strategy in which the major func
tions of a system are identified, and their implementa
tion expressed in terms of lower-level primitives~ the
design process is then repeated on the primitives, until
the designer has identified primitives of a sufficiently
low level that their implementation can be expressed
trivially in terms of available program statements.

a testing/implementation strategy in which high-level
modules are tested before low-level modules; this usu
ally requires the use of stubs to provide a primitive
simulation of low-level modules in order to be able to
test the higher-level superordinate modules.

any element of data, control, signal, event, or change
of state which causes, triggers, or initiates some action
or sequence of actions.

a design strategy in which the structure of a system is
derived from an analysis of the transactions the sys
tem is required to process.

a portion of a system that can (a) obtain transactions
in raw form, (b) analyze each transaction to determine
its type, (c) dispatch on type of transaction, and (d)
complete the processing of each transaction.

a synonym for transaction analysis.

the transformation of some input data into some out
put data; a mapping of inputs into outputs; the func
tion of a module~ the representation of a transform on
a data flow graph.

a design strategy in which the structure of a system is
derived from an analysis of the flow of data through a
system, and of the transformations of data.

a flow of data into a module (as an input parameter
from a superordinate) and then out of the module (as
an output parameter to the superordinate) such that
the input data is transformed into the output data.

a module with transform flow.

a synonym for transform analysis.

unconditioned transfer

upward compression

user

utility

virtual memory

white box

GLOSSARY 425

a transfer of control from one module to another with
no tacit condition of return.

a form of compression in which a subordinate module
is placed in-line in its superordinate; i.e., in which the
body of the subordinate replaces the calling statement
in the superordinate.

an informal term describing the person, persons, or
organization that expects to benefit from the develop
ment of a computer system.

trie extent to which a system is easy to use, easy to in
staH, easy to operate, and easy to understand.

a hardware mechanism present on many third
generation and fourth-generation computers that per
mits a degree of automatic packaging.

the opposite of a black box: a system whose contents
must be understood in order to be usable.

INDEX

Abort:
239, 240, 241, 334
panic, J 68, 239-41

Acceptance testing, 343, 366
Access:

405
conditional, 50, 379
disk, 262
pathological data, 50
random, 98, 330, 331, 340

Accessibility of in formation, 66-71, 405
Accidental recursion, 295, 296
Action level module, 204, 207, 215, 216, 217, 218
Activation:

33, 50, 79, 280, 281, 282, 284, 285, 286,
290, 291, 303
asynchronous, 280, 299, 300, 411
characteristics of mooule, 280-82
interface, 79
mechanism of module, 33, 280-81
mechanism of programming language, 33
module, 302
synchronous, 280, 299

Address:
efficiency and call by, 274
parameter, 274
multilevel indirect, 263

Adjacency, lexical, 383, 405
Afferent:

module, 51, 135, 137, l 77-78, 190, 343,
344, 356
subroutine, 306, 307-08

Afferent branch:
143, 144, 146, 180, 181. 202
factoring, 178-81
structure of. 190, 192, 195, 196

Afferent data element:
defined, 176, 405
identification of, 175-77, 188-89, 407

Afferent flow:
135-38
morphology and, J 35-4 7

427

Aggregate:
31, 32, 34, 35, 185, 285, 405, 414, 416,
417, 420
bounded, 32
lexical superordinate and, 32
reference to, 34

Aggregate identifier:
32, 34, 35, 405
space, 32

A-level module, 204, 207, 364, 405
Alexander, C., 94
ALGOL, 32, 49, 71, 274, 283, 290, 364, 382
Alternate return, 80, 405
Analysis:

communication. 407
procedural, 130, 251-60
structured, 3, 8
transaction, 202-22, 424
transform, 38, lJO, 171-201, 202, 219,
300. 424

Analyst:
role of systems, 4-8, 61, 65, 73, 96, 130,
258, 260, 34~ 422, 423
business systems, 407
computer systems, 408, 413

ANSI COBOL, 256
ANSf standard, 373
Anticipatory loading, 405, 410
Applications:

computers and vital, 332
designer, 221

Approximation checks:
reasonableness checks and, 337
software redundancy and, 336

Arc and data flow graph, 316
Argument:

36, 56, 67, 71, 268, 273, 274, 310, 317
data, 56
passing, 244, 268, 271, 273, 274
transmission, 36, 268

Armstrong, R., 168, J 70
Aron, J.D., 245, 249

428 INDEX

Arrow, looping, 49, i 83
Assembler macro, 33
Assembly language, 32, 84, 150, 263, 268, 274,

2 8 5, 409, 41 6
Association:

coincidental, 98, I 02, 103
communicational, 98, 111, 112, 117, 120
functional, 98, 115-16, 120
logical, 98, 103, 111, 120
procedural, 98, 105, 106, 120
sequential, 98, 103, 11 L 113, 120
lemporal, 98, 103, 120

Associative principle:
96, 97' 106, 111, 120, 405
cohesion and, 96, 97
of communicational cohesion, 111

Asynchronous activation, 280, 299, 300, 411
Atomic module:

134, 144, 150, 151.152,253,352,353,406,
412
fan-in of, 1 S0-52

Authority, inversion of, 52, 94
Automatic packaging, 406

Baker, F.T., 148, 170, 347, 358
Balanced system, 142, 143, 406
Barn.ell, T.O., 222, 318, 370
Barron, D.W .. 289, 301
Base load, 280. 281, 298, 299, 300, 406, 411, 413
BASlC language, 22
Bell Telephone Company, 127, 202, 317
BenAaron, M., 317, 318
Berne, E., 302, 318
Bertalanffy, L. von, 147
Bidirectional linkage:

309, 316
coroutine and, 309

Bifurcated transfer, 281, 406, 408
Binding:

91, 197, 406
cohesion and, 95
defined,406

Binding time:
78, 84-88, 324, 406
coding and, 85
coupling and, 84-87, 94
design and, 84-86
flexibility and, 324
identifier and, 84
internal connection and, 86

Black box:

Block:

19, 21, 22, 26, 238, 248, 291, 300, 303,
406, 413, 425
characteristics of program, 21, 22, 238
rule of, 22

51, 112, 226, 228, 280, 284, 422
building, 284
control, 112, 228

data, 226
physical, 51, 176, 406

Boehm, B., 11, 15
Bohm, C., 75
Bottom-level module, 149, l 50, 410
Bottom-up implementation, 340

Bottom-up testing:
340, 341, 343-46, 347, 349, 352-54, 355,
356, 357, 406
test driver and, 343
test harness and, 343
test monitor and, 343

Boundary:
31, 32, 33, 35, 226, 250, 254, 267, 271,
286, 414, 416
clash, 226, 406
element, 31, 32, 406
module, 29, 250, 251
program, 31

Bounded aggregate, 32
Branch:

143, 144, 171, 178, 180, 190, 192, 195, 196,
199, 355
afferent, 143ff., 190ff., 355
efferent, 143ff., 190ff., 355
structure of afferent, 190
factoring of efferent, 178-81

Brooks, F.P., Jr., 75, 362, 370
Bubble:

38, 172-75, 227' 308, 317
data stream and, 38

Bubble chart:
38-40, 407
conjunction and, 38, 39
disjunction and, 38, 39
transforms and, 38

Buffer:
91, 112, 176
area, input-output, 112
decoupling and, 91

Bug(s):
design and, 63, 65
implementation and, 348
systems, 11, 63, 65, 70, 73. 265, 333, 334,
336, 347, 348
timing, 336

Business systems analyst, defined, 407
Buxton, J.N., IS

Call:
35, 49, 50, 67, 71, 160, 245, 246, 251, 267,
269, 271, 274, 284, 289, 293, 298, 363, 375,
381,407,408
conditionally activated, graphic for, 49
connection, 35
structural representation, 34
subroutine, 50, 67, 71, 279-87

Call by address, efficiency and. 274

Call by name:
defined,407
efficiency and, 274

Call by value:
274. 284, 285
defined, 407

CASE constrnct, 49
Case, null, 285, 344
Center, transaction, 203, 204-06, 208, 217, 218,

220-21
Central transform:

130-31, 177, 181, 182, 189, 197, 202, 210
defined, 407 ·
factoring of, 182, 197

Chapin chart, 106
Chapin, N., 106, 126
Character-string, 286
Chart(s):

bubb)e, 38-40, 407
Chapin, 106
HIPO,J.385,388,389,395,413
Nassi-Shneiderman, 106

Chart, structure, 6, 42, 43-50, 92, 145, 155, 202,
206, 248ff., 274, 289, 293, 295, 352; 355,
356, 357, 373, 383ff.
efficiency and, 27 4-7 5
procedural annotation in, 49, 50

Checking, validity, 174
Chief programmer team, 347, 368
CIPO model of systems organization,

131-32, 407
Clash:

boundary, 226, 406
order, 226, 417
structure, 225-27, 422

COBOL, 32, 33, 71, 88, 150, 170, 235, 256,
258, 264, 273, 274, 283, 317, 364,
373, 377' 381, 382, 383

COBOL, ANSI, 256

COD ASYL Programming Committee, 71
Code:

complexity, 42, 56, 57, 66
continuation, 51
execution, 45, 48
lexically included, 32, 268
optimization, 266-67
representation, 28, 42, 43
structured. 100, 101
transaci:ion, 163
writing, 72

Coder, role of, 4-8
Coding:

binding time and, 85
cost, 59
defined, 407
implementation and, 341
incremental, 365
simplicity of, 42

skeleton, 343, 345, 349, 351
structured design and, 42, S 1
lime, 245

Cohesion:

INDEX 429

associative principle and, 96, 97
binding and. 9~
coincidental, 0°-102, 103, 116, 118,
119, 120, 121, 125, 407
coincidental association and, 98, l 02,
103
communicational, 110-13, 118, 120,
122. 229, 230.., 408
communicational association and, 98,
111, 120
comparison of 1eve~3 of, 118-20
decision process and, 106
edit and validation processes and,
123-25
factoring, 121
functional, 114, 115-18, 120, 121,
122, 125
functionality and, 95
implementation and, 104, 123-25
input operation and, 102
iteration and, 106
levels of, 97-118
linear sequence of steps "nd, 106
logical, 102-03, 117, 118, l 20, 121,
122
measurement of, 120-23
module strength and, 95
procedural, 105-10
scale of, 122
sequential, 113-15, 122
start-up operation and, 103
structured design and, 94
temporal, 122

Cohesive module:
functionally, 116
sequentially, 197

Coincidental:
association, 98, 102, 103
cohesion, 98-102, 103, l 16, 118, 119,
120, 121, 125, 407

Collision of identifiers, 32
Common data environment, 242-44, 248,

407
Common-environment coupling:

88-90. 91, 407
defined, 88,407
systems structure and, 89

Common subordinate module, 215, 255
Commonality:

322, 323, 407
generality and, 322

Communication:
analysis, 407
control, 81, 82

430 INDEX

device·coupled. 244, 410
in modular systems, 235-48
internal, 56
justification for pathological, 244-47
normal, 233, 237, 245-47, 271-73,
327
overhead, 163, 168
path length, 56, 57
structure, 29, 25 l, 408
techniques, efficiency and, 271-74

Communication, pathological:
244-47, 271-73
coding time and, 245
future modification and, 247
overhead and, 245-47
programming time and. 244-45

Communicational association, 98, 111, 112, 115,
117, 120

Communicational cohesion:
110-13, 116, 118, 120, 122. 229, 230
associative principle of, 111
defined, 408
input-output association in, 113

Compilation time, 268, 285, 291, 324, 416
Compiler:

I 02, 134, 255, 266, 268, 309
optimizing, 31, 102

Compliexity:
11. 29, 56, 59, 62, 65, 66, 67' 69, 72, 74,
77. 78, 8L 104, 139, 140, 264, 265, 379,
405, 408
in human terms, 66-74, 81
modular structure and, 56
module, 69, 70, 78
of code, 56, 57, 66
of coupling, 77, 78
of interface, 68-72, 78, 81, 94, 405, 408
program, 66, 69, 70
structural, 29, 95
systems, 59, 65, 66, 67, 68, 69, 77, 78, 104,
127

Components:
systems, 7, 13, 27, 28, 40, 59, 279, 334,
413
typology of, 2 79-88

Com prnssion:
151, 155, 160, 169, 204, 269, 271, 272. 273,
411,415,425
downward, 271, 272, 411
efficiency and, 269-71
lateral, 271, 273, 415
partial, 272
upward, 271, 272,425

Computation, reversible, 336, 420
Computer &peranto, 52, 54, 289
Computer system (s}:

cost and development of, 7 3
efficiency in, 71
management and large, 25
systems analyst. 6., 408

technical objectives for, 25, 26, 40, 359,
422, 423
vital applications and, 332

Conceptual structure of program, 29, 408
Conditional:

access. 50, 379
decision, 45, 49, SO
indicator, 50
reference, 253
statement, 50, 160
transfer, 31, 79, 80, 280, 281

Conditioned transfer, 79, 80, 269, 280-281. 282,
283, 290, 291, 298, 307, 408, 416, 417, 419,
422

Configuration data:
291, 292, 298

Conjunction operator, 38, 39, 172, 173, I 83
r Jnnected system, minimally:

78-80, 416, 417
coupling and, 78-80, 94
defined, 79,80

Connected system, normally, 80, 417
Connection:

binding time and internal, 86
control-coupling, 82, 87, 88, 91, 218, 408
data-coupling, 81, 409
decoupling and standard of, 91
defined, 76, 408
direct pathological, 35, 241-42
hybrid-coupling, 82, 84, 89, 164
intermodular, 35, 78, 84
normal, 34-38, 42, 76
pathological, 34-38, 42, 78, 80, 164,
235-41, 242, 247-48, 417
pathological control, 239-41
pathological data, 235-39, 241
subroutine call, 35
type, 78-80, 94

Connector, flowchart and, 34, 35
Conroutine, 281, 282, 408
Constantine, L.L., 97, 113, 126, 127, 135, 145,

147, 266, 276, 301, 316, 318, 395
Construct:

33, 49, 317
CASE, 49
language, 33, 316-317

Content-coupling:
80, 86-90
defined, 408
lexical inclusion and, 86
multiple-entry module and, 86
subordinate and, 86
superordinate and, 86

Context-switching, 268

Control:
block, 112, 228
communication, 81, 82
connection, pathological, 239-41
externalization of, 324-25
now, 114, 281

flowchart and, 114
information types and, 81, 92, 93
levels or, 56
linkage, 316
locus of., 323-24, J 25, 415
logic, 152
module, 23, 24, 282-86
pathological, 168
reference, 36
structure of program, 29, 408
transfer., 79

Control, scope of:
160-69
implementation, 163-64, 165, 166

Control, span of:
66, 155, 160-69, 204
rule, 135

Control-coupled system, 78, 82
Control-coupling connection, 82, 86, 87, 88, 90,

91. 218, 408
Conversion/checking module, 191
Conway, M.E., 303, 318, 363, 364, 369
Conway's Law, 363, 364, 409
Coordinate:

flow, 135-138, 343, 409
module, 138, 343, 409
subroutine, 308

Coordinating transfer, 269, 302
Coordination control, 82, 183, 271, 409
Coroutine:

33, 277, 303-17, 382, 389, 409, 410, 414
application of, 305-16
bidirectional linkage and, 309
cycle, 309
defined,409
demand, 307
donor, 306
entry locator and, 304
incremental module and, 303-05
merge dliscipline and, 305-06
receiver, 306
recursion, 306
subordinate, 307
unidirectional linkage and, 309

Cost, systems development:
6ff., 25, 26, 51, 59ff., 73, 77, 104, 127, 145,

149, 171, 245ff., 316, 321ff., 360-69

Cotransf er, 304, 409
Coupling:

76-94, 95, 96, 115, 146, 164, 168, 181,

207' 220ff., 317, 326, 327, 328, 406, 407'
408, 409, 413, 414
binding time, 84-88, 94
common environment, 88-90, 91
connection type and, 77-80, 94
defined, 76,409
factors influencing, 78-88, 94
global data and, 94
information flow and, 81-84, 94
input-output, 81, 82, 83, 88, 91

INDEX 431

interface complexity and, 78, 81, 94
minimally connected system and, 78-80, 94
minimizing, 247-48
modification and, 84
modular structure and, 92
quantifying, 9_4
structured design and, 92, 93, 94
system structure and, 89
systems complexity and, 76-77
systems cost and, 76, 91

CPU time, 152, 247, 262, 264, 266, 268, 273,
282, 344

Crash, systems, 335
Cycle, systems development life, 3, 4, 7, 8, 289,

290, 295, 298, 406, 423

Data:
argument, 56
block, 226
configuration, 291, 292
connection, pathological, 235-39, 241
context of module, 21, 79
dictionary, 248
efficiency, 273
environment, common, 242, 248, 407
flow, 38, 114, 223, 227
flow of problem structure, 82, 83
global, 94, 238, 246
input, 323
nontransaction, 206
normal, 202-03
parts explosion and, 291
pathological, 335
resident, 323, 324, 325, 415, 420
stream, 38, 175
structure, 223-27
structured, 291-92, 422

Data element:
afferent, 175-77, 188-89, 405, 407
efferent, 145-77, 407, 411
graphic for, 36
span of, 66

Data flow diagram, 38-40, 173ff., 227

Data flow graph:
38-40, 111, 112, 113, 114, ll8, 171-75,

203, 204, 223, 364, 409
arc and, 316
middle-out approach to, 172-75
restatement of problem as, 186-89
transform analysis and, 171-75

Data-coupled:
module, 316
system, 78, 81, 316-17

Data-coupling, 81, 409
Data~oriented technique, 38
Data-structure design, 223, 227, 228, 409, 419
DeRose, B., 339

432 INDEX

Debugging:
10, 17, 18, 19, 59, 61, 65, 67, 71, 73, 77,

99, 100, 120, 238, 263, 286, 334, 340, 342,

351, 356, 357, 360, 361, 409, 410, 417
cost of, 59, 61, 65, 73, 409
incremental implementation and, 342
software and, 334
top-down, 99

Decision:
45, 50, 52, 57, 106, 135, 136, 149, 160,
162, 163, 165, 168, 169, 197. 218, 359, 366,

379,380,395,420
conditional, 45, 49, 50
graphic for, 49, 57
module activation by, 50
structure, 253

Decision process:
135, 136
cohesion and, I 06
morphology and, 135

Decision table, 25, 149
Decision-making:

162, 172, 183
distributed. 164
duplicate, 168
modular structure and, 162

Decomposition criteria design method, 227-29

Decoupling:
91-92, 277,410,415
buffers and, 91
defined, 91, 410
design and, 91
localization and, 91-92, 415
module independence and, 91
references and, 91
transient row, 191, 194, 195

Definition-time module, 280, 292
Demand coroutine, 307, 410
Demand loading, 410
Demodularization, 269, 410
Dependence, scale of, 76
Dependt!ncy, state, 218
Depth, 139-40, 146, 268
Design approach:

alternatives, 57, 223-31
data-structure, 223-227, 228, 409, 419

decomposition criteria, 227-29

exclusive, 322
inclusive, 321-22
procedure-centered, 144, 130
transaction-centered, 144-46, 130
transform-centered, 130, 144-46

Design:
constraint, 13
device-centered, 130, 410
heuristic, 22, 25, 26, 127, 148-70, 182,

207, 413, 414
module size and, 148-55
tools, 25, 96, 141, 149, 277, 295
transform-centered, 130, 144-46, 424

Designer:
applications, 221
optimization and competence of, 263
role of systems, 4-8
structural, 116
systems, 172, 175, 223, 227, 254, 260, 263,
277, 279, 291, 356, 359-70

Detail:
135, 207, 215, 216, 217
as design heuristic, 135
level module, 204, 216, 217

Development:
cost, 6, 10, 11, 14, 51, 65, 66, 73, 360-69

life cycle, 3, 4, 7, 8, 289, 290, 295, 298,
406, 423
management and, 359-69
structured program, 3
systems, 127, 280, 316, 319, 336, 345, 350,
352, 355
zigzag, 350, 355, 356

Device-centered design, 130, 410
Device-coupled communication, 244, 256, 4 IO

Diagram, data flow, 38-40, 173ff., 227
Dickson, J.C., 10, 11, 15, 334, 339
Direct pathological connection, 241-42, 410
Disjunction operator, 38, 39, 173
Disk, 244, 258, 262, 273
Dispatch logic, 204, 218
Dispatching module, 204
Disposable module, 410
D-level module, 204, 410
Documentation, 2L 42, 67, 68, 71. 153, 248, 380,

385, 391, 422
Domain generality, 323, 411
Donaldson, J.R., 126
Donnelly, V., 301
Donor coroutine, 306
Dove, R.K., 318
Downward compression, 271, 2 72, 411

Driver:
defined, 411
processing requirements for. 344
test, 343, 344, 345, 356, 423

Dummy motlule:
153, 154, 343, 344, 345, 411
routine, 344

Dynamic:
control, 411
integrity, 21, 22, 256, 298, 299, 300, 406,

411
recursion, 298-300, 411

Edit and validation processes, 121, 122, 123-25

Editing, 123-25, 176
Editor, text, 229
Effect, scope of:

160-69
defined, 160, 420
implementation, 163-64
scope of control and, 162

Effective modularity, 56
Efferent:

brnnch, 202
data element, 177, 411
factoring of, 178-8 l , 199
module, 134, 137, 178-81, 343, 356, 41 l
subroutine, 307-08

Efferent flow:
135-38, 411
morphology and, I 35-47

Efficiency:
call by address and. 274
call by name and, 274
communication techniques and, 271-74
compression and, 269-71
computer systems and, 71
conversion of data and, 273
internal flow of data and, 273
lexically included code and, 268
macros and, 268
normal communication and, 245-47
optimizlion and, 263-64
packaging and, 254
pancake structure and, 268-69
pathological communication and, 245-46
program, 49, 338
recoding and, 274
structural changes for, 268-74
structure chart and, 274-75

Egoless team., 368

Elshoff, J., I 77

Emery, J.C., 251, 261
Engineering, Fundamental Theorem of, 62, 63,

284
Environment:

common data, 242, 248, 407
coupling, common, 88-90, 91, 407
operating, 250, 251, 255, 269, 273, 280,
281, 283, 284, 295, 299, 317

Erickson, W.J., 276

Error:
curve, 62, 64
detection process, 172, 174, 337, 412
fatal, 239, 241, 244, 335
generation, 59, 62-66, 7 r, 73, 239, 241,
244, 258, 334, 335
human, 66, 67, 73
programmer, 66, 67

Error-checking, 337, 344
Esperanto, computer, 52, 54, 289
Estimation:

266, 267
design process and, 152

Estrin, G ., 4 l
Evaluation stream, 283, 285

Event, ratio, input-output, 307-08, 311
Exclusion, 321, 322, 411
Exclusive design approach, 322

Execution:
code, 45, 48
one-shot, 49
order of, 45, 57
speed, 13, 250, 251, 260
subordinate order of. 45
superordinate order or, 45

Execution time:
250, 251, 259. 260
optimization and, 266

INDEX 433

Executive module, 134, 135, 139, 140, 178, 217,
218, 302

Expansion. 285
Explicit data conversion, 273, 280, 316
Explosion parts, 291, 293, 294
Explosion point, 412
Ex tt;rnalization of control, 324-25

Factoring:
134-135, 138, 143, 146, l 71, 177-81, 182,
183-85, 189, 191-94, 197, 199, 327, 328,
412
first-cut, 179
first-level, 171, 177-78
module and termination, functional, 185
row validation function, 194
rule, 135
structural, 189-200
subordinate module and, 179
transform branch and, 178-81
transient sub-branch and, 191-93

Failure:
systems, 333-37
terminal, 335, 336. 423
software, 333-35

Fan-in:
150, 151, 152. 154, 155-60, 161, 364, 365,
412, 416
defined, 150, 412

Fan-out:
140, 141, 146, 155, 412, 421
defined, 412
morphology and, 139-40

Fatal error, 239, 241, 244, 335
Fatal-error test:

168
detection procedures and, 336-37
processes, structure of, 336-3 7

Fault-handling processes, 337-38
Feasibility study, 412
Filter transform, 172, 174, 412
First-cut factoring, 179
First-level factoring, 171, 177-78
Flag, 52, 168, 239, 241, 244, 265, 281
Flexibility, systems or program:

12, 321, 323-30, 338, 412, 415
binding time and, 324
cost factors and, 324
externalization of control and, 324-25
generalized structures and, 327-30

434 INDEX

influenced by design of module interface,
325-27
locus of control and, 323-24

Floating point number, 245, 273, 307
Flow:

afferent, 135-38, 175-77. 405
control, 114
coordinate, 138
coupling and information, 81-84, 94
data, t 14, 223, 227
efferent, 135-38, 41 I
information, 81-84, 171
module and control, 282-86
morphology and, 135-47
pathological control, 168
span of control, 66, 421
transform, 137, 424

Flowchart:
25, 27, 34, 38, 43-50, 52, 56, 57, 100, 101,
105, 106, 107, t 10, 114, ll5, 175, 228, 248,
311, 313, 314, 378, 380, 383, 384, 385, 387.
423
connector and, 34, 35
control flow and, 114
data flow and, 114
design tool, as, 25
detailed, 56
module organization of, 114
procedural step in, 34
structure chart and, 43-50
structured, 101

Flowcharting:
hierarchical method of, 43, 44
input-output, 82, 83
of data, efficiency and internal, 273
of module, 43
of problem structure, data, 82, 83
program, 38

Flowchart-thinking, 57, 114, 228
Forking transfer, 281
Format linkage structure, 229, 230
FORTRAN, 32, 33, 71, 88, 245, 264, 273, 274,

283, 317, 364, 374, 382
Four-level system, 204
Function:

one-shot, 253, 254, 257
optional, 253, 254
program structure and, 27
row validation, 194
run optional, 253
subordinate, 344
superordinate, 344

Functional:
application of module, 279
association, 98, 115-116, 120
cohesion, 114, 115-18, 120, 121, 122, 125,
412
factoring of module and termination, 185
modular structi,ue, 250
module, 96, 116

recursion, 280-91, 412
requirements, 4, 6, l 6, 38, 412
specification, 3, 4, 6, 412

Functional relatedness:
95-96
cohesion and, 95-96, 125
inrermodular, 95-96
intramodular, 95-96

Functionally cohesive module, 116
Function-centered design, 300, 413
Functions, 283-85, 287

Generality, systems:
12, 14, 321-23, 325, 338, 407, 411, 413
commonality and, 322
domain generality and, 323
exclusive design approach and, 322
flexibility and, 323-30
general-purpose system and, 321
inclusive design approach and, 321-22
portability and, 322
utility and, 322

Generalized structures:
327-30, 353
flexibililty and, 327-30
sequential file update and, 328

General-purpose system, 12, 321, 322, 326, 338,
413, 414

Gilb, T., 339
Global data:

94, 238, 246
coupling and, 94

GOTO statement. 33, 100, 303, 310, 377, 381,
389

Grant, E. E., 276
Gray box, 21, 413
Gray, M., 68, 71, 75
Grouping, module, 251. 252, 254, 257

Halstead, M.H., 62, 66, 75
Hamby, C.W., 339
Hardware:

10, 255, 266, 281, 330, 333, 335, 336, 419,
425
cost, 10, 11

Harness tesl, 343, 423
Head routine, 413
Hesse, J.L., 15, 339
Heuristic design, 22, 25, 26, 127, 148-70, 182,

207, 413, 414
defined, 148
detail as, 135
module size and, 148-55
scope of effect/scope of control, 162, 168

Hierarchical:
43, 44, 57, 134, 136, 201, 268, 269, 270,
280. 300, 302, 385, 388, 389, 390
method of flowcharting, 43, 44
relation of modules, 57

Hierarchy:
139, 224, 225, 226, 281, 308
managi~ment, 23, 25
systems levels in, l 39-40

High-level module, 171, 245, 273, 274
HIPO chart, 3, 385, 388, 389, 395, 413
Homologous structure, 302-18, 389, 390
Homologous system, 239, 268-69, 302-03
Human error, 66, 67, 73
Human information processing:

61-75, 81, 155, 369
complexity and, 66-73
limits, 62-66

Hybrid-coupled system, 78, 82
Hybrid-coupling connection, 82, 84, 89, 164, 413
Hybrid information types, 81, 92, 93

IBM standard, 11, 373, 385, 395, 413
ICETRAN, 381
Iden rifler:

31, 32, 34, 35, 42, 84, 229, 230, 235, 285,
324, 373, 374, 375, 376, 382, 394, 405, 406,
408,410, 413, 414,416,417,418,419,420

Identifier, aggregate:
32, 34, 35
graphic for, .34
reference to, 34

Identity interface, 79, 304, 317, 414
Implementation:

12, 16, 18, 19, 26, 28, 52, 54, 104, 123-25,
145, 163, 227. 233, 271, 302, 304, 310, 315,
319, 340-58, 360, 361, 366, 414, 418, 422,
424
advantages of top-down, 347-52
bottom-up, 340, 346
bugs and, 342, 348
coding and, 341
cohesion and, 104, 123-25
design strategy and, 340
d ifficu It ies, 104
incremental. 341-43~ 345, 366, 367
incremental structure and, 310-11
interface problems and, 348
phased, 340, 341-43, 347, 349, 351, 353,
355
scope of control, 163-64, 165, 166
scope of effect, 163-64
testing and, 341, 342, 343-46
top-down, 340, 346, 348, 349
user feedback, lap-down, and, 348

Implicit structure, 29
Inch-pebbles. 367, 414
Inclusion lexical:

32, 37-38, 86, 255, 269, 321, 382, 383,
414, 415
content-coupling and, 86
graphic, 37, 38

Inclusive design approach, 321-22
Incremental approach:

coding, 365
implementation, 341-43, 345, 366, 367

structure, 302-18
testing, 35 l, 365

Incremental module:
281, 282, 303-17
coroutine, 303-17
implementation, 310
subcoroutine, 307-17

Independence:
decoupling and, 91
defined, 76, 82
module, 76, 316-17, 369, 414

Index, string, 229
Indirect addressing. multilevel, 263
Information:

accessibility of, 66-71
control, 92, 93
now, 81-84, 94, 171

INDEX 435

process'ing limits, human, 62, 73, 81, 155,
369

statement complexity and structure of, 66,
72

Information types:
control and, 81, 92, 93
data and, 81, 92, 93
hybrid and, 81, 92, 93

Informational strength module, 229, 230
Initialization, module, I 02, 103, 109, 118, 175,

253
In-line:

102, 150, 153, 280, 411, 416, 425
module, 150, 152, 153
subroutine, 285

Input data, 323

Input operation, cohesion and, I 02
Input-controlled, 323, 325
lnpuf-driven system, 143-44, 146, 177, 217, 357,

406, 414
Input-output:

81, 82, 83, 88, 91, l l 3, 226, 250, 253, 262,'
274, 307, 311, 357, 406, 414
association in communicational cohesion,
113
buffer area, 112
coupling, 81, 82, 83, 88, 91
event ratio, 307-08, 311
flow of problem structure, 82, 83

Input-process-output, 177
Instruction-controlled behavior, 323
Integration, systems, 160, 238, 347, 361
Integrity:

dynamic, 21, 22, 256, 298, 299, 300, 406,
411
static, 21, 22, 256, 421

Interface:
35, 67, 68, 69, 70, 73, 74, 78, 79, 81, 86,
94, 228, 229, 230, 244, 245, 304, 325, 326,
353, 410, 416
activation, 79
complexity, 78, 81, 94, 405, 408
design, 228, 229, 230, 325

436 fNDEX

entry, 79
flexibility influenced by design of module,
325-27
identity, 79, 304, 317, 414
intermodule, 67-74
narrative documentation, intermodule and,
68
parameters of. intermodule, 68-70
problems, implementation and, 348

Intermediate-level module, 207
lntermodular:

connection, 35, 84-88
functional relatedness, 95-6
interface, 67-74
reference, 86

fnternal:
code complexity, 57
communication, 56 .
connection, binding time and, 86
flow of data, efficiency and, 273
loop, 56

Interrupt load, 280, 281, 299, 300, 411, 415
lntramodular functional relatedness, 95-6
Inversion, program, 52, 94, 225-26, 419
Inversion of authority, 52, 94
In voca1tion, 286
ltemMcentered design, 415
Iteration structure:

49, 106, 251-52, 254, 257, 293, 295, 298,
.328, 361, 418
cohesion and, l 06
1~raphic for, 49
defined, 251

Iterative process:
recursive process and, 293, 295
structure, 49, 50, 292, 365, 379

Jackson, M.A., 223-27, 228, 231, 406, 417, 419,
422

Jacopini, G .. 75

Kientz, A.C., 15, 339
Knuth, D., 237, 245, 249, 264, 276, 303, 318

Language:
activation mechanism of, 33
assembly. 32, 84, 150, 263, 268, 274, 285,
409,416
construct, 33
features, subroutine, 150
overhead and programming, 273
program, 33, 34. 71, 84, 150, 152, 233, 235,
245, 246, 255, 263, 269, 273, 274, 283, 284,
285, 286, 290, 310, 316,317,406,421
statement, scope of, 32
Turing-complete, 34

Language-processing, 291, 308
Lateral compression, 271, 273, 415

Level:
43, 121. 139, 169, 220, 343, 355, 391, 408,
423, 424
action, 204, 207, 215, 216, 217, 218
detail, 204
in hierarchy, systems, l 39-40
of cohesion, 97-120
of control, 56
transaction, 204

Lexical inclusion, 32, 37-38, 86, 255, 269, 321,
382, 383, 414, 415
content-coupling and, 86
graphic, 37, 38

Lexical structure:
29
order. J 1, 414
scope, 31, 32, 420

Lexically included code:
32, 268
efficiency and. 268

Life cycle, systems development, 3, 4. 7, 8, 289,
290. 295, 298, 406, 423

Ligature, 317
Limits, human information processing, 62-66,

73, 81, 155, 369
Linear coroutine chain, 309
Linkage:

271. 286, 309, 316, 317, 324,405
bidirectional, 309, 316
control, 316
structure, format, 229, 230
unidirectional, 309, 316

Linkage-editing, 324
Link-edit, 255
Load, interrupt, 280, 281
Load unit:

250-52, 253. 254, 255, 256, 257' 260, 266,
280, 298, 299, 300, 324, 406, 411. 415, 418,
421
base, 280, 28 J. 298, 299, 300, 406, 411, 413
defined, 250

Local parameter, 68, 71
Localization, decoupling and, 91-92, 415
Locator:

273, 304, 307' 310
coroutine and, 304
entry, 304

Lock-out, 299
Locus of control:

Logic:

323-24, 325, 41 s
tlexibility and, 323-24

7,52, 175,204,415
control, 152
design, 7
dispatch, 204, 218

Logical:
51, 102, 103, 111, 115, 116, 118, 119, 120,
122, 125, 183, 204, 416, 422
association, 98, 103, 111, 120

cohesion, l'02-03, 117, 118, 120, 121, 122
module, 125
record, 51

London, K.R .. 68, 71, 75
Loop:

49, 52, 56, 57, 106, 175, 252, 253, 293,
295, 298, 334, 379
internal. 56
nested, 49, 56
notation for, 49, 57
timing, 344

Looping arrow, 49, 183
Low-level module, 171

Machine, Turing, 75
Machine test-time, 351
Machine-time, 61, 353
Macro:

33, 152, 268, 271, 282, 283, 285-86, 287'
310, 374, 390, 416
assembler, 33
faciJitif:S, 152

Macro-level:
176
efficiency and, 268
subroutine and, 285-86

Maintainability, systems, I 0, 11, 12, 15, 259, 265,
416

Maintenance:
11, 12, 13, 15, 17, 18, 19, 26, 59. 61, 71,
99, 102, 104, 112, 120, 145, 171, 236, 248,
308,316,334,410,416,417
cost, minimizing, 17, 104
defined, systems, 12
program, 12
programmer, 99, 112
systems, 12, 61

Management:
22ff., 155, 168, 236, 237, 241, 24J, 248,
319, 359-70
compared with program structure, 52, 56
cost-estimating and, 365-66
hierarchy, 23, 24, 25
implementation and, 367-69
organizational structure, 155, 168, 362-63
resource utilization and, 359-62
scheduling and, 366
structural design and, 22-25, 359-70
systems development and, 359-70

Martin, D., 41
Mealy, G .• 362-363, 364, 416
Mealy's Law, 362, 363, 364
Measurement of cohesion, 120-23
Memory:

13, 99, 100, 102, 125, 239, 244, 250, 25L
253, 257' 259, 262, 265, 266, 268, 271, 273,
286, 311, 405, 411, 416, 418, 419, 425
requirements, 99, 250-60

size, optim1za1ion and, 273
size restrictions, 250-62
storage design constraint, 13

Mencken, H.L., 263
Merge discipline:

305, 306
coroutine and, 305-06
factoring, 194

Metzger, P.W., 75, 245, 249

INDEX 437

Middle-out approach to data flow graph, 172-75
Miller, G.A., 62, 75
Minimally connected systems:

35, 78-80, 416, 417
coupling and, 78-80. 94
defined, 79, 80

Minimum-cost systems:
12, 16-19, 22. 25, 321
structured design and, 19, 321

Model:
20, 43, 127. lJ1' 132, 133. 134, 144, 145,
171, 206. 343
design problem. 20
morphology and, 131 -34
procedural, 43

Modifiability, systems, 11, 12, 259, 322, 416
Modification:

cost of, 104
coupling and, 84
future, 247
systems, 12, 18, 19, 26, 59, 84, 104, 120,
164, 166, 236, 247, 267, 268, 271. 274, 308,
317, 377, 416

Modular program, 29, 30

Modular system:
communication in, 235-48
coupling and, 92
decision-making and, 162
documentation of. 42
functional, 250
implementation of, 340-57, 367-69
internal code and, 57
optimization or, 262-75
organization of, 129-31, 362-63
project organization and, 362-63
rat's nest structure, 264
resource utilization and, 362
subroutine, 30

Modularity:
29-33. 63, 76, 125, 152, 155, 171, 251,
253, 279
design and, 63, 64
effective, 56
module size and relation, 148
program, 31-34
terminology, 3 l-33

Modularization, myth of program, 29

Modularizing system:
29-30. 63-65
cost of, 29, 65

438 INDEX

Module:
activation, 50, 280-82, 302
afferent, 51, 135, 137, 177-78, 343
A-level, 204, 207, 364, 405
atomic, 134, 144, 149, 150. 151, 152, 253,
353, 406, 412
bottom-level, 149, l SO, 353, 410
boundary, 29, 250, 251
common subordinate, 21S
communicaJional, 115, 116
complexity, 69, 70
content-coupled, 80, 86, ~8
control, 23, 24
coordinate, 138
coordination, 82, 183, 271
data context of, 21, 79
data-coupled, 316
definition-time, 280, 292
dispatching, 204
D-level, 204, 410
dummy, 153, 154, 343, 344, 345, 4 ll
efferent, 134, 137. 178-81, 343, 356, 411
executive, 134, 135, 139, 140. 178, 217,
218, 302
factoring, 179-81, 197
flowchart of, 43
functional, 96
functional application of, 279
functionally cohesive, 116
graphic for, 34, 155
hierarchical relation of, 57
high-level, 171, 245, 273, 274
incremental, 281, 282, 303-08
independence, 75, 76, 82, 91, 316-17, 369,
414
informational strength, 229, 230
initialization, 102, 103, 109, 118
in-line, 150, 152, 153
interface, flexibility of, 325-27
inlermediate-level, 207
logical, 125
1ow-level, 171
multiple-entry, 86, 229, 230
name, 183-85, 274, 281, 285, 317
non-atomic, 134, 149, 150, 153
nonincremental, 282, 283, 304
one-shot, 49
optimal size of, 65
order of execution and, 57
organization of flowchart, l 14
parameters, 68
P·level, 204, 220, 221, 418
procedural, 115
program, 32, 33
recursive, 289
reen terable, 291, 419
re:ferent, 86
reusable, 291
segment, 282
sequential, 114, 115

strength, 95, 229, 230
structure, systems design and, 95, 97
subordinate, 183, 302
subroutine type of, 279, 283
superordinate, 150
synchronized, 281, 422
task, description of, 118
temporal, 115
termination, 102, 185
time-history of. 45, 280
T-level, 204, 221, 418, 423
top-level, 43, 308
transaction processor, 204
transaction-level, 218
transform, 1.37, 177-81
uncohesive, 100

Module size:
66, 148-55
design heuristic and, 148-55
optimal, 148-49
small, 150, 151, 369
systems cost and, 149

Monitor test. 343, 423
Morphology, systems:

129-47, 171, 417, 421
balance, 142, 143
decision process and, 135
depth and, 139-40, 146, 268
device-centered design, 130
factoring and, 134-35
fan-out and, 139-40
models and, 131-34
organization, 129-31
procedure-centered design and, 144, 130
skew, 142, 146, 421
transaction-centered design and, 144-46,
130
transform-centered design and, 144-46,
130
width and, 139-40

Mosque shape of system, 140-41, 417
MTBF:

IO, 333
software and, 333

Multilevel indirect addressing, 263
Multiple-entry module:

80, 86, 229, 230
content-coupling and, 86

Multiprocessing, 281
Multiprogramming, 281
Multitasking, 281, 317
Myers, G.J., 94, 97, 121, 126, 135, 147, 229, 231,

395
Mythical man-month, J62, 370

Name:
efficiency and call by, 27 4
module, 183-85, 274, 281, 285, 317

. Narrative documentation:
68, 248
intermodule interface and, 68

' Nassi, I., 126
Nassi-Shneiderman chart, l 06
Nested loop, 56
New York Times system, 351
Non-atomic module, 134, 150, 153
Non-hierarchical system, 268, 302
Nonincremental module, 282, 283, 304
Normal communication:

233, 237, 245-47, 271-73, 327
efficiency and, 245-47
overhead, 245

Normal connection, 34-38, 42. 43, 76, 235,
244-47, 303, 316

Normally connected system. defined, 80
Notation for loop, 49, 57
Null case, 285, 344

Off-line, 285
One-shot execution, 49
One-shot function, 253, 254, 257
One-shot module, 49
On-line system, 221, 335
Open subroutine, 285
Operating environment, 250, 251, 269, 273,

280, 281, 283, 284, 295, 299, 317
Operation:

cohesion and input, I 02
cohesion and start-up, 103

Operator, conjunction, 38, 39, 172, 173, 183
Optimization:

233, 237, 251. 258, 262-75
approaches, 266-67
code and, 266-67
competence of designer and, 263
cost and, 267
efficiency and, 263-64
execution time and, 266
memory size and, 273
overhead and, 263
philosophy of, 262-6.:i
priorities, 267

Optimizing compiler, 102
Optional function:

253, 254
run, 253

Order clash, 226
Order of execution:

module and, 57
subordinate, 45
superordinate, 45

Organization:
26, 129, 131, 362, 363, 407' 409, 425
CIPO version of systems, 131-32
flowchart, module, 114
HIPO version of systems, 131-32
modular systems and, 129-31

INDEX 439

resource utilization and project, 362
systems morphology and, 129

Organizational structure, management, 363
Output-driven system, 143, 144, 146, 406. 417
Overhead:

150, 152, 164, 239, 245, 246, 247, 251, 253,
256, 263, 266, 267, 268, 271, 273, 282, 290,
419
communication, 163, 168
optimization and, 263
pathological communication and, 245-47
programming hmguage and, 273
subroutine~calling, 150

Overlay, 250, 253, 255, 256, 417

Packaging:
49, 208, 233, 250-61, 262, 273, 364, 405,
406, 411, 417, 418, 421, 425
defined, 250
efficiency, 254
example of, 256-60
options, catalog of, 256
sequence, 260

Pancaked structure:
52, 54, 204, 205, 220,268,269,417
efficiency and, 268-69

Pancaking, 155, 158, 270, 271
Panic abort, 168, 239-41
Parameter:

13, 68, 71, 244, 245, 274, 286, 324, 376,
388, 424
address, 274
intermodule interface and, 68-70
local, 68, 71
module, 68
systems development and technical, 16
translation-time. 324

Parnas, D.L., 223, 227-29, 231, 414
Partial compression, 272
Partitioning:

19, 26, 108, 109, 118, 218
procedural, 108
systems design and, 19

Parts explosion:
291, 293, 294
structured data and, 291

Path length, communication, 56, 57
Pathological:

34, 35, 36, 40, 42, 50, 78, 80, 164, 169,
233, 235, 236, 237, 238, 239, 240, 241, 242,
243, 244, 245, 246, 247' 248, 258, 271, 273,
293, 335, 376, 377, 390, 410, 417
control flow, 168, 241
data, 335
data access, 50
data connection, 235-39, 241-44

Pathological communication:
233, 235-49, 271-73
coding time and, 245
device-coup1ed, 244

440 INDEX

efficiency and, 245-46
future modification and, 247
justification for, 244-47
overhead and, 245-47
programming time and, 244-45

Pathological connection:
34-38, 42, 43, 80, 235-41, 248, 303, 343,
345-49
control, 239-41
direct, 241-42
minimizing coupling and, 247-48

Performance, systems, 9-12, 263, 266, 266, 291,
410, 411, 412, 415

Phased implementation, 340, 341-43, 347, 349,
351, 353, 355

Pipeline, 317
P-level module, 204, 220, 221, 418
PL/I, 264, 27 3, 28 l, 290, 31 7
Plum, T., 227, 229, 231
Portability:

generality and, 322
systems, 322, 323, 418

Preprocessor, 310
Procedural analysis:

130, 251-56
defined, 251, 418
example of, 256-60

Procedural annotation, 49, 50
Procedural association, 98, 105, 106, 120
Procedural cohesion, 105-10, 418
Procedural flow of system:

57
model, 43
module, 115
partitioning, 108
step in flowchart, 34, 35
unit, l 06, 110

Procedure;
detection and, 336-37
fault-handling, 336, 337, 338
self-checking, 336
structure and, 42-57
systems, 42-57

Procedure-centered design:
130, 418
morphology and, 130, 144

Processor, transaction, 204
Productivity techniques, programmer, 347
Program

black-box characteristics, 21, 22, 238
boundary, 31
·Complexity, 66, 69, 70
creation, 28
defined 27, 283-84, 418
design, 57, 62
development, 3, 419
i~fficiency, 49
flow of data, 38
graph, 38-40
inversion, 225-26

lexical order of, 31, 86
maintenance cost, 12
modular, 29, 30
modularity, 31-34
modularization, myth of, 29
module defined, 32, 33
objective, 9
procedure, 42-57
quality, 321-39
simplicity, 61-7 5

Program structure, 23, 24, 27-40, 42-57, 181
Programming:

cost of, 61, l 21
language, 28, 33, 34, 71, 84, 150, 152, 233,
235, 245, 246, 255, 263, 269, 273, 274, 283,
284, 285, 286, 290, 310, 316, 317, 406, 421
overhead and, 273
structured, 3, 8, 100, 102
time, 244-45

Prologue/epilogue processing, 245, 256, 268, 419
Push-down slack, 72, 290

Quality, program, 321-29
Quality, systems, 9, 10, 11, 12, 25, 56, 321, 338,

410, 420, 421, 423
Queue, 290, 316

Randell, B., 15
Random access, 98, 330, 331, 340
Range, 411
Ratio, input-output event, 307-08, 3 J l
Rat's nest, 264
Reactivation. 300
Reasonableness check:

approximation and, 337
software redundancy and, 336

Receiver coroutine, 306
Recoding:

274, 275, 286
efficiency, and, 274

Record, logical, 5 L
Recursion:

277, 289-300, 307,411,412,419,421
accidental, 295ff.
conditional transfer and, 298
coroutine, 306
dynamic, 298-300, 411
functional, 289-91, 412
iteration and, 293, 295
simultaneous, 289, 295, 421

Recursive:
module, 289, 419
structure, 277, 289-301

Redundancy:
approximation checks and, 336
reasonableness checks and, 336
reversible computations and, 336, 420
self-checking procedures and, 336
software, 330, 336, 421

Reenterable module, 291, 419
Reentrant module, 419

Reentry, 281, 290
Reference:

35, 36, 42, 78, 86, 235, 247' 251, 252, 253,
281, 285, 375, 37.6, 379, 382, 405, 408, 414,
416,417,419, 420, 422
aggregate identifier, 34
data, 36
conditional, 253
control, 36
decoupling and, 91
explicit, 91
frequency of, 253, 254
bplicit, 91
intermodular, 42, 86
unconditional, 253

Referent:
35, 42, 406, 420
module:, 86

Referential structure of statement, 29
Refinement, stepwise, 342, 345, 357, 422
Register, 245, 268, 274
Relatedness, functional:

95-96, 407
cohesion and, 95-96, 125
intermodular, 95-96
intramodular, 95-96, 415

Reliability:
debugging and, 334-35
software, 330-35, 421
systems, 1 o, 15, 22, 319, 321, 330-35, 336,
338, 420
and vital application, 332-33

Resources, L3, 262, 352, 359, 362
Resident data, 323, 324, 325, 415, 420
Resource utilization:

managment and, 359-62
modular structure and, 362
project organization and, 362

Return:
280, 281, 285, 290, 291, 302
alternai:e, 80, 405
explicit, 280-81

Reusability, 291
Reusable module, 291, 420

serially, 421
Reversible computations, 336, 420
Ritchie, D.M., 318
Routine:

285, 298, 300, 303,413,418
dummy, 344

Row definition:
186
stable, 186, 195
transient, 191, 194, l 95

Row validation function, 194
Rule:

26, 134, 135, 143, 413
factoring, 13 5
span of control, 135
of black boxes, 22

Run optional function, 253
Run-time, 233, 264, 267

Sackman, H. H., 263, 276
SAPTAD technique, 202, 420
Scale:

of cohesion, 122
of dependence, 76

Schedule as design constraint, 13
Scope, lexical, 31, 32, 413
Scope of control:

160-69
defined, 162, 420

INDEX 441

implementation, 163-64, 165, 166
Scope of effect:

160-69
defined, 160, 420
implementation, 163-64

Segment, 32, 280, 282, 283, 414, 420
Self-checking procedures, software redundancy

and, 336, 420
Separability:

311, 316, 317
homologous structure and, 311, 316

Sequence:
280,281, 343, 345,346
cohesion and linear, 106
packaging, 260

Sequential, 52, 53, 113, 114, 115, 116, 117, 118,
120, 122, 197, 199, 218, 309, 330, 331, 409,
417,420

Sequential association:
98, 103, 111, 113, 120
cohesion and, 98, l 03, 120

Sequential cohesion, 113-15, 122. 420
Sequential file update, 328
Sequential module, 114, 115
Sequentially cohesive module, factoring and, 197
Shape, systems:

127, 139, 140, 141, 146, 171, 239-47
mosque, 141, 417

Shaw, M., 249
Shneiderman, B., 126
Shooman, M.L., 15, 339
Simulation, 411, 424
Simultaneous recursion, 289, 421
Size:

design heuristic and, 148-55
module~ 250, 251, 259.
module reduction, 149
optimal, 148-49
relation to modularity, 148
small module, 150, 151
systems cost, 149

Size restrictions:
memory, 2 50-62
optimization and memory, 273

Skeleton:
251, 343, 345, 349, 351
coding, 343

442 INDEX

Skew, 142, 146, 421
Software:

10, 11, 13, 19, 26, 62, 63, 134, 248, 263,
284, 298, 321, 330ff., 421, 423
cost, systems development and, 10, 11
failures, 333-35

Software redundancy:
330, 336, 421
approximation checks and, 336
reasonableness checks and, 336
reversible computations and, 336, 420
self-checking procedures and, 336

Software reliability:
330-35, 421
debugging, 334
MTBF, 10, 333
vital application, 332-33

Sort, 253, 254
Span, 56, 57, 66, 135, 146, 155, 156, 157, 169,

204, 417, 421
Span of control:

155, 160-69, 204
defined, 162, 421
flow, 66, 421
rule, 135

Span of data element, 66
Specification:

functional, 3, 4, 6, 349. 412
system. 422, 423

Speed:
13, 250, 251, 268,274, 286,3j8,419
design constraint, 13
execution, 250, 251, 260

Stable row definition, 186, 195
Stable sub-branch, factoring of, 194
Stack:

72, 290, 292, 309
push-down, 72, 290

Standard, IBM, 11, 373, 385, 395, 413
Start-up operation, 103
Statement:

27' 28, 30, 31, 32, 33, 40, 66, 67, 72, 84,
86, 97' 149, 160, 264, 285, 310, 316, 373,
405,406,409,412,417, 419,421,425
boundary elements of, 31, 32
complexity, 66, 67
conceptual structure, 29, 408
conditional, 160
control and communication structure, 29
defined, 28, 421
GOTO, 33, 100, 103, 310, 377, 381, 389
interrelationship, 28-29
lexical structure of, 29
referential structure of, 29
scope of language, 3 2
structure, 28-30
transaction analysis and problem, 208-10

Static integrity, 21, 22, 256, 421
Stepwise refinement, 342, 345, 357, 422
Stevens, W.P., 97, 126, 135, 147, 395

Stevenson, H.P., 75
Storage:

13, 244, 250, 258,286,405,406,410
memory, 13
tape, 244, 260, 273

Strategy:
223-31, 422
implementation and design, 340
transaction analysis, 204-07

Stream:
38, 175, 202, 206, 280, 281, 282, 283, 284,
285, 332, 407, 409, 412, 416
data, 38, 175
evaluation, 283, 285
nontransaction data, 206
transaction, 206

Strength:
cohesion and module, 95
informational, 229, 230

String:
229, 229, 230,317
index, 229
text, 229

Structural changes for efficiency, 268-74
Structure:

afferent branch, 190
common-environment coupling and, 89
communication, 29, 251
conceptual, 29, 408
coupling and modular, 92
crossed lines, 48
data, 223-27
data flow, 82, 83
decision-making and modular, 162
documentation of modular, 42
efficiency ,and pancake, 268-69
fault-handling processes, 336-37
flexibility, 327-30, 353
format linkage, 229, 230
functional modular, 250
generalized, 327-30, 353
homologous, 302-18, 389, 390, 413
implicit, 29
incremental, 302-18
information, statement complexity and, 66,
72
input-output flow of problem, 82, 83
iteration, 49, 106, 251-52, 254, 257, 293,
295, 298,328, 361,418
iterative, 49, 50, 292, 365, 379
lexical, 29
management organizational, 363
modular structure and rat's nest, 264
packaging, 250
pancake, 52, 54, 204, 205, 220, 268, 269,
417
program, 23, 24, 181, 27-40
rat's nest structure, 264
recursive, 277, 289-317, 419, 421
resource utilization and modular, 362

sequential file update, generalized, 328
statement, 28-30
subroutine, modular, 30
systems design and module, 95, 97

Structure chart:
42, 43, 45. 49~ 50, 92, 352, 356, 422

. etnciency and, 274-75
procedural annotation in, 49, 50

Structure dash, 225, 422
Structured:

Stub:

analysis .. 3, 8
code, 100, 101
data, 291-92, 422
flowchart, 101
program development, 3ff.
programming, 3, 8, 100, 102, 422
walkthroughs, 334, 347

343, 344, 356, 411, 422
processing requirements for, 344

Sub-branch:
195
factorin1~ of stable, 194
factoring of transient, 191-93

Subcoroutine:
277, 282, 307-16, 317, 382, 389, 410, 413,

414, 422
application of, 30-16
demand coroutine, 307
subordinate coroutine, 307

S,ubdividing task, 63, 64, 65, 68
Subordinate:

23, 24, 38, 45, 49, 81, 86, 149, 150, 155,
162, 164, 168, 179, 181, 183, 255, 269, 271,
289, 302, 389, 391, 405, 409, 411, 412, 418,

419, 421, 422, 425
contenl··coupling and, 86
coroutine, subcoroutine and, 307
factoring of, 1 79
function, 344
graphic for lexical, 38
idenlifkation, 80-81
management hierarchy and, 23, 24, 25
module, 183, 215, 302
order of execution, 45

Subordination, 271, 281, 302, 303
Subprogram, 258
Subroutine:

30, 279, 282, 283-84, 286, 287, 303, 422
afferent, 306, 307-08
call, 35. 50, 67, 71, 279-287
call connection, 35
coordinate. 308
efferent, 307-08
in-line, 285
language features, l 50
macros, 285-86
modular structure of, 30
open, 285
reusable, 291

INDEX 443

transform, 308
type of module, 279

Subroutine-calling overhead, 150, 151
Subsystem, 220, 227, 343
Supermodule, l 55, l 60

Superordinate:
32, 38, 45, 49, 81, 86, l49, 150, 155, 160,
168, 169, 238, 269, 271, 285, 302, 344, 389.
405, 409, 41 L 412, 424, 425
aggregate and lexical, 32
content-coupling and, 86
function, 344 ·
graphic, lexical, 38
module, 150
or<ler of execution, 45

Switch, 271, 281, 283, 298, 310
Synchrnniz.cd module, 281, 422
Synchronous activation, 280, 299
Syntax, 286, 423
System:

control-coupled, 78, 82
cost and development of computer, 73
data-coupled, 78, 81
flowchart and structure chart, 43-50, 423
flow of <lata, 38
four-level, 204
future modification of, 247
general-purpose, 12, 32 l, 322, 326. 338,
413, 414
homologous, 239, 268-69, 302-03, 413
hybrid-coupled, 78, 82
input-driven, 143-44, 146, 177\, 217, 357,

406. 414
modularizing, 63-65
non-hierarchical, 268, 302
normally connected, 80
on-line, 221, 335
output-driven, 143, 144, 146, 406, 417
procedural flow of, 57
structural complexity or, 95
structure, common-environment coupling
and, 89
transaction-centered, 130, 133, IJ4, 138,
144, 206, 217, 218, 221, 223, 340, 424
transform-centered, 38, 130. 131. 143, 144,
145, 171, 191, 199, 201, 221, 223, 227, 256.

340, 424
Systems:

analyst, role of, 4-8, 423
bug(s), 11, 63, 65, 70, 73, 265, 333, 334,'

347, 348
communication in modular, 235-48
complexity, 59, 65, 66. 67, 68, 69, 77, 78,

127
components, 7, 13. 27, 28. 40, 59, 279-88,
333-34, 413
cost, 6, I 0, 1 1. 1 4, 5 L 7 6, 9 1
crash, 335
design stages, 22
design and module structure, 95, 97

444 INDEX

design, organizing and partitioning, 19
designer, 4, 172. 175, 223, 227, 254, 260,
263, 277, 279, 291, 356
development and management, 3 59-69
development and technical parameters, 16
development, economics of, 6, 'IQ, 11, 14,
51, 61, 65, 66, 360-69
development life cycle, 3-8, 289, 290, 295,
298, 406, 423
efficiency, 71
failure, 333, 334, 335, 336, 337
flexibility, 323-30
fully factored, 412
generality, 12, 14, 321;-23, 325, 338, 407,
411,413
implementation, 12, 16, 18. 19, 26, 28, 52,
54, 104, 123-25, 145, 163, 227, 233, 271,
302, 304, 310, 315, 319, 340-57, 360, 361,
366, 414, 418, 422, 424
integration, 160, 238, 347, 36 l
levels in hierarchy, 139-40
maintainability, ·10, 11, 12, 15, 259, 265,
416
maintenance, 12, 61
minimally connected, 78-80, 94. 416, 417
minimum-cost, 12, 16-19, 22, 25, 321
modifiability, 11, 12, 259, 322, 416
modification, 12, 18, 19, 26, 59, 84, 104,
120, 164, 166, 236, 247, 267, 268, 271, 274,
308, 317' 3 77' 416
morphology, 129-47, 171, 268, 417, 421
organization, models of, 129-34, 407
performance, 9-12, 263, 266, 266, 291,
410, 411., 412, 415
portability, 322, 323, 418
problem-solving, 64, 65
quality, 9, 10, 11, 12, 25, 56, 321, 338, 410,
420, 421, 423
reliability, 10, 15, 22, 319, 321, 330-35,
336, 338, 420, 421
shape, 127, 139, 140. 141, 146, 171,
239-47, 417
technical objectives, 25, 26, 40, 359, 422,
423
testing, 61, 227, 238, 245, 340, 341, 342,
343, 344, 346, 347, 348, 349, 351, 352, 354,
355, 356, 357, 365, 406, 411, 414, 418, 419,
422, 423, 424
utility, 12, 322, 425
utilization, 359, 362

Table, decision, 25
Tailoring, 285
Tape storage, 244, 260, 273
Task:

118, 282, 289, 300, 408, 418
description of module, 118
s1Jbdividing, 63, 64, 65, 68

Team(s):
adaptive, 368
chief programmer, 347, 368
egoless, 368
programmer, 170, 238, 347, 368, 369

Technique:
data-oriented, 38
efficiency and communication, 271-74
programmer productivity, 347

Temporal association:
98, 103, 120
cohesion and, 98, 103, 120

Temporal cohesion, 98, 103-05, 115-19, 122, 423
Terminal failure, 335, 336, 423
Termination:

Test:

175, 185, 289
functional factoring of module and, 185
module, 102

driver, 343, 344, 345, 356, 423
fatal-error, I 68
harness, 343, 423
monitor, 343, 423

Testing:
acceptance, 343
bottom-up, 340, 34 L 343-46, 347, 349,
352, 353, 355, 356, 357, 406
cost of, 61
implementation and, 341-42
incremental, 342, 351, 365
input-output, 356-57
radical, 355, 366
subsystems, 343
systems, 61, 227, 238, 245, 340ff., 406,
411, 414, 418, 419, 422, 423, 424
top-down, 171, 340, 341, 343-46, 349, 351,
352, 354, 422, 424
unit, 343
volume, 343
zigzag, 350, 355

Test.time, machine, 35 l
Text editor, 229
Text-processing, 291. 308
Theorem of Engineering, Fundamental, 62, 63,

284
Thompson, K., 318
Thousand Module Effect, 363, 423
Time:

CPU, 152, 247, 262, 264, 266, 268, 273,
282, 344
execution, 250, 251, 259, 260
optimization and execution, 266
pathological communication and coding, 245
pathological communication· and program
ming, 244-45
systems development cost and design, 360

Time, binding:
84-88, 324, 406
coding and, 85
coupling and, 84-87, 94

design and, 84-85
flexibility and, 324
identifier and, 84
internal connection and, 86

Time-history of module. 45, 280, 324
Time-sharing, 134
Timing bug, 336
liming loop, .144
T-level module, 204, 221, 418, 423
Tool(s):

decision table, 25, 149
design, 25, 96, 141, 277, 295
flowchart as, 25

Top-down:
coding, 340, 341, 352, 357
debugging, 98
design, 3, 171, 172, 300, 340, 352, 357, 424

Top-down implementation:
340, 346, 348, 349,355
advanta1~es of, 347-52
user feedback and, 348

Top-down testing:
171, 340, 341, 343-46, 349, 351, 352, 354,

422, 424
implementation and, 341

Top-level module, 42, 43, 308
Transaction:

code, 163
defined, 202,424
level, 204
processing, 217-21
processor, 204, 218
stream, 206

Transaction analysis:
141, 202-22, 424
problem statement and, 208-10
strategy, 204-07
steps of,, 206-07

Transaction center, 203, 204-06, 208, 217, 218,

220-21.. 424
Transaction-cf:ntered design, 130, 144-46,

202-22, 340, 424

Transaction-centered system, 133, 134, 138, 144,

206, 217, 218, 221, 223
Transaction-le.vel module, 207, 218
Transfer:

69, 79, 80, 82, 280ff., 377, 381, 382, 389,

406, 408, 417, 418, 419, 422, 425

bifurcated, 281, 406, 408
conditional, 79, 80, 280, 281
conditioned, 79, 80, 408
control, 79
recursion and conditional, 298
unconditioned, 80, 425

Transform:
bubble, 308
branch, 178-81
central, 130, 131, 177, 181, 182, 189, 197,

202, 210, 407
module, 137, 138, 178, 181, 344, 356, 424

module, factoring of, 178-81
unconditioned, 80, 281

Transform analysis:

INDEX 445

38, 130, 141, 171-201, 202, 219, 300, 424

data flow graph and, 171-75
Transform flow:

135, 1-37, 424
morphology and, 135-47

Transformation, 144, 316
Transform-centered design, 38, 130, 131,

144-46, 171-221, 340, 424

Transform-centered system, IJO, 131, 143, 144,

145, 171, 191, 199, 201, 221, 223, 227, 256

Transient row definition, 191, 194, 195
Transient sub-branch, factoring of, 191-93

Transition, 267, 269, 271
Transition-time, 267
Translation-time parameter, 324

Transmission:
argument, 36
graphic of, 36

Turing machine, 75
Turing-complete language, 34
Typology of systems components, 277, 279-88,

302

Uncohesive module, l 00, 125, 204

Unconditional transfer:
31, 269, 281
reference, 253

Unconditioned transfer:
80, 281, 298, 418, 425
transform, 80, 281

Uncoupled, 145, 262
Unidirectional linkage, 309, 316

Unit:
base load, 280, 281, 298, 299, 300, 406,

411, 413
defined, 250
design, 228
load, 250-52, 253, 254, 255, 256, 257, 260,

266, 280, 298, 299, 300, 324, 411, 415, 418,

421
procedural, 106, 110

UNIX, 317, 318
Unsynchronized module, 281
Upward compression, 271, 272, 425

User:
4, 6, 7, 13, 18, 260, 335, 356, 407, 412,
416, 419, 423, 425
feedback, 348
needs, 13, 356, 366
role of, 4-8

Utility:
generality and, 3 22
systems, 12, 322, 425

Utilization resource, 359-362

.446 INDEX

Validation, 123-25, 176, 194, 219-20
Validity checking as a filter, I 74
Vincent, P., 202, 222
Virtual memory, 31, 425
Volume:

access, 254
references, 252
testing, 343

Von Bertalanffy, L., 147

Walkthrough, design, 364
Walkthrough, structured, 334, 347, 368
Warnier, J.D., 223-27, 228, 231
Wegner, P .. 280, 288
Weinberg, G., J47, 149, 170, 368, 370
White box, 21, 425
Width and morphology, 1 39-40, 146
Wulf, W., 249

Yourdon, E., 15, 75, 100, 126, 148, 170, 264,
276, 333, 339, 347' 358

Zigzag development, 349, 350, 355, 356

STRUCTURED SYSTEMS DEVELOPMENT
by Kenneth T. Orr

Preface by Jean-Dominique Warnier

STRUCTURED SYSTEMS DEVELOPMENT is writte for people interested in
developing solutions to DP problem~ . The book presents a method of
logical analysis, design, and development that can be used on any kind
of system, with any kind of language, computerized or not.

Orr's book represents a major breakthrough in problem-solving, be
cause it presents a new way of thinking. All examples are dra n ffom
real-world experience, and, through the use of Warnier Diagrams, teach
the principles needed to identify and solve even the most complex sys
tems problems, providing an important link between logic, problem
solving, and human communication.

The concepts combine with the more than 120 diagrams to make this
an invaluable book for use in both practical installations and theoretical
environments.

CONTENTS

Preface • Foreword • I: Systems Analysis and Problem-Solving • 2: The
Model • 3: Analysis, Synthesis, and Process Flow • 4: Structured Tools -
Warnier Diagrams • S: More About Warnier Diagrams • 6: The Application
of Logic to Systems Building • 7: Using Structured Systems Design • 8: Other
Structured Design Tools • 9: Bridging the Applications Gap • Afterword •
APPENDICES: A - Systems Design Language (SOL); B - Structured
Flowcharts • BIBLIOGRAPHY • INDEX

LEARNING TO PROGRAM IN STRUCTURED COBOL, PART 2
by Timothy R. Lister and Edward Yourdon

LEARNING TO PROGRAM IN STJWCTURED COBOL, PART 2 is the compii'n
ion volume to the now-classic PART I, nd is intended for students and
programmers interested in learning to use the advanced features of
COBOL to write structured code.

All of the discussions and all of the programming examples illustrate
the proper way to develop reliable, maintainable COBOL programs, and
to write clear, readable code. Thorough treatment is given such pro
gramming techniques as table handing; input-output operations on in
dexed, direct, and relative access files; and called programs and output
editing.

Sample problems and answers interspersed throughout the text will
challeqge students who expect to make a career of programming.

CONTENTS

Preface • 8: Programming for Change • 9: More Powerful Facilities • 10:
Internal Coding and the DATA DIVISION • 11: Using Tables • 12: Ad
vanced Input-Output Techniques • 13' Sorting and Merging • 14: Testing and
Debugging • IS: Efficiency and Optimization • Afterword • APPENDIX •
INDEX

ISBN: 0-917072-11-1

	final001
	final002
	final003
	final004
	final005
	final006
	final007
	final008
	final009
	final010
	final011
	final012
	final013
	final014
	final015
	final016
	final017
	final018
	final019
	final020
	final021
	final022
	final023
	final024
	final025
	final026
	final027
	final028
	final029
	final030
	final031
	final032
	final033
	final034
	final035
	final036
	final037
	final038
	final039
	final040
	final041
	final042
	final043
	final044
	final045
	final046
	final047
	final048
	final049
	final050
	final051
	final052
	final053
	final054
	final055
	final056
	final057
	final058
	final059
	final060
	final061
	final062
	final063
	final064
	final065
	final066
	final067
	final068
	final069
	final070
	final071
	final072
	final073
	final074
	final075
	final076
	final077
	final078
	final079
	final080
	final081
	final082
	final083
	final084
	final085
	final086
	final087
	final088
	final089
	final090
	final091
	final092
	final093
	final094
	final095
	final096
	final097
	final098
	final099
	final100
	final101
	final102
	final103
	final104
	final105
	final106
	final107
	final108
	final109
	final110
	final111
	final112
	final113
	final114
	final115
	final116
	final117
	final118
	final119
	final120
	final121
	final122
	final123
	final124
	final125
	final126
	final127
	final128
	final129
	final130
	final131
	final132
	final133
	final134
	final135
	final136
	final137
	final138
	final139
	final140
	final141
	final142
	final143
	final144
	final145
	final146
	final147
	final148
	final149
	final150
	final151
	final152
	final153
	final154
	final155
	final156
	final157
	final158
	final159
	final160
	final161
	final162
	final163
	final164
	final165
	final166
	final167
	final168
	final169
	final170
	final171
	final172
	final173
	final174
	final175
	final176
	final177
	final178
	final179
	final180
	final181
	final182
	final183
	final184
	final185
	final186
	final187
	final188
	final189
	final190
	final191
	final192
	final193
	final194
	final195
	final196
	final197
	final198
	final199
	final200
	final201
	final202
	final203
	final204
	final205
	final206
	final207
	final208
	final209
	final210
	final211
	final212
	final213
	final214
	final215
	final216
	final217
	final218
	final219
	final220
	final221
	final222
	final223
	final224
	final225
	final226
	final227
	final228
	final229
	final230
	final231
	final232
	final233
	final234
	final235
	final236
	final237
	final238
	final239
	final240
	final241
	final242
	final243
	final244
	final245
	final246
	final247
	final248
	final249
	final250
	final251
	final252
	final253
	final254
	final255
	final256
	final257
	final258
	final259
	final260
	final261
	final262
	final263
	final264
	final265
	final266
	final267
	final268
	final269
	final270
	final271
	final272
	final273
	final274
	final275
	final276
	final277
	final278
	final279
	final280
	final281
	final282
	final283
	final284
	final285
	final286
	final287
	final288
	final289
	final290
	final291
	final292
	final293
	final294
	final295
	final296
	final297
	final298
	final299
	final300
	final301
	final302
	final303
	final304
	final305
	final306
	final307
	final308
	final309
	final310
	final311
	final312
	final313
	final314
	final315
	final316
	final317
	final318
	final319
	final320
	final321
	final322
	final323
	final324
	final325
	final326
	final327
	final328
	final329
	final330
	final331
	final332
	final333
	final334
	final335
	final336
	final337
	final338
	final339
	final340
	final341
	final342
	final343
	final344
	final345
	final346
	final347
	final348
	final349
	final350
	final351
	final352
	final353
	final354
	final355
	final356
	final357
	final358
	final359
	final360
	final361
	final362
	final363
	final364
	final365
	final366
	final367
	final368
	final369
	final370
	final371
	final372
	final373
	final374
	final375
	final376
	final377
	final378
	final379
	final380
	final381
	final382
	final383
	final384
	final385
	final386
	final387
	final388
	final389
	final390
	final391
	final392
	final393
	final394
	final395
	final396
	final397
	final398
	final399
	final400
	final401
	final402
	final403
	final404
	final405
	final406
	final407
	final408
	final409
	final410
	final411
	final412
	final413
	final414
	final415
	final416
	final417
	final418
	final419
	final420
	final421
	final422
	final423
	final424
	final425
	final426
	final427
	final428
	final429
	final430
	final431
	final432
	final433
	final434
	final435
	final436
	final437
	final438
	final439
	final440
	final441
	final442
	final443
	final444
	final445
	final446
	final447
	final448
	final449
	final450
	final451
	final452
	final453
	final454
	final455
	final456
	final457
	final458
	final459
	final460
	final461
	final462
	final463
	final464

