anguage

Language \

- Language N\

g Language \
ng Language i
ing Language . \

ming Language

mming Language

amming Language ik
ramming Language

gramming Language

‘ogramming Language

rogramming Language

Programming Language \

. Programming Language

4 Programming Language

L4 Programming Language

OL4 Programming Language

BOL4 Programming Language
[OBOL4 Programming Language
NOBOLY4 Programming Language
SNOBOLY4 Programming Language

' SNOBOLY4 Programming Language
le SNOBOL4 Programming Language
'he SNOBOL4 Programming Language
The SNOBOL4 Programming Language

$ 300

- SNoBOL4

N\
\

The SNOBOL4 Programming Language
The SNOBOLU4 Programming Language
The SNOBOL4 Programming Language \ <
The SNOBOL4 Programming Language
The SNOBOLY4 Programming Language
The SNOBOLY4 Programming Language
The SNOBOL4 Programming Language
The SNOBOLY4 Programming Language
The SNOBOL4 Programming. Language
The SNOBOL4 Programming Language
The SNOBOL4 Programming Language
The SNOBOL4 Programming Language
The SNOBOLY4 Programming Language
The SNOBOL4 Programming Language
The SNOBOLY4 Programming Language
The SNOBOLY4 Programming Language
The SNOBOL4 Programming Language
The SNOBOL4 Programming Language
The SNOBOL4 Programming Language
The SNOBOL4 Programming Language
The SNOBOL4 Programming Language
The SNOBOL4 Programming Language
The SNOBOLA4 Programming Language
The SNOBOL4 Programming Language
The SNOBOLY4 Programming Language
The SNOBOL4 Programming Language
The SNOBOL4 Programming Language
The SNOBOLY4 Programming Language
The SNOBOL4 Programming Language
The SNOBOL4 Programming Language
The SNOBOLY4 Programming Language
The SNOBOL4 Programming Language
The SNOBOL4 Programming Language
The SNOBOL4 Programming Language
The. SNOBOL4 Programming Language
The SNOBOL4 Programming Language
The SNOBOLY4 Programming Language
The SNOBOL4 Programming Language

R. E. Griswold
J. F. Poage
|. P. Polonsky

M le o~ COSAT/ AT I R T . B e . e

THE SNOBOL4
PROGRAMMING
LANGUAGE

R. E. Griswold
J. F. Poage

Bell Telephone Lahoratories, Incorporated

Copyright © Bell Telephone Laboratories, Incorporated, 1968

All rights reserved. No part of this book may be
reproduced in any form or by any means without
permission in writing from the publisher.

Current printing (last digit): 10 9 8 7 6 56 4 3 2

13-815357-4

Library of Congress Catalog Card Number: 79-77614

Printed in the United States of America

Preface

SNOBOL4 1s a computer programming language containing many features not
commonly found in other programming languages. It evolved from SNOBOL [.1,2,3]!,
a language for string manipulation, developed at Bell Telephone Laboratories,
Incorporated, 1in 1962. Extensions to SNOBOL through various versions have made
it a useful tool in such areas as compilation techniques, machine simulation,

symbolic mathematics, text preparation, natural language translation, linguis-
tics, and music analysis.

The basic data element of SNOBOL4 is a string of characters, such as this
line of printing. The language has operations for joining and separating
strings, for testing their contents, and for making replacements in them. If a
string is a sentence, it can be broken into phrases or words. If it is a
formula, it can be taken apart into components and reassembled in another
format. A string can appear either as a literal or as the wvalue of a variable.
The literal form is indicated by enclosing the string in gquotation marks:

'THIS IS A STRING!
The string value may be assigned to a variable:
LINE = 'THIS IS A STRING!

A common operation on a string is examination of its contents for a desired
structure of characters. This structure, known as a pattern, can be as simple
as a string or a given number of characters. A pattern also can be an extremely
complicated expression consisting, for example, of a number of alternatives
followed by another set of alternatives, all of which must begin a given number
of characters from the end of the string. The pattern, as a data type, may also

appear either in literal or wvariable form. The data type of a variable -
string, pattern, or any other in the language - depends on the last value
assigned to it. There are no type declaration statements for variables as in

other programming languages.

SNOBOL4 provides numerical capabilities with Dboth integers and real
numbers. Because the language is essentially character oriented, the facilities
are nbdbt extensive. Since most numerical operations with strings involve
character counting, integers are much more commonly used, with conversion to and
from strings performed automatically as required.

often it is desirable to associate a group of items with one variable name
through numeric indexing. The SNOBOLY4 array provides this capability with more
flexibility than most programming languages. An array 1is a data element
consisting of a set of pointers to other data elements, so that each array

element may be any data type, even an array. Several other system-defined data
types are also included.

Execution of SNOBOLY4 programs is interpretive. Instead of compiling a
program into actual computer instructions, the compiler translates the program
into a notation the interpreter can easily execute. This makes it fairly simple
to provide capabilities such as tracing of new values for variables, an
operation that is quite difficult in noninterpretive systems. Another important
product of interpretation 1is flexibility. Functions <can be defined and
redefined during program execution. Function calls can be made recursively with
no special program notation. The language 1is extendable to new data types
needed for a program through data type definition operations. Linked-list nodes
and complex numbers are possible programmer-defined data types. Operations on
these new data types can be defined as functions.

iNumbers in brackets refer to references listed at the end of this manual.

|l
e
e

This manual 1is an instructional and reference guide, and provides many
examples of usage of the language. The description of the language is complete
and does not require familiarity with earlier versions of the language. Some
familiarity with elementary concepts of programming is presumed, however.

iv

Foreword

The SNOBOLY4 programming language has been developed over a period of vyears
and new language featurés have been added from time to time during the course of
this development. Consequently there are several somewhat different versions of

the language in use. The description in this manual corresponds to Version 2.0
(October 7, 1968).

SNOBOLY4 has been implemented on several different computers, including the
IBM System/360, the UNIVAC 1108, the GE 635, the CDC 6000 series, and the RCA
Spectra 70 series. Implementations for other machines are in various stages of
completion. These machines have different operating environments and character
sets. As a result, implementations of SNOBOLU vary from machine to machine in
details of syntax, operating system interface, and so forth. This manual
corresponds to the implementation of SNOBOLY4 for the TIBM System/360 operating
under OS. Sections of the manual containing language features particularly
dependent upon this implementation make specific reference to this dependency.

Programs contained in this manual were run on an IBM 360 Model 65.

Acknowledgments

The authors' most pleasant responsibility is the acknowledgement of the
assistance provided in the course of the design, implementation, and documenta=-
tion of the SNOBOL4 language.

The ideas of many individuals have helped shape the form of SNOBOLA.
Particularly valuable contributions have been made by Messrs. B. N. Dickman,
D. J. Farber, P. D. Jensen, M. D. McIlroy, R. F. Rosin, M. A. Seelye, and
M. D. Shapiro.

The authors have been fortunate in having the assistance of a number of
people during various stages of the implementation of SNOBOL4. Mr. R. A. Yates
designed and implemented the storage allocation and regeneration techniques used
in SNOBOL4. Mr. Yates also contributed many useful ideas to the overall design
of the system. Messrs. B. N. Dickman and P. D. Jensen designed and implemented
the tracing facilities and provided many valuable suggestions for improving the
system. Special thanks are due Mr. L. C. Varian for his assistance in preparing
the initial implementation for the IBM System/360.

The authors would like to express their appreciation to Mrs. R. E. Griswold
who has given freely of her time +to prepare much of the machine-readable
material used in the development of the SNOBOL4 langauage and its documentation.

Mr. J. F. Gimpel has made an important contribution to the documentation of
the language. The present document reflects much of his thinking on the
organization and presentation of descriptive material. Several of the programs
used in the examples are his.

Mr. M. A. Seelye provided an an unusually thorough and perceptive criticism
of a preliminary draft of this manual, enabling the authors to correct many
errors and clarify a number of obscure points.

The authors! special thanks go to Mrs. P. M. Hammer and Mr. M. D. Shapiro
for their help in preparing this manual. Thelr editorial competence and
unfailing good humor have made the laborious process of preparing this
manuscript a bearable, if not rewarding, experience.

vi

B.
C.
D.
E.
F.
G.

I.
J.
K.

Chapter 1:

Assignment Statements and Basic Data Types

1. Integers
2. Real Numbers
3. Strings
The Null String

Contents

Strings in Arithmetic Expressions

String-vValued Expressions

Input and Output of Strings

Pattern Matching Statements
Replacement Statements
Patterns

Conditional Value Assignment
Flow of Control

Indirect Reference

Functions

1. Primitive Functions

2. Predicates

3. Defined Functions
Keywords

Arrays

Programmer-Defined Data Types
Program Example

Introduction to the SNOBOL4 Programming Language

OOV ELELFEWN =

Chapter 2: Pattern Matching

Introduction 22
Alternation and Concatenation 23
Scanning 25
Modes of Scanning 28
1. Unanchored Mode 28
2. Anchored Mode 29
Value Assignment through Pattern Matching 30
1. conditional Value Assignment 30
2. Immediate Value Assignment 31
3. Special Considerations 32
Precedence 32
Association with the Variable OUTPUT 32
Value Assignment in Replacement Statements 33
Association of Several Variables with One Pattern 33

The Null String in Pattern Matching 33
LEN 34
SPAN and BREAK 35
ANY and NOTANY 37
TAB, RTAB, and REM 40
POS and RPOS 42
FATL. 46

vii

M. FENCE 47

N« ABORT 47
O. Patterns with Implicit Alternatives 48
1. ARB 48
2. BAL 50
3. ARBNO 52
q. SUCCEED 54
P. Cursor Position 56
Q. Unevaluated Expressions 57
R. Quickscan Mode 63
S. Fullscan Mode 71

Chapter 3: Predicates and Primitive Functions

A. Introduction 75

B. Numerical Predicates 76

1. LT, LE, EQ, NE, GE, and GT 76

2. INTEGER 77

C. Object Comparison Predicates 77

1. IDENT and DIFFER 78

2. LGT 79

D. Additional Primitive Functions 80

1. SIZE : 80

2. . REPLACE - 80

3. TRIM 81

4. DATE and TIME 81

5. EVAL 81

E. Negation (-») and Interrogation (?) 82
'

Chapter 4: Programmer-Defined Functions

A. Introduction 83

B. The Primitive Function DEFINE 83

C. Procedures for Programmer-Defined Functions 84

D. Execution of Programmer-Defined Functions 86

Example - Union, Intersection, and Negation 87

Example - Pseudo-Random Number Generator 89

E. Recursive Functions 91

Example - Decimal to Binary Conversion 92

Example - Polish to Infix Translation 96

Example - Infix to Polish Translation 98

Example - Tower of Hanoi 102

F. OPSYN 105

G« APPLY 107

Chapter 5: Arrays, Data Types, and Keywords

A. Arrays 108
1. Array References 110
Example - Bubble Sort ‘ 111

2., Primitive Functions for Use with Arrays 113

viii

A‘

A.
B.
C.

COPY
PROTOTYPE
ITEM
Names
1. Passing Names
2. The Unary Name Operator
3. Returning a Variable
Gotos, Labels, and Code
1. Creation and Execution of Code
Programmer-Defined Data Types
Example - Text Processing
Summary of Data Types
1. DATATYPE
2. Data Type Conversion
3. COPY
Reywords
Protected Keywords
1. Varying Protected Keywords
2. Constant Protected Keywords
Unprotected Keywords
1. Switches
2. Parameters

113
114
114
115
116
117
118
119
119
122
123
126
126
127
128
128
129
129
129
130
130
130

Chapter 6: Details of Evaluation

The Components of a Statement 132
Statement Evaluation 132
Integers and Strings 134
Real Numbers 136
Operators 137
Unary Operators 137

- Binary Operators 139
Variables and Values 141
Chapter 7: Tracing

Standard Trace Procedures 143
1. Value Tracing 143
2. Function Tracing 147
3. Label Tracing 151
4, Reyword Tracing 152
5. Discontinuation of Tracing 153
Programmer-Defined Trace Functions 153
1. Invoking Programmer-Defined Trace Procedures 154
2. Tools for Writing Programmer-Defined Trace Procedures 154

Printed Output
Punched Output
Input

Chapter 8: Input and Output

156
157
157

ix

D.
E.
F.

B.
C.

Appendix A.

The I/0O System
Output Associations
Input Associations
Other I/O Functions

1. DETACH
2. ENDFILE
3. REWIND

4. BACKSPACE

Compilation
1. Source Program Input
2. Source Listing

158
159
161
161
161
162
162
162

Chapter 9: Structure of a SNOBOL4 Run

3. Errors Detected during Compilation

Execution

Termination

1. Normal Termination
2. Error Termination

3. Intervention Termination
L. Catastrophic Termination

Chapter 10:

Efficiency and Good Programming Practices
1. Efficiency in Pattern Matching

2. Structuring Data
Storage Management

1. Forcing Storage Regeneration
2. Clearing Variable Values

1. Syntax of SNOBOLY4
2. Syntax of SNOBOL4
3. Syntax of SNOBOL4

Appendix B. Error Messages

1. Compilation Error
2. Error Termination

Syntax of SNOBOL4

Statements
Programs
prototypes

Messages
Messages

3. Print Request Messages
Appendix C. Examples

1. Syntax Recognizer
2. Topological Sort

for SNOBOLY

3. "ICEBOL - A Compressor of SNOBOLY4 Programs
4. Factorial Table Generator
5. Bridge Dealing Program

6. APIAPT ---

A Christmastime Algorithm

163
163
163
164
164
165
165
169
171
172

Programming Details

173
173
177
178
178
178

Appendices

181
182
183
184
185
185
186
189
190
190
193
197
203
206
213

Chapter 1. Introduction to the SNOBOL4 Programming Language

This chapter 1s an 1introductory overview of the SNOBOL4 programming
language. It describes the format of statements, some of the operations, and
some of the types of data handled by the language. Later chapters describe in
more detail much of the material in this introductory chapter.

A SNOBOL4 program consists of a sequence of statements. There are four
basic types of statements:

1) the assignment statement,

2) the pattern matching statement,
3) the replacement statement, and
4y the end statement.

The end statement terminates the program.

A. Assignment Statements and Basic Data Types

The simplest type of statement is the assignment statement. It has the
form

variable = value
The assignment statement may be said to have the following meaning: "Let
variable have the given value." For example, let V have the value 5, or

\ = 5

The value may be given by an expression, consisting, for example, of arithmetic
operations as in the statement

W = 14 + (16 - 10)
which assigns the value 20 to the wvariable W. Blanks are required ‘around
arithmetic operators such as + and - . The value need not be an integer, which
is just one type of data handled by SNOBOL4. For example, the value may be a
string of characters, indicated by enclosing gJuotes. An example 1is the

assignment statement

v = 'DOG!

which assigns the string DOG to the variable V. Various types of data and
operations that may be performed on them are described later.

Typically a variable is a name such as V, X, or ANS. Variables appearing
explicitly in a program must begin with a letter which may be followed by any
number of letters, digits, periods, and underscores.

The value of a variable may be used in an assignment statement. Thus

RESULT ANS. 1

assigns to the wvariable RESULT the value of ANS.1 . (Quotation marks distin-
guish literal strings from variables.)

Blanks are required to separate the parts of a statement. In an assignment
statement, the equal sign must be separated from the variable on the 1left and
the value on the right by at least one blank.

A statement which is longer than one line can be continued onto successive
lines by starting the continuation lines with a period or plus sign. An example
is

N = (3 + M) (2 + SUM) -
. (F - 2)

When continuing a statement over a line boundary, the statement may be broken
wherever a blank is required.

Several statements may be placed on one line by using semicolons which
indicate the ends of statements. An example is

X = 23 Y = 3; Z = 10
A line beginning with an asterisk is treated as a comment and does not
affect the operation of the program.
1. Integers
The arithmetic operations of addition, subtraction, multiplication, divi-

sion, and exponentiation of integers may be used in expressions. The statements

5; M = 4
N*M/ (N~ 1)

v)
I

assign the value 5 to P. While blanks are required between the binary operators
and their operands, unary operators such as the minus sign must be adjacent to
their operands. An example is the statement

Q2 = -P / -N

which assigns the value 1 to Q2 .

' Arithmetic expressions can be arbitrarily complex. When evaluating arith-
metic expressions, the natural order of operator precedence applies. The unary
operations are performed first, then exponentiation (**), then multiplication,
followed by division, and finally addition and subtraction. All operations
associate to the left except exponentiation. Hence, '

X = 2 ®%% 3 %% D
is equivalent to
X = 2 %k (3 k% 2)
Parentheses may be used to emphasize or alter the order of evaluation of an

expression.

In the above examples all the operands are integers and the results are
integers. The quotient of two integers is also an integer. The remainder 1is
discarded. Thus

01
Q2

|| 1]
(®3]
N
[\

give Q1 and Q2 the values 2 and -2, respectively. Similarly,
MOD = N - (N/ M * M
gives MOD the value N modulo M if N and M are positive integers.

2. Real Numbers

Arithmetic expressions involving real operands are also permitted in
assignment statements. The statements

PT = 3.14159
CIRCUM = 2. * PI * b,

assign real values to PI and CIRCUM.

There are several limitations on real arithmetic in SNOBOLL. Exponentia-
tion involving reals is undefined and causes execution of the program to
terminate with an error message. Operations involving mixed types of numbers
are not permitted, and also cause execution of the program to terminate.

3.

Expressions
mitted in assignment statements.

SCREAM

assigns the string HELP

The string
Any character
used instead of
within a string

Strings

involving operands that are character strings are also per-

For example, the assignment statement

= "HELP!'

as the value of SCREAM .

is specified by enclosing it within a pair of
may appear in a string.
single quotation marks.
as in the statements

quotation marks.
A pair of double quotation marks can be
This permits the use of quotation marks

PLEA = 'HE SHOUTED,
QUOTE = 1nt
APOSTROPHE =

IIHELP. 1"

The Null String

The null string, which is a string of length zero, is frequently wused in
SNOBOLY . With a few exceptions, explained later, all variables have the null
string as their initial value. A variable can also be assigned the null string
by a statement like

NULL = v
or, more briefly,
NULL =

The variable is

string.

NULL used in many examples that follow to represent the null

The null string is

different from the following strings, each of which has
length one:

lOl

1mn

Strings in Arithmetic Expressions

Numeral

strings can be used in arithmetic expressions with integers.
example,

as a result of the statements

For

nqon

X = 5% -7 + 10"

X has the value -40. Numeral strings contain only digits and perhaps a

preceding sign. Thus, the following strings cannot be used in arithmetic
expressions:

13.2571!
1,253,465
T.364 E-03"

They cause execution of the program to terminate with the comment "ILLEGAL DATA
TYPE. "

Strings cannot be used in expressions involving real numbers.

The null string is eguivalent to the integer =zero in arithmetic
expressions.

String-Valued Expressions

Concatenation is the basic operation for combining two strings to form a
third. The following statements illustrate the format of an expression
involving concatenation.

TYPE = 'SEMI?
OBJECT = TYPE 'GROUP!

The resulting value of OBJECT is the string SEMIGROUP . Notice there is na
explicit operator for concatenation. Concatenation is indicated by specifying
two string-valued operands separated by at least one blank.

FIRST = 'WINTER!
SECOND = 'SPRING'
TWO . SEASONS = FIRST ',!' SECOND

are equivalent to

TWO . SEASONS = 'WINTER,SPRING!

Strings can also be concatenated with integers as in

ROW = 'K!
NO. = 22
SEAT = ROW NO.

which gives SEAT the value K22 .

In an expression involving concatenation and integer arithmetic, concatena-
tion has the lowest precedence. Thus

SEAT = ROW NO. + 4 / 2

is equivalent to

SEAT = ROW (NO. + (4 / 2))

or

SEAT = K241

Input and Output of Strings

Three variables provide means for reading and writing data. The variables
OUTPUT and PUNCH are for printing and punching. Whenever either of them is
assigned a string or integer value, a copy of the value is put out.

OuUTPUT = 'THE RESULTS ARE:!

assigns THE RESULTS ARE: to OUTPUT and also prints it.
PUNCH = OouUTPUT

causes the same line to be punched on a card. The statements

ouUTPUT
PUNCH =

cause a blank line to be printed and a blank card to be punched.

The variable INPUT is used for reading in strings. Each time the value of
INPUT 1is required in a statement, another card is read in and the 80-~character
string on it is assigned as the value of INPUT. Thus

PUNCH = INPUT

punches a copy of the input card.

B. Pattern Matching Statements

The operation of examining substrings for the occurrence of specified
substrings (i. e. pattern matching) is fundamental to the SNOBOLY4 language.
Pattern matching can be specified in two types of statements:

1) the pattern matching statment, and
2) the replacement statement.

The pattern matching statement has the form

subject pattern

where the two fields are separated by at least one blank. The subject specifies
a string that is to be examined, and the pattern can be thought of as specifying
a set of strings. The statement causes the subject string to be scanned from
the left for the occurrence of a string specified by the pattern.

If
TRADE = ' PROGRAMMER'

the statement

TRADE 'GRAM!
examines the value of TRADE for an occurrence of GRAM . If
PART = ' GRAM!

then an equivalent statement is

TRADE PART

The following example illustrates a pattern matching statement in which the
pattern is a string-valued expression.

ROW = 'K!
NO. = 20
K24 ROW NO. + 4

The subiject is a literal and the value of the expression is the string K24 .

Notice that there 1is no explicit pattern matching operator between the
subject and the pattern. The two fields are separated by blanks.

If it is necessary to have concatenation in the subject, the expression
must be enclosed within parentheses to avoid ambiguity. &an example is

/

TENS = 2
UNITS = 5
(TENS UNITS) 30

on the other hand, a pattern formed by concatenation does not need
parentheses. The following statements are eguivalent:

" TENS UNITS 30

TENS (UNITS 30)

C. Replacement Statements

A replacement statement has the form

subject pattern = object

where the fields are separated by at least one blank. If the pattern matching
operation succeeds, the subject string 1is modified by replacing the matched
substring by the object. For example, if

WORD, K = *GIRD!
then the replacement statement
WORD 'I! = 'ouU!

causes the subject string GIRD to be scanned for the string I and then,
since the pattern matches, I is replaced by OU . Hence WORD has as value
the string GOURD . If the statement is

WORD 'AB! = 'ou!
the value of WORD does not change because the pattern fails to match.
Another example of the use of replacement statements is given in the

following sequence-of statements

HAND

= 'ACUDAHKDKS!
RANK = 4
SUIT = 'D!

HAND RANK SUIT = 'AS!?
which replaces the substring 4D with the string AS .
A matched substring is deleted from the subject string if the object in the
replacement statement is the null string. Thus

HAND RANK SUIT =

deletes WD from HAND leaving it with the string ACAHKDKS as value.

D. Patterns

_The patterns in the preceding examples specify single strings. It is also
possible to specify more complex patterns. There are two operations available
for constructing such patterns: :

1) alternation, and .
2) concatenation.

Alternation is indicated by an expression of the form
P1 | P2

where the two patterns P1 and P2 are separated from the | by blanks. The
value of the expression is a pattern structure that matches any string specified
by either P1 or P2. For example, the statement

KEYWORD = ‘COMPUTER' | 'PROGRAM!
<
assigns to KEYWORD a pattern structure that matches either of these two strings.

Subsequently, XEYWORD may be used wherever patterns are permitted. For
example, .

KEYWORD KEYWORD | 'ALGORITHM' ¢

gives KEYWORD a new pattern value equivalent to the value assigned,by executing
the statement ' :

KEYWORD = 'COMPUTER' | 'PROGRAM' | 'ALGORITHM®
Similarly,

TEXT KEYWORD

examines the value of TEXT from the left and deletes the first occurrence of one
of the alternative strings. If

TEXT = t PROGRAMMING ALGORITHMS FOR COMPUTERS'

the result of the replacement statement is as if the following statement were
executed: '

TEXT = 'MING ALGORITHMS FOR COMPUTERS!

Concatenation of two patterns, P1 and P2, is spec1f1ed in the same way as
the concatenatlon of two strings:

P1 P2

That is, the two patterns are separated by blanks. The value of the expression
is a pattern that matches a string consisting of two substrings, the first
matched by P1, the second matchedrby P2. For example, if

BASE = 'BINARY' | 'DECIMAL' | 'HEX?
SCALE = 'FIXED' | 'FLOAT!
ATTRIBUTE = SCALE BASE
and
DCL = 'AREAFIXEDDECIMAL!

then the pattern match succeeds in the statement
DCL ATTRIBUTE
Concatenation has higher precedence than alternation. Thus
ATTRIBUTE = 'FIXED' | 'FLOAT' 'DECIMAL'

matches FIXED or FLOATDECIMAL . The order of evaluation may be altered by
using parentheses.

ATTRIBUTE = ('FIXED* | 'FLOAT') 'DECIMAL'

matches either FIXEDDECIMAL or FLOATDECIMAL .

E. Conditional Value Assignment

It 1s possible to associate a variable with a component of a pattern such
that if the pattern matches, the variable is assigned the substring matched by
the component.. The operator . 1s the conditional value-assignment operator
and it is used in an expression of the form

pattern . variable

where the operator is separated from its operands by blanks. For example
BASE = (*HEX' | 'DEC') . B1

assigns to BASE a pattern that matches either HEX or DEC . If BASE 1is wused

successfully in a pattern match, the value of B1 is set to the substring matched
by BASE .

10

The operator . has the highest precedence of all the operators and
associates to the left. Thus

A.OR.B = A | B . OuUTPUT
is equivalent to
A,OR.B = A | (B . OUTPUT)

which assigns to A.OR.B a pattern that matches the value of A or B . If B
matches, the substring matched is printed.

There is also an operator $ for immediate value assignment which assigns
value to a variable if the associated component of the pattern matches
regardless of whether the entire pattern matches. Immediate value agssignment is
discussed in more detail later.

F. Plow of Control

A SNOBOL4 program is a sequence of statements terminated by an end
statement. Statements are executed sequentially unless otherwise specified in
the program. Labels and gotos are provided to control the flow of the program.

A statement may begin with a label, permitting transfer to the | statement.
For example, the assignment statement

START TEXT = INPUT

has the label START . A label consists of a letter or a digit followed by any
number of other characters up to a blank. Blanks separate the label from the
subject. A statement with no label must begin with at least one blank. The end
statement 1is distinguished by the label END, indicating the end of the program.

Transfer to a labelled statement is specified in the goto field | which may
appear at the end of a statement and is separated from the rest of the statement
by a colon. Two types of transfers can be specified in the |goto field:
conditional and unconditional.

A conditional transfer consists of a label enclosed within parentheses and
preceded by an F or S corresponding to failure or success goto. | An example
is the statement

TEXT = INPUT :F (DONE)

This statement causes a record to be read in and assigned as the value of
TEXT. If, however, there is no data in the input file, i.e. an end of file is
encountered, no new value i1s assigned to TEXT. Then, because of the failure to
read, transfer is made to the statement labelled DONE.

A use of the success goto is illustrated in the following program which
punches a copy of the input file. ,

1"

LOOP PUNCH = INPUT : S (LOOP)
END ‘

The first statement is repeatedly executed until the end of file is encountered
and then the program flows into the end statement which causes the program to
terminate.

The success or failure of a pattern match can also be used to control the
flow of a program by conditional gotos. For example

COLOR = 'RED' | 'GREEN' { 'BLUE'
BRIGHT TEXT COLOR = :S(BRIGHT) F (BLAND)
BLAND

All occurrences of the strings RED, GREEN, and BLUE are deleted from
the value of TEXT before the pattern fails to match. Control then passes to the
statement labelled BLAND. Both success and failure gotos can be specified in
one goto field, and may appear in either order.

For an example of an unconditional transfer, consider the following program
that punches and lists a deck of cards.

LOOP PUNCH = INPUT :F (END)
ouTPUT = PUNCH : (LOOP)
END

The goto field in the second statement specifies an unconditional transfer.

G. Indirect Reference

Indirect referencing is indicated by the unary operator $. For example,
if

MONTH = 'APRIL!

then $MONTH 1s equivalent to APRIL . That is, the statement
$MONTH = 'CRUEL"

is equivalent to
APRIL = 'CRUEL!

The indiredt/;eference operator can also be applied to a parenthesized
expression as in fhe statements

12

WORD = MRUN"
$ (WORD ': 1) = $(WORD ':') + 1

which increment the value of RUN:

In general, the unary operator §$ generates a variable that.is the value
of its operand. The expression

$ ("All ' IIBII)

causes the program to terminate with the message "ILLEGAL DATA TYPEM" because the

value of the operand of $ 1s a pattern, not a string. 1Indirect reference in a
goto is demonstrated by ’

N = N + 1 : (3 ("PHASE" N))

If, for example, the assignment statement sets N equal to 5, then the transfer
is to the statement labelled PHASES .

H. Functions

Many SNOBOLY4 procedures are invoked by functions built into the system,
called primitive functions. Operations that occur frequently are implemented as
primitive functions for efficiency. Other primitive functions are wused to
invoke more complex operations that are fundamental to the language, affect
parameters and tables internal to the system, and perform operations that ¢ould
not be programmed in source language by other means. In addition, facilities
are available for a programmer to define his own source-language functions.

1. Primitive Functions

Consider the function SIZE, which has a single string argument and returns
as value an integer which is the length (number of characters) of the string.
The statements

APE = 'SIMIAN'
OUTPUT = SIZE (APE)

print the number 6 .

Arguments to all functions are passed by value, and an arbitrarily complex
expression may be used in the argument. Thus the statements

N = 100
ouTPUT = SIZE ('PART' N + 4)

print the number 7 , because the value of the argument is the string PART104 .

The argument of SIZE is supposed to be a string. Therefore, a call of the
form

13

SIZE ("APE" | "MONKEY")

causes the program to terminate with the diagnostic message "ILLEGAL DATA TYPE,"
because the value of the argument is a pattern.

TRIM is another function that performs an operation frequently required.

TRIM (string) returns as value a string which is equal to the argument with
trailing blanks removed. It is often used in a statement of the form '

READ TEXT = TRIM(INPUT) : ¥ (END)

which assigns as value to TEXT the string on the next input card, trimmed of
trailing blanks. Notice that the wuse of the variable INPUT in the argument
causes a card to be read.

REPLACE 1s a function called with three string-valued arguments.
REPLACE (TEXT,CH1,CH2)

returns as value a string which is equal to TEXT with each occurrence of a
character appearing in CH1 replaced by the corresponding character in CH2. For
example, the statements

STATEMENT = 'A(I,J) = A(I,Jd) + 3¢
OUTPUT = REPLACE (STATEMENT, ' () ', '<> ")

print the line
ALI,I> = A<LI,J> + 3

If the last two arguments of the function call do not have the same length,
the function fails. Function failure, like input failure, can be used in a
conditional transfer.

Another example of the wuse of REPLACE 1is the following program that
produces a simple cryptographic encoding of an input deck.

INALPH = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ '
OUTALPH = 'RLMNOPQRSTUVWXY ZABCDEFGHIJ!
- LOOP PUNCH = REPLACE (INPUT, INALPH,OUTALPH) : S (LOOP)

END

The iteration is terminated by input failure.

There are also several functions that return patterns as their values. LEN
is such a function. LEN(integer) returns a pattern that matches any string of
the length specified by the integer.

The following example punches the value of STR centered on a card.

14 ‘

BLANKS = ' '

BLANKS LEN((80 - SIZE(STR)) / 2) . PAD
PUNCH = PAD STR

If the size of STR is greater than 80, the argument of LEN is negative,
causing error termination with the message "NEGATIVE NUMBER IN ILLEGAL CONTEXT."

2. Predicates

A predicate is a function or operation that returns the null string as
value if a given condition is satisfied. Otherwise it fails.

LE is an example of a predicate used for comparing integers.
LE(N1,N2)

returns the null string as value if N1 is an integer less than or egual to N2,
Thus

PUNCH = LE (SIZE (TEXT) ,80) TEXT

punches the string TEXT if its length is not greater than 80. The null string
value of the predicate does not affect the string that is punched. If the
predicate fails, no assignment is made to PUNCH, and no card is punched. ‘

The success or failure of a predicate can be used with a conditional goto
to control the flow of a program. For example,

N = 0 SUM = 0
ADD N = LT(N,50) N + 1 : F (DONE)
SUM = SUM + N : (ADD)
DONE OUTPUT = SUM

sums the first 50 integers. Iteration continues as long as N is less than 50.
When the predicate fails, the conditional transfer to DONE is performed and the
string 1275 1is printed.

There are several predicates for comparing strings. For example,
DIFFER(ST1,ST2)

returns the null string as value if the values of two arguments are not
identical. Thus

ouTPUT = DIFFER (FIRST,SECOND) FIRST SECOND
concatenates the values of FIRST and SECOND if they are not the same, and then

prints them.

For all functions, an omitted argument is assumed to be the null string.
Thus

15

PUNCH = DIFFER (TEXT) TEXT

punches the value of TEXT if it is not the null string.

LGT is a predicate that lexically compares two strings.

LGT (ST1,ST2)

succeeds if ST1 follows (is lexically greater than) ST2 in alphabetical order.
The statements

OUTPUT = LGT (TEXT1,TEXT2) TEXT2 :S (SKIP)

OUTPUT = TEXT1

OUTPUT = TEXT2 : (JUMP)
SKIP OUTPUT = TEXT1

JUMP

print the values of TEXT1 and TEXT2 in alphabetical order.

3. Defined Functions

The SNOBOL4 language provides the programmer with the capability to define
functions in the source language. This feature facilitates the organization of
a program and may improve its efficiency.

A programmer may define a function by executing the primitive function
DEFINE to specify the function name, formal arguments, local variables, and the
entry point of the function. The entry point is the label of the first of a set
of SNOBOL4 statements constituting the procedure for the function.

The first argument of DEFINE 1is a prototype describing the form of the
function call. The second argument is the entry point. For example, execution
of the statement

DEFINE ('DELETE (STRING,CHAR) ', 'D1")

defines a function DELETE having two formal arguments, STRING and CHAR, and
entry point D1. The statements

D1 STRING CHAR = $:S(D1)
DELETE = STRING : (RETURN)

form a procedure that deletes all occurrences of CHAR from the value of STRING.
The statement assigning the resulting value to the variable DELETE illustrates
the SNOBOL#4 convention for returning a function value: The function name may be
used as a variable in the function procedure. Its value on return from the
procedure is the wvalue of the function call. Return from a procedure is
accomplished by transfer to the system label RETURN .

If the second argument is omitted from the call of DEFINE, the entry point
to the procedure is taken to be the same as the function name. For example

16

DEFINE ('DELETE (STRING,CHAR) ')

could have the procedure

DELETE STRING CHAR = :S(DELETE)
DELETE = STRING : (RETURN)

A call of the function is illustrated in the following statements

MAGIC = 'ABRACADABRA
OUTPUT = DELETE (MAGIC, 'A")

which print BRCDBER .

Arguments are passed by value and may be arbitrarily complex expressions.
Thus the statement

TEXT

DELETE (TRIM(INPUT) ,' ')

deletes all blanks from the input string.

Functions can also fail wunder specified conditions. As an example,
consider the following version of DELETE, which fails if STRING does not contain
an occurrence of CHAR.

DELETE STRING CHAR : F (FRETURN)
D2 STRING CHAR 1S (D2)
DELETE = STRING : (RETURN)

The transfer to the system label FRETURN indicates failure of the function call.
Consequently,

PUNCH = DELETE (TRIM (INPUT) ,'* ")
punches a card only if the input string contains an * .
Arguments to a function and the value returned can be any type of data
object. Consider, for example, the function MAXNO where MAXNO (P,N) returns a

pattern that matches up to N adjacent strings matched by the pattern P. That
is, if

PAT = MAXNO('A' | 'B' | 'C' ,2)

then in the statement

'EBCDIC! PAT 'DY

17

the pattern match succeeds with PAT matching the string BC .
MAXNO has the defining statement
DEFINE ('MAXNO (P, N) 1)
and the procedure

MAXNO N = GT(N,0) N - 1 :F (RETURN)
MAXNO = NULL | P MAXNO : (MAXNO)

Consider the function REVERSE that reverses a string. It has the defining
statement

DEFINE ('REVERSE (STRING) ', 'R1"')

and the procedure

R1 ONECH = LEN(1) . CH
R2 STRING ONECH = :F (RETURN)
REVERSE = CH REVERSE : (R2)

There are two variables, ONECH and CH, wused in the function definition in
addition to the function name and formal argument. It 1is prudent to protect
these variables so their wuse outside the function is not affected when the
function is called. This 1is accomplished by declaring them to be 1local
variables in the defining statement:

DEFINE ('REVERSE (STRING) ONECH,CH', 'R1')

When the function is called, the current values of the local variables, the
formal arguments, and the function name are saved before the procedure is
entered. These values are restored upon return from the procedure. This
permits the programmer considerable freedom in defining functions. For example,
a function can be recursive, i.e. include a <call of the function itself.
Consider the binomial coefficient c(n,m) which can be defined by equations

1
n¥c(n-1,m-1) /m for m > 0

c(n,0)
c(n,m)

i

Computational efficiency can be improved by employing the relation
c(n,m) = c(n,n-m
for m > n/2.

The corresponding programmer-defined function consists of the defining statement

18

DEFINE ('C (N,M) ¥)

and the procedure

C M = LT(N - MM N -M
c = EO(M,0) 1 : S (RETURN)
C = N*xCN-1,M-1 /M : (RETURN)

COMB 1is an example of another recursively defined function. COMB(STR,N)
lists all combinations of N characters from the string STR. The defining
statement and procedure are

DEFINE ('COMB (STR,N,HEAD) CH')

and

COMB OUTPUT = EQ (N,0) HEAD : 5 (RETURN)
Cc2 STR LE(N,SIZE(STR)) LEN(1) . CH = :F (RETURN)
COMB (STR,N - 1,HEAD CH) T (C2)

Then
COMB ('ABCD!', 3)
prints

ABC
ABD
ACD
BCD

Notice that COMB is defined with three formal arguments but only two values
are supplied in the initial call. The missing value is taken to be null.

I. Keywords

Several parameters and switches internal to the SNOBOL#4 system can be
accessed by means of keywords. Keywords are specified by prefixing an ampersand
to certain identifiers. For example, if the value of the keyword &DUMP is a
nonzero integer when a program terminates, a dump of natural variables is
printed. Thus the execution of the statement

&DUMP = 1

indicates that a dump is to be produced. Other keywords are described elsewhere
in this manual.

19

Arrays of variables can be created by using the primitive function ARRAY.
The arguments of ARRAY describe the number of/gimensions, the bounds of each
dimension, and the initial value of each variable "in the array. Thus

V = ARRAY(10,1.0)

creates and assigns to V a one-dimensicnal array of ten variables, each
initialized +to the real value 1.0. The created variables can be referenced by
expressions of the form V<I> where I = 1,...,10. The statement

N = ARRAY('3,5')
creates a 2-dimensional array of variables

N<1, 1> N<1, 2> N<1,3> N<1, 4> N<1,5>
N<2, 1>
N<3, 1> . . . N<3,5>
The omission of the second argument causes each of the variables +to have the

null string as initial value. The arguments in the call of ARRAY can be
expressions. Thus

A = ARRAY (TRIM(INPUT))

creates an array with dimensionality that is data dependent. An array
reference, A<I>, that is outside the bounds of the array causes failure that can
be used to control program flow. The statements

I = 1
ST = ARRAY (TRIM (INPUT))

MORE ST<I> = INPUT : F (GO)
I = I + 1 : (MORE)

GO

generate an array, ST, and assign values to each of the variables. When all the
variables 1in the array are assigned values, or an end of file is encountered,
the transfer to GO is executed.

K. Programmer-Defined Data Types

Integers, reals, strings, patterns, and arrays are types of data objects
that are built into the SNOBOL4 language. Facilities are provided in the
language to permit a programmer to define additional data types. This
facilitates representation of structural relationships inherent in data.

20

For example, a simple linear 1linked 1list is made up of nodes, each
containing a value field and a link field.

r T K 1) L] 1 r T 1
|value]linkij----- >lvaluejlink|~-=---- >|value|link|
L L J [] 1] L 1]

The primitive function DATA can be used to define the data type NODE and
the two field functions, VALUE and LINK.

DATA ('NODE (VALUE,LINK) ')
The statement
P = NODE('S',)

creates a node with value field S .and the null string in the link field. The
value of P is a data object with two fields that can be referenced by means of
the function calls VALUE (P) and LINK(P) . The insertion of a node with value T
at the head of the list is accomplished by the statement

P = NODE('T',P)

The following statement deletes a node from the head of the list

P = LINK(P)

L. Program Example

This is an example of a complete SNOBOL4 program illustrating the use of
comment lines, continuation lines, and the end statement. The program reads in
data cards that follow the end statement.

sk ok ok ok o ok sk ok ok ok ok ok ok ok ok 3 st ke st ok e ke i ok sk e sk o ok sk ok o koK ok oK ok 3 3k sk sk ke e ok ok ok K ok sk ok oK ok ok ok ok 3ok ek s 3 ok ek ok ko ok ok

* EXAMPLE OF A FUNCTION THAT PRINTS ALL

* PERMUTATIONS OF SIZE N FROM A GIVEN STRING.
e fe ke e ok oKk o e 3o ok ok ok A o e e e ek e ok st e ko sk ook sk oo o ok ok sfe sk sk ke ke sk ok skl ok sk ks ok sk K Kok 0K sk K sk k ok Aokok

*

& DUMP =1
DEFINE (' PERM (STRING,N,HEAD) CH,USED')
*
STRING = TRIM(INPUT) : F (ERROR)
N = TRIM(INPUT) : F (ERROR)
PERM (STRING,N) : (END)
PERM OUTPUT = EQ(N,0) HEAD : S (RETURN)
PERMA STRING LEN(1) . CH = : F (RETURN)
USED
. = PERM(STRING USED,N - 1,HEAD CH) USED CH : (PERMA)
END
ABCD
3

21

Chapter 2. Pattern Matching

A. Introduction

Strings of characters can be synthesized from smaller strings by concatena-
tion. The converse of synthesis, decomposition of strings into substrings, is
performed using pattern matching. Fundamentally, pattern matching is . the
process ©f examining a subject string for a substring which is one of a set
specified by a pattern. The substring and parts thereof, formed by pattern
matching, may ©be assigned as the values of variables, thereby naming pieces of
the decomposition.

There are two types of statements in which pattern matching can occur: the
pattern matching statement and the replacement statement. These statements have
the respective forms

label subject pattern goto
label subiject pattern = object goto

The pattern and object are expressions, as 1llustrated by

LAB1 TEXT A | B : S (LAB2) F(LAB3)

LABU STR CD = X 131 :S (LAB5) F (LAB6)

" Before matching actually occurs, the expression in the pattern field is
evaluated. Its value may be a string, or it can be a pattern structure which
may be thought of as a set of strings. The string or pattern structure is used
to drive a pattern matching procedure (the scanner) which performs the actual
matching. Should any string specified by the vpattern field appear as a
substring of the subject, pattern matching succeeds.

Two distinct tasks are performed as parts of pattern matching:
1) evaluation of expressions in the pattern field, and

2) scanning of the subject 'string for a substring under control of the
pattern structure.

The primary purpose of this chapter is to consider in detail <those SNOBOLY
language features that programmers may use to write expressicnhs that, when
evaluated, yield pattern structures. These features include the pattern
building operations of concatenation and alternation, primitive pattern struc-
tures built into the system, primitive functions whose values are pattern
structures, value assignment operations, and the unary operator * that
produces an unevaluated expression. Pattern structures representing sets of
fixed strings such as those built by

22

BASE = 'BINARY'] 'DECIMAL" | 'HEX!
SCALE = 'FIXED!] 'FLOAT'
ATTRIBUTE = SCALE BASE

are Dbasic to pattern matching. Additional language features provide natural
ways to talk about more complicated sets of strings, such as:

All strings of length 5.

All characters up to the first comma.

The longest string of blanks.

Any number of repetitions of a string.

Any string balanced with respect to parentheses.
Any string at all.

For many users of SNOBOL4, a knowledge of how patterns are actually matched
is of little importance. The success or failure of matching is all that
matters, However, by wunderstanding the scanning procedure, a programmer can
write more efficient patterns and make use of features such as immediate value
assignment and unevaluated expressions that can actually change a pattern during.
matching. Thus, the secondary purpose of this chapter is to indicate how the
scanner works.

B. Alternation and Concatenation

A brief introduction to the pattern building operations of alternation and
concatenation appears in Chapter 1. There, alternation and concatenation are
used to build pattern structures which match sets of strings.

Alternation, indicated by the binary operator | , builds a single pattern
structure from its two arguments. If P1 and P2 are strings or pattern
structures, the statement

P3 = P1 | P2

builds a new structure and assigns it as the wvalue of P3. P3 matches any string
matched by P1 or P2.

No explicit operator is used to indicate concatenation. Concatenation is
implied when two elements of an expression are separated by one or more blanks.
If P4 and P5 are strings, the statement

P6 = P4 PS5

assigns to P6 a string which is the value of P4 followed by the value of P5. If
either P4 or PS5 1is a pattern structure, the statement above builds a pattern
structure and assigns it as the value of P6. P6 matches any string which may be
formed from a string matched by P4 followed by a string matched by P5.

Alternation and concatenation can be used to build pattern structures which

match large numbers of strings. For instance, the following statements build a
pattern structure PAT .

23

P = ¢BE' | 'BEA' | 'BEAR!'
Q = 'RO' | 'ROO' | 'ROOS!'
R = DS | Dt

s = 1TGt | T

PAT = P R | Q S

Concatenation has higher precedence than alternation, so the structure for PAT
is built as if

PAT = (P R) | (0 8S)

had been written. PAT matches any of the twelve strings:

BEDS ROTS
BED ROT
BEADS ROOTS
BEAD ROOT
BEARDS ROOSTS
BEARD ROOST

Execution of pattern matching or replacement statements involves evaluation
of the pattern field (which may build a pattern structure) and +the actual
scanning of the subject string. Building pattern structures 1is a complicated
process frequently requiring more time than the scanning itself. TIf a pattern
matching or replacement statement appears in a program loop, the pattern field
is evaluated for each iteration of the loop. If evaluation causes a pattern
structure to be built, time and storage are often consumed needlessly. For
example, the following program examines each card of an input deck for
P IS TRUE or P IS FALSE , printing those cards in which either appears.

LOOP CARD = TRIM(INPUT) s F (END)
CARD *P IS ' ('TRUE' | 'FALSE') : F (LOOP)
OUTPUT = CARD : (LOOP)
END
A pattern structure for 'P IS ' ('TRUE' } 'FALSE') is built for each iteration

of the loop. A more efficient program is the following which builds the pattern
structure in an assignment statement outside of the loop.

TORF = 'P IS ' ('TRUE' | 'FALSE')

LOOP CARD = TRIM (INPUT) : F (END)
CARD TORF :F (LOOP)
OUTPUT = CARD : (LOOP)

END

24

C. Seanning

Matching a pattern structure against a subject string is done by a
procedure called the scanner. The pattern structure behaves like a program that
indicates to the scanner how to examine the subject string.

At any instant during scanning, the scanner needs two pieces of
information:

1) where in the subject string it should be looking, and
2) what component of the pattern structure it should match.

The scanner has a pointer called the cursor which is positioned to the 1left of
the character that the scanner must match. A second pointer called the needle
points at the component of the pattern structure.

Consider the following example, in which the string of characters READS 1is
matched against a pattern structure which is the value of BR.

BR = ('B' | 'RY) (*E' | 'EA') (*D' | 'DS')
'READS' BR

For illustrative purposes, it is convenient to think of components of a pattern
structure as a set of beads which the scanner is +trying to thread using the
needle. A bead diagram representing BR is shown below.

NEEDLE

016

alle
oIl

In bead diagrams, left to right order of concatenation is preserved. Alterna-
tion is represented top to bottom in the vertical direction. The needle points
at the bead which the scanner is currently trying to match. If a bead matches,
the needle passes through and moves upward as far as it can go without crossing
a horizontal line. If a Dbead does not match, the needle moves down to an
alternate bead provided one exists. Downward movement may not cross a
horizontal 1line. If no alternate exists, the needle is pulled back through the
last successfully matched bead and an alternative is sought there.

The following chart illustrates the steps in matching READS against BR.
The arrow pointing at READS represents the cursor while the arrow pointing at
the beads represents the needle. Failure in the fifth step causes the needle to
be pulled back. The cursor is moved back at the same time.

25

el@ @@ el® ol ol® el® ol@
®10 010 0l@ 00 ©l® IO 6lt
%6 Q_w @I @I @I @16 6l

READS
REATDS
REATDS
READS
REATDS
REATDS
READS’

26

READS

@6
®

Bead diagrams graphically illustrate one important control which <the
programmer has over the scanner. 1In a pattern-valued expression such as

BR - (lBl ‘ IRI) (lEI ' lEAl) (lDI ‘ |DS|)

alternatives are matched by the scanner in left to right order (top to bottom in
the bead chart). Thus, the scanner attempts to match 'B' before 'R', 'E' before

'EA', and 'D' before 'DS'. By positioning alternatives correctly a programmer
can control the order in which the scanner looks at them.

The bead diagram for the pattern structure PAT developed in the previous
section follows.

'BEAR!

alablele

'ROOS!

A successful match in the statement

'ROOSTS! PAT

requires eleven steps.

27

D. Modes of Scanning

Two keywords, &ANCHOR and &FULLSCAN, give the programmer additional control

over the scanner. The scanner operates in an unanchored or anchored mode,
depending on the value of &ANCHOR. When unanchored, a pattern can match
anywhere in the subject string. When anchored, a pattern can match only

beginning at the first character.

For efficiency, tests are made during scanning which prevent the scanner
from 1looking at alternatives which cannot possibly succeed. &FULLSCAN can be
used to turn these tests off, 1leading +to complete but possibly inefficient
pattern matching. Discussion of §&FULLSCAN is deferred until the end of this
chapter, since it is useful only with more sophisticated patterns.

1. Unanchored Mode

The keyword &ANCHOR initially has the value zero, signifying the unanchored
mode of scanning. The scanner may look anywhere in the subject string for an
appropriate substring. Consider the following example.

'A BIG BOY! 'BIG! | 'LITTLE!

Pattern matching succeeds. The steps involved are shown below using a bead
diagram.

'LITTLE!

.

'LITTLE!

|
i)

'LITTLE!

jie

28

t 'LITTLE!?

'LITTLE"

r 'LITTLE'

90 gie e

The cursor is initially at the left of the subject string. When all possible
alternatives fail, the cursor is moved one character to the right. All possible
alternatives are tried with the cursor beginning in the new position. Again,
all alternatives fail. The cursor is moved again and this +time the first
alternative succeeds.

'In the unanchored mode, the origin of pattern matching is moved by changing
the initial position of the cursor. Thus, the scanner matches, if possible, a
substring anywhere in the subject string. If more than one valid substring
exists, the scanner finds the leftmost one.

2. Anchored Mode

Frequently 1t is necessary to know if a pattern matches with its origin at
the first character of the subject string. As an example, suppose a program is
desired which reads any other SNOBOL4 program and prints only those lines that
are not comments (i.e. do not have * in column 1). At first glance, the
following statements might seem to suffice.

BEGIN LINE = INPUT : ¥ (END)
LINE '*! :S (BEGIN)
OUTPUT = LINE - : (BEGIN)
END

Unfortunately, the program does not work because a card with * appearing
anywhere at all in it is rejected.

If &ANCHOR has a nonzero value obtained by executing an assignment

statement such as

EANCHOR = 1

29

the pattern match is anchored at the left of the subject string. Anchoring is
achieved by not moving the initial position of the cursor when all alternatives
in the pattern structure fail. Thus, the scanner, when anchored, only matches
* against the first character of LINE.

The anchored mode of scanning 1s generally more efficient than the
unancheored mode, since the scanner examines fewer possibilities. Anchored
scanning should be used where possible. It is, of course, permissible to switch
modes during execution of a program by simply changing the value of &ANCHOR.

E. Value Assignment through Pattern Matching

Pattern matching may be viewed as a means of decomposing a string into
substrings. To be wuseful, a substring found by the scanner often must be
assigned as the value of a variable. Consider the pattern BR used in an earlier
section.

BR = (!Bl | IRI) (IEI l IEAI) (IDI l IDS')
Used in a pattern matching statement such as
STR BR :S(L1) F (L2)

where the subject string may be anything, success of matching indicates only
that one »of the valid strings appears somewhere in STR. It does not indicate
which string matches or how it matches. oOn failure, no indication is given of
how nearly successful the scanner was. There are two ways of assigning a
substring found by the scanner to a variable: conditional value assignment and
immediate value assignment.

1. Conditional Value Assignment

The binary operator . 1is used to indicate conditional value assignment.
The expression

associates a variable V with a pattern P so that upon successful completion of
pattern matching, the substring matched by P is assigned as the value of the
variable V. Thus, by associating several variables with portions of a pattern,
it is possible to ascertain what the overall pattern matches, and also which
components of the pattern are used in the match. For example, rewriting BR as

BR = (('B' | 'R') ('E' | 'EA') ('D' | 'DS')) . BRVAL

associates the variable BRVAL with the entire pattern. On successful completion
of matching, the entire substring matched is assigned as wvalue of BRVAL.
Rewriting still further, variables can be associated with pieces of the pattern.

30

BR = (('B' | 'R') . FIRST ('E' { 'EA') . SECOND
(*D' | 'DS') . THIRD) . BRVAL

A successful match causes the entire substring to be assigned as the value of
BRVAL. B or R becomes the value of FIRST, E or EA becomes the value of SECOND,
and D or DS becomes the value of THIRD. Failure to match leaves the values of
all variables unchanged.

2e Immediate Value Assignment

The binary operator § signifies immediate value assignment. The
expression

associates a variable V with a pattern P so that whenever P matches a substring,
the substring immediately becomes the new value of V. It is possible, by
using $, to associate variables with parts of a large pattern, to see how far
scanning progressed in the event of failure. Value assignment is done for those
parts of the pattern which match even though the overall match fails. Suppose
BR is rewritten using $ instead of . where shown.

BR = (('B' | 'R') $ FIRST ('E' | 'EA') $ SECOND
+ (*D* | 'DS*) $ THIRD) . BRVAL

In the following statement, pattern matching fails.
'BEATS' BR :S(L1)F(L2)

However, since immediate assignment is performed whenever the associated part of
the pattern matches, the following assignments are made.

FIRST = 1'Bf
SECOND = ‘E?
SECOND = 'EA!

values of THIRD and BRVAL are unchanged. If conditional assignment 1is used,
values of all four variables are unchanged. 1In the following example, the
pattern matches.

'BREADS' BR :S(L1)F(L2)

values assigned both during and after scanning are:

31

FIRST = 'B!
FIRST = 'R!
SECOND = 'E!
SECOND = 'EA!
THIRD = 'D!

= 'READ!

BRVAL

The outcome is the same as if conditional wvalue assignment had been used.
Immediate value assignment is less efficient in this case because two redundant
assignments are made. As a general rule, conditional value assignment should be
used whenever possible. Immediate value assignment should be used only in those
cases where intermediate results dre important.

Examples using both immediate and conditional value assignment appear
throughout the remainder of this manual.

3. Special Considerations

Precedence

The operators . and $ have the highest precedence of all operators and
associate to the left. Thus, in the statement

BR = (('B' | 'R') $ FIRST ('E' | 'EA') $ SECOND
+ (‘D' | 'DS') $ THIRD) . BRVAL

the outer parentheses are required to associate BRVAL with the entire pattern,
while additional parentheses are not required to associate FIRST, SECOND, and
THIRD.

Association with the Variable OUTPUT

Since OUTPUT is a variable, it may be associated with ény portion of a
pattern. A successful match involving the pattern

('BED' | 'BUG' | 'BOMB') . OUTPUT

causes the successful alternative to be printed. Using $ to associate OUTPUT
with several parts of a pattern achieves the effect of tracing the progress of
the scanner. By constructing BR as

BR = ('B' | 'R') $ OUTPUT ('E' | 'EA') $ OUTPUT
+ (‘D' | 'DS') $ OUTPUT

the output resulting from execution of the statement
‘READS' BR :S(L1)F (L2)

is

32

Value Assignment in Replacement Statements

Value assignment 1is a necessity in some kinds of replacement statements.
In the following replacement statement E or EA is replaced with I only if the
overall pattern BR matches. In effect, the replacement statement changes BED

and BEAD into BID, BEDS and BEADS into BIDS, etc., if these strings appear in
STR. i

BR = ('B' | 'R') . FIRST ('E' | 'EA') ('D' | 'DS') ., LAST
STR BR = FIRST 'I' LAST

The replacement statement works properly because conditional assignment is done
after pattern matching, but before the object expression is evaluated.

Association of Several Variables with One Pattern

Earlier examples illustrated how variable association may be nested. An
example is

PAT = (P1T . V1 P2 . V2) . V3

It is also possible to associate more than one variable with a single pattern
structure. The statement

PAT = P1 $ V1 . V2

builds a pattern structure where variables V1 and V2 are both associated with
the pattern P1, V1 as immediate assignment and V2 as conditional assignment.
Changing the order of association to

PAT = P1 . V2 $ V1

has no effect on the value assignment. TIf PAT is involved in a successful
pattern match, V1 and V2 are assigned the same value. If the pattern match
fails, the value of V1 might be changed but the value of V2 is not.

F. The Null String in Pattern Matching

The null string is a string of zero length. Attempts by the scanner to
match the null string always succeed. The variable NULL has the null string as
its initial value and, by convention, is used as the null pattern which matches
a string of zero length. Pattern matching in the statement

33

STR NULL 1S (ON) F (ERROR)

always succeeds even if STR itself has the null string as value.

The variable NULL 1is frequently used in more complex patterns. For
example, a pattern which matches the eight strings

cC BC
D BD
AC ABC
AD ABD

Can be written as

(NULL | 'A') (NULL | 'B') ('C' | 'D')
"Matching a pattern of the form

NULL $ X $ Y PAT

sets the values of X and Y +to the null string before matching of PAT
begins.

A number of patterns described in this chapter match the null string.
Where bead diagram representations of the patterns are given, NULL is wused to
indicate the null string.

G. LEN

LEN (integer) is a primitive function whose value is a pattern structure
that matches any string of the specified length. The argument of LEN must have
nonnegative integer value when pattern matching is performed, In the following
example, pattern matching succeeds only if the subject STR has in it somewhere
an open parenthesis separated from a closed parenthesis by exactly five
characters.

STR (' LEN(5) ') :S (L1) F (L2)

LEN can be used to break out fixed-length fields from strings. In the
following example dates from data cards such as

1290 SEP. 27 CHINA, CHIHLI ' 100,000
1293 MAY 20 JAPAN, KAMARKURA 30,000
1531 JAN. 26 PORTUGAL, LISBON 30,000

are reformatted as

34

SEP. 27, 1290 CHINA, CHIHLI :100,000

MAY 20, 1293 JAPAN, KAMARKURA 30,000
JAN. 26, 1531 PORTUGAL, LISBON 30,000
&EANCHOR = 1
DATE = LEN(4) . YR ' ' LEN(4) . MO * ' LEN(2) . DAY
LOOP CARD = INPUT :F (END)
CARD DATE = MO ' ' DAY ', ' YR ' :F (NOGOOD)
OUTPUT = CARD . (LOOP)
NOGOOD OUTPUT = CARD ' IMPROPERLY FORMATTED.'!
END

LEN is wused to match the various pieces of the data assigning the string
found to the variables YR, MO, and DAY. YR, MO, and DAY are assigned wvalue
after pattern matching but before the entire substring matched by DATE i:
replaced. Only the date portion of CARD is reformatted.

H. SPAN and BREAK

SPAN and BREAK are primitive functions whose values are pattern structures
that match runs of characters. Patterns described by

a run of blanks,
a string of digits, and
a word (run of alphabetic characters)

can be formed using SPAN as

SPAN (' ')
SPAN (101234567891)
SPAN (' ABCDEFGHIJKLMNOPQRSTUVWXYZ ')

Patterns described by

everything up to the next blank,
everything up to the next punctuation mark, and
everything up to the next number,

can be formed using BREAK as

BRERK (' ')
BREAK(',.::1721)
BREAK ("+-0123456789")

Arguments of BREAK and SPAN must be nonnull strings when pattern matching is
performed.

The pattern structure for SPAN matches the longest string beginning at the
cursor which consists solely of characters which appear in the argument. SPAN
may be thought of as streaming from the cursor until a character not included in
the argument is found. SPAN must match at_least _one character.

35

BREAK generates a pattern structure that matches the longest string
beginning at the <cursor which does not contain a character of the argument.
Thus, regarding its argument as a list of "break" characters, BREAK streams from
the cursor up to but not including the first break character. BREAK must find a
break_character. If the cursor is positioned immediately to the left of a break
character, BREAK matches the null string. BREAK fails if no break character is
found.

A bead diagram for the statement

*IT RUNS.' BREAK (' ') SPAN(' ') BREAK('.') '.°¢

illustrates how the cursor is moved by SPAN and BREAK.

= e 8

t

ITr RUNS. (BREAK ('. ")) @

o O

o, (G) &
|

IT RUNS.t -BREAK(' ") SPAN (' ') BREAK ('."') @

The next program illustrates the use of both BREAK and SPAN. It compresses
tabulated data, leaving fields separated by single colons rather than an
arbitrary number of blanks. For example, if the input is

ACTINIUM AC 89 227% 1899 DEBIERNE
ALUMINUM AL 13 26.9815 1825 OERSTED
AMERICIUM - AM 95 243% 1944 SEABORG
ANTIMONY SB 51 121.75 1450 VALENTINE

the output is

ACTINIUM:AC:89:227%:1899:DEBIERNE
ALUMINUM:AL:13:26.9815:1825:0ERSTED
AMERICIUM:AM:95:243%:1944 : SEABORG
ANTIMONY:SB:51:121.75:1450: VALENTINE

36

EANCHOR = 1

FIELD = BREAK(' ') . CHARS SPAN(' ')

LOOP CARD = TRIM (INPUT) : F (END)

INLOOP CARD FIELD = CHARS ':! : S (INLOOP)
PUNCH = CARD : (LOOP)

END

Each jnput card is repeatedly examined for a run of blanks, and the Dblanks

are replaced by a colon. When blanks no longer exist the compression is
complete and a new card is punched.

Some care must be exercised in using BREAK, since it does not match the
break character which stops the streaming. Suppose a program is wanted which

restores, to some degree, the compressed data generated above. Each field of
the compressed data can be broken out using a statement such as

CARD BREAK(':') . FILD ':' =

Since BREAK(':') does not "consume" the colon, the literal is included to remove
the break character.
SPAN never matches a string shorter than the maximum span. For example,

19824761.' SPAN('0123456789") 6!

cannot succeed since SPAN always matches up to the decimal point.
In. the event that components of the pattern beyond BREAK fail, BREAK does

not skip over the break character and continue streaming. In the anchored mode
the following statement never succeeds.

*123,427,642.00' BREAK('.,') LEN(1) 'O

BREAK('.,') matches 123 and that is all.

I. ANY and NOTANY

ANY (string) and NOTANY (string) are primitive functions whose values are
pattern structures that match single characters. ANY matches any character
appearing in its argument. NOTANY matches any character not appearing in its
argument. Thus, the pattern structure for ANY('AEIOU') matches any vowel. The
pattern for NOTANY ('AEIOU') matches any character that 1is pot a vowel.
Arguments of ANY and NOTANY must be nonnull strings when pattern matching 1is
performed.

ANY and NOTANY are fast ways of looking for one of a set of single

characters. For example,

ANY ('AEIOU')

37

is preferable to

The call

NOTANY (' STRUCTURE"')

is valid even though the characters T and U appear twice.

Two examples utilizing ANY and NOTANY follow. The first counts the number
of occurrences of vowels and consonants in an input deck of English text. The
second counts and publishes the number of times individual 1letters appear in
input text. In both cases, nonalphabetic characters are ignored.

EANCHOR = 0
VOWEL = 'AEIOU!
CONS = '"BCDFGHJKLMNPQRSTVWXYZ'

CHAR = ANY(VOWEL) . V NULL . C |
. ANY(CONS) . C NULL . V |
. LEN(1) NULL . V . C
INPUT OUTPUT = TRIM(INPUT) : F (LOOP)
TEXT = TEXT OUTPUT : (INPUT)
LOOP TEXT CHAR = :F (PUB)
VCOUNT = VCOUNT + SIZE(V)
CCOUNT = CCOUNT + SIZE(C) : (LOOP)
PUB OUTPUT =
OUTPUT = 'VOWELS OCCUR ' VCOUNT ' TIMES.'
OUTPUT = 'CONSONANTS OCCUR ' CCOUNT ' TIMES. '

END

The pattern CHAR matches one character. If that character is a vowel, it
is assigned as the value of VvV, and the value of C becomes the null string. If
CHAR matches a consonant, it becomes the value of C, and V becomes null. If the
character is nonalphabetic, both C and V become null.

Inside the main 1loop, characters are removed from TEXT one at a time by
CHAR. The two statements incrementing VCOUNT and CCOUNT are executed for every
character. Because the conditional value assignment sets the values of V and C
appropriately, only VCOUNT or CCOUNT or possibly neither is actually incremented
by one.

Output from a typical run is:

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR PARTY.

VOWELS OCCUR 32 TIMES.
CONSONANTS OQCCUR 54 TIMES.

The program to count occurrences of individual letters is

38

§ANCHOR = 1

ALPH = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ®
LETTER = LEN(1) . LET _
CHAR = NOTANY(ALPH) . SW | LETTER NULL . SW
INPUT OUTPUT = TRIM(INPUT) , :F (LOOP)
TEXT = TEXT OUTPUT : (INPUT)
LOOP TEXT CHAR = : F (PUB)
SLET = IDENT (SW) S$LET + 1 : (LOOP)
PUB OUTPUT =
PUBL ALPH LETTER = : F (END)
ouTpPUT = ¢ * LET ' APPEARS !
. $LET * TIMES.'! : (PUBL)
END
The pattern CHAR matches exactly one character. If +the character is

nonalphabetic, the character becomes the value of SW. If the character is
alphabetic, it becomes the value of LET and SW becomes null.

In the main loop, characters are removed from TEXT one at a time by CHAR
and the values of SW and LET are assigned. The count for each character is kept
in a variable having the name of the letter. (That is, the variable A contains
the count for A.) The statement

$LET = IDENT (SW) SLET + 1

increments the count for the character found provided the value of SW is null,
which is true only for the alphabetic characters.

Ooutput from a typical run is:

39

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR PARTY.

A APPEARS 4 TIMES.
B APPEARS 1 TIMES.
C APPEARS 2 TIMES.
D APPEARS 3 TIMES.
E APPEARS 9 TIMES.
F APPEARS 3 TIMES.
G APPEARS 2 TIMES.
H APPEARS 5 TIMES.
I APPEARS 5 TIMES.
J APPEARS 1 TIMES.
K APPEARS - 1 TIMES.
L APPEARS 3 TIMES.
M APPEARS U4 TIMES.
N APPEARS 3 TIMES.
O APPEARS 12 TIMES.
P APPEARS 2 TIMES.
Q APPEARS 1 TIMES.
R APPEARS 5 TIMES.
S APPEARS 2 TIMES.
T APPEARS 9 TIMES.
U APPEARS 2 TIMES.
vV APPEARS 1 TIMES.
W APPEARS 2 TIMES.
X APPEARS 1 TIMES.
Y APPEARS 2 TIMES.
Z APPEARS 1 TIMES.

J. TAB, RTAB,; and REM

TAB (integer) and RTAB (integer) are primitive functions whose values are
pattern structures that match all characters from the current cursor position up
to a specific point in the subject string. TAB(N) matches up through the ©Nth
character of the subject string. RTAB(N) matches up to but not including the
Nth character from the right end of the subject string. Stated another way,
TAB(N) insures that N characters are matched by positioning the cursor to the
right of the Nth character. RTAB(N) insures that all but N characters are
matched by positioning the cursor to the left of the Nth character from the end.
For example, in the statement

*SNOBOLU' TLEN(2) TAB(6)

the pattern matches the substring SNOBOL with TAB(6) matching OBOL . 1In a
similar statement,

'SNOBOL4' LEN(2) RTAB (1)
the substring SNOBOL is once again matched with RTAB (1) matching OBOL .
RTAB (0) is particularly useful for matching everything to the end of the

subject string. For convenience, the variable REM has as its initial value the
pattern structure for RTAB(0). Thus, the pattern

40

LAST8 =\ RTAB(8) REM . L8

18.

|

matches the entiﬂf subject and assigns the last eight characters as the value of

TAB and RTAR |[require integer arguments when pattern matching is performed.

If the argument | of TAB or RTAB 1is negative, error termination occurs.

argument that woulld require moving the cursor 1left causes failure.
statement

STR LEN (5)| TAB (4)

fails because the cursor cannot be moved back by TAB (4).

An
The

TAB and RTAB are particularly valuable in breaking fields out of structured
data. The following data is part of the 1964 list of congressmen from New

Jersey.
Column 4 k Column 30 Column 36
) . { t
1 WILLIAM T. CAHILL REP COLLINGSWOOD
2 THOMAS C. MCGRAPH, JR. DEM MARGATE CITY
3 JAMES J. HOWARD DEM WALL
14 DOMINICK V. DAN&ELS DEM JERSEY CITY
15 EDWARD J. PATTEN DEM PERTH AMBOY

Suppose a new deck|of cards is desired, listing only the names left justified at

column 1, and the post office address right Jjustified at column 44.

The

following program| reads the cards, breaks out the NAME and PO fields, formats

and punches a new deck.

EANCHOR = |1 _ |
BLANKS = ! '
NAMEANDPO = TAB(3) TAB(29) . NAME TAB(35) REM . PO
LOOP CARD = TR%M(INPUT) ' : F (END)
CARD NAMEANDPO v : F (ERROR)
NAME = TRIM (NAME) ,
BLANKS LEN (44 - (SIZE(NAME) + SIZE(PO))) . PAD :F(ERROR)
OUTPUT = NAME PAD PO
PUNCH = OUTPUT : (LOOP)

END

Fields are broken out of the input cards using the pattern NAMEANDPO.

The

NAME field has +trailing blanks which are trimmed before the output line is

formatted. The! pogst office address i1s obtained using REM and does not

have

trailing blanks since the input card was initially trimmed. LEN is used to
determine the number of padding blanks required between NAME and PO to properly

format the output. | Output from the program is

41

WILLIAM T. CAHILL COLLINGSWOOD

THOMAS C. MCGRATH, JR. MARGATE CITY
JAMES J. HOWARD WALL
DOMINICK V. DANIELS JERSEY CITY
EDWARD J. PATTEN PERTH AMBOY

A Dbead diagram illustrating the match of NAMEANDPO and the first data card
is shown below.

1 4 : 30 36
o v \
1 WILLIAM T. CAHIIL REP COLLINGSWOOD

1 WILLIAM T. CAHILL REP COLLINGSWOOD

L e IR

1 WILLIAM T. CAHILL REP COLLINGSWOOD

|

1 WILLIAM T. CAHILL REP COLLINGSWOOD

B(29) . NAME TAB (35) REM . PO

1 WILLIAM T. CAHILL REP COLLINGSWOOD

TAB(29) . NAME }——{TAB (35)

K. POS_and_RPOS

POS (integer) and RPOS (integer) are primitive functions whose values are
pattern structures. These pattern structures match the null string if the
cursor is at a point in the subject string specified by the integer argument.
POS(N) succeeds, matching the null string, only if the cursor is positioned at

42,

the right of the Nth character. RPOS(N) succeeds, matching the null string,
only if the curspr is positiaoned to the left of the Nth character from the end
of the subject string. ©POS and RPOS never cause the cursor to be moved; they
test its position. For example, in the statements

EANCHOR = 1
STR SPAN(' ') POS(7)

pattern matching succeeds only if the first seven characters are blanks and the
eighth is not a blank. In the following example,

§ANCHOR = 1
STR SPAN(' ') RPOS(7)

pattern matching succeeds only if the seventh character from the end of STR is
nonblank and everything preceeding it is blank.

POS(0) is a pattern that succeeds only if the cursor is at the left of the
subject string. RPOS(0) succeeds only if the cursor is at the right of the
subject string. POS(0) and RPOS(0) can serve as left and right anchors for any
pattern P, as in

ENTIRE POS (0) P RPOS(0)
In the statement

STR ENTIRE

pattern matching succeeds only if P can match all of STR. If at the time ENTIRE
is built, P has the value

'CAR' | 'CART! | '"CARTE!
Matching in the statement
‘CARTE! ENTIRE

is illustrated by the bead diagram:

e

'CARTE"

43

4y

CARTE

CARTE

CARTE

CARTE

CARTE

CARTE

'CARTE!

Q
p=]
s}
=

'CAR!"

RPOS (0)

y
e Foe {

POs (0)

POS (0)

'CARTE'

*CART'

'CARTE!

' CARTE'

"CARTE'

'CART'!

'CARTE'

i

Q
p=]
s}
=

RPOS (0)

:

RPOS (0)

RPOS (0)

RPOS (0)

RPOS (0)

RPOS (0)

f

'CARTE!

Arguments for POS and RPOS must have nonnegative integer values when

pattern matching is performed. Negative or noninteger arguments cause error
termination.

The following program uses P0OS, RPOS, SPAN, and BREAK to list <cards which
do not conform to a specific format. Cards, when properly punched, have three
fields left justified at columns 1, 10 and 20. A field consists of a run of
nonblank characters followed by a run of blanks. Cards not conforming are
printed by the program.

OUTPUT = 'CARDS WITH IMPROPER FORMAT ARE:!
FIELD = BREAK(' ') SPAN(' ')
FIELDS = POS(0) FIELD POS(9) FIELD POS(19) FIELD RPOS (0)
LOOP CARD = INPUT : F (END)
CARD FIELDS : S (LOOP)
OUTPUT = CARD : (LOOP)

END

A pattern FIELD is defined as a run of zero or more nonblank characters
followed by a run of blanks. FIELDS is defined using FIELD three times with POS
and RPOS, which check that the fields matched are positioned properly. If the
following data are provided as input

EXPR PROC ’
SAVLNK
RCALL XPTR,EXPRS

BRANCH EXRTNI1

BRANCH EXRTN2
EXRTN3 RSTURN 3
EXRTN1 RSTURN 1
EXRTN2 RSTURN 2

the output is

CARDS WITH IMPROPER FORMAT ARE:
SAVLNK
BRANCH EXRTN1
BRANCH EXRTN2
EXRTN2 RSTURN 2

45

L. FAIL

FAIL is a variable whose initial value is a pattern structure that always
fails. FAIL does not terminate pattern matching, but causes the scanner to seek
alternatives. :

Consider the following statements.

EANCHOR = 0
'MISSISSIPPI? (*Is* | *SI' | 'IP' | 'PI') $ OUTPUT FAIL

Normally, the pattern would match the first IS , print it, and terminate
successfully. However, FAIL causes the scanner to back up after printing the
IS to look for another altermative. SI is found and printed, and again FAIL
causes the scanner to back up. Thus, FAIL causes the scanner to find and print
all six substrings of MISSISSIPPI that the pattern '

(IISI I ISI' | IIPI I IPII)'

matches before terminating in failure.

In general, the behavior of the scanner during any pattern match may be
observed using a statement of the form

STR PAT $ OUTPUT FAIL

FAIL is generally used when a programmer wishes to force the scanner to try
a number of alternatives even though some may succeed. 1In the following example
words or phrases are read from cards. Cards are printed if they

1) begin with the characters SIDE ,
2) contain either a hyphen or a blank, and
3) have length less than or equal to eleven.

For example, SIDE DISH and SIDE-KICK are acceptable while SIDEBOARD and
SIDE-WHEELER are not.

EANCHOR = 1
OUTPUT = 'ACCEPTABLE WORDS ARE:'
PAT = NULL $ P1 $ P2 $ P3
. (*SIDE' $ P1 | BREAK('- ') $ P2 | LEN(12) $ P3)
. FAIL
LOOP CARD = TRIM (INPUT) : F (END)
CARD PAT
DIFFER (P1) DIFFER(P2) IDENT (P3) , : F (LOOP)
OUTPUT = CARD : : (LOOP)

END

PAT 1is a complicated pattern that, because FAIL forces the scanner to back
up, checks all three conditions. The initial portion of PAT,

NULL $ P1 $ P2 $ P3

46

matches the null string, thereby immediately assigning the null wvalue to
variables P1, P2, and P3. Iif SIDE matches, P1 gets a nonnull value. 1If
BREAK('- ') also matches, P2 also gets a nonnull value. Finally, if LEN(12)
fails, as it should, P3 keeps its null value. The values of P1, P2, and P3 are
checked in the statement following pattern matching.

M. FENCE

The variable FENCE has a pattern structure as its initial value. FENCE
matches the null string when first encountered by the scanner moving left to
right through a pattern. If a subsequent failure causes the scanner to back up
to FENCE seeking an alternative, the pattern match is terminated. Considering
FENCE as a bead, the needle passes freely from left +to right. Attempting to
pull the needle back through FENCE causes failure of pattern matching.

Consider the following statements:

EANCHOR = 1
'BERATES'! ('BE' | 'GE' | 'FRE!') ('8 | 'TY)

BE matches, and Dboth TS and T fail. At this point the scanner backs up and
tries GE and FRE, both of which fail. Looking at the pattern, it 1is obvious
that GE and FRE should not be tried because the first two characters are known
to be BE.

Inserting FENCE between the groups of alternatives eliminates the problem.
'BERATES! ('"BE' | 'GE' | 'FRE'") FENCE (*TsS*Y | 'TY)
Now, if BE matches, FENCE keeps the scanner from needlessly backing up to look
at GE and FRE.
FENCE can be used to temporarily anchor the scanner in a program which

otherwise operates in the unanchored mode. Inserting FENCE before PAT 1in the
statement

STR (FENCE PAT)

causes pattern matching to fail if PAT does not match beginning with the first
character of STR .

N. ABORT

ABORT is a variable whose initial value is a pattern structure that causes
immediate termination of the entire pattern match. No alternatives are tried,
and the statement fails.

ABORT is useful in constructing conditional pattern matching statements.

For instance, in processing SNOBOL4 source decks as data, the following pattern
ignores comment cards, but matches all others against the pattern CARD.

47

CARDFORM = t%¢* ABORT | CARD
Similarly, the pattern
SHORTPAT = LEN(12) ABORT | PAT
succeeds only if the subject string is less than 12 characters long.
In general, a pattern described by a statement of +the form, '"has

characteristics of P but not Q," can be implemented by

PNOTQ = Q ABORT | P

O. Patterns with Implicit Alternatives

when failure +to match a pattern component starts the scanner pulling the
needle back, the scanner seeks alternatives to components that matched. So far,
the only way described for creating alternatives uses the binary operator i .
Components, if '"backed into," either terminate the pattern match (FENCE), pass
the needle to an alternative (as indicated by |)., or, 1if no alternative
exists, pass the needle still farther back to seek alternatives. Four primitive
pattern structures, ARB, BAL, ARBNO (P), and SUCCEED behave differently. These
patterns have implicit alternatives. Rather than pass the needle back or to an
alternative, +they attempt to find another suitable substring. Only when all
implicit alternatives fail is the needle passed to an explicit alternative or
passed back.

1. ARB

ARB 1is a variable whose initial value is a pattern structure that matches
zero or more characters. When first encountered by the scanner moving from left
to right, ARB matches the null string. When ‘'backed into' on subsequent
occasions, ARB increases the size of the substring it matches by one. ARB fails
only when it can no longer increase the length of the substring it matches.

ARB is used in the construction of patterns typified by the statement, "any
string containing both CAT and DOG." Nothing is said about the order in which
they appear or their separation. A suitable pattern is

CATANDDOG = 'CATY ARB 'DOG! | 'DOG' ARB 'CAT!
Matching CATANDDOG against the strings

CATALOG FOR SEADOGS
DOGS HATE POLECATS
CATDOG

ARB matches the substrings

48

ALOG FOR SEA
S HATE POLE

and the null string, respectively.

ARB, although natural, cannot be used with impunity. For example, it
should not be used as the first component of a pattern unless associated with a
variable for value assignment. The statement

STR ARB PAT
should be replaced by

STR PAT
which, when executed in the unanchored mode, behaves in exactly the same way,
but is much faster.

ARB should not be wused to break fields out of a string if they are

separated by known delimiters. For example, the statement

STR BREAK(','}) . FIELD ',' =
is much faster than the statement

STR ARB . FIELD ',' =

although they accomplish the same thing.

The following bead diagram gives a representation of ARB. It can be seen

49

from the diagram that
1) the null string is matched on the first attempt,

2) subsequent attempts increase the substring matched by one character, and
3) failure occurs when the size of the substring cannot be increased.

(o)

9®

=) @)
(LEN (1)) NULL

§®
g

2. BAL
The initial value of the variable BAL is a pattern structure which matches
any nonnull string of characters balanced with respect to parentheses. BAL
matches
X
XYZ
(A+B)

A (B*C) (E/F) G+H
BAL does not match

)A+B (
((A+B)

. A bead diagram for BAL resembles the one for ARB except that the null
string is not acceptable.

50

®|©
®|®
@@
®

GBAL is a routine that

1) fails if no characters remain in the subject string,

2) fails if the first character examined is) ,

3) matches any character except) or { ,

4y matches all characters from (up to and including the balancing) ,
and
5) fails if a balancing) does not occur.

In the statement
'A (B*C) (E/F) ' @ BAL RPOS (0)

GBAL 1s called three times. First it matches the A Dbut RPOS(0) fails. Next,
GBAL extends the string matched by BAL to include (B*C) , but again RPOS(0)
fails. Finally GBAL matches (E/F), which brings the total string matched by
BAL to A (B*C) (E/F)
Insight into the behavior of BAL can be gained from use of ALLBAL:
ALLBAL = BAL $ OUTPUT FAIL
Wwhen used in the unanchored mode, a statement such as

' ((A+(B*C))+D)' ALLBAL

prints out every balanced expression. The output for this case is

51

((A+ (B*C)) +D)
(A+ (B*C))
(A+ (B*C)) +
(A+ (B*C))+D
A

A+

A+ (B*C)

+

+ (B*C)

(B*C)

B

B

B*C

Xk

*C

BAL facilitates the manipulation of algebraic and functional expressions.
Programs using BAL to translate algebraic expressions from Polish to infix
notation, and vice versa, appear in Chapter 4.

3. ARBNO

—_———l

ARBNO is a mnemonic for M"arbitrary number of." ARBNO (pattern) is a
primitive function whose value is a pattern structure that matches zero or more
consecutive occurrences of strings matched by its argument. When encountered by
the scanner in the forward direction, ARBNO(pattern) matches the null string.
When ‘'backed into,!' it tries to increase the length of the substring matched by
its argument. In the statements

§ANCHOR = 1
SUBSTR ARBNO (LEN(3)) RPOS (0)

the pattern match succeeds only if the size of SUBSTR is zero or a multiple of
three.
ARBNO (P) may be thought of as the infinite pattern

NULL | P (NULL | P (NULL | P (NULL | P (seeeea))))

A bead diagram is perhaps more illuminating.

52

END

The

In the following example

EANCHOR = 1
P = '1234' | 1123¢
ARBNOTEST = ARBNO (P)

123412341 ARBNOTEST

following bead diagram

handled. The output from the
null string), and then

1234

12341234
1234123

123

123412
123412341

the argument of ARBNO has several alternativeés.

| 12347 | 341t | 14120
$§ OUTPUT RPOS (0)

for ARBNOTEST illustrates how alternatives are
program above is a blank line (resulting from the

53

alelolalElh
ellelelalalh

elelelelale

BREAK and SPAN can frequently be used in place of ARBNO. For example,

ARBNO (* ')

'

can usually be replaced by
SPAN (')

or, if necessary,
NULL | SPAN (' ')

ARBNO is relatively slow and should be avoided if some other pattern will
suffice.

4. SUCCEED

The variable SUCCEED has a pattern structure as its initial value., SUCCEED
matches the null string when first encountered by the scanner moving left to
right through a pattern. If a subsequent failure causes the scanner to back up
to SUCCEED seeking an alternative, SUCCEED again matches the null string. Thus,
SUCCEED always matches the null string, both in the forward direction and when
alternatives are sought. SUCCEED has a bead representation where all implicit
alternatives are the null string.

54

T EIRIEIE

Since the number of implied alternatives is infinite, the scanner can never back
through SUCCEED.

Practical uses for SUCCEED seem limited. However, +the light-hearted
programmer can UuUse SUCCEED and FAIL to produce pattern matches that never
terminate:

SAWTOOTH = SUCCEED (LEN(1) ARB) $ OUTPUT FAIL

Since FAIL repeatedly causes the scanner to back up and retry ARB, LEN(1) ARB
matches first one character, then two, and so on up to the length of the subject
string. Each substring matched by LEN(1) ARB is printed. Eventually ARB cannot
match a longer string and fails, causing the scanner to back into SUCCEED. .
SUCCEED matches the null string and the entire process repeats itself.

If the pattern SAWTOOTH is used in the statement

TXXXXXX!' SAWTOOTH

pattern matching does not terminate, and the following output is produced.

55

X

XX

XXX
XXXX
XXXXX
XXXXXX
X

XX

XXX
XXXX
XXXXX
KXXXXX
X

XX

SAWTOOTH can never terminate successfully because of the FAIL, and can never
terminate in failure because of the SUCCEED.

P, Cursor Position

The unary operator @ 1s called the cursor position operator. Its operand
is a wvariable. The value of @X 1is a pattern structure that matches the null
string and assigns the current cursor position as an integer value of the
variable X. Assignment of the <cursor postion to the operand of the @
operator takes place as immediate value assignment. Value is assigned when the
cursor position operator is encountered during pattern matching, not following
successful completion.

Execution of the following statements assign the integer value 5 to the
variable HEAD.

EANCHOR = 0
'TEST AT OPERATOR' @HEAD 'AT'

Pattern matching finally succeeds when the cursor is initially positioned to the
left of the AT. The cursor position at this point is 5, the value assigned to
HEAD.

Locating the rightmost instance of a pattern in a string is relatively easy
utilizing the cursor position operator. The following statements can be used to
locate and remove the rightmost blank in a string of characters.

EANCHOR = 0
STR ' ' @RTPOS FAIL
STR TAB(RTPOS - 1) . HEAD * ' = HEAD

Since +the unanchored mode is used, the first pattern matching statement assigns
a cursor position to RTPOS for each blank 1in STR. Although failing
ultimately, the final value of RTPOS 1is the cursor position to the right of
the last blank. The replacement statement uses TAB(RTPOS - 1) to locate and
remove the rightmost blank.

56

Q. Unevaluated Expressions

The unary operator * postpones the evaluation of its operand. If E is an
expression, then *E is an unevaluated expression. The unevaluated expression is
evaluated when

1) the scanner encounters *E as part of a pattern structure, or
2) *E i1s used as the argument of the primitive function EVAL.

In this chapter, unevaluated expressions, often simply called expressions, are
considered only in the context of pattern matching., A detailed discussion of
EVAL appears in Chapter 4.

If an unevaluated expression appears as part of a pattern, the expression
is evaluated when encountered during pattern matching. If evaluation of the
expression “is successful, the value becomes part of the pattern structure and
pattern matching continues. If evaluation of the expression fails, the scanner
backs up seeking alternatives. Failure during evaluation of an expression does
not cause termination of pattern matching.

A typical use for unevaluated expressions is motivated by the following
example. A deck of data cards indexed in the first three columns with numbers
from 1 to 999 is to be checked for the proper sequence.

EANCHOR = 1
N = 1
BLANKS = ' ¢
LOOP CARD = INPUT : F (OK)
CARD (BLANKS N) . SW | ! ' NULL . SW : F (NOGOOD)
N = DIFFER(SW) N + 1
EQ(SIZE(N) + SIZE(BLANKS) ,3) : S (LOOP)
BLANKS ' ' = : (LOOP)
OK OUTPUT = 'DECK IS WELL ORDERED.‘ : (END)
NOGOOD OUTPUT = 'CARD ' CARD ' IS OUT OF ORDER.' : (END)

END

Typical data are the following cards listing the best selling nonfiction books
for 1965.

Column 1
)
1. MARKINGS, DAG HAMMARSKJOLD
2. THE ITALIANS, LUIGI BARZINI
3. SIXPENCE IN HER SHOE,
PHYLLIS MCGINLEY
4. REMINISCENCES, DOUGLAS MACARTHUR

10. JOURNAL OF A SOUL, POPE JOHN XXIII
11. THE OXFORD HISTORY OF THE AMERICAN
, PEOPLE, SAMUEL ELIOT MORISON

12. THE WORDS, JEAN-PAUL SARTRE

57

he main loop is executed once for each card. Matching for sequence numbers or
eading blanks is done using the pattern

(BLANKS N) . SW | ' ' NULL . SW

he value of N is the number sought. BLANKS has a value of =zero, one or two
lanks such that SIZE(BLANKS N) is 3. SW is a variable which, following a
uccessful match, is nonnull if the segquence number is found, and is null 1if
:hree blanks are found instead. SW 1is wused +to determine if N should be
.ncremented for the next iteration. When the SIZE(N) changes, as it does when N
changes from 9 to 10 , a blank is removed from BLANKS in order to keep
5TZE (BLANKS N) egual to 3.

The important point to observe in the example is the changing of the
>attern. During execution, the value of N changes frequently and the value of
3LANKS changes occasionally. As written, the pattern is evaluated for every
iteration, and a new pattern structure is built.

N and BLANKS are the only portions of the pattern which change. Suppose a
new pattern utilizing unevaluated expressions is specified outside of the loop.
SEQNO = (*BLANKS *N) . SW | ' * NULL . SW
The pattern matching statement inside the loop becomes
CARD SEQNO : F (NOGOOD)
The expressions *BLANKS and *N are not evaluated when the pattern is built.
They remain unevaluated until SEQNO is used in a pattern matching statement.
During pattern matching the values of BLANKS and N are found and inserted
into the already existing pattern structure. Thus, the pattern structure is
built once, and only the continually changing values of BLANKS and N are updated
on every iteration.

The following example incorporates the modifications using unevaluated
expressions.

§ANCHOR = 1
N = 1
BLANKS = ' !
SEQNO = (*BLANKS *N) . SW | ¢ ' NULL . SW
LOOP CARD = INPUT : F (OK)
CARD SEQNO : F (NOGOOD)
N = DIFFER(SW) N + 1
EQ (SIZE (N) + SIZE (BLANKS) ,3) :S (LOOP)
BLANKS ' ' = : (LOOP)
OK OUTPUT = 'DECK IS WELL ORDERED. ! : (END)
NOGOOD OUTPUT = *CARD ' CARD ' IS OUT OF ORDER.' : (END)

END

Unevaluated expressions are valid arguments for primitive pattern-valued
functions. The pattern structure for the function is built, but the argument
remains unevaluated until pattern matching is performed. The following example
uses an unevaluated expression as the argument of LEN, and thereby avoids the

58

repeated formation of a pattern structure. The program takes input cards with
left-adjusted data of length less than 40 characters, and produces output cards
with the data right adjusted at column 40. For example, the cards

AKRON BEACON JOURNAL
ATLANTA CONSTITUTION
ATLANTA JOURNAL
BALTIMORE NEWS AMERICAN

become!
j AKRON BEACON JOURNAL
| ATLANTA CONSTITUTION
ATLANTA JOURNAL
BALTIMORE NEWS AMERICAN
! BLANKS = ! !
'!PADPAT = LEN(* (40 - SIZE(CARD))) . PAD
LOOP . CARD = TRIM(INPUT) :F (END)
' GT (SIZE (CARD) , 40) : S(PRINT)
' BLANKS PADPAT : F (ERROR)
iPUNCH = PAD CARD : (LOOP)
PRINT :OUTPUT = CARD : (LOOP)
END

PADPAT is constructed once and only once. The argument of LEN is evaluated for
each iteration of the loop.

In pattern matching, unevaluated expressions can be used in a variety of

ways, as illustrated by the following examples.

PAIR is a pattern that matches any two consecutive identical <characters.
PAIR uses LEN(1) to match any character, and immediate value assignment to
assign, the character as value of X. The expression *X that follows must match
the same character as LEN(1).

"PAIR = (LEN(1) $ X *X) . OUTPUT
'COOK' PAIR
| tCOMMON' PAIR
"TAARON' DPAIR
| YCHICKADEE' PATIR
END

|
Output:from the program is:

00
MM
AA
EE

59

Given any subject string STR and any pattern P, BIGP finds the longest
substring of STR that P matches.

BIGP = (%P $ TRY *GT(SIZE(TRY),SIZE (BIG))) $ BIG FAIL

BIGP uses two variables, BIG and TRY. During pattern matching, the value
of BIG is the largest substring found. Before pattern matching, BIG must be
initialized to the null string. TRY is assigned every substring that the
pattern P matches. If TRY is longer than BIG, the value of BIG is updated.

BIGP utilizes wunevaluated expressions in two ways. *P allows BIGP to be
constructed without specifying the value of P. The value of P 1is determined
during pattern matching. The predicate *GT(SIZE(TRY),SIZE(BIG)) is evaluated
during pattern matching whenever *P matches a substring. It compares the size
of TRY with the size of BIG. If the new substring is shorter, the predicate
fails, Failure of a predicate or function during pattern matching causes the
scanner to Dback up seeking alternatives. If the new substring is longer, the
predicate succeeds, returning the null string as value. This null string is
immediately matched. The variable BIG is then assigned the new substring as
value. FAIL causes the scanner to back up and 1look for another substring
matched by P.

The following is a test program for BIGP.

BIGP = (*P $ TRY *GT(SIZE(TRY),SIZE(BIG))) $ BIG FAIL

STR = 'ON JANUARY 1, 1965, THE UNITED STATES MERCHANT !
. 'FLEET HAD 2529 VESSELS TOTALLING !
. 29,632,000 DEADWEIGHT TONS.'?

P = SPAN('0123456789,")

BIG =

STR BIGP

OUTPUT = 'LARGEST NUMBER IS ! BIG

P = SPAN ('ABCDEFGHIJKLMNOPQRSTUVWXYZ ')

BIG =

STR BIGP

ouTPUT = 'LARGEST WORD IS ' BIG

END
The output is

LARGEST NUMBER IS 29,632,000
LARGEST WORD IS DEADWEIGHT

Example 3
Recursive definitions of patterns are possible using unevaluated expres-
sions. The pattern structure for

P = p g1 i 1y

is constructed using the previous value of P. If P was null, the new value of P
matches the strings Y and Z.

60

If the value of P is left unevaluated as in

the value of P at pattern matching time (which is *P, '2' | 'Y'). replaces *P,
giving rise to a recursive definition. The pattern P matches either Y or
anything matched by P followed by Z. Therefore, since P matches Y, it also

matches Y7Z. Since P matches YZ, it also matches YZZ, etc. Thus, P matches
strings of the form

YZ
Y77
YZZ27

A test program for the recursive definition of P follows.

P = %P 171] 1yt
PO = P . OUTPUT
rYr PO
YYZ2Z7Z' PO
'XYZ' PO
'YZZX' PO
YAYZZZZB' PO
END

Output from the program is

YZ272Z
YZ
YZZ
YZZZZ

Recursive definitions can be guite complicated, as in the following example
which recognizes a simple class of arithmetic expressions.

61

&ANCHOR = 1

VARIABLE = ANY ('XYZ')
ADDOP = ANY ('+-1')
MULOP = ANY ('*/7')
FACTOR = VARIABLE | ' (' *EXP ')
TERM = FACTOR | *TERM MULOP FACTOR
EXP = ADDOP TERM | TERM | *EXP ADDOP TERM
LOOP STRING = TRIM(INPUT) ‘ : F (END)
STRING EXP RPOS(0) : F (NOGOOD)
OUTPUT = STRING ' IS AN EXPRESSION. : (LOOP)
NOGOOD OUTPUT = STRING ' IS NOT AN EXPRESSION. ! : (LOOP)

END

Output for typical data is

X+Y* (Z+X) IS AN EXPRESSION.
X+Y¥Y+Z IS AN EXPRESSION.
XY IS NOT AN EXPRESSION.

Example 5

A call to a programmer-defined function is an expression and can appear in
a pattern as an unevaluated expression. Evaluation of the function takes place
during pattern matching. Failure of the function call causes the scanner to
back up seeking alternatives. On success, the value of the function call is
treated as a pattern, and matching continues. There are no special restrictions
on the procedure called by the function, so pattern matching may be used within
the called procedure.

The following program uses one statement to match a number of different
patterns against a single subject string. The patterns are read from input
cards one at a time.

DEFINE (*NEWPAT () ')

DEFINE ('BUMP() ') : (TEST)
*
NEWPAT OUTPUT = TRIM (INPUT) : F (NEWEND)

NEWPAT = ARB OUTPUT : (RETURN)
NEWEND NEWPAT = ABORT : (RETURN)
*
BUMP X = X + 1 : (RETURN)
*

TEST STR = 'ABCDACDBADBCDB'

STR SUCCEED *NEWPAT () *BUMP() FAIL

OUTPUT =

OUTPUT = X ' OF THE PATTERNS ABOVE MATCHED ' STR
END

Two functions, NEWPAT and BUMP are defined. NEWPAT reads a pattern from
the input, prints it, and returns the pattern preceded by ARB as the wvalue of
the function. If no patterns are 1left on the input, the pattern ABORT is
returned as value of NEWPAT. The function BUMP increases the value of the
variable X by one each time it is called.

In the test pattern, the functions NEWPAT and BUMP appear as unevaluated
expressions bounded by SUCCEED and FAIL. Each time NEWPAT() is evaluated during

62

pattern matching, a new pattern structure 1s returned as value. Since the first
element of the pattern structure is ARB, the entire string STR is examined for
the input pattern. If the pattern structure for NEWPAT() fails, the scanner
backs up to SUCCEED and restarts causing NEWPAT() to be re-evaluated, reading in
a new pattern. If matching succeeds, BUMP() is evaluated causing X to Dbe
incremented. FAIL then causes the scanner to back up to SUCCEED continuing the
process. Pattern matching terminates when input is exhausted and the value of
NEWPAT () is the pattern structure for ABORT.

Ooutput from the program consists o©0f the patterns read from the input
followed by a summary line printing the number of patterns matched successfully.

ABCD
ABDC
ACBD
ACDB
ADBC
ADCB
BACD
BADC
BCAD
BCDA
BDAC
BDCA
CABD
CADB
CBAD
CBDA
CDAB
CDBA
DABC
DACB
DBAC
DBCA
DCAB
DCBA

5 OF THE PATTERNS ABOVE MATCHED ABCDACDBADBCDB

R. OQuickscan Mode

The keyword SFULLSCAN initially has a zero value, signifying the normal or
quickscan mode of pattern matching. In the quickscan mode, the scanner uses a
number of heuristics to avoid looking at alternatives which cannot possibly lead
to a successful match. Hence, the scanner operates on the assumption that the
programmer is not interested in how matching is done, but only in the outcome.
Typically, patterns concerned with how matching is done employ immediate value
assignment and/or -unevaluated expressions. Patterns which do not use these
features can and should be used in the quickscan mode. Patterns using immediate
value assignment and unevaluated expressions may produce unexpected results in
the quickscan mode. This section describes the heuristics used by the scanner
to speed up pattern matching. It points out where unexpected results may arise
and what can be done about them. :

This chapter so far has been concerned with the basic components of
patterns. No consideration has been given to the context in which a component
occurs. The basic notion of the quickscan mode is quite simple: Before a
component or bead is matched, its context is examined to see if matching should
be attempted, terminated, or an alternative sought. The easiest question to

63

answer is whether the number of characters remaining in the subject string is
sufficient to successfully complete a match. Consider the following example.

BD = ('BE' | 'BY) ('AR' | 'A') (*DS' | 'DY)
'BEAD!' BD

Three of the possible strings matched by BD are too long: BEARDS, BEARD, and
BARDS. The scanner should avoid them if possible. In the bead diagram which
follows, a number 1is associated with each bead. The number represents the
minimum number of characters necessary to match that bead and anything that
follows. If the number is greater than the number of characters remaining in
the subject string, the scanner does not attempt to match the bead against the
subject string.

4 3 2
&
3 2
D, @
@
2
D—=) |
(o
3 2
(o
Dl
®

1

The components AR in step 2 and DS in step 3 are not tried. AR cannot
match, since two characters remain in the subject string and at least three are

necessary. Similarly, DS is not tried because one character remains and at
least two were required.

In the unanchored quickscan mode, the scanner does not move the initial

position of the cursor if insufficient characters remain in the subject string.
Consider the following example.

64

&ANCHOR = 0
*BATS!' BD

Matching fails with the cursor initially positioned to the left of the subject
string. It is then moved to the left of the A. Since three characters remain
in the subject string, only B is tried. Failing to match B , the scanner
recognizes that further repositioning of the cursor is useless.

BATS

=
w
N

©|@

BATS

—
1BATS u 3
®

[\

1 4 3

[\

BATS

65

BATS

ol
9

@
BATS ‘II!’ .
- —®

w
[\]

—_

In the quickscan mode, the scanner distinguishes between two kinds of
failure: 1) failure to match, as when X 1is compared +to T; and 2) failure
because too few characters remain in the subject string. In the latter case,
the scanner does not allow ARB to match a longer substring, nor does it move the
initial position of the cursor in unanchored mode. Consider the following
pattern matching statement executed in the unanchored mode:

'CAT* ARB X!

Clearly the match cannot succeed. When the scanner reaches the state shown in
the diagram below, ARB can no longer extend the substring it matches. ARB
indicates failure because of too few characters. The scanner does not
reposition the cursor, and matching fails.

car —(wm), (we) (x)
1 1 1
(G () (o)
2 1
&
2 1
(LEN (1)) (wuLL)
2 1

A similar situation arises in the anchored mode for such patterns as

'CAT' ARB ARB 'X!

66

The first ARB matches the null string. The second ARB matches the null string
C , and CA Dbefore it fails for lack of room. The scanner, therefore, does no

seek an implicit alternative for the first ARB, and terminates pattern matchin
in failure.

In the gquickscan mode, the scanner recognizes a special case for ARBNO
When Dbacked into, ARBNO(P) tries to extend the substring matched by findin
another instance of P. If P is null or has null alternatives, behavier 1lik
SUCCEED may result. The scanner +tries to prevent this. When backed into
ARBNO (P) examines the substring matched by the last instance of P. If thi
substring is null, ARBNO does not try to extend the substring matched by findin
an additional instance of P, but backs up to the last instance of P and seeks a
alternative to the null string.

For example, in the guickscan mode, ARBNO (NULL) looks like NULL | NULL
The first NULL appears because NULL is always attempted independently of th
argument to ARBNO. The second NULL comes from the argument.

Behavior of ARBNO(NULL | 'X') can be deduced from the output generated by
the following statement.

TRYXX!' ('*' ARBNO(NULL | *'X')) $ OUTPUT FAIL
The output is

*

*

*X
*X
*XX
*XX
kXXX
*XAX

Left recursion in a pattern structure, as illustrated by
P = *P AL l tyt

could be a problem because it might put the scanner in a loop, resulting in
error termination. In the guickscan mode, recursive loops are broken whenever
possible. Most looping problems are avoided by a look-ahead feature that
compares the number of characters remaining with the number of characters
required together with the assumption that any unevaluated expression matches at
least one character.

As an example, consider the following statement:

'Yz7Zzz' P

It is convenient to think that whenever the bead for *P is encountered, @t
expands into a Dbead diagram for the current definition of P. The process 1s
illustrated by the following diagram.

67

68

2 @’I
3 @2 @‘I
©, ©, O,

<
o3
~3
®
w
N

w

NS}

®H®G

-

The final state is

When the minimum number of characters required by *P reaches 4, the recursive
loop 1is broken and the alternative Y is tried, leading to a successful match.

The assumption that *P matches at least one character does not affect the
outcome of +the previous example. Had zero characters been assumed, one more
iteration of the loop would have been required, and the final diagram would have
been as follows.

69

@
@
e
®

O,

®

[\]

elfe

However, the one-character assumption keeps the following equivalent statements
from terminating in error.

dJ
i

*P kQ | VY
‘IZI

If Dboth *P and *Q can match the null string, the bead diagram grows until error
termination results. With the one-character assumption, the two equivalent
examples above behave similarly.

There are a number of pathological pattérns which cause error termination.
The following are typical.

*P
NULL *P

o]
no

Even the one-character assumption cannot interrupt the recursive loop, because

as the bead diagrams grow, the minimum number of characters on the *P bead does
not change.

Assuming a one-character minimum for unevaluated expressions can lead to
difficulties:

PAT = *W *¥X *Y %7

The shortest string PAT matches is of 1length four. The following match,
straightforward as it seems, fails.

tTct
Ly
T

- N KX

Q
o]
=

' PAT

70

As seen in the next section, the match succeeds if the fullscan mode is used.

Patterns such as BIGP, described in the section on unevaluated expressions,
can produce unexpected results in the gquickscan mode. '

BIGP = (*P $§ TRY *GT(SIZE(TRY),SIZE(BIG))) $ BIG FAIL

The expression *GT(SIZE(TRY) ,SIZE(BIG)) is assumed +to0 require one character
when, in fact, it matches the null string. Therefore, the gquickscan mode
prevents *P from matching any substring which includes the last character of the
subject string. Hence, in the statements

P = SPAN('0123456789,")
11234.56 789,312' BIGP

the final value of BIG is 1234 rather than the expected 789,312 . Again, as
seen in the next section, the fullscan mode prevents such difficulties.

In summary, the following heuristics are used in the quickscan mode to
improve the efficiency of pattern matching:

1) continual comparison of the number of characters remaining in the
subject string against the number of characters required,

2) repositioning of the cursor in the unanchored mode only if sufficient
characters remain,

3) refusal to extend the substring matched by ARB or to reposition the
cursor if failure is caused by too few characters,

4) refusal +to extend substring matched by ARBNO(P) if the last match of P
was the null string, and

5) assumption that wunevaluated expressions must match at least one
character.

S. Fullscan Mode

The fullscan mode of pattern matching is entered by assigning a nonzero
value to the keyword &FULLSCAN. In the fullscan mode, all heuristics to improve
pattern matching efficiency are turned off. Each component of a - pattern is
matched independently of its context. Furthermore, when unanchored, the initial
position of the cursor is moved through the entire subject string.

The following example, which prints all possible nonnull substrings of a

subject, suggests applications of the fullscan mode.

&ANCHOR = 0

EFULLSCAN = 1

112345 (LEN (1) ARB) $ OUTPUT FAIL
END

output from the program is:

71

12
123
1234
12345
23
234
2345

34
345

45

If SFULLSCAN had been zero, the initial position of the cursor would not have
been moved, and only the first five lines would have been printed.

A more useful example, which can only be done in the fullscan mode, is back

referencing. This pattern succeeds only if a subject string has two identical
nonoverlapping substrings of length 3:

BACKR = LEN(3) $§ X ARB *X
The statement
*ABCDEFGBCDA? BACKR

succeeds and X has the value BCD . The statement above does not work in the
quickscan mode. When LEN(3) matches ABC , ARB eventually matches DEFGBCD and
then fails because X is assumed to match one character. The condition is
recognized in the quickscan mode, preventing the initial position of the cursor
from being moved. Hence, matching fails without BCD ever being matched by
LEN(3) .

In the fullscan mode, the tests of ARBNO for null arguments are turned off.

ARBNO (NULL) and ARBNO (NULL | X)) behave 1like SUCCEED, except that they
eventually cause error termination. The statement

txXXX' ('*' ARBNO(NULL | 'X')) $ OUTPUT FAIL

generates output lines consisting of a single * until error termination.

Recursive patterns such as
P = *P 171 | 1yt
do not work because the recursive loop is not broken. Execution of a statement

with such a pattern results in error termination.

Patterns such as

72

PAT = *W *xX *Y %32

work for subject strings having fewer +than four characters because the
one-character assumption no longer holds.

The next two examples compare the results of programs run in quickscan and
fullscan modes.

This program prints combinations of characters taken three at a time from a
subject string.

DEFINE ('F(X,Y,2) ")
COMB3 = LEN(1) $ A ARB LEN(1) $ B ARB LEN(1) $ C
. *F(A,B,C) FAIL
1123456 COMB3 : (END)
F OUTPUT = X Y 2 : (RETURN)
END

Output from Quickscan Ooutput from Fullscan

123 123
124 124
125 125
126
134
135
136
145
146
156
234
235
236
245
246
256
345
346
356
456

Example 2

This program generates wallpaper. Using SUCCEED and FAIL to Dbracket a
pattern, endless output occurs in the quickscan mode. In the fullscan mode,
output is truncated by error termination.

PONG = SUCCEED (LEN(1) ARBNO (LEN(1) | NULL))
$ OUTPUT FAIL

PING = !XXXXXXXXXX!

PING PONG

END

73

74

Output from Quickscan

X

XX

XXX

XXXX

XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXX XXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX
XXXXXXXX
XXXXXXX
XXXXXX
XXXXX

XXXX

XXX

XX

X

X

XX

XXX

XXXX

XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXXXXXKXXXX
XXXXXXXXXX
XXX XKXXXXX

output from Fullscan

X

XX

XXX

XXXX

XXXXX
XXXXXX
XXXXXXX
XXXXXXXX
XXXXXXXXX
XXX XXXXXXX
XXX XXKXXXXX
XXX XXXXXXX
XXX XXXXXXX
XXXXXXXXXX
XEXXKXXXXXX
XXXXXXXXXX
XAXXXKKKKX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

Chapter 3. Predicates and Primitive Functions

A. Introduction

A function is an operation upon a number of arguments. The value of a
function 1is computed by a procedure. Primitive functions are implemented by
procedures built into the SNOBOL4 system. Procedures for programmer-defined

functions are included in the source program.

Syntactically, a function <call is recognized as an identifier used for a
function name, followed by a list of arguments separated by commas and enclosed
in parentheses. An example is

IDENT (A, 'TREE')

An argument of a function call may be any expression. Execution of a function
call causes the expressions for the arguments to be evaluated and the values
passed to the procedure. Thus, the procedure gets only the values of the
arguments and not the expressions. Consider the following statements:

A = 'APPLE'

B = 'SEED!

APPLE = 'FRUIT!

SEED = 'TREE'

APPLESEED = 'FRUITTREE!

IDENT ($A $B,$ (A B))

FRUITTREE is the value of each argument to IDENT. The two strings FRUITTREE are
all that the procedure for IDENT knows of its arguments.

A variable such as C is an expression, albeit a degenerate one. Thus, if

c = {CLAW?

D = '"TIGER'
the call

IDENT (C,D)

passes the strings CLAW and TIGER (not C and D) as arguments to the procedure
for IDENT . Furthermore, since the procedure for IDENT knows nothing about C
and D, it cannot possibly change their values.

75

_Any omitted argument is assigned the null string as value. Thus, IDENT (E)
compares the value of E and the null string. Too many arguments in the call of
a primitive function cause error termination.

A function call is an expression and has a value. The value of a function
call may be of any data type. A programmer must always be aware that a function
call has a value, even if it is the null string. Otherwise, as later examples
illustrate, unexpected results may arise.

A function call may succeed or fail, depending upon the outcome of the
associated procedure. If the procedure for a function is successful, the value
computed by the procedure becomes the value of the function call. If the
procedure fails, the function call fails.

This chapter, although entitled "Predicates and Primitive Functions,"
describes only those primitive functions that 1logically cannot be described
elsewhere. Those dealing with pattern matching, input/output, arrays, and
programmer~defined data types are described in appropriate chapters. Functions
and page references are included in the index.

B. Numerical Predicates

Several primitive functions are concerned with testing relations between
arguments. These functions, which succeed or fail depending on whether the
relation is true or false, are called predicates. TIf a predicate is successful,
the value of the call is the null string.

1. LT, LE, EQ, NE, GE, and GT

A predicate test, such as GE(X,Y), succeeds if X stands in the given
relation to Y. The arguments to numerical predicates must be integers or
numeral strings. Thus, if

X = 17

Y = '3!
then GE(X,Y) succeeds and LT(X,Y) fails. If an argument is omitted, it is
assigned the null string, which is treated as zero. If M is 2, then EQ (M)

fails, but EQ(M - 2) succeeds returning the null string.

Numerical predicates frequently are used for loop control. For example, if
N has as value the number of times a loop has been executed and M is the limit
on N, the following statement checks N against M, and increments N if N is less
than M.

N = LT(N,M) N + 1 : S (LOOP) F (OUT)

Evaluation of the object expression takes place before assignment is made.
Thus, the evaluation of LT(N,M) takes place before N is incremented. If LT (N,M)
succeeds, the value is the null string. Concatenation of the null string with
N + 1 does not affect N + 1, so N is properly incremented. Furthermore, since
the statement succeeds, control passes to LOOP.

If LT(N,M) fails, N is not incremented and control passes to the statement
labelled oOUT.

76

Placement of predicates in a statement is important. Consider the
following statement, which looks as if it might be suitable for loop control.

N LT(N,M) = N + 1 . :S (LOOP) F (OUT)

The statement does not properly increment N. If N is 2 and M is 4, the value of
N after execution of the statement is 32. The predicate LT (N,M), situated where
it is, is treated as a pattern. Since LT(N,M) is null, the pattern matches the
null string. The null string matched in the value of N is replaced by N + 1,
leading to the unexpected result 32.

2. INTEGER
It is frequently desirable to test whether the value of a variable is an

integer.™ The predicate test INTEGER (X) succeeds if the value of X is an integer
or numeral string, and fails otherwise. Thus,

INTEGER (X)

succeeds for-

X = 3

X = I3l
but fails for

X = VINT?

X = 13,0

INTEGER is typically used to check data coming from the input stream. The
following statements reject cards which do not contain a single numeral string
left justified on the card.

LOOP CARD = TRIM(INPUT) : F (END)
INTEGER (CARD) _ : S (PROCESS) F (REJECT)

Since the null string is egquivalent to the integer 0, a blank card passes the
integer test.

C. Object Comparison Predicates

There are several types of data predefined in the SNOBOL4 language.
Programmer-defined data types can be added, as described in Chapter 5. Some
data values, such as numbers, can be represented in different ways as different
types of data. SNOBOL4 includes predicates to test whether two objects are
identical or different.

77

1. IDENT and DIFFER

IDENT and DIFFER are functions of two arguments which may be of any data
type. For the function call TIDENT(X,Y) +to succeed or for DIFFER(X,Y) to
“fail, the values of the arguments, X and Y, must be truly identical. The value
of a function argument is a pointer to a data object or, in the case of integers
and real numbers, the value is the data object itself.

Each distinct string of characters appears in storage once and only once.
Execution of ‘

'"BCD!
:x 1D

<
I

results in X and Y having the same value. The string BCD appears once, and both
X and Y point to it. IDENT(X,Y) therefore succeeds.

Pattern structures behave differently. Execution of the statements

X = A | B
Y = A | B
constructs two equivalent but physically distinct pattern structures. Thus, X

and Y have different values, since they point to different copies of the pattern
structure A |} B . IDENT(X,Y) therefore fails.

However, if
X = A | B
Yy = X
IDENT (X, Y)
then IDENT (X,Y) succeeds since X and Y point to the same data object.

Integers and real numbers are data objects rather than pointers to data.
Execution of

<
non

o

+

Y

assigns 3 to both X and Y. Comparison of X and Y by IDENT(X,Y) succeeds because
the data objects are identical. Similarly, if

<
([
w W
.
OO

then IDENT (X,Y) succeeds.

IDENT and DIFFER must be used with care when their arguments have different
data types. If

78

3
130

>
o

EQ(X,Y) succeeds as illustrated earlier. IDENT (X,Y) fails because the value of

Similarly, for

3.0
3

o<
n i

IDENT (X,Y) fails because the values are not identical.

2. LGT

Lexical ordering can Dbe tested wusing the predicate LGT(X,Y). Both
arguments to LGT (X,Y) must be strings or integers. LGT (X,Y) succeeds, returning
the null string, if the value ¢of X is lexically greater than Y. Stated another
way, LGT(X,Y) succeeds if X follows Y alphabetically. The order of the
characters is implementation dependent. For example, on the IBM System/360 the
EBCDIC encoding is used with the blank preceding letters and letters preceding
digits. The value of SALPHABET is a string of all characters in lexical order.

Consider, as an example, the problem of alphabetizing the characters in a
string. That 1s, the string LABORATORIES is to be transformed into the string
AABEILOORRST . The following program pe€rforms the conversion.

EFULLSCAN = 1
EANCHOR = 1
FLIP = (*HEAD ARB) . HEAD LEN(1) $ X ARB . FILLER
. LEN(1) $ Y *LGT(X,Y)
STR = 'LABORATORIES'
ouTPUT = STR
LOOP STR FLIP = HEAD Y FILLER X : S (LOOP)
OUTPUT = STR
END
Output is:
LABORATORIES
AABEILOORRST

FLIP matches the ordered portion of the string followed by two out-of-order
characters with an arbitrary number of intervening characters.

(*HEAD ARB) . HEAD
matches the ordered portion of the string.

LEN(1) $ X ARB . FILLER LEN(1) $ Y

79

matches any two characters. The unevaluated expression then tests if the two
characters are out of order. If they are, the pattern match succeeds and a
replacement 1is done to reverse them. If the two characters are in order,
LGT (X,Y) fails, causing the scanner to back up and seek another pair of
characters. By repeatedly executing the statement labelled LOOP, all unordered
pairs of characters are interchanged. Pattern matching fails when the string is
completely ordered.

D. Additional Primitive Functions

SIZE expects a string or an integer as an argument. The value of SIZE is
an integer which is the number of characters in the argument. Thus, the value
of SIZE('SIZE') is 4, and the value of SIZE(16384) is 5.

2. REPLACE

One-for-one character replacement in a string may be accomplished using the
function REPLACE. The value of REPLACE(X,Y,Z) 1is the string resulting from
replacement in X of each character appearing in Y by the corresponding character
in Z. As a result of executing the following statements,

BINARY = '111001"
ONESCOMP = REPLACE (BINARY,'01*,'10")

ONESCOMP has the wvalue 000110 , obtained from BINARY by replacing all zeroes
with ones, and ones with zeroes.
REPLACE normally succeeds, but it fails if

1) the second and third arguments have different length, or
2) the second or third argument is null.

Multiple occurrences of characters in the third argument are valid. Thus,
REPLACE(S,'.,;:21¢', ")

replaces all punctuation marks with blanks.
In the case of the multiple occurrence of a character in the second

argument, the rightmost correspondence holds. Thus, following execution of the
statement

TEXT = REPLACE('FEET','EE','AQ!')
the variable TEXT has value FOOT .
A particularly striking example of REPLACE is the following program that

converts a deck of cards prepared on an 026 keypunch (BCD) to a deck using 029
keypunch code (EBCDIC).

80

LOOP PUNCH = REPLACE (INPUT,"#2%<&", =1 () +"M) :S (LOOP)
END

3. IRIM

TRIM is a primitive function whose argument must be a string or an integer.
The value of TRIM is a string which is the argument value with all trailing
blanks removed. Thus, the statements

TEXT = 'A PRIMITIVE FUNCTION
SHORTTEXT = TRIM(TEXT)

gives SHORTTEXT the value A PRIMITIVE FUNCTION. The value of TEXT is not
changed.

TRIM is frequently used with INPUT as its argument. Standard input reads
80 characters so TRIM(INPUT) provides a convenient way of shortening an input
string.

4. DATE and TIME

DATE and TIME are primitive functions reguiring no arguments. The value of
DATE() i1s an 8 character string of the form month/day/year. For August 6, 1968,
the value of DATE() is 08/06/68 .

The value of TIME() is an integer which is the elapsed time in milliseconds
from the beginning of program execution. Compilation time is not included. On
IBM 360 equipment the standard interval clock is updated only sixty times a
second, so timing is approximate at best.

5. EVAL

EVAL is a primitive function whose argument must be an unevaluated
expression or a string. If the argument is an unevaluated expression, the
expression is evaluated to obtain the value of EVAL. If the argument is a

string, the value of EVAL 1is the value of the expression represented by the
string.

In the example which follows, the value of S is a string, and the value
of U is an unevaluated expression. Both output statements print the
integer 15 .

S = 11X + SIZE(X) * 10
U = *(X + SIZE(X) * 10)
X = 5

OUTPUT = EVAL(S)

OUTPUT = EVAL (U)

Any string or unevaluated expression which 1is a syntactically correct
expression in SNOBOL4 may be evaluated by EVAL. A syntactic error in the
argument of EVAL causes failure of EVAL. Thus, evaluation of E in the
statements

81

E = 546!
SUM = EVAL(E)

fails since blanks are required around the + .

E. Negation (=) and Interrogation (?)

Two predicates, specified by the unary operators - and ? , test the
success or failure resulting from evaluation of expressions. The negation
operator - fails if its operand succeeds, and succeeds if its operand fails.
A null string is returned as value on success. The interrogation operator ?
is the <converse of - . It succeeds, returning the null value if its operand
succeeds, and fails if its operand fails.

Negation may be used to complement a predicate. For example, the following

program reads an input deck and prints those cards that contain integers. .

LOOP CARD = TRIM(INPUT) : F (END)
OUTPUT = INTEGER (CARD) CARD ¢ (LOOP)
END

Suppose the converse program, one which prints all cards that are not

integers, 1is desired. No predicate 1is available which succeeds when its
argument is not an integer. However, the negation operator together with the
predicate INTEGER suffices. Thus, the following program lists all noninteger
cards.
LOOP CARD = TRIM(INPUT) : F (END)

OUTPUT = -INTEGER (CARD) CARD : (LOOP)
END :

Complicated Boolean functions on the states of variables can be constructed
using predicates and negation. For example, suppose the integer N 1is to be
incremented provided at least one of the variables X, ¥, or Z is null. The
following statement tests the variables and, if the «condition is satisfied,
increments N.

N = = (DIFFER (X) DIFFER(Y) DIFFER(Z)) N + 1

If X, Y, and Z are nonnull, the expression succeeds but the negation operation
fails, and N is not incremented. If any variable is null, the corresponding
DIFFER fails, <causing the expression to fail. Negation succeeds and N is
incremented.

Interrogation is used primarily to convert a function that returns a
nonnull value into a predicate that succeeds or fails, but returns a null value.

Thus, in the following statement, N is incremented if F(X) succeeds, but the
value of F(X) is not concatenated with N + 1.

N = 2F(X) N + 1 : S (ON) F (OUT)

82

Chapter 4. Programmer-Defined Functions

A. Introduction

A programmer may define his own functions to perform specific operations.
A program with programmer-defined functions must include:

1) a call to the primitive function DEFINE for each programmer-defined
function, and

2) a procedure, written in SNOBOLY4, for each function.

Procedures are written using formal arguments, and must adhere to special
conventions for returning. Execution of the primitive function DEFINE communi-
cates to the SNOBOLY4 system:

1) the name of the function,

2) a list of formal arguments used in the programmer-defined procedure,
3) a list of variables local to the programmer-defined procedure, and
4) the entry point of the procedure.

B. The Primitive Function DEFINE

DEFINE is a primitive function of two arguments that returns a null string.
The first argument 1is a prototype for the call of the function being defined,
together with a list of local variables wused by the function. The second

argument 1is a label specifiying the entry point to the programmer-defined
function. For example, execution of

DEFINE (*F (X,Y)L1,L2', *FENTRY !)

defines a function F with two formal arguments, X and Y. Two local variables L1
and L2 are used in the procedure whose entry point is the statement labelled
FENTRY. Notice +that there 1is no comma separating the prototype for the call
from the list of local variables. Expressions may be wused as arguments for
DEFINE, provided their values are strings having the form shown above.

Often local variables are not needed, so it is permissible to omit the list
of local variables. An example is

DEFINE ('G (Z) ', 'GENT")

It is also permissible to omit the second argument, in which case the entry
label is assumed to be the same as the function name. Thus,

83

DEFINE (*COUNT (N) ')

defines the function COUNT with entry label COUNT. Functions can be defined
without any formal arguments. For example,

DEFINE ('MARK () ')

defines the function MARK with no formal arguments. Prototypes which are
syntactically incorrect, such as those in

DEFINE ('F')

and

DEFINE ('F ("a") ")

cause error termination.
A statement containing the DEFINE function for a particular function must

be executed before a call to that function is made. Thus, execution of the
statements

X = F(FIRST,SECOND)
DEFINE ('F (X,Y) ")

results in error termination, since the function F is undefined at the +time it
is called.

C. Procedures for Programmer-Defined Functions

A procedure for a programmer-defined function ‘is a set of SNOBOLY
statements. The label, provided explicitly or implicitly in the arguments of
the associated DEFINE function, specifies the statement to which control is
passed when a call is made to the function. Thus, during execution of the
statement labelled ZSET in the example below, the call to UNION causes control
to be passed to UN. Execution of ZSET is temporarily suspended while the value
of UNION is being computed. Once the value of UNION has been computed, control
returns to ZSET where computation is resumed using the value returned.

84

DEFINE ('UNION (X,Y)CH', 'UN')

ZSET Z = SET1 UNION(SET2,SET3) SETL
UN UNION = X
ULOOP Y LEN(1) . CH = : F (RETURN)
UNION BREAK (CH) : S (ULOOP)
UNION = UNION CH : (ULOOP)
The defining statement must be executed before the call is made. The

procedure is <called and should not be flowed into. The procedure may be
transferred around or placed out of the way of program flow.

The statements constituting the procedure are written wusing the formal
arguments whose values are supplied by arguments of a call.

Local variables should be declared when variables used in a procedure have
values which should not be altered by a function call. In the definition of
UNION, the value of the variable CH changes continually during evaluation of the
function. The value of CH may be altered as a result of the call unless CH is
declared as a local variable. Upon entry to a procedure, all local variables
are given null string values. All statement 1labels, including labels in
procedures, are global. Transfer can be made from a statement in one procedure
to a statement in another.

The name of a function may be used as a variable in the procedure. The
value of the function call is the value of the function name when execution of
the procedure is complete. Thus, in the example above, the value of the call
UNION(SET2,SET3) is the value of the wvariable UNION when +the statement ULOOP
fails, causing return to ZSET.

Return of control from a procedure to the calling statement is accomplished
by transfer to one of the three system labels: RETURN, FRETURN, or NRETURN.

RETURN

Transfer to RETURN indicates that the function call is successful. The
value of the function call is set to the value of the function name. Execution
continues in the calling statement using the returned value.

FRETURN

Transfer to FRETURN indicates failure of the function call.

An example using both RETURN and FRETURN is the function PAL, which checks
its argument to see if it is a palindromic string. PAL compares the argument
string and its reverse. If they are identical, PAL transfers to RETURN,
indicating success. Otherwise PAL transfers to FRETURN, indicating failure.
Since the variable PAL is not used in the procedure, the value of PAL(PHRASE) is
the null string on a successful return.

85

DEFINE (' PAL (STR) CH, S1,S2"')

TEST PHRASE = TRIM (INPUT) :F (END)

PAL (PHRASE) : S (GOOD) F (NOGOOD)
PAL S1 = STR
PALL S1 LEN(1) . CH = :F (PTEST)

S2 = CH 82 : (PALL)
PTEST IDENT (STR, S2) : S (RETURN) F (FRETURN)
END
NRETURN

By transferring to the label NRETURN, a programmer-defined function may
return a computed name rather than a value. A call to a function that returns a
computed name may be used as the subject of an assignment statement. For
example,

F (X,Y) X Y

is a valid statement provided the function F returns by name using NRETURN. A
further description of names is included in Chapter 5.

D. Execution of Programmer-Defined Functions

~ When a call to a programmer-defined function is made, the arguments of the
call are evaluated first. Before execution of the procedure begins, the values
of the following variables are saved on an internal stack in the order:

1) the name of the function,
2) all formal arguments, and
3) all local variables.

New values are then assigned to these variables as follows:
1) the name of the function is assigned the null string,
2) the formal arguments are assigned their wvalues, and
3) all local variables are assigned the null string.

Consider the function UNION specified in the defining statement
DEFINE ('UNION (X,Y)CH','UN')

and called by UNION(SET2,SET3). Values of the variables UNION, X, Y, and CH at
the time of a call are saved. New values for these variables are assigned as if
the following statements had been executed.

86

UNION =

X = SET2
Y = SET3
CH =

Then control passes to the statement labeled UN.
When return from a procedure is made using RETURN,
1) the value of the function call is set to the value of the function name,
and

2) the values of all variables saved at the time of the call are restored
in reverse order.

When return is made using FRETURN,

1) the wvalues of all variables saved at the time of the call are restored,
in reverse order, and

2) the call fails.

When return is made using NRETURN,

1) the function call becomes a variable whose name is taken from the value
of the function name, and

2) the values of all variables saved at the time of the call are restored,

in reverse order.

A programmer—defined function may be called with more or fewer arguments
than specified in the corresponding defining statement. If too few arguments
are specified, the trailing omitted arguments are assigned null strings. TIf too

many arguments are specified, the extra arguments are evaluated, but their
values are ignored.

Example -~ Union, Intersection, and Negation

This example includes three functions that perform the union, intersection,
and negation of sets of characters, and a short test program. Notice that the
procedures follow the defining statements in the listing. However, by transfer-
ring around the procedures, the defining statements are executed one after
another. The test program then makes calls to the procedures.

87

START

UNION DEFINE ('UNION (X,Y)CH', 'UN') : (INTER)

3

UN UNION = X

ULOOP Y CHAR = ‘ : F (RETURN)
UNION CHTEST : S (ULOOP)
UNION = UNION CH : (ULOOP)

3

3

INTER DEFINE ('INTER (X,Y)CH', 'IN') : (NEG)

3

IN X CHAR = :F (RETURN)
Y CHTEST :F (IN)
INTER = INTER CH : (IN)

3

3

NEG DEFINE ('NEG (X) CH,HEAD', 'NG') : (PATDEF)

3

NG NEG = UNIVERSE

NLOOP X CHAR = :F (RETURN)
NEG CHLOC = HEAD : (NLOOP)

%

* .

PATDEF CHAR = LEN(1) . CH
CHTEST = BREAK (*CH)
CHLOC = BREAK(*CH) . HEAD LEN (1)

*

b3

TEST UNIVERSE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ !
VOWELS = UNION('A',UNION('E',UNION(*I*,UNION('0',tU"'))))
OUTPUT = 'VOWELS = ' VOWELS
CONS = NEG(VOWELS)
OUTPUT = 'CONS = ' CONS
WORD = 'COMPILER!
OUTPUT = 'VOWELS IN ' WORD ' ARE: M!

. INTER (WORD, VOWELS) tn¢
OUTPUT = 'CONSONANTS IN ' WORD ' ARE: M1t

. INTER (WORD, CONS) e
END

Output from the program is:

VOWELS = AEIOU

CONS = BCDFGHJKLMNPQRSTVWXYZ

VOWELS IN "COMPILER" ARE: "OIEY
CONSONANTS IN "COMPILER" ARE: "CMPLR"

88

Example: - Pseudo-Random Number Generator

A simple pseudo-random number generator, based on the power residue method
of generation [4], is shown below.

DEFINE (*RANDOM (N) ', 'RAN"') : (RANEND)
RAN RAN.VAR = RAN.VAR * 1061 + 3251

RAN.VAR RTAB(5) =

RANDOM = (RAN.VAR * N} / 100000 : (RETURN)

RANEND

RANDOM(N) returns a value uniformly distributed over the integers 0,1,...,N-1 .
The variable RAN.VAR is not local. On successive calls to RANDOM, the wvalue of
RAN. VAR cycles through all nonnegative integers less than 100,000. Thus, the
initial value of RAN.VAR determines the output sequence from RANDOM.

When the random number generator is used in statistical experiments, such

as games of chance, the player should have the opportunity to select the initial
“value of RAN.VAR . In some cases, the selection process should be unstable. It
should be very difficult for a player to consistently initialize +the random
number generator with the same value.

The following definition of RANDOM was written specifically for the IBM
System/360, and assumes that the user has access to the machine console while
the program is running. A player can 1initialize RAN.VAR by flipping the
Interval Timer Switch on the operator's comnsole. TIME returns as value the
number of milliseconds elapsed since the beginning of program execution. When
the switch is on, as it normally is, the internal clock that TIME =zreads 1is
running. When the switch is turned off, the clock stops but the program
continues to run. Thus, with the switch on, successive calls of TIME return
different values. With the switch off, successive calls of TIME return the same
value.

DEFINE ('RANDOM (N) M, *RAN1') : (GAME)
*
RAN1 RAN.VAR = TIME()
TIMON M = LT(M,10) M + 1 : S (TIMON)
RAN.VAR = GT(TIME(),RAN.VAR) TIME () :F (TIMOFF)
_ M = 0 : (TIMON)
TIMOFF EQ (RAN.VAR, TIME()) : S (TIMOFF)
RAN.VAR = TIME()
RAN.VAR RTAB(5) =
OUTPUT = 'INITIAL VALUE OF RAN,VAR IS ' RAN.VAR
OUTPUT =
DEFINE (*RANDOM (N) ', "RAN2"')
*
RAN2 RAN.VAR = RAN.VAR * 1061 + 3251
RAN.VAR RTAB(5) =
RANDOM = (RAN.VAR * N) / 100000 : (RETURN)
P
GAME

In this example, the function RANDOM is defined twice. The first
definition of RANDOM includes a local variable M and the entry point RANT. The
first call to RANDOM enters the definition at RAN1. Since the switch is on, the
program enters the loop at TIMON and stays there Dbecause the predicate

89

GT (TIME () , RAN.VAR)

the predicate
TIMOFF,

the initial value printed.

Before computing the desired random number, RANDOM is redefined with
RAN2 so that subsequent calls to RANDOM do not go through the initializa-
A random number is then computed and returned.

point
tion process.

INITIAL VALUE OF RAN.VAR IS

7
7
YOUR POINT IS 9
6
5
12
2
7
YOUR POINT IS 9
5
7

90

always succeeds.
predicate fails, and control passes to the loop at TIMOFF.
EQ (RAN.VAR, TIME())

If the

always

3877

NATURAL, YOU WIN.

NATURAL, YOU WIN.

ROLL AGAIN.
ROLL AGAIN.
ROLL AGAIN.
ROLL AGAIN.
TOO BAD.

ROLL AGAIN.
TOO BAD.

switch

succeeds,

illustrate a

1

1

The following program and output
. utilizing RANDOM.
GAME POINT = RANDOM(6) + RANDOM (6) + 2
NE (POINT,7) NE(POINT,11)
NE (POINT,2) NE(POINT,3) NE(POINT,12)
OUTPUT = 'YOUR POINT IS ! POINT
ROLL ROLL, = RANDOM(6) + RANDOM (6) + 2
EQ (POINT,ROLL)
NE(ROLL,7) NE(ROLL, 11)
ourepUT = ! ' ROLL
NATURAL OUTPUT = ' ' POINT
. . ' YOU WIN.'!
MADE OUTPUT = ' ' ROLL
. ' POINT.'!
CRAPS OUTPUT = ! ' POINT
. ' ILOSE.'
LOSE OUTPUT = ' ' ROLL
UWIN WIN = WIN + 1
ULOSE LOSE = LOSE + 1
LIMIT OUTPUT = LT(WIN + LOSE,100)
PAY ouTPUT =
OUTPUT = 'YOU LOSE ' GT(LOSE,WIN)
. ' DOLLARS.'!
OUTPUT = 'YOU WIN ' GT(WIN,LOSE)
. ' DOLLARS.!
OUTPUT = 'YOU BREAK EVEN.'!
END .

is

statistical

: F (NATURAL)
:F (CRAPS)

: S (MADE)
: P (LOSE)
ROLL AGAIN.'!
: (ROLL)
' NATURAL,!
: (UWIN)
MADE YOUR!

: (UWIN)

' CRAPS, YOU!

: (ULOSE)

TOO BAD.!

: (ULOSE)
(LIMIT)
(LIMIT)

:F (PAY) S (GAME)

LOSE - WIN
: S (END)

WIN - LOSE
: S (END)

: (END)

now turned
With the switch off,
causing a program loop at
When the switch is turned back on, RAN.VAR is truncated to 5 digits and
Thus, a flip of the switch initializes RAN.VAR.

off, the

entry

experiment

YOUR POINT IS
0 ROLL AGAIN.
ROLL AGAIN.
ROLL AGAIN.
ROLL AGAIN.
ROLIL AGAIN.
MADE YOUR POINT.

N WOOXDAD

YOUR POINT IS

= =

MADE YOUR POINT.

YOUR POINT IS 4
7 TOO BAD.

YOUR POINT IS
ROLL AGATIN.

ROLL AGATIN.

ROLL AGATN.

ROLL AGATIN.

ROLL AGAIN.

TOO BAD.

NATURAL, YOU WIN.

~NJOo oo o=

YOU BREAK EVEN.

E. Recursive Functions

Many functions are conveniently defined recursively. For example, fac-
torials may ke defined as

1
n¥fact (n-1) for n > 0

fact (0)
fact (n)

it

Using Pascal's triangle, a recursive definition for the binomial coeffi-
cients is easily deduced.

91

binc (n,0)
binc (n,n)
binc (n, k)

oo
—

binc(n-1,k-1)+binc (n-1,k) 0 <k <n

A recursive procedure has the property that the function itself is called
in the procedure. While convenient, recursive procedures may lead to computa-
tional inefficiencies. Nevertheless, recursion is frequently the most natural
way of expressing a function, and may considerably simplify programming.

Programmer-defined functions in SNOBOLY4 may be recursive. Since values of

the function name, arguments, and local variables are all saved when a function
is called, a procedure can include recursive coding.

Example - _Decimal to Binary Conversion

The next program converts decimal integers to their binary representation
by successive divisions. For example, to compute the binary representation of
57, it 1is repeatedly divided by 2 and the remainders are concatenated.

NN
I\)F
(ool EN]

[LLEE

2 -
1

11 0 0 1 REMAINDERS
57,6 = 111001,

The binary representation of 57 is the binary representation of 28 (11100,)
followed by the remainder of 57/2. A recursive definition of the process is

binary(57) = binary(28) remainder (57/2)

92

where concatenation is implied.

In SNOBOL4, the results of integer division are truncated. Thus,
57 7 2 1is 28
The remainder of any integer division N / M is
N - (N/ M * M
Thus, the recursive definition can be written in the more general form
binary(n) = Dbinary(n/2) n-(n/2)%*2 for n > 1
with the terminal cases

binary (1)
binary (0)

nn
-

A procedure for BINARY is

DEFINE ('BINARY (N) ') : (BINEND)

P

BINARY BINARY = GT(N,1) BINARY(N / 2) N - (N / 2) * 2

. : S (RETURN)
BINARY = N : (RETURN)

BINEND

On entry to BINARY, the value of N is tested by the predicate GT (N, 1) which
fails for the two terminal cases N = 0 and N = 1. If either of these cases is
true, the first statement fails and N is returned as the value of BINARY. TIf W
is greater than 1, a recursive call is made to BINARY with N / 2 as the
argument. The wvalue of BINARY (N / 2) then has the remainder of N / 2 concate-
nated with it, to get the final value of BINARY (N).

The following diagram illustrates the recursive calls made during evalua-

tion of BINARY(57). The recursion plunges six levels before reaching the
terminal case of N = 1. On returning, the value of BINARY evolves.

93

BINARY (57)

/

N = 57 BINARY = 111001
<ii:; BINARY (N / 2) N - (g\:\;:\:\;i:::>

N = 28 BINARY = 11100

~

BINARY (N / 2) 2) * 2

r

14 BINARY

2
"

1110

/

BINARY (N / 2) N - (N/ 2) %2

r

N = 7 BINARY = 111

/

BINARY (N / 2) N - (N / 2) * 2

/

N = 3 BINARY = 11

,

/

BINARY (N / 2)

Y

(N /7 2) % 2

2
[}

N -
BINARY
_/

il
-

It is important to notice the necessity of preserving values before a function
call and restoring them upon completion. At the first level down, BINARY (28) is
called with N having value 57. During the course of evaluating BINARY (28), N
takes on values 28, 14, 7, 3, and 1. Following evaluation of BINARY (28), N must

94

once again have the value 57 in order to compute the remainder of 57 / 2.

An improvement is possible in the definition of BINARY. SNOBOL4 permits
use of a function name as one of the formal arguments in a function definition.
Thus,

DEFINE (' BINARY (BINARY) ')

is a valid statement. The procedure of BINARY can be rewritten substituting
BINARY for N.

BINARY BINARY = GT(BINARY,1) BINARY (BINARY / 2)
BINARY - (BINARY / 2) * 2 : (RETURN)

The second statement would become
BINARY = BINARY

which 1s redundant. For +the terminal cases recognized by the failure of
GT (BINARY,1), BINARY has the proper value, 0 or 1, and an unconditional RETURN
is made.

DEFINE ('BINARY (BINARY) *)

OUTPUT = ! 0 = ' BINARY(0)
OUTPUT = ! 13 = t BINARY (13)
OUTPUT = ' 57 = ' BINARY(57)
OUTPUT = ' 472 = ' BINARY (472)
OUTPUT = * 8192 = ' BINARY(8192)
OUTPUT = '13279 = ' BINARY (13279)
OUTPUT = 199999 = ' BINARY (99999) : (END)
*
BINARY BINARY = GT(BINARY,1) BINARY (BINARY / 2)
BINARY - (BINARY / 2) * 2 : (RETURN)
END
0 = 0
13 = 1101
57 = 111001
472 = 111011000
8192 = 10000000000000
13279 = 11001111011111
99999 = 11000011010011111

95

Example - Polish to Infix Translation

Arithmetic expressions such as

= W
[N
o+
+ N K
KO
*

]

are written using an infix notation. They can also be written in Polish prefix
notation [5,6], resembling conventional functional notation. Here the Dbinary

operators appear to the -left of their arguments. Prefix notation for the
expressions is

+(X,Y)
/7 (/(a,B),C)
(= (= (V,W),X),*(Y,2))

Conversion from Polish prefix form to infix form, and vice versa, can be
performed using recursive programmer-defined functions. The first of the two
programs to follow converts strings from Polish to infix form. The recursive
rules for specifying the function INF are:

1. 1If the argument to INF is a simple variable, then
INF (VAR) = VAR

2. If +the arguméent to INF is a Polish expression of the form 0P (EX1,EX2).,
then

INF (OP (EX1,EX2)) = (INF(EX1) OP INF (EX2))

The conversion consists of finding the operator and its two arguments, which may
be expressions. The operator 1is inserted between 1its two arguments and
parentheses are placed around the resulting expression. 0f course, the

arguments are still in Polish form, so each must be converted to infix by a
recursive call of INF .

The following diagram depicts the conversion of /(/(A,B),C) to ((A/B)/C) .

96

INF('/(/(2A,B),C)")

B

/ (7(A,B) ’ ((A/B) /C)
'/INF(‘/(A BK T/ INF ('C') e
/ (A/B) C C

Y (' INF('A') /' INF('B

?\

In the program to follow, the procedure for INF consists of one line. The
pattern INPAT is used to break a Polish expression into an operator and two
arguments.

/\ ////

LEN(1) v BAL . X ', BAL . Y 1) RPOS (0)

If INPAT matches INF, it matches the entire string, which is then rearranged
into infix notation. If INPAT fails to match, INF must be a variable and is
returned unchanged as value. .

97

EANCHOR = 1

INPAT = LEN(1) . OP '(' BAL . X ',' BAL . Y 1")!
. RPOS (0)
b3
&
DEFINE (' INF (INF)X,Y,OP")
*
*
PADPAT = LEN(* (40 - SIZE(STRING))) . PAD
BLANKS = !
LOOP STRING = TRIM(INPUT) : F (END)
BLANKS PADPAT
OUTPUT = STRING PAD INF (STRING) : (LOOP)
*
*
INF INF INPAT = (' INF(X) INF (Y))¢
. : (RETURN)
END

Ooutput from the program follows.

The Polish prefix form of the input

shown on the left, and the infix form avpears on the right.

- (*(A,+(B,C)),/(D,E))
-(-(-(-(-(A,B),C),D) ,E) ,*(F,Q))
- (+ (ALPHA, * (BETA,GAMMA)) ,/ (DELTA,PIL))

((A* (B+C)) - (D/E))
(((((A=-B) -C) -D) -E) = (F*G))
((ALPHA+ (BETA*GAMMA)) - (DELTA/PI))

is

Example - Infix to Polish Translation

Conversion of
than the converse.

arithmetic expressions from infix to Polish form is harder
A function POL which performs the conversion is of the form:

POL(EX1 OP EX2) = OP '(' POL(EX1) ',' POL (EX2) ')!

Ambiguities can arise when attempting to separate an unparenthesized
into two expressions and an operator. For example, the expression

expression

A -B*C-0D
can be separated many ways, including

A - (B * C - D)

(A - B) * (C - D)

(A - B* C) -D

Normal conventions for the precedence and association of operators require
that multiplication and division have precedence over addition and subtraction
and that operators associate to the left. Thus, of the three choices above, the
first 1s incorrect Dbecause subtraction associates to the right, the second is
incorrect because subtraction is given higher precedence than multiplication,

98

and the third is correct. The expression (A - B * C) must be parenthesized as
(A - (B * C)) to conform to the conventions.

In defining the function POL, the precedence of multiplicative over
additive operators can be assured by dealing with the additive operators first.
For example:

POL ('W*X+Y*Z ')

WkX + Y%7 + (¥ (W,X) ,*(Y,2))
m '/POL(W*X' LI | POL ('Y*Z1") e
* (W, X))

L l(l POL(W) l'l POL(IX' l

\/\

Left association of operators 1is assured by selecting the rightmost
operator in a string of operators having egual precedence. For example

POL ('A-B*C-D')

A-BxC - D -(-{A,*(B,C)),D)

~ N

99

Q:/// (' POL ('A-B*C!') POL ('D") T\\t>

(A,*(B,C))

T—1 1 (' POL('A') * POL('BXC') ')

%

*(B,C)
%0 l(l POL(!BI) l'| POL(ICI) l)l

B B | C C

Thus, the rules prescribing the behavior of POL are:

1« Remove any enclosing parentheses from the infix string.
2. TIf possible, separate the argument into two expressions which are

balanced with respect to parentheses and separated by the rightmost
additive operator. The value of POL then becomes

OP ' (' POL(EX1) ',' POL(EX2) *')*

If this is not possible, perform Step 3.
3. If possible, separate the argument into two expressions balanced with

respect to parentheses and separated by the rightmost multiplicative
operator. The value of POL then becomes

OP ' (' POL(EX1) ',"' POL(EX2) *)'

If this is not possible, perform Step u.

4. The infix string must be a simple variable, which becomes the value of
POL.

A complete program for infix-to-Polish conversion and test results follow.

100

&EANCHOR = 1

PMPAT = (ARBNO(BAL ANY('+-')) $ X FAIL | *DIFFER(X)
. TAB (* (SIZE(X) - 1))) . X LEN(1) . OP REM . Y
MDPAT = (ARBNO (BAL ANY ('*/')) $ X FAIL | *DIFFER(X)
. TAB (*(SIZE(X) - 1))) . X LEN(1) . OP REM . Y
STRIP = '(' BAL . POL ')' RPOS (0)

DEFINE ('POL (POL)X,Y,0P")

PADPAT = LEN(* (40 - SIZE(STRING))) . PAD
BLANKS = ! '
LOOP STRING = TRIM(INPUT) : F (END)
BLANKS PADPAT
OUTPUT = STRING PAD POL (STRING) : (LOOP)
*
*
POL POL STRIP 1S (POL)
POL PMPAT = OP '(' POL(X) ',' POL(Y) ')
. : S (RETURN)
POL MDPAT = OP '(' POL(X) ',' POL(Y) ')
. : (RETURN)
END
((A* (B+C)) - (D/E)) -(*{(A,+(B,C)),/(D,E))
A-B-C-D-E~F*G --(-(-(-®&,B),C),D),E),*(F,G))
((ALPHA+ (BETA*GAMMA)) - (DELTA/PI)) - (+ (ALPHA,* (BETA,GAMMA)) ,/ (DELTA, PI))

The pattern STRIP removes the outer parentheses from the infix expression. The
patterns PMPAT and MDPAT separate the infix expression into two expressions and
an operator according to the convention for left association. The patterns are
identical except that PMPAT looks for addition or subtraction and MDPAT 1looks
for multiplication or division.

PMPAT has three parts, corresponding to the first balanced expression, -the
operator, and the second balanced expression. The pattern for the first
expression is complicated by the fact that the operator must be the rightmost in
the string of operators. Consider the pattern for the first expression:

(ARBNO (BAL ANY ('+-')) $ X FAIL | *DIFFER (X) '
. TAB (% (SIZE(X) - 1))) . X

It consists of two alternatives. The first,

ARBNO (BAL ANY('+-')) $ X FAIL

is wused +to 1locate +the rightmost operator by matching a sequence of balanced
strings followed by additive operators. FAIL forces ARBNO to match the longest
such string and eventually causes failure of the alternative. Thus, for the
expression A-B*C~D , the last match of the first alternative is

101

v

ARBNO(BAL ANY (*+-v)) $ X FAIL

On entry to the second alternative

DIFFER (X) TAB((SIZE(X) - 1))

the value of X is checked to see if it is the null string. If so, no match 1is
possible. If it is not null, the first balanced expression must be all but the
last character of X. The first expression is matched by

TAB (* (SIZE(X) - 1))

The remainder of PMPAT consists of the expression

LEN(1) . OP REM . Y

LEN{1) is used to match the operator and REM matches the remainder of the string
which is the second balanced expression.

Example - Tower of Hanoi

The Tower of Hanoi is a game derived from the ancient Tower of Brahma, a
ritual allegedly practiced by Brahman priests to predict the end of the world.
At the time of creation, 64 golden discs of decreasing size appeared stacked on
a diamond needle. Nearby were +two other diamond needles, both empty. The
Brahman priests, created at the same time, were set to the task of moving the
discs from their original needle to a second needle using, when necessary, the
third needle as temporary storage. Before all 64 discs are moved to the second
needle and stacked in decreasing size, the end of the world will be upon us.

102

CREATION » INTERMEDIATE END OF
STORAGE THE WORLD

=
—

o

|
|
|
|
|
|
|
1
!
| /
|
|
|
|
|
|
|
|
|

I / I \ o
VSN SN AV I NI I AV I I I I I

SIIITII 7777777

Movement of the discs is governed by the rules:

1) only one disc may be moved at a time,
2) a disc may be moved from any needle to any other, and
3) at no time may a larger disc rest upon a smaller disc.

A solution to the Tower of Hanoi is a recursive function which prints out
the steps necessary to move N discs from one needle to another (where N 1is
hopefully a good deal smaller than 64). A program that defines the function
HANOI and tests it by moving 5 discs from needle A to needle C follows.

DEFINE ('HANOI (N, NS, ND,NI) ') : (HANOI.END)
¥
HANOT EQ (N, 0) : S (RETURN)
HANOI (N - 1,NS,NI,ND)
OUTPUT = 'MOVE DISC ' N ' FROM ' NS ' TO ' WD
HANOI (N - 1,NI,ND,NS) : (RETURN)
HANOI.END
*
TEST HANOI (5, 'A','C','B")

END

103

MOVE DISC 1 FROM A TO C
MOVE DISC 2 FROM A TO B
MOVE DISC 1 FROM C TO B
MOVE DISC 3 FROM A TO C
MOVE DISC 1 FROM B TO A
MOVE DISC 2 FROM B TO C
MOVE DISC 1 FROM' A TO C
MOVE DISC 4 FROM A TO B
MOVE DISC 1 FROM C TO B
MOVE DISC 2 FROM C TO a
MOVE DISC 1 FROM B TO A
MOVE DISC 3 FROM C TO B
MOVE DISC 1 FROM A TO C
MOVE DISC 2 FROM A TO B
MOVE DISC 1 FROM C TO B
MOVE DISC 5 FROM A TO C
MOVE DISC 1 FROM B TO A
MOVE DISC 2 FROM B TO C
MOVE DISC 1 FROM A TO C
MOVE DISC 3 FROM B TO A
MOVE DISC 1 FROM C TO B
MOVE DISC 2 FROM C TO A
MOVE DISC 1 FROM B TO A
MOVE DISC 4 FROM B TO C
MOVE DISC 1 FROM A TO C
MOVE DISC 2 FROM A TO B
MOVE DISC 1 FROM C TO B
MOVE DISC 3 FROM A TO C
MOVE DISC 1 FROM B TO A
MOVE DISC 2 FROM B TO C
MOVE DISC 1 FROM A TO C
The program logic can be seen by induction. Clearly, moving no discs

requires no steps. Moving one disc from needle A to needle C requires one step.
MOVE DISC 1 FROM A TO C
Moving two discs from A to C regquires three steps.

MOVE DISC 1 FROM A TO B
MOVE DISC 2 FROM A TO C
MOVE DISC 1 FROM B TO C

Moving three discs from A to C requires sevenysteps.

MOVE DISC 1 FROM A TO C
MOVE DISC 2 FROM A TO B
MOVE DISC 1 FROM C TO B
MOVE DISC 3 FROM A TO C
MOVE DISC 1 FROM B TO A
MOVE DISC 2 FROM B TO C
MOVE DISC 1 FROM A TO C

104

The general solution is:

MOVE N-1 DISCS FROM A TO B
MOVE DISC N FROM A TO C
MOVE N-1 DISCS FROM B TO C

The implementation is simple. HANOI is defined with four arguments:

1) N is the number of discs to be moved,
2) NS is the starting needle,

3) ND is the destination needle, and

4y NI is the intermediate storage needle.

On entry to HANOI, the value of N is compared with zero. If N is zero, no discs

are moved and the function returns. If N is not zero, HANOI is called
recursively to move N-1 discs from the starting needle to the intermediate
storage needle. Having done that, the command to move the Nth disc from the

starting needle to the destination needle is printed. Finally, HANOI is called

a second time to move the N~1 discs from intermediate storage to the destination
needle.

F. OPSYN

It is sometimes convenient to provide synonyms for existing functions. The
primitive function OPSYN can be used for this purpose. The general format of
OPSYN is

OPSYN (new,o01d)
For example,
OPSYN (*SAME', 'IDENT"')
defines SAME to be a synonym for the function name IDENT.
A call using a synonym for a primitive function must have the correct
number of arguments. Trailing arguments may not be omitted. For example,

SAME (X)

causes error termination.

Consider a program using the pattern BIGP of Chapter 2.

BIGP = (%P $ TRY *GT(SIZE(TRY),SIZE(BIG))) $ BIG FAIL

105

This program prints the values of TRY and BIG, whose sizes are compared by GT.
The printing can be done by providing a new programmer-defined function for GT.
However, since GT must still be used, it is OPSYNed to another function name,
GTHAN.

OPSYN ('GTHAN', 'GT")

DEFINE ('GT (X,Y) ") : (TEST)
*
GT OUTPUT = 'TRY = ' TRY ', BIG = ' BIG
GTHAN (X, Y) : : S (RETURN) F (FRETURN)
*
TEST BIGP = (*P $ TRY *GT(SIZE(TRY),SIZE(BIG))) $ BIG FAIL
STR = 'IN 1964 NFL ATTENDANCE JUMPED TO 4,807,88u4; !
. 'AN INCREASE OF 401,810."
P = SPAN('0123456789,")
BIG =
STR BIGP
P = SPAN('ABCDEFGHIJKLMNOPQRSTUVWXYZ ')
BIG =
STR BIGP
END
TRY = 1964, BIG =
TRY = 964, BIG = 1964
TRY = 64, BIG = 1964
TRY = 4, BIG = 1964
TRY = 4,807,884, BIG = 1964
TRY = ,807,884, BIG = 4,807,884
TRY = 807,884, BIG = 4,807,884
TRY = 07,884, BIG = 4,807,884
TRY = 7,884, BIG = 4,807,884
TRY = ,884, BIG = 4,807,884
TRY = 884, BIG = 4,807,884
TRY = 84, BIG = 4,807,884
TRY = 4, BIG = 4,807,880
TRY = 401,810, BIG = 4,807,880
TRY = 01,810, BIG = 4,807,884
TRY = 1,810, BIG = 4,807,884
TRY = ,810, BIG = 4,807,881l
TRY = 810, BIG = 4,807,884
TRY = 10, BIG = 4,807,884
TRY = 0, BIG = 4,807,884
TRY = IN, BIG =
TRY = N, BIG = IN
TRY = NFL, BIG = IN
TRY = FL, BIG = NFL
TRY = L, BIG = NFL
TRY = ATTENDANCE, BIG = NFL
TRY = TTENDANCE, BIG = ATTENDANCE
TRY = TENDANCE, BIG = ATTENDANCE
TRY = ENDANCE, BIG = ATTENDANCE
TRY = NDANCE, BIG = ATTENDANCE
TRY = DANCE, BIG = ATTENDANCE
TRY = ANCE, BIG = ATTENDANCE
TRY = NCE, BIG = ATTENDANCE
TRY = CE, BIG = ATTENDANCE
TRY = E, BIG = ATTENDANCE
TRY = JUMPED, BIG = ATTENDANCE
TRY = UMPED, BIG = ATTENDANCE
TRY = MPED, BIG = ATTENDANCE
TRY = PED, BIG = ATTENDANCE

106

TRY ED, BIG = ATTENDANCE

TRY = D, BIG = ATTENDANCE

TRY = TO, BIG = ATTENDANCE

TRY = O, BIG = ATTENDANCE

TRY = AN, BIG = ATTENDANCE

TRY = N, BIG = ATTENDANCE

TRY = INCREASE, BIG = ATTENDANCE
TRY = NCREASE, BIG = ATTENDANCE
TRY = CREASE, BIG = ATTENDANCE
TRY = REASE, BIG = ATTENDANCE
TRY = EASE, BIG = ATTENDANCE
TRY = ASE, BIG = ATTENDANCE

TRY = SE, BIG = ATTENDANCE

TRY = E, BIG = ATTENDANCE

TRY = OF, BIG = ATTENDANCE

G. APPLY

—_—— =

APPLY is a primitive function that creates and executes a function call.
APPLY (f,a1,.++,an) calls the function f with the arguments a,;,...,an. The
value of APPLY is the wvalue returned by the function it calls, The
function f may be a primitive function or a programmer-defined function. Like
OPSYN, a use of APPLY on a primitive function must specify the correct number of
arguments.

An important use of APPLY is to call various functions depending on the
current value of data. Execution of the statements

X = tSIZE!
Y = 57
OUTPUT = APPLY (X,Y)
calls SIZE(57) and prints 2 . Execution of
X = 'BINARY'
Y = 57
OUTPUT = APPLY (X,Y)

calls BINARY(57), defined earlier, and prints 111001 .

107

Chapter 5. Arrays,Data Types, and Keywords

A. Arrays
An array is an indexed aggregate of variables. Arrays are created by the
execution of the primitive function ARRAY. ARRAY (p,e) returns an array whose

bounds and dimensions are described by the prototype P - Every element 1is
initialized to the value of the expression e . For example,

VECTOR = ARRAY (10)

assigns a one-dimensional array of length 10 to VECTOR . Since the second
argument 1s omitted, each element of the array has the null string value.
Indexing ordinarily starts at 1. Other lower bounds may be specified by using a
colon to separate the upper and lower limits.

LINE = ARRAY('-5:5')

creates an array with lower bound -5 and upper bound 5.

Additional dimensions in a prototype are separated by commas. Thus,
BOARD = ARRAY ('3,3','X")

defines a three-by-three array with all elements having the value X .

BOARD

Warning: The first argument of ARRAY is the prototype, and the second is a
value which is given to each element of the resulting array. Thus,

A = ARRAY('3,3")

108

creates a two-dimensional array with each element having the null string as
value,

——-!-—-1-—7
=t
L]

On the other hand,
A = ARRAY(3,3)

creates a one-dimensional array with each element having the value 3.

Each element of an array is given the same value. Consequently, . execution
of the instructions \

A1
A2

ARRAY (5)
ARRAY (5,A1)

creates only two arrays. Each element of A2 has the same array, A1, as value.

A2

109

1. Array References

If the value of a variable is an array, as is the case with VECTOR, BOARD,
A, A1, and A2 above, an element in the array may be referenced through the
variable. Angular Dbrackets following the array-valued variable are used to
specify the element. Array references such as VECTORK8> or BOARDK2,3> , are
variables. For example,

VECTORK8>

EXP
assigns the value of EXP to the eighth element of VECTOR.
OUTPUT = BOARDK 2, 3>
prints the value of the (2,3)-element of BOARD.
FIELD = BREAK (' ') . LINEL-3,4> t*+ 1
defines a pattern that breaks out a field of data and assigns it to the

(-3,4)-element of LINE.

Each element of an array may have any type of data object as value. There
is no requirement that all elements of an array have the same data type. For
example, the first element of an array may be an integer, the second a pattern,
and so forth.

If an index referring to an element of an array falls outside the range of
the array, the array reference fails. Thus,

OUTPUT = VECTORK12>

fails. This failure may be used to control iteration through the elements of an
array without knowing its size. A function SUM, whose value is the sum of all
the elements of an array, could have the defining statement

DEFINE (' SUM (ARRAY) N')
with the procedure

SUM N = N + 1
SUM = SUM + ARRAY<N> ¢S (SUM) F (RETURN)

The summation loop continues until N exceeds the range of ARRAY. This function
does not need to know the size of ARRAY, but only that it is a one-dimensional
array with a lower bound of one.

110

Example - Bubble Sort

A simple application of one-dimensional arrays is illustrated in the
following example which puts strings in lexical order. A bubble sort 1is much
like an exchange sort. When two elements are found to be out of order, they are

switched. However, the lexically smaller item 1is bubbled up to its proper
place.
* BUBBLE SORT PROGRAM

DEFINE (' SORT (N) I')
DEFINE (' SWITCH (I) TEMP')
DEFINE ('BUBBLE (J) ')

* GET NUMBER OF ITEMS TO BE SORTED

* .
N = TRIM(INPUT) :F (ERROR)
A = ARRAY (N)

*

* READ IN THE ITEMS

*

READ I = I +1
A<I> = TRIM(INPUT) :F (GO) S (READ)

*

* SORT THE LIST

*

GO SORT (N)

*

* PRINT SORTED LIST

*
M = 1

PRINT OUTPUT = A<M : F (END)
M = M+ 1 : (PRINT)

*

* FUNCTIONS

*

SORT I = LT(I,N - 1) I + 1 :F (RETURN)
LGT (A<KI>,A<I + 1>) : F (SORT)
SWITCH (I)
BUBBLE (I) : (SORT)

*

SWITCH TEMP = A<KI>
ALI> = AKI + 1> \
AKI + 1> = TEMP : (RETURN)

*

BUBBLE J = GT(J,1) J - 1 :F (RETURN)
LGT (A<KT>,A<T + 1>) :F (RETURN)
SWITCH (J) : : (BUBBLE)

END

For the input

15
ADDSIB
BUKINT
ADJTTL
BUCKET
ADREAL
BKSPCE
APDSP
ARRAY
BKSIZE
ALTERN
BRANCH
ADJUST
BUFFER
ADDSON
ADDLG

the output is

ACDLG

ADDSIB
ADDSON
ADJTTL
ADJUST
ADREAL
ALTERN
APDSP

ARRAY

BKSIZE
BKSPCE
BRANCH
BUCKET
BUFFER
BUKINT

One iteration of SORT is:

112

| R |

[A

[B |

SWITCH

| A |
F——A

F—
| D |
F——
| B |
F—
| F |
——
| E |
| IS |

BUBBLE

—
| A |
F—
| B |
F—
| C |
F—
| D |
F—
| F |
F——1
| E |

INCREMENT
I

| |
| A |
——

Elements above I are properly ordered. If elements at I and I + 1 are out of
order, they are switched. The new element at I (B) is bubbled by means of

interchanges to its proper place above I. I is incremented and the process
continues.

2. Primitive Functions for Use with Arrays

COPY

The wvalue of the ARRAY function is an object whose data type is ARRAY.
This value may be assigned to one or more variables.

A
B

ARRAY (3)
A

A and B have the same array as value.

| S |
A { |
P
B | |
A
[[
—d
Thus,
B<2> = 1SIX!
OUTPUT = A<2>
print SIX .
|

B | —4 SIX

| FS—— |

The COPY function produces a copy of an array. Executing the statements

A = ARRAY(3)
A<2> = "TWO !
B = COPY(A)

B<2> = 1SIX!

creates distinct arrays. Unlike the previous example, assigning a value to B<2>
does not affect the value of AL2>.

A —— | [B —— | |
A |
| ———s— TWO | ~—+4—— SIX
| |
i L

COPY may be used with other types of data, as illustrated in the section on data
types.

PROTQOTYPE

The value of the dimension or range of an array is sometimes needed. The
primitive function PROTOTYPE is used to obtain the prototype used to define the
array. PROTOTYPE has an array-valued argument and returns the prototype string.
Thus, if

A = ARRAY('-5:5',1X")

then the value of PROTOTYPE(A) is the string -5:5 .

An example utilizing PROTOTYPE is the following function named SQUARE. The
argument of SQUARE is any singly-dimensioned array. The value of SQUARE is a
two-dimensional square array whose dimensions equal that of the argument, and
whose elements are null strings.

| — ~— T ¥ ¥ =
[! | I | | |
i bttt
| I | I | I !
— i e
| | I |] ! |
— b
| 1 I | | I |
| I——— L 1 1 1]
, DEFINE (' SQUARE (A) ') : (SQEND)
*
SQUARE SQUARE = ARRAY (PROTOTYPE(A) ',' PROTOTYPE (A)) : (RETURN)
SQEND

The argument of ARRAY is a string formed from two occurences of PROTOTYPE(A)
separated by a comma. Thus, the index range is the same for both dimensions of
the new array.

1TEM

In order to reference an array element by means of angular brackets, the
array must be the value of a known identifier. Sometimes this is not the case.
For example,

114

$X = ARRAY(10)

is an acceptable assignment statement. But $X<2> and ($X)<2> do not reference
the second element of the array. In the first expression, the unary $
operates on the value of X<2>; the second is syntactically erroneous.

There are two ways to refer to an element of such an array. The array can
be assigned to a known identifier:

TEMP = $X
TEMPL2> = 'SIX!

Alternatively, the primitive function ITEM can be used. The value of
ITEM(a,i1,+++,1n) is the (i{,-..,in)-element of the array a.

ITEM ($X, 2)

'SIX!

assigns SIX to the second element of the array.

Similarly, if
AL1> = ARRAY (100)

vis executed, the fiftieth item of this array may be referenced by ITEM(A<1>,50).

If an index referring to an element of an array falls outside the range of
the array, the call of ITEM fails.

B. Names

A variable can be assigned a value during an assignment statement or by
pattern matching through use of the cursor position operator @ or the binary
value assignment operators . and §$§ . In SNOBOLY4, variables fall into two
major classes, natural variables and created variables.

A natural variable is any variable whose name is a nonnull string. Thus,

A
$'AB!
$'yrs (!

are examples of natural variables, whose names, respectively, are the strings

AB

lll(

The variable ,,,(cannot appear explicitly in an assignment statement such as
,"(= Y1

because it is syntactically incorrect. However,
$',,, (" = X0

is syntactically correct and performs the desired assignment. Every string
except the null string is the name of a natural variable. Natural variables are
avallable at the start of a program without any conscious act of creation on the
part of the programmer. All natural variables with the exception of ABORT, ARB,
BAL, FAIL, FENCE, REM, and SUCCEED have the null string as their initial wvalue.

Created variables are generated during execution of a program when, for
example, an array 1is created. The statement

A = ARRAY (10)

creates an array of ten variables. These variables are referred by A<1>, AL2>,
esey ALT0>.

1. Passing Names

Consider a function BUMP which increments the value of any variable by 1.
If the value of variable N is to be incremented, the call

BUMP (N)

is not suitable because the value of N, not the name N, is passed to the
procedure for BUMP. The form of the call must be

BUMP ('N')

which passes the string N to the BUMP procedure. Since the string N is the
name of the variable N , indirect reference may be used to increment the value.
The defining statement and procedure for BUMP are:

DEFINE (' BUMP (VAR) ')

BUMP $VAR = $VAR + 1 : (RETURN)

116

2. The Unary Name Operator

Suppose BUMP is to increment the value of a created variable, such as the
second element of the array A. The call

BUMP (A<2>)

is not suitable, since only the value of A<2> is passed. The call

BUMP ('A<2>")

is not suitable either, since the string A<2> is passed, and

$rA2>!

is a natural variable which bears no relation +to the array element. The
difficulty arises Dbecause there 1is no explicit name for created variables.
However, implicit names for created variables can be obtained through use of a
unary name operator.

The unary name operator . applied to any variable returns as value the
name of that variable. Thus, the value of

JAL2>
is the name of the second array element. The call
BUMP (. A<2>)
passes the name of the second array element to BUMP, so that incrementing 1is

done properly.

The name operator serves much the same purpose for created variables as
quotation marks do for natural variables, Furthermore, +the name operator
applied to a natural variable behaves the same as guotation marks. Thus, the
value of

.LINE

is the string LINE . Both of the following pairs of statements assign the
value 2 to MAY.

WORD = 'MAY!

$WORD = 2
WORD = .MAY
$WORD = 2

If the argument of the name operator is a natural variable, the value
returned by the name operator is a string which is an explicit name. If the
argument of the name operator is a created variable, the value returned is an
implicit name. If the argument is not a variable, error termination occurs.
For example,

.SIZE(X)
. (A + B)
. +A

are erroneous because the arguments are not variables. TIf A and B are integers
or numeral strings,

.$(A + B)

is valid because $(A + B) 1is a natural variable.

3. Returning a Variable

When returning from a programer-defined function via RETURN, the value of
the function name becomes the value of the function call. If NRETURN is used,
the value of the function name is returned as a variable, not as a value. The
function call may thus be used freely in any context that requires a variable.

Consider, for example, the function NEXT which returns the first unused
element of an array. The array is given as an argument and is assumed to have a
zeroth element which indicates the last used element.

DEFINE ('NEXT (&) ') : (NEXT. END)
*
NEXT AKO> = A<KO> + 1
NEXT = .A<A<KO>> : S (NRETURN) F (FRETURN)
*
NEXT. END

Thus, executing the four statements

B = ARRAY('0:1007)
NEXT (B) = ‘A"
NEXT (B) = !'THE'

'STILL? *T* REM . NEXT(B)

assigns to B<0> through B<K3> values 3, A, THE, and ILL, respectively.

When NEXT returns, the value of NEXT is .B<B<K0>>, which is the name of the
first available array element. NEXT (B) becomes the variable B<B<0>> .

C. Gotos, lLabels, and Code

Flow of control is governed by unconditional, success, and failure gotos.
In the goto field, variables indicate the next statement +to which control is
passed based on the outcome of the current statement.

If a variable is used as a statement label, a label attribute pointing to
the statement is assigned to the variable. This label attribute is independent
of the wvalue of the variable. Thus, a variable can be used in the label field

and the goto field, as well as in the subject field of a single statement. The
statement
DELAY DELAY = LT (DELAY,N) DELAY + 1 :S (DELAY) F (ONWARD)

is acceptable and unambiguous.

If a variable has no label attribute, its use in a goto field causes error
termination with the message, "UNDEFINED OR ERRONEOUS GOTO."

It is possible, as illustrated in the next section, to change the 1label
attribute of a variable. 1In this way, a particular label variable, such as that
appearing in

: S (LOOP)

may cause transfer to one statement at the beginning of execution and an
entirely different statement later on.

In the first phase of a SNOBOL4 run (compilation), the source program 1is
converted into Polish-prefix object code. 1In the second (execution) phase this
object code is interpreted. Object code is a type of data just as are strings,
patterns, and arrays. During the execution phase, it is possible, using the
primitive function CODE(string), to convert a string of characters into object
code. The argument to CODE is a string representing one or more SNOBOLY
statements. The value of a call to CODE is executable object code.

1. Creation and Execution of Code

A string to be compiled into object code consists of SNOBOL4 statements
terminated by semicolons. For example, if the variable GET has a string value
assigned by

GET = ! N = 103"
. ! LINE = 3!
. 'T.OOP N = GT(N,0) N - 1 :F (OUT) ;¢
. ' LINE = LINE TRIM(INPUT) : (LOOPY 5!
then
NUCODE = CODE (GET)
causes the statements in the value of GET to be compiled. The wvalue of

CODE (GET) becomes the value of NUCODE.

Blanks are as important in strings to be converted to code as they are in
the program itself. A statement without a label must begin with a blank.

Execution of statements in the value of NUCODE can be accomplished in two
ways:

1) transfer to a labelled statement appearing in NUCODE, and

2) execution of a direct goto which passes control to the first statement
in NUCODE, whether labelled or not.

Thus, execution of the goto

: (LOOP)

causes transfer to the statement labelled LOOP inside of NUCODE, even 1f the
original program had a statement labelled LOOP.

A direct goto 1is a special construction in the goto field which permits
transfer directly to the beginning of a block of object code rather than through
a label,. The direct goto uses enclosing angular brackets rather than
parentheses. The expression enclosed in the angular brackets must be code
valued. Execution of the direct goto

: <NUCODE>
causes transfer to the first statement

N = 10

Flowing off the end of a block of compiled object code results in normal
termination, just as if there were an end statement.

The following statement illustrates the use of the function CODE in the goto
itself.

:<CODE (' OUTPUT = MRECOMPILED" : (RESTART);')>

The angular brackets indicate transfer to the beginning of the newly compiled

block of CODE, which prints RECOMPILED and transfers to the statement labelled
RESTART.

The primitive function CODE fails if its argument has a syntactic error.

It is an error for the same label to appear more than once 1in +the source
program., Statements compiled using CODE, however, may have the same labels as
statements compiled earlier. The label attribute for the corresponding variable
becomes the new statement. For example, the following program segment is used
to call a function PROCESS(N) with various values of N.

120

BEGIN N = 5

LOOP N = ILT(N,10) N + 1 :F (OUT)
PROCESS (N) : (LOOP)

ouT
NEWLOOP = 'LOOP N = GT(N,0) N - 1 :F(END) ;'
CODE (NEWLOOP) : (BEGIN)

END

Within the two-statement loop, PROCESS (M) is called with N having values 6, 7,
8, 9, and 10 before control passes to the statement labelled OUT. At that
point, a new block of code is compiled consisting of the statement

LOOP N = GT(N,0) N - 1 : F (END)

Following compilation, control passes to the statement labelled BEGIN. It is
intended that PROCESS(N) be called for N with values 4, 3, 2, 1, and 0, but this
is not the case. The original statement labelled LOOP is still in the program.
It is not overwritten by the compilation. The label attribute of LOOP no longer
points to 1it. The label attribute now points at the newly compiled statement.
The new compilation is a second program which can freely communicate with the

original. Execution of the program proceeds as if the following programs were
compiled.
BEGIN N = 5
N = LT(N,10) N + 1 :F (OUT)
PROCESS () ¢ (LOOP)
ouT
NEWLOCP = 'LOCP N = GT(N,0) N - 1 :F (END) ;¢
CODE (NEWLOOP) : (BEGIN)
END
LOOP N = GT(N,0) N - 1 :F (END)
END

After compilation of NEWLOOP, transfer to BEGIN causes N to be assigned the
value 5. Control flows into the statement originally labelled LOOP, which
increments N to 6. PROCESS(N) is called and, on completion, control passes to
the new statement labelled LOOP. N is decremented to 5, but PROCESS cannot be
called as intended, since the new statement does not overwrite the old, and no
way 1is provided for getting back to the original program.

The program segment can be rewritten to perform as intended by using

explicit gotos to control program flow rather than relying on the sequence of
statements to control flow.

121

BEGIN N = 5 : (LOOP)

LOOP N = LT(N,10) N + 1 :F (OUT)

PROC PROCESS (N) : (LOOP)

OUT
NEWLOOP = 'LOOP N = GT(N,0) N - 1 :F(END)S(PROC) ;'
CODE (NEWLOOP) : (BEGIN)

END

Following compilation of NEWLOOP, execution proceeds as if the following
programs were compiled.

BEGIN N = 5 : (LOOP)
N = LT(N,10) N + 1 :F (OUT)

PROC PROCESS (N) : (LOOP)

ouT
NEWLOOP = 'LOOP N = GT(N,0) N - 1 :F(END)S(PROC) ;'
CODE (NEWLOOP) : (BEGIN)

END

LOOP N = GT(N,0) N = 1 :F(END)S (PROC)

END

After assigning 5 to N, control passes from the statement labelled BEGIN to the
new statement labelled LOOP. N is properly decremented to 4 and control passes
to the statement labelled PROC which calls PROCESS. The loop continues until N
is 0.

D. Programmer-Defined Data Types

SNOBOL4 allows the programmer to define his own types of data objects. A
programmer-defined data object is an ordered set of variables called fields. A
call of DATA(p) defines a new data type described Dby the prototype p . The
prototype P is a string denoting the name of the data type and the fields.
For example, a complex number can be said to consist of two fields, the real and
the imaginary. The call

DATA (*COMPLEX(R,I) ")
defines a data type COMPLEX, with two fields R and 1I. There 1is no intrinsic
limit to the number of fields.

To create an object which has the data type COMPLEX, a call of the form

COMPLEX (€1,e2)

122

is made, where el and e2 are any expressions; For example, to assign the
complex number "1.5 + 2.0i" to the variable C, the statement

C = COMPLEX(1.5,2.0)

is executed. Each call of the function COMPLEX creates two new variables
corresponding to the real and imaginary parts. These variables may be
referenced by using the field name as a function. After executing the statement
above, the value of C is a complex number; the real part is referenced by R(C)
and the imaginary part by I{C). Thus,

A = R(Q)

assigns the value 1.5 +to A. Since R(C) is a variable, it may be assigned a
value. If

R(C) = 3.2
is executed, the complex number "3.2+2.0i" is assigned to C.
Operations on complex guantities can be defined wusing programmer-defined

functions. A function to compute the sum of two complex guantities is

DEFINE ('SUM(C1,C2) ') : (SUM. END)
SUM SUM = COMPLEX(R(C1) + R(C2),I(C1) + I(C2)) : (RETURN)
SUM. END

If C has the value "3.2 + 2.0i", execution of the statement
C = SUM(C,COMPLEX (1.0,1.0))

assigns "4.2 + 3.0i" to C.

Example - Text Processing

There is no intrinsic limit to the length of a string in SNOBOLY4, but there
is often a practical limit. For example, scanning a string for a pattern can be
time consuming if the string is long. However, many string applications require
reading in and retaining long passages of text. For such cases, a new data type
called TEXT can be defined.

DATA ('TEXT (LINE,N,NEXT) ')
The first field is a line of text, the second field indicates the line number,
and the third field points to the next line of text. ‘

A passage of text is read as follows:

123

I = 1
HEAD = TEXT(INPUT,I) : F (EMPTY)
CURRENT = HEAD
LOOP I = I + 1
NEXT (CURRENT) = TEXT (INPUT,I) : F (DONE)
CURRENT = NEXT (CURRENT) : (LOOP)
DONE

The resulting data structure has the form:

—— 1
HEAD | !
L \l

\ —

LINE | line 1 |

I —

N | 1 |

P

NEXT | |

L / J

r 1

LINE | line 2 |

F .

N 2 |

[i

T 1

NEXT | |

L /)

e |

LINE | line 3 |

b {

N] 3 |

[]

T 1

NEXT | |

I[/ I

r 1

LINE | line n |

F .

N n |

[]

Bl

NEXT |]

L i

124

The statement
LINE (HEAD) 'EVERY! : S (YES) F (NQ)
examines the first line for the word EVERY .

The following section of program prints the lines and line numbers where
EVERY occurs.

CURRENT = HEAD
TEST LINE (CURRENT) 'EVERY' : F (BUMP)
OUTPUT = N(CURRENT) ': ' LINE(CURRENT)
BUMP CURRENT = NEXT (CURRENT)
IDENT (CURRENT) : F (TEST)

The same field names may exist for several data types. Thus,
DATA('LIST(VALUE,NEXT)')

defines a data type LIST which can coexist with the previous definition of the
data type TEXT. Although NEXT is a field name for both TEXT and LIST, NEXT(X)
is not ambiguous because the data type of the argument X indicates the usage.

VALUE
VALUE 1is a primitive field function defined on strings and names which
refers to their wvalue. If
RADIX = 'HEX!
then
\Y% = VALUE ('RADIX?)
assigns the string HEX to V . Similarly,
VALUE ('RADIX!) = 'DEC'
assigns the string DEC as the value of RADIX .
VALUE is supplied so that a programmer may define the field VALUE on
programmer-defined data types, and then apply VALUE to strings and names as well

as the defined types. This permits a uniform treatment of "value" without the
necessity for checking data type. If

DATA ('LIST (VALUE, TEXT) ')
DATA (‘NODE (FATHER,LSON,RSIB,VALUE) ')

125

are used to define the data types LIST and NODE, then VALUE caﬁ be applied to
objects with data type LIST and NODE as well as names and strings.

E. Summary of Data Types

Data objects are classified by type. The string used to refer to a data
type within the language is called the formal identification of the data type.
The types of data are

Data_Type Formal Identification
string STRING

integer INTEGER

real number REAL

pattern structure PATTERN

array ARRAY

created name NAME

unevaluated expression EXPRESSION

object code CODE
programmer-defined data type data type name

1. DATATYPE

DATATYPE (e)

returns the formal identification of +the data +type of the value of the
expression e . For example, the value of DATATYPE('A' | 'B') is the string
PATTERN . Similarly, :

DATATYPE (37)
DATATYPE (. ARB)
DATATYPE (. A<I>)

return
INTEGER
‘STRING
NAME
respectively.

If the argument +to DATATYPE is a programmer-defined data type, the data
type name is returned. Referring to the data types defined in the previous
section, the function calls

126

DATATYPE (C)
DATATYPE (CURRENT)

return
COMPLEX
TEXT
respectively.

2. Data Type Conversion

In some cases, 1t is reasonable to speak of the conversion of a data obiject
of one data type into a corresponding data object of some other data type. This
can be accomplished using the CONVERT function. For example, an integer can be
converted to a real number by the statement

R = CONVERT(2,'REAL")

As a result, R has the real number 2.0 as its value. To convert R to a string,
so that it may be printed, the statement

OUTPUT = CONVERT (R, !'STRING')

may be used.

CONVERT has the form

CONVERT (expression,datatype)

The first argument 1is any expression and the second is a string-valued
expression corresponding to a formal identification of a data type. CONVERT
evaluates the first argument and then, if possible, converts the result to the
data type given by the second argument. The value of CONVERT is the value of
expression converted to the new data type.

Not all conversions are possible or meaningful. The CONVERT function fails
if a specified conversion cannot be made. The following table indicates those
conversions that are implemented. The conversion from STRING to CODE performs
the same task as the CODE function used earlier. That is,

CODE (S)

and

CONVERT (S, 'CODE!')

may be used interchangeably.

127

data type data_type of object returned

43}

I R P A N E C D

STRING X X X

P
>

INTEGER

e
>

REAL

el
>

PATTERN
ARRAY
NAME
EXPRESSION
CODE

Defined
Data Type

.____.________._._._______.__..}
b

An object of one programmer-defined data type cannot be converted to an
object of a different programmer-defined data type.

3. COPY

COPY was described earlier in connection with arrays. The value of
COPY (A)

is a new array identical in every respect to the array which was the value of A.
The COPY function can also be used for data objects other than ARRAYS. Objects
with data type PATTERN, CODE, and all programmer-defined data types can be
copied. 1In all cases, the value of COPY is a new instance of the data object
which is its argument.

F. Reywords

Certain identifiers prefixed by an ampersand (&) provide the programmer
with access to, and in some cases control of, information used internally by the
SNOBOL4 system. For example, the programmer may determine, at some point, how
many statements have been executed. The value of §STCOUNT is an integer equal
to the number of statements executed. If the statement

GT (§STCOUNT, 40000) : S (CLEAN. UP)

is executed after more than 40,000 statements have been executed, a transfer to
the statement 1labelled CLEAN.UP is made. As another example, &§STLIMIT is a
variable whose value is the number of statements which may be executed before
the SNOBOLY4 system unconditionally terminates the program. The initial value of
&STLIMIT is 50000, but it can be changed during execution.

128

&§STLIMIT = §&STLIMIT * 2

doubles this limit.

Whereas the value of &§STLIMIT can be changed, the value of §STCOUNT cannot.
Those keywords which can be modified by programmer action are called unprotected
keywords; those which cannot are called protected keywords. An attempt to set
the value of a protected keyword results in error termination.

Protected Keywords

There are two kinds of protected keywords, varying and constant. As their
names suggest, the values of varying protected keywords change automatically
during execution of a program. The constant protected keywords do not change.

1. Varying Protected Kevwords

a. G&FNCLEVEL. The value of &§FNCLEVEL is the level of programmer-defined

function call.

b. &LASTNO. The compiler numbers each statement. These numbers are used
principally for diagnostic purposes. The wvalue of §&LASTNO 1is the
number of the last statement executed.

¢c. SRTNTYPE. The wvalue of &RTNTYPE 1is the string RETURN, FRETURN, or

NRETURN, depending on the kind of return last made by a
programmer-defined function.

d. &STCOUNT. The value of &STCOUNT is the number of statements which have

been entered during program execution. If
N = &STCOUNT

is the first statement executed in a program, then N has the value 1.

e. &STFCOUNT. The value of §&STFCOUNT is the number of statements which

have failed. If
N = §&STFCOUNT

is the first statement executed, the value of N is 0.

f. &STNO. The value of §STNO is the compiler-assigned number of the

statement currently being executed. (See &LASTNO.)

2. Constant Protected Keywords

a. GALPHABET. The value of &ALPHABET is a string consisting of all the
characters of +the machine on which SNOBOL4 is implemented. The
characters are ordered according to their internal coding.

b. &ARB. The value of &ARB 1is the primitive pattern structure which
matches any string of characters. &ARB and ARB have the same value at

129

the beginning of program execution. The value of ARB may be changed,
however, while the value of &ARB is protected, -

c. G&ABORT. &ABORT has the same value as ABORT at the beginning of program

execution. See &ARB.
d. §&BAL. As above.
e. §&FAIL. As above.
f. G&FENCE. As above.
g. &REM. As above.
h. §&SUCCEED. As above.

Unprotected Keywords

There are two kinds of unprotected keywords, switches and parameters. A
switch 1is a keyword requiring an integer value. A switch is considered off if
its value is 0, and is considered on otherwise. All switches are off at the
beginning of program execution.

1. Switches

a. GSABEND. If &ABEND is on when program execution terminates, a system

core dump is provided.

b. &ANCHOR. If &ANCHOR is on, a pattern can match only an initial
substring. See Chapter 2.

c. §&DUMP. If §&DUMP 1is on at program termination, natural variables and
their values are printed.

d. &FTRACE. If §&FTRACE is on, calls to and returns from all
programmer-defined functions are traced. See Chapter 7.

e. &FULLSCAN. TIf §&FULLSCAN is on, the pattern matching scanner attempts
to match a complex pattern against a string even though it <can be
predetermined that the attempt will fail. See Chapter 2.

f. §STRACE. Tracing capabilities are available if &TRACE is on. See

Chapter 7.

2. Parameters

a. EGMAXLNGTH. The value of &MAXLNGTH is an integer equal to the largest

string (measured in characters) which may be formed. The initial value
of &MAXLNGTH is 5000, but this value may be changed. Thus,

EMAXILNGTH = 1000

limits the maximum length of subsequent strings to 1000 characters. An
attempt to form a string longer than the limit results in error
termination of the program. All types of string formations are
included 1in this limit: concatenation, replacement, value assignment
as a result of pattern.matching, and string dinput.

130

§STLIMIT. The value of §&STLIMIT is +the 1l1limit on the number of

statements that may be executed (see §STCOUNT). The initial value of

§STLIMIT is 50000. Exceeding the limit on statement execution
in error termination.

results

131

Chapter 6. Details of Evaluation

A. The Components of a Statement

There are three major types of statements: assignment, pattern matching,
and replacement. These have the forms:

label subiject = object goto
label subiject pattern goto
label subiject pattern = object goto

Labels and gotos are optional. The object may be explicitly omitted, in which
case the object is taken to be an expression that has the null string as value.

There are two degenerate statement forms as well:

label subiject goto
label goto

Labels and gotos are optional in these forms as well. Thus a blank line is an
acceptable statement.

B. Statement Evaluation

An understanding of the sequence of evaluation requires an understanding of

the overall evaluation of a statement in terms of its major components. The
replacement statement is the most complicated and general form and is used for
illustration. All other statement forms can Dbe considered formally as

degenerate replacement statements, and the evaluation of the degenerate forms
can be understood from the evaluation of the replacement statement by skipping
the missing components. The sequence of evaluation is:

1. The 1label requires no evaluation, and in fact is not part of the
statement at all. It merely serves to identify the statement.

2. The subject is evaluated first. If the evaluation of the subject
fails, the statement fails, the goto is processed, and evaluation of all other
components 1s skipped. If no failure goto 1s specified, control passes to the
next statement.

3. The pattern is evaluated next. 1If this evaluation fails, the statement
fails and the goto is processed as in the case of subject failure.

4. The pattern match is performed next. TIf the pattern match fails, the
statement fails, conditional value assignment is not performed, the replacement
is skipped, and the goto is processed. Immediate value assignment, and other
effects which occur dynamically during pattern matching, may take place before
the pattern match fails.

132

5. The object is evaluated. If this evaluation fails, the statement
fails, no replacement is performed, and the goto is processed.

6. The replacement is performed.

7. The goto is processed. Goto processing depends on the structure of the
goto and whether or not the statement failed. If the statement succeeded, only
an unconditional or success goto in the statement is evaluated. 1If the
statement failed, only an unconditional goto or failure goto in the statement is

evaluated. Transfer is made to the evaluated goto if there is one, or control

is passed to the next statement. If evaluation of a goto fails, error
termination results.

Any of the components of a statement may be arbitrarily complicated and may
invoke all kinds of processes. Calls to programmer-defined functions can occur,
for example, in any component of a statement (except the label), and even take
place in the middle of pattern matching as the result of the evaluation of
unevaluated expressions.

Within an expression, the order of evaluation depends on the order of the
components and the operations performed on them. Evaluation of the components
of an expression is from left to right. In complicated expressions, components
are nested, and the order of evaluation may be determined by examining the fully
parenthesized form of the expression as determined from the rules of precedence
and association. Consider the expression

(K L F(A+ B * C))
which has the fully parenthesized form

((K L) F((?+ (1|3*C))))

1 2 4 5 6
\/ \ /
3 //7
8
/
/9
10
The order of evaluation of this expression 1s as indicated. If F is a

programmer-defined function, its evaluation involves the execution of other
statements and may in itself be very complicated.

In order to understand how failure is handled, it is important to know what
operations can fail.

1. Obtaining the value of a variable fails if the variable has an input
association and an end-of-file condition is encountered. Such failure occurs
only if the value of the variable is required, not merely because the variable
appears in a statement. Thus, neither

INPUT to!

nor

133

LT (N,M) : S (INPUT)

requires the value of INPUT and hence no attempt is made to read a record.

2. Primitive predicates fail if +the stated condition is not met. The
unary negation operator, for example, fails only if its operand does not fail.

3. Some primitive functions such as REPLACE fail for certain argument
values.

4. Array references fail if an index is out of bounds.
5. Pattern matching may fail for a variety of reasons.
6. Programmer-defined functions fail by transferring to FRETURN.

Failure is a condition that causes a process to terminate and return to the
process that called it, which in turn terminates and passes the failure
condition back, until eventually the statement itself fails. The exception 1is
the wunary negation operator that converts a failure condition into successful
evaluation, and conversely.

Details of function evaluation deserve special note. 2all the arguments to
a programmer-defined function are evaluated before the function is called. 1If
too many arguments are provided to the call of a programmer-defined function,
the extra arguments are evaluated, but not passed. If the evaluation of any
argument fails, a failure condition is returned and the function is not entered.

Primitive functions are called before their arguments are evaluated, and
each function evaluates its own arguments. If the are too many arguments in the
call of a primitive function, error termination results. If too few arguments
are provided in the call of a primitive function, null strings are provided for
the omitted arguments. An exception to this rule concerns functions invoked by
APPLY or called through an OPSYNed synonym. Such calls must contain the correct
number of arguments or error termination results.

Integers and Strings

Integers can occur as 1literals and as the result of integer-valued
operations. An integer literal consists of an unsigned seguence of digits.
Some integer literals are

35
2760520
00006

Leading zeroes are ignored; 00006 and 6 are eguivalent. A sign in front of
an integer 1literal is a unary operator and not part of the literal. Thus -6
is an integer-valued expression.

The maximum magnitude of integers is implementation dependent On the 1IBM
System/ 360, integers can range from -231 to 231-1, :

Numeral strings are strings that represent integers. Numeral strings
consist of a sequence of digits and can have an initial sign. Some numeral
strings and their equivalent integer values are

134

1231 23

-7 _7
'+303" 303
00001 1

The null string is also a numeral string and is eguivalent to the integer zero.
The following strings are not numeral strings:

4
+4+31
t1,378¢
136-1"

t2.0!

Many operations require integer-valued arguments. An integer-valued
argument can be specified by either an integer or a numeral string. Both

LEN (8)
and

LEN('8")
are correct. In most cases integers and numeral strings can be wused
interchangeably, and the programmer need not concern himself with the
difference. In fact, numeral strings are automatically converted to equivalent

integers in contexts where integers are required.
Similarly, integers can be used in operations that require string-valued

arguments. Integers are automatically converted to numeral strings in contexts
where strings are reguired. In the statement

SEQNO 0

1l
-

the pattern and object are integers. The pattern is converted into the string
0 for the purpose of pattern matching and the object is converted into the
string 1 for the purpose of replacement. An eguivalent statement is

SEQNO 'O = 11

Conversion of integers to strings produces a normalized result with no leading

zeroes and without a leading plus for positive integers. Printing requires
strings, for example. Thus,

OUTPUT

Il
85)

and

135

OUTPUT = 00008

both print

but

OouUTPUT = *00008!

prints

00008

The effects of this conversion are most likely to be noticeable when conversion
from a numeral string to an integer is followed by conversion back to a string.

OUTPUT = '-00007* + 00009

prints

Real Numbers

Real numbers can occur as literals and as the result of real-valued
operations. A real number consists of an unsigned sequence of digits, followed
by a period, optionally followed by another sequence of digits. Some real
literals are '

20.05
0.00001
3.

A sign in front of a real 1literal is a unary operator and not part of the
literal. Thus -3.14159 is a real-valued expression.

On the IBM System/ 360, the range of real numbers is on the order of 10-78
to 1075,

Real numbers are automatically converted to strings for the purpose of
printing or punching. No other automatic conversions are made. Real numbers
cannot be concatenated. To perform mixed arithmetic on integers and real
numbers, explicit conversions must be made using the CONVERT function.

136

Operators

Unary and binary operators are functions of one and +two arguments,
respectively. Operators have a special status by virtue of their syntactic
representation as distinguished symbols. The following sections discuss details
of the operators and the relation between their operands and values.

Unary Operators

There are eleven unary operators.

operator operation
T
+ | plus
- | minus
3 | indirect reference
* | expression
. [name
-] negation
? | interrogation
& | keyword
) | cursor position
i (not used)
% ! (not used)
/ | (not used)

The following sections describe permissible operands for the unary
operators. oOonly data types indicated in these sections are permitted. Other
data types result in error termination. Abbreviations for the data types
correspond to the wusage 1in Chapter 5. In the tables that follow, the left
column indicates the permissible operand data types and the right column
indicates the data types resulting from the operation.

plus and minus

Plus and minus accept the same types of operands and return the same types
of values.

1

ooH W
g H H

Strings occurring as operands in these arithmetic operations must be numeral
strings.

indirect reference

Indirect reference requires an opefand that is either a name or a string,
and returns the corresponding variable. This variable in turn may have any type
of data as value.

137

-
S | (variable)
I | (variable)
N | (variable)
expression
The expression operator may have any expressibn as an operand. A pointer
to this expression is returned, but the operand is not evaluated. The pointer
has data type EXPRESSION. Subsequent evaluation of the expression (during
pattern matching, e.g.) may yield a variable or a value of any data type.
name

The name operator must have a variable as an operand. A pointer to this
variable is returned. TIf the operand is a natural variable, the resulting data
type is STRING; otherwise it is NAME.

(natural variable) | S
(other variable) | N

negation and interrogation

Negation and interrogation accept any expression as operand. If the
operations succeed, they return the null string as wvalue.

The keyword operator accepts as an operand only certain natural variables.
The data type of the value depends on the particular keyword. The natural
variable operand need not appear explicitly, but can be computed. Consequently,

KEYWORD

'STCOUNT'

OUTPUT = &$KEYWORD

prints the number of statements executed up to the time the output statment
occurs.

cursor position

The cursor position operator must have a variable as operand. A pattern
structure is returned.

138

unused operators '

The symbols /, #, and % are reserved for future use. They are accepted
syntactically as unary operators, but have no meaning. Execution of one of
these operations causes error termination.

Binary Operators

There are twelve binary operators. Exponentiation associates to the right.
All other operations associate to the left. The operators are listed below in
order of decreasing precedence. Notice that multiplication has higher
precedence than division, contrary to common practice 1in other programming
langauges.

operator operation

$. immediate and conditional value assignment
exponentiation

{(not used)

multiplication

division

(not used)

aiddition and subtraction

(not used)

concatenation

alternation

3
O\ 3 38

[=)

The following sections describe permissible operands for the binary
operators. In the tables that follow, the left column indicates the permissible
left operand data types, the top row indicates the permissible right operand
data types, and the body of the table indicates the data types resulting from
the operation. Blanks in the body of the table indicate a combination of
operand data types that is not permitted.

addition, subtraction, multiplication, and division

Addition, subtraction, multiplication, and division all accept the same
types of operands and return the same types of values.

S IR
——————
S| Iz
I 1 1I71I
R | R

'

Strings occurring as operands in these arithmetic operations must be nureral
strings.

exponentiation

Exponentiation is similar +to the other arithmetic operations except that
real operands are not permitted.

139

S I

e
s |1 I1I
I | I1I

Strings must be numeral strings.

concatenation

Concatenation is an operation of central importance in SNOBOLA4. The
permissible data type combinations are:

=Y H®

Concatenation treats the null string in a special way. If either operand is the
null string, concatenation is not performed and the other operand is returned as
value. Thus, if one operand is the null string, the other operand may have any
data type. This treatment of the null string permits full use of predicates in
expressions containing various types of data.

alternation

SIPE
—_——
S| PPPP
I | PPPP
P|{ PPPP
E| PPPP

Notice that the result of alternation is always a pattern. The null string has
no special status in alternation.

immediate and conditional value assignment

The value-assignment operations require a right operand that is a variable.
‘This variable, not its value, is used in constructing a pattern. An exception
to this requirement permits the right operand to be an unevaluated expression.
This expression is then evaluated at the time of value assignment to obtain the
variable to which assignment is made. 1If such an unevaluated expression does
not produce a variable at the time of value assignment, error termination
occurs. The permissible left operands are:

140

tdHW
g tddd

unused operators

The symbols %, #, and @ are reserved for future use. They are accepted
syntactically as binary operators, but have no meaning. Execution of one of
these operations causes error termination.

variables and VvValues

Some expressions yield variables when evaluated. Such variables are called
generated variables, and values can be assigned to them in the same manner that
values can be assigned to variables that appear explicitly. In the statements

M = 2
$ ("N M) = 'INVOICE!

the subject $('N' M) generates the variable N2 which 1is assigned the value
INVOICE . Array references, field functions on programmer-defined data types,
and programmer-defined functions that return by NRETURN are examples of
expressions that generate variables.

Other expressions, for example arithmetic operations, yield values but not
variables. Thus, execution of the statement

(A + B)

[t}
o

causes error termination with the message "VARIABLE NOT GIVEN WHERE REQUIRED,"
Gotos require natural variables. These natural variables may also be
generated. The indirect goto

:S($TRIM (INPUT))

is an example.
Some expressions, such as indirect references, always yield variables.

Others, such as literals, always yield only values. Some expressions may or may
not yield variables. For example,

F(X) = 2

may or may not be erroneous depending on the function F. To allow for such
cases, the syntax of SNOBOL4 permits any kind of expression as the subject of
assignment. Statements such as

141

are syntactically acceptable even though they result in error termination if
executed.

142

Chapter 7. Tracing

Tracing facilities are provided to permit the programmer to get diagnostic
information about <the execution of his program without interfering with its
logic or structure. The tracing mode is entered by turning on the keyword
&§TRACE. When this mode is in effect, certain types of program actions can be
sensed, causing corresponding messages to be printed. The +types of actions
sensed are:

1) change in the value of a variable,

2) call of a defined function,

3) return from a defined function,

4y transfer to a label, and

5) change in the value of certain keywords.

A. Standard Trace Procedures

The TRACE function is used to make specific trace requests.

TRACE (name,type,taq)

associates the name with the type of action for tracing purposes. The tag
provides identifying information which is included in the trace printout if the
name 1is not a natural variable. If the name is a natural variable, the tag is
ignored. One trace association must be made for each name and type desired.
Trace printout includes the statement number in which the action occurs, the
result of the action, and the time of the action in milliseconds measured from
the beginning of program execution.

If &TRACE is off, there is no tracing, even though trace requests have been
made. The value of ETRACE is decremented by one every time an action is traced,
and tracing 1is automatically turned off when the value of &TRACE reaches zero.
Therefore the value assigned to &TRACE may be chosen to 1limit the amount of
trace printout.

1. Value Tracing

TRACE (name, 'VALUE' ,tagq)

causes trace printout whenever the value of the name is changed. Consider the
following program.

143

144

TRACE ('I', 'VALUE!')
TRACE ('J', 'VALUE')
§TRACE = 1000000
* LET THE FIRST DATA CARD SPECIFY THE MAXIMUM NUMBER OF
* CARDS TO BE SORTED. GENERATE AN ARRAY.
A = ARRAY (TRIM (INPUT))
* DEFINE THE FUNCTION INSERT.
DEFINE (' INSERT (J) TEMP')

* READ THE CARDS INTO THE ARRAY.

INIT I = 1+ 1
A<KI> = TRIM(INPUT) :F (SORT)
OUTPUT = A<I> ’ : (INIT)
*
* LET N BE THE NUMBER OF CARDS. INITIALIZE THE INDEX AND
* THEN SORT.
*
SORT N I -1

I 1

*
* COMPARE TWO SUCCESSIVE CARDS.
*

SORTA LGT(A<I>,A<I + 1) :S (SORTC)
* !

* IF' THEY ARE IN THE PROPER ORDER, INCREMENT THE INDEX

* (UNLESS SORTING IS FINISHED) AND CONTINUE.

*

SORTB I = LT(I,N - 1) I+ 1 :S (SORTA) F (DONE)
*

* OTHERWISE, INSERT THE CARD IN ITS PROPER PLACE.
* :

SORTC INSERT (I + 1) : (SORTB)
*

* PUNCH SORTED CARDS.

*

DONE I = 1

. OUTPUT =
PUNCH OUTPUT = A<I>
PUNCH = OUTPUT
I = LT(I,N) I + 1 : S (PUNCH) F (END)

*

* FUNCTION DEFINITION
*

INSERT TEMP = A<J - 1>

AT - 1> = ALI>

A<JI> = TEMP

J = GT(J,2) J - 1 ~ :F (RETURN)

LGT (A<J - 1>,A<I>) : S (INSERT) F (RETURN)
END

WK~

@O~ O™

11

12

13

14

16
17
18

19
20
21
22
23
24

Given the data

10
ACOMPC
ACOMP
INTRL
SPECEQ
SUM
FORMAT
STREAM
ZERBLK
SETAV
SETVA

the printed output is

STATEMENT 6: I = 1,TIME = 17
ACOMPC

STATEMENT 6: I = 2,TIME = 17
ACOMP

STATEMENT 6: I = 3,TIME = 50
INTRL

STATEMENT 6: I = 4,TIME = 67
SPECEQ

STATEMENT 6: I = 5,TIME = 84
SUM

STATEMENT 6: I = 6,TIME = 84
FORMAT

STATEMENT 6: I = 7,TIME = 100
STREAM

STATEMENT 6: I = 8,TIME = 117
ZERBLK

STATEMENT 6: I = 9,TIME = 117
SETAV

STATEMENT 6: I = 10,TIME = 134
SETVA

STATEMENT 6: I = 11,TIME = 233

STATEMENT 10: I = 1,TIME = 233

STATEMENT 12: I = 2,TIME = 250

STATEMENT 12: I = 3,TIME = 250

STATEMENT 12: I = 4,TIME = 250

STATEMENT 12: I = 5,TIME = 267

STATEMENT 22: J = 5,TIME = 267

STATEMENT 22: J = 4,TIME = 283

STATEMENT 22: J = 3,TIME = 283

STATEMENT 12: I = 6,TIME = 283

STATEMENT 22: J = 6,TIME = 300

STATEMENT 12: I = 7,TIME = 300

STATEMENT 12: I = 8,TIME = 300

STATEMENT 22: J = 8,TIME = 317

STATEMENT 22: J = 7,TIME = 317

STATEMENT 22: J = 6,TIME = 317

STATEMENT 22: J = 5,TIME = 333

STATEMENT 12: I = 9,TIME = 333

STATEMENT 22: J = 9,TIME = 350

STATEMENT 22: J = 8,TIME = 350

STATEMENT 22: J = 7,TIME = 367

STATEMENT 22: J = 6,TIME = 367

STATEMENT 14: I = 1,TIME = 367

145

ACOMP v
STATEMENT 18: I = 2,TIME = 533

ACOMPC

STATEMENT 18: I = 3,TIME = 533
FORMAT

STATEMENT 18: I = 4,TIME = 550
INTRL

STATEMENT 18: I = 5,TIME = 550
SETAV

STATEMENT 18: I = 6,TIME = 550
SETVA

STATEMENT 18: I = 7,TIME = 566
SPECEQ

STATEMENT 18: I = 8,TIME = 566
STREAM

STATEMENT 18: I = 9,TIME = 566
SUM

STATEMENT 18: I = 10,TIME = 583
ZERBLK

If the name is not a natural variable, the tag is printed to identify the
name being traced. For example,

TRACE (. SUM<K3>, '"VALUE!, 'SUM<K3> 1)

traces the third element of the array SUM. Here the tag SUM<3> (chosen to
correspond to the created variable SUM<K3>) provides a string that identifies
the name of the trace request. As an example, consider the following program
which forms sums in several bins as given on data cards. The trace association
must appear after creation of the array SUM , since the name .SUM<K3> does not
exist before the array is created.

EANCHOR = 1 1
ETRACE = 1000 2
CARDPAT = BREAK(' ') . BIN LEN(1) BREAK(' ') . NUMBER 3

* THE FIRST CARD GIVES THE NUMBER OF BINS
SUM = ARRAY (TRIM (INPUT),0) : F (ERR) m

* TRACE THE THIRD BIN.

TRACE (. SUM<3>, 'VALUE', ' SUM<3> 1) 5 .

* SUBSEQENT CARDS CONTAIN A BIN NUMBER FOLLOWED BY A BLANK AND THEN

* THE NUMBER TO BE ADDED TO THE BIN.

READ CARD = INPUT :F (DISPLAY) 6
CARD CARDPAT :F (ERR) 7
SUMKBIN> = SUM<KBIN> + NUMBER :S (READ) F (ERR) 8

* PRINT OUT THE SUMS

DISPLAY 9

_ I = 1 10

PRINT OUTPUT = tSUMK' I '> = ! SUMKI> : F (END) 11
I = I+ 1 : (PRINT) 12

END 13

146

For the input data

o

25
27
-75
+65
77
-89
75

o
o

-756
499
76

456
87
33
10 23
3 0025
8 657
3 =45

N2 ENNdWaNNNLDNMO W=

the printed output is:

STATEMENT 8: SUM<3>» = 25,TIME = 17
STATEMENT 8: SUM<K3> = 102,TIME 50
STATEMENT 8: SUMK3> = -654,TIME = 100
STATEMENT 8: SUMK3> = -629,TIME = 183
STATEMENT 8: SUM<K3> = -674,TIME = 300
SUMK1> = 483
SUM<2> = 184
SUM<K3> = -674
SUM<4> = 23
SUMKLS5> = 22
SUMK6> = 0
SUM<K7> = 410
SUMK8> = 657
SUMK9> = -75
SUM<10> = 23
2. Function Tracing
There are three types of tracing for programmer-defined functions:
RETURN, and FUNCTION. CALL and RETURN cause trace printout on the call
return from a function. FUNCTION causes printout for both call and
return.

CALL tracing gives the level from which the

name,

the return is made.

and the value of its arguments.

function
RETURN tracing gives the level to which
The following examples indicate the three types of

applied to a program that computes the number of combinations of N things taken
M at a time.

147

READ

END

ETRACE = 1000

TRACE ('C', 'CALL"')

NM = BREAK(',') . N ',' BREAK(' ') . M
DEFINE ('C (N,M) ')

INPUT NM : F (END)

OUTPUT = 'C(' N '," M ')=' C(N,M) : (READ)
M = LT(N - M,M) N - M

cC = EQ(M,0) 1 : S (RETURN)

C = N*C(N=-1,M-=-1 /M :(RETURN)

produces the output

STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
C(15,6)=5005

6: LEVEL 0 CALL OF C('15','6'),TIME = 200
9: LEVEL 1 CALL OF C(14,5),TIME = 200

9: LEVEL 2 CALL OF C(13,4),TIME = 216

9: LEVEL 3 CALL OF C(12,3),TIME = 216

9: LEVEL 4 CALL OF C(11,2),TIME = 216

9: LEVEL 5 CALL OF C(10,1),TIME = 233

9: LEVEL 6 CALL OF C(9,0),TIME = 233

With RETURN tracing, the output is

STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
C(15,6)=5005

8: LEVEL 6 RETURN OF C = 1,TIME = 133

9: LEVEL 5 RETURN OF C = 10,TIME = 150
9: IEVEL 4 RETURN OF C = 55,TIME = 216
9: LEVEL 3 RETURN OF C = 220,TIME = 216
9: LEVEL 2 RETURN OF C = 715,TIME = 233
9: LEVEL 1 RETURN OF C = 2002,TIME = 233
9: LEVEL 0 RETURN OF C = 5005,TIME = 233

and with FUNCTION tracing the result is

STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT

C(15,6) =5005

148

6: LEVEL 0 CALL OF C('15','6') ,TIME = 134
9: LEVEL 1 CALL OF C(14,5),TIME = 134

9: LEVEL 2 CALL OF C(13,4) ,TIME = 217

9: LEVEL 3 CALL OF C(12,3) ,TIME = 217

9: LEVEL 4 CALL OF C(11,2),TIME = 217

9: LEVEL 5 CALL OF C(10,1) ,TIME = 233

9: LEVEL 6 CALL OF C(9,0),TIME = 233

8: LEVEL 6 RETURN OF C = 1,TIME = 250

9: LEVEL 5 RETURN OF C = 10,TIME = 250
9: LEVEL 4 RETURN OF C = 55,TIME = 250
9: LEVEL 3 RETURN OF C = 220,TIME = 250
9: LEVEL 2 RETURN OF C = 715,TIME = 267
9: LEVEL 1 RETURN OF C = 2002,TIME = 267
9: LEVEL 0 RETURN OF C = 5005,TIME = 267

AU EWN -

= O

To facilitate the tracing of programmer-defined functions, the keyword
EFTRACE is provided. When &FTRACE is on, all programmer-defined functions are
traced on call and return. The value of &FTRACE is decremented by one each time
a programmer-defined function is called or returns. §TRACE and 6&FTRACE are
independent, and both may be wused at the same time. The following program
illustrates the use of &FTRACE.

§FTRACE = 1000 1

*

* THIS PROGRAM COMPUTES THE NUMBER OF SYMMETRIC BISECTIONS OF

* A CHECKERBOARD OF EVEN ORDER. THE PROBLEM IS DESCRIBED IN

* MARTIN GARDNER'S "MATHEMATICAL GAMES" IN SCIENTIFIC AMERICAN

* NOVEMBER, 1962.

*
DEFINE (*AXIS (X,Y) ') 2
DEFINE ('RIGHT (X,Y)) 3
DEFINE ('LEFT (X,Y) ') m
DEFINE ('UP (X,Y) ') 5
DEFINE ('DOWN (X,Y) ') 6
DEFINE ('COUNT (X) ') 7

*

READ suM = 0 8
N = TRIM(INPUT) :F (END) 9
BOARD = ARRAY(-N ':' N ',!' -N ':' N) 10
BOARDKO,0> = t:¢ 11
AXIS (0,0) 12
OUTPUT = 'THERE ARE ' SUM ' SYMMETRIC BISECTIONS OF A ' 2 * 13

. N ' BY * 2 % N ' CHECKERBOARD' : (READ) 13

M ‘

AXIS X = X +1 14
EQ (X,N) COUNT () : S (RETURN) 15
IDENT (BOARD<~X,~Y>) :F (FRETURN) 16
IDENT (BOARD<X, Y>) :F (FRETURN) 17
BOARDLX,Y> = ':° 18
AXIS (X,Y) 19
UP (X,Y) 20
BOARD<X,Y> = : (RETURN) 21

*

RIGHT X = X + 1 22
EQ (X, N) COUNT () : S (RETURN) 23
IDENT (BOARD<-X,-Y>) :F (FRETURN) 214
IDENT (BOARD<X, Y>) :F (FRETURN) 25
BOARDKX,Y> = ‘':! 26
RIGHT (X,Y) 27
UP (X,Y) » 28
DOWN (X ,Y) 29
BOARD<X, Y> = : (RETURN) 30

*

UP Y = Y + 1 31
EQ (Y,N) COUNT () : S (RETURN) 32
IDENT (BOARD<-X,-Y>) :F (FRETURN) 33
IDENT (BOARD<X, Y>) :F (FRETURN) 34
BOARD<X,Y> = 1':°' 35
RIGHT (X,Y) 36
UP (X,Y) 37
LEFT (X,Y) 38
BOARD<X,¥Y> = : (RETURN) 39

*

LEFT X = X - 1 40
EQ (X,~N) COUNT () : S (RETURN) 41
TDENT (BOARD<-X,~Y>) :F (FRETURN) 42

DOWN

COUNT

END

Given 2 as an

STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT

IDENT (BOARD<LX, Y>)

BOARDKX,Y>

LEFT (X,Y)
UP (X,Y)
DOWN (X, Y)

BOARDKX,Y>

Y =
EQ (Y,-N)

- 1
COUNT ()

IDENT (BOARDL-X,~-Y>)
IDENT (BOARDKX, Y>)

BOARD<X,Y>
RIGHT (X, Y)

LEFT (X, Y)
DOWN (X, Y)

BOARDKX,Y>

SUM =

suMm + 1

input value, this program produces

12: LEVEL
19: LEVEL
15: LEVEL
58: LEVEL
15: LEVEL
20: LEVEL
36: LEVEL
23: LEVEL
58: LEVEL
23: LEVEL
37: LEVEL
32: LEVEL
58: LEVEL
32: LEVEL
38: LEVEL
45: LEVEL
45: LEVEL
41: LEVEL
58: LEVEL
41: LEVEL
46: LEVEL
32: LEVEL
58: LEVEL
32: LEVEL
47: LEVEL
51: LEVEL
48: LEVEL
46: LEVEL
32: LEVEL
58: LEVEL
32: LEVEL
47: LEVEL
51: LEVEL
48: LEVEL
39: LEVEL
21: LEVEL

CaNWWWEFEWWEEFFTUOEZTUOUOUFWNNWWNNWWN =S aONNaO

:F (FRETURN)

: (RETURN)

: S (RETURN)
:F (FRETURN)
:F (FRETURN)

: (RETURN)

: (RETURN)

the following output.

CALL OF AXIS(0,0),TIME = 100
CALL OF AXIS(1,0),TIME = 117
CALL OF COUNT(''),TIME = 117
RETURN OF COUNT = '!',TIME = 117
RETURN OF AXIS = '!,TIME = 117
CALL OF UP(1,0),TIME = 133

CALL OF RIGHT(1,1),TIME = 133
CALL OF COUNT(''),TIME = 150
RETURN OF COUNT = f',TIME = 150
RETURN OF RIGHT = '!',TIME = 150
CALL OF UP(1,1),TIME = 150

CALL OF COUNT(''),TIME = 166
RETURN OF COUNT = 'f,TIME = 166
RETURN OF UP = '!',TIME = 166
CALL OF LEFT(1,1),TIME = 183
CALL OF LEFT(0,1),TIME = 183
CALL OF LEFT(-1,1),TIME = 200
CALL OF COUNT(''),TIME = 200
RETURN OF COUNT = '',TIME = 200
RETURN OF LEFT = '!,TIME = 200
CALL OF UP(-1,1),TIME = 216
CALL OF COUNT(''),TIME = 216
RETURN OF COUNT = 'f,TIME = 216
RETURN OF UP = '',TIME = 233
CALL OF DOWN(-1,1) ,TIME = 233
FRETURN OF DOWN,TIME = 233
RETURN OF LEFT = '!',TIME = 250
CALL OF UP(0,1),TIME = 250

CALL OF COUNT(''),TIME = 250
RETURN OF COUNT = '',TIME = 266
RETURN OF UP = '!',TIME = 266
CALL OF DOWN (0,1),TIME = 283
FRETURN OF DOWN,TIME = 283
RETURN OF LEFT = '!',TIME = 283
RETURN OF UP = '!',TIME = 283
RETURN OF AXIS = '!',TIME = 300

THERE ARE 6 SYMMETRIC BISECTIONS OF A 4 BY 4 CHECKERBOARD

3. Label Tracing

TRACE (name, 'LABEL")

causes trace printout whenever transfer is made to the name.

if the statement labelled with the name is flowed

function entry

The foll
decimal form,

*

%*
%*

DEHEX
DEHEX1

DEHEX.END
*

*
READ

END

Typical printo

STATEMENT
STATEMENT
STATEMENT

DEHEX (100) = 2
STATEMENT
DEHEX (000001)
STATEMENT
STATEMENT
DEHEX (00011) =
STATEMENT
DEHEX (000F) =
STATEMENT
DEHEX (E) = 14
STATEMENT
STATEMENT
STATEMENT
STATEMENT
UNABLE TO CONV
STATEMENT
STATEMENT
STATEMENT
STATEMENT

point.

owing program, which
illustrates label tracing.

§TRACE = 1000
TRACE (*DEHEX1', 'LABEL')

DEFINE ('DEHEX (STR) NO')

STR POS(0) SPAN('0') =
STR LEN(1) . NO =
DEHEX = INTEGER(NO) 16
* ABCDEF' BREAK (NO) . NO
DEHEX = 16 * DEHEX + 10 +
NUMBER = TRIM(INPUT)
OUTPUT

= 'DEHEX(' NUMBER ') = !
OUTPUT = 'UNABLE TO CONV

ut from this program is

6: TRANSFER TO DEHEX1,TIME
6: TRANSFER TO DEHEX1,TIME
6: TRANSFER TO DEHEX1,TIME
56
6: TRANSFER TO DEHEX1,TIME
= 1 .
6: TRANSFER TO DEHEX1,TIME
6: TRANSFER TO DEHEX1,TIME
17
8: TRANSFER TO DEHEX1,TIME
15
8: TRANSFER TO DEHEX1,TIME
6: TRANSFER TO DEHEX1,TIME
8: TRANSFER TO DEHEX1,TIME
8: TRANSFER TO DEHEX1,TIME
8: TRANSFER TO DEHEX1,TIME
ERT 1ABCG
6: TRANSFER TO DEHEX1,TIME
8: TRANSFER TO DEHEX1,TIME
8: TRANSFER TO DEHEX1,TIME
8: TRANSFER TO DEHEX1,TIME

converts

* DEHEX + NO

SIZE (NO)

DEHEX (NUMBER)

ERT ' NUMBER

n ot
-—
~

50

67
83

100

1}
—_
-
3

133
150
167
167

183
200
200
217

into,

or

No printout occurs

is entered

: (DEHEX. END)

:F (RETURN)
:S (DEHEX1)
:F (FRETURN)
: (DEHEX1)

:F (END)

:S (READ)
: (READ)

as

a

numbers from hexadecimal form to

=3

w

oo BLN Be R BF =

DEHEX (1ABC) = 6844

STATEMENT 8: TRANSFER TO DEHEX1,TIME = 233
DEHEX (000E) = 14

STATEMENT 6: TRANSFER TO DEHEX1,TIME = 250

STATEMENT 8: TRANSFER TO DEHEX1,TIME = 266
DEHEX (001E) = 30

STATEMENT 8: TRANSFER TO DEHEX1,TIME = 283

STATEMENT 8: TRANSFER TO DEHEX1,TIME = 300
DEHEX (00EC) = 23

STATEMENT 8: TRANSFER TO DEHEX1,TIME = 316

STATEMENT 8;: TRANSFER TO DEHEX1,TIME = 333

STATEMENT 82 TRANSFER TO DEHEX1,TIME = 333

STATEMENT 8¥ TRANSFER TO DEHEX1,TIME = 350
DEHEX (OO0FACE) = 64206

STATEMENT 8: TRANSFER TO DEHEX1,TIME = 450

STATEMENT 8: TRANSFER TO DEHEX1,TIME = U466

STATEMENT 8: TRANSFER TO DEHEX1,TIME = 466

STATEMENT 8: TRANSFER TO DEHEX1,TIME = 483

STATEMENT 8: TRANSFER TO DEHEX1,TIME = 483
DEHEX (AAAAA) = 699050

4, Keyword Tracing

TRACE (name, 'KEYWORD')

causes trace printout when the value of the named keyword is changed. Only

three keywords can be traced: STCOUNT, STFCOUNT, and FNCLEVEL. The following
program, which converts numbers from decimal to hexadecimal form, illustrates
keyword tracing.

&TRACE = 1000 1
TRACE (' STFCOUNT' , * KEYWORD') 2

b3
DEFINE (*HEXER (N) Q,R') 3
HEGITS = '0123456789ABCDEF! 4

b3

b3

READ NUM = TRIM(INPUT) :F (END) 5
OUTPUT = 'HEXER(' NUM ') = ' HEXER (NUM) : :S(READ) 6
OUTPUT = *UNABLE TO CONVERT ' NUM : (READ) 7

b3

b3

HEXER INTEGER (N) :F (FRETURN) 8
Q = GT(N,15) N / 16 :F (HEX . END) 9
R=N-0 % 16 10
N = Q 11
HEGITS LEN(R) LEN(1) . R :F (FRETURN) 12
HEXER = R HEXER : (HEXER) 13

HEX.END HEGITS LEN(N) LEN(1) . R :F (FRETURN) 14
HEXER = R HEXER : (RETURN) 15

END 16

Typical printout from this program is

STATEMENT 9: &STFCOUNT = 1,TIME = 0
HEXER (1) = 1
STATEMENT 9: &STFCOUNT = 2,TIME = 33

152

HEXER(17) = 11
STATEMENT 9: &STFCOUNT

3,TIME = 49

HEXER (15) = F

STATEMENT 9: &STFCOUNT = 4,TIME = 66
HEXER(14) = E

STATEMENT 9: &§STFCOUNT = 5,TIME = 99
HEXER (6844) = 1ABC

STATEMENT 8: &STFCOUNT = 6,TIME = 116

STATEMENT 6: §STFCOUNT = 7,TIME = 116
UNABLE TO CONVERT 1239.0003

STATEMENT 9: §STFCOUNT = 8,TIME = 166

HEXER (30) = 1E

STATEMENT 9: §STFCOUNT
HEXER (236) = EC

STATEMENT 9: &§STFCOUNT = 10,TIME = 216

9,TIME = 183

HEXER (64206) = FACE

STATEMENT 9: §STFCOUNT = 11,TIME = 249
HEXER (6 99050) = AAAAA

STATEMENT 9: §STFCOUNT = 12,TIME = 266
HEXER(13) = D

STATEMENT 9: §STFCOUNT = 13,TIME = 299
HEXER(0) = 0

STATEMENT 9: &§STFCOUNT = 14,TIME = 316
HEXER (000) = 0

STATEMENT 9: &STFCOUNT = 15,TIME = 349
HEXER (128) = 80

STATEMENT 9: &STFCOUNT = 16,TIME = 366
HEXER (256) = 100

STATEMENT 9: &§STFCOUNT = 17, TIME = 416
HEXER (123456789) = 75BCD15

STATEMENT 5: &§STFCOUNT = 18,TIME = 648

5. Discontinuation of Tracing

Tracing 1s a global condition that depends on the value of &§TRACE.
Regardless of trace requests made through the TRACE function, there is no trace
output if &TRACE is off. The value of &TRACE may be set to zero explicitly, or
may reach zero as it is decremented as the result of tracing. Individual trace
associations may be cancelled, however, by executing

STOPTIR (name, type)

which cancels a single trace association for the name and type. Thus the
tracing of statement failure is stopped by executing

STOPTR (*STFCOUNT', YKEYWORD!)

B. Programmer-Defined Trace Functions

The TRACE function has an optional fourth argument that permits the
programmer to supply procedures for tracing. The form of the function is

TRACE (name,type,tag, function)

153

where the function is a programmer-defined function.

When the traced action occurs, the function is called with the name as its
first argument and the tag as its second argument. Thus the programmer may
define trace procedures to supplement the standard ones. The keyword &TRACE is
turned off on entry to a programmer-defined trace procedure and restored on
return. This prevents accidental tracing of a trace procedure. The programmer
may turn the STRACE keyword on while in a trace procedure.

1. Invoking Programmer—-Defined Trace Procedures

The exact time at which a programmer-defined trace procedure is called
depends on the type of trace.

VALUE: Jjust after assignment of the new wvalue

CALL: Jjust after evaluation of the arguments, but before execution of
the first statement in the function

RETURN: just before the return is made
FUNCTION: as for CALL and RETURN
LABEL: Jjust before transfer to the label

KEYWORD: just after the keyword is changed

2. Tools for Writing Programmer—-Defined Trace Procedures

Special information is required for writing more elaborate
programmer—-defined trace procedures. Three keywords and three functions are
provided expressly for this purpose.

1. 6&STNO is a protected keyword whose value is the statement number of the
Statement currently being executed.

2. GE&LASTNO 1is a protected keyword whose value is the statement number of
the last statement executed.

3. G&RTNTYPE is a protected keyword whose value 1is +the type of return
(RETURN, FRETURN, or NRETURN) made by the last defined function to return.

4. ARG(function,n) 1is a function whose value 1is the name of the nth
argument of the programmer-defined function. ARG 1s useful in writing
programmer-defined trace procedures that trace several functions and need to
determine the names of the formal arguments of the functions being traced.

5. LOCAL (function,n) is a function whose value is the name of the nth
local variable of the defined function.

6. FIELD(data type,n) is a function whose value is the name of the nth
field of the programmer-defined data type.

The following example illustrates a programmer-defined function, VALTR,
that prints a trace output only when a traced variable is assigned a specified

value. KEY is a global variable. Trace output only occurs when a traced
variable is assigned the value of KEY. If the variable being traced is not a
string, the tag is used in the printed output. Use of this function is

154

illustrated in the following program which produces trace output when certain

variables are assigned the value 25.

POWER = ARRAY ('25,5")
KEY = 25

DEFINE ('VALTR (VAR,TAG)ST,TIME!)

ETRACE = 1000

TRACE('I','VALUE',, 'VALTR!')

TRACE (. POWERK5,2>, "VALUE',' 5 %% 2% tyALTR!')
TRACE (. POWER<25, 1>, 'VALUE', ' 25 ** 1! 'VALTR"')

¥*

SET UP MATRIX OF INTEGER POWERS

J = 1
NEXTI I = O
NEXTP I = I + 1
POWERKI,J> = I %% J :S (NEXTP)
J = LT(J,5) J + 1 :S (NEXTT) F (END)
*
VALTR ST = &LASTNO
TIME = TIME()
IDENT ($VAR, KEY) :F (RETURN)
TAG = IDENT (DATATYPE (VAR), 'STRING') VAR
OUTPUT = *KEY VALUE "' KEY '" ASSIGNED TO ' TAG
+ * IN STATEMENT ' ST ' AT TIME ' TIME
+ : (RETURN)
END

The printed output is

KEY VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 166
KEY VALUE "25" ASSIGNED TO 25 ** 1 IN STATEMENT 11 AT TIME 166
KEY VALUE "25" ASSIGNED TO 5 ** 2 IN STATEMENT 11 AT TIME 199
KEY VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 266
KEY VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 332
KEY VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 416
KEY VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 499

[\

~SooueEw

10
1
12

13

15
16
17
17
17
18

155

Chapter 8. Input and Output

Input and output are accomplished by associating variables with data sets
{(files). In the case of a variable associated in the output sense, each time
the variable 1is assigned a value, a copy of the value is put out onto the
associated data set. In the case of a variable associated in the input sense,
each time +the value of the variable 1is used, a new value is read from the
associated data set and becomes the new value of the variable. Thus input and
output go on during program execution without any explicit I/0O statements, as a
result of I/0 associations. Variables having standard associations are
described in the following sections.

A. Printed Output

The variable OUTPUT is associated with the standard print data set (usually
the printer). Consequently, whenever OUTPUT is assigned a value, printout is
generated. For example, ,

OUTPUT = 'THE SELECTED VALUES ARE"'
produces the output

THE SELECTED VALUES ARE

Output may also result from value assignment specified in patterns. For
&xample,
|
PEXP = BAL . EXP1 . OUTPUT '+' BAL . EXP2 . OUTPUT

EXP PEXP

prints the +two terms in EXP, and assigns their values to EXP1 and EXP2. This
type of output is often useful for diagnostic purposes, and does not affect the
pattern matching or the assignments made to EXP1 and EXP2.

Ordinary printout is printed 131 characters per line, with as many lines as
necessary being generated. The null string is treated as a blank character and
a blank line is printed for 1it. Strings are wusually assigned to output
variables. Integers and real numbers assigned to an output variable are
automatically converted to strings. If an array is assigned +to an output
variable, the printed output is ARRAY with the prototype of the array enclosed
in parentheses. For example, the statements

156

MATRIX
ouTPUT

ARRAY ('-2:2,-3:3',0)
MATRIX

nou

print
ARRAY ('-2:2,-3:3")

If the prototype is longer than twenty characters, only the string ARRAY is
printed. If an object with any other data type is assigned to an output
variable, the formal identification of its data type is printed. For example,

OUTPUT = LEN(7)
prints

PATTERN

B. Punched Output

The variable PUNCH is associated with the standard punch data set.
Consequently, whenever PUNCH is assigned a value, a punched card is generated.
For example,

PUNCH = 0

produces a card with zero punched in column one.
- All the remarks about print output apply to punch output, except that 80.
characters are punched per card, with additional cards punched as necessary for

longer strings. The cards have no sequence numbering or identification wunless
provided in the strings which are punched.

c. Input

The variable INPUT is associated with the standard input data set.
Whenever the value of INPUT is used, a card image is read from the input stream
and becomes the new value of INPUT. For example,

OuUTPUT = INPUT
reads a card image and prints it. Similarly,
TRIM (INPUT) BAL . EXP

reads a card image and matches for a balanced string. All eighty columns of the
card images are read, and the value of INPUT is an eighty character string.

157

Since each wuse of INPUT reads a card image, previous values of INPUT are
lost unless they are assigned to other variables.

If the end of the input data set is encountered when a value of INPUT is
requested, failure results. This failure can be used to detect the end of an
input data set. For example,

I = 1
READ DATA<KI> = INPUT :F (OUT)
I = I+ 1 : (READ)

ouT

reads card images into the array DATA until the input data stream 1is exhausted
(or I exceeds the range of DATA). Control is then transferred to OUT.

D. The I/O System

All input/output is handled by FORTRAN IV I/O routines. That is, SNOBOLY4
I/0 is done by the same system that does I/O for FORTRAN IV object programs.
Consequently, the conventions and I/O concepts specified for the FORTRAN 1V
language also apply to SNOBOL4. In addition, the version of the language
described here operates under 0S/360. It is necessary to understand both the
fundamentals of FORTRAN IV I/0 [7,8] and job control language (JCL) [9] in order
to use the I/0 facilities of SNOBOL4 effectively.

In FORTRAN, data sets (files) have numbers (data set reference numbers).
These numbers are referred +to in source-language programs and are associated
with specific data sets by JCL at run time. There are three standard data sets:

normal input stream (5)
normal print output (6)
normal punch output (7)

DDNAMEs in JCL are used to associate the data set reference numbers with
actual data sets. DDNAMEs for FORTRAN have the form FTxxFyyy, where xx
corresponds to the data set reference number and yyy is a file sequence number
for multifile data sets. The typical DD cards used in SNOBOL4 associate the
standard data set reference numbers 5, 6, and 7 as follows:

//FT06F001 DD SYSOUT=A
//FT07F001 DD UNIT=SYSCP
//FTO5F001 DD *

This JCL, or its equivalent, is contained in the SNOBOLY4 cataloged procedure,
and is supplied automatically when the cataloged procedure is used.

A wide range of devices and record structures can be specified on DD cards.
By changing the DD cards, the data streams can be assigned to different data
sets at run time. Thus,

//FT05F001 DD DSNAME=PROG1,VOLUME=SER=BTLXX1, X
/7 UNIT=DISK,DISP=QLD

158

specifies an input stream from a data set PROG1 on a disk file. similarly,

//FT07F001 DD DSNAME=PUNCHER,VOLUME=SER=MYSAV1,UNIT=TAPE, C
// LABEL=(1,SL) ,DISP=(NEW,PASS), C
/7 DCB= (RECFM=FB,LRECL=80,BLKSIZE=800)

causes punched output to go onto a 9-track tape with a blocking factor of 10.

A complete discussion of DD statements is beyond the scope of this manual,
and is a very involved and difficult subject. The important fact is that JCL
permits the specification of a wide variety of devices and record structures.
This specification is made when the program is run and reguires no alteration of
the program.

The FORTRAN I/O used in SNOBOL4 only handles sequential data sets. 1In
particular, it cannot handle members of partitioned data sets.

FORTRAN supports multifile data sets. The last three characters 1in the
DDNAME specify the file number. When FORTRAN comes to the end of a file, it
automatically opens the next file of the same data set reference number.

Thus, for example, input may come from several files:

//FT05F002 DD DSNAME=DATAZ2,UNIT=DISK,VOLUME=SER=BTLHO4,DISP=0OLD
//FTO5F001 DD *

/*

With these DD cards, after the in-line data stream is exhausted, records are
read from DATA2. The failure which occurs when an end of a data set is reached
must be taken into account in programming.

E. Output Associations

The variables OUTPUT and PUNCH have predefined output associations.
Programmer-defined associations may be made using the function OUTPUT. The form
of the function is

OUTPUT (name, number, format)

OUTPUT associates the name with the data set reference number according to the
given format. The format is a string specifying a FORTRAN IV format. The
following statements correspond to the associations for the variables OUTPUT and
PUNCH:

OUTPUT ('OUTPUT', 6, ' (1X,131A1) 1)
OUTPUT (' PUNCH',7, ' (80A1) 1)

Using the OUTPUT function, any variable can be associated with any data set
reference number. For example,

159

PRFORM = ' (1X,131A1)"
TEST = ARRAY('S8,8")
OUTPUT (. TEST<1, 1>, 6, PRFORM)
OUTPUT (. TEST<8, 8>, 6 , PRFORM)

associate the array elements TEST<1,1> and TEST<8,8> with the ordinary print
data set and with the standard print format. As a result, whenever either
TEST<1,1> or TEST<8,8> is assigned a value, the new value is printed.

Data set reference numbers are not restricted to 5, 6, and 7, but can range
from 1 through 99. Assoclations can be made with data set reference numbers

other than the standard ones. 1In this case, a DD statement for that number must
be provided when the program is. run.

OUTPUT (* TEXT',7," (80A1) ')
associates TEXT with the punch data set. On the other hand,
OUTPUT (' TEXT', 20, ' (80A1) ')

and the DD statement

//FT20F001 DD DSNAME=NEWF,UNIT=TAPE, VOLUME=SER=MYSAV1, X
/7/ LABEL= (2,SL) ,DISP= (NEW,PASS) , DCB= (RECFM=FB, X
/7/ BLKSIZE=800,LRECL=80)

ailow the program to put card images onto the second file of a tape. The LRECL
parameter of 80 and the format (80A1) relate the record size of the file to the
record size in the format.

Formats used in output association must specify the conversion of at least
one element by A-conversion. (Normally nA1l-conversion is used.) Integers are
converted into strings and I-conversion must not be used. In addition to
A-conversion, quoted 1literals, X-, H-, T-, and Z-conversion may be specified
[7,8]. Carriage control must be provided for printing; otherwise the first
character of the string is consumed for this purpose. Consider

OUTPUT (*TITLE',6, ' (1H1,131a1/ (1X, 131a1)) 1)

When a wvalue 1is assigned to TITLE, a page is ejected and the value titles the
next page of output. The use of literals is illustrated by

OUTPUT ('SUM',6," (' SUM="',127A1/ (1X,131A1)) ")
which includes identifying information with the format. Subsequently,

SUM = 300

160

causes the printout

SUM=300

The predefined associations can be changed. Thus,
OUTPUT ('OUTPUT', 6, ' (1X,120A1) *)

shortens the line length for OUTPUT to 120 characters.

F. Input Associations

Programmer-defined input associations can be made using the function INPUT.
The form of this function is

INPUT (name,number,length)

INPUT associates the name with the data set reference number, and specifies that
the resulting string is to have the given length. (Notice in particular that no
format is specified.) INPUT has a predefined association equivalent to

INPUT (* INPUT',5,80)

The specified length has some special properties. If the length is 1less than
the record size on the data set being read, the last part of the record is lost.
Hence,

INPUT (*INPUT',5,72)

changes the association for INPUT so that only 72 columns are read. Columns 73
through 80 are lost if data set reference number 5 is associated with ordinary
card input. A length longer than the record size should not be specified.

G. Other I/O Functions

Several other functions are provided for I/O-related operations [7,8]. All
of these functions return the null string as value.

1. DETACH

DETACH (name) removes any input and output association which the name may have.
For example,

DETACH (' OUTPUT")

terminates normal print output.

161

2. ENDFILE

ENDFILE (number) writes an end of file on (closes) the data set specified by the
number. For example,

ENDFILE (20)
closes the data set associated with data set reference number 20.
3. REWIND

REWIND (number) repositions the data set associated with the number to the first
file. For example, '

REWIND(10)

rewinds the data set associated with data set reference number 10.
Subsequently, reference to 10 refers to the beginning of the data set specified
by FT10F001 (even if 10 is a multifile data set).

4. BACKSPACE

BACKSPACE (number) backspaces one record on the data set associated with the
number.

162

Chapter 9. Structure of a SNOBOL4 Run

A SNOBOL4 run consists of three distinguishable parts:

1) compilation,
2) execution, and
3) termination.

A. Compilation

During compilation, the SNOBOL4 system 1is 1nitialized and +the source
program is compiled into an intermediate object code in a form suitable for
interpretation during program execution. Compilation uses the same processes as
conversion of a string to object code wusing the CODE function. Additional
processes are involved in the reading of lines to be compiled from the input
data set, printing of a source listing on an output data set, and noting errors
in the source program.

1. Source Program Input

Input to the compiler comes from the standard input stream associated with
data set reference number 5. The compiler begins reading program from the data
set associated with FTO5F001. Only 72 characters per line are read, so that
columns 73-80 of card-image input may be used for sequential numbering. - The
compiler continues to read until it encounters the end statement. If an end of
file is encountered before the end statement is found, the compiler goes to the
next file for reference number 5. The input program therefore may be in several
sections given by FTO05F001, FTO05F002, etc.

2. Source Listing

The 1listing of the program with sequential statement numbers goes on the
standard print output. When the end statement is encountered, the compilation
process stops. A listing of the compilation and placement of statement numbers
can be controlled by control lines. A minus sign at the beginning of a 1line
identifies a control line. Program listing is suppressed by the control line

-UNLIST

Program listing is restored by the control line

-LIST

163

The normal positioning of statement numbers is at the right side of the source
listing. Statement numbers optionally may be placed at the 1left side of the
listing. The control line

-LIST LEFT

changes statement numbering to the left. Right positioning of the statement
numbers is restored by

-LIST RIGHT
or simply
-LIST

Blanks may appear between the minus sign and LIST or UNLIST. One Or more
blanks must appear between the LIST and the LEFT or RIGHT. Any characters other
than LEFT following blanks on the LIST control line cause the same action as
RIGHT. An erroneous control line is ignored.

3. Errors Detected during Compilation

Certain kinds of errors in the source program are detected during
compilation. When an error is detected in a statement, compilation of that
statement is terminated and an error message is printed below the statement,
describing the nature of the error. A list of compilation error messages is
given in Appendix B. A marker pointing to the vicinity of the error 1is also
printed. This marker may be somewhat before or after the error, depending on
the nature of the error. Since compilation of a statement stops when an error
is encountered, only the first error in any one statement is detected.
Compilation continues in spite of erroneous statements. However, if more than
fifty erroneous statements are found, error termination occurs and the program
is not executed.

B. Execution

Execution of the compiled object code begins when compilation is complete.
Ordinarily, program execution begins with the first statement of the program.
Program execution may be started at any labelled statement by specifyving that

label 1in the end statement. The label of the first statement to be executed is
placed in the position of the subject. For example,

END INIT
causes program execution to begin with the statement labelled INIT .

Data read from the standard input source begins with the first line after
the end statement. Data printed during execution follows the source listing.

164

C. Termination

Upon termination, a statistics summary 1is printed +to provide timing
information and counts of certain program operations. If the keyword &DUMP is
on at program termination, a dump of natural variables and unprotected keywords
is also provided. Only natural variables with nonnull values are included. If
the value of a variable is not a string, the same representation of the value is
given as would be given if the value were printed as the result of an output
association.

There are four kinds of termination:
1) normal,
2) error,

3) intervention, and
4) catastrophic.

1. Normal Termination

Normal termination occurs when the program transfers to END or flows into
the end statement. The number of the last statement executed and the function
level are printed. The following program illustrates the printout produced by a
program that terminates normally.

SNOBOLY4 (VERSION 2,0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

&§DUMP = 1 : 1
THIS PROGRAM IS THE ALGORITHM BY HAO WANG (CF. 'TOWARD

MECHANICAIL MATHEMATICS!', IBM JOURNAL OF RESEARCH AND

DEVELOPMENT 4 (1) JAN 1960 PP.2-22.) FOR A PROOF-DECISION

PROCEDURE FOR THE PROPOSITIONAL CALCULUS. IT PRINTS OUT A

PROOF OR DISPROOF ACCORDING AS A GIVEN FORMULA IS A THEOREM

OR NOT. THE ALGORITHM USES SEQUENTS WHICH CONSIST OF TWO

LISTS OF FORMULAS SEPARATED BY AN ARROW (--*). INITIALLY, FOR

A GIVEN FORMULA F THE SEQUENT

——% F

IS FORMED. WANG HAS DEFINED RULES FOR SIMPLIFYING A FORMULA
IN A SEQUENT BY REMOVING THE MAIN CONNECTIVE AND THEN
GENERATING A NEW SEQUENT OR SEQUENTS. THERE IS A TERMINAL
TEST FOR A SEQUENT CONSISTING OF ONLY ATOMIC FORMULAS:

A SEQUENT CONSISTING OF ONLY ATOMIC FORMULAS IS VALID IF
THE TWO LISTS OF FORMULAS HAVE A FORMULA IN COMMON.

BY REPEATED APPLICATION OF THE RULES, ONE IS LED TO A SET OF
SEQUENTS CONSISTING OF ATOMIC FORMULAS. IF EACH ONE OF THESE
SEQUENTS IS VALID THEN SO IS THE ORIGINAL FORMULA.

O3 3 3 3F 3 3t 3t 3 3 3 3t 3F 3 3 3E 3F 3t 3 3t ¢ 3 3 3

UNOP = 'NOT! 2
BINOP = 'AND' | 'IMP' | 'OR' | 'EQU' 3
FORMULA = ' ' UNOP . OP ' (' BAL . PHI ")' | 4

' +* BINOP . OP ' (' BAL . PHI ',' BAL . PSI ')!' 4

165

READ

INVALID
*

WANG

TEST

ANOT

AAND

AOR

* ¥ ¥ ¥ ¢

ATMP

*
AEQU

*

CNOT
*

CAND

*

COR
*

CIMP
*

CEQU

END

ATOM

=("BAL"').A

DEFINE (*WANG (ANTE,CONSEQ) PHI,PSI')

EXP

OouTPUT
OUTPUT
OUTPUT

WANG (,'
OUTPUT
OUTPUT

OUTPUT
ANTE
CONSEQ
ANTE
CONSEQ
ANTE
CONSEQ

WANG (ANTE,

WANG (ANTE

WANG (ANTE
WANG (ANTE

WANG (ANTE

WANG (ANTE,

WANG (ANTE

WANG (ANTE,

WANG (ANTE

WANG (ANTE,
WANG (ANTE,

WANG (ANTE,

WANG (ANTE

WANG (ANTE
WANG (ANTE

TRIM (INPUT)

*FORMULA: ' EXP

= 'NOT VALID!

ANTE ' —--% ! CONSEQ
FORMULA
FORMULA
= ANTE '

= + ' CONSEQ * !
ATOM =

A

CONSEQ ' ' PHI)
' * PHI ' * PSI,CONSEQ)

* ' PHI,CONSEQ)
' ' PSI,CONSEQ)

' ' PSI,CONSEQ)
CONSEQ ' ' PHI)

' ' PHI ' ' PSTI,CONSEQ)
CONSEQ * ¢ PHI ' ' PSI)

' ' PHI,CONSEQ)

CONSEQ ' ' PHI)
CONSEQ ' ' PSI)

CONSEQ ' ' PHI ' ' PST)
* ' PHI,CONSEQ ' ' PSI)

' * PHI,CONSEQ ' ' PSI)
* * PST,CONSEQ ' ' PHT)

NO ERRORS DETECTED DURING COMPILATION

166

: F (END)

:F (INVALID)
: (READ)
: (READ)

:S{ $('A' 0OP))
:S($('Ccr oP))

: F (FRETURN)

:S (RETURN) F (TEST)

: S (RETURN) F (FRETURN)
: S (RETURN) F (FRETURN)

: F (FRETURN)
: S (RETURN) F (FRETURN)

:F (FRETURN)
: S (RETURN) F (FRETURN)

:F (FRETURN)
: S (RETURN) F (FRETURN)

:S (RETURN) F (FRETURN)

: F (FRETURN)
: S (RETURN) F (FRETURN)

: S (RETURN) F (FRETURN)
: S (RETURN) F (FRETURN)

: F (FRETURN)
:S (RETURN) F (FRETURN)

21
22

23
24

25
26

27
28

29

30
31

32
33
34

36

FORMULA: IMP (NOT(OR(P,Q)) ,NOT(P))

~--* IMP (NOT (OR(P,Q)) ,NOT (P))
NOT (OR (P,Q)) —=-* NOT (P)

--% NOT(P) OR(P,Q)

P —-% OR(P,Q)

P --% P Q
VALID

FORMULA: NOT (IMP (NOT (OR(P,Q)) ,NOT(P)))

—--% NOT (IMP (NOT (OR (P, Q)) ,NOT (P)))
IMP (NOT (OR (P,Q)) , NOT (P)) =--%

NOT (P) ~--*

- P
NOT VALID

FORMULA: IMP (AND (NOT (P) ,NOT (Q)) ,EQU (P,Q))

—-=-% IMP (AND (NOT (P) ,NOT (Q)) ,EQU (P, Q))
AND (NOT (P) ,NOT (Q)) =-=* EQU(P,Q)

NOT (P) NOT(Q) --* EQU(P,Q)

NOT (Q) --* EQU(P,Q) P

--% EQU(P,Q) P Q

P-—-% PQQ

Q--% PQP
VALID

FORMULA: IMP(IMP (OR(P,Q),OR(P,R)),OR(P,IMP(Q,R)))

--% IMP(IMP(OR(P,Q),OR(P,R)),OR(P,IMP(Q,R)))
IMP (OR (P, Q) ,OR(P,R)) --* OR(P,IMP(Q,R))
OR(P,R) —-=* OR(P,IMP(Q,R))
——% OR (P, IMP (Q,R))

--% p IMP(Q,R)

Q -—% P R

-—% OR(P,IMP(Q,R))
--% P IMP(Q,R)

Q -—-% PR

--% OR(P,IMP(Q,R)) OR(P,Q)

-—% OR(P,Q) P IMP(Q,R)

--% P IMP(Q,R) P Q

Q -——-% P P QR
VALID

W g

NORMAL TERMINATION AT LEVEL O
LAST STATEMENT EXECUTED WAS 7

DUMP OF VARIABLES AT TERMINATION
NATURAL VARIABLES

A =) Q L}

ABORT = PATTERN

ARB = PATTERN

ATOM = PATTERN

BAL = PATTERN

BINOP = PATTERN

EXP = *IMP (IMP(OR(P,Q),OR(P,R)) ,OR(P,IMP(Q,R)))"

167

FAIL =
FENCE =

INPUT =
OP = 'I
OUTPUT
REM = P
SUCCEED
UNOP =

PATTERN

PATTERN
FORMULA = PATTERN
* IMP (IMP (OR (P, Q) ,OR (P,R)) ,OR (P, IMP (Q,R)))

MP*

= 'VALID'

ATTERN

= PATTERN

*NOT!

UNPROTECTED KEYWORDS

&EABEND
EANCHOR
&EDUMP =
EFTRACE

EFULLSCAN
EMAXLNGTH

=0

1

[

0

n o

5000

&STLIMIT = 50000

&TRACE

=0

SNOBOL4 STATISTICS SUMMARY-

168

1331
550
162

0

63

0
3.40

MS. COMPIIATION TIME

MS. EXECUTION TIME

STATEMENTS EXECUTED, 34 FAILED
ARITHMETIC OPERATIONS PERFORMED
PATTERN MATCHES PERFORMED
REGENERATIONS OF DYNAMIC STORAGE
MS. AVERAGE PER STATEMENT EXECUTED

2. Error Termination

Error termination occurs in case of a programming error or internal
condition sufficiently serious to prevent continued execution. The statement
number in which execution terminated and the function 1level are printed. An
error message 1s printed indicating the cause of the termination. A listing of
termination messages is given in Appendix B. Dumps - and statistics are then
printed as for normal termination.

The following program, from which the input data was removed, illustrates a
typical 1listing resulting from error termination. Because input data is

lacking, statement 1 fails and the array A is not formed. Subsequent reference
to A as an array in statement 4 is erroneous.

SNOBOL4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

* LET THE FIRST DATA CARD SPECIFY THE MAXIMUM NUMBER OF
* CARDS TO BE SORTED. GENERATE AN ARRAY.

A = ARRAY(TRIM(INPUT)) 1
* DEFINE THE FUNCTION INSERT.

DEFINE (' INSERT (J) TEMP') 2

* READ THE CARDS INTO THE ARRAY.
w

INIT I = I+1 3
ALI> = TRIM (INPUT) :F (SORT) 4
OUTPUT = A<I> : (INIT) 5

*

* LET N BE THE NUMBER OF CARDS. INITIALIZE THE INDEX AND

* THEN SORT.

*

SORT N = I-1 6
I = 1 7

*

* COMPARE TWO SUCCESSIVE CARDS.

*

SORTA LGT (A<I>,ALTI + 1>) ¢S (SORTC) 8

*

* IF THEY ARE IN THE PROPER ORDER,INCREMENT THE INDEX

* (UNLESS SORTING IS FINISHED) AND CONTINUE.

*

SORTB I = LT(I,N- 1) I +1 : S (SORTA) F (DONE) 9

5k

* OTHERWISE, INSERT THE CARD IN ITS PROPER PLACE.

*

SORTC INSERT(I + 1) : (SORTB) 10

E

* PUNCH SORTED CARDS.

5k

DONE I = 1 11

PUNCH OUTPUT = ALI> 13
PUNCH = OUTPUT 14
I = LT(I,N) I + 1 : S (PUNCH) F (END) 15

169

*

* FUNCTION DEFINITION
*

INSERT TEMP = A<J - 1>

AKT - 1> = ALI>

AKI> = TEMP

J = GT(J,2) J -1 : F (RETURN)

LGT (AKJ = 1>,A<JI>) : S (INSERT) F (RETURN)
END

NO ERRORS DETECTED DURING COMPILATION

ERROR TERMINATION IN STATEMENT 4 AT LEVEL O
ERRONEOUS ARRAY REFERENCE

SNOBOL4 STATISTICS SUMMARY-

782 MS. COMPILATION TIME
166 MS. EXECUTION TIME
4 STATEMENTS EXECUTED, 1 FAILED
1 ARITEMETIC OPERATIONS PERFORMED
0 PATTERN MATCHES
0 REGENERATIONS OF DYNAMIC STORAGE
41.50 MS. AVERAGE PER STATEMENT

170 !

16
17
18

20
21

3. Intervention Termination

Intervention termination occurs when operator or system action terminates
the run. This may occur if the run exceeds specified limits. If the SNOBOLH4
system 1is able to regain control after intervention, the message "CUT BY SYSTEM
IN STATEMENT n AT LEVEL m" is printed. Dumps and statistics are then printed as
for normal termination.

The following program illustrates intervention termination resulting from
failure to sense an end-of-file condition. On the IBM Systemv/ 360, when the data
on FTO5F001 is exhausted, statement 3 fails. A subsequent read attempt results
in an attempt to open FT05F002, the next file for data set reference number 5
(see Chapter 8). A second file is not intended or provided and the error
message (IHC219I) is printed by the FORTRAN I/0 routines. Control then returns
to the SNOBOLY4 system and run statistics are printed.

SNOBOLY4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

NM = BREAK(',') .. N ',' BREAK(' ') . M 1
DEFINE ('C(N,M) ') 2

READ INPUT NM 3
OUTPUT = 'C(* N ',* M *)=% C(N,M) : (READ) 4

*

c M = LT(N - M,M) N - M 5
cC = EQ(M,0) 1 : S (RETURN) 6
C = N*C(MN~-1,M~- 1) / M :(RETURN) 7

END 8

NO ERRORS DETECTED DURING COMPILATION

C(15,6)=5005
C(17,10)=19448
C(20,2)=190
C(25,24)=25
C(25,24)=25

IHC219T
TRACEBACK FOLLOWS- ROUTINE ISN REG. 14
IBCOM A60356BC
CUT BY SYSTEM IN STATEMENT 3 AT LEVEL O
233 MS. COMPILATION TIME

483 MS. EXECUTION TIME
74 STATEMENTS EXECUTED, 37 FAILED

110
4

0
6.53

ARITHMETIC OPERATIONS PERFORMED
PATTERN MATCHES

REGENERATIONS OF DYNAMIC STORAGE
MS. AVERAGE PER STATEMENT

171

On the IBM System/360, cancellation prevents the SNOBOLY4 system from regaining
control. A system completion code is given but no further output is printed.
The following program illustrates such intervention termination. The program
loops, since the function DELETE is called with a null string for CHAR. The
system completion code 222 indicates cancellation which results, in this case,
from exceeding a -specified time limit.

DEFINE ('DELETE (STRING,CHAR) ') 1

*«

READ STRING = TRIM(INPUT) : F (END) 2
CHAR = TRIM(INPUT) : F (ERR) 3
OUTPUT = STRING 4
OUTPUT = CHAR 5
OUTPUT = DELETE (STRING,CHAR) 6
OUTPUT = : (READ) 7

*«

* THIS FUNCTION DELETES OCCURRENCES OF A CHARACTER FROM A STRING

*«

DELETE STRING CHAR = : S (DELETE) 8
DELETE = STRING : (RETURN) 9

END 10

NO ERRORS DETECTED DURING COMPILATION

THE RATIO OF ATOMIC WEIGHTS OF THE TWO COMPOUNDS SUGGESTS A RELATIONSHIP
%HE RATO OF ATOMC WEGHTS OF THE TWO COMPOUNDS SUGGESTS - A RELATONSHP

ONE OF THE MORE COMMON OCCURRENCES IN EVERYDAY COMMUNICATION IS

SE F THE MRE CMMN CCURRENCES IN EVERYDAY CMMUNICATIN IS

THE FIRST OF THREE TUTORIAL LECTURES ON THE PRESENT STATE OF ART

COMPLETION CODE =~ SYSTEM=222 USER=000

4. Catastrophic Termination

Catastrophic termination occurs when system or machine malfunction causes a
situation so serious that intervention termination is impossible. In the case
of a catastrophic termination, there may be no indication of the source or cause
of the termination. Print and punch output may be incomplete or lacking
altogether.

172

Chapter10. Programming Details

The preceding sections have presented, in varying degrees of detail, the
language features of SNOBOL4. There remains a collection of odds and ends that
may be of more or less interest and utility to the programmer. This section

includes a number of such items, a potpourri whose ingredients may interest
various individuals.

A. Efficiency and Good Programming Practices

When efficiency is considered, the basic criterion is the total amount of
time required to execute the program. Execution time is most affected by the
algorithm wused and the structure of the program; both are beyond the scope of
discussion here. A less significant, but often more tangible, measure of
efficiency is the average amount of time required to execute program statements.
If the algorithm and program structure are fixed, two reasonable goals are:

1) reducing the number of statements which have to be executed, and
2) reducing the average execution time per statement.

These goals generally conflict. The number of executed statements may be
reduced by increasing their complexity, but +the average execution time 1is
increased. More can be said about the techniques for improving the efficiency
of statement execution. Some considerations listed below suggest good practices
for program organization and data representation.

Comparative timing figures are given in some cases. These figures are
approximate; precise figures depend on the machine and program environment.

1. Efficiency in Pattern Matching

Many considerations involved in using patterns efficiently were discussed
earlier. A few points deserve special emphasis.

Use anchored pattern matching if possible.

Many patterns can or should match only beginning at the first character of
the subject string. This is often +true of an entire program, in which the
anchored mode can be set using SANCHOR. While the anchored mode can be turned
on and off, it is also possible to anchor a pattern by beginning it with FENCE
or POS(0) .

0 = FENCE P

173

creates a pattern Q that is an anchored version of P.

It is worth remembering that pattern matching usually takes longest when
the pattern fails to match. This is particularly true when the pattern is not
anchored. Consider the two examples

&ANCHOR = 1

3)3)))))1)))1)3)))))) t BAL
and

&ANCHOR = 0

71)))))))))))))))))) " BAL

The pattern match in the second example takes 9.96 times as 1long as 1in the
first.

Use BREAK instead of ARB if possible.

The pattern resulting from BREAK (CS) is designed to stream quickly through
a string looking for any character in CS. ARB, on the other hand, operates
without any knowledge of what is expected to follow it. ARB first matches the
null string. Then if the component beyond it fails, ARB matches one character,
then two characters, and so on. As an example, consider the two patterns

P1
P2

BREAK (',') LEN(1)
ARB !, !

In most cases, these two patterns match the same set of strings. Consider the
two cases

' ABCDEFGHIJKLMNOPQRSTUVWXYZ, ' P1
and
'ABCDEFGHIJKLMNOPQRSTUVWXYZ, ' P2
The pattern match in the second case takes 9.88 times as long as in the first.

ARB has many legitimate uses and 1is essential in many cases. BREAK
provides a more efficient way of performing commonly used matching operations.

Use ANY instead of alternation if possible.

The pattern resulting from ANY(CS) matches any character at a speed
independent of the order of the characters in CS. 1In an explicit alternation of

174

characters, alternatives are matched in order, and the time it takes to find a
match depends on the order of the alternatives. Consider the patterns

P1

ANY (*ABCDEFGHIJKLM')

and

P2 lAl I lBl I 1t l lDl I 'El | IFI I IGI | !Hl | III
+ | 1J ‘ lK' l |L| | lM'

Applied to several different characters, the statements

C P1

and

C P2

give the following results:

1 For ¢ = tA', P1 is 1.08 times as fast as P2.

2. For C 'G', P1 is 2.44 times as fast as P2.

3. For C

‘M', P1 is 3.79 times as fast as P2.

The formation of the pattern for alternation also takes more time and space
than that for ANY.

Avoid repetitious construction of patterns.

If possible, a pattern structure should be constructed once and assigned to
a variable. An expression which appears as a pattern in a statement must be
evaluated each time the statement is executed. This form of evaluation, which
constructs the pattern over and over, consumes both time and space.
If
P1 = o111 2131 41516171819
then for the statements
N P1

and

175

the second statement takes 7.59 times as long as the first if N is 5. This
comparison includes the effects of the additional space consumed when the second
example is used repeatedly. Space consumed by patterns must eventually be
reclaimed by storage regeneration, which adds to the running time of the
program.

Do not use the fullscan mode unless necessary.

The fullscan mode, established by turning on the keyword §&FULLSCAN, is
useful in some more complicated and esoteric applications. Since the fullscan
mode bypasses all heuristics, pattern matching may take much longer. Consider
the pattern

P = ARB ',!

This pattern is usually inefficient, but serves particularly well to illustrate
the effect of heuristics. In the case of

§FULLSCAN = 0
'ABCDEFGHIJKLMNOPQRSTUVWXYZ' P

and

&§FULLSCAN = 1
'ABCDEFGHIJKLMNOPQRSTUVWXYZ' P

both examples fail to match, but the second takes 13.42 times as long to do so.
This is an extreme example, and the great difference in timing is due to all the
combinations that ARB goes through. In the first case, the heuristics make the
pattern act as if it were anchored.

In general, the fullscan mode does not ‘produce such marked effects. On the
other hand, since statements similar to the examples above are likely to occur
in the average program, it is well not to turn the fullscan mode on except for
statements in which it is required.

Use conditional rather than immediate value assignment if possible.

Immediate value assignment forms a substring and generates a variable for
every intermediate successful match for the pattern component with which it is
associated. This is a time and space consuming process. For example, if

EXP = 'D¥A/ (B*C) + (D-B) *C?
P1 BAL $§ B1 '+!' BAL $ B2
P2 BAL . B1 '+' BAL . B2

176

then in

EXP P1

and

EXP P2

P2 is 1.37 times faster than P1.

2. Structuring Data

The most serious inefficiencies in SNOBOLY4 programs are usually the result
of awkward or cumbersome representation of data. Encoding data as long strings
of symbols may be very inefficient. Furthermore, every modification of a string
by concatenation or decomposition produces a new string which consumes storage.
Matching may be gquite slow. On the other hand, arrays and programmer-defined
data objects permit a considerable range of data structures, and operations on
such structures are usually relatively efficient.

Consider two representations of a list: one as an array of elements, and
the other as a string of items separated by commas. Suppose the 1list elements
are of the form

ACOMP
ACOMPC
ADREAL
AEQLC
AEQLIC

Then the list represented by an array has the form

LISTL1> = "ACOMP!
LISTL2> = Y ACOMPC'?
LISTL3> = ' ADREAL'
LISTL4> = 'AEQLC!
LISTL5> = 'AEQLIC!

and the list represented by a string has the form

LIST = 'ACOMP, ACOMPC, ADREAL,AEQLC,AEQLIC, ... "

The speed of operating on the list depends, of course, on the operations to
be performed and the number of items on the list. Consider the problem of
creating another list from LIST with the items in reverse order. This may be
done for the two data representations by the following program segments.

177

J

PROTOTYPE (LIST)

I = 1
NLIST = COPY (LIST)

REV NLISTLI> = LISTLI> :F (OUT)
J = J - 1 .
I = I +1 : (REV)
ITEMP = BREAK(',') . ITEM LEN (1)
CLIST = LIST
NLIST =

REV CLIST ITEMP = :F (OUT)
NLIST = ITEM ',' NLIST : (REV)

For a typical 1list of ten items of the type shown, the reversal of the string
representation takes 2.3 times as long as for the array representation. For a
list of 100 items, the factor is 3.7.

There are pros and cons for both representations. Lists of varying or
unknown length are easier to handle as strings. Pattern matching can also be
used directly on the string representation to perform operations like finding
duplicate elements. On the other hand, access to individual items in the array
representation is much simpler. Consider the problem of isolating the 73rd of
100 items 1n the string representation.

B. Storage Management

Dynamic storage is continually allocated during program compilation and

execution. All forms of programmer data reside in dynamic storage and compete
for available space. This includes compiled program, strings, patterns, and so
forth. Some data, depending on its use, is transient and may be discarded.

Other data is always accessible to the program and must be kept. When dynamic
storage 1is exhausted, storage 1is regenerated, collecting all needed data and
deleting all data inaccessible to the program. This process occurs
automatically, and ordinarily does not concern the programmer directly. Run
statistics indicating a large number of storage regenerations suggest potential
trouble, however. Continual reconstruction of patterns and manipulation of very
long strings are the most common causes of frequent storage regeneration.
Storage regeneration, although it may degrade execution speed, should not be a
factor in program efficiency unless it occurs fregquently.

1. Forcing Storage Regeneration

In special circumstances, a programmer may want to force storage
regeneration. This is done with the function COLLECT which forces storage
regeneration. COLLECT returns as value the amount of storage (in bytes on the

IBM System/360) remaining free after regeneration. COLLECT (N) fails if 1less
than N bytes remain after regeneration.

2. Clearing Variable Values

Some programs are organized to process several sections of data in order,
necessitating removal of residual data between sections. The function CLEAR
assists in this matter.

178

.CLEAR()

sets the values of all natural variables, including ARB, BAL, etc., to the null
string. CLEAR does not affect the value of keywords, I/0O associations, function
definitions, the value of array elements, or the value of fields of defined data
objects. Furthermore, variables are cleared only at the level at which CLEAR is
called. This permits the values of selected wvariables to be saved at a lower
level and then restored. For example, the selected variables can be made formal
arguments to a function which calls CLEAR. If the values of X, ¥, Z, and PAT
are to be saved, a function RESET could have the defining statement

DEFINE ('RESET (X,Y,Z,PAT) ')

with the procedure

RESET CLEAR{() : (RETURN)

The values of ¥, Y, 2, PAT, and RESET are saved when RESET is called, and
restored when it returns. All other natural variables are cleared. The values
of primitive patterns can be restored using the values of the corresponding
keywords, which are not affected by CLEAR. For example,

ARB = &ARB

restores the orignal value of ARB .

179

References

1. Farber, D. J., R. E. Griswold, and 1I. P. Polonsky. "SNOBOL, A String
Manipulation Language," Journal of the Association for Computing Machinery, Vol.
11, No. 1 (January, 1964), pp. 21-30.

2. Farber, D. J., R. E. Griswold, and I. P. Polonsky. "The SNOBOL3 Programming
Language." Bell System Technical Journal, Vol XLV, No. 6 (July-August, 1966),
pp. 895-944.

3. Forte, Allen. SNOBOL3 Primer, The MIT Press, Cambridge, Massachusetts,
1967.

4. Hammersley, J. M. and D. C. Handscomb. Monte Carlo Methods, Methuen & Co.
Ltd., London, 1965, pp. 27-29.

5. Lukasiewicz, Jan. Aristotle's. Syllogistic from the Standpoint of Modern
Formal ILogic, Clarendon Press, Oxford, England, 1951, p.78.

6. Burks, A. W., D. W. Warren, and J. B. Wright. "An Analysis of a Logical
Machine Using Parenthesis-free Notation," Mathematical Tables_and Other Aids_to
Computation, Vol. VIII, 1954, pp. 53-57.

7. IBM System/360 Operating System. FORTRAN IV [G] Programmer's Guide. Form
C28-6639-1, International Business Machines Corporation, 1968.

8. IBM System/360 FORTRAN IV Language. Form C28-6515-5, International Business
Machines Corporation, 1968.

9. IBM__System/360 Operating System. Job Control lLanguage. Form C28-6539-5,
International Business Machines Corporation, 1968.

10. IBM System/360 PIL/I Reference Manual. Form C€28-8201-1, International
Business Machines Corporation, 1968, pp. 197-198.

180

' Appendices

Appendix A. Syntax_of SNOBOLY4

This formal description of the syntax of SNOBOL4 is given in a syntax

notation

1

2)

3)

4)
5)

6)

7)

8)

used in many IBM manuals [10]. Rules explaining this notation follow.

A class of elements is denoted by a notation variable, which consists of
lower case letters and periods and must begin with a letter.

Literal characters are denoted by capital letters or special characters.
Lower case letters and syntactic symbols are underlined when they
represent literals. A lone underscore stands for itself.

A syntactic unit is defined as one of the following:
a. a notation variable,
b. literal characters, or

c. any collection of variables, literals, and syntax notation
surrounded by braces or brackets.

Braces { } denote a grouping.

Square brackets [] denote an option. Anything enclosed within,
brackets may appear or be omitted.

Vertical stacking of syntactic units and the vertical stroke | denote
alternatives.

Three dots ... denote optional repetition of the immediately preceding
syntactic unit one or more times.

Footnotes are used where restrictions apply to notation variables.

181

1. Syntax of SNOBOLU4 Statements

The following notation variables define +the components
leading to the definition of a statement itself.

digit: 0111213141516171819

letter: A|B|CIDIEIFIGIHII|ITIKILIM|IN|{OIP|QIRISITIUIVIWIX|Y|Z]

alphanumeric: letter|digit
identifier: 1letter [alphanumeric|{.]_J...
blanks: one or more blank characters
integer: digit [digit]...
real: integer . [integer]
unary: =¥ (61512~ |DI#1%
binary: Dblanks [[+[-|*|/{**|.|$|112|#1%] blanks]
string: zero or more EBCDIC characters
sliteral: ‘'string!!
dliteral: I'string2"
literal: sliterall|dliteral|integer|real
element: [unary]... [identifier

literal

function.call

array.ref

(expression)
operation: element binary {element|expression}
expression: [blanks] [element|operation] [blanks]
arg.list: expression [, expression]...
function.call: identifier (arg.list)
array.ref: identifier < arg.list >
label: {alphanumeric string3}+4
subject.field: blanks element
pattern.field: blanks expression

-) e s —— ——

lnot including a single guote !
2not including a double quote "
3not including a blank or semicolon
4but not END

of

a

statement,

object.field: blanks expression
equal: blanks =
goto: {(expression) |< expression >}

- S goto [blanks] [F goto]
F goto [blanks] [S goto]

goto.field: blanks : [blanks] {?oto }

eol: end of line

eos: [blanks] {;|eol}

assign.statement: [label] subject.field equal [object.field] [goto.field] eos
match.statement: [label] subject.field pattern.field {goto.field] eos

repl.statement: [label] subject.field pattern.field equal [object.field]
[goto.field] eos

degen.statement: [label] [subject.field] [goto.field] eos
end.statement: END [blanks [label{END]] eos

statement: assign.statement|match.statement|repl.statement|degen.statement]
end.statement

2. Syntax of SNOBOLY4 Programs

A SNOBOLY4 program consists of a sequence of statements terminating with an
end statement. Interspersed among these statements may be comment 1lines and
control lines.

comment.line: * string eol

control.line: - [blanks] JLIST blanks [LEFTIRIGHT]\ [blanks] eol
UNLIST

A statement begins immediately following the preceding statement, i. e. at
the beginning of a line or following a semicolon.. A statement may be continued
on the next line by using a continue line.

continue.line: ({+|.} remainder of statement

Comment, control, and continue lines must begin at the beginning of a 1line.
They may not start in the interior of a line following a semicolon. A statement
may be broken over a line boundary anywhere a blank is mandatory. If a
statement has the form

part1 blanks part2

it may be continued as

183

part1 [blanks] eol ({+|.} [blanks] part2

where the + or . begins a new line, and takes the place of the mandatory blank.

3. Syntax of SNOBOL4 prototypes

Prototypes for arrays, programmer-defined functions, and programmer-defined
data types are evaluated during program execution, not during compilation.
These prototypes may be given explicitly as literals or may be computed in a
variety of ways. When ARRAY, DEFINE, or DATA 1is executed, the corresponding
prototype is then analyzed. The syntax of these prototypes follows.

identifier.list: identifier [, identifier]...

data.prototype: identifier (identifier.list)

function.prototype: identifier ([identifier.list]) [identifier.list]
signed.integer: [[+|-] integer]

dimension: signed.integer [: signed.integer]

array.prototype: dimension [, dimension]...

184

Appendix B. Error Messages

1. Compilation Error Messages

1. BINARY OPERATOR MISSING OR IN ERROR

A binary operator is erroneous or a blank between expressions is missing. Some
examples are

X = F(X)¥%kx 2
TEXT = ' ('TEXT ')
M = (A BN

2. ERRONEOUS INTEGER

An integer which is too large appears in the source program. On the 1IBM
System/ 360, the maximum integer is 231-1,

3. ERRONEOUS LABEL
A label does not begin with a digit or letter.
4. ERRONEOUS OR MISSING BREAK CHARACTER

A break character appears in an erroneous context, or a nested expression is not
closed. Some examples are

X = (A,B)
A<1,2) = 5
F (G (X) :S (L)
5. ERRONEOUS REAL NUMBER

A real number which is too large or too small appears in the source program. On
the IBM System/360, the range of real numbers is on the order of 10-78 to 1075.

6. ERRONEOUS SUBJECT

An erroneous construction occurs in the subject. An example is

7. ERROR IN GOTO

A syntactic error occurs in the goto field. Some examples are

:S(L1) S(L2)
: S<A)
:S(L1) L2

8. ILLEGAL CHARACTER IN ELEMENT

An illegal character occurs in a element. Some examples are

185

Z = A+B
X = 3:
E = 3.25P

9. IMPROPERLY TERMINATED STATEMENT

A statement terminates before a construction is complete. An example is

10. PREVIOUSLY DEFINED LABEL

A label has occurred previously in the program. The first occurrence of the
label holds, and subsequent occurrences are erroneous.

11. UNCLOSED LITERAL
The closing quote on a literal is missing. Some examples are

LETTER - = 'a
TEXT = 'HE YELLED STOP"

2. EBrror Termination Messages

1. ARGUMENT NOT DEFINED FUNCTION.

The function argument to ARG or LOCAL was not the name of a programmer-defined
function.

2. CALL OF UNDEFINED FUNCTION.
A call was made to a function or operation for which no definition exists.
3. ERRONEOQOUS ARRAY REFERENCE.

An array reference was made to an object that does not have data type ARRAY.
That is, A<I> 1s erroneous if the value of A is not an array.

4. ERRONEOUS END STATEMENT.

The starting 1label given in the end statement did not occur in the program, ox
there was a syntactic error in the end statement.

5. ERRONEQOUS PROTOTYPE.
A prototype in a call to ARRAY, DATA, or DEFINE had a syntax error.
6. ERROR IN ARITHMETIC OPERATION.

overflow or an illegal operation (such as division by zero) occurred in an
arithmetic operation.

7. ERROR IN COMPILER.

An error occurred in the SNOBOL4 compiler. The program listing should be sent
to the authors.

186

8. ERROR IN INTERPRETER.

An error occurred in the SNOBOL4 interpreter. The program listing should be
sent to the authors.

9. ERROR IN PATTERN MATCHING.

An error occurred in the SNOBOLY4 pattern matching program. The program listing
should be sent to the authors.

10. ERROR IN STORAGE REGENERATION.,

A programming error occurred in the SNOBOLY4 storage regeneration program. The
program listing should be sent to the authors.

11. ERROR IN SUBROUTINE.

A programming error occurred in one of the SNOBOL4 subroutines. The program
listing should be sent to the authors.

12. EXCEEDED LIMIT ON STATEMENT EXECUTION.
Too many statements were executed. See the keyword &STLIMIT.

13. EXCESSIVE COMPILATION ERRORS.
The number of compilation errors exceeded fifty. An excessive number of
compilation errors is assumed to indicate a situation so serious that further
processing should be discontinued.

14. EXECUTION OF STATEMENT WITH COMPILATION ERROR.

The program encountered a statement that contains a compilation error. Such
statements may be reached either by a transfer or normal program flow.

15. FAILURE IN GOTO EVALUATION.
A function or operation called in the evalluation of a goto failed.

16. ILLEGAL DATA TYPE.
The data type of an object was incorrect for the operation that was to be
performed on it. For example, this error termination results if an attempt is
made to multiply an integer by a pattern.

17. ILLEGAL TRACE TYPE.

The second argument to TRACE or STOPTR is not one of the trace types VALUE,
CALL, RETURN, FUNCTION, LABEL, or KEYWORD.

18. ILLEGAL UNIT DESIGNATION.

A negative number was given as a -data set reference number in an input or output
association.

19. IMPROPER STATEMENT TERMINATION.

During conversion from STRING to CODE, the string was exhausted without proper
statement termination.

187

20. INCORRECT NUMBER OF ARGUMENTS.
A primitive function was called with too many arguments or an array reference
has been made with too many indices. This error may also occur if too few
arguments are supplied for a primitive function, but only if the primitive
funection is invoked by APPLY or through a synonym for the function.

21. INSUFFICIENT STORAGE TO CONTINUE.

Storage available to the SNOBOL4 system was inadequate for program execution to
continue.

22« NEGATIVE NUMBER IN ILLEGAL- CONTEXT.

A negative number was given as an argument to LEN, POS, INPUT, RPOS, RTAB, or
TAB.

23. NULL STRING IN ILLEGAL CONTEXT.

The indirecthess operator was applied to the null string, as

Z = 3
24. OBJECT EXCEEDS SIZE LIMIT.

An attempt was made to form a data object which exceeds the internal 1limit on
the size of structures. This limit is 65535 bytes on the IBM System/360.

25. OVERFLOW IN PATTERN MATCHING.

Internal storage used by +the pattern matching program was exceeded. This
condition is usually the result of excessive recursion in a pattern.

26. READING ERROR.
An error return occurred from an input operation.
27. RETURN FROM ZERO LEVEL.

A transfer to RETURN, FRETURN, or NRETURN occurred outside the call of a defined
function.

28. STACK OVERFLOW.
The stack used by the SNOBOL4 system was exhausted. This condition 1is usually
the result of excessive recursion in programmer-defined functions. Stack
overflow may also occur during storage regeneration.

29. STRING OVERFLOW.

A string exceeded the maximum length set for strings. See the keyword
EMAXLNGTH.

30. TOO MANY DATA TYPES.

The 1limit on the number of programmer-defined data types was exceeded. This
limit is 899.

188

31. UNDEFINED OR ERRONEOUS GOTO.

An attempt was made to transfer to a label which does not occur in the program,
or the result of evaluating a goto was not a natural variable.

32. UNKNOWN KEYWORD.
Reference was made to a nonexistent keyword.
33. VARIABLE NOT GIVEN WHERE REQUIRED.

An object with only a value, not a name, has occurred where a name is required.
Examples are

SIZE(A) 3
and

¢ (TRIM(END))

3. Print Request Messages

Trace printout and the dump of natural variables following termination
require the construction of strings whose lengths depend on the values involved.
A fixed amount of space is available for such messages and in some cases this
space may not be large enough to form the required string. 1In these cases, the
message

%¥PRINT REQUEST TOO LONG**%*

is printed in lieu of the long string. Execution then continues normally. On
the IBM System/360, the space available for the formation of such strings is
about 3800 characters. There is no limit to the length of a string that can be
printed as a result of an output association, except the limit on the length of
strings.

189

Appendix C. Examples

SNOBOLY

1.

Syntax Recognizer for SNOBOLY

(VERSION 2.0, OCT. 7, 1968)

BELL TELEPHONE LABORATORIES, INCORPORATED

190

ELE I R

¥*

* *

THIS PROGRAM IS A SYNTACTIC RECOGNIZER FOR SNOBOLY4 STATEMENTS.
FIRST A SERIES OF PATTERNS IS BUILD CULMINATING IN A PATTERN
WHICH MATCHES ONLY SYNTACTICALLY CORRECT STATEMENTS. CARD IMAGES
ARE THEN READ IN AND PROCESSED. INCORRECT STATEMENTS ARE
IDENTIFIED BY AN ERROR MESSAGE.

THE FUNCTION OPT FORMS A PATTERN THAT MATCHES EITHER NULL OR ITS
ARGUMENT.

DEFINE ('OPT (PATTERN) ')
LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ*

ON THE IBM SYSTEM/360 LETTERS INCLUDE LOWER CASE AS WELL.

DIGITS = '0123456789"

ALPHANUMERICS = LETTERS DIGITS

BLANKS = SPAN(' ')

INTEGER = SPAN (DIGITS)

REAL = SPAN(DIGITS) '.! OPT (SPAN(DIGITS))
IDENTIFIER = ANY (LETTERS) OPT (SPAN (ALPHANUMERICS ' .1'))
UNARY = ANY ('+-5.$%2-%#")

BINARY = ANY ('—+.$k|/%#1) | tkxe

BINARYOP = BLANKS OPT (BINARY BLANKS)
UNQALPHABET = &ALPHABET

UNQALPHABET 'Wt =

UNQALPHABET "i1n =

DLITERAL = "t SPAN(UNQALPHABET "t1) tns
SLITERAL = "% SPAN(UNQALPHABET t"t) nin
LITERAL SLITERAL | DLITERAL | INTEGER | REAL

ELEMENT OPT (UNARY) (IDENTIFIER | LITERAL | *FUNCTION_CALL

| ' (' *EXPRESSION | OPT(BLANKS) ')' '| *ARRAY_REF)

OPERATION = *ELEMENT BINARYOP (*ELEMENT | *EXPRESSION)

EXPRESSION = OPT(BLANKS) (*ELEMENT | *OPERATION | NULL)

OPT (BLANKS)

ARG_LIST = *EXPRESSION OPT (',' *ARG_LIST)

FUNCTION_CALL = IDENTIFIER ' (' *ARG_LIST ')

ARRAY REF = IDENTIFIER '<' *ARG_LIST '>!

LABEL. = ANY(ALPHANUMERICS) (BREAK(' ;') | REM)

LABEL_FIELD = OPT (LABEL) ‘

GOTO = ' (' EXPRESSION ')' | *<' EXPRESSION '>'

GOTO_FIELD = OPT(BLANKS ':' FENCE OPT (BLANKS) (GOTO | 'S!'

GOTO | 'F' GOTO | 'S' GOTO OPT (BLANKS) 'F*
GOTO | 'F' GOTO OPT(BLANKS) 'S' GOTO)
OPT (BLANKS))

RULE = OPT(BLANKS ELEMENT (BLANKS '=' OPT (BLANKS EXPRESSION
) | OPT (BLANKS EXPRESSION OPT (BLANKS '=' OPT (BLANKS
EXPRESSION)))))

EOS = RPOS(0) | ';!

STATEMENT = LABEL_FIELD RULE GOTO_FIELD EOS

*
* THE PATTERN FOR RECOGNIZING STATEMENTS IS NOW FORMED. THE
* PROGRAM TO ANALYZE INPUT CARDS FOLLOWS.
*
COMMENT = ANY ('*-1')
CONTINUE = ANY('.+') . CC
INPUT (' INPUT',5,72)
EANCHOR = 1
§FULLSCAN = 1
EOF =
*
* INITIALIZE PROCESS FROM FIRST CARD.
*
READI IMAGE = TRIM(INPUT) : F (END)
OUTPUT = ¢ ' IMAGE
b3
* DO NOT PROCESS COMMENT OR CONTINUE CARDS.

IMAGE COMMENT

NEXTST IDENT (EOF) : F (END)
OUTPUT = ! * LINE
IMAGE = LINE

READC LINE = TRIM(INPUT) : F (ENDGAME)
LINE COMMENT :S (PRINT)
LINE CONTINUE = :F (ANALYZE)
OUTPUT = ! ' CC LINE
IMAGE = IMAGE LINE : (READC)

ANALYZE IMAGE STATEMENT = :F (ERROR)
DIFFER (IMAGE) :S (ANALYZE)
OUTPUT = '<<< NO SYNTACTIC ERROR >>>!

SKIP OUTPUT = : (NEXTST)

*

* IF AN ERRONEOUS STATEMENT IS ENCOUNTERED IN A STRING OF

* STATEMENTS SEPARATED BY SEMICOLONS, SUBSEQUENT STATEMENTS ARE

* NOT PROCESSED.

*

ERROR OUTPUT = '<<< SYNTACTIC ERROR >>>! : (SKIP)

*

PRINT OUTPUT = ! ' LINE : (READC)

ENDGAME EOF = 1 : (ANALYZE)

*

*

OPT OPT = NULL | PATTERN : (RETURN)

END

NO ERRORS DETECTED DURING COMPILATION

:F (READC) S (READT)

30

37
38

39
40
41
42
43
4l

4e
47
48
49

51

52

53
54

55
56

191

*
* A VARIETY OF CORRECT AND INCORRECT SNOBOLY4 STATEMENTS FOLLOW
*
-LIST
COMPUTE X = Y + 3 &% —1214

<L NO SYNTACTIC ERROR >>>

X = Y+Z
<KL SYNTACTIC ERROR >>>

ELEMENT<I,J>= ELEMENT<KI,-J> + ELEMENT<-I,J>
<LK SYNTACTIC ERROR >>>

ALX,Y,Z + 1> = F (X,STRUCTURE_BUILD(TYPE,LENGTH + 1))
<K<K NO SYNTACTIC ERROR >>>
SETUP PAT1 = (BREAK(',:') $ FIRST { SPAN(' .') $ SECOND
. VALUE ARBNO (BAL | LEN(1)) : ($SWITCH)

<<< NO SYNTACTIC ERROR >>>

DEFINE ('F (X,Y))
<LK SYNTACTIC ERROR >>>

L = LT(N,B L + 1
<<<L SYNTACTIC ERROR >>>

NEWONE_TRIAL X = -COORDK1,K> X * X
<K< NO SYNTACTIC ERROR >>>

TRIM(INPUT) PAT1 : S (OK) :F (BAD)
<<< SYNTACTIC ERROR >>>

X = 3.01; Y = 2. ;s Z = X *x -Y
<<< NO SYNTACTIC ERROR >>>

NORMAL TERMINATION AT LEVEL O
LAST STATEMENT EXECUTED WAS 40

SNOBOL4 STATISTICS SUMMARY-
1464 MS. COMPILATION TIME
2047 MS. EXECUTION TIME
171 STATEMENTS EXECUTED, 32 FAILED
0 ARITEMETIC OPERATIONS PERFORMED
39 PATTERN MATCHES PERFORMED
0 REGENERATIONS OF DYNAMIC STORAGE
11.97 MS. AVERAGE PER STATEMENT EXECUTED

192

2.

Topological Sort

SNOBOL4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

F R R I

* ¥ 3 ¥ K

¥*

* O# 3 3#

H

3

¥ % ¥ 3 ¥ ¥ K O

TOPOLOGICAL SORT
MAPS A PARTIAL ORDERING OF OBJECTS INTO A LINEAR ORDERING
A(1), A(2)y «eey A(N)

SUCH THAT IF A(S) < A(T) IN THE PARTIAL ORDERING,THEN S < T.
(CF. D.E.KNUTH, THE ART OF COMPUTER PROGRAMMING,VOLUME 1,
ADDISON-WESLEY,MASS.,1968, P.262)

£§DUMP =1
OUTPUT ('OUT',6,' (121a1))
PAIR = BREAK ('<') . MU LEN(1) BREAK(',') . NU LEN(1)

DATA (' ITEM (COUNT, TOP) ')
DATA (*NODE (SUC, NEXT) ')
DEFINE ('DECR (X) ')
DEFINE (' INDEX (TAU) ')

READ IN THE NUMBER OF ITEMS, N, AND GENERATE AN ARRAY OF ITEMS.
EACH ITEM HAS TWO FIELDS, (COUNT,TOP), WHERE
COUNT = NO. OF ELEMENTS PRECEEDING IT.
TOP = TOP OF LIST OF ITEMS SUCCEEDING IT.

N
X

TRIM (INPUT)
ARRAY ('0: ' N)

INITIALIZE THE ITEMS TO (0,NULL).

X
I

ITEM (0,) :F (T1A)
I + 1 1 (TT)

READ IN RELATIONS.

ouT = *1 THE RELATIONS ARE:'

REL = TRIM(INPUT) *,° :F (T3A)
OUTPUT = REL

REL PAIR = :F (T2A)
J = INDEX (MU)

K = INDEX (NU)

SINCE MU < NU, INCREASE THE COUNT OF THE KTH ITEM AND ADD A
NODE TO THE LIST OF SUCCESSORS OF THE JTH ITEM.

COUNT (X<K>) = COUNT (X<K>) + 1
TOP (X<J>) = NODE (K, TOP (X<JI>)) : (T2)

A QUEUE IS MAINTAINED OF THOSE ITEMS WITH ZERO COUNT FIELD.

THE LINKS FOR THE QUEUE, QLINK, ARE KEPT IN THE COUNT FIELD.

THE VARIABLES F,R POINT TO THE FRONT AND REAR OF THE QUEUE.
OPSYN('QLINK', *COUNT"')

INITIALIZE THE QUEUE FOR OUTPUT.

~NoEWND -

1
12

13
15
16

17
18

19

21

193

R = 0
QLINK (X<0>) = 0
K =0
T4 K = ?X<KK + 1> K + 1 :F (T4R)
QLINK (X<KR>) = EQ (COUNT (X<K>),0) K :F(T4)
R = K ¢ (Td)
TUA F = QLINK (X<0>)
b3
* OUTPUT THE FRONT OF THE QUEUE.
b3
ouT = ') THE LINEAR ORDERING IS:!
T5 OUTPUT = NE(F,0) $(F ':") (F(T8)
N =N -1
P = TOP (X<F>)
b3
* ERASE RELATIONS.
b3
T6 IDENT (P) ' :S(T7)
DECR (. COUNT (X< SUC (P) >)) :S(T6A)
b3
* IF COUNT IS ZERO ADD ITEM TO QUEUE.
b3
QLINK (X<R>) = SUC (P)
R = SUC (P)
T6A P = NEXT (P) : (T6)
" _
* REMOVE FROM QUEUE.
b3
T7 F = QLINK (X<F>) : (T5)
b3
* FUNCTION DEFINITIONS.
b3
DECR $X = GT($X,1) $X - 1 : S (RETURN)
$X =0 : (FRETURN)
b3
INDEX INDEX = DIFFER($ (TAU ':')) $(TAU ':') :S(RETURN)
TERMCT = LT (TERMCT,N) TERMCT + 1 ¢ F (FRETURN)
INDEX = TERMCT
$ (TERMCT ':1) = TAU
$(TAU *:1) = TERMCT : (RETURN)
b3
T8 OUTPUT = NE (N,0) 'THE ORDERING CONTAINS A LOOP.!
END

NO ERRORS DETECTED DURING COMPILATION

194

22
23
24
25
26
27
28

29
30
31
32

33
34

35
36
37

38

39
40

41
43
Bl
45

46
47

THE RELATIONS ARE:

LETTERS
BLANKSK

<ALPHANUM, NUMBERS<ALPHANUM,
OPTBLANKS,

NUMBERS<REAL,
NUMBERS<INTEGER,

LETTERS<VARIABLE, ALPHANUM<KVARIABLE,

BINARY<
UNQALPH

BINARYOP, BLANKS<BINARYOP,
ABET<DLITERAL,

UNQALPHABET<SLITERAL,

SLITERALLKLITERAL, DLITERAL<KLITERAL, INTEGERKLITERAL,REALKLITERAL,

THE LI
LETTERS
NUMBERS
BLANKS
BINARY
UNQALPH
INTEGER
REAL
ALPHANU
OPTBLAN
BINARYO

NEAR ORDERING IS:

ABET

M
Ks
P

SLITERAL

DLITERA
VARIABL
LITERAL

NORMAL

L
E

TERMINATION AT LEVEL O

LAST STATEMENT EXECUTED WAS 46

= 'SLITERALKLITERAL,DLITERALLKLITERAL, INTEGERKLITERAL, REALKLITERAL

DUMP OF VARIABLES AT TERMINATION
NATURAL VARIABLES
ABORT = PATTERN
ALPHANUM: = 2

ARB = PATTERN

BAL = PATTERN
BINARY: = 9
BINARYOP: = 10
BLANKS: = 4
DLITERAL: = 12

F =0

FAIL = PATTERN
FENCE = PATTERN
I=15

INPUT

INTEGER: = 7

J =6

K= 14

LETTERS: = 1
LITERAL: = 14

MU = 'REAL'

N =0

NU = 'LITERAL'
NUMBERS: = 3
OPTBLANKS: = 5
OUT = '0 THE LINEAR ORDERING IS:!'
OUTPUT = 'LITERAL'

195

PAIR = PATTERN

R = 14
REAL: = 6

REM = PATTERN
SLITERAL: = 13

SUCCEED = PATTERN
TERMCT = 14

UNQALPHABET: = 11
VARIABLE: = 8

X = ARRAY ('0:14")
1: = 'LETTERS’
10: = 'BINARYOP!
11: = 'UNQALPHABET'
12: = 'DLITERAL!
13: = 'SLITERAL!
14: = 'LITERAL!
2: = 'ALPHANUM!
3: = *NUMBERS!

4: = *BLANKS!

5: = 'OPTBLANKS!
6: = 'REAL'

7: = VINTEGER!

8: = 'VARIABLE'
9: = 'BINARY'

UNPROTECTED KEYWORDS

EABEND = 0
EANCHOR = 0
EDUMP = 1
EFTRACE =
EFULLSCAN 0
EMAXLNGTH 5000
&ESTLIMIT = 50000
ETRACE = 0

ni <

SNOBOL4 STATISTICS SUMMARY-~

1431 MS. COMPILATION TIME

632 MS.

EXECUTION TIME

430 STATEMENTS EXECUTED,
93 ARITHMETIC OPERATIONS PERFORMED
24 PATTERN MATCHES PERFORMED

0 REGENERATIONS OF DYNAMIC STORAGE

1.47 MS.

196

70 FAILED

AVERAGE PER STATEMENT EXECUTED

ICEBOL.VER. 2

3. ICEBOL —-_A Compressor of SNOBOL4 Programs

ICEB

e ek sk e etk Aokl Aok sk ok Stk 30k Kok Sk ok ok ok ol s skl ok ok ok sk oKk 3Ok ok koK ok ook Kok kT CER
* *TCEB
*TICEB

* ICEBOL *TCEB
* *ICEB
%* Is A PROGRAM TO COMPRESS SNOBOL4 SOURCE PROGRAMS. IT DOES THIS *ICEB
¥ BY REPLACING A SEQUENCE OF BLANKS BY A SINGLE BLANK AND IF NEC- *ICEB
* ESSARY INDICATES AN END-OF-STATEMENT WITH A SEMI-COLON. *ICEB
%* A TYPICAL COMPRESSION FACTOR IS THREE TO ONE. *TCEB
% *ICEB
* USAGE _ *TCEBR
¥ THE INPUT DATA TO ICEBOL CAN BE ANY SNOBOL4 PROGRAM OR SECTION OF*ICEB
* PROGRAM PRECEDED BY ZERO OR MORE CONTROL CARDS. CONTROL CARDS *ICEB
* START WITH A VERTICAL LINE IN COLUMN 1, AND MAY BE ANY OF THE *TCEB
* FOLLOWING {(WHERE BLANKS ARE IRRELEVENT) - *TCEB
* i DON'T CRUNCH COMMENTS *TCEB
* | NO COMMENTS *TCEB
* | NO LIST *TCEB
* COMMENTS ARE NORMALLY INCLUDED AS PART OF THE COMPRESSED DECK BUT*ICEB
* KEEPING WITHIN THE SPIRIT OF ICEBOL SUCCESSIVE BLANKS ARE *TCEB
%* NORMALLY REPLACED BY A SINGLE BLANK AND THEREBY MULTI-LINE . *TICEB
* COMMENTS CAN BE COMPRESSED. THE FIRST CONTROL CARD *TCEB
%* ABOVE SUPPRESSES THE COMPRESSION OF COMMENTS. THE SECOND CONT- *ICEB
* ROL CARD ABOVE REMOVES COMMENTS ALTOGETHER. *TCEB
* SNOBOIL4 CONTROL CARDS (CARDS BEGINNING WITH A MINUS , -) NORMAL-*TICEB
* LY APPEAR BY THEMSELVES ON A SINGLE LINE. THESE WILL BE REMOVED *ICEB
* IF THE THIRD CONTROL CARD ABOVE IS INCLUDED. *TICEB
* *TCEB
* LABELING AND CARD NUMBERING *ICEB
¥ *ICEB
¥ THE FIRST FOUR CHARACTERS OF THE FIRST CARD ARE USED TO LABEL THE*ICEB
* DECK. THE DECK IS SEQUENCE NUMBERED. *ICEB
* *ICEB
* *TICEB
% J. F. GIMPEL *TCEB
¥ 7715768 *ICEB
* *ICEB
* *TCEB
ste ok e o ok 33 ke e ok e o ke o ok ok s e e e ok ke ke ok e s e s sk o e o ke ok 3 e o ok e ke sk ok e e ok stk ok ok kok Ak ok ke kok Aok ok k Kok kR k kX TCER.
&§DUMP = 1 ICEB

INPUT ('INPUT',5,72) ICEB

DEFINE('BLANK (N) ') : (BLANK. END) ICEB

BLANK BLANK = DUP (' ',N) : (RETURN) ICEB
BLANK. END DEFINE('DUP(S,N) ') : (DUP. END) ICEB
DUP DUP = GT(N,0) DUP S : F (RETURN) ICEB
N=N-1 : (DUP) ICEB

DUP. END DEFINE('RADJ(S,N) ') : (RADJ. END) ICEB
RADJ (MANY.BLANKS S) RTAB(N) REM . RADJ :S(RETURN) ICEB
MANY.BLANKS = MANY,.,BLANKS ! ' : (RADJ) ICEB

RADJ.END DEFINE(*LADJ(S,N) ') : (LADJ.END) ICEB
LADJ (S MANY.BLANKS) TAB(N) . LADJ : S (RETURN) ICEB
MANY.BLANKS = MANY.BLANKS ! ! : (LADJ) ICEB

LADJ.END DEFINE ('TOSS (A) ') : (TOSS. END) ICEB
TOSS IDENT (A) : S (RETURN) ICEB
CARD.NO = CARD.NO + 1 ICEB

A = LADJ(A ,72) LABEL RADJ (CARD.NO,U4) ICEB

PUNCH = A ICEB

OUTPUT = ICEB

OUTPUT = A ICEB

-
2 OWVWONAAMNMEWN=

DO ad d e e wd el
CQwo~~JonUnEFEWN

NN
WK =

OUTPUT = : (RETURN)
TOSS.END DEFINE('SPACE(N) ') : (SPACE. END)
SPACE N GT(N,0) . OUTPUT REM = N - 1 :S(SPACE) F(RETURN)
SPACE.END SPECIAL = FENCE ('*! | t-1)
COMMENT = FENCE '*!
COMM. FLAG = 'ON!
LIST.FLAG = 'ON!
CRUNCH. FLAG = 'ON'
IGNORE.CARD = FAIL
INDENT = BLANK (30)
OUTPUT('CONTROL' , 6 , ' (132a1)")
CONTROL = 1
SPACE (20)
OUTPUT = INDENT INDENT 'ICEBOL2!
CONTROL = '+' INDENT INDENT '__ ¢
CONTROL = 1
DEFINE('CAT.IN(X)' , 'CAT.IN.1') : (CAT. IN. END)
CAT.IN.1 TLABEL = ! '
CAT.NEXT = CAT.GET() :F(CAT.IN.1)
CAT.NEXT FENCE *|° :S(CI.7)
CAT.NEXT FENCE ' $1S(CI. 1)
CAT.NEXT LEN(4) . LABEL : (CI. 1)
CI.7 CAT.NEXT "DON'T" ARBNO (* ') "CRUNCH" ARBNO (' ') "COMM" =
. tF(CI.6)
CRUNCH.FLAG = 'QFF!'
CI.6 CAT.NEXT 'NO' ARBNO (' t) 'COMM' = :F(CI.8)
COMM.FLAG = 'OFF!'
cI.8 CAT.NEXT 'COMM! = :F(CI.9)
COMM. FLAG = 'ON!
CI.9 CAT.NEXT 'NO' ARBNO(' ') 'LIST' = :F(CI.10)
LIST.FLAG = 'OFF!'
cI.10 CAT.NEXT 'CONT' = :F(CI.11)
LIST.FLAG = 'ON!
CI.11 : (CAT.IN.1)
CI.1 DEFINE('CAT.IN(X)' , 'CAT.IN.2')
IGNORE.CARD = (IGNORE.CARD | '*') IDENT (COMM.FLAG,'OFF")
IGNORE.CARD = (IGNORE.CARD | '-') IDENT(LIST.FLAG,'OFF')
IGNORE.FLAG = (IGNORE.FLAG | '*' RPOS(0)) IDENT(CRUNCH.FLAG
. , 'ON') IDENT(COMM.FLAG TON')
IGNORE.CARD = FENCE (RPOS(0) | IGNORE.CARD)
CAT.IN.2 CAT.IN = CAT.NEXT
CI.3 CAT.NEXT = CAT.GET () tF(CI.2)
CAT.NEXT SPECIAL 1S (CI.SPECIAL)
CAT.IN SPECIAL +S (RETURN)
CAT.NEXT FENCE t'.!' = ¢ :F(CI.5)
CAT.IN = CAT.IN CAT.NEXT : (CI.3)
CI.5 CAT.IN ¢ ¢ :S(CI.61)
CAT.NEXT FENCE ' tF(CI.61)
CAT.IN = CAT.IN CAT.NEXT : (CI.3)
CI.61 CAT.IN 'tz : S (RETURN)
CAT.NEXT FENCE f ! SPAN(' ') t:? = v ¢
. : F (RETURN)
CAT.IN = CAT.IN CAT.NEXT : (CI.3)
CI.SPECIAL
IDENT (CRUNCH. FLAG, 'OFF!) : S (RETURN)
CAT.IN COMMENT : F (RETURN)
CAT.NEXT COMMENT = ' ! : F (RETURN)
CI.COMMENT
CAT.NEXT ' ¢ SPAN(' ') = ¢ 1t :S(CI.COMMENT)
CAT.IN = CAT.IN CAT.NEXT : (CI.3) -
CcI.?2 DEFINE('CAT.IN(X)' , 'CAT.IN.3') : (RETURN)
CAT.IN.3 : (FRETURN)
CAT.IN. END

198

ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

CAT.GET

DEFINE ('CAT.GET (X) ')
INPUT LEN (72)

CAT.GET.CNT

CAT.GET =
OUTPUT =

CAT.GET. END
DEFINE (*'SPEW (LINE) *)

SPEW

SPEW. 2

SPEW. 3

SPEW. 5

PERIOD.OUT

SPEW. 6
SPEW. END

50.0

S50.8

SQ.START
S0.1

SQ0.3

BUFF =

GT (SIZE (BUFF)

BUFF =

CAT.GET.CNT + 1
TRIM (CAT.GET)
*INPUT CARD!
CAT.GET IGNORE.CARD

+

BUFF LINE

CAT.GET

DIFFER (BUFF,NULL) BUFF

SIZE(LINE),

LT (SIZE (BUFF) , 70)

TOSS (BUFF)
BUFF =

NBUFF = BUFF
BUFF = LINE
A =

BUFF CHUNK =

IDENT (A, NULL)
LE (SIZE(NBUFF)

+ SIZE(A),72)

BUFF = A BUFF

NBUFF '3! RPOS(0) =

NBUFF '; ' RPOS(0) =

BUFF = t ' BUFF

BUFF FENCE ARBNO (' f) f31 =
BUFF = '.! BUFF

BUFF FENCE f. ' = 1,1

TOSS (NBUFF)

?

72)

)

ANY (' (

N

GT (SIZE (BUFF) ,72)

NBUFF =

NBUFF = NBUFF A

QT = thr nen

DQ: e

SQ = men

QUOTED.LITERAL = SQ BREAK (SQ) SO
OTHER = LEN(1) BREAK(QT ' ;(),'
NULL) | RTAB(0)

CHUNK = FENCE (QUOTED.LITERAL
PAT = ARB . B (' ' | ANY (QT))
NB72S.PATTERN = (TAB(60) ARB)
RPOS (0)

S = CAT.IN()

S SPECIAL

TOSS (BUFF)
BUFF =

IDENT (CRUNCH.FLAG ,

TOSS (S)

S COMMENT
GT (SIZE(S)
S LEN(72)

14

S REM .

72)

S NB72S.PATTERN

TOSS (N)
S:I*l
S =S ss
S LEN(72)
TOSS (N)
S (BREAK (!
S PAT =
IDENT (*
N=NB:'*

B SS

N

RS I

I'C)

S FENCE SPAN(* ¢

S BREAK (C)

D C

YON')

SS

tx ¢

REM) . N =

)_:

c

RADJ (CAT.GET.CNT

: (CAT.GET. END)

:F(FRETURN)

. 5) tat

CAT.GET

: S (CAT. GET) F (RETURN)

: (SPEW. END)
: S (SPEW. 2)
:S (RETURN)

: (RETURN)

: S (SPEW. ERROR)

: S (SPEW. 6)

:S(PERIOD.OUT)

:F (SPEW. 5)

: (PERIOD.OUT)
: S (PERIOD. OUT)

: F (RETURN)
: (SPEW. 3)
: (SPEW. 3)

DQ BREAK (DQ) DO
(QUOTED.LITERAL |

1

:+') | OTHER)

ARBNO (NOTANY (!

:F(50.99)
:F (SQ.START)

:S(5Q.4)
: (50.0)
:F (SQ.5)
:F(SQ.5)
:F (SQ.8)

1 (SQ.7)

: (S0.7)

:F (SQ.2)
:F(SQ.3)

: (SQ. 1)
: F (SQ. ERR)

'
A

')

B

ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
TICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
IYCEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

199

SQ.2

S0.99

END

200

N=NBCDC

N=NS

SPEW (N)

TOSS (BUFF)

OUTPUT = 'END OF FILE REACHED BY ICEBOL'
ENDFILE (7)

: (S0.1)
: (S0.0)

ICEB
ICEB
ICEB
ICEB
ICEB
ICEB
ICEB

187
188
189
190
191
192
193

The result of appiying ICEBOL to itself follows.

ICEBOL.VER. 2 ICEB
et e o e fe st ok kiR sk ok ok et sk sl o sk ot ke e s e ok st e sk sk ool ok sk oKk sk ok skok ok ok fokok ook ok R kok Rokok ok ok R T CER

* % * TCEBOL * * IS A PROGRAM TO COMPRESS SNOBOL4 SOURCE PROGRAMS. IT ICEB
* DOES THIS * BY REPLACING A SEQUENCE OF BLANKS BY A SINGLE BLANK AND ICEB
* IF NEC- * ESSARY INDICATES AN END-OF-STATEMENT WITH A SEMI-COLON. * A ICEB
* TYPICAL COMPRESSION FACTOR IS THREE TO ONE. * * USAGE * THE INPUT ICEB
* DATA TO ICEBOL CAN BE ANY SNOBOL4 PROGRAM OR SECTION OF* PROGRAM ICEB
* PRECEDED BY ZERO OR MORE CONTROL CARDS. CONTROL CARDS * START WITH A ICEB
* VERTICAL LINE IN COLUMN 1, AND MAY BE ANY OF THE * FOLLOWING (WHERE ICEB
* BLANKS ARE IRRELEVENT) * | DON'T CRUNCH COMMENTS * | NO COMMENTS * | ICEB
* NO LIST * COMMENTS ARE NORMALLY INCLUDED AS PART OF THE COMPRESSED ICEB
* DECK BUT* KEEPING WITHIN THE SPIRIT OF ICEBOL SUCCESSIVE BLANKS ARE * ICEB
* NORMALLY REPLACED BY A SINGLE BLANK AND THEREBY MULTI-LINE * COMMENTS ICEB
* CAN BE COMPRESSED. THE FIRST CONTROL CARD * ABOVE SUPPRESSES THE ICEB
* COMPRESSION OF COMMENTS. THE SECOND CONT- * ROL CARD ABOVE REMOVES ICEB
* COMMENTS ALTOGETHER. * SNOBOL4 CONTROL CARDS (CARDS BEGINNING WITH A ICEB
* MINUS , -) NORMAL-* LY APPEAR BY THEMSELVES ON A SINGLE LINE. THESE ICEB
* WILL BE REMOVED * IF THE THIRD CONTROL CARD ABOVE IS INCLUDED. * * ICEB
* LABELING AND CARD NUMBERING * * THE FIRST FOUR CHARACTERS OF THE ICEB
* FIRST CARD ARE USED TO LABEL THE* DECK. THE DECK IS SEQUENCE ICEB
¥ NUMBERED. * ¥ % J, F. GIMPEL * T7/15/68 % % % ¥k¥kddkdkdkkkkikikkkxkkkkkkkkkxTCER
A o ok o Ak ok sk Ak e Fk Ak Ak ke e Ak Ak A ook s 3k ok sl ok ke i Ak Ak e sk ok Ak e ke ok sk sl ok e ok i ICEB

§DUMP = 1; INPUT('INPUT',5,72); DEFINE('BLANK(N)') : (BLANK.END) ;BLANK ICEB
.BLANK = DUP(' ',N) :(RETURN) ;BLANK.END DEFINE ('DUP(S,N) ') : (DUP.END) ICEB
DUP DUP = GT(N,0) DUP S :F(RETURN); N = N - 1 : (DUP) ;DUP.END DEFINE (ICEB
. 'RADJ(S,N) ') : (RADJ.END) ;RADJ (MANY.BLANKS S) RTAB(N) REM . RADJ :S(ICEB
.RETURN) ; MANY.BLANKS = MANY.BLANKS ! * : (RADJ) ;RADJ.END DEFINE (ICEB
. 'LADJ (S,N) ') : (LADJ.END) ;LADJ (S MANY.BLANKS) TAB(N) . LADJ :S(RETURN) ICEB
MANY.BLANKS = MANY.BLANKS ! ' : (LADJ) ;LADJ.END DEFINE ('TOSS (A) ') ICEB
. : (TOSS.END) ; TOSS IDENT (A) :S(RETURN); CARD.NO = CARD.NO + 1; A = LADJ (AICEB
.,72) LABEL RADJ (CARD.NO,4); PUNCH = A; OUTPUT =; OUTPUT = A; OUTPUT = ICEB
< : (RETURN) ; TOSS.END DEFINE ('SPACE(N)') : (SPACE.END) ;SPACE N GT (N,0) . ICEB
.OUTPUT REM = N - 1 :S(SPACE) F (RETURN) ; SPACE.END SPECIAL = FENCE ('*' ICEB
.| '-'); COMMENT = FENCE '*!'; COMM.FLAG = 'ON'; LIST.FLAG = ‘ON' ICEB

CRUNCH.FLAG = 'ON'; IGNORE.CARD = FAIL; INDENT = BLANK (30); OUTPUT(ICEB
. YCONTROL' , 6 , *'(132A1)'); CONTROL = 1; SPACE(20); OUTPUT = INDENT ICEB
. INDENT *ICEBOL2'; CONTROL = '+' INDENT INDENT '____ ': CONTROL = 1 ICEB

DEFINE('CAT.IN(X)' , 'CAT.IN.1') : (CAT.IN.END) ;CAT.IN.1 LABEL = ICEB
ot t: CAT.NEXT = CAT.GET() :F(CAT.IN.1); CAT.NEXT FENCE '|*' :S(CI.7) ICEB
CAT.NEXT FENCE ' ' :S(CI.1); CAT.NEXT LEN(4) . LABEL : (CI.1);CI.7 ICEB
.CAT.NEXT "DON'T" ARBNO (' ') "CRUNCH" ARBNO(' ') "COMM" = :F(CI.6) ICEB

CRUNCH. FLAG = 'OFF';CI.6 CAT.NEXT 'NO' ARBNO(' ') 'COMM' = :F (CI.S8) ICEB
COMM.FLAG = 'OFF';CI.8 CAT.NEXT 'COMM! = :F(CI.9); COMM.FLAG = 'ON! ICEB
CI.9 CAT.NEXT 'NO' ARBNO(' ') 'LIST' = :F(CI.10); LIST.FLAG = 'OFF!' ICEB
CI.10 CAT.NEXT 'CONT* = :F(CI.11); LIST.FLAG = 'ON';CI.11 : (CAT.IN.1) ICEB
CI.1 DEFINE('CAT.IN(X)' , 'CAT.IN.2'); IGNORE.CARD = (IGNORE.CARD | '#*'ICEB
.) IDENT (COMM.FLAG, 'OFF') ; IGNORE.CARD = (IGNORE.CARD | '-') IDENT (ICEB
.LIST.FLAG, 'OFF') ; IGNORE.FLAG = (IGNORE.FLAG | '*' RPOS(0)) IDENT (ICEB
. CRUNCH.FLAG , 'ON') IDENT (COMM.FLAG , 'ON'); IGNORE.CARD = FENCE (RPOS (ICEB
.0) | IGNORE.CARD) ;CAT.IN.2 CAT.IN = CAT.NEXT;CI.3 CAT.NEXT = CAT.GET () ICEB
.:F(CI.2); CAT.NEXT SPECIAL :S(CI.SPECIAL); CAT.IN SPECIAL :S(RETURN) ICEB

CAT.NEXT FENCE '.!' = ' ' :F(CI.5); CAT.IN = CAT.IN CAT.NEXT : (CI.3) ICEB
CI.5 CAT.IN ' ' :S(CI.61); CAT.NEXT FENCE ' ' :F(CI.61); CAT.IN = CAT.INICEB
.CAT.NEXT :(CI.3):CI.61 CAT.IN ':' :S (RETURN); CAT.NEXT FENCE ' ‘' SPAN(ICEB
.7 1) v:t = ¢ ;1 :F(RETURN); CAT.IN = CAT.IN CAT.NEXT : (CI.3);CI.SPECIALICEB
. IDENT (CRUNCH. FLAG, 'OFF') :S(RETURN) ; CAT.IN COMMENT :F (RETURN) ICEB

CAT.NEXT COMMENT = ' ' :F(RETURN) ;CI.COMMENT CAT.NEXT ' ' SPAN(' ') = ICEB
.' ¢ :5(CI.COMMENT); CAT.IN = CAT.IN CAT.NEXT : (CI.3);CI.2 DEFINE (ICEB
.'CAT.IN(X)' , 'CAT.IN.3') : (RETURN) ;CAT.IN.3 : (FRETURN) ;CAT.IN.END ICEB

.DEFINE ('CAT.GET(X) ') : (CAT.GET.END) ;CAT.GET INPUT LEN(72) . CAT.GET :F(ICEB

WO EWN

.FRETURN) ; CAT.GET.CNT = CAT.GET.CNT + 1; CAT.GET = TRIM (CAT.GET) ICEB
OUTPUT = 'INPUT CARD' RADJ (CAT.GET.CNT , 5) ':' CAT.GET; CAT.GET ICEB
. IGNORE. CARD :S(CAT.GET)F (RETURN) ;CAT.GET.END DEFINE ('SPEW(LINE)') :(ICEB
. SPEW. END) ; SPEW BUFF = DIFFER (BUFF,NULL) BUFF ';'; GT(SIZE (BUFF) + SIZE(ICEB
.LINE), 72) :S(SPEW.2); BUFF = BUFF LINE; LT (SIZE (BUFF),70) :S(RETURN) ICEB
TOSS (BUFF) ; BUFF = : (RETURN) ;SPEW.2 NBUFF = BUFF; BUFF = LINE;SPEW.3 A ICEB
.=; BUFF CHUNK =; IDENT (A,NULL) :S(SPEW.ERROR); LE(SIZE(NBUFF) + SIZE(AICEB
.),72) :S(SPEW.6); BUFF = A BUFF; NBUFF ';' RPOS(0) = :S(PERIOD.OUT) ICEB
NBUFF '; ' RPOS(0) = :F(SPEW.5); BUFF = ' ' BUFF :(PERIOD.OUT) ;SPEW.5 ICEB
.BUFF FENCE ARBNO(' ') ';' = :S(PERIOD.OUT); BUFF = '.' BUFF; BUFF FENCEICEB
.'. ' = 1 _1;PERIOD.OUT TOSS (NBUFF); GT(SIZE(BUFF) ,72) :F(RETURN); NBUFFICEB
.= : (SPEW.3) ;SPEW.6 NBUFF = NBUFF A : (SPEW.3) ;SPEW.END QT = *"t "iu. Do ICEB
.= 'M¥: 50 = Mins OUOTED.LITERAL = SQ BREAK(SQ) SO | DQ BREAK (DQ) DO ICEB
OTHER = LEN(1) BREAK(QT ' :(),') (QUOTED.LITERAL | ' (' | NULL) | ICEB
.RTAB (0) ; CHUNK = FENCE (QUOTED.LITERAL | ANY('(;') | OTHER) . A; PAT =ICEB
\ARB . B (' ' | ANY(QT)) . C; NB72S.PATTERN = (TAB(60) ARB) . N ! ¢ ICEB
.ARBNO (NOTANY (* *)) . B RPOS(0);SQ.0 S = CAT.IN() :F(SQ.99); S SPECIAL ICEB
.:F(SQ. START) ; TOSS(BUFF); BUFF =; IDENT (CRUNCH.FLAG , 'ON') :S(SQ.Uu) ICEB
SQ0.5 TOSS(S) :(SQ.0):S0.4 S COMMENT :F(SQ.5)3;SQ0.7 GT(SIZE(S) , 72) :F(ICEB

.S0.5): S LEN(72) . S REM . SS; S NB72S.PATTERN = :F(SQ.8):; TOSS (N); S =ICEB
.'% * B SS :(SQ.7);SQ.8 S = S SS; S LEN(72) . N = '* t; TOSS(N) :(SQ.7) ICEB
SQ.START S (BREAK(' ;') | REM) . N =3;SQ.1 S PAT = :F(SQ.2); IDENT(' ',CICEB
.) :F(S0.3); N=NB ' '; S FENCE SPAN(' ') = :(SQ.1):5S0.3 S BREAK(C) .ICEB
.DC = :F(SQ.ERR); N = N B C D C :(SQ.1);S0.2 N = N S; SPEW(N) :(SQ.0) ICEB
S0.99 TOSS(BUFF) ; OUTPUT = 'END OF FILE REACHED BY ICEBOL'; ENDFILE(7) ICEB
END ICEB

202

4, Factorial Table Generator

SNOBOL4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

ok Kk ok ¥k %k

* *

* THIS PROGRAM COMPUTES AND PRINTS A TABLE OF N FACTORIAL %

¥ FOR VALUES OF N FROM 1 THROUGH AN UPPER LIMIT "NX", %

¥* *

* IT DEMONSTRATES A METHOD OF MANIPULATING NUMBERS WHICH ARE %

* TOO LARGE FOR THE COMPUTER, AS STRINGS OF CHARACTERS. THE %

% COMMAS IN THE PRINTED VALUES ARE OPTIONAL, ADDED FOR READING *

* EASE. *

* %

* ok %k ok ok ok k %k ok Kk ok k Kk %k ok ok %k k ok *k %k %K ok ok ok Kk k)k ¥k)k k ¥k Kk)k ¥k X

¢

* INITIALIZATION.

*
NX = 45 1

*
N = 1 2
NSET = 1 3
NUM = ARRAY (1000) 4
NUM<1> = 1 5
FILL = ARRAY('0:3") 6
FILLKO> = '000" 7
FILLK1> = 100" 8
FILLK2> = 'Q! 9

*
OUTPUT = ¢ TABLE OF FACTORIALS FOR 1 THROUGH ' NX 10
OUTPUT = 11

*

* COMPUTE THE NEXT VALUE FROM THE PREVIOUS ONE.

P

L1 I =1 12

L2 NUMCI> = NUMKI> * N :F (ERR) 13
I = LT(I,NSET) I + 1 :S (L2) 14
I =1 15

L3 LT (NUM<I>, 1000) :S (L) 16
NUMX = NUM<KI> / 1000 :F (ERR) 17
NUM<KI + 1> = NUM<KI + 1> + NUMX :F (ERR) 18
NUMLI> = NUM<KI> - 1000 * NUMX :F (ERR) 19

L4 I = LT(I,NSET) I + 1 :S(L3) 20

*

% FORM A STRING REPRESENTING THE FACTORIAL.

*

L5 NSET = DIFFER (NUM<KNSET + 1>) NSET + 1 21
NUMBER = NUM<KNSET> . :F (ERR) 22
I = GT(NSET,1) NSET - 1 tF(L7) 23

L6 NUMBER = NUMBER ', ' FILLKSIZE (NUM<KI>)> NUMLKI> 24
I =GT(I,1) I -1 1S (L6) 25

*

% OUTPUT A LINE OF THE TABLE.

*

L7 OUTPUT = N t*!=' NUMBER 26
N = LT(N,NX) N + 1 :S(L1) F(END) 27

*

¥ ERROR TERMINATION.

b)

ERR OUTPUT = N '! CANNOT BE COMPUTED BECAUSE OF TABLE OVERFLOW.' 28

203

oUTPUT = ! INCREASE THE SIZE OF ARRAY
%
END

NO ERRORS DETECTED DURING COMPILATION

204

IINUM n_ot

29

30

TABLE OF FACTORIALS FOR 1 THROUGH 45

11=1

21=2

31=6

41=24

51=120

61=720

71=5,040

81=040,320

91=362,880

101=3,628,800

111=39,916,800

121=479,001,600

131=6,227,020,800

141=87,178,291,200

151=1,307,674,368,000

161=20,922,789,888,000

171=355,687,428,096,000

18!1=6,402,373,705,728,000

191=121,645,100,408,832,000

201!=2,432,902,008,176,640,000

211=51,090,942,171,709,440,000

221=1,124,000,727,777,607,680,000

231=25,852,016,738,884,976,640,000

241=620,448,401,733,239,439,360,000
25t=15,511,210,043,330,985,984,000,000
261=403,291,461,126,605,635,584,000,000
27t'=10,888,869,450,418,352,160,768,000,000
28!=304,888,344,611,713,860,501,504,000,000
29t'=8,841,761,993,739,701,954,543,616,000,000
301=265,252,859,812,191,058,636,308,480,000,000
31t=8,222,838,654,177,922,817,725,562,880,000,000
32t=263,130,836,933,693,530,167,218,012,160,000,000
33t=8,683,317,618,811,886,495,518,194,401,280,000,000

34'-295 232 799 039 604 140,847, 618 609 643 520, 000 000

351=10, 333 147, 966 386 144 929 666 651 337 523 200 000 000

36‘—371 993, 326 789 901, 217 467, 999 448 150 835 200 000 000

37!=13, 763 753 091 226 345 046 315 979 581,580, 902 400 000 000
38'-523 022 617 466 601 111,760, 007 224 100 074 291 200 000,000
391=20, 397 882 081 197 443 358 640 281 739 902 897 356 800 000 000
40"815 915 283 247 897, 734 345,611, 269 596 115 894, 272 OOO 000,000
411=33,452,526, 613 163, 807 108 170 062 053,440, 751 665 152 000,000,000
421=1, 405 006, 117 752 879 898 543 142 606 244 511 569 936 384,000,000,000
43"60 415 263 063 373 835 637 355, 132 068 513 997 507 264 512, 000 000 000
4u1=2, 658 271 574 788 448 768 043 625 811 014, 615 890 319 638 528 000 000,000
45'—119 622, 220 865 480 194,561, 963 161, 495 657 715, 064 383, 733 760 000, OOO 000

NORMAL TERMINATION AT LEVEL O
LAST STATEMENT EXECUTED WAS 27

SNOBOL4 STATISTICS SUMMARY-

1048 MS. COMPILATION TIME
2962 MS. EXECUTION TIME
3296 STATEMENTS EXECUTED, 437 FAILED
3376 ARITHMETIC OPERATIONS PERFORMED

0 PATTERN MATCHES PERFORMED

0 REGENERATIONS OF DYNAMIC STORAGE
0.90 MS. AVERAGE PER STATEMENT EXECUTED

205

5. Bridge Dealing Program

The following program uses arrays, programmer—-defined functions, and a
variety of output formats to produces sets of bridge hands. Execution of the
statements beginning at the label NEWDEAL produces one set of hands. Cards are
dealt from the array DECK to the four arrays, NORTH, EAST, SOUTH, and WEST by
the function DEAL. The hands are sorted by the function ARRANGE. The function
DISPLAY prints the hands, one set per page.

SNOBOL4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

OUTPUT ('TITLE', 6, ' (14H1THIS IS HAND , 110A1) ') 1
OUTPUT ('DEALER',6, ' (11H DEALER IS ,110A1)') 2
OUTPUT ('SKIP',6,' (A1) ') 3

*

*

* FUNCTIONS

*

*
DEFINE ('ARRANGE () ') 4
DEFINE ('DEAL() ') 5
DEFINE ('DISPLAY () ') 6
DEFINE ('LINE (STR1,COL1, STR2,COL2) BL1,BL2") 7
DEFINE (*RANDOM (N) !) 8
DEFINE (' SORT (HAND) I,J') 9
DEFINE ('SUITL (HAND, SUIT)N') : (CONSTANT) 10

*

*

ARRANGE SORT(NORTH) SORT (EAST) SORT(SOUTH) SORT (WEST) : (RETURN) 1

*

*

DEAL DEALSEQ DEALHAND 12
DECK = COPY (NEWDECK) 13
N = 51 14

NLOOP DEALSEQ NXTHAND 15
CARD = RANDOM(N + 1) 16
ITEM ($HAND,N / 4) = DECK<CARD> 17
DECK<CARD> = NE(CARD,N) DECK<N> 18
N = GT(N,0) N - 1 : S (NLOOP) F (RETURN) 19

*

*

DISPLAY TITLE = NTHDEAL 20
DEALER = DEALR 21
SKIP = ! ' 22
OUTPUT = LINE('NORTH',40) ' 23
OUTPUT = 24
OUTPUT = LINE (SUITL (NORTH, 'S'),40) 25
OUTPUT = LINE(SUITL(NORTH, 'H'),40) 26
OUTPUT = LINE(SUITL (NORTH, 'D'),40) 27
OUTPUT = LINE (SUITL (NORTH, C'),40) : 28
SKIP = ! ' 29
OUTPUT = LINE('WEST',20,'EAST',60) 30
OUTPUT = 31
OUTPUT = LINE (SUITL (WEST,'S'),20, 32

+ SUITL (EAST, 'S'),60) : 32
OUTPUT = LINE(SUITL(WEST,'H'),20, 33

+ SUITL (EAST, 'H') ,60) 33
OUTPUT = LINE(SUITL (WEST,'D'),20, 34

206

+
*
*

LINE

LINE1
*

*
RANDOM

SORT
SORT1

SORT2

*
*
SUITL
SUITL1
SUITL2

SUITL3
*

*
*
*

CONSTANT
+

SUITL (EAST, '*D') ,60)

OUTPUT = LINE(SUITL(WEST,*'C'),20,
SUITL (EAST,*C') ,60)
SKIpP = ! '
OUTPUT = LINE(*SOUTH!',40)
OUTPUT =
OUTPUT = LINE(SUITL(SOUTH,'S'),u40)
OUTPUT = LINE(SUITL(SOUTH,'H'),40)
OUTPUT = LINE(SUITL(SOUTH, 'D'),40)
OUTPUT = LINE(SUITL(SOUTH,'C"'),U40)
: (RETURN)

BL LEN(COL1 - 1) . BLI1
BL DIFFER(STR2) LEN (COL2 - (COL1 + SIZE(STR1))) . BL2
LINE = BL1 STR1 BL2 STR2 : (RETURN)
RAN.VAR = RAN.VAR * 1061 + 3251
RAN.VAR RTAB (5) =
RANDOM = (RAN.VAR * N) 7/ 100000 : (RETURN)
J = 13
J = GT(J,1) J -1 :F (RETURN)
I = 0
I = LT(I,J) I+1 :F (SORT1)
TEMP = LT (HANDKI - 1>,HAND<KI>) HAND<I - 1> :F (SORT2)
HAND<KI - 1> = HANDKI>
HAND<KI> = TEMP : (SORT2)
SUITL = SUIT ! '
N = LT($SUIT + 13,HAND<KND) N + 1 :S(SUITL1)
N = LT($SUIT,HANDKN>) N + 1 :F(RETURN) S (SUITL3)
SUITL = SUITL $ (HANDKN - 1> - $SUIT) : (SUITL2)

CONSTANTS
BI, = t []

1 '

S = 39
H = 26
D = 13
c = 0
$1 = 2
$2 = 3
$3 = 4
$4 = 5
$5 = 6
$6 = 7
$7 = 8
$8 = 9
$9 = 10
$10 = vJ¢
$11 =
$12 = K!
$13 = A"
DEALSEQ = 'NORTH,EAST,SOUTH,WEST,NORTH, '
NXTHAND = *HAND !',*' BREAK(',') . HAND
DEALHAND = *DEALR ',!'! BREAK(',') . HAND . DEALR
NORTH = ARRAY('0:12"')

43
44
45

46
47
48

49
50
51
52
53
54
55

56
57
58
59

BLDDEK

NEWDEAL
*

*

*

END

EAST =
SOUTH =
WEST =
NEWDECK
RAN. VAR
DEALMAX
NTHDEAL
DEALR =
N = 0
NEWDECK<N>
N = LT(N
NTHDEAL =

oo

DEAL ()
ARRANGE ()

DISPLAY ()

51

ARRAY ('0:127')
ARRAY ('0:1271)
ARRAY ('0:127)

ARRAY ('0:51")
157
3

'WEST
= N+ 1

N + 1
LT (NTHDEAL, DEALMAX)

NO ERRORS DETECTED DURING COMPILATION

208

NTHDEAL + 1

: S (BLDDEK)
: F (END)

: (NEWDEAL)

82
83
84
85
86
87
88
89
90
91
92

94

95

96
97

THIS IS HAND 1
DEALER IS NORTH

WEST

AQ63
A98
862
K85

QoUE’

NORTH

S 84

H K752

D J3

C Q9742
EAST
S 1075
H Q103
D AK974
c A10

SOUTH

S KJo9z

H J64

D Q105

C J63

209

THIS IS HAND 2
DEALER IS EAST

NORTH

S K82

H 965

D J75432

c 5
WEST EAST
S J95 s 107
H K8 H AQ32
D AK96 D 108
C AJ84 C Q9732

SOUTH

S AQ643

H J1074

D Q

C K106

210

THIS IS HAND 3
DEALER IS SOUTH

WEST

S 65

H KQ1093
D Q108

c QJ7

NORTH

J872
4
965

[N wi]

SOUTH

AQ87
A54
K932
A3

oo n

KJ1093

EAST

S 42

H 6

D AJ765%
C K10842

211

NORMAL TERMINATION AT LEVEL 0
LAST STATEMENT EXECUTED WAS 93
SNOBOLY4 STATISTICS SUMMARY-

212

2130
5541
5736
5678
378
0
0.97

MS. COMPILATION TIME

MS. EXECUTION TIME

STATEMENTS EXECUTED, 686 FAILED
ARITHMETIC OPERATIONS PERFORMED
PATTERN MATCHES PERFORMED
REGENERATIONS OF DYNAMIC STORAGE
MS. AVERAGE PER STATEMENT EXECUTED

6. APIAPT =--- A Christmastime Algorithm

SNOBOLY4 (VERSION 2.0, OCT. 7, 1968)
BELL TELEPHONE LABORATORIES, INCORPORATED

H* O ¥ ¥ H O ¥ *

¥*

*

SONG

*
NEXT.DAY

TWELFTH
ELEVENTH
TENTH
NINTH
EIGHTH
SEVENTH
SIXTH
FIFTH
FOURTH
THIRD
SECOND
FIRST

*

CODA
%

END

WHEN THE OUTPUT ASSOCIATION FOR "SING" IS CHANGED TO
A DIGITAL-TO-ANALOG CONVERTER WITH THE PROPER MELODY
SYNTHESIZER, THIS PROGRAM SINGS THAT OLD CHRISTMASTIME
FAVORITE, "A PARTRIDGE IN A PEAR TREE."

M. D. SHAPIRO

ACAPPELLA.CHOIR = 6 OR MORE PEOPLE SINGING IN TUNE
DAYS = 'FIRST, SECOND,THIRD,FOURTH,FIFTH,SIXTH,

* SEVENTH, EIGHTH, NINTH, TENTH, ELEVENTH, TWELFTH, *
NEXT = BREAK(',') . WHICH LEN (1)

TRACE ('SING', 'VALUE', , *SONG!')

&TRACE = 1000

DEFINE (*SONG () ') : (NEXT. DAY)
PAUSE IDENT (SING) OUTPUT('SING', ACAPPELLA.CHOIR,

ll(l " PAUSE "¢ ’ 100A1) n) = 1] : (RETURN)
DAYS NEXT = :F (COoDA)
SING = (TAKE A BREATH)

SING = 'ON THE ' WHICH ' DAY OF CHRISTMAS,'

SING = 'MY TRUE LOVE GAVE TO ME,'‘ : ($SWHICH)
SING = 'TWELVE LORDS A-LEAPING,'

SING = 'ELEVEN LADIES DANCING,'

SING = 'TEN PIPERS PIPING,'

SING = 'NINE DRUMMERS DRUMMING, '

SING = 'EIGHT MAIDS A-MILKING,'

SING = 'SEVEN SWANS A-SWIMMING,'

SING = 'SIX GEESE A-LAYING,®

SING = 'FIVE GOLD RINGS,'

SING = 'FOUR COLLY BIRDS,!

SING = 'THREE FRENCH HENS, '

SING = 'TWO TURTLEDOVES,'

SING = AND 'A PARTRIDGE IN A PEAR TREE.'

AND = IDENT (AND) 'AND ! : (NEXT.DAY)
SING = INPUT :S (CODA)

NO ERRORS DETECTED DURING COMPILATION

213

ON THE FIRST DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
A PARTRIDGE IN A PEAR TREE.

ON THE SECOND DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,

TWO TURTLEDOVES,

AND A PARTRIDGE IN A PEAR TREE.

ON THE THIRD DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,

THREE FRENCH HENS,

TWO TURTLEDOVES,

AND A PARTRIDGE IN A PEAR TREE.

ON THE FOURTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,

FOUR COLLY BIRDS,

THREE FRENCH HENS,

TWO TURTLEDOVES,

AND A PARTRIDGE IN A PEAR TREE.

ON THE FIFTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,

FIVE GOLD RINGS,

FOUR COLLY BIRDS,

THREE FRENCH HENS,

TWO TURTLEDOVES,

AND A PARTRIDGE IN A PEAR TREE.

ON THE SIXTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,

SIX GEESE A-LAYING,

FIVE GOLD RINGS,

FOUR COLLY BIRDS,

THREE FRENCH HENS,

TWO TURTLEDOVES,

AND A PARTRIDGE IN A PEAR TREE.

ON THE SEVENTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,

SEVEN SWANS A-SWIMMING,

SIX GEESE A-LAYING,

FIVE GOLD RINGS,

FOUR COLLY BIRDS,

THREE FRENCH HENS,

TWO TURTLEDOVES,

AND A PARTRIDGE IN A PEAR TREE.

ON THE EIGHTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,

EIGHT MAIDS A-MILKING,

SEVEN SWANS A-SWIMMING,

SIX GEESE A-ILAYING,

FIVE GOLD RINGS,

FOUR COLLY BIRDS,

THREE FRENCH HENS,

TWO TURTLEDOVES,

AND A PARTRIDGE IN A PEAR TREE.

ON THE NINTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,

214

NINE DRUMMERS DRUMMING,

EIGHT MAIDS A~MILKING,

SEVEN SWANS A-SWIMMING,

SIX GEESE A-LAYING,

FIVE GOLD RINGS,

FOUR COLLY BIRDS,

THREE FRENCH HENS,

TWO TURTLEDOVES,

AND A PARTRIDGE IN A PEAR TREE.

ON THE TENTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,

TEN PIPERS PIPING,

NINE DRUMMERS DRUMMING,

EIGHT MAIDS A-MILKING,

SEVEN SWANS A-SWIMMING,

SIX GEESE A-LAYING,

FIVE GOLD RINGS,

FOUR COLLY BIRDS,

THREE FRENCH HENS, (
TWO TURTLEDOVES,

AND A PARTRIDGE IN A PEAR TREE.

ON THE ELEVENTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
ELEVEN LADIES DANCING,

TEN PIPERS PIPING,

NINE DRUMMERS DRUMMING,

EIGHT MAIDS A-MILKING,

SEVEN SWANS A-SWIMMING,

SIX GEESE A-LAYING,

FIVE GOLD RINGS,

FOUR COLLY BIRDS,

THREE FRENCH HENS,

TWO TURTLEDOVES,

AND A PARTRIDGE IN A PEAR TREE.

ON THE TWELFTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,

TWELVE LORDS A-LEAPING,

ELEVEN LADIES DANCING,

TEN PIPERS PIPING,

NINE DRUMMERS DRUMMING,

EIGHT MAIDS A-MILKING,

SEVEN SWANS A-SWIMMING,

SIX GEESE A-LAYING,

FIVE GOLD RINGS,

FOUR COLLY BIRDS,

THREE FRENCH HENS,

TWO TURTLEDOVES,

AND A PARTRIDGE IN A PEAR TREE.

*
A+ ok
ok ok
e e ok e e e e
st e ek e e ek
e e s o o ek ook sk

215

NORMAL TERMINATION AT LEVEL O
LAST STATEMENT EXECUTED WAS 25

SNOBOL4 STATISTICS SUMMARY-

732
749
276
0

25

0
2.71

216

MS. COMPIIATION TIME

MS. EXECUTION TIME

STATEMENTS EXECUTED, 123 FAILED
ARITHMETIC OPERATIONS PERFORMED
PATTERN MATCHES PERFORMED
REGENERATIONS OF DYNAMIC STORAGE
MS. AVERAGE PER STATEMENT EXECUTED

EABEND 130

ABORT 47

&EABORT 129

addition (+) 2, 3, 139

EALPHABET 79, 129

alternation (|) 9, 23, 140, 174

§ANCHOR 28, 29, 130

anchored mode 28, 29, 47

anchored pattern matching 173

ANY 37, 174

APPLY 107, 134

ARB 48, 66, 174

§ARB 129

ARBNO 52, 67, 72, 101

ARG 134, 154

arguments (see function call)

arithmetic expressions 3, 4

arithmetic operators 1
addition (+) 2, 3, 139
division (/) 3, 139
exponentiation (**) 2, 3, 139
multiplication (*) 2, 3, 139
subtraction (~) 2, 3, 139
unary minus (-) 2, 3, 137
unary plus (+) 3, 137

ARRAY 20, 108, 113, 177

arrays
data type 113, 126
elements 110, 113, 114
indexing 108, 110
prototypes 108, 114
references 20, 110, 134

assignment statements 1, 22, 23, 132

BACKSPACE 162

BAL. 50, 52, 97, 101

EBAL 129 ’

balanced expressions 51, 97, 101

bead diagrams 25, 27, 28, 35, 42, 49,
50, 52, 63, 64,

66, 67
beads 25
binary operators 139
addition (+) 2, 3, 139
alternation ({) 9, 23, 140, 174
concatenation (blank) 5, 9, 23,
140

conditional value
assignment (.) 10, 30, 140, 176
division (/) 3, 139
exponentiation (**) 2, 3, 139
immediate value
assignment ($) 11, 31, 140, 176
multiplication (%) 2, 3, 139
subtraction (-) 2, 3, 139
unused 141
BREAK 35, 45, 54, 174
bubble sort 111

INDEX

call tracing 147, 154

carriage control 160

catastrophic termination 172

CLEAR 178

clearing variable values 178

CODE 119, 126, 127

COLLECT 178

comment line 2

compilation 119, 120, 163

compilation errors 164, 185

concatenation (blank) 5, 9, 23, 140

conditional value assignment (.) 10,
30, 140, 176

continuation line 2

control line

LIST 163
LEFT 163
RIGHT 163

UNLIST 163
conversion of data types 127, 135
CONVERT 127 ’
COPY 113, 128
created names 126, 127
created variables 20, 108, 110, 115,
116, 117, 118,
123
cursor 25, 28, 29, 35, 40, 42, 64,
66, 72
cursor position (@) 56, 138

DATA 20, 122
data objects 78, 113, 122
data set reference numbers 158, 160,
163
data sets 158
data structures 177
DATATYPE 126
data types
array 20, 113, 126, 127
code 126, 127
created name 126, 127
integer 78, 126, 127
pattern structure 126, 127
programmer—-defined
data type 20, 122, 126, 127
real number 78, 126, 127
string 118, 126, 127
unevaluated expression 126, 127
DATE 81
DDNAMES 158
DD statements 158, 160
DEFINE 16, 83, 89
degenerate statement 132
DETACH 161
DIFFER 15, 78
direct gotos 120
discontiuation of tracing 153

217

division (/) 3, 139
dumps 19, 130, 165, 169
.§DUMP 19, 130, 165
dynamic storage 178

EBCDIC 79, 80

efficiency 24, 30, 54, 173
END 11, 163, 164

ENDFILE 162

end of file 11, 162, 163
end of input data set 157

end statement 1, 11, 120, 163, 164,
165
entry
labels 83

points 16, 83
error messages 169, 185
compilation 164, 185
termination 186
error termination 169
EQ 76
EVAL, 57, 81
evaluation of expressions 22, 133
evaluation of statements 132
execution 164
exponentiation (**) 2, 3, 139
expressions 1, 4
arithmetic 3, 4
balanced 51, 97, 101
evaluation of 22, 133
unevaluated 57, 81, 126, 127, 138

FATL 46, 62, 101
EFAIL 129
failure
during input 11, 133, 157
in expression evaluation 15, 132,
133, 134
in pattern matching 12, 25, 30,
31, 46, 47, us,
63, 64, 66, 132
of functions 14, 17, 134
FENCE 47, 173
EFENCE 129
FIELD 134, 154
field functions 20, 123
fields (see programmer-defined
data types)
files (see I/0)
flow of control 11, 119
E§FNCLEVEL 129, 152
formal arguments 16, 83, 84, 86
formal identification 126
formats 160
FRETURN 17, 85, 87, 134
E§FTRACE 130, 148
&FULLSCAN 28, 63, 71, 130
fullscan mode 71, 176
function calls
arguments of 13, 15, 17, 75, 94,
134
failure of 14, 17, 134
level of 147

218

preservation of values 18, 86, 87,
92, 94

recursive 18, 91, 93, 96, 103
function definitions

DEFINE 16, 83, 89

entry points 16, 83

function names 16, 83, 85, 86

formal arguments 16, 83, 84, 86

local variables 16, 18, 83, 85, 86
functions

primitive 13, 75, 134

programmer-defined 16, 62, 75, 83,

134

function name as argument 956
function tracing 147, 148, 154
function values 16, 76, 85, 118
GE 176
generated variables 13, 141
gotos 11, 12, 132, 141

direct 120

evaluation of 133

failure 11, 119, 133

success 11, 119, 133

unconditional 11, 119, 133
GT 60, 76
heuristics 63, 71, 176
IDENT 78
identifiers 75
immediate value assignment ($) 11,

31, 140, 176
implicit alternatives 48

indirect reference (%) 12, 137
infix notation 96
INPUT

function 161
variable 6, 11, 14, 81, 133, 156,
157
input association 156, 161
INTEGER 77
integers 2, 134
integer data type 2, 3, 78, 126, 127,
134
interrogation (2) 82, 138
intervention termination 171
ITEM 114, 115
I/0
functions
BACKSPACE 162
DETACH 161
ENDFILE 162
INPUT 161
oUTPUT 159
REWIND 162
system 158
FORTRAN IV 158

job control language 158

keywords 19, 128
§ABEND 130

EABORT 129
§ALPHABET 79, 129
§ANCHOR 28, 29, 130

§ARB 129

§BAL 129 ‘

§DUMP 19, 130

SFAIL 129

§FENCE 129

§FNCLEVEL 129, 152
§FTRACE 130, 148
§FULLSCAN 28, 63, 71, 130
SLASTNO 129, 154
EMAXLNGTH 130

E§REM 129

ERTNTYPE 129, 154
§STCOUNT 129, 152
§STFCOUNT 129, 152
§STLIMIT 130

§STNO 129

§SUCCEED 129

§TRACE 130, 143, 153

protected 129
constant 129
varying 129

unprotected 130
parameters 130
switches 130

keyword operator (&) 138
keyword tracing 152, 154

label 11, 22,
attribute 119, 120
tracing 151, 154

§LASTNO 129, 154

LE 15, 76

left recursion 60, 61, 67

LEN 14, 34

ILGT 16, 79

LIST 163

listing control
LIST 163

LEFT 163
RIGHT 163
UNLIST 163

literals 1, 4, 7,

LOCAL 134, 154

local variables 16, 18, 83, 85, 86

loop control 76

LT 76

119, 132

134, 141

EMAXLNGTH 130
multiplication (*) 2, 3, 139

name operator (.) 117, 118, 138
names 115

natural wvariables 115, 116, 141
NE 76

needle 25

negation (~) 82, 134, 138

normal termination 165

NOTANY 37

NRETURN 85, 86, 87, 118

null string 4, 5, 15, 33, 48, 52,

76,

116, 135
numeral strings 4, 134
numerical predicates

EQ 76

GE 76

GT 76
INTEGER 77
.LE 15, 76
LT 76

‘NE 76

object 8, 22, 76, 132
object code 119
object comparison predicates
DIFFER 15, 78
IDENT 78
LGT 16, 79
object evaluation 132
omitted arguments 15, 75

OPSYN 105, 134

OUTPUT
function 159
variable 6, 32, 156

output association 156, 159
parameters 130
parentheses 3, 7, 10, 32, 50
passing names 116
patterns 6, 8, 22, 132
pattern building 22, 23, 24, 58, 132
left recursion in 60, 61, 67
pattern matching 6, 22, 25, 28, 132
pattern matching statements 1, 6, 7,
22, 132
pattern structures 9, 14, 22, 23, 24,
‘ 58, 126, 127,
175
Polish prefix notation 96
POS 42, 45
precedence 3, 5, 10, 11, 24, 32, 133,
139
predicates (see numerical and
object comparison) 15
primitive functions 13,
ANY (CS) 37
APPLY(F,A1,...,AN) 107
ARBNO (P) 52
ARG (F,N) 154
ARRAY (P,V) 108
BACKSPACE (N) 162
BREAK (CS) 35
CLEAR() 178
CODE (S) 119
COLLECT (N) 178
CONVERT (V,DT) 127
CoPY (V) 113, 128
DATA (P) 122
DATATYPE (V) 126
DATE() 81
DEFINE (P,L) 83
DETACH (V) 161
DIFFER(V1,V20) 78
ENDFILE (N) 162

75, 134

219

EQ(I1,I2) 76
EVAL (E) 81
FIELD (F,N) 154
GE(I1,I2) 76
GT (I1,1I2) 76
IDENT (V1,V2) 78
INPUT (V,N,L) 161
INTEGER (V) 77
ITEM(A,I1,...,IN) 115
LEN (N) 34
LE(I1,12) 76
LGT(S1,S2) 79
LOCAL (F,N) 154
LT (I1,I2) 76
NE (I1,I2) 76
NOTANY (CS) 37
OPSYN (F1,F2) 105
OUTPUT (V,N,F) 159
POS (N) 42
PROTOTYPE (B) 114
REPLACE(S,CS1,CS2) 80
REWIND(N) 162
RPOS (N) 42
RTAB (N) 40
SIZE(S) 80
SPAN(CS) 35
STOPTR (V,R) 153
TAB(N) 40
TIME() 81
TRACE (V,R,T,F) 143
TRIM(S) 81
VALUE(S) 125
primitive pattern structures
ABORT 47
ARB 48, 66, 174
BAL 50, 52, 97, 101
FAIL 46, 62, 101
FENCE 47, 173
REM 40
SUCCEED 54, 62, 72
print request messages 189
printing 6, 156
program termination 1
program syntax 183
programmer-defined
data types 20, 122, 126, 127
DATA 122, 125
FIELD 154 '
functions 16, 62, 75, 83, 134
DEFINE 16, 83
entry label 83
FRETURN 17, 85, 87, 134
formal arguments 16, 83, 84, 86
local wvariables 16, 18, 83, 85,
86
name 16, 83, 85, 86
NRETURN - 85, 86, 87, 118
procedure 16, 83, 8u
prototype 16, 83
RETURN 16, 85, 89, 118, 147
trace procedures 153
protected keywords 129
PROTOTYPE 114

220

prototypes 16, 83, 108, 114
syntax 184
PUNCH 6, 157

quickscan 63, 71
quotation marks 4, 117

random number generator 89

range of an array 110

reading 6

real numbers 3, 78, 126, 127, 136

recursive function calls 18, 91, 93,
96, 103

recursive loops in pattern

matching 67, 70, 72
recursive pattern definitions 60, 61,

67, 72
redefinition of functions 89
references 180
REM 40
EREM 129
REPLACE 14, 80, 134
replacement statements 1, 6, 8, 22,
33, 132

RETURN 16, 85, 87, 89, 118, 147
returning a variable 118

RETURN tracing 147, 148, 154
REWIND 162

RPOS 42, 45

RTAB 40

SRTNTYPE 129, 154

scanner 22, 25, 27, 63
scanning 23, 25
sequential data sets 159
STz 13, 60, 80
source program 163
SPAN 35, 45, 54
statements
assignment 1, 22, 23, 132
end 1, 11, 120, 163, 164, 165
degenerate 132
pattern matching 1, 6, 7, 22, 132
replacement 1, 6, 8, 22, 33, 132
statement continuation 2
statement evaluation 132
statement numbers
LIST LEFT 163
LIST RIGHT 163
statement separator 2, 119
statement syntax 182
§STCOUNT 129, 152
&STFCOUNT 129, 152
&STLIMIT 130
&§STNO 129
STOPTR 153
storage management 178
storage regeneration
forcing 178
string 1, 4, 134
STRING data type 4, 118, 126, 127
string-valued expressions 5
subject 7, 8, 22, 132

subtraction (-) 2, 3, 139
SUCCEED 54, 62, 72
&§SUCCEED 129
switches 130
syntax 181
of prototypes 184
of SNOBOL4 programs 183, 190
of statements 182
system labels
END 11, 164
FRETURN 17, 85, 87, 134
NRETURN 85, 86, 87, 118
RETURN 16, 85, 87, 89, 118, 147

TAB 40

tags 143, 146

termination 163, 165
catastrophic 172
error 169
intervention 171
normal 165
program 1

TIME 81, 89

Tower of Hanoi 102

TRACE 143, 153

&§TRACE 130, 143, 153

trace associations 143, 147

tracing
CALL 147, 154
FUNCTION 147, 148, 154

level 147

KEYWORD 152, 154
LABEL 151, 154
RETURN 147, 148, 154
VALUE 143, 154

TRIM 14, 81

unanchored mode 28, 66
unary operators 2, 137

cursor position (@) 56, 138
interrogation (?) 82, 138
indirect reference ($) 12, 137
keyword (&) 19, 128, 138

minus (=) 2, 3, 134, 137

name (.) 117, 118, 138
negation (-) 82, 134, 138

plus (+) 3, 134, 137

unevaluated expression (*) 57, 81,
138
unused 139
unevaluated expressions 57, 81, 126,
127, 138
UNLIST 163
unused operators
binary 141
unary 139
VALUE 125
value assignment
by assignment statements 1, 22,
115
by cursor position operator 56,
115
in array initialization 108
through pattern matching 30, 31,
33, 115
value tracing 143, 154
variables 1, 10, 30, 31, 56, 75, 118
created 20, 108, 110, 115, 116,
117, 118, 123
generated 13, 141
initial value 4
local 16, 18, 83, 85, 86
natural 115, 116, 141
variable association 10, 11, 30, 31,
32, 33

221

PROGRAMMING IN BASIC, THE TIME-SHARING LANGUAGE

by Mario V. Farina

This book is a complete self-teaching description of the BASIC time-sharing language as it is
used on teletype machines linked to computers by telephone lines.

OUTSTANDING FEATURES: Written in easy-to-understand style with a minimum of technical
terms » “Extended” features soon to be implemented are included in the text « Material is or-
ganized logically into 25 lessons ¢ An actual program example is shown from its conception to
final results ¢ Actual computer print-outs are reproduced.

Published 1968 164 pages

SYSTEM SIMULATION

by Geoffrey Gordon

This book concerns the techniques of simulation as applied to both continuous and discrete
systems, and compares those techniques with other methods of problem-solving.

OUTSTANDING FEATURES include: Programmed examples fully worked out in six different simu-
lation languages e Illustrated with complete examples drawn from a variety of applications * A
detailed discrete system example: first solved by hand calculations and later by FORTRAN and
two discrete simulation languages (GPSS and SIMSCRIPT) ¢ The technique of Industrial Dynamics
as applied to business systems * The probability and statistics theory involved in the construc-
tion of models and in the analysis of simulation results ¢ Examples of applications drawn from
a variety of fields: engineering, biology, economics, business systems, switching systems and
inventory control.

Published 1969 320 pages

PROGRAMMING LANGUAGE/ONE

by Frank Bates and Mary L. Douglas

The purpose of this book is to explain some of the techniques for using computers, and to ex-
plain the implementation of these techniques in the programming language PL/1. Many PL/1
programs appear in this book as examples to illustrate various points about the language and
about computing in general. All of the example programs have been tested on a computer (an
IBM System/360). The program listings and results, reproduced in this book are actual com-
puter print-outs. The programs shown in the back of the book as solutions to the exercises have
been similarly tested.

Published 1967 384 pages

Prentice-Hall, Inc., Englewood Cliffs, New Jersey

13-815357-

