{

includes the 8088

Russell Rector - George Alexy

5 DI B T
SRSt
e __;.)—,"’
2 s ¢
g
s 5
o

EOPRI LT PO &

THE

8086
BOOK

THE

8086
BOOK

Russell Rector - George Alexy

OSBORNE/McGraw-Hill
Berkeley, California

Published by
OSBORNE/McGraw-Hill
630 Bancroft Way
Berkeley, California 94710
US.A

For information on translations and book distributors outside of the U.S. A.,
please write OSBORNE/McGraw-Hill at the above address.

The 8086 Book

Copyright © 1980 McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. No
part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of the publishers.

1234567890 DODO 89876543210
ISBN 0-931988-29-2

Cover design by Joseph Mauro.

Contents

Introduction

1. Programming

Assembly Language 1-1

Programming Tasks 1-4
Specification of the System 1-5
Program Design 1-8
Implementation 1-9
Testing 1-12
Documentation 1-13
Maintenance 1-14

2. Some Program Examples

A Sort Program 2-1
Inputs 2-3
Computation 2-3
Input Record Format 2-3
Sort Method 2-4
Output Record Format 2-6
Outputs 2-6
Error Processing 2-7
Program Design 2-7

vi The 8086 Book

3. The 8086 Assembly Language Instruction Set
An 1/0 Driver 3-4
Computation 3-11
QOutputs 3-11
Program Design 3-12
The 8086 Instruction Set 3-18
The 8086 Registers and Flags 3-20
General Purpose Registers 3-21
Pointer Registers 3-22
Index Registers 3-22
Segment Registers 3-22
Flags Register 3-23
How Instructions Affect the Flags Register 3-25
8086 Addressing Modes 3-30
Program Memory Addressing Modes 3-31
Data Memory Addressing Modes 3-32
Addressing Mode Byte 3-41
Segment Override 3-43
Memory Addressing Tables 3-44
Instruction Set Mnemonics 3-45
Abbreviations 3-45
8086 Assembly Language Instructions Organized Alphabetically 3-49
Assembler-Dependent Mnemonics 3-285

4. 8086 Instruction Groups

Data Movement Instructions 4-2
Buffer-to-Buffer Move Routines 4-6
Saving the State of the Machine 4-14
Segment Register Initialization 4-16

Arithmetic Instructions 4-17
Addition Instructions 4-17
Subtraction Instructions 4-21
Multiplication Instructions 4-24
Division Instructions 4-28
Compare Instructions 4-31

Logical Instructions 4-35

String Primitive Instructions 4-44
The REP Prefix 4-46

Program Counter Control Instructions 4-48
Jump-on-Condition Instructions 4-52

Processor Control Instructions 4-57

1/0 Instructions 4-57

Interrupt Instructions 4-60

Rotate and Shift Instructions 4-62

6. Software Development
Editors 5-3
Editor Functions 5-4
System Commands 5-10
Assemblers 5-11
Debuggers 5-13

Contents vii

6. Examples of 8086 Assembly Language Programming
Sort Program 6-1
1/0 Driver 6-9

7. 8086 Microprocessor Description

8086 CPU Pins and Signals 7-1
Address and Data Lines 7-3
Control and Status Lines 7-4
Power and Timing Lines 7-7

8086 Overview and Basic System Concepts 7-8
8086 Bus Cycle Definition 7-8
8086 Address and Data Bus Concepts 7-10
System Data Bus Concepts 7-16
8086 Execution Unit and Bus Interface Unit 7-28
8086 Instruction Queue 7-29

8. Basic 8086 Design Single CPU
Operating Modes 8-1
Minimum Mode 8-1
Maximum Mode 8-3
Clock Generation 8-11
Reset 8-19
READY Implementation and Timing 8-24
Interrupt Structure 8-30
Predefined Interrupts 8-30
User-Defined Software Interrupts 8-33
User-Defined Hardware Interrupts 8-33
The Interrupt Acknowledge Sequence 8-34
System Interrupt Configurations 8-38
Interpreting the 8086 Bus Timing Diagrams 8 43
Minimum Mode Bus Timing 8-44
Address and ALE 8-44
Read Cycle Timing 8-45
Write Cycle Timing 8-46
Interrupt Acknowledge Timing 8-47
Ready Timing 8-48
Bus Control Transfer Timing 8-48
Maximum Mode Bus Timing 8-49
Address and ALE 8-49
Read Cycle Timing 8-50
Write Cycle Timing 8-51
Interrupt Acknowledge Timing 8-51
Ready Timing 8-52
Other Considerations 8-53
Bus Control Transfer (HOLD/HLDA and RQ/GT) 8-53
Minimum Mode 8-53
Maximum Mode 8-61

viii The 8086 Book

9. The Multibus

Initialization Signal Line 9-3

Address and Inhibit Lines 9-3

Data Lines 9-4

Bus Contention Resolution Lines 9-4
Information Transfer Protocol Lines 9-5
Asynchronous Interrupt Lines 9-6
Power Supply Lines 9-7

Reserved Lines 9-7

Multibus Architectural Concepts 9-11

10. Multiprocessor Configurations for the 8086

Co-processor 10-2
Multiprocessing on a Shared System Bus 10-4
Bus Access and Release Options for the 8289 10-11

Appendices

A.

B.
C.
D

Index

8086 Instruction Set Ordered Alphabetically
8086 Instruction Set Object Codes in Ascending Numeric Sequence
8086 and 8088 Family AC and DC Characteristics and Signal Waveforms

The 8088 CPU

8088 Programmable Registers and Addressing Modes D-1
8088 CPU Pins and Signals D-1

8088 Timing and Instruction Execution D-3

8088 Memory and 1/0 Device Access Bus Cycles D-3
The 8088 Halt State D-4

Other 8086-Compatible 8088 Logic D-4

The 8088 Instruction Set D-5

NN NNNNNaON W
OO0 IV A WN = N

Contents ix
Figures

8-Bit Buffer-to-Buffer Move 4-6

16-Bit Buffer-to-Buffer Move 4-6

Buffer Move Register Initialization 4-7

Alternate Buffer Move Register Initialization 4-8

Buffer Move Register Initialization using Immediate Data 4-8
Buffer Move Register Initialization via Stack and Pop Instructions 4-10
Buffer Move Register Initialization via Stack and Indirect Addressing 4-10
Buffer Move Register Initialization using LEA Instruction 4-10
Buffer Intialization (8-Bit Data Elements) 4-12

Buffer Intialization (16-Bit Data Elements) 4-12

Buffer Translation 4-13

Translation of 16-Bit Data Elements 4-13

Buffer-to-Buffer Translation 4-14

Saving the 8086 Registers 4-15

Restoring the 8086 Registers 4-15

Initializing the ES Register via Immediate Data 4-16
Initializing the ES Register via Code Segment Locations 4-16
Multiword Addition 4-17

Multibyte BCD Addition 4-20

Multibyte ASCII Addition 4-20

32-Bit by 32-Bit Multiplication 4-25

ASCII Multiplication 4-27

ASCII Division 4-31

Calculate the Length of a String 4-33

Find the Largest 8-Bit Number 4-33

Find the Largest 16-Bit Number 4-34

Buffer Translation with Range Checking 4-34

Flowchart for Interrupt Service Routine 4-38

Interrupt Service Routine 4-41

8-Bit Buffer-to-Buffer Compare 4-47

Alternate 8-Bit Buffer-to-Buffer Compare 4-48

Block 1/0 via I/0 Port Addressing 4-57

Block 170 via Memory Mapped Addressing 4-57

Routine to Convert Two ASCII Digits to their Hex Equivalents 4-63

Hypothetical Development System 5-2
Elementary Editor Operation 5-3

8086 Pins and Signal Assignments 7-2

Basic 8086 Bus Cycles 7-9

Demultiplexing the Address/Data Bus 7-11

Separate Address and Data Busses 7-12

Multiplexed Bus with Local Address Demultiplexing 7-12
Multiplexed Data Bus 7-16

Buffered Data Bus 7-17

Devices with Qutput Enables on the Multiplexed Bus 7-18
CS Gated with RD/WR 7-19

x The 8086 Book

Figures (Continued)

7-10 CS to WR Set-up and Hold 7-20
7-11 Buffered Data Bus 7-21
2 Bus Transceiver Control 7-22
7-13 Devices with Output Enables on the System Bus 7-23
4 Bus Contention on the System Bus During Write
for Devices without Output Enables 7-24
7-15 Fully Buffered System 7-24

7-16 Controlling System Transceivers with DEN and DT/R 7-25
7-17 Devices with OE _7-25
7-18 Devices without OE. Common or Separate Input/Output

Limited Read Access. Limited CS to WE Hold and Set-up 7-26
7-19 Devices without OE. Common or Separate Input/Output
Full Read Access. Limited Write Data Set-up and Hold 7-27
Devices without OE. Separate Input/OQutput 7-27

Minimum Mode 8086 8-2

Maximum Mode 8086 8-4

Circuit to Track the 8086 Queue 8-5

Status Line Activation and Termination 8-7

Minimum and Maximum Bus Transfer Timing 8-8

LOCK Activity 8-9

Timing and Voltage Requirements for the 8086 CPU 8-11

Using the 8284 to Provide CLK 8-12

Using an External Frequency Source 8-13

Generating a Master Frequency Source 8-15

Synchronizing CSYNC 8-16

CSYNC Timing 8-16 :

Synchronizing CSYNC using OSC 8-17

Delivering CSYNC to Multiple 8284s 8-18

Buffering CLK with a High-Drive Device 8-19

8086 Bus Condition on Reset 8-20

Reset Disable for Maximum Mode 8086 Bus Interface 8-21

Reset Disable for Maximum Mode 8086 Bus Interface in
Multi-CPU System 8-22

8284 Reset Circuit 8-23

Constant Current Power-On Reset Circuit 8-23

8086 Reset 8-24

Normally Not Ready System Avoiding a Wait State 8-25

Normally Ready System Inserting a Wait State 8-26

8284-8086 Ready Connection 8-26

8284 with 8086 Ready Timing 8-27

8284 using One RDY Input 8-27

8284 with SYSTEM READY Driving Access Enable 8-28

Single Wait State Generator 8-29

Timing for Single Wait State Generator 8-29

N
)
[=}

OO@OO?OWOO@

Loadhsbo~

20 00 00 00 g P @

@ @ e
Pk ek ek ek pd ek ok ek ek
OO Wnd WO

OO@]NOOOO
N NN =

O 01 WNHhWN—OWO

OOOO?O@OOW

Contents xi
Figures (Continued)

8-30 Obtaining the Interrupt Service Routine from the
Interrupt Vector Table 8-31
8-31 Interrupt Acknowledge Sequence in Minimum Mode 8-35
8-32a 8259s Connected to a Minimum Mode 8086 —
Multiplexed Bus 8-39
8-32b 8259s Connected to a Minimum Mode 8086 —
Demultiplexed Bus 8-40
8-33 8259s Connected to a Maximum Mode 8086 8-41
8-34 Timing to Gate 8259A CAS Address onto the 8086
Local Bus 8-42
8-35 HOLD/HLDA Sequence 8-54
8-36 DMA using Minimum Mode 8-58
7 8257 on System Bus 8086 Minimum Mode System
16-Bit Data Transfers 8-59

8-38 Translating HOLD into AEN Disable for Maximum Mode 8086 8-60
8-39 Request/Grant Sequnce 8-64

8-40 Channel Transfer Delay 8-66

8-41 HOLD/HLDA to RQ/GT Conversion Circuit 8-67

9-1 Serial Priority Technique 9-8

9-2 Parallel Priority Resolution and Bus Exchange Timing 9-9

9-3 8/16-Bit Device Transfer Operations 9-12

10-1 8086 Maximum Mode Multiple Processors 10-3
10-2 Multiprocessor Configuration 10-5

10-3 CPU with no Local Resources 10-6

10-4a 8086 with Local ROM/EPROM 10-9

10-4b 8086 with Local ROM/EPROM and I/0 10-10
10-4c 8086 with Local RAM/ROM/EPROM/I/O 10-12

D-1 8088 Pins and Signal Assignments D-2

xii

ooo'ooooo

Tables

Instructions that Have No Effect on the 8086 Flags Register 3-26
Instructions that Affect All 8086 Arithmetic Flags 3-26
Instructions that Affect All 8086 Arithmetic Flags Except Carry 3-26
Instructions that Affect AF and CF 3-27
Instructions that Leave Overflow Undefined 3-27
Instructions that Affect All Arithmetic Flags,

Leaving CF and OF Meaningful 3-27
Instructions that Affect All Arithmetic Flags,

Leaving AF Undefined 3-28
Instructions that Affect Carry and Overflow Flags Only 3-28
Instructions that Affect Specific Flags 3-28
Instructions that Affect Parity, Sign and Zero Flags 3-29
Instructions that Scramble the Flags 3-29
Instructions that Restore All the 8086 Flags from

the Stack 3-29
Instructions that Clear the Interrupt and Trap Flags 3-29

8086 Data Movement Instructions 4-3
8086 Addition Instructions 4-18

8086 Subtraction Instructions 4-22

8086 Multiplication Instructions 4-26

8086 Division Instructions 4-29

8086 Comparison Instructions 4-32

8086 Logical Instructions 4-36

String Primitive Instructions 4-45

Program Counter Control Instructions 4-50
Jump-on-Condition 4-54

Signed vs. Unsigned Comparison Instructions 4-55
Loop Instructions 4-56

Processor Control Instructions 4-58

8086 1/0 Instructions 4-59

8086 Interrupt Instructions 4-61

8086 Shift and Rotate Instructions 4-64

Queue Status Qutputs 8-3

Status Line Outputs 8-6

Crystal Vendors 8-13

8086 Bus Signals during Reset 8-19
8288 Outputs during Passive State 8-20

Pin Assignment of Bus Signals on Multibus Board P1 Connector 9-2
P2 Connector Pin Assignment of Optional Bus Signals 9-3

Introduction

This book focuses on three topics: general programming concepts and practices,
the 8086 microprocessor with its assembly language, and logic design using the 8086
microprocessor. The discussion of general programming concepts and practices is rele-
vant to any microprocessor, but the rest of the book is specific to the 8086. As such, this
book becomes a how-to text for the 8086.

The prime source for the 8086 microprocessor is:

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051

The second source is:

MOSTEK, INC.
1215 West Crosby Road
Carrollton, Texas 75006

The discussion of general programming concepts and practices begins by looking
at the relationship between the programmer and a computer, since this is ultimately
what determines the nature of any design project. Why do some programmers work with
machine language while others program in assembly language or perhaps higher level
languages? Different types of applications call for different types of programming. In
each case good programming practices should be cultivated. A set of rules is described to
achieve this goal, and two examples are used to illustrate programming projects.

The description of the 8086 microprocessor itself covers assembly language
programming and hardware design.

xiv The 8086 Book

For the assembly language programmer, the 8086 CPU architecture and the
microprocessor’s assembly language instruction set are described in detail.

For the hardware designer, timing and bus considerations are described for all sig-
nals normally input to the microprocessor or output by it. Single-bus and multi-bus
architectures are covered. The standard Intel Multibus is described in detail.

WHAT THIS BOOK ASSUMES YOU KNOW

This book assumes that you have a working knowledge of general microprocessor
concepts, and the ideas presented in An Introduction to Microcomputers: Volume 1 —
Basic Concepts, 2nd Revision, by A. Osborne, Osborne/McGraw-Hill, 1980. Accor-
dingly, this book does not cover any elementary material such as binary arithmetic,
buffers, or CPU architecture fundamentals.

The 8086 microprocessor and its immediate support parts are described in great
detail within this book. The 8089 1/0 Processor is referred to, but it is not described in
detail. For a detailed description of this part, see The 8089 I/O Processor Handbook, by A.
Osborne, Osborne/McGraw-Hill, 1980.

Programming

ASSEMBLY LANGUAGE

What is the function of assembly language in a microcomputer system? How does
it differ from machine language or higher level language programming? This chapter
will answer these questions by assessing the various roles that assembly language plays.

In a very general sense, all microcomputer systems take the following form:

The

System —= Output Lines

Input Lines g

where the input lines are used to provide information to the system, and the output lines
are used to transmit information from the system. Generally, the system consists of the
following:

Input Lines =i Intz'foace —1= Output Lines
—
CPU Data Memory
——

y 3§

Program
Memory

1-2 The 8086 Book

The Central Processing Unit (CPU) takes data, through the /O interface, from the
input lines; the CPU manipulates this data by executing instructions from its program
memory. Results are output via the output lines. The CPU stores transient data in the
data memory.

The CPU, the I/0 interface, and the physical memories are the hardware portions
of the system. The data that resides in the program memory is the software portion of
the system or the program. Elements of the 8086 assembly language are combined to
form an 8086 assembly language program, which is processed and stored in the program
memory. Thus, the assembly language is used to specify the program that resides in the
program memory.

To understand the concept of a program, consider an elementary point-of-sale ter-
minal that has the following components:

Calculating

Keyboard ———gm! Chip

|y Display

As keystrokes are entered, the calculating chip performs operations that convert
each keystroke into a machine-acceptable code. The code could represent a number to
be manipulated or a calculation to be performed. By interpreting the codes, the calculat-
ing chip performs required operations and indicates the results on the display.

The calculating chip accomplishes these operations by performing a sequence of
tasks. For example, the calculating chip might perform the following sequence of tasks
to determine whether or not a key has been pressed.

1. Read in keyboard status byte

2. Extract bit 3 from status byte
(If bit 3 is 0, no key has been depressed. If bit 3 is 1, a key has been
depressed.)

3. Test bit 3
(If bit 3 is 0, return to step 1. If bit 3 is 1, proceed to step 4.)

4. Perform the next task. This might be a command to clear the key depressed
bit or a command to disable the keyboard.

The complete set of tasks performed by the calculating chip, which would include
all the translation and calculation operations, is known as the algorithm. An algorithm is
composed of an ordered sequence of well-defined tasks that has a starting point and a
criterion for stopping. Algorithms are usually expressed in the form of the example
above, that is, English sentences that describe the tasks to be performed. Unfortunately,
the CPU cannot respond to English sentences like ‘“‘Read in Keyboard Status Byte.”
There must be a translation from the algorithm, which is composed of English sen-
tences, into a form interpretable by the CPU, which will consist of a sequence of binary
CPU instructions. The set of CPU instructions.that is used to implement an algorithm is
known as the object program.

Programming 1-3

The CPU executes instructions by analyzing units of information that consist of
binary digits, namely digits that are either 1 or 0. Simple CPUs have two cycles, instruc-
tion fetch and instruction execute. In the instruction fetch cycle, the CPU generates the
address of the location that contains the next instruction (unit of information) to be
executed; the CPU requests that the memory provide it with the unit of information at
that location. The memory produces the appropriate information. During the ensuing
instruction execute cycle, the CPU analyzes the information and performs the appropri-
ate action.

For example, assume the following data is present in an Intel 8086 system in order
to perform the tasks shown in the previous example (Addresses and Instructions in bin-
ary).

Addresses Instruction
0000 11100100
0001 00001010
0010 00100100
0011 00001000
0100 01110101
0101 11111010

If the 8086 begins executing at location 0000, it will read in the first instruction,
located at 0000, and analyze it. The CPU determines that the instruction is an input
instruction and that the next location, 0001, contains the device address from which the
data should be read. Therefore the device code is 00001010. If the device at device code
00001010 produces the keyboard status byte, executing this 8086 instruction will read
the keyboard status byte into the 8086’s AL register. After executing the instruction at
0000, the next instruction executed will be the instruction at 0010. The instruction at
0010 uses information at 0011 to perform an AND with AL. This extracts bit.3, as in the
second task in the previous example. The instruction at 0100 and 0101 determines
whether bit 3 is 1 or 0, then takes appropriate action.

The CPU operates with 1s and 0s. People, however, are not as adept at using ls
and 0Os. Therefore an intermediate step is provided between the CPU’s 1s and Os and
people. This step is assembly language. Instead of directly entering 1s and Os to the com-
puter, people write programs in assembly language. Assembly language programs are
converted to the appropriate 1s and Os by a program known as the assembler. The user’s
program written in assembly language is known as the source program.

For example, instead of creating a program out of the 1s and 0s, as shown above,
these lines of 8086 assembly code (source code) could be input to the assembler:

TOP: IN AL,0AH
AND AL,08H
JNZ TOP

The assembler converts the code to the 1s and Os (object code) of the previous example.
Assembly language consists of a set of instructions that can be converted by the

assembler into all the combinations of 1s and Os that are executable by the system.
For example, the 8086 assembly language instruction:

AND AL08H
is converted by the assembler into these two bytes of object code:

00100100
00001000

1-4 The 8086 Book

This object code is interpreted by the 8086 CPU as an instruction to AND the contents
of the AL register with the word 00001000.

For several reasons, assembly language programming will be more efficient than
programming in binary code. First, it is clearly easier to write assembly code using
assembly language instructions like AND, ADD, or XOR, rather than writing instruc-
tions like 01001000, 10100010, or 01110000. Second, the possibility for errors when
entering CPU language instructions is unreasonably high. When writing assembly
language, if errors are made, they will usually be caught by the assembler.

PROGRAMMING TASKS

Now consider the relationship between the programmer and the microcomputer
system. To make a microcomputer system work, these are the tasks that programmers
commonly perform:

1. Specification of the system. A specification includes a general discussion of all
the functions that the system will provide, plus a description of the character
of the inputs and outputs the system will handle.

2. Design of a computer program that implements the specification on a given
system. This requires that the specification be translated into a series of steps
that will allow the proposed system to cope with the particular application.

3. Implementation of the program design using a particular computer language.
This phase contains three separate tasks: coding, debugging, and integration.

4. Testing of the complete system. Sets of test data are input to the system. The
test data is designed to exercise program logic and hardware components.

5. Documentation of the system. Adequate documentation requires a descrip-
tion of how the entire system works, an operator’s guide to the system, and
complete documentation of the programs.

6. Maintenance of the system. A plan must exist for updating the system should
new requirements or new equipment be necessary.

The above list is always used when programming any complex system. There
exist, however, a limited number of cases where a 250-page specification, including
three subsections on system expansion, a 50-page operator’s guide, and a rigorous test-
ing procedure are not necessary. These programs would appear in the following kinds of
situations:

1. A serial I/0O channel has failed. The hardware person is pointing a finger at the
software, the software person finds it impossible to believe that such a squalid
piece of hardware is not at fault. Hopefully, the solution is a short program
that initializes the channel, then stands around reading and displaying data
every time the serial I/0 channel indicates data is available. It should be
relatively easy to establish whether the hardware is working; if the hardware is
working, there can be little doubt about what is not working.

Programming 1-5

2. A small number of non-trivial calculations need to be made. Fortunately, a
FORTRAN system is available. Hopefully, the solution is a 20-statement
FORTRAN program that will produce the desired results.

In both of the above cases, very little specification or program design is committed
to paper; these steps are performed in the programmer’s head. No documentation is
likely to be produced in these cases, and it is doubtful that maintenance will be necess-
ary. It would be very wise, however, to remember that these cases are the exception to
the rule.

The preceding list of tasks is used very effectively in environments where there
are multiple numbers of programmers. Some programmers execute steps 1 and 2
exclusively, some programmers only perform the implementation process, some dedi-
cate most of their time to testing program systems, others restrict their activities to
documentation and/or maintenance, and still others perform some abstruse combina-
tion of tasks. In this way, programmers develop specialized skills that may allow for
greater productivity. In most assembly language scenarios, however, the assembly
language programmer is called upon to execute all of the above tasks. This book
emphasizes an assembly language approach to the 8086, so a general discussion of all of
these tasks follows.

SPECIFICATION OF THE SYSTEM

When the acquisition of a microcomputer system is initially considered, it results
from one of two kinds of analysis:

1. There is a specific problem that needs to be faced. For example, an aerospace
manufacturer is producing a missile guidance system which needs an on-
board computing system meeting certain size and speed requirements.

2. There is a specific market for a new microcomputer system. For example,
small businesses that could not previously afford computerized accounting
will buy when microcomputer-based business systems prices fall low enough.

In either case, it is important to specify the exact function that the contemplated
system will perform. In the first case, the nature of the problem will probably limit the
system to performing a specific function. In the second case, it is easy to get carried away
with the specification. For a small business system it is necessary to define precisely
what accounting functions will be performed and exactly how many records of various
types will be allowed in the system. Otherwise the microcomputer system could be
assigned more tasks than the hardware has the capacity to handle.

Referring back to our simplistic model of a microcomputer system earlier in this
chapter, the specification will define the following:

« The inputs received by the system
» The computation performed by the system

* The outputs created by the system

1-6 The 8086 Book

Inputs

The specification of a microcomputer system’s inputs depends a great deal on the
level of programming being performed. An applications programmer, writing in BASIC,
is very unlikely to be concerned with the type of commands that are given to a disk con-
troller; rather, he will be concerned with the type of data on the disk, how records are
laid out in a disk file, how the operating system constricts his manipulation of the disk
file, etc. Since this book concerns itself with assembly language programming, and since
any reasonable discussion of data base manipulation techniques would be beyond the
scope of this book, we will emphasize the specification of the inputs and outputs at the
hardware level.

At the hardware level, three parameters define the characteristics of an input
channel. They are:

1. The data path width. Input may arrive one bit at a time from a processor con-
troller error system. A parallel or serial [/O channel will input eight bits at a
time. A floppy disk controller may transmit 1024 bits (128 bytes) of informa-
tion upon request.

2. Data transfer speed and type (synchronous or asynchronous). Data may
arrive every 200 microseconds from a real time clock. A serial I/O channel
may input data asynchronously, every 10 milliseconds. An A/D converter in a
control system may transfer data at an undetermined rate, but not faster than
once every 500 milliseconds.

3. Accompanying control information. A floppy disk may generate an interrupt
when data is available. A keyboard subsystem may set a status bit when data is
available. An A/D converter may require that the system read input data and
compare it with prior data to determine if new data is available.

After these parameters have been accounted for, it is important to specify how the
input channels will be implemented.
An input channel usually has these three types of ports:

1. Data ports. These ports contain the data that will be passed to the processing
section of the system.

2. Status ports. These ports contain information that indicates when data is
available, whether or not errors have occurred at this channel, and other
information concerning the outside world.

3. Control ports. These ports are typically used to initialize the channel’s mode
of operation and to control the way in which the channel represents itself to
the outside world.

All three ports are not always present. In some cases, only the data port is present;
in some cases, the channel is automatically initialized when power is applied, therefore
rendering the control port unnecessary.

Programming 1-7

Computation

When specifying the computation section for a microcomputer system, there are
three major areas of concern:

1. Processing raw data from the input section. This can take the form of a
translation into a code more readily usable by the system (e.g., from ASCII to
binary), separating a block of data into its component parts (e.g., a sector of
data from a diskette into the file header, header checksum, data, and data
checksum).

2. The actual algorithm implemented by the system. While a complete descrip-
tion of the actual algorithm is usually formed in the Program Design, this part
of the specification should list all the major functions the system will perform.

3. Processing data for the output section. This processing may include transla-
tion of data to a form usable by the output devices (for example, translation
of binary data into EBCDIC).

Outputs

Specification of to a microcomputer system’s outputs requires an analysis very
similar to the one performed for the input section. There are three major parameters for
each output channel:

1. The number of bits to be transmitted by the channel.
2. Data transfer speed at the output channel.

3. Accompanying control information that tells the system when the transmitter
is demanding more data, or is available to handle more data.

After these parameters have been accounted for, it is necessary to specify how the
channel will be controlled. As with input channels, output channels usually have three
ports of importance:

1. Data ports. These ports receive the data to be transmitted to the outside
world.

2. Status ports. These ports contain information that indicates when data may be
transmitted to the data ports, whether or not errors have occurred in the
channel, and other information about the outside world.

3. Control ports. These ports are typically used to initialize the channel’s mode
of operation and to control the way in which the channel presents itself to the
outside world.

As with input channels, all of these ports may not be necessary to control an out-
put channel.

1-8 The 8086 Book

While performing the specification process for each of the three major sections,
there are a number of useful techniques to remember:

1. In each section, make a list of the possible error conditions that could occur
and the system’s response to the error.

2. In each section, make a list of all functions that the section is to handle; e.g.,
make a list of all the input channels, all the computational functions, and all
the output channels. Upon completion of a particular section, cross-check the
section with your list, hopefully ensuring that all possibilities for the system
have been recognized.

The first specification written is not necessarily the last; unless the problem at
hand is fairly simple, it will almost certainly not be the last. The Program Design task
and the Implementation task may reveal that certain functions cannot be performed
given the selected hardware configuration. In this event, it may be necessary to modify
the specification so that the hardware configuration is changed or the offending func-
tions are modified so that the given hardware configuration can accomplish them.

PROGRAM DESIGN

Program Design involves taking the words in the specification and writing a
sequence of English language steps that describe the method that will implement the
specification. Ideally, these English language steps will provide a clear, simple descrip-
tion of what the system will accomplish. At this point, it may not be immediately
obvious that a simple description is available for all systems. For example, one would
not expect to find a concise description of IBM’s DOS/VS operating system. While this
may be true for the entire system, in the ideal situation a simple description should be
available for each individual part of the system (for example, a printer driver or a
multiword subtraction routine). When considering the number of parts in a very large
system, one gets a glimmer of the program designer’s task: breaking a large specification
into a very large number of much smaller modules.

While engaged in the Program Design task, keep these suggestions in mind:

1. In the future the program may have to expand to provide more capabilities.
Therefore the program should have built-in expansion facilities. Such
facilities would include system subroutines, expandable tables and lists of
data, a convenient, well-documented method for adding more functions to
the system, and data structures that are reasonably flexible.

2. In a typical design, there is more than one method for accomplishing any
given function. In some cases, limitations of the machine force one solution
to be used. In other cases, time constraints force another solution. Since these
factors, namely machine and time limitations, may not be well-known until
the Implementation task, where the actual coding takes place, it is often wise
to pursue alternate methods of solving a particular problem during the design
stage. The benefits of finding alternatives at this stage are twofold: first,
should the cited limitations prevent one solution, the other will already be
available, and second, you may discover a more efficient solution in the pro-
cess.

Programming 1-9

3. During the design, it is very important to specify what effect a particular
module will have on other modules, and equally important to specify what
effect other modules will have on that module. This interface between
modules becomes important when debugging and integrating program
modules.

When Program Design is complete, use the design to review the specification.
Cross-checking the design with the specification may reveal flaws or omissions in the
design and/or the specification. Be aware of the fact that the design should be reviewed
on a regular basis. While the Implementation and Testing tasks are being performed,
new information could become available that may force a reevaluation of the Program
Design.

IMPLEMENTATION

The Implementation task consists of taking the English language algorithm
specified in the Program Design task and making it work on a specific microcomputer
system. There are two distinct efforts that go into the Implementation task:

1. Coding. This is the process of converting the English language steps created
during the Program Design task into a particular computer language.

2. Debugging and Integrating. This is the process of removing errors from
Program Design modules that have been converted by the coding phase into
computer language, then integrating these modules into a working system.

Coding

The conversion of the Program Design into a particular computer language can be
one of a programmer’s easier tasks. If the Program Design function has been done cor-
rectly, each separate module will be described by a set of concise English language state-
ments. Keep the following suggestions in mind while coding:

1. Try to use standard subroutines or programs whenever possible. Subroutines
are very useful in that they can usually be debugged individually. After
removing the bugs from the subroutines it is much easier to debug the main
line of code. In addition, standard subroutines make it much easier to add new
features to a system.

2. Document the code as clearly as possible. In addition to comment statements
which describe individual modules or sections of code, labels which have
mnemonic significance are of tremendous value. Some assemblers limit the
opportunity to do this, as they restrict the number of characters in a label to
six or fewer. In most cases, however, the ability to give extraordinary
mnemonic value to the labels for both program and data areas is present and
should be exercised to the fullest.

1-10 The 8086 Book

After each of the program design modules has been translated into the appropriate
computer language, a series of checks should be made to ensure that the Coding task
has been performed correctly and to avoid potential difficulties while performing the
Debugging task. This series of checks, sometimes referred to as desk checking, is part of
the Coding procedure, but also shares many elements with the Debugging task.

Checks that should be made include:

1.
2.

Ensure that the code contains all of the program design modules.

Ensure that all decisions included in the program design are included in the
code. Check the logic at all of the decision points to ensure that the branches
will be performed in the correct manner.

Ensure that each program design module has been provided with enough
information to allow it to run correctly. This check can be performed for each
module by determining what this module expects other modules to supply in
terms of:

« The contents of the registers

+ The contents of data structures

+ The state of I/0 devices used by this module
+ Status settings

Ensure that each module provides subsequent modules with the correct infor-
mation. This check can be performed for each module by determining what
this module must supply to other modules in terms of:

+ The contents of the registers

« The contents of data structures

+ The state of I/O devices used by subsequent modules
« Status settings

Ensure that code has been entered into this module to handle the following
situations:

* Errors

» Special cases

» Boundary cases
» Trivial cases

After these checks have been completed, the Debugging process begins.

Programming 1-11

Debugging and Integration

The Debugging and Integration task consists of removing errors from the code
and then integrating debugged modules into a final working system. The functions per-
formed during the Debugging task are very similar to the functions performed during
desk checking. The Debugging task is different in that the task is performed while
examining code that is running on the system hardware or a simulator for the system
hardware. There are a series of tools used in the debugging process that are not available
while desk checking. These tools are usually, but not always, provided by a software
module called the Debugger. Typical features provided by a Debugger include:

« A Single Step facility. This facility allows a user to execute individual instruc-
tions following the program logic.

+ Examine/Alter the contents of a memory location or a register. This facility
allows the user to view memory/register contents and optionally alter them.

« A Breakpoint facility. This facility allows the user to interrupt the execution of
the program which is being debugged, depending upon some condition. Typi-
cal breakpoint conditions include reference to a particular address, for either
operand reference or instruction fetch.

When debugging a program, the following suggestions should be kept in mind:

1. Begin the debugging process by debugging commonly used or system
subroutines. If the lowest-level routines in a software system are known to be
functioning appropriately, discovering the source of an error is simplified, as it
can be assumed that either the mainline code is in error or it is using the
system subroutines in an incorrect fashion.

2. Ifitis possible, attempt to debug each area of the specification individually. It
is appropriate to debug each section of the Input portion of the specification
individually, followed by each section of the Computation portion of the
specification, followed by each section of the Output portion of the specifica-
tion. When sections of the specification are debugged individually, it is possi-
ble to view each section without interference from other portions of the
system. Theoretically, when all of the individual modules have been de-
bugged, the Integration phase will only need to debug the way in which the
program modules interface to each other.

When all of the individual modules have been debugged, the Integration phase
begins. In this phase, individual modules are combined into a subsystem and then
debugged as a subsystem. For example, all the program design modules which affect the
input portion of the program can be combined and debugged. As each subsystem is
debugged, it can then be combined with other subsystems until the final system is
debugged. As noted above, the only function that should be performed by the Integra-
tion phase is to ensure that the interface between modules (and eventually subsystems)
is handled correctly.

1-12 The 8086 Book

At any one of the stages of Implementation, it may be necessary to return to the
Program Design or even the Specification task. Consider these examples:

1. During the Coding stage, it becomes obvious that the code necessary to pro-
vide the specified functions will require more memory than has been provided
for in the hardware design. First, return to the Program Design task to deter-
mine if alternate methods would allow for the use of less memory space. If
this doesn’t solve the problem, it is time to go back to the Specification task
and reconfigure the system in some fashion.

2. During the Debugging phase, it is noticed that the system cannot respond
quickly enough if an attempt is made to run all the devices the system is sup-
posed to control. Note that this difficulty might not be obvious in the early
stages of Debugging, since the input and output portions of the specification
will typically be debugged separately until Integration is performed. In this
case, return to the Coding task to see if the execution time for the input or
output code can be reduced. If this fails, return to the Program Design task to
determine if a more efficient algorithm is available. If, horror of horrors, this
fails, return to the Specification stage to revamp the system.

TESTING

The Testing task consists of thoroughly exercising the system by introducing
special sets of data and verifying that the correct results are produced. This task is very
common in environments where there are large numbers of programmers. For exam-
ple, before any self-respecting software house releases a new version of an operating
system, the new system will have been thoroughly scrutinized. Before an automobile
manufacturer releases a version of an on-board computer system, rigorous tests will
have been performed. But testing is often overlooked in situations where few assembly
language programmers exist. A major reason for the neglect of testing is that it can be
very time consuming and therefore very expensive; in addition, it is not a well under-
stood art.

Hopefully a significant portion of the Testing task can be accomplished during the
debugging phase of the Implementation task. During the debugging section, for exam-
ple, each module will be tested by executing the module using data that results in boun-
dary conditions, thereby exercising the module’s ability to make decisions. As an exam-
ple, suppose a module is coded to perform one function if the first byte of a data block is
in the range 30,, to 39,, inclusive, another function if the first byte is in the range 41, to
46, inclusive, and a third function if the byte is not in either of the ranges. Typical test
data might well include blocks with a first byte of:

246
3046
3946
3Aqe
40,4
41,
46,4
47,4

0046
FF1e

These blocks would test the system’s ability to distinguish between different types
of data.

Programming 1-13

When deciding upon test data to submit to the system, keep the following sugges-
tions in mind:

1.

Three basic types of data to enter are:
- The typical stream of data that the system normally would encounter

A series of boundary conditions that exercise the system’s ability to per-
form decisions correctly

* A random selection of data containing both legitimate and illegitimate
data

2. The data should be presented to the system at the following speeds:

+ The typical data rate that the system would normally encounter
+ The fastest data rate at which the system is supposed to function

« A random selection of data rates

DOCUMENTATION

The Documentation task consists of writing down all information pertinent to the
system. There are three basic elements in the documentation of a system:

L.

Documentation of the program. As was noted in the discussion of the Imple-
mentation task, it is very important to explain how the code works, module by
module, and in some cases why the code works the way it does. This sort of
documentation allows new readers of the code to easily familiarize themselves
with the code. In addition, if they desire to alter the code, good documenta-
tion may allow reasonable, informed decisions on how the alteration should
be made. Program documentation helps refresh the memory of the original
coder, who may be examining a program written in the distant past.

A System Guide. The System Guide should include a description of the
program’s design, a description of how to modify the program, and a brief
summary of what the system expects to see in the outside world; i.e., what is
driving the input lines and what is receiving the data on the output lines.
Hopefully, a System Guide will be fairly simple to put together, as the major
elements should have been written up, at least in note form, during the pre-
vious tasks.

A User’s Guide. This may be the most important piece of documentation. If
the code is very well documented, and if a superlative System Guide has been
written, then other programmers may be able to modify or improve the
program; but if there is no User’s Guide, it may be impossible for anyone to
use the program, in which case no one will care to modify or improve the
code, and all the effort will have been wasted. User’s Guides are especially
important in systems where external users may write programs that interface
with the system. In this case, it is of extreme importance to notify users,
typically through an update of the User’s Guide, of any revisions or additions
to the system.

1-14 The 8086 Book

MAINTENANCE

The Maintenance task consists of altering the program to accommodate new
equipment or new processing requirements; in essence, keeping the program function-
ing in a changing environment. The Maintenance task can be simple or complex,
depending on the change in the environment. Examples of simple tasks include:

1.

A new piece of hardware is being installed in the system, replacing an out-
moded piece of equipment. The I/0 interface is remarkably similar to the old
hardware; in fact, the change involves only the transposition of a few status
lines. In this case, the Maintenance task would involve altering a few lines of
code in the program, debugging the code using the new hardware, and writing
the appropriate additions to the documentation.

System output is going to a diskette file which will, at some later time, be pro-
cessed by a more sophisticated system. A new operating system release on the
more sophisticated system requires that two previously unused bytes in a dis-
kette file be used for some more significant purpose. Since this possibility was
considered during the Program Design phase, the Maintenance task in this
case will only require minor alterations to the Computation section of the
Specification task and the associated Program Design, Implementation, and
Documentation tasks.

More complex tasks might include:

1.

A new piece of hardware is being added to the system. In contrast to the pre-
vious example, this equipment is nothing like other system equipment; in
fact, it makes new demands on the interrupt structure, the timing of the
system, and the processing abilities of the system. In this case, the Mainte-
nance task may require extensive effort in each one of the programming tasks
that has been identified.

The marketing department has decided to attach a veritable phalanx of 80-
megabyte disk drives to your microprocessor based system. The Maintenance
task in this case would probably include all of the programming tasks from
Specification to Documentation, or conceivably an orderly removal of the
appropriate marketing personnel from the gene pool.

The ability to perform the Maintenance task with relative ease is directly propor-
tional to the care which was taken in the Program Design and Implementation stages. If
the Program Design stage left no easy way to add features or provided no general system
modules, then additions to the system will probably prove difficult at best. If, during the
Implementation process, no reasonable documentation on the hows and whys of the
program were provided, introducing new elements of the Program Design into the code
will be very tortuous indeed.

Some Program Examples

A SORT PROGRAM

Consider the specification and program design tasks for a sort program module.
This program reads data records from a file on a tape drive, sorts keys extracted from the
records, then writes a key file to the tape following the data file. The actual code for this
program is presented in Chapter 6.

In this exmple, a very simple 1/0 interface will be assumed. A general block
diagram for the I/0 interface is shown here:

Control Control
— > —

A__Status Tape Status
System A\ E— Controller

: Data : : Data :

The tape controller transfers 128-byte blocks of data to and from the tape. The
controller adds parity bits (for a 9-track tape) and a checksum to a block written to the
tape. The controller processes this error-detecting information when a read operation is
performed and sets error bits accordingly.

Transfers to and from the tape are performed as follows:

Tape

U

1. The system requests a read or write operation.

2. The system waits for the controller to be ready to transfer a byte of data.

2-2 The 8086 Book

3. The system transfers a byte to/from the controller’s data port.

4. 1If 128 bytes have been transferred, the tape controller sets a flag indicating
that the entire block has been transmitted. If the transfer is not complete, the
system returns to step 2.

The tape controller will be run with a very simple command structure. The follow-
ing command byte is sent to the tape controller’s command port to initiate action by the
tape controller:

7 6 5 4 3 2 1 0 «-4—BitNo.

HEEEEEEE
Q {O - No Read operation
1 - Perform a Read operation
l {0 - No Write operation
4

1 - Perform a Write operation

0 - No Rewind operation
L 1 - Perform a Rewind operation

After the system sends a command to the tape controller, the system reads a
status byte from the controller. This byte is of the following form:

5 4 3 2 1 0 <a§—Bit No.

EREEEEEE

? ? l ! 0 - Data byte not available
1 - Data byte available

0 - Not Ready for Data byte
1 - Ready for Data byte

{ 0 - Operation not completed
1 - Operation completed

{ O - No checksum error

1 1 - Checksum error

{ O - No parity error

1 1 - Parity error

—

{ O - Drive on line

L 1 - Drive off line

{0 - Not at end of tape

11 - End of tape

{ O - No error conditions

11 - This bit is 1 if any of the error
conditions in bits 6, 5, 4 or 3 have
been detected.

If the system has issued a command for a read operation or a write operation, the
appropriate bit (bit 0 for a read operation or bit 1 for a write operation) is sampled. If the
tape controller is ready to send/receive data, the system performs a read or write opera-
tion from the tape controller’s data port. After 128 read/write operations, bit 2 will
become a 1, signalling the completion of the operation.

If the system has issued a command for a rewind operation, bit 2 of the status port
will indicate that the rewind operation has been completed.

Some Program Examples 2-3

INPUTS

Given the previous description of the characteristics of the tape controller, input
parameters may be specified as follows:

1. Data path width. Data arrives from the tape controller one byte at a time. Each
read command from the system allows a 128-byte block to be read from the
tape.

2. Data transfer speed. In this example, the data will be arriving synchronously.
After the Data Byte Available bit goes high, the data may be input at the max-
imum CPU rate.

3. Accompanying control information. In this example, the tape controller does
not interrupt the system. The system reads the tape controller status port to
determine if data is available.

COMPUTATION

In this section of the specification, the following elements will be considered:
+ The format of the data records that are read from the tape
» The method by which the keys will be sorted

+ The format of the data records that are written to the tape.

INPUT RECORD FORMAT

Each data record read from the tape will consist of 128 bytes. There are three fields
of interest in each data record read from the tape:

1. Record number. This is a two-byte field which uniquely identifies the record.
Record numbers may be in the range 0000,, - FFFE . Record numbers

FFFF,, designates an end-of-file record.

2. Key. This is a ten-byte field. This field may contain data describing the record,
and does not have to be unique to the particular record. In this example, we
will assume that these ten bytes represent an individual’s last name.

3. Data. The remaining 116 bytes in a record contain data.

2-4 The 8086 Book

These three fields are organized in the following manner for all records:

Byte No. [¢] Record number (high-order)
Record number (low-order)

Key (most significant byte)

oo o o

1 Key (least significant byte)
12 Data
127 Data

Note that the size of the data record is conveniently equal to the size of the block
that is read from the tape.

SORT METHOD

The sorting method used will be the diminishing increment sort, or Shell sort.
This is a commonly used sort algorithm which is described in detail in Sorting and
Searching, by D.W. Knuth. The collating sequence used will be the ASCII collating
sequence. The keys will be sorted in ascending order.

The basic philosophy of the diminishing increment sort is to sort progressively
larger sublists using a straight insertion technique until the final pass, when the entire
list is sorted using straight insertion. The advantage of this sort is that as the sublists are
sorted, the entire list becomes more ordered. Therefore, when the entire list is sorted
during the final pass, fewer exchanges are necessary, and that reduces execution time.
For example, consider this 10-element list:

10 13 8 14 19 11 6 13 7
The first sorting pass might sort the following lists:

10 13 8 14 4 19 1 6 1

nl I ‘ ‘

Sort

[%)

ort

Sort

into 1011613419138147

Some Program Examples 2-6

The second pass might sort the following lists:

into

10 11 6 13 19 13 8 1

el AR

Sort

4768101113131419

And the final pass would sort the entire list.

The basic algorithm is:

Given: N records. In this case, the records are 12 bytes long and consist of a
record number and a key field.

There are two variables of interest in this algorithm.

Increment: In the diminishing increment sort, a set of increments is chosen that will

Subsort
counter:

help determine the number of elements in a sublist. In this case, the incre-
ments will be
N/2,N/4, ..., 1

We will call the variable that contains N/2, then N/4, then finally 1 (for the
final pass, which sorts the entire list) the increment.

For each value of increment, i.e., for each sorting pass, this variable counts
from (N — Increment) to N. This determines the number of sorts that are
performed in each pass.

The algorithm operates as follows:

1.

e A

10.
11.
12.

Set Increment = N
Do Steps 2 through 12 until Increment = 0.

Increment = Increment/2
Sort each sublist using a straight insertion sort.

Subsort counter = N — Increment
Do Steps 4 through 12 until Subsort counter = N + 1

Subsort counter = Subsort counter + 1
Keytemp = Key (Subsort counter)
Recordtemp = Record (Subsort counter)
Index = Subsort counter — Increment

Compare Keytemp with Key (Index)
If Keytemp > Key (Index), then go to Step 12 else go to Step 9

Record (Index + Increment) = Record (Index)
Index = Index — Increment
If Index > 0, then go to Step 8 else go to Step 12

Record (Index + Increment) = Recordtemp

2-6 The 8086 Book

OUTPUT RECORD FORMAT

Each data record written to the tape consists of 12 bytes. There are two fields of
interest in each data record written to the tape:

1. Record number. This is a two-byte field which is identical to the record num-
ber field in the input record format.

2. Key. This is a ten-byte field which is identical to the key field in the input
record format.

These records are organized as follows:
Byte No. 0 Record number (high-order)

Record number (low-order}

2 : Key {most significant byte)

- e e e e

o

Key (least significant byte)

Note that 128, the number of bytes in a tape block, is not a multiple of 12, the number of
bytes in an output record. Therefore some algorithm must be used to pack the output
records into a tape block. This algorithm is discussed later, in the program design sec-
tion.

OUTPUTS

Given the previous description of the tape controller’s characteristics, output
parameters may be specified as follows:

1. Data path width. Data is sent to the tape controller one byte at a time. Each
write command from the system allows a 128-byte block to be written to the
tape.

2. Data transfer speed. In this example, the data is sent synchronously. After the
Ready for Data Byte bit goes high, data may be sent to the controller at the
maximum CPU rate.

3. Accompanying control information. In this example, the tape controller does
not interrupt the system to signify that it is ready for data. The system reads
the tape controller status port to determine if the tape controller is ready for
data.

Some Program Examples 2-7

ERROR PROCESSING

In this example, the only errors of concern are tape errors. These errors will be
processed by the read/write tape subroutine. This processing will be discussed in
Chapter 6.

PROGRAM DESIGN

By examining the task that the program will perform, it appears that there are
three major functions that will comprise the program:

* Reading records from the tape and extracting the key from each record
+ Sorting the keys
» Writing the sorted keys back to the tape.

None of the above modules is very complex, therefore flowcharts will be used to
describe each of them.

Read from Tape

The module that reads the tape contains only one decision point. As the module is
reading records from the tape, it examines each record to ascertain whether or not the
record is an end-of-file record (record number = FFFF,,). If an end-of-file record is
detected, control is passed to the sort module; otherwise the record number and key will
be extracted from the record and saved in a temporary area where they will be processed
by the sort module. The next record is then read from the tape.

I

Read a record
from tape into
. buffer area

End of Yes. End-of-File Record
tape file

2

No. Data Record

Extract record no.
& key fromrecord. Sort
Save in sort area

Y

Increment no.
of records read

[

2-8 The 8086 Book

Sort

The sort module implements the sorting algorithm given in the specification.

I

Increment = Recordtergp =
Recor
Record number (Subsort counter)

| m— [

Increment = Index = Subsort
counter —

Increment/2 Increment

eytemp
>Key(index)
?

Record (index
+ Increment)

Write to Tape

Subsort counter
=N - Increment = Record (Index)

Subsort counter

= Subsort
counter + 1

Index =
Index — Incremen

Subsort Yes

counter> N

Index >0
?

Keytemp = Key Record (Index
+ Increment)

(Subsort counter) = Recordtemp

I

Some Program Examples 2-9

Write to Tape

The module which writes the key file to the tape is not as straightforward as the
module which reads from the tape. There are two decision points in this module. The
first decision has to do with filling a tape block. Since it would not be very efficient in
terms of tape space to write a 128-byte block for each 12-byte record, records are
organized in a buffer until 128 or more bytes have been saved. When 128 bytes have
been saved, the decision point allows the buffer to be flushed to the tape. The second
decision point involved decrements the number of records. When all of the output
records have been moved, an end-of-file record (record number = FFFF,,) is appended

to the buffer and then written to tape.

Move a record
to tape
output buffer

Moved >
128 bytes
?

Yes

Fill rest of Write buffer
buffer with Os to tape

Y

Adjust extra
bytes

Y

Decrement
Record Counter

Record
Counter = O

Move EOF record
to tape buffer

Y

Write buffer
to tape

The 8086 Assembly Language
Instruction Set

The 8086 is Intel’s first 16-bit microprocessor. When introduced in 1978 it was
significantly more powerful than any prior microprocessor.

The 8086 assembly language instruction set is upward compatible with 8080A —
but at the source program level only. That is to say, every 8080A assembly language
instruction can be converted into one or more 8086 assembly language instructions.
There is no reason why anyone would try to convert 8086 assembly language instruc-
tions, one at a time, into one or more 8080A assembly language instructions, but if you
did, you would soon become hopelessly tangled in conflicting memory allocations and
special translation rules. That is why we say that the 8086 and 8080A assembly language
instruction sets are ‘‘upward’’ compatible.

The 8086 and 8080A assembly language instruction sets are not compatible at the
object code level, which means that 8080A programs stored in read-only memory are
useless in an 8086 system.

The 8085 and 8080A assembly language instruction sets are identical, with the
exception of the 8085 RIM and SIM instructions. The 8085 RIM and SIM instructions
cannot be translated into 8086 instructions. This is because the RIM and SIM instruc-
tions use the serial I/0 logic of the 8085, which has no 8086 counterpart. Without the
RIM and SIM instructions the 8085 and 8080A assembly language instruction sets are
identical; therefore the 8086 assembly language instruction set must also be upward
compatible with the 8085 assembly language instruction set — apart from the RIM and
SIM instructions.

The 8085 and 8080A assembly language instruction sets are object code compati-
ble — with the exception of the 8085 RIM and SIM instructions. That is to say, a pro-
gram existing in read-only memory could be used with one microprocessor or the other.

3-2 The 8086 Book

The 8080A assembly language instruction set is a subset of the Z80 assembly
language instruction set. That is to say, the Z80 will execute an 8080A object program —
but the reverse is not true. The 8080A cannot execute Z80 programs when the full Z80
instruction set is used. The 8086 assembly language instruction set is not upward com-
patible with the Z80 assembly language instruction set.

As a historical note, it is worth mentioning that the 8008 microprocessor, which
preceded the 8080A, was also compatible only at the source program level. That is to
say, there is an 8080A assembly language instruction for every 8008 assembly language
instruction, but the two microprocessor object code sets are not the same.

The various instruction set compatibilities that we have described may be illus-
trated as follows:

(Excluding RIM and > 8086
SIM instructions)

8085 280
J .
| SR 8080A == —---— J

8008

Source program of lower microprocessor
can be assembled to generate upper
microprocessor object program

= = — Lower microprocessor instruction set is a
subset of upper microprocessor instruction
set at the object program level

These are the most interesting innovations to be found in 8086 hardware design:

1.

8086 Central Processing Unit logic has been divided into an Execution Unit
(EU) and a Bus Interface Unit (BIU). These two halves operate
asynchronously. The Bus Interface Unit handles all interfaces with the exter-
nal bus; it generates external memory and 1/0 addresses and has a 6-byte
instruction object code queue. Whenever the EU needs to access memory or
an 1/0 device, it makes a bus access request to the Bus Interface Unit. Provid-
ing the Bus Interface Unit is not currently busy, it acknowledges the bus
access request from the EU. When the Bus Interface Unit has no active pend-
ing bus access requests from the EU, it performs instruction fetch machine
cycles to fill the 6-byte instruction object code queue. The CPU takes its
instruction object codes from the front of the queue. Thus instruction fetch
time is largely eliminated.

8086 Assembly Language Instruction Set 3-3

The 8086 has been designed to work in a wide range of microcomputer system
configurations, ranging from a simple one-CPU system to a multiple-CPU
network. To support this wide flexibility, a number of 8086 pins output alter-
nate signals. This may be illustrated as follows:

Minimum Configurations

M These signals

do not change

+5V 8086

T— MN/MX ﬁ Simple control output

for use in one-CPU system

Maximum Configurations

M These signals do not change

8086

— C ignal
MN/VIX h omplex control signals

useful in multi-CPU networks

L

The same pins output these two sets of signals, based on a level of MN/MX.
This wholesale reallocation of signals was a highly imaginative and innovative
first for the microprocessor industry.

The 8086 has built-in logic to handle bus access priorities -in multi-CPU con-
figurations. (This is not a new concept; National Semiconductor’s SC/MP has
had it for years.)

In multi-CPU configurations, each 8086 CPU can have its own local memory,
while simultaneously sharing common memory. The common memory may
be shared by all CPUs, or by selected CPUs.

The 8086 has been designed to compete effectively in program intensive
applications that have been the domain of the minicomputer. Up to a million
bytes of external memory can be addressed directly. All memory addressing is
base relative; this memory addressing technique naturally generates relocata-
ble object programs. (Relocatable object programs can be moved from one
memory address space to another and re-executed without modification.)
Also, since the 8086 utilizes stack-relative addressing, re-entrant programs
are easily written. (Re-entrant programs can be interrupted in mid-execution
and re-executed. For example, a subroutine which calls itself is re-entrant; a

3-4 The 8086 Book

program which can be interrupted in mid-execution by an external interrupt,
and then re-executed within the interrupt service routine, is also re-entrant.)

6. The 8086 uses prefix instructions that modify the interpretation of the next
instruction’s object code.

The 8086, like its predecessor, the 8080A, is really one component of a multiple-
chip microprocessor configuration.

In addition to the 8086 microprocessor itself, you must have an 8284 Clock
Generator/Driver. You could create the required clock signal using alternative logic, but
it would be neither practical nor economical to do so.

The third device necessary in some 8086 microprocessor configurations is the
8288 Bus Controller.

You will usually have an 8288 Bus Controller between an 8086 and its system bus
(or busses), just as you will usually have an 8228 System Bus Controller between an
8080A and its system bus. In the case of the 8086, however, you can dispense with the
8288 Bus Controller in single-bus configurations — and pay no penalty for it.

Chapters 6, 7, 8, and 9 discuss basic 8086 hardware, single-CPU configurations,
the Multibus* and multi-CPU configurations.

AN 1/O DRIVER

Next we will specify a program module which interfaces a system toa serial input/
output channel. We will also look at design tasks associated with creating this program
module.

The following is a general block diagram for a serial input/output channel:

Data Serial Line Out
s S10 Device
Systom Status Intel Serial Line In Terminal
v 8251A [(CRT/
Control ‘ Keyboard)
Modem

Control Lines

In this example, the serial input/output (SIO) channel is an Intel 8251 A Program-
mable Communication Interface. It is assumed that the 8251A is connected to a com-
munications terminal; the communications terminal has a CRT on which it displays data
transmitted by the system. Data from a keyboard is transmitted by the channel to the
system. Data is not buffered at the terminal on input or output. Data is transmitted and
received asynchronously.

* Multibus is a registered trademark of Intel Corporation.

8086 Assembly Language Instruction Set 3-5

The program module, which will also be referred to as the driver, connects operat-
ing system software with the 8251A. This may be illustrated as follows:

o]

System
I Commands ' Data
l Operating | Status
ft
l System s%rit::e 8251A
| Software Data fControl

S |

Operating system software sends commands and/or data to the I/O driver pro-
gram module; this can be handled in a variety of ways. They include:

1. Placing the command or data in a register. For example, one register could be
assigned to holding commands, while data passes through another register.

2. Using a task block. The task block could contain the command and data or the
command and a pointer to the data. The task block could be located at a fixed
memory location, or it could be pointed to by one of the registers.

3. Via the stack. System software could push the equivalent of a task block (Gi.e.,
commands and data/pointers) onto the stack.

Selecting one of the above techniques is usually a processor-dependent decision.
Since the present discussion is not processor-dependent, the rationale for selecting a
parameter passing technique will be deferred to a later chapter.

INPUTS

The SIO device used in this example is an Intel 8251 A. This device requires the
following input specifications:

1. Data path width. The 8251A allows 5-, 6-, 7-, or 8-bit characters. In this
example, an 8-bit data path is required by the device for commands and
status. To allow for a future system using a different size data path, the pro-
gram design will allow the size of the data path to be specified.

2. Data transfer speed. In this example, the data will be transferred
asynchronously. Only the maximum data transfer rate can be specified. In this
example, 9600 baud is specified as the maximum data transfer rate.

3. Handshaking protocol. In this example the SIO channel does not interrupt the
microprocessor, rather the microprocessor polls the channel to determine if
data is available.

Next the I/0 driver must consider actual I/0 channel operations. In addition to
data transfer, controls must be transmitted to the I/0 channel, in this case an 8251A,
and status must be received from it.

3-6 The 8086 Book

A data port is configured as follows:
Iﬂos|os|o4|oa|nz|o1|oo]

Data is known to be available at this I/0O port when an appropriate status bit has
been set to 1. In the case of the 8251, the RXRDY (Receiver Ready) bit of the status
port must be set to 1.

The 8251A is initialized to a known state by writing information to the control
port. At least two bytes of control information are necessary to initialize the 8251A.
"Control information is sent in the following sequence:

1. Mode Select Byte

2. Sync Character (Synchronous mode only)
3. Sync Character (Synchronous mode only)
4. Command Select Byte

In this example, the 8251A will be operating in the asynchronous mode, therefore
a two-byte initialization sequence is needed, it is:

1. Mode Select Byte
2. Command Select Byte

8086 Assembly Language Instruction Set 3-7

The format for the Mode Select Byte is:

D7 D6 DS D4 D3 D2 D1 DO <——Bit No.
Is2|s1 IEPIPENI L2 | L1 I azl 31]
‘ A A ‘ A 7 Baud Rate Factor

(o] 1 [o] 1

0 0 1 1

Sync
Mode 1x) (16)().

(64 x)I

Character Length

0 1 0 1

0 0 1 1

5 6 7 8
Bits | Bits | Bits | Bits

Parity Enable
1 - Enable O - Disable
Even Parity Generation/Check
1-Even O -Odd

Number of Stop Bits

0o 1 0 1
0 0 1 1

1 1% 2

Invalid) g;; | gits | Bits

(Only affects Tx; Rx never
requires more than one stop bit)

3-8 The 8086 Book

The format for the Command Select Byte is:

D7 D6 D5 D4 D3 D2 D1 DO <s—Sit No.

Transmit Enable
1 = enable
0 = disable

Data Terminal Ready
“high’* will force DTR
output to zero

Receive Enable
1 = enable
0 = disable

Send Break Character
1 = forces TxD “low"’
1 0 = normal operation

Error Reset
1 = reset error flags
l PE, OE, FE

‘ Request to Send
“high’’ will force RTS
output to zero

Internal Reset
“high’’ returns 8261A to
Mode Instruction Format

Enter Hunt Mode
1 = enable search for Sync
I Characters
(Has no effect in Async mode)

Given the preceding specifications, the Mode Select Byte will be:

7 6 5 4 3 2 1 0 -a—8BitNo.

Clofrfofififi]o]

I {These two bits are hardware dependent.

In this system, a x 16 clock will be used
{These two bits specify the number of data

bits per character. In this case, 8 bits of data are
exchanged

This bit disables parity

Given bit 4, this is a “‘don’t care’’ bit

f These two bits are hardware dependent. .

Uin this system, 1% stop bits will be used

8086 Assembly Language Instruction Set 3-9

The initial Command Select Byte will be:

7 6 5 4 3 2 1 0 -w——BitNo.

Oonnoann
A

T_Enable the transmitter

Turn on Data Terminal Ready

Enable the receiver

Do not send a break character

Reset the error flags

Turn on Request to Send

Do not return to the mode instruction format

§ Since asynchronous operation is specified,
L this is a “*don’t care”’ bit

Additional features of 8251A programming are discussed during the implementa-
tion section in Chapter 6.

The status port supplies information on the state of the 8251, and the state of the
device to which it is connected.

3-10 The 8086 Book

When a byte is read from the status port, the following information is transferred
to the system.

D7 D6 D5 D4 D3 D2 D1 DO

SYN- T
Iosn DET| FE | OE | PE kMPTYlﬂxRDYITxRDYl

transmitter is ready for a data character. If this
bitis a 1, data may be sent to the 8251A. If this

{This bit indicates to the system that the 8251A
bit is a O, data may not be sent to the 8251A.

This bit indicates that the 8251A receiver
buffer contains a data character that is ready
for transfer to the system.

‘This bit indicates that the 8251A has no

characters to transmit. If this bjt is a 1, the
transmitter is empty. If this bit is a O, the
transmitter is sending data.

’Parity Error. The PE flag is set when a parity
error is detected. It is reset by the ER bit of the
Command Instruction. PE does not inhibit opera-
tion of the 8251A.

‘ Overrun Error. The OE flag is set when the CPU

does not read a character before the next one
becomes available. It is reset by the ER bit of the
lCommand Instruction. OE does not inhibit

operation of the 8251A; however, the previous
overrun character is lost.

when a valid Stop bit is not detected at the
end of every character. It is reset by the ER
bit of the Command Instruction. FE does not
inhibit the operation of the 8251A.

‘Framing Error (Async only). The FE flagis set *

This bit indicates whether the 8251A has
detected a SYNC character. This bit is
meaningful only if the 8251A has been

{lnitializod to operate in the synchronous

mode. If this bit is a 1, a SYNC character has
been detected. If this bit is a 0, no SYNC
character has been detected.

This bit reflects the state of th@ pin on
the 8251A. If this bit is 1, DSR is high,
therefore the data set is not ready. If this bit
is 0, DSR is low, indicating data set ready.
This is a modem control line.

8086 Assembly Language Instruction Set 3-11

COMPUTATION

What sort of functions should the driver provide? Will data be translated on input
and/or output? These are the functions a real I/O driver will provide:

1.

Initialize the channel. When power is applied to the system, the 8251A
powers up in an unknown state. The I/O driver will put the channel into a
known state.

Input a single character. When this function is requested, the driver reads the
status port and waits until data is available. When data is available, the driver
reads the data port and passes the information back to the system.

Output a single character. When this function is requested, the system must
pass the character to be output, or a pointer to that character, to the driver.
The driver reads the status port and waits until the transmitter is available.
When the transmitter is available, the driver will transfer the specified
character to the data port.

Check the channel’s status. Perhaps the system does not need to read a
character, rather it needs to know if a character is available. Under such cir-
cumstances the system will read the status port cortents.

Send control information to the channel. The system may need to alter the
state of the channel, for example, to allow the channel to check for parity
errors.

Input a series of characters from the channel. You may wish to input charac-
ters until some terminating condition is detected. For example, a carriage
return may constitute a terminating condition, or a fixed number of charac-
ters may have to be input. Five numeric characters constitute a ZIP Code, for
example. The 1/0 driver will read data from the channel. This involves wait-
ing for data to be available, then reading the information present at the data
port saving the data in some designated place in memory, then testing to
determine if the terminating condition has been reached.

Output a series of characters to the channel. The system may wish to output a
series of characters until a terminating condition is detected. Possible termina-
tion conditions might include either the detection of a predetermined end-of-
string character or the output of a specific number of characters. The 1/0
driver will test for the termination condition; if the terminating condition is
not detected, the 1/0 driver will load data from a specified memory location,
and send the data to the channel.

OUTPUTS

The 8251A uses the control information to define the channel’s output charac-
teristics. These output specifications need to be defined:

1.

2.

Data path width. The 8251A allows data units to consist of either 5, 6, 7, or 8
bits. In this system, 8 data bits will be transmitted.

Data transfer speed. In this case, the maximum data rate will be 9600 baud.

3-12 The 8086 Book

3. Handshaking protocol. In this example, the 8251 A will not interrupt the
system, rather the system reads the 8251 Status register to determine whether
the 8251A is ready to transmit more data.

We have already described the Data and Control/Status ports of the 8251 A. Data
may be sent to the channel when the TXRDY bit (Transmitter Ready) of the Status
register is 1.

PROGRAM DESIGN

In this section, none of the specific modules will be complex. Given this fact, we
will use flowcharts to describe each module of the 1/0 driver.

Initialization

The Initialization routine contains only one major decision point. If the standard
initialization is requested, a pointer to a standard initialization sequence will identify the
information which must be sent to the control port. As an alternative, a ‘“‘custom’
initialization sequence may be executed; in this case the user will have to provide the
initialjzation sequence and a pointer to it.

Standard Initialization
or User Specified

Use Pointer Use Pointer
Standard .‘,?msg.?;‘;’f}fﬂ. Passed by |User Specified
String User

Get

Control Byte

Y

Output
Control Byte

Is
Program

Finished
?

8086 Assembly Language Instruction Set 3-13

Input a Single Character

The single-character input routine flowchart is illustrated below; it calls a read
channel status routine, waits for data to become available, reads the data from the data

port, and returns.

Read
Channel Status

Is
Data
Avagabh

Read
Character

Two considerations not included in the design of the single-character input
routine are:

* Handling of 8251 errors. When the read channel status routine is called, the
error bits within the 8251 Status register can be examined. If an 8251 error is
detected, an appropriate error code is returned to the 1/0 driver by the single-
character input routine.

* Timeout errors. The driver initializes an appropriate register/memory location
to serve as a timeout clock, then decrements the contents of this location each
time the read channel status routine is called. If the contents of the timeout
register/memory location decrement to zero, a timeout error code is returned
to the calling routine.

3-14 The 8086 Book

If these considerations are added to the single-character input routine, the
flowchart must be modified as follows:

Initialize
Timeout Value

—

Read
Channel Status

Read
Character

8086 Assembly Language Instruction Set 3-15

Output a Single Character

The single-character output routine flowchart is illustrated below; it calls a read
channel status routine, waits for the transmitter to be available, writes a character to the

data port, then returns.

Read
Status

Is
Transmitter
Avagabh

Send
Character

As with the input routine, error and timeout considerations are not included in
the initial design, as illustrated above. In the case of the 8251 A, there are no error condi-
tions to check for since the 8251 A reports no transmission errors in its Status register.
But a timeout check could be included and would modify the program flowchart as
follows:

Initialize
Channel Timeout
Value

—

Read
Status

Is
Transmitter
Regdy

Yes

Write
Character

3-16 The 8086 Book

Check Channel Status and Send Control Information

The read channel status routine and the send control information routine each
require a very simple flowchart. They may be illustrated as follows:

Check Channel Status Send Control Information
Read Write
Status Control

Input a Series of Characters

A multiple-character input routine utilizes the single-character input routine to
read data. On return from the single-character input routine, a check for errors is made.
If the single-character input routine detects an error, this error is passed back to the call-
ing routine. After saving the character in a location specified by the calling program, the
multi-character input routine looks for a termination condition. If the routine has either
read the number of characters specified by the calling program or has read a termination
character, the multiple-character input routine will return to the calling program.

|

Input a
Single
Character

>

Save Error Retum
Character

Enaagh
hare;cters
No

ler-
mination
hargcter

8086 Assembly Language Instruction Set 3-17

Output a Series of Characters

The multiple-character output routine loads a character from a user specified loca-
tion. If the character is the termination character, the multi-character output routine
returns to the calling program. Otherwise, the character is sent to the single-character
output routine. When the single-character output routine returns, a check for timeout is
made. If a timeout was detected, it is passed back to the calling routine. The multiple-
character output routine then checks to see if it has output the specified number of
characters; if it has, it returns to the calling program.

3

Pick up a
Character

Ter=
mination
hargcte ’

Yes

Call Single
Character Outpu

3-18 The 8086 Book

THE 8086 INSTRUCTION SET

The 8086 instruction set has a complexity that is typical for the new generation of
16-bit microprocessors. The 8086 instruction set consists of approximately 70 basic
instructions, with up to 30 addressing modes available for memory reference instruc-

tions.

Any description of a CPU’s instruction set should include these basic types of
information:

1.

What is the CPU configuration; i.e., what registers and statuses are available?
What is the primary use for each register?

What instructions are available? Obviously, there must be some comprehen-
sive listing of the instruction set with an associated discussion of each instruc-
tion’s function. This listing may be organized in any one of a number of ways.
In this chapter, we list the instructions alphabetically to help you find
individual instructions. In the next chapter we list instructions according to
function (e.g., all the arithmetic operations are discussed in one section)
which allows you to examine instructions by type or group.

What data types does the CPU handle? A simple CPU may require all data to
be handled in one form, perhaps as bytes. A more flexible CPU may give you
the option of addressing data as individual bits, bytes, 16-bit words, and 32-bit
long words.

What operand source and destination addressing options are allowed? A sim-
ple microprocessor may allow memory to be addressed only by instructions
that move data between memory and CPU registers, while all operations on
data require operands to reside in CPU registers. A more complex
microprocessor may allow one operand to be fetched from memory while the
other operand resides in a CPU register. In some cases, the CPU may allow
both operands to reside in memory. Available memory addressing options
must be evaluated when determining the significance of memory operands.

What addressing modes are available for which instructions? Knowing which
addressing modes are available for a given instruction is a key to the effective
utilization of the instruction set. However, should we attempt to describe each
possible addressing mode for each instruction, this book would only be availa-
ble in 15 volume sets. Therefore, a section on Addressing Modes precedes the
listing of the instruction set.

How do various groups of instructions affect the CPU’s status register? To
evaluate any sort of conditional expression in assembly language, you must
know how to translate the conditional into assembly language. Knowing how
instructions affect status flags allows a programmer to write conditional
expressions in assembly language.

order:

1.

8086 Assembly Language Instruction Set 3-19

In certain cases, other information may be important; e.g., the number of
cycles that a particular instruction takes to execute or the number of program
memory bytes the instruction occupies. In this case, each instruction’s
description will specify the number of cycles required for execution. The num-
ber of bytes each instruction requires, however, is in some cases very depen-
dent on the addressing mode specified.

For our discussion of the 8086 instruction set, we will proceed in the following

1.

Discussion of the 8086 registers and the 8086 Status register, and discussion
of how status is affected by various groups of instructions. The Status register
is also referred to as the Flags register or the Program Status Word.

Discussion of the 8086 addressing modes.

Discussion of each 8086 instruction. This section will be preceded by a sum-
mary of the symbols and terms used to describe each instruction.

3-20 The 8086 Book

8086 REGISTERS AND FLAGS

The 8086 has four 16-bit general purpose registers, two 16-bit Pointer registers,
two 16-bit Index registers, one 16-bit program counter, four 16-bit Segment registers
and one 16-bit Flags register. These registers may be illustrated as follows:

15 0 <@——One 16-bit register
7 o7 0 <@———Two 8-bit registers

A AH AL (or A) | AX (= AH, AL) Primary Accumulator(s)

BL BX (= BH, BL) Accumulator(s) and Base register

CL |cX (= CH, CL) Accumulatorls) and Counter

DL DX (= DH, DL) Accumulator(s) and I/O Address

These names apply to 16-bit registers
These names apply to 8-bit registers

15 0 «@—Bit No.
SPI; - |stack Pointer (SP)
I Base Pointer (BP)
15 0 <«@#——Bit No. Index registers

Source Index (SI)

Destination Index (DI}

15 0 <#—Bit No.
PCI : J Program Counter (PC)
15 0 --——Bit No.

Code Segment (CS)

Data Segment (DS)
Stack Segment (SS)

Segment registers

Extra Segment (ES)

15 O -a—Bit No.

[J Status

D 8086 equivalents for 8080A registers

8080A register names are shown in the left margin

8086 Assembly Language Instruction Set 3-21

GENERAL PURPOSE REGISTERS

The general purpose registers may be referenced as two separate 8-bit registers.
This may be illustrated as follows:

15 O «ag——AX bit numbers
7 07 O ~sg——AH, AL bit numbers

| » [a

N— s’

AX

15 O <«@——BX bit numbers
7 07 O «s—BH, BL bit numbers

15 O «@——CX bit numbers
7 07 O «<@——CH, CL bit numbers

15 O <sg——DX bit numbers
7 07 O ««@—DH, DL bit numbers

This is an advantage in that instead of performing a 16-bit operation on 8-bit quantities,
which may take more time and memory space than an 8-bit operation, an 8-bit operation
may be performed. For example, if you want to initialize a register with 200,, and then
decrement it to 0 based on subsequent events, an 8-bit register will certainly suffice.

The general purpose registers can be used as operands in all the 8- or 16-bit
arithmetic/logical operands.

The AX register serves as the primary accumulator. This register has two unique
characteristics. All I/0 operations are performed through this register, and operations
utilizing immediate data typically require less memory space when performed on this
register. In addition, some string operations and arithmetic instructions require use of
this register.

The AL register generally corresponds to the 8080 A register.

The BX register is referred to as the Base register. This is the only general purpose
register which is used in the calculation of 8086 memory addresses. All memory
references which use this register in the calculation of the memory address use the DS
register as the default segment register. The BX register generally corresponds to the
8080A HL register; the BH register corresponds to the 8080 H register and the BL
register corresponds to the 8080 L register.

3-22 The 8086 Book

The CX register is referred to as the Count register. This register is decremented
by string and loop operations. CX is typically used to control the number of iterations a
loop will perform. It is also used for multiple bit shifts and rotates. This register generally
corresponds to the 8080 BC register.

The CH register corresponds to the 8080 B register. The CL register corresponds
to the 8080 C register.

The DX register is referred to as the Data register, mostly for mnemonic reasons.
This register provides the 1/0 address for some 1/0 instructions, a function no other
8086 register performs. This register generally corresponds to the 8080A DE register.

The DH register corresponds to the 8080 D register. The DL register corresponds
to the 8080 E register. The D register is also used for arithmetic operations, including
multiplication and division.

POINTER REGISTERS

The Pointer registers are used to access data in the stack segment. They may be
used as operands in all 16-bit arithmetic/logical operations.

The SP register, referred to as the stack pointer, allows the implementation of a
stack in memory. All references to the SP for memory addressing use the SS register as
the Segment register. This register generally corresponds to the 8080 SP register.

The BP register, referred to as the base pointer, allows data to be accessed in the
stack segment. Typically, this register is used to reference parameters that have been
passed via the stack.

INDEX REGISTERS

The Index registers are used to access data in data memory. The Index registers
are used extensively by the string operations. They may be used as operands in all the
16-bit arithmetic/logical operations.

SEGMENT REGISTERS

The Segment registers are included in all memory addressing calculations. Each
Segment register defines a 64K block of memory in the 8086 memory addressing space,
which is referred to as the Segment register’s current segment; €.g., the DS register
defines a 64K segment referred to as the current data segment.

The CS register is also known as the Code Segment register. During each instruc-
tion fetch, the program counter contents are added to the CS register contents in order
to compute the memory address for the instruction to be fetched.

The DS register is also known as the Data Segment register. Every data memory
reference is taken relative to the Data Segment register, with three exceptions:

1. Stack addresses are computed using the stack pointer.

2. Data memory addresses computed using the BP register are taken relative to
the stack segment.

3. String operations (which use the DI register in the address calculation) are
taken relative to the extra segment.

8086 Assembly Language Instruction Set 3-23

The SS register is also called the Stack Segment register. All data memory
references that use the SP or BP register in the address calculation are taken relative to
the SS register. Therefore all stack-oriented instructions (e.g., PUSH, POP, CALL,
RET, and INT) use the SS register as the Segment register.

The ES register is also referred to as the Extra Segment register. String operations
compute memory addresses using the DI register that are taken relative to the ES
register.

The use of segment registers is typically implied by the instruction, however a
mechanism will be discussed later which allows the implied Segment register to be over-
ridden in most circumstances.

FLAGS REGISTER

The 8086 has one 16-bit Flags register, also referred to as a Status register or Pro-
gram Status Word. This register may be illustrated as follows:

15 14 13 12 11 10

(1] I°I°I'I JSIZI IAl

! P

3 2 1 0 <@—BitNo.

Status register

Reserved bits, normally O

Carry

-——— Parity 4

Auxiliary Carry
Zero

Sign
Trap

Interrupt enable/disable
Direction

Overflow

The Carry, Auxiliary Carry, Overflow, and Sign statuses are quite standard.

The Carry status reflects carries out of the high-order bit following arithmetic
operations. Carry is also modified by certain shift and rotate instructions.

The Overflow status is the Exclusive-OR of carries out of the high-order and
penultimate bits following arithmetic operations. It implies a magnitude overflow in
signed binary arithmetic.

The Sign status equals the high-order bit following an arithmetic operation. On
the assumption that signed binary arithmetic is being performed, a Sign status of 0
specifies a positive result, whereas a Sign status of 1 specifies a negative result.

The Auxiliary Carry status is identical to the 8080A status with the same name. It
represents carries out of bit 3 in an 8-bit data unit.

Subtract instructions use twos complement arithmetic in order to subtract the
minuend from the subtrahend. However, the Carry status is inverted. That is to say,
following a subtract operation, the Carry status is set to 1 if there was no carry out of the
high-order bit, and the Carry status is reset to 0 if there was a carry out of the high-order
bit. The Carry status therefore indicates a borrow.

3-24 The 8086 Book

The Parity status is set to 1 when the low-order eight bits of any data operation
result has an even number of 1 bits. An odd number of 1 bits causes the Parity status to
be reset to 0.

The Zero status is set to 1 when the result of a data operation is zero; it is set to 0
when the result of a data operation is not zero.

The Direction status determines whether string operations will auto-increment or
auto-decrement the contents of Index registers. If the Direction status is 1, then the SI
and DI Index registers’ contents will be decremented; that is to say, strings will be
accessed from the highest memory address down to the lowest memory address. If the
Direction status is 0, then the SI and DI Index registers’ contents will be incremented;
that is to say, strings will be accessed beginning with the lowest memory address.

The Interrupt status is a master interrupt enable/disable. This status must be 1 in
order to enable interrupts within the 8086. If this status is 0, then all interrupts will be
disabled. ’

The Trap status is a special debugging aid that puts the 8086 into a *‘single step”’
mode. The single step mode is described in detail together with 8086 interrupt logic,
since it depends on this interrupt logic for its existence.

The Carry, Auxiliary Carry, Parity, Sign, and Zero statuses are also found in the
8080A. The Overflow, Direction, Interrupt, and Trap statuses are new in the 8086.

8086 Assembly Language Instruction Set 3-26

HOW INSTRUCTIONS AFFECT THE FLAGS REGISTER

The list below identifies tables that describe individual instructions and how they
affect the Flags register. For example, to determine how the ADD instruction affects the
flags, consult Table 3-2.

Instruction Mnemonic Table Instruction Mnemonic Table
AAA 3-4 LODS 3-1
AAD 3-10 LOOP instructions 3-1
AAM 3-10 MoV 3-1
AAS 3-4 MOVS 3-1
ADC 3-2 MUL 3-6
ADD 3-2 NEG 3-2
AND 3-1 NOT 3-1
CALL 3-1 OR 3-7
CBW 3-1 ouT 3-1
cLc 3-9 POP 3-1
CLD 3-9 POPF 3-12
CLl 3-9 PUSH 3-1
cMC 3-9 PUSHF 3-1
CMP 3-2 RCL 3-8
CMPS 3-2 RCR 3-8
cwD 3-1 REP 3-1
DAA 3-5 RET 3-1
DAS 3-5 ROR 3-8
DEC 3-3 SAHF 3-9
DIV 3-11 SAR 3-7
ESC 3-1 SBB 3-2
HLT 3-1 SCAS 3-2
DIV 3-11 SHL 3-7
IMUL 3-6 SHR 3-7
IN 3-1 STC 3-9
INC 3-3 STD 3-9
INT 3-13 STI 3-9
INTO 3-13 STOS 3-1
IRET 3-12 suB 3-2
Jump-on-Conditions 3-1 TEST ~ 3-7
JCXZ 3-1 WAIT 3-1
JMP 3-1 XCHG 3-1
LAHF 3-1 XLAT 3-1
LDS 3-1 XOR 3-7
LEA 3-1

LES 3-1

LOCK 3-1

3-26 The 8086 Book

No Effect

The instructions in Table 3-1 have no effect on any of the 8086 statuses.

Table 3-1. Instructions that Have No Effect on the 8086 Flags Register

CALL LOOP instructions
CcBW MoV
CWD MOvVSs
ESC NOT
HLT ouT
IN POP
Jump-on-Conditions PUSH
JCXZ PUSHF
JMP REP
LAHF RET
LDS STOS
LEA WAIT
LES XCHG
LOCK XLAT
LODS

Effect on all Arithmetic Flags

The instructions in Table 3-2 affect all six of the 8086 arithmetic flags: Overflow,
Carry, Arithmetic, Zero, Sign, and Parity.

Table 3-2. Instructions that Affect All 8086 Arithmetic Flags

ADC NEG
ADD SBB
CMP SCAS
CMPS sus

Effect on all Arithmetic Flags Except Carry

The instructions in Table 3-3 affect all the 8086 arithmetic flags except for Carry.
Overflow, Arithmetic, Zero, and Parity are all affected.

Table 3-3. Instructions that Affect all 8086 Arithmetic Flags
except Carry

DEC INC

8086 Assembly Language Instruction Set 3-27

Effect on all Arithmetic Flags (AF and CF are Meaningful)

The instructions in Table 3-4 affect all the 8086 arithmetic flags. However, only
the values for AF and CF are meaningful. The values for Overflow, Zero, Parity, and
Sign are unknown.

Table 3-4. Instructions that Affect AF and CF

AAA AAS

Effect on all Arithmetic Flags (Overflow is Undefined)

The instructions in Table 3-5 affect all the 8086 arithmetic flags. However, the
Overflow flag is not meaningful. Carry, Arithmetic, Zero, Sign, and Parity are all
meaningful.

Table 3-5. Instructions that Leave Overflow Undefined

DAA DAS

Effect on all Arithmetic Flags (CF and OF are Meaningful)

The instructions in Table 3-6 affect all the 8086 arithmetic flags. The Carry and
Overflow flags are not affected in the normal manner. Consult the instructions for a
description of how these flags are set. All other arithmetic flags are undefined.

Table 3-6. Instructions that Affect All Arithmetic Flags, Leaving
CF and OF Meaningful

IMUL MUL

3-28 The 8086 Book

Effect on all Arithmetic Flags (AF is Undefined)

The instructions in Table 3-7 affect all the 8086 arithmetic flags. Carry and Over-
flow are cleared to 0. AF is undefined. Zero, Parity and Sign are set in the normal man-
ner.

Table 3-7. Instructions that Affect All Arithmetic Flags,
Leaving AF undefined

AND SHR
OR TEST
SAR XOR
SHL

Effect on CF and OF Only

The instructions in Table 3-8 affect only. the Carry and Overflow flags. The
Arithmetic, Zero, Sign, and Parity flags are not altered.

Table 3-8. Instructions that Affect Carry and Overflow
Flags Only

RCL ROR
RCR

Effect on Specific Flags

The instructions in Table 3-9 are used to affect specific flags. For example, STI is
used to set the Interrupt flag to 1.

Table 3-9. Instructions that Affect Specific Flags

CLC - Clear Carry SAHF - Move AH to 8080 flags
CLD - Clear Direction STC - Set Carry
CLI - Clear Interrupt STD - Set Direction

CMC - Complement Carry STI - Set Interrupt

8086 Assembly Language Instruction Set 3-29

Effect on Parity, Sign, and Zero

The instructions in Table 3-10 affect the Parity, Sign, and Zero flags. The Carry,
Overflow, and Arithmetic flags are undefined following execution of these instructions.

Table 3-10. Instructions that Affect Parity, Sign and
Zero Flags

AAD AAM

Leave all Arithmetic Flags Undefined

The instructions in Table 3-11 leave all arithmetic flags undefined.

Table 3-11. Instructions that Scramble the Flags

DIV IDIV

Restore all Flags from Stack

The instructions in Table 3-12 pop data from the stack into all the 8086 flags.

Table 3-12. Instructions that Restore All the 8086 Flags from the
Stack

IRET POPF

Effect on IF and TF Only

The instructions in Table 3-13 clear the Interrupt and Trap flags. The INTO
instruction only affects these flags if the Overflow flag is 1.

Table 3-13. Instructions that Clear the Interrupt and Trap Flags

INT INTO

The DIV and IDIV instructions affect IF and TF only following a divide error.

3-30 The 8086 Book

8086 ADDRESSING MODES

There are two major topics of interest concerning 8086 addressing modes:
1. How the memory address is formed.
2. What addressing modes are available.

All 8086 memory addresses are computed by summing the contents of a Segment
register and an effective memory address. The effective memory address is computed
via a variety of addressing modes, as it would be for any other microprocessor. The
selected Segment register contents are left-shifted four bits, then added to the effective
memory address to generate the actual address output as follows:

Segment Register contents: XXX XXXXXXXXXXXXX0000
Effective memory address: + 0000YYYYYYYYYYYYYYYY

Actual address output: XXXZ222222222222ZYYYY

X, Y and Z represent any binary digits.

Thus a 20-bit memory address is computed — which allows 1,048,576 bytes of
external memory to be addressed directly.

An 8086 address is therefore composed of two distinct addresses: the Segment
register contents, referred to as the segment address, and the effective memory address,
referred to as the offset address.

The segment registers of the 8086 are unlike any other microprocessor registers.
They act as base registers which can point to any memory location that lies on an address
boundary that is an even multiple of 16 bytes. Using arbitrary memory addresses, this
may be illustrated as follows:

Memory
Address
334DFq1¢
t
Q
€
o
(7]
"
, 3
CS Segment register > —] 234E04¢
contains 234E1¢g
1A31F4g - - - - -
H
)
121EFq¢ - - 2
ES Segment register 0A32016- -p 9 -
contains 0A321¢g *
DS Segment register > 021F0qg - e
contains 021F¢¢

8086 Assembly Language Instruction Set 3-31

As illustrated above, each segment register identifies the beginning of a 65,536-
byte memory segment. Since the 8086 has four segment registers, there will at any time
be four selected 65,536-byte memory segments. The actual address output will always
select a memory location within one of these four segments. For example, if an actual
address output is the sum of the DS Segment register and an effective memory address,
then the actual address output must select a memory location within the DS segment;
that is to say, within the address range 021F0,, through 121EF,, in the illustration
above. Likewise, an actual address output which is the sum of the CS Segment register
and an effective memory address must select a memory location within the CS segment,
which in the illustration above will lie in the address range 234EQ,, through 334DF,.

No restrictions are placed on the contents of segment registers. Therefore 8086
memory is not divided into 65,536-byte pages, nor do the four segment registers have to
specify non-overlapping memory spaces. Each segment register identifies the origin of a
65,536-byte memory segment which may lie anywhere within addressable memory, and
may or may not overlap with one or more other segments.

8086 addressing modes can be divided into two distinct types:

1. Program memory addressing modes.
2. Data memory addressing modes.

We will discuss each of these topics, then at the end of this section show how they
are implemented on the 8086.

PROGRAM MEMORY ADDRESSING MODES

Whenever an instruction fetch is performed, the address of the memory location
from which the instruction is fetched is computed as the sum of an offset taken from the
program counter (also called the PC register) and a segment taken from the CS register.
Normally, the PC register contents are incremented as instructions are executed.
However, Jump and Call instructions may modify the PC register contents in one of
three ways:

1. Program relative addressing. An 8-bit or 16-bit displacement provided by the
instruction in the form of immediate data is added to the PC register as a
signed binary number. This does not alter the CS register contents. Therefore
it is termed an intrasegment operation.

2. Direct addressing. New 16-bit addresses present in the instruction in the form
of immediate data are loaded into the program counter and the CS register.
This is referred to as an intersegment operation.

3. Indirect addressing. Any of the data memory addressing options (which we
will describe next) may be used to read data from data memory. However, the
data input is interpreted as a memory address by the Jump or Call instruction.
You have two indirect addressing options. A single 16-bit data word may be
read, in which case it is loaded into the program counter and the Jump or Call
references a memory location within the current CS segment. You can also
read two 16-bit data words: the first is loaded into the program counter and
the second is loaded into the CS Segment register. Thus you can Jump or Call
any addressable memory location using indirect addressing.

3-32 The 8086 Book

DATA MEMORY ADDRESSING MODES

The 8086 offers a wide variety of addressing; we will condense it into six basic
options. These options are:

1. Immediate

2. Direct

3. Direct, Indexed
4. Implied

5. Base Relative
6. Stack

Immediate Memory Addressing

In this form of addressing, one of the operands is present in the byte(s)
immediately following the instruction object code (op-code). If addressing bytes follow
the op-code, then the immediate data will follow the addressing bytes. For example:

ADD AX, 3064H

requests the Assembler to generate an ADD instruction which will add 3064, to the AX
register. This may be illustrated as follows:

Data
O b I T §8 Z A P C Memory
powix] [| [x[x[x]x[x]

AX XX Yy

BX

: <,

DX .
Program (Relative to the
Memory CS Register)

SP 05 ppppm

BP 64 ppppm + 1

Sl 30 ppppm + 2

b]] ppppm + 3

PC mm mm

cs nn nn

DS

SSs

ES Program Memory

Address Calculation

X, Y, M, P, and N all represent any hexadecimal digits.

8086 Assembly Language Instruction Set 3-33

Note that the 16-bit immediate operand, when stored in program memory, has
the low-order byte preceding the high-order byte. This is consistent with the way the
8080A stores immediate operands in program memory. In addition, this is consistent
with the way the 8086 stores 16-bit operands in data memory. When a 16-bit store is per-
formed, the low-order 8 bits of data are stored into the low-order memory byte, and the
high-order 8 bits of data are stored into the succeeding memory byte.

In this example, the two bytes immediately following the op-code for the ADD to
AX instruction are added to the AX register.

3-34 The 8086 Book

Direct Memory Addressing

The 8086 implements straightforward direct memory addressing by adding a 16-
bit displacement, provided by two object code bytes, to the Data Segment register. The
sum becomes the actual memory address. This may be illustrated as follows:

15
7 07

0
0

AX = AH + AL

BX = BH + BL

CX =CH +CL

DX =DH + DL

15

SP

8P

Si

DI

PC mmmm

15

CS nnnn

DS rrrr

SS

ES

H, L, M, N, P, R and S all represent any hexadecimal digits.

Ohhll
rrrrQ
gsssl *

Ommmm
nnnnO

ppppm

Program
Memory

ppppM

1} ppppm + 1

hh ppppm + 2

ppppm + 3

Data Memory
Address Calculation

Program Memory
Address Calculation

» Actual data memory address output for direct memory addressing.

Note that a 16-bit address displacement, when stored in program memory, has the
low-order byte preceding the high-order byte. This is consistent with the way the 8080A

stores addresses in program memory.

DS must provide the segment base address when addressing data memory

directly, as illustrated above.

8086 Assembly Language Instruction Set 3-35

Direct, Indexed Memory Addressing

Direct, indexed addressing is allowed by specifying the SI or DI register as an
index register. You have the option of adding an 8-bit or 16-bit displacement to the con-
tents of the specified index register in order to generate the effective address.

A 16-bit displacement is stored in two object code bytes; the low-order byte of the
displacement precedes the high-order byte of the displacement, as illustrated for direct
memory addressing. If an 8-bit displacement is specified, then the high-order bit of the
low-order byte is propagated into the high-order byte to create a 16-bit displacement.
This may be illustrated a follows:

Displacements: 10110101 01101011

Sign extended: [T111111110110101 [000000000J1101011

We may now illustrate direct, indexed addressing as follows:

15 (] Program
7 07 0 Memory
Data Memory
Address Calculation

AX = AH + AL ppppm

BX = BH + BL ppppm + 1

CX =CH +CL L} ppppm + 2

DX =DH + DL hh ppppm + 3

15 0
SP

BP

Si

Select
DI or SI

DI

PC mmmm

15 0

Cs nnnn

DS rrer Program Memory

Address Calculation

SS

ES

M. N, P, R, X, H, L, and Z all represent any hexadecimal digits.
YYYY is the 16-bit or 8-bit displacement taken from program memory.
XXXX is the index taken from either the DI or Sl register.

3-36 The 8086 Book

Implied Memory Addressing

Implied memory addressing is implemented on the 8086 as a degenerate version
of a direct, indexed memory addressing. If you do not specify a displacement when using
the direct, indexed addressing mode, then you have, in effect, implied memory address-
ing via the SI or DI register. This may be illustrated as follows:

15 0 Program
7 07 0. Memory

AX = AH + AL ppppm

BX = BH + BL ppppm + 1

CX =CH + CL ppppm + 2

DX =DH + DL ppppm + 3

15 0
SP

BP

S|

DI

pPC

15
cs

DS rrer Data Memory

Address Calculation

SS
ES

(You may substitute CS, SS or ES for DS by executing an additional 1-byte instruction.)

X, R and S represent any hexadecimal digits.

8086 Assembly Language Instruction Set 3-37

Base Relative Addressing

The 8086 implements base relative addressing in two ways:

¢ Data memory base relative addressing, which is within the DS segment (data
memory)

* Stack base relative addressing, which is in the SS segment (stack memory)

Data memory base relative addressing uses the BX register contents to provide
the base for the effective address. All of the data memory addressing options thus far de-
scribed, with the exception of immediate addressing, are available with base relative
data memory addressing. In effect, base relative data memory addressing merely adds
the contents of the BX register to the effective memory address which would otherwise
have been generated. Here, for example, is an illustration of base relative direct address-
ing:

15 [o] Program
7 07] Memory
Data Memory
AX = AH + AL Address Calculation ppppm
= kkkk
BX = BH + BL kk kk Ohh|(l) 1} ppppm + 1
CX = CH + CL Eiees hh |pppom + 2
DX = DH + DL ppppm + 3
15 0
4
BP
S|
DI
PC mmmm
15 o]
(03] nnnnn
DS reer ?":":"'1"8 Program Memory
ss pPPPPM Address Calculation
ES

(You may substitute CS, ES or SS for DS by executing an additional 1-byte instruction.)

Simple, direct addressing, which we described earlier, always generated a 16-bit
displacement. Base relative, direct addressing allows the displacement, illustrated above
as HHLL, to be a 16-bit displacement, an 8-bit displacement with sign extended, or no
displacement at all.

3-38 The 8086 Book

Base relative implied memory addressing simply adds the contents of the BX
register to the selected Index register in order to compute the effective memory address.
This may be illustrated as follows:

15 (0] Program
7 07 (o] Memory

AX = AH + AL ppppm

BX = BH + BL kk kk ppppm + 1

CX =CH +CL ppppm + 2

DX = DH + DL ppppm + 3

15 0
SP

BP

Sl

Select
DI or Si

[o]]

PC

15 0
cs

bsS rere Data Memory

Address Calculation

SS

ES

8086 Assembly Language Instruction Set 3-39

Base relative, direct, indexed data memory addressing may appear to be compli-
cated, but in fact it is not. We simply add the contents of the BX register to the effective
memory address, as computed for normal direct, indexed addressing. Thus, base rela-
tive, direct, indexed data memory addressing may be illustrated as follows:

15
7

07

0
0

AX = AH + AL

BX = BH + BL

kk

kk

CX =CH + CL

DX =DH + DL

15

SP

BP

Sl

DI

PC

mmmm

15

Cs

nnnn

DS

reer

SS

ES

Data Memory
Address Calculation

Select
Dl or SI

Program
Memory

pPPPPM
ppppm + 1
ppppm + 2

ppppm + 3

Program Memory
Address Calculation

The index xxxx in the illustration above is optional. Base relative, direct memory
addressing is also available. In this instance neither SI nor DI will contribute to the
address computation, and 0xxxx must be removed from the illustration.

3-40 The 8086 Book

Stack Memory Addressing

The 8086 also has stack memory addressing variations of the base relative, data
memory addressing options just described. In this case, however, the BP register is used
as the base register. Here, for example, is base relative, direct stack addressing:

15
7 07

AX = AH + AL
BX = BH + BL
CX =CH +CL
DX =DH + DL
1
SP
BP
Sl
DI
PC

0
0

kkkk

mmmm

1
cs
DS
SS
ES

nnnn

rerr

Stack Memory
Address Calculation

Okkkk
Ohhl |

rrrr
SSS55 *

Ommmm
nnnnO

ppppm

Program
Memory

Ppppm

[} ppppm + 1

hh ppppm + 2

ppppm + 3

Program Memory
Address Calculation

» Actual Stack memory address output for base relative, direct memory addressing

In the illustration above, the displacement HHLL is present, either as a 16-bit displace-
ment or as an 8-bit displacement with sign extended. Base relative stack memory
addressing requires a displacement be specified, even if zero.

8086 Assembly Language Instruction Set 3-41

ADDRESSING MODE BYTE

The 8086 obviously offers an extensive selection of addressing modes. The next
question is: how are these addressing modes implemented in the object code? The 8086
specifies most data memory addressing modes in an instruction’s object code using one
byte of object code, known as the addressing mode byte. The addressing mode byte may
have one or two additional displacement bytes associated with it. The addressing mode
byte is always the second byte of the instruction object code, unless a prefix instruction
has been included prior to the initial object code. The addressing mode byte may be
illustrated as follows:

mod reg r/m

[

t xx is two bits that form the mod field. The mod field is used
to distinguish between memory and register addressing, and
in the case of memory addressing, specifies how many dis-
placement bytes follow the addressing mode byte.

yyy is three bits that form the reg field. The reg field defines
which register will be used in the operation. In addition,
these three bits may be used to specify instruction.

e 227 is three bits that form the r/m field. The r/m field is used
in conjunction with the mod field to specify the addressing
mode.

mod=

00 Memory addressing mode. r/m specifies the exact addressing option.
There are no displacement bytes.

01 Memory addressing mode. r/m specifies the exact addressing option.
There is one displacement byte. This displacement byte is viewed
as a signed number in the range + 127 to — 128. When this num-
ber is used in the memory address calculation, the number is sign
extended to 16 bits. In this case, the addressing mode bytes can
be illustrated as follows:

[modregm] [disp |

where mod = 01 and disp is the 8-bit signed displacement value.

10 Memory addressing mode. r/m specifies the addressing option. There
are two displacement bytes. The first displacement byte is the
low-order eight bits of the displacement. The second displace-
ment byte is the high-order eight bits of the displacement. When
this number is used in the memory address calculation, the num-
ber is treated as an unsigned 16-bit number. In this case, the
addressing mode bytes can be illustrated as follows:

| modregr/m | [displow | [disp high |

3-42 The 8086 Book

where mod = 10, disp low is the low-order eight bits of the dis-
placement, and disp high is the high-order eight bits of the dis-

placement.

11 register addressing mode. r/m specifies a register. Used in conjunc-
tion with the w bit to determine if an 8- or 16-bit register is
selected.

reg reg is used in conjunction with another bit, the w bit, in the selection

of the register to be used in the operation. The w bit, which is part
of the instruction op-code, selects whether an 8- or 16-bit opera-
tion is performed.

reg w=0 w=1

000 AL AX

001 cL cx

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH sl

1 BH DI

r/m r/m specifies the addressing mode in conjunction with mod, as
follows:
mod - 11
r/m mod - 00 mod - 01 mod - 10
w=0 w=1
000 BX + Sl | BX + Si + DISP | BX + S| + DISP AL AX
001 BX + DI | BX + DI + DISP | BX + DI + DISP cL cX
010 BP +SI | BP + Sl + DISP | BP + S| + DISP DL DX
011 BP + DI | BP + DI + DISP | BP + DI + DISP BL BX
100] S| + DISP Sl + DISP AH SP
101 DI DI + DISP DI + DISP CH BP
110 Direct BP + DISP BP + DISP DH sl
Address

1 BX BX + DISP BX + DISP BH DI

This table is self-explanatory, with the exception of Direct Address. When mod is
00 and r/m is 110, the offset address is taken directly from the two bytes that follow the
addressing mode byte. This can be illustrated as follows:

rmod reg r/m J Iiaddr-low | r addr-high]

where mod is 00, r/m is 110, addr-high is the high-order 8 bits of the offset address and
addr-low is the low-order 8 bits of the offset address.

8086 Assembly Language Instruction Set 3-43

SEGMENT OVERRIDE

Every addressing mode has a standard default segment register. In most cases you
can select an alternative segment register by using a segment override prefix. To use the
prefix, place the following byte in front of the instruction whose default segment register
assignment is to be overriden.

Lofoltf-fr]]1]o]

L—rr is two bits that select the segment register to be used in

the following instruction.

rr = 00 for the ES register
01 for the CS register
10 for the SS register
11 for the DS register

In three cases, the segment override may not be used. They are:

1. Stack reference instructions (e.g., PUSH and CALL) that use the stack
pointer (SP register) to compute the offset always use the SS register as the
segment register.

2. String instructions that use the DI register always use the ES register as the
segment register. In a string operation where both SI and DI are used (e.g.,
MOVS or CMPS), a segment override prefix, if present, overrides the SI
offset’s segment register.

3. Segment override prefixes cannot be used with program memory addressing.
All instruction fetches are relative to the CS Segment register.

3-44 The 8086 Book

MEMORY ADDRESSING TABLES

Memory addressing modes and memory addressing byte information can be com-
bined and summarized as follows:

r/m = mod = 00 mode = 01 mod = 10
000 Base Relative Indexed Base Relative Indexed Base Relative Direct
BX + SI BX + S| + DISP Indexed
BX + SI + DISP
001 Base Relative Indexed Base Relative Direct Base Relative Direct
Indexed Indexed
BX + DI BX + DI + DISP BX + DI + DISP
010 Base Relative Indexed Base Relative Direct Base Relative Direct
Stack Indexed Stack Indexed Stack
BP + SI BP + S| + DISP BP + SI + DISP
011 Base Relative Indexed Base Relative Direct ‘Base Relative Direct
Stack Indexed Stack Indexed Stack
BP + DI BP + DI + DISP BP + DI + DISP
100 Implied Direct, Indexed Direct, Indexed
Sl S| + DISP S| + DISP
101 Implied Direct, Indexed Direct, Indexed
DI DI + DISP DI + DISP
110 Direct Base Relative Direct Base Relative Direct
Direct Address Stack Stack
BP + DISP BP + DISP
111 Base Relative Base Relative Direct Base Relative Direct
BX BX + DISP BX + DISP

Note that two operand instructions will very frequently access one operand out of
memory, while the other operand is in a CPU register. Also, both operands will fre-
quently be accessed out of CPU registers. The 8086 does not allow both operands to be
accessed out of memory, with the exception of several special data string manipulation
instructions. The following options are available:

Source Operand

CPU Register
Memory Location
CPU Register

Destination Operand Result

CPU Register CPU Register
CPU Register CPU Register
Memory Location Memory location

8086 Assembly Language Instruction Set 3-45

INSTRUCTION SET MNEMONICS

In the following section, each 8086 assembly language instruction is discussed.
The format for each description is composed of six distinct parts:

1.

The instruction mnemonic and the various operands associated with it. Varia-
ble operands are signified by lower-case letters. The mnemonic itself and any
fixed operands are signified by capital letters. Here is an example:

IN ac,DX

Fixed operand in capitals
Variable in lower case
Mnemonic in capitals

A description of the instruction’s operation.
The machine language encoding of the instruction.

An example of the instruction’s operation. This is not present for some very
simple instructions.

A diagram of the instruction’s execution, which shows the effect the instruc-
tion has on the 8086 flags, registers, and memory.

A Notes section that includes assorted information such as short examples of
how the instruction might be used, or related instructions that might be more
effective in particular instances.

ABBREVIATIONS

These are the abbreviations used for the operands described with the mnemonics:

ac

addr

count

data

disp

Either the AL register, if an 8-bit operation is specified, or the AX
register, if a 16-bit operation is specified. This will be represented
in an 8086 assembly language instruction by AL or AX.

An 8086 address composed of two 16-bit addresses, a 16-bit offset
address and a 16-bit segment address. Typically, this is repre-
sented by a label in an 8086 assembly language instruction.

Either 1 or the contents of the CL register. This will be represented by
1 or CL in an 8086 assembly language instruction.

8 or 16 bits of immediate data. This can appear as any of a wide selec-
tion of numeric representations or expressions in an 8086 assem-
bly language statement.

8-bit signed binary displacement used by the Jump and Jump-on-
Condition instructions. Invariably this will be represented by a
label in an 8086 assembly language instruction.

3-46 The 8086 Book

disp16

mem

mem/reg

port

reg

segreg

16-bit binary displacement used by the Call, Jump, and Return
instructions. When used in the Call and Jump instructions, this is
almost always represented by a label. The Return instruction will
typically use a numeric expression to represent disp16. Its use
with the Return instruction will be shown.

Memory operand. The addressing mode used to select the operand is
specified by the addressing mode byte. This will typically be
represented by a label, in which case the assembler will select the
appropriate addressing mode byte, or a sequence of symbols that
allows the selection of a specific addressing mode byte.

Memory or register operand. Consult descriptions for mem and reg.

An 1/0 port. This will be represented by a numeric representation or
an expression. The port number must be beween 0, and FF .

Register AH, AL, BH, BL, CH, CL, DH, or DL if an 8-bit operation
is specified; register AX, BX, CX, DX, SP, BP, SI, or DI if a 16~
bit operation is specified.

Register CS, DS, ES, or SS.

These are the abbreviations used in describing the instruction’s encoding.

disp

i

kk

mod reg r/m

Irr

One bit used in the shift and rotate instructions selecting either 1 or
the contents of the CL register to be the number of shifts/rotates
to be performed.

0, Shift/rotate once
1, shift/rotate the number of times
specified by the CL register.

c

c

One bit used to specify the direction in which an operation is per-
formed.

8 bits used as a signed binary displacement by the Jump and Jump-on-
Condition instructions.

Two hexadecimal digits, used to represent immediate data or part of a
16-bit displacement.

Two hexadecimal digits, used to represent immediate data or part of a
16-bit displacement.

8-bit addressing mode byte that is described in earlier in this chapter.

Three bits selecting one of the 8086 general-purpose registers

IF
an 8-bit operation is specified 16-bit operation is specified
rrr = 000 for AL rrr = 000 for AX
001 for CL 001 for CX
010 for DL 010 for DX
011 for BL 011 for BX
100 for AH 100 for SP
101 for CH 101 for BP
110 for DH 110 for SI

111 for BH 111 for DI

8086 Assembly Language Instruction Set 3-47

S One bit indicating whether or not immediate data is to be sign
extended. If a 16-bit operation with immediate data is specified, it
is possible that the immediate operand can be expressed using
just one byte of program memory space. s is interpreted as
follows:

s = 0, Two bytes are necessary for the immediate data,
no sign extension is performed.

s = 1, One byte of immediate data is present.
To form the sixteen bits of immediate
data necessary for the operation, sign
extend the high-order bit of the
immediate data byte.

s Two bits selecting one of the 8086 segment registers.
ss = 00 for ES
01 for CS
10 for SS
11 for DS
v One bit indicating the location to which a software interrupt should be

vectored. If v = 0, then the interrupt service routine is located at
the address specified at location 0000C,, otherwise the address is
determined by the succeeding byte.

w One bit indicating whether an 8- or 16-bit operation is performed.

w =0 8-bit operation
w =1 16-bit operation

XXX Three don’t care bits.

yy Two hexadecimal digits indicating the I/O port number to be used by
the instruction.

The following symbols are used in the example use of instructions:

H This will appear at the end of a group of digits to specify that the digits
be treated as hexadecimal digits.

[] These are used to indicate the contents of the memory location
addressed by the expression inside the brackets. Suppose that the
BX register contains 054A . The expression
[BX]

refers to the memory location that has an offset address of
054A 4 in the current data segment.

g,h,j,k,m,n,p, Are all used to represent one hexadecimal digit. For example,

q’r’SQt,u’vﬁwﬁ]ikk

X,z is used to represent a 16-bit data element;
pPPPM

is used to represent a 20-bit address.

3-48 The 8086 Book

EA Effective address. EA appears in calculations for the number of
execution cycles required by individual instructions. EA specifies
addressing mode execution cycles, which must be added as

follows:
Direct Addressing ADD 6 cycles
Direct, Indexed Addressing ADD 9 cycles
Implied Addressing ADD 5 cycles

Base Relative Addressing ADD 5 cycles
Base Relative Direct

Addressing ADD 9 cycles
Base Relative Indexed

Addressing ADD 7 or 8 cycles*
Base Relative Direct

Indexed Addressing ADD 11 or 12 cycles*

Additional addressing mode cycles must be added as follows:

A segment Override Prefix
is present ADD 2 cycles

A 16-bit word is addressed
and the word resides at an
odd memory address ADD 4 cycles

* BP + Sl and BX + DI modes
require one more clock than
BP + DI and BX + S| modes.

8086 ASSEMBLY LANGUAGE INSTRUCTIONS
ORGANIZED ALPHABETICALLY

AAA
Adjust Result of ASCIl Addition

This instruction is used to adjust a result in the AL register, assuming this result
was generated by adding two ASCII characters as operands. The adjustment is per-
formed in the following manner:

1. If the low-order four bits of the AL register are between 0 and 9 and the AF
flag is 0, then go to Step 3.

2. If the low-order four bits of the AL register are between A and F or the AF
flag is 1, then add 6 to the AL register, add 1 to the AH register, and set the
AF flag to 1.

3. Clear the high-order four bits of the AL register.

The encoding for this instruction is:
AAA
37
For example, suppose that the AX register contains 0535, and the BL register contains
39,¢. Executing the sequence
ADD AL,BL
AAA
would result in AX containing 0604,,. The ADD instruction results in
3516 = 0011 0101
3995 = 0011 1001
0110 1110

6E being stored into AL. The AAA instruction performs steps 2, 3, and 4 of the adjust-
ment algorithm, which results in the AF and CF flags being set to 1, 04 being stored into
the AL register, and the AH register being incremented to 06.

3-50 The 8086 Book

Data
0O DI T S zZ A P C Memory

swfo] [| J2]2]x]7[x]

AX vy

BX F:erform

adjustment
CX algorithm
DX
Program (Relative to the
Memory CS Register)

SP 37 PpPppmM

BP ppppm + 1

S| PPppm + 2

DI ppppm + 3

PC mm mm

CS nn nn

DS Program Memory

Address Calculation
ss
ES
AAA
Number of cycles: 4
Notes:
1. Note that this instruction would also work if the two operands were one-digit BCD
numbers. Why one should desire to do this sort of operation is left up to the reader.
2. To perform corrections on the addition of two packed BCD digits, refer to the DAA
instruction.

3. As a result of this instruction, the values of the Overflow, Parity, Sign, and Zero

flags are undefined.

8086 Assembly Language Instruction Set 3-51

AAD
Adjust AX Register for Division

This instruction assumes that the AH and AL registers contain unpacked BCD
operands. This instruction converts this information into a binary operand in the AL
register. The algorithm for conversion assumes that the tens digit is in the AH register
and the units digit is in the AL register. The AAD algorithm is as follows:

1. Muitiply the contents of the AH register by 0A .
2. Add AH to AL.

3. Store 00, into the AH register.

4. Set the flags in the following manner:

Carry, Overflow, Arithmetic: undefined

Parity: based on the AL register

Zero: based on the AL register

Sign: based on the high-order bit of the AL register

The encoding for this instruction is:

AAD
-
D5 0A

Suppose that the AX register coritains 0604,,. After the instruction
AAD
has executed, the AX register will contain 0040,,. The flags will be set as follows:

Carry: undefined

Overflow: undefined

Arithmetic: undefined

Sign: high-order bit of AL register is 0, set Sign to 0
Zero: AL register is non-zero, set Zero to 0

Parity: one 1 bit in AL register, set Parity to 0

3-52 The 8086 Book

0o o
Pswm

AX
8X
CX

DX

SP
BP
S|
DI
PC

(]
DS
SS
ES

Notes:

A

[[Dx[x]z]x]¢]

XX

Yy

Perform
adjustment

on xxyy

mmmm + 2

mm

nn

nn

AAD
Number of cycles: 60

Data
Memory

Program
Memory

D5

0A

(Relative to the
CS Register)

ppppm
ppppm + 1
ppppm + 2

ppppm + 3

Program Memory
Address Calculation

1. This instruction can also be used to adjust ASCII operands for division. For exam-
ple, consider the case where the AX register contains 3537 . After the instructions

AND AX,0FOFH
AAD

have executed, the AX register will contain 0039 .

8086 Assembly Language Instruction Set 3-563

AAM
Adjust Result of BCD Multiplication

This instruction adjusts a result in the AL register, assuming that a multiplication
has been performed with two unpacked BCD numbers as operands. The adjustment is
performed as follows:

1. Divide the AL register by 0A . Store the quotient in the AH register. Store
the remainder in the AL register.

2. Set the flags in the following manner:

Carry, Overflow, and Arithmetic: undefined

Parity: based on the AL register

Sign: based on the high-order bit of the AL register
Zero: based on the AL register

The encoding for this instruction is:
AAM
-
D4 0A
Suppose that the AL register contains 07,, and the BL register contains 09,,. After the
sequence of instructions

MUL ALBL
AAM

the AX register will contain 0603,,. The MUL instruction results in 3F,; being stored
into the AL register. Performing steps 1 and 2 of the adjustment algorithm results in
0603,, in the AX register, and the flags are set in the following manner:

Carry: undefined

Overflow: undefined

Arithmetic: undefined

Sign: high-order bit of AL is 0, set Sign to 0

Zero: the AL register is non-zero, set Zero to 0
Parity: two 1 bits in the AL register, set Parity to 1

3-54 The 8086 Book

Data
O bD I T S§$ zZ A P C Memory
swlz | | | [x[x]2{x]"]
AX XX
Perform
BX fdjustment. algorithi
on xx, return
CcX result to A
DX
Program (Relative to the
Memory CS Register)
SP D4 |ppppm
BP OA |ppppm + 1
s ppppm + 2
DI ppppm + 3
PC mm mm
CS nn nn
DS Program Memory
Address Calculation
SS
ES

AAM
Number of cycles: 83

8086 Assembly Language Instruction Set 3-55

AAS
Adjust Result of ASCII Subtraction

This instruction adjusts a result in the AL register, assuming that a subtraction
has been performed with two ASCII characters as operands. The adjustment is per-
formed as follows:

1. If the low-order four bits of the AL register are between 0 and 9 and the AF
flag is 0, then go to Step 3.

2. If the low-order four bits of the AL register are between A and F or the AF
flag is 1, then subtract 6 from the AL register, subtract 1 from the AH
register, and set the AF flag to 1.

3. Clear the high-order four bits of the AL register.
4. Set the CF flag to the value of the AF flag.

The encoding for this instruction is:
AAS
——
3F
For example, suppose that the AX register contains 0438,,. After the sequence of
instructions

SUB AL,35H
AAS

has executed, the AX register will contain 0403,,. The SUB instruction results in

381 = 0011 1000
Twos comp of 3516 = 1100 1011

0000 0011

03¢ being stored into AL. The AAS instruction performs steps 1 and 3 of the adjust-
ment algorithm, which in this case does not modify the AX register. The AF and CF
flags are set to 0.

3-56 The 8086 Book

Data
O D | T S zZ A P C Memory
Psw[?[| | [?l 7|x|7|x|
AX XX
BX Perform
adjustment

CX algorithm on x%
DX

Program (Relative to the

Memory CS Register)
SP 3F |ppppm
BP ppppm + 1
Sl ppppm + 2
DI ppppm + 3
PC mm mm
Ccs nn nn
DS Program Memory

Address Calculation
ss
ES
AAS
Number of cycles: 4

Notes:

1. To adjust the results of an ASCII addition, consult the AAA instruction. To adjust
the results of packed BCD addition and subtraction, consult the DAA and DAS
instructions.

2. The values of the Parity, Zero, Sign, and Overflow flags are undefined following the

execution of this instruction.

8086 Assembly Language Instruction Set 3-57

ADC ac,data _
Add Immediate Data With Carry to AX or AL Register

This instruction is used to add the immediate data present in the succeeding pro-
gram memory bytes and the Carry status to the AL (8-bit operation) or AX (16-bit
operation) register.

The encoding for this instruction is:

ADC ac,data

[ooototow]| [w 1 J

High-order 8 bits of the immediate
operand. This byte is only present if w =
1.

Low-order 8 bits of the immediate
operand. This byte is always present.

w = 0 8-bit operation. AL is one of
the operands and the destination for the
result.

w = 1 16-bit operation. AX is one of
the operands and is the destination for
the result.

Consider, for example, the case where the AX register contains 4F3D,, and the Carry
status is 1. After the instruction
ADC AX,OFD81H

is executed, the AX register will contain 4CBF, and the Carry status will be 1.

4F3D1g = 0100 1111 0011 1101
FD8196 =1111 1101 1000 0001
Carry Status = 1
0100 1100 1011 1111

‘ t—7 one bits, set P to O

Arithmetic status is set to O
Sign bit is set to O
Carry status is 1

Overflow flag is set to O,
Zero Status is set to O

3-58 The 8086 Book

. Data
O D | T S zZ A P C Memory
pswlx|[| [[x]x[x]x]x
AX XX Yy
BX
CX
DX
Program (Relative to the
Memory CS Register)
SP 15 ppppm
BP kk ppppm + 1
Si mmmm + 3 i ppppm + 2
DI ppppm + 3
PC mm ‘mm
CS nn nn
DS ?1";':":'8 Program Memory
ss Wr_n Address Calculation
ES
ADC AX,jikk
Number of cycles: 4
Notes:

1. This instruction performs the same function as the 8080 instruction ACI data. In
addition, this instruction offers a 16-bit Add With Carry Immediate option.

8086 Assembly Language Instruction Set 3-59

ADC mem/reg,data
Add Immediate With Carry to Register or Memory Location

This instruction is used to add immediate data present in the succeeding program
memory byte(s) and the Carry status to the specified register or memory location. An 8-
bit or 16-bit operation may be specified.

The encoding for this instruction is:

ADC mem/reg, data

[100000sw | [modotowm | [« L i]

High-order byte of the 16-bit
immediate operand. This byte
is only present if s = 0 and
w=1,

Low-order byte of the
immediate operand. This byte
is always present.

Addressing mode byte(s). As
described earlier in this chapter.

w =0 8-bit operation
w =1 16-bit operation

s is the sign extension bit. If
w = 0, this bit is ignored. If
w = 1 then

s = 0, all 16 bits of the
immediate operand
are present.

s = 1, only the low-order 8
bits of the immediate
operand are present.
The high-order 8 bits
of the 16- bit operand
are formed by sign
extending the high-
order bit of kk.

Suppose that the DS register contains E400,,, the SI register contains 0040,,, the word
at memory location E4040,, is 6B90,,, and the Carry status is 0. After the instruction

ADC [SI], 2D31H

executes, the word at memory location E4040, will contain 98C1, and the Carry status
will be 0.

689015 = 0110 1011 1001 0000
2D3116 = 0010 1101 0011 0001
Ca_rry status = 0

1001 1000 1100 0001

' l 1—3 one bits, set P to 0

No Carry, set AF to O

Set Overflow to 1

Set Sign to 1

Set Carry to O

Non-zero result, set Z to O

3-60 The 8086 Book

Data
o DI T S zZ A P C Memory
e (T T XX [X[x]]
Yy
AX ’ XX
BX
CcX
DX
Program (Relative to the
Memory CS Register)
Data Memory
sp Address Calculation 81 |peepm
BP 14 |ppppm + 1
sl 99 99 kk [pppom + 2
DI i ppppm + 3
PC mm mm
CcS nn nn
DS hh hh Program Memory
Address Calculation
SS
ES
ADC [SI], jikk

Number of cycles: Immediate to memory: 17 + EA
Immediate to register: 4

Notes:

1. This instruction is not normally used to ADC immediate data to the AL or AX
register. The instruction ADC ac,data is provided for that purpose.

2. Segment registers may not be specified as operands in this instruction.

8086 Assembly Language Instruction Set 3-61

ADC mem/reg,, mem/reg,
Add Data With Carry From: -+ Register to Register

* Register to Memory
* Memory to Register

Add the contents of the register or memory location specified by mem/reg, and
the Carry status to the contents of the register or memory location specified by mem/
reg,. An 8- or 16-bit operation may be specified. Either mem/reg, or mem/reg, may be a
memory operand, but one of the operands must be a register operand.

The encoding for this instruction is:

ADC mem/regq, mem/rega
[000100dw | [modregrm]

Addressing mode byte(s) as described
earlier in this chapter.

w =0 8-bit operation
w =1 16-bit operation

d is the direction flag. If d = O, then the
operand described by mod and r/m is
mem/regq and the operand described
by reg is mem/regy. If d = 1, then the
operand described by mod and r/m is
mem/regy and the operand described
by reg is mem/regq.

Suppose that the AX register contains 0211, the BX register contains 0084, the DS
register contains 1C00,¢, the Carry status is 1, and the contents of the memory word at
1C084,, are 00A4,,. After the instruction

ADC AX,[BXI]
has executed, the AX register will contain 02B6,, and the flags will be set as follows:
Carry = 1

02114 = 0000 0010 0001 0001
00A44g = 0000 0000 1010 0100

Q000 0010 1011_0110

5 one bits, set P to O
No carry, set AF to O

Overflow is O

Sign Status is 0

No carry, set C to O
Non-zero result, set Z to O

3-62 The 8086 Book

Data
O D! T S§$ zZ A P C Memory
s T T X< X[
ww rrerg
AX XX vy ’ v rrrrg + 1
BX ag ag rrrrg + 2
CcX
DX
Program (Relative to the
Memory CS Register)
SP 13 PpPpPpmM
BP Data Memory 07 ppppm + 1
Address Calculation
Sl ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn
DS hh hh Program Memory
Address Calculation
SS
ES
ADC AX,[BX]
Number of cycles: Memory to register: 9 + EA
Register to memory: 16 + EA
Register to register: 3
Notes:

1. This instruction is not normally used to ADC to the AX or AL registers. The ADC
ac,data instruction accomplishes that function in fewer bytes.

8086 Assembly Language Instruction Set 3-63

ADD ac,data
Add Immediate Data to AX or AL Register
This instruction is used to add the immediate data present in the succeeding pro-

gram memory byte(s) to the AL (8-bit operation) or AX (16-bit operation) register.
The encoding for this instruction is:

ADD ac,data
[oo0oo0010w] | KK | [i

High-order 8 bits of the immediate
operand. This byte is only presentif w = 1.

Low-order 8 bits of the immediate
operand. This byte is always present.

w =0 8-bit operation. AL is one of the
operands and the destination for the
result.

w =1 16-bit operation. AX is one of the
operands and is the destination for the
result.

Suppose that the AX register contains 4064, and the Carry status is 1. Executing an
ADD AX,0FOFH

instruction will result in the accumulator containing 4F73,.

40641 = 0100 0000 0110 0100
OFOF1g = 0000 1111 0000 1111

0100 1111 0111 0011

l“ t——s one bits, set P to O

Carry out of bit 3, set AF to 1

No carries out of bits 14 or 15, set O to O
OsetsSto0

No Carry sets Cto O

Non-zero result, set Z to O

3-64 The 8086 Book

Data
o b I T S z A P C Memory
pswlx] | | [x[x|[x[x]x]

AX XX Yy
BX
CX
DX

Program (Relative to the

Memory CS Register)
SpP 05 pPPPM
BP kk ppppm + 1
Si i ppppm + 2
DI ppppm + 3
PC mm mm
CS nn nn
DS Program Memory

Address Calculation
SS
ES
ADD AXjikk
Number of cycles: 4
Notes:

1. This instruction performs the same function as the 8080 instruction ADI data. This
instruction has the additional capability of adding 16-bit immediate data elements.

8086 Assembly Language Instruction Set 3-65

ADD mem/reg,data

Add Immediate Data to Register or Memory Location

This instruction is used to add the immediate data present in the succeeding pro-
gram memory byte(s) to the specified register or memory location. An 8- or 16-bit
operation may be specified.

The encoding for this instruction is:

ADD mem/reg,data

[100000sw | [modooorm] | k]| i |

High-order byte of the 16-bit
immediate operand. This byte is
only presentifs =0 and w = 1.

Low-order byte of the
immediate operand. This byte
is always present.

Addressing mode byte(s) as
described earlier in this
Chapter.

w =0 8-bit operation
w =1 16-bit operation

s is the sign extension bit. If w =
0, this bit is ignored. If w = 1
then

s = 0, all 16 bits of the immedi-
ate operand are present.

s = 1, only the low-order 8 bits
of the immediate operand are
present. The high-order 8 bits
of the 16-bit operand are
formed by sign extending the
high-order bit of kk.

For example, if the DX register should contain 4652, and the instruction
ADD DX,0FOFOH

is executed, then the DX register contents will be altered to 3742,,.

46521 = 0100 0110 0101 0010
FOFO1g = 1111 0000 1111 0000

0011 0111 0100, 001(‘)

Nonzero result, set Z to 0

No carry out of bit 3,
set AF to O

Carry out of high-order bit,
set Carry status to 1

Sign bit is 0, set Sign status
to 0

Overflow is set to O

|‘ ¢———— 2 one bits, set Parity flag to 1.

3-66 The 8086 Book

Data
o D I T S zZ A P C Memory
pow[x] | | [x[x]x[x{x]
AX
BX
xxyy + jikk

CX
DX XX Yy

Program (Relative to the

Memory CS Register)
SP 81 |ppppm
BP c2 ppppm + 1
S mmmm + 4 kk |ppppm + 2
DI ii pPppm + 3
PC mm mm
cs nn nn
DS ?":':T‘g Program Memory
ss PpPpm™ Address Calculation
ES

ADD DX,jjkk
Number of cycles: to memory: 17 + EA
to register: 4
Notes:

1.

This instruction is not normally used to ADD to the AX or AL registers. The ADD
ac,data instruction accomplishes that function in fewer bytes.

8086 Assembly Language Instruction Set 3-67

ADD mem/reg,, mem/reg,

Add: 1. Register to Register
2. Register to Memory
3. Memory to Register

Add the contents of the register or memory location specified by mem/reg, to the
contents of the register or memory location specified by mem/reg,. An 8- or 16-bit
operation may be specified. Either mem/reg, or mem/reg, may be a memory operand,
but one of the operands must be a register operand.

The encoding for this instruction is:

ADD mem/regq, mem/regp
{000000dw | [modregr/m 1

Addressing mode byte(s) as described
earlier in this chapter

w =0 8-bit operation
w =1 16-bit operation

d is the direction flag. If d = O, then the
operand described by mod and r/m is
mem/regq and the operand described
by reg is mem/regy. If d = 1, then the
operand described by mod and r/m is
mem/regy and the operand described
by reg is mem/regq.

Suppose that the CX register contents are 0029, and the contents of the SI register are
04ED . After the instruction

ADD SI,CX
has executed, the SI register contents and the statuses will be altered as follows:

002915 = 0000 0000 0010 1001
04EDqg = 0000 0100 1110 1101

000 0101 0001_,0110

Three one bits, set

the Parity Status to O

Carry out of bit 3, set AF to 1
Set Overflow Status to O

Set Sign Status to O

No Carry, set C to O
Non-zero result, set Z to 0

3-68 The 8086 Book

Data
o Db I T S zZ A P C Memory
esw[x] T | [x[x]x]x][x]

AX
BX
CX w ww
DX

Program (Relative to the

Memory CS Register)
SP 01 ppppm
BP CE ppppm + 1
Si XX vy ppppm + 2
DI ppppm + 3
PC mm mm
cS nn nn
0s Program Memory *

Address Calculation
SS
ES
ADD SICX

Number of cycles: Register to Register: 3
Register to Memory: 16 + EA
Memory to Register: 9 + EA

8086 Assembly Language Instruction Set 3-69

AND ac,data
AND Immediate Data with the AL or AX Register

This instruction is used to AND immediate data present in the succeeding pro-

gram memory byte(s) with the AL (8-bit operation) or AX (16-bit operation) register
contents.

The encoding for this instruction is:
AND ac,data

foorootow| [w] i

High-order 8 bits of the immediate
operand. This byte is only presentif w = 1.

Low-order 8 bits of the immediate
operand. This byte is always present.

w =0 8-bit operation.
w =1 16-bit operation.

As an example, consider the case where the AL register contains C3,,. After the instruc-
tion
AND AL 7FH

executes, the AL register will contain 43 .

€316 = 1100 0011
TF16 =0111 1111

0100_0011

3 one bits, set P to 0

AF flag indeterminate
Non-zero result, set Z to 0
Overflow is set to O

Sign is set to O

Carry is set to O

3-70 The 8086 Book

Data
Memory

Program
Memory

24

kk

(Relative to the
CS Register)

pPPPPM
ppppm + 1
ppppm + 2

ppppm + 3

Program Memory
Address Calculation

O DI T S zZ A P C
swlo T T [x[x]2]x]e]
AX XX
BX
cX
DX
sP
BP
Si mmmm + 2 -
DI
PC mm mm
Ccs nn nn
DS Ommmm
nnnn0
SS ppppm
ES
AND ALKk
Number of cycles: 4
Notes:
1. This instruction performs the same function as the 8080 instruction ANI data.
However, it also allows a 16-bit operation.
2.

If you desire to AND immediate with any of the other general purpose registers or
with some memory location, consult the AND mem/reg,data instruction.

8086 Assembly Language Instruction Set 3-71

AND mem/reg,data
AND Immediate Data with Register or Memory Location

AND immediate data present in the succeeding program memory byte(s) with the
specified register or memory location. An 8- or 16-bit operation may be specified.
The encoding for this instruction is:

AND mem/reg,data

[1000000w] [mod100wm][ke L |

High-order byte of the 16-bit
immediate operand. This byte
is only presentif w = 1.

Low-order 8 bits of the
immediate operand. This byte
is always present.

Addressing mode byte(s). As
described earlier in this chapter.

w =0 8-bit operation.
w = 1 16-bit operation.

Consider the case where the BX register contains 0104, the DS register contains
0000,¢, and the byte at memory location 00104 ¢ is 47 . After the instruction

AND [BX],52H
has executed, memory location 00104, will contain 42

4716 = 0100 0111
6296 = 0101 0010

0100 0010

2 one bits, set the Parity
flag to 1

Non-zero result, set Z to 0
Carry is cleared to O

Sign is set to O

Overflow is cleared to O

3-72 The 8086 Book

Data
o D I T S zZ A P C Memory
esw[x] T [[x]x]z]x]x
XX rrrrg

AX
BX g9 g9
CX
DX

Program ({Relative to the

Memory CS Register)
SP 80 |Ppppm

Data Memory
8P Address Calculation 27 ppppm + 1
Si kk ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn
Program Memory
DS
hh hh Address Calculation
SS
ES
AND [BX],kk
Number of cycles: Immediate to memory: 17 + EA
Immediate to register: 4
Notes:

1. This instruction is not normally used to AND data with the AX or AL registers. The
instruction AND ac,data is provided for this function.

8086 Assembly Language Instruction Set 3-73

AND mem/reg,, mem/reg,

AND: - Register with Register
* Register with Memory
* Memory with Register

AND the contents of the register or memory location specified by mem/reg, with
the contents of the register or memory location specified by mem/reg,, returning the
result to mem/reg;. An 8- or 16-bit operation may be specified. Either mem/reg, or
mem/reg, may be a memory operand, but one of the operands must be a register
operand.

The encoding for this instruction is:

AND mem/regq, mem/regy

IiOIOOOdw | L modregr/mj

Addressing mode byte(s) as described
earlier in this chapter.

w =0 8-bit operation
w =1 16-bit operation

d is the direction flag. If d = O, then the
operand described by mod and r/m is
mem/regq and the operand described
by reg is mem/regy. If d = 1, then the
operand described by mod and r/m is
mem/regy and the operand described
by reg is mem/regq.

As an example, consider the case where the DL register contains 06,,, the DS register
contains B00O,, the BX register contains 0010,¢, the SI register contains 00064, and the
byte at memory location B0016,, contains F1,,. After the instruction

AND DL, [BX + Si]
has executed, the DL register will contain 00 and the flags will be set as follows:

061g = 0000 0110
Fl1g = 1111 0001

0000__0000

Zero one bits, set P to 1
AF flag indeterminate
Carry is cleared to O

Set the Sign Status to O
Overflow Status is cleared
Zero result, set Z to 1

3-74 The 8086 Book

Data Memory

o b I T § Z A P C
eswlo] T | [x[x[7[]]
AX
BX a9 a9
CX
DX Yy
SP
BP qaq qaq
S|
DI
PC mm mm
CS nn nn
DS hh hh
SS
ES

AND DL, [BX + SI]

Number of cycles: Memory to Register

Address Calculation

Data
Memory

XX rreee

Program (Relative to the
Memory CS Register)

22 ppppm

10 ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

: 9+ EA
Register to Memory: 16 + EA
Register to Register: 3

8086 Assembly Language Instruction Set 3-75

CALL addr
CALL the Subroutine Specified in the Operand (Intersegment)

Store the contents of the CS and PC registers on the top of the stack, i.e., push the
address of the instruction following the CALL onto the top of the stack. Place the con-
tents of the succeeding four memory bytes into the PC and CS registers. Place the bytes
in the following manner:

1. Store the second and third bytes of this instruction into the PC register.
2. Store the fourth and fifth bytes of this instruction into the CS register.
The encoding for this instruction is:

CALL addr
——
9A

| | T .

T-——High-order 8 bits of the new segment

address. This byte is stored into the
high-order byte of the CS register.

Low-order 8 bits of the new segment
address. This byte is stored into the
low-order byte of the CS register.

High-order 8 bits of the new offset
address. This byte is stored into the
high-order byte of the PC register.

Low-order 8 bits of the new offset
address. This byte is stored into the
low-order byte of the PC register.

3-76 The 8086 Book

(Relative to the
CS Register)

ppPPpM

ppppm + 1
ppppm + 2
ppppm + 3

ppppm + 4

Data
O D I T S Z A C Memory
eswl [T T T T[T 1] mm + 5
mm
AX / nn
BX Data Memory nn
Address Calculation
CX
DX
Program
Memory
SP ss ss 9A
BP kk
Sl ii
DI hh
PC mm mm a9
CS nn nn Program Memory
Address Calculation
DS
SS tt tt
ES
CALL addr
Number of cycles: 28
Notes:

1. There are four types of CALLs:

CALL addr: this instruction, intersegment CALL
CALL mem: intersegment indirect CALL

CALL disp: intrasegment CALL

CALL mem/reg: intrasegment indirect CALL

8086 Assembly Language Instruction Set 3-77

CALL disp16
CALL the Subroutine Specified in the Operand (Intrasegment)

Push the address of the instruction following the CALL onto the top of the stack.
Add the contents of the next two program memory bytes, treating them as a 16-bit
unsigned displacement, to the program counter. Continue execution from this point.
The encoding for this instruction is:

CALL disp16
=
E8

L J[i]

High-order 8 bits
of 16-bit displacement.

Low-order 8 bits
of the 16-bit displacement.

As an example, consider the following instruction sequence:

CALL SUBR
AND AL, 7FH

SUBR PUSH AX

After the CALL instruction has executed, the address of the AND instruction will have
been pushed onto the stack, and the PUSH instruction at SUBR will be executed next.

3-78

The 8086 Book

O D I T S A C
swl [TP T T 1]
Data Memory
AX Address Calculation
BX Ossss
_tttto
CX uuuus
DX
ssss — 2
SP ss ss
BP
SI mmmm + 3
DI
PC mm mm —
Ojjkk
rrrr
CS nn nn
DS Ommmm
.nnnn0
SS tt tt ppppm
ES
CALL jjkk
Number of cycles:19
Notes:

1. There are four types of CALLs:

CALL disp: this instruction, intrasegment CALL
CALL mem/reg: intrasegment indirect CALL
CALL address: intersegment CALL

CALL mem: intersegment indirect CALL

Data
Memory

mm + 3

Program
Memory

E8

kk

i

Program Memory
Address Calculation

(Relative to the
SS Regiser)

uuuus - 3
uuuus - 2
uuuus - 1

uuuus

(Relative to the
CS Register)

ppPppmM
ppppm + 1
ppppm + 2

ppppm + 3

New Program Memory
Address Calculation

8086 Assembly Language Instruction Set 3-79

CALL mem
CALL the Subroutine Specified by the Operand (Intersegment)

Store the contents of the CS and PC registers on the top of the stack, i.e., push the
address of the instruction following the CALL onto the stack. Move the word at the
specified memory location into the PC register; move the succeeding word into the CS
register. Continue execution from this point.

The encoding for this instruction is:

CALL mem
sl

FF

mod 011 r/m
Addressing mode byte(s). As described

earlier in this chapter.

Suppose the DS register contains 0400, the SI register contains 0004, the memory
word at 04004 ¢ is 0100, and the memory word at 04006, is OFEQ,,. After the instruc-
tion

CALL [Sl]

has executed, the PC register will contain 0100, and the CS register will contain OFEQ,.
Execution will continue from location OFF00,.

3-80 The 8086 Book

O D | T A P C
XXyy
eswl | T[T [T T 1]
AX WwWwV
BX
CX
DX Ossss
tttt0
uuuus
SP ss ss
8P ssss — 4
SI a9 a9
DI
PC mm mm Ommmm
nnnnO
pPpppm
(o8] nn nn
DS hh hh 0gggg
hhhhO
SS tt tt rrrrg
ES

* Stack Data Memory Address Calculation
** Program Memory Address Calculation
*** Data Memory Address Calculation

Notes:

CALL [sI]
Number of cycles: 37 + EA

1. There are four types of CALLSs:

..

Data
Memory

Yy

XX

ww

v

Data
Memory

mm + 2

nn

nn

Program
Memory

FF

1Cc

CALL mem: this instruction, intersegment indirect CALL
CALL addr: intersegment CALL
"CALL mem/reg: intrasegment indirect CALL
CALL disp: intrasegment CALL

2. If mod = 11, this operation is undefined.

(Relative to the
DS Register)

rrrrg
rrerg + 1
rrrrg + 2

rerrg + 3

(Relative to the
SS Register)

uuuus - 4
uuuus - 3
uuuus - 2
uuuus - 1
uuuus

(Relative to the
CS Register)

ppppM
ppppm + 1
PPppM + 2

ppppm + 3

8086 Assembly Language Instruction Set 3-81

CALL mem/reg
Call the Subroutine Specified by the Operand (Intrasegment)

Store the address of the instruction following the CALL on the top of the Stack. If
the specified operand is a register, move the contents of the register to the PC register. If
the specified operand is a memory location, move the contents of the specified memory
location to the PC register. Continue execution from this point.

The encoding for this instruction is:

CALL mem/reg
——
FF

| mod 010 r/m l

Addressing mode byte(s).
As described earlier in this chapter.

Consider the case where the PC register contains FF00,,, the DS register contains

01004, the BX register 00264, and the word at memory location 01026, is 0240,,. After
the instruction

CALL (BX]

has executed, the PC register will contain 0240,,. Execution will continue at this loca-
tion.

3-82 The 8086 Book

Data
O bD I T S Z A P C Memory
eswl | T[T [T
Yy
XXYY
AX XX
BX g9 a9
CX
DX Ogggg
hbhhO Data
rrrrg Memory
SP ss ss mm + 2
BP mm
ssss ~ 2
Si
DI
PC mm mm Ommmm
nnnnO
ppppPmM
Program
cs nn nn Memory
Ossss
DS hh hh] FF
ss t tt uuuus =
ES Stack Data Memory
Address Calculation
CALL [BX] Intrasegment indirect through memory (as illustrated above)
Number of cycles: 21 + EA
CALL BX Intrasegment indirect through register
Number of cycles: 16
Notes:
1. There are four types of CALLs:

CALL mem/reg: this instruction, intrasegment indirect CALL
CALL disp: intrasegment CALL

CALL mem: intersegment indirect CALL

CALL addr: intersegment CALL

(Relative to the
DS Register)

rrrrg

rrreg + 1

(Relative to the
SS Register)

uuuus — 2
uuuus — 1

uuuus

(Relative to the
CS Register)

PPPPM
ppppm + 1
ppPppM + 2

ppppm + 3

8086 Assembly Language Instruction Set 3-83

cBw
Sign Extend the AL Register into the AH Register
If the high-order bit of the AL register is 1, store FF,, into the AH register, other-

wise store 00, into the AH register.
The encoding of this instruction is:

cBw
———

98

As an example, if the AL register contains 4F 4, the executing instruction

CBW
will store 00, into the AH register.
Data
O DI T S z2 A P C Memory

eswl | LT T 1111

AX XX

BX Sign extend

xx into the
CX AH register
DX
Program (Relative to the
Memory CS Register)

SP 98 pPPPPM

BP Ppppm + 1

SI ppppm + 2

DI ppppm + 3

PC mm mm

CS nn nn

D

s Program Memory
SS Address Calculation
ES
cBwW
Number of cycles: 2

Notes:

1. No statuses are affected.

2. The value in the AL register should represent a number between +127 and — 128,
i.e., AL should contain a signed 8-bit value.

3. This instruction can be used for extending the AL register before a 16-bit IMUL or
IDIV instruction.

3-84 The 8086 Book

CLC
Clear the Carry Status

This instruction sets the Carry status to 0. No other statuses or registers are
affected.
The encoding for this instruction is

CLC
——
F8
Data
o D I T S8 z A P C Memory
e [T T T T T 1T T I,
AX
BX
CcX
DX
Program (Relative to the
Memory CS Register)
SP F8 |ppppm
BP ppppm + 1
Sl ppppm + 2
DI ppppm + 3
PC mm mm
CcS nn nn
DS Program Memory
Address Calculation
SS
ES

CcLC
Number of cycles: 2

8086 Assembly Language Instruction Set 3-85

CLD

Clear the Direction Flag

This instruction sets the DF flag to 0. This has the effect of making the string
operations perform auto-increment on the pointers used by the string operations. No
other statuses or registers are affected.

The encoding for this instruction is:

CLD
——
FC
Data
O D I T S Z A P C Memory
wl [T TTTT]
(o]
AX
BX
CX
DX
Program (Relative to the
Memory CS Register)
SP FC PpPppm
BP ppppm + 1
Si ppppm + 2
DI mm mm ppppm + 3
PC
cs nn nn
DS Program Memory
Address Calculation
SS
ES

CLD
Number of cycles: 2

3-86 The 8086 Book

CLI
Clear the Interrupt Flag
Set the Interrupt flag to 0. This has the effect of disabling all interrupts except

non-maskable interrupts, which occur on the NMI line.
The encoding for this instruction is:

CLI
——
FA
Data
o b 1 T s z A P C Memory
eswl | T L[[T TT]
e o
AX
BX
CcX
DX
Program (Relative to the
Memory CS Register)
SP FA pPpppm
BP ppppm + 1
Si ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn
DS Program Memory
ss Address Calculation
ES
CLi
Number of cycles: 2
Notes:

1. This instruction performs the same function as the 8080 instruction DI.

2. Remember that when the 8086 acknowledges an interrupt request, the interrupts
are automatically disabled.

8086 Assembly Language Instruction Set 3-87

CcMmC

Complement the Carry Status
Complement the Carry status. No other statuses or registers are affected.
The encoding for this instruction is:

cMC
——~

F5
For example, if the Carry status were 0 and the instruction
cMC

were executed, the Carry status would be set to 1.

Data
O b 1@ T §8 2 A P C Memory
swl | [[T [T T T IXIIEx

AX
BX
CX
DX

Program (Relative to the

Memory CS Register)
sSP F5 ppppm
BP ppppm + 1
S ppppm + 2
DI ppppm + 3
PC mm mm
Cs nn nn
DS Program Memory

Address Calculation
SS
ES
cMmC
Number of cycles: 2
Notes:

1. This instruction performs the same function as the 8080 instruction CMC.

3-88 The 8086 Book

CMP ac,data

Compare Immediate Data with Accumulator

This instruction is used to compare immediate data present in the succeeding pro-
gram memory byte(s) with the AL register (8-bit operation) or the AX register (16-bit
operation). The comparison is performed by subtracting the data in the immediate
byte(s) from the specified register and using the result to set the flags. The result of this
operation is not stored in the specified register, thus no registers are affected, only the
statuses.

The encoding for this instruction is:

CMP ac,data

[oor11110w] | kk [[i |

The high-order 8 bits of the immediate
operand. This byte is only presentifw =1.

The low-order 8 bits of the immediate
operand. This byte is always present.

w =0 8-bit operation
w =1 16-bit operation

Consider the case where the AL register contains 20,,. After the instruction
CMP AL,ODH

has executed, the AL register will still contain 20,, but the statuses will be modified as
follows:

20415 = 0010 0000
Two's Comp. of 0D1g = 1111 0011

0001_,0011

’ L— 3 one bits, set P to 0
No Carry, set AF to O

Carries out of both bit 6 and bit 7,
set Overflow to O

Set sign to O

Carry out of high-order bitis 1,
set Carry to O

Nonzero result, set to 0

8086 Assembly Language Instruction Set 3-89

~L —— Data
O DI T S z A P C Memory
pswix] | | [x[x[x[x]x]
AX XX
BX
CX
DX
Program (Relative to the
Memory CS Register)
SP 3C pPpppm
BP kk ppppm + 1
Si mmmm + 2 ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn
DS 2’:':’2'8 Program Memory
ss PPPPM Address Calculation
ES
CMP AL,kk
Number of cycles: 4
Notes:

1. If you desire to compare immediate data with any of the other general purpose
registers or with the contents of some memory location, consult the CMP mem/reg,
data instruction.

2. This instruction performs the same function as the 8080 instruction CPI data. In
addition, this instruction allows for 16-bit comparisons.

3-90 The 8086 Book

CMP mem/reg,data

Compare Immediate Data with Register or Memory

This instruction compares the immediate data present in the succeeding program
memory byte(s) with the specified register or memory location. The comparison is per-
formed by subtracting the data in the immediate bytes from the specified memory loca-
tion or register, and using the result to set the flags. The result of this operation is not
stored in the specified register or memory location, thus no registers or memory loca-
tions are affected, only the statuses. An 8-bit or 16-bit operation may be specified.

The encoding for this instruction is:

CMP mem/reg,data

[f00000sw] [mod1i1wm] [& || i |

High-order byte of the immediate
operand. This byte is only present if
s=0andw =1

Low-order byte of the immediate
operand. This byte is always present

Addressing mode byte(s) as described
earlier in this chapter

w =0 8-bit operation
w =1 16-bit operation

s is the sign extension bit. If w = O, this
bitis ignored. If w = 1 thens = 0; all 16
bits of the immediate operand are pre-
sent

s = 1, only the low-order 8 bits of the
immediate operand are present. The
high-order 8 bits of the 16-bit operand
are formed by sign extending the high-
order bit of kk

Suppose that the SI register contains 01BA . After the instruction
CMP SI, 0200H
has executed, the SI register will still contain 01BA 4, but the statuses will be modified
as follows:

01BA1g = 0000 0001 1011 1010
Two’s Comp. of 02009 = 1111 1110 1011 1010

1111 1111 1011_1010

5 one bits, set P to O
No Carry from bit 3, set AF to 1

No Carry out of bit 15 or bit 14,
set Overflow to O

Set Sign to 1

No Carry out of high-order bit,
set Carry to 1

Non-zero result, set Z to 0

8086 Assembly Language Instruction Set 3-91

Data
Memory

Program (Relative to the
Memory CS Register)

81 ppppm

FE ppppm + 1

kk |ppppm + 2

i ppppm + 3

bS Program Memory

sS Address Calculation
ES
CMP
Number of cycles: Register operand: 4
Memory operand: 10 + EA
Notes:

1. This instruction is not typically used to CMP immediate data with the AX or AL
register. The instruction CMP ac,data is provided for this purpose.

3-92 The 8086 Book

CcMP mem/reg,, mem/reg,

Compare: * Register with Register
* Register with Memory
+ Memory with Register

Compare the data in the register or memory operand specified by mem/reg, with
the data in the register or memory operand specified by mem/reg,. The comparison is
performed by subtracting the data specified by mem/reg, from the data specified by
mem/reg, and using the result to set the flags. Neither mem/reg, nor mem/reg, is
affected by this operation. An 8- or 16-bit operation may be specified.

The encoding for this instruction is:

CMP mem/regq, mem/reg2
[oo111 Odw | rmo_d reg r/m l

Addressing mode byte(s) as described
earlier in this chapter

w =0 8-bit operation
w =1 16-bit operation

d is the direction flag. If d = O, then the
operand described by mod and r/m is
mem/regq and the operand described
by reg is mem/regy. If d = 1, then the
operand described by mod and r/m is
mem/regg and the operand described
by reg is mem/regq

Suppose that the DH register contains 05,; and the CL register contains 06,¢. After the
instruction
CMP CL.DH

has executed, neither the CL nor DH register will be affected; however, the flags will be
set as follows:

0616 = 0000 0110
Two's Comp. of 0516 = 1111 1011

0000 0001

’ 1— 1 one bit, set P to O
Set AF to O

- Set Overflow to O
Set Sign to O

Carry out of high-order bit is completed,
set Carry to O

Non-zero result, set Z to 0

8086 Assembly Language Instruction Set 3-93

Data
Memory

Program (Relative to the
Memory CS Register)

38 pPpPppm

F1 ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

CMP CL,DH

Number of cycles: Register with register: 3
Memory with register: 9 + EA
Register with memory: 16 + EA

3-94 The 8086 Book

CMPS

Compare Memory with Memory

Compare the contents of the memory location addressed by the SI register with
the contents of the memory location addressed by the DI register. The comparison is
performed by subtracting the contents of the memory location addressed by the DI
register from the contents of the memory location addressed by the SI register and using
the result to set the flags. Neither of the memory locations used in the subtraction is
affected. The SI and DI registers are incremented/decremented depending on the value
of the DF flag. An 8- or 16-bit operation may be specified.

The encoding for this instruction is:

CMPS

|1010011w|

w

0 An 8-bit comparison. The S|
and DI registers are incre-
mented by 1 if DF = 0. The SI
and DI registers are decre-
mented by 1 if DF = 1

w =1 A 16-bit comparison. The S|
and DI registers are incre-
mented by 2 if DF = 0. The SI
and DI regisers are decre-
mented by 2 if DF = 1

Suppose that the DF flag is 1, the DS register contains 0600,4, the SI register contains
0108, the ES register contains 0060,¢, the DI register contains 0188,,, the word at
memory location 06108, is 4544, and the word at memory location 007884 is 4544 4.
After the instruction

CMPS WORD

has executed, the SI register will contain 010A ¢, the DI register will contain 018A ¢ and
the flags will be set as follows:

454446 = 0100 0101 0100 0100
Two's Comp. of 45441 = 10111010 1011 1100

0000 0000 0000_0000

0 one bits, set P to 1

Carry out of bit 3, set AF to 1
Overflow to O

Set Sign to O

Carry out of high-order bit,
set Carry to O

Zero result, set Z to 1

8086 Assembly Language Instruction Set 3-95

Data
o“ D S Zz A P C Memory
psw| x |]x|x|xlx[x—| @ v g +1
\’\~
XX rrreg + 2
AX
ggg9g + 2
BX
cX Data Memory
Address Calculation
DX
Ogggg Program (Relative to the
hhhhO Memory CS Register)
rrrrg
SP ww uuuuq
BP w uuuuq + 1
qqqq + 2 9
Sl ag ag uuuuq + 2
DI qq qq
PC mm mm mmmm + 1
Data Memory
. Program (Relative to the
A
cs n on ddress Calculation Memory CS Register)
Ommmm
DS hh hh nnnno A7 |ppppm
ppppm
SS ppppm + 1
ES tt tt Oqqaq
tttt0 PeppM + 2
uuuuq ppppm + 3
Program Memory
Address Calculation
CMPS WORD
Number of cycles: 22 for a single occurrence.
9 + (22 « R) for R repetitions
when preceded by a REP prefix.
Notes:

1. The REP prefix and/or the LOCK prefix may be used with this instruction. If the
LOCK prefix and the REP prefix are both used in conjunction with the instruction,
certain problems may occur. For a discussion of this enervating subject, please con-
sult Chapter 4.

2. The default segment register for the operand addressed by SI is DS. The segment
register may be changed using a segment override prefix. The default segment
register for the operand addressed by DI is ES. This segment register assignment
may not be overridden.

3. The assembler must have certain information to allow it to determine whether an 8-
bit or 16-bit comparison will be performed. For a discussion of how this is done,
please consult the end of this chapter.

4. The execution time for CMPS with a REP prefix may be illustrated as follows:
REP CMPS
2+ 9+ 22(R)

If R = 10 words, then the execution time is 231 clock cycles.

3-96 The 8086 Book

CWD
Sign Extend the AX Register into the DX Register
If the high-order bit of the AX register is 1, store FFFF; into the DX register,

otherwise store 0000, into the DX register.
The encoding for this instruction is:

CcWD
——
99
Suppose that the AX register contains B001,,. After the instruction
CWD

has executed, the DX register will contain FFFF .

Data
o b1 T S zZ A P C Memory
eswl [[T[T T T11

AX XX Yy
BX Sign extend
CX dd
DX

Program (Relative to the

Memory CS Register)
SP 99 ppppm
BP ppppm + 1
Sl ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn
DS Program Memory
SS Address Calculation
ES

CWD
Number of cycles: 5
Notes:

1. No statuses are affected.

2. This instruction is useful when performing divisions. If a 16-bit divisor is to be used,
it is necessary to have a 32-bit dividend. If the only significant bits are in the AX
register, this instruction extends the sign bit into the DX register to make a 32-bit
dividend. Note that this technique works best for the IDIV instruction.

8086 Assembly Language Instruction Set 3-97

DAA
Decimal Adjust Accumulator After Addition

Convert the contents of the AL register into binary coded decimal form. This
instruction should be used only after adding two BCD numbers, i.e., look upon ADD
DAA or ADC DAA as compound, decimal arithmetic instructions which operate on
BCD source operands to generate BCD answers.

The algorithm for the conversion is:

1. Ifthe AF flagis 1 or the low-order four bits of the AL register are A through
F, then add 06, to the AL register and set the AF flag to 1.

2. Ifthe CF flagis 1 or the high-order four bits of the AL register are greater than
9, then add 60, to the AL register and set the CF flag to 1.

The encoding for this instruction is:

DAA

~———

27

Suppose the AL register contains 28,, and the BL register contains 68,,. After the

instructions

ADD AL,BL
DAA

have executed, the AL register will contain 96,4, not 90 .

3-98 The 8086 Book

Data
o DI T S z A P C Memory
pswl7] [| [x[x[x[x][x]
AX Yy
BX Convert to
CcX decimal
DX
Program (Relative to the
Memory CS Register)
Sp 27 ppppm
BP ppppm + 1
S ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn
DS Program Memory
Address Calculation

SS
ES

DAA

Number of cycles: 4

Notes:

1.

This instruction is useful for the addition of two packed BCD operands. For adjust-
ing the subtraction of two packed BCD operands, consult the DAS instruction. For
adjusting the result of ASCII addition and subtraction, consult the AAA and AAS
instructions.

8086 Assembly Language Instruction Set 3-99

DAS

Decimal Adjust Accumulator After Subtraction

This instruction converts the contents of the AL register into binary coded
decimal form. This instruction should only be used after subtracting two BCD numbers,
i.e., look upon SUB DAS or SBB DAS as compound decimal arithmetic instructions
which operate on BCD source operands to generate BCD answers.

The algorithm for the conversion is:

1. Ifthe AF flag is 1 or the low-order four bits of the AL register are between A
~ and F, then subtract 06, from the AL register and set the AF flagto 1.

2. Ifthe CF flag s 1 or the high-order four bits of the AL register are greater than
9, then subtract 60, from the AL register and set the CF flagto 1.

The encoding for this instruction is:
DAS

——
2F
Suppose that the AL register contains 86, and the AH register contains 07 4. After the
sequence of instructions

SUB ALAH
DAS

has executed, the AL register will contain 79,,. The SUB instruction results in the AL
register containing 7F .

8615 = 1000 0110
Two's Comp. of 071 = 1111 1001

0111 1111

Carry out is complemented, set C to O

Since the low-order 4 bits of the AL register equal F,q, the first step of the
algorithm is performed. The AF flag is set to 1.

3-100 The 8086 Book

Data
O b I T S z A P C Memory
pswl7] | | [x[x[x{x[x]

AX XX

Perform
BX adljustmhent

algorithm
CX %n XX
DX

Program (Relative to the
Memory CS Register)

SP 2F ppPppm
BP ppppm + 1
S| mmmm + 1 ppppm + 2
DI ppppm + 3
PC mm mm
CcSs nn nn
DS Ommmm Program Memory

annn0 Address Calculation
SS ppppm
ES

DAS
Number of cycles: 4
Notes:

1. This is a decimal subtraction adjustment algorithm for two packed BCD numbers.
Another operation available for adjustment of subtractions is the AAS instruction,
which adjusts the results of subtracting ASCII digits.

8086 Assembly Language Instruction Set 3-101

DEC mem/reg
Decrement Register or Memory Location
Subtract 1 from the contents of the specified register or memory location. An 8- or

16-bit operation may be specified.
The encoding for this instruction is:

DEC mem/reg
[1111111w] [mod001r/m |

Addressing mode byte(s) as described
earlier in this chapter.

w =0 8-bit operation
w =1 16-bit operation

Suppose that the BH register contains 4F . After the instruction

DEC BH
executes, the BH register contains 4E .

Data
O b I T s zZ A P C Memory
e} T T X355]
AX
XX
CX
DX
Program (Relative to the
Memory CS Register)
SP FE |ppppm
BP CF ppppm + 1
Si ppppm + 2
DI ppppm + 3
PC mm mm
cs nn i nn
DS
SS
ES

DEC BH
Number of cycles: Register operand: 3
Memory operand: 15 + EA

3-102 The 8086 Book

Notes:

1. This instruction can perform the same function as the 8080 instruction DCR reg.
Note that due to the various addressing modes available and the 8-/16-bit option,
this instruction has a good deal more power than the 8080 instruction.

2. Segment registers may not be modified using this instruction.

3. This instruction would not normally be asked to decrement one of the 16-bit
registers. The instruction DEC reg performs this function and only occupies one
byte of program memory space. This instruction would be used to decrement one of
the 8-bit registers or memory.

4. This instruction does not affect the Carry status.

8086 Assembly Language Instruction Set 3-103

DEC reg

Decrement Register

Subtract 1 from the contents of the specified register. This is a 16-bit decrement
instruction.
The encoding for this instruction is:

o~

t—3 bits which specify the 16-bit
register to be decremented

rrr = 000 for AX
001 for CX
010 for DX
011 for BX
100 for SP
101 for BP
110 for SI
111 for DI

As an example, examine the case where the CX register contains 0200,,. Executing a
DEC CX

instruction will result in the contents of the CX register being decremented to 01FF .

3-104 The 8086 Book

D |

T

S

z

A

P

Data
C Memory

psw[x] | | [x[x[x[x]]

AX
BX
cX xx vy @
DX
Program (Relative to the
Memory CS Register)
SP 49 pPPPPM
BP ppppm + 1
S| ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn
ps Program Memory
SS Address Calculation
ES
DEC CX
Number of cycles: 2
Notes:

1. This instruction performs the same function as the 8080 instruction DCX reg.

2. Segment registers may not be decremented using this instruction.

8086 Assembly Language Instruction Set 3-105

DIV mem/reg
Divide AX or DX:AX Registers by Register or Memory Location

Divide the AX (16-bit operation) or DX:AX (32-bit operation) register by the
contents of the specified register or memory location, considering both operands as
unsigned binary numbers. If a 16-bit operation is performed, the 8-bit quotient is
returned in the AL register, the 8-bit remainder is returned in the AH register. If the
quotient to be returned to the AL register is greater than FF,4, then a type 0 (division by
zero) interrupt is generated. If a 32-bit operation is performed, the 16-bit quotient is
returned to the AX register, the 16-bit remainder is returned to the DX register. If the
quotient to be returned to the AH register is greater than FF FF,,, then a type 0 (division
by zero) interrupt is generated.

A division by zero interrupt results in the following actions:

1. Push the Flags register onto the stack.

2. Clear the IF and TF flags.

3. Push the CS register onto the stack.

4. Load the word at memory location 00002, into the CS register.
5. Push the PC onto the stack.

6. Load the word at memory location 00000, into the PC register.
The encoding for this instruction is:

DIV mem/reg

[1111011w] [mod 110 /m |

Addressing mode byte(s) as described
earlier in this chapter.

w = 0 16-bit operation
w = 1 32-bit operation

As an example, consider the case where the AX register contains OF05,,, the DX
register contains 068A ¢, and the CX register contains 08E9 . After the instruction

Dlv CX

has executed, the AX register will contain the quotient BBE1 ¢, and the DX register will
contain the 073C . The values of the OF, SF, ZF, AF, PF, and CF flags are undeter-
mined for this operation, i.e., you have no idea what the value of a particular flag will be
following DIV.

3-106 The 8086 Book

Data
o D I T S zZ A P Memory
pswl] | | I?I?l?l?l?l
AX . XX vy
BX
CX ag hh
DX ww w
Program (Relative to the
Memory CS Register)
SP F7 ppppm
BP F1 ppppm' + 1
Si ppppm + 2
DI ppppm + 3
PC mm mm
Ccs nn nn
s Program Memory
ss Address Calculation
ES
3% wwvvxxyy is divided by gghh. Quotient is returned to AX.
Remainder is returned to DX
DIV CX
Number of cycles: 32-bit memory divide: (150 168) + EA

16-bit memory divide: (86-96) + EA

32-bit register: 144-162

16-bit register: 80-90

Notes:

1. The values for all of the arithmetic flags are undetermined after this instruction has
executed.

2. If it is necessary to determine whether the DIV instruction will result in a division
by 0 interrupt prior to the execution of the DIV instruction, the following instruc-
tion sequences will prove helpful.

16-bit division: Assume that CL contains the divisor.

CMP AH, CL
JNB OVERFLOWS$HANDLER

32-bit division: Assume that BX contains the divisor.

CMP DX,BX
JNB OVERFLOWS$HANDLER

This sort of check would be useful if the divide by zero interrupt handler was not
sufficient for your purposes.

8086 Assembly Language Instruction Set 3-107

ESC mem

Access Memory Location

This instruction places the contents of the specified memory location on the data
bus. Essentially this instruction performs no operation as far as the 8086 is concerned.
This instruction is used to allow other processors to make use of 8086 addressing modes
and to receive their instructions from the 8086 instruction stream.

The encoding for this instruction is:

ESC
I 1101 lxxd r mod xxx r/m |
T—-—I—Addressing mode information as

described earlier in this chapter

x is a don’t care bit, i.e., this may bea O
or a 1. Note that these don’t care bits
result in all instructions with initial
opcode between D81 g and DF ¢ g being
considered ESC instructions

Suppose that the BX register contains 063A 4, the SI register contains 0003,,, the DS
register contains FF80,,, and the word at memory location FFE3D, is C308,,. When

the instruction
ESC (BX + S|

executes, at the time when the READY line is asserted by the addressed memory
device, C308, will be present on the data lines.

3-108 The 8086 Book

Data
O b I T s8 Z A P C Memory
ewl | T T T T TT] v
xxyy to the xx
AX Data Bus
BX g9 99
CX
DX
Program (Relative to the
Data Memory .
Address Calculation Memory CS Register)
SP D8 Ppppm
BP 00 ppppm + 1
Si hh hh ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn Program Memory
Address Calculation
DS qq qq
SS
ES
ESC
Number of cycles: 8 + EA
Notes:

1. If mod = 11 (i.e., a register is addressed), this instruction performs no operation.
CLOCK CYCLES = 2.

HLT

Halt the Processor

8086 Assembly Language Instruction Set 3-109

When the HLT instruction is executed, program execution ceases. It requires an
external interrupt or a reset to restart execution. No registers or statuses are affected.

CAUTION: Ifinterrupts are not enabled by an STI instruction prior to the HLT instruc-
tion, the 8086 CPU cannot exit the Halt state except by activation of the

AX
BX
CX
DX

sP
BP

S|
DI
PC

DS
SS
ES

hardware Reset or nonmaskable interrupt.

The encoding for this instruction is:

HLT
—
Fa4

cs

nn

nn

HLT
Number of cycles: 2

Data
Memory

Program (Relative to the
Memory CS Register)

F4 PPPpmM

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

3-110 The 8086 Book

IDIV mem/reg
Divide AX or DX:AX by Register or Memory Location

Divide the AX (16-bit operation) or DX:AX (32-bit operation) register by the
contents of the specified register or memory location, considering both operands as
signed binary numbers. If a 16-bit operation is performed, the 8-bit quotient is returned
in the AL register; the 8-bit remainder is returned in the AH register. If the quotient to
be returned is greater than 7F,, then a type 0 (division by zero) interrupt is generated.
If a 32-bit operation is performed, the 16-bit quotient is returned to the AX register, the
16-bit remainder is returned to the DX register. If the quotient to be returned to the AX
register is greater than 7FFFF , then a type 0 (division by zero) interrupt is generated.

A division by zero interrupt results in the following actions:

Push the Flags register onto the stack.

Clear the IF and TF flags.

Push the CS register onto the stack.

Load the word at memory location 00002 into the CS register.
Push the PC onto the stack. :
Load the word at memory location 00000, into the PC register.

SANNAE il

The encoding for this instruction is:

IDIV mem/reg
[T711011w] [mod111¢/m |

Addressing mode byte(s) as described
earlier in this chapter.

w =0 16-bit operation
w =1 32-bit operation

Suppose that the CL register contains 0D, and the AX register contains 00A9,. After

the instruction
DIV CL

has executed, the AX register will contain 000D .

8086 Assembly Language Instruction Set 3-111

Data
Memory

[[]]

AX

XX

Yy

BX

CcX

2z

DX

Program (Relative to the
Memory CS Register)

SsP

F6 ppppm

8P

F9 ppppm + 1

St

ppppm + 2

DI

ppppm + 3

PC

Ccs

nn

nn

DS

Program Memory

SS

Address Calculation

ES

Notes:

*Return quotient to the AL register.
Return remainder to AH register

DIV CL

Number of cycles: 16-bit memory division: (107-118) + EA

32-bit memory division: (171-190) + EA
16-bit register division: 101-112
32-bit register division: 165-184

1. This is the signed number division instruction. Both operands are treated as signed

binary numbers in the range:

8-bit operation: +127 to —128
16-bit operation: +32767 to —32768

For an unsigned division, consult the DIV instruction.

2. After this instruction executes, the values of the flags are unknown.

3-112 The 8086 Book

IMUL mem/reg
Multiply AL or AX Register by Register or Memory Location

Multiply the specified register or memory location contents by the AL (8-bit
operation) or AX (16-bit operation) register considering both operands as signed binary
numbers, i.e., perform a signed multiplication. If an 8-bit operation is performed, the
low-order 8 bits of the result will be stored in the AL register, the high-order 8 bits of the
result will be stored in the AH register. If a 16-bit operation is performed, the low-order
16 bits of the result are stored in the AX register, the high-order 16 bits of the result are
stored in the DX register. In either case, if the high-order half of the result is the sign
extension of the low-order half of the result then the Overflow and Carry flags are set to
0, otherwise they are set to 1. (For example, if an 8-bit operation is performed, if the
value returned to the AH register is not 00,, or FF,, then the Carry and Overflow flags
will be 1.) 0 status values mean that AH or DX contains significant digits.

The encoding for this instruction is:

IMUL mem/reg
[1t1110117w] [modi01r/m |

Addressing mode byte(s) as described
earlief in this chapter.

w =0 8-bit operation
w =1 16-bit operation

As an example, consider the case where the AX register contains 04E8,, the DS
register contains 01004, the BX register contains 0006,¢ and the word at memory loca-
tion 01006, is 4E20 ;. After the instruction

IMUL AX, [BX]

has executed, the AX register will contain 4D00,,, the DX register will contain 017F 4
and the Carry and Overflow statuses will be 1.

8086 Assembly Language Instruction Set 3-113

Data (Relative to the

O DI T S Z A P C Memory DS Register)
Psw[x| | | |7|?]7[7|x| w g
ww rrreg + 1
AX XX vy
BX ag ag
XXYY * WWWV
CX
DX
Program (Relative to the
Memory CS Register)
SP F7 pPpppm
BP 2F ppppm + 1
Sl ppppm + 2
mmmm + 2
[o]] ppppm + 3
PC mm mm
2’:’:?’8 Program Memory
cs nn nn ppppm Address Calculation
DS hh hh
ss ggggg Data Memory
ES Trrrg Address Calculation
IMUL AX,[BX]

Number of cycles: 8-bit memory multiply: (86 + 104) + EA
16-bit memory multiply: (134 + 160) + EA
8-bit register multiply: 80-98
16-bit register muitiply: 128-154

Notes:

1. Thisis the signed number multiply operation. Both operands are treated as numbers
in the range:

8-bit operation: +127 to —128
16-bit operation: +32767 to —32768

For an unsigned multiply operation, consult the instruction MUL.

2. In some cases, it may be more appropriate to use shifts to perform multiplications.
These cases would occur when memory conservation is not of paramount impor-
tance and speed is necessary.

3. After this instruction has executed, the values of the Sign, Zero, Arithmetic, and
Parity flags are undefined.

3-114 The 8086 Book

IN ac,DX

Input to Accumulator

This instruction loads 8- or 16-bit data elements into the AL (8-bit transfer) or
AX (16-bit transfer) register from the 1/0 port identified by the contents of the DX
register.

The encoding for this instruction is:

IN ac,DX

Ew =0 8-bit data transfer to AL

w =1 16-bit data transfer to AX

No other registers (with the exception of AL or AX) or statuses are affected.
Suppose that the DX register contains 1234, the 1/0 buffer at Port 1234, con-
tains 23, and 1/0 buffer at Port 1235, contains F4,,. Executing an

IN AX,DX
will load 23,4 into the AL register and F4,¢ into the AH register.

8086 Assembly Language Instruction Set 3-115

vy XX
Data
O D I T S zZ2 A P C Memory
1/0 Port 1/0 Port
PSWLl I l l | | | | I 2zzz + 1 2222
e
il P — —
AX Yy XX
BX
CX
DX 2z 2z
Program (Relative to the
Memory CS Register)
SP ED ppPpPpmM
BP ppppm + 1
Sl ppppm + 2
DI ppppM + 3
PC mm mm
cs nn nn Program Memory
DS Address Calculation
SS
ES
IN AX,DX
Number of cycles: 8
Notes:

1. This instruction allows the user to access input ports which have been assigned
addresses between 0 and FFFF .

3-116 The 8086 Book

IN ac,port
Input to Accumulator

This instruction loads 8- or 16-bit data elements into the AL (8-bit transfer) or

AX (16-bit transfer) register from the 1/0 port identified by the second byte of the
instruction.

The encoding for this instruction is:

IN ac,port
[1110010wJ| vy |

[——yy is 8-bits specifying the I/O port

w =0 8-bit data transfer to AL

w =1 16-bit data transfer to AX

No other registers (with the exception of AL or AX) or statuses are affected.
Suppose that the 1/0 buffer at Port 06, contains 43 .. Executing an

IN ALO06H
instruction will load 43, into the AL register.

8086 Assembly Language Instruction Set 3-117

XX

Data
O b I T S8 zZ A P C Memory
[T TT T T T TT1] [orew]
AX - /
BX
CX
DX
Program (Relative to the
Memory CS Register)
sP E4 PPppm
BP Yy pPpppm + 1
SI ppppm + 2
DI ppppm + 3
PC mm mm
cS nn nn Program Memory
Address Calculation
DS
SS
ES
IN ALyy
Number of cycles: 10"
Notes:

1. This instruction allows the user to access I/O ports which have been assigned
addresses between 0 and FF,. To address ports whose addresses are outside this
range, consult the instruction IN ac,DX.

2. This instruction performs the same function as the 8080 instruction IN port.

3-118 The 8086 Book

INC mem/reg
Increment Register or Memory Location
Add 1 to the contents of the specified register or memory location. An 8- or 16-bit

operation may be specified.
The encoding for this instruction is:

INC mem/reg
[111711171w] [mod 000 /m |

Addressing mode bytels) as described
earlier in this chapter

w =0 8-bit operation
w =1 16-bit operation

Consider the case in which the DS register contains F800,,, the contents of the BX
register are 02804, the SI register contains 1E,,, and memory location F829E,, contains
64,,. After the execution of the instruction

INC [BX + Sli]
location F829E,, will contain 65,.
Data (Relative to the
o b I T s z2 A P C Memory DS Register)
o [T T XX X<] @) o Jen
zzzzz + 1
AX
Data Memory
BX ag ag Address Calculation
[Ogggg
Ohhhh
rerrQ
DX 22222)
Program (Relative to the
Memory CS Register)
sSP FE ppppm
8P 00 ppppm + 1
Sl hh hh ppppm + 2
[all ppppm + 3
PC mm mm
Ccs nn nn
bs " " Program Memory
Address Calculation
SS
ES
INC [BX + SI]

Number of cycles: Memory Operand: 15 + EA
Register Operand: 3

8086 Assembly Language Instruction Set 3-119

Notes:
1. Segment registers may not be incremented by this instruction.

2. This instruction can perform the same function as the 8080 instruction INR reg.
Note also that this instruction has a good deal more power than the 8080 instruc-
tion,

3. This instruction would not normally be used to increment one of the 16-bit
registers. The instruction INC reg performs this function and only occupies one byte
of program memory space. This instruction would be used to increment one of the
8-bit registers and memory locations.

4. This instruction does not affect the Carry status.

3-120 The 8086 Book

INC reg

Increment Register

Add 1 to the contents of the specified register. This is a 16-bit increment instruc-
tion.
The encoding for this instruction is:

INC reg
01000rrr

‘L 3 bits which specify which 16-bit
register is to be incremented.

rrr = 000 for AX
001 for CX
010 for DX
011 for BX
100 for SP
101 for BP
110 for S|
111 for DI

Consider the case where the contents of the SI register are 00FF . Executing an
INC Sl
will result in the contents of the SI register being incremented to 0100,

8086 Assembly Language Instruction Set 3-121

Data
O b I T S8 Z A P C Memory
rsw [} T T [x[X[x[x]]
AX
BX
CX
DX
Program (Relative to the
Memory CS Register)
SP 46 PPpPpmM
BP ppppm + 1
Si kk kk ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn Program Memory
Address Calculation
DS
SS
ES
INC SI
Number of cycles: 2
Notes:

1. This instruction performs the same function as the 8080 instruction INX reg.
2. Segment registers may not be incremented using this instruction.

3. This instruction does not affect the Carry status.

3-122 The 8086 Book

INT

Software Interrupt

This instruction performs the following sequence of operations:

1.

2
3.
4

Push the Flags register onto the stack.
Clear the IF and TF flags to 0.
Push the CS register onto the stack.

Load the word at memory address 00xxx into the CS register. xxx is deter-
mined by the low-order bit of the op-code and possibly the second byte of the
instruction. If the low-order bit of the op-code is 0, then xxx is 00E. If the
low-order bit of the op-code is 1, then xxx is equal to 2 plus 4 times the second
byte of the instruction. In other words,

IF low-order bit = 0 THEN xxx = 00E,,
ELSE xxx = (4*2nd byte) + 2

Push the PC register onto the stack.

Load the word at memory address 00yyy into the PC register. yyy is deter-
mined by the low-order bit of the op-code and possibly the second byte of the
instruction. If the low-order bit of the op-code is 0, then yyy is 00C,,. If the
low-order bit of the op-code is 1, then yyy is equal to 4 times the second byte
of the instruction. In other words,

IF low-order bit = 0 THEN yyy = 00C,,
ELSE yyy = 4 * 2nd byte

The encoding for this instruction is:

INT

[T100110ov][e |

This byte is only present if v = 1. Used
to calculate interrupt vector address

v=0 Interrupt vector address is 0000Cqg

v =1 Interrupt vector address is 4+ 2nd byte
of the instruction

AX
BX
CX
DX

SP
BP
Si
DI
PC

Ccs
DS
SS
ES

ss

ss

mm

nn

nn

* Program Memory Address Calculation
** Data Memory Address Calculation

8086 Assembly Language Instruction Set 3-123

Ossss
tttt0**
uuuus

Number of cycles: 62 if v=0

51ifv=1

Data
Memory

Yy

XX

ww

vv

Data
Memory

mm + 1

nn

nn

Flags(LO)

Flags(HI)

Program
Memory

cc

0000C
0000D
0000E
0000F

00010

(Relative to the

SS Register)
uuuus - 6
uuuus - 5
uuuus - 4
uuuus - 3
uuuus - 2
uuuus - 1
uuuus

(Relative to the
CS Register)

pPPPM
pPpPPM + 1

pPPPM + 2

3-124 The 8086 Book

INTO
If Overflow Flag = 1, Perform Type 4 Interrupt

If the Overflow flag is 0, this instruction performs no operation. If the Overflow
flag is 1, the following sequence of events occurs:

Push the Flags régister onto the stack.
Set the IF and TF flags to 0.
Push the CS register onto the stack.

Move the word at memory location 000124 into the CS register.

T N SR

- Push the PC register onto the stack.
6. Move the word at memory location 00010, into the PC register.

Continue execution from this point.
The encoding for this instruction is:
INTO

——

CE

8086 Assembly Language Instruction Set 3-125

Data (Relative to the

T S 2 A P C Memory DS Register)

O D |
psw| | | & [1] I\ v Joooosg
XX 00114¢
AX ww 00124¢
BX i;'\(l)w:l'l vV 00131¢
CcX
70=1
DX if O
Data (Relative to the
SSS— Memory SS Register)
if 0=1
SP ss ss mm + 1 Juuuus - 6
BP if 0 =1 » mm Juuuus - 5
S| nn uuuus — 4
DI ifO =1 nn uuuus - 3
pPC mm mm [Flags (LO){ uuuus - 2
mmmm + 1
fO=0 Flags (H) | uuuus - 1
CcS nn nn . uuuus
Program Memory
DS Address Calculation
SS tt tt g";f:f:fg Program (Relative to the
Memory CS Register)
£s WH-T ry egister
- CE Ppppm
ppppm + 1
Ossss ppppm + 2
tttt0
uuuus ppppm + 3
Data Memory

Address Calculation

INTO
Number of cycles: 53 if overflow set
4 if not

3-126 The 8086 Book

IRET

Return from Interrupt

Pop the two top stack bytes into the program counter; these two bytes provide the
offset address for the next instruction to be executed. Pop the next two stack bytes into
the CS register; these two bytes provide the code segment address of the next instruc-
tion to be executed. Pop the next two stack bytes into the Flags register. Previous pro-
gram counter, code segment and Flags register contents are lost.

The encoding for this instruction is:

IRET

—-——

CF

Data (Relative to the

’/’———" Memory SS Register)
vy uuuus

— — S ——~—
O b I T s zZ A P C °) XX uuuus — 1
PSW[I I | | | I | l] ww Juuuus - 2
wv uuuus - 3

AX " uuuus — 4

BX ° qaq uuuus - 5

CcX

DX

Program (Relative to the
Memory CS Register)
SpP ss ss CF Ppppm
BP ppppm + 1
Program Memory

S| Address Calculation Ppppm + 2

o ORang pogp + 3

PC mm mm ppppm

cs nn nn

DS Data Memory

ss " @ Address Calculation

ES

IRET
Number of cycles: 24

8086 Assembly Language Instruction Set 3-127

JA disp
JNBE disp

Jump if Not Below or Equal
This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Carry flag and the Zero flag are 0; otherwise the next instruction is

executed.
The encoding for this instruction is:

JNBE disp
o
77

EThis is an 8-bit displacement byte,

as described earlier in this chapter

In the following instruction sequence

C=0andZ=0 C=torz=1
e Y 1 NEXT

AND AL, 7FH

— —NEXT XCHG BX, [BP + S| + OF631H)

[e |

after the JNBE instruction, the XCHG instruction is executed if the Carry flag and the
Zero flag are 0. The AND instruction is executed if the Carry flag or the Zero flag is 1.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-128 The 8086 Book

JAE disp
JNB disp

Jump if Not Below/Jump if Above or Equal

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Carry flag is 0, otherwise the next instruction is executed.
The encoding for this instruction is:

JNB disp
e~

73

:This is an 8-bit displacement byte,

as described earlier in this chapter
In the following instruction sequence

c=1

cC=0

F-——----- B NEXT
H AND AL,7FH
\ -

| ——

] _

L

— —> NEXT XCHG BX, [BP + S| + OF631H]

after the JNB instruction, the XCHG instruction is executed if the Carry flag is 0. The
AND instruction is executed if the Carry flag is 1.

Number of cycles: Jump is performed: 16 o
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-129

JB disp
JNAE disp

Jump if Beiow/Jump if Not Above or Equal

This instruction is identical to the JMP instruction except that the Jump is
executed only if the Carry flag is 1.
The encoding for this instruction is:

JB disp
——
72

EThis is an 8-bit displacement byte, as

described earlier in this chapter

In the following instruction sequence
c=0
c=1
F————--- NEXT
I AND AL,7FH
|
|
|

L —-NEXT XCHG BX, [BP + SI + OF631H]
after the JB instruction, the XCHG instruction is executed if the Carry flag is 1. The
AND instruction is executed if the Carry status is 0.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-130 The 8086 Book

JBE disp
JNA disp

Jump if Below or Equal/Jump if Not Above

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if either the Carry status or the Zero status is 1; otherwise the next
instruction is executed.

The encoding for this instruction is:
JBE disp
——
76

| disp I

This is an 8-bit displacement byte,
as described earlier in this chapter

In the following instruction sequence

C= =
Cotorz=1 OandZ=0
-------JgE NEXT

| AND AL7FH

L —= NEXT XCHG BX, [BP + SI + OF631H]

after the JBE instruction, the XCHG instruction will be executed if the Carry status or

the Zero status is 1. If both the Carry and Zero statuses are 0, then the AND instruction
will be executed.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-131

JCXZ disp
JumpifCX =0
This instruction is identical to the JMP disp instruction except that the Jump is

executed only if the CX register is 0; otherwise the next instruction is executed.
The encoding for this instruction is:

JCXZ disp
N
E3

| disp I

This is an 8-bit displacement byte,
as described earlier in this chapter

In the following instruction sequence

cX =0
CX =0
ARD AL, 7FH

F—------- Xz NEXT
H
I
L}
[}

L — NEXT XCHG BX, [BP + S| + OF631H]

after the JCXZ instruction, the XCHG instruction is executed if the CX register is 0.
The AND instruction is executed if the CX register is not 0.

Note that this instruction does not reference the Zero flag to determine if CX is 0;
the CX register is referenced directly.

Number of cycles: Jump is performed: 18
Jump is not performed: 6

3-132 The 8086 Book

JE disp
JZ disp

Jump if Zero/Jump if Equal
This instruction is identical to the JMP disp instruction except that the Jump is

executed only if the Zero status equals 1; otherwise the next instruction is executed.
The encoding for this instruction is:

Jz disp
———
74

This is an 8-bit displacement byte,
as described earlier in this chapter

In the following instruction sequence

| -
L —NEXT XCHG BX, [BP + S| + OF631H]

after the JZ instruction, the XCHG instruction is executed if the Zero status equals 1.
The AND instruction is executed if the Zero status equals 0.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-133

JG disp
JNLE disp

Jump if Greater/Jump if Not Less nor Equal

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Zero flag is 0 and the Sign flag equals the Overflow flag; otherwise
the next instruction is executed.

The encoding for this instruction is:
disp

JG
~——

7F

This is an 8-bit displacement byte,
as described earlier in this chapter

In the following instruction sequence

Z=10rS§=0

§=0andz=0

F=——----- NEXT
AfD AL7FH

L —NEXT XCHG BX, [BP + S| + OF631H]

after the JG instruction, the XCHG instruction will be executed if the Zero status is 0
and the Sign status equals the Overflow status. If the Zero status is 1 or the Sign status
does not equal the Overflow status, then the AND instruction is executed.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-134 The 8086 Book

JGE disp
JNL disp

Jump if Not Less/Jump if Greater Than or Equal

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Sign status is equal to the Overflow status; otherwise the next
instruction is executed.

The encoding for this instruction is:

JNL disp
o——

7D
disp

This is an 8-bit displacement, as
described earlier in this chapter.

In the following instruction sequence

s=0 S #0

r————--- JNL NEXT
D AL,7FH

L — NEXT XCHG BX, [BP + S| + OF631H]

after the JNL instruction, the XCHG instruction is executed if the Sign status is equal to
the Overflow status. The AND instruction will be executed if the Sign status is not equal
to the Overflow status.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-135

JL disp
JNGE disp

Jump if Less/Jump if Not Greater Than or Equal

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Sign flag is not equal to the Overflow flag; otherwise the next
instruction is executed.

The encoding for this instruction is:

JL disp

7C
I disp l

This is an 8-bit displacement, as
described earlier in this chapter.

In the following instruction sequence

r=—""eo
I %

}

1

1

1

]

]
e
S o
0
o

>z
LR
a4

T

— NEXT XCHG BX, [BP + S| + OF631H]

after the JL instruction has executed, the XCHG instruction will be executed if the Sign
status is not equal to the Overflow status. The AND instruction is executed if the Sign
status and the Overflow status are equal.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-136 The 8086 Book

JLE disp
JNG disp

Jump if Less or Equal/Jump if not Greater

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Zero flag is set or the Sign flag is not equal to the Overflow flag;
otherwise the next instruction is executed.

The encoding for this instruction is:

JLE disp
~——
7E

| disp I

This is an 8-bit displacement byte, as
described earlier in this chapter

In the following instruction sequence

Z=1o0r Z=0andS =0
s#0

r———-—--- NEXT

| AfID AL, 7FH
I
|

[] —
L —» NEXT XCHG BX, [BP + S| + OF631H]

after the JL instruction, the XCHG instruction is executed if the Zero flag is 1 or if the
Sign flag is not equal to the Overflow flag. The AND instruction is executed if the Zero
status is 0 and the Sign status equals the Overflow status.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-137

JMP addr

Jump to the Instruction Identified in the Operand

Move the contents of the next two program memory bytes into the PC register.
Move the contents of the succeeding two program memory bytes (bytes 4 and 5 of the
instruction) into the CS register. Continue execution from this point. The previous pro-
gram counter and Code Segment register contents are lost.

The encoding for this instruction is:

JMP addr

a——

EA
L w J i [m [e |

L

High-order 8 bits of the new segment
address. This byte is placed in the high-
order byte of the CS register.

Low-order byte of the new segment
address. This byte is stored into the
low-order byte of the CS register.

High-order 8 bits of the new offset
address. This byte is moved in the: high-
order byte of the program counter.

Low-order 8 bits of the new offset
address. This byte is moved into the
low-order byte of the program counter.

3-138 The 8086 Book

Data
O D1 T S zZ A P C Memory
e [T T T T T 1111
AX
BX
CX
bx Program (Relative to the
Memory CS Register)
SP EA PPpPpmM
BP kk ppppm + 1
S| ji Ppppm + 2
DI hh ppppm + 3
PC mm mm 99
Program Memory
cs nn an Address Calculation
DS
SS
ES

JMP addr
Number of cycles: 15

8086 Assembly Language Instruction Set 3-139

JMP disp

Jump to the Instruction Identified in the Operand

This instruction adds the contents of the second object code byte (taken as a
signed 8-bit displacement) to the contents of the program counter plus 2; this becomes
the offset address of the next instruction to be executed. Previous program counter con-
tents are lost. The Code Segment register contents are unchanged.

The encoding for this instruction is:

JMP disp
——
EB

I disp I

8-bit displacement byte,
as described earlier in this chapter

In the following instruction sequence

JMP NEXT
AND AL, 7FH
NEXT XOR AL, 7FH

after the JMP instruction, the XOR instruction will be executed. The AND instruction
will never be executed unless a Jump or Call instruction somewhere else in the
sequence branches to this instruction.

3-140 The 8086 Book

Data
O b I T S8 Z A P C Memory
ewl | [[T T T T 1]
AX
BX
CX
DX
Program (Relative to the
Memory CS Register)
sP EB pPpPppm
BP kk ppppm + 1
sign extend
si kk to kkkk ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn
DS
Program Memory
ss Address Calculation
ES
JMP kk
Number of cycles: 15 clocks
Notes:
1. This instruction uses Program Relative addressing, which is similar to Program

Relative Paging as described ini An Introduction to Microcomputers: Volume I — Basic
Concepts (Osborne/McGraw-Hill, 1978). The exception is that the program counter
contents are incremented to point to the next instruction before the 8-bit signed dis-
placement is added.

8086 Assembly Language Instruction Set 3-141

JMP disp16

Jump to the Instruction Identified in the Operand

Add the contents of the next two program memory bytes, treating them as a 16-bit
unsigned displacement, to the program counter. Continue execution from this point.
The previous program counter contents are lost.

The encoding for this instruction is:

JMP disp16
——

E9

I ——

High-order 8 bits of the 16-bit

displacement
Low-order 8 bits of the 16-bit
displacement
In the following instruction sequence
JMP NEXT
BRICKS AND AL, 7FH

NEXT STOS BYTE

after the JMP instruction has executed, the STOS instruction will be executed. The
AND instruction will never be executed unless a CALL or JMP instruction somewhere
else in the instruction sequence refers to BRICKS as its operand.

3-142 The 8086 Book

Data
O DI T S zZ A P C Memory
e [T T T T T 111
AX
BX
CX
DX
Program (Relative to the
Memory CS Register)
SP] E9 PPppm
BP kk ppppm + 1
S il ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn
Program Memory
DS Address Calculation
SS
ES

JMP jikk
Number of cycles: 15

8086 Assembly Language Instruction Set 3-143

JMP mem
Jump to the Instruction Specified by the Operand

Move the word at the specified memory location into the program counter; move
the succeeding word into the CS register. Continue execution from this point. Previous
program counter and Code Segment register contents are lost.

The encoding for this instruction is:

JMP mem
ot
FF

| mod 101 r/m I

Addressing mode byte(s). As described
earlier in this chapter

Suppose that the DS register contains 7000,,, the DI register contains 0404, the word
at memory location 70404, is 10005, and the word at memory location 70406, is
TEO00,,. After the instruction

JMP [DI]

has executed, the program counter will contain 1000, and the CS register will contain
TE00,,. Instruction execution will continue from location 7F000 .

3-144 The 8086 Book

Data (Relative to the

o D I T s z A P C Memory DS Register)
ewl | [[[T [T 1] w_ |
XX rerrg 4 1
AX ww rrrrg + 2
BX w rrrrg + 3
CX rrrrg + 4
DX
Program (Relative to the
Memory CS Register)
SsP FF ppPPM
BP 25 ppppm + 1
Sl ppppm + 2
Data Memory
DI 99 99 Address Calculation ppppm + 3
PC mm mm
cs nn nn
DS hh hh
SS Program Memory
Address Calculation
ES
JMP [DI]
Number of cycles: 24 + EA intersegment
Notes:

1. Register addressing is not valid for this instruction.

8086 Assembly Language Instruction Set 3-145

JMP mem/reg
Jump to the Instruction Specified by the Operand

If the specified operand is a register, move the contents of the register into the
program counter. If the specified operand is a memory location, move the contents of
the memory location into the program counter. Continue execution from this point.
Previous program counter contents are lost. The CS register is unchanged.

The encoding for this instruction is:

JMP mem/reg
Sy
FF

l mod 100 r/m I

Addressing mode byte(s). As described
earlier in this chapter.

Suppose that the BX register contains 14A9,,. After the instruction

JMP BX

has executed, the PC will contain 14A9,, and execution will resume with 14A9,¢ as the
offset address for the next instruction.

3-146 The 8086 Book

[0}

D

PSWl |

AX

BX

XX

Yy

CX

DX

SP

BP

Sl

DI

PC

mm

mm

cs

nn

nn

DS

Program Memory
Address Calculation

SS

ES

Notes:

Number of cycles: JMP BX: 11 through registers

Data
Memory

Program
Memory

FF

E3

JMP [BX]: 18 + EA through memory

1. This is an intrasegment indirect Jump.
2. No registers or statuses are affected.

(Relative to the
CS Register)

ppPppm
ppppm + 1
ppppm + 2

ppppm + 3

8086 Asserhbly Language Instruction Set 3-147

JNE disp
JNZ disp

Jump if Not Equal/Jump if Not Zero

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Zero flag is equal to 0; otherwise the next instruction is executed.
The encoding for this instruction is:

JNE disp
—r
75

This is an 8-bit displacement byte, as
described earlier in this chapter

In the following instruction sequence

— NEXT XCHG BX, [BP + S| + OF631H]

after the JNE instruction, the XCHG instruction will be executed if the Zero flag is 0.
The AND instruction will be executed if the Zero flag is 1.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-148 The 8086 Book

JNO disp

Jump on Not Overflow

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Overflow status is 0; otherwise the next instruction is executed.
The encoding for this instruction is:

JNO disp
e
7

| disp l

L This is an 8-bit displacement byte, as
described earlier in this chapter

In the following instruction sequence

o=1
0=0
D AL, 7FH

L — NEXT XCHG BX, [BP + S| + OF631H]

after the JNO instruction, the XCHG instruction is executed if the Overflow status is 0.
The AND instruction is executed if the Overflow status is 1.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-149

JNP disp
JPO disp

Jump if No Parity/Jump if Parity Odd

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Parity flag is 0; otherwise the next instruction is executed.
The encoding for this instruction is:
JNP disp
——
78

| disp I
This is an 8-bit displacement byte, as

described earlier in this chapter

In the following instruction sequence

P=1

—————UNP NEXT
D AL 7FH

=0

22—

——— e

L — NEXT X

(o]

HG BX, [BP + SI + OF631H]

after the JNP instruction, the XCHG instruction is executed if the Parity flag is 0. The
AND instruction is executed if the Parity flag is 1.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-150 The 8086 Book

JNS disp
Jump on Not Sign

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Sign flag is 0; otherwise the next instruction is executed.
The encoding for this instruction is:
JNS disp
——
79

| disp l

This is an 8-bit displacement byte, as
described earlier in this chapter

In the following instruction sequence

s=1
¥ NEXT
AHID AL7FH

S
r
|
1
|
1

L —» NEXT XCHG BX, [BP + S| + OF631H]

after the JNS instruction is executed, the XCHG instruction executes if the Sign status
is 0; otherwise the AND instruction executes.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-151

JO disp
Jump if Overflow
This instruction is identical to the JMP disp instruction except that the Jump is

executed only if the Overflow flag is 1; otherwise the next instruction is executed.
The encoding for this instruction is:

JO disp
——
70

l disp l

This is an 8-bit displacement byte, as
described earlier in this chapter.

In the following instruction sequence

I
|
|
[}
b — NEXT XCHG BX, [BP + S| + OF631H]

after the JO instruction, the XCHG instruction will be executed if the Overflow status is
1. If the Overflow status is 0, then the AND instruction will be executed.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-162 The 8086 Book

JP disp
JPE disp

Jump if Parity Even

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Parity flag is 1; otherwise the next instruction is executed.
The encoding for this instruction is:
JP disp

——

7A

I disp I

This is an 8-bit displacement byte, as
described earlier in this chapter

In the following instruction sequence

P=0

=1

SR NEXT
D AL, 7FH

L —=NEXT XCHG BX, [BP + SI + OF631H]

-————x

after the JP instruction, the XCHG instruction will be executed if the Parity status is 1. If
the Parity status is 0, then the AND instruction will be executed.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-163

JS disp
Jump if Sign Status is One

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Sign status is 1.

The encoding for this instruction is:

Js disp
——
78

CThis is an 8-bit displacement byte, as

described earlier in this chapter

In the following instruction sequence

s
F-—————- J NEXT
D AL7FH

|
]
1
i
L — NEXT XCHG BX, [BP + SI + OF631H]

after the JS instruction, the XCHG instruction will be executed if the Sign status is 1. If
the Sign status is 0, then the AND instruction will be executed.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-154 The 8086 Book

LAHF
Load 8080 Flags into AH Register

This instruction moves the low-order eight bits of the Flags register into the AH
register. The eight bits that are moved are:

7 6 5 4 3 2 1 0
[se[ze| x | aF] x [e[x | cr]
where X indicates an undetermined value.
The encoding for this instruction is:
LAHF
~——
9F

As an example, consider the case where the Carry and Parity flags are 1, the Zero, Sign,
and Arithmetic flags are 0. Executing an

LAHF
instruction would move
00XO0X1X1

into the AH register.

8086 Assembly Language Instruction Set 3-165

Data
Memory
BX
CcX
DX
Program (Relative to the
Memory CS Register)
SP 9F ppppm
BP ppppm + 1
Si ppppm + 2
DI ppppm + 3
PC mm mm
Ccs nn nn
Program Memory
DS Address Calculation
SS
ES
LAHF
Number of cycles: 4
Notes:

1. No statuses are affected. No registers except AH are affected.

2. This instruction is used in conjunction with PUSH AX to emulate the 8080 instruc-
tion PUSH PSW.

8086 Code 8080 Code

LAHF PUSH PSW
PUSH AX

3-156 The 8086 Book

LDS reg,mem
Load Register and DS from Memory

Load the contents of the specified memory word into the specified register. Load
the contents of the memory word following the specified memory word into the DS
register.

This instruction’s encoding is:

LDS reg.mem
———
C5

I mod reg r/m I

Mod and r/m are used to specify the
memory address, as described earlier in
this chapter.

3 bits specifying the destination
register.
rrr = 000 for AX

001 for CX

010 for DX

011 for BX

100 for SP

101 for BP

110 for SI

111 for DI

As an example, consider the case where the DS register contains C000,¢, the word at
memory location C0010,, contains 0180, and the word at memory location C0012,,
contains 2000,,. After the instruction

LDS S, [10H]

has executed, the SI register will contain 0180, and the DS register will contain 2000,

8086 Assembly Language Instruction Set 3-157

Data
DI T S8 Z A P C Memory
swl [[T T T T11
Yy
AX XX
BX ww
CX w
DX
Program
Memory
SP C5
mmmm + 4
BP 36
S Program Memory kk
Address Calculation "
DI]
PC mm mm
cs nn nn
DS hh hh
SS
Data Memory
ES Address Calculation
LDS Siljjkk]
Number of cycles: 16 + EA
Notes:

1. No statuses are affected.

(Relative to the
DS Register)

rrrrk
rrrck 4+ 1
rrrrk 4+ 2

rerrk + 3

rrrrk + 4

(Relative to the
CS Register)

pPpPppm
ppppm + 1
ppppm + 2

ppppm + 3

2. If mod is 11, then the operation performed by this instruction is undefined.

3-158 The 8086 Book

LEA reg.mem
Load Register with Offset Address

Load the 16-bit offset address that is used to specify the memory operand into the
specified register.)
The encoding for this instruction is:

LEA reg,mem
———
8D

| mod reg r/m I

Mod and r/m are used to specify the
memory addressing option as described
earlier in this chapter.

3 bits specifying the destination
register.
rrrr = 000 for AX

001 for CX

010 for DX

011 for BX

100 for SP

101 for BP

110 for SI

111 for DI

Suppose that the DS register contains 2800, the BX register contains 0400, and the SI
register contains 003C 4. After the instruction

LEA BX, [BX + SI + OF62H]

has executed, the BX register will contain 139E,, which is the sum of the contents of
the BX and SI registers and the specified displacement.

8086 Assembly Language Instruction Set 3-169

Data
C Memory

AX

B8X fele]

99

gggg + hhhh
+ jikk

CX

DX

Program (Relative to the

Memory CS Register)

SP

8D pPPpPpmM

BP

98 ppppm + 1

Sl hh

hh

kk ppppm + 2

DI

i ppppm + 3

PC mm

CS nn

nn

Program Memory

DS

Address Calculation

SS

ES

Notes:

1. No statuses are affected.

LEA BX, [BX + SI + jikk]
Number of cycles: 2 + EA

2. If mod is 11, then the operation performed by this instruction is undefined.

3-160 The 8086 Book

LES reg,mem
Load Register and ES from Memory

Load the contents of the specified memory word into the specified register. Load
the contents of the memory word following the specified memory word into the ES
register. '

The encoding for this instruction is:

LES reg,mem
——
ca

| mod reg r/m I

Mod and r/m are used to specify the
memory address as described in this
chapter.

3 bits specifying the destination
register.
rrr = 000 for AX

001 for CS

010 for DX

011 for BX

100 for SP

101 for BP

110 for SI

111 for DI

Suppose that the DS register contains B000,,, the BX register contains 080A 4, the
memory word at location B080A,6 is 05A2,, and the memory word at BO80C,; is 4000,.
After the instruction

LES DL[BX)

has executed, the DI register will contain 05A2,, and the ES register will contain 4000,.

Notes:
1.
2.

AX
BX
CcX
DX

SP
BP
Sl
DI
PC

cs
DS
SS
ES

8086 Assembly Language Instruction Set 3-161

99

ele]

Data Memory
Address Calculation

mm

nn

nn

hh

hh

No statuses are affected.

LES DI,[BX]
Number of cycles: 16 + EA

Data
Memory

Yy

XX

Program
Memory

ca

3F

(Relative to the
DS Register)

rrrrg
rrrrg + 1
rrrrg + 2

rrrrg + 3

(Relative to the
CS Register)

pPpPpM
ppppm + 1
ppppm + 2

ppppm + 3

Program Memory
Address Calculation

If mod is 11, then the operation performed by this instruction is undefined.

The register specified in this instruction is typically the DI register, since the
DI register is the register normally associated with the ES register.

3-162 The 8086 Book

LOCK
Assert Bus Lock Signal

This instruction is used to force the 8086 to output the LOCK signal low. The
LOCK signal is held low for the duration of the next instruction.

This instruction is considered to be a prefix instruction, i.e., it precedes the
instruction for which the LOCK signal is to be asserted.

The encoding for this instruction is:

LOCK
———
FO
Data
O DI T S z A P C Memory
swl | [T T T T 1]
AX
BX
[09:4 The LOCK signal is
low for the
DX duration of
the execution of Program (Relative to the
the instruction Memory CS Register)
t +1
SP at ppppm FO pPEPM
BP ' pPPPM + 1
S| ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn
DS Program Memory
Address Calculation
SS
ES
LOCK
Number of cycles: 2
Notes:

1. This prefix may be used to preface any 8086 instruction. If, however, this prefix is
used in conjunction with the REP prefix and a string primitive, certain problems
may result. For a discussion of this topic, refer to the next chapter.

2. This prefix is very useful in the implementation of test-and-set sequences.

8086 Assembly Language Instruction Set 3-163

LODS
Load from Memory into AL or AX Register

Move from the memory location addressed by the SI register to the AL (8-bit
operation) or the AX (16-bit operation) register. The SI register is incremented/decre-
mented depending on the value of the DF flag.

The encoding for this instruction is:

LODS

I—- w = 0 8 bits are transferred.

If DF = O, the Sl register is
incremented by 1; otherwise it
is decremented by 1.

w =1 16 bits are transferred.
If DF = O, the Sl register is
incremented by 2; otherwise it
is decremented by 2.

For example, suppose that the DF flag is 0, the SI register contains 0035, the DS
register contains 4008, and the byte at memory location 400B5,q is OF . After the
instruction

LODS BYTE

has executed, the contents of the AL register will be OF; and the contents of the SI
register will be 0036,.

3-164 The 8086 Book

Data (Relative to the

oD T S z A P C Memory DS Register)
eswl [| [T [1] x|
rrerg + 1
AX
BX Data Memory
Address Calculation
CX Oggag
hhhhO
DX rrrrg
Program (Relative to the
Memory CS Register)
SP AC |ppppm
gggg + 1 :
BP ppppm + 1
S| ag 9g pPppm + 2
DI ppppm + 3
mmmm + 1
PC mm mm .
cs nn nn Ommmm Program Memory
annn0 Address Calculation
DS hh hh pppPPmM u
SS
ES
LODS BYTE
Number of cyles: 12 for single occurrence
9 + (13 times repetition if preceded by REP prefix)
Notes:

1. No statuses are affected.

2. The default segment register is the DS register. This may be overridden by the
appropriate segment override prefix.

3. Typically, the REP prefix is not used with this instruction.

4. As with other 8086 operations, some symbol must be given to the assembler to
allow the assembler to determine whether an 8- or 16-bit operation will be per-
formed. This subject will be discussed later in this chapter.

8086 Assembly Language Instruction Set 3-1656

LOOP disp

Decrement CX Register and Jump if Not Zero

This instruction decrements the CX register (not affecting the flags) and then
functions in the same manner as the JMP disp instruction, except that if the CX register

has not been decremented to 0, then the Jump is executed; otherwise the next instruc-
tion is executed.

The encoding for this instruction is:

LOOP disp
——
E2

| disp I

This is an 8-bit displacement byte, as
described earlier in this chapter

As an example, consider the following sequence of instructions:
MoV CX,LENGTH$OFPAYROLLSARRAY
PAYROLL$SUMMATIONS$ARRAY:
Calculate payroll sum here
LOOP PAYROLL$SUMMATIONSARRAY

The sequence of instructions between PAYROLL$SUMMATIONSARRAY and
the LOOP instruction will be executed LENGTHOFPAYROLLSARRAY times.

Number of cycles: Jump is performed: 17
Jump is not performed: 5

3-166 The 8086 Book

LOOPZ disp
LOOPE disp

Decrement CX Register and Jump if CX=0 and ZF=1

This instruction decrements the CX register (not affecting the flags) and then
functions in the same manner as the JMP disp instruction, except that if the CX register
has not been decremented to 0 and the Zero flag is 1 then the Jump is executed; other-
wise the next instruction is executed.

The encoding for this instruction is:

LOOPZ disp
E1

l disp I
This is an 8-bit displacement byte as

described earlier in this chapter.

As an example, consider the following sequence of instructions:

MoV CX,NUMBEROFPORTS

MOV DX,MAIN$PORT$GROUP

MoV BX,REDUNDANT$PORT$GROUP
TOP: IN AX,DX

INC DX

XCHG BX.DX

XCHG AX,BP

IN AX,DX

INC DX

XCHG BX,DX

CMmP AX,BP

LOOPE TOP

JNZ PORT$DISPUTE

The sequence of instructions between TOP and the LOOPE instruction compare
data available at two sets of input ports; one group is pointed to by
MAINSPORTSGROUP, and the other group is pointed to by
REDUNDANTS$PORT$GROUP. The instruction JNZ PORT$DISPUTE will be
executed after one of two scenarios has occurred:

1. A comparison has resulted in the Zero flag being set to 0, in which case the data at
the ports is not equal.

2. The instructions between TOP and LOOPE have executed NUMBERSOF$PORTS
times.

The JNZ instruction is used to differentiate between cases 1 and 2.

Number.of cycles: Jump is performed: 18
Jump is not performed: 6

8086 Assembly Language Instruction Set 3-167

LOOPNZ disp
LOOPNE disp

Decrement CX Register and Jump if CX =0 and ZF=0

This instruction decrements the CX register (not affecting the flags) and then
functions in the same manner as the JMP disp instruction, except that if the CX register
has not been decremented to 0 and the Zero flag is 0, then the Jump is executed; other-
wise the next instruction is executed.

The encoding for this instruction is:

LOOPNZ disp
N— ——
EO

| disp I

This is an 8-bit displacement byte as
described earlier in this chapter

As an example, consider the following sequence of instructions:

MoV SI,ELEMENT$TOSMATCH
LES DI

Mov CX,NUMBER OF ENTRIES
SEARCHFORMATCH: -

- :SEARCH FOR MATCH
LOOPNE SEARCHFORMATCH
The code between the SEARCHSFORSMATCH instruction and the LOOPNE

instruction will be executed until 1) CX is decremented to 0, or 2) the instruction before
LOOPNE sets the Zero flag to 1; e.g., the Zero status might be 1 if a match is found.

Number of cycles: Jump is performed: 19
Jump is not performed: 5

3-168 The 8086 Book

MOV mem/reg,, mem/reg,

Move Data from: * Register to Register
+ Memory to Register
* Register to Memory

This instruction is used to move 8- or 16-bit data elements between a register and
a register or memory location.)
The encoding for this instruction is:
MOV SRC.DEST
1001 Ode rmodregr/m |

Addressing mode byte as described
earlier in this chapter.

w = 0 8-bit move
w =1 16-bit move

d is the Direction flag. If d = O, the
operand described by mod and r/m is
mem/regq and the operand described
by reg is mem/regy.

Ifd = 1, then the operand described by
mod and r/m is mem/regy and the
operand described by reg is mem/regq.

For example, the instruction
MOV AX,CX

moves the contents of the CX register to the AX register.

AX

XX

Yy

BX

CX

XX

Yy

DX

SP

8P

Sl

DI

PC

cs

nn

nn

DS

SS

ES

Notes:

8086 Assembly Language Instruction Set 3-169

Data
Memory

Program
Memory

89

c1

Program Memory
Address Calculation

MOV AX.CX

Number of cycles:
register to register: 2
memory to register: 8 + EA
register to memory: 9 + EA

(Relative to the
CS Register)

pPppm.

ppppm + 1
ppppm + 2

ppppm + 3

1. Segment registers may not be specified in this instruction. To move data to/from
segment registers, consult the MOV segreg,reg or MOV reg,segreg operations.

2. No statuses are affected.

3. This instruction performs the function that the MOV reg,reg instruction
accomplished in the 8080 assembly instruction. This instruction does, however,
provide for more in the way of flexibility than the corresponding 8080 instruction.

3-170 The 8086 Book

MOV reg,data

Load Immediate Data into Register

This instruction is used to load 8- or 16-bit data elements into a register via
immediate addressing.
The encoding for this instruction is:

MoV reg,data

[MTor1iwerr || Kk | [i |
——~

t— ii is the high-order 8-bits of a 16-bit immediate
operand. This byte is only present if w = 1.

kk is the low-order 8 bits of the immediate operand.
This byte is always present.

rrr is 3 bits which select the register which will be
destination for the immediate operand. The
interpretation of rrr depends on the value of w.

8-bit operation 16-bit operation
rrr = 000 for AL rrr = 000 for AX
001 for CL 001 for CX
010 for DL 010 for DX
011 for BL 011 for BX
100 for AH 100 for SP
101 for CH 101 for BP
110 for DH 110 for SI
111 for BH 111 for DI
w =0 8-bit move. jj is not present
w =1 16-bit move. jj is present

For example, the instruction
MOV CX,3168H

moves the 16-bit quantity 3168, into the CX register.

‘Pa1d9JJe a1k SAsNIeIS ON '€

‘0808 Y} 10§ wioyIad SUONONIISUI (AJBIPAWW] SAOW 11G-9])
IXT PUE (3)BIPSWII SAOW 11q-8) JAIA 18U} UOIdUN 3y SwIojIad uononnsul SIYL °g

‘uononysul 3a1/wew3a18as AQW 23 INSU0d ¢19)s1801 JUaWISas € OjUl
eJRp 9JRIPIWIWI PEO| O], "UONINIISUI SIY} BIA PIPRO] 2q jou Aew s19)s18a1 juswdag '

:S9JON
$:s8]9A0 jo J8QUINN
‘X0 AOW
s3
SS
d
uonenoe) SsaIPPY %ﬁ%u— sa
Asowapy weiboid wwwwQ uu . uu SO
ww ww od
£ + wwww

€ + wdddd [¢]
Z + wdddd [IS
| + wdddd i] d8
wdddd 68 ds

(4o1s1bay SO Aowapy

ay} 01 aAne|ay) wesboiy
Xa
» 1 X2
X8
XV

CTT T LT T 1T Jms
Alowapy 3 4 vV 2 S L 1 4@ O
eleq

LLL-€ 19§ uondnisu] o8endue A|quisssy 9808

3-172 The 8086 Book

MOV ac,mem

Load Accumulator from Memory

This instruction is used to move 8- or 16-bit data elements from a memory loca-
tion to the accumulator.

The encoding for this instruction is:
MoV ac,mem
[to10000w] [kk | [i

jikk is a 16-bit offset address. kk is the
low-order 8 bits of the address. jj is the
high-order 8 bits of the address.

w = 0 AL is the destination
(8-bit operation).

w = 1 AX is the destination
(16-bit operation).

For example, the instruction
MOV AL,[1064H]

moves the contents of memory location 1064, (relative to the DS register) into the AL
register.

8086 Assembly Language Instruction Set 3-173

Data

C Memory

|1|/ 7

(Relative to the
DS Register)

ggggh
ggggh + 1

(Relative to the
CS Register)

pPpPppm
ppppm + 1
ppppm + 2

ppppm + 3

AX vy
BX
CX
DX
Program
Memory

sp A0

BP kk

Sl i

DI

PC mm mm

Program Memory

CS nn nn Address Calculation
DS hh hh

SS

ES Data Memory

Address Calculation
MOV AL,[jjkk]
Number of cycles: 10
Notes:

1. This instruction performs the same function as the 8080 instruction LDA addr. In
addition, this instruction allows a 16-bit load to the AX register.

3-174 The 8086 Book

MOV mem,ac
Store Accumulator into Memory
This instruction is used to move 8- or 16-bit data elements from the accumulator

to a memory location.
The encoding for this instruction is:

MoV mem,ac

[1o10001w]| kk []

jikk is a 16-bit offset address. kk is the
low-order 8 bits of the address. jj is the
high-order 8-bits of the address.

w =0 AL is the source.
(8-bit operation)
w =1 AXis the source.
(16-bit operation

For example, the instruction
MOV [1064H],AX
moves the contents of the AX register into memory location 10644 (relative to the DS

register). The contents of AL are moved into 1064, and the contents of AH are moved
into 1065,¢.

8086 Assembly Language Instruction Set 3-175

Data (Relative to the

o b1 T S Z A P C Memory DS Register)
e T T T T T 1111 T
XX ggggk + 1
AX xx vy gaggk + 2
BX
CX
DX
Program (Relative to the
Memory CS Register)
SpP A3 |ppppm
BP kk ppppm + 1
si @ i |eeppm + 2
Di ppppm + 3
PC mm mm
Ommmm
{ nnnnO
cs nn nn ~PPPPM
Program Memory
DS hh hh Address Calculation
SS
ES
Data Memory
Address Calculation
MOV [jjkk], AX
Number of cycles: 10
Notes:

1. No statuses are affected.

2. This instruction performs the same function as the 8080 instruction STA addr. In
addition, this instruction allows a 16-bit store of the AX register.

3-176 The 8086 Book

MoV segreg,mem/reg

Move Memory or Register Data to Segment Register

Move a 16-bit data element from a register or memory location into a segment

register.
The encoding for this instruction is:

MOV segreg,mem/reg
~———

8E
| mod O reg r/m I

mod and r/m are used to specify the
memory/register operand as described
earlier in this chapter.

reg is two bits which specify the

segment registers

rr = 00 for ES
01 for CS »
10 for SS
11 for DS

As an example, the instruction
MOV SS,DX

will move the contents of the DX register into the SS register.

8086 Assembly Language Instruction Set 3-177

Data
O b I T S§ zZ A P C Memory
ewl [[T TTTT]
AX
BX
CX
DX XX Yy
Program (Relative to the
Memory CS Register)
SP 8E ppppm
BP D2 }ppppm + 1
Si ppppm + 2
DI ppppm + 3
PC mm nn
cS nn nn
Program Memory
DS Address Calculation
SS
ES
MOV SS,DX
Number of cycles: register to register: 2
memory to register: 8 + EA
Notes:
1. If reg=01, then the results of this operation are undefined. This prohibition pre-

vents the user from storing directly into the CS register.

This instruction is typically used in initialization sequences where the program seg-
ment areas are defined.

3-178 The 8086 Book

Mov mem/reg,segreg
Move Segment Register to Register or Memory
Move a 16-bit data element from a segment register into a register or memory

location.
The encoding for this instruction is:

MOV mem/reg, segreg

8C
| mod O reg r/m |

mod and r/m are used to specify the
memory/register operand as described
earlier in this chapter

reg is two bits which specify the
segment register
rr = 00 for ES

01 for CS

10 for SS

11 for DS

For example, consider the case where the DS register contains 2000,,. Executing the
instruction :

MOV 2000H,DS

would store the byte 00,4 at location 22000, and 20,4 at location 22001 .

S Z A

P

ewl | [[[[[T]]

AX

BX

CX

DX

SP

BP

Sl

DI

PC

mm

mm

cs

mn

nn

DS

SS

ES

Notes:

8086 Assembly Language Instruction Set 3-179

mmmm + 4

Ommmm
nnnnO

ppppm
Program Memory

Address Calculation

Ojikk
rrrrQ
ttttk

Number of cycles: Register to Register: 2
Register to Memory: 9 + EA

Data
Memory

ss

rr

/{‘

Program
Memory

8C

1E

kk

i

Data Memory
Address Calculation

(Relative to the
DS Register)

ttttk
ttttk + 1

(Relative to the
CS Register)

PPppm
ppppm + 1
ppppm + 2

ppppm + 3

1. This is not a general purpose register-to-register MOV this is for moving segment
registers. For a general purpose register MOV, consult MOV mem/reg,,mem/reg,.

3-180 The 8086 Book

MOV mem/reg,data
Move Immediate Data to Register or Memory
Move the immediate data in the bytes following the op-code to the specified

register or memory location. 8- or 16-bit data transfer may be specified.
The encoding for this instruction is:

[1100011w] [modooowm]| [& || i]

ii is the high-order 8 bits of the 16-bit
immediate operand. This byte is only
present if w = 1.

kk is the low-order 8 bits of the immedi-
ate operand. This byte is always pre-
sent.

Addressing mode bytel(s) as described
earlier in this chapter.

w =0 8-bit operation
w =1 16-bit operation

For example, consider the case where the DS register contains D000,; and the BX
register contains 0016,¢. After the instruction

MOV BX,491FH

has executed, memory location D0016,, will contain 1F,; and memory location
D0017,,will contain 49 ¢.

8086 Assembly Language Instruction Set 3-181

Data (Relative to the

O DI T S 2 A P C Memory DS Register)
wl | FT T T T T] rrrg
rereg + 1
Data Memory
AX Address Calculation
BX 99 99
cX
DX
Program (Relative to the
Memory CS Register)
sp C7 |ppppm
BP 07 ppppm + 1
S| kk |ppppm + 2
DI i ppppm + 3
PC mm mm
CS nn nn
DS hh hh Program Memory
- Address Calculation
SS
s
MOV [BX],jikk
Number of cycles: 10 + EA
Notes:
1. No statuses are affected.
2. The segment registers may not be specified in this instruction.
3. This instruction is not typically used to move immediate data into the registers. The

instruction MOV reg,data is provided for this purpose.

3-182 The 8086 Book

MOVS

Move Byte or Word from Memory to Memory

Move 8 or 16 bits from the memory location pointed to by the SI register to the
memory location pointed to by the DI register. The SI and DI registers are incremented/
decremented depending on the value of the DF flag.

The encoding for this instruction is:

MOVS

|1010010wl

L w = 0 8 bits are transferred. If DF = O,
the S| and DI registers are incremented
by 1, otherwise both registers are
decremented by 1.

w = 1 16 bits are transferred. If DF = 0,
the Sl and DI registers are incremented
by 2; otherwise both registers are
decremented by 2.

Consider the case where the DF flag is 0, the DS register contains 10004, the ES register
contains 1780,4, the SI register contains 0006,, the DI register contains 0006,¢, and the
word at memory location 10006 if 8F0B,,. After the instruction

MOVS WORD

has executed, memory location 17806, will contain 8FOB,, the SI register will contain
0008, and the DI register will contain 0008 .

8086 Assembly Language Instruction Set 3-183

Data (Relative to the

O D I T S Z A P C Memory DS Register)
swl | [T T T T 1] w_ |
XX rrrrg + 1
AX
BX .
gggg + 2 Data (Relative to the
cX : Memory ES Register)
DX uuuuq
Ogggg uuuuq + 1
hhhhO
SP rrrrg
BP Program (Relative to the
Memo CS Regi
sl o9 ag (t)?ctl?g ry CS Register)
——— A5 m
DI aq qq uuuuq PPPP
PC mm mm ppppm + 1
mmmm + 1
cs nn nn -
oS hh hh gaqq + 2
SS Ommmm
nnnnO
ES tt tt ppppm

* Program Memory Address Calculation
** Destination D ata Memory Address Calculation
*** Source D ata Memory Address Calculation

MOVS
Number of cycles: 18 for single occurrence
9 + (17 times repetition when preceded by REP prefix)

Notes:

1. No statuses are affected.

2. The default segment register for the source operand is the DS register. This segment
may be overridden using segment prefixes. The default segment register for the
destination operand is the ES register. This segment may not be overridden using
segment prefixes.

3. The REP prefix and/or the LOCK prefix may be used with this instruction. Using

the REP and the LOCK prefixes in conjunction with this instruction may cause
problems. Consult the next chapter for a complete discussion of these potential
difficulties.

3-184 The 8086 Book

4. This instruction is very useful for moving blocks of memory. Consider the following
sequence of instructions:
LES DI, CURRENT$STARTSOF$PRINT$BUFFER
MOV S|, PAGESHEADER$MESSAGE
MOV CX, PAGESHEADER$SMESSAGESLENGTH

REP
MOVS BYTE

These instructions would move the data from the memory location addressed by
PAGESHEADERS$SMESSAGE to the memory location addressed by the contents of
CURRENTS$STARTSOF$PRINT$SBUFFER.

5. How do you specify whether an 8- or 16-bit transfer is to be performed? This will
depend on your assembler. For a discussion of this subject, refer to the end of this
chapter.

8086 Assembly Language Instruction Set 3-185

MUL mem/reg
Multiply AL or AX Register by Register or Memory Location

Multiply the specified register or memory location contents by the AL (8-bit
operation) or AX (16-bit operation) register, considering both operands as unsigned
numbers, i.e., a simple binary multiplication. If an 8-bit operation is performed, the low-
order eight bits of the result are stored in the AL register, the high-order eight bits of the
result are stored in the AH register. If a 16-bit operation is performed, the low-order 16
bits of the result are stored in the AX register, the high-order 16 bits of the result are
stored in the DX register. In either case, if the high-order half of the result is 0, then the
OF and CF flags are set to 0; otherwise they are set to 1 to indicate significant digits in
AX or DX.

The encoding for this instruction is:

MUL . mem/reg
[1111011w] [mod100r/m |

Addressing mode byte(s) as described
earlier in this chapter

w =0 8-bit operation
w =1 16-bit operation

As an example, consider the case where the AX register contains 4514,; and the CL
register contains 05¢. After the instruction
MUL ALCL

has executed, the AX register will contain 0064, and the Carry and Overflow flags will
be 0.

3-186 The 8086 Book

Data
o b1 T s Z A P C Memory
eswix] [| [e[7]2]2]]
AX XX
CX Yy
DX .
Program (Relative to the
Memory CS Register)
SP F6 pPpPppm
BP E1 ppppm + 1
SI ppppm + 2
DI ppppm + 3
PC mm mm
CcS nn nn Program Memory
Address Calculation
DS
SS
ES
MUL ALCL
Number of cycles: 8-bit memory muitiply: (76-83) + EA

16-bit memory multiply: (124-139) + EA

8-bit register muitiply: 70-77

16-bit register multiply: 118-133

Notes:

1. This is the unsigned number multiply operation. Both operands are treated as
unsigned binary numbers in the range:

8-bit: O to 255
16-bit: O to 656535

For a signed multiply operation, consult the instruction IMUL.

2. In some cases, it may be more appropriate to use shifts to perform multiplications.
These cases would occur when memory conservation is not of paramount impor-
tance and speed is necessary.

8086 Assembly Language Instruction Set 3-187

NEG mem/reg

Negate the Contents of a Register or Memory Location

This instruction performs a twos complement subtraction of the specified operand
from zero. The result is stored in the specified operand. An 8- or 16-bit operand may be
specified.

The encoding for this instruction is:

NEG mem/reg
[t111011w] [modor1vm |

Addressing mode byte(s) as described
earlier in this chapter

w =0 8-bit operation
w =1 16-bit operation

Suppose that the BX register contains 0006,4, the DS register contains 1800, and the
contents of memory location 18006, are 47 . After the execution of the instruction

NEG [BX]

the contents of memory location 18006, will be B9 .

3-188 The 8086 Book

Data (Relative to the
I T s z A P C Memory DS Register)

0O D
psw[x T [[x[x[x[x]x]
XX agggr
AX ggggr + 1
BX " r
CcX Orrrr
tttt0
DX 9999")
Data Memory Program (Relative to the
M ist
Address Calculation emory CS Register)
SP F6 ppPPPM
'BP 1F ppppm + 1
Si ppppm + 2
DI mmmm + 2 pppPM + 3
PC mm mm
Ommmm Program Memory

cs nn nn g gggom Address Calculation

DS tt tt

SS

ES

NEG [BX]

Number of cycles: Memory operand: 3
Register operand: 16 + EA
Notes:

1. There is no equivalent instruction in the 8080 assembly language. An equivalent
8080 sequence for this instruction for a 16-bit quantity would be

Mov AD
CMA
Mov D.A
MOV AE
CMA
MoV EA

INX D

8086 Assembly Language Instruction Set 3-189

NOP

No Operation

No operation is performed.
The encoding for this instruction is:

NOP
——~
90
Data
O b I T S8 Z A P C Memory
eswl | [T 1 [1 [1]
AX
BX
CcX
DX
Program (Relative to the
Memory CS Register)
SP 90 {ppppm
BP ppppm + 1
sl ppppm + 2
DI ppppm + 3
PC mm mm
CS nn nn
Program Memory
DS Address Calculation
SS
ES

NOP
Number of cycles: 3

3-190 The 8086 Book

NOT mem/reg

Ones Complement of Register or Memory Location

Complement the contents of the specified register or memory location.
The encoding for this instruction is:

NOT mem/reg
[t111011w] [modo10wm |

Addressing mode byte(s) as described
earlier in this chapter

w =0 8-bit operation
w =1 16-bit operation

Suppose that the BL register contains FB,¢. After the instruction
NOT BL

has executed, the BL register will contain 04,.

8086 Assembly Language Instruction Set 3-191

Data
o b I T s8 Z A P C Memory

wl [[T T T T T T]

AX

BX XX

CcX

DX

Program (Relative to the
Memory CS Register)

SP F6 pPppmM

BP D3 |ppppm + 1

Sl ppppm + 2

D! ppppm + 3

PC mm mm

Ccs nn nn

DS Program Memory

Address Calculation
SS
ES
NOT BL
Number of cycles: Memory operand: 16 + EA
Register operand: 3

Notes:
1. No statuses are affected.

2.

This instruction performs the same function as the 8080 instruction CMA. This
instruction also allows 16-bit complements and complementing of any general pur-
pose register or memory location.

3-192 The 8086 Book

OR ac,data
OR Immediate Data with the AX or AL Register

OR the immediate data in the succeeding program memory byte(s) with the AL
(8-bit operation) or AX (16-bit operation) register.
The encoding for this instruction is:
OR ac,data

[oooor11ow] [|1

The high-order 8 bits of the immediate
operand. This byte is only presentifw = 1.

The low-order 8 bits of the immediate
operand. This byte is always present.

w = 0 8-bit operation.
AL is operand
w = 1 16-bit operation
AX is operand

Suppose that the AX register contains 0609,,. After the instruction
OR AX, 3030H
has executed, the AX register will contain 3639 .

06091 = 0000 0110 0000 1001
30301 = 0011 0000 0011 0000

0011 0110 0011 1001

4 one bits, set P to 1

AF is undefined

Overflow is cleared to O
Sign is set to O

Carry is cleared to O
Non-zero result, Z is set to 0

8086 Assembly Language Instruction Set 3-193

(Relative to the
CS Register)

PPPpM
pPPPM + 1
pPPPM + 2

ppppm + 3

Data
o b I!@ T s Z A P C Memory
pswlo] [| [xfx[7[x]o]
AX XX yy
BX
CX
DX
Program
Memory
SP oD
BP kk
Sl i
DI
PC mm mm
cs nn nn
DS Program Memory
Address Calculation
SS
ES
OR AX.jjkk
Number of cycles: 4
Notes:
1. This instruction performs the same function as the 8080 instruction ORI data. This

instruction also has the ability to perform 16-bit operations.

If you desire to OR immediate data with any of the other general purpose registers
or with some memory location, consult the instruction OR mem/reg,data.

3-194 The 8086 Book

OR mem/reg,data
OR Immediate Data with Register or Memory Location
OR the immediate data in the succeeding program memory byte(s) with the

specified register or memory location. An 8- or 16-bit operation may be specified.
The encoding for this instruction is:

OR mem/reg,data

[1000000w] [mod 001 wm] [k || i |

I—'I'he high-order byte of the immediate

operand. This byte is only presentif w = 1.

The low-order byte of the immediate
operand. This byte is always present.

Addressing mode byte(s) as described
earlier in this chapter

w =0 8-bit operation
w =1 16-bit operation

Consider the case where the DS register contains 3800, the contents of the BX register
are 0200,, the DI register contains 0136,¢, and the word at memory location 38336, is
06B3,,. After the instruction -

OR [BX + DI}, 0805H

has executed, the word at memory location 38336, will be 0EB7 .

06B31g = 0000 0110 1011 0011
05051 = 0000 1000 0000 0101

0000 1110 1011 0111

t——6 one bits, set P to 1

Carry is cleared to O

Sign is set to 0

Overflow is cleared to O
Non-zero result, set Zto O

O D |1

T

s Z A P C

pswlo] | | [x[x]?[x]o]

AX
BX
CX
DX

SP
8P
Si
D!
PC

99

99

hh

hh

mm

Ccs nn

nn

DS "

SS
ES

"

Notes:

1.

OR [BX + DI, jjkk

Number of cycles:

8086 Assembly Language Instruction Set 3-195

Data
Memory

Yy

XX

Program
Memory

Data Memory

Address Calculation 81

09

kk

ii

Program Memory
Address Calculation

Memory operand: 17 + EA
Register operand: 4

(Relative to the
DS Register)

tttt + 1

(Relative to the
CS Register)

pPPPPM
ppppm + 1
ppppm + 2

ppppm + 3

This instruction is not typically used to OR immediate data with the AX or AL
register. The instruction OR ac,data is provided for this purpose.

3-196 The 8086 Book

OR memreg,, mem/reg,

OR: * Register with Register
» Register with Memory
+ Memory with Register

OR the contents of the register or memory location specified by mem/reg, with
the contents of the register or memory location specified by mem/reg,, returning the
result to mem/reg,. An 8- or 16-bit operation may be specified. Either mem/reg, or
mem/reg, may be a memory operand, but one of the operands must be a register
operand.

The encoding for this instruction is:

OR mem/regq, mem/rega

[oo0010dw rmodregr/ru

Addressing mode byte(s) as described
earlier in this chapter

L ———w=0 8-bit operation
w =1 16-bit operation

d is the Direction flag. If d = O, then the
operand described by mod and r/m is
mem/regq and the operand described
by reg is mem/regy. If d = 1, then the
operand described by mod and r/m is
mem/regg and the operand described
by reg is mem/regq.

Suppose that the AX register contains 0060, the DS register contains 4000, the BX
register contains 009A , and the word at memory location 4009A contains 012C,,.
After the instruction '

OR [BX],AX

has executed, the contents of the word at memory location 4009A will be 016C,¢. The
flags will be set as follows:

006016 = 0000 0000 0110 0000
050516 = 0000 0001 0010 1100

0000 0001 0110_1100

4 one bits, set P to 1

AF is undefined

Overflow is cleared to O
Sign is set to O

Carry is cleared to O
Non-zero result, set Z to O

8086 Assembly Language Instruction Set 3-197

Data (Relative to the
DI T S Z A P C Memory DS Register)

[0}
swlo] T T [[x]]
ww rrrrg
AX XX vy @ 2 v rereg + 1
BX g ag rrrrg + 2
CX
bX
Program (Relative to the
Data Memory Memory CS Register)
sp Address Calculation 09 pPPPM
8P 07 ppppm + 1
Si ppppm + 2
‘DI ppppm + 3
PC mm mm
Program Memory
cs nn nn Address Calculation
DS hh hh
SS
ES
OR [BX],AX

Number of cycles: Register to Memory: 16 + EA
Memory to Register: 9 + EA
Register to Register: 3

3-198 The 8086 Book

ouT DX.,ac
Output from Accumulator
Output 8- or 16-bit data elements from the AL (8-bit) or AX (16-bit) register to

the 170 port identified by the contents of the DX register.
The encoding for this instruction is:

OUT DX.,ac

|1110111w|

L___w =0 8-bit data transfer from AL
w =1 16-bit data transfer from AX.

As an example, consider the case where the DX register contains 0FFF2,; and the AL
register 40,,. The execution of an

OUT DXAL

instruction will result in the quantity 40, being loaded into the 1/0 buffer at 1/O port
number OFFF2 .

8086 Assembly Language Instruction Set 3-199

Data
O b I T 8 z A P C Memory
wl LT TTTTT]
1/0 port
AX Xxx specified by DX
register

BX
CcX
DX

Program (Relative to the

Memory CS Register)
SP EE pPppPpmM
BP ppppm + 1
Si pPpPppm + 2
DI ppppm + 3
PC mm mm
CS nn nn
DS

Program Memory
SS Address Calculation
ES
OUT DXAL
Number of cycles: 8
Notes:

1. This instruction allows the user to access 1/0 ports which have been assigned
addresses between 0 and OFFFF,,.

2. No registers or statuses are affected.

3-200 The 8086 Book

ouT port,ac
Output from Accumulator
This instruction outputs 8- or 16-bit data elements from the AL (8-bit) or AX

(16-bit) register to the I/0 port identified by the second byte of the instruction.
The encoding for this instruction is:

[1110011w]| vy |

yy is 8 bits specifying the /0 port
w = 0 8-bit data transfer to AL
w = 1 16-bit data transfer to AX

No registers or statuses are affected.
Suppose that the AX register contains 58A4,,. Executing an

OUT 14H,AX

instruction will transfer A4, to the I/0 port addressed at 14,, and 58,4 to the 1/0 port
addressed at 15,¢.

8086 Assembly Language Instruction Set 3-201

Data
O D I T S8 zZ A P C Memory
rt
swl [[[[T [[[][rofer] [vorew]

AX XX XX
BX
cX
DX

Program (Relative to the

Memory CS Register)
sP E7 |ppppm
BP 2 [
SI ppppm + 2
D! « pPppM + 3
PC mm mm
(o] nn nn
DS Program Memory

Address Calculation-
ss
ES
OUT yy,AX
Number of cycles: 10

Notes:

1. This instruction allows the user to access I/O ports which have been assigned
addresses between 0 and FF ;. To address ports whose addresses are outside this
range, consult the instruction OUT DX,ac.

2. This instruction performs the same function as the 8080 instruction OUT port.
Additionally, this instruction allows for 16-bit data transfers in a single instruction
(not possible using the 8080 instruction OUT port).

3. Toeffectively use the QUT instruction, a firm grasp of the hardware configuration is

necessary. The way in which the I/0 logic has been implemented determines the
port addresses that are used to access various hardware functions. It is also possible
to design a microcomputer system that accesses external logic using memory
reference instructions with specific memory addresses.

3-202 The 8086 Book

POP mem/reg
Read from the Top of the Stack

Pop the two top stack bytes into the specified memory location or register. This is
a 16-bit operation.
The encoding is:

POP mem/reg
——
8F

I mod 000 r/m I

Addressing mode byte(s) as described
earlier in this chapter

Suppose that the DS register contains FF00,,, the SI register contains 0008,,, the SP
register contains OFEA (4, the SS register contains 2F00,,, and the word stored at loca-
tion 2FFEA ¢ is 3BCS5 . After the instruction

PGP [SI]

has executed, the contents of memory location FF008,, will be C5, and the contents of
memory location FF009,, will be 3B,,. SP will be equal to OFEC,,.

8086 Assembly Language Instruction Set 3-203

Data (Relative to the

o D I T S zZ A P C Memory DS Register)
e TTTTT1T1] e
! XX 2zzzh + 1
AX
BX
CX
DX
Data (Relative to the
Memory SS Register)
SP ss ss Yy uuuus
uuuus
BP xx . fuuuus + 1
Sl hh hh
mmmm + 2
DI
PC mm mm
Ommmm
—:3:2% Program (Relative to the
cS nn nn Memory CS Register)
DS " " ohnhh . 8F ppppm
ss tt tt % 04 |ppppm + 1
ES ppppm + 2
ppppm + 3
« Data Memory Address Calculation
** Program Memory Address Calculation

*** Stack Data Memory Address Calculation

POP [SI]
Number of cycles: Memory operand: 17 + EA
Register operand: 8

Notes:

1. This instruction is not typically used to pop data into a register. The instruction POP
reg performs this function and only occupies one byte of program memory space.

2. No statuses are affected.

3-204 The 8086 Book

POP reg
Read from the Top of the Stack

Pop the two top stack bytes into the designated 16-bit register.
The encoding is:

POP reg

’1: 3 bits which specify the 16-bit register
into which the data is to be popped
rrer = 000 for AX

001 for CX
010 for DX
011 for BX
100 for SP
101 for BP
110 for SI

111 for DI

Ponder, for example, the instruction
POP BX

This instruction would pop the byte pointed to by the stack pointer (and stack segment)
into BL, then increment the stack pointer and pop the addressed byte into BH. Finally,
the stack pointer would again be incremented by 1 to point at the new top of stack. This
is actually done with a single 16-bit transfer in the 8086.

AX
BX
CX
DX

SP ss ss

BP

Si
DI
PC

cs
DS
SS
ES

8086 Assembly Language Instruction Set 3-205

Data (Relative to the
O DI T S zZ A P C Memory SS Register)

vy uuuus
/ > uuuus + 1
XX vy uuuus + 2
@ Program (Relative to the
Memory CS Register)

58 |ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Stack Memory
Address Calculation

- nn

Program Memory

nonn0 Address Calculation

POP BX
Number of cycles: 8

Notes:
1.

This instruction cannot be used to pop data elements into the segment registers. To
pop data into segment registers, consider the instruction POP segreg.

For this instruction to be meaningful, it is of course necessary to have:
a. an initialized stack pointer
b. data already on the stack via a PUSH instruction.

Naturally, one could use this instruction for the sole purpose of incrementing the SP
register by 2; however, this is not recommended.

This instruction performs the same function as the 8080 assembly language instruc-
tion POP reg.

3-206 The 8086 Book

POP segreg
Read from the Top of the Stack

This instruction pops the two top stack bytes into the designated 16-bit segment
register.

The encoding is:

POP segreg

I 000rr111 l
|

2 bits specifying the 16-bit segment
register into which the data is to be popped

rr = 00 for ES
10 for SS
11 for DS

The instruction
POP ES

for example, will pop the two top stack bytes into the ES register. Undefined operation if
rr = 01.

8086 Assembly Language Instruction Set 3-207

Data (Relative to the
O D I T S z2 A P C Memory SS Register)
e T T T T 1T TT]
vy uuuus
AX XX uuuus + 1
BX uuuus + 2
cx
DX
Program (Relative to the
Memory CS Register)
SP ss ss 07 Ppppm
BP ppppm + 1
Si ppppm + 2
DI ppppm + 3
PC mm ‘mm
CS nn nn
DS
SS tt tt
ES
POP ES
Number of cycles: 8
Notes:
1. This instruction only pops data into the segment registers. To pop data into the
8086’s other registers, consider the instruction POP reg.
2. For a more complete description of the function performed by a POP, consult POP

reg.

3-208 The 8086 Book

POPF
Read from the Top of the Stack into the Flags Register

Pop.the two top stack bytes into the Flags register. The first byte popped goes into
the low-order byte of the Flags register. The format of the low-order byte of the Flags
register is: .

7 6 5 4 3 2 1 0 -<.—BitNo.

[s»=|zr|x |AF] X IPFI X ICFJ

The second byte popped is stored into the high-order byte of the Flags register. The for-
mat for this byte is:

5 14 13 12 11 10 9 8 «g—Bit No.
[xlx[xlxlosloslmlﬂ

The encoding for this instruction is:

POPF

o0
Consider, for example, the situation where the two top bytes on the stack are 4F (top-
most) and 32. Executing the

POPF

instruction will result in the Carry, Parity, Zero, and Interrupt flags being set to 1. All
other flags will be set to 0.

8086 Assembly Language Instruction Set 3-209

Data (Relative to the
Memory SS Register)

XX uuuus

vy uuuus + 1

uuuus + 2

Program (Relative to the
Memory CS Register)

SP ss sS 9D ppPppm
BP ppppm + 1
Si pPpppm + 2
DI ppppm + 3
pPC mm mm
Program Memory
Address Calculation
CS nn nn
Data Memory
oS .tJu:,us Address Calculation
SS tt tt
ES
POPF
Number of cycles: 8
Notes:

1. As with all stack operations, it is important that the stack pointer be initialized. In
addition, it would be appropriate to have executed a PUSHF instruction, in order to
store the value of the flags, before executing a POPF instruction.

2. This instruction performs some of the functions of the 8080 instruction PUSH PSW.

3-210 The 8086 Book

PUSH mem/reg
Write to the Top of the Stack

This instruction pushes the contents of the specified register or memory location
onto the top of the stack. This is a 16-bit push operation.
The encoding is:

PUSH mem/reg

——

FF

| mod 110 ¢/m I

Addressing mode byte(s)
as described earlier in this chapter

For example, if the DS register contains 2800,,, the BX register contains 0400, the SP
register contains 1000, the SS register contains 2F00,,, and the word stored at memory
location 28400, contains A020,,, then executing the instruction

PUSH ([BX]

will store A0, at memory location 2FFFF , and 20,, at memory location 2FFFE . The
SP register will be adjusted to OFFE .

AX
B8X
CX
DX

SP
BP
Sl
DI
PC

cs
DS

o Db | Z A P C
ew[[[T I T T T 1]

hh hh

ss ss

mm mm

nn nn

ww ww

tt tt

SS
ES

* Source Data Memory Address Calculation

** Program Memory Address Calculation

«** Stack Data Memory Address Calculation

Notes:

1.

PUSH [BX]

8086 Assembly Language Instruction Set 3-211

Data
Memory

Yy

XX

Data
Memory

Yy

XX

Program
Memory

FF

37

Number of cycles: memory 16 + EA

register 11

(Relative to the

SS Register)
uuuus = 2
uuuus — 1
uuuus

(Relative to the
DS Register)

zzzzh
zzzzh + 1

zzzzh + 2

(Relative to the
CS Register)

ppppm
ppppm + 1
ppppm + 2

ppppm + 3

This instruction is not typically used to push a register onto the stack. The instruc-
tion PUSH reg performs this function and only occupies one byte of program

memory space.

No statuses are affected.

3-212 The 8086 Book

PUSH reg
Write to the Top of the Stack

This instruction pushes the contents of the specified 16-bit register onto the top of
stack.
The encoding is:

PUSH reg
01010rrr

——
L 3 bits which specify the 16-bit register
to be pushed.
rrr = 000 for AX
001 for CX
010 for DX
011 for BX
100 for SP
101 for BP
110 for SI
111 for DI

As an example, consider the instruction
PUSH SI

This instruction would push the 16-bit contents of the SI register onto the stack. This
function is performed as follows:

1. Decrement the stack pointer by 1.

2. Store the high-order 8 bits of the specified register into the memory location
addressed by the stack pointer and the stack segment.

3. Decrement the stack pointer by 1.

4, Store the low-order 8 bits of the specified register into the memory location
addressed by the stack pointer and the stack segment.

The stack pointer is left pointing at the last element stored into the stack, com-
monly referred to as the top of stack. For the 8086 this is actually one 16-bit transfer.

8086 Assembly Language Instruction Set 3-213

(Relative to the

SS Register)
uuuus = 2
uuuus - 1

uuuus

{Relative to the
CS Register)

pPppM
ppppm + 1
pPppM + 2

ppppm + 3

Data
O D | S Z A c Memory
eswl [[T [[T 1 1]
44
AX XX
BX
cX
DX
Program
Memory

SP ss ss 56

BP Data Memory

Address Calculation

Sl XX Yy

DI

PC mm mm

CS nn nn

DS Program Memory

Address Calculation

SS tt tt

ES

PUSH SI
Number of cycles: 10

Notes:

1. This instruction cannot be used to push the segment registers or the Flags register.
To push segment registers, consult the instruction PUSH segreg. To push the Flags
register, consult the PUSHF instruction.

2. This instruction is most effective when used after the stack pointer has been
initialized. In fact, the only time this instruction should be used is after the initializa-
tion of the stack pointer.

To retrieve the data from the stack, use the POP instructions.
4. This instruction performs the same function as the 8080 instruction PUSH reg.

3-214 The 8086 Book

PUSH segreg
Write to the Top of the Stack

This instruction pushes the contents of the specified 16-bit segment register onto
the top of stack.

The encoding is:

PUSH segreg

000ss110

1—— 2 bits specifying the segment register
that is to be pushed onto the Stack
ss = 00 for ES
10 for SS
11 for DS

Examine, for example, the following instruction
PUSH DS

This instruction will push the 16-bit contents of the DS register onto the stack.
Illegal operation if ss = 01.

AX
BX
CX
DX

SP
BP
S|
[o]]
PC

cs
DS
SS
ES

8086 Assembly Language Instruction Set 3-215

ss

ss

Data Memory
Address Calculation

mm

Program Memory

nn

nn

Address Calculation

XX

Yy

tt

tt

Notes:
1.

PUSH DS
Number of cycles: 10

Data
Memory

Yy

XX

Program
Memory

1E

(Relative to the

SS Register)
uuuus - 2
uuuus - 1

uuuus
(Relative to the
CS Register)
Ppppm

pPPPM + 1
ppPppPM + 2

ppppm + 3

This instruction can only be used to push the contents of segment registers onto the
stack. To push the contents of other registers, consult the PUSH reg and PUSHF

instructions.

For a more detailed description of the action of the PUSH operation, consult the
PUSH reg instruction.

Remember that to ensure optimal results, the stack pointer must be initialized.

3-216 The 8086 Book

PUSHF
Write the Flags Register to the Top of Stack
This instruction pushes the contents of the Flags register onto the top of the stack.
The format for the Flags register is:
5 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0 <@—BitNo.
[x| x|x[x[or[or][Te]sF]ze|x [ar| x|rpe| x |cF]

where X is an undefined value.

Bits 15-8 are stored onto the stack first, followed by bits 7-0.
The encoding for this instruction is:

PUSHF
- -
9C

As an example, should the Interrupt, Sign, and Zero flags be 1, while the Overflow,
Direction, Trap, Arithmetic, Parity, and Carry flags are 0, then executing a

PUSHF

instruction would
1. Decrement the stack pointer.

2. Store the byte XXXX0010 into the memory location addressed by the stack
pointer and Stack Segment register. (X refers to an undefined value.)

3. Decrement the stack pointer.

4. Store the byte 11X0X0XO0 into the memory location addressed by the stack
stack pointer and Stack Segment register. For the 8086 this is performed as a
single 16-bit transfer.

8086 Assembly Language Instruction Set 3-217

— — | —— eap— Data (Relative to the
O DI T S zZ A P C Memory SS Register)
eswl | [[T T T 1]
Yy uuuus - 2
AX XX uuuus - 1
BX uuuus
CX
DX
Program (Relative to the
Data Memory Memory CS Register)
Address Calculation
SP ss ss 9C PPPpM
BP ppppm + 1
Si ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn
DS Program Memory
Address Calculation
SS tt tt
ES
PUSHF
Number of cycles: 10
Notes:

1. Remember that, as with all stack instructions; this instruction works best after the
stack pointer has been initialized.

2. This instruction does not perform the same function as the 8080 instruction PUSH
PSW. The PUSH PSW instruction pushes the contents of the accumulator as well as
the 8080 flags. To emulate PUSH PSW, consult the LAHF instruction.

3-218 The 8086 Book

RCL mem/reg,count
Rotate Register or Memory Location Left Through Carry

Rotate the contents of the specified register or memory location left by the
specified number of bits through the Carry status. The number of bits to rotate, repre-
sented by the variable count, is either one or the number contained in the CL register.
An 8- or 16-bit operand may be specified.

The encoding for this instruction is:

RCL mem/reg,count
[t10100cw]| [medotorm |

Addressing mode byte(s) as described
earlier in this chapter

w=0 8-bit operand
w =1 16-bit operand

O Rotate left one bit

1 Rotate left the number of bits
specified by the CL register

c
c

Suppose that the AX register contains FB00,, and the Carry status is 0. After the
instruction

RCL AX1

has executed, the Carry status will be 1 and the AX register will contain F600,¢.

8086 Assembly Language Instruction Set 3-219

Data
© D I T S z A PXC Memory
A T T T TTT]
2
AX| - - = - - @ <
BX
CX
X
o Program (Relative to the
Memory CS Register)
SP D1 PPppmM
B8P po |ppppm + 1
SI ppppm + 2
DI mmmm + 2 ppppm + 3
PC mm mm
cs nn nn Ommmm
nnnnO
oS ppppm
SS
ES
RCL AX1
Number of cycles: Register (1-bit rotate): 2
Register (N-bit rotate): 8 + (4 * N)
Memory (1-bit rotate): 15 + EA
Memory (N-bit rotate): 20 + EA + (4 * N)
Notes:

1. This instruction performs the same function as the 8080 instruction RAL. This
instruction does, however, allow a great deal more flexibility in that multi-bit rotates
are allowed, rotations of 16-bit quantities are allowed, and any register or memory
location may be rotated.

2. Note that it is not intuitively obvious whether an 8- or 16-bit rotate is to be per-
formed. The manner in which this is determined depends on your assembler. For a
discussion of this entertaining subject, refer to the end of this chapter.

3-220 The 8086 Book

RCR mem/reg,count
Rotate Register or Memory Location Right Through Carry

Rotate the contents of the specified register or memory location right by the
specified number of bits through the Carry status. The number of bits to rotate, repre-
sented by the variable count, is either one or the number contained in the CL register.
An 8- or 16-bit operand may be specified.

The encoding for this instruction is:

RCR mem/reg,count
[110100cw] [modot11v/m |

Addressing mode byte(s) as described
earlier in this chapter

w = 0 8-bit operand
w = 1 16-bit operand

¢ = 0 Rotate right one bit
¢ = 1 Rotate right the number of bits
specified by the CL register

Suppose that the CX register contains F709,, and the Carry status is 1. After the instruc-
tion
RCR CX,CL

has executed, the CX register will contain 09FB, and the Carry status will be 1.

8086 Assembly Language Instruction Set 3-221

Data
o b I T S zZ A P C Memory
eswix] | []] 171 [x]
AX
BX
cx xx vy
DX
Rotate Program (Relative to the
xxyy right yy Memory CS Register)
times with
SP the Ca D3 pPPPM
BP D9 |ppppm + 1
m + 2
St mmmm + 2 pppp
DI ppppm + 3
PC mm mm
cs nn bl (r)‘r:r:r:‘\rg Program Memory
DS PPPPmM Address Calculation
ss
ES
RCR CX,CL
Number of cycles: Register (N-bit rotate): 8 + (4 « N)

Register (1-bit rotate): 2

Memory (N-bit rotate): 20 +EA + (4 « N)

Memory (1-bit rotate): 15 + EA

Notes:

1. This instruction performs the same function as the 8080 instruction RAR. This
instruction does, however, allow a great deal more flexibility in that multi-bit rotates
are allowed, rotations of 16-bit quantities are allowed, and any register or memory
location may be rotated.

2. Differentiating between an 8- or 16-bit rotation is not obvious when one considers

this instruction. For a discussion of this problem, see the end of this chapter.

3-222 The 8086 Book

REP/REPE/REPNE/REPNZ/REPZ

Repeat the Following String Instruction

Repeat the following string instruction until the CX register has been decre-
mented to zero. All string instructions will continue to execute until CX is 0 with the
exception of the SCAS and CMPS instructions, which will cease to execute if the value
of the ZF flag is equal to the low-order bit of this instruction, the z bit.

The encoding for this instruction is:

REP/REPE/REPNE

1111001z
z is a don’t care bit if the following string primitive is:

MOVS

LODS

STOS
if the folloing string primitive is:

CMPS

SCAS
then if z = 0, then the CMPS or SCAS instruction
will cease execution if the ZF flag is O
z = 1, then the CMPS or SCAS instruction will
cease execution if the ZF flag is 1

In the following instruction sequence
MoV SI,I0BUF

LES DI, ADDR
MoV CX,COUNT
REP

MOVB

COUNT bytes are moved from IOBUF to ADDR by the REP MOVB instruction.

AX
BX
CcX
DX

SP
BP
S|
DI
PC

cs
DS
SS
ES

nn

nn

Notes:

1.

REP

8086 Assembly Language Instruction Set 3-223

Data
Memory

Program (Relative to the
Memory CS Register)

F2 |ppppm

XX ppppm + 1

ppppm + 2

ppppm + 3

xx is a string primitive

Program Memory
Address Calculation

Number of cycles: 2 incurred only for recognition of

the repeat prefix, and not included
with each iteration of the following
string primitive

The encoding for REPE and REPZ is F3,,. The encoding for REPNE and REPNZ is

F2 |6-

REP is referred to as an instruction prefix. Other prefixes include LOCK and SEG.
If REP is combined with a LOCK or SEG prefix, certain precautions must be taken.
Consult the next chapter for a discussion of these precautions.

3-224 The 8086 Book

RET

Return from Subroutine (Intersegment)

Pop the top two stack bytes into the program counter; these two bytes provide the
offset address of the next instruction to be executed. Pop the next two stack bytes into
the CS register; these two bytes provide the code segment address of the next instruc-
tion to be executed. Previous program counter and Code Segment register contents are
lost.

The encoding for this instruction is:

RET
——
CB
Data (Relative to
O DI T s zZ A P C Memory the SS Register)
wl | [T T T T (1] vy Juuus
XX uuuus + 1
AX ww uuuus + 2
BX (v uuuus + 3
Data Memory /
cx Address Calculation uuuus + 4
DX
Program (Relative to the
Memory CS Register)
SP sS ss CB ppppm
B8P ppppm + 1
S| pPPPM + 2
o] ppppm + 3
PC mm mm
CS nn nn
DS
ss tt tt Program Memon:y
Address Calculation
ES
4
RET
Number of cycles: 18
Notes:

1. Every subroutine should have at least one RET instruction. This instruction is the
last instruction executed in the subroutine and returns control to the calling pro-
gram.

2. This RET instruction corresponds to the two intersegment CALLs, intersegment
direct and intersegment indirect.

3. No statuses are affected.

8086 Assembly Language Instruction Set 3-225

RET

Return from Subroutine (Intrasegment)

Move the contents of the two top stack bytes to the program counter; i.e., pop the
stack into the program counter. These bytes provide the offset address of the next
instruction to be executed. Previous program counter contents are lost.

The encoding for this instruction is:

RET
——
c3
Data (Relative to the
o DI T §$ Z A P C Memory SS Register)
e [T T T T T TT1] e
XX uuuus + 1
AX uuuus + 2
BX
CX
DX
Program (Relative to the
ssss + 2 Memory CS Register)
SP ss (13 il Cc3 pPpppm
B8P Data Memory ppppm + 1
Address Calculation
Si ppppm + 2
DI ppppm + 3
PC mm mm
Ccs nn nn
DS Program Memory
Address Calculation
SS tt tt
ES

RET
Number of cycles: 8

3-226 The 8086 Book

Notes:
1. This instruction performs the same function as the 8080 instruction RET.

2. Every subroutine should contain at least one RET instruction; this is the last
instruction executed within the subroutine and causes execution to return to the
calling program. Other methods may be used to return to a calling program;
however, typically they are less efficient and more obscure than the straightforward
RET instruction.

3. The 8086 offers three other kinds of RETs. These RETs have some correspondence
to the CALL instructions. This RET corresponds to CALL disp and CALL
mem/reg indirect intrasegment.

4. No statuses are affected.

8086 Assembly Language Instruction Set 3-227

RET disp16

Return from Subroutine and Add to Stack Pointer (Intersegment)

Pop the two top stack bytes into the program counter; these two bytes provide the
offset address for the next instruction to be executed. Pop the next two stack bytes into
the CS register; these two bytes provide the code segment address of the next instruc-
tion to be executed. Previous program counter and Code Segment register contents are
lost. Add the data in the two succeeding program memory bytes to the stack pointer.
This has the effect of adjusting the stack pointer past parameters that might have been
placed onto the stack prior to the CALL that corresponds to this RET.

The encoding for this instruction is:

RET
—
CA disp16

Lo« JL i]

High-order 8 bits of the 16-bit unsigned
displacement that is added to the Stack
Pointer

Low-order 8 bits of the 16-bit unsigned
displacement that is added to the Stack
Pointer

3-228 The 8086 Book

Data (Relative to the

O DI T s Z A P C Memory SS Register)
eswl [T[T 111 vy fous
XX uuuus + 1
Data Memory
AX Address Calculation ww Juuuus + 2
BX w uuuus + 3
CX uuuus + 4
DX
Program (Relative to the
Memory CS Register)
SP ss ss CA ppppm
BP kk ppppm + 1
] i ppppm + 2
DI ppppm + 3
PC mm mm
CcS nn nn
DS
Program Memory
SS tt tt Address Calculation
ES
RET jjkk
Number of cycles: 17
Notes:

1. No statuses are affected.

2. Every subroutine should have at least one RET instruction. This instruction is the
last instruction executed in the subroutine and resumes execution in the calling pro-
gram at the instruction after the corresponding CALL.

3. This RET instruction corresponds to the two intersegment CALLs, intersegment
direct and intersegment indirect.

8086 Assembly Language Instruction Set 3-229

RET disp16

Return from Subroutine and Add to Stack Pointer (Intrasegment)

Pop the stack into the program counter; the two bytes moved provide the offset
address of the next instruction to be executed. Previous program counter contents are
lost. Add the data in the two succeeding program memory bytes to the stack pointer.
This has the effect of adjusting the stack pointer past parameters that might have been
placed onto the stack prior to the CALL that corresponds to this RET.

The encoding for this instruction is:

RET disp16
——
c2
Kk L J
L High-order 8 bits of the 16-bit unsigned
displacement that is added to the Stack Pointer
Low-order 8 bits of the 16-bit unsigned
displacement that is added to the Stack Pointer
Data (Relative to the
O b I T S zZ A P C Memory SS Register)
swl | [T T T T 1] vy Juous
XX uuuus + 1
AX Data Memory uuuus + 2

Address Calculation
BX

CX

DX

Program (Relative to the
Memory CS Register)

c2 pPPPM

SP ss ss ':1

8P

kk [ppppm + 1

Sl ii ppppm + 2

DI ppppm + 3

L

PC mm mm

Ccs nn nn

DS

Program Memory
Address Calculation

SS tt tt

ES

RET jjkk
Number of cycles: 12

3-230 The 8086 Book

Notes:

1.

Every subroutine should contain at least one RET instruction; this is the last
instruction executed within the subroutine and causes execution to return to the
calling program.

The 8086 offers three other kinds of RETURN instructions. These RETURNs have
some correspondence to the CALL instructions. This RET corresponds to CALL
disp and CALL mem/reg indirect intrasegment.

No statuses are affected.

8086 Assembly Language Instruction Set 3-231

ROL mem/reg,count
Rotate Register or Memory Location Left

Rotate the contents of the specified register or memory location left by the
specified number of bits. The number of bits to rotate, represented by the variable
count, is either one or the number contained in the CL register.

The encoding for this instruction is:

ROL mem/reg, count

[t10100cw] [modoo0rm |

Addressing mode byte(s) as described
earlier in this chapter

w =0 8-bit operation
w =1 16-bit operation

c =0 Rotate left one bit
c =1 Rotate left the number of bits
specified by the CL register

Suppose that the BX register contains AB1F,, and the CL register contains 03,,. After
the instruction

ROL BX.CL

has executed, the BX register will contain S8FD,, and the Carry flag will be set to 1.

3-232 The 8086 Book

Data
oD I T S z A P C Memory
eswx] T T [[11 [x]
AX
Rotate xxyy
BX XX \al to the left
cX 22 zz times
DX
Program (Relative to the
Memory CS Register)
SP D3 |ppppm
BP C3 ppppm + 1
Sl ppppm + 2
DI ppppm + 3
PC mm mm
cs nn nn Program Memory
Address Calculation
DS
sS
ES
ROL BX,CL
Number of cycles: Register (N-bit rotate): 8 + (4 « N)

Register (1-bit rotate): 2

Memory (N-bit rotate): 20 + EA + (4 « N)

Memory (1-bit rotate): 15 + EA

Notes:

1. This instruction performs the same function as the 8080 instruction RLC. This
instruction does, however, allow a great deal more flexibility in that multi-bit rotates
are allowed, rotations of 16-bit quantities are allowed, and any register or memory
location may be rotated.

2. Whether an 8- or 16-bit quantity is to be rotated is not immediately obvious when

considering the syntax of this instruction. The assembler used will have a great deal
to do with how this difficulty is solved.

8086 Assembly Language Instruction Set 3-233

ROR mem/reg,count
Rotate Register or Memory Location Right

Rotate the contents of the specified register or memory location right by the
specified number of bits. The number of bits to rotate, represented by the variable
count, is either one or the number contained in the CL register.

The encoding for this instruction is:

ROR mem/reg,count

[110100cw [mod 001 r/m |

Addressing mode byte(s) as described
earlier in this chapter

w =0 8-bit operand
w = 1 16-bit operand

0 Rotate right one bit
1 Rotate right the number of bits
specified by the CL register

c
c

[}

Suppose that the DS register contains F000,,, the SI register contains 06B2,¢ and the
byte at memory location FO6B2, contains 04 . After the instruction

ROR ([SI},1

has executed, the byte at memory location FO6B2,, will contain 02,, and the Carry and
Overflow statuses will be set to 0.

3-234 The 8086 Book

(Relative to the

O DI T S Z A P C DS Register)
pswlx] | [[[[][«
vwwvu + 1
AX
BX
(3%
DX
Data Memory Program (Relative to the
Address Calculation Memory CS Register)
SP DO ppppm
BP o] ppppm + 1
Si uu uu ppppm + 2
DI ppppm + 3
PC mm mm
Ccs nn nn Program Memory
Address Calculation
DS tt tt
ss
ES
ROR [Sl].1
Number of cycles: Memory (1-bit rotate): 15 + EA

Memory (N-bit rotate): 20 + EA + (4 « N)

Register (1-bit rotate): 2

Register (N-bit rotate): 8 + (4 + N)

Notes:

1. This instruction performs the same function as the 8080 instruction RRC. This
instruction does, however, allow a great deal more flexibility in that multi-bit rotates
are allowed, rotations of 16-bit quantities are allowed, and any register or memory
location may be rotated.

2. Note that whether an 8- or 16-bit quantity is to be rotated cannot be determined

from the instruction ‘

SAHF

8086 Assembly Language Instruction Set 3-235

Store the AH Register into the 8080 Flags

This instruction moves the contents of the AH register into the low-order 8 bits of
the Flags register. The bits in the AH register are used as follows:

Bit 7:
Bit 6:
Bit 5:
Bit 4:
Bit 3:
Bit 2:
Bit 1:
Bit 0:

Store into the Sign Flag

Store into the Zero Flag
Ignore

Store into the Arithmetic Flag
Ignore

Store into the Parity Flag
Ignore

Store into the Carry Flag

The encoding for this instruction is:

SAHF
—r—
9E

For example, suppose that the AH register contains E7,,. Executing an

SAHF

instruction would set the Sign, Zero, Parity, and Carry statuses to 1 while setting the
Arithmetic flag to 0.

3-236 The 8086 Book

SP

BP

Sl

DI

PC

mm

mm

(o]

nn

nn

DS

SS

ES

Notes:

SAHF

Number of cycles: 4

Data
Memory

Program (Relative to the
Memory CS Register)

9E pPPPM

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

1. No registers, other than the Flags register, are affected. The Overflow, Direction,

Interrupt, and Trap flags are not affected.

2. This instruction is used along with POP AX to emulate the 8080 instruction
POP PSW.

8086 Code

POP AX
SAHF

Note that for the 8086 sequence to make sense, the sequence

LAHF
PUSH AX

must have been used to save the 8080 flags.

8086 Assembly Language Instruction Set 3-237

SAR mem/reg,count
Shift Register or Memory Location Right

Shift the contents of the specified register or memory location right by the
specified number of bits. The number of bits to shift, represented by the variable count,

is either one or the number contained in the CL register. This is an arithmetic right shift.
The encoding for this instruction is:

SAR mem/reg,count
h1 01004:wJ rmod111 r/m J
1—Addressing mode byte(s) as described

earlier in this chapter

w=0 8-bit operation
1 16-bit operation

O Shift right one bit

1

Shift right the number of bits
specified by the CL register

w
[
c

Suppose that the CL register contains 05, the DI register contains 180A 4, the DS
register contains F800,, and the word at memory location F980A,, contains 0064,.
After the instruction

SAR [DIl.CL

has executed, the word at memory location F980A ¢ will be 0003 ;.

3-238 The 8086 Book

Data (Relative to the

O DI T S 2 A P C Memory DS Register)
eswix] | [[x[x]-]x[x]
Shift right | | l | | H
xx times v
AX vwwwu + 1
BX wwwu + 2
CX XX
DX
Data Memory Program (Relative to the
Address Calculation Memory CS Register)
SP D3 |ppppm
BP 3D |ppppm + 1
Si pPPpM + 2
o] uu uu ppppm + 3
PC mm mm
Program Memory
cs nn nn Address Calculation
DS tt tt
SS
ES
SAR [DI],CL
Number of cycles: Memory (N-bit shift): 20 + EA + (4 - N)
Memory (1-bit shift): 15 + EA
Register (N-bit shift): 8 + (4 « N)
Register (1-bit shift): 2
Notes:

1. This is an arithmetic right shift as opposed to a logical right shift. The differences
are:

Arithmetic right (SAR) Shift all bits right once. Leave the high-
order bit in the same state. This has the
effect of sign extending the high-order
bit. If a multi-bit shift is performed,
sign extend the high-order bit as far as
is necessary.

Logical right (SHR) Shift all bits right once. Shift a zero into
the high-order bit. If a multi-bit shift is
performed, continue shifting in zeros
as necessary.

8086 Assembly Language Instruction Set 3-239

SBB ac,data

Subtract Immediate from AX or AL Register with Borrow

Subtract the immediate data in the succeeding program memory byte(s) from the
AL (8-bit operation) or AX (16-bit operation) register with borrow. The subtraction is
performed using twos complement methodology.

The encoding for this instruction is:

SBB ac,data
[ooo1110w] | kk | [i |

L—High-order byte of the immediate

operand. This byte is only present if w = 1

Low-order byte of the immediate
operand. This byte is always present

w = 0 8-bit operation. AL is
subtrahend and destination for result

w = 1 16-bit operation. AX is
subtrahend and destination for result

Suppose that the AX register contains 6B3A,, and the Carry status is 1. After the
instruction

SBB AX,4D2CH
has executed, the AX register will contain 1E0D 4.

6B3A16 = 0110 1011 0011 1010
Two’s Comp. of 4D2C1g = 1011 0010 1101 0100
Two's Comp. of Carry = 1111 1111 1111 1111

0001 1110 0000 1101

‘ t—3 one bits, P is set to O
AF is set to 1

Overflow is set to O
Sign is set to O

Carry out of the high-order bit is
inverted, Carry is set to 1

Non-zero result, set Z to O

3-240 The 8086 Book

Data
O DI T s z2 A P C Memory
psw(x] [[[x[x]x]x[x]
AX XX Yy
BX
CX
DX
Program (Relative to the
Memory CS Register).
SP 1D ppppm
BP kk Jppppm + 1
Si i ppppm + 2
DI ppppm + 3
PC mm mm
cs o on Program Memory
DS Address Calculation
SS
ES
SBB AX,jjkk
Number of cycles: 4
Notes:

1. This instruction performs the same function as the 8080 instruction SBI data;
however, this instruction also allows 16-bit operations.

8086 Assembly Language Instruction Set 3-241

SBB mem/reg,data

Subtract Immediate Data from Register or Memory Location with Borrow

Subtract the immediate data in the succeeding program memory byte(s) from the
specified register or memory location with borrow. An 8- or 16-bit operation may be
specified. The subtraction is performed using twos complement methodology.

The encoding for this instruction is:

SBB mem/reg,data

[tocooosw] [modot1wm | [| | ii |
t—High-ordev byte of the immediate

operand. This byte is only present if
s=0andw = 1.

Low-order byte of the immediate
operand. This byte is always present.

Addressing mode byte(s) as described
earlier in this chapter.

w=0 8-bit operation
w =1 16-bit operation

s is the sign extension bit. If w = 0, this
bit is ignored.

fw = 1, then s = 0; all 16 bits of the
immediate operand are present.

s = 1, only the low-order 8 bits of the
immediate operand are present. The
high-order 8 bits of the 16-bit operand
are formed by sign extending the high-
order bit of kk.

For example, if the Carry Status is 0, the SS register contains 2F00,,, the BP register
contains OF6A , the contents of the DI register are 00184, and the contents of the word
at memory location 2FF82,, are 0400, then executing a

SBB [BP + SI], O3F8H
will result in the word at memory location 2FF82 ¢ being altered to 0008,.

04009 = 0000 0100 0000 0000
Two's Comp. of 03F81g = 1111 1100 0000 1000
Two's Comp. of Carry = 0000 0000 0000 0000

0000 0000 0000 1000

t— 1 one bit, P is set to O

AF is set to O
Overflow is set to O
Sign is set to O

Carry out of high-order bit is
inverted, Carry is set to O

Non-zero result, set Z to 1

3-242 The 8086 Book

(O]

T

S Z A

P C

PSWIXI

| [[x]x]x]x]x

AX

BX

CX

DX

Data Memory

SP

Address Calculation

BP

r

r

Sl

uu

uu

DI

PC

mm

o]

nn

nn

DS

SS

ES

SBB

[BP + Siljjkk

Data (Relative to the
Memory SS Register)

yy v

XX wwwy + 1

wwy + 2

Program (Relative to the
Memory CS Register)

81 ppppm

1B ppppm + 1

kk |ppppm + 2

il ppppm + 3

Program Memory
Address Calculation

Number of cycles: Memory operand: 17 + EA

Register operand: 4

8086 Assembly Language Instruction Set 3-243

SBB mem/regq, mem/regz

Subtract: * Register from Register with Borrow
* Register from Memory with Borrow
* Memory from Register with Borrow

Subtract the contents of the register or memory location specified by mem/reg,
and the Carry status from the contents of the register or memory location specified by
mem/reg,. An 8- or 16-bit operation may be specified. Either mem/reg, or mem/reg,
may be a memory operand, but one of the operands must be a register operand.

The encoding for this instruction is:

SBB mem/regq, mem/reg2
[0001 1 Odwl r mod reg r/m I

Addressing mode byte(s) as described
earlier in this chapter.

w =0 8-bit operation
w =1 16-bit operation

d is the direction flag. If d = O, then the
operand described by mod and r/m is
mem/regq and the operand described
by reg is mem/regy. If d = 1, then the
operand described by mod and r/m is
mem/regy and the operand described
by reg is mem/regq

Consider the case where the DL register contains 03, the BL register contains 64, and
the Carry status is 1. After the instruction
SBB BL.DL

has executed, the BL register will contain 60, and the statuses will be set as follows:

6416 = 0110 0100
Two's Comp. of 0316 = 1111 1101
Two’s Comp.of 1 = 1111 1111

0110_0000

2 one bits, P is set to 1

Carry out of bit 3, AF is set to O
Overflow is set to O

Sign is set to O

Carry out of high-order

bit, Carry is set to O

Non-zero result, set Z to O

’—r’

3-244 The 8086 Book

psw[x] [| [x[x[x[x[x]

AX
BX
CX
DX

SP
8P
Sl
DI
PC

[0S}
DS
SS
ES

[¢]

D

Data
I T 8§ z2 A P C Memory

XX
' vy .
Program (Relative to the
Memory CS Register)
18 |ppppm
D3 ppppm + 1
ppppm + 2
ppppm + 3
mm mm
Program Memory
nn nn Address Calculation
SBB BL,DL

Number of cycles: Register to register: 3
Register to memory: 16 + EA
Memory to register: 9 + EA

8086 Assembly Language Instruction Set 3-245

SCAS
Compare Memory with AL or AX Register

Compare the contents of the memory location addressed by the DI register with
the AL (8-bit operation) or AX (16-bit operation) register. The comparison is per-
formed by subtracting the contents of the memory location addressed by the DI register
from the AL or AX register and using the result to set the flags. Neither the memory
location nor the AX register is affected. The DI register is incremented/decremented
depending on the value of the DF flag.

The encoding for this instruction is:

SCAS

l 101011w'
—w

w =1 A 16-bit comparison. The DI
register is incremented by 2 if
DF = 0. The DF register is
decremented by 2 if DF = 1

L[}
(=)

An 8-bit comparison. The DI
register is incremented by 1 if
DF = 0. The DF register is
decremented by 1 if DF = 1

Consider the case where the DI register contains 00004, the ES register contains 1800,
the DF flag is 0, the contents of memory location 18000, are 09,, and the contents of
the AL register are 0D ,. After the instruction

SCAS BYTE

executes, the DI register will contain 0001, and the flags will be set as follows:

0D1g = 0000 1101
Two's Comp. of 0916 = 1111 0111

0000_,0100

| L— 1 one bit, P is set to O
Carry out of bit 3, AF is set to 1

Overflow is set to O
Sign is set to O

Carry out of high-order bit
is complemented, Carry is set to O

Non-zero result, set Z to 0

3-246 The 8086 Book

—— —— Data (Relative to the
O DI T S zZ A P C Memory ES Register)
PSW[Xl I l IXlXIXIXlXJ vy rrrrg
XX — ¥ rrrrg + 1
AX XX
BX
cx 9999 + 1
DX
Data Memory Program (Relative to the
Address Calculation Memory CS Register)
se Ogggg AE ppppm
hhhhO
BP Trrrg ppppm + 1
S| ppppm + 2
DI [e]:] g9 mmmm + 1 ppppm + 3
PC mm mm
Ommmm
nnnnO
Ccs nn nn ppppm
DS Program Memory
Address Calculation
SS
ES hh hh
SCAS
Number of cycles: 15 for a single occurrence
9 + (15 times repetition when preceded by REP prefix)
Notes:

1. The REP prefix and/or the LOCK prefix may be used with this instruction. If the
REP prefix and the LOCK prefix are used with this instruction, certain problems
may result. An analysis of this difficulty is presented in the next chapter.

8086 Assembly Language Instruction Set 3-247

SEG segreg

Override Default Segment Register

Use the specified segment register to compute the data memory address for the
instruction this prefix precedes; i.e., use the contents of the specified segment register as
the segment address for the data memory address calculation.

The encoding for this instruction is:

SEG segreg

E ss is two bits specifying the segment

register.

ss = 00 for ES
01 for CS
10 for SS
11 for DS

Consider the following situation: the DS register contains 10004, the ES register con-
tains 2000,,, the BX register contains 0008, the word at memory location 10008 is

FEFE,, and the word at memory location 20008 4 is 060A . After the instructions

SEG ES
MOV AX,[BX]

have executed, the AX register will contain 060A .

3-248 The 8086 Book

D

0
Pswr |

AX

BX

CX

DX

SP

BP

Si

Dl

PC

mm

cs

nn

nn

DS

SS

Program Memory
Address Calculation

ES

SEG ES
Number of cycles: 2

Data
Memory

Program
Memory

16

(Relative to the
CS Register)

pPppM
ppppm + 1
PPppM + 2

ppppm + 3

8086 Assembly Language Instruction Set 3-249

SHL mem/reg,count
SAL mem/reg,count

Shift Register or Memory Location Left

Shift the contents of the specified register or memory location left by the specified
number of bits. The number of bits to shift, represented by the variable count, is either
one or the number contained in the CL register. This is a logical left shift.

The encoding for this instruction is:

SHL mem/reg,count
[110100cw] [mod100wm]

Addressing mode byte(s) as described
earlier in this chapter

w=0 8-bit operand
16-bit operand
Shift left one bit

Shift left the number of bits
specified by the CL register

o6 g
non
—-—0 =

Suppose that the CL register contains 02, and the SI register contains A450,,. After the
instruction

SHL SI.CL

has executed, the SI register will contain 9140,, and the Carry status will be 0.

3-250 The 8086 Book

Data
o b ! T s zZ A.P C Memory
eswlx{ [[T T 11 1%
AX
BX
CX 2z
DX
Program (Relative to the
Memory CS Register)
SP D3 PpPppm
BP E6 [ppppm + 1
Sl XX vy Sl?éfftt););vy ppppm + 2
times
DI ppPppM + 3
PC mm mm
mmmm + 2
cs nn nn
DS : m’:}":\"g Program Memory
ss PPPPM Address Calculation
ES
SHL SI,CL
Number of cycles: Register (N-bit shift): 8 + (4 * N)

Register (1-bit shift): 2

Memory (N-bit shift): 20 + EA + (4 + N)

Memory (1-bit shift): 15 + EA

Notes:

1.

This instruction can be used to perform multiplications in addition to shifts. Since
the MUL and IMUL instructions require at least 71 cycles to execute, there are
occasions where using shifts to perform multiplication becomes an attractive solu-
tion. Typically, these situations arise when optimizing the speed of the code is more
of a factor than memory conservation, and when the multiplication to be performed
will always be a power of two, or will always be some constant. Consider the follow-
ing cases:
CALL MULTSEY$S8

.
.

MULTBY8 MOV CL.3
SAL AX,CL
RET

8086 Assembly Language Instruction Set 3-251

The MULTSBY8 routine requires 5 bytes of code for the routine and 3 bytes of
code for the CALL. Instead of requiring 71 cycles (minimum) to perform the
multiply, however, 19 cycles are necessary for the CALL and 32 cycles are necessary
for the routine.

CALL SAL$THREESTIMES

SAL$THREESTIVES ~ SAL
SAL
SAL
RET

This routine requires an additional 2 bytes; however, this routine executes in a mere
14 cycles.

It is clear that selecting routines which oniy multiply by powers of two will certainly
show off the SHL instruction. Consider the case of a multiply by 15.
CALL MULTBY15

.

MULTBY15 MoV CL4
MOV DX,AX
SAL AL,CL
suB AX,DX
RET

This routine requires 9 bytes of code and 41 cycles, an additional 19 for the CALL.
This is only marginally faster than using the MUL instruction. This routine can
work much faster if individual SAL instructions are included.

CALL MULTBY15

MULTBY15 MOV DX,AX
SAL
SAL
SAL
SAL
SUB AX,DX
RET

In this case, the routine needs only 21 cycles to operate.

8- or 16-bit rotation? This instruction, the way it is expressed in this description,
doesn’t specify this.

3-252 The 8086 Book

SHR mem/reg,count
Shift Register or Memory Location Right

Shift the contents of the specified register or memory location right by the
specified number of bits. The number of bits to shift, represented by the variable count,

is either one or the number contained in the CL register. The bit shifted into the high-
order bit is a zero. This is a logical right shift.

The encoding for this instruction is:

SHR mem/reg,count
[110100cw] | mod101wm |

Addressing mode byte(s) as described
earlier in this chapter

w=0 8-bit operand
w =1 16-bit operand

c = 0 Shift right one bit
c = 1 Shift right the number of bits
specified by the CL register

Suppose that the BL register contains F0,,. After the instruction
SHR BL
has executed, the contents of the BL register will be 78 ;.

8086 Assembly Language Instruction Set 3-253

(Relative to the
CS Register)

pPPPPM
ppppm + 1
ppppm + 2

ppppm + 3

Data
O b I T S zZ A P C Memory
e[T T T 111111
/—-0
AX (
BX ¥—|—-‘—|—|—|-—|-+ shift right
CX
DX
Program
Memory
SP DO
BP EB
Si
DI
PC mm mm
nn nn
cs Program Memory
DS Address Calculation
SS
ES
SHR BL
Number of cycles: Register (1-bit shift): 2
Register (N-bit shift): 8 + (4 * N)
Memory (1-bit shift): 15 + EA
Memory (N-bit shift): 20 + EA + (4+N)
Notes:

1. Thisis a logical right shift as opposed to an arithmetic right shift. The differences are

Logical right (SHR)

Arithmetic right (SAR)

Shift all bits right once. Shift a zero into the high-order
bit. If a multi-bit shift is performed, continue shifting in

Zeros as necessary.

Shift all bits right once. Leave the high-order bit in the
same state. This has the effect of sign extending the
high-order bit. If a multi-bit shift is performed, sign
extend the high-order bit as far as is necessary.

3-254 The 8086 Book

STC
Set the Carry Flag

This instruction is used to set the Carry status to 1. No other statuses or register
contents are affected.

The encoding for this instruction is:
STC

——

F9

Data
I T 8§ Z2 A P C Memory

AX

BX

CX

DX

Program (Relative to the
Memory CS Register)

SP F9 Ppppm

BP ppPPPM + 1

Si ppppm + 2
DI

ppppm + 3

PC mm mm

cs nn nn

DS

SS Program Memory
Address Calculation

ES

STC
Number of cycles: 2

STD
Set the Direction Flag

8086 Assembly Language Instruction Set 3-255

This instruction is used to set the Direction flag to 1. No other statuses or register

contents are affected. This instruction makes string operations perform auto-decrement
on the pointers used by the string operations.

AX
BX
CX
DX

SP
BP

Sl

PC

cs
DS
SS
ES

The encoding for this instruction is:

STD
———

FD

mm

mm

nn

nn

Program Memory
Address Calculation

STD
Number of cycles: 2

Data
Memory

Program
Memory

FD

(Relative to the
CS Register)

ppPppmM
ppppm + 1
ppppm + 2

ppppm + 3

3-256 The 8086 Book

STI
Set the Interrupt Flag

Set the Interrupt flag to 1 after the execution of the next instruction. This has the
effect of enabling interrupts.

The reason for waiting one instruction is as follows. Most interrupt service
routines end with the two instructions:

STI ;ENABLE INTERRUPTS
RET ;RETURN TO INTERRUPTED PROGRAM

If interrupts are processed serially, then for the entire duration of the interrupt
service routine all interrupts are disabled — which means that in a multi-interrupt
application, there is a significant possibility for one or more interrupts to be pending
when any interrupt service routine completes execution.

If interrupts were acknowledged as soon as the STI instructions had executed,
then the Return instruction would not be executed. Under these circumstances returns
would stack up one on top the other and unnecessarily consume stack memory space.
This may be illustrated as follows:

Interrupt

Interrupt

Interrupt

*Interrupt service routines

By inhibiting interrupts for one more instruction following execution of STI, the 8086
CPU ensures that the RET instruction gets executed in sequence:

STI ;ENABLE INTERRUPTS
RET ;RETURN FROM INTERRUPT

It is not uncommon for interrupts to be kept disabled while an interrupt service routine
is executing. Interrupts are processed serially:

Interrupt Interrupt Interrupts
—
\ \ Interrupts
Interrupt service Interrupt service
routine routine

AX
BX
CX
DX

SP
BP
Sl
DI
PC

cs
DS
SS
ES

Notes:

8086 Assembly Language Instruction Set 3-257

Data

14T S Z A P C 1 Memory

Program (Relative to the
Memory CS Register)

FB |ppppm

ppppm + 1

ppppm + 2

ppppm + 3

mm

nn

nn

Program Memory
Address Calculation

1. This instruction

STI
Number of cycles: 2

performs the same function as the 8080 instruction EI.

3-268 The 8086 Book

STOS
Store AL or AX Register Into Memory

Store the AL (8-bit operation) or AX (16-bit operation) register into the memory
location addressed by the DI register. The DI register is incremented/decremented
depending on the value of the DF flag.

The encoding for this instruction is:

STOS

|1 010101w I
L— w =0 8 bits are transferred. The DI

register is incremented by 1 if -
DF = 0. The DI register is
decremented by 1 if DF = 1.

w =1 16 bits are transferred. The Di
register is incremented by 2 if
DF = 0. The DI register is
decremented by 2 if DF = 1.

For example, suppose that the DF flag is 1, the DI register contains 000A 4, the ES
register contains 2800, and the AX register contains 0604 .. After the instruction

STOS WORD

has executed, the contents of the word at memory location 2800A ,, will be 0604,,, and
the DI register will contain 0008,.

8086 Assembly Language Instruction Set 3-259

Data (Relative to the

O DI T S Z A P C Memory ES Register)
swl | J [T T [T1] I
N— XX rrreg + 1
AX XX yy rrreg + 2
BX
CX
DX
Program (Relative to the
Memory CS Register)
SP AB PPPpmM
BP ppppm + 1
gggg + 2
S| ppppm + 2
DI 99 99 ppppm + 3
PC mm mm
cs nn nn Program Memory
DS Address Calculation
SS
ES hh hh
Data Memory
Address Calculation
STOS WORD

Number of cycles: 11 per single occurrence
9 + (10 times repetition when preceded by the REP prefix)

Notes:

1.
2.

No statuses are affected.

The segment address for this instruction is always contained in the ES register. No
segment override prefix may be used for this instruction. If a segment override
prefix is present, it will be ignored.

This instruction may be preceded by the REP prefix and/or the LOCK prefix. Using
the REP and the LOCK prefixes in conjunction with this instruction may cause
problems. Consult the next chapter for a complete discussion of these potential
difficulties.

This instruction is very useful in setting entire buffers or data areas to a particular
value. Consider the following instruction sequence:
LES DI,JOB$COSTINGSARRAY

mMov CX,JOB$COSTINGSARRAY$WORDSLENGTH
Mov AX,0000H

REP
STOS WORD

After this sequence has executed, the JOBSCOSTINGSARRAY will contain all 0’s.

This instruction has an obvious problem. How does the assembler determine
whether 8 or 16 bits are to be stored? For a discussion of this problem, consult the
last section of this chapter.

3-260 The 8086 Book

SUB ac,data
Subtract Immediate Data from the AL or AX Register

This instruction is used to subtract immediate data from the AL (8-bit operation)
or the AX (16-bit operation) register. The subtraction is performed utilizing twos com-

plement methodology.
The encoding for this instruction is:

suB ac,data

[oo10110w F Kk |r i |

LHigh-order 8 bits of the immediate

operand. This byte is only presentif w = 1

Low-order 8 bits of the immediate
operand. This byte is always present.

w = 0 8-bit operation. AL is the
subtrahend and the destina-
tion of the result.

w = 1 16-bit operation. AX is the
subtrahend and the destina-
tion of the resuit.

For example, suppose that the AL register contains 61,,. After the execution of the
instruction
SUB AL065H

the contents of the accumulator will be FCy,.

6116 = 0110 0001
Twos comp. of 651 = 1001 1011
11111100

Six 1 bits, set the Parity flag to 1
Non-zero result, set ZF to O

No Carry so set AF to O
Overflow is O

Set the Sign flag to 1

Set Carry to 1

Notice that the resulting Carry is complemented.
Note that FC,, is the twos complement representation of -4, which is indeed the

result we expect when we subtract 65,, from 61,.

o D I

T S Z A

8086 Assembly Language Instruction Set 3-261

P C

ron G T T X [X[X[¥]

AX

XX

BX

CX

DX

SP

BP
Si

mmmm + 2

DI
PC

mm

Ccs

nn

nn

DS

Ommmm
nnnn0

SS

pPPPM

ES

Notes:

SUB AL.kk
Number of cycles: 4

Data
Memory

Program
Memory

2C

kk

Program Memory

(Relative to the
CS Register)

ppppm
ppppm + 1
ppppm + 2

ppppm + 3

Address Calculation

1. This instruction performs the same function as the 8080 instruction SUI data. This
instruction, however, also allows 16-bit operations.

3-262 The 8086 Book

SUB mem/reg,data
Subtract Imnmediate Data from Register or Memory Location
Subtract the immediate data in the succeeding program memory byte(s) from the

specified register or memory location. An 8- or 16-bit operation may be specified.
The encoding for this instruction is:

sus mem/reg,data

[tooooosw] [modto1em | [W || i

The high-order byte of the immediate
operand. This byte is only presentif w = 1

The low-order byte of the immediate
operand. This byte is always present.

Addressing mode byte(s) as described
earlier in this chapter.

w = 0 8-bit operation
w = 1 16-bit operation

s is the sign extension bit. If w = O, this

bit is ignored.

If w = 1, then

s = 0 all 16 bits of the immediate

operand are present.

s = 1 only the low-order 8 bits of the
immediate operand are present.
The high-order 8 bits of the 16-
bit operand are formed by sign
extending the high-order bit of
kk.

Suppose that the DS register contains 3000,,, the SI register contains 0040, and the
word at memory location 30054, contains 4336 . After the instruction

SUB [SI + 14H], 0136H

has executed, the word at memory location 30054, will contain 4200,,. The flags will be
set as follows:

43361 = 0100 0011 0011 0110
Two's Comp. of 01369 = 1111 1110 1100 1010

0100 0010 0000 0000

‘“ t—-— Zero one bits in the

low-order eight bits, set P to 1
AF set to O

Overflow to O

Sign to O

Complement Carry out, set C to O

Non-zero result, set Z to O

8086 Assembly Language Instruction Set 3-263

o] | S Z A C
eswl | T[T [T T 1]
AX xxyy = jjkk
BX Data Memory
CcX Address Calculation
Ogagg
DX 0Oqq
hAhnQ
Treee
SP
BP Sign extend
Sl ag gg qq to qqaq
DI
PC mm mm
mmmm + 5
Ccs nn nn
DS hh hh
SS Ommmm
nnnn0
ES pPPPM
SUB [SI + qql, jikk
Number of cycles: immediate from memory: 17 + EA
immediate from register: 4
Notes:

Data
Memory

Yy

XX

Program
Memory

81

6C

aq

kk

i

(Relative to the
DS Register)

rrreer
reeer 4+ 1

rreer 4+ 2

(Relative to the
CS Register)

ppppm
ppppm + 1
pPppm + 2

ppppm + 3

Program Memory
Address Calculation

1. This instruction is not usually applied to subtracting immediate data from the AX or
AL register. The instruction SUB ac,data is provided for this purpose.

3-264 The 8086 Book

SUB mem/reg,, mem/regz

Subtract: * Register from Register
* Register from Memory
* Memory from Register

Subtract the contents of the register or memory location specified by mem/reg,
from the contents of the register or memory location specified by mem/reg,. An 8- or
16-bit operation may be specified. Either mem/reg, or mem/reg, may be a memory
operand, but one of the operands must be a register operand.

The encoding for this instruction is:

SuB mem/reg{, mem/regy
|001010dw I mod reg r/m |

Addressing mode bytel(s) as described
earlier in this chapter

w = 0 8-bit operation
w = 1 16-bit operation

d is the Direction flag. If d = O, then the
operand described by mod and r/m is
mem/regq and the operand described
by reg is mem/regy. If d = 1, then the
operand by mod and r/m is mem/regy
and the operand described by reg is
mem/regq

Suppose that the DH register contains 41,,, the SS register contains 0000,,, the BP
register contains 00E4,,, and the byte at memory location 000ES8,, contains 5A .. After
the instruction

SUB DH,[BP + 4]
executes, the DH register will contain E7 ¢, and the statuses will be set as follows:

4146 = 0100 0001
Two's comp. of 5A1g = 1010 0100

1110 0111

Six one bits, set P to 1

No carry, set AF to 1

Overflow is set to O

Set Sto 1

No carry of high-order bit, set C to 1
Non-zero result, set Z to 0

s G T T]

AX
BX
CX
DX

SP
BP

S|
DI
PC

cs
DS
SS
ES

o D

T § Z A P

C

e

5

L~

XX

99 a9
mm mm

nn nn

hh hh

8086 Assembly Language Instruction Set 3-265

Okkkk

0Oggg!
hhhh
rerrr

sign exten
kk to 16
bits, kkkk

mmmm + 3

mmmm
nnnnO

ppppm

SUB DH,[BP + kkI

Number of cycles: Memory to Register: 9 + EA
Register to Memory: 16 + EA
Register to Register: 3

Data
Memory

Yy

Program
Memory

2A

76

kk

(Relative to the
SS Register)

rreer

reeer 4+ 1

(Relative to the
CS Register)

ppppm
ppppm + 1
ppppm + 2

ppppm + 3

Program Memory
Address Calculation

3-266 The 8086 Book

TEST ac,data
Test Immediate Data with AX or AL Register

AND the immediate data in the succeeding program memory byte(s) with the

contents of the AL (8-bit operation) or the AX (16-bit operation) register, but do not
return the result to the register.

The encoding for this instruction is:
TEST ac,data

[fororoow]|[w [i |

High-order 8 bits of the immediate
operand. This byte is only present if w = 1

Low-order byte of the immediate
operand. This byte is always present.

w =0 8-bit operation
w =1 16-bit operation

As an example, consider the situation where the AX register contains 73AC,,. After the
instruction

TEST AX,0040H

has executed, the AX register will still contain 73AC,,, but the Flags register will have
been altered to reflect the ANDing of 73AC,, and 0040,

73AC1g = 0111 0011 1010 1100
00401 = 0000 0000 0100 0000

0000 0000 0000 0000

Zero one bits, set P to 1
AF is undetermined
Overflow is cleared to O
Sign is set to 0

Carry is cleared to O
Zero result, set Z to 1

8086 Assembly Language Instruction Set 3-267

———

—tm Data
o b I T s zZ A P C Memory
pswlo] [[[x[x]7{x]o]
AX XX Yy
BX
CX
DX
Program (Relative to the
Memory CS Register)
SP A9 PPPPM
BP kk ppppm + 1
Si mmmm + 3 i ppppm + 2
DI ppppm + 3
PC mm mm
051 nn nn
DS :‘:‘r:rr::)m Program Memory
Address Calculation
SS ppppm
ES
TEST AX.jjkk
Number of cycles: 4
Notes:

1. Ifitis desired to TEST the contents of other registers or memory locations, consult
the TEST mem/reg,data instruction.

3-268 The 8086 Book

TEST mem/reg,data
Test Inmediate Data with Register or Memory Location

AND the immediate data in the succeeding program memory byte(s) with the
contents of the specified register or memory location, but do not return the result to the

specified register or memory location. An 8- or 16-bit operation may be specified.
The encoding for this instruction is:

TEST mem/reg,data

|1111o117||mw000rmL kk JL ii

High-order byte of the immediate
operand. This byte is only present if w = 1

Low-order byte of the immediate
operand. This byte is always present.

Addressing mode bytel(s) as described
earlier in this chapter.

w = 0 8-bit operation
w = 1 16-bit operation

For example, consider the case where the SI register contains 03F6,,. After the instruc-
tion
TEST S1,0400H

executes, the contents of the SI register will be unchanged; however, the flags will be set
to reflect the result of ANDing 03F6,, and 0400, .

03F61g = 0000 0011 1111 0110
040016 = 0000 0100 0000 0000

0000 0000 0000 0000

t' Zero one bits, set P to 1

AF is undefined
Overflow is cleared<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>