
noSBORNE/McGraw-Hill

[f -A/J

•tt -

includes the 8088

Russell Rector - George Alexy

THE

8086
BOOK

THE

8086
BOOK

Russell Rector - George Alexy

OSBORNE/McGraw-Hill

Berkeley, California

Published by
OSBORNE/McGraw-Hli!

630 Bancroft Way

Berkeley, California 94710
U. S. A

For information on translations and book distributors outside of the U. S. A.,
please write OSBORNE/McGraw-Hill at the above address.

The 8086 Book

Copyright ® 1980 McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. No
part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of the publishers.

1234567890 DODO 89876543210

ISBN 0-931988-29-2

Cover design by Joseph Mauro.

Contents

Introduction

1. Programming

Assembly Language 1-1
Programming Tasks 1-4

Specification of the System 1-5
Program Design 1-8

Implementation 1-9

Testing 1-12

Documentation 1-13

Maintenance 1-14

2. Some Program Examples

A Sort Program 2-1

Inputs 2-3

Computation 2-3
Input Record Format 2-3

Sort Method 2-4

Output Record Format 2-6

Outputs 2-6
Error Processing 2-7
Program Design 2-7

vi The 8086 Book

3. The 8086 Assembly Language Instruction Set
An 1/0 Driver 3-4

Computation 3-11
Outputs 3-11
Program Design 3-12

The 8086 Instruction Set 3-18

The 8086 Registers and Flags 3-20
General Purpose Registers 3-21
Pointer Registers 3-22
Index Registers 3-22
Segment Registers 3-22
Flags Register 3-23
How Instructions Affect the Flags Register 3-25

8086 Addressing Modes 3-30
Program Memory Addressing Modes 3-31
Data Memory Addressing Modes 3-32
Addressing Mode Byte 3-41
Segment Override 3-43
Memory Addressing Tables 3-44

Instruction Set Mnemonics 3-45
Abbreviations 3-45

8086 Assembly Language Instructions Organized Alphabetically 3-49
Assembler-Dependent Mnemonics 3-285

4. 8086 Instruction Groups

Data Movement Instructions 4-2
BufTer-to-Buffer Move Routines 4-6
Saving the State of the Machine 4-14
Segment Register Initialization 4-16

Arithmetic Instructions 4-17

Addition Instructions 4-17
Subtraction Instructions 4-21
Multiplication Instructions 4-24
Division Instructions 4-28

Compare Instructions 4-31
Logical Instructions 4-35
String Primitive Instructions 4-44
The REP Prefix 4-46

Program Counter Control Instructions 4-48
Jump-on-Condition Instructions 4-52

Processor Control Instructions 4-57
I/O Instructions 4-57
Interrupt Instructions 4-60
Rotate and Shift Instructions 4-62

5. Software Development

Editors 5-3

Editor Functions 5-4

System Commands 5-10
Assemblers 5-11

Debuggers 5-13

Contents vii

6. Examples of 8086 Assembly Language Programming

Sort Program 6-1

I/O Driver 6-9

7. 8086 Microprocessor Description

8086 CPU Pins and Signals 7-1
Address and Data Lines 7-3

Control and Status Lines 7-4

Power and Timing Lines 7-7

8086 Overview and Basic System Concepts 7-8

8086 Bus Cycle Definition 7-8

8086 Address and Data Bus Concepts 7-10
System Data Bus Concepts 7-16

8086 Execution Unit and Bus Interface Unit 7-28

8086 Instruction Queue 7-29

8. Basic 8086 Design Single CPU

Operating Modes 8-1
Minimum Mode 8-1

Maximum Mode 8-3

Clock Generation 8-11

Reset 8-19

READY Implementation and Timing 8-24
Interrupt Structure 8-30

Predefined Interrupts 8-30

User-Defined Software Interrupts 8-33

User-Defined Hardware Interrupts 8-33

The Interrupt Acknowledge Sequence 8-34
System Interrupt Configurations 8-38

Interpreting the 8086 Bus Timing Diagrams 8-43
Minimum Mode Bus Timing 8-44

Address and ALE 8-44

Read Cycle Timing 8-45

Write Cycle Timing 8-46
Interrupt Acknowledge Timing 8-47

Ready Timing 8-48

Bus Control Transfer Timing 8-48
Maximum Mode Bus Timing 8-49

Address and ALE 8-49

Read Cycle Timing 8-50
Write Cycle Timing 8-51
Interrupt Acknowledge Timing 8-51
Ready Timing 8-52
Other Considerations 8-53

Bus Control Transfer (HOLD/HLDA and RQ/GT) 8-53
Minimum Mode 8-53

Maximum Mode 8-61

viii The 8086 Book

9. The Multibus

Initialization Signal Line 9-3
Address and Inhibit Lines 9-3

Data Lines 9-4

Bus Contention Resolution Lines 9-4

Information Transfer Protocol Lines 9-5

Asynchronous Interrupt Lines 9-6
Power Supply Lines 9-7
Reserved Lines 9-7

Multibus Architectural Concepts 9-11

10. Multiprocessor Configurations for the 8086
Co-processor 10-2

Multiprocessing on a Shared System Bus 10-4
Bus Access and Release Options for the 8289 10-11

Appendices

A. 8086 Instruction Set Ordered Alphabetically

B. 8086 Instruction Set Object Codes in Ascending Numeric Sequence

C. 8086 and 8088 Family AC and DC Characteristics and Signal Waveforms

D. The 8088 CPU

8088 Programmable Registers and Addressing Modes D-1
8088 CPU Pins and Signals D-1
8088 Timing and Instruction Execution D-3
8088 Memory and I/O Device Access Bus Cycles D-3
The 8088 Halt State D-4

Other 8086-Compatible 8088 Logic D-4
The 8088 Instruction Set D-5

Index

Contents Ix

Figures

4-1 8-Bit Buffer-to-Buffer Move 4-6

4-2 16-Bit Buffer-to-Buffer Move 4-6

4-3 Buffer Move Register Initialization 4-7
4-4 Alternate Buffer Move Register Initialization 4-8
4-5 Buffer Move Register Initialization using Immediate Data 4-8
4-6 Buffer Move Register Initialization via Stack and Pop Instructions 4-10
4-4 Buffer Move Register Initialization via Stack and Indirect Addressing 4-10
4-8 Buffer Move Register Initialization using LEA Instruction 4-10
4-9 Buffer Intialization (8-Bit Data Elements) 4-12
4-10 Buffer Intialization (16-Bit Data Elements) 4-12
4- II Buffer Translation 4-13

4-12 Translation of 16-Bit Data Elements 4-13

4-13 Buffer-to-Buffer Translation 4-14

4-14 Saving the 8086 Registers 4-15
4-15 Restoring the 8086 Registers 4-15
4-16 Initializing the ES Register via Immediate Data 4-16
4-17 Initializing the ES Register via Code Segment Locations 4-16
4-18 Multiword Addition 4-17

4-19 Multibyte BCD Addition 4-20
4-20 Multibyte ASCII Addition 4-20
4-21 32-Bit by 32-Bit Multiplication 4-25
4-22 ASCII Multiplication 4-27
4-23 ASCII Division 4-31

4-24 Calculate the Length of a String 4-33
4-25 Find the Largest 8-Bit Number 4-33
4-26 Find the Largest 16-Bit Number 4-34
4-27 Buffer Translation with Range Checking 4-34
4-28 Flowchart for Interrupt Service Routine 4-38
4-29 Interrupt Service Routine 4-41
4-30 8-Bit Buffer-to-Buffer Compare 4-47
4-31 Alternate 8-Bit Buffer-to-Buffer Compare 4-48
4-32 Block I/O via I/O Port Addressing 4-57
4-33 Block I/O via Memory Mapped Addressing 4-57
4-34 Routine to Convert Two ASCII Digits to their Hex Equivalents 4-63

5-1 Hypothetical Development System 5-2
5-2 Elementary Editor Operation 5-3

7-1 8086 Pins and Signal Assignments 7-2
7-2 Basic 8086 Bus Cycles 7-9
7-3 Demultiplexing the Address/Data Bus 7-11
7-4 Separate Address and Data Busses 7-12
7-5 Multiplexed Bus with Local Address Demultiplexing 7-12
7-6 Multiplexed Data Bus 7-16
7-7 Buffered Data Bus 7-17

7-8 Devices with Output Enables on the Multiplexed Bus 7-18
7-9 CS Gated with RD/WR 7-19

X The 8086 Book

Figures (Continued)

7-10 CS to WR Set-up and Hold 7-20
7-11 Buffered Data Bus 7-21
7-12 Bus Transceiver Control 7-22
7-13 Devices with Output Enables on the System Bus 7-23
7-14 Bus Contention on the System Bus During Write

for Devices without Output Enables 7-24
7-15 Fully Buffered System 7-24 _
7-16 Controlling System Transceivers with DEN and DT/R 7-25
7-17 Devices with OE 7-25
7-18 Devices without OE. Common or Separate Input/Output

Limited Read Access. Limited CS to WE Hold and Set-up 7-26
7-19 Devices without OE. Common or Separate Input/Output

Full Read Access. Limited Write Data Set-up and Hold 7-27
7-20 Devices without OE. Separate Input/Output 7-27

8-1 Minimum Mode 8086 8-2
8-2 Maximum Mode 8086 8-4
8-3 Circuit to Track the 8086 Queue 8-5
8-4 Status Line Activation and Termination 8-7
8-5 Minimum and Maximum Bus Transfer Timing 8-8
8-6 LOCK Activity 8-9
8-7 Timing and Voltage Requirements for the 8086 CPU 8-11
8-8 Using the 8284 to Provide CLK 8-12
8-9 Using an External Frequency Source 8-13
8-10 Generating a Master Frequency Source 8-15
8-11 Synchronizing CSYNC 8-16
8-12 CSYNC Timing 8-16
8-13 Synchronizing CSYNC using OSC 8-17
8-14 Delivering CSYNC to Multiple 8284s 8-18
8-15 Buffering CLK with a High-Drive Device 8-19
8-16 8086 Bus Condition on Reset 8-20
8-17 Reset Disable for Maximum Mode 8086 Bus Interface 8-21
8-18 Reset Disable for Maximum Mode 8086 Bus Interface in

Multi-CPU System 8-22
8-19 8284 Reset Circuit 8-23
8-20 Constant Current Power-On Reset Circuit 8-23
8-21 8086 Reset 8-24

8-22 Normally Not Ready System Avoiding a Wait State 8-25
8-23 Normally Ready System Inserting a Wait State 8-26
8-24 8284-8086 Ready Connection 8-26
8-25 8284 with 8086 Ready Timing 8-27
8-26 8284 using One RDY Input 8-27
8-27 8284 with SYSTEM READY Driving Access Enable 8-28
8-28 Single Wait State Generator 8-29
8-29 Timing for Single Wait State Generator 8-29

Contents xi

Figures (Continued)

8-30 Obtaining the Interrupt Service Routine from the
Interrupt Vector Table 8-31

8-31 Interrupt Acknowledge Sequence in Minimum Mode 8-35
8-32a 8259s Connected to a Minimum Mode 8086 —

Multiplexed Bus 8-39
8-32b 8259s Connected to a Minimum Mode 8086 —

Demultiplexed Bus 8-40
8-33 8259s Connected to a Maximum Mode 8086 8-41
8-34 Timing to Gate 8259A CAS Address onto the 8086

Local Bus 8-42

8-35 HOLD/HLDA Sequence 8-54
8-36 DMA using Minimum Mode 8-58
8-37 8257 on System Bus 8086 Minimum Mode System

16-Bit Data Transfers 8-59

8-38 Translating HOLD into AEN Disable for Maximum Mode 8086 8-60
8-39 Request/Grant Sequnce 8-64
8-40 Channel Transfer Delay 8-66
8-41 HOLD/HLDA to RQ/GT Conversion Circuit 8-67

9-1 Serial Priority Technique 9-8
9-2 Parallel Priority Resolution and Bus Exchange Timing 9-9
9-3 8/16-Bit Device Transfer Operations 9-12

10-1 8086 Maximum Mode Multiple Processors 10-3
10-2 Multiprocessor Configuration 10-5
10-3 CPU with no Local Resources 10-6
10-4a 8086 with Local ROM/EPROM 10-9
10-4b 8086 with Local ROM/EPROM and I/O 10-10
10-4c 8086 with Local RAM/ROM/EPROM/I/0 10-12

D-1 8088 Pins and Signal Assignments D-2

Tables

3-1 Instructions that Have No Effect on the 8086 Flags Register 3-26
3-2 Instructions that Affect All 8086 Arithmetic Flags 3-26
3-3 Instructions that Affect All 8086 Arithmetic Flags Except Carry 3-26
3-4 Instructions that Affect AF and OF 3-27
3-5 Instructions that Leave Overflow Undefined 3-27
3-6 Instructions that Affect All Arithmetic Flags,

Leaving CF and OF Meaningful 3-27
3-7 Instructions that Affect All Arithmetic Flags,

Leaving AF Undefined 3-28
3-8 Instructions that Affect Carry and Overflow Flags Only 3-28
3-9 Instructions that Affect Specific Flags 3-28
3-10 Instructions that Affect Parity, Sign and Zero Flags 3-29
3-11 Instructions that Scramble the Flags 3-29
3-12 Instructions that Restore All the 8086 Flags from

the Stack 3-29

3-13 Instructions that Clear the Interrupt and Trap Flags 3-29

4-1 8086 Data Movement Instructions 4-3
4-2 8086 Addition Instructions 4-18
4-3 8086 Subtraction Instructions 4-22
4-4 8086 Multiplication Instructions 4-26
4-5 8086 Division Instructions 4-29
4-6 8086 Comparison Instructions 4-32
4-7 8086 Logical Instructions 4-36
4-8 String Primitive Instructions 4-45
4-9 Program Counter Control Instructions 4-50
4-10 Jump-on-Condition 4-54
4-11 Signed vs. Unsigned Comparison Instructions 4-55
4-12 Loop Instructions 4-56
4-13 Processor Control Instructions 4-58
4-14 8086 I/O Instructions 4-59
4-15 8086 Interrupt Instructions 4-61
4-16 8086 Shift and Rotate Instructions 4-64

8-1 Queue Status Outputs 8-3
8-2 Status Line Outputs 8-6
8-3 Crystal Vendors 8-13
8-4 8086 Bus Signals during Reset 8-19
8-5 8288 Outputs during Passive State 8-20

9-1 Pin Assignment of Bus Signals on Multibus Board PI Connector 9-2
9-2 P2 Connector Pin Assignment of Optional Bus Signals 9-3

Introduction

This book focuses on three topics: general programming concepts and practices,
the 8086 microprocessor with its assembly language, and logic design using the 8086
microprocessor. The discussion of general programming concepts and practices is rele
vant to any microprocessor, but the rest of the book is specific to the 8086. As such, this
book becomes a how-to text for the 8086.

The prime source for the 8086 microprocessor is:

INTEL CORPORATION

3065 Bowers Avenue

Santa Clara, California 95051

The second source is:

MOSTEK, INC.
I2I5 West Crosby Road
Carrollton, Texas 75006

The discussion of general programming concepts and practices begins by looking
at the relationship between the programmer and a computer, since this is ultimately
what determines the nature of any design project. Why do some programmers work with
machine language while others program in assembly language or perhaps higher level
languages? Different types of applications call for different types of programming. In
each case good programming practices should be cultivated. A set of rules is described to
achieve this goal, and two examples are used to illustrate programming projects.

The description of the 8086 microprocessor itself covers assembly language
programming and hardware design.

xiv The 8086 Book

For the assembly language programmer, the 8086 CPU architecture and the
microprocessor's assembly language instruction set are described in detail.

For the hardware designer, timing and bus considerations are described for all sig
nals normally input to the microprocessor or output by it. Single-bus and multi-bus
architectures are covered. The standard Intel Multibus is described in detail.

WHAT THIS BOOK ASSUMES YOU KNOW

This book assumes that you have a working knowledge of general microprocessor
concepts, and the ideas presented m An Introduction to Microcomputers: Volume I —
Basic Concepts, 2nd Revision, by A. Osborne, Osborne/McGraw-Hill, 1980. Accor
dingly, this book does not cover any elementary material such as binary arithmetic,
buffers, or CPU architecture fundamentals.

The 8086 microprocessor and its immediate support parts are described in great
detail within this book. The 8089 1/0 Processor is referred to, but it is not described in
detail. For a detailed description of this part, see The 8089 I/O Processor Handbook, by A.
Osborne, Osborne/McGraw-Hill, 1980.

Programmtng

ASSEMBLY LANGUAGE

What is the function of assembly language in a microcomputer system? How does
it differ from machine language or higher level language programming? This chapter
will answer these questions by assessing the various roles that assembly language plays.

In a very general sense, all microcomputer systems take the following form:

jnput Lines
The

System
> Output Lines

where the input lines are used to provide information to the system, and the output lines
are used to transmit information from the system. Generally, the system consists of the
following:

Input Lines •
I/O

Interface

TZL

' Output Lines

CPU Data Memory

TIL
Program
Memory

1-2 The 8086 Book

The Central Processing Unit (CPU) takes data, through the I/O interface, from the
input lines; the CPU manipulates this data by executing instructions from its program
memory. Results are output via the output lines. The CPU stores transient data in the
data memory.

The CPU, the I/O interface, and the physical memories are the hardware portions
of the system. The data that resides in the program memory is the software portion of
the system or the program. Elements of the 8086 assembly language are combined to
form an 8086 assembly language program, which is processed and stored in the program
memory. Thus, the assembly language is used to specify the program that resides in the
program memory.

To understand the concept of a program, consider an elementary point-of-sale ter
minal that has the following components:

Keyboard
Calculating

Chip
Display

As keystrokes are entered, the calculating chip performs operations that convert
each keystroke into a machine-acceptable code. The code could represent a number to
be manipulated or a calculation to be performed. By interpreting the codes, the calculat
ing chip performs required operations and indicates the results on the display.

The calculating chip accomplishes these operations by performing a sequence of
tasks. For example, the calculating chip might perform the following sequence of tasks
to determine whether or not a key has been pressed.

1. Read in keyboard status byte

2. Extract bit 3 from status byte
(If bit 3 is 0, no key has been depressed. If bit 3 is 1, a key has been
depressed.)

3. Test bit 3

(If bit 3 is 0, return to step 1. If bit 3 is 1, proceed to step 4.)

4. Perform the next task. This might be a command to clear the key depressed
bit or a command to disable the keyboard.

The complete set of tasks performed by the calculating chip, which would include
all the translation and calculation operations, is known as the algorithm. An algorithm is
composed of an ordered sequence of well-defined tasks that has a starting point and a
criterion for stopping. Algorithms are usually expressed in the form of the example
above, that is, English sentences that describe the tasks to be performed. Unfortunately,
the CPU cannot respond to English sentences like ''Read in Keyboard Status Byte."
There must be a translation from the algorithm, which is composed of English sen
tences, into a form interpretable by the CPU, which will consist of a sequence of binary
CPU instructions. The set of CPU instructions that is used to implement an algorithm is
known as the object program.

Programming 1-3

The CPU executes instructions by analyzing units of information that consist of
binary digits, namely digits that are either 1 or 0. Simple CPUs have two cycles, instruc
tion fetch and instruction execute. In the instruction fetch cycle, the CPU generates the
address of the location that contains the next instruction (unit of information) to be
executed; the CPU requests that the memory provide it with the unit of information at
that location. The memory produces the appropriate information. During the ensuing
instruction execute cycle, the CPU analyzes the information and performs the appropri
ate action.

For example, assume the following data is present in an Intel 8086 system in order
to perform the tasks shown in the previous example (Addresses and Instructions in bin
ary).

Addresses Instruction

0000 11100100

0001 00001010

0010 00100100

0011 00001000

0100 01110101

0101 11111010

If the 8086 begins executing at location 0000, it will read in the first instruction,
located at 0000, and analyze it. The CPU determines that the instruction is an input
instruction and that the next location, 0001, contains the device address from which the
data should be read. Therefore the device code is 00001010. If the device at device code

00001010 produces the keyboard status byte, executing this 8086 instruction will read
the keyboard status byte into the 8086's AL register. After executing the instruction at
0000, the next instruction executed will be the instruction at 0010. The instruction at

0010 uses information at 0011 to perform an AND with AL. This extracts bit.3, as in the
second task in the previous example. The instruction at 0100 and 0101 determines
whether bit 3 is 1 or 0, then takes appropriate action.

The CPU operates with Is and Os. People, however, are not as adept at using Is
and Os. Therefore an intermediate step is provided between the CPU's Is and Os and
people. This step is assembly language. Instead of directly entering Is and Os to the com
puter, people write programs in assembly language. Assembly language programs are
converted to the appropriate Is and Os by a program known as the assembler. The user's
program written in assembly language is known as the source program.

For example, instead of creating a program out of the Is and Os, as shown above,
these lines of 8086 assembly code (source code) could be input to the assembler:

TOP: IN AUOAH

AND AL,08H

JNZ TOP

The assembler converts the code to the Is and Os (object code) of the previous example.
Assembly language consists of a set of instructions that can be converted by the

assembler into all the combinations of Is and Os that are executable by the system.
For example, the 8086 assembly language instruction:

AND AL.08H

is converted by the assembler into these two bytes of object code:

00100100

00001000

1-4 The 8086 Book

This object code is interpreted by the 8086 CPU as an instruction to AND the contents
of the AL register with the word 00001000.

For several reasons, assembly language programming will be more efficient than
programming in binary code. First, it is clearly easier to write assembly code using
assembly language instructions like AND, ADD, or XOR, rather than writing instruc
tions like 01001000, 10100010, or 01110000. Second, the possibility for errors when
entering CPU language instructions is unreasonably high. When writing assembly
language, if errors are made, they will usually be caught by the assembler.

PROGRAMMING TASKS

Now consider the relationship between the programmer and the microcomputer
system. To make a microcomputer system work, these are the tasks that programmers
commonly perform:

1. Specification of the system. A specification includes a general discussion of all
the functions that the system will provide, plus a description of the character
of the inputs and outputs the system will handle.

2. Design of a computer program that implements the specification on a given
system. This requires that the specification be translated into a series of steps
that will allow the proposed system to cope with the particular application.

3. Implementation of the program design using a particular computer language.
This phase contains three separate tasks: coding, debugging, and integration.

4. Testing of the complete system. Sets of test data are input to the system. The
test data is designed to exercise program logic and hardware components.

5. Documentation of the system. Adequate documentation requires a descrip
tion of how the entire system works, an operator's guide to the system, and
complete documentation of the programs.

6. Maintenance of the system. A plan must exist for updating the system should
new requirements or new equipment be necessary.

The above list is always used when programming any complex system. There
exist, however, a limited number of cases where a 250-page specification, including
three subsections on system expansion, a 50-page operator's guide, and a rigorous test
ing procedure are not necessary. These programs would appear in the following kinds of
situations:

1. A serial I/O channel has failed. The hardware person is pointing a finger at the
software, the software person finds it impossible to believe that such a squalid
piece of hardware is not at fault. Hopefully, the solution is a short program
that initializes the channel, then stands around reading and displaying data
every time the serial I/O channel indicates data is available. It should be
relatively easy to establish whether the hardware is working; if the hardware is
working, there can be little doubt about what is not working.

Programming 1-5

2. A small number of non-trivial calculations need to be made. Fortunately, a
FORTRAN system is available. Hopefully, the solution is a 20-statement
FORTRAN program that will produce the desired results.

In both of the above cases, very little specification or program design is committed
to paper; these steps are performed in the programmer's head. No documentation is
likely to be produced in these cases, and it is doubtful that maintenance will be necess
ary. It would be very wise, however, to remember that these cases are the exception to
the rule.

The preceding list of tasks is used very effectively in environments where there
are multiple numbers of programmers. Some programmers execute steps 1 and 2
exclusively, some programmers only perform the implementation process, some dedi
cate most of their time to testing program systems, others restrict their activities to
documentation and/or maintenance, and still others perform some abstruse combina
tion of tasks. In this way, programmers develop specialized skills that may allow for
greater productivity. In most assembly language scenarios, however, the assembly
language programmer is called upon to execute all of the above tasks. This book

emphasizes an assembly language approach to the 8086, so a general discussion of all of
these tasks follows.

SPECIFICATION OF THE SYSTEM

When the acquisition of a microcomputer system is initially considered, it results
from one of two kinds of analysis:

1. There is a specific problem that needs to be faced. For example, an aerospace
manufacturer is producing a missile guidance system which needs an on
board computing system meeting certain size and speed requirements.

2. There is a specific market for a new microcomputer system. For example,
small businesses that could not previously afford computerized accounting
will buy when microcomputer-based business systems prices fall low enough.

In either case, it is important to specify the exact function that the contemplated
system will perform. In the first case, the nature of the problem will probably limit the
system to performing a specific function. In the second case, it is easy to get carried away
with the specification. For a small business system it is necessary to define precisely
what accounting functions will be performed and exactly how many records of various
types will be allowed in the system. Otherwise the microcomputer system could be
assigned more tasks than the hardware has the capacity to handle.

Referring back to our simplistic model of a microcomputer system earlier in this
chapter, the specification will define the following:

The inputs received by the system

The computation performed by the system

The outputs created by the system

1-6 The 8086 Book

Inputs

The specification of a microcomputer system's inputs depends a great deal on the
level of programming being performed. An applications programmer, writing in BASIC,
is very unlikely to be concerned with the type of commands that are given to a disk con
troller; rather, he will be concerned with the type of data on the disk, how records are
laid out in a disk file, how the operating system constricts his manipulation of the disk
file, etc. Since this book concerns itself with assembly language programming, and since
any reasonable discussion of data base manipulation techniques would be beyond the
scope of this book, we will emphasize the specification of the inputs and outputs at the
hardware level.

At the hardware level, three parameters define the characteristics of an input
channel. They are:

1. The data path width. Input may arrive one bit at a time from a processor con
troller error system. A parallel or serial I/O channel will input eight bits at a
time. A floppy disk controller may transmit 1024 bits (128 bytes) of informa
tion upon request.

2. Data transfer speed and type (synchronous or asynchronous). Data may
arrive every 200 microseconds from a real time clock. A serial I/O channel
may input data asynchronously, every 10 milliseconds. An A/D converter in a
control system may transfer data at an undetermined rate, but not faster than
once every 500 milliseconds.

3. Accompanying control information. A floppy disk may generate an interrupt
when data is available. A keyboard subsystem may set a status bit when data is
available. An A/D converter may require that the system read input data and
compare it with prior data to determine if new data is available.

After these parameters have been accounted for, it is important to specify how the
input channels will be implemented.

An input channel usually has these three types of ports:

1. Data ports. These ports contain the data that will be passed to the processing
section of the system.

2. Status ports. These ports contain information that indicates when data is
available, whether or not errors have occurred at this channel, and other
information concerning the outside world.

3. Control ports. These ports are typically used to initialize the channel's mode
of operation and to control the way in which the channel represents itself to
the outside world.

All three ports are not always present. In some cases, only the data port is present;
in some cases, the channel is automatically initialized when power is applied, therefore
rendering the control port unnecessary.

Programming 1-7

Computation

When specifying the computation section for a microcomputer system, there are
three major areas of concern:

1. Processing raw data from the input section. This can take the form of a
translation into a code more readily usable by the system (e.g., from ASCII to
binary), separating a block of data into its component parts (e.g., a sector of
data from a diskette into the file header, header checksum, data, and data
checksum).

2. The actual algorithm implemented by the system. While a complete descrip
tion of the actual algorithm is usually formed in the Program Design, this part
of the specification should list all the major functions the system will perform.

3. Processing data for the output section. This processing may include transla
tion of data to a form usable by the output devices (for example, translation
of binary data into EBCDIC).

Outputs

Specification of to a microcomputer system's outputs requires an analysis very
similar to the one performed for the input section. There are three major parameters for
each output channel:

1. The number of bits to be transmitted by the channel.

2. Data transfer speed at the output channel.

3. Accompanying control information that tells the system when the transmitter
is demanding more data, or is available to handle more data.

After these parameters have been accounted for, it is necessary to specify how the
channel will be controlled. As with input channels, output channels usually have three
ports of importance:

1. Data ports. These ports receive the data to be transmitted to the outside

world.

2. Status ports. These ports contain information that indicates when data may be
transmitted to the data ports, whether or not errors have occurred in the

channel, and other information about the outside world.

3. Control ports. These ports are typically used to initialize the channel's mode
of operation and to control the way in which the channel presents itself to the

outside world.

As with input channels, all of these ports may not be necessary to control an out
put channel.

1-8 The 8086 Book

While performing the specification process for each of the three major sections,
there are a number of useful techniques to remember:

1. In each section, make a list of the possible error conditions that could occur
and the system's response to the error.

2. In each section, make a list of all functions that the section is to handle; e.g.,
make a list of all the input channels, all the computational functions, and all
the output channels. Upon completion of a particular section, cross-check the
section with your list, hopefully ensuring that all possibilities for the system
have been recognized.

The first specification written is not necessarily the last; unless the problem at
hand is fairly simple, it will almost certainly not be the last. The Program Design task
and the Implementation task may reveal that certain functions cannot be performed
given the selected hardware configuration. In this event, it may be necessary to modify
the specification so that the hardware configuration is changed or the offending func
tions are modified so that the given hardware configuration can accomplish them.

PROGRAM DESIGN

Program Design involves taking the words in the specification and writing a
sequence of English language steps that describe the method that will implement the
specification. Ideally, these English language steps will provide a clear, simple descrip
tion of what the system will accomplish. At this point, it may not be immediately
obvious that a simple description is available for all systems. For example, one would
not expect to find a concise description of IBM's DOS/VS operating system. While this
may be true for the entire system, in the ideal situation a simple description should be
available for each individual part of the system (for example, a printer driver or a
multiword subtraction routine). When considering the number of parts in a very large
system, one gets a glimmer of the program designer's task: breaking a large specification
into a very large number of much smaller modules.

While engaged in the Program Design task, keep these suggestions in mind:

1. In the future the program may have to expand to provide more capabilities.
Therefore the program should have built-in expansion facilities. Such
facilities would include system subroutines, expandable tables and lists of
data, a convenient, well-documented method for adding more functions to
the system, and data structures that are reasonably flexible.

2. In a typical design, there is more than one method for accomplishing any
given function. In some cases, limitations of the machine force one solution
to be used. In other cases, time constraints force another solution. Since these
factors, namely machine and time limitations, may not be well-known until
the Implementation task, where the actual coding takes place, it is often wise
to pursue alternate methods of solving a particular problem during the design
stage. The benefits of finding alternatives at this stage are twofold: first,
should the cited limitations prevent one solution, the other will already be
available, and second, you may discover a more efficient solution in the pro
cess.

Programming 1-9

3. During the design, it is very important to specify what effect a particular
module will have on other modules, and equally important to specify what
effect other modules will have on that module. This interface between

modules becomes important when debugging and integrating program
modules.

When Program Design is complete, use the design to review the specification.
Cross-checking the design with the specification may reveal flaws or omissions in the
design and/or the specification. Be aware of the fact that the design should be reviewed
on a regular basis. While the Implementation and Testing tasks are being performed,
new information could become available that may force a reevaluation of the Program
Design.

IMPLEMENTATION

The Implementation task consists of taking the English language algorithm
specified in the Program Design task and making it work on a specific microcomputer
system. There are two distinct efforts that go into the Implementation task:

1. Coding. This is the process of converting the English language steps created
during the Program Design task into a particular computer language.

2. Debugging and Integrating. This is the process of removing errors from
Program Design modules that have been converted by the coding phase into
computer language, then integrating these modules into a working system.

Coding

The conversion of the Program Design into a particular computer language can be
one of a programmer's easier tasks. If the Program Design function has been done cor
rectly, each separate module will be described by a set of concise English language state
ments. Keep the following suggestions in mind while coding:

1. Try to use standard subroutines or programs whenever possible. Subroutines
are very useful in that they can usually be debugged individually. After
removing the bugs from the subroutines it is much easier to debug the main
line of code. In addition, standard subroutines make it much easier to add new
features to a system.

2. Document the code as clearly as possible. In addition to comment statements

which describe individual modules or sections of code, labels which have
mnemonic significance are of tremendous value. Some assemblers limit the
opportunity to do this, as they restrict the number of characters in a label to

six or fewer. In most cases, however, the ability to give extraordinary
mnemonic value to the labels for both program and data areas is present and
should be exercised to the fullest.

1-10 The 8086 Book

After each of the program design modules has been translated into the appropriate
computer language, a series of checks should be made to ensure that the Coding task
has been performed correctly and to avoid potential difficulties while performing the
Debugging task. This series of checks, sometimes referred to as desk checking, is part of
the Coding procedure, but also shares many elements with the Debugging task.

Checks that should be made include:

1. Ensure that the code contains all of the program design modules.

2. Ensure that all decisions included in the program design are included in the
code. Check the logic at all of the decision points to ensure that the branches
will be performed in the correct manner.

3. Ensure that each program design module has been provided with enough
information to allow it to run correctly. This check can be performed for each
module by determining what this module expects other modules to supply in
terms of:

• The contents of the registers
• The contents of data structures

• The state of I/O devices used by this module
• Status settings

4. Ensure that each module provides subsequent modules with the correct infor
mation. This check can be performed for each module by determining what
this module must supply to other modules in terms of:

• The contents of the registers
• The contents of data structures

• The state of I/O devices used by subsequent modules
• Status settings

5. Ensure that code has been entered into this module to handle the following
situations:

• Errors

• Special cases
• Boundary cases

• Trivial cases

After these checks have been completed, the Debugging process begins.

Programming 1-11

Debugging and integration

The Debugging and Integration task consists of removing errors from the code
and then integrating debugged modules into a final working system. The functions per
formed during the Debugging task are very similar to the functions performed during
desk checking. The Debugging task is different in that the task is performed while
examining code that is running on the system hardware or a simulator for the system
hardware. There are a series of tools used in the debugging process that are not available
while desk checking. These tools are usually, but not always, provided by a software
module called the Debugger. Typical features provided by a Debugger include:

• A Single Step facility. This facility allows a user to execute individual instruc
tions following the program logic.

• Examine/Alter the contents of a memory location or a register. This facility
allows the user to view memory/register contents and optionally alter them.

• A Breakpoint facility. This facility allows the user to interrupt the execution of
the program which is being debugged, depending upon some condition. Typi
cal breakpoint conditions include reference to a particular address, for either
operand reference or instruction fetch.

When debugging a program, the following suggestions should be kept in mind:

1. Begin the debugging process by debugging commonly used or system
subroutines. If the lowest-level routines in a software system are known to be
functioning appropriately, discovering the source of an error is simplified, as it
can be assumed that either the mainline code is in error or it is using the
system subroutines in an incorrect fashion.

2. If it is possible, attempt to debug each area of the specification individually. It
is appropriate to debug each section of the Input portion of the specification
individually, followed by each section of the Computation portion of the
specification, followed by each section of the Output portion of the specifica
tion. When sections of the specification are debugged individually, it is possi
ble to view each section without interference from other portions of the
system. Theoretically, when all of the individual modules have been de
bugged, the Integration phase will only need to debug the way in which the
program modules interface to each other.

When all of the individual modules have been debugged, the Integration phase
begins. In this phase, individual modules are combined into a subsystem and then
debugged as a subsystem. For example, all the program design modules which affect the
input portion of the program can be combined and debugged. As each subsystem is
debugged, it can then be combined with other subsystems until the final system is
debugged. As noted above, the only function that should be performed by the Integra
tion phase is to ensure that the interface between modules (and eventually subsystems)
is handled correctly.

1-12 The 8086 Book

At any one of the stages oflmplementation, it may be necessary to return to the
Program Design or even the Specification task. Consider these examples.

1. During the Coding stage, it becomes obvious that the code necessary to pro
vide the specified functions will require more memory than has been provided
for in the hardware design. First, return to the Program Design task to deter
mine if alternate methods would allow for the use of less memory space. If
this doesn't solve the problem, it is time to go back to the Specification task
and reconfigure the system in some fashion.

2. During the Debugging phase, it is noticed that the system cannot respond
quickly enough if an attempt is made to run all the devices the system is sup
posed to control. Note that this difficulty might not be obvious in the early
stages of Debugging, since the input and output portions of the specification
will typically be debugged separately until Integration is performed. In this
case, return to the Coding task to see if the execution time for the input or
output code can be reduced. If this fails, return to the Program Design task to
determine if a more efficient algorithm is available. If, horror of horrors, this
fails, return to the Specification stage to revamp the system.

TESTING

The Testing task consists of thoroughly exercising the system by introducing
special sets of data and verifying that the correct results are produced. This task is very
common in environments where there are large numbers of programmers. For exam
ple, before any self-respecting software house releases a new version of an operating
system, the new system will have been thoroughly scrutinized. Before an automobile
manufacturer releases a version of an on-board computer system, rigorous tests will
have been performed. But testing is often overlooked in situations where few assembly
language programmers exist. A major reason for the neglect of testing is that it can be
very time consuming and therefore very expensive; in addition, it is not a well under
stood art.

Hopefully a significant portion of the Testing task can be accomplished during the
debugging phase of the Implementation task. During the debugging section, for exam
ple, each module will be tested by executing the module using data that results in boun
dary conditions, thereby exercising the module's ability to make decisions. As an exam
ple, suppose a module is coded to perform one function if the first byte of a data block is
in the range 30,^ to 39,6 inclusive, another function if the first byte is in the range 41,6 to
46,6 inclusive, and a third function if the byte is not in either of the ranges. Typical test
data might well include blocks with a first byte of:

2Fi6
30i6
39-,6
3Ai0

^0i6
41i6
46i6
47i6
00l6
FFi6

These blocks would test the system's ability to distinguish between different types
of data.

Programming 1-13

When deciding upon test data to submit to the system, keep the following sugges
tions in mind:

1. Three basic types of data to enter are:

• The typical stream of data that the system normally would encounter

• A series of boundary conditions that exercise the system's ability to per
form decisions correctly

• A random selection of data containing both legitimate and illegitimate
data

2. The data should be presented to the system at the following speeds:

• The typical data rate that the system would normally encounter

• The fastest data rate at which the system is supposed to function

• A random selection of data rates

DOCUMENTATION

The Documentation task consists of writing down all information pertinent to the
system. There are three basic elements in the documentation of a system:

1. Documentation of the program. As was noted in the discussion of the Imple
mentation task, it is very important to explain how the code works, module by
module, and in some cases why the code works the way it does. This sort of
documentation allows new readers of the code to easily familiarize themselves
with the code. In addition, if they desire to alter the code, good documenta
tion may allow reasonable, informed decisions on how the alteration should
be made. Program documentation helps refresh the memory of the original
coder, who may be examining a program written in the distant past.

2. A System Guide. The System Guide should include a description of the
program's design, a description of how to modify the program, and a brief
summary of what the system expects to see in the outside world; i.e., what is
driving the input lines and what is receiving the data on the output lines.
Hopefully, a System Guide will be fairly simple to put together, as the major
elements should have been written up, at least in note form, during the pre
vious tasks.

3. A User's Guide. This may be the most important piece of documentation. If
the code is very well documented, and if a superlative System Guide has been
written, then other programmers may be able to modify or improve the
program; but if there is no User's Guide, it may be impossible for anyone to
use the program, in which case no one will care to modify or improve the
code, and all the effort will have been wasted. User's Guides are especially
important in systems where external users may write programs that interface
with the system. In this case, it is of extreme importance to notify users,
typically through an update of the User's Guide, of any revisions or additions
to the system.

1-14 The 8086 Book

MAINTENANCE

The Maintenance task consists of altering the program to accommodate new
equipment or new processing requirements; in essence, keeping the program function
ing in a changing environment. The Maintenance task can be simple or complex,
depending on the change in the environment. Examples of simple tasks include:

1. A new piece of hardware is being installed in the system, replacing an out
moded piece of equipment. The I/O interface is remarkably similar to the old
hardware; in fact, the change involves only the transposition of a few status
lines. In this case, the Maintenance task would involve altering a few lines of
code in the program, debugging the code using the new hardware, and writing
the appropriate additions to the documentation.

2. System output is going to a diskette file which will, at some later time, be pro
cessed by a more sophisticated system. A new operating system release on the
more sophisticated system requires that two previously unused bytes in a dis
kette file be used for some more significant purpose. Since this possibility was
considered during the Program Design phase, the Maintenance task in this
case will only require minor alterations to the Computation section of the
Specification task and the associated Program Design, Implementation, and
Documentation tasks.

More complex tasks might include:

1. A new piece of hardware is being added to the system. In contrast to the pre
vious example, this equipment is nothing like other system equipment; in
fact, it makes new demands on the interrupt structure, the timing of the
system, and the processing abilities of the system. In this case, the Mainte
nance task may require extensive effort in each one of the programming tasks
that has been identified.

2. The marketing department has decided to attach a veritable phalanx of 80-
megabyte disk drives to your microprocessor based system. The Maintenance
task in this case would probably include all of the programming tasks from
Specification to Documentation, or conceivably an orderly removal of the
appropriate marketing personnel from the gene pool.

The ability to perform the Maintenance task with relative ease is directly propor
tional to the care which was taken in the Program Design and Implementation stages. If
the Program Design stage left no easy way to add features or provided no general system
modules, then additions to the system will probably prove difficult at best. If, during the
Implementation process, no reasonable documentation on the hows and whys of the
program were provided, introducing new elements of the Program Design into the code
will be very tortuous indeed.

Some Program Examples

A SORT PROGRAM

Consider the specification and program design tasks for a sort program module.
This program reads data records from a file on a tape drive, sorts keys extracted from the
records, then writes a key file to the tape following the data file. The actual code for this
program is presented in Chapter 6.

In this exmple, a very simple I/O interface will be assumed. A general block
diagram for the I/O interface is shown here:

Control Control

Status Status

Data Data

System Tape
Controller

Tape

The tape controller transfers 128-byte blocks of data to and from the tape. The
controller adds parity bits (for a 9-track tape) and a checksum to a block written to the
tape. The controller processes this error-detecting information when a read operation is
performed and sets error bits accordingly.

Transfers to and from the tape are performed as follows:

1. The system requests a read or write operation.

2. The system waits for the controller to be ready to transfer a byte of data.

2-2 The 8086 Book

3. The system transfers a byte to/from the controller's data port.

4. If 128 bytes have been transferred, the tape controller sets a flag Indicating
that the entire block has been transmitted. If the transfer is not complete, the
system returns to step 2.

The tape controller will be run with a very simple command structure. The follow
ing command byte is sent to the tape controller's command port to initiate action by the
tape controller;

-Bit No.

n (0 - No Read operation
(1 - Perform a Read operation

j 0 - No Write operation
' n - Perform a Write operation

(0 - No Rewind operation
* (1 - Perform a Rewind operation

After the system sends a command to the tape controller, the system reads a
status byte from the controller. This byte is of the following form;

n

-Bit No.

0 - Data byte not available
1 - Data byte available

0 - Not Ready for Data byte
1 - Ready for Data byte

0 - Operation not completed
1 - Operation completed

0 - No checksum error

1 - Checksum error

0 - No parity error
1 - Parity error

0 - Drive on line

1 - Drive off line

0 - Not at end of tape
1 - End of tape

0 - No error conditions
1 - This bit is 1 if any of the error

conditions in bits 6, 5, 4 or 3 have
been detected.

If the system has issued a command for a read operation or a write operation, the
appropriate bit (bit 0 for a read operation or bit 1 for a write operation) is sampled. If the
tape controller is ready to send/receive data, the system performs a read or write opera
tion from the tape controller's data port. After 128 read/write operations, bit 2 will
become a 1, signalling the completion of the operation.

If the system has issued a command for a rewind operation, bit 2 of the status port
will indicate that the rewind operation has been completed.

Some Program Examples 2-3

INPUTS

Given the previous description of the characteristics of the tape controller, input
parameters may be specified as follows:

1. Data path width. Data arrives from the tape controller one byte at a time. Each
read command from the system allows a 128-byte block to be read from the
tape.

2. Data transfer speed. In this example, the data will be arriving synchronously.
After the Data Byte Available bit goes high, the data may be input at the max
imum CPU rate.

3. Accompanying control information. In this example, the tape controller does
not interrupt the system. The system reads the tape controller status port to
determine if data is available.

COMPUTATION

In this section of the specification, the following elements will be considered:

• The format of the data records that are read from the tape

• The method by which the keys will be sorted

• The format of the data records that are written to the tape.

INPUT RECORD FORMAT

Each data record read from the tape will consist of 128 bytes. There are three fields
of interest in each data record read from the tape:

1. Record number. This is a two-byte field which uniquely identifies the record.
Record numbers may be in the range 0000,^ - FFFEi^. Record numbers
FFFF|6 designates an end-of-file record.

2. Key. This is a ten-byte field. This field may contain data describing the record,
and does not have to be unique to the particular record. In this example, we
will assume that these ten bytes represent an individual's last name.

3. Data. The remaining 116 bytes in a record contain data.

Byte No.

Note that the size of the data

that is read from the tape.

SORT METHOD

2-4 The 8086 Book

These three fields are organized in the following manner for all records:

0 Record number (high-order)

1 j Record number (low-order)

2 I I Key (most significant byte)

11

12

127

J Key (least significant byte)

Data

Data

ecord is conveniently equal to the size of the block

The sorting method used will be the diminishing increment sort, or Shell sort.
This is a commonly used sort algorithm which is described in detail in Sorting and
Searching, by D.W. Knuth. The collating sequence used will be the ASCII collating
sequence. The keys will be sorted in ascending order.

The basic philosophy of the diminishing increment sort is to sort progressively
larger sublists using a straight insertion technique until the final pass, when the entire
list is sorted using straight insertion. The advantage of this sort is that as the sublists are
sorted, the entire list becomes more ordered. Therefore, when the entire list is sorted
during the final pass, fewer exchanges are necessary, and that reduces execution time.
For example, consider this 10-element list:

10 13 8 14 19 11 6 13 7

The first sorting pass might sort the following lists:

13 7

Sort t 1 I ' l lQnrt 1 1
Sort

Sort
Sort

into 10 11 6 134 19 138 147

Some Program Examples 2-5

The second pass might sort the following lists:

10 11 6 13 4 19 13 8 14 7

-u=y=!=y=yj
into 4768 10 11 13 13 1419

And the final pass would sort the entire list.

The basic algorithm is:

Given: N records. In this case, the records are 12 bytes long and consist of a
record number and a key field.

There are two variables of interest in this algorithm.

Increment: In the diminishing increment sort, a set of increments is chosen that will
help determine the number of elements in a sublist. In this case, the incre
ments will be

N/2, N/4 1

We will call the variable that contains N/2, then N/4, then finally 1 (for the
final pass, which sorts the entire list) the increment.

Subsort For each value of increment, i.e., for each sorting pass, this variable counts
counter: from (N - Increment) to N. This determines the number of sorts that are

performed in each pass.

The algorithm operates as follows:

1. Set Increment = N

Do Steps 2 through 12 until Increment = 0.

2. Increment = Increment/2

Sort each sublist using a straight insertion sort.

3. Subsort counter = N — Increment

Do Steps 4 through 12 until Subsort counter = N H- 1

4. Subsort counter = Subsort counter + 1

5. Keytemp = Key (Subsort counter)

6. Recordtemp = Record (Subsort counter)

7. Index = Subsort counter — Increment

8. Compare Keytemp with Key (Index)
If Keytemp > Key (Index), then go to Step 12 else go to Step 9

9. Record (Index + Increment) = Record (Index)

10. Index = Index — Increment

11. If Index > 0, then go to Step 8 else go to Step 12

12. Record (Index + Increment) = Recordtemp

2-6 The 8086 Book

OUTPUT RECORD FORMAT

Each data record written to the tape consists of 12 bytes. There are two fields of
interest in each data record written to the tape:

1. Record number. This is a two-byte field which is identical to the record num
ber field in the input record format.

2. Key. This is a ten-byte field which is identical to the key field in the input
record format.

These records are organized as follows:

Byte No. 0 [[Record number (high-order)

"1 Record number (low-order)

J Key (most significant byte)

11 I I Key (least significant byte)

Note that 128, the number of bytes in a tape block, is not a multiple of 12, the number of
bytes in an output record. Therefore some algorithm must be used to pack the output
records into a tape block. This algorithm is discussed later, in the program design sec
tion.

OUTPUTS

Given the previous description of the tape controller's characteristics, output
parameters may be specified as follows:

1. Data path width. Data is sent to the tape controller one byte at a time. Each
write command from the system allows a 128-byte block to be written to the
tape.

2. Data transfer speed. In this example, the data is sent synchronously. After the
Ready for Data Byte bit goes high, data may be sent to the controller at the
maximum CPU rate.

3. Accompanying control information. In this example, the tape controller does
not interrupt the system to signify that it is ready for data. The system reads
the tape controller status port to determine if the tape controller is ready for
data.

Some Program Examples 2-7

ERROR PROCESSING

In this example, the only errors of concern are tape errors. These errors will be
processed by the read/write tape subroutine. This processing will be discussed in
Chapter 6.

PROGRAM DESIGN

By examining the task that the program will perform, it appears that there are
three major functions that will comprise the program:

• Reading records from the tape and extracting the key from each record

• Sorting the keys

• Writing the sorted keys back to the tape.

None of the above modules is very complex, therefore flowcharts will be used to
describe each of them.

Read from Tape

The module that reads the tape contains only one decision point. As the module is
reading records from the tape, it examines each record to ascertain whether or not the

record is an end-of-file record (record number = FFFF,^). If an end-of-file record is
detected, control is passed to the sort module; otherwise the record number and key will
be extracted from the record and saved in a temporary area where they will be processed
by the sort module. The next record is then read from the tape.

Yes. End-of-File RecordEnd of
tape file

No. Data Record

Read a record

from tape into
buffer area

Increment no.

of records read

Sort

Extract record no.

& key from record.
Save in sort area

2-8 The 8086 Book

Sort

The sort module implements the sorting algorithm given in the specification.

Write to Tape

Increment =

Record number

YesYes

NoNo

Subsort counter

= N - Increment

YesYes^Subsort^
counter > N

Index > 0

No
No

Keytemp = Key

(Subsort counter)

*^eytem^
>Key(lnde)dIncrement =0

Record (Index
+ Increment)
= Recordtemp

Index = Subsort

counter -

Increment

Increment =

Increment/2

Subsort counter

= Subsort

counter + 1

Index =

Index - Increment

Recordtemp =

Record

(Subsort counter)

Record (Index
+ Increment)

= Record (Index)

Some Program Examples 2-9

Write to Tape

The module which writes the key file to the tape is not as straightforward as the
module which reads from the tape. There are two decision points in this module. The
first decision has to do with filling a tape block. Since it would not be very efficient in
terms of tape space to write a 128-byte block for each 12-byte record, records are
organized in a buffer until 128 or more bytes have been saved. When 128 bytes have
been saved, the decision point allows the buffer to be flushed to the tape. The second
decision point involved decrements the number of records. When all of the output
records have been moved, an end-of-file record (record number = FFFF,^) is appended
to the buffer and then written to tape.

Move a record

to tape
output buffer

Moved ̂
128 bytes

?

Fill rest of Write buffer

buffer with Os to tape

Adjust extra

bytes

Decrement

Record Counter

Record No
Counter = 0

?

Move EOF record

to tape buffer

Write buffer

to tape

The 8086 Rssembly Language
Instruction Set

The 8086 is IntePs first 16-bit microprocessor. When introduced in 1978 it was
significantly more powerful than any prior microprocessor.

The 8086 assembly language instruction set is upward compatible with 8080A —
but at the source program level only. That is to say, every 8080A assembly language
instruction can be converted into one or more 8086 assembly language instructions.
There is no reason why anyone would try to convert 8086 assembly language instruc
tions, one at a time, into one or more 8080A assembly language instructions, but if you
did, you would soon become hopelessly tangled in conflicting memory allocations and
special translation rules. That is why we say that the 8086 and 8080A assembly language
instruction sets are ''upward" compatible.

The 8086 and 8080A assembly language instruction sets are not compatible at the
object code level, which means that 8080A programs stored in read-only memory are
useless in an 8086 system.

The 8085 and 8080A assembly language instruction sets are identical, with the
exception of the 8085 RIM and SIM instructions. The 8085 RIM and SIM instructions

cannot be translated into 8086 instructions. This is because the RIM and SIM instruc

tions use the serial I/O logic of the 8085, which has no 8086 counterpart. Without the
RIM and SIM instructions the 8085 and 8080A assembly language instruction sets are
identical; therefore the 8086 assembly language instruction set must also be upward
compatible with the 8085 assembly language instruction set — apart from the RIM and
SIM instructions.

The 8085 and 8080A assembly language instruction sets are object code compati
ble — with the exception of the 8085 RIM and SIM instructions. That is to say, a pro
gram existing in read-only memory could be used with one microprocessor or the other.

3-2 The 8086 Book

The 8080A assembly language instruction set is a subset of the Z80 assembly
language instruction set. That is to say, the Z80 will execute an 8080A object program —
but the reverse is not true. The 8080A cannot execute Z80 programs when the full Z80
instruction set is used. The 8086 assembly language instruction set is not upward com
patible with the Z80 assembly language instruction set.

As a historical note, it is worth mentioning that the 8008 microprocessor, which
preceded the 8080A, was also compatible only at the source program level. That is to
say, there is an 8080A assembly language instruction for every 8008 assembly language
instruction, but the two microprocessor object code sets are not the same.

The various instruction set compatibilities that we have described may be illus
trated as follows;

(Excluding RIM and
SIM instructions)

8086

Z80

8080A

8008

8085

— Source program of lower microprocessor
can be assembled to generate upper
microprocessor object program

— — — Lower microprocessor instruction set is a
subset of upper microprocessor Instruction
set at the object program level

These are the most interesting innovations to be found in 8086 hardware design:

1. 8086 Central Processing Unit logic has been divided into an Execution Unit
(EU) and a Bus Interface Unit (BIU). These two halves operate
asynchronously. The Bus Interface Unit handles all interfaces with the exter
nal bus; it generates external memory and I/O addresses and has a 6-byte
instruction object code queue. Whenever the EU needs to access memory or
an I/O device, it makes a bus access request to the Bus Interface Unit. Provid
ing the Bus Interface Unit is not currently busy, it acknowledges the bus
access request from the EU. When the Bus Interface Unit has no active pend
ing bus access requests from the EU, it performs instruction fetch machine
cycles to fill the 6-byte instruction object code queue. The CPU takes its
instruction object codes from the front of the queue. Thus instruction fetch
time is largely eliminated.

8086 Assembly Language Instruction Set 3-3

2. The 8086 has been designed to work in a wide range of microcomputer system
configurations, ranging from a simple one-CPU system to a multiple-CPU
network. To support this wide fiexibility, a number of 8086 pins output alter
nate signals. This may be illustrated as follows:

Minimum Configurations

C ̂ These signals
^ ̂ do not change

8086
+5 V

Simple control output
for use in one-CPU system

Maximum Configurations

8086

These signals do not change

Complex control signals
useful in multi-CPU networks

3.

4.

5.

The same pins output these two sets of signals, based on a level of MN/MX.
This wholesale reallocation of signals was a highly imaginative and innovative
first for the microprocessor industry.

The 8086 has built-in logic to handle bus access priorities in multi-CPU con
figurations. (This is not a new concept; National Semiconductor's SC/MP has
had it for years.)

In multi-CPU configurations, each 8086 CPU can have its own local memory,
while simultaneously sharing common memory. The common memory may
be shared by all CPUs, or by selected CPUs.

The 8086 has been designed to compete effectively in program intensive
applications that have been the domain of the minicomputer. Up to a million
bytes of external memory can be addressed directly. All memory addressing is
base relative; this memory addressing technique naturally generates relocata
ble object programs. (Relocatable object programs can be moved from one
memory address space to another and re-executed without modification.)
Also, since the 8086 utilizes stack-relative addressing, re-entrant programs
are easily written. (Re-entrant programs can be interrupted in mid-execution
and re-executed. For example, a subroutine which calls itself is re-entrant; a

3-4 The 8086 Book

program which can be interrupted in mid-execution by an external interrupt,
and then re-executed within the interrupt service routine, is also re-entrant.)

6. The 8086 uses prefix instructions that modify the interpretation of the next
instruction's object code.

The 8086, like its predecessor, the 8080A, is really one component of a multiple-
chip microprocessor configuration.

In addition to the 8086 microprocessor itself, you must have an 8284 Clock
Generator/Driver. You could create the required clock signal using alternative logic, but
it would be neither practical nor economical to do so.

The third device necessary in some 8086 microprocessor configurations is the
8288 Bus Controller.

You will usually have an 8288 Bus Controller between an 8086 and its system bus
(or busses), just as you will usually have an 8228 System Bus Controller between an
8080A and its system bus. In the case of the 8086, however, you can dispense with the
8288 Bus Controller in single-bus configurations — and pay no penalty for it.

Chapters 6, 7, 8, and 9 discuss basic 8086 hardware, single-CPU configurations,
the Multibus* and multi-CPU configurations.

AN I/O DRIVER

Next we will specify a program module which interfaces a system to a serial input/
output channel. We will also look at design tasks associated with creating this program
module.

The following is a general block diagram for a serial input/output channel:

Serial Line Out
Data

Serial Line InStatus

Control

Modem

Control Lines

System
Intel

8251A

SIC Device

Terminal

(CRT/
Keyboard)

In this example, the serial input/output (SIO) channel is an Intel 8251A Program
mable Communication Interface. It is assumed that the 8251A is connected to a com
munications terminal; the communications terminal has a CRT on which it displays data
transmitted by the system. Data from a keyboard is transmitted by the channel to the
system. Data is not buffered at the terminal on input or output. Data is transmitted and
received asynchronously.

Multibus is a registered trademark of Intel Corporation.

8086 Assembly Language Instruction Set 3-5

The program module, which will also be referred to as the driver, connects operat
ing system software with the 8251 A. This may be illustrated as follows;

FTvSystem n
Commands ̂ Data

I Status

Data I Control

Operating
System
Software

8251A
Software

Driver

Operating system software sends commands and/or data to the I/O driver pro
gram module; this can be handled in a variety of ways. They include:

Placing the command or data in a register. For example, one register could be
assigned to holding commands, while data passes through another register.

1.

2. Using a task block. The task block could contain the command and data or the
command and a pointer to the data. The task block could be located at a fixed
memory location, or it could be pointed to by one of the registers.

3. Via the stack. System software could push the equivalent of a task block (i.e.,
commands and data/pointers) onto the stack.

Selecting one of the above techniques is usually a processor-dependent decision.
Since the present discussion is not processor-dependent, the rationale for selecting a
parameter passing technique will be deferred to a later chapter.

INPUTS

The SIO device used in this example is an Intel 8251 A. This device requires the
following input specifications:

1. Data path width. The 8251A allows 5-, 6-, 7-, or 8-bit characters. In this
example, an 8-bit data path is required by the device for commands and
status. To allow for a future system using a different size data path, the pro
gram design will allow the size of the data path to be specified.

2. Data transfer speed. In this example, the data will be transferred
asynchronously. Only the maximum data transfer rate can be specified. In this
example, 9600 baud is specified as the maximum data transfer rate.

3. Handshaking protocol. In this example the SIO channel does not interrupt the
microprocessor, rather the microprocessor polls the channel to determine if
data is available.

Next the I/O driver must consider actual I/O channel operations. In addition to
data transfer, controls must be transmitted to the I/O channel, in this case an 8251 A,
and status must be received from it.

3-6 The 8086 Book

A data port is configured as follows:

D7 06 05 04 03 02 01 DO

Data is known to be available at this I/O port when an appropriate status bit has
been set to 1. In the case of the 8251, the RxRDY (Receiver Ready) bit of the status
port must be set to 1.

The 8251A is initialized to a known state by writing information to the control
port. At least two bytes of control information are necessary to initialize the 8251 A.
Control information is sent in the following sequence:

1. Mode Select Byte

2. Sync Character (Synchronous mode only)
3. Sync Character (Synchronous mode only)
4. Command Select Byte

In this example, the 8251A will be operating in the asynchronous mode, therefore
a two-byte initialization sequence is needed; it is:

1. Mode Select Byte

2. Command Select Byte

8086 Assembly Language Instruction Set 3-7

The format for the Mode Select Byte is:

D7 D6 D5 D4 D3 D2 D1 DO

]S2 SI PEN L2 B2

T

-Bit No.

Baud Rate Factor

0 1 0 1

0 0 1 1

Sync
Mode

(1 X) (16X)(64 X)

Character Length

0 1 0 1

0 0 1 1

5

Bits

6

Bits

7

Bits

8

Bits

• Parity Enable

1 - Enable 0 - Disable

-Even Parity Generation/Check

1 - Even 0 - Odd

Number of Stop Bits

0 1 0 1

0 0 1 1

Invalid
1

Bit

V/2

Bits

2

Bits

(Only affects Tx; Rx never
requires more than one stop bit)

3-8 The 8086 Book

The format for the Command Select Byte is:

D7 06 05 04 03 02 01 00 Bit No.

IR RTS ER SBRK RxE DTR

/ Transmit Enable

-J 1 = enable
(0 = disable

/ Data Terminal Ready
—< "high" will force OTP
(output to zero

(Receive Enable

—< 1 = enable

(0 = disable

/ Send Break Character

—< 1 = forces TxO "low"

i 0 = normal operation

I Error Reset
-< 1 = reset error flags
I PE, OE, FE

r Request to Send
"high" will force RTS

t output to zero
/Internal Reset

-< "high" returns 8251A to
(Mode Instruction Format
/Enter Hunt Mode

—< 1 = enable search for Sync
(Characters

(Has no effect in Async mode)

Given the preceding specifications, the Mode Select Byte will be:

7 6 5 4 3 2 1 0 -^

]
-Bit No.

0 1 1 1

x (These two bits are hardware dependent.
(In this system, a x16 clock will be used

/These two bits specify the number of data
bits per character. In this case, 8 bits of data are

(exchanged
— This bit disables parity

— Given bit 4, this is a "don't care" bit

These two bits are hardware dependent. .
(In this system, I'/z stop bits will be used

8086 Assembly Language Instruction Set 3-9

The initial Command Select Byte will be:

7 6 5 4 3 2 1 0 Bit No.

1 1 1 1 1

-Enable the transmitter

-Turn on Data Terminal Ready

-Enable the receiver

-Do not send a break character

-Reset the error flags

-Turn on Request to Send

-Do not return to the mode instruction format

J Since asynchronous operation is specified,
(this is a "don't care" bit

Additional features of 8251A programming are discussed during the implementa
tion section in Chapter 6.

The status port supplies information on the state of the 8251, and the state of the
device to which it is connected.

3-10 The 8086 Book

When a byte is read from the status port, the following information is transferred
to the system.

07 06 05 04 03 02 01 00

DSR
SYN-

DET
PE

Tx-

EMPTY
RxRDY TxRDY

iThis bit indicates to the system that the 8251A
transmitter is ready for a data character. If this
bit is a 1, data may be sent to the 8251 A. If this
bit is a 0, data may not be sent to the 8251 A.

/This bit indicates that the 8251A receiver
"""\ buffer contains a data character that is ready
'for transfer to the system.iThis bit indicates that the 8251A has no
characters to transmit. If this bit is a 1, the
transmitter is empty. If this bit is a 0, the
transmitter is sending data.! Parity Error. The PE flag is set when a parity
error is detected. It is reset by the ER bit of the
Command Instruction. PE does not inhibit opera
tion of the 8251 A.

/'Overrun Error. The OE flag is set when the CPU
does not read a character before the next one

) becomes available. It is reset by the ER bit of the(Command Instruction. OE does not inhibit
operation of the 8251 A; however, the previous
overrun character is lost.I Framing Error (Async only). The FE flag is set
when a valid Stop bit is not detected at the
end of every character. It is reset by the ER
bit of the Command Instruction. FE does not

inhibit the operation of the 8251 A.iThis bit indicates whether the 8251A has
detected a SYNC character. This bit is

meaningful only if the 8251A has been
initialized to operate in the synchronous
mode. If this bit is a 1, a SYNC character has

been detected. If this bit is a 0, no SYNC
character has been detected.

(This bit reflects the state of the DSR pin on
the 8251 A. If this bit is 1. DSR is high,
therefore the data set is not ready. If this bit

)is 0, DSR is low, indicating data set ready.
IThis is a modem control line.

8086 Assembly Language Instruction Set 3-11

COMPUTATION

What sort of functions should the driver provide? Will data be translated on input

and/or output? These are the functions a real I/O driver will provide:

1. Initialize the channel. When power is applied to the system, the 8251A
powers up in an unknown state. The I/O driver will put the channel into a
known state.

2. Input a single character. When this function is requested, the driver reads the
status port and waits until data is available. When data is available, the driver
reads the data port and passes the information back to the system.

3. Output a single character. When this function is requested, the system must
pass the character to be output, or a pointer to that character, to the driver.
The driver reads the status port and waits until the transmitter is available.
When the transmitter is available, the driver will transfer the specified
character to the data port.

4. Check the channel's status. Perhaps the system does not need to read a
character, rather it needs to know if a character is available. Under such cir
cumstances the system will read the status port contents.

5. Send control information to the channel. The system may need to alter the
state of the channel, for example, to allow the channel to check for parity
errors.

6. Input a series of characters from the channel. You may wish to input charac
ters until some terminating condition is detected. For example, a carriage
return may constitute a terminating condition, or a fixed number of charac
ters may have to be input. Five numeric characters constitute a ZIP Code, for
example. The I/O driver will read data from the channel. This involves wait
ing for data to be available, then reading the information present at the data
port saving the data in some designated place in memory, then testing to
determine if the terminating condition has been reached.

7. Output a series of characters to the channel. The system may wish to output a
series of characters until a terminating condition is detected. Possible termina
tion conditions might include either the detection of a predetermined end-of-
string character or the output of a specific number of characters. The I/O
driver will test for the termination condition; if the terminating condition is
not detected, the I/O driver will load data from a specified memory location,
and send the data to the channel.

OUTPUTS

The 8251A uses the control information to define the channel's output charac

teristics. These output specifications need to be defined:

1. Data path width. The 8251A allows data units to consist of either 5, 6, 7, or 8
bits. In this system, 8 data bits will be transmitted.

2. Data transfer speed. In this case, the maximum data rate will be 9600 baud.

3-12 The 8086 Book

3. Handshaking protocol. In this example, the 8251A will not interrupt the
system, rather the system reads the 8251 Status register to determine whether
the 8251A is ready to transmit more data.

We have already described the Data and Control/Status ports of the 8251 A. Data
may be sent to the channel when the TxRDY bit (Transmitter Ready) of the Status
register is 1.

PROGRAM DESIGN

In this section, none of the specific modules will be complex. Given this fact, we
will use flowcharts to describe each module of the I/O driver.

initialization

The Initialization routine contains only one major decision point. If the standard
initialization is requested, a pointer to a standard initialization sequence will identify the
information which must be sent to the control port. As an alternative, a "custom"
initialization sequence may be executed; in this case the user will have to provide the
initialization sequence and a pointer to it.

Standard Initialization

or User Specified

User SpecifiedStandard

NoProgram
Finished

Yes

Return

Get

Control Byte

Use Pointer
to Standard
Initialization

String

Use Pointer

Passed by
User

Output

Control Byte

8086 Assembly Language Instruction Set 3-13

Input a Single Character

The single-character input routine flowchart is illustrated below; it calls a read
channel status routine, waits for data to become available, reads the data from the data
port, and returns.

Read

Channel Status

Available

Read

Character

♦
^ Return)

Two considerations not included in the design of the single-character input
routine are:

• Handling of 8251 errors. When the read channel status routine is called, the
error bits within the 8251 Status register can be examined. If an 8251 error is
detected, an appropriate error code is returned to the I/O driver by the single-
character input routine.

• Timeout errors. The driver initializes an appropriate register/memory location
to serve as a timeout clock, then decrements the contents of this location each
time the read channel status routine is called. If the contents of the timeout
register/memory location decrement to zero, a timeout error code is returned
to the calling routine.

3-14 The 8086 Book

If these considerations are added to the single-character input routine, the
flowchart must be modified as follows:

Yes

Yes
Timeout

No

Error ReturnError ReturnNo IsData^
Available

Yes

Return

Read

Character

Initialize

Timeout Value

Read

Channel Status

iNo

LYes

)

8086 Assembly Language Instruction Set 3-15

Output a Single Character

The single-character output routine flowchart is illustrated below; it calls a read
channel status routine, waits for the transmitter to be available, writes a character to the
data port, then returns.

^s^^vailable^

Yes

Return

Read

Status

Send

Character

As with the input routine, error and timeout considerations are not included in
the initial design, as illustrated above. In the case of the 8251 A, there are no error condi
tions to check for since the 8251A reports no transmission errors in its Status register.
But a timeout check could be included and would modify the program flowchart as
follows;

YesTimeout

No

Error ReturnNo
Transmitter
t^Ready^x^

Yes

Return

Initialize

Channel Timeout

Value

Write

Character

Read

Status

)

3-16 The 8086 Book

Check Channel Status and Send Control Information

The read channel status routine and the send control information routine each
require a very simple flowchart. They may be illustrated as follows:

Check Channel Status Send Control Information

ReturnReturn

Write

Control
Read

Status

Input a Series of Characters

A multiple-character input routine utilizes the single-character input routine to
read data. On return from the single-character input routine, a check for errors is made.
If the single-character input routine detects an error, this error is passed back to the call
ing routine. After saving the character in a location specified by the calling program, the
multi-character input routine looks for a termination condition. If the routine has either
read the number of characters specified by the calling program or has read a termination
character, the multiple-character input routine will return to the calling program.

Input a
Single

Character

Error Return
Save

Character

ea_
Enough
haracters

?

er-

mination
haractec

?

Yes

Return

8086 Assembly Language Instruction Set 3-17

Output a Series of Characters

The multiple-character output routine loads a character from a user specified loca
tion. If the character is the termination character, the multi-character output routine
returns to the calling program. Otherwise, the character is sent to the single-character
output routine. When the single-character output routine returns, a check for timeout is
made. If a timeout was detected, it is passed back to the calling routine. The multiple-
character output routine then checks to see if it has output the specified number of
characters; if it has, it returns to the calling program.

No

Yes

No

Yes
Timeout

No

Error Return

Characters

No

lYes

Return

Call Single
Character Output

Pick up a
Character

3-18 The 8086 Book

THE 8086 INSTRUCTION SET

The 8086 instruction set has a complexity that is typical for the new generation of
16-bit microprocessors. The 8086 instruction set consists of approximately 70 basic
instructions, with up to 30 addressing modes available for memory reference instruc
tions.

Any description of a CPU's instruction set should include these basic types of
information:

1. What is the CPU configuration; i.e., what registers and statuses are available?
What is the primary use for each register?

2. What instructions are available? Obviously, there must be some comprehen
sive listing of the instruction set with an associated discussion of each instruc
tion's function. This listing may be organized in any one of a number of ways.
In this chapter, we list the instructions alphabetically to help you find
individual instructions. In the next chapter we list instructions according to
function (e.g., all the arithmetic operations are discussed in one section)
which allows you to examine instructions by type or group.

3. What data types does the CPU handle? A simple CPU may require all data to
be handled in one form, perhaps as bytes. A more flexible CPU may give you
the option of addressing data as individual bits, bytes, 16-bit words, and 32-bit
long words.

4. What operand source and destination addressing options are allowed? A sim
ple microprocessor may allow memory to be addressed only by instructions
that move data between memory and CPU registers, while all operations on
data require operands to reside in CPU registers. A more complex
microprocessor may allow one operand to be fetched from memory while the
other operand resides in a CPU register. In some cases, the CPU may allow
both operands to reside in memory. Available memory addressing options
must be evaluated when determining the significance of memory operands.

5. What addressing modes are available for which instructions? Knowing which
addressing modes are available for a given instruction is a key to the effective
utilization of the instruction set. However, should we attempt to describe each
possible addressing mode for each instruction, this book would only be availa
ble in 15 volume sets. Therefore, a section on Addressing Modes precedes the
listing of the instruction set.

6. How do various groups of instructions affect the CPU's status register? To
evaluate any sort of conditional expression in assembly language, you must
know how to translate the conditional into assembly language. Knowing how
instructions affect status flags allows a programmer to write conditional
expressions in assembly language.

8086 Assembly Language Instruction Set 3-19

7. In certain cases, other information may be important; e.g., the number of
cycles that a particular instruction takes to execute or the number of program
memory bytes the instruction occupies. In this case, each instruction's
description will specify the number of cycles required for execution. The num
ber of bytes each instruction requires, however, is in some cases very depen
dent on the addressing mode specified.

For our discussion of the 8086 instruction set, we will proceed in the following
order:

1. Discussion of the 8086 registers and the 8086 Status register, and discussion
of how status is affected by various groups of instructions. The Status register
is also referred to as the Flags register or the Program Status Word.

2. Discussion of the 8086 addressing modes.

3. Discussion of each 8086 instruction. This section will be preceded by a sum
mary of the symbols and terms used to describe each instruction.

3-20 The 8086 Book

8086 REGISTERS AND FLAGS

The 8086 has four 16-bit general purpose registers, two 16-bit Pointer registers,
two 16-bit Index registers, one 16-bit program counter, four 16-bit Segment registers
and one 16-bit Flags register. These registers may be illustrated as follows:

15

7 07

A AH AL (or A)

H, L BH BL

B. C CH CL

D. E DH DL

15

15

^ One 16-bit register

^ Two 8-bit registers

AX (= AH, AL) Primary Accumulatorls)

BX (= BH, BL) Accumulator(s) and Base register

CX (= CM, CD Accumulator{s) and Counter

DX (= DM, DL) Accumulatorls) and I/O Address

u
Stack Pointer (SP)

Base Pointer (BP)

SP

■Bit No.

Source Index (SI)

Destination Index (Dl)

•Bit No.

Program Counter (PC)Program Counter (PC)PC

■Bit No.

Code Segment (CS)

Data Segment (DS)

Stack Segment (SS)

Extra Segment (ES)

-These names apply to 16-bit registers
-These names apply to 8-bit registers

-Bit No.

Index registers

0 Bit No.

Code Segment (CS)

Data Segment (DS)

Stack Segment (SS)

Extra Segment (ES)

Bit No.

Segment registers

Status

□ 8086 equivalents for 8080A registers
8080A register names are shown in the left margin

8086 Assembly Language Instruction Set 3-21

GENERAL PURPOSE REGISTERS

The general purpose registers may be referenced as two separate 8-bit registers.
This may be illustrated as follows:

15

7 07

AH AL

-AX bit numbers

-AH, AL bit numbers

AX

BX bit numbers

BH, BL bit numbers

15

7 07

CH CL

-CX bit numbers

-CH, CL bit numbers

CX

15

7 07

DH DL

-DX bit numbers

-DH, DL bit numbers

DX

This is an advantage in that instead of performing a 16-bit operation on 8-bit quantities,
which may take more time and memory space than an 8-bit operation, an 8-bit operation
may be performed. For example, if you want to initialize a register with 200,o and then
decrement it to 0 based on subsequent events, an 8-bit register will certainly suffice.

The general purpose registers can be used as operands in all the 8- or 16-bit
arithmetic/logical operands.

The AX register serves as the primary accumulator. This register has two unique
characteristics. All 1/0 operations are performed through this register, and operations
utilizing immediate data typically require less memory space when performed on this
register. In addition, some string operations and arithmetic instructions require use of
this register.

The AL register generally corresponds to the 8080 A register.
The BX register is referred to as the Base register. This is the only general purpose

register which is used in the calculation of 8086 memory addresses. All memory
references which use this register in the calculation of the memory address use the DS
register as the default segment register. The BX register generally corresponds to the
8080A HL register; the BH register corresponds to the 8080 H register and the BL
register corresponds to the 8080 L register.

3-22 The 8086 Book

The CX register is referred to as the Count register. This register is decremented
by string and loop operations. CX is typically used to control the number of iterations a
loop will perform. It is also used for multiple bit shifts and rotates. This register generally
corresponds to the 8080 BC register.

The CH register corresponds to the 8080 B register. The CL register corresponds
to the 8080 C register.

The DX register is referred to as the Data register, mostly for mnemonic reasons.
This register provides the I/O address for some I/O instructions, a function no other
8086 register performs. This register generally corresponds to the 8080A DE register.

The DH register corresponds to the 8080 D register. The DL register corresponds
to the 8080 E register. The D register is also used for arithmetic operations, including
multiplication and division.

POINTER REGISTERS

The Pointer registers are used to access data in the stack segment. They may be
used as operands in all 16-bit arithmetic/logical operations.

The SP register, referred to as the stack pointer, allows the implementation of a
stack in memory. All references to the SP for memory addressing use the SS register as
the Segment register. This register generally corresponds to the 8080 SP register.

The BP register, referred to as the base pointer, allows data to be accessed in the
stack segment. Typically, this register is used to reference parameters that have been
passed via the stack.

INDEX REGISTERS

The Index registers are used to access data in data memory. The Index registers
are used extensively by the string operations. They may be used as operands in all the
16-bit arithmetic/logical operations.

SEGMENT REGISTERS

The Segment registers are included in all memory addressing calculations. Each
Segment register defines a 64K block of memory in the 8086 memory addressing space,
which is referred to as the Segment register's current segment; e.g., the OS register
defines a 64K segment referred to as the current data segment.

The CS register is also known as the Code Segment register. During each instruc
tion fetch, the program counter contents are added to the CS register contents in order
to compute the memory address for the instruction to be fetched.

The DS register is also known as the Data Segment register. Every data memory
reference is taken relative to the Data Segment register, with three exceptions.

1. Stack addresses are computed using the stack pointer.

2. Data memory addresses computed using the BP register are taken relative to
the stack segment.

3. String operations (which use the DI register in the address calculation) are
taken relative to the extra segment.

8086 Assembly Language Instruction Set 3-23

The SS register is also called the Stack Segment register. All data memory
references that use the SP or BP register in the address calculation are taken relative to
the SS register. Therefore all stack-oriented instructions (e.g., PUSH, POP, CALL,
RET, and INT) use the SS register as the Segment register.

The ES register is also referred to as the Extra Segment register. String operations
compute memory addresses using the D1 register that are taken relative to the ES
register.

The use of segment registers is typically implied by the instruction, however a
mechanism will be discussed later which allows the implied Segment register to be over
ridden in most circumstances.

FLAGS REGISTER

The 8086 has one 16-bit Flags register, also referred to as a Status register or Pro
gram Status Word. This register may be illustrated as follows:

15 14 13 12 11 10 9 8 7

on rrmi

Bit No.

Status register

-Reserved bits, normally 0

- Carry

-Parity

- Auxiliary Carry

-Zero

-Sign

-Trap

-Interrupt enable/disable

- Direction

- Overflow

The Carry, Auxiliary Carry, Overflow, and Sign statuses are quite standard.
The Carry status reflects carries out of the high-order bit following arithmetic

operations. Carry is also modified by certain shift and rotate instructions.
The Overflow status is the Exclusive-OR of carries out of the high-order and

penultimate bits following arithmetic operations. It implies a magnitude overflow in
signed binary arithmetic.

The Sign status equals the high-order bit following an arithmetic operation. On
the assumption that signed binary arithmetic is being performed, a Sign status of 0
specifies a positive result, whereas a Sign status of 1 specifies a negative result.

The Auxiliary Carry status is identical to the 8080A status with the same name. It
represents carries out of bit 3 in an 8-bit data unit.

Subtract instructions use twos complement arithmetic in order to subtract the
minuend from the subtrahend. However, the Carry status is inverted. That is to say,
following a subtract operation, the Carry status is set to 1 if there was no carry out of the
high-order bit, and the Carry status is reset to 0 if there was a carry out of the high-order
bit. The Carry status therefore indicates a borrow.

3-24 The 8086 Book

The Parity status is set to 1 when the low-order eight bits of any data operation
result has an even number of 1 bits. An odd number of 1 bits causes the Parity status to
be reset to 0.

The Zero status is set to 1 when the result of a data operation is zero; it is set to 0
when the result of a data operation is not zero.

The Direction status determines whether string operations will auto-increment or
auto-decrement the contents of Index registers. If the Direction status is 1, then the SI
and DI Index registers' contents will be decremented; that is to say, strings will be
accessed from the highest memory address down to the lowest memory address. If the
Direction status is 0, then the SI and DI Index registers' contents will be incremented;
that is to say, strings will be accessed beginning with the lowest memory address.

The Interrupt status is a master interrupt enable/disable. This status must be I in
order to enable interrupts within the 8086. If this status is 0, then all interrupts will be
disabled.

The Trap status is a special debugging aid that puts the 8086 into a "single step"
mode. The single step mode is described in detail together with 8086 interrupt logic,
since it depends on this interrupt logic for its existence.

The Carry, Auxiliary Carry, Parity, Sign, and Zero statuses are also found in the
8080A. The Overflow, Direction, Interrupt, and Trap statuses are new in the 8086.

8086 Assembly Language Instruction Set 3-25

HOW INSTRUCTIONS AFFECT THE FLAGS REGISTER

The list below identifies tables that describe individual instructions and how they
affect the Flags register. For example, to determine how the ADD instruction affects the
flags, consult Table 3-2.

Instruction Mnemonic Table instruction Mnemonic Table

AAA 3-4 LODS 3-1
AAD 3-10 LOOP Instructions 3-1
AAM 3-10 MOV 3-1
AAS 3-4 MOVS 3-1
ADC 3-2 MUL 3-6
ADD 3-2 NEG 3-2
AND 3-1 NOT 3-1
CALL 3-1 OR 3-7
CBW 3-1 OUT 3-1
CLC 3-9 POP 3-1
CLD 3-9 POPF 3-12
CLI 3-9 PUSH 3-1
CMC 3-9 PUSHF 3-1
CMP 3-2 RCL 3-8
CMPS 3-2 RCR 3-8
CWD 3-1 REP 3-1
DAA 3-5 RET 3-1
DAS 3-5 ROR 3-8
DEC 3-3 SAHF 3-9
DIV 3-11 SAR 3-7
ESC 3-1 SBB 3-2
HLT 3-1 SCAS 3-2
IDIV 3-11 SHL 3-7
IMUL 3-6 SHR 3-7
IN 3-1 STC 3-9
INC 3-3 STD 3-9
INT 3-13 STI 3-9
INTO 3-13 STOS 3-1
IRET 3-12 SUB 3-2
Jump-on-Conditions 3-1 TEST ' 3-7
JCXZ 3-1 WAIT 3-1
JMP 3-1 XCHG 3-1
LAHF 3-1 XLAT 3-1
LDS 3-1 XOR 3-7
LEA 3-1

LES 3-1

LOCK 3-1

3-26 The 8086 Book

No Effect

The instructions in Table 3-1 have no effect on any of the 8086 statuses.

Table 3-1. Instructions that Have No Effect on the 8086 Flags Register

CALL LOOP instructions

CBW MOV

CWD MOVS

ESC NOT

HLT OUT

IN POP

Jump-on-Conditions PUSH

JCXZ PUSHF

JMP REP

LAMP RET

LDS STOS

LEA WAIT

LES XCHG

LOCK XLAT

LCDS

Effect on all Arithmetic Flags

The instructions in Table 3-2 affect all six of the 8086 arithmetic flags: Overflow,
Carry, Arithmetic, Zero, Sign, and Parity.

Table 3-2. Instructions that Affect All 8086 Arithmetic Flags

ADC NEG

ADD SBB

CMP SCAS

CM PS SUB

Effect on all Arithmetic Flags Except Carry

The instructions in Table 3-3 affect all the 8086 arithmetic flags except for Carry.
Overflow, Arithmetic, Zero, and Parity are all affected.

Table 3-3. Instructions that Affect all 8086 Arithmetic Flags
except Carry

8086 Assembly Language Instruction Set 3-27

Effect on all Arithmetic Flags (AF and OF are Meaningful)

The instructions in Table 3-4 affect all the 8086 arithmetic flags. However, only
the values for AF and CP are meaningful. The values for Overflow, Zero, Parity, and
Sign are unknown.

Table 3-4. Instructions that Affect AF and CP

Effect on all Arithmetic Flags (Overflow is Undefined)

The instructions in Table 3-5 affect all the 8086 arithmetic flags. However, the
Overflow flag is not meaningful. Carry, Arithmetic, Zero, Sign, and Parity are all
meaningful.

Table 3-5. Instructions that Leave Overflow Undefined

Effect on all Arithmetic Flags (CF and OF are Meaningful)

The instructions in Table 3-6 affect all the 8086 arithmetic flags. The Carry and
Overflow flags are not affected in the normal manner. Consult the instructions for a
description of how these flags are set. All other arithmetic flags are undefined.

Table 3-6. Instructions that Affect All Arithmetic Flags, Leaving
CF and OF Meaningful

3-28 The 8086 Book

Effect on all Arithmetic Flags (AF is Undefined)

The instructions in Table 3-7 affect all the 8086 arithmetic flags. Carry and Over
flow are cleared to 0. AF is undefined. Zero, Parity and Sign are set in the normal man
ner.

Table 3-7. Instructions that Affect All Arithmetic Flags,
Leaving AF undefined

AND SHR

OR TEST

SAR XOR

SHL

Effect on CF and OF Only

The instructions in Table 3-8 affect only the Carry and Overflow flags. The
Arithmetic, Zero, Sign, and Parity flags are not altered.

Table 3-8. Instructions that Affect Carry and Overflow
Flags Only

RCL ROR

RCR

Effect on Specific Flags

The instructions in Table 3-9 are used to affect specific flags. For example, STI is
used to set the Interrupt flag to 1.

Table 3-9. Instructions that Affect Specific Flags

CLC - Clear Carry SAHF - Move AH to 8080 flags

CLD - Clear Direction STC - Set Carry

CLI - Clear Interrupt STD - Set Direction

CMC - Complement Carry STI - Set Interrupt

8086 Assembly Language Instruction Set 3-29

Effect on Parity, Sign, and Zero

The instructions in Table 3-10 affect the Parity, Sign, and Zero flags. The Carry,
Overflow, and Arithmetic flags are undefined following execution of these instructions.

Table 3-10. Instructions that Affect Parity, Sign and
Zero Flags

Leave all Arithmetic Flags Undefined

The instructions in Table 3-11 leave all arithmetic flags undefined.

Table 3-11. Instructions that Scramble the Flags

Restore all Flags from Stack

The instructions in Table 3-12 pop data from the stack into all the 8086 flags.

Table 3-12. Instructions that Restore All the 8086 Flags from the
Stack

Effect on IF and TF Only

The instructions in Table 3-13 clear the Interrupt and Trap flags. The INTO
instruction only affects these flags if the Overflow flag is 1.

Table 3-13. Instructions that Clear the Interrupt and Trap Flags

The DIV and IDIV instructions affect IF and TF only following a divide error.

3-30 The 8086 Book

8086 ADDRESSING MODES

There are two major topics of interest concerning 8086 addressing modes:

1, How the memory address is formed.

2. What addressing modes are available.

All 8086 memory addresses are computed by summing the contents of a Segment
register and an effective memory address. The effective memory address is computed
via a variety of addressing modes, as it would be for any other microprocessor. The
selected Segment register contents are left-shifted four bits, then added to the effective
memory address to generate the actual address output as follows:

Segment Register contents: XXXXXXXXXXXXXXXXOGGO
Effective memory address: + GGGGYYYYYYYYYYYYYYYY

Actual address output: XXXZZZZZZZZZZZZZYYYY

X, Y and Z represent any binary digits.

Thus a 20-bit memory address is computed — which allows 1,048,576 bytes of
external memory to be addressed directly.

An 8086 address is therefore composed of two distinct addresses: the Segment
register contents, referred to as the segment address, and the effective memory address,
referred to as the offset address.

The segment registers of the 8086 are unlike any other microprocessor registers.
They act as base registers which can point to any memory location that lies on an address
boundary that is an even multiple of 16 bytes. Using arbitrary memory addresses, this
may be illustrated as follows:

OS Segment register

contains 234Ei0

ES Segment register

contains GA32i6

OS Segment register

contains 02IF 15

Memory

Address

334DF16

234EG16

1A31F16

CO
CJ

121EF16

GA32Gi6

G21FGi6

8086 Assembly Language Instruction Set 3-31

As illustrated above, each segment register identifies the beginning of a 65,536-
byte memory segment. Since the 8086 has four segment registers, there will at any time
be four selected 65,536-byte memory segments. The actual address output will always
select a memory location within one of these four segments. For example, if an actual
address output is the sum of the DS Segment register and an effective memory address,
then the actual address output must select a memory location within the DS segment;
that is to say, within the address range 021F0,6 through 121EF,6 the illustration
above. Likewise, an actual address output which is the sum of the CS Segment register
and an effective memory address must select a memory location within the CS segment,
which in the illustration above will lie in the address range 234E0,6 through 334DFi6.

No restrictions are placed on the contents of segment registers. Therefore 8086
memory is not divided into 65,536-byte pages, nor do the four segment registers have to
specify non-overlapping memory spaces. Each segment register identifies the origin of a
65,536-byte memory segment which may lie anywhere within addressable memory, and
may or may not overlap with one or more other segments.

8086 addressing modes can be divided into two distinct types:

1. Program memory addressing modes.

2. Data memory addressing modes.

We will discuss each of these topics, then at the end of this section show how they
are implemented on the 8086.

PROGRAM MEMORY ADDRESSING MODES

Whenever an instruction fetch is performed, the address of the memory location
from which the instruction is fetched is computed as the sum of an offset taken from the
program counter (also called the PC register) and a segment taken from the CS register.
Normally, the PC register contents are incremented as instructions are executed.
However, Jump and Call instructions may modify the PC register contents in one of
three ways:

1. Program relative addressing. An 8-bit or 16-bit displacement provided by the
instruction in the form of immediate data is added to the PC register as a
signed binary number. This does not alter the CS register contents. Therefore
it is termed an intrasegment operation.

2. Direct addressing. New 16-bit addresses present in the instruction in the form
of immediate data are loaded into the program counter and the CS register.
This is referred to as an intersegment operation.

3. Indirect addressing. Any of the data memory addressing options (which we
will describe next) may be used to read data from data memory. However, the
data input is interpreted as a memory address by the Jump or Call instruction.
You have two indirect addressing options. A single 16-bit data word may be
read, in which case it is loaded into the program counter and the Jump or Call
references a memory location within the current CS segment. You can also
read two 16-bit data words: the first is loaded into the program counter and
the second is loaded into the CS Segment register. Thus you can Jump or Call
any addressable memory location using indirect addressing.

3-32 The 8086 Book

DATA MEMORY ADDRESSING MODES

The 8086 offers a wide variety of addressing; we will condense it into six basic
options. These options are:

1. Immediate

2. Direct

3. Direct, Indexed
4. Implied

5. Base Relative

6. Stack

immediate Memory Addressing

In this form of addressing, one of the operands is present in the byte(s)
immediately following the instruction object code (op-code). If addressing bytes follow
the op-code, then the immediate data will follow the addressing bytes. For example:

ADD AX. 3064H

requests the Assembler to generate an ADD instruction which will add 3064 to the AX
register. This may be illustrated as follows:

Data

G D I T S Z A P C Memory

PSW X

SP

BP

SI

Dl

PC

CS

DS

SS

ES

X X

AX XX yy

BX

CX

DX

mm mm

nn nn

xxyy + 3064

Program (Relative to the
Memory CS Register)

ppppm

ppppm + 1

mmmm + 3 ppppm + 2

ppppm + 3

Ommmm
n n n n 0

ppppm

Program Memory
Address Calculation

X, Y, M, P. and N all represent any hexadecimal digits.

8086 Assembly Language Instruction Set 3-33

Note that the 16-bit immediate operand, when stored in program memory, has
the low-order byte preceding the high-order byte. This is consistent with the way the
8080A stores immediate operands in program memory. In addition, this is consistent
with the way the 8086 stores 16-bit operands in data memory. When a 16-bit store is per
formed, the low-order 8 bits of data are stored into the low-order memory byte, and the
high-order 8 bits of data are stored into the succeeding memory byte.

In this example, the two bytes immediately following the op-code for the ADD to
AX instruction are added to the AX register.

3-34 The 8086 Book

Direct Memory Addressing

The 8086 implements straightforward direct memory addressing by adding a 16-
bit displacement, provided by two object code bytes, to the Data Segment register. The
sum becomes the actual memory address. This may be illustrated as follows:

15

7 07

Program
Memory

AX = AH + AL ppppm

pppprh + 1

ppppm + 2

BX = BH + BL

CX = CH + CL

ppppm + 3DX = DM + DL

SP

BP

Ohhil

rrrrO

ssssi *

OhhIl

rrrrO

ssssI

Data Memory

Address Calculation

PC

CS

DS
Ommmm

n n n n 0

ppppm

n n n n^
m

Program Memory
Address Calculation

SS

ES

nnnn

mmmm

H, L, M. N, P, R and S all represent any hexadecimal digits.

■> Actual data memory address output for direct memory addressing.

Note that a 16-bit address displacement, when stored in program memory, has the
low-order byte preceding the high-order byte. This is consistent with the way the 8080A
stores addresses in program memory.

DS must provide the segment base address when addressing data memory
directly, as illustrated above.

8086 Assembly Language Instruction Set 3-35

Direct, indexed Memory Addressing

Direct, indexed addressing is allowed by specifying the SI or DI register as an
index register. You have the option of adding an 8-bit or 16-bit displacement to the con
tents of the specified index register in order to generate the effective address.

A 16-bit displacement is stored in two object code bytes; the low-order byte of the
displacement precedes the high-order byte of the displacement, as illustrated for direct
memory addressing. If an 8-bit displacement is specified, then the high-order bit of the
low-order byte is propagated into the high-order byte to create a 16-bit displacement.
This may be illustrated a follows:

Displacements: 101 10101 01 10101 1

Sign extended: [1 1 1 1 1 1 1 1 1|0 1 10 10 1 [OOOOOOoToll 10 10 1 1

We may now illustrate direct, indexed addressing as follows:

15

7

AX = AH + AL

BX = BH + BL

CX = CH + CL

DX = DH + DL

15

SP

BP

SI

DI

PC

15

CS

DS

SS

ES

07

Program
Memory

Data Memory

Address Calculation
ppppm

oyyyy
Oxxxx
rrrrO
zzzzz

ppppm + 1

ppppm + 2

ppppm + 3

Select

DI or SI

Ommmm
n n n n 0

ppppm

Program Memory
Address Calculation

M, N, P, R, X, H, L, and Z all represent any hexadecimal digits.

YYYY is the 16-bit or 8-bit displacement taken from program memory.

XXXX is the index taken from either the DI or SI register.

3-36 The 8086 Book

Implied Memory Addressing

Implied memory addressing is implemented on the 8086 as a degenerate version
of a direct, indexed memory addressing. If you do not specify a displacement when using
the direct, indexed addressing mode, then you have, in effect, implied memory address
ing via the SI or DI register. This may be illustrated as follows:

15

7

AX =

BX =

CX =

DX =

07

Program
Memory

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

SP

BP

Select

DI or SIDI or SI

PC

OS

OxxxxOxxxxDS Data Memory
Address Calculation

SS ssssxssssx

ES

rrrr

rr r rO

(You may substitute CS, SS or ES for DS by executing an additional 1-byte instruction.)

X, R and S represent any hexadecimal digits.

8086 Assembly Language Instruction Set 3-37

Base Relative Addressing

The 8086 implements base relative addressing in two ways:

• Data memory base relative addressing, which is within the DS segment (data
memory)

• Stack base relative addressing, which is in the SS segment (stack memory)

Data memory base relative addressing uses the BX register contents to provide
the base for the effective address. All of the data memory addressing options thus far de
scribed, with the exception of immediate addressing, are available with base relative
data memory addressing. In effect, base relative data memory addressing merely adds
the contents of the BX register to the effective memory address which would otherwise
have been generated. Here, for example, is an illustration of base relative direct address
ing:

15

7
07

AX = AH + AL

BX = BH + BL

CX = CM + CL

DX = DH + DL

kk kk

Data Memory
Address Calculation

Program
Memory

15

SP

BP

SI

01

PC mmmm

15

CS

DS

SS

ES

nnnnn

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Ommmm
Program Memory
Address Calculation

(You may substitute CS, ES or SS for DS by executing an additional 1-byte instruction.)

Simple, direct addressing, which we described earlier, always generated a 16-bit
displacement. Base relative, direct addressing allows the displacement, illustrated above
as HHLL, to be a 16-bit displacement, an 8-bit displacement with sign extended, or no
displacement at all.

3-38 The 8086 Book

Base relative implied memory addressing simply adds the contents of the BX
register to the selected Index register in order to compute the effective memory address.
This may be illustrated as follows:

15

7

AX = AH + AL

BX = BH + BL

CX = CH + CL

DX = DH + DL

15

SP

BP

SI

Di

PC

15

OS

DS

88

E8

07

kk kk

Program
Memory

Select

Okkkk

ppppm

ppppm + 1

pppprn + 2

ppppm + 3

Data Memory
Address Calculation

8086 Assembly Language Instruction Set 3-39

Base relative, direct, indexed data memory addressing may appear to be compli
cated, but in fact it is not. We simply add the contents of the BX register to the effective
memory address, as computed for normal direct, indexed addressing. Thus, base rela
tive, direct, indexed data memory addressing may be illustrated as follows:

15

7

AX = AH + AL

BX = BH + BL

CX = CH + CL

DX = DH + DL

15

SP

BP

SI

Dl

PC

15

OS

DS

SS

ES

07

kk kk

Data Memory

Address Calculation

Program
Memory

mmmm

nnnn

ppppm

.kkkk
Ohhi l
Oxxxx
rrrrO
zzzzz

ppppm + 1

ppppm + 2

ppppm + 3

Select

Dl or SI

Ommmm
Program Memory
Address Calculation

The index xxxx in the illustration above is optional. Base relative, direct memory
addressing is also available. In this instance neither SI nor Dl will contribute to the
address computation, and Oxxxx must be removed from the illustration.

3-40 The 8086 Book

Stack Memory Addressing

The 8086 also has stack memory addressing variations of the base relative, data
memory addressing options just described. In this case, however, the BP register is used
as the base register. Here, for example, is base relative, direct stack addressing:

15

7 07

Program
Memory

AX = AH + AL ppppm

ppppm + 1BX = BH + BL

ppppm + 2CX = CH + CL

ppppm + 3DX = DH + DL

Stack Memory

Address Calculation

BP

BP
Okkkk
Ohhi l
r rrrO
sssssi

PC

CS

Ommmm

n n n n 0n n n n 0
DS Program Memory

Address CalculationppppmppppmSB

EB

nnnn

rrrr

mmmm

kkkk

• Actual Stack memory address output for base relative, direct memory addressing

In the illustration above, the displacement HHLL is present, either as a 16-bit displace
ment or as an 8-bit displacement with sign extended. Base relative stack memory
addressing requires a displacement be specified, even if zero.

8086 Assembly Language Instruction Set 3-41

ADDRESSING MODE BYTE

The 8086 obviously offers an extensive selection of addressing modes. The next
question is: how are these addressing modes implemented in the object code? The 8086
specifies most data memory addressing modes in an instruction's object code using one
byte of object code, known as the addressing mode byte. The addressing mode byte may
have one or two additional displacement bytes associated with it. The addressing mode
byte is always the second byte of the instruction object code, unless a prefix instruction
has been included prior to the initial object code. The addressing mode byte may be
illustrated as follows:

mod reg r/m

x x y y y z z z

XX is two bits that form the mod field. The mod field is used
to distinguish between memory and register addressing, and
in the case of memory addressing, specifies how many dis
placement bytes follow the addressing mode byte.

yyy is three bits that form the reg field. The reg field defines
which register will be used in the operation. In addition,
these three bits may be used to specify instruction.

zzz is three bits that form the r/m field. The r/m field is used
in conjunction with the mod field to specify the addressing
mode.

mod =

00

01

Memory addressing mode, r/m specifies the exact addressing option.
There are no displacement bytes.

Memory addressing mode, r/m specifies the exact addressing option.
There is one displacement byte. This displacement byte is viewed
as a signed number in the range +127 to -128. When this num
ber is used in the memory address calculation, the number is sign
extended to 16 bits. In this case, the addressing mode bytes can
be illustrated as follows:

10

I mod reg r/m | | disp |

where mod = 01 and disp is the 8-bit signed displacement value.

Memory addressing mode, r/m specifies the addressing option. There
are two displacement bytes. The first displacement byte is the
low-order eight bits of the displacement. The second displace
ment byte is the high-order eight bits of the displacement. When
this number is used in the memory address calculation, the num
ber is treated as an unsigned 16-bit number. In this case, the
addressing mode bytes can be illustrated as follows:

I mod reg r/m | | disp low [| disp high |

3-42 The 8086 Book

11

rag

where mod = 10, disp low is the low-order eight bits of the dis
placement, and disp high is the high-order eight bits of the dis
placement.

register addressing mode, r/m specifies a register. Used in conjunc
tion with the w bit to determine if an 8- or 16-bit register is
selected.

reg is used in conjunction with another bit, the w bit, in the selection
of the register to be used in the operation. The w bit, which is part
of the instruction op-code, selects whether an 8- or 16-bit opera
tion is performed.

reg w = 0 w = 1

000 AL AX

001 CL CX

010 DL DX

oil BL BX

100 AH SP

101 CM BP

110 DM SI

111 BH Di

r/m r/m specifies the addressing mode in conjunction with mod, as
follows:

r/m mod - GO mod - 01 mod - 10

mod - 11

II

o

w = 1

000 BX + SI BX + SI + DISP BX + SI + DISP AL AX

001 BX + DI BX + DI + DISP BX + DI + DISP CL CX

010 BP + SI BP + SI + DISP BP + SI + DISP DL DX

Oil BP + DI BP + DI + DISP BP + DI + DISP BL BX

100 SI SI + DISP SI + DISP AH SP

101 DI DI + DISP DI + DISP CH BP

110 Direct BP + DISP BP + DISP DH SI

Address

111 BX BX + DISP BX + DISP BH DI

This table is self-explanatory, with the exception of Direct Address. When mod is
00 and r/m is 110, the offset address is taken directly from the two bytes that follow the
addressing mode byte. This can be illustrated as follows:

mod reg r/m | | addr-low | [addr-high

where mod is 00, r/m is 110, addr-high is the high-order 8 bits of the offset address and
addr-low is the low-order 8 bits of the offset address.

8086 Assembly Language Instruction Set 3-43

SEGMENT OVERRIDE

Every addressing mode has a standard default segment register. In most cases you
can select an alternative segment register by using a segment override prefix. To use the
prefix, place the following byte in front of the instruction whose default segment register
assignment is to be overriden.

T -rr is two bits that select the segment register to be used in
the following instruction,
rr = GO for the ES register

01 for the OS register
10 for the SS register
11 for the DS register

In three cases, the segment override may not be used. They are:

1. Stack reference instructions (e.g., PUSH and CALL) that use the stack
pointer (SP register) to compute the offset always use the SS register as the
segment register.

2. String instructions that use the DI register always use the ES register as the
segment register. In a string operation where both SI and DI are used (e.g.,
MOVS or CMPS), a segment override prefix, if present, overrides the SI
offset's segment register.

3. Segment override prefixes cannot be used with program memory addressing.
All instruction fetches are relative to the CS Segment register.

3-44 The 8086 Book

MEMORY ADDRESSING TABLES

Memory addressing modes and memory addressing byte information can be com
bined and summarized as follows:

r/m = mod = GO mode = 01 mod = 10

000 Base Relative Indexed Base Relative Indexed Base Relative Direct
BX + SI BX + SI + DISP Indexed

BX + SI + DISP

001 Base Relative Indexed Base Relative Direct Base Relative Direct

Indexed Indexed
BX + Dl BX + Dl + DISP BX + Dl + DISP

010 Base Relative Indexed Base Relative Direct Base Relative Direct
Stack Indexed Stack Indexed Stack
BP + SI BP + SI + DISP BP + SI + DISP

Oil Base Relative Indexed Base Relative Direct Base Relative Direct
Stack Indexed Stack Indexed Stack
BP + Dl BP + Dl + DISP BP + Dl + DISP

100 Implied Direct, Indexed Direct, Indexed
SI SI + DISP SI + DISP

101 Implied Direct, Indexed Direct, Indexed
Dl Dl + DISP Dl + DISP

110 Direct Base Relative Direct Base Relative Direct
Direct Address Stack Stack

BP + DISP BP + DISP

111 Base Relative Base Relative Direct Base Relative Direct
BX BX + DISP BX + DISP

Note that two operand instructions will very frequently access one operand out of
memory, while the other operand is in a CPU register. Also, both operands will fre
quently be accessed out of CPU registers. The 8086 does not allow both operands to be
accessed out of memory, with the exception of several special data string manipulation
instructions. The following options are available:

Source Operand Destination Operand

CPU Register
Memory Location
CPU Register

CPU Register
CPU Register
Memory Location

Result

CPU Register
CPU Register
Memory location

8086 Assembly Language Instruction Set 3-45

INSTRUCTION SET MNEMONICS

In the following section, each 8086 assembly language instruction is discussed.
The format for each description is composed of six distinct parts:

1. The instruction mnemonic and the various operands associated with it. Varia
ble operands are signified by lower-case letters. The mnemonic itself and any
fixed operands are signified by capital letters. Here is an example:

IN ac,DX

• Fixed operand in capitals

- Variable in lower case

- Mnemonic in capitals

2. A description of the instruction's operation.

3. The machine language encoding of the instruction.

4. An example of the instruction's operation. This is not present for some very
simple instructions.

5. A diagram of the instruction's execution, which shows the effect the instruc
tion has on the 8086 fiags, registers, and memory.

6. A Notes section that includes assorted information such as short examples of
how the instruction might be used, or related instructions that might be more
effective in particular instances.

ABBREVIATIONS

These are the abbreviations used for the operands described with the mnemonics:

ac Either the AL register, if an 8-bit operation is specified, or the AX
register, if a 16-bit operation is specified. This will be represented
in an 8086 assembly language instruction by AL or AX.

addr An 8086 address composed of two 16-bit addresses, a 16-bit offset
address and a 16-bit segment address. Typically, this is repre
sented by a label in an 8086 assembly language instruction.

count Either 1 or the contents of the CL register. This will be represented by
1 or CL in an 8086 assembly language instruction.

data 8 or 16 bits of immediate data. This can appear as any of a wide selec
tion of numeric representations or expressions in an 8086 assem
bly language statement.

disp 8-bit signed binary displacement used by the Jump and Jump-on-
Condition instructions. Invariably this will be represented by a
label in an 8086 assembly language instruction.

3-46 The 8086 Book

displ6 16-bit binary displacement used by the Call, Jump, and Return
instructions. When used in the Call and Jump instructions, this is
almost always represented by a label. The Return instruction will
typically use a numeric expression to represent displ6. Its use
with the Return instruction will be shown.

mem Memory operand. The addressing mode used to select the operand is
specified by the addressing mode byte. This will typically be
represented by a label, in which case the assembler will select the
appropriate addressing mode byte, or a sequence of symbols that
allows the selection of a specific addressing mode byte.

mem/reg Memory or register operand. Consult descriptions for mem and reg.

port An I/O port. This will be represented by a numeric representation or
an expression. The port number must be beween Oi^ and FF16.

reg Register AH, AL, BH, BL, CH, CL, DH, or DL if an 8-bit operation
is specified; register AX, BX, CX, DX, SP, BP, SI, or DI if a 16-
bit operation is specified.

segreg Register CS, DS, ES, or SS.

These are the abbreviations used in describing the instruction's encoding.

c One bit used in the shift and rotate instructions selecting either I or
the contents of the CL register to be the number of shifts/rotates
to be performed.

c = 0, Shift/rotate once

0 = 1, shift/rotate the number of times
specified by the CL register.

d One bit used to specify the direction in which an operation is per
formed.

disp 8 bits used as a signed binary displacement by the Jump and Jump-on-
Condition instructions.

jj Two hexadecimal digits, used to represent immediate data or part of a
16-bit displacement.

kk Two hexadecimal digits, used to represent immediate data or part of a
16-bit displacement.

mod reg r/m 8-bit addressing mode byte that is described in earlier in this chapter.

rrr Three bits selecting one of the 8086 general-purpose registers
IF

an 8-bit operation is specified

rrr = 000 for AL

001 for CL

010 for DL

011 for BL

100 for AH

101 for CH

110 for DH

111 for BH

16-bit operation is specified

rrr = 000 for AX

001 for CX

010 for DX

011 for BX

100 for SP

101 for BP

110 for SI

111 for DI

8086 Assembly Language Instruction Set 3-47

s One bit indicating whether or not immediate data is to be sign
extended. If a 16-bit operation with immediate data is specified, it
is possible that the immediate operand can be expressed using
just one byte of program memory space, s is interpreted as
follows:

s = 0, Two bytes are necessary for the immediate data,

no sign extension is performed.

s = 1, One byte of immediate data is present.
To form the sixteen bits of immediate

data necessary for the operation, sign
extend the high-order bit of the
immediate data byte.

ss Two bits selecting one of the 8086 segment registers.

ss = 00 for ES

01 for OS

10 for SS

11 for DS

V One bit indicating the location to which a software interrupt should be
vectored. If v = 0, then the interrupt service routine is located at
the address specified at location OOOOCi^, otherwise the address is
determined by the succeeding byte.

w One bit indicating whether an 8- or 16-bit operation is performed.

w = 0 8-bit operation
w = 1 16-bit operation

XXX Three don't care bits.

yy Two hexadecimal digits indicating the I/O port number to be used by
the instruction.

The following symbols are used in the example use of instructions:

H This will appear at the end of a group of digits to specify that the digits
be treated as hexadecimal digits.

[] These are used to indicate the contents of the memory location
addressed by the expression inside the brackets. Suppose that the
BX register contains 054A,5. The expression

[BX]

refers to the memory location that has an offset address of
054A,6 in the current data segment.

g,hj,k,m,n,p, Are all used to represent one hexadecimal digit. For example,
q,r,s,t,u,v,w, jjkk

is used to represent a 16-bit data element;

ppppm

is used to represent a 20-bit address.

3-48 The 8086 Book

EA Effective address. EA appears in calculations for the number of
execution cycles required by individual instructions. EA specifies
addressing mode execution cycles, which must be added as
follows:

Direct Addressing ADD 6 cycles
Direct, Indexed Addressing ADD 9 cycles

Implied Addressing ADD 5 cycles

Base Relative Addressing ADD 5 cycles

Base Relative Direct

Addressing ADD 9 cycles

Base Relative Indexed

Addressing ADD 7 or 8 cycles •
Base Relative Direct

Indexed Addressing ADD 1 1 or 12 cycles

Additional addressing mode cycles must be added as follows:

A segment Override Prefix
is present ADD 2 cycles

A 16-bit word is addressed

and the word resides at an

odd memory address ADD 4 cycles

• BP + SI and BX + Dl modes

require one more clock than
BP + Dl and BX + 81 modes.

8086 ASSEMBLY LANGUAGE INSTRUCTIONS
ORGANIZED ALPHABETICALLY

AAA

Adjust Result of ASCII Addition

This instruction is used to adjust a result in the AL register, assuming this result
was generated by adding two ASCII characters as operands. The adjustment is per
formed in the following manner:

1. If the low-order four bits of the AL register are between 0 and 9 and the AF
flag is 0, then go to Step 3.

2. If the low-order four bits of the AL register are between A and F or the AF
flag is 1, then add 6 to the AL register, add 1 to the AH register, and set the
AF flag to 1.

3. Clear the high-order four bits of the AL register.

The encoding for this instruction is:

AAA

37

For example, suppose that the AX register contains 0535,6 the BL register contains
39,6. Executing the sequence

ADD AL.BL

AAA

would result in AX containing 0604,6. The ADD instruction results in

35ie = 0011 0101
39ie = 0011 1001

0110 1110

6E being stored into AL. The AAA instruction performs steps 2, 3, and 4 of the adjust
ment algorithm, which results in the AF and CF flags being set to 1, 04 being stored into
the AL register, and the AH register being incremented to 06.

3-50 The 8086 Book

G D I T S Z A P C

PSW ?

AX yy

BX

CX

DX

Data

Memory

Perform

adjustment
algorithm

Program (Relative to the
Memory CS Register)

SP 37 ppppm

BP ppppm + 1

SI f mmmm + 1 j ppppm + 2

Dl ppppm + 3

PC mm mm

CS nn nn

OS Ommmm
ri 1 Program Memory

1 nnnnO l..r ^ .
V V Address Calculation

P P P Pss

ES

Notes:

AAA

Number of cycles: 4

1. Note that this instruction would also work if the two operands were one-digit BCD
numbers. Why one should desire to do this sort of operation is left up to the reader.

2. To perform corrections on the addition of two packed BCD digits, refer to the DAA
instruction.

3. As a result of this instruction, the values of the Overflow, Parity, Sign, and Zero
flags are undefined.

8086 Assembly Language Instruction Set 3-51

AAD

Adjust AX Register for Division

This instruction assumes that the AH and AL registers contain unpacked BCD

operands. This instruction converts this information into a binary operand in the AL
register. The algorithm for conversion assumes that the tens digit is in the AH register
and the units digit is in the AL register. The AAD algorithm is as follows:

1. Multiply the contents of the AH register by GAi^.

2. Add AH to AL.

3. Store OOie into the AH register.

4. Set the flags in the following manner:

Carry, Overflow, Arithmetic: undefined
Parity: based on the AL register
Zero: based on the AL register
Sign: based on the high-order bit of the AL register

The encoding for this instruction is:

AAD

D5 OA

Suppose that the AX register contains 060415. After the instruction

AAD

has executed, the AX register will contain 0040,6. The flags will be set as follows:

Carry: undefined
Overflow: undefined

Arithmetic: undefined

Sign: high-order bit of AL register is 0, set Sign to 0
Zero: AL register is non-zero, set Zero to 0
Parity: one 1 bit in AL register, set Parity to 0

3-52 The 8086 Book

psw ? X ?

AX XX yy

BX

CX

DX

Perform

adjustment
on xxyy

BP

BP

SI

01

PC mm mm

CS nn nn

DS

SS

ES

mmmm + 2

Ommmm

Data

Memory

Program (Relative to the
Memory CS Register)

05

OA

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

AAD

Number of cycles: 60

Notes:

1. This instruction can also be used to adjust ASCII operands for division. For exam
ple, consider the case where the AX register contains 353715. After the instructions

and ax.ofofh
AAD

have executed, the AX register will contain 00391^.

8086 Assembly Language Instruction Set 3-53

AAM

Adjust Result of BCD Multiplication

This instruction adjusts a result in the AL register, assuming that a multiplication
has been performed with two unpacked BCD numbers as operands. The adjustment is
performed as follows:

1. Divide the AL register by OAj^. Store the quotient in the AH register. Store
the remainder in the AL register.

2. Set the flags in the following manner:

Carry, Overflow, and Arithmetic: undefined
Parity: based on the AL register
Sign: based on the high-order bit of the AL register
Zero: based on the AL register

The encoding for this instruction is:
AAM

04 OA

Suppose that the AL register contains and the BL register contains 09i6. After the
sequence of instructions

MUL ALBL

AAM

the AX register will contain 0603 The MUL instruction results in SFi^ being stored
into the AL register. Performing steps 1 and 2 of the adjustment algorithm results in
060316 in the AX register, and the flags are set in the following manner:

Carry: undefined
Overflow: undefined

Arithmetic: undefined

Sign: high-order bit of AL is 0, set Sign to 0
Zero: the AL register is non-zero, set Zero to 0
Parity: two 1 bits in the AL register, set Parity to 1

3-54 The 8086 Book

PSW ?

AX

BX

cx

DX

s z

Perform
fTdjustment. algorithrr

on XX, return
^sult to AX

Data

Memory

Program (Relative to the
Memory CS Register)

SP D4 ppppm

BP OA ppppm + 1

SI f mmmm + 2 J ppppm + 2

Dl ppppm + 3

PC mm mm

CS nn nn

OS
(n n n n 0 ^ Program Memory

SS v. p p p p m Address Calculation

ES

AAM

Number of cycles: 83

8086 Assembly Language Instruction Set 3-55

AAS

Adjust Result of ASCII Subtraction

This instruction adjusts a result in the AL register, assuming that a subtraction
has been performed with two ASCII characters as operands. The adjustment is per
formed as follows:

1. If the low-order four bits of the AL register are between 0 and 9 and the AF
flag is 0, then go to Step 3.

2. If the low-order four bits of the AL register are between A and F or the AF
flag is 1, then subtract 6 from the AL register, subtract 1 from the AH
register, and set the AF flag to 1.

3. Clear the high-order four bits of the AL register.

4. Set the CF flag to the value of the AF flag.

The encoding for this instruction is:

AAS

"sT

For example, suppose that the AX register contains 0438,6. After the sequence of
instructions

SUB AL35H

AAS

has executed, the AX register will contain 0403,6. The SUB instruction results in

38ie = 0011 1000
Twos comp of 35-|6 = 1100 1011

0000 0011

03,6 toeing stored into AL. The AAS instruction performs steps 1 and 3 of the adjust
ment algorithm, which in this case does not modify the AX register. The AF and CF
flags are set to 0.

The 8086 Book

0 D 1 T S z A P c

1' ? ? X ? "1

AX XX

BX

CX

DX

Perform

adjustment
algorithm on

Data

Memory

Program (Relative to the
Memory CS Register)

SP 3F ppppm

BP ppppm + 1

Si f mmmm + 1 j ppppm + 2

Dl ppppm + 3

PC mm mm

CS nn nn

DS /^^^Ommmm^^V program Memory
V " " " " J Address Calculationpppni^88

E8

Notes:

AAS

Number of cycles: 4

1. To adjust the results of an ASCII addition, consult the AAA instruction. To adjust
the results of packed BCD addition and subtraction, consult the DAA and DAS
instructions.

2. The values of the Parity, Zero, Sign, and Overflow flags are undefined following the
execution of this instruction.

8086 Assembly Language Instruction Set 3-57

ADC ac,data

Add Immediate Data With Carry to AX or AL Register

This instruction is used to add the immediate data present in the succeeding pro
gram memory bytes and the Carry status to the AL (8-bit operation) or AX (16-bit
operation) register.

The encoding for this instruction is:

ADC

I 0001 01 Ow I
ac.data

kk] C

- High-order 8 bits of the immediate
operand. This byte is only present if w =
1.

- Low-order 8 bits of the immediate

operand. This byte is always present.

- w = 0 8-bit operation. AL is one of
the operands and the destination for the
result.

w = 1 16-bit operation. AX is one of
the operands and is the destination for
the result.

Consider, for example, the case where the AX register contains 4F3D,6 and the Carry
status is 1. After the instruction

ADC AX,0FD81H

is executed, the AX register will contain 4CBF,6 and the Carry status will be 1.

4F3Die = 0100 1111 0011 1101
FD81i6 = 1111 1101 1000 0001

Carry Status = 1
0100 1100 1011 1111

-7 one bits, set P to 0

- Arithmetic status is set to 0

- Sign bit is set to 0

-Carry status is 1

Overflow flag is set to 0,
Zero Status is set to 0

3-58 The 8086 Book

PSW X

s z p c

X X X X X

AX XX yy

BX

CX

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS

ES

Data

Memory

Program (Relative to the
Memory CS Register)

ppppm

ppppm + 1

ppppm + 2mmmm + 3

ppppm + 3

Ommmm

n n n n 0

ppppm

Program Memory
Address Calculation

Notes:

ADC AX.jjkk
Number of cycles: 4

1. This instruction performs the same function as the 8080 instruction ACI data. In
addition, this instruction offers a 16-bit Add With Carry Immediate option.

8086 Assembly Language Instruction Set 3-59

ADC mem/reg,data

Add Immediate With Carry to Register or Memory Location

This instruction is used to add immediate data present in the succeeding program
memory byte(s) and the Carry status to the specified register or memory location. An 8-
bit or 16-bit operation may be specified.

The encoding for this instruction is:

ADC mem/reg, data

High-order byte of the 16-bit
immediate operand. This byte
is only present if s = 0 and

-Low-order byte of the
immediate operand. This byte
is always present.

-Addressing mode byte(s). As
described earlier in this chapter.

_ w = 0 8-bit operation
w = 1 16-bit operation

- s is the sign extension bit. Ifs is the sign extension bit. If

mod 010 r/m1 OOOOOsw

w = 0, this bit is ignored. If
w = 1 then

s = 0, all 16 bits of the

immediate operand
are present,

s = 1, only the low-order 8
bits of the immediate

operand are present.
The high-order 8 bits
of the 16- bit operand
are formed by sign
extending the high-
order bit of kk.

Suppose that the DS register contains E400i6, SI register contains 0040i6, the word
at memory location £4040,6 is 6390,6, and the Carry status is 0. After the instruction

ADC [SI], 2D31H

executes, the word at memory location £4040,6 will contain 98C1,6 and the Carry status
will be 0.

6890-10 = 0110 1011 1001 0000
2031-10 = 0010 1101 0011 0001

Carry status = 0

JpOl 1000 1100 0001

3 one bits, set P to 0

No Carry, set AF to 0

Set Overflow to 1

Set Sign to 1

Set Carry to 0

Non-zero result, set Z to 0

3-60 The 8086 Book

PSW X

AX

BX

cx

DX

SP

BP

SI

Dl

PC

OS

DS

88

E8

99 99

mm mm

nn nn

hh hh

Data Memory

Address Calculation

Ogggg
hhhhO

r rrrg

mmmm + 4

Ommmm

n n n n 0
ppppm

Data

Memory

yy

Program (Relative to the
Memory C8 Register)

81

14

kk

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

ADC [811, jjkk

Number of cycles: Immediate to memory: 17 + EA
Immediate to register: 4

Notes:

1. This instruction is not normally used to ADC immediate data to the AL or AX
register. The instruction ADC ac.data is provided for that purpose.

2. Segment registers may not be specified as operands in this instruction.

8086 Assembly Language Instruction Set 3-61

ADC mem/regv mem/reg:
Add Data With Carry From: Register to Register

Register to Memory

Memory to Register

Add the contents of the register or memory location specified by mem/regj and
the Carry status to the contents of the register or memory location specified by mem/
regi. An 8- or 16-bit operation may be specified. Either mem/regj or mem/regj may be a
memory operand, but one of the operands must be a register operand.

The encoding for this instruction is:

ADC mem/regi, mem/reg2

0001OOdw mod reg r/m

Addressing mode byte(s) as described
earlier in this chapter.

w =0 8-bit operation
w = 1 16-bit operation

d is the direction flag. If d = 0, then the
operand described by mod and r/m is
mem/regi and the operand described
by reg is mem/reg2. If d = 1, then the
operand described by mod and r/m is

mem/reg2 and the operand described
by reg is mem/regi.

Suppose that the AX register contains 0211 the BX register contains 0084i6, the DS
register contains ICOO,^, the Carry status is 1, and the contents of the memory word at
1C084i6 are 00A4i6. After the instruction

ADC AX.[BX]

has executed, the AX register will contain 0236,6 and the flags will be set as follows:

Carry = 1
0211ie = 0000 0010 0001 OOOI
00A4i 6 = 0000 0000 1010 0100

0000 0010 1011^^0110

- 5 one bits, set P to 0

- No carry, set AF to 0

• Overflow is 0

-Sign Status is 0

• No carry, set C to 0

Non-zero result, set Z to 0

3-62 The 8086 Book

S Z A P C

PSW X X X X X

AX XX yy

BX gg gg

CX

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS hh hh

SS

ES

Program {Relative to the
Memory CS Register)

Memory

rrrrg + 1

rrrrg + 2

Ogggg
hhhhO

rrrrg ppppm

ppppm + 1Data Memory
Address Calculation

ppppm + 2

ppppm + 3

mmmm + 2

Ommmm

n n n n 0

ppppm

Program Memory
Address Calculation

ADC AX,[BX1
Number of cycles: Memory to register: 9 + EA

Register to memory: 16 + EA
Register to register: 3

Notes:

1. This instruction is not normally used to ADC to the AX or AL registers. The ADC
ac,data instruction accomplishes that function in fewer bytes.

8086 Assembly Language Instruction Set 3-63

ADD ac,data

Add Immediate Data to AX or AL Register

This instruction is used to add the immediate data present in the succeeding pro
gram memory byte(s) to the AL (8-bit operation) or AX (16-bit operation) register.

The encoding for this instruction is:

ADD ac,data

000001Ow kk jj

High-order 8 bits of the immediate
operand. This byte is only present if w = 1.

~ Low-order 8 bits of the immediate

operand. This byte is always present.

w = 0 8-bit operation. AL is one of the
operands and the destination for the
result.

- w = 1 16-bit operation. AX is one of the
operands and is the destination for the
result.

Suppose that the AX register contains 4064i6 and the Carry status is 1. Executing an

ADD AX,OFOFH

instruction will result in the accumulator containing 4F73,6.

4064ie = 0100
OFOFie = 0000

0000

1111

0110

0000

0100

1111

0100 1111 0111 0011

- 5 one bits, set P to 0

- Carry out of bit 3, set AF to 1

- No carries out of bits 14 or 15, set 0 to 0

- 0 sets S to 0

- No Carry sets C to 0

Non-zero result, set Z to 0

3-64 The 8086 Book

Data

Memory

PSW X X X

AX XX yy

BX

CX

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

ss

ES

Program (Relative to the
Memory CS Register)

ppppm

ppppm + 1

ppppm + 2mmmm + 3

ppppm + 3

Ommmm

n n n n 0

ppppm

Program Memory
Address Calculation

ADD AX,jjkk
Number of cycles: 4

Notes:

1. This instruction performs the same function as the 8080 instruction ADI data. This
instruction has the additional capability of adding 16-bit immediate data elements.

8086 Assembly Language Instruction Set 3-65

ADD mem/reg,data

Add Immediate Data to Register or Memory Location

This instruction is used to add the immediate data present in the succeeding pro
gram memory byte(s) to the specified register or memory location. An 8- or 16-bit
operation may be specified.

The encoding for this instruction is:

ADD mem/reg,data

1 0 0 0 0 0 s w mod 000 r/m kk ii

1

n 1

High-order byte of the 16-bit
immediate operand. This byte is
only present if s = 0 and w = 1.

Low-order byte of the
immediate operand. This byte
is always present.

- Addressing mode byte(s) as
described earlier in this

Chapter.

- w = 0 8-bit operation
w = 1 16-bit operation

. s is the sign extension bit. If w =
0, this bit is ignored. If w = 1
then

s = 0, all 16 bits of the immedi

ate operand are present,

s = 1, only the low-order 8 bits
of the immediate operand are
present. The high-order 8 bits
of the 16-bit operand are
formed by sign extending the
high-order bit of kk.

For example, if the DX register should contain 4652,6 and the instruction

ADD DX.OFOFOH

is executed, then the DX register contents will be altered to 3742,6.

465216 = 0100 0110 0101 0010
F0F0i6 = 1111 0000 1111 0000

0011 0111 0100^0010

- 2 one bits, set Parity flag to 1

- Nonzero result, set Z to 0

-No carry out of bit 3,
set AF to 0

- Carry out of high-order bit,
set Carry status to 1

- Sign bit is 0, set Sign status
to 0

- Overflow is set to 0

3-66 The 8086 Book

S z p C

PSW X

AX

BX

CX

DX XX yy

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS

ES

Program (Relative to the
Memory CS Register)

Memory

ppppm

ppppm + 1

ppppm + 2mmmm + 4

ppppm + 3

Ommmm

n n n n 0

ppppm

Program Memory
Address Calculation

ADD DXJjkk
Number of cycles: to memory: 17 + EA

to register: 4

Notes:

1. This instruction is not normally used to ADD to the AX or AL registers. The ADD
ac,data instruction accomplishes that function in fewer bytes.

8086 Assembly Language Instruction Set 3-67

ADD mem/reg,, mem/regj
Add: 1. Register to Register

2. Register to Memory

3. Memory to Register

Add the contents of the register or memory location specified by mem/reg2 to the
contents of the register or memory location specified by mem/reg,. An 8- or 16-bit
operation may be specified. Either mem/reg, or mem/reg2 "^ay be a memory operand,
but one of the operands must be a register operand.

The encoding for this instruction is:

ADD mem/reg 1, mem/reg2

OOOOOOdw mod reg r/m

Addressing mode byte(s) as described
earlier in this chapter

w = 0 8-bit operation
w = 1 16-bit operation

d is the direction flag. If d = 0, then the
operand described by mod and r/m is
mem/reg 1 and the operand described
by reg is mem/reg2. If d = 1, then the
operand described by mod and r/m is
mem/reg2 operand described
by reg is mem/reg i-

Suppose that the CX register contents are 0029,6 Ihe contents of the SI register are
04ED,6. After the instruction

ADD si.cx

has executed, the SI register contents and the statuses will be altered as follows:

0029ie = 0000 0000 0010 1001
04EDi6 = 0000 0100 1110 1101

^,^000 0101 0001^0110

Three one bits, set

the Parity Status to 0

Carry out of bit 3, set AF to 1

Set Overflow Status to 0

Set Sign Status to 0

No Carry, set C to 0

Non-zero result, set Z to 0

3-68 The 8086 Book

PSW X

s z P c

AX

BX

CX vv ww

DX

SP

BP

SI XX yy

Di

PC mm mm

CS nn nn

DS

SS

ES

mmmm + 2

Ommmm

n n n n 0

ppppm

Data

Memory

Program (Relative to the
Memory CS Register)

01

CE

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

ADD SI.CX

Number of cycles; Register to Register: 3
Register to Memory: 16 + EA
Memory to Register: 9 + EA

8086 Assembly Language Instruction Set 3-69

AND ac,data

AND Immediate Data with the AL or AX Register

This instruction is used to AND immediate data present in the succeeding pro
gram memory byte(s) with the AL (8-bit operation) or AX (16-bit operation) register
contents.

The encoding for this instruction is:

AND ac.data

001001Ow kk jj

High-order 8 bits of the immediate
operand. This byte is only present if w = 1.

Low-order 8 bits of the immediate

operand. This byte is always present.

w = 0 8-bit operation,
w = 1 16-bit operation.

As an example, consider the case where the AL register contains CS,^. After the instruc
tion

AND AU7FH

executes, the AL register will contain 43

C3i6 = 1100 0011
7Fi6 = 0111 1111

0100^,0011

L3 one bits, set P to 0

AF flag indeterminate

Non-zero result, set Z to 0

Overflow is set to 0

Sign is set to 0

Carry is set to 0

3-70 The 8086 Book

Data

Memory

PSW

AX

BX

CX

DX

[I

SP

BP

SI

01

PC mm mm

CS nn nn

OS

ss

ES

Program (Relative to the
Memory CS Register)

kk A kk

ppppm

ppppm + 1

ppppm + 2mmmm + 2

ppppm + 3

Ommmm

n n n n 0

ppppm

Program Memory
Address Calculation

AND AL.kk

Number of cycles; 4

Notes:

1. This instruction performs the same function as the 8080 instruction ANI data.
However, it also allows a 16-bit operation.

2. If you desire to AND immediate with any of the other general purpose registers or
with some memory location, consult the AND mem/reg,data instruction.

8086 Assembly Language Instruction Set 3-71

AND mem/reg,data
AND Immediate Data with Register or Memory Location

AND immediate data present in the succeeding program memory byte(s) with the
specified register or memory location. An 8- or 16-bit operation may be specified.

The encoding for this instruction is:

AND mem/reg,data

1000000w mod 100 r/m kk 1 jj

High-order byte of the 16-blt
immediate operand. This byte
is only present if w = 1.

Low-order 8 bits of the

immediate operand. This byte
is always present.

-Addressing mode byte(s). As
described earlier in this chapter.

• w = 0 8-bit operation,
w = 1 16-bit operation.

Consider the case where the BX register contains 0104,6, the DS register contains
0000,6, the byte at memory location 00104,6 is 47,6- After the instruction

AND [BX1.52H

has executed, memory location 00104,6 will contain 42,6-

4716 = 0100 0111
5216 = 0101 0010

0100 0010

2 one bits, set the Parity
flag to 1

Non-zero result, set Z to 0

Carry is cleared to 0

Sign is set to 0

Overflow is cleared to 0

The 8086 Book

0 D 1 T S z A P c

I" X X ? X

AX

BX gg gg

CX

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS hh hh

SS

ES

Data

Memory

Program {Relative to the
Memory CS Register)

ppppm

Data Memory

Address Calculation ppppm + 1

ppppm + 2

ppppm + 3mmmm + 3

Ommmm

n n n n 0

ppppm

Program Memory
Address Calculation

AND iBXlkk
Number of cycles: Immediate to memory: 17 + EA

Immediate to register: 4

Notes:

1. This instruction is not normally used to AND data with the AX or AL registers. The
instruction AND ac,data is provided for this function.

8086 Assembly Language Instruction Set 3-73

AND mem/reg„ mem/regj
AND: • Register with Register

* Register with Memory

* Memory with Register

AND the contents of the register or memory location specified by mem/reg2 with
the contents of the register or memory location specified by mem/reg,, returning the
result to mem/regi- An 8- or 16-bit operation may be specified. Either mem/regj or
mem/reg2 i^^y be a memory operand, but one of the operands must be a register
operand.

The encoding for this instruction is:

AND mem/regi, mem/reg2

001OOOdw mod reg r/m

Addressing mode bytels) as described
earlier in this chapter.

w = 0 8-bit operation
w = 1 16-bit operation

d is the direction flag. If d = 0, then the
operand described by mod and r/m is
mem/reg 1 and the operand described
by reg is mem/reg2. If d = L then the
operand described by mod and r/m is
mem/reg2 and the operand described
by reg is mem/regi.

As an example, consider the case where the DL register contains 06,6, Ihe DS register
contains B000,6, the BX register contains 0010,6, the SI register contains 0006,6, and the
byte at memory location B0016,6 contains F1,6- After the instruction

AND DL. [BX + SI]

has executed, the DL register will contain 00 and the flags will be set as follows:

0016 = 0000 0110
F1i6 =1111 0001

0000 oooo

LZero one bits, set P to 1

AF flag indeterminate

Carry is cleared to 0

Set the Sign Status to 0

Overflow Status is cleared

Zero result, set Z to 1

3-74 The 8086 Book

O D I T S Z A P C

Data

Memory

PSW 0 X X ? X 0

AX

BX 99 99

CX

DX yy

SP

BP qq qq

SI

Dl

PC mm mm

CS nn nn

DS hh hh

SS

ES

Program (Relative to the
Memory CS Register)

ppppm

Memory
Address Calculation

ppppm + 1

ppppm + 2

ppppm + 3

mmmm + 2

Ommmm

n n n n 0

ppppm

Program Memory
Address Calculation

AND DL. [BX + SI]
Number of cycles: Memory to Register: 9 + EA

Register to Memory: 16 + EA
Register to Register: 3

8086 Assembly Language Instruction Set 3-75

CALL addr

CALL the Subroutine Specified in the Operand (Intersegment)

Store the contents of the CS and PC registers on the top of the stack, i.e., push the
address of the instruction following the CALL onto the top of the stack. Place the con
tents of the succeeding four memory bytes into the PC and CS registers. Place the bytes
in the following manner:

1. Store the second and third bytes of this instruction into the PC register.

2. Store the fourth and fifth bytes of this instruction into the CS register.

The encoding for this instruction is:

CALL addr

?A

kk hh gg

1

address. This byte is stored into the
high-order byte of the CS register.

- Low-order 8 bits of the new segment
address. This byte is stored into the
low-order byte of the CS register.

- High-order 8 bits of the new offset

address. This byte is stored into the
high-order byte of the PC register.

-Low-order 8 bits of the new offset

address. This byte is stored into the
low-order byte of the PC register.

3-76 The 8086 Book

O D I T S Z A P C

Data

Memory

PSW|

AX

BX

CX

DX

SP ss ss

BP

SI

Dl

PC mm mm

CS nn nn

OS

SS tt tt

ES

Program (Relative to the
Memory CS Register)

mm + 5

Memory
Address Calculation

ttttO

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

ppppm + 4

Ommmm
n n n n 0

ppppm

Program Memory
Address Calculation

CALL addr

Number of cycles: 28

Notes:

1. There are four types of CALLs:

CALL addr: this instruction, intersegment CALL
CALL mem: intersegment indirect CALL
CALL disp: intrasegment CALL
CALL mem/reg: intrasegment indirect CALL

8086 Assembly Language Instruction Set 3-77

CALL disp16

CALL the Subroutine Specified in the Operand (Intrasegment)

Push the address of the instruction following the CALL onto the top of the stack.
Add the contents of the next two program memory bytes, treating them as a 16-bit
unsigned displacement, to the program counter. Continue execution from this point.

The encoding for this instruction is:

CALL disp16

"e8
kk 1 1 ii

High-order 8 bits
of 16-bit displacement.

Low-order 8 bits

of the 16-bit displacement.

As an example, consider the following instruction sequence:

CALL

AND

SUSP

AL7FH

SUSP PUSH AX

After the CALL instruction has executed, the address of the AND instruction will have
been pushed onto the stack, and the PUSH instruction at SUBR will be executed next.

3-78 The 8086 Book

O D I T S Z A P C

Data (Relative to the
Memory SS Regiser)

PSW

AX

BX

CX

DX

SP SS SS

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS tt tt

ES

Program (Relative to the
Memory CS Register)

mm + 3 uuuus 2

Ir
Data Memory

Address Calculation

Ossss
ttttO

uuuus

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

New Program Memory
Address Calculation

ppppm

Ommmm -x. r» >«
- n n n n 0 ^ Program Memory

' Address Calculation

CALL jjkk
Number of cycles: 19

Notes:

1. There are four types of CALLs:

CALL disp: this instruction, intrasegment CALL

CALL mem/reg: intrasegment indirect CALL
CALL address: intersegment CALL

CALL mem: intersegment indirect CALL

8086 Assembly Language Instruction Set 3-79

CALL mem

CALL the Subroutine Specified by the Operand (intersegment)

Store the contents of the CS and PC registers on the top of the stack, i.e., push the
address of the instruction following the CALL onto the stack. Move the word at the
specified memory location into the PC register; move the succeeding word into the CS
register. Continue execution from this point.

The encoding for this instruction is:

CALL mem

"fT

mod 011 r/m

earlier in this chapter.

Suppose the DS register contains 0400,6, the SI register contains 0004,6, the memory
word at 04004,6 is 0100,6 the memory word at 04006,6 is 0FE0,6. After the instruc
tion

CALL [SI]

has executed, the PC register will contain 0100,6 and the CS register will contain 0FE0,6.
Execution will continue from location 0FF00,6.

3-80 The 8086 Book

PSW

AX

BX

CX

DX

S Z

SP SS SS

BP

SI gg gg

Dl

PC mm mm

CS nn nn "

DS hh hh

SS tt tt

ES

Ossss
ttttO
uuuus

Ommmm
n n n nO

ppppm

Ogggg
hhhhO
r rrrg

* Stack Data Memory Address Calculation
* Program Memory Address Calculation
' Data Memory Address Calculation

Data

Memory

(Relative to the

DS Register)

yy rrrrg

XX rrrrg + 1

ww rrrrg + 2

vv rrrrg + 3

Data

M emery

(Relative to the

SS Register)

mm + 2 uuuus - 4

r mm uuuus - 3

nn uuuus - 2

1 nn uuuus - 1

uuuus

Program
Memory

(Relative to the

CS Register)

FF ppppm

1C ppppm + 1

ppppm + 2

ppppm + 3

CALL [SI]

Number of cycles: 37 + EA

Notes:

1. There are four types of CALLs:

CALL mem: this instruction, intersegment indirect CALL
CALL addr: intersegment CALL
CALL mem/reg: intrasegment indirect CALL
CALL disp: intrasegment CALL

2. If mod =11, this operation is undefined.

8086 Assembly Language Instruction Set 3-81

CALL mem/reg

Call the Subroutine Specified by the Operand (Intrasegment)

Store the address of the instruction following the CALL on the top of the Stack. If
the specified operand is a register, move the contents of the register to the PC register. If
the specified operand is a memory location, move the contents of the specified memory
location to the PC register. Continue execution from this point.

The encoding for this instruction is:

CALL mem/reg

FF

[modOIOr/m

Addressing mode byte(s).
As described earlier in this chapter.

Consider the case where the PC register contains FFOO,^, the DS register contains
OIOO16, the BX register 0026,6, the word at memory location 01026,6 is 0240,6- After
the instruction

CALL IBX]

has executed, the PC register will contain 0240,6- Execution will continue at this loca
tion.

3-82 The 8086 Book

Data (Relative to the

Memory DS Register)

PSW

AX

BX gg gg

CX

DX

SP SS SS

BP

SI

Dl

PC mm mm

CS nn nn

DS hh hh

SS tt tt

ES

hhhhO

ssss - 2

Ommmm
n n n n 0

ppp pm

Stack Data Memory

Address Calculation

yy rrrrg

rrrrg + 1

Data (Relative to the

Memory SS Register)

mm + 2 uuuus - 2

uuuus - 1

uuuus

Program (Relative to the
Memory CS Register)

FF

17

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

CALL [BX] Intrasegment indirect through memory (as illustrated above)
Number of cycles: 21 + EA

CALL BX Intrasegment indirect through register
Number of cycles: 16

Notes:

1. There are four types of CALLs:

CALL mem/reg: this instruction, intrasegment indirect CALL
CALL disp: intrasegment CALL
CALL mem: intersegment indirect CALL
CALL addr: intersegment CALL

8086 Assembly Language Instruction Set 3-83

CBW

Sign Extend the AL Register into the AH Register

If the high-order bit of the AL register is 1, store into the AH register, other
wise store 0016 into the AH register.

The encoding of this instruction is:

CBW

98

As an example, if the AL register contains 4F|6, the executing instruction

CBW

will store 00,6 into the AH register.

s z p c

PSW|

AX

BX

cx

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

88

E8

Sign extend
XX Into the
AH regist^

Data

Memory

Program (Relative to the
Memory CS Register)

mmmm + 1

ppppm

98 ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Ommmm ^ _
n n n n 0 1 Program Memory

Address Calculation

CBW

Number of cycles: 2

Notes:

1. No statuses are affected.

2. The value in the AL register should represent a number between +127 and -128,
i.e., AL should contain a signed 8-bit value.

3. This instruction can be used for extending the AL register before a 16-bit IMUL or
IDIV instruction.

3-84 The 8086 Book

CLC

Clear the Carry Status

This instruction sets the Carry status to 0. No other statuses or registers are
affected.

The encoding for this instruction is

CLC

"fs"

PSWj

AX

BX

CX

DX

S Z A P C

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS

ES

Data

Memory

Program (Relative to the
Memory CS Register)

mmmm + 1

Ommmm

n n n n 0

ppppm

F8 ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

CLC

Number of cycles: 2

8086 Assembly Language Instruction Set 3-85

CLD

Clear the Direction Flag

This instruction sets the DF flag to 0. This has the effect of making the string
operations perform auto-increment on the pointers used by the string operations. No
other statuses or registers are affected.

The encoding for this instruction is:

CLD

FC

PSW|

AX

BX

cx

DX

Data

Memory

Program (Relative to the
Memory OS Register)

SP FC PPPpm

BP ppppm + 1

SI JT mmmm + 1) ppppm + 2

Dl mm mm ppppm + 3

PC

CS nn nn

DS
Program Memory

V^^ppppm Address CalculationSS

ES

CLD

Number of cycles: 2

3-86 The 8086 Book

CLI

Clear the Interrupt Flag

Set the Interrupt flag to 0. This has the effect of disabling all interrupts except
non-maskable interrupts, which occur on the NMI line.

The encoding for this instruction is:

CLl

FA

G D I T S Z A P C

PSW|

AX

BX

CX

DX

Data

Memory

Program (Relative to the
Memory CS Register)

SP FA ppppm

BP ppppm + 1

SI f mmmm + 1 J ppppm + 2

DI ppppm + 3

PC mm mm

CS nn nn

DS Program Memory

SS VoppprnX Calculation
ES

CLI

Number of cycles: 2

Notes:

1. This instruction performs the same function as the 8080 instruction DI.

2. Remember that when the 8086 acknowledges an interrupt request, the interrupts
are automatically disabled.

8086 Assembly Language Instruction Set 3-87

CMC

Complement the Carry Status

Complement the Carry status. No other statuses or registers are affected.
The encoding for this instruction is:

CMC

F5

For example, if the Carry status were 0 and the instruction

CMC

were executed, the Carry status would be set to 1.

G D I T S Z A P C

PSW

AX

BX

CX

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS

ES

mmmm + 1

Data

Memory

Program (Relative to the
Memory CS Register)

F5 ppppm

ppppm + 1

ppppm + 2

ppppm + 3

n n n n 0 ^ Program Memoryp p p p V Address Calculation

CMC

Number of cycles: 2

Notes:

1. This instruction performs the same function as the 8080 instruction CMC.

3-88 The 8086 Book

CMP ac,data

Compare Immediate Data with Accumulator

This instruction is used to compare immediate data present in the succeeding pro
gram memory byte(s) with the AL register (8-bit operation) or the AX register (16-bit
operation). The comparison is performed by subtracting the data in the immediate
byte(s) from the specified register and using the result to set the flags. The result of this
operation is not stored in the specified register, thus no registers are affected, only the
statuses.

The encoding for this instruction is:

CMP ac.data

001 1 1 1 C kk

- The high-order 8 bits of the immediate
operand. This byte is only present if w = 1 .

- The low-order 8 bits of the immediate

operand. This byte is always present.

- w = 0 8-bit operation
w = 1 16-bit operation

Consider the case where the AL register contains 2015. After the instruction

CMP AL,ODH

has executed, the AL register will still contain 20i6, but the statuses will be modified as
follows:

20ie = ooio 0000
Two's Comp. of OD10 =1111 0011

0001^0011

- 3 one bits, set P to 0

- No Carry, set AF to 0

-Carries out of both bit 6 and bit 7,

set Overflow to 0

- Set sign to 0

-Carry out of high-order bit is 1,
set Carry to 0

Nonzero result, set to 0

8086 Assembly Language Instruction Set 3-89

PSW X

s z

AX XX

BX

CX

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

OS

SS

ES

Data

Memory

ppppm

ppppm + 1

mmmm + 2 ppppm + 2

ppppm + 3

Ommmm

n n n n 0

ppppm

Program (Relative to the
Memory CS Register)

Program Memory
Address Calculation

CMP AL.kk

Number of cycles: 4

Notes:

1. If you desire to compare immediate data with any of the other general purpose
registers or with the contents of some memory location, consult the CMP mem/reg,
data instruction.

2. This instruction performs the same function as the 8080 instruction CPI data. In
addition, this instruction allows for 16-bit comparisons.

3-90 The 8086 Book

CMP mem/reg,data

Compare Immediate Data with Register or Memory

This instruction compares the immediate data present in the succeeding program
memory byte(s) with the specified register or memory location. The comparison is per
formed by subtracting the data in the immediate bytes from the specified memory loca
tion or register, and using the result to set the flags. The result of this operation is not
stored in the specified register or memory location, thus no registers or memory loca
tions are affected, only the statuses. An 8-bit or 16-bit operation may be specified.

The encoding for this instruction is:

CMP mem/reg,data

[l 0 0 00 0 s w[I mod 111 r/m [| kk | [

High-order byte of the immediate
operand. This byte is only present if
s = 0 and w = 1

Low-order byte of the immediate
operand. This byte is always present

Addressing mode byte(s) as described
earlier in this chapter

w = 0 8-bit operation
w = 1 16-bit operation

s is the sign extension bit. If w = 0, this
bit is ignored. If w = 1 then s = 0; all 16
bits of the immediate operand are pre
sent

s = 1, only the low-order 8 bits of the
immediate operand are present. The
high-order 8 bits of the 16-bit operand
are formed by sign extending the high-
order bit of kk

Suppose that the SI register contains OIBA16. After the instruction

CMP SI. 0200H

has executed, the SI register will still contain OIBA16, but the statuses will be modified
as follows:

01BAi6 = 0000 0001 1011 1010
Two's Comp. of 02001 q = 1111 1110 1011 1010

1111 1111 1011^1010

5 one bits, set P to 0

No Carry from bit 3. set AF to 1

No Carry out of bit 15 or bit 14.
set Overflow to 0

Set Sign to 1

No Carry out of high-order bit,
set Carry to 1

Non-zero result, set Z to 0

8086 Assembly Language Instruction Set 3-91

O D I T S Z A P C

PSW

xxyy - jjkk

Data

Memory

Program (Relative to the
Memory CS Register)

SP 81 ppppm

BP FE ppppm + 1

SI XX yy r mmmm + 4 j ^ kk ppppm + 2

Dl jj ppppm + 3

PC mm mm

CS nn nn

DS Ommmm _
f n n n n 0 1 Program Memory

SS P P P p Address Calculation

ES

CMP

Number of cycles: Register operand: 4
Memory operand: 10 + EA

Notes:

1. This instruction is not typically used to CMP immediate data with the AX or AL
register. The instruction CMP ac,data is provided for this purpose.

3-92 The 8086 Book

CMP mem/regv mem/regz
Compare: * Register with Register

* Register with Memory
• Memory with Register

Compare the data in the register or memory operand specified by mem/reg2 with
the data in the register or memory operand specified by mem/regp The comparison is
performed by subtracting the data specified by mem/reg2 from the data specified by
mem/regi and using the result to set the flags. Neither mem/regi nor mem/reg2 is
affected by this operation. An 8- or 16-bit operation may be specified.

The encoding for this instruction is:

CMP mem/regv mem/reg2

001 1 1Odw mod reg r/m

Addressing mode bytels) as described
earlier in this chapter

w = 0 8-bit operation
w = 1 16-bit operation

d is the direction flag. If d = 0, then the
operand described by mod and r/m is
mem/regi and the operand described
by reg is mem/reg2. If d = 1, then the
operand described by mod and r/m is
mem/reg2 and the operand described
by reg is mem/regi

Suppose that the DH register contains 05 and the CL register contains Obi^. After the
instruction

CMP CUDH

has executed, neither the CL nor DH register will be affected; however, the flags will be
set as follows:

0016 = 0000 0110
Two's Comp. of 0516 = 1111 1011

0000 0001

• 1 one bit set P to 0

• Set AF to 0

- Set Overflow to 0

-Set Sign to 0

- Carry out of high-order bit is completed,
set Carry to 0

Non-zero result, set Z to 0

8086 Assembly Language Instruction Set 3-93

PSW

SP

BP

SI

Di

PC

cs

DS

88

E8

AX

BX

CX XX

DX yy

mm mm

nn nn

mmmm + 2

PPPPm

Data

Memory

Program (Relative to the
Memory 08 Register)

38

F1

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

n™ n n 0 Program Memory
' Address Calculation

CMP CUDH

Number of cycles: Register with register: 3
Memory with register: 9 + EA
Register with memory: 16 + EA

3-94 The 8086 Book

CMPS

Compare Memory with Memory

Compare the contents of the memory location addressed by the SI register with
the contents of the memory location addressed by the DI register. The comparison is
performed by subtracting the contents of the memory location addressed by the DI
register from the contents of the memory location addressed by the SI register and using
the result to set the flags. Neither of the memory locations used in the subtraction is
affected. The SI and DI registers are incremented/decremented depending on the value
of the DF flag. An 8- or 16-bit operation may be specified.

The encoding for this instruction is:

CMPS

1 0 1 0 0 1 1 W

0 An 8-bit comparison. The 81
and DI registers are incre
mented by 1 if DF = 0. The SI
and DI registers are decre
mented by 1 if DP = 1

w = 1 A 16-bit comparison. The SI
and DI registers are incre
mented by 2 if DF = 0. The SI
and DI regisers are decre
mented by 2 if DF = 1

Suppose that the DF flag is 1, the DS register contains O6OO16, the SI register contains
OIO816, the ES register contains OO6O16, the DI register contains OI8816, the word at
memory location O6IO816 is 4544,6 and the word at memory location 00788,6 is 4544,6-
After the instruction

OMRS WORD

has executed, the SI register will contain 010A,6, the DI register will contain OI8A16 and
the flags will be set as follows:

454416 = 0100 0101 0100 0100
Two's Comp. of 454416 = 1011 1010 1011 1100

0000 0000 0000^0000

- 0 one bits, set P to 1

-Carry out of bit 3, set AF to 1

- Overflow to 0

-Set Sign to 0

-Carry out of high-order bit,
set Carry to 0

Zero result, set Z to 1

8086 Assembly Language Instruction Set 3-95

PSW

Notes:

Data

Memory

rrrrg + 1

rrrrg + 2

Data Memory
Address Calculation

hhhhO

uuuuq

uuuuq + 1
qqqq + 2

uuuuq + 2

Program (Relative to the
Memory CS Register)

SP \ l
BP ¥'
SI 99

DI qq qq

PC mm mm ■S;
CS nn nn

DS hh hh

SS

ES tt tt

mmmm + 1

Oqqqq

uuuuq

Data Memory
Address Calculation

Ommmm

Program (Relative to the
Memory CS Register)

Program Memory
Address Calculation

A7 ppppm

ppppm + 1

ppppm + 2

ppppm + 3

CMPS WORD
Number of cycles: 22 for a single occurrence.

9 + (22 • R) for R repetitions
when preceded by a REP prefix.

1. The REP prefix and/or the LOCK prefix may be used with this instruction. If the
LOCK prefix and the REP prefix are both used in conjunction with the instruction,
certain problems may occur. For a discussion of this enervating subject, please con
sult Chapter 4.

2. The default segment register for the operand addressed by SI is DS. The segment
register may be changed using a segment override prefix. The default segment
register for the operand addressed by DI is ES. This segment register assignment
may not be overridden.

3. The assembler must have certain information to allow it to determine whether an 8-
bit or 16-bit comparison will be performed. For a discussion of how this is done,
please consult the end of this chapter.

4. The execution time for CMPS with a REP prefix may be illustrated as follows:
REP CMPS

2 + 9 + 22(R)

If R = 10 words, then the execution time is 231 clock cycles.

3-96 The 8086 Book

CWD

Sign Extend the AX Register into the DX Register

If the high-order bit of the AX register is 1, store FFFF16 into the DX register,
otherwise store OOOOi^ into the DX register.

The encoding for this instruction is:

CWD

Suppose that the AX register contains BOOl i^. After the instruction

CWD

has executed, the DX register will contain FFFFi^.
Data

G D I T S Z A P C Memory

PSW

AX XX yy

BX

CX

DX

Sign extend
xxyy

Program (Relative to the
Memory CS Register)

SP 99 ppppm

BP ppppm + 1

SI r mmmm +1 1 ppppm + 2

Dl ppppm + 3

PC mm mm

CS nn nn

DS Program Memory

P P P P Address Calculationss

ES

CWD

Number of cycles: 5

Notes:

1. No statuses are affected.

2. This instruction is useful when performing divisions. If a 16-bit divisor is to be used,
it is necessary to have a 32-bit dividend. If the only significant bits are in the AX
register, this instruction extends the sign bit into the DX register to make a 32-bit
dividend. Note that this technique works best for the IDIV instruction.

8086 Assembly Language Instruction Set 3-97

DAA

Decimal Adjust Accumulator After Addition

Convert the contents of the AL register into binary coded decimal form. This

instruction should be used only after adding two BCD numbers, i.e., look upon ADD
DAA or ADC DAA as compound, decimal arithmetic instructions which operate on

BCD source operands to generate BCD answers.

The algorithm for the conversion is:

1. If the AF flag is 1 or the low-order four bits of the AL register are A through
F, then add 06, ̂ to the AL register and set the AF flag to 1.

2. If the CF flag is I or the high-order four bits of the AL register are greater than
9, then add 60i^ to the AL register and set the CF flag to 1.

The encoding for this instruction is:

DAA

27

Suppose the AL register contains 28,6 and the BL register contains 68,5. After the
instructions

ADD AL.BL

DAA

have executed, the AL register will contain 96i6, not 90i6.

3-98 The 8086 Book

psw ?

AX yy

BX

CX

DX

Data

Memory

Program (Relative to the
Memory CS Register)

SP 27 ppppm

BP ppppm + 1

SI f mmmm + 1 j ppppm + 2

Dl ppppm + 3

PC mm mm

CS nn nn

DS ^^Ommmm^V program Memory
nnnnH 1

SS
V J Address Calculation

ES

Notes:

DAA

Number of cycles: 4

1. This instruction is useful for the addition of two packed BCD operands. For adjust

ing the subtraction of two packed BCD operands, consult the DAS instruction. For
adjusting the result of ASCII addition and subtraction, consult the AAA and A AS
instructions.

8086 Assembly Language Instruction Set 3-99

DAS

Decimal Adjust Accumulator After Subtraction

This instruction converts the contents of the AL register into binary coded
decimal form. This instruction should only be used after subtracting two BCD numbers,
i.e., look upon SUB DAS or SBB DAS as compound decimal arithmetic instructions
which operate on BCD source operands to generate BCD answers.

The algorithm for the conversion is:

1. If the AF flag is 1 or the low-order four bits of the AL register are between A
and F, then subtract 06,6 ̂ om the AL register and set the AF flag to 1.

2. If the CF flag is 1 or the high-order four bits of the AL register are greater than
9, then subtract 60,6 from the AL register and set the CF flag to 1.

The encoding for this instruction is:

DAS

Suppose that the AL register contains 86,6 and the AH register contains 07,6- After the
sequence of instructions

SUB AL.AH

DAS

has executed, the AL register will contain 79,6- The SUB instruction results in the AL
register containing 7F,6.

8616 = 1000 0110
Two's Comp. of 07i6 = 1111 1001

0111 1111

Carry out is complemented, set C to 0

Since the low-order 4 bits of the AL register equal Fi^, the first step of the
algorithm is performed. The AF flag is set to 1.

3-100 The 8086 Book

0 D

PSWl ?

AX

BX

cx

DX

Data

Memory

erform
adjustment
algorithm
on XX

Program (Relative to the
Memory CS Register)

BP 2F ppppm

BP ppppm + 1

SI f mmmm + 1 j ppppm + 2

Dl ppppm + 3

PC mm mm

CS nn nn

DS p^ogran, Memory

SS r.r^r^r.nr. ^ Addrsss CalculstionVfc^ppppm^^

ES

DAS

Number of cycles: 4

Notes:

1. This is a decimal subtraction adjustment algorithm for two packed BCD numbers.
Another operation available for adjustment of subtractions is the AAS instruction,
which adjusts the results of subtracting ASCII digits.

8086 Assembly Language Instruction Set 3-101

DEC mem/reg

Decrement Register or Memory Location

Subtract 1 from the contents of the specified register or memory location. An 8- or
16-bit operation may be specified.

The encoding for this instruction is:

DEC mem/reg

1 1 1 1 1 1 1 1 w mod 001 r/m

Addressing mode byte(s) as described
earlier in this chapter.

w = 0 8-bit operation
w = 1 16-bit operation

Suppose that the BH register contains 4F,6. After the instruction

DEC BH

executes, the BH register contains 4E,6.

]

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS

ES

Data

Memory

mmmm + 2

Ommmm

n n n n 0

ppppm

Program (Relative to the
Memory CS Register)

FE

CP

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

DEC BH

Number of cycles: Register operand: 3
Memory operand: 15 + EA

3-102 The 8086 Book

Notes:

1. This instruction can perform the same function as the 8080 instruction DCR reg.
Note that due to the various addressing modes available and the 8-/16-bit option,
this instruction has a good deal more power than the 8080 instruction.

2. Segment registers may not be modified using this instruction.

3. This instruction would not normally be asked to decrement one of the 16-bit
registers. The instruction DEC reg performs this function and only occupies one
byte of program memory space. This instruction would be used to decrement one of
the 8-bit registers or memory.

4. This instruction does not affect the Carry status.

8086 Assembly Language Instruction Set 3-103

DEC reg

Decrement Register

Subtract 1 from the contents of the specified register. This is a 16-bit decrement
instruction.

The encoding for this instruction is:

0 1 00 1 rrr

^ 3 bits which specify the 16-bit
register to be decremented

rrr = 000 for AX

001 for CX

010 for DX

011 for BX

100 for SP

101 for BP

110 for SI

111 for Dl

As an example, examine the case where the CX register contains 0200i6. Executing a

DEC CX

instruction will result in the contents of the CX register being decremented to OlFF.^.

3-104 The 8086 Book

G D I T S Z A P C

PSW X

AX

BX

CX XX yy

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS

ES

xxyy - 1

mmmm + 1

ppppm

Data

Memory

Program (Relative to the
Memory CS Register)

49 ppppm

ppppm + 1

ppppm + 2

ppppm + 3

n^'n'n 0 ^ Program Memory
Address Calculation

DEC CX

Number of cycles: 2

Notes:

1. This instruction performs the same function as the 8080 instruction DCX reg.

2. Segment registers may not be decremented using this instruction.

8086 Assembly Language Instruction Set 3-105

DIV mem/reg

Divide AX or DX:AX Registers by Register or Memory Location

Divide the AX (16-bit operation) or DX:AX (32-bit operation) register by the
contents of the specified register or memory location, considering both operands as
unsigned binary numbers. If a 16-bit operation is performed, the 8-bit quotient is
returned in the AL register, the 8-bit remainder is returned in the AH register. If the
quotient to be returned to the AL register is greater than FF,^, then a type 0 (division by
zero) interrupt is generated. If a 32-bit operation is performed, the 16-bit quotient is
returned to the AX register, the 16-bit remainder is returned to the DX register. If the
quotient to be returned to the AH register is greater than FFFF,^, then a type 0 (division
by zero) interrupt is generated.

A division by zero interrupt results in the following actions:

1. Push the Flags register onto the stack.

2. Clear the IF and TF flags.

3. Push the CS register onto the stack.

4. Load the word at memory location 00002,^ into the CS register.

5. Push the PC onto the stack.

6. Load the word at memory location 00000,^ into the PC register.

The encoding for this instruction is:

DIV mem/reg

1 1 1 1 0 1 1 w mod 110 r/m

Addressing mode byte(s) as described
earlier in this chapter.

w = 0 16-bit operation
w = 1 32-bit operation

As an example, consider the case where the AX register contains OFOS,^, the DX
register contains 068A,6, and the CX register contains 08E9,6. After the instruction

DIV CX

has executed, the AX register will contain the quotient BBEl ,5, and the DX register will
contain the 073C,6. The values of the OF, SF, ZF, AF, PF, and CF flags are undeter
mined for this operation, i.e., you have no idea what the value of a particular flag will be
following DIV.

3-106 The 8086 Book

0 D 1 T 8 Z A P C

P8w| ? ? ? ? ? ?

AX

BX

CX

DX

SP

BP

SI

Dl

PC

CS

DS

88

E8

. XX yy

99 hh

ww vv

mm mm

nn nn

mmmm + 2

Ommmm

n n n n 0

ppppm

Data

M emory

Program (Relative to the
Memory C8 Register)

F7

F1

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

^ wwvvxxyy is divided by gghh. Quotient is returned to AX.
Remainder is returned to DX

DIV CX

Number of cycles: 32-bit memory divide: (150-168) + EA
16-bit memory divide: (86-96) + EA
32-bit register: 144-162
16-bit register: 80-90

Notes:

1 The values for all of the arithmetic flags are undetermined after this instruction has
executed.

2. If it is necessary to determine whether the DIV instruction will result in a division
by 0 interrupt prior to the execution of the DIV instruction, the following instruc
tion sequences will prove helpful.

16-bit division: Assume that CL contains the divisor.

CMP AH. CL

JNB OVERFLOW$HANDLER

32-bit division: Assume that BX contains the divisor.

CMP DX.BX

JNB OVERFLOW$HANDLER

This sort of check would be useful if the divide by zero interrupt handler was not
sufficient for your purposes.

8Q86 Assembly Language Instruction Set 3-107

ESC mem

Access Memory Location

This instruction places the contents of the specified memory location on the data
bus. Essentially this instruction performs no operation as far as the 8086 is concerned.
This instruction is used to allow other processors to make use of 8086 addressing modes
and to receive their instructions from the 8086 instruction stream.

The encoding for this instruction is:

ESC

1 10 1 1 X X X mod XXX r/m

(

-Addressing mode information as
described earlier in this chapter

- X is a don't care bit i e., this may be a 0
or a 1. Note that these don't care bits

result in all instructions with initial

opcode between D8i 5 and DFi 5 being
considered ESC instructions

Suppose that the BX register contains 063Ai6, the SI register contains OOOSi^, the DS
register contains FF8O16, ̂^id the word at memory location FFE3D,6 is C308i6. When
the instruction

ESC [BX + SI]

executes, at the time when the READY line is asserted by the addressed memory
device, €308,6 will be present on the data lines.

3-108 The 8086 Book

Data

Memory

PSW

SP

BP

SI

Di

PC

CS

OS

88

E8

AX

BX gg gg •

CX

DX

hh hh

mm mm

nn nn

qq qq

Program (Relative to the
Memory C8 Register)

gggg
Ohhhh
smao
rrrr r

Data Memory
Address Calculation

ppppm

ppppm + 1

ppppm + 2

ppppm + 3
mmmm + 2

ppppm

nnnnO ^ Program Memory
' Address Calculation

Notes:

E8C

Number of cycles: 8 + EA

1. If mod =11 (i.e., a register is addressed), this instruction performs no operation.
CLOCK CYCLES = 2.

\

8086 Assembly Language Instruction Set 3-109

HLT

Halt the Processor

When the HLT instruction is executed, program execution ceases. It requires an
external interrupt or a reset to restart execution. No registers or statuses are affected.

CAUTION: If interrupts are not enabled by an STI instruction prior to the HLT instruc
tion, the 8086 CPU cannot exit the Halt state except by activation of the
hardware Reset or nonmaskable interrupt.

PSW

AX

BX

CX

DX

The encoding for this instruction is:

HLT

Data

Memory

SP

BP

SI -

Dl

PC mm mm

CS nn nn

OS

SS

ES

Program (Relative to the
Memory CS Register)

mmmm + 1

Ommmm

F4 ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

HLT

Number of cycles: 2

3-110 The 8086 Book

IDIV mem/reg

Divide AX or DX:AX by Register or Memory Location

Divide the AX (16-bit operation) or DX:AX (32-bit operation) register by the
contents of the specified register or memory location, considering both operands as
signed binary numbers. If a 16-bit operation is performed, the 8-bit quotient is returned
in the AL register; the 8-bit remainder is returned in the AH register. If the quotient to
be returned is greater than TFi^, then a type 0 (division by zero) interrupt is generated.
If a 32-bit operation is performed, the 16-bit quotient is returned to the AX register, the
16-bit remainder is returned to the DX register. If the quotient to be returned to the AX
register is greater than TFFFFie, then a type 0 (division by zero) interrupt is generated.

A division by zero interrupt results in the following actions:

1. Push the Flags register onto the stack.
2. Clear the IF and TF flags.
3. Push the CS register onto the stack.
4. Load the word at memory location 00002 into the CS register.
5. Push the PC onto the stack.
6. Load the word at memory location 0000015 into the PC register.

The encoding for this instruction is:

IDIV mem/reg

1 1 1 1 01 1w 1 mod 111 r/m

Addressing mode byte(s) as described
earlier in this chapter.

w = 0 16-bit operation
w = 1 32-bit operation

Suppose that the CL register contains ODj^ and the AX register contains 00A9i6. After
the instruction

IDIV CL

has executed, the AX register will contain OOOD16.

8086 Assembly Language Instruction Set 3-111

PSW

O D I T S Z A P C

AX XX yy

BX

CX zz

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS

ES

"Return quotient to the AL register.
Return remainder to AH register

Data

Memory

xxxxyy/zz*

Program (Relative to the
Memory CS Register)

mmmm + 2

Ommmm

n n n n 0

ppppm

F6

F9

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

IDIV CL

Number of cycles: 16-bit memory division; (107-118) + EA
32-bit memory division: (171-190) + EA
16-bit register division: 101-112
32-bit register division: 165-184

Notes:

1. This is the signed number division instruction. Both operands are treated as signed
binary numbers in the range:

8-bit operation: +127 to -128
16-bit operation: +32767 to-32768

For an unsigned division, consult the DIV instruction.

2. After this instruction executes, the values of the flags are unknown.

3-112 The 8086 Book

IMUL mem/reg

Multiply AL or AX Register by Register or Memory Location

Multiply the specified register or memory location contents by the AL (8-bit
operation) or AX (16-bit operation) register considering both operands as signed binary
numbers, i.e., perform a signed multiplication. If an 8-bit operation is performed, the
low-order 8 bits of the result will be stored in the AL register, the high-order 8 bits of the
result will be stored in the AH register. If a 16-bit operation is performed, the low-order
16 bits of the result are stored in the AX register, the high-order 16 bits of the result are
stored in the DX register. In either case, if the high-order half of the result is the sign
extension of the low-order half of the result then the Overflow and Carry flags are set to

0, otherwise they are set to I. (For example, if an 8-bit operation is performed, if the
value returned to the AH register is not 00,6 or FFi6, then the Carry and Overflow flags
will be I.) 0 status values mean that AH or DX contains significant digits.

The encoding for this instruction is:

IMUL mem/reg

I 1 1 1 1 0 1 1 w I [mod 101 r/m [

Addressing mode byte(s) as described
earlier in this chapter.

w = 0 8-bit operation
w = 1 16-bit operation

As an example, consider the case where the AX register contains 04E8i6,
register contains OIOOi^, the BX register contains OOO616 and the word at memory loca
tion OIOO616 is 4E20i6. After the instruction

IMUL AX. (BX]

has executed, the AX register will contain 4D00i6, the DX register will contain OITFig
and the Carry and Overflow statuses will be I.

8086 Assembly Language Instruction Set 3-113

S z

PSW X

AX

BX

cx

DX

SP

BP

SI

Dl

PC

cs

DS

SS

ES

Data (Relative to the

Memory DS Register)

XX yy

gg gg

mm mm

nn nn

hh hh

rrrrg + 1

xxyy • www

mmmm + 2

ppppm

Program (Relative to the
Memory CS Register)

F7

2F

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Ommmm ^ o »>!
n n n n 0 1 Program Memory

Address Calculation

hhhhO Memory
rrrrg y Address Calculation

Notes:

IMUL AX,[BX]

Number of cycles: 8-bit memory multiply: (86 + 104) + EA
16-bit memory multiply: (134 + 160) + EA

8-bit register multiply: 80-98
16-bit register multiply: 128-154

1. This is the signed number multiply operation. Both operands are treated as numbers
in the range:

8-bit operation: +127 to -128
16-bit operation: +32767 to -32768

For an unsigned multiply operation, consult the instruction MUL.

2. In some cases, it may be more appropriate to use shifts to perform multiplications.
These cases would occur when memory conservation is not of paramount impor
tance and speed is necessary.

3. After this instruction has executed, the values of the Sign, Zero, Arithmetic, and
Parity flags are undefined.

3-114 The 8086 Book

IN ac,DX

Input to Accumulator

This instruction loads 8- or 16-bit data elements into the AL (8-bit transfer) or
AX (16-bit transfer) register from the I/O port identified by the contents of the DX
register.

The encoding for this instruction is:

IN ac,DX

1 1 1 0 1 1Ov

Iw = 0 8-bit data transfer to AL

w = 1 16-bit data transfer to AX

No Other registers (with the exception of AL or AX) or statuses are affected.
Suppose that the DX register contains 1234|6, the I/O buffer at Port 1234i6 con

tains 23,6, I/O buffer at Port 1235,6 contains F4,6. Executing an

IN AX.DX

will load 23,6 ^he AL register and F4,6 into the AH register.

8086 Assembly Language Instruction Set 3-115

yy

0 D T s z A p c

PSW

L J
I/O Port

zzzz + 1

I/O Port

zzzz

^

AX yy XX

BX

CX

DX zz zz

Data

Memory

Program (Relative to the
Memory CS Register)

SP ED ppppm

BP ppppm + 1

SI ppppm + 2

Dl r mmmm +1 j ppppm + 3

PC mm mm

CS nn nn Ommmm .
f « « « « A Prooram Memory

DS p p p p m Address Calculation

SS

ES

Notes:

IN AX.DX

Number of cycles: 8

1. This instruction allows the user to access input ports which have been assigned
addresses between 0 and FFFF.a.

3-116 The 8086 Book

IN ac,port

Input to Accumulator

This instruction loads 8- or 16-bit data elements into the AL (8-bit transfer) or
AX (16-bit transfer) register from the I/O port identified by the second byte of the
instruction.

The encoding for this instruction is:

IN ac.port

1 1 1 GO 10w yy

■ w = 0 8-bit data transfer to AL

w = 1 16-blt data transfer to AX

No other registers (with the exception of AL or AX) or statuses are affected.
Suppose that the I/O buffer at Port 06,6 contains 43,6. Executing an

IN AU06H

instruction will load 43,6 into the AL register.

8086 Assembly Language Instruction Set 3-117

O D I T S Z A P C

PSW|

AX

BX

CX

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS

ES

I/O Port YY

mmmm + 2

Ommmm

n n n n 0

ppppm

Data

Memory

Program (Relative to the
Memory CS Register)

E4

YY

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

Notes:

IN AL.yy
Number of cycles: 10

1. This instruction allows the user to access I/O ports which have been assigned
addresses between 0 and FF,^. To address ports whose addresses are outside this
range, consult the instruction IN ac,DX.

2. This instruction performs the same function as the 8080 instruction IN port.

3-118 The 8086 Book

INC mem/reg

Increment Register or Memory Location

Add 1 to the contents of the specified register or memory location. An 8- or 16-bit
operation may be specified.

The encoding for this instruction is:

INC mem/reg

1 1 1 1 1 1 1 w 1 mod 000 r/m

Addressing mode byte(s) as described
earlier in this chapter

w = 0 8-bit operation
w = 1 16-bit operation

Consider the case in which the DS register contains FSOOi^, the contents of the BX
register are 0280,6, the SI register contains lE,^, and memory location F829E|6 contains
64,6. After the execution of the instruction

INC IBX + SI]

location F829E,6 will contain 65,6.

PSW

D I

AX

BX gg gg

CX

DX

XX + 1

Data Memory

Address Calculation

Ogggg
Ohhhh
rrrrQ
zzzzz^

Data (Relative to the

Memory DS Register)

zzzzz

zzzzz + 1

Program (Relative to the
Memory CS Register)

SP FE ppppm

BP 00 ppppm + 1

SI hh hh
/ f mmmm + 2 j

ppppm + 2

Dl ppppm + 3

PC mm mm

CS nn nn

DS rr rr / ̂̂ mmmm^N. p Memory
1 nnnno 1... . ..

SS
"pp ppm y Aoaress uaicuiation

ES

INC [BX + SI]
Number of cycles: Memory Operand: 15 + EA

Register Operand: 3

8086 Assembly Language Instruction Set 3-119

Notes:

1. Segment registers may not be incremented by this instruction.

2. This instruction can perform the same function as the 8080 instruction INR reg.
Note also that this instruction has a good deal more power than the 8080 instruc
tion.

3. This instruction would not normally be used to increment one of the 16-bit
registers. The instruction INC reg performs this function and only occupies one byte
of program memory space. This instruction would be used to increment one of the
8-bit registers and memory locations.

4. This instruction does not affect the Carry status.

3-120 The 8086 Book

INC reg

Increment Register

Add 1 to the contents of the specified register. This is a 16-bit increment instruc
tion.

The encoding for this instruction is:

INC reg

0 1 000 rrr |

T
' 3 bits which specify which 16-bit

register is to be incremented.

rrr = 000 for AX

001 for CX

010 for DX

011 for BX

100 for SP

101 for BP

110 for SI

111 for Dl

Consider the case where the contents of the SI register are OOFF^,. Executing an

INC SI

will result in the contents of the SI register being incremented to 0100,

8086 Assembly Language Instruction Set 3-121

PSW X

AX

BX

cx

DX

s z

X X X

SP

BP

SI kk kk

Dl

PC mm mm

CS nn nn

OS

SS

ES

Data

Memory

Program (Relative to the
Memory CS Register)

kkkk + 1

mmmm + 1

ppppm

46 ppppm

ppppm + 1

ppppm + 2

ppppm + 3

nUnnO ^ Program Memory
Address Calculation

INC SI

Number of cycles: 2

Notes:

1. This instruction performs the same function as the 8080 instruction INX reg.

2. Segment registers may not be incremented using this instruction.

3. This instruction does not affect the Carry status.

3-122 The 8086 Book

INT

Software Interrupt

This instruction performs the following sequence of operations:

1. Push the Flags register onto the stack.

2. Clear the IF and TF flags to 0.

3. Push the CS register onto the stack.

4. Load the word at memory address OOxxx into the CS register, xxx is deter
mined by the low-order bit of the op-code and possibly the second byte of the
instruction. If the low-order bit of the op-code is 0, then xxx is OOE,^. If the
low-order bit of the op-code is 1, then xxx is equal to 2 plus 4 times the second
byte of the instruction. In other words,

IF low-order bit = 0 THEN xxx = 00E,6
ELSE xxx = (4*2nd byte) 4- 2

5.

6.

Push the PC register onto the stack.

Load the word at memory address OOyyy into the PC register, yyy is deter
mined by the low-order bit of the op-code and possibly the second byte of the
instruction. If the low-order bit of the op-code is 0, then yyy is OOC,f,. If the
low-order bit of the op-code is 1, then yyy is equal to 4 times the second byte
of the instruction. In other words,

IF low-order bit = 0 THEN yyy = OOCi^,
ELSE yyy = 4 * 2nd byteELSE yyy

The encoding for this instruction is:

INT

1 1001 1Ov 1 type

This byte is only present if v = 1. Used
to calculate interrupt vector address

V = 0 Interrupt vector address is OOOOCis

V = 1 Interrupt vector address is 4 • 2nd byte
of the instruction

8086 Assembly Language Instruction Set 3-123

Data

Memory

PSW|

AX

BX

CX

DX

SP SS SS

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS tt tt

ES

* Program Memory Address Calculation

** Data Memory Address Calculation

INT

OOOOC

GOGOD

OOOOE

OOGOF

00010

Data (Relative to the

Memory SS Register)

uuuus - 6mm + 1

uuuus - 5

uuuus - 4

mmmm + 1

Flags (LO) uuuus - 2

Ommmm
n n n n 0

ppppm

Flags(HI) uuuus - 1

uuuus

Ossss

tttto

uuuus

ppppm

ppppm + 1

ppppm + 2

Program (Relative to the
Memory CS Register)

Number of cycles: 52 if v = 0
51 if V = 1

3-124 The 8086 Book

INTO

If Overflow Flag = 1, Perform Type 4 Interrupt

If the Overflow flag is 0, this instruction performs no operation. If the Overflow
flag is 1, the following sequence of events occurs:

1. Push the Flags rdfeister onto the stack.

2. Set the IF and TF flags to 0.

3. Push the CS register onto the stack.

4. Move the word at memory location 00012 into the CS register.

5. Push the PC register onto the stack.

6. Move the word at memory location 00010,6 into the PC register.

Continue execution from this point.

The encoding for this instruction is:

INTO

O D I T S Z A P C

PSW|

AX

BX

CX

DX

SP SS SS

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS tt tt

ES

8086 Assembly Language Instruction Set 3-125

Data (Relative to the
Memory DS Register)

Program Memory
Address Calculation

Ommmm
n n n n 0

PPPPm

Ossss

ttttO

uuuus

yy 000010

XX 001116

ww 001216

vv 001316

Data

Memory
(Relative to the

SS Register)

mm + 1 uuuus - 6

mm uuuus - 5

nn uuuus - 4

nn uuuus - 3

Flags (LO) uuuus - 2

Flags (HI) uuuus - 1

uuuus

Program
Memory

(Relative to the

CS Register)

CE ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Data Memory
Address Calculation

INTO

Number of cycles: 53 if overflow set
4 if not

3-126 The 8086 Book

IRET

Return from Interrupt

Pop the two top stack bytes into the program counter; these two bytes provide the
offset address for the next instruction to be executed. Pop the next two stack bytes into
the CS register; these two bytes provide the code segment address of the next instruc
tion to be executed. Pop the next two stack bytes into the Flags register. Previous pro
gram counter, code segment and Flags register contents are lost.

The encoding for this instruction is:

IRET

"cT

PSW□

SP SS SS

BP

SI

Dl

PC mm mm

CS nn nn

OS

SS tt tt

ES

Program Memory
Address Calculation

Ommmm
n n n n 0
ppppm

Data (Relative to the
Memory SS Register)

yy

qq

Program (Relative to the
Memory CS Register)

CF

?t tto Memory
J Address Calculation

IRET
Number of cycles; 24

8086 Assembly Language Instruction Set 3-127

JA disp
JNBE disp

Jump if Not Below or Equal

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Carry flag and the Zero flag are 0; otherwise the next instruction is
executed.

The encoding for this instruction is:

JNBE disp

77

disp

^ This is an 8-bit displacement byte,
as described earlier in this chapter

In the following instruction sequence

C = 1 or Z = 1

BE NEXT

M D AL,7FH

C = 0 and Z = 0 ^
, dl^E NEXT

I -NEXT XCHG BX. [BP + SI + 0F631H1

after the JNBE instruction, the XCHG instruction is executed if the Carry flag and the
Zero flag are 0. The AND instruction is executed if the Carry flag or the Zero flag is 1.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-128 The 8086 Book

JAE disp
JNB disp

Jump if Not Below/Jump If Above or Equal

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Carry flag is 0, otherwise the next instruction is executed.

The encoding for this instruction is:

JNB disp

disp

-This is an 8-bit displacement byte,
as described earlier in this chapter

In the following instruction sequence

c =

r"
I ID

NEXT

AL,7FH

I

I -NEXT XCHG ex. [BP + SI + 0F631H]

after the JNB instruction, the XCHG instruction is executed if the Carry flag is 0. The
AND instruction is executed if the Carry flag is 1.

Number of cycles: Jump is performed: 16 ^
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-129

JB disp
JNAE disp
Jump if Beiow/Jump if Not Above or Equal

This instruction is identical to the JMP instruction except that the Jump is

executed only if the Carry flag is 1.
The encoding for this instruction is:

JB disp

disp

- This is an 8-bit displacement byte, as
described earlier in this chapter

In the following instruction sequence

c = 1

I

I
I

I

L. -N

-cHl

A

EXT XCHG

NEXT

AL,7FH

BX, [BP + SI + 0F631H]

after the JB instruction, the XCHG instruction is executed if the Carry flag is 1. The
AND instruction is executed if the Carry status is 0.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-130 The 8086 Book

JBE disp
JNA disp

Jump if Below or Equal/Jump if Not Above

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if either the Carry status or the Zero status is 1; otherwise the next
instruction is executed.

The encoding for this instruction is:

JB£ disp

76

disp

-This is an 8-bit displacement byte,
as described earlier in this chapter

In the following instruction sequence

IC = 0 and Z = 0

3E NEXT

ND AL,7FH

I- NEXT XCHG BX. [BP + SI + 0F631H]

after the JBE instruction, the XCHG instruction will be executed if the Carry status or
the Zero status is 1. If both the Carry and Zqxo statuses are 0, then the AND instruction
will be executed.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-131

JCXZ disp

Jump if CX = 0

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the CX register is 0; otherwise the next instruction is executed.

The encoding for this instruction is:

JCXZ disp

disp

- This is an 8-bit displacement byte,
as described earlier in this chapter

In the following instruction sequence

ox = 0

I -jc:

ANI

CX ̂ 0

xz

D

NEXT

AL.7FH

-NEXT XCHG BX. (BP + SI + 0F631H]

after the JCXZ instruction, the XCHG instruction is executed if the CX register is 0.
The AND instruction is executed if the CX register is not 0.

Note that this instruction does not reference the Zero flag to determine if CX is 0;
the CX register is referenced directly.

Number of cycles: Jump is performed: 1 B
Jump is not performed: 6

3-132 The 8086 Book

JE disp
JZ disp

Jump if Zero/Jump if Equal

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Zero status equals 1; otherwise the next instruction is executed.

The encoding for this instruction is:

JZ

"tT
disp

disp

as described earlier in this chapter

In the following instruction sequence

z = 1

I
.r

AMD

NEXT

AL7FH

-NEXT XCHG BX, [BP + SI + 0F631H1

after the JZ instruction, the XCHG instruction is executed if the Zero status equals 1.
The AND instruction is executed if the Zero status equals 0.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-133

JG disp
JNLE disp

Jump if Greater/Jump If Not Less nor Equal

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Zero flag is 0 and the Sign flag equals the Overflow flag; otherwise
the next instruction is executed.

The encoding for this instruction is:

JG disp

"tT
disp

-This is an 8-bit displacement byte,
as described earlier in this chapter

In the following instruction sequence

S = 0 and Z = 0

r ̂
Al

Z = 1 or S = 0

NEXT

IID AL.7FH

^NEXT XCHG BX, [BP + SI + 0F631H]

after the JG instruction, the XCHG instruction will be executed if the Zero status is 0

and the Sign status equals the Overflow status. If the Zero status is 1 or the Sign status
does not equal the Overflow status, then the AND instruction is executed.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-134 The 8086 Book

JGE disp
JNL disp

Jump if Not Less/Jump if Greater Than or Equai

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Sign status is equal to the Overflow status^ otherwise the next
instruction is executed.

The encoding for this instruction is:

JNL disp

70

I disp

-This is an 8-bit displacement, as
described earlier in this chapter.

In the following instruction sequence

iS 7^ 0

-Jlil NEXTS = 0

[" A^D AL.7FH

! -
I p-NEXT XCHG BX, [BP + SI + 0F631H]

after the JNL instruction, the XCHG instruction is executed if the Sign status is equal to
the Overflow status. The AND instruction will be executed if the Sign status is not equal
to the Overflow status.

Number of cycles; Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-135

JL disp
JNGE disp

Jump if Less/Jump if Not Greater Than or Equal

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Sign flag is not equal to the Overflow flag; otherwise the next
instruction is executed.

The encoding for this instruction is:
JL disp

disp

-This is an 8-bit displacement, as
described earlier in this chapter.

In the following instruction sequence

s ̂ 0

I

S = 0

ID

NEXT

AL7FH

NEXT XCHG BX, [BP + SI + 0F631H1

after the JL instruction has executed, the XCHG instruction will be executed if the Sign
status is not equal to the Overflow status. The AND instruction is executed if the Sign
status and the Overflow status are equal.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-136 The 8086 Book

JLE disp
JNG disp

Jump if Less or Equal/Jump if not Greater

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Zero flag is set or the Sign flag is not equal to the Overflow flag,
otherwise the next instruction is executed.

The encoding for this instruction is:
JLE disp

7E

disp

-This is an 8-bit displacement byte, as
described earlier in this chapter

In the following instruction sequence

z = 1 or

s

I
I

Z = 0 and S = 0

NEXT

ID AL,7FH

I - '
I -

I NEXT XCHG BX, [BP + SI + 0F631H1

after the JL instruction, the XCHG instruction is executed if the Zero flag is 1 or if the
Sign flag is not equal to the Overflow flag. The AND instruction is executed if the Zero
status is 0 and the Sign status equals the Overflow status.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-137

JMP addr

Jump to the Instruction Identified in the Operand

Move the contents of the next two program memory bytes into the PC register.
Move the contents of the succeeding two program memory bytes (bytes 4 and 5 of the
instruction) into the CS register. Continue execution from this point. The previous pro
gram counter and Code Segment register contents are lost.

The encoding for this instruction is:

JMP addr

EA

kk hh I I gg

High-order 8 bits of the new segment
address. This byte is placed in the high-
order byte of the CS register.

Low-order byte of the new segment
address. This byte is stored into the
low-order byte of the CS register.

High-order 8 bits of the new offset
address. This byte is moved in the high-
order byte of the program counter.

Low-order 8 bits of the new offset

address. This byte is moved into the
low-order byte of the program counter.

3-138 The 8086 Book

O D I T S Z A P C

Data

Memory

PSW

AX

BX

CX

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

OS

SS

ES

Program (Relative to the
Memory CS Register)

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Ommmm
n n n n 0

Program Memory
Address Calculationppppm

JMP addr

Number of cycles: 15

8086 Assembly Language Instruction Set 3-139

JMP disp

Jump to the Instruction Identified in the Operand

This instruction adds the contents of the second object code byte (taken as a
signed 8-bit displacement) to the contents of the program counter plus 2; this becomes
the offset address of the next instruction to be executed. Previous program counter con
tents are lost. The Code Segment register contents are unchanged.

The encoding for this instruction is:

JMP disp

EB

n disp

-8-bit displacement byte,
as described earlier in this chapter

In the following instruction sequence

JMP NEXT

AND AL,7FH

NEXT XOR AL,7FH

after the JMP instruction, the XOR instruction will be executed. The AND instruction
will never be executed unless a Jump or Call instruction somewhere else in the

sequence branches to this instruction.

3-140 The 8086 Book

O D I T S Z A P C

Data

Memory

PSW

AX

BX

CX

DX

a

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

88

E8

sign extend

kk to kkkk

kkkk
Ommmm

2

Ommmm

n n n n 0

pp p pm

Program
Memory

EB

kk

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

Notes:

1. Th

JMP kk

Number of cycles: 15 clocks

is instruction uses Program Relative addressing, which is similar to Program
Relative Paging as described in An Introduction to Microcomputers: Volume I — Basic
Concepts (Osborne/McGraw-Hill, 1978). The exception is that the program counter
contents are incremented to point to the next instruction before the 8-bit signed dis
placement is added.

8086 Assembly Language Instruction Set 3-141

JMP dispie

Jump to the Instruction Identified in the Operand

Add the contents of the next two program memory bytes, treating them as a 16-bit
unsigned displacement, to the program counter. Continue execution from this point.
The previous program counter contents are lost.

The encoding for this instruction is:

JMP displ 6

kk i.

High-order 8 bits of the 16-bit
displacement

Low-order 8 bits of the 16-bit

displacement

In the following instruction sequence

BRICKS

JMP

AND

NEXT

AL,7FH

NEXT STOS BYTE

after the JMP instruction has executed, the STOS instruction will be executed. The
AND instruction will never be executed unless a CALL or JMP instruction somewhere
else in the instruction sequence refers to BRICKS as its operand.

3-142 The 8086 Book

PSW

AX

BX

cx

DX

O D I T S Z A P C

SP

BP

SI

Dl

PC mm mm

CS nn nn

OS

SS

ES

Data

Memory

Program (Relative to the
Memory CS Register)

ppppm

ppppm + 1

ppppm + 2
Ommmm
Oi i kk

ppppm + 3
0 r r r r

Ommmm

nn n n0

ppppm

Program Memory
Address Calculation

JMP jjkk
Number of cycles: 15

8086 Assembly Language Instruction Set 3-143

JMP mem

Jump to the Instruction Specified by the Operand

Move the word at the specified memory location into the program counter; move
the succeeding word into the CS register. Continue execution from this point. Previous
program counter and Code Segment register contents are lost.

The encoding for this instruction is:

JMP mem

I mod 101 r/m I

Addressing mode byte(s). As described
earlier in this chapter

Suppose that the DS register contains TOOOi^, the DI register contains 0404i6, the word
at memory location 70404,6 is 1000,6, ^^rd at memory location 70406,6
7E00,6. After the instruction

JMP [DI]

has executed, the program counter will contain 1000,6 register will contain
7E00,6. Instruction execution will continue from location 7F000,6.

3-144 The 8086 Book

O D I T S Z A P C

PSW|

AX

BX

CX

DX

xxyy

Data (Relative to the
Memory OS Register)

yy rrrrg

rrrrg + 1

rrrrg + 2

rrrrg + 3

rrrrg + 4

Program (Relative to the
Memory CS Register)

SP

1 1 www ■

FF ppppm

BP 25 ppppm + 1

SI
/ 1 Data Memory

Ip^iAddress Calculation

ppppm + 2

Dl gg gg
ppppm + 3

PC mm mm ^ Ogggg^^
\/ f hhhhO J
^/\ rrrrg

CS nn nn

DS hh hh

SS
^^^0mmmm^^<
f n n n n 0 jProgram Memory

Address Calculation

ES
V^^pppprn^^^

JMP [Dl]
Number of cycles: 24 + EA intersegment

Notes:

1. Register addressing is not valid for this instruction.

8086 Assembly Language Instruction Set 3-145

JMP mem/reg

Jump to the Instruction Specified by the Operand

If the specified operand is a register, move the contents of the register into th^
program counter. If the specified operand is a memory location, move the contents of
the memory location into the program counter. Continue execution from this point.
Previous program counter contents are lost. The OS register is unchanged.

The encoding for this instruction is:

JMP mem/reg

FF

mod 100 r/m

Addressing mode byte(s). As described
earlier in this chapter.

Suppose that the BX register contains 14A9|5. After the instruction

JMP BX

has executed, the PC will contain 14A9|6 and execution will resume with 14A9,6 as the
offset address for the next instruction.

3-146 The 8086 Book

O D I T S Z A P C

Data

Memory

PSW|

AX

BX

CX

DX

SP

BP

SI

Di

PC

CS

OS

SS

ES

XX yy

mm mm

nn nn

Ommmm
n n n n 0

ppppm

Program Memory
Address Calculation

Program (Relative to the
Memory CS Register)

FF

E3

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Number of cycles: JMP BX: 11 through registers
JMP [BX]: 18 + EA through memory

Notes:

1. This is an intrasegment indirect Jump.
2. No registers or statuses are affected.

8086 Assembly Language Instruction Set 3-147

JNE disp
JNZ disp

Jump if Not Equal/Jump If Not Zero

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Zero flag is equal to 0; otherwise the next instruction is executed.

The encoding for this instruction is:

JNE

"tT

disp

disp

• This is an 8-bit displacement byte, as
described earlier in this chapter

In the following instruction sequence

z = 0

I •jr'
AND

NEXT

AL.7FH

-NEXT XCHG BX. [BP + SI + 0F631H]

after the JNE instruction, the XCHG instruction will be executed if the Zero flag is 0.
The AND instruction will be executed if the Zero flag is 1.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-148 The 8086 Book

JNO disp

Jump on Not Overflow

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Overflow status is 0; otherwise the next instruction is executed.

The encoding for this instruction is;

JNO disp

TT
disp

-This is an 8-bit displacement byte, as
described earlier in this chapter

In the following instruction sequence

o = 1

0 = 0

r
JIIO NEXT

i AtlD AL.7FH
I

I -

I _

I ̂ next XCHG BX, [BP + SI + 0F631H]

after the JNO instruction, the XCHG instruction is executed if the Overflow status is 0.
The AND instruction is executed if the Overflow status is 1.

Number of cycles; Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-149

JNP disp
JPO disp

Jump if No Parity/Jump If Parity Odd

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Parity flag is 0; otherwise the next instruction is executed.

The encoding for this instruction is:

JNP disp

7B

disp

described earlier in this chapter

In the following instruction sequence

p = 0

I

p = 1

-jr p

AIID

NEXT

AL.7FH

1 ̂NEXT XCHG BX. [BP + SI + 0F631H]

after the JNP instruction, the XCHG instruction is executed if the Parity flag is 0. The
AND instruction is executed if the Parity flag is 1.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-150 The 8086 Book

JNS disp

Jump on Not Sign

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Sign flag is 0; otherwise the next instruction is executed.

The encoding for this instruction is:
JNS disp

disp

-This is an 8-bit displacement byte, as
described earlier in this chapter

In the following instruction sequence

8 = 0

I
I
I

-JMS

S = 1

ID

NEXT

AL.7FH

' ̂NEXT XCHG BX, [BP + SI + 0F631H1

after the JNS instruction is executed, the XCHG instruction executes if the Sign status
is 0; otherwise the AND instruction executes.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-151

JO disp

Jump if Overflow

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Overflow flag is 1; otherwise the next instruction is executed.

The encoding for this instruction is:

JO

"to"
disp

disp

-This is an 8-bit displacement byte, as
described earlier in this chapter.

In the following instruction sequence

o = 1

NEXT

0 = 0

NEXT

AL,7FH

XCHG BX, [BP .+ SI + 0F631H]

after the JO instruction, the XCHG instruction will be executed if the Overflow status is
1. If the Overflow status is 0, then the AND instruction will be executed.

Number of cycles: Jump is performed; 16
Jump is not performed: 4

3-152 The 8086 Book

JP disp
JPE disp

Jump if Parity Even

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Parity flag is 1; otherwise the next instruction is executed.

The encoding for this instruction is:

JP

"tJT
disp

disp

-This is an 8-bit displacement byte, as
described earlier in this chapter

In the following instruction sequence

p = 1

I
-JF

AIJD

P = 0

NEXT

AL,7FH

-NEXT XCHG BX, [BP + SI + 0F631H]

after the JP instruction, the XCHG instruction will be executed if the Parity status is 1. If
the Parity status is 0, then the AND instruction will be executed.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

8086 Assembly Language Instruction Set 3-153

JS disp

Jump if Sign Status Is One

This instruction is identical to the JMP disp instruction except that the Jump is
executed only if the Sign status is 1.

The encoding for this instruction is:

JS disp

disp

-This is an 8-bit displacement byte, as
described earlier in this chapter

In the following instruction sequence

s = 1

I

S = 0

-JS

AIID

NEXT

AL.7FH

NEXT XCHG BX, [BP + SI + 0F631H]

after the JS instruction, the XCHG instruction will be executed if the Sign status is 1. If
the Sign status is 0, then the AND instruction will be executed.

Number of cycles: Jump is performed: 16
Jump is not performed: 4

3-154 The 8086 Book

LAHF

Load 8080 Flags into AH Register

This instruction moves the low-order eight bits of the Flags register into the AH
register. The eight bits that are moved are:

7 6 5 4 3 2 1 0

HSF ZF X AF X PF X

where X indicates an undetermined value.

The encoding for this instruction is:
LAHF

9F

As an example, consider the case where the Carry and Parity flags are 1, the Zero, Sign,
and Arithmetic flags are 0. Executing an

LAHF

instruction would move

00X0X1X1

into the AH register.

8086 Assembly Language Instruction Set 3-155

Data

Memory

Program (Relative to the
Memory CS Register)

SP 9F ppppm

BP ppppm + 1

SI ppppm + 2

Dl ppppm + 3

PC mm
(mmmm + 1 j

mm

CS nn nn "■ j •'"'''^mmmm^**^ Prooram Memorv
DS V " " " " J Address Calculation
SS

ES

LAHF
Number of cycles: 4

Notes:

1. No statuses are affected. No registers except AH are affected.

2. This instruction is used in conjunction with PUSH AX to emulate the 8080 instruc
tion PUSH PSW.

8086 Code

LAHF
PUSH AX

8080 Code

PUSH PSW

3-156 The 8086 Book

LDS reg,mem

Load Register and DS from Memory

Load the contents of the specified memory word into the specified register. Load
the contents of the memory word following the specified memory word into the DS
register.

This instruction's encoding is:

LDS

"cT
reg.mem

mod reg r/m

— Mod and r/m are used to specify the
memory address, as described earlier in

this chapter.

— 3 bits specifying the destination
register.
rrr = 000 for AX

001 for CX

010 for DX

011 for BX

100 for SP

101 fol-BP

110 for SI

111 for Dl

As an example, consider the case where the DS register contains COOO,^, the word at
memory location COOlOi^ contains 0180,^ and the word at memory location C0012,6
contains 2000,6- instruction

IDS SI. IIOH]

has executed, the SI register will contain 0180,6 Ihe DS register will contain 2000,6-

8086 Assembly Language Instruction Set 3-157

Data (Relative to the
Memory DS Register)

PSW|

AX

BX

CX

DX

yy rrrrk

XX rrrrk + 1

ww rrrrk + 2

vv rrrrk + 3

rrrrk + 4

Program (Relative to the
Memory CS Register)

SP

/jC mmmm + 4 j
C5 ppppm

BP 36 ppppm + 1

SI 1 / / Program Memory j kk ppppm + 2

Dl
// /Address Calculation /

^•^^OmmmnT ^v / /
nnnnO f 1/

j V^ppppm U

ii ppppm + 3

PC mm mm

CS nn nn ^^Oiikk^">r
hhhhO)
rrrrk

Data Memory
Address Calculation

DS hh hh

SS

ES

LDS Si.ljjkk]
Number of cycles: 16 + EA

Notes:

1. No statuses are affected.

2. If mod is 11, then the operation performed by this instruction is undefined.

3-158 The 8086 Book

LEA reg.mem

Load Register with Offset Address

Load the 16-bit offset address that is used to specify the memory operand into the
specified register.

The encoding for this instruction is:

LEA reg.mem

80

mod reg r/m

— Mod and r/m are used to specify the
memory addressing option as described
earlier in this chapter.

— 3 bits specifying the destination
register.
rrrr = 000 for AX

001 for ex

010 for DX

011 for BX

100 for SP

101 for BP

110 for SI

111 for Dl

Suppose that the DS register contains 2800i6, the BX register contains 0400i6 and the SI
register contains OOSCi^. After the instruction

LEA BX, [BX + SI + 0F62H]

has executed, the BX register will contain 139Ei6, which is the sum of the contents of
the BX and SI registers and the specified displacement.

8086 Assembly Language Instruction Set 3-159

O D I T S Z A P C

Data

Memory

PSW

AX

BX gg gg

CX

DX

SP

BP

SI hh hh

Dl

PC mm mm

CS nn nn

DS

88

ES

Program (Relative to the
Memory CS Register)

ppppm

ppppm + 1

ppppm + 2

mmmm + 4 ppppm + 3

ppppm

S^nnO Program Memory
^ Address Calculation

LEA BX, [BX + SI + jjkk]
Number of cycles: 2 + EA

Notes:

1. No statuses are affected.

2. If mod is 11, then the operation performed by this instruction is undefined.

3-160 The 8086 Book

LES reg.mem

Load Register and ES from Memory

Load the contents of the specified memory word into the specified register. Load
the contents of the memory word following the specified memory word into the ES
register.

The encoding for this instruction is:

LES reg.mem

mod reg r/m

i Mod and r/m are used to specify the
memory address as described in this
chapter.

3 bits specifying the destination
register.
rrr = 000 for AX

001 for OS

010 for DX

011 for BX

100 for SP

101 for BP

110 for SI

111 for Dl

Suppose that the DS register contains BOOOi^, the BX register contains OSOAi^, the
memory word at location BOSOAi^ is 05A2i6 and the memory word at BOSOC,^ is 4000i6.
After the instruction

LES DI,[BX]

has executed, the DI register will contain 05A2i6 and the ES register will contain 4000i6.

8086 Assembly Language Instruction Set 3-161

O D I T S Z A P C

PSW

SP

BP

SI

Di

PC

CS

DS

88

E8

AX

BX gg gg

CX

DX

mm mm 1

nn nn

hh hh

Data (Relative to the
Memory DS Register)

Program (Relative to the
Memory CS Register)

rrrrg + 1

rrrrg + 2

rrrrg + 3

rrrrg ppppm

Data Memory
Address Calculation

ppppm + 1

ppppm + 2

ppppm + 3
mmmm + 2

Ommmm

n n n n 0
ppppm

Program Memory
Address Calculation

LES DMBX]
Number of cycles: 16 + EA

Notes:

1. No statuses are affected.

2. If mod is 11, then the operation performed by this instruction is undefined.

3. The register specified in this instruction is typically the DI register, since the
DI register is the register normally associated with the ES register.

3-162 The 8086 Book

LOCK

Assert Bus Lock Signal

This instruction is used to force the 8086 to output the LOCK signal low. The
LOCK signal is held low for the duration of the next instruction.

This instruction is considered to be a prefix instruction, i.e., it precedes the
instruction for which the LOCK signal is to be asserted.

The encoding for this instruction is:

LOCK

FO

PSW

AX

BX

cx

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS

ES

The LOCK signal is
low for the

duration of

the execution of

the instruction

at ppppm + 1

mmmm + 1

ppppm

Data

M emory

Program (Relative to the
Memory CS Register)

FO ppppm

ppppm + 1

ppppm + 2

ppppm + 3

n n"?n^O ^ Program Memory
Address Calculation

Notes:

LOCK

Number of cycles: 2

1. This prefix may be used to preface any 8086 instruction. If, however, this prefix is
used in conjunction with the REP prefix and a string primitive, certain problems
may result. For a discussion of this topic, refer to the next chapter.

2. This prefix is very useful in the implementation of test-and-set sequences.

8086 Assembly Language Instruction Set 3-163

LODS

Load from Memory into AL or AX Register

Move from the memory location addressed by the SI register to the AL (8-bit
operation) or the AX (16-bit operation) register. The SI register is incremented/decre
mented depending on the value of the DF flag.

The encoding for this instruction is:

LODS

1 0101 10 w

Lw 0 8 bits are transferred.

If DF = 0, the SI register is
incremented by 1; otherwise it

is decremented by 1.

w = 1 16 bits are transferred.

If DF = 0, the SI register is
incremented by 2; otherwise it
is decremented by 2.

For example, suppose that the DF flag is 0, the SI register contains 00351^, the OS
register contains 4008 and the byte at memory location 400B5i6 is OFi^. After the
instruction

LODS BYTE

has executed, the contents of the AL register will be OF,^ and the contents of the SI
register will be 0036,6.

3-164 The 8086 Book

O D I T S Z A P C

PSW

AX

BX

CX

DX

SP

BP

SI gg gg

Dl

PC mm mm

CS nn nn

DS hh hh

SS

ES

Data Memory

Address Calculation

Ogggg
hhhhO
rrrrg

gggg ± i

mmmm + 1

Ommmm
n n n n 0

ppppm

Data (Relative to the

Memory DS Register)

rrrrg

rrrrg + 1

Program (Relative to the
Memory CS Register)

AC ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

LCDS BYTE

Number of cyles: 12 for single occurrence
9 + (13 times repetition if preceded by REP prefix)

Notes:

1. No statuses are affected.

2. The default segment register is the DS register. This may be overridden by the
appropriate segment override prefix.

3. Typically, the REP prefix is not used with this instruction.

4. As with other 8086 operations, some symbol must be given to the assembler to
allow the assembler to determine whether an 8- or 16-bit operation will be per
formed. This subject will be discussed later in this chapter.

8086 Assembly Language Instruction Set 3-165

LOOP disp

Decrement CX Register and Jump If Not Zero

This instruction decrements the CX register (not affecting the flags) and then
functions in the same manner as the JMP disp instruction, except that if the CX register
has not been decremented to 0, then the Jump is executed; otherwise the next instruc
tion is executed.

The encoding for this instruction is:

LOOP disp

"5"

disp

This is an 8-bit displacement byte, as
described earlier in this chapter

As an example, consider the following sequence of instructions:

MOV CX.LENGTH$OFPAYROLL$ARRAY
PAYROLL$SUMMATION$ARRAY:

j- Calculate payroll sum here
LOOP PAYROLL$SUMMATION$ARRAY

The sequence of instructions between PAYROLL$SUMMATION$ARRAY and
the LOOP instruction will be executed LENGTHOFPAYROLL$ARRAY times.

Number of cycles: Jump is performed: 17
Jump is not performed: 5

3-166 The 8086 Book

LOOPZ disp
LOOPE disp

Decrement CX Register and Jump If CX=0 and ZF=1

This instruction decrements the CX register (not affecting the flags) and then
functions in the same manner as the JMP disp instruction, except that if the CX register
has not been decremented to 0 and the Zero flag is 1 then the Jump is executed; other
wise the next instruction is executed.

The encoding for this instruction is:

LOOPZ disp

disp

This is an 8-bit displacement byte as
described earlier in this chapter.

As an example, consider the following sequence of instructions:

TOP:

MOV CX.NUMBEROFPORTS
MOV DX,MAIN$PORT$GROUP

MOV BX.REDUNDANT$PORT$GROUP

IN AX.DX

INC DX

XCHG BX.DX

XCHG AX,BP

IN AX.DX

INC DX

XCHG BX.DX

CMP AX.BP

LOOPE TOP

JNZ PORT$DISPUTE

The sequence of instructions between TOP and the LOOPE instruction compare
data available at two sets of input ports; one group is pointed to by
MAIN$PORT$GROUP, and the other group is pointed to by
REDUNDANT$PORT$GROUP. The instruction JNZ PORT$DISPUTE will be
executed after one of two scenarios has occurred:

1. A comparison has resulted in the Zero flag being set to 0, in which case the data at
the ports is not equal.

2. The instructions between TOP and LOOPE have executed NUMBEROFPORTS
times.

The JNZ instruction is used to differentiate between cases 1 and 2.

Number of cycles: Jump is performed: 18
Jump is not performed: 6

8086 Assembly Language Instruction Set 3-167

LOOPNZ disp
LOOPNE disp

Decrement CX Register and Jump If CX 9^0 and ZF=0

This instruction decrements the CX register (not affecting the flags) and then
functions in the same manner as the JMP disp instruction, except that if the CX register
has not been decremented to 0 and the Zero flag is 0, then the Jump is executed; other
wise the next instruction is executed.

The encoding for this instruction is:

disp

disp

described earlier in this chapter

As an example, consider the following sequence of instructions:

MOV SI,ELEMENTTOMATCH

LES Dl

MOV CX,NUMBER OF ENTRIES

SEARCHFORMATCH: -
- ; SEARCH FOR MATCH

LOOPNE SEARCHFORMATCH

The code between the SEARCHFORMATCH instruction and the LOOPNE
instruction will be executed until 1) CX is decremented to 0, or 2) the instruction before
LOOPNE sets the Zero flag to 1; e.g., the Zero status might be lif a match is found.

Number of cycles: Jump is performed: 19
Jump is not performed: 5

3-168 The 8086 Book

MOV mem/reg„ mem/regz
Move Data from: • Register to Register

• Memory to Register

• Register to Memory

This instruction is used to move 8- or 16-bit data elements between a register and
a register or memory location.

The encoding for this instruction is:

SRC.DESTMOV

10 0 1 0 d w I [mod reg r/m

■ Addressing mode byte as described
earlier in this chapter.

- w = 0 8-bit move

w = 1 16-bit move

- d is the Direction flag. If d = 0, the
operand described by mod and r/m is
mem/regi and the operand described
by reg is mem/reg2.
If d = 1, then the operand described by
mod and r/m is mem/reg2 and the
operand described by reg is mem/reg-).

For example, the instruction

MOV AX,CX

moves the contents of the CX register to the AX register.

8086 Assembly Language Instruction Set 3-169

O D I T S Z A P C

Data

Memory

PSW

AX

BX

CX

DX

SP

BP

SI

Dl

PC

CS

DS

88

E8

XX yy

XX yy

mm mm

nn nn

t>
Program (Relative to the
Memory 08 Register)

ppppm

ppppm + 1

ppppm + 2

ppppm + 3mmmm + 2

Ommmm
nn n n 0

ppppm

Program Memory
Address Calculation

MOV AX.CX

Number of cycles:
register to register: 2
memory to register: 8 + EA
register to memory: 9 + EA

Notes:

1. Segment registers may not be specified in this instruction. To move data to/from
segment registers, consult the MOV segreg,reg or MOV reg,segreg operations.

2. No statuses are affected.

3. This instruction performs the function that the MOV reg,reg instruction
accomplished in the 8080 assembly instruction. This instruction does, however,
provide for more in the way of flexibility than the corresponding 8080 instruction.

3-170 The 8086 Book

MOV reg,data

Load Immediate Data into Register

This instruction is used to load 8- or 16-bit data elements into a register via
immediate addressing.

The encoding for this instruction is:

MOV reg.data

1 0 1 1 w r r r][kk][

- jj is the high-order 8-bits of a 16-bit immediate
operand. This byte is only present if w = 1.

■ kk is the low-order 8 bits of the immediate operand.
This byte is always present.

■ rrr is 3 bits which select the register which will be
destination for the immediate operand. The
interpretation of rrr depends on the value of w.

8-bit operation
rrr = 000 for AL

001 for CL

010 for DL

011 for BL

100 for AH

101 for CH

110 for DM

111 for BH

16-bit operation
rrr = 000 for AX

001 for CX

010 for DX

011 for ex

100 for SP

101 for BP

110 for SI

111 for Dl

f = 0 8-bit move, jj is not present
f = 1 16-bit move, jj is present

For example, the instruction

MOV CX,3168H

moves the 16-bit quantity 3168,6 into the CX register.

8086 Assembly Language Instruction Set 3-171

ODI TSZAPC

PSWI

AX

BX

exjj
kk

DX

SP

BP

SI

Dl

PCmmmm

CSnnnn

DS

SS

ES

Program (Relative to the
Memory CS Register)

Memory

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

mmmm + 3

Ommmm "X Program Memory
" " " "Q j Address Calculation ppppm

MOV ex, jjkk
Number of cycles; 4

Notes:

1. Segment registers may not be loaded via this instruction. To load immediate data
into a segment register, consult the MOV segreg,mem/reg instruction.

2. This instruction performs the function that MVI (8-bit move immediate) and LXI
(16-bit move immediate) instructions perform for the 8080.

3. No statuses are affected.

3-172 The 8086 Book

MOV ac.mem

Load Accumulator from Memory

This instruction is used to move 8- or 16-bit data elements from a memory loca
tion to the accumulator.

The encoding for this instruction is;
MOV ac.mem

1 0 1 0 0 0 0 w kk jj

jjkk is a 16-bit offset address, kk is the
low-order 8 bits of the address, jj is the
high-order 8 bits of the address.

w = 0 AL is the destination

(8-bit operation).

w = 1 AX is the destination

(16-bit operation).

For example, the instruction

MOV AL.[1064H]

moves the contents of memory location 1064i6 (relative to the DS register) into the AL
register.

8086 Assembly Language Instruction Set 3-173

O D I T S Z A P C

PSW

AX yy

BX

CX

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS hh hh

ss

ES

Data (Relative to the
Memory OS Register)

yy ggggh

ggggh + i

Program (Relative to the
Memory CS Register)

ppppm

ppppm + 1

ppppm + 2

mmmm + 3
ppppm + 3

Ommmm
n n n n 0

Program Memory
Address Calculationppppm

hhhho Memory
I Address Calculation

MOV ALljjkk]
Number of cycles: 10

Notes:

1. This instruction performs the same function as the 8080 instruction LDA addr. In
addition, this instruction allows a 16-bit load to the AX register.

3-174 The 8086 Book

MOV mem.ac

Store Accumulator into Memory

This instruction is used to move 8- or 16-bit data elements from the accumulator

to a memory location.
The encoding for this instruction is:

MOV mem,ac

1 0 1 0 0 0 1 w 1 kk j]

jjkk is a 16-bit offset address, kk is the
low-order 8 bits of the address, jj is the
high-order 8-bits of the address.

- w = 0 AL is the source.

{8-bit operation)
w = 1 AX is the source.

(16-bit operation

For example, the instruction

MOV 11064H1.AX

moves the contents of the AX register into memory location 1064i6 (relative to the DS
register). The contents of AL are moved into 1064i6 and the contents of AH are moved
into 106516.

8086 Assembly Language Instruction Set 3-175

O D I T S Z A P C

PSW

AX XX yy

BX

CX

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS hh hh

SS

ES

Data

Memory

yy

(Relative to the
DS Register)

ggggk

ggggk + i

ggggk + 2

Program (Relative to the
Memory CS Register)

ppppm

ppppm + 1

ppppm + 2
mmmm + 3

ppppm + 3

Ommmm

Program Memory
Address Calculation

Oj jkk
hhhhO

Data Memory
Address Calculation

MOV [jjkk],AX
Number of cycles: 10

Notes:

1. No statuses are affected.

2. This instruction performs the same function as the 8080 instruction ST A addr. In
addition, this instruction allows a 16-bit store of the AX register.

3-176 The 8086 Book

MOV segreg,mem/reg
Move Memory or Register Data to Segment Register

Move a 16-bit data element from a register or memory location into a segment
register.

The encoding for this instruction is:

MOV

8E

segreg,mem/reg

mod 0 reg r/m

-mod and r/m are used to specify the
memory/register operand as described
earlier in this chapter.

- reg is two bits which specify the
segment registers

rr = GO for ES

01 for OS

10 for SS

11 for DS

As an example, the instruction

MOV SS.DX

will move the contents of the DX register into the SS register.

8086 Assembly Language Instruction Set 3-177

O D I T S Z A P C

Data

M emory

PSW|

AX

BX

CX

DX

SP

BP

SI

Dl

PC

CS

DS

SS

ES

XX yy

mm nn

nn nn

mmmm + 2

ppppm

Program (Relative to the
Memory CS Register)

BE

02

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

' Address Calculation

Notes:

MOV SS.DX

Number of cycles; register to register: 2
memory to register: 8 + EA

1. If reg=01, then the results of this operation are undefined. This prohibition pre
vents the user from storing directly into the CS register.

2. This instruction is typically used in initialization sequences where the program seg
ment areas are defined.

3-178 The 8086 Book

MOV mem/reg,segreg

Move Segment Register to Register or Memory

Move a 16-bit data element from a segment register into a register or memory
location.

The encoding for this instruction is:

MOV

'sc"
mem/reg, segreg

mod 0 reg r/m

-mod and r/m are used to specify the
memory/register operand as described
earlier in this chapter

- reg is two bits which specify the
segment register
rr = GO for ES

01 for OS

10 for SS

11 for DS

For example, consider the case where the DS register contains 20001^. Executing the
instruction

MOV 2000H,DS

would store the byte OO^^ at location 22000i6 and 20^6 at location 22001

8086 Assembly Language Instruction Set 3-179

O D I T S Z A P C

PSW

AX

BX

CX

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS rr rr

SS

ES

Data (Relative to the

Memory OS Register)

ttttk

ttttk + 1

Program (Relative to the
Memory CS Register)

ppppm

ppppm + 1

mmmm + 4
ppppm + 2

ppppm + 3

Ommmm

Program Memory
Address Calculation

Data Memory
Address Calculation

Number of cycles: Register to Register: 2
Register to Memory: 9 + EA

Notes:

1. This is not a general purpose register-to-register MOV; this is for moving segment
registers. For a general purpose register MOV, consult MOV mem/regi,mem/reg2.

3-180 The 8086 Book

MOV mem/reg,data

Move Immediate Data to Register or Memory

Move the immediate data in the bytes following the op-code to the specified
register or memory location. 8- or 16-bit data transfer may be specified.

The encoding for this instruction is:

1 10 0 0 1 1 w mod ODD r/m kk j]

j] is the high-order 8 bits of the 16-bit
immediate operand. This byte is only
present if w = 1.

kk is the low-order 8 bits of the immedi

ate operand. This byte is always pre
sent.

- Addressing mode byte(s) as described
earlier in this chapter.

- w = 0 8-bit operation
1 16-bit operation

For example, consider the case where the DS register contains DOOOig and the BX
register contains OOI616. After the instruction

MOV BX,491FH

has executed, memory location DOOlbi^ will contain and memory location
DOOlTi^will contain 49i^.

8086 Assembly Language Instruction Set 3-181

O D I T S Z A P C

Data (Relative to the

Memory DS Register)

PSW|

AX

BX

CX

DX

SP

BP

SI

Di

PC

CS

DS

SS

iS

gg gg

mm mm

nn nn

hh hh

Program (Relative to the
Memory CS Register)

rrrrg + 1
Data Memory

Address Calculation

ppppm

ppppm + 1

ppppm + 2
mmmm + 4

ppppm + 3

Ommmm

nnnnO

ppppm

Program Memory
Address Calculation

MOV [BXl.jjkk
Number of cycles: 10 + EA

Notes:

1. No statuses are affected.

2. The segment registers may not be specified in this instruction.

3. This instruction is not typically used to move immediate data into the registers. The
instruction MOV reg,data is provided for this purpose.

3-182 The 8086 Book

MOVS

Move Byte or Word from Memory to Memory

Move 8 or 16 bits from the memory location pointed to by the SI register to the
memory location pointed to by the DI register. The SI and DI registers are incremented/
decremented depending on the value of the DF flag.

The encoding for this instruction is:

MOVS

1 0 1 0 0 1 0 w

— w = 0 8 bits are transferred. If DF = 0,

the SI and DI registers are incremented
by 1; otherwise both registers are
decremented by 1.

w = 1 16 bits are transferred. If DF = 0,

the SI and DI registers are incremented
by 2; otherwise both registers are
decremented by 2.

Consider the case where the DF flag is 0, the DS register contains 1000, the ES register
contains 1780,6, the SI register contains 0006,6, the DI register contains 0006,6, and the
word at memory location 10006,6 if 8F0B,6- After the instruction

MOVS WORD

has executed, memory location 17806,6 will contain 8F0B|6, the 81 register will contain
0008,6 and the DI register will contain 0008,6.

8086 Assembly Language Instruction Set 3-183

O D I T S Z A P C

Data (Relative to the
Memory DS Register)

PSW

AX

BX

CX

DX

SP

BP

SI gg gg

Dl qq qq

PC mm mm

CS nn nn

DS hh hh

SS

ES tt tt

Data (Relative to the

Memory ES Register)

rrrrg + 1

uuuuq

uuuuq + 1Ogggg
hhhhO

rrrrg

Oqqqq
tttto
uuuuq

ppppm

ppppm + 1

mmmm + 1

qqqq + 2

Ommmm
n n n nO

ppppm

Program (Relative to the
Memory CS Register)

* Program Memory Address Calculation
Destination Data Memory Address Calculation

*** Source Data Memory Address Calculation

MOVS

Number of cycles: 18 for single occurrence
9 + (17 times repetition when preceded by REP prefix)

Notes:

1. No statuses are affected.

2. The default segment register for the source operand is the DS register. This segment
may be overridden using segment prefixes. The default segment register for the
destination operand is the ES register. This segment may not be overridden using
segment prefixes.

3. The REP prefix and/or the LOCK prefix may be used with this instruction. Using
the REP and the LOCK prefixes in conjunction with this instruction may cause
problems. Consult the next chapter for a complete discussion of these potential
difficulties.

3-184 the 8086 Book

4. This instruction is very useful for moving blocks of memory. Consider the following
sequence of instructions:

LES Dl. CURRENT$START$OF$PRINT$BUFFER
MOV SI. PAGE$HEADER$MESSAGE
MOV ex. PAGE$HEADER$MESSAGE$LENGTH
REP

MOVS BYTE

These instructions would move the data from the memory location addressed by
PAGE$HEADER$MESSAGE to the memory location addressed by the contents of
CURRENT$START$OF$PRINT$BUFFER.

5. How do you specify whether an 8- or 16-bit transfer is to be performed? This will
depend on your assembler. For a discussion of this subject, refer to the end of this
chapter.

8086 Assembly Language Instruction Set 3-185

MUL mem/reg
Multiply AL or AX Register by Register or Memory Location

Multiply the specified register or memory location contents by the AL (8-bit
operation) or AX (16-bit operation) register, considering both operands as unsigned
numbers, i.e., a simple binary multiplication. If an 8-bit operation is performed, the low-
order eight bits of the result are stored in the AL register, the high-order eight bits of the
result are stored in the AH register. If a 16-bit operation is performed, the low-order 16
bits of the result are stored in the AX register, the high-order 16 bits of the result are
stored in the DX register. In either case, if the high-order half of the result is 0, then the
OF and CF flags are set to 0; otherwise they are set to 1 to indicate significant digits in
AX or DX.

The encoding for this instruction is:

MUL mem/reg

1 1 1 1 0 1 1 w mod 100 r/m

earlier In this chapter

• w = 0 8-bit operation
w = 1 16-bit operation

As an example, consider the case where the AX register contains 4514i6 and the CL
register contains 051^. After the instruction

MUL AUCL

has executed, the AX register will contain 0064i6 and the Carry and Overflow flags will
be 0.

3-186 The 8086 Book

PSWl X

O D I T S Z A P C

? ? ?" ? "x]

AX XX

BX

CX yy

DX

Data

Memory

Program (Relative to the
Memory CS Register)

SP F6 ppppm

BP El ppppm + 1

SI
ppppm + 2

Dl (mmmm + 2 J ppppm + 3

PC mm rhm

CS nn nn Ommmrri Ny Program Memory
• i nnnnO 1 « .— MQoress i^aicuiaiion

DS
V^ ppppm^

SS

ES

MUL ALCL

Number of cycles: 8-bit memory multiply: (76-83) + EA
16-bit memory multiply: (124-139) + EA
8-bit register multiply: 70-77
16-bit register multiply: 118-133

Notes:

1. This is the unsigned number multiply operation. Both operands are treated as
unsigned binary numbers in the range:

8-bit: 0 to 255

16-bit: Oto 65535

For a signed multiply operation, consult the instruction IMUL.

2. In some cases, it may be more appropriate to use shifts to perform multiplications.
These cases would occur when memory conservation is not of paramount impor
tance and speed is necessary.

8086 Assembly Language Instruction Set 3-187

NEG mem/reg

Negate the Contents of a Register or Memory Location

This instruction performs a twos complement subtraction of the specified operand
from zero. The result is stored in the specified operand. An 8- or 16-bit operand may be
specified.

The encoding for this instruction is:

NEG mem/reg

|l 1 1 1 0 1 1 w| I mod 011 r/m |

Addressing mode byte(s) as described
earlier in this chapter

w = 0 8-bit operation
w = 1 16-bit operation

Suppose that the BX register contains OOO616, the DS register contains 1800, and the
contents of memory location 18006,6 are 47,6- After the execution of the instruction

NEG IBXl

the contents of memory location 18006,6 will be 39,6-

3-188 The 8086 Book

PSW X X X

AX

BX rr rr

CX

DX

SP

BP

SI

D1

PC mm mm

CS nn nn

DS tt tt

SS

ES

Data (Relative to the
Memory DS Register)

ggggr

ggggr + i

Program (Relative to the
Memory CS Register)

XX + 1

Orrrr

ttttO

ggggr

Data Memory

Address Calculation
ppppm

ppppm + 1

ppppm + 2

mmmm + 2 ppppm + 3

Qmmmm
n n n nO
ppppm

Program Memory
Address Calculation

NEG [BX]
Number of cycles; Memory operand: 3

Register operand: 16 + EA

Notes:

1. There is no equivalent instruction in the 8080 assembly language. An equivalent
8080 sequence for this instruction for a 16-bit quantity would be

MOV

CMA

MOV

MOV

CMA

MOV

INX

A,D

D,A

A,E

E,A

D

8086 Assembly Language Instruction Set 3-189

NOP

No Operation

No operation is performed.
The encoding for this instruction is:

PSW|

AX

BX

CX

DX

NOP

90

G D I T S Z A P C

SP

BP

SI

Dl

PC mm mm

CS nn nn

OS

SS

ES

Data

Memory

Program (Relative to the
Memory CS Register)

mmmm + 1

Ommmm
n n n nO

ppppm

90 ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

NOP

Number of cycles: 3

3-190 The 8086 Book

NOT mem/reg

Ones Complement of Register or Memory Location

Complement the contents of the specified register or memory location.
The encoding for this instruction is:

NOT mem/reg

1 1 1 1 0 1 1 w mod DIG r/m

Addressing mode byte(s) as described
earlier in this chapter

- w = 0 8-bit operation
w = 1 16-bit operation

Suppose that the BL register contains FBi^. After the instruction

NOT BL

has executed, the BL register will contain 04i6.

8086 Assembly Language Instruction Set 3-191

O D I T S Z A P C

Data

Memory

PSW|

• AX

BX

CX

DX

SP

BP

SI

Dl

PC

XX

mm mm

CS nn nn

OS

SS

ES

Program (Relative to the
Memory CS Register)

mmmm + 2

ppppm

F6

D3

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

n^n n "n 0 ^ Program Memory
Address Calculation

NOT BL

Number of cycles: Memory operand: 16 + EA
Register operand: 3

Notes:

1. No statuses are affected.

2. This instruction performs the same function as the 8080 instruction CMA. This

instruction also allows 16-bit complements and complementing of any general pur
pose register or memory location.

3-192 The 8086 Book

OR ac,data

OR Immediate Data with the AX or AL Register

OR the immediate data in the succeeding program memory byte(s) with the AL
(8-bit operation) or AX (16-bit operation) register.

The encoding for this instruction is:

OR ac.data

00001 10> kk jj

operand. This byte is only present if w = 1

-The low-order 8 bits of the immediate

operand. This byte is always present.

-w = 0 8-bit operation.
AL is operand
w = 1 16-bit operation
AX is operand

Suppose that the AX register contains 0609 After the instruction

OR AX. 3030H

has executed, the AX register will contain 3639i6.

0609ie = 0000 0110 0000 1001
303016 = 0011 0000 0011 0000

0011 0110 0011 1001

4 one bits, set P to 1

AF is undefined

Overflow is cleared to 0

Sign is set to 0

Carry is cleared to 0

Non-zero result, Z is set to 0

8086 Assembly Language Instruction Set 3-193

PSW 0

0 D 1 T S z A P c

X X ? X 0

AX XX yy

BX

CX

DX

Data

Memory

Program (Relative to the
Memory CS Register)

SP CD ppppm

BP kk ppppm + 1

SI mmmm + 3 j jj ppppm + 2

Dl ppppm + 3

PC mm mm

CS nn nn

DS ^y^^Ommmm^"**^ Program Memory
1 nnnnO i..r . ..
V J Address calculation

SS

ES

OR AX.jjkk
Number of cycles: 4

Notes:

1. This instruction performs the same function as the 8080 instruction ORI data. This

instruction also has the ability to perform 16-bit operations.

2. If you desire to OR immediate data with any of the other general purpose registers
or with some memory location, consult the instruction OR mem/reg,data.

3-194 The 8086 Book

OR mem/reg,data

OR Immediate Data with Register or Memory Location

OR the immediate data in the succeeding program memory byte(s) with the
specified register or memory location. An 8- or 16-bit operation may be specified.

The encoding for this instruction is:

OR mem/reg,data

10 0 0 00 Ow mod 001 r/m kk jj

operand. This byte is only present if w = 1.

The low-order byte of the immediate
operand. This byte is always present.

Addressing mode byte(s) as described
earlier in this chapter

w = 0 8-bit operation
w = 1 16-bit operation

Consider the case where the DS register contains 3800,6, l^e contents of the BX register
are 0200,6, the DI register contains 0136,6, and the word at memory location 38336,6 is
06B3,6. After the instruction .

OR [BX + DI], 0805H

has executed, the word at memory location 38336,6 will be 0EB7,6.

068316 = 0000 0110 1011 0011
050516 = 0000 1000 0000 0101

0000 1110 1011 0111

-6 one bits, set P to 1

Carry is cleared to 0

-Sign is set to 0

Overflow is cleared to 0

Non-zero result, set Z to 0

8086 Assembly Language Instruction Set 3-195

s z A p c

Data (Relative to the

Memory OS Register)

PSW 0

AX

BX

CX

DX

SP

BP

SI

01

PC

OS

OS

SS

ES

X 0

99 99

hh hh

mm mm

nn nn

rr rr

rirrrO

ttttt

Data Memory
Address Calculation

mmmm + 4

Ommmm
n n n n 0
ppppm

yy

XX

Program Memory
Address Calculation

Program (Relative to the
Memory CS Register)

81

09

kk

Notes:

OR IBX + Dl], jjkk

Number of cycles: Memory operand: 17 + EA
Register operand: 4

1. This instruction is not typically used to OR immediate data with the AX or AL
register. The instruction OR ac,data is provided for this purpose.

3-196 The 8086 Book

OR memreg^, mem/regz
OR: * Register with Register

• Register with Memory
• Memory with Register

OR the contents of the register or memory location specified by mem/regj with
the contents of the register or memory location specified by mem/reg,, returning the
result to mem/reg 1. An 8- or 16-bit operation may be specified. Either mem/reg; or
mem/reg2 may be a memory operand, but one of the operands must be a register
operand.

The encoding for this instruction is:

OR mem/reg 1, mem/reg 2

0 0 0 0 1 0 d w mod reg r/m

Addressing mode byte(s) as described
earlier in this chapter

w = 0 8-bit operation
w = 1 16-bit operation

d is the Direction flag. If d = 0, then the
operand described by mod and r/m is
mem/reg-) and the operand described
by reg is mem/reg2- If d = 1, then the
operand described by mod and r/m is
mem/reg2 and the operand described
by reg is mem/reg-j.

Suppose that the AX register contains 0060)6, the DS register contains 4000)6, the BX
register contains 009Ai6, and the word at memory location 4009A)6 contains 012C)6.
After the instruction

OR [BXl.AX

has executed, the contents of the word at memory location 4009A)6 will be 016C)6. The
flags will be set as follows:

006016 = 0000 0000 0110 0000
050516 = 0000 0001 0010 1100

0000 0001 0110^1100

- 4 one bits, set P to 1

- AF is undefined

Overflow is cleared to 0

- Sign is set to 0

Carry is cleared to 0

Non-zero result, set Z to 0

8086 Assembly Language Instruction Set 3-197

0

pswlo

AX

BX

cx

DX

SP

BP

SI

Dl

PC

OS

DS

88

E8

8 Z

Data (Relative to the

Memory DS Register)

XX yy

gg gg

mm mm

nn nn

hh hh

Program (Relative to the
Memory C8 Register)

rrrrg + 1xxyy V www

rrrrg + 2

Ogggg
hhhhO
rrrrg

Data Memory
Address Calculation

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Ommmm

Program Memory
Address Calculation

OR IBX],AX

Number of cycles: Register to Memory: 16 + EA
Memory to Register: 9 + EA
Register to Register: 3

3-198 The 8086 Book

OUT DX,ac

Output from Accumulator

Output 8- or 16-bit data elements from the AL (8-bit) or AX (16-bit) register to
the I/O port identified by the contents of the DX register.

The encoding for this instruction is:

OUT DX,ac

1 1 1 0 1 1 1 w

L 0 8-bit data transfer from AL

w = 1 16-bit data transfer from AX

As an example, consider the case where the DX register contains 0FFF2i6 and the AL
register 40,6. The execution of an

OUT DX.AL

instruction will result in the quantity 40,6 being loaded into the I/O buffer at I/O port
number 0FFF2i6.

8086 Assembly Language Instruction Set 3-199

PSW

AX

BX

cx

DX

s z P C

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS

ES

I/O port
specified by DX

register

mmmm + 1

Ommmm
n n n n 0

P pppm

Data

Memory

Program (Relative to the
Memory CS Register)

EE ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

OUT DX.AL

Number of cycles: 8

Notes:

1. This instruction allows the user to access I/O ports which have been assigned
addresses between 0 and OFFFFi^.

2. No registers or statuses are affected.

3-200 The 8086 Book

OUT port.ac

Output from Accumulator

This instruction outputs 8- or 16-bit data elements from the AL (8-bit) or AX
(16-bit) register to the I/O port identified by the second byte of the instruction.

The encoding for this instruction is:

1 1 1 0 0 1 1 w yy

yy is 8 bits specifying the I/O port

w = 0 8-bit data transfer to AL

w = 1 16-bit data transfer to AX

No registers or statuses are affected.
Suppose that the AX register contains 58A4,6. Executing an

OUT 14H,AX

instruction will transfer A4i6 to the I/O port addressed at 14,6 ^8,6 to the I/O port
addressed at 15,6-

8086 Assembly Language Instruction Set 3-201

O D I T S Z A P C

PSW

BP

BP

SI

Di <

PC mm mm

CS nn nn

OS

ss

ES

mmmm + 2

ppppm

Data

Memory

I j I/O Port yy | | yp pprt yy |

Program (Relative to the
Memory CS Register)

E7

yy

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Ommmm -v n
n n n n 0 1 Program Memory

Address Calculation

OUT yy,AX
Number of cycles: 10

Notes:

1. This instruction allows the user to access I/O ports which have been assigned
addresses between 0 and FFi^. To address ports whose addresses are outside this
range, consult the instruction OUT DX,ac.

2. This instruction performs the same function as the 8080 instruction OUT port.
Additionally, this instruction allows for 16-bit data transfers in a single instruction
(not possible using the 8080 instruction OUT port).

3. To effectively use the OUT instruction, a firm grasp of the hardware configuration is
necessary. The way in which the I/O logic has been implemented determines the
port addresses that are used to access various hardware functions. It is also possible
to design a microcomputer system that accesses external logic using memory
reference instructions with specific memory addresses.

3-202 The 8086 Book

POP mem/reg

Read from the Top of the Stack

Pop the two top stack bytes into the specified memory location or register. This is
a 16-bit operation.

The encoding is:

POP mem/reg

mod 000 r/m

earlier in this chapter

Suppose that the DS register contains FF00,6, the SI register contains 0008,6, the SP
register contains 0FEA,6, the SS register contains 2F00,6, and the word stored at loca
tion 2FFEA,6 is 3BC5,6. After the instruction

POP [Si]

has executed, the contents of memory location FF008,6 will be C5,6 and the contents of
memory location FF009,6 ̂hl be 38,6. SP will be equal to 0FEC,6.

8086 Assembly Language Instruction Set 3-203

O D I T S Z A P C

Data (Relative to the
Memory DS Register)

PSW

AX

BX

CX

DX

SP ss ss
■—1

BP

SI hh hh

Dl

PC mm mm

CS nn nn

DS rr rr

88 tt tt

E8

• Data Memory Address Calculation
• Program Memory Address Calculation
• Stack Data Memory Address Calculation

Data (Relative to the
Memory 88 Register)

zzzzh + 1

uuuus + 1

mmmm + 2

Ommmm
n n n n 0
ppppm

ppppm
Ohhhh
rrrrO ppppm + 1
zzzzh

ppppm + 2

ppppm + 3

Program (Relative to the
Memory CS Register)

POP [81]
Number of cycles; Memory operand: 17 + EA

Register operand: 8

Notes:

1. This instruction is not typically used to pop data into a register. The instruction POP
reg performs this function and only occupies one byte of program memory space.

2. No statuses are affected.

3-204 The 8086 Book

POP reg

Read from the Top of the Stack

Pop the two top stack bytes into the designated 16-bit register.
The encodine is:The encoding is:

POP reg

0 10 1 1 r r r

n3 bits which specify the 16-bit register
into which the data is to be popped

rrrr = 000 for AX

001 for ex

010 for DX

011 for BX

100 for SP

101 for BP

110 for SI

111 for Dl

Ponder, for example, the instruction

POP BX

This instruction would pop the byte pointed to by the stack pointer (and stack segment)
into BL, then increment the stack pointer and pop the addressed byte into BH. Finally,
the stack pointer would again be incremented by 1 to point at the new top of stack. This
is actually done with a single 16-bit transfer in the 8086.

8086 Assembly Language Instruction Set 3-205

O D I T S Z A P C

PSW

AX

BX XX yy

CX

DX

SP SS SS

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS tt tt

ES

ssss -t- 2

mmmm + 1

mmrnrn

n n n n 0
ppppm

Data (Relative to the
Memory SS Register)

yy uuuus

uuuus + 1

uuuus + 2

Program (Relative to the
Memory CS Register)

5B ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Stack Memory
Address Calculation

Program Memory
Address Calculation

POP BX

Number of cycles: 8

Notes:

1. This instruction cannot be used to pop data elements into the segment registers. To
pop data into segment registers, consider the instruction POP segreg.

2. For this instruction to be meaningful, it is of course necessary to have:

a. an initialized stack pointer

b. data already on the stack via a PUSH instruction.

Naturally, one could use this instruction for the sole purpose of incrementing the SP
register by 2; however, this is not recommended.

3. This instruction performs the same function as the 8080 assembly language instruc
tion POP reg.

3-206 The 8086 Book

POP segreg

Read from the Top of the Stack

This instruction pops the two top stack bytes into the designated 16-bit segment
register.

The encoding is:

POP segreg

OOOrr 1 1 1

I 2 bits specifying the 16-bit segment
register into which the data is to be popped

rr = GO for ES

10 for SS

11 for DS

The instruction
POP ES

for example, will pop the two top stack bytes into the ES register. Undefined operation if
rr = 01.

8086 Assembly Language Instruction Set 3-207

O D I T S Z A P C

PSW|

AX

BX

cx

DX

Notes:

SP SS SS

BP

SI

Dl

PC mm •mm

CS nn nn

OS

SS tt tt

ES

POP ES

Number of cycles: 8

Data (Relative to the

Memory SS Register)

yy uuuus

uuuus + 1

uuuus + 2

Program (Relative to the
Memory CS Register)

07 ppppm

ppppm + 1

ppppm + 2

ppppm + 3

1. This instruction only pops data into the segment registers. To pop data into the

8086's other registers, consider the instruction POP reg.

2. For a more complete description of the function performed by a POP, consult POP
reg.

3-208 The 8086 Book

POPF

Read from the Top of the Stack into the Flags Register

Pop the two top stack bytes into the Flags register. The first byte popped goes into
the low-order byte of the Flags register. The format of the low-order byte of the Flags
register is:

7 6 5 4 3 2 1 0 ̂ Bit No.

|SF ZF X AF X PF X cf|

The second byte popped is stored into the high-order byte of the Flags register. The for
mat for this byte is:

15 14 13 12 11 10 9 8 ̂ Bit No.

1 X X X X OF OF IF Tf|

The encoding for this instruction is:
POPF

Consider, for example, the situation where the two top bytes on the stack are 4F (top
most) and 32. Executing the

POPF

instruction will result in the Carry, Parity, Zero, and Interrupt flags being set to 1. All
other flags will be set to 0.

8086 Assembly Language Instruction Set 3-209

PSW

SP SS SS

BP

SI

Dl

PC mm mm

CS nn nn

OS

SS tt tt

ES

Data (Relative to the

Memory SS Register)

uuuus + 1

uuuus + 2

ssss + 2

Program (Relative to the
Memory CS Register)

Ommmm

uuuus

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

Data Memory

Address Calculation

Notes:

POPF

Number of cycles: 8

1. As with all stack operations, it is important that the stack pointer be initialized. In
addition, it would be appropriate to have executed a PUSHF instruction, in order to
store the value of the flags, before executing a POPF instruction.

2. This instruction performs some of the functions of the 8080 instruction PUSH PSW.

3-210 The 8086 Book

PUSH mem/reg

Write to the Top of the Stack

This instruction pushes the contents of the specified register or memory location
onto the top of the stack. This is a 16-bit push operation.

The encoding is:

PUSH mem/reg

mod 110 r/m [

-Addressing mode byte(s)
as described earlier in this chapter

For example, if the DS register contains 2800,6, the BX register contains 0400,6, the SP
register contains 1000,6, the SS register contains 2F00,6, and the word stored at memory
location 28400,6 contains A020|6, then executing the instruction

PUSH [BX]

will store AO,6 at memory location 2FFFF,6 and 20,6 ̂ t memory location 2FFFEi6. The
SP register will be adjusted to 0FFE,6.

8086 Assembly Language Instruction Set 3-211

O D I T S Z A P C

Data (Relative to the
Memory SS Register)

PSW

AX

BX hh hh

CX

DX

SP SS SS

BP

SI

Dl

PC mm mm

CS nn nn

DS ww ww

SS tt tt

ES

* Source Data Memory Address Calculation

*• Program Memory Address Calculation

* • Stack Data Memory Address Calculation

Data (Relative to the
Memory OS Register)

uuuus - 2

uuuus - 1

Ohhhh
wwwwO

zzzzh + 1

zzzzh + 2

mmmm + 2

ppppm

ppppm + 1
Ommmm

n n n nO
ppppm + 2

P PP Pm

ppppm + 3

Program (Relative to the
Memory CS Register)

PUSH (BX]

Number of cycles: memory 16 + EA
register 11

Notes:

1. This instruction is not typically used to push a register onto the stack. The instruc
tion PUSH reg performs this function and only occupies one byte of program
memory space.

2. No statuses are affected.

3-212 The 8086 Book

PUSH reg

Write to the Top of the Stack

This instruction pushes the contents of the specified 16-bit register onto the top of
stack.

The encoding is:

PUSH reg

0 1 0 1 0 r r r |

L3 bits which specify the 16-bit register
to be pushed,
rrr = 000 for AX

001 for ex

010 for DX

011 for BX

100 for BP

101 for BP

110 for SI

111 for Dl

As an example, consider the instruction

PUSH SI

This instruction would push the 16-bit contents of the SI register onto the stack. This
function is performed as follows:

1. Decrement the stack pointer by 1.

2. Store the high-order 8 bits of the specified register into the memory location
addressed by the stack pointer and the stack segment.

3. Decrement the stack pointer by 1.

4. Store the low-order 8 bits of the specified register into the memory location
addressed by the stack pointer and the stack segment.

The stack pointer is left pointing at the last element stored into the stack, com
monly referred to as the top of stack. For the 8086 this is actually one 16-bit transfer.

8086 Assembly Language Instruction Set 3-213

O D I T S Z A P C

PSW

AX

BX

CX

DX

Data (Relative to the
Memory SS Register)

yy uuuus - 2

uuuus - 1

uuuus

Program (Relative to the
Memory CS Register)

SP SS SS 56 ppppm

BP Data Memory
Address Calculation

Ossss

ppppm + 1

SI XX yy
ppppm + 2

Dl
f ttttO J
N^^^uuuus^ ppppm + 3

PC mm mm

mmmm + 1 1 \

CS nn nn

OS ar^^mmmm^Nv / Program Memory
I nnnnu i

SS tt tt
V^ppppm_^ / Address Calculation

ES

Notes:

PUSH Si

Number of cycles: 10

1. This instruction cannot be used to push the segment registers or the Flags register.
To push segment registers, consult the instruction PUSH segreg. To push the Flags
register, consult the PUSHF instruction.

2. This instruction is most effective when used after the stack pointer has been

initialized. In fact, the only time this instruction should be used is after the initializa
tion of the stack pointer.

3. To retrieve the data from the stack, use the POP instructions.

4. This instruction performs the same function as the 8080 instruction PUSH reg.

3-214 The 8086 Book

PUSH segreg

Write to the Top of the Stack

This instruction pushes the contents of the specified 16-bit segment register onto
the top of stack.

The encoding is:

PUSH segreg

0 0 0 s s 1 1 0

I 2 bits specifying the segment register
that is to be pushed onto the Stack

ss = GO for ES

10 for SS

11 for DS

Examine, for example, the following instruction

PUSH DS

This instruction will push the 16-bit contents of the DS register onto the stack.
Illegal operation if ss = 01.

PSW

AX

BX

CX

DX

Notes:

s z

8086 Assembly Language Instruction Set 3-215

Data (Relative to the
Memory 88 Register)

SP SS SS

BP

SI

Dl

PC mm mm

CS nn nn

DS XX yy

SS tt tt

ES

Data Memory
Address Calculation

Program Memory
Address Calculation

PU8H D8

Number of cycles: 10

yy uuuus - 2

uuuus - 1

uuuus

Program (Relative to the
Memory CS Register)

IE ppppm

ppppm + 1

ppppm + 2

ppppm + 3

1. This instruction can only be used to push the contents of segment registers onto the
stack. To push the contents of other registers, consult the PUSH reg and PUSHF
instructions.

2. For a more detailed description of the action of the PUSH operation, consult the
PUSH reg instruction.

3. Remember that to ensure optimal results, the stack pointer must be initialized.

3-216 The 8086 Book

PUSHF

Write the Flags Register to the Top of Stack

This instruction pushes the contents of the Flags register onto the top of the stack.
The format for the Flags register is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit No.

X X X OF OF IF TF SF ZF X AF X PF X CF

where X is an undefined value.

Bits 15-8 are stored onto the stack first, followed by bits 7-0.
The encoding for this instruction is:

PUSHF

90

As an example, should the Interrupt, Sign, and Zero flags be 1, while the Overflow,
Direction, Trap, Arithmetic, Parity, and Carry flags are 0, then executing a

PUSHF

instruction would

1. Decrement the stack pointer.

2. Store the byte XXXXOOlO into the memory location addressed by the stack
pointer and Stack Segment register. (X refers to an undefined value.)

3. Decrement the stack pointer.

4. Store the byte 11X0X0X0 into the memory location addressed by the stack
stack pointer and Stack Segment register. For the 8086 this is performed as a
single 16-bit transfer.

8086 Assembly Language Instruction Set 3-217

PSW

SP SS SS

BP

SI

Dl

PC mm mm

CS nn nn

OS

SS tt tt

ES

Data (Relative to the

Memory SS Register)

□
uuuus - 2

uuuus - 1

Memory
Address Calculation

Program (Relative to the
Memory CS Register)

Ossss
ttttO

mmmm + 1

Ommmm
n n n n 0
PPP pm

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

Notes:

PUSHF
Number of cycles: 10

1. Remember that, as with all stack instructions, this instruction works best after the
stack pointer has been initialized.

2. This instruction does not perform the same function as the 8080 instruction PUSH
PSW. The PUSH PSW instruction pushes the contents of the accumulator as well as
the 8080 flags. To emulate PUSH PSW, consult the LAHF instruction.

3-218 The 8086 Book

RCL mem/reg,count

Rotate Register or Memory Location Left Through Carry

Rotate the contents of the specified register or memory location left by the
specified number of bits through the Carry status. The number of bits to rotate, repre
sented by the variable count, is either one or the number contained in the CL register.
An 8- or 16-bit operand may be specified.

The encoding for this instruction is:

RCL mem/reg,count

1 1 0 1 0 0 c w mod QIC r/m

- Addressing mode byte(s) as described
earlier in this chapter

■ w = 0

w = 1

8-bit operand
16-bit operand

c = 0 Rotate left one bit

c = 1 Rotate left the number of bits

specified by the CL register

Suppose that the AX register contains FBOO15 Carry status is 0. After the
instruction

RCL AX.1

has executed, the Carry status will be 1 and the AX register will contain FbOOif,.

8086 Assembly Language Instruction Set 3-219

0 D I T S Z A

Data

Memory

Program (Relative to the
Memory CS Register)

SP 01 ppppm

BP DO ppppm + 1

SI
ppppm + 2

Dl
f mmmm + 2 J ppppm + 3

PC mm mm

CS nn nn Ommmm^^.

OS

T n n n n 0 i

p p p

SS

ES

Notes:

1. Th

RCL AX.1

Number of cycles: Register (1-bit rotate): 2
Register (N-bit rotate): 8 + (4 " N)
Memory (1-bit rotate): 15 + EA
Memory (N-bit rotate): 20 + EA + (4 * N)

2.

is instruction performs the same function as the 8080 instruction RAL. This
instruction (does, however, allow a great deal more flexibility in that multi-bit rotates
are allowed, rotations of 16-bit quantities are allowed, and any register or memory
location may be rotated.

Note that it is not intuitively obvious whether an 8- or 16-bit rotate is to be per
formed. The manner in which this is determined depends on your assembler. For a
discussion of this entertaining subject, refer to the end of this chapter.

3-220 The 8086 Book

RCR mem/reg,count

Rotate Register or Memory Location Right Through Carry

Rotate the contents of the specified register or memory location right by the
specified number of bits through the Carry status. The number of bits to rotate, repre
sented by the variable count, is either one or the number contained in the CL register.
An 8- or 16-bit operand may be specified.

The encocMng for this instruction is:

RCR mem/reg,count

I 1 1 0 1 0 0 cw mod 011 r/m

earlier in this chapter

. w = 0 8-bit operand
w = 1 16-bit operand

c = 0 Rotate right one bit
c = 1 Rotate right the number of bits

specified by the CL register

Suppose that the CX register contains F709i6 and the Carry status is 1. After the instruc
tion

RCR CX,CL

has executed, the CX register will contain 09FBi6 and the Carry status will be 1.

8086 Assembly Language Instruction Set 3-221

O D I T S Z A P C

PSWE

AX

BX

CX XX yy

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

OS

SS

ES

Rotate
xxyy right yy
times with
the Ca

mmmm + 2

Ommmm

n n n n 0

ppp pm

Data

Memory

Program (Relative to the
Memory CS Register)

D3

D9

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

Notes:

RCR CX.CL

Number of cycles: Register (N-bit rotate): 8 + (4 • N)
Register (1-bit rotate): 2
Memory (N-bit rotate): 20 +EA + (4 • N)
Memory (1-bit rotate): 15 + EA

1. This instruction performs the same function as the 8080 instruction RAR. This
instruction does, however, allow a great deal more flexibility in that multi-bit rotates
are allowed, rotations of 16-bit quantities are allowed, and any register or memory
location may be rotated.

2. Differentiating between an 8- or 16-bit rotation is not obvious when one considers
this instruction. For a discussion of this problem, see the end of this chapter.

3-222 The 8086 Book

REP/REPE/REPNE/REPNZ/REPZ

Repeat the Following String Instruction

Repeat the following string instruction until the CX register has been decre
mented to zero. All string instructions will continue to execute until CX is 0 with the
exception of the SCAS and CMPS instructions, which will cease to execute if the value
of the ZF flag is equal to the low-order bit of this instruction, the z bit.

The encoding for this instruction is:

REP/REPE/REPNE

1 1 1 1 1 001 z 1

tL-z is a don't care bit if the following string primitive is:
MOVS

LODS

STOS

if the folloing string primitive is:
CMPS

SCAS

then if z = 0, then the CMPS or SCAS instruction
will cease execution if the ZF flag is 0
z = 1, then the CMPS or SCAS instruction will

cease execution if the ZF flag is 1

In the following instruction sequence

MOV SUOBUF

LES DtADDR

MOV CXXOUNT

REP

MOVB

COUNT bytes are moved from lOBUF to ADDR by the REP MOVB instruction.

8086 Assembly Language Instruction Set 3-223

O D I T S Z A P C

Data

Memory

PSW

AX

BX

CX

DX

SP

BP

SI

01

PC

CS

OS

SS

ES

Notes:

mm mm

nn nn

Program Memory
Address Calculation

Program (Relative to the
Memory CS Register)

ppppm

ppppm + 1

ppppm + 2

ppppm + 3
mmmm + 1

Ommmm
n n n n 0

PPP pm

XX is a string primitive

REP

Number of cycles: 2 incurred only for recognition of
the repeat prefix, and not included
with each iteration of the following
string primitive

1. The encoding for REPE and REPZ is F3i6. The encoding for REPNE and REPNZ is

F2,6.

2. REP is referred to as an instruction prefix. Other prefixes include LOCK and SEG.
If REP is combined with a LOCK or SEG prefix, certain precautions must be taken.
Consult the next chapter for a discussion of these precautions.

3-224 The 8086 Book

RET

Return from Subroutine (intersegment)

Pop the top two stack bytes into the program counter; these two bytes provide the
offset address of the next instruction to be executed. Pop the next two stack bytes into

the CS register; these two bytes provide the code segment address of the next instruc
tion to be executed. Previous program counter and Code Segment register contents are
lost.

The encoding for this instruction is:

PSW

AX

BX

CX

DX

CS

DS

88

E8

4

RET

8P ss ss

BP

81

D1

PC mm mm

nn nn

tt tt

Data (Relative to
Memory the 88 Register)

Program (Relative to the
Memory 08 Register)

uuuus + 1

uuuus + 2

uuuus + 3

Data Memory

Address Calculation
uuuus + 4

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Ommmm

n n n n 0

ppppm

Program Memory

Address Calculation

Notes:

RET

Number of cycles: 18

1. Every subroutine should have at least one RET instruction. This instruction is the
last instruction executed in the subroutine and returns control to the calling pro
gram.

2. This RET instruction corresponds to the two intersegment CALLs, intersegment

direct and intersegment indirect.

3. No statuses are affected.

8086 Assembly Language Instruction Set 3-225

RET

Return from Subroutine (Intrasegment)

Move the contents of the two top stack bytes to the program counter; i.e., pop the
stack into the program counter. These bytes provide the offset address of the next
instruction to be executed. Previous program counter contents are lost.

The encoding for this instruction is:

RET

"cT

Data (Relative to the

O D I T S Z A P C Memory SS Register)

PSW

AX

BX

CX

DX

ssss + 2

yy

uuuus + 1

uuuus + 2

Program (Relative to the
Memory CS Register)

SP SS SS C3 ppppm

BP
Data Memory

Address Calculation

/ Ossss
/ C tttto)

uuuus

ppppm + 1

SI ppppm + 2

Dl ppppm + 3

PC mm mm

/ Ommmrn^^
I f nnnnO |

CS nn nn

/ X^ PPPPm^

DS
/ Program Memory
/ Address Calculation

SS tt tt

ES

RET

Number of cycles: 8

3-226 The 8086 Book

Notes:

1. This instruction performs the same function as the 8080 instruction RET.

2. Every subroutine should contain at least one RET instruction; this is the last
instruction executed within the subroutine and causes execution to return to the
calling program. Other methods may be used to return to a calling program;
however, typically they are less efficient and more obscure than the straightforward
RET instruction.

3. The 8086 offers three other kinds of RETs. These RETs have some correspondence
to the CALL instructions. This RET corresponds to CALL disp and CALL
mem/reg indirect intrasegment.

4. No statuses are affected.

8086 Assembly Language Instruction Set 3-227

RET dispie

Return from Subroutine and Add to Stack Pointer (Intersegment)

Pop the two top stack bytes into the program counter; these two bytes provide the
offset address for the next instruction to be executed. Pop the next two stack bytes into

the CS register; these two bytes provide the code segment address of the next instruc
tion to be executed. Previous program counter and Code Segment register contents are
lost. Add the data in the two succeeding program memory bytes to the stack pointer.
This has the effect of adjusting the stack pointer past parameters that might have been
placed onto the stack prior to the CALL that corresponds to this RET.

The encoding for this instruction is:

RET

OA disp16

kk jj

High-order 8 bits of the 16-bit unsigned
displacement that is added to the Stack
Pointer

Low-order 8 bits of the 16-bit unsigned
displacement that is added to the Stack
Pointer

3-228 The 8086 Book

PSW

AX

BX

cx

DX

s z P c

SP SS SS

BP

SI

Dl

PC mm mm

CS nn nn

OS

SS tt tt

ES

Program Memory
Address Calculation

RET jjkk
Number of cycles: 17

Data (Relative to the

Memory SS Register)

Program (Relative to the
Memory CS Register)

uuuus + 1

Data Memory
Address Calculation

uuuus + 2

uuuus + 3Ossss
ttttO

uuuuO uuuus + 4

ssss

+ ijkk
+ 4

ppppm

rrr r ppppm + 1

ppppm + 2

ppppm + 3

Ommmm
nn n n 0

ppppm

Notes:

1. No statuses are affected.

2. Every subroutine should have at least one RET instruction. This instruction is the
last instruction executed in the subroutine and resumes execution in the calling pro
gram at the instruction after the corresponding CALL.

3. This RET instruction corresponds to the two intersegment CALLs, intersegment
direct and intersegment indirect.

8086 Assembly Language Instruction Set 3-229

RET disp16

Return from Subroutine and Add to Stack Pointer (Intrasegment)

Pop the stack into the program counter; the two bytes moved provide the offset
address of the next instruction to be executed. Previous program counter contents are
lost. Add the data in the two succeeding program memory bytes to the stack pointer.
This has the effect of adjusting the stack pointer past parameters that might have been
placed onto the stack prior to the CALL that corresponds to this RET.

The encoding for this instruction is:

RET

"cT

disp16

- High-order 8 bits of
displacement that is

- Low-order 8 bits of

High-order 8 bits of the 16-bit unsigned
displacement that is added to the Stack Pointer

Low-order 8 bits of the 16-bit unsigned
displacement that is added to the Stack Pointer

S Z

PSW|

AX

BX

CX

DX

Data (Relative to the
Memory SS Register)

Data Memory
Address Calculation

SP ss SS

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS tt tt

ES

Ossss
ttttC
uuuus

Program (Relative to the
Memory CS Register)

Ommmm

n n n nO
p pppm

C2

kk

' y \ ii

J
Program Memory

Address Calculation

RET jjkk
Number of cycles: 12

3-230 The 8086 Book

Notes:

1. Every subroutine should contain at least one RET instruction; this is the last
instruction executed within the subroutine and causes execution to return to the

calling program.

2. The 8086 offers three other kinds of RETURN instructions. These RETURNS have

some correspondence to the CALL instructions. This RET corresponds to CALL
disp and CALL mem/reg indirect intrasegment.

3. No statuses are affected.

8086 Assembly Language Instruction Set 3-231

ROL mem/reg,count

Rotate Register or Memory Location Left

Rotate the contents of the specified register or memory location left by the
specified number of bits. The number of bits to rotate, represented by the variable
count, is either one or the number contained in the CL register.

The encoding for this instruction is:

ROL mem/reg, count

1 1 0 1 0 0 c w mod 000 r/m

Addressing mode byte(s) as described
earlier in this chapter

w = 0 8-bit operation
w = 1 16-bit operation

c = 0 Rotate left one bit

c = 1 Rotate left the number of bits

specified by the CL register

Suppose that the BX register contains ABIF,^ and the CL register contains OSi^. After
the instruction

ROL BX,CL

has executed, the BX register will contain 58FD,6 and the Carry flag will be set to 1.

3-232 The 8086 Book

O D I T S Z A P C

PSW X

AX

BX XX yy

CX zz

DX

SP

BP

SI

01

PC mm mm

CS nn nn

OS

SS

ES

Rotate xxyy^
to the left

zz times

mmmm + 2

Ommmm
n n n n 0

p pppm

Data

Memory

Program (Relative to the
Memory CS Register)

03

C3

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

Notes

1. Th

ROL BX.CL

Number of cycles: Register (N-bit rotate): 8 + (4 • N)
Register (1-bit rotate): 2
Memory (N-bit rotate): 20 + EA + (4 • N)
Memory (1-bit rotate): 15 + EA

is instruction performs the same function as the 8080 instruction RLC. This
instruction does, however, allow a great deal more flexibility in that multi-bit rotates
are allowed, rotations of 16-bit quantities are allowed, and any register or memory
location may be rotated.

2. Whether an 8- or 16-bit quantity is to be rotated is not immediately obvious when
considering the syntax of this instruction. The assembler used will have a great deal
to do with how this difficulty is solved.

8086 Assembly Language Instruction Set 3-233

ROR mein/reg,count

Rotate Register or Memory Location Right

Rotate the contents of the specified register or memory location right by the
specified number of bits. The number of bits to rotate, represented by the variable
count, is either one or the number contained in the CL register.

The encoding for this instruction is:

ROR mem/reg,count

[1 1 0 1 0 0 c w I [mod 001 r/m [

Addressing mode byte(s) as described
earlier in this chapter

w = 0 8-bit operand
w=1 16-bit operand

c = 0 Rotate right one bit

c = 1 Rotate right the number of bits
specified by the CL register

Suppose that the DS register contains FOOOie, the SI register contains 06B2i6 and the
byte at memory location F06B2i6 contains 0415. After the instruction

ROR (Sll,1

has executed, the byte at memory location F06B2i6 will contain 0215 and the Carry and
Overflow statuses will be set to 0.

3-234 The 8086 Book

O D I T S Z A P C

PSW X

AX

BX

CX

DX

Data

Memory

vvvvu + 1

SP

BP

SI uu uu

Dl

PC mm mm

CS nn nn

DS tt tt

SS

ES

Data Memory
Address Calculation

Ouuuu
ttttO

mmmm + 2

Ommmm
n n n n 0
p pppm

(Relative to the

DS Register)

Program (Relative to the
Memory CS Register)

DO

DC

Ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

Notes:

ROR [Sl].1

Number of cycles: Memory (1-bit rotate): 15 + EA
Memory (N-bit rotate): 20 + EA + (4 • N)
Register (1-bit rotate): 2
Register (N-bit rotate): 8 + (4 • N)

1. This instruction performs the same function as the 8080 instruction RRC. This
instruction does, however, allow a great deal more flexibility in that multi-bit rotates
are allowed, rotations of 16-bit quantities are allowed, and any register or memory
location may be rotated.

2. Note that whether an 8- or 16-bit quantity is to be rotated cannot be determined
from the instruction

8086 Assembly Language Instruction Set 3-235

SAHF

Store the AH Register Into the 8080 Flags

This instruction moves the contents of the AH register into the low-order 8 bits of
the Flags register. The bits in the AH register are used as follows:

Bit 7: Store into the Sign Flag
Bit 6: Store into the Zero Flag

Bit 5: Ignore

Bit 4: Store into the Arithmetic Flag

Bit 3: Ignore

Bit 2: Store into the Parity Flag

Bit 1: Ignore

Bit 0: Store into the Carry Flag

The encoding for this instruction is:
SAHF

9E

For example, suppose that the AH register contains Executing an

SAHF

instruction would set the Sign, Zero, Parity, and Carry statuses to 1 while setting the
Arithmetic flag to 0.

3-236 The 8086 Book

PSW

AX XX

BX

ex

DX

SP

BP

SI

01

PC mm mm

CS nn nn

OS

SS

ES

SAHF

Number of cycles: 4

Notes:

Data

Memory

Program (Relative to the
Memory CS Registerl

mmmm + 1

Ommmm
n n n nO
ppppm

9E ppppm

ppppm + 1

ppppm -f 2

ppppm + 3

Program Memory
Address Calculation

1. No registers, other than the Flags register, are affected. The Overflow, Direction,
Interrupt, and Trap flags are not affected.

2. This instruction is used along with POP AX to emulate the 8080 instruction
POP PSW.

8086 Code 8080 Code

POP AX POP PSW

SAHF

Note that for the 8086 sequence to make sense, the sequence

LAHF

PUSH AX

must have been used to save the 8080 flags.

8086 Assembly Language Instruction Set 3-237

SAR mem/reg,count

Shift Register or Memory Location Right

Shift the contents of the specified register or memory location right by the
specified number of bits. The number of bits to shift, represented by the variable count,
is either one or the number contained in the CL register. This is an arithmetic right shift.

The encoding for this instruction is:

SAR mem/reg,count

1 1 0 1 0 0 0 w mod 111 r/m

Addressing mode byte(s) as described
earlier in this chapter

-w = 0 8-bit operation
w = 1 16-bit operation

-c = 0 Shift right one bit
c = 1 Shift right the number of bits

specified by the CL register

Suppose that the CL register contains 05,6, the DI register contains ISOAi^, the DS
register contains FSOOi^ and the word at memory location F980A,6 contains 0064,6.
After the instruction

SAR [DIl.CL

has executed, the word at memory location F980A,^ will be 0003,4.

3-238 The 8086 Book

0 D , T S z A P c

pswl X X X ? X X

AX

BX

CX

DX

SP

BP

SI

Di

PC

OS

DS

88

E8

XX

uu uu

mm mm

nn nn

tt tt

Shift right
XX times

Data Memory
Address Calculation

Ouuuu
tttto

mmmm + 2

Data (Relative to the
Memory DS Register)

vvvvu

vvvvu + 1

vvvvu + 2

Program (Relative to the
Memory CS Register)

D3

3D

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Ommmm ^ Program Memory
pppp^ J Address Calculation

SAR [DIl.CL
Number of cycles: Memory (N-bit shift): 20 + EA + (4 • N)

Memory (1-bit shift): 15 + EA
Register (N-bit shift): 8 + (4 • N)
Register (1-bit shift): 2

Notes:

1. This is an arithmetic right shift as opposed to a logical right shift. The differences
are:

Arithmetic right (SAR)

Logical right (SHR)

Shift all bits right once. Leave the high-
order bit in the same state. This has the

effect of sign extending the high-order
bit. If a multi-bit shift is performed,
sign extend the high-order bit as far as
is necessary.

Shift all bits right once. Shift a zero into
the high-order bit. If a multi-bit shift is
performed, continue shifting in zeros
as necessary.

8086 Assembly Language Instruction Set 3-239

SBB ac.data

Subtract Immediate from AX or AL Register with Borrow

Subtract the Immediate data in the succeeding program memory byte(s) from the
AL (8-bit operation) or AX (16-bit operation) register with borrow. The subtraction is
performed using twos complement methodology.

The encoding for this instruction is:

SBB ac.data

0 0 0 1 1 1 0 w kk]]

High-order byte of the immediate
operand. This byte is only present if w = 1

Low-order byte of the immediate
operand. This byte is always present

-w = 0 8-bit operation. AL is
subtrahend and destination for result

w = 1 16-bit operation. AX is

subtrahend and destination for result

Suppose that the AX register contains 6B3Ai6 and the Carry status is 1. After the
instruction

SBB AX.4D2CH

has executed, the AX register will contain lEOD 16-

6B3Aie = 0110
Two's Comp. of 4D2Ci0 =1011

Two's Comp. of Carry =1111

1011 0011 1010

0010 1101 0100

1111 1111 1111

0001 1110 0000 1101

3 one bits, P is set to 0

AF is set to 1

Overflow is set to 0

Sign is set to 0

Carry out of the high-order bit is

inverted. Carry is set to 1

Non-zero result, set Z to 0

3-240 The 8086 Book

S Z A P C

Data

Memory

PSW X

AX XX yy

BX

CX

DX

SP

BP

SI

Dl

PC mm mm

cs nn nn

OS

88

E8

Program (Relative to the
Memory CS Register).

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

mmmm + 3

Ommmm

n n n n 0
ppppm

Program Memory
Address Calculation

SBB AX.jjkk
Number of cycles: 4

Notes:

1. This instruction performs the same function as the 8080 instruction SBI data;
however, this instruction also allows 16-bit operations.

8086 Assembly Language Instruction Set 3-241

SBB mem/reg,data

Subtract Immediate Data from Register or Memory Location with Borrow

Subtract the immediate data in the succeeding program memory byte(s) from the
specified register or memory location with borrow. An 8- or 16-bit operation may be
specified. The subtraction is performed using twos complement methodology.

The encoding for this instruction is:

SBB mem/reg,data

1 000 0 0 s w mod 011 r/m 1 kk 11

1 High-order byte of the immediate
operand. This byte is only present if
s = 0 and w = 1.

Low-order byte of the immediate
operand. This byte is always present.

-Addressing mode byte(s) as described
earlier in this chapter.

■ w = 0 8-bit operation
w = 1 16-bit operation

- s is the sign extension bit. If w = 0, this
bit is ignored.
If w = 1, then s = 0; all lB bits of the

immediate operand are present.

s = 1, only the low-order 8 bits of the

immediate operand are present. The
high-order 8 bits of the 16-bit operand
are formed by sign extending the high-
order bit of kk.

For example, if the Carry Status is 0, the SS register contains 2F00i6, the BP register
contains OFbAi^, the contents of the DI register are OOlSi^, and the contents of the word
at memory location 2FF82i6 are 0400i6, then executing a

SBB [BP + SI], 03F8H

will result in the word at memory location 2FF82i6 being altered to 0008|6.

04001 e = 0000 0100 OOOO 0000
Two's Comp. of 03F816 = 1111 1100 0000 1000

Two's Comp. of Carry = 0000 0000 0000 0000

0000 0000 0000 1000

- 1 one bit, P is set to 0

- AF is set to 0

Overflow is set to 0

- Sign is set to 0

- Carry out of high-order bit is
inverted. Carry is set to 0

Non-zero result, set Z to 1

3-242 The 8086 Book

PSW X

AX

BX

cx

DX

s z P c

SP

BP rr rr

SI uu uu

Dl

PC mm mm

CS nn nn

DS

SS tt tt

ES

Data (Relative to the

Memory SS Register)

Data Memory

Address Calculation

Ouuuu

mmmm + 4

Ommmm

yy vvvv

vvvv + 1

vvvv + 2

Program (Relative to the
Memory CS Register)

81

18

kk

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

see [BP + Sll.jjkk

Number of cycles: Memory operand: 17 + EA
Register operand: 4

8086 Assembly Language Instruction Set 3-243

SBB mem/regi, mem/reg2

Subtract: • Register from Register with Borrow
• Register from Memory with Borrow

• Memory from Register with Borrow

Subtract the contents of the register or memory location specified by mem/regj
and the Carry status from the contents of the register or memory location specified by
mem/reg,. An 8- or 16-bit operation may be specified. Either mem/regj or mem/reg2
may be a memory operand, but one of the operands must be a register operand.

The encoding for this instruction is:

SBB mem/regi, mem/reg2

I 0 0 0 1 1 0 d w I I mod reg r/m |

Addressing mode byte(s) as described
earlier in this chapter.

w = 0 8-bit operation
w = 1 16-bit operation

d is the direction flag. If d = 0, then the
operand described by mod and r/m is
mem/reg 1 and the operand described
by reg is mem/reg2. If d = 1, then the
operand described by mod and r/m is
mem/reg2 and the operand described
by reg is mem/regi

Consider the case where the DL register contains 03 the BL register contains 64i6, and
the Carry status is 1. After the instruction

SBB BL,DL

has executed, the BL register will contain 60i6 and the statuses will be set as follows:

64ie = 0110 0100
Two's Comp. of O3i0 = 1111 1101

Two's Comp. of 1 = 1111 1111

0110^0000

t_2 one bits, P is set to 1

Carry out of bit 3, AF is set to 0

Overflow is set to 0

Sign is set to 0

Carry out of high-order
bit. Carry is set to 0

Non-zero result, set Z to 0

3-244 The 8086 Book

PSW X

s z

AX

BX XX

CX

DX yy

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS

ES

mmmm + 2

Ommmm

n n n n 0
pp ppm

Data

Memory

Program (Relative to the
Memory CS Register)

18

D3

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

SBB BLDL

Number of cycles: Register to register: 3
Register to memory: 16 + EA
Memory to register: 9 + EA

8086 Assembly Language Instruction Set 3-245

SCAS

Compare Memory with AL or AX Register

Compare the contents of the memory location addressed by the DI register with
the AL (8-bit operation) or AX (16-bit operation) register. The comparison is per
formed by subtracting the contents of the memory location addressed by the DI register
from the AL or AX register and using the result to set the flags. Neither the memory
location nor the AX register is affected. The DI register is incremented/decremented
depending on the value of the DF flag.

The encoding for this instruction is:

SCAS

1 0 1 0 1 1 w

= 0 An 8-bit comparison. The DI
register is incremented by 1 if
DF = 0. The DF register is
decremented by 1 if DF = 1

w = 1 A 16-bit comparison. The DI
register is incremented by 2 if
DF = 0. The DF register is
decremented by 2 if DF = 1

Consider the case where the DI register contains OOOOi^, the ES register contains ISOOi^,
the DF flag is 0, the contents of memory location ISOOOi^ are 09i6, and the contents of
the AL register are OD,^. After the instruction

SCAS BYTE

executes, the DI register will contain 0001,5 and the flags will be set as follows:

ODie = oooo 1101
Two's Comp. of 09i 0 =1111 0111

0000^0100

-1 one bit, P is set to 0

- Carry out of bit 3, AF is set to 1

-Overflow is set to 0

-Sign is set to 0

-Carry out of high-order bit

is complemented, Carry is set to 0

Non-zero result, set Z to 0

3-246 The 8086 Book

S Z P C

PSW

AX

BX

cx

DX

gggg + 1

Data Memory

Address Calculation

Data (Relative to the

Memory ES Register)

yy

Program (Relative to the
Memory CS Register)

SP
// 3gggg ^
// f hhhhO 1

AE ppppm

BP // rrrrg ̂ ^ ppppm

SI
ppppm

Dl gg gg
/f mmmm + 1) ppppm

PC mm mm

>^^mmmm^v
f n n n n 0 1

CS nn nn

DS
Program Memory
Address Calculation

SS
/

ES hh hh

SCAS

Number of cycles; 15 for a single occurrence

9 + (15 times repetition when preceded by REP prefix)

Notes:

1. The REP prefix and/or the LOCK prefix may be used with this instruction. If the
REP prefix and the LOCK prefix are used with this instruction, certain problems
may result. An analysis of this difficulty is presented in the next chapter.

8086 Assembly Language Instruction Set 3-247

SEG segreg

Override Default Segment Register

Use the specified segment register to compute the data memory address for the
instruction this prefix precedes; i.e., use the contents of the specified segment register as
the segment address for the data memory address calculation.

The encoding for this instruction is:

SEG segreg

0 0 1 s s 1 10

T - 88 is two bits specifying the segment
register.

ss = 00 for ES

01 for CS

10 for 88

11 for D8

Consider the following situation: the DS register contains 1000,5, the ES register con
tains 2000,5, the BX register contains 0008,5, the word at memory location 10008,5 is
FEFE,5, and the word at memory location 20008,5 is 060A,5. After the instructions

SEG ES

MOV AX,[BX)

have executed, the AX register will contain 060A,5.

3-248 The 8086 Book

PSW

AX

BX

cx

DX

s z P c

SP

BP

Si

Dl

PC mm mm

CS nn nn

DS

SS

ES

mmmm + 1

Ommmm
n n n n 0

P pppm

Program Memory
Address Calculation

Data

Memory

Program (Relative to the
Memory CS Register)

16 ppppm

ppppm + 1

ppppm + 2

ppppm + 3

SEG ES

Number of cycles: 2

8086 Assembly Language Instruction Set 3-249

SHL mem/reg,count
SAL mem/reg,count
Shift Register or Memory Location Left

Shift the contents of the specified register or memory location left by the specified
number of bits. The number of bits to shift, represented by the variable count, is either
one or the number contained in the CL register. This is a logical left shift.

The encoding for this instruction is:

SHL mem/reg,count

1 1 0 1 0 0 c w mod 100 r/m

earlier In this chapter

— w = 0 8-bit operand
w = 1 16-bit operand

-c = 0 Shift left one bit
c = 1 Shift left the number of bits

specified by the CL register

Suppose that the CL register contains 02,^ and the SI register contains A450|(,. After the
instruction

SHL SLCL

has executed, the SI register will contain 9140,6 and the Carry status will be 0.

3-250 The 8086 Book

PSW XE

AX

BX

CX

DX

Notes:

1. Th

S Z A P C

Data

Memory

m

Program (Relative to the
Memory CS Register)

SP

BP

SI XX yy

Dl

PC mm mm

CS nn nn

DS

SS

ES

Shift xxyy
left zz
times

mmmm + 2

Ommmm
n n n n 0
ppppm

D3

E6

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

SHL SICL

Number of cycles: Register (N-bit shift): 8 + (4 • N)
Register (1-bit shift): 2
Memory (N-bit shift): 20 + EA + (4 • N)
Memory (1-bit shift): 15 + EA

is instruction can be used to perform multiplications in addition to shifts. Since
the MUL and IMUL instructions require at least 71 cycles to execute, there are
occasions where using shifts to perform multiplication becomes an attractive solu
tion. Typically, these situations arise when optimizing the speed of the code is more
of a factor than memory conservation, and when the multiplication to be performed
will always be a power of two, or will always be some constant. Consider the follow
ing cases:

CALL MULTBY8

MULTBY8 MOV

SAL

RET

CL.3

AX.CL

8086 Assembly Language Instruction Set 3-251

The MULTBY8 routine requires 5 bytes of code for the routine and 3 bytes of
code for the CALL. Instead of requiring 71 cycles (minimum) to perform the
multiply, however, 19 cycles are necessary for the CALL and 32 cycles are necessary
for the routine.

CALL SAL$THREE$TIMES

SAL$THREE$TIMES SAL
SAL

SAL

RET

This routine requires an additional 2 bytes; however, this routine executes in a mere
14 cycles.

It is clear that selecting routines which only multiply by powers of two will certainly
show off the SHL instruction. Consider the case of a multiply by 15.

CALL MULTBY15

MULTBY15 MOV CL.4
MOV DX.AX

SAL AL,CL

SUB AX,DX

RET

This routine requires 9 bytes of code and 41 cycles, an additional 19 for the CALL.
This is only marginally faster than using the MUL instruction. This routine can
work much faster if individual SAL instructions are included.

CALL MULTBY15

MULTBY15 MOV DX.AX
SAL

SAL

SAL

SAL

SUB AX.DX

RET

In this case, the routine needs only 21 cycles to operate.

2. 8- or 16-bit rotation? This instruction, the way it is expressed in this description,
doesn't specify this.

3-252 The 8086 Book

SHR mem/reg,count

Shift Register or Memory Location Right

Shift the contents of the specified register or memory location right by the
specified number of bits. The number of bits to shift, represented by the variable count,
is either one or the number contained in the CL register. The bit shifted into the high-
order bit is a zero. This is a logical right shift.

The encoding for this instruction is:

SHR mem/reg, count

1 1 0 1 0 0 0 w I mod 101 r/m |

-Addressing mode byte(s) as described
earlier in this chapter

i 0 8-bit operand

' 1 16-bit operand
-w =

w :

- c = 0 Shift right one bit
c = 1 Shift right the number of bits

specified by the CL register

Suppose that the BL register contains FO,^. After the instruction

SHR BL

has executed, the contents of the BL register will be 78,5.

8086 Assembly Language Instruction Set 3-253

O D I T S Z A P C

PSW|

AX

BX

CX

DX

shift right

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS

SS

ES

Data

Memory

Program (Relative to the
Memory CS Register)

mmmm + 2

Ommmm

n n n n 0
ppppm

DO

EB

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

SHR BL

Number of cycles: Register (1-bit shift): 2
Register (N-bit shift): 8 + (4 • N)
Memory (1-bit shift): 15 + EA
Memory (N-bit shift): 20 + EA + (4«N)

Notes:

1. This is a logical right shift as opposed to an arithmetic right shift. The differences are

Logical right (SHR) Shift all bits right once. Shift a zero into the high-order
bit. If a multi-bit shift is performed, continue shifting in
zeros as necessary.

Arithmetic right (SAR) Shift all bits right once. Leave the high-order bit in the
same state. This has the effect of sign extending the
high-order bit. If a multi-bit shift is performed, sign
extend the high-order bit as far as is necessary.

3-254 The 8086 Book

STC

Set the Carry Flag

This instruction is used to set the Carry status to 1. No other statuses or register
contents are affected.

The encoding for this instruction is:

STC

"fT

O D I T S Z A P C

PSW

AX

BX

ex

DX

Data

Memory

Program (Relative to the
Memory OS Register)

SP F9 ppppm

BP ppppm + 1

SI ppppm + 2

Dl ^ N ppppm + 3

PC mm mm
^ r mmmm + 1 ^

CS nn nn ^ >»'*'''^^Ommmm^*'*N^
nnnnO)
ppppm^^DS

SS Program Memory
Address Calculation

ES

STC

Number of cycles: 2

8086 Assembly Language Instruction Set 3-255

STD

Set the Direction Flag

This instruction is used to set the Direction flag to 1. No other statuses or register
contents are affected. This instruction makes string operations perform auto-decrement
on the pointers used by the string operations.

The encoding for this instruction is:

STD

Td'

O D I T S Z A P C

PSWj

AX

BX

cx

DX

Data

Memory

Program (Relative to the
Memory CS Register)

SP FD ppppm

BP
ppppm + 1

SI
ppppm + 2

Dl

^ f mmmm +1 j
ppppm + 3

PC mm mm

CS nn nn
Ommmm

' nnnnO ;

DS

SS
Program Memory
Address Calculation

ES

STD

Number of cycles: 2

3-256 The 8086 Book

STI

Set the Interrupt Flag

Set the Interrupt flag to 1 after the execution of the next Instruction. This has the
effect of enabling interrupts.

The reason for waiting one instruction is as follows. Most interrupt service
routines end with the two instructions:

STI

RET

; ENABLE INTERRUPTS

; RETURN TO INTERRUPTED PROGRAM

If interrupts are processed serially, then for the entire duration of the interrupt
service routine all interrupts are disabled — which means that in a multi-interrupt
application, there is a significant possibility for one or more interrupts to be pending
when any interrupt service routine completes execution.

If interrupts were acknowledged as soon as the STI instructions had executed,

then the Return instruction would not be executed. Under these circumstances returns

would stack up one on top the other and unnecessarily consume stack memory space.
This may be illustrated as follows:

Interrupt

Interrupt

Interrupt

'Interrupt service routines

By inhibiting interrupts for one more instruction following execution of STI, the 8086
CPU ensures that the RET instruction gets executed in sequence:

STI

RET

;ENABLE INTERRUPTS

;RETURN FROM INTERRUPT

It is not uncommon for interrupts to be kept disabled while an interrupt service routine
is executing. Interrupts are processed serially:

Interrupt Interrupt Interrupts

Interrupt service

routine

Interrupt service
routine

Interrupts

8086 Assembly Language Instruction Set 3-257

PSW

AX

BX

cx

DX

Memory

Program (Relative to the
Memory CS Register)

SP FB ppppm

BP ppppm + 1

SI ppppm + 2

Dl

mmmm + 1 J
ppppm + 3

PC mm mm

CS nn nn ^ Ommmm^^^
nnnnO J

DS
PPPPm

SS
Program Memory
Address Calculation

ES

ST!

Number of cycles; 2

Notes:

1. This instruction performs the same function as the 8080 instruction EL

3-258 The 8086 Book

STOS

Store AL or AX Register Into Memory

Store the AL (8-bit operation) or AX (16-bit operation) register into the memory
location addressed by the DI register. The DI register is incremented/decremented
depending on the value of the DF flag.

The encoding for this instruction is:

STOS

1 0 1 0 1 0 1 w

0 8 bits are transferred. The DI

register is incremented by 1 if
DF = 0. The DI register is
decremented by 1 if DF = 1

w = 1 16 bits are transferred. The DI

register is incremented by 2 if
DF = 0. The DI register is
decremented by 2 if DF = 1.

For example, suppose that the DF flag is 1, the DI register contains 000A|^, the ES
register contains 2800,6, the AX register contains 0604,6- After the instruction

STOS WORD

has executed, the contents of the word at memory location 2800A,6 will be 0604,6, and
the DI register will contain 0008,6-

8086 Assembly Language Instruction Set 3-259

O D I T S Z A P C

Data (Relative to the

Memory ES Register)

PSW

AX XX yy

BX

CX

DX

SP

BP

SI

Dl gg gg

PC mm mm

CS nn nn

DS

SS

ES hh hh

Program (Relative to the
Memory CS Register)

rrrrg + 1

rrrrg + 2

ppppm

ppppm + 1

gggg ± 2
ppppm + 2

ppppm + 3

mmmm + 1

Ommmm

n nn n 0
ppppm

Program Memory
Address Calculation

Ogggg
hhhhO

rrrrg

Data Memory
Address Calculation

STOS WORD

Number of cycles: 11 per single occurrence
9 + (10 times repetition when preceded by the REP prefix)

Notes:

1. No statuses are affected.

2. The segment address for this instruction is always contained in the ES register. No
segment override prefix may be used for this instruction. If a segment override
prefix is present, it will be ignored.

3. This instruction may be preceded by the REP prefix and/or the LOCK prefix. Using
the REP and the LOCK prefixes in conjunction with this instruction may cause
problems. Consult the next chapter for a complete discussion of these potential
difficulties.

4. This instruction is very useful in setting entire buffers or data areas to a particular
value. Consider the following instruction sequence:

LES DUOB$COSTING$ARRAY
MOV CXJOB$COSTING$ARRAY$WORD$LENGTH
MOV AX,OOOOH

REP

STOS WORD

After this sequence has executed, the JOB$COSTING$ARRAY will contain all O's.

5. This instruction has an obvious problem. How does the assembler determine

whether 8 or 16 bits are to be stored? For a discussion of this problem, consult the
last section of this chapter.

3-260 The 8086 Book

SUB ac,data

Subtract Immediate Data from the AL or AX Register

This instruction is used to subtract immediate data from the AL (8-bit operation)
or the AX (16-bit operation) register. The subtraction is performed utilizing twos com
plement methodology.

The encoding for this instruction is:

SUB ac.data

00101 10w kk 11

1

(

1

High-order 8 bits of the immediate
operand. This byte is only present if w = 1

Low-order 8 bits of the immediate

operand. This byte is always present.

• w = 0 8-bit operation. AL is the
subtrahend and the destina

tion of the result.

w = 1 16-bit operation. AX is the
subtrahend and the destina

tion of the result.

For example, suppose that the AL register contains 611^. After the execution of the
instruction

SUB AU065H

the contents of the accumulator will be FCj^.

6116 :
Twos comp. of BBig =

0110 0001

1001 1011

1111 1100

LSix 1 bits, set the Parity flag to 1

Non-zero result, set ZF to 0

No Carry so set AF to 0

Overflow is 0

Set the Sign flag to 1

Set Carry to 1

Notice that the resulting Carry is complemented.
Note that FC,6 is the twos complement representation of -4, which is indeed the

result we expect when we subtract 65 from 611^.

8086 Assembly Language Instruction Set 3-261

O D I T S Z A P C

PSW

AX

BX

CX

DX

E

Memory

XX - kk

Program (Relative to the
Memory CS Register)

SP 2C ppppm

BP kk ppppm + 1

SI
r mmmm + 2 j ppppm + 2

Dl ppppm + 3

PC mm mm

CS nn nn

DS f^nnnnO^"^\ Proaram Memory
SS

V V Addross Calculatlonppppm

ES

Notes:

SUB ALkk

Number of cycles; 4

1. This instruction performs the same function as the 8080 instruction SUI data. This
instruction, however, also allows 16-bit operations.

3-262 The 8086 Book

SUB mem/reg,data

Subtract Immediate Data from Register or Memory Location

Subtract the immediate data in the succeeding program memory byte(s) from the
specified register or memory location. An 8- or 16-bit operation may be specified.

The encoding for this instruction is:

SUB mem/reg,data

1 0 000 0 s w mod 101 r/m kk 1 ii

The high-order byte of the Immediate
operand. This byte is only present if w = i

The low-order byte of the immediate
operand. This byte is always present.

• Addressing mode byte(s) as described
earlier in this chapter.

- w = 0 8-bit operation
w = 1 16-bit operation

. s is the sign extension bit. If w = 0, this
bit is ignored.
If w = 1. then

s = 0 all 16 bits of the immediate
operand are present,

s = 1 only the low-order 8 bits of the
immediate operand are present.
The high-order 8 bits of the 16-
bit operand are formed by sign
extending the high-order bit of
kk.

Suppose that the DS register contains 30001 the SI register contains 004015, and the
word at memory location 30054i6 contains 4336,6. After the instruction

SUB ISI + 14H1. 0136H

has executed, the word at memory location 30054,6 will contain 4200,6- The flags will be
set as follows:

433610 = 0100 0011 0011 0110
Two'sComp. of 013616 = 1111 1110 1100 1010

0100 0010 0000 0000

- Zero one bits in the

low-order eight bits, set P to 1

- AF set to 0

- Overflow to 0

- Sign to 0

-Complement Carry out, set C to 0

Non-zero result, set Z to 0

8086 Assembly Language Instruction Set 3-263

O D I T S Z A P C

Data (Relative to the

Memory DS Register)

PSW

AX

BX

CX

DX

SP

BP

SI gg gg

Dl

PC mm mm

CS nn nn

DS hh hh

SS

ES

Data Memory

Address Calculation

Ogggg
Oqqqq
hhhhO
r rrr r

Sign extend
qq to qqqq

mmmm + 5

Ommmm

nnnnO

pppm

yy

rrrrr + 1

rrrrr + 2

Program (Relative to the
Memory OS Register)

81

60

qq

kk

ppppm

ppppm + 1

ppppm + 2

ppppm + 3

Program Memory
Address Calculation

SUB [SI + qq], jjkk
Number of cycles: immediate from memory: 17 + EA

immediate from register: 4

Notes:

1. This instruction is not usually applied to subtracting immediate data from the AX or
AL register. The instruction SUB ac,data is provided for this purpose.

3-264 The 8086 Book

SUB mem/regi, mem/rega
Subtract: * Register from Register

* Register from Memory

• Memory from Register

Subtract the contents of the register or memory location specified by mem/reg2
from the contents of the register or memory location specified by mem/regj. An 8- or
16-bit operation may be specified. Either mem/reg, or mem/reg2 may be a memory
operand, but one of the operands must be a register operand.

The encoding for this instruction is:

SUB mem/regi, mem/reg2

mod reg r/m

Addressing mode byte(s) as described
earlier in this chapter

w = 0 8-bit operation
w = 1 16-bit operation

d is the Direction flag. If d = 0, then the
operand described by mod and r/m is
mem/regi and the operand described
by reg is mem/reg2. If d = 1, then the
operand by mod and r/m is mem/reg2
and the operand described by reg is
mem/regi

Suppose that the DH register contains 41,6, the SS register contains 0000,6, the BP
register contains 00E4,6, and the byte at memory location 000E8,6 contains 5A,6. After
the instruction

SUB DH,[BP + 4]

executes, the DH register will contain E7,6, and the statuses will be set as follows:

4iie = oioo 0001
Two's comp. of 5Ai 0 = 1010 0100

1110 0111

- Six one bits, set P to 1

- No carry, set AF to 1

-Overflow is set to 0

-Set S to 1

-No carry of high-order bit, set C to 1

Non-zero result, set Z to 0

8086 Assembly Language Instruction Set 3-265

PSW X

AX

BX

CX

DX XX

Data (Relative to the
Memory SS Register)

yy

rrrrr + 1

Program (Relative to the
Memory CS Register)

SP IfK ppppm

BP 99 99 n extenoV
I f kk to 16
\ ̂s^bits kkkk

76 ppppm + 1

SI kk ppppm + 2

Di ppppm + 3

PC mm mm

f mmmm + 3

CS nn nn

DS

SS hh hh
Tx^nDmmmrfT^
T n n n n 0 \ Program Memory

y Address Calculation
ES X ̂ ppppn^

SUB DH.IBP + kkl

Number of cycles: Memory to Register: 9 + EA
Register to Memory: 16 + EA
Register to Register: 3

3-266 The 8086 Book

TEST ac,data

Test Immediate Data with AX or AL Register

AND the immediate data in the succeeding program memory byte(s) with the
contents of the AL (8-bit operation) or the AX (16-bit operation) register, but do not
return the result to the register.

The encoding for this instruction is:

TEST ac.data

1 0 1 0 1 0 0 w kk j]

High-order 8 bits of the immediate
operand. This byte is only present if w = 1

Low-orcjer byte of the immediate
operand, this byte is always present.

w = 0 8-bit operation
w = 1 16-bit operation

As an example, consider the situation where the AX register contains 73 ACj^. After the
instruction

TEST AX.0040H

has executed, the AX register will still contain TSAC,^, but the Flags register will have
been altered to reflect the ANDing of 73ACj^ and 004()i6.

73ACi6 =
0040ie '

0111

0000

0011

0000

1010

0100

1100

0000

0000 0000 0000 0000

LZero one bits, set P to 1

AF is undetermined

Overflow is cleared to 0

Sign is set to 0

Carry is cleared to 0

Zero result, set Z to 1

8086 Assembly Language Instruction Set 3-267

PSW

s z

AX XX yy

BX

CX

DX

xxyy Ajjkk

Data

Memory

Program (Relative to the
Memory CS Register)

SP
A9 ppppm

BP
kk ppppm + 1

SI
C mmmm + 3) ii ppppm + 2

Dl
ppppm + 3

PC mm mm

CS nn nn

DS
^^^mmrnrTr^'"V. program Memory

ss

V y AririrAfift rairumtion

V ppppnrj^„^

ES

TEST AXJjkk
Number of cycles: 4

Notes:

1. If it is desired to TEST the contents of other registers or memory locations, consult
the TEST mem/reg,data instruction.

3-268 The 8086 Book

TEST mem/reg,data
Test Immediate Data with Register or Memory Location

AND the immediate data in the succeeding program memory byte(s) with the
contents of the specified register or memory location, but do not return the result to the
specified register or memory location. An 8- or 16-bit operation may be specified.

The encoding for this instruction is:

TEST rnem/reg.data

1 1 1 1 0 1 1 w mod 000 r/m kk jj

High-order byte of the immediate
operand. This byte is only present if w = 1

Low-order byte of the immediate
operand. This byte is always present.

Addressing mode byte(s) as described
earlier in this chapter.

w = 0 8-bit operation
w = 1 16-bit operation

For example, consider the case where the SI register contains 03F6i6. After the instruc
tion

TEST SI.0400H

executes, the contents of the SI register will be unchanged; however, the flags will be set
to reflect the result of ANDing 03F6,6 and 0400,6.

03F6i6 = 0000 0011 1111 0110
0400ie = 0000 0100 OOOO 0000

0000 0000 0000 0000

Zero one bits, set P to 1

AF is undefined

Overflow is cleared to 0

Sign is set to 0

Carry is cleared to 0

Zero result, set Z to 1

8086 Assembly Language Instruction Set 3-269

pswl 0

S z A P c

X 0

xxyy A jjkk

Data

Memory

Program (Relative to the
Memory CS Register)

SP
F7 ppppm

BP / ̂ C6 ppppm + 1

SI XX VV
^ (mmmm + 4) \ ̂ kk ppppm + 2

Dl ^^)i ppppm + 3

PC mm mm

CS nn nn

DS
^^'"'^mmrnm , Program Memory
f nnnnU l A^IHroee r^olr^i ilfktirkn

SS

V y Address calculation

^ ppppm_^^

ES

TEST Sl.jjkk

Number of cycles: Immediate with register: 5
Immediate with memory: 11 + EA

Notes:

1. Testing the AX or AL register would not be a function normally associated with this
instruction, since the TEST ac,data is provided for this purpose.

3-270 The 8086 Book

TEST reg,mem/reg

Test Register with Memory

AND the contents of the specified register with the contents of the specified
register or memory location using the result to set the flags, but not returning the result
to the register(s) or memory location. An 8- or 16-bit operation may be specified.

The encoding for this instruction is:

TEST reg.mem/reg

1 0 0 0 0 1 0 w mod reg r/m

Addressing mode byte(s) as described
earlier in this section.

w = 0 8-bit operation
w = 1 16-bit operation

Suppose that the AL register contains 40|6, the DS register contains SSOOj^, and the byte
at memory location 88053 is AFi^. After the instruction

TEST AUI+ 53]

has executed, neither the AL register nor the byte at memory location 88053,6 will be
affected; however, the flags will be affected as follows:

4016 = 0100 0000
AFi6 = 1010 1111

0000 0000

- Zero one bits, set P to 1

AF is undefined

This instruction clears Overflow

-Sign is set to 0

This instruction clears Carry

Zero result, set Z to 1

8086 Assembly Language Instruction Set 3-271

PSW

Data (Relative to the
Memory DS Register)

rrrrk + 1

Program (Relative to the

SP (hhhhO J 84 ppppm

BP
rrrrk

j Data Memory
/ Address Calculation

06 ppppm + 1

SI kk ppppm + 2

01 ^ N j] ppppm + 3

PC mm mm
^ mmmm + 4 j

CS nn nn 7^\
DS hh hh Ommmm^^v.

(nnnnO)
^—ppppm ^SS

ES Program

TEST AL,[kk]

Number of cycles: Register with Memory: 9 + EA
Register with Register: 3

3-272 The 8086 Book

WAIT

Wait for Asserted Signal on Test Pin

This instruction causes the 8086 to enter an idle state if the signal on the TEST pin
is not asserted. The 8086 will only leave the idle state if one of two conditions is met.
The conditions are:

1. If the interrupts are enabled, an external interrupt will force the 8086 to ser
vice the interrupt. The address saved when the 8086 processes the interrupt is
the address of the WAIT instruction. Thus, when the interrupt service routine
returns, it returns to the WAIT instruction.

2. The TEST signal is asserted.

The encoding for this instruction is:

PSW|

AX

BX

cx

DX

WAIT

S Z P C

Data

Memory

BP

BP

SI

Dl

PC mm mm

Program (Relative to the
Memory CS Register)

When TEST

is asserted,
^mmmm + 1

98 ppppm

ppppm + 1

ppppm + 2

ppppm + 3

CS nn nn

OS ^^'^mmmrfr"'^^ _ ..f O A Program Memory
V nnnn l AHHro^e rAlnilatinn
^—ppppm ^SS

ES

WAIT

Number of Cycles: Minimum = 3

8086 Assembly Language Instruction Set 3-273

XCHG reg

Exchange Register's Contents with Accumulator

Exchange the 16-bit contents of the specified register with the contents of the
accumulator.

The encoding for this instruction is:

XCHG reg

1 0 0 1 0 r r r

T3 bits which specify the 16-bit register
to be exchanged with the AX register,

rrr = 000 for AX

001 for CX

010 for DX

011 for BX

100 for SP

101 for BP

110 for SI

111 for Di

For example, the instruction
XCHG BX

is used to swap the contents of the BX register with the contents of the AX register.

3-274 The 8086 Boo|c

O D I T S Z A P C

Data

Memory

PSW

AX

BX

CX

DX

SP

BP

Si

Dl

PC

CS

DS

88

E8

99 99

hh hh

mm mm

nn nn

Program (Relative to the
Memory 08 Register)

mmmm + 1

95 ppppm

ppppm + 1

ppppm + 2

ppppm + 3

OmmmfrT" _

nnnnO ^ Program Memory
Address Calculation

XCHG BX

Number of cycles: 3

Notes:

1. No statuses are affected.

2. The instruction XCHG AX,AX is the instruction which is used as the NOP instruc

tion by the 8086.

8086 Assembly Language Instruction Set 3-275

XCHG reg.mem/reg
Exchange Register Data with Register or Memory

This instruction swaps the contents of the register or memory location specified by
the mem/reg operand with the contents of the register specified by the reg operand. An
8- or 16-bit transfer may be specified.

The encoding for this instruction is:

XCHG reg,mem/reg

1 0 0 0 0 1 1 w 1 mod reg r/m

Addressing mode byte(s) as described
earlier in this chapter.

w = 0 8-bit exchange

w = 1 16-bit exchange

Evaluate the situation where the contents of the BX register are 6F30|(„ the SS register
contains 2F00|(„ the SI register contains 0046, the BP register contains 0200|(„ and the
word stored at memory location 2F246|5 is 4154,5. After the instruction

XCHG BX,[BP + SI]

executes, the BX register will contain 4154,5, memory location 2F246,5 will contain 30,5
and memory location 2F247,5 will contain 6F,5.

3-276 The 8086 Book

PSW

O D I T S Z A P C

Data (Relative to the

Memory SS Register)

vv

AX

BX XX yy

CX

DX

ggggg

ggggg + i

ggggg + 2

Program (Relative to the
Memory CS Register)

SP
/ / 1 Data Memory
/ / 1 Address Calculation 47 Ppppm

BP hh hh 1A ppppm + 1

SI ww ww y 1 f mmmm + 2 j ppppm + 2

Dl ppppm + 3

PC mm mm

CS nn nn

DS / OmmmrrT^^
/ f nnnnO) Program Memory

SS tt tt
y \ J Address Calculation

^^^ppppm ^

ES

XCHG BX. [BP + SI]
Number of cycles: memory with register: 17 + EA

register with register: 4

Notes:

1. No statuses are affected.

2. The segment registers may not be specified in this instruction. There is no instruc
tion to exchange segment registers.

3. Typically, this instruction is not used to exchange a register with the AX register.
The instruction XCHG reg is provided for this purpose.

8086 Assembly Language Instruction Set 3-277

XLAT

Perform Table Lookup via AL and BX Registers

An 8-bit data element is loaded into the AL register. This data element is
addressed by using the following algorithm:

1. Add the 8-bit contents of the AL register to the 16-bit BX register.

2. Use the result of the addition in step 1 as the offset address for the DS
register (assuming that no segment override has been executed).

Instruction encoding for XLAT is:

XLAT

D7

For example, should the AL register contain OFi^, the BX register 0040|6, and the DS
register FOOOi^, then executing the instruction

XLAT

would load the contents of memory location F004F|5 into the AL register.

3-278 The 8086 Book

O D I T S Z A P C

Data (Relative to the

Memory DS Register)

PSW

AX XX

BX gg gg

CX

DX

SP

BP

SI

Dl

PC mm mm

CS nn nn

DS hh hh

SS

ES

Program (Relative to the
Memory CS Register)

kkkkk

kkkkk + 1

OOOxx
Ogggg
hhhhO
kkkk

Data Memory

Address Calculation

ppppm

ppppm + 1

ppppm + 2mmmm + 1

ppppm + 3

pppm

Ommmm ,

nnnnO A Program Memory
Address Calculation

XLAT

Number of cycles: 11

Notes:

1. This instruction is most commonly used in the case where the BX register contains
the beginning address of a table and the AL register is used as an index into the
table.

8086 Assembly Language Instruction Set 3-279

XOR ac,data

XOR Immediate Data with AX or AL Register

This instruction exclusive-ORs 8- or 16-bit data elements with the AL (8-bit) or
AX (16-bit) register via immediate addressing.

The encoding for this instruction is:

XOR ac.data

0 0 1 1 0 1 0 w][kk][]

■ jj is the high-order 8 bits of
the 16-bit immediate operand.

- kk is the low-order 8 bits of

the 16-bit immediate operand.
This byte is always present.

-w = 0 8-bit operation. AL is one of
the operands and is the destination
for the result.

w = 1 16-bit operation. AX is one of the
operands and is the destination for
the result.

For example, suppose that AX contains B31C,e,. Executing the instruction

XOR AX,5522H

would result in E63Ei6 being stored into the AX register.

3-280 The 8086 Book

O D I T S Z A P C

PSWl 0

AX XX yy

BX

CX

DX

Data

Memory

xxyyV-jjkk

Program (Relative to the
Memory CS Register)

SP 35 ppppm

BP kk ppppm + 1

SI I mmmm + 3 I]] ppppm + 2

Dl ppppm + 3

PC mm mm

CS nn nn

DS ^■"^mmmrrT-^
C nnnno ^ Program Memory
V J Address CalculationX^ppppm/ss

ES

XOR AX.jjkk
Number of cycles: 4

Notes:

1. This Instruction performs the same function as the XRI data instruction in the 8080
assembly language. This instruction, however, also allows 16-bit data units, whereas
the 8080 XRI only uses 8-bit data elements.

8086 Assembly Language Instruction Set 3-281

XOR mem/regi, mem/rega
XOR: • Register with Register

• Register with Memory
* Memory with Register

Exclusive-OR the contents of the register or memory location specified by mem/
reg2 with the contents of the register or memory location specified by mem/regi, return
ing the result to mem/reg,. An 8- or 16-bit operation may be specified. Either mem/reg,
or mem/reg2 may be a memory operand, but one of the operands must be a register
operand.

The encoding for this instruction is:

XOR mem/reg *|, mem/reg2

0 0 1 1 0 0 d w mod reg r/m

-Addressing mode byte(s)
as described earlier in

this chapter.

- w = 0 8-bit operation
w = 1 16-bit operation

- d is the Direction flag.
If d = 0, then the operand
described by mod and
r/m is mem/reg 1 and the
operand described by
reg is mem/reg2- If
d = 1, then the operand
described by mod and
r/m is mem/reg2 and the
operand described by
reg is mem/reg i.

Suppose that the AX register contains 07B7|^, the DS register contains 9080i(,, the SI
register contains 040Ei(„ and the word at memory location 90C0Ei(, is AbFOi^. After the
instruction

XOR AX.ISI]

has executed, the AX register will contain A147,(,. The flags will be set as follows:

07B7i6 = 0000 0111 1011 0111
ABFOie = 1010 0110 1111 0000

1010 0001 010Q_D111

■ Four one bits, set P to 1

• AF is undefined

Carry is cleared to 0

- Set the Sign status to 1
Overflow is cleared to 0

Non-zero result, set Z to 0

3-282 The 8086 Book

O D I T S Z A P C

Data (Relative to the

Memory OS Register)

PSW

AX

BX

CX

DX

SP

BP

SI

Dl

PC

CS

OS

88

E8

BE

XX yy

99 99

mm mm

nn nn

hh hh

XOR AX,[SI]

Program (Relative to the
Memory 08 Register)

rrrrg + 1

rrrrg + 2

xxyy "\r www

ppppm

ppppm + 1
Data Memory

Address Calculation ppppm + 2

ppppm -f 3

mmmm + 2

Ommmm

nnnnO

PPPrn

Program Memory
Address Calculation

Number of cycles: Memory to Register: 9 + EA
Register to Memory: 16 + EA
Register to Register: 3

8086 Assembly Language Instruction Set 3-283

XOR mem/reg,data

XOR Immediate Data with Register or Memory Location

XOR the immediate data in the succeeding program memory byte(s) with the
specified register or memory location. An 8- or 16-bit operation may be specified.

The encoding for this instruction is:

XOR mem/reg.data

lOOOOOOw mod 110 r/m kk j]

The high-order byte of the immediate
operand. This byte is only present if w = 1

The low-order byte of the immediate
operand. This byte is always present.

-Addressing mode byte(s) as described
earlier in this chapter

■ w = 0 8-bit operation
w = 1 16-bit operation

Consider the case where the DS register contains 3800, the contents of the BX register
are 0200,6, l^e DI register contains 0136,5, and the word at memory location 38336,^ is
0683,6- After the instruction

XOR [BX + DI], 0805H

has executed, the word at memory location 38336,6 will be 0EB6,6.

06B3i6 = 0000 0110 1011 0011
050516 = 0000 1000 0000 0101

0000 1110 1011 0110

- 8 one bits, set P to 1

Carry is cleared to 0

-Sign is set to 0

Overflow is cleared to 0

Non-zero result, set Z to .O

3-284 The 8086 Book

Data (Relative to the
Memory DS Register)

PSW 0 X 0

AX

BX gg gg

CX

DX

SP

BP

SI

Dl hh hh

mm mm

CS nn nn

DS rr rr

SS
i

V

yy

XX

mmmm + 4

Ommmm

Program Memory

Address Calculation

Ogggg
Ohhhh
rr rrO
uuuuu

Program (Relative to the
Memory CS Register)

ppppm

ppppm

ppppm + 2

ppppm + 3

XOR [BX + Dl), jjkk

Number of cycles: Memory operand: 1 7 + EA

Register operand: 4

Notes:

1. This instruction is not typically used to XOR immediate data with AX or AL
register. The instruction XOR ac,data is provided for this purpose.

8086 Assembly Language Instruction Set 3-285

ASSEMBLER-DEPENDENT MNEMONICS

Some 8086 assembler mnemonics do not expressly define whether an 8-bit or 16-
bit operation is to be performed. All instructions which have one of the 8086 registers as
an operand can use the register to determine whether an 8-bit or 16-bit operation is
required. For example, if the instruction is

XOR AX.0804H

a 16-bit operation is clearly in order. Some instructions, however, can perform an 8-bit
or 16-bit operation, yet may not specify a register. These instructions include two basic
types: the string operations, e.g., CMPS, LODS, and instructions which can have a
single memory operand, e.g., MUL, NOT.

Assemblers can deal with this difficulty in one of three ways. These are:

1. A character can be added to the mnemonic that will indicate whether a word

or byte operation is specified. For example, MUL can be specified as

MULB 8 X 8-bit multiplication, or
MULW 16X16-bit multiplication

In the case of the string operations, the character, be it B (for Byte) or W (for
Word) replaces the last character of the mnemonic. For example, the instruc
tion CMPS is replaced by:

CMPB 8-bit comparison
CMPW 16-bit comparison

2. The operand for the string operations can be WORD or BYTE. For example,
the MOVS instruction can be:

MOVS BYTE 8-bit move

MOVS WORD 16-bit move

In addition, this strategy can be applied to the single memory operand instruc
tions. For example,

NOT 81 ,BYTE

NOT SI ,W0RD

3. The programmer defines all his data areas and symbols as WORD or BYTE
elements. The assembler retains this information and then when a reference

is made to the data area/symbol, the assembler determines whether an 8- or
16-bit operation is necessary. For example,

T0UCH$T0NE$0UTPUT$BYTE DB OOH ;DB means define byte

TIMER DWOOOOH ;DW means define word

When the following operations are performed

NOT T0UCH$T0NE$0UTPUT$BYTE

INC TIMER

an 8-bit operation is assembled for the NOT operation and a 16-bit operation
is specified for the INC operation. Note that a particular assembler may use
more than one of these options to perform its function.

8086 Instruction Groups

This chapter contains another discussion of the 8086 instruction set. In contrast to
the discussion presented in Chapter 3, where each instruction was described
individually, this chapter discusses groups of instructions. The 8086 instructions are
grouped according to the functions they perform. These groups are:

Data Movement Instructions

Arithmetic Instructions

Logical Instructions
String Primitive Instructions
Program Counter Control Instructions
I/O Instructions

Interrupt Instructions

Rotate and Shift Instructions

4-2 The 8086 Book

DATA MOVEMENT INSTRUCTIONS

The 8086 instructions which perform data movement are shown in Table 4-1.
8086 data movement instructions can be divided into three general categories:

Instructions which move data from register to register or between memory loca
tions and registers.

1. Instructions which move data from register to register or between memory
locations and registers.

2. Instructions which move data onto and off of the stack.

3. Instructions which move multiple bytes from one memory location to
another.

The first and second types of instructions will be discussed in this section. Multi
ple byte instructions, which are created using instructions called string primitives, will
only be discussed peripherally in this section; they will be discussed in detail later in this
chapter.

Data movement instructions are used in following types of routine:

1. A routine to move the contents of BUFFERS A to BUFFERSB.

2. A routine to initialize the contents of BUFFERSA.

3. A routine to translate the contents of BUFFERSA.

Table 4-1. 8086 Data Movement Instructions

Status

Mnemonic Operands Object Code Bytes Clocks Operation Performed

0 D T S z A P C

MOV mem/regi, lOOOIOdw 2. 3 or reg-reg: 2 [mem/reg i] [mem/reg2l*
mem/reg2 mod rrr r/m 4 mem - reg; An 8- or 16-bit data element is moved from the memory

(DISP)

(DISP)

8 + EA

reg - mem:

9 + EA

location or register specified by mem/reg2 into the
memory location or register specified by mem/reg ̂.

MOV mem/reg,
data

1100011w

mod 000 r/m

(DISP)

(DISP)

kk

ij(ifw= 1)

3,4.5

or 6

10 + EA [mem/reg] ̂ data
Move 8- or 16-bit immediate data into the memory loca
tion or register specified by mem/reg.

MOV reg.data 1011 wrrr 2or3 4 [reg] ̂ data
kk

jj (if w = 1)
Move 8- or 16-bit immediate data into the register
specified by reg.

MOV ac.mem lOIOOOOw

kk

jj

3 10 [ac] [mem]
Move data from the memory location specified by mem
into the AL (8-bit operation) or the AX (16-bit operation)
register.

MOV mem.ac 1010001w

kk

jj

3 10 [mem] ̂ [ac]

Move data from the AL (8-bit operation) or AX (16-bit
operation) register into the memory location specified by
mem.

MOV segreg. 8E 2, 3 or reg-reg: 2 [segreg] [mem/reg]
mem/reg mod 0 ss r/m 4 mem - reg: Move 16 bits of data from the memory location or register

(DISP)

(DISP)

8 + EA specified by mem/reg into the selected segment register.
If ss = 01, this operation is undefined.

MOV mem/reg. 80 2, 3 or reg - reg: 2 [mem/reg] ̂ [segreg]

segreg mod 0 ss r/m 4 mem - reg: Move the contents of the selected segment register^into

(DISP)

(DISP)

9 + EA the specified memory location or register.

XCHG mem/reg 1, 1000011w 2, 3 or reg - reg: 4 [mem/reg i] —— [mem/reg2]*
mem/reg2 mod rrr r/m 4 reg - mem: Exchange the 8- or 16-bit contents of the memory loca

(DISP)

(DISP)

17 + EA tion specified by mem/reg^ with the contents of the
memory location or register specified by mem/reg2.

' This does not imply mem — mem

Table 4-1. 8086 Data Movement Instructions (Continued)

Status

Mnemonic Operands Object Code Bytes Clocks Operation Performed

0 D ' T 8 Z A P C

XCHG reg lOOIOrrr 1 3 [AX] [reg]
Exchange the contents of the AX register with the con
tents of the selected register.

XLAT D7 1 11 [AL] - [[AL] + [BX]]

Load the data byte addressed by summing AL with BX
into the AL register.

LDS reg.mem 05 2. 3 or 16 + EA [reg] ̂ [mem], [DS] — [mem + 2]
mod rrr r/m

(DISP)
(DISP)

4 Load 16 bits of data from the memory location specified
by mem into the selected register. Load 16 bits of data
from the memory location following the memory location
specified by mem into the DS register.

LEA reg, mem 80 2. 3 or 2 + EA [reg] ̂ mem (offset portion of address)
mod rrr r/m

(DISP)

(DISP)

4 Move the 16 bits which are the offset portion of the
memory address into the selected register.

LES reg, mem 04 2, 3 or 16 + EA [reg] [mem], [ES] ̂ [mem + 2]
mod rrr r/m

(DISP)

(DISP)

4 Load 16 bits of data from the memory location specified
by mem into the selected register. Load 16 bits of data
from the memory location following the memory location
specified by mem into the ES register.

PUSH mem/reg FF 2. 3 or reg: 11 [SP] ̂ [SP] - 2, [[SP]] — [mem/reg]
mod 110 r/m

(DISP)

(DISP)

4 mem:

16 + EA

Decrement SP by 2. Store the 16-bit contents of the
memory location or register specified by mem/reg onto
the top of the stack.

PUSH reg OlOIOrrr 1 10 [SP] — [SP] - 2, [[SP]] — [reg]
Decrement SP by 2. Store the 16-bit contents of the
specified register onto the top of the stack.

PUSH segreg OOOssllO 1 10 [SP] — [SP] - 2, [[SP]] — [segreg]
Decrement SP by 2. Store the 16-bit contents of the
specified register onto the top of the stack.

PUSHF 90 1 10 [SP] ̂ [SP] - 2, [[SP]] — [FLAGS]
Decrement SP by 2. Store the contents of the FLAGS
register onto the top of the stack.

Table 4-1. 8086 Data Movement Instructions (Continued)

Mnemonic Operands Object Code Bytes Clocks

Status

I T S A P C

Operation Performed

POP

POP

POP

POPF

LAHF

SAHF

mem/reg

reg

segreg

8F

mod 000 r/m

(DISP)

(DISP)

0101 Irrr

OOOss111

9D

9F

9E

2. 3 or

4

reg: 8
mem:

17 + EA

[mem/reg) — [[SP]], [SP] — [SP] + 2
Move the 16 bits at the top of the stack Into the memory
location or register specified by mem/reg. Increment SP
by 2.

[reg] - [[SP]], [SP] - [SP] + 2
Move the 16 bits at the top of the stack into the specified
register. Increment SP by 2.

[segreg] -[[SP]]. [SP] -[SP] + 2
Move the 16 bits at the top of the stack into the specified
segment register. Increment SP by 2. If ss = 01, this
operation is undefined.

[FLAGS] —[[SP]], [SP] —[SP] + 2
Move the 16 bits at the top of the stack into the FLAGS
register. Increment SP by 2.

Transfer the 8080 flags to the AH register.

— AH

S Z A P C

Transfer the AH register to the 8080 flags.

AH

S Z

4-6 The 8086 Book

BUFFER-TO-BUFFER MOVE ROUTINES

Two elementary buffer-to-buffer move routines are shown in Figures 4-1 and 4-2
for 8-bit and 16-bit data elements, respectively. These routines assume that the SI
register contains the address of BUFFERSA, the D1 register contains the address of
BUFFERSB, and the CX register contains the number of data elements to move.

MOVE$BYTES: MOV ALISI] LOAD BYTE FROM SOURCE

MOV [DIl.AL STORE BYTE INTO DESTINATION

INC SI ADJUST POINTERS

INC DI

DEC CX ;DECREMENT # TO MOVE

JNZ MOVE$BYTES ;LOOP IF NOT DONE

RET

Figure 4-1. 8-Bit Buffer-to-Buffer Move

MOVE$WORDS: MOV AX.ISI] LOAD WORD FROM SOURCE

MOV [DIl.AX STORE WORD INTO DESTINATION

ADJUST POINTERS

INC SI

INC SI

INC DI

INC DI

DEC CX ;DECREMENT # TO MOVE

JNZ MOVESWORDS :LOOP IF NOT DONE

RET

Figure 4-2. I6-Blt Buffer-to-Buffer Move

The instruction sequences illustrated in Figures 4-1 and 4-2 move data in the Data
Segment. The BX register can be used in place of the SI or DI register in these routines.

The routines as illustrated are simple to follow, but they are not very efficient.
String primitive operations, which are described later in this chapter, may provide much
more efficient buffer-to-buffer move routines; also, the LOOP instruction improves the
efficiency of any decrement and branch program logic.

8086 Instruction Groups 4-7

Initializing Registers for Buffer-to-Buffer Moves

There are many ways of initializing registers that are used by instruction
sequences such as the buffer-to-buffer move routines. The initialization methods
depend on how the addresses and the count are obtained. An additional factor is the
number of registers that need to be initialized; for example, in most cases, the DS
register will already be initialized.

The buffer beginning addresses and the byte or word count for the buffer to buffer
move routine can be held in a block of memory words pointed to by a register. Consider
the following eight-byte memory block:

Address

xxxx

xxxx + 1

xxxx + 2

xxxx + 3

xxxx + 4

xxxx + 5

xxxx + 6

xxxx + 7

Offset address for source buffer

Segment address for DS

Offset address for destination buffer

Count

Memory byte pairs hold four addresses, as illustrated above.
The block of memory words illustrated above is frequently referred to as a

parameter block; the individual data values in the block are parameters.
The DI register could be loaded with the starting address of this block (xxxx in the

illustration above) to provide the parameters for the initialization sequence.

LDS SIIDI]

MOV CX.[DI + 6]

MOV DI,[DI + 4]

Figure 4-3. Buffer Move Register Initialization

4-8 The 8086 Book

The BX register can be used instead of the DI register, if more convenient.
When a string primitive instruction is used, the parameter block may have to be

expanded as shown below to include a segment address which is loaded into the ES
register:

Address

xxxxx

xxxxx + 1

xxxxx + 2

xxxxx + 3

xxxxx + 4

xxxxx + 5

xxxxx + 6

xxxxx + 7

xxxxx + 8

xxxxx + 9

> Offset address for source buffer

Segment address for DS

• Offset address for destination buffer

Segment address for ES

Count

This technique allows data to be moved from any location to any other in the one
million-byte memory space. If segments are not specified, data is moved within the cur
rent segments only.

Again loading the DI register with the beginning address for this block (xxxxx in
the illustration above), the initialization sequence becomes.

IDS 31. [DI]

MOV CX.IDI + 81

LES DI.[DI + 4]

Figure 4-4. Alternate Buffer Move Register Initialization

If one of the buffers is always in a fixed location in memory, the address of the
fixed buffer can be specified as immediate data. Consider the following instruction
sequence.

MOV SI.ADDRFORBUFFER$A

MOV AX.SEGADDRFORBUFFER$A

MOV DS.AX

MOV CX.IDI + 4]

LES DI.IDI]

Figure 4-5. Buffer Move Register Initialization Using Immediate Data

8086 Instruction Groups 4-9

In the first instruction, the immediate data ADDRFORBUFFER$A is moved
into the SI register. The second instruction moves the immediate data
SEGADDRFORBUFFER$A into the AX register. This instruction is necessary
because the 8086 has no instructions which move immediate data into a Segment
register. (An exception is an inter-segment Jump instruction which loads a 16-bit seg
ment address into the Code Segment register.) The third instruction moves the segment
address into the DS register. Recall that oft times, the DS register is already set to the
desired value and no modification is necessary. The fourth and fifth instructions are

used to load the count and destination buffer address into the appropriate registers.
These instructions require that DI point to a block of the following form:

Address

xxxx

xxxx + 1

xxxx + 2

xxxx + 3

xxxx + 4

xxxx + 5

Offset address for destination buffer

Segment address for ES

Count

Parameters (in this case address and count information) can be passed to a routine
via the stack. For the buffer-to-buffer move this may be illustrated as follows:

► xxxx

xxxx + 1

xxxx + 2

xxxx + 3

xxxx + 4

xxxx + 5

xxxx + 6

xxxx + 7

xxxx + 8

xxxx + 9

Return address

Offset address for source buffer

Segment Address

Offset address for destination buffer

Count

4-10 The 8086 Book

The following instruction sequence initializes registers.

POP BX ;POP RETURN ADDRESS

POP SI

POP DS

POP DI

POP CX

Figure 4-6. Buffer Move Register Initialization via Stack
and Pop Instructions

This approach makes it difficult to return from a subroutine using the RET
instruction. But the 8086 allows a register to supply the return address. Therefore,

JMP BX

could be used instead of RET. If this approach appears intrinsically ugly, or if all the
registers are in use, consider the following sequence:

PUSH BP

MOV BP.SP

MOV SI. [BP + 4]

MOV DS.IBP + 6]

MOV DI, [BP + 81

MOV CX.[BP + 10]

Figure 4-7. Buffer Move Register Initialization via Stack
and Indirect Addressing

These instructions will perform the desired initializations. The routine may then
be terminated with a

MOV SP.BP

POP BP

RET 8

which will move the return address into the program counter and then add 8 to the
adjusted stack pointer, thus removing parameters from the stack; these have been
pushed by the called routine.

If the buffers are present in the current data segment, the buffer addresses can be
loaded using the LEA (Load Effective Address) instruction. The following sequence
loads SI and DI using the LEA instruction, then loads the COUNT data from memory
into CX using the MOV instruction

LEA SI,BUFFER$A

LEA DI,BUFFER$B

MOV CX.COUNT

Figure 4-8. Buffer Move Register Initialization
using LEA Instruction

8086 Instruction Groups 4-11

Another example assumes that the first two bytes of BUFFERSA contain the
number of bytes in the buffer, and therefore the number of bytes to be moved. Here is
the resulting parameter block:

Address

xxxx

xxxx + 1

xxxx + 2

xxxx + 3

xxxx + 4

xxxx + 5

> Offset address for source buffer

> Offset address for destination buffer

If the DI register points to this parameter block, the following initialization
sequence could be used:

LDS SI,[DI]
MOV DI, [DI + 4]
MOV CX, [SI]

INC SI

INC SI

Two buffer initialization routines are shown below. The first routine replicates a 8-
bit pattern through a buffer; the second routine replicates a 16-bit pattern through the
buffer. Frequently such routines are used to clear a buffer, in which case the 8-bit or 16-
bit value will be 0. You will use the first routine to clear a short buffer with an odd byte
length; you use the second routine to clear a buffer with an even byte length, or a long
buffer with an odd byte length (use a single byte instruction to clear the odd byte). There
are occasions when a buffer must be initialized with some non-zero pattern; for exam
ple, an ASCII space code might be used to initialize a buffer that is eventually to hold
ASCII character strings.

The routines described in Figures 4-9 and 4-10 assume that the DI register points
to the destination buffer. The AL or AX register contains the 8-bit or 16-bit value to be
replicated through the buffer. The CX register specifies the number of bytes or words in
the buffer.

4-12 The 8086 Book

Initializing a Buffer

A buffer initialization routine loads some arbitrary data into a memory buffer.

INITjALIZESLOOP: MOV [DUAL ;STORE INITIALIZING DATA

INC DI ;ADJUST POINTER

DEC CX ;DECREMENT AND BRANCH

JNZ INITIALIZE$LOOP ;lf not done

RET

Figure 4-9. Buffer Initialization (8-Bit Data Elements)

INITIALIZESLOOP: MOV IDII.AX ; STORE INITIALIZING DATA

INC DI

INC DI

DEC CX

JNZ INITIALIZESLOOP

RET

Figure 4-10. Buffer Initialization (16-Bit Data Elements)

The BX or SI registers can be used instead of DI in the two buffer initialization
programs.

Sometimes the first n bytes of a buffer are used to describe the buffer. For exam
ple, the total length of the buffer and displacement to the first empty byte might be
stored in the first two buffer bytes. These buffer descriptive bytes must be adjusted
when data is written into the buffer.

The buffer initialization routine must itself have registers initialized, as described
for the buffer-to-buffer move routines.

In general, the address/count information is delivered to the routine in one of the
following ways:

• In a parameter block

• On the stack

• In immediate data

• In an address used by an LEA instruction.

8086 Instruction Groups 4-13

Translating a Buffer

When a buffer is translated, every element in the buffer is converted, using a
translation table to make the conversion. The translation table provides a direct replace
ment value for every initial value that an element can have. For example, if a buffer
consists of one-byte elements, then there are 256 possible initial values that each ele
ment can have, and similarly there are 256 translated values that the same element can

have. The translation table will link each initial value to a translated value. Perhaps the
most frequently seen translation table converts between ASCII and EBCDIC characters,
each of which is encoded as a byte value. In this case, if a buffer of ASCII characters
were translated, the result would be a buffer of equivalent EBCDIC characters.

Consider two ways in which a buffer may be translated:

1. Data within the buffer may be translated and left in the buffer.

2. Data may be translated while being moved from one buffer to another.

The routine in Figure 4-11 translates data without moving it. This routine
assumes that the BX register contains the address of a translation table, the SI register
contains the address of the buffer to be translated, and the CX register contains the
number of data elements to be translated.

MOV AL.1SI] ;LOAD FROM BUFFER

XLAT ; INDEX INTO TABLE

MOV [SIl.AL .STORE CONVERTED DATA INTO BUFFER

INC SI ;POINT AT NEXT ELEMENT

DEC CX ; DECREMENT AND TEST FOR DONE

JNZ TRANSLATE$LOOP
RET

TRANSLATESLOOP:

Figure 4-11. Buffer Translation

The routine in Figure 4-11 assumes that the element being translated maps into a
256-byte table. This assumption allows the XLAT instruction to be used. If the element
to be translated is a 16-bit data unit, a larger table may be necessary. The routine in
Figure 4-12 maps 16-bit data elements into a 65K-byte table, producing an 8-bit result.

TRANSLATE$LOOP: MOV DI.ISI] ;LOAD ELEMENT

MOV AX,[BX + Dll ;USE ELEMENT AS INDEX
MOV [SI]. AX ;STORE RESULT

INC SI ;UPDATE POINTERS

INC SI

DEC CX ; DECREMENT AND TEST

JNZ TRANSLATESLOOP ;FOR DONE
RET

Figure 4-12. Translation of 16-Bit Data Elements

4-14 The 8086 Book

MOV AU[SI] ;LOAD ELEMENT FROM SOURCE BUFFER

XLAT ; TRANSLATE DATA

MOV [DIJ.AL ;STORE CONVERTED DATA IN DESTINATION BUFFER

INC Si ;UPDATE POINTERS

INC DI

DEC CX ;DECREMENT AND TEST FOR DONE

JNZ TRANSLATESLOOP

RET

Figure 4-13. Buffer-to-Buffer Translation

The routine in Figure 4-13 translates data while moving it from one buffer to
another. This routine assumes that the BX register contains the address of the conver
sion table, the SI register contains the address of the buffer to be translated, the DI
register contains the address of the buffer where the translated data will be stored, and
the CX register contains the number of data elements to be translated.

The routine in Figure 4-13 assumes that both of the buffers are present in the seg
ment addressed by the DS register.

Many translation routines also check that all the elements in the translated buffer
lie between specified boundary values. The routines in Figure 4-11 through 4-13 will be
updated to include such a check later in this chapter.

Register initialization for these routines is similar to the initialization methods
used by the buffer-to-buffer move routines.

SAVING THE STATE OF THE MACHINE

The 8086 has fourteen 16-bit registers. In most cases having so many registers is
very desirable. But when the state of the entire machine must be saved while appropriate
processing is performed, and then the state of the machine must be restored, an abun
dance of registers is less of an asset.

When a hardware or software interrupt occurs, for example, the 8086 saves the

contents of the Flags register, the program counter, and the Code Segment register dur
ing its interrupt acknowledge sequence. The interrupt service routine must save the
complete state of the machine. The following instruction sequence will accomplish this

.task.

There is no specific order in which the registers must be pushed; however the
registers must be restored in the inverse order from which they were pushed. If registers
are saved using the sequence illustrated in Figure 4-14, the following sequence must be
used to restore the registers.

8086 Instruction Groups 4-15

PUSH ES

PUSH DS

PUSH SI

PUSH Di

PUSH BP

PUSH DX

PUSH CX

PUSH BX

PUSH AX

Figure 4-14. Saving the 8086 Registers

POP AX

POP BX

POP CX

POP DX

POP BP

POP DI

POP SI

POP DS

POP ES

Figure 4-15. Restoring the 8086 Registers

To save the state of the entire machine requires 11 bytes of code and 110 clock
periods. The 110 cycles do not include time the 8086 uses to respond to the interrupt.
For hardware interrupts the 8086 requires 62 clock periods to acknowledge the inter
rupt. For software interrupts the 8086 requires 51 to 53 clock periods to acknowledge
the interrupt. These response cycles follow execution of the instruction during which
the interrupt occurred. Thus, saving the state of the entire machine may take as many as
172 clock periods, requiring 32.4 microseconds on a 5 MHz 8086. Restoring the state of
the machine requires 110 clock periods, plus an additional 24 clock periods for an IRET
(Interrupt Return) instruction. Therefore to save and then restore the 8086 machine
state may take up to 306 clock periods, or 61.2 microseconds per interrupt.

4-16 The 8086 Book

SEGMENT REGISTER INITIALIZATION

If a program is written to run in conjunction with an operating system, then the
operating system will typically initialize segment registers, and subsequently modify
their contents, as needed. If a program is written to run without the benefit of an operat
ing system, then the segment registers must be initialized. The instructions shown in
Figure 4-16 will initialize the segment registers.

MOV AX, IMM$DATA$FOR$DS ;LOAD IMMEDIATE DATA INTO AX

MOV DS, AX

MOV AX. IMM$DATA$FOR$ES ;LOAD IMMEDIATE DATA INTO AX

MOV ES. AX

MOV AX. IMM$DATA$FOR$SS ;LOAD IMMEDIATE DATA INTO AX

MOV SS. AX

Figure 4-16. Initializing the ES Register via Immediate Data

Another way to initialize segment registers is to move data directly from memory
into the segment registers, as shown in Figure 4-17.

MOV DS. OS: DATAFORDS
MOV ES. OS: DATAFORES

MOV SS. OS; DATAFORSS

Figure 4-17. Initializing the ES Register

via Code Segment Locations

The segment prefixes for the second and third instructions may be eliminated if
the data for Segment Registers ES and SS are contained in the segment addressed by
DS.

The 8086 provides special protection for a particular initialization sequence. When
the SS and SP registers are initialized by consecutive MOV instructions, the 8086 will
not allow an interrupt to occur between the MOV instructions. Thus,

MOV SS. OS: DATA$F0R$SS
MOV SP. DATAFORSP

is an uninterruptable instruction sequence.

8086 Instruction Groups 4-17

ARITHMETIC INSTRUCTIONS

There are these five types of 8086 arithmetic instructions:

1. Addition instructions

2. Subtraction instructions

3. Multiplication instructions

4. Division instructions

5. Compare instructions

Each of the above categories, except for compare instructions, has variations that
allow for ASCII/BCD operations.

ADDITION INSTRUCTIONS

Instructions that perform various types of addition are shown in Table 4-2.

Figures 4-18, 4-19, and 4-20 illustrate the use of various addition instructions.
Each of the routines assumes that the numbers or strings to be added are present in the
Data Segment, and are ordered as follows:

Byte #0: I Least significant byte

Byte #n: I I Most significant byte

Sum a Pair of Multiword Numbers

The routine in Figure 4-18 assumes that the SI and DI registers contain the start
ing addresses for the multiword numbers to be added, and the CX register contains the
number of words to add. The result is stored in the string pointed to by the DI register.

START: CLC ;CLEAR CARRY FOR INITIAL ADDITION

ADDITI0N$L00P: MOV AXdSI] ;L0AD FROM INITIAL STRING

ADC [DI],AX :ADD AX TO MEMORY

INC SI ;UPDATE POINTERS

INC SI

INC DI

INC DI

DEC CX

JNZ ADDITI0N$L00P

RET

Figure 4-18. Multiword Addition

String primitives and the LOOP instructions can reduce the number of memory
locations, and the time required to perform this routine.

Table 4-2. 8086 Addition Instructions

Mnemonic Operands Object Code Bytes Clocks

Status

Operation Performed

0 D 1 T S z A p c

ADC mem/reg-|. OOOIOOdw 2, 3 or reg-reg: 3 X X X X X X (mem/reg [mem/reg + [mem/reg2] + IC]
mem/reg2 mod rrr r/m 4 mem - reg: Add the 8- or 16-bit contents of the memory location or

(DISP) 9 + EA memory register specified by mem/reg2 and the Carry
(DISP) reg - mem: status to the 8- or 16-bit contents of the memory location

16 + EA or register selected by mem/reg^.

ADC mem/reg. 1GOOGOsw 3. 4.5 reg: 4 X X X X X X [mem/reg] ̂ [mem/reg] + data + [C]
data mod G1G r/m or 6 mem: Add the 8 or 16 bits of immediate data and the Carry

(DISP) 17 + EA status to the 8- or 16-bit contents of the memory location

(DISP)
1/U

or register selected by mem/reg.
KK

il (If sw = G1)

ADC ac, data GGGIGlGw 2or3 4 X X X X X X [ac] — [ac] + data + [C]

kk Add the 8 or 16 bits of immediate data and the Carry

ji(ifw = G1) status to the AL (8-bit operation) or AX (16-bit operation)
register.

ADD mem/reg GGGGGGdw 2, 3 or reg-reg: 3 X X X X X X [mem/regi]«—[mem/regi) + [mem/reg2]
mem/reg2 mod rrr r/m 4 mem - reg: Add the 8- or 16-bit contents of the memory location or

(DISP) 9 + EA register specified by mem/reg2 to the 8- or 16-bit con
(DISP) reg - mem: tents of the memory location or register selected by

16 + EA mem/reg 1.

ADD mem/reg, 1GGGGGsw 3. 4.5 reg: 4 X X X X X X [mem/reg] '—[mem/reg] + data

data mod GGG r/m or 6 mem: Add the 8 or 16 bits of immediate data to the 8 or 16 bit

(DISP) 17 + EA contents of the memory location or register selected by

(DISP)
L-Lr

mem/reg.

KK

j] (if sw = Gl)

ADD ac,data GGGGGIGw 2or3 4 X X X X X X [ac] — [ac] + data

kk Add the 8 or 16 bits of immediate data to the AL (8-bit

ij(ifw= 1) operation) or AX (16-bit operation) register.

INC mem/reg 1111111W 2. 3 or reg: 3 X X X X X [mem/reg] ♦— [mem/reg] + 1
mod GGG r/m 4 mem: Increment by 1 the 8 or 16 bit contents of the memory

(DISP) 15 + EA location or register selected by mem/reg.
(DISP)

Table 4-2. 8086 Addition Instructions (Continued)

Mnemonic Operands Object Code Bytes Clocks

Status

Operation Performed

INC

AAA

DAA

reg OlOOOrrr

37

27

[reg] ̂ [reg] + 1
Increment by 1 the 16-bit contents of the specified
register.

ASCII adjust the contents of the AL register after an addi
tion.

Decimal adjust the contents of the AL register after an
addition.

O

o

4-20 The 8086 Book

Sum a Pair of Muitibyte BCD Numbers

The routine in Figure 4-19 assumes that the SI and DI registers contain the start
ing addresses for the BCD strings to be added, and the CX register contains the number
of BCD bytes in each BCD string. The result is stored in the string pointed to by the DI
register.

START: CLC CLEAR CARRY FOR INITIAL ADDITION

BCD$ADDITION$LOOP: MOV AL,[SI] LOAD FROM STRING A

ADC AL.[DI] ADD FROM STRING B

DAA PERFORM BCD ADJUST

MOV IDI].AL STORE RESULT

INC SI UPDATE POINTERS

INC DI

DEC CX iDECREMENT AND TEST

JNZ BCD$ADDITION$LOOP ::FOR DONE

RET

Figure 4-19. Muitibyte BCD Addition

Sum a Pair of Muitibyte ASCII Strings

The routine in Figure 4-20 assumes that the SI and DI registers contain the start
ing addresses for two ASCII strings that are to be added. The CX register contains the
number of ASCII bytes in each string. The result will be stored in the string pointed to
by the DI register.

ASCIi$ADDITI0N$L00P;

CLC

MOV ALlSIl ;LOAD FROM STRING A

ADC ALJDI] ;ADD STRING B

AAA ;PERFORM AN ADJUST

MOV (DI],AL ;STORE RESULT

INC SI ;ADJUST POINTERS

INC DI

DEC CX ; DECREMENT AND TEST

JNZ ASCII$ADDITION$LOOP ;FOR DONE

RET

Figure 4-20. Muitibyte ASCII Addition

8086 Instruction Groups 4-21

The routines in Figures 4-19 and 4-20 can both use the string primitives to reduce
the number of bytes and the amount of time required to perform these operations.

For the above addition routines, consider the case where the numbers to be added

have the following format:

Byte #0 I I High-order byte of operand

Byte #n I I Low-order byte of operand

In this case, addition routines would differ from Figures 4-18 through 4-20 in two
major respects:

1. The initialization sequence would differ. The initialization sequences would
point registers at the last byte of the multibyte number, instead of the first.

2. The pointers would be decremented, not incremented.

To account for these differences, modified starting addresses must be loaded into
appropriate address registers. Subsequently addresses must be decremented.

SUBTRACTION [NSTRUCTIONS

Subtraction instructions are shown in Table 4-3.

The subtraction versions of the multibyte addition routines presented in the pre
vious section are easily derived. Creation of these routines is left to the reader as an
exercise.

Table 4-3. 8086 Subtraction Instructions

Mnemonic Operands Object Code Bytes Clocks

Status

I T S P C

Operation Performed

SUB

SUB

SUB

SBB

SBB

SBB

DEC

mem/regi,
mem/reg2

mem/reg
data

ac.data

mem/reg

mem/reg2

mem/reg,
data

ac,data

mem/reg

OOlOIOdw

mod rrr r/m

(DISP)

(DISP)

1OOOOOsw

mod 101 r/m

(DISP)

(DISP)

kk

jj (if sw = 01)

00101lOw

kk

jj(ifw = 1)

0001lOdw

mod rrr r/m

(DISP)

(DISP)

1OOOOOsw

mod 011 r/m

(DISP)

(DISP)
kk

jj (If sw = 01)

00011lOw

kk

jj (if w = 1)

1111111W

mod 001 r/m

(DISP)

(DISP)

2, 3 or

4

3. 4,5
or 6

2 or 3

2, 3 or

4

3, 4,5

or 6

2 or 3

2, 3 or

4

reg - reg:

mem - reg:

9 + EA

reg - mem

16 + EA

reg: 4
mem:

17 + EA

3 X

reg - reg: 3
mem - reg:

9 + EA

reg - mem:

16 + EA

reg: 4
mem:

17 + EA

reg: 3
mem:

15 + EA

[mem/reg [mem/reg - [mem/reg2l
Subtract the 8 or 16 bit contents of the memory location
or register specified by mem/reg2 from the 8 or 16 bit
contents of the memory location or register specified by
mem/reg

[mem/reg] ̂ [mem/reg] - data
Subtract 8 or 16 bits of immediate data from the 8 or 16

bit contents of the memory location or register specified
by mem/reg.

[ac] ̂ [ac] - data
Subtract 8 or 16 bits of immediate data from the AL (8-bit
operation) or AX (16-bit operation) register.

[mem/reg^] ̂ [mem/reg-|] - [mem/reg2] - [C]
Subtract the 8 or 16 bit contents of the memory location
or register specified by mem/reg2 and the Carry status
from the 8 or 16 bit contents of the memory location or
register specified by mem/reg.

[mem/reg] ̂ [mem/reg] - data - [C]
Subtract the 8 or 16 bits of immediate data and the Carry
status from the 8- or 16-bit contents of the memory loca

tion specified by mem/regi.

[ac] ̂ [ac] - data - [C]
Subtract the 8 or 16 bits of immediate data and the Carry
status from the AL (8-bit operation) or AX (16-bit opera
tion) register.

[mem/reg] — [mem/reg] - 1
Decrement by 1 the 8 or 16 bit contents of the memory
location or register selected by mem/reg.

Table 4-3. 8086 Subtraction Instructions (Continued)

Mnemonic Operands Object Code Bytes Clocks

Status

Operation Performed

DEC

AAS

DAS

NEG

reg

mem/reg

OlOOIrrr

3F

2F

1111011W

mod Oil r/m

(DISP)

(DISP)

2. 3 or

4

reg: 3
mem:

16 + EA

[reg] [reg] - 1
Decrement by 1 the 16 bit contents of the specified
register.

ASCII adjust the contents of the AL register after a
subtraction.

Decimal adjust the contents of the AL register after a
subtraction.

[reg] ̂ [Peg] + 1
Twos complement the 8 or 16 bit contents of the memory
location or register specified by mem/reg.

O
-n

O
c
•a

N)
CJ

4-24 The 8086 Book

MULTIPLICATION INSTRUCTIONS

8086 instructions that perform various types of multiplication are shown in Table
4-4.

The routines in Figures 4-21 and 4-22 illustrate typical uses of 8086 multiplication
instructions.

32-Bit X 32-Bit Multipiy

The routine in Figure 4-21 multiplies two 32-bit unsigned numbers, generating a
64-bit result. This routine operates on a data block having the following form.

8 low-order bits

Operand A

8 high-order bits

8 low-order bits

Operand 8

8 high-order bits

8 low-order bits

operand C

8 high-order bits

C = A*B

The routine in Figure 4-21 assumes that the BX register points at this block.

8086 Instruction Groups 4-25

MOV

MUL

AX. [BX]
[BX + 41

MULTIPLY LOW-ORDER 16 BITS

BY LOW-ORDER 16 BITS

MOV

MOV

[BX + Sl.AX

[BX + lOj.DX

SAVE RESULT. WHICH IS IN AX

AND DX

MOV

MUL

AX. [BX]

[BX + 6]

MULTIPLY LOW-ORDER 16 BITS OF

OPERAND A BY HIGH-ORDER 16 BITS

OF OPERAND B

ADD

ADC

JNC

INC

[BX + 10). AX
[BX + 12].DX

NEXT$MUL

[BX + 14]

ADD TO PREVIOUS RESULT

ASSUME RESULT BYTES

ARE INITIALLY ZERO

NEXTSMUL: MOV

MUL

AX.[BX + 2] ;MULTIPLY HIGH-ORDER 16 BITS OF
;OPERAND A BY LOW-ORDER 16 BITS

[BX + 4] :0F OPERAND B

ADD

ADC

INC

INC

[BX+10LAX
[BX + 12].DX
HIGH$ORDER$MUL

[BX + 14]

:ADD TO PREVIOUS RESULT

SAVE CARRY

HIGH$ORDER$MUL MOV

MUL

AX, [BX + 2]

[BX + 6]

MULTIPLY HIGH-ORDER 16 BITS

OF OPERAND A BY HIGH-ORDER 16

BITS OF OPERAND B

ADD

ADC

RET

[BX + 1 2]. AX
[BX + 14).DX

ADD TO PREVIOUS RESULT

ADD TO PREVIOUS RESULT

Figure 4-21. 32-Bit by 32-Bit Multiplication

ASCII Multiplication

The routine in Figure 4-22 multiplies an ASCII string by a single ASCII digit. The
result is a string of unpacked BCD digits. The routine assumes that the ASCII string is
organized in the following manner.

Byte #0

#1

]Low-order ASCII digit

#n High-order ASCII digit.

Table 4-4. 8086 Multiplication Instructions
ro
o>

H
ET

O
oo

00
o
o

Mnemonic Operands Object Code Bytes Clocks -

reg 11110110 2

1

o

(8-bit) 11100 reg

reg 11110111 2 118 —133

(16-bit) 11100 reg

mem 11110110 2. 3 or

00
OC

1

OC

(8-bit) mod 1 00 r/m 4 + EA

(DISP)

(DISP)

mem 11110111 2.3 or (124—1391

(16-bit) mod 100 r/m 4 + EA

(DISP)

(DISP)

reg 11110110 2

00
O)

1

o
00

(8-bit) 11101 reg

reg 11110111 2 128-154

(16-bit) 11101 reg

mem 11110110 2. 3 or (86 — 104)

(8-bit) mod 101 r/m 4 + EA

(DISP)

(DISP)

mem 11110111 2. 3 or (134—160)

(16-bit) mod 101 r/m 4 + EA

(DISP)

(DISP)

D4 2 83

OA

Status

T S P C

Operation Performed

MUL

IMUL

AAM

if w = 0. (AX] — (ALl • [mem/reg]
if w = 1, [DX] [AX] ̂ [AX] • [mem/reg]
Multiply the 8- or 16-bit contents of the memory location
or register specified by mem/reg with the contents of the
AL (8-bit operation) or AX (16-bit operation) register. The
result is stored in the AX register, in the case of an 8x8-bit
operation, or the DX register (high-order 16 bits) and the
AX register (low-order 16 bits) in the case of a 16 xi 6-bit
operation. This is an unsigned multiplication operation.

The execution time may vary by 7 clocks for 8-bit
operands and 15 clocks for 16-bit operands.

if w = 0, [AX] — [AL] • [mem/reg]
if w = 1. [DX] [AX] *- [AX] • [mem/reg]

Multiply the 8- or 16-bit contents of the memory location
or register specified by mem/reg with the contents of the
AL (8-bit operation) or AX (16-bit operation) register. The
result is stored in the AX register, in the case of an 8 x 8-
bit operation, or the DX register (high-order 16 bits) and
the AX register (low-order 16 bits) in the case of a 16 x
16-bit operation. This is a signed multiplication operation.

The execution time may vary by 18 clocks for 8-bit
operands and 26 clocks for 16-bit operands. The variation
is data-dependent.

After multiplying two unpacked decimal operands^ adjust
the product in AX to become an unpacked decimal result.

8086 Instruction Groups 4-27

The routine further assumes that the SI register points at the ASCII string, the DL
register contains the multiplier, a single ASCII digit, the DI register points to the
memory locations where the result, a BCD string, will be stored, and the CX register
contains the number of digits in the multiplicand. The result stored in the BCD string
will have the following form.

Byte #0 ̂

*i[

Low-order BCD digit

n + 1 High-order BCD digit.

MULTIPLY$NEXT$BYTE:

MOV [DI], 0 ;CLEAR INITIAL BYTE OF BCD STRING
AND DUOFH ;AND OFF BITS 4 AND 5 OF MULTIPLIER

MOV AUISI] ;LOAD MULTIPLICAND

INC SI

AND ALOFH ; CLEAR UPPER NIBBLE

MUL DL ;MULTIPLY BCD ' BCD
AAM ;ADJUST RESULT
ADD AL,[DI] ;ADD IN BCD

AAA

MOV IDII.AL ;STORE RESULT

INC DI

MOV [DI],AH
DEC CX ;DECREMENT AND TEST FOR DONE
JNZ MULTIPLY$NEXT$BYTE

RET

Figure 4-22. ASCII Multiplication

4-28 The 8086 Book

DIVISION INSTRUCTIONS

The 8086 instructions that perform various tasks of division are shown in Table
4-5.

The routine in Figure 4-23 illustrates use of the 8086 division instructions.

ASCII Division

The routine in Figure 4-23 divides a string of ASCII digits by a single ASCII digit.
The result is a string of BCD digits. The routine assumes that the ASCII string is
organized in the following manner.

Byte #0 High-order byte

#1[

#n I I Low-order byte

The SI register points to the ASCII string, the DL register contains the divisor, a
single ASCII digit, the DI register points to the memory locations where the result, a
BCD string, will be stored, and the CX register contains the number of digits in the divi
dend. The result, stored in the BCD string, will be of the following form.

Byte #0 I I High-order byte

#1

#n I I Low-order byte

Table 4-5. 8086 Division Instructions

Mnemonic Operands Object Code Bytes Clocks

Status

Operation Performed

DIV

IDIV

reg 11110110

(8-bit) 11110 reg

reg 11110111

(16-bit) 11110 reg

mem 11110110

(8-bit) mod 110 r/m

(DISP)

(DISP)

mem 11110111

(16-bit) mod 110 r/m

(DISP)

(DISP)

reg 11110110

(8-bit) 11111 reg

reg 11110111

(16-bit) 11111 reg

mem 11110110

(8-bit) mod 111 r/m

(DISP)

(DISP)

mem 11110111

(16-bit) mod 111 r/m

(DISP)

(DISP)

2. 3 or

4

2. 3 or

4

80 — 90

144 — 162

(86 — 96)

+ EA

(150—168)

+ EA

2. 3 or

4

2.3 or

4

101 — 112

165—184

(107—1181

+ EA

(171—190)

+ EA

if w = 0.

If w = 1,

—lAX]/[mem/reg]

— [DX]/[AXl [mem/reg]

[AH] remainder
[AL] quotient

[DX] remainder

[AX] quotient

Divide the AX register, in the case of a 16-bit operation, or
the DX register (high-order 16 bits) and AX (low-order 16
bits), in the case of a 32-bit operation, by the 8- or 16-bit
contents of the memory location or register specified by
mem/reg. In the case of a 16 x 8-bit division, the quotient
is placed in AL, and the remainder is stored in AH. In the
case of a 32 X16-bit division, the quotient is placed in the
AX register, and the remainder is placed in the DX register.

This is an unsigned division operation.

The execution time may vary by 10 clocks for 8-bit
operands and 18 clocks for 16-bit operands. The variation
is data dependent.

[AX]/[mem/reg]
|[AL] quotient

if w = 1, llDXl remainder
[[AX] quotient

Divide the AX register, in the case of a 16-bit operation, or
the DX register (high-order 16 bits) and AX (low-order 16
bits), in the case of a 32-bit operation, by the 8- or 16-bit
contents of the memory location or register specified by
mem/reg. In the case of a 16 x 8-bit division, the quotient
is placed in AL, and the remainder is stored in AH. In the
case of a 32 X 16-bit division, the quotient is placed in the
AX register, and the remainder is placed in the DX register.

This is a signed division operation.

The execution time may vary by 11 clocks for 8-bit
operands and 19 clocks for 16-bit operands. The variation
is data dependent.

if w = 0, |[AH] remainder
I

—[DX] [AX]/[mem/reg]

Table 4-5. 8086 Division Instructions (Continued)
CJ
o

H

CD

00
o
o

Mnemonic Operands Object Code Bytes Clocks

Status

I T S P C

Operation Performed

CBW

CWD

AAD

98

99

D5

OA

60

[AH] «-[AL7]

Extend the sign bit of the AL register, bit 7, into the AH
register.

[DXl —[AX 15]

Extend the sign bit of the AX register, bit 15, into the DX
register.

Decimal adjust dividend in AL prior to dividing an
unpacked decimal divisor, to generate an unpacked
decimal quotient.

8086 Instruction Groups 4-31

AND DL.OFH ;CLEAR HIGH-ORDER NIBBLE

XOR AH.AH ; CLEAR AH

DIVIDE$NEXT$BYTE: MOV AUSIl ;LOAD BYTE FROM ASCII STRING

INC SI

AND AUGFH ;CLEAR BITS 4 AND 5

AAD ;ADJUST USING AH

DIV DL

MOV [DI],AL ;STORE RESULT

INC Dl

DEC CX ; DECREMENT AND TEST FOR DONE

JNZ DIVIDE$NEXT$BYTE
RET

Figure 4-23. ASCII Division

64-Bit Division

Dividing a 64-bit dividend by a 32-bit divisor is not an easy task on the 8086. The
DIV and IDIV instructions are not particularly useful when performing this function. To
divide a 64-bit number by a 32-bit number, a subtract and shift algorithm must be
employed. The construction of such a routine, a nontrivial task, is beyond the scope of
the current discussion.

COMPARE INSTRUCTIONS

8086 compare instructions are shown in Table 4-6; they execute like subtract
instructions, however no result is returned to a register or memory location. The
subtract operation is used only to set status flags.

Use of compare instructions is illustrated in Figures 4-24 through 4-26.
Two string primitive instructions, CMPS and SCAS, also perform comparisons.

These instructions are discussed with the other primitive instructions later in the
chapter.

Table 4-6. 8086 Comparison Instructions
G>
ro

H

o

00
o
o

Mnemonic Operands Object Code Bytes Clocks

Status

I T 8 P C

Operation Performed

CMP

CMP

CMP

mem/regi,
mem/reg2

mem/reg,
data

80,data

OOlllOdw

mod rrr r/m

(DISP)

(DISP)

1OOOOOsw

mod 111 r/m

(DISP)

(DISP)

kk

jj (if sw = 01)

0011llOw

kk

jj(ifw= 1)

2. 3 or

4

3.4.5

or 6

2 or 3

reg-reg: 3
mem-reg;

9 + EA

reg-mem:

9 + EA

reg: 4
mem:

10 + EA

[mem/reg - [mem/reg2]
Subtract the 8- or 16-bit contents of the memory location
or register selected by mem/reg2 from the 8- or 16-bit
contents of the memory location or register specified by
mem/reg 1, use the result to set the flags, then discard the
result.

[mem/reg] - data
Subtract the 8 or 16 bits of immediate data from the 8- or

16-bit contents of the memory location or register
specified by mem/reg, use the result to set the flags, then
discard the result.

[ac] - data

Subtract the 8 or 16 bits of immediate data from the AL

(8-bit operation) or the AX (16-bit operation) register, use
the result to set the flags, then discard the result.

8086 Instruction Groups 4-33

Calculate the Length of a String

The routine in Figure 4-24 determines the number of a characters in a string.
This routine assumes that the SI register addresses the string being scanned and

AH contains a character that identifies the end of the string. When this routine finishes
executing, the DX register will contain the number of characters between the start of the
string and the terminating character.

MOV DX.OFFFFH INITIALIZE COUNT TO -1

SCANFORDELIMITER: INC DX INCREMENT COUNT

MOV AUISI] LOAD BYTE FROM STRING

INC SI UPDATE POINTER

CMP AH.AL COMPARE WITH TERMINATION

JNZ SCANFORDELIMITER BRANCH IF NOT TERMINATION

RET

Figure 4-24. Calculate the Length of a String

The string primitive instruction SCAS can be used to reduce the amount of
memory and speed of execution of this routine. The SCAS instruction is discussed with
the other string primitive instructions later in this chapter.

Find the Largest 8-Bit Unsigned Number in a Sequence

The routine in Figure 4-25 will determine the largest 8-bit unsigned number in a
sequence of 8-bit unsigned numbers. This routine assumes that the SI register addresses
the sequence of numbers to be scanned, while the CX register contains the number of
bytes to be scanned. When this routine has finished executing, AH will contain the max
imum value, and DX will point at the maximum value.

XOR AH.AH INITIALIZE MAX. NUMBER

SCANSNEXTSBYTE: MOV AL.1SI] ;LOAD BYTE FROM SEQUENCE

CMP AH.AL ;COMPARE WITH CURRENT MAX. #

JAE UPDATE$PTR

MOV AH.AL ;SAVE NEW MAX. NUMBER

MOV DX.SI ;SAVE LOCATION OF MAX. #

UPDATESPTR: INC SI

DEC CX

JNZ SCAN$NEXT$BYTE

RET

Figure 4-25. Find the Largest 8-Bit Number

The routine in Figure 4-25 and the routine in Figure 4-26 can be improved by
using string primitive instructions.

4-34 The 8086 Book

Find the Largest 16-Blt Number in a Sequence

The routine in Figure 4-26 will determine the largest 16-bit signed number in a
sequence of 16-bit signed numbers. This routine assumes that the SI register addresses
the series of numbers to be scanned while the CX register contains the number of words
to be scanned.

MOV BX,8000H ;INITIALIZE MAX. NUMBER

SCAN$L00P: MOV AX.(SI] ;LOAD NUMBER FROM SEQUENCE

CMP BX,AX ;COMPARE WITH CURRENT MAX. NUMBER
JGE UPDATE$PTR

MOV BX.AX ;SAVE NEW MAX. NUMBER
MOV DX,SI ;SAVE LOCATION OF MAX. NUMBER

UPDATE$PTR: INC SI ; UPDATE PRT.

INC SI

DEC CX ; DECREMENT AND TEST FOR DONE

JNZ SCAN$LOOP
RET

Figure 4-26. Find the Largest 16-Bit Number

BUFFER$TRANSLATION

Earlier in this chapter, two buffer translation routines were presented. The follow
ing routine includes error checking. The characters in the buffer which is to be trans
lated must lie in the range 20i6 < character < 5F|6. This routine assumes that the BX
register contains the address of the conversion table, the SI register contains the address
of the buffer to be translated, and the CX register contains the number of data elements
to be translated.

TRANSLATE$LOOP: MOV AUSI] ;LOAD BYTE FROM SOURCE
SUB AL.20H ;NORMALIZE

JB TRANSLATE$ERROR ;IF LESS THAN 0, REPORT ERROR
CMP AL,3FH ; COMPARE WITH NORMALIZED MAX.

JA TRANSLATE$ERROR ;IF GREATER. REPORT ERROR
XLAT TRANSLATE NORMALIZED VALUE
MOV [SIl.AL ; STORE CONVERTED DATA

INC SI ;ADJUST POINTERS

DEC CX

JNZ TRANSLATE$LOOP

RET ;GOOD RETURN WITH Z=1
TRANSLATE$ERROR: RET ;ERROR RETURN WITH Z=0

Figure 4-27. Buffer Translation with Range Checking

The routine returns with Z = 1 if there were no translation errors and Z=0 for one

or more translation errors. Note that the subtraction instruction limits the size of the

conversion table to 40i6 bytes. Data could be validated using two CMP instructions with
the BX register addressing a location 20i6 bytes before the conversion table.

8086 Instruction Groups 4-35

LOGICAL INSTRUCTIONS

The 8086 provides the usual logical functions. These functions are:

AND

NOT

OR

XOR

In addition, the TEST instruction performs an AND operation without altering
either of the operands.

The 8086 logical instructions are shown in Table 4-7.

Table 4-7. 8086 Logical Instructions

Mnemonic Operands Object Code Bytes Clocks

Status

Operation Performed

0 D 1 T S z A P c

AND mem/reg^. OOlOOOdw 2.3. or reg-reg: 3 X X X ? X X [mem/regil [mem/reg^] AND [mem/reg2]
mem/reg2 mod rrr r/m 4 mem-reg: AND the 8- or 16-bit contents of the memory location or

(DISP) 9 + EA register selected by mem/reg2 with the 8- or 16-bit con
(DISP) reg-mem: tents of the memory location or register specified by

16 + EA mem/reg-]. leaving the result in the memory location or
register specified by mem/reg i.

AND mem/reg. lOOOOOOw 3.4.5 reg: 4 X X X ? X X [mem/reg] [mem/reg] AND data
data mod 1 GO r/m or 6 mem: AND the 8 or 16 bits of immediate data with the 8- or 16-

(DISP) 17 + EA bit contents of the memory location or register specified
(DISP) by mem/reg. storing the result in the memory location or

kk register specified by mem/reg.
j] (if w = 1)

AND ac.data OOlOOlOw 2 or 3 4 X X X ? X X [ac] ̂ [ac] AND data

kk AND the 8 or 16 bits of immediate data with the AL (8-bit

j](ifw= 1) operation) or the AX (16-bit operation) register, leaving
the result in the AL or AX register.

NOT mem/reg iinoiiw 2.3 or reg: 3 [mem/reg] *— [mem/reg]
mod 010 r/m 4 mem: Ones complement the 8- or 16-bit contents of the

(DISP) 16 + EA memory location or register specified by mem/reg.

(DISP)

OR mem/reg 00001Odw 2.3 or reg-reg: 3 X X X ? X X [mem/reg^] ̂[mem/reg^] OR [mem/reg2]
mem/reg 2 mod rrr r/m 4 mem-reg: OR the 8- or 16-bit contents of the memory location or

(DISP) 9 + EA ' register specified by mem/reg2 with the 8- or 16-bit con
(DISP) reg-mem: tents of the memory location or register selected by

16 + EA mem/reg 1. leaving the result in the memory location or
register selected by mem/reg i.

OR mem/reg. lOOOOOOw 3.4.5 reg: 4 X X X ? X X [mem/reg] [mem/reg] OR data
data mod 001 r/m or 6 mem: OR the 8 or 16 bits of immediate data with the 8- or 16-

(DISP) 17 + EA bit contents of the memory location or register specified
(DISP) by mem/reg. leaving the result in the memory location or

kk register specified by mem/reg.
ji(ifw = 1)

Table 4-7. 8086 Logical Instructions (Continued)

Status

Mnemonic Operands Object Code Bytes Clocks Operation Performed

0 D • T 8 z A p c

OR 80,data 00001lOw

kk

jj(ifw = 1)

2 or 3 4 X X X ? X X [ac] ̂ [ac] OR data
OR the 8 or 16 bits of immediate data with the AL (8-bit

operation) or AX (16-bit operation) register, leaving the
result in the AL or AX register.

TEST mem/regi, lOOOOlOw 2,3 or reg-reg: 3 X X X ? X X [mem/reg 1] AND [mem/reg2]
mem/reg2 mod rrr r/m 4 mem-reg: AND the 8- or 16-bit contents of the memory location or

(DISP)

(DISP)
9 + EA register specified by mem/reg2 with the 8- or 16-bit con

tents of the memory location or register specified by
mem/reg 1, using the result to set the flags, then discard
ing the result.

TEST mem/reg,
data

1111011W

mod 000 r/m

(DISP)

(DISP)

kk

ii (if w = 1)

3,4,5

or 6

reg: 5
mem:

11 + EA

X X X ? X X [mem/reg] AND data
AND the 8 or 16 bits of immediate data with the 8- or 16-

bit contents of the memory location or register specified
by mem/reg, using the result to set the flags, then dis
carding the result.

TEST ac.data lOIOIOOw

kk

jj (if w = 1)

2 or 3 4 X X X ? X X [ac] AND data

AND the 8 or 16 bits of immediate data with the AL (8-bit

operation) or AX (16-bit operation) register, using the
result to set the flags, then discarding the result.

XOR mem/reg OOllOOdw 2,3 or reg-reg: 3 X X X ? X X [mem/reg i] [mem/reg i] XOR [mem/reg2]
mem/reg2 mod rrr r/m 4 mem-reg: Exclusive-OR the 8- or 16-bit contents of the memory

(DISP)

(DISP)

9 + EA

reg-mem:

16 + EA

location or register specified by mem/reg2 with the 8- or
16-bit contents of the memory location or register
specified by mem/reg^, leaving the result in the memory
location or register specified by mem/reg ̂.

XOR mem/reg.
data

1OOOOOOw

mod 110 r/m

(DISP)

(DISP)

kk

jj(ifw = 1)

3.4.5

or 6

reg: 4
mem:

17 + EA

X X X ? X X . [mem/reg] -^[mem/reg] XOR data
Exclusive-OR the 8 or 16 bits of immediate data with the

8- or 16-bit contents of the memory location or register
specified by mem/reg, leaving the result in the memory
location or register specified by mem/reg.

XOR ac.data 001101Ow

kk

ij(ifw = 1)

2or3 4 X X X ? X X [ac] ̂ [ac] XOR data

Exclusive-OR the 8 or 16 bits of immediate data with the AL

(8-bit operation) or AX (16-bit operation) register, leaving
the result in the AL or AX register.

4-38 The 8086 Book

The routine in Figure 4-29 illustrates 8086 logical instructions. Consider the
following scenario;

1. An I/O port is receiving a stream of data blocks. These data blocks are in Sig-
netics hex code.

2. The I/O port generates an interrupt whenever a character becomes available.

The routine in Figure 4-29 is an interrupt service routine that handles the above
scenario via the following steps:

1. Save the raw information.

2. Convert the raw information into object code.

3. Check the checksum.

4. Set a message "message completed" bit when processing is complete.

The routine in Figure 4-29 performs these functions by implementing the
flowchart in Figure 4-28.

STARTSOFSMESSAGE

CHARACTER

Get Character

Started

Turn on

Message Bit

Save

Character

Set Header Data

Bit to Header

Initialize

Character

Count for Header

Message

Header or

Header

Turn on

Error Flag

Flip Header/Data
Bit

Extract Count

I
("""" 3 C

Good

1 Yes I

Turn on

Message
Completed Bit

Turn on

Error Flag

♦
Flip Start of
Message Bit

Figure 4-28. Flowchart for Interrupt Service Routine

8086 Instruction Groups 4-39

As illustrated below, the Signetics object code format has the following elements.

1. A gap having any number of non-printing characters, including spaces

2. Start of block character: a colon

3. Address field: four hex characters

4. Count field: two hex characters in range 0 to IE

5. Block Control Character for address and count fields: two hex characters

6. Data field: twice the value in the count field which is the number of memory
locations loaded by the current block

7. Block Control Character: two hex characters

Example of Signetics Object Code Format

; 0500 OA 30 0455B024FFF01F050400 M

re)

[F^OIFOSP^SO

"5 J
(5) — Start of block character (colon)
(D — Starting address for block (H'0500')
@ — Number of bytes in block IH'OA' = 10)
® - BOG byte for fields 3 and 4 (H'3C')
@ — Data, two characters per byte
@ - BOG byte for field 6 (H'30')

The Block Control Character, otherwise known as a checksum, is created by
manipulating the data bytes within a data string. The Signetics object code format
includes two Block Control Characters. The first Block Control Character (s) applies to
the three preceding data bytes, which contain the starting address for the block and the
number of bytes in the block. The second Block Control Character @ applies to the
string of data bytes in field @

To generate a Block Control Character, the character is first cleared, then
repetitively exclusive-ORed with each data byte in the related string. After each
exclusive-OR step, the result is left rotated one bit. To illustrate Block Control
Character logic, consider the first Block Control Character in the Signetics object format
illustration; it is generated from the byte sequence 05 DO OA as follows:

BOG

00000000

00001010

00010100

Data

00000101

00000000

00001010

BOG XOR Data Left Rotate

00000101

00001010

00011110

00001010

00010100

00111100

BGG = 3GH

4-40 The 8086 Book

This routine uses four variables in memory, in addition to the buffer written
which the data is stored. The variables are:

STATUSSBYTE:
-Bit No.

rSTARTOFMESSAGE$BIT

0 - Message not started
(1 - Either Header or Data Message started

^HEADER$DATA$B1T

-< 0 - Data being processed
' 1 - Header being processed

L MESS AGE$COMPLETED$BIT

—\ 0 - Message not done
*1 - Message done
pRANSLATION$ERROR$BIT

-< 0 - No error

(l - Translation Error

I HEADER$CHECKSUM$ERROR$BIT
-< 0 - No error

II - Header Checksum Error

I DATA$CHECKSUM$ERROR$BIT

0 - No error

(l - Data Checksum Error

CHARACTERSCOUNT:

OBJECT$BYTE$COUNT:

BUFFERSPOINTER;

One byte which contains the number of characters left
to be read in either the header or the data block. The
start of message code initializes this variables to
NUMBEROFHEADER$CHARACTERS, which is

equated to 8. When the header has been processed, this
variable is initialized to 2* (Number of object code bytes
in data block) +2.

One byte which contains the number of object code
bytes in the data block. This variable is initialized after
the header has been processed.

A 16-bit offset address which indicates where the next

byte of data from the I/O port should be stored. This
variable is initialized by the Start of Message code,
which loads immediate data into BUFFER$POINTER.

This assumes that the buffer will always be in a fixed
position. If it is necessary to vary the location of the
buffer, this variable could be initialized by a system or
user program.

8086 Instruction Groups 4-41

; This page contains the equates for this program. As mentioned
earlier, equates allow descriptive names to be used in a program.

STATUS BYTE EQUATES

STARTOFMESSAGE$BIT EQU OIH

HEADER$DATA$BIT EQU 02H

MESSAGE$COMPLETED$BIT EQU 04H

TRANSLATION$ERROR$BIT EQU 08H

HEADER$CHECKSUM$ERROR$BIT EQU 10H

DATA$CHECKSUM$ERROR$BIT EQU 20H

BUFFER ADDRESS EQUATES

BUFFERSADDRESS EQU 1000H;OFFSET ADDRESS FOR BUFFER

STARTOFHEADER$PQINTER EQU BUFFERSADDRESS

START$0F$DATA$P0INTER EQU BUFFERSADDRESS + 8

I/O EQUATE

CHARACTERSPORT EQU 10H;l/0 PORT ADDRESS FOR DATA

MISCELLANEOUS EQUATES

STARTOFMESSAGE$CHARACTER EQU 3AH

NUMBEROFHEADER$CHARACTERS EQU 08H

DATA DEFINITION

STATUSSBYTE DB 1

CHARACTERSCOUNT DB 1

BUFFERSPQINTER DW 1

OBJECT$BYTE$COUNT DB 1

INTERRUPTSHANDLER; IN AL.CHARACTERSPORT ;READ CHARACTER

TEST STATUSSBYTE,STARTSOFSMESSAGESBIT ;HAS A MESSAGE

JNZ HEADERSORSDATA ;BEEN STARTED?

STARTQFMESSAGE$CQDE CMP AL.STARTSOFSMESSAGESCHARACTER ;START OF MESSAGE

JNZ PERFORMSASRET ;CHARACTER?

OR STATUSSBYTE.STARTSOFSMESSAGESBIT OR

HEADERSDATASBIT JNITIALIZE

MOV CHARACTERSCOUNT.NUMBERSOFSHEADERSCHARACTERS

MOV BUFFERSPOINTER.BUFFERSADDRESS MOVE IMMEDIATE

PERFORMARET; RET DATA TO BUFFER

;POINTER

HEADERSQRSDATA: MOV DI.BUFFERSPOINTER ;SAVE CHARACTER

MOV (DII.AL

INC Dl ;UPDATE POINTER

MOV BUFFERSPOINTER.DI

DEC CHARACTERSCOUNT DECREMENT AND TEST

JNZ PERFORMSASRET FOR MESSAGE DONE

TEST STATUSSBYTE.HEADERSDATASBIT

JZ DATASPROCESSING

HEADERSPROCESSING: MOV CX.0004 ;SET UP FOR ASCII TO HEX

MOV SLSTARTSCFSHEADERSPOINTER .CONVERSION

MOV DI.SI

HEADERSTRANSLATESLOOP: CALL CONVERTSTWOSASCIISTOSHSX CONVERT TWO ASCII CHARACTERS

JZ TRANSLATIONSERROR ;T0 ONE HEX BYTE

MOV [DII.AL

INC Dl

DEC CX DECREMENT AND TEST FOR DONE

JNZ HEADERSTRANSLATESLOOP

MOV SLSTARTSCFSHEADERSPOINTER ;SET UP FOR HEADER CHECKING

XOR AX.AX

MOV CX.0003

HEADER$CHECKSUM$LOOP: XOR ALISII ;CALCULATE BLOCK CHECKSUM

ROL AL.1 ;FROM CHARACTERS

. INC St

DEC CX jDECREMENT AND TEST

JNZ HEADERSCHECKSUMSLOOP ;FOR CHECKSUM DONE

CMP ALISII .COMPARE CALCULATED CHECKSUM

JNZ HEADERSCHECKSUMSERROR WITH RECEIVED CHECKSUM

XOR STATUSSBYTE.HEADERSDATASBIT HEADER GOOD. SWITCH TO

. DATA PROCESSING

MOV AX.(SI-2) LOAD * OF OBJECT

MOV OBJECTSBYTECOUNT.AX ;CODE BYTES FROM HEADER

SAL AX.1 ;GET NUMBER OF ASCII CHARACTERS

ADD AX.02 ;ADD 2

RET CHARACTERSCOUNT.AX ;SAVE FOR DATA PROCESSING

HEADER$CHECKSUM$ERRQR: MOV STATUSSBYTE.HEADERSCHECKSUMSERRORSBIT
;TURN ON ERROR BIT

RET

Figure 4-29. Interrupt Service Routine

4-42 The 8086 Book

TRANSLATIONSERROR; MOV STATUS$BYTE.TRANSLATION$ERROR$BIT :TURN ON ERROR BIT

RET

DATASPROCESSING: MOV CX,OBJECT$BYTE$COUNT ;SET UP FOR CONVERSION

MOV SI.STARTOFDATA$POINTER ;FROM ASCII TO HEX

MOV DI,START$0F$DATA$P0INTER-4

DAT A$TR ANSLATESLOOP: CALL CONVERTTWOASCIITOHEX

J2 TRANSLATIONSERROR

MOV (DIl.AL

INC Dl

DEC CX ' ;DECREMENT AND TEST FOR

JNZ DATASTRANSLATESLOOP ;DONE

MOV SLSTARTSOFSDATASPOINTER -4 ;SET UP FOR CHECKSUM

XOR AX,AX CALCULATION

MOV CX.OBJECTSBYTESCOUNT

DATA$CHECKSUM$LOOP; XOR AL.(SI1
ROL AL,1 CALCULATE CHECKSUM

INC SI

DEC CX

JNZ DATASCHECKSUMSLOOP

CMP ALISII COMPARE CALCULATED CHECKSUM

JNZ DATASCHECKSUMSERROR ;WITH RECEIVED CHECKSUM

XOR STATUS$BYTE.START$OF$MESSAGE$BIT ;TURN ON

OR MESSAGESSCOMPLETEDSBIT ;MESSAGE COMPLETED BIT

RET ;TURN OFF START OF MESSAGE BIT

DATA$CHECKSUM$ERROR: MOV STATUS$BYTE,DATA$CHECKSUM$ERROR$BIT ;TURN ON ERROR BYTE

RET

Figure 4-29. Interrupt Service Routine (Continued)

8086 Instruction Groups 4-43

Several assumptions have been made by the logic of the program illustrated in
Figure 4-28; they include:

1. The state of the machine has been saved and on return will be correctly
restored.

2. The segment registers are set to the correct values.

3. Any hardware errors flags set by the I/O port are handled elsewhere.

4. A subroutine named CONVERTTWQASCIITOHEX that converts two

ASCII characters pointed to by the DI register into one hex byte and returns
the value in AL.

It is reasonable to expect that the first three assumptions are provided for by some
sort of system interrupt handler. If this is not the case, these assumptions can be
handled by:

1. Using the code shown in Figures 4-14 and 4-15 to save and restore the
machine state. Note, however, that this routine does not use the BX, DX, or
BP registers. It is not, therefore, necessary to save and restore these registers.
The RETURN instruction should be altered to an IRET instruction.

2. Perform an appropriate segment register initialization routine.

3. Read the status port for the input device and set a flag in the status byte to
indicate any errors. Bits 6 or 7 could be used for this purpose.

The CONVERTTWOASCIITOHEX routine will be presented later in this
chapter.

4-44 The 8086 Book

STRING PRIMITIVE INSTRUCTIONS

8086 string primitive instructions are shown in Table 4-8. Each string primitive
instruction performs a sequence of operations normally handled by an instruction loop.
The string primitive instruction performs an operation specified by the primitive, then
increments or decrements the pointer registers involved in the operation. On each itera
tion the affected pointer registers can be incremented or decremented, by 1 or 2. Pointer
registers will be incremented if the value of the Direction flag in the Flags register is 0;
the affected pointers will be decremented if the value of the Direction flag is 1. The
affected pointer registers will be incremented or decremented by 1 if the low-order bit of
the string primitive operation code is 0. If the low-order bit of the string primitive opera
tion code is 1, the affected pointer registers will be incremented or decremented by 2.

There are these five string primitives;

MOVS - Move 8 or 16 bits of data from memory location to memory location
LODS - Load 8 or 16 bits of data from memory into the AL or AX register
STOS - Store the AL (8-bit operation) or AX (16-bit operation) register into

memory

SCAS - Compare the AL (8-bit operation) or AX (16-bit operation) register with
memory

CMPS - Compare memory location with memory location

String primitive instructions used fixed addressing modes, as follows:

MOVS - Move data from the memory location addressed by the SI register in the
Data Segment to the memory location addressed by the D1 register in the
Extra Segment.

LODS - Load data from the memory location addressed by the SI register in the
Data Segment to the AL or AX register.

STOS - Store the AL or AX register into the memory location addressed by the D1

register in the Extra Segment.
SCAS - Compare the AL or AX register contents with the data in the memory

location addressed by the D1 register in the Extra Segment.
CMPS - Compare the data in the memory location addressed by the SI register in

the Data Segment with the data in the memory location addressed by the
D1 register in the Extra Segment.

Segment override prefixes allow SI to access a segment other than the Data Seg
ment. Segment override prefixes may not be used with the D1 register. The D1 register
must access the Extra Segment.

Table 4-8. String Primitive Instructions

Mnemonic Operands Object Code Bytes Clocks

Status

O D I T S Z A P C

Operation Performed

LCDS

MOVS

STOS

CMPS

lOIOIlOw

1010010W

lOIOIOIw

lOIOOIIw

SCAS 1010111W

12

9 + 13-

18

9 + 17-

11

9 + 10*

22

9 + 22*

15

9 + 15*

lad -[[Sill. [811 -ISil ±DELTA
Move data into the AL (8-bit operation or AX (16-bit
operation) register from the memory location addressed
by SI. Increment or decrement 81 depending on the value
of the Direction Flag. DELTA is 1 if w = 0, 2 if w = 1.

llDIll -IISIIL 181] -1811 ±DELTA
[Dll — [Dll ±DELTA
Move 8 or 16 bits of data from the memory location
addressed by 81 to the memory location addressed by Dl.
Increment or decrement 81 and Dl depending on the value
of the Direction Flag. DELTA is 1 if w = 0, 2 if w = 1.

[[Dili -lad. IDI] -IDII ±DELTA
Move the contents of the AL (8-bit operation) or AX (16-
bit operation) register. Increment or decrement Dl depend
ing on the value of the Direction Flag. DELTA is 1 if w = 0,
2 if w = 1.

llSIll - [[Dill. [811 -[811 ± DELTA
[Dll —[Dll ±DELTA

Subtract the 8 or 16 bits addressed by the Dl register
from the 8 or 16 bits addressed by the 81 register. Use the
result to set the flags, then discard the result. Increment or
decrement 81 and Dl depending on the value of the Direc
tion Flag. DELTA is 1 if w = 0. 2 if w = 1.

[ad - [[Dill
Subtract the 8 or 16 bits addressed by the Dl register
from the AL (8-bit operation) or the AX (16-bit operation)
register. Use the result to set the flags, then discard the
result. Increment or decrement Dl depending on the value
of the Direction Flag. DELTA is 1 if w = 0, 2 if w = 1.

If preceded by the Repeat prefix (REP) there are 9 clocks plus the C) number of clocks for the first transfer and the C) number of clocks for each subsequent transfer ai

4-46 The 8086 Book

THE REP PREFIX

REP is a one-byte prefix that converts any string primitive instruction into a reex-
ecuting loop.

String primitive instructions each execute as one iteration of a loop. The source
and destination pointer registers SI and DI are assumed, by string primitive instructions,
to supply source and/or destination memory addresses; these addresses are automat
ically incremented or decremented following each execution of the string primitive
instruction. This leaves the address(es) pointing to the next location in the string to be
accessed. The REP prefix specifies a termination condition which causes the string pri
mitive instruction to continue executing until the termination condition is met.

For the MOVS, LODS, and STOS string primitives, there is a single termination
condition. The CX register is treated as a counter; each time the string primitive
executes, the CX register contents is automatically decremented by REP prefix logic.
When the CX register contents decrements to 0, the instruction following the string pri
mitive is executed.

CMPS and SCAS also use the CX register as a counter in the presence of a REP
prefix; and as described for MOVS, LODS, and STOS, the CX register contents decre
menting to 0 becomes a termination condition. In addition, CMPS and SCAS set status
flags following each iterative execution. The level of the zero status bit serves as an addi
tional termination condition. For this to be possible the CMPS and SCAS string primi
tives use two forms of the REP prefix:

1. REPZ or REPE which causes a termination if the zero status is set after any

iterated execution of the string primitive.

2. REPNZ or REPNE which causes a termination condition if the zero status is

reset after any iterated execution.

In summary, the REP prefix surrounds a string primitive instruction's execution
with the following steps:

1. Tests the CX register contents. If CX contains 0 proceed to the instruction
that follows the string primitive.

2. Service any pending interrupt.

3. Execute the string primitive instruction once. The pointer register addresses
are incremented or decremented during this step as a normal part of the string
primitive instruction's execution.

4. Decrement the CX register contents.

5a. For MOVS, LODS, or STOS proceed to step 1.

5b. For CMPS or SCAS, compare the zero status with the conditions specified
by the REP prefix. If the specified zero status does not exist, then return to
step 1; otherwise execute the instruction following the string primitve.

8086 Instruction Groups 4-47

String primitive instructions are very powerful. Sequences such as:

or

can be replaced by

or

MOV AL,[SI]
INC SI

MOV AX. [Si]

INC SI

INC SI

MOVSB

MOVSW

Consider Figure 4-2. If the Direction Flag is set to 0, this sequence of instructions
may be replaced by

REP MOVSW

RET

In addition, note that the REP and MOVW instructions are single byte instructions,
therefore, a CALL to this routine would be more expensive than inserting

REP MOVSW

directly into the program.
Figure 4-9, the buffer initialization routine, can be replaced by

REP STOSB

This replacement assumes that the Direction Flag is set to 0.
As an exercise, the reader should look over the other programs given earlier on

this chapter and look for examples that can use the string primitives.
Consider a variation of the program illustrated in Figure 4-1 that compares two

strings of bytes. Written out completely, the program would appear as follows:

C0MP$BYTES: MOV AL,[SI] ;LOAD BYTE FROM SOURCE

CMP [DII.AL .COMPARE WITH DESTINATION

JZ EQUAL ;TEST FOR SIMILAR BYTES

INC SI ;ADJUST POINTERS

INC Dl
y DEC CX :DECREMENT NUMBER TO MOVE

JNZ COMP$BYTES ;LOOP IF NOT DONE

Figure 4-30. 8-Bit Buffer-to-Buffer Compare

4-48 The 8086 Book

CMP compares bytes or words, register-to-register, register-to-memory or
memory-to-register. In Figure 4-30 the contents of two memory buffers are compared,
looking for identical bytes. Pointer registers SI and DI address the source and destina
tion registers, respectively. Registers SI, DI, and CX have been selected deliberately in
Figure 4-30, because these are the registers used by the CMPSB and CMPSW string pri
mitives; this allows the entire program sequence illustrated in Figure 4-30 to be replaced
by:

REPZ CMPSB

JZ EQUAL

Figure 4-31. Alternate 8-Bit Buffer-to-Buffer Compare

PROGRAM COUNTER CONTROL INSTRUCTIONS

This group of 8086 instructions unconditionally alter program counter contents,
and in some cases they alter Code Segment register contents as well. These instructions
are summarized in Table 4-9.

CALL instructions are used to transfer control from a program to a subprogram.
The subprogram may reside in the current code segment or in a code segment specified
by the instruction. The address of the subprogram may be provided by the instruction as
an immediate address, or it may be stored in memory or registers. The four 8086 CALL
instructions allow the following possibilities:

Current Code Segment
Code Segment Specified

by Instruction

Immediate Address CALL dispie CALL addr

Address in Memory/Register
CALL mem/reg CALL mem

The CALL displ6 instruction is the only instruction in which a signed 16-bit num
ber is added to the program counter. The other three CALL instructions move data
directly from memory or register to the program counter. Prior Code Segment and/or
program counter contents are pushed onto the Stack — and are thus>9aved.

8086 Instruction Groups 4-49

RETURN instructions are used to transfer control from a subprogram back to the

program that is called the subprogram. RETURN instructions that terminate a
subprogram operate as the inverse of the CALL that invoked the subprogram. When a
RETURN instruction is executed, data is popped from the stack into the program
counter and, optionally, the Code Segment register. In addition, the RETURN instruc
tions can optionally add a displacement to the stack pointer. This allows a RETURN
instruction to adjust the stack pointer so it bypasses parameters that are on the stack for
the subprogram to operate on. The four 8086 RETURN instructions allow these
options:

Pop into PC Pop into CS.PC

Normal Return RET RET

Add Displacement to
Stack

RET disp16 RET dispie

Note that the 8086 does not provide Call-on-Condition or Return-on-Condition
instructions. To implement the corresponding 8080 instruction, the CALL or RETURN
instruction must be combined with a Jump-on-Condition instruction. For example, the
following 8080 instruction sequence

CNZ SUB$PROGRAM CALL SUB$PROGRAM if ZF = 0
NEXT$INSTRUCTION: OR A A

is replaced by the 8086 sequence

JZ NEXT$INSTRUCTION ;JUMP TO NEXT$INSTRUCTION if ZF =1
CALL SUBSPROGRAM ;JUMP TO SUB$PROGRAM if ZF = 0

NEXT$INSTRUCTION: OR AX.BX

8086 Jump instructions are presented in Table 4-9. 8086 Jump instructions generally
offer the same variations as 8086 CALL instructions. An additional Jump instruction is:

JMP disp

which has two bytes of object code, as opposed to the three-byte JMP disp 16 instruction.
JMP disp is a relative jump; it adds an 8-bit signed binary displacement to the program
counter. This allows program jumps to occur within 1-127 bytes of the Jump instruction.
Numerous programming examples given in this chapter use Jump instructions and
illustrate their use.

Table 4-9. Program Counter Control Instructions

Mnemonic Operands Object Code Bytes Clocks

Status

T S P C

Operation Performed

CALL

CALL

CALL

CALL

RET

RET

RET

RET

addr

disp16

mem

(BEG

+ PC)

mem/reg
(PC only)

dlsp16

disp16

9A

kk

jj
hh

gg

E8

kk

ii

FF

mod Oil r/m

(DISP)

(DISP)

FF

mod DIG r/m

(DISP)
(DISP)

C3

CB

C2

kk

jj

CA

kk

jj

28

19

2,3 or
4

2.3 or

4

37 + EA

21 + EA

(mem)

16 (reg)

18

12

17

[SPl — [SPl - 2, [[SPl] — [PC],
[SPl ̂ [SP] - 2, [[SPll ̂ [CSl,
IPCI«— addr (offset portion), [CS] — addr (segment portion)

Call a subroutine in another code segment space. A new
offset address, jjkk, and a new segment address, gghh,
are provided.

[SP] - [SPl -2, [[SPll — [PC]

[PC] ̂ [PC] + dispie
Call a subroutine in the current code segment.

[SP] — [SP] - 2, [[SP]] ̂ [PC],
[SP] — [SP] - 2, [[SP]] — [CS],
[PC] «— [mem], [CS] [mem + 2]

Call a subroutine in another code segment space. The 16
bits contained in the memory location addressed by mem
are moved into the PC. The contents of the succeeding
memory word are loaded into the CS register.

[SP] ̂ [SP] -2, [[SP]] — [PC]
[PC] ̂ [mem/reg]

Call a subroutine in the current code segment. The 16 bits
contained in the memory location or register addressed by
mem/reg are moved into the PC.

[PC] — [[SP]], [SP] — [SP] + 2
Perform a return to a calling program in the current code
segment.

[PC] — [[SP]], [SP] — [SP] + 2,
[CS] ̂ [[SP]], [SP] ̂ [SP] + 2

Perform a return to a calling program in another code seg
ment.

[PC] — [[SP]], [SP] — [SP] + 2 + dispie
Perform a return to a calling program in the current code
segment; adjust the stack pointer by displG.

[PC] [[SP]], [SP] — [SP] + 2,
[CS] ̂ [[SP]], [SP] ̂ [SP] + 2 + dispie

Perform a return to a calling program in another code seg
ment; adjust the stack pointer by displ e.

Table 4-9. Program Counter Control Instructions (Continued)

Mnemonic Operands Object Code Bytes Clocks

Status

P C

Operation Performed

JMP

JMP

JMP

JMP

JMP

addr

disp

disp16

mem

(SEG
+ PC)

mem/reg
(PC only)

EA

kk

ii
hh

gg

EB

kk

E9

kk

ii

FF

mod 101 r/m

(DISP)

(DISP)

FF

mod 1 GO r/m

(DISP)

(DISP)

2.3 or

4

2.3 or

4

15

15

15

24 + EA

18 + EA

(mem)

11 (reg)

IPCI^ addr (offset portion), [CS] ̂ addr (segment portion)
Jump to another code segment. A new offset address,
jjkk. and a new segment address, gghh. are provided.

[PC] — [PC] + disp
Perform a program relative jump.

[PC] — [PC] + disp 16
Jump to a location in the current code segment.

[PC] *— [mem], [CS] [mem + 2]
Jump to a location in another code segment. Move the
contents of the memory location addressed by mem into
the PC. Move the contents of the succeeding memory
location into the CS register.

[PC] ̂ [mem/reg]
Jump to a memory location in the current code segment.
Move the contents of the memory location or register

addressed by mem/reg into the PC.

o
c
■a

4-52 The 8086 Book

JUMP-ON-CONDITION INSTRUCTIONS

8086 instructions that alter the contents of the program counter based on various
conditions are presented in Table 4-10.

Table 4-11 lists the arithmetic comparisons that are commonly used and shows
how to derive them with the 8086.

In general, greater or less are adjectives that are applied to signed operations.
Above or below are adjectives that are applied to unsigned operations.

The 8086 instructions that decrement the CX register, then optionally alter the
contents of the program counter are presented in Table 4-12. These instructions are
commonly referred to as LOOP structures. As an exercise, review the previous sections
of this Chapter and replace the structure

DEC CX

JNZ label

with

LOOP label

Each replacement represents a savings of one byte of object code. In addition, one
clock period per execution is saved. For a loop that iterates 100 times per execution, this
represents a savings of 100 clock periods, or 20 /as on a 5 MHz 8086.

The JCXZ instruction is unique in this group of instructions in that it does not
jump based on the contents of the Flags register, rather the JUMP is performed if the
CX register is 0. Since the JCXZ instruction shares an interest in the CX register, along
with the LOOP instructions, it is also presented with LOOP instructions in Table 4-12.

LOOP Instruction

The LOOP instruction combines the DEC CX and JNZ instructions. For example,
the instruction sequence of Figure 4-1 can be rewritten as:

MOVESBYTES: MOV AL, [SI]
MOV [Dl], AL

INC SI

INC 01

LOOP MOVESBYTES

In all future code sequences, the LOOP instruction will replace the

DEC CX

JNZ label

instruction sequence.

Table 4-10. Jump-on-Condition Instructions

Mnemonic Operands Object Code Bytes Clocks

Status
Operation Performed

0 D 1 T 8 Z A P C

JA disp 77

kk

2 4/16 If ([C] OR [Z]) = 0. then [PC] ̂ [PC] + disp
Branch relative if the Carry and Zero flags are 0.

JNBE

JAE

disp

disp

same as JA

73

kk

2 4/16 If [C] = 0. then [PC] — [PC] + disp
Branch relative if the Carry flag is 0.

JNC

JNB

JB

disp

disp

disp

same as JAE

same as JAE

72

kk

2 4/16 If [C] = 1. then [PC] — [PC] + disp
Branch relative if the Carry flag is 1.

JC disp same as JB

JNAE

JBE

disp

disp

same as JB

76

kk

2 4/16 If ([C] OR [Z]) = 1, then [PC] ̂ [PC] + disp
Branch relative if the Carry flag or the Zero flag are equal
to 1.

JNA

JE

disp

disp

same as JBE

74

kk

2 4/16 If [Z] = 1. then [PC] [PC] + disp
Branch relative if the Zero flag is 1.

JZ

JG

disp

disp

same as JE

7F

kk

2 4/16 If {[Z] = 0 AND ([S] = [0])) = 1. then [PC] — [PC] + disp
Branch relative if the Zero flag is 0 and the Sign flag is
equal to the Overflow flag.

JNLE

JGE

JNL

JL

JNGE

JLE

JNG

disp

disp

disp

disp

disp

disp

same as JG

7D

kk

same as JGE

70

kk

same as JL

7E

kk

same as JLE

2

2

2

4/16

4/16

4/16

If [8] = [0], then [PC] — [PC] + disp
Branch relative if the Sign flag is equal to the Overflow
flag.

If [S] [0]. then [PC] — [PC] + disp
Branch relative if the Sign flag is not equal to the Overflow
flag.

If ([S] = [0] AND [Z] = 0) = 1, then [PC] — [PC] + disp
Branch relative if the Sign flag is equal to the Overflow
flag and the Zero flag is 0.

Table 4-10. Jump-on-Condition Instructions (Continued)
oi

H
nr
CD

03
O
O

Mnemonic Operands Object Code Bytes Clocks

Status

O D 1 T 8

Operation Performed

JNE

JNZ

JNO

JNP

JPO

JNS

JO

JP

JPE

JS

JCXZ

disp 75

kk

disp same as JNE

disp 71

kk

disp 7B

kk

disp same as JNP

disp 79

kk

disp 70

kk

disp 7A

kk

disp same as JP

disp 78

kk

disp E3

kk

4/16

4/16

4/16

4/16

4/16

4/16

4/16

6/18

If [Z] = 0, then [PCI — [PCl + disp
Branch relative if the Zero flag is 0.

If [01 = 0, then [PC] — [PC] + disp
Branch relative if the Overflow flag is 0.

If [P] = 0, then [PC] — [PC] + disp
Branch relative if the Parity flag is 0.

If [S] = 0, then [PC] — [PC] + disp
Branch relative if the Sign flag is 0.

If [Q] = 1, then [PC] — [PC] + disp

Branch relative if the Overflow flag is 1.

If [P] = 1, then [PC] ̂ [PC] + disp
Branch relative if the Parity flag is 1.

If [S] = 1, then [PC] — [PC] + disp
Branch relative if the Sign flag is 1.

If [CX] = 0. then [PC] — [PC] + disp
Branch relative if the CX register is 0.

8086 Instruction Groups 4-55

Table 4-11. Signed vs. Unsigned Comparison Instructions

Signed Unsigned

= .EQ. JEorJZ Equal or zero JE or JZ Equal or zero

.NE. JNE or JNZ Not equal or not zero JNE or JNZ Not equal or not zero

> .GT. JG or JNLE (Greater) or not (less or equal) JA or JNBE (Above) or not (below or equal)

> .GE. JGEorJNL (Greater or equal) or (not less) JAE or JNB (Above or equal) or (not below)

< .LT. JLorJNGE (Less) or not (greater or equal) JB or JNAE (Below) or not (above or equal)

< .LE. JLEorJNG (Less or equal) or (not greater) JBE or JNA (Below or equal) or (not above)

Table 4-12. Loop Instructions
oi
o>

00
o
o
rr

Mnemonic Operands Object Code Bytes Clocks

Status

I T 8 P C

Operation Performed

LOOP

LOOPE

LOOPZ

LOOPNE

LOOPNZ

JCXZ

disp

disp

disp

disp

disp

disp

E2

kk

El

kk

same as LOOPE

eg'
kk

same as LOOPNE

E3

kk

5/17

6/18

5/19

6/18

[CX] —ICX] -1. if [OX] = 0. then [PC] —[PC] + disp
Decrement the CX register, not affecting the flags. If the
CX register is 0, branch relative.

[CX] — [CX] - 1, if [CX] 0. and [Z] = 1. then [PC] — [PC]
+ disp
Decrement the CX register, not affecting the flags. If the
CX register is not 0 and the Zero flag is 1, branch relative.

[CX] — [CX] - 1. if [CX] 0 and [Z] = 0, then [PC] — [PC]
+ disp

Decrement the CX register, not affecting the flags. If the
CX register is not 0 and the Zero flag is 0, branch relative.

If [CX] = 0, then [PC] —[PC] + disp
Branch relative if the CX register is 0.

8086 Instruction Groups 4-57

PROCESSOR CONTROL INSTRUCTIONS

The 8086 instructions which operate on the Flags register and control various
aspects of the 8086's external interface are shown in Table 4-13.

I/O INSTRUCTIONS

8086 instructions that perform input and output functions are shown in Figure 4-
14.

Memory mapped addressing on the 8086 has one significant advantage over I/O
port addressing. The string primitive instructions allow repeated operations to be per
formed on memory addresses, depending on how the memory mapped I/O address
decoding is performed. Compare Figure 4-32, where 1/0 port addressing is used, with
Figure 4-33, where memory mapped addressing is used. Both of these routines output a
block of data. The number of bytes in the block is contained in the CX register. The
routine in Figure 4-32 moves the block pointed to by the DI register out to 1/0$P0RT.
The routine in Figure 4-33 moves the block pointed to by the SI register to the memory
mapped I/O port addressed by the DI register.

I/O port addresses may be specified directly, or the I/O port address may be held
in the DX register. 8-bit addresses are specified directly; 16-bit I/O port addresses are
specified via the DX register.

0UTPUTABYTE; LODSB

OUT I0$P0RT,AL

LOOP 0UTPUTABYTE
RET

Figure 4-32. Block 1/0 via 1/0 Port Addressing

REP MOVS

Figure 4-33. Block 1/0 via Memory Mapped Addressing

Note, a block of memory addresses must be assigned to the memory mapped I/O
port since MOVS automatically increments/decrements the addresses in SI and DI.

Table 4-13. Processor Control Instructions

Status

Mnemonic Operands Object Code Bytes Clocks Operation Performed
0 D 1 T 8 Z A P C

CLC F8 1 2 0 [C] —0

Clear Carry status.

CMC F5 1 2 X [C] - [C]
Complement the Carry status.

CLD FC 1 2 0 ID] -0

Clear the Direction flag.

CLI FA 1 2 0 [1] -0
Clear the Interrupt enable status, thereby disabling all
interrupts.

STC F9 1 2 1 [C] - 1

Set the Carry status.

STD FD 1 2 1 lDl-1

Set the Direction flag.

STI FB 1 2 1 [I] - 1
Set the Interrupt flag to 1, thereby enabling interrupts.

NOP 90 1 3 Perform no operation.

ESC mem 11011XXX

mod XXX r/m

(DISP)

(DISP)

2, 3 or

4

8 + EA Place the contents of the memory location addressed by
mem onto the address/data bus. If mod = 11, perform no
operation.

LOCK FO 1 2 Guarantee this 8086 control of its bus during the execu
tion of the next instruction.

WAIT 98 1 3 or

more

Enter a WAIT state until external logic drives the TEST pin
low.

HIT F4 1 2 or

more

Enter a HALT state.

CJ1
00

H
pr
a»

On

»
O
O

Table 4-14. 8086 I/O Instructions

Mnemonic Operands Object Code Bytes Clocks

Status

O D I 8 Z P C

Operation Performed

IN

OUT

OUT

ac.DX

ac.port

ac.DX

ac.port

IllOllOw

IllOOlOw

kk

1110011W

1110111w

kk

10

10-

[ac] ̂ [PORTDX]
Input to the AL register (8-blt operation) or the AX register
(16-bit operation) from the I/O port specified by the DX
register.

[ac] [port]
Input to the AL register (8-bit operation) or the AX register
(16-bit operation) from the I/O port specified in the
second byte of the instruction.

[PORTDX] ̂ [ac]

Output the contents of the AL register (8-bit operation) or
the AX register (16-bit operation) to the I/O port specified
by the DX register.

[port] [ac]
Output the contents of the AL register (8-bit operation) or
the AX register (16-bit operation) to the I/O port specified
in the second byte of the instruction.

O

cn
(D

4-60 The 8086 Book

INTERRUPT INSTRUCTIONS

The software interrupt instruction, the interrupt on overflow instruction and the
return from interrupt instruction are shown in Table 4-15.

The software interrupt instruction is used for two major purposes:

1. To debug programs. The single byte software interrupt instruction calls a
routine whose address is at location OOOCi^. Typically this routine is part of a
debug package and is used to handle breakpoints.

2. To call subroutines whose address is present in the first 1024 bytes of
memory. When the two byte software interrupt instruction is used, any one of
256 subroutines whose address has been placed in the first 1024 bytes of
memory may be called.

Software interrupt instructions have the advantage of using one or two bytes of
program memory, as compared to five bytes of program memory used by an interseg
ment CALL. In addition, the software interrupt automatically saves the Flags register
onto the stack — a desirable feature in many cases. A minor disadvantage of software
interrupts is that if a routine is called via a software interrupt, the routine must return
via an IRET instruction, which takes more time than a RET instruction.

T
a
b
l
e
 4
-
1
5
.
 8
0
8
6
 I
nt
er
ru
pt
 I
ns

tr
uc

ti
on

s

M
n
e
m
o
n
i
c

O
p
e
r
a
n
d
s

O
b
j
e
c
t
 C
o
d
e

B
y
t
e
s

C
l
o
c
k
s

S
t
a
t
u
s

O
 D

I

O
p
e
r
a
t
i
o
n
 P
e
r
f
o
r
m
e
d

I
N
T

l
l
O
O
I
l
O
v

kk
(i
f
V
 =
 1
)

V
 =
 0

V
 =

1

I
N
T
O

I
R
E
T

C
E

C
F

5
2

5
1

5
3

(
O
 =
 1
)

4

(
O
 =
 0
)

2
4

[
S
P
]
 -
 [
S
R
]
 -
 2
,
 [[
SP

]]
 -
 [
F
L
A
G
S
]
,
 [I

] -
0
,
 [
T
]
 -
0
.

[S
Pl
 —
 I
SP
]
-
 2
.
[[
SP
]]
 —
 [
CS

],
 [
S
P
]
 —
 [
S
P
]
 -
 2
.

[[
SP
]]
 —
 [
PC

],
 [
C
S
]
 *
—
[v

ec
to

r
(s

eg
me

nt
 p
ar

t)
],

[
P
C
]
 —
 [
ve
ct
or
 (
of

fs
et

 p
ar
t)
]

If
 V
 =
 0
,
ve

ct
or

 (o
ff
se
t
pa

rt
) =
 [
O
O
O
O
C
1
0
]

ve
ct

or
 (s

eg
me
nt
 p
ar

t)
 =
 [
OO
OO
Ei
g]

If
 V
 =
 1
,
ve
ct
or
 (
of

fs
et

 p
ar

t)
 =
 [
(k
k
*
4)
]

ve
ct
or
 (
se
gm
en
t
pa
rt
)
=
 [
(k

k
*
4
)
 +
 2
]

P
e
r
f
o
r
m
 a
 s
o
f
t
w
a
r
e
 i
nt

er
ru

pt
.

If
 [
0
]
 =
 1
,
th
en
 [
S
P
]
 -
 [
S
P
]
 -
 2
.
[[

SP
]]

 -
 [F
LA
GS
],
 IF

 -
 0
,

T
F
 -
 0
,
 [
S
P
]
 -
 [
S
P
]
 -
 2
, [

[S
P]
] -
 [C
S]
, [
S
P
]
 -
 [
S
P
]
 -
 2
.

[[
SP

]]
 -
 [P
C]

, [
CS

] -
[
0
0
0
1
2
i
6
L
 [
PC

]
—
 [G

CO
IO
ie
].

If
 t
he

 O
ve
rf
lo
w
fl

ag
 i
s
se

t,
 p
er

fo
rm

 a
 s
of

tw
ar

e
in
te
rr
up
t
vi
a

th
e
ve
ct
or
 d
ed
ic
at
ed
 t
o
ov

er
fl

ow
 p
ro

ce
ss

in
g,

 o
th
er
wi
se
,

ex
ec
ut
e
th

e
ne

xt
 s
eq
ue
nt
ia
l
in
st
ru
ct
io
n.

[
P
C
]
 —
 [
[S
P]
],
 [
S
P
]
 —
 [
S
P
]
 +
 2
, [
C
S
]
 —
 [
[S
P]
],
 [
S
P
]
 —
 [
S
P
]

+
 2
,
[
F
L
A
G
S
]
 —
 [
[S

P]
],

 [
S
P
]
 —
 [
S
P
]
 +
 2

Re
tu
rn
 f
r
o
m
 a
n
 i
nt

er
ru

pt
 s
er
vi
ce
 r
ou

ti
ne

.

o 3 C -n O i
)

4-62 The 8086 Book

ROTATE AND SHIFT INSTRUCTIONS

8086 instructions that perform rotates and shifts are shown in Table 4-16.
Rotate and shift instructions are frequently used to perform bit testing operations.

These instructions are used by themselves or in conjunction with logical operations to
test for various bit patterns. To test the low-order bit of a register, a

ROR reg, 1

instruction operates one cycle faster than a

AND reg. 01H

instruction or a

TEST reg, 01H

instruction. The ROR instruction tests the Carry Status, as opposed to the AND or
TEST instructions where the Zero Status is significant. To test the low-order bit of a 16-
bit pointer/index register, use:

ROR reg. 1

This instruction will save one byte of object code, and operate one cycle faster than a

AND reg. 0001H

instruction or a

TEST reg, 0001H

instruction. Note, however, that the ROR instruction alters the contents of the register,
whereas the TEST instruction is non-destructive.

The high-order bit of an 8-bit register or a 16-bit register can be tested, as de
scribed above, by replacing the ROR instructions with ROL instructions.

Rotate and shift instructions perform arithmetic operations. The arithmetic shift
operations can be used to perform both multiplication and division. The routine in
Figure 4-34 converts two ASCII characters into their hex equivalent. This routine
assumes that the SI register points to the two characters (high-order byte first) and
returns the result in the AL register. This routine also ensures that the bytes converted
lie in the range 0 < character < 9 or A < character < P. If the character is out of range,
the zero status will be 1 on return, otherwise the zero status will be 0.

8086 Instruction Groups 4-63

CONVERTTWOASCIITOHEX PROC NEAR

PUSH CX

LODSB ;LOAD FROM SI TO AL

CALL CONVERT$ASCII$TO$HEX

JZ TRANSLATIONSERROR

MOV CL.4 ;SET UP FOR ROTATE

SAL AUCL ;ROTATE FOUR TIMES

MOV AH.AL ;SAVE IN AH

LODSB

CALL CONVERT$ASCII$TO$HEX

JZ TRANSLATIONSERROR

OR AL.AH ;CREATE THE HEX BYTE

OR AH.OFFH ;TURN ZF=0

POP CX

RET

TRANSLATIONSERROR: RET ;ZF IS KNOWN TO BE 1

CONVERTTWOASCIITOHEX ENDP

CONVERT$ASCII$TO$HEX PROC NEAR

SUB AL,30H

JL TRANNYSERROR

CMP AL.OAH ;IS IT 0 - 9

JL DONE

SUB AL.07H ;ADJUST FOR A - F.

CMP AL.10H ;IS IT MORE?

JGE TRANNYSERROR

DONE: RET

TRANNY$ERROR: XOR AH.AH

RET

CONVERT$ASCII$TO$HEX ENDP

Figure 4-34. Routine to Convert Two ASCII Digits to
Their Hex Equivalents

Table 4-16. 8086 Shift and Rotate Instructions
O)

00
o
o

Mnemonic Operands Object Code Bytes Clocks

Status

O D I T 8 P C

Operation Performed

RCL mem/reg,
count

IIOIOOvw

mod QIC r/m

(DISP)

(DISP)

2. 3 or

4

count = 1,

reg: 2
mem:

15 + EA

count

= [CL]
reg:

8 + 4'[CL]
mem:

20 + EA +

4.CCL]

Rotate the contents of the memory location or register
specified by mem/reg left through the Carry status. The
number of bits to rotate is determined by count and will be
either 1 (v = 0) or the contents of the CL register (v = 1).
The rotation is performed as follows:

if w = 0

7 6 5 4 3 2 1 0

if w = 1

15 14 13 2 1 0

Table 4-16. 8086 Shift and Rotate Instructions (Continued)

Mnemonic Operands Object Code Bytes Clocks

Status

O D

Operation Performed

RCR mem/reg,

count

1lOIOOvw

mod 011 r/m

(DISP)

(DISP

2, 3 or

4

count = 1,

reg: 2
mem:

15 + EA

count

= [CL]
reg:

8 + 4'ICL]
mem:

20 + EA

+ 4 • ICL]

Rotate the contents of the memory location or register
specified by mem/reg right through the Carry status. The
number of bits to rotate is determined by count and will be
either 1 (v = 0) or the contents of the CL register (v = 1).
The rotation is performed as follows:

if w = 0

7 6 5 4 3 2 1 0

[p-C
if w = 1

16 14 13 2 1 0

Table 4-16. 8086 Shift and Rotate Instructions (Continued)
o>
0)

H

CD

00
o
o

Mnemonic Operands Object Code Bytes Clocks

Status

P C

Operation Performed

ROL mem/reg,
count

IIOIOOvw

mod 000 r/m

(DiSP)

(DISP)

2. 3 or

4

count =

reg: 2
mem:

15 + EA

count

= [CL]
reg:

8 + 4-[CU
mem:

20 + EA

+ 4- [CU

1. X Rotate the contents of the memory location or register
specified by mem/reg left. Rotate the high-order bit of the
operand into the Carry status. The number of bits to rotate
is determined by count and will be either 1 (v = 0) or the
contents of the CL register (v = 1). The rotation is per
formed as follows:

w = 0

EM
J

w = 1

15 14 13

EM

Table 4-16. 8086 Shift and Rotate Instructions (Continued)

Mnemonic Operands Object Code Bytes Clocks

Status

A P

Operation Performed

PGR mem/reg,
count

IIOIOOvw

mod 001 r/m

(DISP)

(DISP)

2. 3 or

4

count = 1,

reg: 2
mem:

15 + EA

count

= [CL]
reg:

8 + 4"ICU

mem:

20 + EA

+ 4- ICLI

Rotate the contents of the memory location or register
specified by mem/reg right. Rotate the low-order bit of the
operand into the Carry status. The number of bits to rotate
is determined by count and will be either 1 (v = 0) or the
contents of the CL register (v = 1). The rotation is per
formed as follows:

if w = 0

mK

if w = 1

15 14 13

Table 4-16. 8086 Shift and Rotate Instructions (Continued)
o>
00

H
=r

00
o
o

Mnemonic Operands Object Code Bytes Clocks

Status

O D I 8 Z P C

Operation Performed

SAL mem/reg,
count

1lOIOOvw

mod 100 r/m

(DISP)

(DISP)

2. 3 or

4

count = 1

reg: 2
mem:

15 + EA

count

= [CL]
reg:

8 + 4-[CL]

mem:

20+ EA

+ 4-[CL]

Shift the contents of the memory location or register
specified by mem/reg left. Shift a zero into the low-order
bit of the operand. The number of bits to shift is deter
mined by count and will be either 1 (v = 0) or the contents
of the CL register (v = 1). The rotation is performed as
follows:

if w = 0

7 6 5 4 3 2 1 0

EhC
T

if w = 1

15 14 13 2 1 0

EM

SHL mem/reg,
count

same as SAL

Table 4-16. 8086 Shift and Rotate Instructions (Continued)

Mnemonic Operands Object Code Bytes Clocks

Status

P C

Operation Performed

SAR mem/reg,
count

IIOIOOvw

mod 111 r/m

(DISP)
(DISP)

2. 3 or

4

count = 1,

reg: 2
mem:

15 + EA

count

= [CL]
reg:

8 + 4*[CL]

mem:

20 + EA

+ 4' [CLl

Shift the contents of the memory location right. Propag
ate the sign of the operand by preserving the value of the
high-order bit. The number of bits to shift is determined
by count and will be either 1 (v = 0) or the contents of the
CL register (v = D.the rotation is performed as follows:

if w :

1
if w = 1

1
14 13

Table 4-16. 8086 Shift and Rotate Instructions (Continued)

Mnemonic Operands Object Code Bytes Clocks

Status

Operation Performed

SHR mem/reg,
count

nilOOvw

mod 101 r/m

(DISP)

(DISP)

2, 3 or

4

count

reg: 2
mem:

15 + EA

count

= [CLl

reg:

8 + 4»ICL1

mem:

20 + EA

+ 4 . [CL]

1. X Shift the contents of the memory location or register
specified by mem/reg right. Shift a zero into the high-
order bit of the operand. The number of bits to shift is
determined by count and will be either 1 (v = 0) or the
contents of the CL register (v = 1). The rotation is per
formed as follows:

DO
O
o

if w = 0

if w = 1

15 14 13

0^

Saftuuare Develapment

There are three tools that greatly assist the software development process. These
are:

• An Editor

Editors are used to enter and/or modify source code. The source code is usually

saved on some form of mass storage, e.g., floppy disk, hard disk, or in dire emergencies,
paper tape. The source code is usually organized on mass storage in the form of a file,
referred to as the source file. Editors create and operate on source files in a number of
different ways depending on how the source file may be accessed, e.g., a source file
residing on magnetic tape is not handled in the same way as a source file residing on
floppy disk. Users typically request editor functions by entering commands from a video
terminal.

• An Assembler

Assemblers are used to translate source code into object code. An assembler reads

the source file that (in most cases) has been generated by the editor, translates the
source code, and then writes the object code to mass storage in the form of a file referred
to as the object file. An assembler may also produce additional files such as a file that
contains the source code and the object code, referred to as the listing file, and a file
which contains all the labels and variable names used in the source code, referred to as

the symbol file. The listing file is usually printed, and then referred to during the debug
ging process.

6-2 The 8086 Book

• A Debugger

Debuggers are used to assist in detecting errors in the object code. A debugger is
either loaded with the object code generated by the assembler, or it is loaded by itself, at
which point the user can request that an object file be loaded from mass storage. A typi
cal debugger allows the user to control the execution of the object code, and to view the
contents of memory and registers.

The three programs mentioned above are the major tools essential for the
development process. Additional tools which are useful include linkers and loaders.
Linkers are used to link multiple subprograms into one program. Linkers resolve exter
nal references from subprograms. External references occur when instructions in one
module refer to a symbol (label or variable name) that is defined in another module.
Loaders are used to bring object code from mass storage into memory.

For the purposes of this discussion, consider a hypothetical system, to be used in
the software development process, which contains the following hardware elements:

• CPU

• RAM

• Floppy disk drives

• CRT terminal

• Printer

The connections between these elements are depicted in Figure 5-1.

CRT

Terminal

Data and

control

1/

CPU

I

Data and

control

Printer

Control

Memory

Data

Disk Drives

Figure 5-1. Hypothetical Development System

Software Development 5-3

Throughout this discussion of editors, assemblers, and debuggers, it will be
assumed that these support programs are executed on the above system. In addition, as
each of the support programs is discussed, a hypothetical command language for the
support program will be used in examples illustrating typical functions provided by the
support program. It should be emphasized that both the system and the command
languages are only examples, and will not be found in the real world.

EDITORS

Most editors accomplish their function by performing some combination of the
following tasks:

• Reading data from mass storage into memory.

• Operating on the data in memory in response to commands from the user.

• Writing data from memory out to mass storage.

Figure 5-2 shows an example of this operation.

Mass

Storage Memory

Mass

Storage

. Source

I code file

I Editor

Editor's

buffer area

Edited source

code file

Figure 5-2. Elementary Editor Operation

5-4 The 8086 Book

The following terms are commonly used when describing basic types of editors.
Buffer: data is read from mass storage into a memory area referred to as the

buffer. All editing commands operate on the data in the buffer. After the data has been
processed it is written from the buffer to mass storage.

Character or Line Pointer: The editor maintains a pointer into the buffer. All user
commands are taken as being relative to this pointer. For example, a command to delete
four characters would delete four characters after the pointer. Some editors use a pointer
that refers to a particular character in the buffer. These editors are referred to as

character-oriented editors. Some editors use a pointer that refers to a particular line.
These are referred to as line-oriented editors.

EDITOR FUNCTIONS

What sorts of functions should an editor provide?
The editor should provide the following capabilities:

• Read data from mass storage to memory

• Write from memory to mass storage

• Insert data into memory

• Delete data from memory

• Change the position of the character/line pointer in the buffer

• Display the contents of the buffer

• Search the buffer for occurrence of the specified string

• Change the contents of the buffer

• System commands

The sample editor used to illustrate these capabilities will respond to user com
mands entered at the CRT terminal. A command consists of three fields:

number command strings

Number indicates the number of times that a particular command is to be
executed. This field is interpreted as a decimal number. This field may be omitted. If this
field is omitted, a default value of I is assumed.

Command is a single character which indicates the operation to be performed.
Strings is a sequence of characters. Some commands use one or more strings while

they are executing. This field may be omitted. Strings are terminated by either a #
character or the return character.

All commands are terminated by a carriage return, represented by ®. The
following are examples of command strings:

A © Append one line to the buffer
1OL © Move pointer 10 lines down in buffer
CTHE#AN © Change the string THE to AN

Software Development 5-5

Read/Write Data to/from Memory

The editor must provide the ability to read or write from the buffer to mass
storage. The user should be able to specify the amount of data that is to be transferred.
Typical amounts of data would include:

• One or more characters

• One or more lines. For example, transferring one line would move all data
until a carriage return is detected. Transferring n lines would move all data
until n carriage returns are detected.

• An entire buffer. For a read operation this would involve moving data from
mass storage into the buffer until the buffer is full. For a write operation, this
would involve moving data from the buffer to mass storage until the entire
buffer has been moved to mass storage.

Additional features that might be useful include:

• An operation that transfers data from mass storage and then deletes the data
that has been transferred.

• A read or write operation that would transfer data until a specific character is
detected. For example, this would allow the user to transfer pages of data, that
is to say transfer all information until an end-of-page character (form feed) is
detected.

As an example, consider the case where the sample editor command to add lines
to the buffer is A. The command

A ©

would add one line to the buffer. The command

10A ©

would add ten lines to the buffer. The command

lA ©

would fill the buffer with information from mass storage. The execution of the com
mand

5A

5-6 The 8086 Book

could be depicted as follows:

Before Execution of 5A

Mass

Storage
Pointer to

'mass storage

Buffer

Pointer to

end of buffer

After Execution of 5A

Mass

Storage Buffer

Pointer to

mass storage

Pointer to

"end of buffer

Insert Data into the Buffer

The editor must provide the ability to add data to the buffer. Users typically need
to perform one of two types of source code insertion. These are:

• Large amounts of source code must be inserted. This would occur when the

source code is first being entered or when a significant revision of the source
code is being performed.

• One or two lines of source code must be entered. This would occur when the

debugging process is underway and ''bugs" are corrected or when the source
code is first being entered and the user discovers that one or two lines were
inadvertently omitted.

Software Development 5-7

Most editors respond to these two different needs by supplying two different
modes of insertion: a mode by which the user may enter unlimited amounts of data, and
a mode by which a limited amount of data may be entered by the user.

Consider the case where the sample editor command to insert data is I. Suppose
the buffer appears as follows:

MOV CX.AX

ADD DX.SP
Pointer ^ EXIT$STAGE$LEFT

If the command

I SHR DX.l ©

is entered, the buffer would be altered to

MOV CX.AX

ADD DX,SP

SHR DX.1

JNC EXIT$STAGE$LEFT

Delete Data from the Buffer

The editor must provide the ability to remove data from the buffer. The user
should be able to specify the amount of source code to be removed. Typical amounts
include:

• One or more characters.

• One or more lines. Removing one line will remove the line pointed to by the
line pointer or remove all data in the buffer beginning with the character
pointed to by the current character pointer until a carriage return is detected.
Removing n lines would remove the n lines below the current line pointer or
all data from the current character pointer until n carriage returns have been
detected.

Consider the case where the sample editor command to delete a line from the
buffer is K. Suppose the buffer appears as follows:

MOV CX.AX
Pointer ^

ADD DX.SP

SHR DX.1

JNC EXIT$STAGE$LEFT

If the command
2K

is entered, the buffer would be altered to

MOV CX.AX

JNC EXIT$STAGE$LEFT

5-8 The 8086 Book

Moving the Character/Line Pointer

The editor must provide the ability to move the character/line pointer to different
positions in the buffer. The user should be able to specify the number of characters/lines
that the pointer is to be moved. Additional capabilities that might be useful include:

• Move the character/line pointer to the top of the buffer.

• Move the character/line pointer to the end of the buffer.

• Move the character/line pointer to a specific line in the buffer. For example,
the user might be able to request that the character/line pointer be moved to
line number 11 in the buffer.

Consider the case where the sample editor command to move the character/line
pointer up or down in the buffer is L. Suppose the buffer appears as follows:

Pointer-
MOV OX. AX

ADD DX.SP

SHR DX,1

JNC EXIT$STAGE$LEFT

TEST BX.40H

JZ DONT$MESS$WITH$BILL

If the command

4L

is entered, the buffer would be unchanged; however, the pointer would point at the
JZ DONT$MESS$WITH$BILL instruction. If the command is

-3L

the buffer would again be unchanged; however, the pointer would point at the
SHR DX,1 instruction.

Display the Contents of the Buffer

The editor should provide the ability to display the buffer on the user's terminal.
The user should be able to specify the number of characters/lines that will be displayed.
Additional capabilities that might be useful include:

• If the user has a CRT terminal, then it might be useful to display a full screen
of data automatically. In addition, the ability to scroll through the buffer either
displaying a line at a time or a full screen at a time could also prove useful.

Consider the case where the sample editor command to display a line from the
buffer on the CRT terminal is T. If the buffer contains:

IN ALT0UCH$T0NE$DEC0DER$P0RT

Pointer ► CMP AL,C0LUMN4DIGIT
JNZ T0UCH$T0NE$ENC0DE
MOV [DI].MESSAGE$STARTED$CODE

and the command
2T

Software Development 5-9

is entered, then the lines

CMP ALC0LUMN4DIGIT

JNZ TOUCH$TONE$ENCODE

will be displayed on the CRT terminal.

Search the Buffer for an Occurrence of a String

The editor should provide the ability to search the buffer for the occurrence of a
string of characters specified by the user. An additional capability that would be
extremely useful would be to search all the source code for the occurrence of a particular
string. For example, when the source code is initially entered, typographical errors are
often present. Using the search facility in combination with a change facility allows the
source code to be corrected with a minimum of difficulty.

Consider the case where the sample editor command to search the buffer is S. If
the buffer appears as follows:

IN AL,T0UCH$T0NE$DEC0DER$P0RT
Pointer CMP AUC0LUMN4DIGIT

JNZ T0UCH$T0NE$ENC0DE
MOV [DI1,MESSAGES$STARTED$C0DE

and the command

S TONE ©

is entered, the result will depend on whether a character pointer or a line pointer is
employed by the editor. In the case of a line pointer, the buffer will be unchanged.
However, the position of the line pointer will be altered as follows:

IN AUTOUCH$TONE$DECODER$PORT
CMP AUC0LUMN4DIGIT

Pointer JNZ T0UCH$T0NE$ENC0DE
MOV [DI],MESSAGE$STARTED$CODE

In the case of a character pointer, the pointer will be altered as follows:
IN ALT0UCH$T0NE$DEC0DER$P0RT
CMP AL,C0LUMN4DIGIT

JNZ touchItone$encode
MOV [DI].MESSAGE$STARTED$CODE

5-10 The 8086 Book

Change a String in the Buffer

The editor must provide the ability to change data in the buffer. The user should
be able to specify that any string present in the buffer be replaced by a user-specified
string. The delete facility can be considered a degenerate case of the change facility, in
that the user-specified string is a null string.

Consider the case where the sample editor command to change data in the buffer
is C stringl#string2, where the command functions by locating the next occurrence of
string 1 in the buffer and replacing it with string 2. If the buffer appears as follows:

IN AL.TOUCH$TONE$DECODER$PORT

Pointer CMP AL.C0LUMN4DIGIT

JNZ TOUCH$TONE$ENCODE

MOV [DI],MESSAGE$STARTED$CODE

and the command:

C CODE#TRANCE ©

is entered, the buffer will be altered to

IN ALJOUCH$TONE$DECODER$PORT

CMP AL,C0LUMN4DIGIT

Pointer ► JNZ TOUCH$TONE$ENTRANCE
MOV [DI],MESSAGE$STARTED$CODE

SYSTEM COMMANDS

The editor must provide commands that allow the user to terminate the edit ses
sion in a reasonable manner. Reasonable termination methods might include:

• Move all data in the buffer to mass storage.

• Move all unprocessed source code through the buffer to mass storage. This
can be considered a normal termination method.

• Exit the edit immediately without flushing the buffer. This method might be
used in the case where unwise or unfortunate user manipulation has
catastrophically affected the source code. Depending upon the form of mass
storage, the user may be able to restore the source code to its original form.

The above types of commands are necessary components for a rudimentary edi
tor. More sophisticated editors would include other capabilities such as:

1. The concatenation of individual commands into command strings.

2. Multiple iterations of command strings. For example, this would be especially
useful for changing all occurrences of a particular string in the source code.

3. More sophisticated fi le-handling. In this discussion, the concept of fi les has
been avoided. The source code has only been discussed in terms of residing
on mass storage. More advanced editors are typically run from a fast mass
storage device, e.g., hard-disk, and interface with an operating system which
provides powerful data fi le manipulation capabilities. Indeed, some editors
relieve the user of the responsibility of reading and writing from the buffer.

Software Development 5-11

With these editors, the user can scroll throughout the source code without
worrying about reading/writing source code; this function is performed by the
editor automatically.

4. Arithmetic capabilities. Some editors may also be used as very powerful
calculators.

5. The ability to extract a certain portion of the buffer and reserve it for later use.
This ability can be extremely useful if it is necessary to rearrange the source
code, e.g., 100 lines of source code at the beginning of the file must be moved
to the middle of the file.

6. The ability to include ''ambiguous" elements in any string operation. For
example, the search operation might use A*CDE to search for any five-
character string where the first character is A, the last three characters are
CDE, and the second character may be ambiguous, i.e., any character.

ASSEMBLERS

Most assemblers perform the following functions:

• Separate assembly language source code into individual statements.

• Break each assembly language statement into its component parts. These parts
include labels, assembly language operators, assembler directives, operands
for the assembly language operators and comments.

• Process each of the component parts according to the rules of the assembly
language. From this process, the assembler generates an object code file and a
symbol table.

• Write files to mass storage. These files would include an object code file, a list
ing file (which is comprised of the object code file and the source code file) and
a symbol table file.

Separating the source code into the individual assembly language statements is a
fairly easy task since most source code files are organized with one statement per line,
i.e., there is one statement between two carriage returns. Some assemblers allow more
than one statement per line; these statements are usually separated by a special delimit
ing character which is treated in a similar fashion to the carriage return.

The function that makes an assembler an extremely useful tool is the processing
of the individual assembly language statements. The individual parts of the assembly
language statement are:

• Labels. There may or may not be a label present in an assembly language
instruction. If a label is present, it is saved in a symbol table along with the cur
rent value of the location counter. In more complex assemblers, more infor
mation may be saved, depending on the type of operator or directive specified.

5-12 The 8086 Book

• Operators. Operators are either assembly language mnemonics, e.g., ADC,
STD, IN, or assembler directives. Assembly language mnemonics are trans
lated by the assembler into object code. Some mnemonics require operands,
for the precise object code generated will depend on other information present
in the assembly language statement. For example, the ADC instruction can

generate hundreds of different object codes, but the ADC AX,DX instruc
tion generates a unique object code.

Assembler directives are used to control several functions the assembler employs
to generate the object code file and the listing file. These directives control:

• The location at which the source code is assembled. Programs which will

include absolute addresses for program memory location must be aware of
where they will reside in memory. Consider the case where the sample assem

bler's location specifying directive is ORG. If the assembler directive

ORG 0400H

is included in the source code, the assembly language statements succeeding
this one will be assembled assuming that the program counter was set to
0400H.

• The program's starting address. This is typically saved in the object code. Most
assemblers allow the starting address of the program to be specified in the last
statement of the source code, the END statement. Assuming that the source
assembler uses the END statement to specify the starting address, if the state
ment

END STARTOFPROGRAM

is the last source code statement, then the assembler will generate an object
code that includes the address of STARTOFPROGRAM as the starting
address.

• The format of the listing file. Directives which control the listing file format
could control the pagination, whether or not certain sections of the source and
object code are included in the listing file and the various headings associated
with the listing file.

• The initial values for data memory locations.

• Operands. Operands, for assembly language mnemonics or assembly language
directives that require operands, can appear in a variety of different forms:

Register names

Numbers (in one of a number of different bases)
Variable names

Labels

Strings of ASCII characters
Expressions (a combination of any of the above in conjunction with arith

metic or logical operators)

• Comments. Comments are used to explain the operation of the program. They
are ignored by the assembler, but are essential to any user who is interested in
modifying the program.

Software Development 5-13

The translation process that the assembler performs is a fairly straightforward
task. When the statement has been broken into its constituent parts, the constituent
parts are mapped into series of tables which produce pieces of the object code. These
pieces are then assembled into the final object code.

DEBUGGERS

A debugger is a development tool that is used to assist in removing errors from
object programs. Debuggers, like editors and assemblers, vary in complexity. The most
elementary debuggers contain elements that allow the user to:

• Control Execution

• Display register/memory

Debuggers allow the user to control execution by providing facilities such as:

• A single step facility. A single step facility allows the user to execute the object
code one instruction at a time. The user is able to view the registers/memory
between each instruction's execution, which, hopefully, is sufficient to allow
the user to guarantee that the instructions are performing the desired function.
More complex debuggers contain sophisticated forms of the single step routine
Which allow the user to specify the exact number of instructions to be per
formed and to specify the registers or memory locations that will be displayed
following each instruction's execution.

• A breakpoint facility. A breakpoint facility allows the user to control execution
by placing a special code, or in the case of the 8086, a software interrupt
instruction, into the object code at locations specified by the user. When the
special code is executed, it results in a transfer of control to the debugger,
thereby halting the execution of the user's object code. At this point, the
debugger replaces the original object code at the location modified to contain
the special code and allows the user to view the state of the machine.

Debuggers typically allow the user to display the contents of any portion of
memory and the contents of the CPU's internal registers, thus allowing a complete view
of the state of the machine.

More complex debuggers allow the user to:

• Alter memory/register contents

• Trace object code execution

• Assemble/disassemble object code

• Read/write from mass storage

• Perform simple arithmetic functions

• Use more sophisticated breakpoints

• Manipulate the symbol table

5-14 The 8086 Book

Typical debuggers provide several facilities toward the alteration of memory/
register contents. These would include:

• Examine and optionally alter a memory location

• Fill a sequence of memory locations with a constant

• Move the contents of a block of memory locations to another block of memory
locations.

Consider the case where the sample debugger command to fill memory locations
with a constant is F addr,, addr2, constant. This command would fill all the memory
locations from addr, to addr2 (inclusive) with constant. For example, if the debugger
command

F100.17F,20

were entered, the debugger would enter the constant 20|6 in all locations from lOOi^to
17F,6.

Debuggers that allow the user to trace the execution of object code usually imple
ment this function as an extension of the single step facility. The user typically specifies
the number of steps to be executed and the kind of information to be displayed, thereby
allowing the user to watch (trace) the program's execution.

Some debuggers provide a more sophisticated form of memory display in which
the user can specify that the memory contents be displayed as assembly language
instructions rather than hexadecimal numbers. For example, instead of

D 400.405

resulting in

400 E4 10 24 40 74 FA

the command

L 400

would display memory locations 400-405 as:

400 IN AL.10

402 AND AL.40

404 JZ 400

In addition, some debuggers provide a basic assembler facility that the user may
employ to alter the contents of memory. Instead of substituting object code,

S404 75.

405 FA

the user may substitute source code,

A404 JNZ

400

Software Development 5-15

A debugger often provides an elementary ability to read and write data to and
from mass storage. Typical capabilities include:

• Read an object code file from mass storage to a series of memory locations
specified by the user.

• Write an object code file from memory locations specified by the user to mass
storage.

• Basic paper tape handling facilities.

Most debuggers provide hexadecimal arithmetic facilities. The user is commonly
able to enter two hexadecimal numbers and have the debugger calculate and display the
sum and difference of these two humbers.

Debuggers that possess more sophisticated breakpoint facilities usually provide:

• A pass count for each breakpoint. Each time an instruction is fetched from the
breakpoint address, the pass count is decremented. When the pass count
reaches zero, the user program is suspended and control is returned to the
debugger. The user may then view the state of the machine. This feature is
particularly useful when debugging program loops. If, for example, the fifty-
third iteration of the loop seems to be causing some difficulty, a breakpoint in
the loop can be established with a pass count of fifty-three, and the offending
iteration can be viewed at the user's leisure. If a pass count capability is not
available, stopping the execution of the user program during the fifty-third
iteration is not a trivial task.

• A hardware breakpoint facility that suspends the execution of the user's object
code when a memory location is accessed for data. This is very useful for occa
sions when memory locations are being trashed in an unpredictable fashion.
Breaking on a memory access typically allows for the identification of the
source of the problem.

Sophisticated debuggers often work with a symbol table created by the assembler.
These debuggers allow the user to reference memory locations by name. This feature is
very helpful when working with relocatable object code. Instead of calculating the
address of a particular variable using a load map and a listing, the variable can be
referenced directly by name.

Examples of 8086
Rssembly Language Programming

This chapter presents two examples of 8086 assembly language programming: a
sort program and an I/O driver. The specification and program design efforts for these
examples were presented earlier in Chapter 2.

SORT PROGRAM

The sort program is divided into three separate modules. These are:

• Read the tape

• Sort the records

• Write the tape

"Read the tape" calls one subroutine:

Read tape record

"Sort the records" calls these four subroutines:

Move subsort to temp

Compare keys
Compute pointer
Move record

"Write the tape" calls one subroutine:

Write tape record

6-2 The 8086 Book

By reviewing the source code, it becomes obvious that not all the subroutine calls
are necessary. For example, the ''Read tape record" routine is called by only one state
ment in the source code. But the source code module is clearer than it would be if the

entire "Read tape record" routine were included in the source code at the point at which
is was called.

The sort program has two abnormal exits. Both of these exits occur in the read/
write drivers for the tape controller. For the purposes of this program it is assumed that
an operating system is present, and that this operating system will display error
messages at an appropriate device, should an anomaly be detected.

.EQUATES FOR SORT ROUTINE

TAPE$COMMAND$PORT EOU 20H ;ARBITRARY #'S. TYPICALLY

TAPE$STATUS$PORT EOU 20H ;THESE #'S WOULD BE LISTED

TAPE$DATA$PORT EOU 22H ;IN THE SPECIFICATION.

READ$TAPE$COMMAND EOU 01H ;FROM SPECIFICATION

WRITE$TAPE$COMMAND EOU 02H

OPERATION$COMPLETE$FLAG EOU 04H

TAPE$ERROR$STATUS EOU oaoH

TAPE$ERROR$FLAG EOU 044H ;USED BY SYSTEM

;EXTERNAL REFERENCES

EXTRN SYSTEM: FAR

EXTRN SYSTEMSERROR: FAR

DATA SEGMENT

;RAM LOCATIONS FOR SORT PROGRAM

RECORD$TEMP DB 2

KEY$TEMP DB 10

INDEX DW 1

INTERVAL DW 1

SUBSORTSCOUNTER DW 1

RECORDSCOUNT DW 1

TAPESBUFFER DB 140 DUP(?)

SORTSAREA DB 4000 DUP (12 DUP(O))

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA, ES: DATA
MAIN:

MOV

MOV

MOV

MOV

MOV

AX,DATA

DS,AX

ES.AX

RECORD$COUNT,0
DI.OFFSET SORTSAREA

;LOAD SEGMENT REGISTERS

;SET # OF RECORDS TO 0

;POINT Dl AT SORT AREA

READ THE TAPE MODULE OPERATES BY

1. READING A TAPE RECORD

2. CHECKING FOR DONE

3. MOVING 6 WORDS FROM THE TAPE BUFFER TO THE SORT AREA

4. UPDATING THE # OF RECORDS

READTHETAPE; CALL READ$TAPE$BUFFER READ 1 28 BYTES

MOV SIOFFSET TAPESBUFFER TEST FOR EOF RECORD
CMP [Sll,OFFFFH GO SORT IF EOF

JZ SORT NOT EOF, MOVE RECORD #
MOV ex. 12 AND KEY

REP MOVS TAPESBUFFER. INCREMENT # OF RECORDS

SORTSAREA
INC RECORDSCOUNT GET ANOTHER BYTE

JMP READSTHESTAPE

Examples of 8086 Assembly Language Programming 6-3

The OFFSET operator in the statement

MOV SIOFFSET TAPE$BUFFER ;TEST FOR EOF RECORD

is used to generate object code that will load the address of TAPE$BUFFER into the SI
register as immediate data. Note that the statement

MOV SIJAPE$BUFFER

would generate object code that will load the contents of TAPE$BUFFER into the SI
register. The OFFSET operator is a feature of the standard Intel 8086 assembler; it is not
a characteristic of the 8086 microprocessor.

Note that moving an even number of bytes is easier than moving an odd number
of bytes. To move an odd number of bytes, two approaches are possible. One approach
is:

MOV OX ;LOAD # OF BYTES

REP

, ODD$NUMBER
MOVSB ;T0 MOVE

This approach uses the same number of object code bytes as is used moving an even
number of bytes; but it takes twice as long to execute. Another method is:

MOV ex. ODDSNUMBER ;LOAD # OF WORDS TO MOVE
SHR CX.1

REP MOVSW

MOVSB ;M0VE LAST BYTE

This method requires one additional byte of object code, but it executes in the same
amount of time as a routine to move an even number of bytes.

SORT

THE SORT MODULE IS A STRAIGHTFORWARD RENDITION OF THE ALGORITHM
PRESENTED IN CHAPTER 3.

AX,RECORD$COUNT
INTERVAL,AX

MOV

MOV

INITIALIZE INTERVAL TO
;RECORD COUNT

NEWSINTERVAL:

NEXT$SUBSORT$COUNTER;

TESTSKEYS:

SHR

JZ

FOUND$THIS$RECORDS$SPOT:

INTERVAL. 1

WRITETOTAPE

MOV AX.RECORDSCOUNT

; DIVIDE INTERVAL BY 2

;SUBSORT CTR=RECORD$
COUNT- INTERVAL

SUB

MOV

INC

MOV

CMP

JG

CALL

MOV

SUB

MOV

CALL

JGE

MOV

CALL

MOV

CALL

MOV

SUB

AX,INTERVAL

SUBSORT$COUNTER,AX

SUBSORTSCOUNTER

AX.SUBSORTSCOUNTER
AX.RECORDSCOUNT

NEW$INTERVAL

MOVESSUBSORTS TOSTEMP ;SAVE CURRENT RECORD

JEST FOR NEW INTERVAL

AX.SUBSORTSCOUNTER
AX.INTERVAL

INDEX.AX

COMPARESKEYS

FOUND$THIS$RECORDS $SPOT

AX.INDEX

COMPUTESPOINTER

SI.AX

MOVESRECORD

;INDEX=SUBSORT CTR-INTERVAL

AX.INTERVAL

INDEX.AX

JGE TESTSKEYS

MOV SI.OFFSET RECORDSTEMP
CALL MOVESRECORD

JMP NEXT$SUBSORT$COUNTER

;INDEX-INTERVAL=INDEX

6-4 The 8086 Book

Note that the instruction

SHR INTERVAL 1

is more efficient than the sequence

MOV

SHR

MOV

AX,INTERVAL

AX.1

intervalax

in both memory usage and time consumption. In all cases, it is more efficient to operate
on a memory location directly, rather than bringing information into a register,
manipulating the information, and then returning the result to a memory location.

WRITE TAPE OPERATES BY

1. INITIALIZING PTRS TO THE TAPE BUFFER AND SORT AREA

2. MOVING 12 BYTES AT A TIME UNTIL EITHER

128 BYTES HAVE BEEN MOVED

END OF FILE IS REACHED

3. IF 1 28 BYTES. WRITE A TAPE RECORD

4. IF END OF FILE. APPEND AN EOF RECORD. THEN WRITE

THE LAST TAPE RECORD.

WRITETOTAPE: MOV SI.OFFSET SORTSAREA

NEXT$TAPE$BUFFER: MOV DI.OFFSET TAPESBUFFER

MOVE$NEXT$RECORD: MOV ex. 12 ;GET READY TO MOVE 12 BYTES

REP MOVS TAPE$BUFFER.$SORT$AREA

CMP DI.OFFSET TAPESBUFFER + 1 28

JL UPDATE$RECORD$COUNT .TEST FOR MOVED FULL BUFFER

PUSH SI ;SAVE POINTERS
PUSH Dl

CALL WRITE$TAPE$BUFFER ;WRITE 128 BYTES TO TAPE

POP Dl ;RESTORE POINTERS

POP SI

MOV AX.OFFSET TAPESBUFFER + 128 ;ANY EXTRAS IN END OF TAPE

SUB DI.AX
;BUFFER

; NOTE: TO FILL 128 BYTES REQUIRES MOVING 11 RECORDS OR 11 X 12 =

132 BYTES INTO TAPE BUFFER

MOV CX.DI

MOV DI.OFFSET TAPE$BUFFER

JZ UPDATE$RECORD$COUNT

PUSH SI

MOV SI.AX

REP MOVSTAPE$BUFFER.TAPE$BUFFER;MOVE EXTRAS DOWN TO START

;CX GETS COUNT

;JUMP IF NO EXTRAS

;SAVE POINTER INTO SORT AREA

UPDATE$RECORD$COUNT:

WRITESEOF:

POP SI

DEC RECORDSCOUNT

JNZ MOVE$NEXT$RECORD

CMP DI.OFFSET TAPE$BUFFER
JZ WRITESEOF

MOV ex. OFFSET TAPE$BUFFER + 128

SUB CX.DI

XOR AL.AL

REP STOS TAPESBUFFER

CALL WRITE$TAPE$BUFFER

MOV TAPE$BUFFER,OFFFFH

CALL WRITE$TAPE$BUFFER

JMP SYSTEM

;0F TAPE BUFFER

JEST IF ONE MORE RECORD

;MUST BE WRITTEN BEFORE EOF

;ZER0 OUT THE REST OF

;THE TAPE BUFFER

WRITE LAST TAPE RECORD.

MOVE IN END OF FILE RECORD

WRITE EOF RECORD. A

RECORD WITH FFFF IN

THE FIRST TWO BYTES

END OF PROGRAM

RETURN TO SYSTEM

Examples of 8086 Assembly Language Programming 6-5

; PROCEDURES CALLED BY MAIN PROGRAM

COMPUTESPOINTER PROC NEAR

; AX HAS INDEX

; RETURN ADDR IS IN AX

; DX IS NOW 0

MOV ex. 12

MUL CX

ADD AX.OFFSET SORT$AREA ;ADD ADDRESS, NOT DATA

RET

COMPUTESPOINTER ENDP

This module's speed can be increased by replacing

with

MOV CX.12

MUL CX

SHL AX,1

SHL AX.1

MOV CX.AX

SHL AX.1

ADD AX.CX

The MOV/MUL sequence requires 126 cycles to execute. The second sequence
requires 11 cycles to execute and does not destroy the DX register. The MOV/MUL
sequence, however, requires only 5 bytes of program memory, whereas the second
sequence requires 10 bytes.

WRITE TAPE BUFFER OPERATES BY
1. POINTING AT THE TAPE BUFFER
2. INITIALIZING THE TAPE CONTROLLER FOR A WRITE
3. CHECKING FOR STATUS ERRORS
4. CHECKING FOR OPERATION DONE
5. WRITING TO THE TAPE DATA PORT

WRITE$TAPE$BUFFER PROC

MOV

MOV

OUT

NEAR

SI.OFFSET TAPE$BUFFER
AL,WRITE$TAPE$COMMAND
TAPE$COMMAND$PORT.AL

;GET ADDRESS OF TAPE BUFFER

;START TAPE WRITE

GET$TAPE$STATUS: IN

TEST

AL.TAPE$STATUS$PORT
AL.TAPE$ERROR$STATUS

;CHECK FOR ERRORS

JNZ OUTPUT$TAPE$ERROR

TEST AL.OPERATION$COMPLETE$FLAG ;TEST FOR DONE

JNZ WRITESCOMPLETE

OUTPUT$TAPE$ERROR:

LODSB

OUT

JMP

MOV

JMP

TAPE$DATA$PORT.AL

GET$TAPE$STATUS
AH,TAPE$ERROR$FLAG
SYSTEMSERROR

;GET A BYTE

;SHIP IT OUT

WRITESCOMPLETE:

WRITE$TAPE$BUFFER

RET

ENDP

6-6 The 8086 Book

The TEST operation

TEST AUTAPE$ERROR$STATUS

is used instead of an AND operation so that the status byte in AL will be preserved for a
subsequent operation. Since the contents of the AL register are not significant after the
test for operaton completed, the

TEST AL.OPERATION$COMPLETE$FLAG

operation could be replaced by

AND AL.OPERATION$COMPLETE$FLAG

READ TAPE BUFFER OPERATES BY

1. INITIALIZING TAPE CONTROLLER TO READ

2. CHECKING FOR TAPE ERRORS

3. CHECKING FOR COMPLETION

4. READING DATA FROM TAPE DATA PORT

THIS ROUTINE USES SI AND AL

IF AN ERROR OCCURS. THIS ROUTINE BRANCHES TO THE SYSTEM

1READ$TAPE$BUFFER PROC NEAR

MOV SI.OFFSET TAPESBUFFER ;POINT AT TAPE BUFFER

MOV AL.READ$TAPE$COMMAND ;TELL TAPE TO READ

OUT TAPE$COMMAND$PORT,AL

GETSSTATUS: IN AL.TAPE$STATUS$PORT
TEST AL.TAPE$ERROR$STATUS ;CHECK FOR TAPE ERRORS

JNZ TAPE$ERROR

TEST AL,OPERATION$COMPLETE$FLAG ;CHECK FOR DONE

JNZ READSCOMPLETE

IN AL.TAPE$DATA$PORT ;GET DATA
MOV [Sn.AL ;SAVE DATA

INC SI

JMP GETSSTATUS

TAPE$ERROR: MOV AH.TAPE$ERROR$FLAG ;CALL SYSTEM

JMP SYSTEMSERROR ;ERROR PROCESSOR

READ$COMPLETE: RET

READ$TAPE$BUFFER ENDP

Note the similarities between this routine and the WRITE$TAPE$BUFFER

routine. There are two differences between the read and write routines.

WRITE$TAPE$BUFFER:

is replaced by

READ$TAPE$BUFFER:

and

is replaced by

MOV

MOV

LODSB

OUT

IN

MOV

INC

AL,WRITE$TAPE$COMMAND

AL.READ$TAPE$COMMAND

AL.TAPE$DATA$PORT

AL,TAPE$DATA$PORT
(SIl.AL
SI

Examples of 8086 Assembly Language Programming 6-7

As an exercise for the reader, meld these two routines together so that the read
and write tape buffer routines share common code.

Note that it would be more effective to use the DI register as a pointer into the
tape buffer, e.g..

could be replaced by

MOV

INC

STOSB

ISII.AL
SI

However, the DI register is used in the main line of code by the READTHETAPE
module.

COMPARE KEYS OPERATES BY COMPARING KEY (INDEX) WITH KEYTEMP
1. CALCULATE INDEX

2. COMPARE KEYS UNTIL

• DIFFERENCE IS FOUND

• 10 BYTES HAVE BEEN COMPARED

C0MPARE$KEYS PROC NEAR

C0MPARE$KEYS

MOV AX.INDEX ;GET INDEX

CALL COMPUTESPOINTER

INC AX ;POINT PAST RECORD #

INC AX

MOV DI.AX ;MOVE TO DI FOR COMPARE

MOV SI.OFFSET KEYSTEMP

MOV CX.0010 ;10 BYTES TO COMPARE

CMPS KEYSTEMP, SORTSAREA

; COMPARE 5 WORDS

RET

ENDP

The instruction

MOV SI.OFFSET KEYSTEMP

loads the address of KEYSTEMP, not the value at KEYSTEMP, into the SI register.

MOVE RECORD OPERATES BY MOVING WHATEVER SI POINTS AT TO THE LOCATIONS
POINTED TO BY INDEX INTERVAL

1. CALCULATE PTR. FOR INDEX + INTERVAL

2. MOVE 1 2 BYTES

MOVESRECORD PROC NEAR

MOVE$RECORD

MOV AX.INDEX

ADD AX.INTERVAL ;CALC INDEX + INCREMENT

CALL COMPUTESPOINTER

MOV DI.AX

REP MOVS SORTSAREA.SORTSAREA ;COMPUTER POINTER

RETURNS CX=12

RET

ENDP

6-8 The 8086 Book

If it is necessary to save time as opposed to memory space, the sequence

MOV DI.AX

REP MOVSB

RET

can be replaced by
MOV DI,AX

SHR CX.1

REP MOVSW

RET

Replacing MOVSB with MOVSW saves 6 x 17 = 102 clock periods. Subtract the
time required for the shift instruction, 2 cycles, and a net savings of ICQ cycles is
realized.

Note that, for some assemblers, specifying the operands determines byte or word
operations from the operand types. For our example

MOVS S0RT$AREA, S0RT$AREA

is a byte operation since SORT$AREA is a buffer of bytes. The MOVSB and MOVSW
forms of MOVS tell the assembler what to do, ignoring operand specification and type
checking. For concise and readable code, the former technique is often preferred, while
the latter allows overrides for efficiency as in the above example.

; MOVE SUBSORT TO TEMP OPERATES BY:
; 1. CALCULATING SUBSORT PTR.
: 2. LOADING POINTER TO RECORD TEMP.
; 3. MOVING BYTES

MOVE$SUBSORT$TO$TEMP PROC NEAR

MOV AX,SUBSORT$COUNTER

CALL COMPUTESPOINTER

MOV SLAX

MOV DLOFFSET RECORD$TEMP

REP MOVSB ;COMPUTE POINTER RETURNS
;CX = 12

RET

MOVE$SUBSORT$TO$TEMP ENDP

As with the previous module, the time required to execute this code can be
decreased by replacing the sequence

REP MOVSB

with

SHR CX.l

REP MOVSW

Examples of 8086 Assembly Language Programming 6-9

I/O DRIVER

The coding of the I/O driver program poses two basic problems:

• How should these routines be called by external routines wishing to use them?

• How will the parameters be passed to these routines?

These routines can be called in one of three basic ways:

• Call the operating system, which will pass the request on to the appropriate
module

• Call a command handler for the entire driver, which will screen parameters
and then pass control to the appropriate module

• Call each of the routines directly, using an address present in the calling
routine's code.

In this example we will assume that the routines are called directly; the calling
program knows the entry address for each routine. This does not preclude the use of the
first two methods; if either of these methods is preferable, a simple dispatch table that
points to each of the modules would allow the operating system or command handler to
distribute the command to the appropriate module.

As mentioned in Chapter 2, these are the three methods used to pass parameters:

• In the registers

• In a task block

• On the stack.

In this example, the parameters will be passed in the registers, except in the case
of multiple character input and output routines. For these functions task blocks will be
defined. Multiple character input uses the following task block:

Byte #0; | | Maximum number of characters to read

Byte # 1; Number of bytes actually read

Byte #2: | "|^

Byte #n:

Bytes 2 through n contain the(information read by the multiple

Multiple character output uses the following task block:

Byte #0: | | Number of bytes to output

Byte # 1:

Byte #n;

Bytes 1 through n are sent to the
' channels data port

6-10 The 8086 Book

CONTROL$PORT EQU 12H

STATUS$PORT EQU 12H
DATA$PORT EQU lOH

; IF BIT 0 OF THE AH REGISTER IS 1. THE USER HAS LOADED SI WITH A
: POINTER TO THE STRING TO BE SENT TO THE CONTROL PORT. IF BIT 0 IS A 0, A
; STANDARD INITIALIZATION STRING WILL BE SENT

USER$INITIALIZATION$BIT EOU 01H

TIMEOUT$VALUE EOU OFOOOH

; BITS 3, 4, AND 5 OF THE SIO STATUS BYTE ARE ERROR BITS

SIO$ERRORS EOU 38H

; BIT 1 INDICATES WHETHER OR NOT THE RECEIVER IS READY

; BIT 0 INDICATES WHETHER OR NOT THE TRANSMITTER IS READY

SIO$RECEIVER$READY EOU 02H

SIO$TRANNY$READY EOU 01H

TIMEOUT$ERROR$FLAG EOU OFFH

; CARRIAGE RETURN IS TERMINATION CHARACTER FOR READ

CARRIAGESRETURN EOU ODH

; '$' IS TERMINATION CHARACTER FOR WRITE

TERMINATION$CHARACTER EOU 24H
EXTRN SYSTEMSERROR: FAR

CODE SEGMENT

ASSUME CS: CODE

THE INITIALIZATION OPERATES BY:

1. TESTING FOR USER SPECIFIED OR

SYSTEM INITIALIZATION STRING

2. SENDING THE STRING TO THE CONTROL PORT.

TERMINATING WHEN A 0 IS DETECTED

THIS ROUTINE USES AX AND SI

INITIALIZATION PROC NEAR

AND AH.USER$INITIALIZATION$BIT ;TEST FOR USER INIT
JNZ SI$LOADED$BY$USER
MOV SI.OFFSET PORT$INITIALIZATION$STRING ;LOAD STANDARD STRING

SI$LOADED$BY$USER: LODSB

OR AL,AL ;SET FLAGS TO TEST FOR 0
JZ DOARETURN :EXIT IF 0

OUT CONTROL$PORT,AL

JMP SI$LOADED$BY$USER

PORT$INITIALIZATION$STRING DB 0CEH.40H,0CEH.37H,00H
DOARETURN: RET

INITIALIZATION ENDP

A four-byte initialization string is necessary to allow for the fact that the 8251 is
not in a known state when this routine is called. If, for example, a two-byte sequence

CE.jg Mode
37, _ Command

I o

were sent to the 8251, the 8251 would not be correctly initialized, since it could have
been waiting for a Command Control Input. If a three-byte sequence

40.,« Command (Reset)
CFjg Mode
37 .jg Command

Examples of 8086 Assembly Language Programming 6-11

were sent, the 8251 would not be correctly initialized if it happened to be waiting for a
Mode Control Input. The four-byte sequence, however, will correctly initialize the 8251
regardless of its prior state.

SINGLE CHARACTER INPUT OPERATES BY:

1. LOADING TIMEOUT VALUE

2. READING THE STATUS PORT AND TESTING FOR SIO ERRORS

3. CHECKING FOR TIMEOUT ERRORS

4. READING THE DATA

THIS ROUTINE USES AX AND CX

IF ZFLAG IS 1 ON RETURN - ERROR CONDITION

IF ZFLAG IS 0 ON RETURN - NORMAL OPERATION

ERROR CONDITIONS RETURNED IN AH

SINGLE$CHARACTER$INPUT PROC NEAR

MOV CXJIMEOUT$VALUE

TESTSSTATUS; IN AL,STATUS$PORT ;READ STATUS
TEST AL,SIO$ERRORS ; CHECK FOR ERRORS

JNZ INPUT$ERROR$RETURN

DEC CX ;CHECK FOR TIMEOUT

JZ INPUT$TIMEOUT$ERROR$RETURN

AND AL.SIO$RECEIVER$READY ;RECEIVER READY?

JZ TESTSSTATUS

IN AUDATASPORT ;GET VALUE

RET

INPUT$ERROR$RETURN: MOV AH.AL ;SAVE STATUS

XOR ALAL ;SET ZERO FLAG

RET

INPUT$TIMEOUT$ERROR$ MOV AH.TIMEOUT$ERROR$FLAG ;FF IS TIMEOUT ERROR
RETURN: RET

SINGLE$CHARACTER$INPUT ENDP

The sequence

could be replaced by

NOSTIMEOUT:

DEC

JZ

AND

LOOP

MOV

RET

AND

CX

INPUT$TIMEOUT$ERROR$RETURN
AL,SIO$RECEIVER$READy

N0$TIME0UT

AH.OFFH

AL.SIO$RECEIVER$READY

;TIME0UT ERROR

This would result in shorter and faster object code. However, it would sacrifice source

code clarity.

6-12 The 8086 Book

SINGLE CHARACTER OUTPUT OPERATES BY:
1. LOADING TIMEOUT VALUE

2. READING STATUS PORT

3. CHECKING FOR TIMEOUT ERROR

4. SENDING DATA TO OUTPUT PORT IF TRANSMITTER IS READY

IF ZFLAG IS 1 ON RETURN - ERROR

IF ZFLAG IS 0 ON RETURN - NORMAL

THIS ROUTINE USES AX. CX. AND DH

SINGLE$CHARACTER$OUTPUT PROC NEAR

MOV CX.TIMEOUT$VALUE

MOV DH.AL

TRANNYSREADY: IN AL.STATUS$PORT
TEST AUSIOSERRORS
JNZ OUTPUT$ERROR$RETURN

DEC CX ;TEST FOR TIMEOUT

JZ OUTPUT$TIMEOUT$ERROR$RETURN
AND AL.SIO$TRANNY$READY ;CHECK FOR TRANSMITTER READY
JZ TRANNYSREADY

MOV AL.DH GET DATA FROM DH
OUT DATA$PORT.AL

RET

OUTPUT$TIMEOUT$ERROR$ MOV AH.TIMEOUT$ERROR$FLAG

RETURN: RET

OUTPUT$ERROR$RETURN: MOV AH.AL

XOR ALAL

RET

SINGLE$CHARACTER$OUTPUT ENDP

As with the previous module, the timeout error return could be included in the
mainline code. This would be accomplished by replacing

DEC cx

JZ OUTPUT$TIMEOUT$ERROR$RETURN
AND AL.SIO$TRANNY$READY

with

NO$TIMEOUT:

LOOP NO$TIMEOUT

MOV AH.OFFH

RET

AND ALSIO$TRANNY$READY

and deleting the last three lines of the source code.

Examples of 8086 Assembly Language Programming 6-13

CHECK$CHANNEL$STATUS PROC NEAR

IN AL.STATUS$PORT ;READ

RET

CHECK$CHANNEL$STATUS ENDP

SEND$CONTROL$INFORMATION PROC NEAR

OUT AL.CONTROL$PORT ;WRITE

RET

SEND$CONTROL$INFORMATION ENDP

MULTIPLE CHARACTER INPUT OPERATES BY:

1. GETTING # OF BYTES TO READ

2. CALLING SINGLE CHARACTER INPUT UNTIL

• ERROR FROM SINGLE CHAR

• THE MAXIMUM # OF CHARACTERS HAVE BEEN ENTERED

• A TERMINATION CHARACTER (CARRIAGE RETURN) IS ENTERED

THIS ROUTINE IS CALLED WITH SI POINTING AT THE TASK BLOCK

THIS ROUTINE USES SI, DI. AX. CX

MULT1PLE$CHARACTER$INPUT PROC NEAR

LODSB

OR AL.AL ;LOAD MAX # OF BYTES TO READ
JZ ZERO$COUNT$THEN$RETURN

MOV DL.AL ;SAVE MAX # IN DL

MOV DI.SI

INC DI ; POINT AT BUFFER

GETACHARACTER: CALL SINGLE$CHARACTER$INPUT ;GET CHARACTER

JZ INPUT$ERROR

STOSB

INC BYTE PRT [Sll INCREMENT # READ

CMP DLlSIl ;TEST FOR READ MAXIMUM #

JZ ZERO$COUNT$THEN$RETURN

CMP AL,CARRIAGE$RETURN

JNZ GETACHARACTER

ZERO$COUNT$THEN$RETURN: RET

INPUT$ERROR: JMP SYSTEMSERROR

MULTIPLESCHARACTERSINPUT ENDP

The sequence

OR

JZ

ALAL

ZERO$COUNT$THEN$RETURN

checks for a zero number of bytes to be read.
DI is used as the pointer into the input buffer because of the string primitive,

STOSB, which saves the data and increments the pointer in one instruction. This
assumes that the Direction Flag is set correctly.

6-14 The 8086 Book

MULTIPLE CHARACTER OUTPUT OPERATES BY:

1. GETTING THE NUMBER OF CHARACTERS TO WRITE

2. CALLING SINGLE CHARACTER OUTPUT UNTIL

• ERROR FROM SINGLE CHARACTER OUTPUT

• THE MAXIMUM # OF CHARACTERS HAVE BEEN WRITTEN

THIS ROUTINE IS CALLED WITH SI POINTING AT THE TASK BLOCK

THIS ROUTINE USES AX. SI. DX. AND CX

MULTIPLE$CHARACTER$OUTPUT 1 PROC NEAR

LODSB

OR ALAL

JZ DOSRETURN

MOV DL.AL

OUTPUTACHARACTER: LODSB

CMP AL.TERMINATION$CHARACTER

JZ DOSRETURN

CALL SINGLE$CHARACTER$OUTPUT

JZ OUTPUT$ERROR

DEC DL

JNZ OUTPUTACHARACTER

DOSRETURN: RET

OUTPUT$ERROR: JMP SYSTEMSERROR

;SAVE # OF BYTES TO
OUTPUT

;TEST FOR TERMINATION
CHARACTER

MULTIPLE$CHARACTER$OUTPUT ENDP

8086 Micmpracessor Description

This is the first chapter devoted to methods of interfacing the 8086 with external
logic. Therefore this chapter will examine the signals that the 8086 produces and
receives, and will look, in overview, at 8086 system concepts.

8086 CPU PINS AND SIGNALS

8086 CPU pins and signals are illustrated in Figure 7-1. With the exception of
those signals that are specifically labelled, all inputs and outputs are TTL-level compati
ble.

All microprocessors produce or receive the following kinds of signals:

• Address Lines

• Data Lines

• Control and Status Lines

• Power and Timing Lines

The 8086's 40-pin package has all four types of signals. Some pins carry more than
one type of information. For example, the data and address lines are multiplexed. Other
pins have their functions defined by the level present at the MN/MX pin.

The discussion that follows will describe the function of each pin when MN/MX is
high or low.

7-2 The 8086 Book

AD14

AD13

AD12

AD11

ADIO

8086

Vcc
AD15

A16/S3

A17/S4

A18/S5

A19/S6

BHE/S7

MN/MX

RD
RQ/^. HOLD
RQ/^. HLDA

LOCK. WR

S2. M/IO

SI, DT/R

SO, DEN

QSO, ALE

QSl, INT A

READY

Pin Name Description Type

ADO-AD 15 Data/Address bus Bidirectional, tristate

A16/S3, A17/S4 Address/Segment identifier Output, tristate

A18/S5 Address/Interrupt enable status Output, tristate

A19/S6 Address/status Output, tristate

BHE/S7 High-order byte/status Output, tristate

RD Read control Output, tristate

READY Wait state request Input

TEST Wait for test control Input

INTR Interrupt request Input

NMI Non-maskable interrupt request Input

RESET System Reset Input

CLK System Clock Input

MN/MX = GND for a maximum system

SO, S1.S2 Machine cycle status Output, tristate

RQ/GTO, RQ/GTl Local bus priority control Bidirectional

QSO, QSl Instruction queue status Output

LOCK Bus hold control Output, tristate

MN/MX = Vcc 3 minimum system
M/IO Memory or I/O access Output, tristate

WR Write control Output, tristate

ALE Address Latch enable Output

DT/R Data transmit/receive Output, tristate

DEN Data enable Output, tristate

INTA Interrupt acknowledge Output, tristate

HOLD Hold request Input

HLDA Hold acknowledge Output

VcC' gnd Power, ground

1 [Maximum System Signals [| Minimum System Signals

Figure 7-1. 8086 Pins and Signal Assignments

8086 Microprocessor Description 7-3

ADDRESS AND DATA LINES

The 8086 CPU can directly address one million (IM) bytes of memory — which
means that 20 bits of address information are necessary.

The 8086 CPU accesses data in 16-bit units, treated as a low-order byte and a
high^order byte.

To allow for a 20-bit address bus and a 16-bit data bus on a 40-pin package, the
data bus is multiplexed with the least significant 16 bits of the address bus. The four
additional address lines are multiplexed with status information. The address/data and
address/status signals are:

AD0-AD15

A16/S3

A17/S4

A18/S5

A19/S6

BRE/S7

Let us examine these lines in detail.

AD0-AD15. These 16 lines are the multiplexed address bus/data bus lines. Dur
ing the first clock period of a bus cycle, these lines contain the low-order 16 address bits.
During all other clock cycles, these lines are used as the data bus. These lines are put
into the high impedance state when the 8086 is performing an interrupt acknowledge
cycle or a ''hold acknowledge" cycle.

A16/S3. During the first clock period of an instruction's execution, this line
serves as address line 16. If an I/O instruction is performed, this line is low during the
first clock period. During all other clock periods, this line is used in conjunction with line
A17/S4 to provide status information.

A17/S4. During the first clock period of an instruction's execution, this line
serves as address line 17. If an I/O instruction is performed, this line is low during the
first clock period. During other cycles, this line is used in conjunction with line A16/S3
to provide status information.

During all clock periods but the first, A16/S3 and A17/S4 provide information
that specifies which segment register is producing the segment portion of the 8086
address, as follows:

A17/S4 A16/S3 Meaning

0 0 Extra Segment
0 1 Stack segment
1 0 Code segment or no segment
1 1 Data segment

This information can be used by external logic to expand the 8086 memory space
so that each segment register addresses its own unique IM byte of memory, but it would
then be impossible to overlap memory addresses computed in different segments.

A18/S5. During the first clock period of an instruction's execution, this line
serves as address line 18. If an I/O instruction is executed, this line is low during the first
clock period. During all other clock periods, this line reflects the state of the 8086's
Interrupt Enable flag.

7-4 The 8086 Book

A19/S6. During the first clock period of an instruction's execution, this line
serves as address line 19. If an I/O instruction is performed, this line is low during the
first clock period. During all other cycles, the 8086 holds this line low if it is controlling
the system bus. During a "hold acknowledge" clock period, the 8086 will float this line,
allowing another bus master to take control of the system bus.

BHE/S7. During the first clock period of an instruction's execution, this line is
used as BHE. BHE is held low during read, write, and interrupt acknowledge sequences
in which data is to be transferred on the high-order eight bits of the data bus. This signal
is used in conjunction with the ADO line to generate select logic for memory banks. A
more extensive discussion of 8086 memory selection is present in the next section. Dur
ing the second and subsequent clock periods BHE/S7 maintains its first clock period
output level.

CONTROL AND STATUS LINES

8086 control and status lines can be divided into two categories: those which are
not affected by the level at the MN/MX pin and those whose function depends on the
value at the MN/MX pin. Those which are not affected include:

RD

READY

TEST

INTR

NMI

RESET

RD is output low when the CPU is reading data from a memory location or an I/O
device. The S2-(M/l0) pin specifies whether a memory or I/O access is requested.

READY is used by a selected memory or I/O device to indicate that it is ready to
accomplish the data transfer operation. A signal (RDYI or RDY2) is input to the 8284
Clock Generator, which then synchronizes the READY input with the clock. If READY
is input low at the appropriate time, then the 8086 will execute "Wait" states until
READY is raised high.

TEST is an input that is only used by the 8086 WAIT instruction. When the WAIT
instruction is executed, the 8086 will pause until TEST is input low.

INTR is an interrupt request input. This signal is sampled by the 8086 during the
final clock period of each instruction's execution. If the interrupt enable bit is a I and
INTR is high, then the 8086 will execute an interrupt acknowledge sequence and
transfer control to the appropriate interrupt service routine. Otherwise the next instruc
tion will be executed. INTR is a level triggered input.

NMI is a non-maskable interrupt request input. NMI is an edge triggered input.
Should NMI go from low to high, the 8086 will complete execution of the current
instruction, and then transfer control to a non-maskable interrupt service routine. The
address of the non-maskable interrupt service routine is present at memory location
0000816. Software may not disable this interrupt.

8086 Microprocessor Description 7-5

RESET is a system reset signal; it must be input high to the 8284 Clock Generator
for at least four CLK clock periods, except on power-up, when RESET must last at least
SOfjLS. The 8284 synchronizes RESET and re-transmits it to the 8086, When the RESET
returns to low, the following events occur:

1. The Flags register is set to 0000,6. This has the effect of disabling interrupts
and single stepping mode

2. The DS, SS, ES and PC registers are reset to 0000,^
3. The CS register is set to FFFF,6

Execution will continue from memory location FFFF,^.
The signals that are affected by the MN/MX pin include:

Max Min

50-(DEFft
51-(DT/R)

52-(M/I0)
RQ/GTO-(HOLD)

RQ/GTT-(HLDA)
QSO-(ALE)
QSI-(INTA)

L0CK-(WR)

When MN/MX is grounded, the 8086 is said to be in ''maximum mode." When
MN/MX is high the 8086 is said to be in "minimum mode."

50-(DEN). If the MN/MX pin is grounded, this pin functions as SO. SO is used
with ST-(DT/R) and the S2-(M/T0) to provide^atus information. This status informa
tion is discussed following the description of S2-(M/T0). If the MN/MX pin level is
high, this pin functions as DEN. DEN is used to control the 8286/8287 buffers by enab
ling the buffers' data transceivers onto the system or local bus (as determined by DT/
R). _ _

51-IDT/R). If the MN/MX pin is grounded, this pin functions as SI. SI is used
with SO-(DEN) and the S2-(M/r^ to provide status information. This information is
discussed following the description of S2-(M/I0). If the MN/MX pin level is high, this
pin functions as DT/R. DT/R is used to control the 8286/8287 buffers, signalling the
direction of the data transfer. If DT/R is high, the transceivers place data on the system
bus; if DT/R is low, the transceivers take data off the system bus. The 8288 Bus Con
troller also generates DEN and DT/R outputs. If the Bus Controller is present, its DEN
and DT/R outputs are used instead of 8086 DEN and DT/R outputs. We describe these
different configurations later.

52-(M/I0). If the MN/MX pin is grounded, this pin functions as S2. S2 is used
with SO-(DEN) and S\-(DT/R) pin to provide the status information described below.
If the MN/MX pin level is high, this pin functions as M/TO. During a memory or I/O
access M/IO is high for a memory access and low for an I/O access.

7-6 The 8086 Book

If the MN/MX pin is grounded, status is provided to the 8288 Bus Controller via
SO, ST, and S2 as follows:

S2 S1 so

0 0 0 Interrupt Acknowledge

0 0 1 I/O Read

0 1 0 I/O Write

0 1 1 Halt

1 0 0 Instruction Fetch

1 0 1 Memory Read

1 1 0 Memory Write

1 1 1 Inactive

This information is used by the 8288 Bus Controller to generate memory and I/O
control signals for a maximum mode system.

QSO-(ALE). If the MN/MX pin is grounded, this pin functions as QSO. QSO is used
with the QSl-(INTA) pin to provide 8086 instruction queue status. The instruction
queue, which we describe later in detail, is a six-byte space within the 8086
microprocessor; it is used to hold object code bytes awaiting execution. If the MN/MX
pin level is high, QSO-(ALE) functions as ALE. A high ALE pulse is output while a
valid memory address is present on the address/data bus. In a maximum mode system,
ALE is provided by the 8288 Bus Controller.

QSI-(INTA). If the MN/MX pin is grounded, this pin functions as QSl. QSl is
used with QSO-(ALE) to provide 8086 instruction queue status, as described below. If
the MN/MX pin level is high, this pin functions as INTA. INTA is output low while the
8086 is executing an interrupt acknowledge sequence. In a maximum system INTA is
provided by the 8288 Bus Controller.

If the MN/MX pin is grounded, 8086's instruction queue status is provided by
QSO and QSl as follows:

QSO QSl

0 0 No operation

0 1 The first byte of an instruction is being
executed

1 0 The queue is being emptied

1 1 A subsequent instruction byte is being
taken from the queue

QSO and QSl are valid during the clock period that follows any queue operation.
RQ/GTO-(HOLD). If the MN/MX pin is grounded, this pin functions as RQ/GTO.

RQ/GTO is a request/grant line. Other bus masters may force the 8086 to enter a HOLD
state by inputting a low pulse at this pin. The 8086 will acknowledge that it is entering a
HOLD state by outputting a low pulse via RQ/GTO to the requesting bus master. The
8086 will then relinquish control of the system bus and three-state outputs. When the
new bus master subsequently relinquishes control of the system bus, it does so by send
ing another low RQ/GTO pulse. The 8086 then reasserts bus control. Request/grant
sequences are described in detail in Chapter 8. If the MN/MX pin level is high, RQ/
GTO-(HOLD) functions as HOLD. HOLD is used as a HOLD request line by external
logic. When external logic sets the HOLD level high, the 8086 will enter a HOLD state
upon completing the current bus cycle. The 8086 acknowledges that it has entered the
HOLD state by outputting HLDA high.

8086 Microprocessor Description 7-7

RQ/GT1-(HLDA). If the MN/MX pin is grounded, this pin functions as RQyGTl.
^/GTl is functionally identical to RQ/GTO, except that RQ/GTl has lower priority
than R^/GTD. If an RQVGTO request/grant sequence is not in progress, then the 8086
can begin an RQ/GTl request/grant sequence. Request grant sequences are covered in
detail in Chapter 8. If the MN/MX pin level is high, RQ/GT1-(HLDA) functions as
HLDA. HLDA is the HOLD Acknowledge signal. HLDA is output high to acknowledge
a Hold request made via HOLD. When the HLDA signal is raised high, the 8086 CPU
also floats its three-state output signals. Thus it floats the system bus.

LOCK-(WR). If the MN/MX pin is grounded, this pin functions as the LOCK pin.
lock is output low to prevent the 8086 from losing system bus control while executing
an instruction. While LOCK is low, external hardware should guarantee that other bus
masters do not gain control of the system bus. When the 8086 executes a LOCK instruc
tion the LOCK signal is output low for the duration of the next instruction's execution.
If the MN/MX pin level is high, LOCK-(WR) functions as the WR pin. WR is pulsed
low during a memory or I/O write. The trailing edge of the pulse occurs while the data
being output is stable on the address/data bus.

POWER AND TIMING LINES

CLK is the clock signal used to synchronize all 8086 logic. This signal is typically
output by the 8284 Clock Generator.

Vcc is the power supply pin. The 8086 requires -b5 V ± 10% be present on this
pin.

There are two GND pins. These are both ground pins.

Three-state Lines and Signals

The following 8086 signals are three-state signals:

AD0-AD1 5

A16/S3

A17/S4

A18/S5

A19/S6

BHE/S7

RD
50-IDEW
51-(DT/R)
52-(M/I0)
L0CK-(WR)
INTA

All of these signals are in the high impedance state while the 8086 is in a HOLD
state. The SO-(DEN), ̂-(DT/R), and S2-(M/I0) signals are floated just prior to 8086
issuing a hold acknowledge.

During an interrupt acknowledge, the AD0-AD15, A16/S3, A17/S4, A18/S5,
A19/86 lines are floated.

7-8 The 8086 Book

8086 OVERVIEW AND BASIC SYSTEM
CONCEPTS

This section discusses basic 8086 system concepts, including bus cycles, the

address/data bus, the system data bus, the Execution Unit, the Bus Interface Unit, and
the instruction queue.

8086 BUS CYCLE DEFINITION

The 8086 communicates with external logic via its system bus. The 8086 executes
''bus cycles" to transfer data or fetch instructions. A "bus cycle" is shown in Figure 7-2.

The minimum bus cycle consists of four CPU clock periods called T States. During
the first T state (Tl), the 8086 outputs an address on the 20-bit multiplexed address/
data/status bus. The address on the bus is considered valid when the ALE signal makes
the transition from high to low. In a minimum system, this signal is produced by _^e
8086. In a maximum system, this sgnal is produced by the 8288. Bus Controller. The S2-
(M/IO) signal indicates whether a memory or an I/O access is being performed.

During the second T State (T2), the 8086 removes the address from the address
bus. For a read bus cycle the data bus lines are floated in preparation for a read cycle. For
a write bus cycle data is output on the data bus lines.

Data bus transceivers are enabled in either Tl or T2, depending on the 8086
system configuration, and the direction of the transfer (into or out of the 8086). Read,
write, or interrupt acknowledge control signals are always enabled in T2.

During T2, bus cycle status (S3, S4, S5, S6) is output on the upper four address/
status bus lines. The status information below is available for the rest of the bus cycle.

S4 S3

0 0 Extra (Relative to the ES segment)
0 1 Stack (Relative to the 88 segment)

1 0 Code/None (Relative to the 08 segment
or a default zero)

1 1 Data (Relative to the 08 segment)

55 =

56 =

IF (Interrupt enable flag)
: 0 (Indicates the 8086 is on the bus)

The 8086 continues to provide status information on the upper four address/
status bus lines during T3. Also, the 8086 continues to output data during a write bus
cycle. For a read bus cycle, the 8086 samples input data at the end of T3. If the selected
device is not capable of transferring data at the required transfer rate, the device must
signal "not ready" by inputting READY low. This causes the 8086 to insert additional
clock cycles after T3. These additional clock cycles are designated as Tw states (wait
states). The "not ready" indication must be presented to the CPU before the start of T3.
Bus activity during Tw is the same as T3. When the selected device has had sufficient
time to complete the transfer, it raises READY high. After Tw clock periods end, T4,

the last clock period of the bus cycle, is executed.
During T4, memory and 1/0 control lines are disabled and the selected external

device disconnects itself from the system bus.

8086 Microprocessor Description 7-9

CLK

A19/S6-

A16/S3.

-T1- -12- -T3-

TW

n r

Address

READY

AD15

"V.

DEN

AD15-

:::7

[Address A15-AO I Float

Address

Status

X

-T4-

Data In D15-D0 Float

Data Out Float

Figure 7-2. Basic 8086 Biis Cycles

7-10 The 8086 Book

A bus cycle appears to devices on the system bus as an asynchronous event, con
sisting of an address to select the device, and a register or memory location within the
device, plus a read strobe, or a write strobe with accompanying data. The selected device
accepts bus data during a write cycle; the selected device must place data on the bus dur
ing a read cycle. At the end of the bus cycle, the device latches written data or disables its
bus drivers. The only way a device can modify a bus cycle is by inserting wait state clock
periods via the READY control input.

The 8086 only executes a bus cycle when instruction fetches are being performed
or when operands must be transferred between the 8086 and memory or I/O devices.
When not executing a bus cycle, 8086 bus interface logic executes idle clock periods
(labeled TI). During idle clock periods the 8086 continues to output status information
from the previous bus cycle on the four upper address lines. If the previous bus cycle
was a write, the CPU continues to output data onto the 16 data bus lines until the start of
the next bus cycle. If the 8086 executes idle clock periods following a read cycle, the
8086 floats the 16 data bus lines until the start of the next bus cycle.

When accessing memory, the 8086 performs two types of operations:

• An instruction fetch

• A memory access to read or write operands required by the instruction

The normally simple sequential relationship between instruction fetch and
memory access bus cycles is modified in the 8086 by the presence of a 6-byte instruction
object code queue.

If the 8086 bus interface logic would otherwise be idle, instead it executes instruc
tion fetch bus cycles during which it fetches the next sequential object code bytes from
program memory, until the instruction queue is full. If more than one instruction's
object code is in the queue, then an instruction fetch bus cycle may be separated from its
operand memory access bus cycles by additional instruction fetch bus cycles.

When a jump or call instruction is executed, the next sequential instruction's
object code bytes, currently in the instruction queue, are no longer needed. Queue con
tents are therefore discarded with no adverse effects.

8086 ADDRESS AND DATA BUS CONCEPTS

Since most memory devices and peripherals that interface to the 8086 require a
stable address for an entire bus cycle, the address present on the multiplexed address/
data bus during Tl should be latched. This latched address is used to select the desired
peripheral or memory location. To demultiplex the address/data bus, the 8086 provides
an Address Latch Enable signal (ALE), which can be used to capture the address either
in 8282 or in 8283 8-bit bistable latches.

These latches are either inverting (8283) or non-inverting (8282) and have out
puts driven by tristate buffers that supply 32 mA drive capability and can switch a 300 pF
capacitive load in 22 ns (inverting) or 30 ns (non-inverting). The 8282/8283 latches
propagate the address through to the outputs while ALE is high and latch the address on
the following edge of ALE. But this delays address access and chip select decoding by the
propagation delay of the latch.

8086 Microprocessor Description 7-11

A19-A16'

Address

Bus
A15-A8

A7-A0

AD15-ADO

STB

8282/83

DO

STB

8282/83

DO

STB

8282/83

OE

DO

8086

A19-A15/

S6-S3

ALE

Figure 7-3. Demultiplexing the Address/Data Bus

The latch outputs are enabled by the low active OE input. Demultiplexing of the
multiplexed address/data bus (latchings of the address from the multiplexed bus) can be
handled locally at appropriate points in the system or at the CPU, with a separate
address bus distributing the address throughout the system.

For optimum system performance and compatibility with multiprocessor and
Multibus configurations, local demultiplexing, illustrated in Figure 7-4, is strongly
recommended over distributed demultiplexing, as illustrated in Figure 7-5. The
remainder of this chapter will assume the bus is demultiplexed at the CPU, as illustrated
in Figure 7-4.

The 8086 memory address space can be viewed as a sequence of one million bytes
in which any byte may contain an 8-bit data element and any two consecutive bytes may
contain a 16-bit data element. There is no constraint on byte or word address bound

aries. The address space is physically connected to a 16-bit data bus by dividing the
address space into two 8-bit banks of up to 512K bytes each.

7-12 The 8086 Book

ALE

8086

CPU

STB

8282 DO

Dl

Address Bus

Data Bus

Figure 7-4. Separate Address and Data Busses

ALE

8086

CPU

Address/Data

m on
STB Dl STB Dl STB Dl

8282 8282 8282

Figure 7-5. Multiplexed Bus with Local Address Demultiplexing

8086 Microprocessor Description 7-13

FFFFF

FFFFE

FFFFD

FFFFC

512 Kilobytes 512 Kilobytes

1 Megabyte

FFFFF

FFFFD

1

7T

FFFFE

FFFFC

0

7^

Ld

A19-A1 D15-D8 D7-D0

One bank is connected to the lower half of the 16-bit data bus (D7-0) and contains
even address bytes (A0=0). The other bank is connected to the upper half of the data
bus (D15-8) and contains odd address bytes (A0= 1). A specific byte within each bank
is selected by address lines A19-A1. Data bytes are transferred to even addresses over
the lower half of the data bus (D7-0).

y + 1

X + 1 r7C> (x)

A19-A1

\7
D15-D8 SHE (High)

7T

D7-D0 AO (Low)

AO, when low, selects the memory bank connected to the lower half of the data
bus; Bus High Enable (BHE) is output high to disable the memory bank on the upper
half of the data bus. This disabling process is necessary to prevent a write operation to
the lower memory bank from destroying data in the upper bank. Since BHE is a multi
plexed signal, with timing identical to the A19-A16 address lines, it also must be latched
by ALE to provide a stable signal for the entire bus cycle.

7-14 The 8086 Book

During T2 through T4, the BHE output is available on status line S7. (The mean
ing of status line S7 has not yet been defined.)

When accessing memory bytes with odd addresses, information is transferred
over the upper half of the data bus (D15-D8). BHE is output low to enable the upper
memory bank. AO is output high to disable the lower memory bank. This may be illus
trated as follows:

Y + 1

(x+ 1)

7T

i-d

A19-A1 D15-D8 BHE (Low)

7^

D7-D0 AO (High)

The 8086 transfers data via the correct half of the data bus and outputs BHE and
AO with the required signal levels.

As an example, consider loading a byte of data into the CL register (lower half of
the CX register) from a memory location with an odd address. This data will be accessed
via the upper half of the 16-bit data bus. Although this data is transferred into the 8086
over the upper eight data bus lines, the 8086 automatically redirects the data to the
lower half of its internal 16-bit data path and hence to the CL register. This capability
allows byte I/O transfers via the AL register to access I/O devices connected to either
the upper or lower half of the 16-bit data bus.

16-bit words that are located at even addresses (two consecutive bytes with the
least significant byte at an even byte address) are accessed in a single bus cycle. A19-A1
select the appropriate byte within each bank; AO low and BHE low enable both banks
simultaneously.

y + 1

(x + 1)

7T

V
A19-A1 D15-D8 BHE (Low)

(x)

77

D7-D0 AO (High)

8086 Microprocessor Description 7-15

16-bit words located at odd addresses (two consecutive bytes with the least signifi
cant byte at an odd byte address) are accessed using two bus cycles. During the first bus
cycle the lower byte (with the odd byte address) is accessed. During the second bus
cycle, the upper byte (with the even byte address) is accessed. During the first bus cycle,
A19-A1 specifies the address. AO is 1 (for an odd address) and BHE is low. Therefore
the lower memory bank is disabled and the upper memory bank is enabled. During the

second bus cycle, the address is incremented. Therefore AO is 0. BHE is high, however,
so the lower memory bank is enabled, and the upper memory bank is disabled. This may
be illustrated as follows:

First Bus Cycle

A19-A1

y + 1

(x + 1)

TV

V
D15-D8 BHE

TV

V
D7-D0 AO

Second Bus Cycle

A19-A1

y + 1

X + 1

77

V
D15-D8 BHE

(y)

TV

V
D7-D0 AO

The sequence illustrated above is automatically executed by the 8086 whenever a
word transfer specifies an odd address. The 8086 automatically connects the upper and
lower bytes of the 8086's internal 16-bit registers with the appropriate halves of the data

bus. Note, however, that accessing a word on an odd address boundary requires an extra
bus cycle; this degrades system performance.

7-16 The 8086 Book

During a byte read, the CPU floats the entire 16-bit data bus during clock period
T2, even though data is expected on the upper or lower half of the data bus but not on
both halves. This simplifies the chip select decoding requirements for read only devices
(ROM, EPROM). (We describe chip select logic later.) During a byte write operation,
the 8086 will drive the entire 16-bit data bus. The information on the half of the data bus

not transferring data is indeterminate. These concepts also apply to the I/O address

space.

SYSTEM DATA BUS CONCEPTS

When referring to the system data bus, two implementation alternatives must be
considered; (a) a multiplexed address/data bus, as illustrated in Figure 7-6, or (b) a data
bus buffered from the multiplexed bus by transceivers, as illustrated in Figure 7-7.

When using the multiplexed data bus, a designer must guarantee that memory or
I/O devices that are connected directly to the multiplexed bus do not corrupt the address
on the bus during Tl. To avoid this situation, device output drivers should not be
enabled by the device chip select but should have an output enable controlled by the
system read signal, as illustrated in Figure 7-8.

BHE

8086

ALE

c

A19-A16

;=>

STB

8282 DO

Dl

A15-A8
^ Address

—STB
A7-A0

8282 DO

pDl

1/

AD15-AD0
^ Multiplexed
Address/Data

Figure 7-6. Multiplexed Data Bus

8086 Microprocessor Description 7-17

BHE

8086

ALE

DT/R DEN

C

Di BHE

8282

STB

A19-A16

STB

8282 DO

DI

A15-A8
^ Address

STB
A7-A0

K

8282 DO

DI

¥

OE

T ®
8286/8287

A

D15-D8

> Data

u=:>

cr

T ®
8286/8287

A

D7-D0

Figure 7-7. Buffered Data Bus

7-18 The 8086 Book

ALE

Address Bus

Multiplexed Bus

WR

RD

Decode

RD/OE

Data CS^
WR

STB

8282 DO

Figure 7-8. Devices with Output Enables on the Multiplexed Bus

8086 timing guarantees that read is not valid until after the address is latched by
ALE and the multiplexed address/data bus is floated.

ALEJ—I i:::.

RD

(All Intel Peripherals, EPROM Products and RAMs, if they are intended for
microprocessors, provide output enable or read inputs that let them connect to the
multiplexed bus in the manner illustrated in Figure 7-8.)

Several techniques exist for interfacing devices to the multiplexed bus when they
do not have output enables. But each introduces restrictions or limitations iif the device
chip select is externally gated with a command as follows:

RD or WR -

CS"
• CS to device

Consider Figure 7-8, which has chip select gated with read and write. If external
gating is used, as illustrated above, this presents two problems. First the chip select
access time is reduced to the read access time, which may force the use of an otherwise
unnecessarily fast support device, assuming that maximum system performance (no
wait states) is to be achieved. This is illustrated in Figure 7-9.

8086 Microprocessor Description 7-19

Address'-c
cs

RD/WR

CS-RD/WR

Data

-(D-

-©-

(T) Access time for CS generated from address decode

Access time if ̂ is gated with RD^/WR

Figure 7-9. CS Gated with RD/WR

In Figure 7-8, for a device which provides separate CS and RD/OE inputs, the
access actually starts from CS internally; but the output drivers onto the bus are not
enabled until RD/OE. Thus the access time is not from RD/OE. This may be illustrated
as follows:

Data Bus

Connection

RD/OE

CS

Internal

Register

RD/OE

The designer must also verify that chip select to write set-up and hold times for
the device are not violated, when chip select is gated externally. This is illustrated in
Figure 7-10.

Alternative device select techniques are available, but they also impose special
restrictions. It is therefore recommended that you connect devices having output ena
bles to a multiplexed data bus.

7-20 The 8086 Book

ADDR

WR f
I I 1 1

ICS-WR I

I

(T) CS is not valid prior to write and becomes active one or two gate delays later

@ ̂ remains valid after write one or two gate delays

Figure 7-10. CS to WR Set-up and Hold

Another limitation on the multiplexed data bus illustrated in Figure 7-6 is the
8086's drive capability of 2.0 mA, and its capacitive loading of 100 pf, to guarantee the
specified AC characteristics. Assuming capacitive loads of 20 pf per I/O device, 12 pf per
address latch and 5-12 pf per memory device, a system mix of three peripherals and two
to four memory devices (per bus line) is very close to the loading limit.

To satisfy the capacitive loading and drive requirements of larger systems, the
data bus must be buffered as illustrated in Figure 7-11. The 8286 non-inverting and
8287 inverting octal transceivers are offered as part of the 8086 family to satisfy this
requirement. They have tristate output buffers that drive 32 mA on the bus interface
and 10 mA on the component interface; also, they can switch capacitive loads of 300 pf
at the bus interface and 100 pf on the component interface in 22 ns (8287) or 30 ns
(8286). The 8086 system provides Data ENable (DEN) and Data Transmit/Receive
(DT/R) signals to enable the 8286 and 8287 transceivers and to control their direction,
as illustrated in Figure 7-12.

These signals provide the appropriate timing to guarantee isolation of the multi
plexed bus from the system during T1 and to eliminate bus contention with the CPU
during read and write bus cycles.

Although the memory and peripheral devices are isolated from the CPU, bus con
tention may still exist in the system if the memory/peripheral devices do not have an
output enable control in addition to the chip select. This configuration is illustrated in
Figure 7-13. As an example, bus contention may exist during the transition from one
chip select to another; the newly selected device may begin driving the bus before the

previously selected device disables its drivers, A more severe problem can occur during
a write bus cycle. A device whose outputs are controlled only by chip select will drive the

bus from chip select to write active, simultaneously with data output being written
through the transceivers by the CPU. This condition is illustrated in Figure 7-14.

8086 Microprocessor Description 7-21

BHE

8086

ALE

DT/R DEN

01 BHE

8282

STB

A19-A16

C-U ̂

STB

8282 DO
A15-A8 \ Address

STB A7-A0

8282 DO

D1

OE

T

B

A

8286/8287

D15-D8

^ Data

OE

T

B

A

8286/8287

D7-D0

Figure 7-11. Buffered Data Bus

7-22 The 8086 Book

AD15-AD0

£ I DT/R

DEN

® ■ WR

■~V

AD15-AD0

DT/R '. 'J

[Address A15-AO ^loat

Address

Detain D15-D0

Data Out

i-J...
Float

Float

DEN is enabled after the 8086 has floated the multiplexed bus.

@ DEN enables the transceivers early in the cycle, but DT/R guarantees the tranceivers are in transmit
rather than receive mode and will not drive against the CPU.

Figure 7-12. Bus Transceiver Control

8086 Microprocessor Description 7-23

BHE

ALE

A19-A16

•—

V

8086

DT/R DEN

STB

8282
DO

AD 15-ADO

A

STB

8282

Dl

T

DO

A19-AO

A

8286

OE B

II
BHE

Decode

lO
Data CS

WR

Figure 7-13. Devices with Output Enables on the System Bus

7-24 The 8086 Book

ADDR

CS

DT/R

DEN

WR

Device Drives «

the Bus

Transceivers <

Drive the Bus

Bus Contention '

(Both devices

drive the bus)

€ZZ>

Figure 7-14. Bus Contention on the System Bus During Write for
Devices Without Output Enables

BHE

ALE

8086

DEN

DT/R

8283

Address

Bus

> 8287 Decode

Data Bus

CS
Address

8287 8287 <:=c> Data

Figure 7-15. Fully Buffered System

8086 Microprocessor Description 7-25

DT/R

DEN

System Data Bus<=:>

OE T

B A

8286/

8287

V-
Local Data Bus

Figure 7-16. Controlling System Transceivers with DEN and DT/R

8286/

8287

RD CS WR

WR

System Data Bus

RD

Local Data

Bus

Figure 7-17. Devices with OE

The same technique given for circumventing select timing problems on the
multiplexed bus can be applied here but with the same limitations.

A second level of buffering can reduce the total load seen by devices on the
system bus. This is illustrated in Figure 7-15.

Typically, double buffering is used in multiboard systems to isolate memory
arrays. Double buffering, however, introduces additional access delays, and more
important, you must pay attention to control of the second transceiver in relationship to
the system bus and the device being interfaced to the system bus. Several techniques for
controlling the second transceiver are available. _

This first technique, shown in Figure 7-16, simply distributes DEN and DT/R
throughout the system. DT/R is inverted to provide proper direction control for the sec
ond level transceivers.

The second technique, shown in Figure 7-17, provides control for devices with
output enables.

7-26 The 8086 Book

WR ■

cs-

RD. ■I>^

System Data Bus

■0>o-

T OE

B A
8286/
8287

Local Data Bus

c=

CS WE

I/O

Figure 7-18. Devices without OE. Common or Separate Input/Output Limited
Read Access. Limited CS to WE Hold and Set-Up

RD is normally used to direct data from the peripheral to the system bus. In
Figure 7-17 the buffer is selected whenever a device on the local bus is selected. Bus
contention is possible on the device's local bus during a read, as the read simultaneously
enables the device output and changes the transceiver direction. The contention may
also occur while the read is terminating.

For devices without output enables, the technique illustrated in Figure 7-17 can
be applied if the chip select to the device is conditioned by read or write. This is illus
trated in Figure 7-18.

Controlling the chip select with read/write prevents the device from driving
against the second transceiver prior to the command being received. The limitations of
this technique are:

1. Access limited to read/write time, as discussed previously, and
2. Chip select limited to write set-up and hold times.

An alternate technique applicable to devices with and without output enables is
shown in Figure 7-19.

RD again controls the direction of the second transceiver, but it is not enabled
until a command and chip select are active. The possibility for bus contention still exists
but is reduced to variations in output enable versus direction change time for the
transceiver. Full access time from chip select is now available. However, data will not be
valid prior to write and will only be held valid after write by the amount of delay required
to disable a transceiver.

One last technique is given for devices with separate inputs and outputs. See
Figure 7-20.

8086 Microprocessor Description 7-27

WR ■

System Data Bus

c

T OE 08 WE

Local Data

B A
^ Bus .

I/O

8286/

8287

Figure 7-19. Devices without OE. Common or Separate Input/Output
Full Read Access. Limited Write Data Set-Up and Hold

WR

CS •

RD —qI
748240

t
System Data Bus -

Local Write Bus

748240

ii
CS WE

Local Read Bus

Figure 7-20. Devices without OE. Separate Input/Output

Separate bus receivers and drivers are provided, rather than the single transceiver
illustrated thus far. The receiver is always enabled, while the bus driver is controlled by
RD and chip select. The only possibility for bus contention in this system occurs when
multiple devices on each line of the read bus are enabled and disabled during chip selec
tion changes.

Throughout this section on interfacing the 8086, the multiplexed bus will be con
sidered the "local" CPU bus, and the demultiplex address and buffered data bus will be
the "system bus."

7-28 The 8086 Book

8086 EXECUTION UNIT AND BUS INTERFACE UNIT

The most important concept to understand when looking at 8086 instruction
execution timing is the fact that 8086 bus control logic has been separated from the 8086
instruction execution logic. That is to say, the 8086 has an Execution Unit (EU) and a
Bus Interface Unit (BIU),

The Execution Unit (EU) contains data and address registers, the Arithmetic and
Logic Unit, plus the Control Unit. The Bus Interface Unit (BIU) contains bus interface
logic, segment registers, memory addressing logic, and a six-byte instruction object code
queue. This may be illustrated as follows:

Execution Unit (EU)

AH AL

BH BL

CM CL

DM DL

SP

BP

SI

Dl

I
I
Arithmetic

and Logic
Unit (ALU)

Control Unit

(CU)

Status

L

Bus Interface Unit (BIU)

I

I
I

Instruction Reg.

m

I
I
I

I

I

I
I

1 PC
cs 0000

OS 0000

ss 0 0 0 0

ES 0 0 0 0

1
1

Bus

Control

Logic

n

O8086
Bus

Instruction

object code
queue

8086 Microprocessor Description 7-29

The Execution Unit (EU) and the Bus Interface Unit (BIU) operate
asynchronously. Whenever the Execution Unit is ready to execute a new instruction, it
fetches the instruction object code from the front of the Bus Interface Unit instruction
queue, then it executes the instruction in some number of clock periods that have
nothing to do with bus cycles. If the instruction object code queue is empty, then the Bus
Interface Unit (BIU) executes an instruction fetch machine cycle — and the CPU waits
for the instruction object code to be fetched. But the queue will rarely be empty, for
reasons that will soon become apparent. Therefore, the EU will usually not have to wait
while an instruction fetch is executed.

If memory or an I/O device must be accessed in the course of executing an
instruction, then the EU informs the BIU of its needs. The BIU executes an appropriate
external access machine cycle in response to the EU demand.

The Bus Interface Unit (BIU), for its part, is independent of the Execution Unit
(EU) and attempts to keep the six-byte queue filled with instruction object codes. If two
or more of these six bytes are empty, then the Bus Interface Unit (BIU) executes
instruction fetch machine cycles — provided the EU does not have an active request for
bus access pending. If the EU issues a request for bus access while the BIU is in the mid
dle of an instruction fetch machine cycle, then the BIU will complete the instruction
fetch machine cycle before honoring the EU bus access request.

8086 INSTRUCTION QUEUE

Consider what happens when an instruction is executed. Beginning with the
simplest case, the instruction object code queue within the Bus Interface Unit will be
empty. Therefore, when the EU requests an instruction, the BIU will execute a bus cycle
to fetch the first byte of the instruction.

CLK lA/V

Bus cycle fetches
first object code

byte

Let us assume that this particular instruction requires two bytes of object code.
Keeping things simple, we will illustrate another bus cycle executed immediately to
fetch the next instruction byte:

CLK

T1 I T2 1 T3 I T4T1 I T2 1 13 I T4

Bus cycle fetches
first object code

byte

Bus cycle fetches
second object
code byte

7-30 The 8086 Book

Let us suppose that this instruction reads a word of data from memory, then per

forms an arithmetic operation using this data. The instruction is going to require some
number of clock periods to compute the effective address for the data memory location
to be accessed (we will assume seven clock periods are needed). Some additional num
ber of clock periods will also be needed to perform the arithmetic operation (we will
assume nine clock periods). In a normal microprocessor, this instruction might be
executed as the following sequence of machine cycles:

Machine Cycle 1 Machine Cycle 2 Machine Cycle 3 Machine Cycle 4 Machine Cycle 5

T1 j T2 I T3 1 T4 T1 ! T2 1 T3 I T4 T1 T2 T3 T4 T1 T2 i T3 T4T1 1 T2 1 T3 I T4 T1 1 T2] T3 [T4 T1 [T2 j T3 | T4 T1 | T2 [T3 | T4 T1 1 T2 I T3 j T4

-y\AAAAAAAAAAAAAAA/W\AA.
Fetch first

object code
byte

Fetch second

object code
byte

Compute data

memory

address

Compute data

memory

address

Fetch data

from memory

Machine Cycle 6

T1 1 T2l T3 1 T4

CLKA

Long Machine Cycle 7

T1 1 T2 1 T3 I T4l T5
J I

AAAAAAAAAAAA/1

Machine Cycle 8

T1 I T2 1 T3 1 T4
J _l

Execute arithmetic operation
in a standard machine cycle
and a long machine cycle

Starting executing
next instruction by
fetching object

code byte

8086 Microprocessor Description 7-31

But the 8086, having asynchronous CPU and Bus Control Unit logic, will use
clock periods to execute the instruction illustrated above as follows:

r

Bus Cycle 1

T1 I T2 j T3 j T4
Bus Cycle 2

T1 ! T2 I T3 • T4

Bus Cycle 3

T1 I T2 I T3 ! T4
Bus Cycle 4

T1 1 T2 I T3 I T4

Bus Cycle 4

T1 1 T2 1 T3 j T4

EU asks for an

object code byte

There is none, so

the BlU fetches

one

The EU needs a

second object

code byte

Ti I Ti I Ti I Tl I Ti I Ti I Ti I
I I I I I I I I

The EU computes a data memory

address in 7 clock periods. At the

end of the 7th clock period the

CPU requests bus access.

The EU waits for the

requested data to be

fetched by the BlU

BlU BlU fetches a BlU fetches a Since the EU is not demanding bus BlU fetches data
byte of object second byte of access, the BlU fetches the next two from memory
code in one object code in object code bytes and stores therh in location addressed
bus cycle one bus cycle the queue At the end of bus cycle 4 by the CPU.

the EU is requesting bus access, so

the BCU services the CPU.

Bus Cycle 5

TI I T2 ! T3 ; T4

A

Bus Cycle 6

TI : T2 i T3 ! T4

Bus Cycle 7

TI ! T2 j T3 ! T4

f\iy\f\iwyW\M
; Ti J Ti I Ti I Ti j Ti I Ti j Ti

The EU uses nine clock periods to
execute the required arithmetic
operation.

I The BlU continues executive bus cycles to fill
1 the instruction object code queue.

[The EU takes the
, next object code
I byte from the
I BlU queue and
I starts executing the
j next instruction.

7-32 The 8086 Book

Now, the illustration above is not accurate because, you will recall, the 8086
fetches data in 16-bit increments, provided the data address lies on an even-byte bound
ary. Also, the BIU fetches instruction bytes and loads them into the queue only when
there are at least two free bytes in the queue. Let us assume that all data does lie on
even-byte boundaries. This is how our timing will now look:

<r

T1 1 T2 j T3 j T4

Bus Cycle 2

T1 ' T2 1 T3 I T4

iAAA/wWI
EU EU asks for an

object code byte.
There are none,

so the BIU exe

cutes a bus cycle.

BIU

Bus Cycle 3

T1 ! 12 1 13 1 T4 n i 12 I 13 1 T4 T1 ! T2 1 T3 ! 14

lAAAAAAAAAAAAAA/Vu
I Ti

The EU computes a data memory
address in 7 clock periods. At the
end of the 7th clock period the
EU requests bus access.

The EU waits for the

requested data to be
fetched by the BCU.

BIU fetches two

bytes of object
code in one bus

cycle. The CPU
takes both of

them, so the
queue is imme
diately emptied.

BIU fetches four bytes of object code
in two bus cycles and stores them in
the queue, which has two empty
bytes left.

BIU fetches data
from memory
location addressed

by the EU.

I Ti I Ti I Ti I

The EU uses 9 clock periods to execute
the arithmetic operation.

The BIU fetches | The BIU is idle.
two more bytes
of object code and
stores them in the

queue which is
now full.

4/wVwi -•
I Ti I Ti ' Ti I Ti I Ti I '

■ i ' ■ ■ ' '
I The EU ends instruction execution

and fetches one byte of object code
from queue to execute next instruction.

I The BIU remains idle since only one
byte of queue is empty.

There are some important points to note regarding 8086 bus cycle timing.
Bus cycles are a Bus Interface Unit (BIU) phenomenon.
So far as the EU logic is concerned, bus cycles do not exist. The EU experiences

periods of activity while executing instructions and periods of inactivity while waiting for
instruction object codes or data that the BIU must process via bus cycles. Periods of EU
activity are timed by a sequence of clock periods. The EU makes no attempt to group
clock periods into machine cycles, nor do EU clock periods have to occur in any special
numeric combinations.

So far as the BIU is concerned, clock periods are grouped into bus cycles only
when data must be transferred to or from the 8086. First priority is given to a bus access
request coming from the EU. If the EU is not requesting bus access, then the BIU
executes instruction fetch bus cycles until the queue is full. These are the prerequisites
for the BIU to execute an instruction fetch bus cycle:

1. The clock period that initiates the bus cycle would otherwise be an idle clock
period.

2. The EU does not have an active bus access request pending.

3. There are at least two bytes empty in the queue.

8086 Microprocessor Description 7-33

If the queue is full, then the BIU ceases to execute bus cycles; as illustrated above,
a sequence of idle clock periods occurs.

Note that the CPU may have to wait for bus access. In the illustrations above, the
CPU requires seven clock periods in order to compute a data memory address. At the
end of the seventh clock period, the EU issues a bus access request to the BIU. But at
this time the BIU is part way through executing an instruction fetch bus cycle. The BIU
completes the instruction fetch bus cycle, then honors the EU bus access request.

In the final illustration above, no bus cycle accompanies the beginning of a new
instruction's execution. We are assuming that the next instruction executed has one
byte of object code. This object code byte is fetched from the front of the queue — which
then has just one empty byte. No bus cycle is executed to fetch the instruction object
code, since it is taken out of the queue. Subsequently, the BIU does not execute an
instruction fetch bus cycle since there is only one empty byte. There must be at least two
empty bytes in the queue before the BIU will execute an instruction fetch bus cycle.

Based on the foregoing discussion of 8086 instruction fetch queuing, we can see
that the 8086 has essentially eliminated instruction fetch time. The only time the EU will
have to wait while the BIU fetches instruction object codes is when a Branch-on-Condi-
tion instruction causes execution to branch out of the queue sequence or when (for any
reason) the memory accesses accompanying an instruction's execution are so dense that
the BIU has insufficient idle clock periods within which to insert instruction fetch bus
cycles.

Basic 8086 Design Singie CPU

OPERATING MODES

The 8086 is easily configured to operate in a variety of markedly different applica
tions. The MN/MX input, which we described in Chapter 7, is a strapping option that
allows the 8086 to function with two different sets of outputs, identified as '^minimum
mode" and ''maximum mode". We will now examine these two modes in more detail.

MINIMUM MODE

The minimum mode 8086 has the MN/MX pin connected to Vcc- Minimum
mode should be used in one or two board single CPU systems. Figure 8-1 illustrates a
minimum mode 8086.

In minimum mode the 8086 addresses a full megabyte memory space and 64K
byte I/O space. The data bus is 16 bits wide. The 8086 directly provides bus controls
(DT/R, DEN, ALE, M/IO, RD, WR, INTA). A simple CPU preemption mechanism,
compatible with existing DMA controllers, is enabled via the HOLD and HLDA signals.

8-2 The 8086 Book

I r'^h
rlRES RDY

8284

Clock

Generator

8086

CPU

MN/^

M/IO

iNTA

RD

WR

DT/R

DEN

ALE

BHE

ADO-AD 15

A16-A19

J
Vcc

Control

Bus

SIB

OE
8282

Latch

(2 or 3)

i=!>;
Megabyte

Address Bus

I

I

I I

1

6-bit

Data Bus

"-;0E
j 8286
I Transceiver

>• (2)
I. -J I
L ̂ ̂ ̂ ̂ j Optional for Increased

Data Bus Drive

Figure 8-1. Minimum Mode 8086

Basic 8086 Design Single CPU 8-3

MAXIMUM MODE

The maximum mode, illustrated in Figure 8-2, has the MN/MX pin connected to
ground. Maximum mode is used in multiprocessor and co-processor configurations.

In maximum mode, an 8288 Bus Controller receives control signals, as inputs,
from the 8086. These inputs are decoded by the 8288 to generate Control output signals.
Other 8086 Control outputs are also modified to provide external logic with more infor
mation. Specifically, 8086 output signals are redefined as follows:

1. Queue status is output at QSO and QSl. This allows external devices, e.g., an
ICE/86 or special instruction set extension co-processors, to track the CPU
instruction execution.

2. System control and configmation options are expanded via the bus cycle
status outputs SO, SI, and S2. These outputs are used by the 8288 bus con
troller, 8289 bus arbiter, and similar external devices.

3. Access control to shared resources in multiprocessor systems is supported by
a bus lock mechanism.

4. Two prioritized levels of processor preemption (RQ/GTO, RQ/GTI) allow
multiple processors to reside on the 8086's local bus sharing a system bus
interface.

We will now examine how these expanded capabilities may be used.
The queue status indicates what information is being removed from the internal

queue and when the queue is being reset due to a transfer of control. Table 8-1 summar
izes Queue Status interpretation.

Using logic akin to that illustrated in Figure 8-3, you can track 8086 queue status.
When SO, Sl, and S2 are 1, 0, and 0, respectively, an instruction fetch is being per
formed. QSO and QSl indicate whether the instruction is being fetched from the 8086
queue or from external memory. For an external memory access, AO and BHE indicate
a word or byte access. This logic can be used in a number of ways; consider the following
examples.

The ICE/86 can track execution of an instruction stored in a specific memory loca
tion. Figure 8-3 gives an example of a circuit used by the ICE/86 to track the queue.

Table 8-1. Queue Status Outputs

QSl QSO Interpretation

0

0

1

1

0

1

0

1

No Operation
First Byte of Op-code from Queue
Empty the Queue
Subsequent Byte from Queue

The qui
the que

eue status is valid during the CLK cycle after which
lue operation is performed.

8
-
4

T
h
e
 8
0
8
6
 B
o
o
k

V
c
c

X

R
E
S

R
D
Y

8
2
8
4

C
l
o
c
k

G
e
n
e
r
a
t
o
r

H-Iu
(
O

I
I
J

c
cs
o

S
T

S
2

8
0
8
6

C
P
U

L
O
C
K

B
H
E

A
D
0
-
A
D
1
5

A
1
6
-
A
1
9

M
N
/
M
X

N
.
 C
.

S
O

S
I

S
2

D
E
N

D
T
/
R

()addr/data ̂ A
L
E

1
C
L
K

M
R
D
C

M
W
T
C

A
M
W
C

C
o
n
t
r
o
l

»

A
l
O
W
C

i
i
^

S
T
B

O
E

8
2
8
2

L
a
t
c
h

(
2
 o
r
 3
)

1 -
M
e
g
a
b
y
t
e

A
d
d
r
e
s
s
 B
u
s

TO
E

8
2
8
6

T
r
a
n
s
c
e
i
v
e
r

(
2
)

N
w

16-bit
V|

1
/

Data Bus

Figure 8
-
2
.
 M
a
x
i
m
u
m
 M
o
d
e
 8
0
8
6

MHBYTO

mhbytT"

CLKA

74S00

O

Flush Queue

380 a

+5 V

470 a > O

380 a

74S04

470 a

74S00
74S00T301 74S00

T201

74S00T301END

74S04

, JO

74S06

CLK
A

B

C

D

ENT

74S169

LOAD

OA

QB

QC

QD

RIP

CAR

OUT

UP/DOWN

ENP

1 2

9

14 3

13 4

12 5

11

15

o

- 7

10

CLK

LOAD

A

B

C

74S169

D

UP/

DOWN

ENP

ENT

74S02

^ 1 Queue Cnt
= 0

74S04

Queue Cnt

= 1

-Code Access

00
ta

a
a>

CfQ
D

C/3

n

c

00

atFigure 8-3. Circuit to Track the 8086 Queue

8-6 The 8086 Book

The first up-down counter tracks the depth of the queue, while a second up-down
counter captures the queue depth on a match. The second counter decrements on
further fetches from the queue until the queue is flushed, or the count goes to zero,
indicating execution of the match address. The first counter decrements on a fetch from
the queue (QSO= 1) and increments when an object code byte is stored into the queue.
Note that a normal instruction fetch from external memory will transfer two bytes into
the queue so two clock increments are given to the counter (T201 and T301). When a
single byte is loaded over the upper half of the bus (AO is high and BHE is low), the
counter is incremented once. Since the EU is not synchronized to the BIU, a fetch from
the queue can occur simultaneously with a transfer into the queue. The exclusive-OR
gate driving the ENP input of the first counter allows these simultaneous operations to
cancel each other and not modify the queue depth.

The 8086 queue might be tracked by a co-processor to detect execution of an
ESCAPE instruction. The ESCAPE instruction will direct the co-processor to perform

some specific task.
Table 8-2 defines interpretations of status lines SO, SI, and S2. These status lines,

you will recall, tell the 8288 when to initiate a bus cycle, what type of command to issue,
and when to terminate the bus cycle. The 8288 samples the status lines at the beginning
of each CPU clock period. At th^start of a bus cycle, the CPU drives the status lines
from the passive state (the SO, SI, S2 lines are all high) to one of the seven possible
active states.

For each new bus cycle the 8086 will alter the state of SO, ST, and S2 on the rising
edge of the T4 clock during the previous bus cycle, or during a TI idle cycle, if there is no
current bus activity. The 8288 detects a status change by sampling the status lines on the
high-to-low transition of each clock period. The 8288 starts a bus cycle by generating a
high ALE pulse, accompanied by appropriate buffer direction controls; this occurs dur
ing the clock period immediately following detection of the status change. The bus
transceivers and the selected operation are enabled during the next clock period. When
the status returns to the passive state, the 8288 will terminate the operation. Timing is
illustrated in Figure 8-4.

Table 8-2. Status Line Outputs

S2 SI so Interpretation

0 0 0 Interrupt Acknowledge

0 0 1 Read I/O Port

0 1 0 Write I/O Port

0 1 1 Halt

1 0 0 Code Access

1 0 1 Read Memory

1 1 0 Write Memory

1 1 1 Passive

Basic 8086 Design Single CPU 8-7

I I I I I I I I I I I
I T1 I T2 , T3 I T4 I T1 , T2 I T3 I TW , T4 I ,
I I I I I I I I I '

_r\

CLK

Goes inactive in the state

ALE

S0-S2

just prior to T4

READY — •

TWait '

Figure 8-4. Status Line Activation and Termination

The 8086 maintains SO, and S2 levels during Wait states. A Wait state, you will
recall, is induced by external logic inputting a low RD Y signal to the 8284 Clock Genera
tor. The Clock Generator outputs a high READY signal, ̂ icl^is syi^ronized with
CLK and transmitted to the 8086. Since the 8086 maintains SO, SI and S2 levels during
Wait states, the 8288 will maintain active bus control for a Wait state extending over any
number of clock periods. The status lines may also be used by any other processors on
the 8086's local bus to monitor bus activity and control the 8288 if those other pro
cessors gain control of the local bus. _

The 8288 provides bus control signals DEN, DT/R, ALE, and control signals
InTA, MRDC, lORC, MWTC, AMWC, lOWC, AIOWC. The control signals separate
read and write operations for memory and I/O, to be compatible with the Intel
MULTIBUS.

The advanced write control signals are enabled one clock period earlier than nor
mal write control signals to accommodate the wider write pulse widths often required by
peripherals and static RAMs. The normal write control signal allows data to be set in
advance of the write pulse, to accommodate dynamic RAM memories and I/O devices
that strobe data on the leading edge of the write control pulse. The advanced write con
trol signals do not guarantee that data is valid prior to the leading edge of the control sig-
nal.

The DEN signal in the maximum mode is inverted, as compared to the minimum
mode. This makes it easier to logically gate DEN with other signals, particularly inter
rupt controls. Figure 8-5 compares the timing of the minimum and maximum mode bus
transfer control signals.

8-8 The 8086 Book

CLK (8284
output)

165 ns TCLRL

TCVCTV110 ns

MRDC 35 ns

or lORC

AMWC

or AlOWC

MWTC

or lOWC

-T3-

35 ns-

• TCLML

- TCLML

TCLML-^

TCLRH

TCVCTX

TCLMH •

TCLMH .

TCLMH -

35 ns

150 ns

} 110 ns
—

U—35 ns

<•— 35 ns

-35 ns

Figure 8-5. Minimum and Maximum Bus Transfer Timing

Maximum mode is designed for multiprocessing configurations, and for large
single CPU designs (either Multibus systems or systems that contain two or more PC
boards). The 8288 is a bipolar device; therefore, its 32 ma output drive for the Control
signals and tolerances on timing parameters and worse case delays provide better large
system performance than the minimum mode 8086.

In addition to assuming the functions removed from the 8086, the 8288 provides
additional strapping options and controls to support multiprocessor configurations and
peripheral devices on an 8086 local bus. These capabilities allow resources, including
memory or I/O, to be assigned as either shared or local. Shared resources are available
on the Multibus system bus. Local resources are accessible only by this 8086 on its local
bus. This technique reduces contention for access to the Multibus system bus, and
improves multi-CPU system performance. Specific configurations are described in a
later chapter.

The 8086 maximum mode LOCK output helps control access to shared resources.
The LOCK output is activated when the 8086 executes the LOCK prefix instruction.
The LOCK output goes low during the first clock period following execution of the
LOCK prefix; it remains low through the last instruction execution clock period for the
instruction following the LOCK prefix, and during the first clock period of the next
instruction's execution. The LOCK signal must be part of every microprocessor's
system bus arbitration logic.

Basic 8086 Design Single CPU 8-9

During normal multiprocessor system operations, priority for shared system bus
access is determined by arbitration circuitry on a cycle by cycle basis. When an 8086
needs to transfer data via the system bus, it requests bus access. When the 8086 gains
priority, as determined by any system bus arbitration scheme selected, it takes control of
the system bus, executes its bus cycle, then either maintains system bus control, volun
tarily releases the system bus or is forced off the system bus by the loss of priority. The
lock mechanism prevents an 8086 from losing system bus control, either voluntarily or
involuntarily. This guarantees an 8086 the ability to execute multiple bus cycle instruc
tions without intervention and possible corruption of the data by another CPU. The
activity of the LOCK output is shown in Figure 8-6.

Note that the LOCK output will go inactive between separate locked instructions.
Also, the LOCK prefix adds two clock periods to execution time.

Since queue status reflects the queue operation in the previous clock period, the
LOCK output actually goes active coincident with the start of the next (locked) instruc
tion and remains active for one clock period following the locked instruction's execu
tion.

If the instruction following the LOCK prefix does not have its object code in the
queue, the LOCK output goes low as shown while the instruction object code is being
fetched from external memory.

The Bus Interface Unit (BIU) will still perform instruction fetch cycles during
execution of a locked instruction. The LOCK merely guarantees that one 8086 will
maintain system bus control for the duration of an instruction's execution; it in no way
restricts the type of bus activity that this CPU can perform during this locked time.

LOCKLOCK

QSO

LOCK

Lock Prefix NOP Byte Next Lock Prefix Locked Instruction
Byte from Queue from the Queue from the Queue

(Locked NOP)

Figure 8-6. LOCK Activity

8-10 The 8086 Book

The lock mechanism is commonly used during a TEST and SET handshaking
sequence. During this sequence an 8086 reads from a shared memory location and
returns data to the location. No other CPU can be allowed to reference this memory
location between the TEST, which is a read operation, and the SET, which is a write
operation. The 8086 accomplishes this with a locked Exchange instruction, as follows:

LOCK XCHG reg,memory ;reg is any of the 8086
; registers, memory is the
; address of the semaphore

Another interesting use of the LOCK in multiprocessor systems is a locked block
move, which allows high speed message transfer from one CPU's message buffer to
another.

During the locked instruction, a request for processor preemption is recorded,
occurring via a RQ/GT line but not acknowledged until completion of the locked
instruction.

The LOCK prefix does not have any direct effect on interrupts. In general, prefix
bytes are considered extensions of the instructions they precede. Therefore, interrupts
that occur during execution of a prefix are not acknowledged (assuming interrupts are
enabled) until completion of the instruction following the prefixes. Note that multiple
prefix bytes may precede an instruction; the repetition prefix (REP) is interruptible after
each execution of the following instruction. This is true even if the REP is combined
with the LOCK prefix, so that interrupts are not locked out during a block move, or
other repeated string operation. Further information on the operation and string opera
tion with multiple prefixes is presented later in this chapter in the section dealing with
the 8086 interrupt structure.

Additional levels of prioritized processor preemption are discussed in greater
detail later in this chapter.

Basic 8086 Design Single CPU 8-11

CLOCK GENERATION

The 8086 requires a clock signal with fast rise and fall times (10 ns max) between
low and high voltages of —0.5 to +0.6 low and +3.9 to VCC+1.0 high. Maximum
clock frequency of the 8086 is 5 MHz. Since the design of the 8086 incorporates dynamic
cells, a minimum frequency of 2 MHz is required. Due to the minimum frequency
requirement, single stepping or cycling of the CPU may not be accomplished by disab
ling the clock. Timing and voltage requirements of the CPU clock are illustrated in
Figure 8-7.

6

5

3.9

1.5

.6

0

-.5

-118.33 min-

-10 ns max

-68.66 min-

200 ns min _
"500 ns max

-10 ns max

Figure 8-7. Timing and Voltage Requirements for the 8086 CPU

In general, for frequency below the maximum, the CPU clock need not satisfy the
frequency dependent pulse width limitations stated in the 8086 data sheets. The values
specified only reflect the minimum values that must be satisfied, and they are stated in
terms of the maximum clock frequency. As the clock frequency approaches the max
imum frequency of the CPU, the clock must conform to a 33% duty cycle to satisfy the
CPU minimum clock low and high time specifications.

An optimum 33% duty cycle clock with the required voltage levels and transition
times can be obtained with the 8284 clock generator, as illustrated in Figure 8-8.

Either an external frequency source or a series resonant crystal may drive the
8284. The selected source must oscillate at three times (3X) the desired CPU frequency.
To select the crystal inputs of the 8284 as the frequency source for clock generation, the
F/C input to the 8284 must be strapped to ground. The strapping option allows either
the crystal or the external frequency input to be selected as the clock generator source.
Although the 8284 provides an input for a tank circuit to accommodate overtone mode
crystals, fundamental mode crystals are recommended for more accurate (and stable)
frequency generation. When selecting a crystal for use with the 8284, series resistance
should be as low as possible. Since other circuit components will tend to shift the operat
ing frequency from resonance, the operating impedance will typically be higher than the
specified series resistance. If the attenuation of the oscillator's feedback circuit reduces

8-12 The 8086 Book

XTAL

X2 X1

OSC

8284 CLK CLK

F/C

8086

Figure 8-8. Using the 8284 to Provide CLK

the loop gain to less than one, the oscillator will fail. Since the oscillator delays in the
8284 appear as inductive elements to the crystal, causing it to run at a frequency below
that of the pure series resonance, a capacitor should be placed in series with the crystal
and the X2 input of the 8284. This capacitor cancels the inductive element. The value of
the capacitor (C) must not cause the impedance of the feedback circuit to reduce the
loop gain below one. The impedance of the capacitor is a function of the operating fre
quency and can be determined from the following equation:

XCL =
27r • F • CL

It is recommended that the crystal series resistance, plus Xcl> less than IK
ohms. This capacitor also serves to debias the crystal and prevent a DC voltage bias from
straining and perhaps damaging the crystalline structure. As the crystal frequency
increases, the amount of capacitance should be decreased. For example, a 12 MHz
crystal may require C = 24 pf while 22 MHz may require C = 8 pf. If very close correla
tion with a pure series resonance is not necessary, a nominal C value of 12 to 15 pf may
be used with a 15 MHz crystal (i.e., 5 MHz 8086 operation). Board layout and compo
nent variances will affect the actual amount of inductance, and therefore the series
capacitance required to cancel it out. This is especially true for wire-wrapped layouts.

Two of the many vendors who supply crystals for Intel microprocessors are listed
in Table 8-3, along with crystal part numbers for various frequencies that may be of
interest.

For additional information on specifying crystals for Intel components see Intel
application note AP-35.

If a high accuracy frequency source, externally variable frequency source or a
common source for driving 8284s is desired, the External Frequency Input (EFl) of the
8284 can be selected by strapping the F/C input to -f-5 volts through IK ohms as illus
trated in Figure 8-9.

Basic 8086 Design Single CPU 8-13

+5 V

O

ika 17

13

14

18

XI X2

F/C

8284 CLK

EFI

19

External Frequency Source

CLK

8286

Figure 8-9. Using an External Frequency Source

Table 8-3. Crystal Vendors

f
ParaJjeV
Series

Crysteklll
Corp.

GTS Knight.<21
inc.

3.6 MHz P •• ••

5.185 MHz 8 CY8A ••

6.0 MHz P MP060

6.144 MHz P •• MP061

6.25 MHz P MP062

10.0 MHz P •• MP10A

15.0 MHz S CYISA MP150

18.432 S GY19B' MP184'

24.0 MHz s >• ■ MP240

25.0 MHz s •• MP250

27.0 MHz S (overtone) CY27A MP270

'Intel also, supplies a crystal nqrnbqred 8801 for this applicatpn.

"Contact vendor with: the ̂ prppriate specifications.

Notes: 1. Address: 1000 Crystal Drive. Fort Meyers, Florida 33901
2. Address: 400 Reimann Aye.. Sanijwiph. Illinois

8-14 The 8086 Book

The external frequency source should be TTL compatible, have a 50% duty cycle
and oscillate at three times the desired CPU operation frequency. The maximum EFI
frequency the 8284 can accept is slighty above 24 MHz, with minimum clock low and
high times of 13 ns. Although no minimum EFI frequency is specified, it should not vio
late the CPU minimum clock rate. If a common frequency is used to drive 8284s dis
tributed throught the system, each 8284 should be driven by its own line from the
source. To minimize noise in the system, each line should be a twisted pair, driven by a
buffer such as the 74LS04, with the ground of the twisted pair connecting the grounds of
the source and receiver. To minimize clock skew, the lines to all 8284s should be of
equal length. A simple technique for generating a master frequency source for additional
8284s is shown in Figure 8-10.

In Figure 8-10 one 8284, with a crystal, is used to generate the desired frequency.
The oscillator output of the 8284 (OSC) equals the crystal frequency, and is used to
drive the external frequency to all other 8284s in the system.

The oscillator output (OSC) is inverted, becoming the complement of the oscilla
tor signal used to drive the CPU clock generator circuit. Therefore the oscillator output
of one 8284 should not drive the EFI input of a second 8284 if both are driving clock
inputs of separate CPUs that are to be synchronized. The variation on EFI to CLK
delay over a range of 8284s may approach 35 to 45 ns. If, however, all 8284s are of the
same package type, have the same relative supply voltage and operate in the same tem
perature environment, the variation will be reduced to between 15 and 25 ns.

There are three frequency outputs in the 8284: the oscillator (OSC) mentioned
above, the system clock (CLK) that drives the CPU, and a peripheral clock (PCLK) that
runs at one half tl^ CPU clock frequency. OSC is only driven by the crystal, and is not
affected by the F/C strapping option. If a crystal is not connected to the 8284 when the
external frequency input is used, OSC is indeterminate. CLK is derived from the
selected frequency source by an internal divide by three counter. The counter generates
the 33% duty cycle clock, which is optimum for the CPU at maximum frequency. PCLK
has a 50% duty cycle and runs at one half the frequency of CLK.

Since the state of the 8284 divide by three counter is indeterminate at system
initialization (power on), an external synchronization signal to the counter (CSYNC) is
provided to allow synchronization of the CPU clock to an external event. When CSYNC
is brought high, the CLK and PCLK outputs are forced high. When CSYNC returns
low, the next positive clock from the frequency source starts clock generation. CSYNC
must be active for a minimum of two periods of the frequency source. If CSYNC is
asynchronous with the frequency source, the circuit in Figure 8-11 should be used for
synchronization.

The two latches minimize the probability of a meta-stable state in the latch driving
CSYNC. The latches are clocked with the inverse of the frequency source to guarantee
the 8284 set up and hold time of CSYNC to the frequency source, as shown in Figure 8-
12.

If a single 8284 is to be synchronized to an external event, and an external fre
quency source is not used, the oscillator output of the 8284 may be used to synchronize
CSYNC, as illustrated in Figure 8-13.

Basic 8086 Design Single CPU 8-15

+5 V

1k(l

+5 V

14

EF1

F/C

8284

CLK

F/C

X2

8284 OSC

EF1

F/C

8284

CLK

F/C

EF1

8284

CLK

13

14

Figure 8-10. Generating a Master Frequency Source

8-16 The 8086 Book

External SYNC _
Condition "

Extern$l ̂
Frequency '

+5 V

ikn!

P Q

74tS74

CLK

CLR

I

1
D Q

74LS74

CL,k
; CLR

I

To CSYNC

Input

To EFI

Input

f^lgure 6-11. Synchronizing GSVNC

EFI

CSYNC _j~\

H [
\

tSS ns" max

40 ns m?h

13 ns min 113 n$ min

—__/—

TYHEHvn

•Maximum is specified to guarantee maximum clock frequency.

Figure 8-12. CSYNC Timing

Basic 8086 Design Single CPU 8-17

+5 V

SYNC

CLK

74LS74

CLR

CSYNC OSC

8284

CLK

CLK

74LS74

CLR

PR

Figure 8-13. Synchronizing CSYNC using OSC

Since the oscillator output is inverted with respect to the internal oscillator signal,
the inverter in the previous example is not required. If multiple 8284s are to be syn
chronized, an external frequency source must drive all 8284s, and a single CSYNC syn
chronization circuit must drive the CSYNC input of all 8284s as illustrated in Figure
8-14.

Since the 8086 minimum clock low time may not be met when CSYNC is acti
vated, it should be enabled only during a reset, or while the CPU clock is high. CSYNC
must also be disabled for a minimum of four clock periods before the end of reset to
guarantee proper CPU reset.

8-18 The 8086 Book

jjSh
"TTs I

+5 V

Q

13

r

X2 XI

8284 osc

F/C

Ikll'

13

■^5=r
+5 V

Q

SYNC-

~-^o—f-

F/C CLK

EFt 8284

CSYNC

+5 V

hF/C CLK

EFI 8284

CSYNC

PR

D Q

74LS74

CLK

PR

D Q

74LS74

CLK

Figure 8-14. Delivering CSYNC to Multiple 8284s

Due to the fast transitions and high drive (5 mA) of the 8284 CLK output, it may
be necessary to put a ICQ ohm resistor in series with the clock line to eliminate ringing. If
multiple sources of CLK are needed with minimum skew, CLK can be buffered by a
high drive device (74S241) with outputs tied to five volts through 100 ohms to
guarantee VCH = 3.9 min (8086 minimum input high voltage).

A single 8284 should not be used to generate the CLK for multiple CPUs since the
8284 synchronizes READY to the CPU and can only accommodate READY for a single
CPU.

Basic 8086 Design Single CPU 8-19

10011
74S241

10011

10011

Figure 8-15. Buffering CLK with a High-Drive Device

RESET

The 8086 requires an active high reset with minimum pulse width of four CPU
clock periods, except after power on, which requires a 50 fxs reset pulse. Since the CPU
internally synchronizes reset with a clock, the reset is internally active for up to one
clock period after the external reset goes low. A Non-Maskable Interrupt (NMI), a
minimum mode hold request, or a maximum mode RQ pulse that occurs during the
internal reset, will not be acknowledged. A minimum mode hold request or a maximum
mode RQ pulse active immediately after the internal reset will be honored before the
first instruction fetch.

After the 8086 recognizes the reset, the CPU will condition the bus as shown in
Table 8-4.

Table 8-4. 8086 Bus Signals during Reset

Signals Condition

ADO-AD 15 T ristate

A16-A19/S3-S6 indeterminant

BHE/S7 Indeterminant

S2/(M/I0)

S1/{DT/R) 1
SO/{DEN)

> Driven to "1" then Tristate
LOCK/WR

RD 1
INTA /

ALE 0

HLDA 0

RQ/GTO 1

RQ/GT1 1

QSO 0

QS1 0

8-20 The 8086 Book

CLK

Reset

InDut

Internal

Reset

\ 1

Bus 7 I

Float bus

1 Drive output to inactive state

Figure 8-16. 8086 Bus Condition on Reset

The multiplexed bus signal connections are floated by the CPU when it detects a
reset. Other signals which can be floated are driven to the inactive state for one low state
of CLK prior to entering tristate. This is illustrated in Figure 8-16.

In minimum mode, ALE and HLDA are driven inactive but are not floated. In the
maximum mode, RQ/GT lines are held inactive and the queue status outputs (QO and
QI) indicate no activity. The queue status will not indicate a queue reset, so any user
defined external circuits monitoring the queue should also be reset by the system reset.
22K ohm pull-up resistors should be connected to the CPU command and bus control
lines; this will guarantee the inactive state of these lines in systems where leakage cur
rents (or bus capacitance) may cause the voltage levels to settle below the minimum
high voltage of devices in the system. In maximum mode systems, the 8288 contains
internal pull-ups on the S0-S2 inputs; this maintains the inactive state for these lines
when the CPU floats its bus. The high state of the status lines during a reset causes the
8288 to treat the reset sequence as a passive state. The condition of the 8288 outputs for
the passive state are shown in Table 8-5.

Table 8-5. 8288 Outputs

during Passive State

ALE 0

DEN 0

DT/R 1

MCE/PDEN 0/1

Commands 1

If a reset occurs during a bus cycle, the status lines will return to the passive state,
the bus cycle will end, and the command lines will become inactive. Note that the 8288
does not float the command outputs based on the passive state of the status lines. If the
designer needs to disconnect the CPU from the bus during reset in a single-CPU
system, the reset signal should also be connected to the 8288's AEN input, and the out
put enable of the address latches, as illustrated in Figure 8-17.

Basic 8086 Design Single CPU 8-21

ADDR

BUS

DATA

BUS

8284

RESET

8282

8286

AEN

DEN

8288

RESET

8086

Figure 8-17. Reset Disable for Maximum Mode 8086 Bus Interface

This technique forces the command and address bus interface to float while the
inactive state of DEN from the 8288 floats the transceivers on the data bus.

In multiple processor systems using arbitration to establish microprocessor-
shared bus connections, the system reset should be connected to the INIT input of the
8289 Bus Arbiter in addition to the 8284 reset input, as shown in Figure 8-18.

The active low INIT input forces all 8289 outputs to their inactive state. The inac
tive state of the 8289 AEN output will force the 8288 to float the command outputs;
also, the address latches will float the address bus interface. For multi-microprocessor
systems where more than one microprocessor can function as the master, the reset
should be common to all CPUs, 8289s, and 8284s; this reset must satisfy the maximum
of either the CPU reset requirements, or three 8289 bus clock period times (TBLBL)
plus three 8086 clock period times. This will satisfy 8289 reset requirements.

The 8288 command outputs are floated during reset, the command lines should
be pulled up to through 2.2K ohm resistors.

The reset signal to the 8086 can be derived from the 8284. The 8284 has a Schmitt
trigger input for generating reset from an active low external reset. The hysterisis
specified in the 8284 data sheet implies that at least 0.25 volts will separate the 0 and 1
switching point of the 8284 reset input. Inputs without hysterisis will switch from low to
high and high to low at approximately the same voltage threshold. The inputs are

guaranteed to switch at specified low and high voltages (VIL and VIH), but the actual
switching point is anywhere in between. Since VIL^^jn is specified at 0.8 volts, the
hysterisis guarantees that the reset will be active until the input reaches at least 1.05
volts. A reset will not be recognized until the input drops at least 0.25 volts below the

reset input's VIH of 2.6 volts.

8-22 The 8086 Book

8286

OE DEN

8288

AEN

8282

OE AEN

8289

INIT

8284

RESET

RES

8086

RESET

System
Reset

Figure 8-18. Reset Disable for Maximum Mode

8086 Bus Interface in Multi-CPU System

To guarantee reset from powerup, the reset input must remain below 1.05 volts
for 50 microseconds after Wqq has reached the minimum supply voltage of 4.5 volts. The
hysterisis allows the reset input to be driven by a simple RC circuit as shown in Figure 8-
19.

The calculated RC value does not include time for the power supply to reach 4.5
volts, or the charge accumulated during this interval. Without the hysterisis, the reset
output might oscillate as the input voltage passes through the switching voltage of the
input. The calculated RC value provides the minimum required reset period of 50
microseconds for 8284s that switch at the 1.05 volt level, and a reset period of approx
imately 162 microseconds for 8284s that switch at the 2.6 volt level. If tighter tolerance
between the minimum and maximum reset times is necessary, the reset circuit shown in
Figure 8-20 might be used, rather than the simple RC circuit.

The circuit illustrated in Figure 8-20 provides a constant current source and linear
charge rate on the capacitor, rather than the inverse exponential charge rate of the RC
circuit. The maximum reset period for this implementation is 124 microseconds.

The 8284 synchronizes the reset input with the CPU clock to generate the reset
signal to the CPU, as illustrated in Figure 8-21.

The output is also available as a general reset to the entire system. The reset has
no effect on any clock circuits in the 8284.

Basic 8086 Design Single CPU 8-23

RESET IN- V' RES

t
J.

I
Vc(t) = V(1 - e RC)
t = 50 a sec

V = 4.5 Volts

Vc = 1.05 Volts _g
RC = 188 X 10

Maximum reset active time

Minimum reset active time j

50/i.s 1 Slfxs

Time

Figure 8-19. 8284 Reset Circuit

Figure 8-20. Constant Current Power-On Reset Circuit

8-24 The 8086 Book

System

Reset

RES RESET

Figure 8-21. 8086 Reset

READY IMPLEMENTATION AND TIMING

The 8086 uses the READY signal to accommodate memory and I/O devices that
cannot transfer information at the maximum CPU bus band width. READY is also used

in multi-microprocessor systems to force the 8086 to wait for access to the system bus.
To insert a wait state in a bus cycle, the READY signal to the CPU must be inactive
(low) by the end of T2. To avoid insertion of a wait state, READY must be active (high)
within a specified setup time prior to the positive transition during T3. Depending on the
size and characteristics of the system, READY logic may take one of two approaches:

(1) The system is normally not ready. When the selected memory or I/O device
is ready to perform the data transfer, it inputs a high READY signal.

(2) The system may normally be ready. If the selected memory or I/O device is
not able to perform the data transfer at the maximum CPU transfer rate, it
must then input a low READY signal.

The ''classical" READY implementation keeps the system "normally not ready."
When the selected device receives a read, write, or interrupt acknowledge command, if
it has had sufficient time to respond to this command, it inputs READY high to the
8086; this allows the 8086 to advance the bus cycle. This implementation is charac
teristic of large multi-microprocessor, multibus systems, or systems where propagation
delays, bus access delays, and device characteristics inherently slow down the system.
Using this technique, devices that can run with no wait states must return READY high
within the previously described limit for maximum system performance. Failure of a
fast device to respond in time will cause wait clock periods to be inserted in the bus cycle.

Basic 8086 Design Single CPU 8-25

Ready

Active Ready Setup H 119 ns

30 nsHold Time

Figure 8-22. Normally Not Ready System Avoiding a Wait State

An alternate technique is to have the system "normally ready." All devices are
assumed to operate at the maximum CPU bus band width. Devices that do not meet the
requirement must input READY low by the end of T2 to ensure that wait state clock
periods will be inserted. This implementation is typically applied to small, single CPU
systems; it reduces the logic required to control the READY signal. Since the failure of
the device requiring wait states to disable READY by the end of T2 will result in pre
mature termination of the bus cycle, system timing must be carefully analyzed when
using this approach.

It will be shown in Chapter 10 that the 8086 system allows the designer to com
bine the two READY techniques described above in a single system in order to optimize
system performance.

The 8086 has two different timing requirements for READY, depending on the
system implementation. For a "normally not ready" system, to avoid wait states,
READY must be high within 119 ns (TRYHCH) of the positive clock transition during
T3. This is illustrated in Figure.8-22.

A "normally ready" system inserts a wait state by inputting READY low within 8
ns (TRYLCL) after the end of T2 (start of T3), as illustrated in Figure 8-23.

To guarantee proper operation of the 8086, the READY input must not change
from high to low during the clock low time of T3. In both cases READY must satisfy a
hold time of 30 ns (TCHRYX) from the T3 positive clock transition.

8-26 The 8086 Book

CLK

8086

Ready
Ready Inactive 18 ns Max

H hr9 ns to (. . .) guarantee

Hold Time 30 ns H K the next cycle is 14

Figure 8-23. Normally Ready System Inserting a Wait State

+5 V

RES RESET

AEN1READY

RDY2

8 19

10 21

5 22

CLK

RESET

READY

8086

Figure 8-24. 8284-8086 Ready Connection

To generate a stable READY signal that satisfies the previous setup and hold
times, the 8284 provides two separate system ready inputs (RDYl, RDY2) and a single
synchronized ready output (READY). The RDY inputs are gated with separate access
enables (AENl, AEN2); this allows one of the two READY signals to be selected, as
illustrated in Figure 8-24. The gated RDY signals are logically ORed by the 8284, and
sampled at the beginning of each CLK cycle to generate READY to the CPU. This tim
ing is illustrated in Figure 8-25.

Basic 8086 Design Single CPU 8-27

T1 T2 T3 IT4/TW

CLK

8284 RDY

8284 READY

(to 8086)

I

J~l J \ /7I—I i
8284 RDY Setup p\ (-• -35ns min j

in:
8284 RDY Hold 0 ns min

I
t i

I I

Note: The 8284 Data Sheet specifies Ready Out delay
(TRYLCL) as -8ns "before" the end of
12, which implies the timing shown.

H
I I

READY Out Delay ► I K 8 ns max H H

Figure 8-25. 8284 with 8086 Ready Timing

+5 V

3.

jh

ika^
System 4

Ready ^

6

AEN1

8284

RDY1

AEN2

RDY2

Figure 8-26. 8284 Using One RDY Input

The sampled READY signal is valid within 8 ns (TRYLCL) after CLK to satisfy
the CPU timing requirements on ''not ready" and "ready." Since READY cannot
change until the next CLK, the hold time requirements are also satisfied. The system
ready inputs to the 8284 (RDYl, RDY2) must be valid 35 ns (TRIVCL) before T3, and
AEN must be valid 60 ns before T3. For a system using only one RDY input, the associ
ated AEN is tied to ground while the other AEN is connected to fi ve volts through IK
ohms, as illustrated in Figure 8-26.

8-28 The 8086 Book

+5 V System «
Q ready —

Ikll

u

r

AEN1

i

ROY!

AEl^

RDY2

8284

Figure 8-27. 8284 with SYSTEM READY Driving Access Enable

If the system generates a low active ready signal, it can be connected to the 8284
AEN input, providing the additional setup time required by the 8284 AEN input is
satisfied. In this case, the associated RDY input would be tied high, as illustrated in
Figure 8-27.

The majority of memory and peripheral devices that operate at less than the max
imum CPU frequency typically do not require more than one wait state. The circuit
given in Figure 8-28 generates a single wait state.

The system ready line in Figure 8-28 is driven low whenever a device requiring
one wait state is selected. The flip-flop is cleared by ALE, enabling RDY to the 8284. If
no wait states are required, the flip-flop does not change. If the system ready is driven
low, the flip-flop toggles on the low-to-high clock transition of T2, to force one wait
state. The next low-to-high transition of CLK toggles the flip-flop again, to indicate
ready and allow completion of the bus cycle. Further changes in the state of the flip-flop
will not affect the bus cycle. The circuit allows approximately 100 ns for chip select to
system ready, as illustrated in Figure 8-29.

If the system is ''normally not ready" programs should not assign executable code
to the last six bytes of physical memory. Since the 8086 prefetches instructions, the CPU
may attempt to access non-existent memory when executing code at the end of physical
memory. If the access to non-existent memory fails to enable READY, the system will
be caught in an indefinite wait.

Basic 8086 Design Single CPU 8-29

74125

+5 V

74LS04

cs

CLK

RDY to 8284

ALE

74LS73

CLR

Figure 8-28. Single Wait State Generator

Ready

Figure 8-29. Timing for Single Wait State Generator

8-30 The 8086 Book

INTERRUPT STRUCTURE

The 8086 interrupt structure is based on a table of interrupt vectors stored in
memory locations O,^ through OOSFFi^, as illustrated in Figure 8-30. Each vector has
four bytes; the first two bytes hold a new program counter address, the next two bytes
hold a new Code Segment register address. These two addresses combine to form the
20-bit execution address of an interrupt service routine. This 20-bit address is computed
using normal 8086 isegmented program memory addressing. The interrupt vector table
may contain up to 256 interrupt vectors, specifying starting addresses for interrupt ser
vice routines residing anywhere in the one megabyte address space of the 8086. If a par
ticular configuration uses fewer than 256 interrupts, then you need only allocate
memory for those interrupt vectors that are used. But when a system is being debugged,
you should assign all undefined interrupts to a trap routine as a means of detecting
erroneous interrupts.

Each interrupt vector has an associated interrupt number. The interrupt number
identifies the interrupt vector within the interrupt vector table. The interrupt number,
multiplied by four, gives the absolute address for the first byte of the interrupt vector's
entry within the interrupt vector table. For example, interrupt number five points to the
sixth entry in the interrupt vector table; the first byte of this vector has the address 20,q
(= 14,6). This is illustrated in Figure 8-30.

The 8086 interrupt structure thus allows you to specify the starting memory
address for every interrupt service routine.

The 8086 has three types of interrupts: predefined interrupts that are requested
by specific functions within the 8086, user defined hardware interrupts, and software
interrupts.

Predefined interrupts can be requested by hardware and/or software. Let us
examine predefined interrupts in detail.

PREDEFINED INTERRUPTS

"Predefined" interrupts are so named because they have assigned interrupt num
bers and automatic vectoring logic. Therefore, when a predefined interrupt is
acknowledged, 8086 logic automatically vectors to the interrupt's assigned vector table
entries. However, you must initialize these vector table entries with program counter
and code segment addresses, and you must provide each interrupt with its interrupt ser
vice routine.

There are predefined hardware interrupts, which are requested by external logic,
and there are predefined software interrupts, which are requested in consequence of an
instruction's execution.

Interrupt numbers 0 through 31 have been assigned to predefined interrupts. If
you do not use a predefined interrupt, you can use the interrupt number for some other
interrupt. But this is not recommended, since it may result in your system being incom
patible with future 8086 hardware and software products.

We will now describe predefined interrupts, one at a time.

Basic 8086 Design Single CPU 8-31

Interrupt
Type Numbers

ioi^iomorT1olot»»{
Interrupt

Vector Table

Address

255

1

Interrupt
Type
Number

2

CS

CS

CS

CS

CS

CS

CS

CS

Type 5 Interrupt
Service Routine

000

004

Memory

Address

008

OOC

010

014

018

Interrupt
Vector

Table

3FE

400

LT J

FFFFE

Figure 8-30. Obtaining the Interrupt Service Routine Address

from the Interrupt Vector Table

8-32 The 8086 Book

Interrupt 0 — Divide by Zero

This interrupt is automatically requested if, following execution of the division
instruction, the quotient exceeds the maximum value that the division instruction
allows. The interrupt is non-maskable. It is requested as a part of standard divide
instruction execution logic. If interrupts are not reenabled by the divide by zero inter
rupt service routine, then this service routine's execution time should be included when
computing the ''worst-case" divide instruction time. This becomes the longest execu
tion time for the divide instruction.

Interrupt 1 — Single Step

This interrupt occurs one instruction after TF (the Trap Flag) is set in the Pro-
gram Status Word. This interrupt is used to execute programs one instruction at a time.
After each program instruction is executed, an interrupt is requested. Following the
interrupt request, various diagnostic capabilities might be provided by an interrupt ser
vice routine, at the conclusion of which the next program instruction is executed — and
another single stepping interrupt request occurs.

To initiate single stepping, push the Program Status Word contents onto the stack;
then set the Trap Flag bit within the saved Program Status Word at the top of the stack
and pop the stack back to the Program Status Word. A single stepping interrupt will be
requested following the next instruction's execution.

When a single stepping interrupt request is acknowledged the TF flag is reset in
the Program Status Word to prevent the single stepping interrupt service routine itself
from being interrupted by a single step interrupt request. TF remains set in the flags
saved in the stack.

You should use the IRET instruction to return from a single step interrupt service
routine. This return will restore the flags (including TF) and allow another TF interrupt
to occur on completion of the next instruction.

Interrupt 2 — NMI (Non-Maskable Interrupt)

This is the highest priority hardware interrupt. As its name would imply, it is non
maskable. The NMI interrupt request input is edge triggered by a low-to-high NMI
input transition, and is internally synchronized with a low-to-high transition of the CPU
clock signal CLK. NMI must then remain high for at least two clock periods to guarantee
recognition. Since any low-to-high transition of the NMI input can generate an interrupt
request, spurious transitions must be suppressed.

If NMI is normally high, it must be low for two CPU clock periods before making
its active low-to-high transition in order to guarantee recognition. This input is typically
reserved for catastrophic interrupt requests, for example, following a power failure, or if
a system watchdog timer times out.

Basic 8086 Design Single CPU 8-33

Interrupt 3 — One Byte interrupt

This is a software interrupt. It is generated by executing a special interrupt request
instruction that occupies a single byte of object code. This interrupt instruction is used to
set breakpoints in software debug programs. Since the smallest 8086 instruction object
code is one byte, the one byte interrupt can replace any 8086 instruction as a means of
setting breakpoints.

The one byte interrupt is not maskable.

Interrupt 4 — interrupt On Overflow

This interrupt request occurs if the Overflow Flag (OF) is set in the Program
Status Word, and the INTO instruction is executed. The INTO instruction allows the
8086 to trap to an overflow error service routine. Interrupt on overflow is non-maska
ble.

USER-DEFINED SOFTWARE INTERRUPTS

You can generate a software interrupt by executing the two byte interrupt INT nn
instruction. The first object code byte is the INT op-code; the second object code byte
(nn) contains the number of the interrupt to be executed. The INT instruction is not
maskable.

This instruction is frequently used to call dynamically relocatable programs; the
called program's location in memory is not known by the calling program. However,
when the called program is loaded into memory, its execution address is loaded into its
interrupt vector. The called program must return with an interrupt return (IRET)
instruction.

USER-DEFINED HARDWARE INTERRUPTS

Maskable hardware interrupts are requested via the INTR pin of the 8086; these
interrupts can be masked by the IF bit (Interrupt Flag) of the Program Status Word.
During the last clock period of each instruction's execution, the state of the INTR pin is
sampled. There are two exceptions to this rule:

1. When the instruction is a MOV to a segment register or a POP to a segment
register.

2. During execution of an instruction prefix, which is treated as part of the
instruction it precedes.

These two exceptions will be discussed following a description of the ''general
case" interrupt acknowledge execution sequence.

8-34 The 8086 Book

THE INTERRUPT ACKNOWLEDGE SEQUENCE

We will describe the interrupt acknowledge sequence, taking the user defined
hardware interrupt as the "general case."

If the INTR signal is high when sampled, and the IF bit in the Program Status
Word is 0, then a user defined interrupt has been requested; these interrupts are
enabled, so the 8086 executes an interrupt acknowledge sequence. To guarantee the
interrupt has been acknowledged, the INTR input must be held high until the 8086
returns an interrupt acknowledge, via INTA in a minimum system, or via SO, SI, and S2
in a maximum system.

If the BIU is a bus cycle when the interrupt condition is detected as would occur if
the BIU is fetching an instruction when the current instruction completes executing,
then the interrupt request must be valid at INTR for two clock periods prior to T4 of the
bus cycle, otherwise another bus cycle will be executed (if one is pending) before the
interrupt acknowledge is issued.

If a hold request is pending, as might occur if an interrupt and hold are requested
while a locked instruction is executing, then hold is serviced first, and the interrupt is
acknowledged after the hold has been serviced.

Only user defined hardware interrupt requests occurring at the INTR pin receive a
specific hardware acknowledge. This acknowledge takes the form of two interrupt
acknowledge bus cycles, separated by two idle clock periods, as illustrated in Figure 8-
31. Software interrupts and non-maskable interrupts do not receive the acknowledge
sequence illustrated in Figure 8-31.

The complete interrupt acknowledge sequence, as illustrated in Figure 8-30, con
sists of two INTA bus cycles, separated by two idle clock periods. During the two bus
cycles, INTA is output low (in minimum mode) to acknowledge the interrupt. The
address/data bus (including BHE), and the associated status (S3-S7) is floated during
both bus cycles; however, a high ALE pulse is output, so address latches will be loaded
with indeterminate information. Therefore devices should always use READ (RD) low
as a qualifier before driving their outputs.

During the INTA bus cycles, DT/R and DEN are active; this allows the 8086 to
receive a one-byte interrupt number from the device requesting the interrupt.

The first INTA bus cycle signals that an interrupt acknowledge is in progress; this
allows the interrupting device time to ready its interrupt number for transmittal during
the next INTA bus cycle. The interrupt number must be transferred to the 8086 on the
lower half of the 16-bit data bus during the second INTA bus cycle. Therefore devices
that supply interrupt vectors must connect to the lower half of the 16-bit data bus.

Timing for INTA bus cycles (with the exception of address timing) is the same as
read bus cycle timing.

Note that the 8086 interrupt acknowledge sequence deviates from the 8080 and
the 8085 in that no instruction is read by the CPU during the interrupt acknowledge
sequence. The 8080 and 8085 require either a restart or a call instruction to be issued by
the interrupting device to the CPU as part of t^ acknowledge sequence.

In the minimum mode system, the M/IO signal will be low during interrupt
acknowledge bus cycles.

The 8086 prevents the BIU from honoring a hold request occurring between the
two INTA cycles.

Basic 8086 Design Single CPU 8-35

T1] T2 I T3] T4 j Tl [Tl] T1 [T2 [T3 [T4]]
I I I I I I I I I I I I

ALE _r\ TV.

LOCK

INTA

ADO-AD 15
Float —rd(77777) Tvp«v«'='°'-y^

Redriven by CPU If queue is not full

Figure 8-31. Interrupt Acknowledge Sequence in Minimum Mode

In a maximum mode system, status lines S0-S2 will cause the 8288 Bus Controller
to output INTA low during each interrupt acknowledge bus cycle. The LOCK output of
the 8086 will be active from T2 of the first interrupt acknowledge bus cycle until T2 of
the second interrupt acknowledge bus cycle to prevent the 8086 from honoring a hold
request on either ̂ /GT input, and to prevent bus arbitration logic from relinquishing
the bus between the two interrupt acknowledge bus cycles in multimaster systems.
READY logic functions identically in interrupt acknowledge, read or write bus cyles.

The 8086 will not sample INTR after a MOV to a segment register or POP to a seg
ment register; this allows a 32-bit pointer to be loaded into the Stack Pointer SS and SP
registers without the possibility of an interrupt separating the two loads.

Here is an example of an uninterruptable instruction sequence:

MOV SS. NEW$STACK$SEGMENT
MOV SP. NEW$STACK$POINTER

The 8086 will not sample INTR after executing an instruction prefix, since
prefixes are treated as part of the instruction they precede. The one exception to this
rule occurs when a string primitive is preceded by the Repeat (REP) prefix. The re
peated string operation will sample INTR after completing each repeated string primi
tive's execution. This includes repeat string operations having a LOCK prefix. If multi
ple prefixes precede a repeated string operation, and the instruction is interrupted, only
the prefix immediately preceding the string primitive is restored following a return from
the interrupt routine. To allow correct resumption of program execution you should use
the following programming technique:

LOCKED$BLOCK$MOVE = LOCK
REP

MOVS DEST.CS: SOURCE

AND CX.CX

JNZ LOCKED$BLOCK$MOVE

8-36 The 8086 Book

The object code bytes generated for the MOVS instruction are (in descending
order) LOCK prefix, REP prefix, Segment Override prefix, and MOVS. Upon return
from the interrupt, the segment override prefix is restored to guarantee that one addi
tional transfer will occur between the correct memory locations. The instructions follow
ing the move test the repetition count value to determine if the move was completed; a
return to the block move instruction occurs if the move was not completed.

The 8086 reads the interrupt number from the bus for hardware interrupts and
from the instruction stream for software interrupts. The interrupt number is multiplied
by four to generate the address of the corresponding interrupt vector in the interrupt
vector table. The four bytes of the interrupt vector are:

Least significant byte for the program counter.

Most significant byte for the program counter.

Least significant byte for the Code Segment register.

Most significant byte for the Code Segment register.

Next the 8086 pushes the Program Status Word contents onto the stack, resets
the trap and interrupt flags, then pushes the current Code Segment register and the pro
gram counter contents onto the stack. The new Code Segment register and program
counter contents are loaded from the interrupt vector table; read bus cycles are executed
for this to occur.

No segment registers are used when referencing the interrupt vector table during
the interrupt acknowledge sequence. The vector displacement is added to zero to form
the 20-bit address; S4 is 1 and S3 is 0, indicating no segment register selection.

This is the actual bus sequence executed when a user defined, maskable interrupt
is acknowledged:

1. Two interrupt acknowledge bus cycles are executed, separated by two idle
clock periods. As illustrated in Figure 8-30, the acknowledged device returns
an interrupt number, as a byte of data, during the second interrupt
acknowledge bus cycle. This data byte, shifted left two bit positions, becomes
the interrupt vector starting address.

2. A read bus cycle is executed, during which new CS register contents are read
from the first two interrupt vector bytes.

3. A read bus cycle is executed, during which new program counter contents are
read from the third and fourth interrupt vector bytes.

4. A write bus cycle is executed, during which the Program Status Word con
tents is pushed onto the stack.

5. The Interrupt (I) and Test (TP) fiags in the Program Status Word are reset to
0. This disables maskable or single step interrupts.

6. A write bus cycle is executed, during which the CS register contents is pushed
onto the stack.

7. A write bus cycle is executed, during which program counter contents are
pushed onto the Stack.

Basic 8086 Design Single CPU 8-37

Program execution now branches to the interrupt service routine — whose
address has been fetched from the interrupt vector.

When a non-maskable interrupt, a software interrupt, or a single step interrupt is
acknowledged, steps 2 through 7 above are executed; step 1 is not needed since the
interrupt number is known.

62 clock periods separate the end of the instruction during which a user defined
maskable interrupt is requested, and the start of interrupt service routine execution.

The same sequence of bus cycles is executed for software generated interrupts,
except that no interrupt acknowledge bus cycles are executed. In consequence, the delay
to execution of the interrupt service routine is 51 clock periods for INT nn and single

step, 52 clock periods for INT3, and 53 clock periods for INTO.
If wait states are inserted in any bus cycle, the number of interrupt acknowledge

clock periods given above will, of course, increase accordingly.
Let us now examine multiple interrupts and interrupt priorities.

Only external interrupts requested via INTR can be disabled. In consequence,
these interrupts have lowest priority. Any other interrupt's acknowledge sequence
resets the IF flag in the Program Status Word. An interrupt requested via INTR,
therefore, cannot be acknowledged until other interrupt service routines are completed
or interrupts are reenabled (IF flag is set).

A program being debugged using single stepping could be modified to
acknowledge external, user defined interrupts only within the single step interrupt ser
vice routine. This will allow the external interrupts to be serviced quickly in spite of
single stepping. To do this requires that the single step interrupt service routine reset the
IF flag for the interrupted program, which will be in the Program Status Word stored in
two words from the top of the stack, and enable interrupts during the single step routine.
This may be illustrated as follows:

Single Step ProgSingle Step Prog

Interrupts enabled

Interrupts disabled

sic Execution of single instruction of program being single stepped

On the other hand, you may wish to single step the interrupted program only — or
the external, user defined interrupt's service routine only. If the TF flag in the Program
Status Word is set to 1 by the interrupted program, then the interrupted program will be
subject to single stepping; otherwise it will not. In either case, a user defined interrupt's
service routine will begin execution with TF reset to 0, and single stepping consequently
disabled. Program logic within the interrupt service routine must therefore enable single
stepping for the duration of the interrupt service routine's execution.

You can, if you wish, disable INTR within single stepping traps. This requires that
the single stepping interrupt service routine keep the IF flag reset to 0 within the Pro
gram Status Word. Bus disabling INTR, for what could become a long time, might dis
rupt your program logic.

8-38 The 8086 Book

We will now examine non-maskable interrupt priorities. We have described three
such interrupts: NMI, single stepping, and software traps. All have priority over user
defined external interrupts requested via INTR. Among themselves, when two of the
three non-maskable interrupts occur simultaneously, single stepping has highest
priority, followed by NMI, with software traps having lowest priority. But when all three
non-maskable interrupts are requested simultaneously, NMI has highest priority,
followed by software traps, with single stepping acquiring lowest priority.

Since single stepping may have higher priority than NMI, or lower priority, the
single stepping interrupt service routine will have to examine whether its execution does
or does not follow an NMI interrupt. If it does follow an NMI interrupt and you wish to
immediately service the NMI, the single stepping interrupt service routine must contain
logic to disable itself. This program logic will examine the return address at the top of the
stack, and upon detecting an NMI interrupt service routine address, it need only return,
allowing the NMI routine to execute. The NMI routine will return to the program being
single stepped and single stepping is automatically reenabled by restoring the flags dur
ing the return. The net affect is: if the NMI is detected, single stepping is bypassed for
one instruction of the program being single stepped. Since single stepping is disabled
during the interrupt acknowledge process, the NMI interrupt service routine need only
keep the TF flag reset to 0 within its Program Status Word in order to disable single step
ping for the duration of its execution.

SYSTEM INTERRUPT CONFIGURATIONS

The 8259A Priority Interrupt Controller can handle multiple, external user
defined interrupts requested via INTR. This device will operate in 8080A/8085 or 8086
systems. The 8259A is cascadable; in master/slave configurations it will handle up to 64
interrupts within a single system.

Figures 8-32 and 8-33 illustrate 8259As in minimum and maximum mode 8086

systems.

The minimum mode configuration illustrated in Figure 8-32a shows an 8259A
connected to an 8086 multiplexed bus. The configuration shown in Figure 8-32b illustr
ates an 8259A connected to a demultiplexed bus system. These interconnections are
also applicable to maximum mode systems. The configuration given for a maximum
mode system shows a master 8259A on the 8086 multiplexed bus, with additional slave
8259As out on the buffered system bus. This configuration demonstrates several unique
characteristics of the maximum mode system interface. If the master 8259A receives
interrupts from a mix of slave 8259As and regular interrupting devices, the slaves must
provide the interrupt numbers for devices connected to them, while the master must
provide the interrupt numbers for devices directly attached to its interrupt inputs. The
master 8259A can determine if an interrupt is being received directly from the request
ing device or from a slave 8259A. The master 8259A uses this information to enable or

disable data bus transceivers (via the NAND function of DEN and EN). If the master
8259A must provide the interrupt number, it will disable the data bus transceivers. If a
slave 8259A must provide the type number, the 8086 will enable the data bus
transceivers. The EN output is normally high, allowing the 8086/8288 to control the bus
transceivers. To select the proper slave when servicing a slave interrupt, the master
must provide a cascade address (CAS) to the slave. If the 8288 is not strapped in the I/O
bus mode (the 8288 lOB input connected to ground), the MCE/PDEN output becomes
an MCE or Master Cascade Enable output (use of the I/O bus mode is explained in

Basic 8086 Design Single CPU 8-39

jft
8284

H

8088

INTA

DEN

ALE DT/R

INTR

8259A

INTR1
INTRO

EN

T OE

XCVR

CAS ADDR

W
Slave

8259A

77

Slave

8259A

77

Ji XX Data Bus \7

STB

ADDR

Latch

Address Bus

Figure 8-32a. 8259s Connected to a Minimum Mode 8086
— Multiplexed Bus

8-40 The 8086 Book

8086

DEN DT/R

ADDR

Latch

INTR

INTR ♦INTR

8259A 8259A 8259A

Master Slave Slave

Data ^ .
Bus XX Iz

Address Bus

Figure 8-32b. 8259s Connected to a Minimum Mode 8086
— Demultiplexed Bus

Chapter 10). MCE is active only during INT A cycles, as shown in Figure 8-34. MCE
enables the master 8259A's cascade address onto the 8086's local bus during ALE.

This allows the address latches to capture the cascade address with ALE, with the
system address bus being used to select the proper slave 8259A. MCE is gated with
LOCK to minimize local bus contention between the 8086 floating its bus output, and
the cascade address (CAS) being enabled onto the bus. The first INTA bus cycle allows
the master 8259A to resolve internal priorities and output of the cascade address (CAS),
which is transmitted to the slaves during the second INTA bus cycle. For additional
information on the 8259A, refer to Intel Application Note AP59, or An Introduction to
Microcomputers — Volume 2, Some Real Microprocessors^ by A. Osborne.

Basic 8086 Design Single CPU 8-41

jfh

8284

n
INTR

LOCK

8086

^CAS

MCE
INTA

8288

Status DEN

ALE dT/R

INTR

Master

8259A

EN

INTR

T QE

Transceiver

r
Slave

8259A

t Data BusUS

Slave

8259A

M

STB

ADDR

Latch

Address Bus

Figure 8-33. 8259s Connected to a Maximum Mode 8086

8-42 The 8086 Book

ALE

LOCK

INTA

I T1 I T2 I T3 I T4 I Tl I Tl i T1 i T2 i T3 i T4 l
I I i I I I I I I I I

I I I I I I I I I I I

_j-\ r\ n

—\ I

AD0-AD15 ^JlTfD ' "(Type Vector)

_n r\MCE

Figure 8-34. Timing to Gate 8259A CAS Address onto the 8086 Local Bus

Basic 8086 Design Single CPU 8-43

INTERPRETING THE 8086 BUS
TIMING DIAGRAMS

8086 minimum and maximum mode bus timing diagrams are shown in the data
sheets at the back of this book. These timing diagrams may be divided into six sections
as follows;

1. Address and ALE timing

2. Read cycle timing

3. Write cycle timing

4. Interrupt acknowledge timing

5. Ready timing

6. Bus control transfer timing

Since the A.C. characteristics of the signal are specified relative to the CPU clock,
the relationship between the majority of signals can be deduced by simply determining
the clock periods that separate the clock edges to which the signals are relative, then
adding or subtracting the appropriate minimum/maximum parameter values. One
aspect of system timing not compensated for in this approach is the "worst case" rela
tionship between minimum and maximum parameter values (also known as tracking
relationships). For example, consider a signal that has specified minimum and max
imum turn on and turn off delays. Depending on device characteristics, it may not be
possible for a component to simultaneously demonstrate a maximum turn-on and
minimum turn-off delay, even though worst case analysis might imply this possibility.
This argument is characteristic of MOS devices and is therefore applicable to the 8086
A.C. characteristics. The message is: worst case analysis mixing/minimum and max
imum delay parameters will typically exceed the worst case obtainable. Therefore they
should not be subjectively degraded further, to obtain worse-worst case values. We will
now examine guidelines for specific areas of 8086 timing that are sensitive to tracking
relationships.

8-44 The 8086 Book

MINIMUM MODE BUS TIMING

ADDRESS AND ALE

The address/ALE timing relationship is important since it determines a device's
ability to capture a valid address from the multiplexed bus. Since the 8282 and 8283
latches capture the address on the trailing edge of ALB, the critical timing involves the
state of the address lines when ALE terminates. The parameter TAVAL=TCLCH — 60
ns guarantees that addresses are valid at the CPU 58 ns before the trailing edge of ALE.
This satisfies the zero data setup time to end of strobe required by the 8282/8283 and
assures that a valid address is captured. The address is guaranteed to remain valid
beyond the end of ALE by the TLLAZ parameter. This specification overrides the rela
tionship between TCHLL and TCLAX, which might seem to imply that the address may
not be valid by the latest possible ALE. TLLAZ timing applies to the entire address bus,
even though only shown for A19-A16 in the timing diagram. The TCLAX min
specification on the address indicates the earliest possible time the bus will fioat if not
restrained by a slow ALE. TCLAX only applies to the multiplexed address/data lines
AD 15-0 during read cycles. During write cycles, the multiplexed Address/Data Bus
switches directly from address to write data. Address hold time to ALE is again guaran
teed by the TLLAZ specification, with the absolute minimum (for the case of an early
ALE termination) specified by TCLAX. For both the read and write case, the A19-A16
lines switch directly from address to status with the same timing as the multiplexed
address/data bus for the write case. The minimum ALE pulse width is guaranteed by
TLHLL min, which takes precedence over the value obtained by relating TCLLH max
and TCHLl min.

To determine the worst delay to valid address on a demultiplexed address bus,
two paths must be considered:

1. Delay of valid address

2. Delay of ALE

Since the 8282 and 8283 are flow through latches, a valid address is not transmitted to
the address bus until ALE is active. A comparison of address valid delay TCLAV max,
with ALE active delay TCLLH max indicates TCLAV max is the worst case. Subtracting
the latch propagation delay gives the worst case address bus valid delay from the start of
the bus cycle.

Basic 8086 Design Single CPU 8-45

READ CYCLE TIMING

Read cycle timing consists of three parts:

1. Conditioning the bus

2. Activating the Read Control signal

3. Establishing the data transceiver enable and direction controls

If the memory or I/O devices are connected directly to the multiplexed address/
data bus, the TAZRL parameter guarantees that the 8086 will float the bus before
activating the read control and allowing the selected device to drive the bus. At the end
of the bus cycle, the TRHAV parameter specifies the bus float delay the device being
deselected must satisfy if it is to avoid contention with the 8086 driving the address for
the next bus cycle. The next bus cycle may start during the CLK period following T4 or
any number of CLK periods later.

The minimum delay from read active to valid data at the CPU is 2TCLCL —
TCLRL max — TDVCL = 205 ns. The minimum pulse width is 2TRLRH which gives a
minimum pulse width of 325 ns.

DT/R is established early in the bus cycle and requires no further consideration.
During a read, the DEN signal must allow the transceivers to propagate data to the

CPU with the appropriate data set up time, and continue to do so for the required hold
time. The DEN turn on delay allows TCLCL + TCHCL min — TCVCTV max —
TDVCL = 127 ns transceiver enable time prior to valid data required by the 8086. Since
the 8086 data hold time TCLDZ min and the minimum DEN turn off delay TCVCTX
min are both 10 ns relative to the same clock edge, the hold time is guaranteed. Addi
tionally, DEN must disable the transceivers prior to the 8086 driving the bus with the
address'for the next bus cycle. The maximum DEN turn off delay (TCVCTX max),
compared with the minimum delay for the addresses out of the 8086 (TCLRH min),
indicates the transceivers are disabled at least 55 ns before the CPU drives the address
onto the multiplexed bus.

8-46 The 8086 Book

WRITE CYCLE TIMING

The write cycle consists of three major functions:

1. Providing write data to the system

2. Generating the write command

3. Controlling data bus transceivers

The Write Data and Write command are both enabled from the leading edge of
12. Comparing minimum WR active delay TCVCTV min with the maximum write data
delay TCLDV indicates that write data may not be valid until 100 ns after write is active.
Therefore, devices in the system should capture data on the trailing edge of the Write
command rather than the leading edge to guarantee valid data. The 8086 floats the bus
after write only if forced off the bus by a HOLD or RQ/GT input, otherwise the 8086
simply switches the output drivers from data to address at the beginning of the next bus
cycle. As with the read cycle, the next bus cycle may start in the clock period following
T4 or any later clock period.

Data from the 8086 is valid a minimum of 2TCLCL - TCLDV max + TCVCTX

min = 300 ns before the trailing edge of WRITE. The minimum WRITE pulse width is
TWLWH = 340 ns. The CPU maintains valid write data TWHDX ns after write. The

TWHDZ specification overrides the result derived by relating TCLCH min and TCHDZ
min, which implies write data may only be valid 18 ns after WR. The TCHDZ minimum
bus float time takes effect only if TCVCTX + TWHDZ < TCLCH -h TCHDZ.

The transceiver direction control signal DT/R is conditioned to transmit at the
end of each read cycle; it does not change during a write cycle. This allows the
transceiver enable signal DEN to be active early in the cycle, while addresses are valid,
without corrupting the address on the multiplexed bus. DEN is disabled a minimum of
TCLCH min + TCVCTX min — TCVCTX max = 18 ns after write, to guarantee data
hold time to the selected device. Since we are again evaluating a minimum TCVTCX
with a maximum TCVTCX, the real delay from the end of write to transceiver disable is
approximately 60 ns.

Basic 8086 Design Single CPU 8-47

INTERRUPT ACKNOWLEDGE TIMING

The interrupt acknowledge sequence consists of two interrupt acknowledge bus
cycles. Timing of each cycle is identical to read cycle timing, with two exceptions: control
signal timing and address/data bus timing.

The THTA control signal has the same timing as the WR Control signal. INT A is
active within 110 ns of the start of T2, providing 260 ns of access time from control to
data valid at the 8086. The INT A control is active following the leading edge of T4 for a
minimum of TCVCTX min = 10 ns, to satisfy the data hold time of the 8086. This
insures that the minimum INTA pulse width is 300 ns; however, taking signal delay
tracking into consideration (TCVCTX min = 50 if TCVCTX max = 110), gives a
minimum pulse width of 340 ns. Since the maximum inactive delay of INTA is
TCVCTX max = 110 ns, and the 8086 will not drive the bus until 15 ns (TCLAV min)
into the next clock cycle, 105 ns are available for interrupt devices on the local bus to
float their outputs. If the data bus is buffered, DEN provides the same amount of time
for local bus transceivers to float their outputs.

The multiplexed address/data bus is floated from T1 at the beginning of the INTA
cycle, within TCLAZ ns. The upper four multiplexed address/status lines do not float.
The address value on A19-A16 is indeterminate, but the status information will be valid
(S3=0, 84=0, S5=1F, 56=0, S7=BHE=0). The multiplexed address/data lines will
remain'floating until the clock period following T4 of the INTA bus cycle. This sequence
occurs for both of the INTA bus cycles. The interrupt number read by the 8086 on the
second iNTA bus cycle must satisfy the data setup and hold times of a read cycle.

The DEN and DT/R signals are enabled for each INTA cycle; they do not remain
active between the two cycles. Timing for these two signals is identical in INTA and
Read bus cycles.

8-48 The 8086 Book

READY TIMING

The detailed timing requirements of the 8086 READY signal and the system
Ready signal (RDY) input into the 8284 were given earlier in this chapter. The system
Ready signal (RDY) is typically generated from either the address decode of the selected
device or the address and control signals RD, WR, INTA.

If RDY is enabled by the address decode, there are two cases to consider. For a
system which is normally not ready, the time to generate ready from a valid address and
not insert a wait state is 2TCLCL — TCLAV max — TRIVCL max = 255 ns. This time

is available for buffer delays and address decoding to determine if the selected device
does not require a wait state and drive the RDY line high. If wait clock periods are
required, user hardware must provide the appropriate ready delay. Since the address will
not change until the next ALE, RDY will remain valid throughout the bus cycle. For a
system which is normally ready, selected devices requiring wait states also have 255 ns
to disable the RDY lines. User hardware must delay reenabling RDY by the appropriate
number of wait state clock periods.

If RDY is enabled by the RD control, TCLCL — TCLRL max — TRIVCL max =
15 ns are available for external logic. If the WR control is used, TCLCL — TCVCTV
max — TRIVCL max = 55 ns are available.

Comparison of RDY generated by an address or control signal indicates that
address decoding provides the best timing. If the system is normally not ready, address
decoding alone could be used to provide RDY for devices not requiring wait states,
while devices requiring wait states may use a combination of address decode and control
signals to activate a wait state generator. If the system is normally ready, devices not
requiring wait states do nothing to RDY, while devices needing wait states should disa
ble RDY via the address decode, and use a combination of address decode and control
signals to activate a delay until RDY is reenabled.

U the system requires no wait states for memory, and a fixed number of wait states
for RD and WR to all I/O devices, the M/IO signal can be used as an early indication
that wait state clock periods are needed. This allows a common circuit to control ready
timing for the entire system, without feedback of address decodes.

BUS CONTROL TRANSFER TIMING

Detailed HOLD/HLDA timing is covered later in this chapter.
The TEST input is sampled by the 8086 only during execution of the WAIT

instruction. The TEST signal should be active for a minimum of six clock periods during
the WAIT instruction to guarantee detection.

Basic 8086 Design Single CPU 8-49

MAXIMUM MODE BUS TIMING

The maximum mode 8086 bus operations are logically equivalent to the minimum
mode operation. Detailed timing analysis now involves signals generated by the 8086
CPU and the 8288 Bus Controller.

In addition to supplying signals provided by a minimum mode 8086, the 8288 pro
vides additional control signals that expand the flexibility of the system. In the following
discussion, when calculating signal relationships, be sure to use the proper maximum
mode values, rather than equivalent minimum mode values.

ADDRESS AND ALE

In maximum mode, address information continues to come from the 8086, but
the ALE strobe is generated by the 8288 Bus Controller. To determine the worst case
relationships between ALE and a valid address, activation of the 8288 ALE relative to
the S0-S2 status from the 8086 must be analyzed.

The maximum mode timing diagram specifies two possible delay paths to generate
ALE. The first is TCHSV + TSVLH, measured from the rising edge of the clock period
preceding Tl. The second path is TCLLH, measured from the start ofTl. Since the 8288
initiates a bus cycle from the status lines leaving the passive state (SO, 81, S2 = 1,1,1),
if the 8086 is late in issuing the status (TCHSV max) while the clock high time is a
minimum (TCHCL min), the status will not have changed by the start of Tl, and ALE
is issued TSVLH ns after the status changes. If the status changes prior to the beginning
of Tl, the 8288 will not issue the ALE until TCLLH ns after the start of Tl. The result
ing worst case delay to enable ALE (relative to start of Tl) is TCHSV max + TSVLH
max — TCHCL min = 58 ns.

The trailing edge of ALE is triggered in the 8288 by the positive clock edge in Tl,
regardless of the delay to enable ALE. The resulting minimum ALE pulse width is
TCLCH max — 58 ns = 75 ns assuming TCHLL = 0. TCLCH max must be used, since
TCHCL min was assumed to derive the 58 ns ALE enable delay. The address is guaran
teed to be valid TCLCH min H- TCHLL min - TCLAV max = 8 ns prior to the trailing
edge of ALE to capture the address in the 8288 or 8283 latches. Again we have assumed
a very conservative TCHLL = 0. Note that since the address and ALE are driven by
separate devices, no tracking of A.C. characteristics can be assumed.

The address hold time to the latches is guaranteed by the address remaining valid
until the end of Tl, while ALE is disabled a maximum of 15 ns from the positive clock
transition in Tl (TCHCL min - TCHLL max = 52 ns address hold time). The multi
plexed bus transitions from address to status and write data, or tristate (for read) are
identical to minimum mode timing. Also, since the address valid delay (TCLAV)
remains the critical path in establishing a valid address, the address access times to Valid
Data and Ready are the same as the minimum mode system.

8-50 The 8086 Book

READ CYCLE TIMING

The maximum mode system offers two read signals, generated separately by the
8086 and the 8288. The 8086 RD output signal timing is identical to the minimum mode
system, but the A.C. characteristics of the Read Control signal generated by the 8288
are significantly better. Devices on a demultiplexed buffered system bus should
therefore use the 8288 Read Control signal. The 8086 RD signal is available for devices
that reside directly on the multiplexed bus.

The following evaluation only considers the 8288 Read Control signal timing.
The 8288 outputs separate Memory and I/O Read Control signals (lORC and

MRDC); both have the same A.C. characteristics. These control signals are issued
TCLML ns after the start of T2; they terminate TCLMH ns after the start of T4. The
minimum control pulse length is 2TCLCL - TCLML max + TCLML min = 375 ns.
The access time to valid data at the 8086 is 2TCLCL - TCLML max - TDVCL max =
335 ns. Since the 8288 was designed for systems with buffered data busses, control sig
nals lORC and MRDC are enabled before the 8086 has floated the multiplexed bus;
therefore control signals lORC and MRDC should not be used by devices that connect
directly to the multiplexed bus, otherwise bus contention could result during 8086 bus
float and device turn on.

The direction control for data bus transceivers is established in Tl. Transceivers
are enabled by DEN until the positive clock transition of T2. This provides TCLCH -h
TCVNV min = 123 ns for 8086 bus float delay, and TCHCL min + TCVNV max -
TDVCL max = 187 ns of transceiver active to data valid at the 8086. Since both DEN
and control signals are valid a minimum of 10 ns into T4, the 8086 data hold time
TCLDZ is guaranteed. A maximum DEN disable of 45 ns (TCVNX max) guarantees
the transceivers are disabled by the start of the next 8086 bus cycle (215 ns minimum
from the same clock edge). On a positive clock transition of T4, DT/R is returned to
transmit, in preparation for a possible write operation on the next bus cycle. Since the
system memory and I/O devices reside on a buffered system bus, they must float their
outputs before the device for the next bus cycle is selected (approximately 2TCLCL), or
the transceivers drive write data onto the bus (approximately 2TCLCL).

Basic 8086 Design Single CPU 8-51

WRITE CYCLE TIMING

In the maximum mode, the 8288 provides normal and advanced write control sig
nals for memory and I/O (MWTC, AMWC, lOWC, AIOWC). The advanced write con
trol signals are active a full clock period ahead of the normal write control signals. The
timing for advanced write control signals is identical to the timing for the read control
signals. The advanced Write pulse width is 2TCLCL — TCLML max -t- TCLMH min =
375 ns, while a normal write pulse width is TCLCL — TCLML max -t- TCLMH min =
175 ns. Write data set up time to the selected device is a function of either the data valid
delay from the 8086 (TCLDV), or the transceiver enable delay (TCVNV). The worst
case delay to valid write data is TCLDV = 110 ns, minus transceiver propagation delays.
This implies that data may not be valid until 100 ns after the leading edge of the
advanced write control signal, but will be valid approximately TCLCL — TCLDV max
-I- TCLML min = 100 ns prior to the leading edge of the normal write control signal.
Data will be valid 2TCLCL - TCLDV max + TCLMH min = 300 ns before the trailing
edge of either write control signal. The data and control signal overlap for the advanced
write control is 300 ns, while the overlap with a normal write control is 175 ns. The
transceivers are disabled a minimum of TCLCH min — TCLMH max -I- TCVNX min
= 85 ns after write control, while the 8086 provides valid data a minimum of TCLCH
min - TCLMH max -I- TCHDZ min = 85 ns. This guarantees write data hold of 85 ns
after the write control. The transceivers are disabled TCLCL — TCVNX max -1-
TCHDTL min = 155 ns (assuming TCHDTL = 0) prior to transceiver direction change
for a subsequent read bus cycle.

INTERRUPT ACKNOWLEDGE TIMING

The maximum mode INTA sequence is logically identical to the minimum mode
sequence. The transceiver control (DEN and DT/R) and INTA control timing of both
of the interrupt acknowledge cycles are identical to the transceiver control timing of the
read cycle. As in the minimum mode system, the multiplexed address/data bus will float
from the leading edge of T1 for each INTA bus cycle and will not be driven by the 8086
until after T4 of each INTA cycle. The setup and hold times on the vector returned by
external hardware during the second INTA cycle are the same as data setup and hold for
the read bus cycle. If the device providing the interrupt vector is connected to the local
bus, TCLCL - TCLAZ max -I- TCLML min = 130 ns are available from the 8086 bus
float to INTA command active. The selected device on the local bus must disable the
system data bus transceivers, since DEN is still generated by the 8288.

8-52 The 8086 Book

If the 8288 is not in the JOB (I/O Bus) mode, the 8288 MCE/PDEN output
becomes the MCE output. This output is active during each INT A cycle and overlaps
the ALE signal during Tl. The MCE is available for gating cascade addresses from a
master 8259A onto three of the upper AD15-AD8 lines; also MCE allows ALE to latch

the cascade address into the address latches. The address lines may then be used to pro
vide CAS address selection to slave 8259As located on the system bus. (Refer to Figure
8-32 for a description of this technique.) MCE is active within 15 ns of status or the start
of Tl for each INT A cycle. MCE should not enable the CAS lines onto the mutliplexed
bus during the first cycle, since the 8086 does not guarantee to float the bus until 80 ns
into the first INT A cycle. The first MCE can be inhibited by gating MCE with LOCK.
The 8086 LOCK output is activated during T2 of the first INT A cycle; it is disabled dur
ing T2 of the second INT A cycle. The overlap of LOCK with MCE allows the first MCE
to be masked and the second MCE to gate the cascade address onto the local bus. Since
the 8259A will not provide a cascade address until the second INT A bus cycle, no infor
mation is lost. As with ALE, MCE is guaranteed valid within 58 ns of the start of Tl to
allow 75 ns CAS address set up of the trailing edge of ALE. MCE remains active
TCHCL min — TCHLL max + TCLMCL min = 52 ns after ALE to provide data hold

time to the latches.
If the 8288 is strapped in the lOB mode, the MCE output becomes PDEN and all

I/O references are assumed to be devices on the local bus rather than on the demulti

plexed system bus. Since INT A cycles are considered 1/6 cycles, all interrupts are
assumed to come from the local system bus, and cascade addresses are not gated onto
the system address bus. Additionally, the DEN signal is not enabled since no I/O
transfers occur on the system bus. If the local I/O bus is also buffered by transceivers,
the PDEN signal is used to enable those transceivers. PDEN A.C. characteristics are
identical to DEN, with PDEN enabled for I/O references and DEN enabled for instruc
tion or data memory references. The system implications of the various modes are dis
cussed in a later chapter.

READY TIMING

Ready timing, when based on the address valid timing, is the same for maximum
and minimum mode systems. The delay from 8288 control valid to RDY valid at the
8284 is TCLCL — TCLML max — TRIVCL min = 130 ns. This time can be used by
external circuits to determine whether wait state clock periods need to be inserted;
external circuits must disable RDY to insert a wait state, or enable RDY to avoid a wait

state. INT A, all read controls, and advanced write controls provide this timing. The nor
mal write control is not valid until after RDY must be valid. Since both normal and

advanced write controls are generated by the 8288 for all write bus cycles, the advanced
write control may be used to generate a RDY indication, even though the selected
device uses the normal write control.

Basic 8086 Design Single CPU 8-53

OTHER CONSIDERATIONS

RQ/GT timing is covered later in this chapter.
The only signals to be considered in the maximum mode are the queue status

lines QSO and QSl. These signals change on the leading edge of each clock period (high-
to-low transition), including idle and wait clock periods. The queue status indicates
Execution Unit status, independent of the BIU activity. External logic may sample the
lines on the low-to-high transition of each clock pulse. When sampled, the QSO and QSl
signals identify queue activity in the previous clock period, and therefore lag the CPU's
activity by one clock period.

The TEST input requirements are identical to those stated for minimum mode.

BUS CONTROL TRANSFER

(HOLD/HLDA AND RQ/GT)

The 8086 has protocol signals that are used to transfer local bus control between

the 8086 itself and other devices capable of acting as bus masters. The minimum mode
configuration offers a single level handshake, identical to 8080A and 8085 systems. The
maximum mode configuration has an enhanced pulse sequence protocol which makes
more efficient use of CPU pins, while extending system configurations to two levels of
alternate bus masters, with two levels of priority. These protocol signals arbitrate control
of the 8086 local bus; they should not be confused with arbitration on a system bus.

MINIMUM MODE

The minimum mode 8086 system uses a hold request input (HOLD) to the CPU
and a hold acknowledge output (HLDA) from the CPU. To gain control of the local bus,
a device must assert HOLD to the CPU and wait for the HLDA before driving the bus.
When the 8086 can relinquish the bus, it floats the RD, WR, INTA, and M/IO control
lines, the DEN and DT/R bus control lines, and the multiplexed address/data/status
lines. The ALE signal is not floated. The CPU acknowledges the request for the local
bus with HLDA; this allows the requesting device to take control of the local bus. The
requesting device must maintain the HOLD request active until it no longer requires the
local bus. The HOLD request to the 8086 directly affects the bus interface unit; it
indirectly affects the Execution Unit. The Execution Unit will continue to execute from
its internal queue until either more instructions are needed, or an operand transfer is

required. This allows a small degree of overlap between CPU and auxiliary bus master
operations. When the requesting master drops the HOLD signal, the 8086 will respond
by dropping HLDA. The 8086 will not redrive the bus and control signals; these signals
will continue to float until the 8086 needs to perform a bus transfer. Since the 8086 may
still be executing from its internal queue when HOLD drops, there may exist a period of
time during which no device is driving the bus. To prevent the control lines from drift
ing below the minimum VIH level during a transition of bus control, 22K ohm pull-up
resistors should be connected to the bus control lines. The timing diagram in Figure 8-
35 shows the bus control handshake sequence in the 8086 timing to sample HOLD, float
the bus, and enable/disable HLDA relative to the CPU clock.

8-54 The 8086 Book

(Sample)

HOLD

ADxx/

Control

7
Figure 8-35. HOLD/HLDA Sequence

To guarantee valid system operation, the designer must ensure that the request
ing device does not assert control of the bus prior to the 8086 relinquishing control —
also, that the device relinquishes control of the bus prior to the 8086 driving the bus.
The maximum delay between HLDA and the 8086 floating the bus is TCHDZ max —
TCHCL min — TCLHAV min = 10 ns. If the system cannot tolerate the 10 ns overlap,
HLDA active from the 8086 should be delayed to the device. The minimum delay from
HOLD inactive until the 8086 drives control signals on the local bus is THVCH min H-
3TCLCL = 635 ns; to drive a multiplexed bus, this delay is THVCH min + 3TCLCL +
TCHCL = 701 ns. If the device does not release the local bus within the specified time,
HOLD inactive to the 8086 should be delayed. The delay from HLDA inactive to driv
ing the busses is TCLCL + TCLCH min — TCLHAV max = 158 ns for control signals
on the local bus, and TCLCL — TCLHAV max = 240 ns for the local data bus.

Basic 8086 Design Single CPU 8-55

Latency of HLDA to HOLD

The decision to respond to a HOLD REQUEST is made by the bus interface unit.
The major factors that inOuence the decision are current bus activity, the state of the
lock signal internal to the CPU (activated by the software LOCK prefix), and pending
interrupts.

If the LOCK is not active, no interrupt acknowledge cycle is in progress, and the
BIU (Bus Interface Unit) is executing a T4 or TI clock period when the HOLD request is
received, the minimum latency to HLDA is:

35 ns THVCH min (Hold setup)
65 ns TCHCL min
200 ns TCLCL (Bus float delay)
10 ns TCLHAV min (HLDA delay)

310 ns @5 MHz

The maximum latency to HLDA under the above conditions is:

34 ns (Just missed set up time)
200 ns Delay to next sample
82 ns TCHCL max
200 ns TCLCL (Bus float delay)
160 ns TCLHAV max (HLDA)

677 ns @5 MHz

If the BIU just initiated a bus cycle when the Hold Request was received, the worst
case response time is:

34 ns THVCH (Just missed)
82 ns TCHCL max

7*200 Bus cycle execution
N*200 N wait states/bus cycle
160 ns TCLHAV max (HLDA delay)

1.676 IMS @5 MHz, no wait states

8-56 The 8086 Book

Note that 200 ns for missing the Hold Request is included in the delay for bus
cycle execution. If the operand transfer is a word transfer to an odd byte boundary, two
bus cycles are executed to perform the transfer. The BIU will not acknowledge a Hold
Request between the two bus cycles. This type of transfer would extend the above max
imum latency by four additional clock periods, plus N additional wait states. With no
wait states in the bus cycle, the maximum would be 2.476 microseconds.

Although the minimum mode 8086 does not have a hardware LOCK output, the
software LOCK prefix may still be included in the instruction stream. The CPU inter
nally reacts to the LOCK prefix in the same manner that the maximum mode 8086

would. Therefore LOCK does not allow a Hold Request to be honored until completion
of the instruction following a prefix. In consequence, instructions which perform more
than one memory reference, such as ADD (BX), CX, which adds CX to (BX) then
stores the result in (BX), can execute without another bus master gaining control of the
bus between memory references. Since the LOCK signal is active for one clock period
more than instruction execution, the maximum latency to HLDA is:

34 ns THVCH (Just missed)

200 ns Delay to next sample
82 ns TCHCL max

(M + 1)'200 ns LOCK instruction execution

200 ns Set up HLDA (Internal)
160 ns TCLHAV max (HLDA delay)

(M*200 ns) + 876 ns @ 5 MHz
m is the number of clocks to execute

the locked instructions

If the Hold Request is made at the beginning of an interrupt acknowledge
sequence, the maximum latency to HLDA is:

34 ns THVCH (Just missed)

82 ns TCHCL max

2600 ns 13 clock cycles for INT A
160 ns TCLHAV max

2.876 fxs @5 MHz

Basic 8086 Design Single CPU 8-57

Minimum Mode DMA Configuration

A typical use of the minimum mode HOLD/HLDA signals is to exchange bus
control with DMA controller devices such as the Intel 8257-5 or 8237 DMA controllers.
Figure 8-36 functionally illustrates this type of configuration, using the 8257-5.

The DMA controller resides on the upper half of the 8086's local multiplexed
address data bus; it shares the A15-A8 demultiplexing address latch with the 8086.
8257-5 registers must be accessed over the upper half of the bus. Therefore, odd
addressed registers (A0=1) are accessed with byte transfers to an odd I/O address,
while even addressed registers are accessed via word I/O, with the expected data
transferred in the upper byte. The 8086 read and write control signals must be demulti
plexed to provide separate I/O and memory controls that are compatible with 8257-5
requirements. The AEN control from the 8257-5 must disable the 8086 control signals
and the lower (A7-A0) and upper (A19-AI6) address bus latches. Also, AEN must
select the 8257-5 address strobe (ADSTB) for the A15-A8 address latch. If the data bus
is buffered, a pull-up resistor on the DEN line will keep the buffers disabled. The DMA
controller will only transfer bytes between memory and I/O; the DMA controller
requires that the I/O devices reside on an 8-bit bus derived from the 16-bit to 8-bit bus
multiplex circuit shown below. Address lines A7-A0 are driven directly by the 8257 and
BHE is generated by inverting AO. If AI9-AI6 are used, they must be provided by an
additional port with either a fixed value or a value that is initialized by software; this
additional port must be enabled onto the address bus by AEN.

Figure 8-37 illustrates the 8257 connected to the system bus.
By using a separate latch to hold the upper address from the 8257-5, while outputs

are connected to the address bus as shown, 16-bit DMA transfers are provided. In this
configuration, AEN simultaneously enables AO and BHE to allow word transfers. AEN
still disables the CPU interface to the control and address busses.

RD

16-Bit Bus

!>■
m R na

D7-D0

I/O CS

B
T

8286

OE A

B
T

8286

OE
A

D7-D0 K
Bit Bus

0=^

8-58 The 8086 Book

BHEBHE

RD/WR/IO/M

Control Bus

8086

A16-A19

A16-A19

ALE

AD0-AD15

Local

Data Bus

HOLD HLDA

A I/O Port
—^ Loaded
8257 Initialization

"S A8-A15
■v

A0-A7

(AO)

8284

MUX

8282

Latch
8282

74LS257

8282

AD0-AD7

8282

HRO HLDA ADSTB DB0-DB7 AEN

8257-5

lOR low
MEMR MEMW

A0-A7

Figure 8-36. DMA Using Minimum Mode

Basic 8086 Design Single CPU 8-59

(A

D
Q.
O

A17-A19A16-A19S!

^A16ALE

'A9-A15

-A8

►A1-A7

►AO

•BHE

8257
AEN

DT/R-

AO to ground and upper
bits of DMA Address
(fixed or reg)

8257

8282

OE

STB

STB

8282

8286

STB

8282

STB

8282

8282

Controls are same as 8-bit
transfer configuration with
manipulation of the data bus

Figure 8-37. 8257 on System Bus 8086 Minimum Mode System 16-Bit Data Transfers

SQ-
ST-
Sl-

LOCK-

HOLD-

CLK- -|>o-

PR

CLK

"ar

D Q

74LS74

CLK Q

D Q

74LS74

CLK Q

D Q

74LS74

CLK Q

D Q

74LS74

CLK Q

AEN

-(to 8289 and

8282/3's)

AEN

(to 8284)

t>HLDA

Figure 8-38. Translating HOLD into AEN Disable for Maximum Mode 8086

Basic 8086 Design Single CPU 8-61

MAXIMUM MODE (RQ/ST)

The maximum mode 8086 configuration supports a significantly different bus
control transfer protocol.

Shared System Bus (RQ/€T Alternative)

The maximum mode RQ/GT sequence is used to transfer control of the local bus
between the 8086 and alternative bus masters, such as DMA controllers, which reside
totally on the local bus and share the complete CPU interface to the system bus. The
complete CPU interface to the system bus includes the address latches, data
transceivers, 8288 bus controller and 8289 multimaster bus arbiter. If the alternate bus
masters in the system do not reside directly on the 8086 local bus, then system bus
arbitration is required, and local bus arbitration will not do. Multimaster system bus
arbitration requires the 8289 bus arbiter; RQ/GT logic cannot be used.

If a device with a simple HOLD/HLDA protocol is to gain control of a system bus
with just one connected CPU, the circuit in Figure 8-38 could be used.

This circuit is, in effect, a simple bus arbiter that isolates the CPU from the system
bus when an alternate bus master issues a Hold Request. The output of the circuit^^
(Access ENable) disables the 8288 and 8284 when the 8086 indicates idle status (SO, SI,
ST = I), LOCK is inactive and a Hold Request is active. With AEN inactive, the 8288
floats the control outputs and disables DEN, which floats the data bus transceivers.
AlN must also float the address latch (8282 or 8283) outputs. These actions remove the
8086 from the system bus and allow the requesting device to drive the system bus. The
AEN signal to the 8284 disables the READY input and forces the bus cycle initiated by
the 8086 to wait until the 8086 regains control of the system bus. The CPU may actively
drive its local bus during this interval.

The requesting device will not gain control of the system bus during an 8086-initi-
ated bus cycle, a locked instruction's execution or an interrupt acknowledge cycle. The
lock signal from the 8086 is active between INTA cycles to guarantee that the 8086
maintains control of the bus. Unlike the minimum mode 8086 HLDA response, the
requesting master can gain control of the bus between consecutive bus cycles that
transfer a word operand on an odd address boundary. Depending on the characteristics
of the requesting device, one of the other 74LS74 outputs could be used to generate a
HLDA to the device. This would be useful when interfacing to a device that requires
some delay before it uses the bus.

8-62 The 8086 Book

Upon completion of its system bus operations, the alternate bus master must
relinquish control of the system bus and drop the HOLD request. After AEN goes
active, the address latches and data transceivers are enabled, but if an 8086 initiated bus
cycle is pending, the 8288 will not drive the control lines until a minimum delay of 105
ns or a maximum delay of 275 ns has elapsed. If the system is normally not ready, the
8284 AEN input may be enabled immediately, with READY returning to the 8086 when
the selected device completes the transfer. If the system is normally ready, the 8284
AEN input must be delayed long enough to provide access time equivalent to a normal
bus cycle. The 74LS74 latches in the design provide a minimum of TCLCH ns for the
alternate devices to float the system bus after releasing HOLD. They also provide
2TCLCL ns address access and 2TCLCL — TAEVCH max ns (8288 command enable
delay) control access prior to enabling 8284 READY detection. If HLDA is generated as
shown in Figure 8-38, TCLCL ns are available for the 8086 to release the bus prior to
issuing HLDA, while HLDA is dropped almost immediately upon loss of HOLD.

The circuit configuration for an 8257-5 using this technique to interface to the
maximum mode 8086 can be derived from Figure 8-37. The 8257-5 has its own address
latch to buffer the address lines AI5-A8; the 8257-5 uses its AEN output to enable the
latch onto the address bus. The maximum latency from HOLD to HLDA for this circuit
is dependent on the state of the system when the HOLD is issued. For an idle system,
the maximum latency is the propagation delay through the N AND gate and R/S flip-flop
(TDI) -h 2TCLCL -f TCLCH max + the propagation delay of the 74LS74 and 74LS02
(TD2). For a locked instruction it becomes TDI -f TD2 + (M + 2) * TCLCL -f-
TCLCH max where M is the number of clocks required for execution of the locked
instruction. For the interrupt acknowledge cycle the latency is TDI + TD2 + 9 *
TCLCL + TCLCH max.

Basic 8086 Design Single CPU 8-63

Shared Local Bus (RQ/@T Usage)

The RQ/GT protocol was developed to allow one or two other instruction set
extension processors (co-processors) or special function processors to connect directly
with the 8086 local bus. Each 8086 RQ/GT pin supports the full protocol for exchange of
bus control.

The bus control exchange sequence consists of a request from the alternate bus
master to gain control of the local bus, a grant from the 8086 to indicate that the local
bus has been relinquished, and a release pulse from the alternate bus master when done.
The two RQ/GT pins (RQ/GTO and R^/GTl) are prioritized, with RQ/GTO having the
higher priority. Priorities are meaningful only when requests are received on both pins,
before a response has been given to either. For example, if a request is received on RQ/
GTl, followed by a request on RQ/GTO prior to a grant on RQ/GTl, then RQ/GTO will
gain priority over RQ/GTl. If, however, RQ/GTl had already been granted priority, a
request on RQ/GTO must wait until a release pulse is received on RQ/GTl.

The request/grant interaction sequence with a bus interface unit is similar to
HOLD/HLDA. The 8086 continues to execute instructions taken from its internal

queue until it requests a bus cycle, to fetch an instruction, or to process an operand. But
if the release pulse is received before the 8086 needs the bus, it will not drive the bus
until a bus cycle is required.

Upon receipt of a request pulse, the 8086 floats the multiplexed address/data bus,
the SO, ST, and ̂ status lines, the LOCK pin and RD. This action does not disable the
8288 control outputs nor does it disable the address latches, which continue to drive the
address bus. The 8288 contains internal pull-up resistors on the SO, SI, and S2 status
lines to maintain the passive state while the 8086 outputs are floated. The passive state
prevents the 8288 from initiating any control outputs or activating DEN to enable the
transceivers buffering the data bus. If the device issuing the RQ does not use the 8288, it
must disable the 8288 control outputs by disabling the 8288 AEN input. Also, address
latches not used by the requesting device must be disabled by the requesting device.

8-64 The 8086 Book

Any CLK Cycle

CLK

TCLGH

RQ/GT

TCLCL TGVCH

TCHGX

Q)® (^(f)
I I I

Notes:

TCLCL

RELEASE

The 8086 Floats ^ from passive state on this edge

Q The 8086 floats ADDRESS/STATUS/DATA Bus.TC and LOCK on this edge
The other master floats SO from passive state on this edge

The other master floats ADDRESS/STATUS/DATA Bus, BHE, and LOCK on this edge

The 8086 redrives the control lines

The 8086 redrives the ADDRESS/STATUS/DATA lines

Figure 8-39. Request/Grant Sequence

Basic 8086 Design Single CPU 8-65

MQ/ST Operation

Detailed timing of the RQ/GT sequence is given in Figure 8-39.
To request a transfer of bus control via the RQ/GT lines, a device must drive the

line low for no more than one CPU clock period. This constitutes a request pulse. The
request pulse must be synchronized with the CPU clock to guarantee appropriate set-up
and hold times, relative to the 8086 clock edge which samples the RQ/GT lines. After
issuing a request pulse, the device must begin sampling for a grant pulse, beginning with
the next low-to-high clock edge. Since the 8086 can respond with a grant pulse in the
clock period immediately following a request, the RQ/GT line may not return to the
positive level between the request and grant pulses. Therefore, edge trigger logic cannot
capture a grant pulse. It is also necessary that the circuitry which generates the request
pulse guarantee that the request is removed in time to detect a grant from the CPU.
After receiving the grant pulse, the requesting device may drive the local bus. The 8086
does not float the address or data bus, LOCK or RD until the clock edge, which the
requesting master uses to start looking for a grant. Therefore the requesting master
should wait the float delay time of the 8086 (TCLAZ address float or TCHDZ data float)
before driving the local bus. This precaution prevents bus contention while the request
ing master gains local bus access.

To return local bus control to the 8086, the alternate bus master issues a release
pulse on the same RQ/GT line. The 8086 may drive the SO-SI status lines three clock
cycles after detecting the release pulse. The 8086 may drive the address/data bus
TCHCL ns (clock high time) after the status lines are driven. The alternate bus master
must be floated off the local bus and must reenable other interface circuits, such as the
8288 and address latches, by the time the 8086 regains control of the bus. The request
ing device may not issue a release pulse until at least one clock cycle after receiving the
grant pulse, and must not issue a new request until at least one clock cycle after a pre
vious release pulse.

8-66 The 8086 Book

^/ST Latency

The RQ to GT delay for a single RQ/GTline is similar to the HOLD to HLDA
delay. The cases given for a minimum mode 8086 also apply to the maximum mode. In
each case, the delay from RQ detection by the 8086 to GT detection by the requesting
master is: (HOLD to HLDA delay) - (THVCH + TCHCL + TCLHAV). This gives a
clock period maximum delay for an idle bus interface. In all other cases, the delay is
equal to the minimum mode result minus 476 ns. If the 8086 has previously issued a
grant on one of the RQ/GT lines, a request on the other RQ/GT line will not receive a
grant until the first device releases the interface with a release pulse on its RQ/GT lines.
The delay from release on one RQ/GT line to a grant on the other is typically one clock
period as shown in Figure 8-40.

Occasionally, the delay from a release on RQ/GTl to a grant on RQ/GTO will take
two clock periods, and is a function of any pending request for transfer of control from
the 8086 execution unit. The delay from request to grant when the interface is under
control of a bus master on the other RQ/GTline is a function of the other bus master.
The protocol embodies no mechanism whereby the 8086 can force an alternate bus
master off the bus. To ensure that an errant alternate bus master does not "hang" the
system, a watchdog timer should be employed.

Channel 0 to 1

CLK

RQ/GTO

RQ/GTl

Channel 1 to 0

CLK

RQ/GTl

RQ/GTO

Release

Grant

Figure 8-40. Channel Transfer Delay

Basic 8086 Design Single CPU 8-67

^/6T to HOLD/HLDA Conversion

A circuit that translates a HOLD/HLDA handshake sequence into a RQ/GT pulse
sequence is given in Figure 8-41.

After receiving the grant pulse, the HLDA is enabled TCHCL (min) ns before the
8086 disconnects itself from the local bus. If the requesting circuit drives the bus within
20 ns of HLDA, it may be desirable to delay the acknowledge pulse by one clock period.
The HLDA is dropped no later than one clock period after HOLD is disabled. The
HLDA also drops at the beginning of the release pulse to provide 2TCLCL -I- TCLCH
for the requesting master to relinquish control of the status lines, and 3TCLCL to float
through remaining signals.

■o

J QA
74LS78

CLK

K OA
CLR

J QB
74LS78

CLK

K QB
CLR

7438

• RQ/GT

Figure 8-41. HOLD/HLDA to RQ/GT Conversion Circuit

The Multibus

The Multibus is a general purpose multiprocessing system bus. This standard bus
has mechanical, electrical, and form specifications. The Multibus is used in Intel iSBC
single board microcomputer products. Multibus-compatible products are also offered by
other manufacturers. Anyone designing multiprocessing systems should consider build
ing his or her systems around the Multibus for two important reasons:

1. To save the time and costs associated with developing a new system;

2. To gain compatibility with a wide variety of products available for the
Multibus.

When the 8086 is configured in the maximum mode, the 8288 bus controller and 8289
bus arbiter provide a bus access and control interface that is fully compatible with the
electrical and A.C. characteristics of the Multibus system bus. When configured in the
minimum mode, the 8086 can operate easily on the Multibus (albeit with some external
logic to encode appropriate signals), unless a multiprocessor system is desired. In all
multiprocessor systems, the 8086 should be configured in the maximum mode.

The Multibus provides a versatile communications channel that can be used to
coordinate a wide variety of computing modules. Modules in the system are either
masters or slaves. Masters obtain use of the bus and initiate data transfers, while slaves

merely perform data transfers. The bus allows both 8-bit and 16-bit masters and slaves
to be intermixed in the system. The bus supports 16 data lines, 20 address lines, 8 inter
rupt lines, plus control and bus arbitration lines. Other lines contain power busses,
power backup, and power sense signals for switching memories to battery backup
systems. A complete listing of pin assignments on the Multibus is given in Tables 9-1
and 9-2. A functional description of the signals follows.

9-2 The 8086 Book

Table 9-1. Pin Assignment of Bus Signals on Multibus Board PI Connector

Pin

(Component Side)
Pin

(Circuit Side)

Mnemonic* Description Mnemonic Description

1 GND Signal GND 2 GND Signal GND
3 +5 V +5 Vdc 4 +5 V + 5 Vdc

« .2

o a

5 +5 +5 Vdc 6 +5 +5 Vdc

7 + 12 V + 12 Vdc 8 + 12 V + 12 Vdc

9 -5 V -5 Vdc 10 -5 V -5 Vdc

11 GND Signal GND 12 GND Signal GND

13 BCLK/ Bus Clock 14 INIT/ Initialize

(A 15 BPRN/ Bus Priority In 16 BPRO/ Bus Priority Out
o 17 BUSY/ Bus Busy 18 BREQ/ Bus Request

(A C 19 MRDC/ Memory Read Command 20 MWTC/ Memory Write Command
3 O
CQ O 21 lORC/ I/O Read Command 22 lOWC/ I/O Write Command

23 XACK/ Transfer Acknowledge 24 INH1' Inhibit 1 disable RAM

(A (A

o 2 25 Reserved 26 INH2/ Inhibit 2 disable PROM or ROM

C
27 BHEN/ Byte High Enable 28 AD 10/

o <
(A -a

29

31

CBRQ/

CCLK/

Common Bus Request

Constant Clock

30

32

AD11/

AD 12/
Address Bus

3 C
CQ (0 33 INTA/ Interrupt Acknowledge 34 AD 13/

(A 35 INT6/ 36 INT7/
a
3

Q>

37

39

INT4/

INT2/
Parallel Interrupt Requests

38

40

INT5/

INT3/
Parallel Interrupt Requests

C 41 INTO/ 42 INT1/

43 ADRE/ 44 ADRF/

45 ADRC/ 46 ADRD/

(A 47 ADRA/ 48 ADRB/

£
■a
13

49
51

ADR8/
ADR6/

Address Bus 50
52

ADR9/
ADR7/

Address Bus

< 53 ADR4/ 54 ADR5/
55 ADR2/ 56 ADR3/
57 ADRO/ 58 ADR1/

59 DATE/ 60 DATE/
61 DATC/ 62 DATD/
63 DATA/ 64 DATB/

Data

65
67

DAT8/
DAT6/

Data Bus
66
68

DAT9/
DAT7/ Data Bus

69 DAT4/ 70 DAT5/
71 DAT2/ 72 DAT3/
73 DATC/ 74 DAT1/

75 GND Signal GND 76 GND Signal GND
(A 77 Reserved 78 Reserved

& .2
i a
O Q.

79 -12 V -12 Vdc 80 -12 V -12 Vdc
81 +5 V +5 Vdc 82 +5 V +5 Vdc

(L 3
0) 83 + 5 V +5 Vdc 84 +5 V +5 Vdc

85 GND Signal GND 86 GND Signal GND

All Mnemonics ® Intel Corporation 1978

•Two notations for negative true (active low) signals are used in this book:
a bar over the signal name, or a slash after the signal name (e.g., BUSY = BUSY/).

The Multibus 9-3

Table 9-2. P2 Connector Pin Assignment of Optional Bus Signals

Pin

(Component Side)

Mnemonic Description

Pin

(Circuit Side)

Mnemonic Description

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

55

57

59

GND

VCCB

Vbbb

VpDB
PFSR/

Vaab
PFSN/

PFIN/

GND

+ 15 V

-15 V

PAR1/

PAR2/

> Reserved

, Signal GND
+5 V Battery

Reserved

-5 V Battery

Reserved

+12 V Battery

Power Fail Sense

Reset

-12 V Battery

Power Fail Sense

Power Fail Interrupt

Signal GND
+ 15 V

-15 V

Parity 1

Parity 2

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

56

58

60

GND

Vqcb
VCCPP
Vbbb
Reserved

Vddb

Reserved

VaAB
ACLO

MPRO/

GND

+ 15 V

15 V

HALT/

WAIT/

ALE

Reserved

Reserved

AUX RESET/

. Reserved

Signal GND
+5 V Battery
+ 5 V Pulsed Power

-5 V Battery

+

+12 V Battery

-12 V Battery

AC Low

Memory Protect
Signal GND
+ 15 V

-15 V

Bus Master HALT

Bus Master WAIT

STATE

Bus Master ALE

Reset switch

Notes:

1. PFIN. on slave modules, if possible, should have the option of connecting to INTO/ on PI.
2. All undefined pins are reserved for future use.

All Mnemonics ® Intel Corporation 1978

INITIALIZATION SIGNAL LINE

INIT

The Initialization signal resets the entire system to a predetermined state. INIT
may be supplied by one of the bus masters or by external logic.

ADDRESS AND INHIBIT LINES

ADR0-ADR13

The 20 address lines are used to transmit the address of the memory location or
I/O port to be accessed. ADRI3 is the most significant bit, while ADRO is the least sig
nificant bit. 8-bit bus masters use 16 address lines (ADRO-ADRF) to address memory.

9-4 The 8086 Book

and 8 address lines (ADR0-ADR7) to select I/O ports. 16-bit bus masters address
memory via all 20 address lines and select I/O ports via the low-order 12 address lines
(ADRO-ADRB). The 8088 however can use all 20 address lines even though considered
an 8-bit bus CPU.

inhT

The Inhibit RAM signal prevents RAM memory devices from responding to the
address on the address bus. INHl allows ROM memory devices to override RAM
devices when ROM and RAM memory are assigned the same memory space.

iNH2

The Inhibit ROM signal prevents ROM memory devices from responding to the
address on the Address Bus. INH2 allows auxiliary ROM to override ROM devices
when ROM and auxiliary ROM memory are assigned the same memory space.

INHl and INH2 may also be used to allow memory mapped I/O devices to over
ride RAM and ROM devices respectively.

BHEN

BHEN is used to specify that data will be transferred on the high-order 8 data lines
of the Multibus. This signal is used in systems that utilize 16-bit memory or I/O
modules.

DATA LINES

DATO-DATF

The 16 bidirectional data lines are used to exchange information with a memory
location or I/O port. DATF is the most significant bit, although in 8-bit systems only
lines DAT0-DAT7 are used, and DAT7 becomes the most significant bit. DATO is
always the least significant bit.

BUS CONTENTION RESOLUTION LINES

BCLK

The negative edge of the Bus Clock is used to synchronize bus contention. BCLK
is asynchronous with the CPU clock. BCLK may be slowed, stopped, or single-stepped
during debugging.

CCLK

The Constant Clock provides a clock signal of constant unspecified frequency.

The Multibus 9-5

BPRN

The Bus Priority In signal tells a bus master that no higher priority device is
requesting use of the system bus. BPRN is synchronized with BCLK. This signal is
"daisy chained" if you use serial priority arbitration. When using parallel priority
arbitration, a bus arbiter generates BPRN.

This is a Bus Priority Out signal. Like BPRN, BPRO is "daisy-chained" when
serial priority arbitration is used; BPRO is fed to the BPRN input of the next lower
priority module. When using parallel priority arbitration, a bus arbiter must provide this
signal. BPRO is synchronized with BCLK.

BUSY

The Bus Busy signal is supplied by the current bus master to indicate that the
system bus is in use. BUSY is used by other devices to determine whether or not they
may acquire control of the system bus. BUSY is synchronized with BCLK.

BREQ

The Bus Request signal is used by devices to indicate that they wish to become bus
master. BREQ is synchronized with BCLK; it is not bussed on the motherboard.

CB^

CBRO is used by all potential bus masters to inform the current bus master that
another master wishes to use the bus. If CBRQ is high, the current bus master knows
that no other device is requesting the bus and therefore the present bus master is to
retain the bus.

INFORMATION TRANSFER PROTOCOL LINES

A bus master that has control of the system bus generates all data transfer control
signals. All address signals (and data signals when a write is to occur) must be stable at
least 50 ns prior to the transfer control signal pulse and must remain valid for at least 50
ns after the control signal pulse is removed.

Information transfer protocol lines are not synchronous with BCLK.

MRDC

The Memory Read Control indicates that the address of a memory location has
been placed on the address lines, and that the contents of the address location are to be
placed on the data lines.

9-6 The 8086 Book

MWTC

The Memory Write Control indicates that the address of a memory location has
been placed on the address lines and that data has been placed on the system data lines;
the data is to be written into the addressed memory location.

iORC

The I/O Read Control indicates that the address of an input port has been placed
on the system address lines, and that the data at that input port is to be placed on the
data lines.

lOWC

The I/O Write Control indicates that the address of an output port has been placed
on the system address lines and that the data has been placed on the system data lines;
the data is to be output to the addressed port.

XACK

All exchanges involve handshaking. Therefore the selected bus slave must pro
vide the bus master with an acknowledge signal in response to the transfer control sig
nal. The Transfer Acknowledge signal is the required response that indicates that the
specified operation has been completed.

AACK

The Advanced Acknowledge signal is used by 8080A microprocessors. AACK is
an advance acknowledge that allows the CPU to complete a specified operation without
entering a Wait state. Bus slaves that provide AACK must also provide XACK. This
requirement must be met since not all bus masters will respond to the AACK signal.

ASYNCHRONOUS INTERRUPT LINES

iNT0-ir!T7

These eight priority interrupt request iines are used with parallel interrupt resolu
tion circuitry. INT7 has the lowest priority, INTO the highest priority.

irSTA

INT A is used by a bus master to request that external logic place interrupt vector
information on the Multibus data iines.

The Multibus 9-7

POWER SUPPLY LINES

Various regulated power supply lines are provided on the bus. Each module must
provide both bulk decoupling and high frequency decoupling local to the resident logic
devices.

RESERVED LINES

Reserved lines should not be used; they must be left available for future Intel
definition.

The Multibus is logically similar to the 8086 demultiplexed bus. An address is pro
vided on address lines ADRO through ADR13. (The address line number is now a hex
number.)

The Multibus requires a delay from valid address of 50 ns before a Read Control
signal can be transmitted to a selected device. The read control pulse must be at least
100 ns wide, and the address must remain stable at least 50 ns after the Read Control
signal terminates. If the selected device requires more than the 100 ns read signal or the
150 ns minimum specified address access time, then the device may extend the read
cycle by using the XACK (transfer acknowledge) signal. This signal is equivalent to the
Ready signal connected to the 8284 RDY input. XACK is normally "not ready"; it is
driven active to tell the CPU that the device is ready to receive or transmit data and to
allow termination of the bus cycle. The Multibus specifies data setup and hold times
relative to the XACK signal, rather than the Read or Write Control signal, to allow
autonomous operation of the selected device in a multiple - processor system with
mixed CPU types.

The write bus cycle is similar to the read bus cycle. Written data must be valid a
minimum of 50 ns prior to the Write Control signal and must be held valid a minimum
of 50 ns following the Write Control signal.

Master modules attached to the Multibus must not violate the minimum setup
and hold times or control pulse widths. Many designs provide better than minimum
margins when running at their maximum band width. Slave modules must be able to
tolerate the minimum setup and hold times but may extend the access times if they
delay return of XACK by an appropriate amount.

The Multibus provides two basic interrupt handling methods. These are:

1. A method whereby interrupt vectors are not transferred on the bus. Rather
they are generated by the bus master's interrupt controller. The slave that
requests the interrupt must be part of the same module as the bus master. If
the interrupting slave is part of another module, then the slave will use the
Multibus interrupt request lines (INT0-INT7) to request an interrupt; this
interrupt will be processed by the bus master's interrupt controller.

2. A method where the interrupt vector is transferred on the bus. When a slave
device requests an interrupt, interrupt control logic interrupts the processor.
The processor acknowledges the interrupt by lowering the INTA line and
locking the system bus. This allows an interrupt vector to be transferred.
Following the initial INTA cycle, interrupt control logic determines the
address of the highest priority slave currently requesting an interrupt. This
address is placed on the address bus. The addressed slave responds by
transmitting an interrupt vector address back to the master.

9-8 The 8086 Book

In addition to providing a standard asynchronous data transfer protocol and tim
ing specifications for designing master and slave modules, the Multibus provides a stan
dard protocol which multiple masters use to exchange bus control. To allow
asynchronous masters to share the bus, the Multibus maintains its own clock signal
independent of clock signals local to modules that might connect to the Multibus. The
Multibus clock signed BCLK synchronizes asynchronous requests for bus access. This
allows arbitration logic to resolve priorities and grant access to one master at a time. This
bus arbitration technique allows masters operating at various speeds to compete equita
bly for use of the system bus. When a master gains control of the system bus, however,
transfer speeds depend only on the capabilities of the master and its associated slave
modules, not on BCLK, the Multibus clock signal. The maximum bus band width is 5
MHz, taking into account minimum address setup and hold times and minimum control
pulse width. When one considers the additional overhead of bus arbitration and typical
memory response times, the actual transfer speeds are often on the order of 2 MHz.

The Multibus allows serial or parallel priority arbitration among bus masters.
Serial priority technique is illustrated in Figure 9-1.

Highest
Priority

Master

Lowest

Priority

Master

BPRN

BPRO

BPRN BPRN

BP^ BPRO

I
Figure 9-1. Serial Priority Technique

The highest priority master has BPRN grounded. The priority enable output
BPRO from each master is connected to the priority input BPRN of the next lowest
priority master. If that master does not need the bus, it propagates its BPRN to BPRO.
This propagates upstream priority to downstream masters. A master that needs the bus
will output BPRO high; this denies priority to lower level masters. This logic daisy chains
the priority enable from the highest priority master in the system to the lowest. Since a
higher priority master must wait until the current bus master has completed any bus
cycles already in progress, another signal must be included to indicate an idle or "not
busy" status of the Multibus. The BUSY line, which serves this function, is a signal
common to all bus masters. Each master using the Multibus clocks BUSY to determine
its ability to gain access to the bus.

The Multibus 9-9

When sampled on a high-to-low transition of BCLK, if BPRN is low (active) and
BUSY is high (inactive), indicating an idle bus, then the current master must drive
BUSY low prior to the next high-to-low transition of BCLK to prevent a higher priority
master from gaining control of the bus before the current master completes its transfer.

If a current master loses priority, it must release BUSY after completing its
transfer and float its connection to the Multibus.

If another master wishes to request the bus, it must disable lower priority masters
before the high-to-low transition of BCLK. Otherwise race conditions will occur in
priority resolution circuits and lower priority masters. Also, since the priority disable
from a higher priority master must propagate through the daisy chain to the lowest
priority master, the total propagation delay from highest to lowest priority master must
not exceed one BCLK clock period. This places an upper bound on the number of
masters the serial priority arbitration can accommodate.

The parallel priority arbitration is similar to serial priority arbitration, except that
each master issues a bus request, BREQ, on the high-to-low transition of BCLK, and an
external user-defined circuit resolves priorities. The priority resolving circuit must
resolve and return stable priority inputs, BPRN's, back to each master within one period
of BCLK. A parallel resolving circuit and an example of bus exchange timing are given
in Figure 9-2.

No. 1

Priority (Highest)
No. 2

Priority

No. 7

Priority

No. 8

Priority (Lowest)

BREQ

BPRN

BREQ

BPRN

BREQ

Bus Priority Resolver

Other

Master

Inputs

7 /

6 6

5 5

74148 74S138

Priority Priority

Encoder Decoder

2 2

1 1
1

0 0

I Other
\ Master
i Outputs

BPRN

BREQ

Figure 9-2. Parallel Priority Resolution and Bus Exchange Timing

9-10 The 8086 Book

BCLK/

Transfer

< I Request/

S I BREQ/

BPRN/

Transfer

Request/

BREQ/

BPRN/

Master A

on bus

Bus

Exchange / Master B
on bus

Bus priority must be resolved
within one BCLK/ period

High
Impedance

ActiveAddress/

High
Impedance

Command Active

Driver

Enable/

High impedance
Active

Address/

High Impedance
Active

\ Command/

Driver

Figure 9-2. Parallel Priority Resolution and Bus Exchange Timing (Continued)

The Multibus 9-11

MULTIBUS ARCHITECTURAL CONCEPTS

The Multibus architecture provides a well-defined bus structure for
multiprocessor systems. The bus serves as a means of sharing resources between
multiprocessors and communicating between the processors in the system. There are
two elementary forms of multiprocessor systems. They are:

1. A tightly coupled system. In a tightly coupled system, multiple processors
communicate with each other by passing information through a common
memory space.

2. A loosely coupled system. In a loosely coupled system, multiple processors
communicate with each other by passing information via the I/O structure.
Typically, a serial communications link is used. However, in some cases infor
mation is passed via a mass storage device such as a high-speed disk.

The Multibus is designed to satisfy the requirements of tightly coupled systems,
while still allowing ttiulti-CPU processing systems to be loosely coupled via standard I/O
communication protocols like Bisync or HDLC. The mechanisms for sharing the bus
consist of a combination of the Multibus protocol and user-defined priority resolution
circuitry. The Multibus provides the basic controls for each processor to request the bus,
to receive an acknowledgement when the processor has bus priority, and to indicate bus
availability. The user must select the priority resolution technique most applicable to
any task. Be cautious when selecting a priority system, otherwise the Multibus may
become a system bottleneck, degrading overall system performance. To ensure an
equitable utilization of the bus, the MULTIBUS supports a common bus request,
CBRQ. This signal allows low priority devices to request the bus from a higher priority
bus master or to indicate a pending lower priority request. This allows the current bus
master to maintain control of the bus until the higher priority master forces the current
master off the bus (via the loss of priority) or a lower priority master requests the bus
(via common bus request). The response by the current master to a common bus
request is user-definable. It may cause the master to release the bus at the end of the
current transfer or immediately if there is no bus activity, or the master may simply
ignore the request and only relinquish bus control to higher priority masters. The com
mon bus request gives the designer another level of control when defining the utiliza
tion of the system bus. In consequence the current master is not forced to release and
re-request the bus for every transfer. This minimizes the overhead associated with bus
access and transfer.

The Multibus BUSY signal allows the current master to maintain bus control even
though a higher priority master has forced it to lose priority (forced its BPRN signal
inactive). This is necessary for operations requiring multiple bus cycles, where the cur
rent master's bus cycles cannot be separated by bus cycles executed for another bus
master. If the current bus master has control of the bus, it may continue to control the
bus by not releasing BUSY to indicate that the bus is available. This capability is
required for multiple bus cycle interrupt acknowledge sequences and for test and set
operations. It is a function of the master module to interpret those conditions for which
it must not relinquish control of the bus. When these conditions arise, the master must
ignore the loss of BPRN until the required operation is complete.

9-12 The 8086 Book

User Bus Multibus

Lower Byte

Buffer Data

D0-D7

Direction

Control

Data

Swap Byte
Buffer

DATO>DATODS-DF

Upper Byte
BufferSwap ByteBHEN

ADRO

MR

74800

=€>

A 8287

OE

A 8287 B

A 8287 B

OE

- DATF

74S04 74832

Figure 9-3. 8/16-Bit Device Transfer Operations

The Multibus is a demultiplexed system bus with separate address and data lines.
The system maintains a one megabyte address space via 20 address lines, and there is a
16-bit data bus. For compatibility with existing Multibus-compatible modules, which
only maintain an 8-bit data bus, all 8-bit transfers are performed over the least signifi
cant half of the data bus regardless of the address. Only 16-bit transfers use the full 16
data lines. This departs from the standard 8086 procedure of high and low byte transfers
on the upper and lower halves of the data bus. As a result, byte transfers to existing 8-bit
interface slave modules are independent of the CPU. Slave modules supporting 16-bit
interfaces are accessible, a byte at a time, by master modules that only interface to an 8-
bit data bus, yet slaves can be accessed a word at a time or a byte at a time by masters
that support the full 16-bit data bus. The Multibus signal BHEN provides the additional
information required to determine whether a byte or a word transfer is being performed.
Figure 9-3 shows how BHEN controls the gating of byte and word information to and
from the Multibus system bus.

The Multibus 9-13

16-bit Device
Multibus Transfer

Data Path

Device Byte
Transferred

Low • Even |/1 I 1 h
Bytes s;!-— 1 | , t/

I
High • Odd ' TT —

Bytes 1 I i—

;^

□

dats
8-bit

DATO - DAT7

 DATS - DATF

Low • Even 1 I — <
Bytes 1 I j-i

1
High • Odd 1^ ' 1 IBytes |Si 1_| T"

>DATO - DAT7

8-bjt
DATO - DAT7

TdATS - DATF

Odd

Low • Even
Bytes O

High • Odd ^ «
Bytes

>DATO - DAT7

1^6-bit
DATO - DATF

Even and Odd

DATS - DATF

Figure 9-3. 8/16-Bit Device Transfer Operations (Continued)

Multipracessar Configurations
for the 8086

The 8086 family of components was devised to provide a system architecture that
would allow for both single processor and multiprocessor configurations. This chapter
will describe how maximum mode is used in a multiprocessor system; we will also
examine various configurations supported by the 8086 family of components.

The multiprocessing capabilities of the 8086 family are based on these two sepa
rate and distinct features:

1. Special function processors which reside on the local bus and enhance the
basic architecture of the 8086 CPU.

2. Multiple CPUs sharing a common system bus.

A special function processor is dedicated to one CPU; it executes extensions to
the CPU's instruction set and processes in parallel with this CPU. Special function pro
cessors are therefore referred to as co-processors. A multiple microprocessor system, in
contrast, more closely resembles the classical multi-CPU environment where the
interaction of CPUs is user defined. Note that a system may combine the two
capabilities, i.e., each CPU in a multiprocessor system may have its own unique dedi
cated co-processors. Multi-CPU, multiprocessor systems' needs are met by the
Multibus defined in Chapter 9.

10-2 The 8086 Book

CO-PROCESSOR

The 8086 has hardware and software characteristics aimed at enabling co-process-
ing. The hardware support includes the queue status signals (QSO, QSl), a TEST input,
and a mechanism for sharing the CPU's local bus (RQ/GT). The software support con
sists of a special class of instructions called ESCAPE instructions which activate the co
processor, and a WAIT instruction which samples the TEST input (used for software
synchronization between the CPU and the co-processors).

The co-processor interfaces directly to the CPU's local bus. The CPU's local bus
includes the multiplexed address/status and address/data lines, the SO, SI, and S2 status
lines, the QSO and QSl queue status lines, TEST, READY, RESET, one of the RQ/GT
lines and, perhaps, the LOCK line. The need for the LOCK signal varies, depending on
the co-processor. The co-processor is allowed to reside on a local bus for two reasons:

1. The co-processor is able to monitor the CPU's activity.

2. The co-processor has full access to the CPU's resources.

The co-processor requests control of the local bus via one of the RQ/GT lines.
After the CPU has relinquished bus control to the co-processor, the co-processor may
run local bus cycles exactly as the CPU would. When ̂ co-processor is done with the
local bus, control is returned to the CPU via the same RQ/GT line that was used to gain
control of the bus. An example of this interface is shown in Figure 10-1.

The co-processor is activated via the following sequence; while the CPU is fetch
ing and executing instructions, the co-processor monitors the instruction stream look
ing for an ESCAPE instruction. Information that is transferred from memory into the
CPU's instruction queue (as opposed to memory data used as an operand by an instruc
tion) is selected by decoding the status lines (SO, SI, S2) which identify an instruction
fetch. AO and BHE are decoded to determine whether a single or double byte instruction
fetch is performed. Information coming out of the queue is identified as the first instruc
tion byte, or a subsequent instruction byte, via the queue status lines (QSO, QSl). The
queue status lines also indicate that no byte was fetched, or that the queue is empty. If
the information coming out of the co-processor's queue (it tracks the CPU's queue)
indicates an ESCAPE instruction, and the queue status identifies it as the first byte of an
instruction's object code, then the co-processor is activated. The ESCAPE instruction
object code is:

1101 1XXX I I modXXXr/m

Addressing mode byte.
If mode =11, then no bus cycle

The Xs are *'don't care" bits to the CPU, but they can represent 64 possible
instructions to the co-processor. In response to the ESCAPE instruction, the CPU uses
the mod and r/m fields as a normal addressing mode specification; it executes a bus
cycle to read data from the specified address. The co-processor can capture both the
address and the data present at the selected memory location. This mechanism allows a
programmer to treat the ESCAPE instructions defined for the co-processor as normal
CPU instructions, with the full range of memory addressing modes. It allows an address
to be passed to the co-processor along with one parameter. If the co-processor needs to
transfer additional data to or from memory, it may request control of the CPU's bus.

Multiprocessor Configurations for the 8086 10-3

Bus

Control

Address and

Data Bus

8234

Clock

Generator

8288

Bus

Controller
CLK STATUS

{S0-S2)

READY

RESET

rq/gTo

QSO QS1 TETT

8086

CPU

QSO QSI BUSY

SW^

CLK

READY

RESET

xxxx

Processor

Unit

Figure 10-1. 8086 Maximum Mode Multiple Processors

Note that all information used by the co-processor must reside in memory, since the co
processor does not have access to the CPU's registers. The CPU does not capture data
read during the ESCAPE instruction, and except for the read bus cycle treats the
instruction as a null operation. After execution of the ESCAPE instruction, both the
CPU and co-processor are free to continue executing their specific tasks in parallel.
While executing an instruction, the co-processor will typically hold the TEST line high
to indicate that it is busy. If a program cannot guarantee the co-processor is not busy,
before executing another ESCAPE instruction, the program should either read the
status of the co-processor (if possible) or insert a WAIT instruction before each
ESCAPE instruction. The WAIT instruction will force the CPU to wait until the co-pro
cessor is not busy before it executes the ESCAPE instruction. During the WAIT instruc
tion, the CPU does not require the bus, except possibly to fill the instruction queue. The
CPU will, however, respond to interrupts (if enabled) during a WAIT cycle. Note that
the co-processor may continue to monitor the CPU's instruction stream while executing
an ESCAPE instruction. Although Intel has only announced the 8087 co-processor, the
general purpose nature of the interface makes it applicable to a wide range of higher
level commands for numerics, language support, etc.

10-4 The 8086 Book

MULTIPROCESSING ON A SHARED SYSTEM BUS

With the increasing complexity of microprocessor applications and the declining
cost/performance ratio of the microprocessor, it is becoming more cost effective to
design systems with more than one microprocessor. Multiprocessor systems are imple
mented by partitioning the design into functional subsystems that are easily identifiable
and have a clean communications interface to other systems. After partitioning the
design and defining both the hardware interface and the software interface, each sub
system may be designed and developed in parallel by individual teams as a means of
reducing total end product design time. Although this approach requires a high degree
of cooperation and coordination among all design teams, benefits such as modularity,
extensibility, and ease of maintenance are provided.

When partitioning a system into a multiprocessor distributed intelligence system,
the requirements of the functional subsystems will dictate the need for loosely coupled,
tightly coupled, or both loosely and tightly coupled processors.

In the discussion that follows, loosely coupled processors communicate via a
shared I/O mechanism; tightly coupled processors communicate through shared
memory. For those processors that are loosely coupled, each CPU communicates with
other CPUs through an I/O interface, which the CPU treats as it would any other I/O
device attached to it. There are a wide variety of standard protocols for this type of inter
face, e.g., SDLC, ASYNC, GPIB. These interfaces require that the subsystem hardware
provide an I/O interface, plus software to control the interface and interpret the message
protocol.

Loosely coupled subsystems typically require neither frequent nor high-speed
communications; they may be physically distant from each other, even miles apart.

If multiple processors are tightly coupled, a technique must be provided for shar
ing memory among the processors. The 8086 family shares memory by connecting it to
the shared system bus. The memory and I/O devices accessible over this bus may be
utilized by all CPUs capable of being bus master.

Shared memory and I/O devices provide the desired interprocessor communica
tions mechanisms.

The basic CPU interface to the multimaster system bus is shown in Figure 10-2.

Figure 10-3 shows the basic interface for an 8086 system. The 8289 Bus Arbiter
has the priority arbitration and protocol logic needed to transfer bus control. This logic
was described in Chapter 9 for the Multibus. The 8288 bus controller provides system
bus control signals for the CPU; it also takes care of the CPU's address and data bus
interface with the system bus. The 8283s and 8287s implement this CPU's interface to
the shared system bus. The 8288 and 8289 also let you direct bus transfers to shared
resources on the system bus, or to private resources on the CPU's local bus.

Multiprocessor Configurations for the 8086 10-5

o
Private

Memory

and

Peripherals

8086

CPU 3

Private

Memory

and

Peripherals

8086

CPU 2

8086

CPU 1

Shared

Memory

and

Peripherals

Figure 10-2. Multiprocessor Configuration

In Figure 10-3, all resources, and hence all bus transfers, are directed over the
system bus. To initiate a bus cycle the 8086 drives the status lines from the passive state
(S2, SI, SO = 1,1,1) to one of the active states. The 8288 and 8289 and the CPU operate
synchronously via the common clock, CLK, and detect a bus cycle request by monitor
ing the status lines. The 8288 will issue ALE to strobe the address from the local multi
plexed bus into the 8283s. If the 8289 does hot have control of the system bus (is not
driving BUSY low), it will issue a bus request (BREQ) and common bus request
(CBRQ) to gain control. This protocol is identical to that described for the Multibus
system bus. The 8289 will maintain AEN in an inactive (high) state until gaining bus
control. This action prevents the 8283s from driving the address onto the system bus
and prevents the 8288 from driving the bus command or enabling the data transceivers
(via DEN). Note that the 8283s will capture the address during ALE, regardless of the
state of its OE input. The inactive state of AEN is also used to disable the 8284 RDY
input from the system. Disabling the RDY input forces the CPU to wait (by inserting
wait states) until this interface gains control of the bus and completes the bus cycle.
Once the 8289 has gained bus priority and the bus is not busy, it enables AEN and
asserts BUSY to other bus masters. AEN immediately enables the address onto the bus
and allows the 8288 to enable the data bus transceiver (8287s). The 8288 will not enable
the command until 105 to 275 ns later, to allow address setup and chip select decode
time in the system. To prevent the 8284 and CPU from detecting Ready immediately
after AEN is enabled and terminating the bus cycle prematurely, the RDY input from
the system should normally be inactive and be disabled until a command is issued by the
8288. To satisfy this, the system device selected to participate in the transfer will
typically not return RDY (XACK for Multibus system bus definition) until it has com-

10-6 The 8086 Book

RDY1

8284

AEN1

I
CLOCK

READ^LJ^

8086

ADDR/

DATA

T[

Local

Bus

(7^

CLK RESB

lOB

8289

SO-2
AEN

Vcc

4

READY

(XACK)

>V

Bus Access

Control

AEN
SO-2

8288

CLK

f'T/R loB
DEN ale

I

Bus

Control

>:0 V)
3 «

OE STB

8283
Address

Bus

4>°~l

5 8287
Data

Bus

y

Figure 10-3. CPU with no Local Resources

Multiprocessor Configurations for the 8086 1 0-7

completed the transfer. Since the time to complete the transfer is device dependent,
each device provides an appropriate delay from selection of command to RDY (or
XACK). After detecting Ready, the CPU returns the status lines to the passive state.
This action allows the 8288 to terminate the bus cycle, which the 8288 does by dropping
the command and disabling the transceivers. If a higher priority bus master tries to force
this bus master off the bus during a bus cycle (via the loss of bus priority (BERN), the
8289 will maintain bus control by holding BUSY active (low) until the status (52, SI,
SO) returns to the passive state. If the 8289 has control of the bus, it maintains AEN
active, allowing bus cycles initiated by the CPU to be performed immediately. The tim
ing and signal sequence under these conditions are identical to a single-CPU maximum
mode system. The full complement of bus surrender conditions supported by the 8289
are discussed later in this chapter.

The previous discussion represented a single CPU with all memory and I/O con
necting to the multimaster system bus. If you consider how many clock cycles are availa
ble for bus cycles, assuming four clocks per bus cycle, and count the number of bus
cycles executed, you will discover that a single 8086 CPU can utilize between 50% and
80% of the available bus band width, depending on whether the application is compute
bound. If two 8086s are attached to a shared bus, with all memory and I/O for both pro
cessors connecting to this shared bus, then the throughput for each CPU may degrade
by up to 37%:

= 37%
80

This degradation is a direct consequence of contention for access to the shared bus. This
calculation assumes that each CPU could use 80% of the total available bus cycles, but
only receives 50% of the available bus cycles, since it is sharing a single bus with the
other CPU. As more CPUs are added to the system, more degradation occurs for all
CPUs. To gain appreciable benefits from multiprocessor systems, there must be a high
degree of concurrent processing. Therefore, delays due to contention for access to the
shared bus must be minimized.

As a solution to this problem, the 8086 family allows local and shared resources to
be defined for each CPU. Local resources may include memory and/or I/O, which con
nect to the CPU's local or resident bus and can only be accessed by the CPU to which
they are assigned. Shared resources, in contrast, consist of memory and I/O which con
nect directly to the multimaster system bus and are accessible by more than one master.

Two primary techniques for partitioning resources are supported by the 8288 and
8289: address mapping and memory versus I/O. Figures 10-4a through 10-4c demon
strate the variations derivable from these techniques. The common elements in all of
these examples are the inclusion of a second set of address latches and use of both 8284
RDY inputs. The major differences in the configurations presented in Figures 10-4a
through 10-4c are the number of additional components required to support the local
resources, and the types of local resources supported.

Figure 10-4a allows ROM or BPROM on the CPU's local bus, and only requires
additional address latches and possible address decode latches. The 8289 is strapped into
the resident bus mode (RESB to Vcc), which tells the 8289 that this CPU supports resi
dent memory. Strapping options on the 8288 do not differ from the configuration shown
in Figure 10-3. During a bus cycle, the 8288 issues ALE, latching the address into both
the 8283s and 8282s. The address space assigned to the resident memory is decoded and
used to determine whether this bus cycle will use resident or system resources. If the

10-8 The 8086 Book

bus cycle is to utilize the system bus, then the decode result must be high to indicate
SYSB to the 8289, CEN to the 8288, and to disable the local bus RDY via the associated
AEN. When the 8289 is in the RESB mode, the SYSB/RESB input to the 8289 deter
mines whether the 8289 will request or release the system bus. If SYSB/RESB is high,
the 8289 will request the system bus; if SYSB/RESB is low, the 8289 will release the bus.
The CEN input of the 8288 prevents the control outputs from being driven to their
active state during resident bus accesses. This input is necessary to prevent a control sig
nal from being issued to the system if the 8289 has control of the bus. The input does
not cause the 8288 to float the control outputs, since the 8288 must maintain them in an
inactive sta^ as long as the 8289 has control of the bus. Note that the 8282s are always
enabled (OE strapped low); this allows each bus cycle address to quickly decode into the
appropriate system bus or resident bus select.

The stable address latched in the 8282s also provides chip select and addresses to
the local ROM or EPROM. The read signal from the 8086 (RD) is used to enable the
selected local device to drive data onto the local multiplexed bus. When local resources
are selected, the 8284 AEN2 input is enabled to allow a local RDY2 to generate Ready
to the CPU. Since the 8288 will not drive control signals on the system bus, RDYl (or
XACK) should not be received, even if the 8289 has bus control and AENl is active. If
the local resources require buffering from the local multiplexed bus, the local chip select
and RD should be used to enable the buffers. If the I/O address space overlaps the local
memory address space, 52 should be latched and included in the local address decode to
prevent an I/O address from decoding into a resident bus access.

This technique only works for local ROM and EPROM in the memory space, since
no I/O commands or write commands are available for the local bus. Note, however,
that object code accesses typically utilize 50% to 70% of the bus cycles. Therefore, if the
majority of the object code executed by the CPU is in local ROM or EPROM, the system
bus utilization per CPU can be reduced to less than 30%. All RAM and I/O must reside
on the shared system bus and therefore will be subject to contention.

Figure 10-4b adds local I/O to the previous configuration shown in Figure 10-4a.
This is achieved by strapping both the 8288 and 8289 to operate in the lOB (I/O Bus)
mode. In this mode, all I/O is assumed to reside on the local bus; thus I/O does not
require access to the system bus. But when the lOB option is used, the CPU cannot
access I/O on the system bus unless it is memory mapped. For each I/O bus transfer, the
8289 will not attempt to gain bus control and may release the bus if it currently has con
trol. The 8288 will drive the I/O control outputs, regardless of the state of the AEN
input. In this mode, the 8288 I/O control outputs must not be connected to the system
bus I/O control lines. They should only be used to provide control to the local I/O
devices. No additional circuitry is required to support this extension to Figure 10-4a.
The AEN2 input to the 8284 is now enabled by a chip select to either the local memory
or local I/O. The 8288 CEN input must be high during I/O cycles to allow the I/O con
trol output to be driven low (active). If the data lines to/from the I/O devices must be
buffered from the local multiplexed bus, the DT/R signal from the 8288 can be used as a
direction control signal for the buffers. To enable the buffers, the 8288 can be used as a
direction control signal for the buffers. To enable the buffers, the 8288 provides a sepa
rate peripheral data enable control (PDEN). This signal is only available when the 8288
is strapped in the I/O Bus (lOB) mode. PDEN is enabled for I/O transfers, while DEN is
enabled only for data transfers over the system bus.

Multiprocessor Configurations for the 8086 10-9

Vcc

LRDY2 RDY1

8284

aeFH

CLK

RDY CLK

8086

RD A-AD

S0-S2

ALE

i
OE STB

8282

OE ADDR

ROM

or

EPROM

^

Ld

Local Bus

READY

=i

lOB

CLK resB

8289

S0-S2

AEN

Vcc

a
A- Bus Access

Control

SYSB/RESB

CEN

CLK 8288

DT/R

DEN lOB

A

~i.

Bus

Control

ALE

OE STB

8283

OE

T

8287
Data

Bus

V «>

>i

Address

Bus

Figure 10-4a. 8086 with Local ROM/EPROM

10-10 The 8086 Book

Q Vcc

RDY RDY1

8284

:AEN2 AeRI

CLK

n
RDY CLK

8086

m
A-AD

S0-S2

ALE

dj;
OE STB

8282

b

OE OS

ADDR

ROM or

EPROM

Decode

I
DATA

lOR/lOW

Ready ^

Vcc

CLK RESB

8289

SO-^

AEN

CLK

J
Bus Access

Control

lOB

iSYSB/^
»RESB

V

AER

^-S2

8288

cc

CEN J
lOB

DT/R

DEN
ALE

Bus

Control

AEN

V

r ALE

UE STB

8283
Address

Bus

T OE

8287
K Data

Sj—Bus

cn

E

(0

H s
5 to

Figure 10-4b. 8086 with Local ROM/EPROM and I/O

Multiprocessor Configurations for the 8086 10-11

The next extension to the configuration alternatives is shown in Figure 10-4c. For
this case, we have added a second 8288 and data bus transceivers. This configuration is
the most fiexible since it is totally based on address mapping, and allows access to both
shared and local ROM/EPROM, RAM and I/O. The JOB mode is not used on either
8288. Since the local bus is not a multimaster bus, a second 8289 is not required. The
PROM or decoder sources in the address map are for both memory and I/O references.
The resulting SYSB/RESB signal is inverted to provide the proper enable polarity for the
resident bus 8288 GEN input. The 8288 provides address latching and full data bus
transceiver control for the resident data bus, and a complete set of read and write con
trols for memory and I/O. The multimaster system bus interface functions as described
for configuration 10-4a.

The configuration in Figure 10-4c allows the CPU to support resident ROM/
EPROM for fixed program and constants, resident RAM for stacks and local variables,
and resident I/O which only this CPU need access. The result is modular self-contained
processing modules which communicate control and data via shared memory or shared
I/O. This allows a high degree of concurrent processing within the system with a typical
system bus usage per CPU reduced to less than 25%.

A final extension to the concept of multiple busses per CPU is to implement a sec
ond multimaster bus, rather than a resident bus. This is useful in fault tolerant systems;
also, it allows performance enhancements based on multiple interprocessor com
munication channels. In this case, a CPU wishing to access the system bus would first
attempt to utilize the primary bus; if this is not available, the secondary bus would be
accessed.

BUS ACCESS AND RELEASE OPTIONS FOR THE 8289

In addition to the RESB and lOB modes, the 8289 has several other options that
optimize multi-master system bus use. These additional capabilities affect the bus
release rather than its request. With respect to bus request operations, one additional
comment needs to be made. With the exception of the RESB mode, the 8289 will issue a
bus request on the second high-to-low clock transition (BCLK) following the low-to-
high CPU clock transition of T2. The one-CPU clock delay for the RESB mode provides
address decode time for generating a stable SYSB/RESB signal.

The 8289 provides LOCK, ANYRQST, and CRQLCK inputs for additional con
trol over bus control release. In general, the 8289 will relinquish control of the bus
either at the end of the current cycle or immediately (if no bus cycle is in progress) when
it loses priority (BPRN goes high). An exception arises if the LOCK input is active. The
LOCK allows the 8289 to maintain bus control (continue to drive BUSY low) regardless
of bus priority. The 8289 LOCK input should be driven by the CPU LOCK output to
guarantee the CPU will maintain bus control during execution of the instruction pre-
ceded by the LOCK prefix and during interrupt acknowledge sequences. The LOCK sig
nal allows operations like locked exchanges to serve as primitives for basic semaphore
control of non-reentrant shared resources (also known as critical code sections).

ANYRQST is a strapping option which forces the 8289 to release the bus either at
the end of the current bus cycle or immediately (if no bus cycle is in progress) if Com
mon Bus Request (CBRQ) is active. Assertion of ANYRQST forces the 8289 to release
the bus to a lower priority bus master. Releasing the bus for this case requires the 8289

10-12 The 8086 Book

Resident

Address <

Bus

AEN2 AEN1

Clock XACK >

Multimaster

System

Bus

XACK

RDY2 RDY1Resident

READY

Multimaster

System

Q Bus Control
S0-S2 S0-S2

8289

Bus Arbiter

AD0-AD15

A16-A19 ANYRQST

SYSB/RESB

PROM

or

Decoder

Multimaster

System y
AEN CEN

S0-S2

8288

CLK

DT/R ,0B

ALE-

S0-S2
Command

Resident

Command

STB OE OE STB

Address

Latch

8282/8283

(2 or 3)

Multimaster

System

Address

Bus

Address

Latch

2 or 3)

Transceiver

8286/8287

(2)

Transceiver

8286/8287

(2)

Multimaster

System

Data Bus>

Resident

Data i

Bus

*By adding another 8289 arbiter and connecting its AEN to the 8289 whose AEN is presently grounding,
the processor could have access to two multimaster busses.

Figure 10-4c. 8086 with Local RAM/ROM/EPROM/I/0

Multiprocessor Configurations for the 8086 10-13

to drop its bus request (BREQ returns high) and enable BPRO (Bus Priority Out). (Note
that BREQ is used for parallel priority resolving circuits, while BPRO is provided to sup
port a serial priority arbitration scheme via daisy chaining BPRO to the next lower
priority BPRN. Only one of the two techniques is applicable within a single system). The
8289 will then release the bus one bus clock period later by releasing BUSY. The 8289
must release its BREQ and BPRO to allow the lower priority 8289 to receive BPRN. For
the normal case of a higher priority master forcing another 8289 off the bus, the higher
priority master receives BPRN from the priority scheme and does not require the lower
priority master to release its BPRO or BREQ.

If ANYRQST is strapped high and CBRQ is tied low, the 8289 will release the bus
at the completion of each bus cycle. This may impose a high overhead on bus transfer
logic, but it may be useful for masters which infrequently use the system bus, or use it at
a very low band width.

If ANYRQST is not tied high, the 8289 will release the bus to a lower priority
device on CBRQ only when the CPU local bus is idle (82, 81, SO = 1,1,1). To override
CBRQ and never release the bus to a lower priority master, CRQLCK (Common Bus
Request Lock) is provided. Strapping this input low effectively disables the CBRQ as an
input. Although the same effect can be attained by tying CBRQ high, the strapping
option allows it to be a programmable option rather than a static function.

Note: CBRQ is bidirectional — an 8289 will drive it low to get the bus and moni-
tor it when it has the bus. The CRQLCK therefore allows an 8289 to ignore CBRQ while
it has the bus yet use CBRQ to get the bus.

Other special conditions which cause the 8289 to release the bus are: an I/O cycle
with the 8289 strapped for I/O Bus (lOB) mode, a resident bus cycle where the 8289 is
in the RESB mode, and whenever the CPU enters the halt state by executing a HALT
instruction. Entering the halt state is indicated to the 8289 via the halt status on the
status lines (82, 81, 80 = 0, 1, 1).

The 8086 Instruction Set
Listed RIphabetlcally

A-2 The 8086 Book

Instruction Object Code Bytes Clock Periods

AAA 37 1 4

AAD D5 2 60

OA

AAM D4 2 83

OA

AAS 3F 1 4

ADC ac.data 000101Ow 2 or 3 4

kk

nil

ADC mem/reg i .data
ijjj

1OOOOOsw 3. 4. 5 reg: 4
mod 010 r/m or 6

[DISPl mem: 17 + EA

IDISP]
kk

Tiil

ADC mem/regi ,mem/reg2
IjJi

OOOIOOdw 2. 3 or 4 reg to reg: 3
mod rrr r/m mem to reg: 9 + EA
[DISP] reg to mem: 16 + EA
(DISPl

ADD ac.data 000001Ow 2 or 3 4

kk
fill

ADD mem/reg,data
LjjJ

1OOOOOsw 3. 4. 5 reg: 4
mod 000 r/m or 6 mem: 17 + EA

[DISP]

[DISP]

kk

[111

ADD mem/reg i ,mem/reg2 OOOOOOdw 2. 3 or 4 reg to reg: 3
mod rrr r/m mem to reg: 9 + EA
[DISP] reg to mem: 16 + EA
[DISP]

AND ac.data 001001Ow 2 or 3 4

kk

rill

AND mem/reg.data lOOOOOOw 3. 4. 5 or reg: 4
mod 100 r/m 6

[DISP] mem:17 + EA

[DISP]
kk

nil

AND mem/reg i .mem/reg 2
ijj-i

OOlOOOdw 2. 3 or 4 reg to reg: 3
mod rrr r/m mem to reg: 9 + EA
[DISP] reg to mem: 16 + EA
[DISP]

CALL addr 9A 5 28

kk

Jj
hh

99

CALL dispie E8 3 19

kk

jj

CALL mem FF 2. 3 or 4 32-bit mem pointer:
mod Oil r/m 37 + EA

[DISP]

[DISP]

CALL mem/reg FF 2. 3. or 4 16-bit reg pointer:
mod 010 r/m 16

[DISP] 16-bit mem pointer:
[DISP] 21 + EA

8086 Instruction Set A-3

Instruction Object Code Bytes Clock Periods

CBW 98 1 2

CLC F8 1 2

CLD FC 1 2

CLI FA 1 2

CMC F5 1 2

CMP ac.data 001 mow 2 or 3 4

kk

Till

CMP mem/reg,data
LJJJ

1OOOOOsw 3. 4, 5 or reg: 4
mod 111 r/m 6 mem: 10 + EA

[DISP]
[DISP]

kk

liil

CMP mem/reg i ,mem/reg2
iJJJ

ooinodw 2, 3 or 4 reg to reg: 3
mod rrr r/m mem to reg: 9 + EA
[DISP] reg to mem: 9 + EA
[DISP]

CMPS lOIOOIIw 1 22

9 + 22/repetition'

CWD 99 1 5

DAA 27 1 4

DAS 2F 1 4

DEC mem/reg 1111111W 2. 3 or 4 reg: 3
mod 001 r/m

[DISP] mem: 15 + EA

[DISP]

DEC 16-bit reg 01001 rrr 1 2

DIV mem/reg iinoiiw 2. 3 or 4 8-bit reg:
mod 110 r/m 80 — 90

[DISP] 16-bit reg:
[DISP] 144 — 162

8-bit mem:

(86 — 96) + EA

16-bit mem:

(150 — 168) + EA

ESC mem/reg IIOIIxxx 2. 3 or 4 mem: 8 + EA

mod XXX r/m reg: 2
[DISP]
[DISP]

HLT F4 1 2

IDIV mem/reg 1111011W 2, 3 or 4 8-bit reg:
mod 111 r/m 101 — 112

[DISP] 16-bit reg:
[DISP] 165 — 184

8-bit mem:

(107 — 118) + EA

16-bit mem:

(171 — 190) + EA

IMUL mem/reg 1111011W 2, 3 or 4 8-bit reg:
mod 101 r/m 80 — 98

[DISP] 16-bit reg:
[DISP] 128 — 154

8-bit mem:

(86 — 104) + EA

16-bit mem:

(134 — 160) + EA

IN ac, DX inoiiow 1 8

IN ac, port inooiow 2 10

• When preceded by REP prefix

A-4 The 8086 Book

Instruction Object Code Bytes Clock Periods

INC mem/reg iiimiw 2. 3 or 4 reg: 3
mod 000 r/m mem: 15 + EA

[DISP]
[DISP]

INC 16-bit reg OlOOOrrr 1 2

INT 11001100- 1 52

11001101 2 51

type

INTO CE 1 interrupt: 53

no interrupt: 4

IRET CF 1 24

JA disp 77 2 4/No Branch

JNBE disp 16/Branch

JAE disp 73 2 4/No Branch

JNB disp 16/Branch

JB disp 72 2 4/No Branch

JNAE disp 8/Branch

JBE disp 76 2 4/No Branch

JNA disp 16/Branch

JCXZ disp E3 2 6/No Branch

disp 18/Branch

JE disp 74 2 4/No Branch

JZ disp 16/Branch

JG disp 7F 2 4/No Branch

JNLE disp 16/Branch

JGE disp 7D 2 4/No Branch

JNL disp 16/Branch

JL disp 7C 2 4/No Branch

JNGE disp 16/Branch

JLE disp 7E 2 4/No Branch

JNG disp 16/Branch

JMP addr EA 5 15

kk

jj
. hh
gg

JMP disp EB 2 15

disp

JMP displ 6 E9 3 15

kk

jj

JMP mem FF 2. 3 or 4 mem ptr 32:
mod 101 r/m 24 + EA

[DISP]
[DISP]

JMP mem/reg FF 2. 3 or 4 reg ptr 16:
mod 100 rr/m 11

[DISP] mem ptr 16:
[DISP] 18 + EA

JNE disp 75 2 4/No Branch

JNZ disp 16/Branch

JNG disp 71 2 4/No Branch

disp 16/Branch

JNP disp 7B 2 4/No Branch

JPO disp 16/Branch

JNS disp 79 2 4/No Branch

disp 16/Branch

JO disp 70 2 4/No Branch

disp 16/Branch

' Implied type - 3

8086 Instruction Set A-5

Instruction Object Code Bytes Clock Periods

JP disp 7A 2 4/No Branch

JPE disp 16/Branch

JS disp 78

disp

2 4/No Branch

16/Branch

LAHF 9F 1 4

LDS reg.mem 05

mod rrr r/m

[DISP]

[DISP]

2, 3 or 4 16 + EA

LEA

LES

reg.mem

reg.mem

SD

mod rrr r/m

[DISP]

[DISP]

04

mod rrr r/m

[DISP]

[DISP]

2, 3 or 4

2. 3 or 4

2 + EA

16 + EA

LOCK FO 1 2

LCDS lOIOIlOw 1 12

9 + 13/repetition*

LOOP disp E2

disp

2 5/No Branch

17/Branch

LOOPE

LOOPZ

disp El

disp
2 6/No Branch

18/Branch

LOOPNE

LOOPNZ

disp EO

disp
2 5/No Branch

19/Branch

MOV mem/reg i ,mem/reg2 lOOOIOdw

mod rrr r/m

[DISP]

[DISP]

2. 3 or 4 reg to reg: 2
reg to mem: 8 + EA
mem to reg: 9 + EA

MOV reg,data 101 Iwrrr

kk

[ii]

2 or 3 4

MOV ac.mem

ijjj

lOIOOOOw

kk

jj

3 10

MOV mem.ac 1010001w

kk

jj

3 10

MOV segreg, mem/reg BE

mod Orr r/m

[DISP]

[DISP]

2. 3 or 4 reg to reg: 2
mem to reg: 8 + EA

MOV mem/reg,segreg 80

mod Orr r/m

[DISP]

[DISP]

2. 3 or 4 reg to reg: 2
reg to mem: 9 + EA

MOV mem/reg,data 1100011w

mod 000 r/m

[DISP]

[DISP]

kk

[iil

3, 4. 5 or

6

reg/mem: 10 + EA

MOVS 101001Ow 1 18

9 + 1 7/repetition*

• When preceded by REP prefix

A-6 The 8086 Book

Instruction Object Code Bytes Clock Periods

MUL mem/reg inioiiw 2, 3 or 4 8-bit reg:
mod 100 r/m 70 — 77

[DiSP] 16-bit reg:
[DISP] 118 — 133

8-bit mem:

(76 — 83) + EA

16-bit mem:

(124 — 139) + EA

NEG mem/reg . 1111011W 2. 3 or 4 reg: 3

mod 011 r/m mem: 16 + EA

[DISP]
IDISP]

NOP 90 1 3

NOT mem/reg 11IIOIIw 2, 3 or 4 reg: 3
mod 010 r/m mem: 16 + EA

(DISP]
[DISP]

OR ac.data 00001lOw 2 or 3 4

kk

fjj]

OR mem/reg,data lOOOOOOw 3, 4. 5 or reg: 4
mod 001 r/m 6 mem: 17 + EA

[DISP]

[DISP]

kk

[jj]

OR mem/reg i,mem/reg2
ijj-'

0000lOdw 3. 4, 5 or 6 reg to reg: 3
mod rrr r/m mem to reg: 9 + EA
[DISP] reg to mem: 16 + EA
[DISP]

kk

fii]

OUT DX.ac

iJJJ

iiioniw 1 8

OUT port.ac inooiiw 2 10

yy

POP mem/reg 8F 2, 3 or 4 reg: 8
mod 000 r/m mem: 17 + EA

[DISP]

[DISP]

POP reg 01011 rrr 1 8

POP segreg OOOsslll 1 8

POPF 9D 1 8

PUSH mem/reg FF 2. 3 or 4 reg: 11
mod 110 r/m mem: 16 + EA

[DISP]

[DISP]

PUSH reg OlOIOrrr 1 10

PUSH segreg OOOssllO 1 10

PUSHF 9C 1 10

RCL mem/reg,count IIOIOOcw 2. 3 or 4 count = 1

mod 010 r/m reg: 2
[DISP] mem: 15 + EA

[DISP] count = [CL]

reg: 8 + (4 * N)
mem: 20 + EA + (4 * N)

N = count value in CL

8086 Instruction Set A-7

Instruction Object Code Bytes Clock Periods

RCR mem/reg,count 1lOIOOcw 2. 3 or 4 count = 1

mod 011 r/m reg: 2

[DISP] mem: 15 + EA

[DISP] count = [CL]

reg: 8 + (4 • N)
mem: 20 + EA + (4 * N)

REP /REPE/REPNE IIIIOOIz 1 2

RET (Inter-segment) CB 1 18

RET (Intra-segment) C3 1 8

RET disp 16 (Inter-segment) OA 3 17

kk

jj

RET disp 16 (Intra-segment) 02 3 12

kk

jj

ROL mem/reg,count 1lOIOOcw 2. 3 or 4 count = 1

mod 000 r/m reg: 2

[DISP] mem:15 + EA

[DISP] count = [CL]

reg: 8 + (4 ' N)
mem: 20 + EA + (4 ' N)

ROR mem/reg.count 1lOIOOcw 2. 3 or 4 count = 1

mod 001 r/m reg: 2

[DISP] mem:15 + EA

[DISP] count = [CL]

reg: 8 + (4 * N)
mem: 20 + EA + (4 ' N)

SAHF 9E 1 4

SAR mem/reg.count 1lOIOOcw 2. 3 or 4 count = 1

mod 111 r/m reg: 2

[DISP] mem:15 + EA

[DISP] count = [CL]

reg: 8 + (4 • N)
mem: 20 + EA + (4 ' N)

SBB ac.data 000111Ow 2 or 3 4

kk

fii]

SBB mem/reg.data

iJJJ

1OOOOOsw 3. 4. 5 or reg: 4

mod 011 r/m 6 mem: 17 + EA

[DISP]
[DISP]

kk

[il]

SBB mem/reg i ,mem/reg2

iJJJ

0001lOdw 2. 3 or 4 reg from reg: 3

mod rrr r/m mem from reg: 9 + EA

[DISP] reg from mem: 16 + EA

[DISP]

SCAS lOIOIIIw 1 15

9 + 15/repetition'

SEG segreg OOlssllO 1 2

SHL mem/reg.count 1lOIOOcw 2. 3 or 4 count = 1

SAL mod 100 r/m reg: 2

[DISP] mem:15 + EA

[DISP] count = [CL]

reg: 8 + (4 ' N)
mem: 20 + EA + (4 ' N)

• When preceded by REP prefix

N = count value in CL

A-8 The 8086 Book

Instruction Object Code Bytes Clock Periods

SHR mem/reg,count 110100CW 2, 3 or 4 count = 1

mod 101 r/m reg: 2
[DISP] mem:15 + EA

[DISP] count = [CL]

reg: 8 + (4 " N)
mem: 20 + EA + (4 * N)

STC F9 1 2

STD FD 1 2

STI FB 1 2

STOS lOIOIOIw 1 11

9 + 10/repetition'

SUB ac.data 00101lOw 2 or 3 4

kk

rni

SUB mem/reg,data
ijjj

1OOOOOsw 3, 4, 5 or reg: 4
mod 101 r/m 6 mem: 17 + EA

[DISP]

[DISP]

kk

[iil

SUB mem/reg'|,mem/reg2 OOlOIOdw 2. 3 or 4 reg from reg: 3
mod rrr r/m mem from reg: 9 + EA
[DISP] reg from mem: 16 + EA
[DISP]

TEST ac.data lOIOIOOw 2 or 3 4

kk

[ii]

TEST mem/reg.data iinoiiw 3. 4, 5 or reg: 5
mod 000 r/m 6 mem: 11 + EA

[DISP]

[DISP]

kk

[iil

TEST reg,mem/reg
IJJJ

lOOOOlOw 2, 3 or 4 reg with reg: 3
mod rrr r/m reg with mem: 9 + EA
[DISP]
[DISP]

WAIT 9B 1 3(min.) + 5n

XCHG reg.ac lOOIOrrr 1 3

XCHG reg,mem/reg 1000011w 2. 3 or 4 reg with reg: 4
mod rrr r/m reg with mem: 17 + EA
[DISP]

[DISP]

XLAT D7 1 11

XOR ac.data 001101Ow 2 or 3 4

kk

Fiil

XOR mem/reg.data
IJJJ

lOOOOOOw 3, 4, 5 or reg: 4
mod 110 r/m 6 mem: 17 + EA

[DISP]
[DISP]

kk

liil

XOR mem/reg -j ,mem/reg2
IJJJ

OOllOOdw 2, 3 or 4 reg with reg: 3
mod rrr r/m mem with reg: 9 + EA
[DISP] reg with mem: 16 + EA
[DISP]

n = clocks per sample of the TEST input

B
The 8086 Instruction Set

Object Cades In
Rscending Numeric Sequence

B-2 The 8086 Book

Object Code

Byte # 0 Byte # 1 Succeeding Bytes
Mnemonic

00 mod reg r/m [disp][disp] ADD mem/reg,reg (byte)
01 mod reg r/m [displidisp] ADD mem/reg,reg (word)
02 mod reg r/m [disp][disp] ADD reg, mem/reg (byte)
03 mod reg r/m [disp][disp] ADD reg. mem/reg (word)
04 kk ADD AL,kk

05 kk jj ADD AX, jjkk
06 PUSH ES

07 POP ES

08 mod reg r/m [displldisp] OR mem/reg,reg (byte)
09 mod reg r/m [displldisp] OR mem/reg,reg (word)
OA mod reg r/m [dispKdisp] OR reg, mem/reg (byte)
08 mod reg r/m [disp][disp] OR reg,mem/reg (word)
OC kk OR AL,kk

OD kk jj OR AUjjkk
OE PUSH OS

OF Not used

10 mod reg r/m [disp][disp] ADC mem/reg,reg (byte)
11 mod reg r/m [dispKdisp] ADC mem/reg,reg (word)
12 mod reg r/m [disp][disp] ADC reg,mem/reg (byte)
13 mod reg r/m [disp][disp] ADC reg,mem/reg (word)
14 kk ADC AL.kk

15 kk jj ADC AX.jjkk
16 PUSH SS

17 POP SS

18 mod reg r/m [disp][disp] SBB mem/reg,reg (byte)
19 mod reg r/m [disp][disp] SBB mem/reg,reg (word)
1A mod reg r/m [disp][disp] SBB reg,mem/reg (byte)
IB mod reg r/m [displldisp] SBB reg,mem/reg (word)
10 kk SBB AL,kk

ID kk ii SBB AX,jjkk
IE PUSH DS

IF POP DS

20 mod reg r/m [displldisp] AND mem/reg,reg (byte)
21 mod reg r/m [displldisp] AND mem/reg,reg (word)
22 mod reg r/m [displldisp] AND reg,mem/reg (byte)
23 mod reg r/m [displldisp] AND reg,mem/reg (word)
24 kk AND AL,kk

25 kk jj AND AX.ijkk
26 SEG ES

27 DAA

28 mod reg r/m [displldisp] SUB mem/reg,reg (byte)
29 mod reg r/m [displldisp] SUB mem/reg,reg (word)
2A mod reg r/m [displldisp] SUB reg,mem/reg (byte)
28 mod reg r/m [displldisp] SUB reg,mem/reg (word)
20 kk SUB AL,kk

2D kk jj SUB AX,ljkk
2E SEG CS

2F DAS

8086 Instruction Set Object Codes B-3

Object Code
Mnemonic

Byte # 0 Byte # 1 Succeeding Bytes

30 mod reg r/m [disp][disp] XOR mem/reg,reg (byte)

31 mod reg r/m [displldisp] XOR mem/reg,reg (word)

32 mod reg r/m [displldisp] XOR reg,mem/reg (byte)

33 mod reg r/m [displldisp] XOR reg,mem/reg (word)

34 kk XOR AL,kk

35 kk jj XOR AX.jjkk

36 SEG 88

37 AAA

38 mod reg r/m [displldisp] OMR mem/reg,reg (byte)

39 mod reg r/m [displldisp] OMR mem/reg,reg (word)

3A mod reg r/m [displldisp] OMR reg,mem/reg (byte)

3B mod reg r/m [displldisp] OMR reg,mem/reg (word)

30 kk OMR AL,kk

3D kk jj OMR AX.jjkk

3E 8EG 08

3F AA8

40 INO AX

41 INO OX

42 INO OX

43 INO 8X

44 INO 8R

45 INO 8R

46 INO 81

47 INO 01

48 OEO AX

49 OEO OX

4A OEO OX

48 OEO BX

40 OEO 8R

4D OEO BR

4E OEO 81

4F OEO 01

50 RU8H AX

51 RU8H OX

52 RU8H OX

53 RU8H BX

54 RU8H 8R

55 RU8H BR

56 RU8H 81

57 RU8H 01

58 ROR AX

59 ROR OX

5A ROR OX

58 ROR BX

50 ROR 8R

50 ROR BR

5E ROR 81

5F ROR 01

60-6F Not Used

B-4 The 8086 Book

Object Code
Mnemonic

Byte # 0 Byte # 1 Succeeding Bytes

70 disp JO disp

71 disp JNO disp

72 disp JB or JNAE or JO disp

73 disp JNB or JAE or JNC disp

74 disp JE or JZ disp

75 disp JNE or JNZ disp

76 disp JBE or JNA disp

77 disp JNBE or JA disp

78 disp JS disp

79 disp JNS disp

7A disp JP or JPE disp

78 disp JNP or JPO disp

70 disp JL or JNGE disp

7D disp JNL or JGE disp

7E disp JLE or JNG disp

7F disp JNLE or JG disp

80 mod 000 r/m [disp] [disp] kk ADD mem/reg,kk

80 mod 001 r/m [disp] [disp] kk OR mem/reg,kk

80 mod 010 r/m [disp] [disp] kk ADC mem/reg,kk

80 mod 011 r/m [disp] [disp] kk SBB mem/reg,kk

80 mod 100 r/m [disp] [disp] kk AND mem/reg.kk

80 mod 101 r/m [disp] [disp] kk SUB mem/reg,kk

80 mod 110 r/m [disp] [disp] kk XOR mem/reg, kk

80 mod 111 r/m [disp] [disp] kk CMP mem/reg,kk

81 mod 000 r/m [disp] [disp] kkjj ADD mem/reg,jjkk

81 mod 001 r/m [disp][disp] kkjj OR mem/reg,pk

81 mod 010 r/m [disp] [disp] kkjj ADC mem/reg,jjkk

81 mod 011 r/m [disp] [disp] kkjj SBB mem/reg,jjkk

81 mod 100 r/m [disp] [disp] kkjj AND mem/reg,jjkk

81 mod 101 r/m [disp] [disp] kkjj SUB mem/reg,jjkk

81 mod 110 r/m [disp] [disp] kkjj XOR mem/reg,jjkk

81 mod 111 r/m [disp] [disp] kkjj CMP mem/reg,jjkk

82 mod 000 r/m [disp][disp] kk ADD mem/reg,kk (byte)

82 XX 001 XXX Not used

82 mod 010 r/m [disp] [disp] kk ADC mem/reg,kk (byte)
82 mod 011 r/m [disp] [disp] kk SBB mem/reg.kk (byte)
82 XX 100 XXX Not used

82 mod 101 r/m [disp] [disp] kk SUB mem/reg,kk (byte)

82 XX 1 1 0 XXX Not used

82 mod 111 r/m [disp] [disp] kk CMP mem/reg,kk (byte)

83 mod 000 r/m [disp] [disp] kk ADD mem/reg,jjkk (word-sign extended)
83 XX 001 XXX Not used

83 mod 010 r/m [disp] [disp] kk ADC mem/reg,jjkk (word-sign extended)
83 mod Oil r/m [disp][disp] kk SBB mem/reg,jjkk (word-sign extended)

83 XX 100 r/m Not used

83 mod 101 r/m [disp] [disp] kk SUB mem/reg,jjkk (word-sign extended)

83 XX 1 1 0 XXX Not used

83 mod 111 r/m [disp][disp] kk CMP mem/reg,jjkk (word-sign extended)
84 mod reg r/m [disp] [disp] TEST mem/reg,reg (byte)

85 mod reg r/m [disp] [disp] TEST mem/reg,reg (word)

86 mod reg r/m [disp] [disp] XCHG reg,mem/reg (byte)

87 mod reg r/m [disp] [disp] XCHG reg,mem/reg (word)

88 mod reg r/m [disp] [disp] MOV mem/reg,reg (byte)

89 mod reg r/m [disp] [disp] MOV mem/reg,reg (word)

8086 Instruction Set Object Codes B-5

Object Code
Mnemonic

Byte # 0 Byte # 1 Succeeding Bytes

8A mod reg r/m [disp][disp] MOV reg,mem/reg (byte)

8B mod reg r/m [dispKdisp] MOV reg,mem/reg (word)

80 mod Oss r/m [disp][dtsp] MOV mem/reg,segreg

80 XX Ixxxxx Not used

8D mod reg r/m [displldisp] LEA reg.addr

8E mod Oss r/m [displldisp] MOV segreg, mem/reg

8E XX Ixxxxx Not used

8F mod 000 r/m [dispKdisp] POP mem/reg

8F XX 001 XXX Not used

8F XX 010 XXX Not used

8F XX 011 XXX Not used

8F XX 100 XXX Not used

8F XX 101 XXX Not used

8F XX 110 XXX Not used

8F XX 1 11 XXX Not used

Not used

90 NOP

91 XCHG AX.CX

92 XCHG AX.DX

93 XCHG AX,BX

94 XCHG AX,SP

95 XCHG AX,BP

96 XCHG AX,SI

97 XCHG AX.DI

98 CBW

99 CWD

9A kk ii hh gg CALL addr

98 WAIT

90 PUSHF

9D POPF

9E SAHF

9F LAHF

AO qq PP MOV AUaddr

A1 qq PP MOV AX,addr

A2 qq PP MOV addr.AL

A3 qq PP MOV addr,AX

A4 MOVS BYTE

A5 MOVS WORD

AS CMPS BYTE

A7 CMPS WORD

A8 kk TEST, AUkk

A9 kk ii TEST AXJjkk

AA STOS BYTE

AS STOS WORD

AO LODS BYTE

AD LODS WORD

AE SCAS BYTE

AF SCAS WORD

B-6 The 8086 Book

Object Code
Mnemonic

Byte # 0 Byte # 1 Succeeding Bytes

80 kk MOV AUkk

81 kk MOV OL,kk

82 kk MOV DUkk

83 kk MOV BUkk

84 kk MOV AH.kk

85 kk MOV OH,kk

86 kk MOV DH.kk

87 kk MOV 8H,kk

88 kk MOV AX.jikk

89 kk MOV OXJkk

8A kk MOV DX.ijkk

88 kk MOV 8X.likk

80 kk MOV SP.jjkk

8D kk MOV 8P,ijkk

8E kk MOV Sljjkk

8F kk jj MOV Dl,ljkk

CO Not used

01 Not used

02 kk jj RET jjkk

03 RET

04 mod reg r/m [dispKdisp] LES reg.addr
05 mod reg r/m [dispKdisp] LDS reg.addr
06 mod 000 r/m [dispKdisp] kk MOV mem.kk

06 XX 001 XXX Not used

06 XX 010 XXX Not used

06 XX 01 1 XXX Not used

06 XX 100 XXX Not used

06 XX 101 XXX Not used

06 XX 1 10 XXX Not used

06 XX 11 1 XXX Not used

07 mod 000 r/m [disp][disp] kkjj MOV mem.jjkk
07 XX 001 XXX Not used

07 XX 010 XXX Not used

07 XX 01 1 XXX Not used

07 XX 100 XXX Not used

07 XX 101 XXX Not used

07 XX 1 10 XXX Not used

07 XX 111 XXX Not used

08 Not used

09 Not used

OA kk jj RET jjkk
08 RET

00 INT 3

OD type INT Type
OE INTO

OF IRET

8086 Instruction Set Object Codes B-7

Object Code
Mnemonic

Byte #0 Byte # 1 Succeeding Bytes

DO mod 000 r/m [disp] [disp] ROL mem/reg, 1 (byte)

DO mod 001 r/m [disp] [disp] ROR mem/reg, 1 (byte)

DO mod 010 r/m [disp] [disp] RCL mem/reg, 1 (byte)

DO mod 011 r/m [disp] [disp] RCR mem/reg, 1 (byte)

DO mod 100 r/m [disp] [disp] SAL or SHL mem/reg, 1 (byte)

DO mod 101 r/m [disp] [disp] SHR mem/reg, 1 (byte)

DO XX 110 XXX Not used

DO mod 111 r/m [disp] [disp] SAR mem/reg, 1 (byte)

D1 mod 000 r/m [disp] [disp] ROL mem/reg, 1 (word)

D1 mod 001 r/m [disp] [disp] ROR mem/reg, 1 (word)

D1 mod 010 r/m [disp] [disp] RCL mem/reg, 1 (word)

D1 mod 011 r/m [disp] [disp] RCR mem/reg, 1 (word)

D1 mod 100 r/m [disp] [disp] SAL or SHL mem/reg, 1 (word)

Di mod 101 r/m [disp] [disp] SHR mem/reg, 1 (word)

D1 XX 110 XXX Not used

DI mod 111 r/m [disp] [disp] SAR mem/reg, 1 (word)

D2 mod 000 r/m [disp] [disp] ROL mem/reg,CL (byte)

D2 mod 001 r/m [disp] [disp] ROR mem/reg,CL (byte)

D2 mod 010 r/m [disp] [disp] RCL mem/reg,CL (byte)

D2 mod 011 r/m [disp] [disp] RCR mem/reg,CL (byte)

D2 mod 100 r/m [disp] [disp] SAL or SHL mem/reg,CL (byte)

D2 mod 101 r/m [disp] [disp] SHR mem/reg,CL (byte)

D2 XX 110 XXX Not used

D2 mod 111 r/m [disp] [disp] SAR mem/reg,CL (byte)

D3 mod 000 r/m [disp] [disp] ROL mem/reg,CL (word)

D3 mod 001 r/m [disp] [disp] ROR mem/reg,CL (word)

D3 mod 010 r/m [disp] [disp] RCL mem/reg,CL (word)

D3 mod 011 r/m [disp] [disp] RCR mem/reg,CL (word)

D3 mod 100 r/m [disp] [disp] SAL or SHL mem/reg,CL (word)

D3 mod 101 r/m [disp] [disp] SHR mem/reg,CL (word)

D3 XX 1 1 0 XXX Not used

D3 mod 111 r/m [disp] [disp] SAR mem/reg,CL (word)

D4 OA AAM

D5 OA AAD

D6 Not used

D7 XLAT

D8 mod XXX r/m [disp] [disp] ESC mem/reg

D9 mod XXX r/m [disp] [disp] ESC mem/reg

DA mod XXX r/m [disp] [disp] ESC mem/reg

DB mod XXX r/m [disp] [disp] ESC mem/reg

DC mod XXX r/m [disp] [disp] ESC mem/reg

DD mod XXX r/m [disp] [disp] ESC mem/reg

DE mod XXX r/m [disp] [disp] ESC mem/reg

DF mod XXX r/m [disp] [disp] ESC mem/reg

EO disp LOOPNE/LOOPNZ disp

El disp LOOPE/LOOPZ disp

E2 disp LOOP disp

E3 disp JCXZ disp

E4 kk IN AL,kk

E5 kk IN AX,kk

E6 kk OUT kk,AL

E7 kk OUT kk,AX

E8 disp disp CALL disp 16

E9 disp disp JMP disp 16

B-8 The 8086 Book

Object Code
Mnemonic

Byte # 0 Byte # 1 Succeeding Bytes

EA kk jj hh 99 JMP addr

EB disp JMP disp

EC IN AL,DX

ED IN AX,DX

EE OUT DX,AL

EF OUT DX,AX

FO LOCK

F1 Not used

F2 REPNE or REPNZ

F3 REP or REPE or REPZ

F4 HLT

F5 CMC

F6 mod 000 r/m [disp] [disp] kk TEST mem/re9,kk

F6 XX 001 XXX Not used

F6 mod 010 r/m [disp] [disp] NOT mem/re9 (byte)
F6 mod 011 r/m [disp] [disp] NEG mem/re9 (byte)
F6 mod 100 r/m [disp] [disp] MUL mem/reg (byte)
F6 mod 101 r/m [disp] [disp] IMUL mem/reg (byte)
F6 mod 110 r/m [disp] [disp] DIV mem/reg (byte)
F6 mod 111 r/m [disp] [disp] IDIV mem/reg (byte)
F7 mod 000 r/m [disp] [disp] kkjj TEST mem/reg,]]kk
F7 XX 001 XXX Not used

F7 mod 010 r/m [disp] [disp] NOT mem/reg (word)
F7 mod 011 r/m [disp] [disp] NEG mem/reg (word)
F7 mod 100 r/m [disp] [disp] MUL mem/reg (word)
F7 mod 101 r/m [disp] [disp] IMUL mem/reg (word)
F7 mod 110 r/m [disp] [disp] DIV mem/reg (word)
F7 mod 111 r/m [disp] [disp] IDIV mem/reg (word)
F8 CLC

F9 STC

FA CLI

FB STI

FC CLD

FD STD

FE mod 000 r/m [disp] [disp] INC mem/reg (byte)
FE mod 001 r/m [disp] [disp] DEC mem/reg (byte)
FE XX 010 XXX Not used

FE XX 01 1 XXX Not used

FE XX 100 XXX Not used

FE XX 101 XXX Not used

FE XX 1 10 XXX Not used

FE XX 1 1 1 XXX Not used

FF mod 000 r/m [disp] [disp] INC mem/reg (word)

FF mod 001 r/m [disp] [disp] DEC mem/reg (word)
FF mod 010 r/m [disp] [disp] CALL mem/reg

FF mod 011 r/m [disp] [disp] CALL mem

FF mod 100 r/m [disp] [disp] JMP mem/reg

FF mod 101 r/m [disp] [disp] JMP mem

FF mod 110 r/m [disp] [disp] PUSH mem

FF XX 1 1 1 XXX Not used

The 8086 and 8088 Family
RC and DC Characteristics

and Signal UJaveforms

This section contains specific electrical and timing data for the following devices:

8086 CPU

8088 CPU

8282/8283 Octal Latch

8284 Clock Generator

8286/8287 Octal Bus Transceiver

8288 Bus Controller

8289 Bus Arbiter

C-2 The 8086 Book

8086/8086-2/8086-4

8086 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER)
TIMING Requirements

8086/8086-4 8086-2

Symbol Parameter Mln. Max. Mln. Max. Units Test CondJtJpns

TCLCL CLK Cycle Period — 8086
- 8086-4

200

250

500

500

125 500 ns

TCLCH CLK Low Time (2/b TCLCL)-15 (2/) TCLCL)-15 ns

TCHCL CLK High Time (Va TCLCL)-I-2 (Vs TCLCL)-F 2 ns

TCH1CH2 CLK Rise Time 10 10 ns From 1.0V to 3.5V

TCL2CL1 CLK Fall Time 10 10 ns From 3.5V to 1.0V

TDVCL Data In Setup Time 30 20 ns

TCLDX Data In Hold Time 10 10 ns

TR1VCL RDY Setup Time into 8284 (See Notes 1, 2) 35 35 ns

TCLR1X RDY Hold Time into 8284 (See Notes 1. 2) 0 0 ns

TRYHCH READY Setup Time into 8086 (2/3 TCLCL) - 15 (2/3 TCLCL)-15 ns

TCHRYX READY Hold Time into 8086 30 20 ns

TRYLCL READY Inactive to CLK (See Note 4) -8 -8 ns

TINVCH Setup Time for Recognition
(INTR, Nf^l. TEST) (See Note 2)

30 15 ns

TGVCH RQ/GT Setup Time 30 15 ns

TCHGX RQ Hold Time into 8086 40 30 ns

TIMING RESPONSES 8086/6086-4 8086-2

Symbol Parameter Mln. Max. Min. Max. Units Test Conditions

TCLML Command Active Delay (See Note 1) 10 35 10 35 ns

TCLMH Command Inactive Delay (See Note 1) 10 35 10 35 ns

TRYHSH READY Active to Status Passive (See Note 3) 110 65 ns

TCHSV Status Active Delay 10 110 10 60 ns

TCLSH Status Inactive Delay 10 130 10 70 ns

TCLAV Address Valid Delay 10 110 10 60 ns

TCLAX Address Hold Time 10 10 ns

TCLAZ Address Float Delay TCLAX 80 TCLAX 50 ns

TSVLH Status Valid to ALE High (See Note 1) 15 15 ns

TSVMGH Status Valid to MCE High (See Note 1) 15 15 ns

TCLLH CLK Low to ALE Valid (See Note 1) 15 15 ns

TCLMCH CLK Low to MCE High (See Note 1) 15 15 ns

TCHLL ALE Inactive Delay (See Note 1) 15 15 ns Cl= 20-100 pF for

TCLMCL MCE Inactive Delay (See Note 1) 15 15 ns
all 8086 Outputs
(In addition to

8086 self-load)TCLDV Data Valid Delay 10 110 10 60 ns

TCHDX Data Hold Time 10 10 ns

TCVNV Control Active Delay (See Note 1) 5 45 5 45 ns

TCVNX Control Inactive Delay (See Note 1) 10 45 10 45 - "S
TAZRL Address Float to Read Active 0 0 ns

TCLRL RD Active Delay 10 165 10 100 ns

TCLRH RD Inactive Delay 10 150 10 80 ns

TRHAV RD Inactive to Next Address Active TCLCL-45 TCLCL-40 ns

TCHDTL Direction Control Active Delay (See Note 1) 50 50 ns

TCHDTH Direction Control Inactive Delay (See Note 1) 30 30 ns

TCLGL ST Active Delay 0 85 0 50 ns

TCLGH GT Inactive Delay 0 85 0 50 ns

TRLRH RD Width 2TCLCL-75 2TCLCL-50 ns

NOTES: 1. Signal at 8264 or 8288 shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
3. Applies only to T3 and wait states.
4. Applies only to 12 state (8 ns into 13).

Data Sheets on pages C-2 through C-35 are reprinted with permission, copyright ' Intel Corporation. 1979.

8086 and 8088 Data Sheets C-3

8086/8086-2/8086-4

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias 0°C to 70X
Storage Temperature -65°C to -i- 150'C
Voltage on Any Pin with

Respect to Ground - 1.0 to + 7V
Power Dissipation 2.5 Watt

D.C. CHARACTERISTICS

8086: TA = 0»Cto70»C, Vcc = 5V ±10%
8086-2/8086-4: Ta = 0 »C to 70 "C, Vqc = 5V ± 5 %

'COMMENT: Stresses alwve those listed under "Ab^olu^"'^B^in ^
Ratings" may cause permanent damage to the device. Thi^%'j^^lri5||s
rating only and functional operation of the device at these or any^^er
conditions above those indicated in the operational sections of thf^
specification is not Implied. Exposure to absolute maxirnum rating con
ditions for extended periods may affect device reliability.

Symbol Parameter MIn. Max. Units Teat Conditions

V|L input Low Voltage -0.5 -1-0.8 V

V|H input High Voltage 2.0 Vcc+0.5 V

VoL Output Low Voltage 0.45 V loL= 2.0 mA

VoH Output High Voltage 2.4 V 'oh = ~ ̂00 pA

'go Power Supply Current
8086/8086-4

8086-2

340

350

 << EE

Ta = 25'C

'li input Leakage Current ±10 mA OV < V,N < Vcc

'lo Output Leakage Current ±10 mA 0.45V <VouT<Vcc

_i
o
>

Clock input Low Voltage -0.5 -1-0.6 V

Vqh Clock input High Voltage 3.9 Vcc+ 1-0 V

C|N

Capacitance of input Buffer
(Ail input except
ADo-ADi5, RQ/GT)

10 PF fc=1 MHz

C|o
Capacitance of I/O Buffer
(ADo-ADi5, RQ/GT)

20 PF fc= 1 MHz

C-4 The 8086 Book

8086/8086-2/8086-4

A.C. CHARACTERISTICS

8086: Ta = O'C to 70 "C, Vcc = 5V ± 10%
8086-2/8086-4: Ta = CC to 70°C, Vcc = 5V ± 5%

8086 MINIMUM COMPLEXITY SYSTEM (Figures 8, 9,12,15)
TIMING REQUIREMENTS

8088/8088-4 8086-2

Symbol Parameter MIn. Max. MIn. Max. Units Test Conditions

TCLCL CLK Cycle Period — 8086
- 8086-4

200

250

500

500

125 500 ns

TCLCH CLK Low Time {2/3 TCLCL) - 15 (% TCLCL)-15 ns

TCHCL CLK High Time ('/j TCLCL)-h 2 (Vs TCLCL)-k 2 ns

TCH1CH2 CLK Rise Time 10 10 ns From 1.0V to 3.5V

TCL2CL1 CLK Fall Time 10 10 ns From 3.5V to 1.0V

TDVCL Data In Setup Time 30 20 ns

TCLDX Data In Hold Time 10 10 ns

TR1VCL RDY Setup Time into 8284 (See Notes 1.2) 35 35 ns

TCLR1X RDY Hold Time into 8284 (See Notes 1. 2) 0 0 ns

TRYHCH READY Setup Time into 8086 {2/3 TCLCL) - 15 (2.^ TCLCL)-15 ns

TCHRYX READY Hold Time into 8086 30 20 ns

TRYLCL READY Inactive to CLK (See Note 3) -8 -8 ns

THVCH HOLD Setup Time 35 20 ns

TINVCH INTR, NMI. TEST Setup Time (See Note 2) 30 15 ns

TIMING RESPONSES 8086/8086-4 8086-2

Symbol Parameter MIn. Max. MIn. Max. Units Test Conditions

TCLAV Address Valid Delay 10 110 10 60 ns

Cl= 20-100 pF for
all 8086 Outputs
(In addition to
8086 self-load)

TCLAX Address Hold Time 10 10 ns

TCLAZ Address Float Delay TCLAX 80 TCLAX 50 ns

TLHLL ALE Width TCLCH-20 TCLCH-10 ns

TCLLH ALE Active Delay 80 50 ns

TCHLL ALE Inactive Delay 85 55 ns

TLLAX Address Hold Time to ALE Inactive TCHCL-10 TCHCL-10 ns

TCLDV Data Valid Delay 10 110 10 60 ns

TCHDX Data Hold Time 10 10 ns

TWHDX Data Hold Time After WR TCLCH-30 TCLCH-30 ns

TCVCTV Control Active Delay 1 10 110 10 70 ns

TCHCTV Control Active Delay 2 10 110 10 60 ns

TCVCTX Control Inactive Delay 10 110 10 70 ns

TAZRL Address Float to READ Active 0 0 ns

TCLRL RD Active Delay 10 165 10 100 ns

TCLRH RC Inactive Delay 10 150 10 80 ns

TRHAV R5 Inactive to Next Address Active TCLCL-45 TCLCL-40 ns

TCLHAV HLDA Valid Delay 10 160 10 100 ns

TRLRH RC Width 2TCLCL-75 2TCLCL-60 ns

TWLWH WR Width 2TCLCL-eO 2TCLCL-40 ns

TAVAL Address Valid to ALE Low TCLCH-60 TCLCH-40 ns

NOTES: 1. Signal at 8284 shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
3. Applies only to 12 state. (8 ns Into T3)

8086 and 8088 Data Sheets C-5

8086/8086-2/8086-4

Ti

TCLCL-

CLK (8284 Output)

BHE/S7. Ai9/Se-Ai6/S3

ROY (8284 Input)

SEE NOTE 4

READY (8888 Input)

READ CYCLE

(NOTE 1)

(WR,iNTA = VoH)

Tj

TCH1CH2-*

T3 Tw

TCL2CL1 !

BHE, Ai9-At6

TCLDVl-

\r

TAVAL

TLLAX-^ j

V|H-

Vit •

TRYLCL-

X

Nr
A_

r-
/

-/

A /

TCHCTV TCLRL

TRYHCH —

-»-TCLAZ

FLOAT

r

FLOAT

8086 Bus Timing — Minimum Mode System

C-6 The 8086 Book

8086/8086-2/8086-4

Ti

- TCLCL -

CLK (8284 Output)

A_

BHBSr, Ai9/St-Ais/S3 BHE.A19-A18
1

/

H TA.

WRITE CYCLE

(NOTE 1)

(So. i?rfA,
OT/H = Voh)

TAVAL

TCHLL—I

ADis-ADo

TWCTvJ l-hl""'-
TLTLLAX

X

A

/—

INTA CYCLE

(NOTES 1 & 3)

So, 97S = Voh
BHEs Vql)

TCVCTX

TCVCTV

TCVCTX-►

TCLOXTDVCL

FLOATFLOAT

TCHCTVTCHCTV

TCVCTV —

TCVCTV— TCVCTX—

SOFTWARE HALT - (Be??® ad„
Vol:RD.WB.IHTa.dt/R = Voh) zqc

V— I—

INVALID ADDRESS

NOTES: 1. ALL SIGNALS SWITCH BETWEEN Vqh AND Vql UNLESS OTHERWISE
SPECIFIED.

2. RDY IS SAMPLED NEAR THE END OF Tj, Ts, Tw TO DETERMINE IF Tw
MACHINES STATES ARE TO BE INSERTED.

3. TWO iNTA CYCLES RUN BACK TO-BACK. THE 8086 LOCAL ADDR/DATA BUS IS
FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS SHOWN FOR
SECOND INTA CYCLE.

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY.
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.SV UNLESS OTHERWISE

NOTED.

8086 Bus Timing — Minimum Mode System (cont'd)

8086 and 8088 Data Sheets C-7

8086/8086-2/8086-4

§5,5^.55 (EXCEPT HALT)

BHBSr, Afg/Sfl-Ait/Sa

ALE (8268 OUTPUT)

TSVLH-*^
TCLLH-

READY (8088 INPUT) \

READ CYCLE TCLAV—I

ADis-ADq

-TCLCL-

f
}

sr
-A-

M

X

A-

r

±

_A-

X
♦ TCLSH

7m>WlŴf. (

X

SEE NOTE a

TCHDX —

L-^l I-

8288 OUTPUTS

SEE NOTES S.6

TRYHCH-»

FLOAT

3C

i;
/

FLOAT

TCHDTH

8086 Bus Timing — Maximum Mode System (Using 8288)

C-8 The 8086 Book

8086/8086-2/8086-4

""■i

s^.s; .53 (EXCEPT HALT)

WRITE CYCLE TCLAV —I

AMWC OR AlOWC

X _A

-TCLML —

float; / RESERVED FORCASCADE ADDH >- FLOAT

FLOAT

TCLMCL —
rSVMCH- ••

TCLAV—

X INVALID ADDRESS

X y

NOTES; 1. ALL SIGNALS SWITCH BETWEEN Vqh AND Vql UNLESS OTHERWISE

2. RDV IS SAMPLED NEAR THE END OF T2. Tj, Tw TO DETERMINE IF Tw
MACHINES STATES ARE TO BE INSERTED.

3. CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA CYCLE.
4. TWO INTA CYCLES RUN BACK TO BACK. THE 80S6 LOCAL ADDR/DATA BUS IS

FLOATING DURING BOTH INTA CYCLES. CONTROL FOR POINTER ADDRESS
IS SHOWN FOR SECOND INTA CYCLE.

5. SIGNALS AT 82B4 OR 0288 ARE SHOWN FOR REFERENCE ONLY.
8. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIGNALS (MnCS.

laWTC, AHWC. iCRC. ICW5, AlOWC, FRT* AND DEN) LAGS THE ACTIVE HIGH
8288 CEN.

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.SV UNLESS OTHERWISE
NOTED.

8. STATUS INACTIVE IN STATE JUST PRIOR TO T4.

8086 Bus Timing — Maximum Mode System (Using 8288) (cent.)

8086 and 8088 Data Sheets C-9

8086/8086-2/8086-4

1

- T1NVCN IM* not* t)

1. SETUP REQUIREMENTS FOR ASYNCHRONOUS SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT CLK
Asynchronous Signal Recognition

Any CIK Cycl* —»j

\

- Any CLK Cycl* ->|

r

Bus Lock Signal Timing (Maximum Mode Only)

"W\.
7 L PULSE . r-^ ' y
/ \ COPROCESSOR / \

J \ ̂ / _

-n. I PULSE 3 /-
Ycoprocessor/
^ RELEASE /

X COPROCESSOR

Request/Grant Sequence Timing (Maximum Mode Only)

—^

•Sc-AitlS]

r. MiiO
DTril. Wn. OEN

Hold/Hold Acknowledge Timing (Minimum Mode Only)

C-10 The 8086 Book

8088

8088 CPU FUNCTIONAL BLOCK DIAGRAM 8088 PIN DIAGRAM

MEMORY INTERFACE

BUS

INTERFACE

UNIT

I

I

INSTRUCTION

STREAM BYTE

OUEUE

\ ARITHMETIC/ /
\ LOGIC UNIT /

A16/S3

A17/S4

(RQ/ifra)

AOS r (HQ/GTi)

(LOCK)

iNTH r

8086 and 8088 Data Sheets C-11

8088

ABSOLUTE MAXIMUM RATINGS'

Ambient Temperature Under Bias 0°C to /CC
Storage Temperature -eS'C to + ISCC
Voltage on Any Pin with

Respect to Ground - 0.3 to + 7V
Power Dissipation 2.5 Watt

D.C. CHARACTERISTICS

8088: Ta = 0°C to TCC. ycc=5V ±10%

'COMMENT: Stresses above those -listed under "ASste^^t^'i^a*
Ratings" may cause permanent damage to the device. Tht^s^'i^-,;^—
rating only and functional operation of the device at these or

conditions above those indicated in the operational sections of 'thji^
specification is not implied. Exposure to absolute maximum rating con

ditions for extended periods may affect device reliability.

Symbol Parameter Min. Max. Units Test Conditions

V|L Input Low Voltage -0.5 + 0.8 V

V|H Input High Voltage 2.0 Vcc + 0.5 V

VoL Output Low Voltage 0.45 V Iql = 2.0 mA

VOH Output High Voltage 2.4 V 'oh ~ ̂ 00 mA

•go Power Supply Current 340 mA

Ili Input Leakage Current ± 10 mA

0
0
>

II

z

>

1

'lo Output Leakage Current ± 10 mA 0.45V < Vqut ̂ Vcc

VCL Clock Input Low Voltage -0.5 + 0.6 V

VCH Clock Input High Voltage 3.9 Vcc + TO V

C|N

Capacitance of Input Buffer
(All input except

AD0-AD7 RQ/GT)
10 PF fc = 1 MHz

C|0
Capacitance of I/O Buffer
(AD0-AD7 RQ/GT)

20 PF fc = 1 MHz

C-12 The 8086 Book

8088

A.C. CHARACTERISTICS

8088: Ta = ox to 70X. Vcc = 5V± 10%

8088 MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

Symbol Parameter MIn. Max. Units Tost Conditions

TCLCL CLK Cycle Period 200 500 ns

TCLCH CLK Low Time (2/>TCLCL)-15 ns

TCHCL CLK High Time (yjTCLCL) + 2 ns

TCH1CH2 CLK Rise Time 10 ns From 1.0V to 3.5V

TCL2CL1 CLK Fall Time 10 ns From 3.5V to 1.0V

TOVCL Data In Setup Time 30 ns

TCLDX Data In Hold Time 10 ns

TR1VCL ROY Setup Time into 8284 (See Notes 1. 2) 35 ns

TCLR1X ROY Hold Time Into 8284 (See Notes 1. 2) 0 ns

TRYHCH READY Setup Time into 8088 (VjTCLCL)-15 ns

TCHRYX READY Hold Time into 8088 30 ns

TRYLCL READY Inactive to CLK (See Note 3) -8 ns

THVCH HOLD Setup Time > 35 ns

TINVCH INTR. NMI. TEST Setup Time (See Note 2) 30 ns

TIMING RESPONSES

Symbol Parameter MIn. Max. Units Test Conditions

TCLAV Address Valid Delay 15 110 ns

TCLAX Address Hold Time 10 ns

TCLAZ Address Float Delay TCLAX 80 ns

TLHLL ALE Width TCLCH-20 ns

TCLLH ALE Active Delay 80 ns

TCHLL ALE Inactive Delay 85 ns

TLLAX Address Hold Time to ALE Inactive TCHCL-10 ns

TCLDV Data Valid Delay 10 110 ns Cl = 20-100 pF for

TCHDX Data Hold Tjme 10 ns
all 8088 Outputs

In addition to

Internal loadsTWHDX Data Hold Time After WR TCLCH-30 ns

TCVCTV Control Active Delay 1 10 110 ns

TCHCTV Control Active Delay 2 10 110 ns

TCVCTX Control Inactive Delay 10 110 ns

TAZRL Address Float to READ Active 0 ns

TCLRL RO Active Delay 10 165 ns

TCLRH TO Inactive Delay 10 150 ns

TRHAV TO Inactive to Next Address Active TCLCL-45 ns

TCLHAV HLDA Valid Delay 10 160 ns

TRLRH TO Width 2TCLCL-75 ns

TWLWH WR Width 2TCLCL-60 ns

TAVAL Address Valid to ALE Low TCLCH-60 ns

NOTES: 1. Signal at 8284 shown for reference only.

2. Setup requirement for asynchronous signal only to guarantee recognition at r
3. Applies only to T2 state (8 ns Into T3 state).

8086 and 8088 Data Sheets C-13

8088

CLK (8284 Output))/ s.

ROY (8284 Input)

SEE NOTE S

READY (8088 Input)

READ CYCLE

(NOTE 1)

(WR, [RTA s VohI

Ti

- TCLCL -

Tj

TCH1CH2-

HJ

JL

~V

TCHLL—

— TAVAL-

T3 Tw

— TCL2CL1 /

T

Ais > Aa (Float during INTA)

JV

VlH-

A

1—TCLR

J-

r

TCHCTV TCLRL

FLOAT

3c:

x

8088 Bus Timing — Minimum Mode System

C-14 The 8086 Book

8088

CLK (8284 Output)

WRITE CYCLE

NOTE 1

INTA CYCLE

NOTES 1.3

(HD.Wfi = VoH)

SOFTWARE HALT - (DEN =

Vol;RO.WR,INTA OT/RsVoh:

U — TCL2CL1 !

^—r
TCH1CH2

TCLDV—
TCHD2 —TCLAV*

TCLAX—

AOr-Ao DATA OUT

-TWHDX —
TCVCTV

TCVCTX

TCVCTV—

TCVCTX —
TCLAZ

TDVCL TCLDX

FLOATFLOAT

TCHCTV TCHCTV

TCVCTV

TCVCTV TCVCTX

INVALID ADDRESS

1. ALL SIGNALS SWITCH BETWEEN Vqh AND Vqi UNLESS OTHERWISE
SPECIFIED.

2. RDY IS SAMPLED NEAR THE END OF Tj, Tj, Tw TO DETERMINE IF Tyv
MACHINES STATES ARE TO BE INSERTED.

3. TWO INTA CYCLES RUN BACK TO-BACK. THE 8088 LOCAL ADDR/DATA
BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS
ARE SHOWN FOR THE SECOND INTA CYCLE.

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY.
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.SV UNLESS OTHERWISE

NOTED.

8088 Bus Timing — Minimum Mode System (cent.)

8086 and 8088 Data Sheets C-15

8088

8088 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER)
TIMING REQUIREMENTS

Symbol Parameter MIn. Max. Units Test Con6(\hfffy%

TCLCL CLK Cycle Period 200 500 ns

TCLCH CLK Low Time (2/iTCLCL)-15 ns

TCHCL CLK High Time (V3TCLCL)•^2 ns

TCH1CH2 CLK Rise Time 10 ns From 1.0V to 3.5V

TCL2CL1 CLK Fall Time 10 ns From 3.5V to 1.0V

TOVCL Data In Setup Time 30 ns

TCLDX Data In Hold Time 10 ns

TR1VCL RDY Setup Time into 8284 (See Notes 1. 2) 35 ns

TCLR1X ROY Hold Time into 8284 (See Notes 1. 2) 0 ns

TRYHCH READY Setup Time into 8088 (»ATCLCL)-15 ns

TCHRYX READY Hold Time into 8088 30 ns

TRYLCL READY Inactive to CLK (See Note 4) -8 ns

TINVCH Setup Time for Recognition (INTR. NMI. TEST) (See Note 2) 30 ns

TGVCH RQ/GTSetup Time 30 ns

TCHGX RQ Hold Time into 8086 40 ns

Symbol Parameter Min. Max. Units

TCLML Command Active Delay (See Note 1) 10 35 ns

TCLMH Command Inactive Delay (See Note l) 10 35 ns

TRYHSH

TCHSV

READY Active to Status Passive (See Note 3)

Status Active Delay 10

110

110

ns

ns

TCLSH Status Inactive Delay 10 130 ns

TCLAV Address Valid Delay 15 110 ns

TCLAX Address Hold Time 10 ns

TCLAZ Address Float Delay TCLAX 80 ns

TSVLH Status Valid to ALE High (See Note 1) 15 ns

TSVMCH Status Valid to I^CE High (See Note 1) 15 ns

TCLLH CLK Low to ALE Valid (See Note 1) 15 ns

TCLMCH CLK Low to MCE High (See Note 1) 15 ns

TCHLL ALE Inactive Delay (See Note 1) 15 ns

TCLMCL MCE Inactive Delay (See Note l) 15 ns

TCLDV Data Valid Delay 15 110 ns

TCHDX Data Hold Time 10 ns

TCVNV Control Active Delay (See Note 1) 5 45 ns

TCVNX Control Inactive Delay (See Note 1) 10 45 ns

TAZRL Address Float to Read Active 0 ns

TCLRL RO Active Delay 10 165 ns

TCLRH RD Inactive Delay 10 150 ns

TRHAV RD Inactive to Next Address Active TCLCL-45 ns

TCHDTL Direction Control Active Delay (See Note l) 50 ns

TCHDTH Direction Control Inactive Delay (See Note 1) 30 ns

TCLGL GT Active Delay 110 ns

TCLGH GT Inactive Delay 85 ns

TRLRH RD Width 2TCLCL-75 1 1

Test Conditions

Cl= 20-100 pF for
all 8088 Outputs >
In addition to

internal loads

NOTES: 1. Signal at 8284 or 8288 shown lor reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
3. Applies only to T3 and wait states.
4. Applies only to T2 state (8 ns into T3 state).

C-16 The 8086 Book

8088

xJ

5^.51.5^ (EXCEPT HALT)

I ALE (8288 OUTPUT)

ROY (8284 INPUT)

READY (8088 INPUT)

8288 OUTPUTS

SEE NOTES 5.6
iiiRBS OR {QRC

TSVLH

TCLLH-

±

'y.r
J\.

JL

X

Y

r
r

ZJ\

^.

X

Z^(SEE NOTE 8)

P
l-^TCLRI

Wn'XV

TRYHCH —

TCLAZ h- !

.r

"Y"

-\r

x::

zm:

I"

8088 Bus Timing — Maximum Mode System (Using 8288)

8086 and 8088 Data Sheets C-17

8088

SEE NOTES 5.S

15 (EXCEPT HALT)

WRITE CYCLE

AOr-AOe

DEN

snsFTCoRiswe

INTA CYCLE

Ais-Aj
(SEE NOTES 3.4)

AO7AO0

MCB

PCEN

DT(E

-TCH8V

TCLSH TCHOX-TCUV-*

TCLMH-*

•— TCLMH

RESERVED FOR
CASCADE ADDR

TCLMCL

;=—f

— TCHDTM— —I i—TCHDTL

AD7-AD0. Ats-Ai
INVALID ADDRESS

"V r

1. ALL SIGNALS SWITCH BETWEEN Voh AND Vql UNLESS OTHERWISE
SPECIFIED.

2. RDY IS SAMPLED NEAR THE END OF Tj. Tj. Tw TO DETERMINE IF Tw
MACHINES STATES ARE TO BE INSERTED.

3. CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA
CYCLES.

4. TWO INTA CYCLES RUN BACK-TO-BACK. THE 8080 LOCAL ADDRIDATA
BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL FOR
POINTER ADDRESS IS SHOWN FOR SECOND INTA CYCLE.

5. SIGNALS AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONLY.
8. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIGNALS
(HHDB. BWTC. AiWC. RJRC. RJWC. JCRJWC. IHTa AND DEN) LAGS THE
ACTIVE HIGH 8288 CEN.

7. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE
NOTED.

8. STATUS INACTIVE IN STATE JUST PRIOR TO T4.

8088 Bus Timing — Maximum Mode System (Using 8288)

C-18 The 8086 Book

8088

NOTE:

1 SETUP nEOUIREMENTS PGR ASYNCHRONOUS SIGNALS ONLY TQ GUARANTEE RECOGNITION AT NEXT CLK

Asynchronous Signal Recognition

p- ■ Any CLK CircH -AnyCLKCycH —I

—^TCLAVj-— -JiCLAVj- —

Bus Lock Signal Timing (Maximum Mode Only)

A_^

AiVS(-A,ilS)

AOr-ADo

Sj. si. So
IIS.[0CR

-^1 PULSE j r-
Ycoprocessor/
|\ RELEASE /

COPROCESSOR HH

Request/Grant Sequence Timing (Maximum Mode Only)

— > 1 CLK CYCLE- I- - 1 OR S CYCLES -

COPROCESSOR

Hold/Hold Acknowledge Timing (Minimum Mode Only)

8086 and 8088 Data Sheets C-19

8282/8283

PIN DEFINITIONS
Pin Description

STB

OE

DI0-DI7

STROBE (Input). STB Is an input control
pulse used to strobe data at the data input
pins (A0-A7) Into the data latches. This
signal is active HIGH to admit input data.
The data is latched at the HIGH to LOW
transition of STB.

OUTPUT ENABLE (Input). OE is an input
control signal which when active LOW
enables the contents of the data latches
onto the data output pin (B0-B7). OE being
inactive HIGH forces the output buffers to
their high impedance state.

DATA INPUT PINS (Input). Data presented
at these pins satisfying setup time re
quirements when STB is strobed and
latched into the data input latches.

DO0-DO7 DATA OUTPUT PINS (OytpytfV,
(8282) true, the data In the datd^afc^^#
DO0-DO7 sented as Inverted (8283) of piprtilf^ve^
(8283) (8282) data onto the data output ̂Ins.'

OPERATIONAL DESCRIPTION

The 8282 and 8283 octal latches are 8-bit iatches with

3-state output buffers. Data having satisfied the setup
time requirements is latched into the data latches by
strobing the STB line HIGH to LOW. Holding the STB
line in its active HIGH state makes the latches appear
transparent. Data is presented to the_^ta output pins by
activating the OE input line. When OE is inactive HIGH
the output buffers are In their high impedance state.
Enabling or disabling the output buffers will not cause
negative-going transients to appear on the data output
bus.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias 0°Cto70°C
Storage Temperature -BS'G to + 150°C
All Output and Supply Voltages - 0.5V to -i- 7V
All Input Voltages - 1.0V to -»-5.5V
Power Dissipation 1 Watt

D.C. CHARACTERISTICS FOR 8282/8283

'COMMENT: Stresses above those listed under "Absolute Maximum

Ratings" may cause permanent damage to the device. This is a stress
rating oniy and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating con
ditions for extended periods may affect device reiiability.

Symbol Parameter MIn Max Units Test Conditions

Vc Input Clamp Voltage -1 V Ic = - 5 mA

'go Power Supply Current 160 mA

If Forward Input Current -0.2 mA Vp = 0.45V

Ir Reverse Input Current 50 mA Vr = 5.25V

VoL Output Low Voltage 0.50 V Iql = 32 mA

VOH Output High Voltage 2.4 V ioH = - 5 mA

'off Output Off Current ±50 mA VoFF = 0.45 to 5.25V

V|L Input Low Voltage 0.8 V Vcc = 5.0V See Note 1

V|H Input High Voltage 2.0 V Vcc = 5.0V See Note 1

C|N Input Capacitance 12 pF

F=1 MHz

Vbias=2.5V. Vcc=5V
Ta=25-C

Notes: 1. Output Loading loL = 32 mA, Iqh = - 5 mA. Cl = 300 pF

C-20 The 8086 Book

8282/8283

PIN CONFIGURATIONS LOGIC DIAGRAMS

PIN NAMES

oio-oir OATA IN

000-007 OATA OUT

51 OUTPUT ENABLE

8TB STROBE

8086 and 8088 Data Sheets C-21

8282/8283

A.C. CHARACTERISTICS FOR 6282/8283

Conditions; Vcc= 5V±5%, Ta=0°C to 70'C

Loading: Outputs — Iql = 32 mA, Ioh = - 5 mA, Cl = 300 pF

Symbol Parameter Mln Max Units Test Conditions

TIVOV Input to Output Delay
—Inverting
-Non-Inverting

25

35

ns

ns

(See Note 1)

TSHOV STB to Output Delay
—Inverting
-Non-Inverting

45

55

ns

ns

TEHOZ Output Disable Time 25 ns

TELOV Output Enable Time 10 50 ns

TIVSL Input to STB Setup Time 0 ns

TSLIX Input to STB Hold Time 25 ns

TSHSL STB High Time 15 ■ ns

NOTE: 1. See waveforms and test load circuit on following page.

8282/8283 TIMING

TSHSL

TEHOZ—TIVOV

VOM-0.5V

NOTE: 1.8283 ONLY - OUTPUT MAY BE MOMENTARILY INVALID FOLLOWING THE HIGH GOING STB TRANSITION.

2. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED

C-2?. The 8086 Book

8282/8283

OUTPUT DELAY VS. CAPACITANCE

200 400 600 1000 200 400 600 600 1000

OUTPUT TEST LOAD CIRCUITS

2.14V

^ 52.7t

8086 and 8088 Data Sheets C-23

8284

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias 0°Cto70°C
Storage Temperature -65°C to + 150°C
All Output and Supply Voltages - 0.5V to + 7V
Ail Input Voltages - 1.0V to + 5.5V
Power Dissipation 1 Watt

'COMMENT: Stresses atwve those listed under "Absolute Maximum

Ratings" may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating con
ditions for extended periods may affect device reliability.

8284 PIN CONFIGURATION 8284 BLOCK DIAGBAM

CYSNC □ 1 18 □ Vcc

pclkC 2 17 □ XI
AENlC 3 16 □ X2
RDY1 C 4 IS □ tnk

READY C 5 14 □ EFI

RDY2 C 6 13 □ f/c
AErJ2 C 7 12 □ osc

CLK £ 8 11 □ res
GND Z 9 10 □ RESET

XII
X2l
TANK

F/C

EFI

CSYNC
RDY1 I
RDY2 I
AEN1 I
AEN2I
RES
RESET

OSC
CLK

PCLK
READY

Vcc
QNO

8284 FIn names

CONNECTIONS FOR CRYSTAL

USED WITH OVERTONE CRYSTAL
CLOCK SOURCE SELECT
EXTERNAL CLOCK INPUT
CLOCK SYNCHRONIZATION INPUT

READY SIGNAL FROM TWO MULTIBUS'" SYSTEMS

ADDRESS ENABLED QUALIFIERS FOR RDY1.2

RESET INPUT
SYNCHRONIZED RESET OUTPUT
OSCILLATOR OUTPUT
MOS CLOCK FOR THE PROCESSOR
TTL CLOCK FOR PERIPHERALS
SYNCHRONIZED READY OUTPUT
+ 5 VOLTS

0 VOLTS

C-24 The 8086 Book

8284

D.C. CHARACTERISTICS FOR 8284
Conditions: Ta = 0'C to 70'C: Vcc = 5V±10%

Symbol Parameter MIn Max Units
'T W

Teat Ccndltlonsr

■f Forward Input Current -0.5 mA Vf= 0.45V

'r Reverse Input Current 50 mA Vr= 5.25V

Vc Input Forward Clamp Voltage -1.0 V ic= -5 mA

Ice Power Supply Current 140 mA

V,L > Input LOW Voltage 0.8 V Vcc = 5.0V

V,H Input HIGH Voltage 2.0 V Vcc=5.0V

V|H„ Reset Input HIGH Voltage 2.6 V Vcc = 5.0V

VoL Output LOW Voltage 0.45 V 5 mA

Vqh Output HIGH Voltage CLK
Other Outputs

4

2.4
V
V

 I1

II

V|HR-ViLa RES Input Hysteresis 0.25 V Vcc = 5.0V

A.C. CHARACTERISTICS FOR 8284
Conditions: Ta = 0'C to 70'C; Vcc = 5V± 10%
TIMING REQUIREMENTS

Symbol Parameter MIn Max Units Test Conditions

TEHEL External Frequency High Time 13 ns 90% - 90% V|N
TELEH External Frequency Low Time 13 ns 10% - 10% V|N
TELEL EFI Period TEHEL-► TELEH-kJ ns (Note 1)

XTAL Frequency 12 25 MHz

TR1VCL RDY1.RDY2 Set-Up to CLK 35 ns

TCLR1X RDY1,RDY2 Hold to CLK 0 ns

TA1VR1V AENT. AfRTSet-Up to RDY1. RDY2 15 ns

TCLA1X AEN1.AEN2 Hold to CLK 0 ns

TYHEH CSYNC Set-Up to EFI 20 ns

TEHYL CSYNC Hold to EFI 20 ns

TYHYL CSYNC Width 2 TELEL ns

TI1HCL ^ Set-up to CLK 65 ns (Note 2)

TGLI1H RES Hold to CLK 20 ns (Note 2)

TIMING RESPONSES

Symbol Parameter MIn

125

Max

10

22

22

12

20

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Test Conditions

Fig. 3 & Fig. 4

Fig. 3 & Fig. 4

1.0V to 3.5V

Fig. 5 & Fig. 6

Fig. 5 & Fig. 6

TCLCL CLK Cycle Period

TCHCL CLK High Time (VjTCLCL) 2.0

TCLCH CLK Low Time (^/sTCLCD- 15.0

TCH1CH2
TCL2CL1

CLK Rise or Fall Time

TPHPL PCLK High Time TCLCL-20

TPLPH PCLK Low Time TCLCL-20

TRYLCL Ready Inactive to CLK (See Note 4) -8

TRYHCH Ready Active to CLK (See Note 3) (»/iTCLCL)-15.0

TCLIL CLK to Reset Delay 40

TCLPH CLK to PCLK High Delay

TCLPL CLK to PCLK Low Delay

TOLCH OSC to CLK High Delay -5

TOLCL OSC to CLK Low Delay 2

NoUi: 1. 5 = EFI rise (5 ns max) + EFI fall (5 ns max).
2. Set up and hold only necessary to guarantee recognition at next clock.
3. Applies only to T3 and TW states.
4. Applies only to T2 states.

8086 and 8088 Data Sheets C-25

8284

:_rLn
j\n..

TCLCH—I I—TCL2Ct1TOLCH

AENt.3

c ̂ ^[—THYHCM—J

-TCLI1H TI1MCL —

L TIMING MEASUREMENTS ARE MADE AT I S VOLTS. UNLESS OTHERWISE NOTED

C-26 The 8086 Book

8286/8287

PIN DEFINITIONS
Pin Description

T TRANSMIT (Input). T is an input control
signal used to control the direction of the
transceivers. When HIGH, It configures the
transceiver's B0-B7 as outputs with Aq-A/
as inputs. T LOW configures A0-A7 as the
outputs with B0-B7 serving as the inputs.

OE OUTPUT ENABLE (Input). OE is an input
control signal used to enable the appropri
ate output driver (as selected by T) onto its
respective bus. This signal is active LOW.

A0-A7 LOCAL BUS DATA PINS (Input/Output).
These pins serve to either present data to
or accept data from the processor's local
bus depending upon the state of the T pin.

B0-B7 SYSTEM BUS DATA
(8286) These pins serve to either j3fr^s&t^t,iSSI ̂
B0-B7 or accept data from the systlTrrb^j^s^^^de
(8287) pending upon the state of the T pin? c,'' "

OPERATIONAL DESCRIPTION

The 8286 and 8287 transceivers are 8-bit transceivers

with high impedance outputs. With T active HIGH and
OE active LOW, data at the A0-A7 pins l^riven onto the
B0-B7 pins. With T inactive LOW and OE active LOW,
data at the B0-B7 pins is driven onto the Ao>A7 pins. No
output low glitching will occur whenever the trans
ceivers are entering or leaving the high impedance
state.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias O'C to 70°C
Storage Temperature -65'C to + tSO'C
All Output and Supply Voltages - 0.5V to + 7V
All Input Voltages - 1.0V to -»- 5.5V
Power Dissipation 1 Watt

D.C. CHARACTERISTICS FOR 8286/8287

Conditions: Vcc = 5V ±5%, T^ = 0''Cto70''C

'COMMENT: Stresses above those listed under "Absolute Maximum

Ratings" may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this
specification is not implied. Exposure tq absolute maximum rating con
ditions for extended periods may affect device reliability.

Symbol Parameter MIn Max Units Test Conditions

Vc Input Clamp Voltage -1 V |q = -5 mA

Ice Power Supply Current—8287
-8286

130

160

mA

mA

If Forward Input Current -0.2 mA Vf = 0.45V

Ir Reverse Input Current 50 mA Vr= 5.25V

VoL Output Low Voltage —B Outputs
—A Outputs

0.5

0.5

V

V

loL= 32 mA

loL= 10 mA

VOH Output High Voltage —B Outputs
—A Outputs

2.4

2.4

V

V
Iqh = "5 mA
loH = -1 mA

loFF
lOFF

Output Off Current
OutpLit Off Current

If
Ir

VoFF = 0.45V
VoFF = 5.25V

V.L Input Low Voltage —A Side
-BSIde

0.8

0.9

V

V

Vcc = 5.0V. See Note 1
Vcc = 5.0V, See Note 1

V,H Input High Voltage 2.0 V Vcc = 5.0V. See Note 1

C|N Input Capacitance 12 pF

F= 1 MHz

Vbias = 2.5V. Vcc = 5V
Ta=.25'C

B Outputs — Iql = 32 mA. Iqh = "S mA, Cl= 300 pF A Outputs — Iql = fO TiA, Iqh = = 100 pF

8086 and 8088 Data Sheets C-27

8286/8287

M8284 PIN CONFIGURATION M8284 BLOCK DIAGRAM

CYSNCC 1 18 □ Vcc

PCLK C 2 17 □ xi
AENiC 3 16 □ X2
RDY1 C 4 15 □ tnk

READY C 5 14 □ EFI

RDY2 C 6 13 □ f/c

AE?i2 C 7 12 □ osc
CLK C 8 11 □ res
GND C 9 10 □ RESET

XTAL
OSCIL

RDY1 -
AEN1 - ->c—D'

-2 — PCLK

SYNC

XI I
X2I
TANK

F/C

EFI

CSYNC
RDY1 I
RDY2 I
AEN1 I
AEN2I
RES
RESET
OSC
CLK
PCLK
READY

Vcc
GND

M8284 PIN NAMES

CONNECTIONS FOR CRYSTAL

USED WITH OVERTONE CRYSTAL
CLOCK SOURCE SELECT
EXTERNAL CLOCK INPUT
CLOCK SYNCHRONIZATION INPUT

READY SIGNAL FROM TWO MULTIBUS'"* SYSTEMS

ADDRESS ENABLED QUALIFIERS FOR RDY1.2

RESET INPUT

SYNCHRONIZED RESET OUTPUT
OSCILLATOR OUTPUT
MOS CLOCK FOR THE PROCESSOR
TTL CLOCK FOR PERIPHERALS
SYNCHRONIZED READY OUTPUT
+ 5 VOLTS

0 VOLTS

C-28 The 8086 Book

8286/8287

A.C. CHARACTERISTICS FOR 8286/8287
Conditions: Vcc = 5V ±6%. Ta = o»c to70'C
Loading; B Outputs — Iql = 32 mA, Iqh = - 5 mA, Cl = 300 pF

A Outputs — Iql = 10 mA. Iqh = - 1 rnA, Cl - 100 pF

Symbol Parameter MIn Max Units Test Conditions ^

TIVOV Input to Output Delay
Inverting
Non-Inverting

25

35

ns

ns

(See Note 1)

TEHTV Transmit/Receive Hold Time TEHOZ ns

TTVEL Transmit/Receive Setup 30 ns

TEHOZ Output Disable Time 25 ns

TELOV Output Enable Time 10 50 ns

Note: 1. See waveforms and test load circuit on following page.

8286/8287 TIMING

"Y"

/
j*TIVOV-j ► TEHOZ -

X r-
TEHTV - —i.1

NOTE: 1. ALL TlfVIJNG fVlEASUREI^ENTS ARE f^ADE AT 1.5V UNLESS OTHERWISE NOTED.

8086 and 8088 Data Sheets C-29

8286/8287

OUTPUT DELAY VS. CAPACITANCE

200 400

TEST LOAD CIRCUITS

B OUTPUT

::^300pP

3 STATE TO Vqh

B OUTPUT

I I I I

: 100 pF

3 STATE TO Vql

A OUTPUT

100 pF

3 STATE TO Vqh

A OUTPUT

200 400 600 800 1000

B OUTPUT

::fciOOpF

SWITCHING

A OUTPUT

C-30 The 8086 Book

8288

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias 0*C to 70*C
Storage Temperature - 65*C to + 150*C
All Output and Supply Voltages -0.5V to + 7V
All Input Voltages - 1.0V to + 5.5V
Power Dissipation 1.5 Watt

'COMMENT: Stresses akove those listed under "Absolute Maxirhu^'
Ratings" may cause permanent damage to the device. This is a stress''-
rating only and functional operation of the device at these or any other

conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating con

ditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS FOR THE 8288 Conditions; Vcc=5V ±10%, TA = 0°Cto70''C
Symbol Parameter Mtn Max Unit Test Conditions

vc Input Clamp Voltage - 1 V IC = - 5 mA

Ice Power Supply Current 230 mA

If Forward Input Current -0.7 mA Vp = 0.45V

'r Reverse Input Current 50 jiA Vr = Vcc
VOL Output Low Voltage—Command Outputs

Control Outputs
0.5

0.5

V

V

Iol = 32 mA

IqL- "^A
Vqh Output High Voltage— Command Outputs

Control Outputs
2.4

2.4

V

V

 OO XX
II 1)

 11
cn

 33 >>

V|L Input Low Voltage 0.8 V

V|H Input High Voltage 2.0 V

■off Output Off Current 100 VoFF = 0'* to 5.25V

A.C. CHARACTERISTICS FOR THE 8288 Conditions: Vcc=5V ±10%, TA = 0'Cto70'C
TiMiNG REQUIREMENTS

Symbol Parameter MIn Max Unit Loading
TCLCL CLK Cycle Period 125 ns

TCLCH CLK Low Time 66 ns

TCHCL CLK High Time 40 ns

TSVCH Status Active Setup Time 65 ns

TCHSV Status Active Hold Time 10 ns

TSHCL Status Inactive Setup Time 55 ns

TCLSH Status Inactive Hold Time 10 ns

TiMING RESPONSES
Symbol Parameter MIn Max Unit Loading

TCVNV Control Active Delay 5 45 ns

TCVNX Control Inactive Delay 10 45 ns

TCLLH.TCLf^CH ALE MCE Active Delay (from CLK) 15 ns

TSVLH.TSVfiilCH ALE MCE Active Delay (from Status) 15 ns

TCHLL ALE Inactive Delay 15 ns
MRDC
lORC
MWTC loL=S2mA
IOWC IqH = - 5 mA

TCLML Command Active Delay 10 35 ns

TCLf^H Command Inactive Delay 10 35 ns

TCHDTL Direction Control Active Delay 50 ns INTA Cl = 300pF
TCHDTH Direction Control Inactive Delay 30 ns AMWC

TAELCH Command Enable Time 40 ns
AlOWC

I Iol^IS^iA
other 1 loH = - 1 mA

I Cl = 80pF

TAEHCZ Commarid Disable Time 40 ns

TAELCV Enable Delay Time 105 275 ns

TAEVNV AEN to DEN 20 ns

TCEVNV CEN to DEN. PDEN 20 ns

TCELRH CEN to Command TCLML ns

PIN CONFiGURATiON

108 C

CLK C

S^C
dt/rC
aleC

aenC
MRDCC
AM^C

GNOC

□ vcc
□ so
□ S2
□ MCE/PDEN
□ DEN

□ CEN
□ iNTA
□ lORC
□ AlOWC

□ iowc

8086 and 8088 Data Sheets C-31

8288

8288 TIMING DIAGRAM

-T4 T,

TCLCL-

S2. Si. So

ADORESS/OATA

MRDC. lORC. INTA
AMWC. AlOWC

rN(READ)
(INTA)

.i.

X

f

\ / \

X

/I ?'r
T

J\

\

t

\

[-—TCLMH

r
j

j
r

K. A

r

\.

7:

"M

A

1. AOORESStMTA BUS IS SHOWM ONLY FOR REFERENCE FURFOSES
I. lEAORM EPOE OF AtE AND MCE ts OETERMtNEO BY THE FALUNO EOOE OF CIK OR STATUS GOINO ACTIVE. VYMICKEVER OCCURS LAST
J AU TUItNG UEASUREUENTS ARE UAOE AT ISV UNUSS SFEOFIED OTHERWISE

C-32 The 8086 Book

8288

DEN, PDEN QUALIFICATION TIMING

X

I

□(
Y
/X

8288 ADDRESS ENABLE (AEN) TIMING (3 STATE ENABLE/DISABLE)

XT

OUTPUT
command"

X

7"

HCZ

XTi- VOH

IX
TCELRH-

NOTE: CEN MUST BE LOW OR VALID PRIOR TO T2 TO PREVENT THE COMMAND FROM BEING GENERATED.

TEST LOAD CIRCUITS

3 STATE TO HIGH 3 STATE TO LOW

8086 and 8088 Data Sheets C-33

8289

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias O'C to 70'C
Storage Temperature -65°C to + 150"C
All Output and Supply Voltages - 0.5V to + 7V
All Input Voltages - 1.0V to +5.5V
Power Dissipation 1.5 Watt

D.C. CHARACTERISTICS FOR THE 8289

CONDITIONS: Ta = 0''to 70''C, Vcc = 5V ±io%

COMMENT: Stresses above those listed under

Ratings" may cause permanent damage to the device.
rating only and functional operation of the device at these

conditions above those indicated in the operational sections
specification is not implied. Exposure to absolute maximum rating co^*
ditions for extended periods may affect device reliability.

Symbol Parameter MIn. Max. Units Test Condition

Vc Input Clamp Voltage -1.0 V Vcc = 4.50V, lc= -5 mA

If Input Forward Current -0.5 mA Vcc = 5.50V, Vf = 0.45V

Ir Reverse Input Leakage Current 60 mA Vcc = 5.50, Vr = 5.50

<
o

Output Low Voltage
BUSY, CBRQ

AEN

BPRO. BREQ

0.45

0.45

0.45

V

V

V

Iol=20 mA. Cl = 250pF 1)
loL=16mA, Cl=100pF 2)
loL=10mA, Cl = 60 pF3)

VOH Output High Voltage
BUSY, CBRQ Open Collector

All Other Outputs 2.4 V Iqh = 400 ̂A

Ice Power Supply Current 165 mA

V|L Input Low Voltage .8 V

V|H Input High Voltage 2.0 V

CIn Status Input Capacitance 25 PF

CIn (Others) Input Capacitance 12 PF

TEST CIRCUITS:

1) BUSY, CSffO 3) BPRO, BRED

PIN DIAGRAM

S2C

ioiC

SYSB/RlSB C

resbC

Bcn^c

INTf C

BREQC

BPROil

B^ C

GNO C

3 18

8289

5 BUS 16
ARBITER
6 IS

7 14

8 13

9 12

□ VCC

3Ta

□ so
□ CLK

□ lock

□ crQlcK
□ ANYROST
□ AIN
□ cbrQ
□ bDsy

C-34 The 8086 Book

8289

A.C. CHARACTERISTICS FOR THE 8289

CONDITIONS: Vcc=5V ±10%, Ta = 0°C to 70'C

Timing Requirements

Symbol Parameter Min. Max. Unit

TCLCL CLK Cycle Period 125 ns

TCLCH CLK Low Time 65 ns

TCHCL CLK High Time 35 ns

TSVCH Status Active Setup 65 TCLCL-10 ns

TSHCL Status Inactive Setup 50 TCLCL-10 ns

THVCH Status Active Hold 10 ns

THVCL Status Inactive Hold 10 ns

TBYSBL BUSYtlSetup to BCLKl 20 ns

TCBSBL CB^tiSetup to BCLKl 20 ns

TBLBL BCLK Cycle Time 100 ns

TBHCL BCLK High Time 30 .65[TBLBL] ns

TCLLL1 LOCK Inactive Hold 20 ns

TCLLL2 LOCK Active Setup 40 ns

TPNBL B^Uto BCLK Setup Time 15 ns

TCLSR1 SYSB/R15B Setup 0 ns

TCLSR2 SYSB/RE5B Hold 20 ns

TIVIH Initialization Pulse Width 3TBLBL+

3 TCLCL

ns

Timing Responses

Symbol Parameter Min. Max. Unit Loading

TBLBRL B^to B^ Delayit 35 ns

TBLPOH B^ to B^lt (See Note 1) 40 ns

TPNPO B^itto BPROUDelay
(See Note 1)

25 ns

TBLBYL BCLK to BDSY Low 60 ns

TBLBYH BCLK to BU^ Float (See Note 2) 35 ns

TCLAEH CLK to AEN High 65 ns

TBLAEL to Low 40 ns

TBLCBL B^ to CB^ Low 60 ns

TBLCBH BCLR to CBRQ Float (See Note 2) 35 ns

it Denotes that spec applies to both transitions ot the signal.

NOTE 1: BCLK generates the first BPRO wherein subsequent BPRO changes lower in the chain are generated through BPRN.
NOTE 2: Measured at .5V above GND.

INITIALIZATION: (INIT can be either pulsed or held low through power up)

Vcc AT 5V ± 10%-

r

8086 and 8088 Data Sheets C-35

8289

8289 TIMING DIAGRAM
T4 T, ■ -I- Tj •!-. T3 --^I- T4

TCLCL — — TCLCH-H I

TSVCHi- - TCHCL

Si.S\.Si

(SEE NOTE 1)

(SEE NOTE 3)SYSB(RES5~ (SEE NOTE 2)

TCLSHI -

AEN

(SEE NOTE 3)

PROCESSOR CLK RELATED

r

BUS CLK RELATED

TBLBRL |- —

\
TBLPOH -- «

w
TPNBL -

TPNPO —■

\

_

-—TBYSBL

/
TBLCBL —-! — 1

TBLBYH —►
i-— TBLBYL

-—TCBSBL
TBLCBH-

NOTES;

1 LOCK ACTIVE CAN OCCUR DURING ANY T STATE. AS LONG AS THE RELATIONSHIPS
SHOWN ABOVE WITH RESPECT TO THE CLK ARE MAINTAINED. LSCK INACTIVE HAS
NO CRITICAL TIME AND CAN BE ASYNCHRONOUS.
■CRSlSK has no CRITICAL TIMING AND IS CONSIDERED AN ASYNCHRONOUS INPUT
SIGNAL

2 GLITCKING OF SYSB/AESS PIN IS PERMITTED DURING THIS TIME. AFTER .3 2 OF Tl.
AND BEFORE el OF T4. ONLY CLEAN TRANSITIONS ARE ACCEPTED.

3 XER LEADING EDGE IS RELATED TO SCCK. TRAILING EDGE TO CLK. THE TRAILING
EDGE OF AEN OCCURS AFTER BUS PRIORITY IS LOST.

ADDITIONAL NOTES:
The signals related to CLK are typical processor signals, and do not relate to the depicted sequence of events of the
signals referenced to BCLK. The signals shown related to the BCLK represent a hypothetical sequence of events for
illustration. Assume 3 bus arbiters of priorities 1. 2 and 3 configured in serial priority resolving scheme as shown in
Figure 6. Assume arbiter 1 has the bus and is holding busy low. Arbiter #2 detects its processor wants the bus and
pulls low BREQff2. If BPRN#2 is high (as shown), arbiter ff2 will pull low CBRQ line. CBRQ signals to the higher priority
arbiter #1 that a lower priority arbiter wants the bus. (A higher priority arbiter would be granted BPRN when it makes
the bus request rather than having to wait for another arbiter to release the bus through CBRQ).* * Arbiter£1_will relin
quish the multi-master system bus when it enters a state not requiring it (see Table 1). by lowering its BPR0#1 (tied to
BFRnI?) and releasing BUSY. Arbiter f#2 now sees that it has priority from BPRN#2 being low and releases CBRQ. As
soon as BUSY signifies the bus is available (high), arbiter #2 pulls BUSY low on next falling edge of BCLK. Note that if
arbiter #2 didn't want the bus at the time it received priority, it would pass priority to the next lower priority arbiter by
lowering its BPRO f#2 |TPNPO].

■•Note ihai even a higher pnonly arbiier which is acquiring if II momentarily drop CBRQ until ii has acquired the bus

The 8088 CPU

The 8088 is an 8086 microprocessor with an 8-bit data bus. The two parts are
otherwise identical. Therefore we will describe differences between the 8088 and the
8086 in the text which follows.

8088 PROGRAMMABLE REGISTERS AND
ADDRESSING MODES

8088 programmable registers and addressing modes are identical to the 8086 in
every way.

8088 CPU PINS AND SIGNALS

8088 CPU pins and signals are illustrated in Figure D-1. As compared to the 8086
pins and signals illustrated in Figure 10-1, only pin 34 differs (with the exception of pins
2-8 and 39 being address only).

For the 8086, pin 34 outputs BHE. This signal discriminates between the high-
order byte and the low-order byte on the 16-bit 8086 data bus. Since the 8088 has an 8-
bit data bus, BHE and associated logic is irrelevant. The 8088 outputs maximum mode
SO status at pin 34 (SSO).

The 10/M signal has opposite polarity for the 8088, as compared to the 8086. This
makes the 8088 compatible with the 8085.

D-2 The 8086 Book

1

2 39

3 38

4 37

5 36

6 35

7 34

8 33

9 32

10 8088 31

11 CPU 30

12 29

13 28

14 27

15 26

16 25

17 24

18 23

19 22

20 21

"Vcc
►A15

"A16/S3

►A17/S4

"A18/S5

'A19/S6

•SSO
• MN/MX

HOLD

►RQ/GT1. HLDA
"LOCK, WR
"S2, lO/M
-SI, DT/R
►SO, DEN
►OSO, ALE
►QSI, INTA
-Test
- READY

• RESET

Pin Name Description Type

AD0-AD7 Address/Data Bus Bidirectional, tristate
A8-A15 Address Bus Output, tristate
A16/S3, A17/S4 Address/Segment identifier Output, trisat^
A18/S5 Address/Interrupt enable status Output, tristate
A19/S6 Address/status Output, tristate
SSO Status output Output, tristate
RD Read control Output, tristate
READY Wait state request Input
TEST Wait for test control Input
INTR Interrupt request Input
NMI Non-maskable interrupt request Input
RESET System Reset Input
CLK System Clock Input
MN/MX^
SO. sr. S2^

= GND for a maximum system
Machine cycle status Output tristate, .

RQ/GTO, RO/Sn Local bus priority control Bidirectional
OSO, QSI , Instruction queue status Output
LOCK Bus hold control Oqtput, tristate ^

~MN/MX =s Vqq for a minimum system
lO/M . Memory or I/O access Output, tristate
WR Write control Output, tristate
ALE Address Latch enable Ou^ijt ' V
DT/R Data transmit/receiv/e ,Output, tristate.
DEN Data enable Output, tristate
INTA Interrupt acknowledge Output,tristate '
HOLD Hold request Input
HLDA Hold acknowledge Output
Vcc- gnd Power, groqpd

I Maximum System Signals Minimum System Signals

Figure D-1. 8088 Pins and Signal Assignments

The 8088 CPU D-3

Combining lO/M, DT/R, and SSO, 8088 bus cycles can be decoded as follows:

lO/M DT/R SSO

0 0 0 Code segment access

0 0 1 Memory read

0 1 0 Memory write

0 1 1 No operations
1 0 0 Interrupt acknowledge
1 0 1 I/O read

1 1 0 I/O write

1 Halt

Since the 8088 has no BHE signals, nor need for any such signal, the discussion of
external memory addressing and BHE given for the 8086 will not apply to the 8088.

8088 TIMING AND INSTRUCTION EXECUTION

The 8088 has a 4-byte instruction object code queue; the 8086, in contrast, has a
6-byte instruction object code queue. The 8088 will start executing instruction fetch bus
cycles to fill its 4 byte queue as soon as one or more queue bytes are empty. The 8086, in
contrast, will not start pre-fetching instruction object code bytes until two or more of its
6 queue bytes are empty. The description of bus cycles and queue logic given for the
8086 otherwise applies directly to the 8088.

8088 MEMORY AND I/O DEVICE ACCESS BUS CYCLES

Bus cycle timing for the 8088 and the 8086 differ only at the multiplexed data/
address bus cycles. Timing differences are confined to the eight address bus lines A8-
A15, and may be illustrated as follows:

CLK

8086 AD0-AD15

8088 AD0-AD7

8088 A8-A15

8086/8088

A16-A19

8086 AD0-AD15,
8088 AD0-AD7

Data OutAddress Out

Address Out

StatusAddress Out

Address Out

D-4 The 8086 Book

Apart from the fact that the 8088 has no BHE signal, all timing for signals other
than the data/address bus is identical for the 8086 and the 8088.

THE 8088 HALT STATE

When operating in minimum mode, the 8088 delays the ALE pulse by one clock
period as compared to 8086 timing. This may be illustrated as follows:

CLK

lO/M

sso

DT/R

ALE

Halt

Halt state logic and timing is otherwise identical for the 8086 and the 8088.

OTHER 8086 COMPATIBLE 8088 LOGIC

8086 and 8088 logic is absolutely identical for the following states and logic:

1. The Wait state

2. The Hold state

3.. RQ/GT logic
4. Lock logic
5. Wait for test state

6. Processor escape
7. Device reset

8. Interrupt processing
9. Single stepping mode

The 8088 CPU D-5

THE 8088 INSTRUCTION SET

The 8086 and 8088 instruction sets, listed in numerous tables in this book, are identical
with the exception of execution times. Since the 8088 has an 8-bit bus, two bus cycles
will have to be executed wherever the 8086 would have executed a single bus cycle to
fetch 16 bits of data. Appendix A provides execution times for the 8086.

Index

AAA, 3-49-50, 4-19
flags, 3-27

AACK. See Multibus

A AD, 3-51-52, 4-30
flags, 3-29

A AM, 3-53-54, 4-26
flags, 3-29

A AS, 3-55-56, 4-23
flags, 3-27

ADC

ac-data, 3-57-58, 4-18
flags, 3-26
mem/reg-mem/reg, 3-61—62, 4-18
mem/reg-data, 3-59—60, 4-18

ADD

ac-data, 3-63—64, 4-18
flags, 3-26
mem/reg-mem/reg, 3-67—68, 4-18
mem/reg-data, 3-65—66, 4-18

Address bus

concepts, 7-10—16
demultiplexed, 7-10—11
distributed demultiplexed, 7-10
local demultiplexed, 7-10
multiplexed, 7-3

Address calculation, 3-30—31

Addressing modes
data addressing:

base relative, 3-3, 3-37—39
base relative direct indexed, 3-39
base relative direct stack, 3-40
base relative implied, 3-38
direct, 3-34
direct indexed, 3-35
immediate, 3-32—33
implied, 3-36

program addressing:
program relative, 3-31
direct, 3-31
indirect, 3-31

ADR0-ADR13. See Multibus

Algorithm, 1-2
ALU, 7-28
AND

ac-data, 3-69-70, 4-36
flags, 3-28
mem/reg-mem/reg, 3-73-74, 4-36
mem/reg-data, 3-71 — 72, 4-36

ASCII arithmetic examples
addition, 4-20
division, 4-28
multiplication, 4-25, 4-27

xvi The 8086 Book

Assembler, 1-3
definition of, 5-1
functions of, 5-11 —13

BCD arithmetic examples
addition, 4-20

BCLK, 10-13. See also Multibus
BHE, 7-4. See also Address bus
iwage in memory selection, 7-13—15

BHE, 7-4. See also Address bus
BHEN. See Multibus

Binary arithmetic examples
addition, 4-17
subtraction, 4-21
32-bit multiply, 4-24

BIU. See Bus Interface Unit

Block control character, 4-39
Block move, 6-7
BPRN, 10-7, 10-13. See also Multibus
BPRO 10-13. See also Multibus

BREQ, 10-5, 10-13. See also Multibus
Breakpoint trap, 8-33
Buffer, 5-4

translation, 4-13
Buffer-to-buffer moves, 4-6—11
Bus contention, 7-20, 7-26—27
Bus cycle, 7-8 — 10
Bus Interface Unit (BIU), 3-2, 7-8

activity with LOCK, 8-9
operation of, 7-28—33

Bus master, 9-1
Bus slave, 9-1
Busy, 10-7,10-13
Byte ordering in memory, 4-17

CALL, 4-48
addr, 3-75-76, 4-50
displ6, 3-77-78, 4-50
flags, 3-26
mem, 3-79—80, 4-50
mem/reg, 3-81 — 82, 4-50

CAS, 8-52
Cascade address lines. See CAS

CBRQ, 10-5, 10-13. See also Multibus
CBW, 3-83, 4-30

flags, 3-26
CCLK. See Multibus

Character pointer, 5-4
CLC, 3-84, 4-57

flags, 3-28
CLD, 3-85, 4-57

flags, 3-28
CLI, 3-86, 4-57

flags, 3-28
CLK. See 8284 timing signals
CMC, 3-87, 4-57

flags, 3-28
CMP

ac-data, 3-88—89, 4-32

flags, 3-26
mem/reg-mem/reg, 3-92—93, 4-32
mem/reg-data, 3-90—91, 4-32

CMPS, 3-94-95, 4-45
flags, 3-26

Context switch, 4-14—15
code for, 4-15
execution time, 4-15

Control information, 1-6, 1-7
Control Unit, 7-28
Co-processor, 10-1

instructions, 10-2—3
interface to 8086, 8-6, 10-2—3

CPU, 1-2
CWD, 3-96, 4-30

flags, 3-26

DAA, 3-97-98
flags, 3-27

Daisy chain, 9-5, 9-9
DAS, 3-99-100, 4-23

flags, 3-27
Data bus

buffered, 7-16
double buffering, 7-25 — 27
local bus, 7-27
multiplexed, 7-3, 7-16—20
system bus, 7-8, 7-27

Data bus transceivers

enable timing, 7-8
Data memory, 1-2
Data movement, 4-2
Data translation, 4-13—14

translate buffer size, 4-13, 4-34
DATO-DATF. See Multibus

Debugger, 1-11, 5-2
DEC

flags, 3-26
mem/reg, 3-101 —102, 4-22
reg 3-103-104, 4-23

Decoupling
bulk, 9-7
high frequency, 9-7

DIV, 3-105-106, 4-29
flags, 3-29

Divide by zero, 8-32
Documentation, 1-9
types, 1-13 — 14

Editor, 5-1
definition of, 5-3
typical commands:
Change String, 5-10
Delete Data, 5-7
Display, 5-8
Insert Data, 5-6
Move Character Pointer, 5-8
Read Data, 5-5
Search Buffer, 5-9

system commands, 5-10—11

Index xvii

Effective memory address, 3-30

address bus, D-1 —2
addressing modes, D-1
bus cycle timing, D-3
control lines, D-1 —2
data bus, D-1 —2
instruction queue operation, D-3
instruction set comparison with 8086, D-4
logic comparison with 8086, D-4
status decoding, D-3
status lines, D-1 —2

8251A, 3-4-6
character length, 3-5
handshake protocol, 3-5, 3-12
initialization, 6-10
status port definition, 3-10

8257 DMA, 8-57
access to 8086 Bus, 8-57
8-bit transfers, 8-57
16-bit transfers, 8-62

8259A

cascade address transfer, 8-38—40
interface to 8086, 8-38
master/slave configurations, 8-38—42

8282/8283 Octal latches, 10-5
drive, 7-10
operation, 7-20
timing, 7-10

8284

CLK buffering, 8-18
clock delays, 8-14
control lines, 8-11—22, 10-5 — 8
crystal requirements, 8-11 — 13
debiasing capacitor, 8-12
driving multiple 8284s, 8-14
external frequency selection, 8-13
input frequency requirements, 8-11
synchronizing multiple 8284s, 8-15 — 17
timing signals, 8-11 — 14, 10-5

8286/8287, Octal transceivers, 7-20, 10-4
capacitive loading, 7-20
control, 7-20
drive, 7-20
timing, 7-20

8288, 3-4
command timing, 10-7
control lines, 8-7 — 8, 8-49—52,

8-61, 10-5, 10-7, 10-11
interface with 8086, 8-3, 8-6
operation in multiprocessor system,

10-4-12

resource mapping options, 10-7—12
SO, SI, S2 interface, 7-6

8289, 10-4-13
bus request options, 10-13
control lines, 10-5 — 13
reset of, 8-21
reset pulse width, 8-21
response to reset, 8-21

End-of-file record, 2-3, 2-7
ESC, 3-107-108, 4-57

flags, 3-26
ESCAPE, 8-6, 10-3
EU. See Execution Unit

Examine/Alter, 1-11
Execution Unit (EU), 3-2, 7-8

effect of HOLD, 8-53
operation of, 7-28—33

Functional subsystems, 10-4

HALT, 10-13
HLT, 3-109, 4-57

flags, 3-26
Hold acknowledge, 7-3—4
HOLD/HLDA handshake, 8-53
bus conditioning, 8-53
bus exchange timing, 8-54
latency, 8-55—56

IDIV, 3-110-111, 4-29
flags, 3-29

Idle clock, 7-32—33. See also T states
IF. See Interrupt flag
IMUL, 3-112-113, 4-26

flags, 3-27
IN

DX, 3-114-115, 4-58
flags, 3-26
port, 3-116-117, 4-58

INC

flags, 3-26
mem/reg, 3-118-119, 4-18
reg, 3-120-121, 4-19

INHl. See Multibus

INH2. See Multibus

INIT. See Multibus

Instruction fetch

logical operation, 7-29
Instruction queue, 7-6, 7-8

operation of, 7-29—33
tracking operation of, 8-3—6

INT, 3-122-123, 4-61
flags, 3-29

INT nn, 8-33
INT0-INT2. See Multibus

INTA. See Multibus

Interrupt acknowledge
bus sequence, 8-34, 8-36
effect of loading SS, 8-35
effect of LOCK prefix, 8-35—36
effect of REP prefix, 8-35—36
effect on BIU, 8-34
latency, 8-36
LOCK activity, 8-35
stack activity, 8-37

Interrupt enable flag, 7-3—4
Interrupt flag, 8-33
Interrupt priorities, 8-37 — 38
Interrupt recognition, 8-33

xvlii The 8086 Book

Interrupt sequence, 8-34
Interrupt type number, 8-30
Interrupt vector, 8-30
Interrupt vector table, 8-30, 8-34
INTO, 3-124-125, 4-61, 8-33

flags, 3-29
I/O channel, 1-6—7
I/O instructions, 4-59

register indirect addressing, 4-59
I/O interface, 1-2
lORC. See Multibus

lOWC. See Multibus
IRET, 3-126, 4-61, 8-33

flags, 3-29

JA, 3-127, 4-52
flags, 3-26

JAE, 3-128, 4-52
flags, 3-26

JB, 3-129 4-52
flags, 3-130, 3-26

JBE, 4-52
flags, 3-26

JC. See JB

JCXZ, 3-131, 4-53, 4-55
flags, 3-26

JE, 3-132, 4-52
flags, 3-26

JG, 3-133, 4-52
flags, 3-26

JOE, 3-134, 4-52
flags, 3-26

JL, 3-134, 4-52
flags, 3-26

JLE, 3-136, 4-52
flags, 3-26

JMP

addr, 3-137-138, 4-51
conditional, 4-56
disp8, 3-139-140, 4-51
displ6, 3-141-142, 4-51
flags, 3-26
mem, 3-143-144, 4-51
mem/reg, 3-145-146, 4-51
unconditional, 4-49

JNA. See JBE

JNAE. See JB

JNB. See JAE

JNBE. See JA

JNC. See JAE

JNE, 4-53, 3-147
flags, 3-26

JNG. See JLE

JNGE. See JL

JNL. See JGE

JNLE. See JG

JNO, 3-148, 4-53
flags, 3-26

JNP, 3-149, 4-53
flags, 3-26

JNS, 3-151, 4-53
flags, 3-26

JNZ. See JNE

JO, 3-151, 4-53
flags, 3-26

JP, 3-152, 4-53
flags, 3-26

JPE. See JP

JPO. See JNP

JS, 3-153, 4-53
flags, 3-26

JZ. See JE

Key, 2-3

LAHF, 3-154-155, 4-5
flags, 3-26

LDS, 3-156-157, 4-4, 4-7
flags, 3-26

LEA, 3-158-159, 4-4, 4-10
flags, 3-26

LES, 3-160-161,4-4
flags, 3-26

Linear change rate reset circuit, 8-22
Linker, 5-2
Listing file, 5-1
Loader, 5-2
LOCK, 3-162, 4-57

flags, 3-26
LOCK, 8-8

relationship to LOCK, 8-9
usage, 8-10

LODS, 3-163-164, 4-45
flags, 3-26

LOOP, 3-165, 4-6, 4-17, 4-55
flags, 3-26

LOOP, 4-56
usage, 6-11 — 12

LOOPE, 3-166, 4-55
flags, 3-26

LOOPZ, 3-166, 4-55
flags, 3-26

LOOPNE, 3-167, 4-55
flags, 3-26

LOOPNZ, 3-167, 4-55
flags, 3-26

Loosely coupled, 9-11, 10-4

Maximum mode, 7-5, 9-1, 10-1. See
also MN/MX

additional functionality, 8-3 — 10
usage, 8-8

Memory address space, 7-11 — 16
bank selection, 7-11 — 16
even addressed bytes, 7-13
even addressed words, 7-14
Odd addressed bytes, 7-14
Odd addressed words, 7-15
selection decoding, 7-4

Minimum mode, 7-5. See also MN/MX
bus preemption, 8-1

Index xix

8086 signal description, 8-1
MN/MX, 7-1, 7-4, 8-1

signals affected by 7-5
MOV

flags, 3-26
mem/reg-data, 3-180—181, 4-3
mem/reg-mem/reg, 3-168-169, 4-3
mem/reg-segreg, 3-178—179, 4-3
reg-data, 3-170-172, 4-3
segreg-mem/reg, 3-176—177, 4-3

MOV

even byte count, 6-2—3
odd byte count, 6-2

MOVS, 3-182-184, 4-45
flags, 3-26

MRDC. See Multibus

MUL, 3-185-186, 4-26
flags, 3-27

Multibus

bus excharige protocol, 9-8—10
bus relinquish controls, 9-11
bus request controls, 9-11
8-bit data transfers, 9-12
interrupt structure, 9-7
pin assignments, 9-1 — 2
priority arbitration, 9-8 — 10
signal definitions:
AACK, 9-6
ADR0-ADR13, 9-3-4
BCLK, 9-4
BHEN, 9-4
BPRN, 9-5
BPRO, 9-5
BREQ, 9-5
BUSY, 9-5
CBRQ, 9-5
CCLK, 9-4
DATO-DATF, 9-4
INHl, 9-4
INH2, 9-4
INIT, 9-3
INTA, 9-6
INT0-INT7, 9-6
lORC, 9-6
lOWC, 9-6
MRDC, 9-5
MWTC, 9-6
XACK, 9-6

signal timing relationships, 9-7
16-bit data transfers, 9-12
transfer rates, 9-8
use of BHEN, 9-12

Multiplexed address data bus, 7-8. See also
Multiplexed bus

Multiplexed bus, 7-3. See also Address bus
Multiprocessor systems, 9-1, 10-1, 10-4
8086 configurations:

local ROM/EPROM, 10-8
local I/O, 10-11
local RAM, 10-11

multiple system busses, 10-11
multiple local resources, 10-5—7

MWTC. See Multibus

NEG, 3-187-188, 4-23
flags, 3-26

NMI. See Non-maskable interrupt
Non-maskable Interrupt, 7-4, 8-32
NOP, 3-189, 4-57
Normally not ready, 8-24
Normally ready, 8-24
NOT, 3-190-191, 4-36

flags, 3-26
Not Ready, 7-8

Object code, 5-1
relocatable, 3-3

Object code queue. See Instruction queue
Object program, 1-2—3. See also object code
OE. See Output Enable
OF. See Overflow flag
Offset operator, 6-2, 6-6
OR

ac-data, 3-192-193, 4-37
flags, 3-28
mem/reg-mem/reg^ 3-196-197, 4-36
mem/reg-data, 3-194-195, 4-36

OUT

DX, 3-198-199, 4-58
flags, 3-26
port, 3-200-201, 4-58

Output Enable, 7-16, 7-18
timing for, 7-19

Overflow flag, 8-33

Parallel priority, 9-5, 9-8 — 9
Parameter passing, 3-5, 4-12, 6-9
Parameter tracking, 8-63
POP

flags, 3-26
mem/reg, 3-202-203, 4-5
reg, 3-204-205, 4-5
segreg, 3-206-207, 4-5

POPF, 3-208-209, 4-5
flags, 3-29

Ports

data, 1-6—7
status, 1-6—7
control, 1-6—7

Predefined interrupts, 8-30
Interrupt 0, 8-32
Interrupt 1, 8-32
Interrupt 2, 8-32
Interrupt 3, 8-33
Interrupt 4, 8-33

Prefix instruction, 3-6
Private resources, 10-4
Program

general debugging techniques, 1-11 — 12
general design techniques, 1-9—10
maintenance of, 1-14

XX The 8086 Book

Program (Continued)
module, 1-8—9
specification of, 1-8 — 9

Program memory, 1-2
Program status word, 8-32
PUSH

flags, 3-26
mem/reg, 3-210—211, 4-4
reg, 3-212-213, 4-4
segreg, 3-214-215, 4-4

PUSHF, 3-216-217, 4-4
, 3-26

Queue status
QSO, 7-6
QSl, 7-6
QSO, QSl encoding, 7-6, 8-3
use with ICE 86, 8-3

Queue tracker, 8-3, 8-5—6

RC reset circuit, 8-21 — 22
RCL, 3-218-219, 4-64

flags, 3-28
RCR, 3-220-221, 4-65

flags, 3-28
Reentrant program, 3-3—4
Relocatable object code, 3-3
Record number, 2-3
Register set, 3-20
base register, 3-21
count register, 3-22
data segment register, 3-21
8-bit, 3-21
general purpose, 3-21
I/O address register, 3-22
I/O data register, 3-21
16-bit, 3-21

Release pulse. See RQ/GT protocol
REP, 3-222-223

flags, 3-26
Repeat prefix
REP/REPE/REPZ, 4-46

RET, 3-224-226, 4-50
displ6, 3-228-231, 4-50
flags, 3-26

RETURN, 4-49
ROL, 3-231-232, 4-66

flags, 3-28
ROR, 3-233-234, 4-67

flags, 3-28
Rotate instructions, 4-62
Routine call techniques, 6-9
RQ/GT protocol, 8-65
RQ/GT timing, 8-65
RQ/GT to HOLD/HLDA conversion,
8-61-62

SAHF, 3-235-236, 4-5
flags, 3-28

SAR, 3-237-238, 4-69
flags, 3-28

SBB

ac-data, 3-239-240, 4-22
flags, 3-26
mem/reg-data, 3-241 — 242, 4-22
mem/reg-mem/reg, 3-243—244, 4-22

SCAS, 3-245-247, 4-45
flags, 3-26

Segment override prefix, 3-247—248, 4-44
Segment size, 3-22
Serial priority, 9-8 — 9. See also Daisy chain
Shared memory, 10-4
Shared resources, 10-4
Shell sort, 6-3
Shift instructions, 4-62
SHL

as used for multiply, 6-5
SHL/SAL, 3-249-252, 4-68

flags 3-28
SHR, 3-252-253, 4-70

flags, 3-28
Signetics object code format, 4-39
Single step, 1-11, 3-24, 8-32
Software interrupts, 4-60, 8-33
Source code, 5-1
Source file, 5-1
Source program, 1-3. See also Assembly

language
Source code

Special function processor. See Co-proccesor
Stack parameter passing, 4-9—10
STC, 3-254, 4-57

flags, 3-28
STD, 3-255, 4-57

flags, 3-28
STI, 3-256-257, 4-57

flags, 3-28
STOS, 3-258-259
4-45

flags, 3-26
String primitives, 4-44, 4-46
CMPS, 4-31
CMPSB, 4-48
CMPSW, 4-48
SCAS, 4-31, 4-33

SUB

ac-data, 3-260-261, 4-22
flags, 3-26
mem/reg-data, 3-262 — 263, 4-22
mem/reg-mem/reg, 3-264-265, 4-22

Symbol file, 5-1
System

configurations, 3-3
general definition of, 1-1—2
maintenance, 1-14
specification of, 1-5—8

System guide. See Documentation
System reset, 8-21. See also 8284

TEST, 6-8
ac-data, 3-266-267, 4-37

Index xxi

_s, 3-28
mem/reg-data, 3-268—269, 4-37
mem/reg-mem/reg, 3-270—271, 4-37

TF. See Trap flag
T states, 7-8—10
Tl, 7-8
T2, 7-8
T3, 7-8
T4, 7-8
TI, 7-10
TW, 7-8

Tightly coupled, 9-11, 10-4
Timing relationships, classes of, 8-63
Trap flag, 8-32

User's guide. See Documentation

WAIT, 3-272, 4-57, 10-3
flags, 3-26

Wait state, 7-4, 7-8, 8-7, 8-24-25
Wait state generator, 8-28

XACK, 10-7-8. See also Multibus
XCHG

flags, 3-26
reg-mem/reg, 3-215—216, 4-3
reg, 3-273-274, 4-4

XL AT, 3-277-278, 4-4
flags, 3-26

XOR
ac-data, 3-279-280, 4-37
flags, 3-28
mem/reg-data, 3-283—284, 4-37
mem/reg-mem/reg, 3-281—282, 4-37

About the Authors

Russell Rector has been involved with computing since 1968. After receiving a
B.A. in Computer Science from the University of California, he assisted in the creation
of several substantial software systems before joining the technical staff at Osborne,
where Mr. Rector has divided his time between software design and assisting in the writ
ing of several Osborne publications.

George Alexy joined Intel in 1977. He is the applications manager for
microprocessor products, covering all 8- and 16-bit microprocessors including the 8086,
8088, 8089, and 8087. His group at Intel is concerned with system design methodology
for single and multiple processor systems, resource distribution and functional partition
ing relating to CPU and system architecture and performance. Prior to joining Intel, Mr.
Alexy was with Sperry Univac. He holds a master's degree in Electrical Engineering
from Stanford University.

OSBORNE/McGraw-Hill GENERAL BOOKS

An Introduction to Microcomputers series
by Adam Osborne
Volume 0 — The Beginner's Book
Volume 1 — Basic Concepts
Volume 2 — Some Real Microprocessors (1978 ed.)
Volume 3 — Some Real Support Devices (1978 ed.)
Volume 2 1978-1979 Update Series
Volume 3 1978-1979 Update Series

The 8089 I/O Processor Handbook

by Adam Osborne
8080 Programming for Logic Design

by Adam Osborne
6800 Programming for Logic Design

by Adam Osborne
Z80 Programming for Logic Design

by Adam Osborne

8080A/8085 Assembly Language Programming
by L. Leventhal

6800 Assembly Language Programming
by L. Leventhal

Z80 Assembly Language Programming
by L. Leventhal

6502 Assembly Language Programming
by L. Leventhal

Z8000 Assembly Language Programming
by L Leventhal et al.

Running Wild: The Next Industrial Revolution
by Adam Osborne

PET-CBM Personal Computer Guide
by Carroll Donahue and Janice Enger

PET and the IEEE 488 Bus (GPIB)

by E. Fisher and C. W. Jensen

OSBORNE/McGraw-Hill SOFTWARE

Practical Basic Programs
by L Poole et al.

Some Common BASIC Programs
by L Poole and M. Borchers

Some Common BASIC Programs PET Cassette
Some Common BASIC Programs PET Disk
Some Common BASIC Programs TRS-80 Cassette

Payroll with Cost Accounting - CBASIC
by Lon Poole et al.

Accounts Payable and Accounts Receivable - CBASIC
by Lon Poole et al.

General Ledger - CBASIC
by Lon Poole et al.

Some Common Basic Programs — PET/CBM
edited by Lon Poole et al.

» i'H."- .

The 8086 Book is the most comprehensive and thoroughly readable
reference you will find anywhere for this powerful new microprocessor. It
is an invaluable reference book for engineers, programmers, students and

hobbyists that covers all of the most important features of the 8086;

Hardware — the architecture, timing and design of the 8086
chip are covered in impressive detail.

Programming — the entire 8086 instruction set is presented,
along with a discussion of optimal programming
techniques.

Interfacing — techniques and specifications for interfacing to
all kinds of devices are discussed and outlined.

Applications — the special features of the 8086 are covered

objectively. Multibus and multi-CPU configurations are
also described.

Anyone using or designing an 8086-based microcomputer system will
want to carefully examine this exciting new book from OSBORNE/
McGraw-Hill.

Other OSBORNE/McGraw-Hill publications of interest:

The 8089 I/O Processor Handbook — a complete description of
the 8089 and the 8289 Bus Arbiter, this handbook covers

8089-8086 interfacing.

An introduction to Microcomputers: Volume 2 — Some Real

Microprocessors — the world's most complete and up-to
date guide to dozens of specific microprocessors.

An Introduction to Microcomputers: Volume 3 — Some Real

Support Devices — a companion book to Volume 2 that

covers most of the support devices used in microcomputer
systems.

^005

