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Introduction

There is a story behind this book:

For months, a coworker of mine, having been misinformed that I was some
sort of "DOS hotshot," had been pestering me to write a program to convince MS-
DOS that it no longer had an L: drive. I never quite figured out what the program
was for, but apparently customers were clamoring for a way to remove the
Microsoft CD-ROM Extensions (MSCDEX) from memory, and this program had
something to do with it. Anyway, I had tried several different approaches, includ-
ing using MS-DOS’s Cancel Device Redirection function (INT 21h Function 5Fh
Subfunction 04h), all without success.

I then came across Ralf Brown’s "Interrupt List," part of which now forms the
appendix to this book. One of the DOS functions listed by Ralf, Get List Of Lists
(INT 21h Function 52h), was marked "DQS.2+=internal." It was not listed in the
official DOS documentation: IBM’s DOS..3.3.Technical Reference jumps straight
from Find Next (INT 21h Function 4Fh) to Get Verify Setting (Function 54h), with
no mention of any functions between 4Fh and 54h. Even Ray.Duncan’s.Advanced
MS-DOS Programming-simply lists Function 52h as "Reserved." Anyway, the un-
documented DOS function described in Ralf’s list turned out to be exactly what
was needed to write a program to."cancel”.the I: drive. Once I knew about INT
21h Function 52h, writing DRVOFE (as.the.utility was.called) was.trivial. Without
this information, it was impossible. -

ix



x UNDOCUMENTED DOS

This introduction is not the place to go into the details of DRVOFF. The
source code for a similar program, and a full explanation, appear in chapter 4 of
this book. For now, the point is simply that here was a very real need that could be
met only using a DOS function that doesn’t appear in Microsoft’s or IBM's documentation.

Of course, I was already aware, like most DOS programmers, that there are
undocumented DOS functions. In fact, I had accumulated a folder marked
"Undocumented DOS" that contained various clippings from P&-Magazine, Di=
Dobb'ssjournal, andwProgrammer’s-Journal, printouts of source files downloaded
from bulletin boards, and printouts of discussions held in on-line conferences
such as ibm.dos/secrets on BIX. I also found a number of books that contained
discussions of undocumented DOS. But its randomness bothered me, and led to
this book. The snippets'I had collected were not only random, they were also
sometimes contradictory, and they never seemed to take sufficient account of dif- )
ferences between DOS versions. It was clear that something more comprehensive
was needed: a book that attempted to list all undocumented DOS functions and
data structures in one place, detailing the DOS version differences (even for such
odd versions of DOS as the compatibility box in OS/2), that frankly acknowl-
edged the quirks of working with undocumented DOS, and that showed how to
use undocumented DOS safely when writing programs.

Who better to write such a book than the software engineers who had al-
ready written elsewhere on the subject? Jim Kyle was an obvious choice, because
he had prepared the material on undocumented DOS in the second edition of
QueGorporation’s-popular.DOS-Programiner’s.Reference. Ray-Michels was too, be-
cause he had written the chapter on "Undocumented DOS" in the Waite:Group’s
MS-DQS, Papers. Ralf-Brown maintained the one truly definitive, absolutely
reliable list of DOS calls, and it was clear that this "Interrupt List" had to be trans-
formed into the book’s appendix. Tim-Paterson had not so much written about
MS-DOS; he in fact wrote MS-DOS itself (Version 1.0) and was the perfect person
not only to describe one important facet of undocumented DOS, but also to act as
technical advisor for the entire book. It was also clear that the book needed to
give readers a utility that would allow them to explore DOS without disassembling,
and David«Maxeystoolsmith extraordinairemwas the obvious choice to write
INTRSPY.
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What You Will Find in This Book

Most programmers who have worked with a DOS technical reference have prob-
ably wondered at some time or other about its curious "holes": function numbers
that are marked "Reserved" or even entirely missing. This book contains a de-
tailed version-by-version explanation of these "missing" DOS functions.

In addition, the book emphasizes the crucial undocumented DQS.data-striic-
tures, such as Memory. Control Blocks (MCBs), the Current.Directory.Structure
(@BS), Swappable Data Area (SD2), and the List-of-lists. It also details the un-
documented fields in structures that are otherwise documented, including the
Program-Segment-Prefix (PSPR), File.Control.Bleek (E€B), Drive Parameter Block
(DBB), BIOS Parameter-Block.(BPB), and so on. For any of this to be usable in real
programs, you should pay careful attention to our descriptions of how the layout
of these structures differs from one DOS version to the next.

But more than simply listing the undocumented functions and data struc-
tures, this book provides techuigiies. Some of these already belong to the "felk-
¥ete" or "oralshistery” of DOS programming. Others appear here for the first time.
Here are a few of the techniques you will find in this book:

Accessing the master environment

Walking the DOS memory chain

Loading device drivers from the DOS command line
Creating logical drives with the network redirector

Adding new internal commands with INT 2Fh Function AEh
Writing TSRs with the DOS swappable data area

We have also tried, where appropriate (for example, accessing the master en-
vironment), to discuss several different techniques for performing the same task.
This serves two purposes: first, to show the advantages and disadvantages of
each technique, and second, to suggest that safe use of undocumented DOS might
include performing the same operation in two different ways and then compar-
ing the results to make sure they match.

The programs for this book were tested extensively in MS-DOS_and PC-DOS
versions.2,.3,4,.as.well as a version.that-wescan‘t-talk-about-yet, but which may
be available by the time you read this. The programs were also tested in such sim-
ulated DOS environments as the "compatibility box" in.QS/2.1.1.and.2.0 and Digis
tal Research’s DReD@S. Surprisingly, we found that our programs, which rely
heavily on undocumented DOS, tended to work across a wider range of DOS and
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pseudo-DOS versions than many programs that use only the documented DOS
interface. Relying on undocumented DOS did not mean throwing caution to the
winds. In fact, it meant we had to do a better job of DOS version checking than
many programs that simply assume they are running under DOS 3.x or greater.

Undocumented DOS: The Disks

What will you find on the disks that accompany Undocumented DOS?

For one thing, it’s not just the electronic form of the source files printed in the
book (don’t you just hate when publishers do that?). Certainly, the disks do con-
tain all the code printed in the book. However, there’s a lot of added value as
well. For example:

®  INTREIST—Ralf Brown’s famous "Interrupt List" in hypertext-form, pre-
pared by WindowBook, Inc. of Cambridge, MA. In addition to all the un-
documented DOS functions and data structures that appear in print in
Appendix A of this book, INTRLIST also includes all the documented
calls in convenient on-line form, plus hard-to-find information on key
DOS extensions, including NetBIOS, DPMI, DESQView AP1, Neowell Net-
Ware API, and.so on.

m  INERSPY—David Maxey’s script-driven debugger for monitoring PC
software interrupts, described in chapter 8 of this book, plus many sam-
ple INTRSPY scripts.

= DEVEOD—Jim Kyle’s program for loading device drivers from the DOS
command line. Very handy, unless you actually like editing CONFIG.SYS
and rebooting.

ENVEDIT—]Jim Kyle’s program for editing the master environment.

»  MONITOR and WINMON—Complete assembly language source code

for DOS and Windows debuggers, written by Tim Patterson.

Isn’t This Material Secret?

"I believe I undertook amongst other things not to disclose any
trade secrets. Well, I am not going to."
—Joseph Conrad, Heart of Darkness (1899)

None of the material in this book is particularly secret. Some of it has been avail-
able in one form or another in computer magazines or on electronic bulletin
boards. What makes this book different is that we have brought all this scattered
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material together in one place and have supplied tons of code examples showing
how to actually use the material.

Probably all of the authors have at one time or another had a nondisclosure
agreement with Microsoft, but none of the material in this book is based on any-
thing Microsoft told us under nondisclosure. We did indeed undertake not to dis-
close any trade secrets, and we haven't.

Some aspects of undocumented DOS in fact constitute an open secret, well-
known by anyone who cares to know, but still "reserved" by Microsoft and IBM.
Sometimes this reaches heights of absurdity, such as when Microsoft/s<own."Dr.
Bob" in.Mieresoft.Systems Journal (September, 1987) discussed the well-known un-
documented "InDOS" function (INT 21h Function 34h), yet still stated that the
function is "undocumented, and unsupported by Microsoft." When Microsoft’s
own publications discuss undocumented DOS, there’s certainly no reason for us
not to discuss it, too.

On the other hand, this book includes much material unavailable elsewhere.
The network redirector interface (INT 2Fh Function 11h) is apparently not even
documented within Microsoft itself. Undocumented DOS also contains the first
discussion we’ve seen of the important DOS swappable data area (SDA), of the
installable command interface (INT 2Fh Function AEh), or of using the normal
DOS termination function-(NF-2th-Function 4Ch) to deimstail a_memery-resident
program.

What Do We Mean By Undocumented DOS?

By undocumented DOS, we mean the body of functions and data structures that
can reasonably be considered part of MS-DOS or PC-DOS but that are either not
mentioned in the Microsoft or IBM documentation or that are marked "Re-
served."

Deciding what is part of DOS, though, isn’t always easy. Obviously, INT 21h
Functions 50h through 53h are part of DOS, but what about the DOS network
redirector? MS-Windows? PC LAN? Should we include undocumented inter-
rupts used by the Microsoft C run-time library? Undocumented OS/2 calls like
DosQProcStatus()? Undocumented Intel instructions like LOADALL? In short,
where do you draw the line?

We decided to take a fairly narrow definition of undocumented DOS. We also
decided to try to include only genuinely undocumented material, and not just
information that is hard to come by. In any event, the INTRLIST database on the
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accompanying disk has all sorts of material that the reader might otherwise wish
we had included. For example, you might wish we had included a chapter on
INT.34h.through INT.3Eh,.used.in.Microsoft-(and.-Berland).language products
for.floating-point.emulation, or INE3Eh, used by the.Microsoft.overlay manager.
We decided these didn’t belong in this book, but they’re-on the disk.

On the other hand, this book does cover some documented DOS functions, be-
cause they have undocumented subfunctions (for example, INT 21h Function
4Bh Subfunction 01h), a corresponding data structure that contains undocu-
mented fields (for example, FCBs), undocumented side effects under certain cir-
cumstances (for example, INT 21h Function 13h), and outright bugs (for example,
INT 21h Function 4Ah).

Pandora’s Box and Information Hiding

This is a good place to express some reservations about Undocumented DOS. All
of the authors have used undocumented DOS in real-world programs, but we've
done so only when the documented DOS interface didn’t supply what we
needed. We would like to caution the reader not to use undocumented DOS sim-
ply because it is there. Sure, go ahead and try out all the functions to see if they
work. Write tons of sample programs, or modify ours. But before using these in a
program on which others rely, please think twice: are you sure there isn’t a way to
do it using documented DOS function calls?

Our goal in writing Undocumented DOS was actually to introduce some order
into the world of DOS programming. We hope that, rather than rely on a random
collection of clippings, you will now be able to turn to a single, reliable source of
information on undocumented DOS. But we're also a little worried about open-
ing Pandora’s box. Is our little book going to spawn a generation of programs
that make massive use of undocumented DOS? Will Microsoft suddenly be un-
able to make improvements to DOS, because too many programs will rely on
silly undocumented features that therefore have to be preserved?

But that’s already a problem. Too many important programs already use un-
documented DOS. Microsoft is even forced to recreate undocumented DOS so
that key programs will run in the "compatibility box" of OS/2. Our book can
hardly make this situation any worse.

Still, this points to a problem. Programmers should not have to use undoc-
umented functions to do their job. In 1972yPavidParnas put forward his now-
famous design principle of "information hiding." In a way, "information hiding"
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dictates that software systems must have undocumented, hidden features, and
that such undocumented features are a good thing, not a bad thing. When an in-
terface is_designed-preperly, programmers should have.uo need to use. or.even
know about these-hidden.features: everything they need to do their job is sup-
plied by the interface itself.

Thus, "information hiding" relies on a contract of sorts: the system promises
to supply everything you need to write robust programs, and you in turn prom-
ise not to look below the surface. The internals of the system can then be im-
proved or otherwise changed without affecting your program. Microsoft can
come out with DOS 5, in other words, and your program written for DOS 2.x will
still run. That’s how "information hiding" is supposed to work. The problem is that
MS-DOS doesn’t give software developers everything they need, forcing them
then to rely on machine-dependent or undocumented features.

Maybe it's okay that DOS doesn’t supply everything developers need,
though. In fact, I'm convinced this is one source of its success. Operating systems
that attempt to provide all possible functionality have been far less successful
than MS-DOS which, after all, barely merits the label "operating system."

No one can doubt MS-DOS's success. A People magazine profile of Bill Gates
asserts that MS-DOS runs on 50 million machines worldwide. Although this fig-
ure sounds a little inflated (by comparison, there are probably only about ten
times that many motor vehicles worldwide), the fact remains that the sheer size
of the DOS marketplace is in itself a key aspect of MS-DOS. The size of this mar-
ket means that software developers can afford to force DOS to do their bidding,
and if this means using undocumented DOS, ignoring the principles of informa-
tion hiding, and opening Pandora’s box, then so be it.

Who Are You?

Readers will get the most mileage from this book if they are already familiar with
DOS programming—that is, with how to make INT 21h calls. However, it is pos-
sible that many readers will be curious about undocumented DOS even when
they are not completely comfortable with the documented DOS programmer’s in-
terface. Therefore, chapter 2 includes a brief review of the basics of calling DOS.
Readers will also get more out of this book if they know C or assembly lan-
guage. Again, however, chapter 2 does include code samples in both Turbo Pas-
cal and BASIC as well, so this can serve as a Rosetta Stone, allowing the reader to
translate discussions that use C and assembly language into more familiar terms.
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The bottom line is that readers have to be programmers familiar with the
IBM PC and compatibles. The only chapters that could conceivably interest a
nonprogrammer are chapter 1 (which discusses general issues regarding undocu-
mented DOS, such as which commercial software uses it) and chapter 6 (which
discusses the DOS command interpreter, COMMAND.COM).

Who Are We?

Having discussed who you are, and what background knowledge you need to
benefit from this book, it’s now time for that most enjoyable task, talking about
ourselves:

Ralf Brown has delved into the innards of MS-DOS and IBM PC compatibles
since early 1984 and is well-known in the on-line community for maintaining the
“Interrupt List" and writing a number of programs, including a communications
program called RBcomm and a DESQview API library called DV-GLUE. He is a
Ph.D. candidate in the School of Computer Science at Carnegie Mellon Univer-
sity, specializing in natural language understanding. Ralf may be contacted at
ralf@cs.cmu.edu (Internet), ucbvax!cs.cmu.edulralf or harvard!cs.cmu.edulralf
(UUCP), or >INTERNET:ralf@cs.cmu.edu (CompuServe).

Jim Kyle has been a professional writer since 1948 and has published more
than a dozen books and hundreds of magazine articles. His most recent books in-
clude Que’s DOS Programmer’s Reference and Using Assembly Language (both orig-
inally written by others; Kyle revised them for their second editions) and
coauthorship of four sections in the authoritative MS-DOS Encyclopedia
(Microsoft Press). His recent articles have appeared in Computer Language maga-
zine. Kyle has been studying operating systems since 1970 or so, on mainframes
and minicomputers as well as microcomputers, including GCOS (mainframe),
TRAC and RSTS (mini), and CP/M and MS-DOS (micro). Kyle has been Primary
Forum Administrator of Computer Language’s forum on CompuServe since 1985
and has been professionally involved in software and systems design since 1967.
He is currently one-quarter of the Graphics Development staff at Norick Soft-
ware, Inc. Jim may be contacted on CompuServe at 76703,762.

David Maxey, author of INTRSPY, manages a network software development
team in Cambridge, MA. He has more than 12 years’ experience in consultancy
and systems development, ranging from small business applications to main-
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frame text database projects for the European Commission. Maxey studied Elec-
trical Engineering at Imperial College in London.

Raymond ]. Michels has been working with the MS-DOS operating system
since its introduction. He wrote the chapter on "Undocumented MS-DOS Func-
tions" for The Waite Group’s MS-DOS Papers (Howard W. Sams) and an article
on "Undocumented DOS Internals" for Programmer’s Journal (1989). Ray is an
independent consultant specializing in MS-DOS application and system pro-
grams. He can be contacted on BIX as rmichels.

Tim Paterson is the origindl author of MS-DOS, versions 1.x, which he wrote
in 1980-1982 while employed at Seattle Computer Products and Microsoft. In
1983, he founded his own company, Falcon Technology, which manufactured and
sold hard disk products. Falcon was eventually sold, becoming part of Phoenix
Technologies, the ROM BIOS maker. In 1988, Paterson left Microsoft (again),
where he had been on the QuickBASIC 4.0/4.5 development team. He is now an
independent consultant and has written several articles for Dr. Dobb’s Journal,
including the two-part series "Managing Multiple Data Segments Under
Microsoft Windows" (with Steve Flenniken) and "Assembly Language Tricks of
the Trade." He has a B.S. in computer science, magna cum laude, from the Uni-
versity of Washington.

Andrew Schulman is a software engineer and writer at Phar Lap Software
(Cambridge, MA), makers of 386 | DOS-Extender. He is a contributing editor to
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extenders and about OS/2. He is a coauthor of the book Extending DOS (Addi-
son-Wesley, 1990) and has also written for Byte and Microsoft Systems Journal. He
may be contacted at andrew@pharlap.com (Internet), uunet!pharlap!andrew
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Chapter 1

Regarding the Use of Undocumented DOS

Andrew Schulman

The MS-DOS operating system for IBM PC and PS/2 computers and compatibles
is the most widely used operating system in the world. One estimate puts the
number of commercial and internally developed corporate applications for MS-
DOS at more than 20,000. Estimates of the installed base of DOS systems range
from 30 million to 50 million. This is a very wide range, and some of these esti-
mates appear in marketing literature, so let’s be conservative and call it 30 mil-
lion. That’s far more users than any other operating system.

On each of these 30 million machines, MS-DOS (or PC-DOS, as it is also
called) provides not only its familiar user interface of the A> or C> prompt, but
also a programmer’s interface. Just as users make DOS requests by typing com-
mands such as "DIR *.EXE" or "SUBST F: C:\SWAP," so programs make DOS re-
quests—to open a disk file, to allocate memory, or even to terminate—by moving
a function number into the Intel processor’s AH register and issuing the assem-
bly language instruction INT 21h. The MS-DOS programmer’s interface consists
of several software interrupts, most importantly INT 21h.

Just as MS-DOS itself is everywhere, technical documentation on how to pro-
gram this ubiquitous piece of code turns up everywhere, too. Starting with the
bible of DOS programming, Ray Duncan’s superb Advanced MS-DOS Program-

1
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ming (Redmond, WA: Microsoft Press, 1988), information about DOS program-
ming is readily available. In fact, it is almost too available: a medium-sized book-
store might carry half a dozen different books on how to make INT 21h calls. Can
there really be that many DOS programmers out there?

Most DOS programming books, after a few chapters on input/output, disks
and files, memory allocation, and perhaps error handling or compatibility / per-
formance tradeoffs, contain a lengthy appendix listing the INT 21h calls. These
books start with INT 21h Function 0 (Terminate Process), proceed to Function 1
(Character Input With Echo), then to Function 2 (Character Output), and then,
not surprisingly, to functions 3, 4, 5, and so on.

Clearly, MS-DOS is a well-ordered world, where all available functionality is
carefully spelled out in numerous books that are readily available. MS-DOS is
very small compared to many other computer operating systems, so it is possible
to grasp DOS programming in its entirety. In contrast to the unfathomed depths
of larger operating systems such as UNIX, MS-DOS is apparently a small, static
world, in which everything there is to know already is known.

Well, not quite.

Open an official reference to the MS-DOS programmer’s interface, for exam-
ple the IBM DOS 3.30 Technical Reference, and you will find that the INT 21h func-
tion numbers jump straight from 4Fh (Find Next) to 54h (Get Verify Setting), with
nothing at all said about the numbers in between. Even Duncan’s Advanced MS-
DOS Programming simply lists Functions 50h through 53h as "Reserved."

If you now turn to Appendix A of this book, you will find entries for the fol-
lowing functions:

INT 21h Function 50h—DOS 2+ —Set PSP Segment

INT 21h Function 51h—DOS 2+ —Get PSP Segment

INT 21h Function 52h—DOS 2+ —Get List Of Lists

INT 21h Function 53h—DOS 2+ —Translate BIOS Parameter Block

This is just one of many crucial "holes" in the programmer’s interface to MS-
DOS. Another hidden area of DOS is Function 5Dh, which consists of 12 sub-
functions that handle an assortment of tasks, including DOS calls over a network
(Server Function Call) and support for DOS reentrancy (Get Address of DOS
Swappable Data Area). Although MS-DOS really is a small piece of code, it is
nonetheless far from being a self-enclosed, static world. This small piece of code
contains many uncharted areas.
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Even some of the INT 21h functions that are documented have undocu-
mented subfunctions (for example, Function 4Bh Subfunction 01h loads a pro-
gram without executing it, and is crucial for writing a DOS debugger). Other
functions have undocumented behavior or side effects (for example, documented
Function 56h exhibits interesting behavior when invoked indirectly via undocu-
mented Function 5Dh). Some functions have—dare we say it?>—outright bugs
(for example, look at the entry for INT 21h Function 4Ah in Appendix A).

Besides INT 21h, there are other DOS software interrupts, such as INT 2Fh,
which contains entire undocumented subsystems such as the Network Redirector
(INT 2Fh Function 11h) and the programmer’s interface to APPEND.EXE (INT
2Fh Function B7h).

Actually, these "missing" functions are merely the most apparent portion of
undocumented DOS. The real core of undocumented DOS is its data structures:
undocumented fields in the Program Segment Prefix (PSP), the Drive Parameter
Block (DPB), the DOS internal variable table (List of Lists), the Memory Control
Block (MCB), the System File Table (SFT), and numerous other structures that are
described in detail in this book.

Why Leave Functionality Undocumented?

"Secrecy for plans is needed, not only to protect their
formulation but also to develop them, perhaps to change
them, at times to execute them, even to give them up."
—Sisela Bok, Secrets: On the Ethics

of Concealment and Revelation (1983)

At first glance, it seems absurd for Microsoft Corporation, the developer of MS-
DOS, not to document all areas of the operating system. After all, what is the
point of having functionality, if you don't tell people about it?

However, all software of any complexity must contain features that its devel-
opers choose not to bring out into the open. Once a software developer docu-
ments some feature of a product, it is almost obligated to support that feature in
future releases. Microsoft has enough problems being required to maintain fea-
tures of MS-DOS that are documented—the persistence of such CP/M-compati-
ble anachronisms as File Control Blocks (FCBs) and the structure of the DOS
Program Segment Prefix (PSP) are good examples—without also having to make
sure that the internal structure of DOS is preserved, too.
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Sometimes Microsoft's documenting a feature has downright unfortunate re-
sults. For example, in DOS 1.0 Microsoft documented the fact that, in addition to
using INT 21h, applications could call operating system functions with a CALL 5
instruction. This DOS holdover from CP/M was used by several then important
programs, including WordStar. MS-DOS supported CALL 5 by placing a far
JUMP instruction at offset 5 in the PSP. Because this and other silly fields in the
PSP were documented, every DOS program, even when running on the hottest
new 80486 machine, gets loaded with a PSP that seems to harken back to the days
of CP/M and 64KB memory. By making change more difficult, documenting fea-
tures creates anachronisms.

From Microsoft’s perspective, then, it makes perfect sense to reserve entire
areas of DOS, and to tell developers that if they somehow find out about these
areas and use them, their programs might or might not work in future releases.
Microsoft has a standard policy statement about programs that use undocu-
mented DOS functions and data structures:

Title: Regarding the Use of Undocumented MS-DOS Features

Document Number: Q34761 Publ Date: 5-SEP-1988

Product Name: Microsoft Disk Operating System

Product Version: 1.x 2.x 3.x 4.00

Operating System: MS-DOS

Summary:

Microsoft does not give out any information about undocumented system fea-
tures. If calls, flags, or interrupts are undocumented, it is because they are not
supported; we can give NO guarantee that they will exist in future releases of
DOS. If you find out about these features (through articles or by chance) and
begin using them in your programs, there is a real potential that your application
will not work in future DOS versions. We strongly advise against using undocu-
mented features for these reasons and will give out no information about their
use.

Copyright Microsoft Corporation, 1989.

This is a reasonable statement, but there are other possible views on this sub-
ject. This chapter argues that PC programmers should know about undocu-
mented DOS functions and data structures. The chapter explains why such
undocumented features are necessary to fulfill MS-DOS’s potential as an extensi-
ble operating system, tries to dispel some of the mystique surrounding undocu-
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mented DOS, describes some of the important commercial software that uses un-
documented DOS, and discusses some of the pros and cons of using undocu-
mented features in application programs.

Why Is Undocumented DOS Important?

Why do we even care about undocumented DOS? What difference does it make
whether the INT 21h function numbers are consecutive?

One reason, of course, is pure curiosity. Any time a table or a function is
marked "Reserved," it raises questions: Why? Reserved for whom?

By itself, curiosity is not a good reason for exploring undocumented DOS.
Most processors, for example, have "reserved" bits whose value you really
shouldn’t depend on or even care about. Later, this chapter explains why using
undocumented DOS is completely different from relying on undocumented
hardware features. For now, though, let’s only consider why you should even
care about undocumented DOS.

The real reason for discussing undocumented DOS is the importance of MS-
DOS itself—remember those 30 million machines across the globe that run MS-
DOS. At one point, Microsoft attempted to supplant MS-DOS with OS/2, an
operating system with many wonderful features, but with a nearly insatiable ap-
petite for memory and hardware. Since then, Microsoft has had to acknowledge
that, warts and all, DOS is here to stay, probably to be supplemented, not replaced,
by OS/2. MS-DOS continues to grow in importance. Therefore, even the tiniest
piece of new information about DOS programming is potentially important to
many programmers and, ultimately, to many users. This book presents many
large chucks of new information about programming the world’s most widely
available operating system.

It still seems unlikely that there could be anything genuinely new to say
about MS-DOS. After all, it is a piece of code that is in actuality quite small. The
two components of the DOS kernel (I0.5YS and MSDOS.SYS), together with the
replaceable COMMAND.COM shell, total at most 110KB of code. How can it re-
quire an entire industry—books, magazine articles, electronic bulletin boards,
and user’s groups—to explain less than 110KB of code? The electronic manu-
scripts for some of the chapters in this book were larger than that!

The key is DOS's extensibility. In fact, the small size of DOS seems to enhance
its reach, not diminish it. MS-DOS provides few services. Some have even de-
clined to refer to it as an operating system at all, referring to DOS instead as a
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mere "program loader.” But DOS’s small size leaves room for extensions, and the
services it does provide allow it to be extended in numerous directions, few of
them anticipated by the system’s original designer. That is a sure indication of a
successful design, or at least an indication that such a large market exists for MS-
DOS software that it is economically feasible for companies to invest the blood,
sweat, and tears necessary to make this glorified program loader do their bid-
ding. Either way, MS-DOS has been not only enormously successful but also
enormously extensible.

What sort of extensions are we talking about? The best-known examples are
memory-resident or terminate-and-stay-resident (TSR) programs, but other DOS
extensions include:

Windowing systems

Multitaskers

Networks

Installable file systems (for example, CD-ROM)
Debuggers

Protected-mode DOS extenders

So we have a wildly successful operating system that can be extended in
more or less any direction the marketplace seems to want. What more could we
ask for? Why look for more, previously undocumented, functionality? Don’t we
have everything we need?

Permission, But Not Support

The problem is that many of the DOS functions and data structures that
Microsoft has not documented are crucial to fulfill MS-DOS's potential as an ex-
tensible operating system. Notice that we have been saying that DOS allows or
permits almost infinite extensibility: we never said that DOS actually supports
such extensions. That is because support, as opposed to mere permission, tends
to reside in the undocumented areas of the DOS programmer’s interface.

No TSR Support

The field of memory-resident software is a good example of an area that permits
extensions but that does not support them. MS-DOS allows programs to install
interrupt handlers and to stay resident. The three documented INT 21h functions
25h (Set Interrupt Vector), 31h (Terminate and Stay Resident), and 35h (Get Inter-
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rupt Vector) are sufficient to hook into, modify, or replace even INT 21h itself.
This is an extremely powerful capability: nothing in DOS prevents you from tak-
ing over INT 21h.

But nothing particularly supports you in that endeavor, either, and that’s the
problem. There are documented functions that let a DOS program install itself as
part of the operating system, but the functions that actually help the application
behave properly once it is resident are undocumented. These include INT 21h
Function 34h, 50h, and 51h, plus INT 28h.

That TSR support is confined to undocumented areas of MS-DOS is by now
notorious. As far back as 1986, representatives from Microsoft sat down with rep-
resentatives from other companies to work out an industry standard for TSRs,
and one of the topics discussed was undocumented DOS. According to the
Microsoft Systems Journal:

"Currently TSRs depend on several undocumented MS-DOS features such as the
IN_DOS flag .. ., the critical error flag, and some undocumented system calls.
Microsoft’s Adrian King has agreed to provide this information. Both Borland
and Lotus say that this information is critical for TSRs to work consistently”
(Nancy Andrews, "Moving Toward an Industry Standard for Developing TSRs,"
Microsoft Systems Journal, December 1986, pp. 10-11).

As Ray Michels explains in more detail in chapter 5 which covers TSRs and
DOS multitasking, the DOS functions most critical to consistent TSR operation
are as follows:

INT 21h Function 34h (Return InDOS Pointer)

INT 21h Function 50h (Set PSP Segment)

INT 21h Function 51h (Get PSP Segment)

INT 21h Functions 5D06h, 5D0Bh (Get DOS Swappable Data Area)
INT 21h Function 5SDOA (Set Extended Error Information)

INT 28h (Keyboard Busy Loop)

To this day, Microsoft has still not added these to the official MS-DOS
programmer’s interface. In DOS 3.0 and higher, Function 51h is no longer strictly
necessary, because an equivalent Function 62h (Get PSP Address) was added, but
the other functions remain unsupported.

Microsoft has occasionally discussed undocumented DOS support for TSRs.
In addition to the Microsoft Systems Journal article just quoted, the 1,500-page MS-
DOS Encyclopedia (Redmond, WA: Microsoft Press, 1988) includes a fine chapter
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on TSRs by Richard Wilton that describes most of the functions just mentioned.
However, all but one of the functions were still omitted from the book’s reference
section, and the one function that was included (INT 21h Function 34h) bore the
note "Microsoft cannot guarantee that the information in this entry will be valid
for future versions of MS-DOS."

By now, information on undocumented DOS TSR support is fairly widely
available, and it is well known that, to write correct and stable TSRs, you must use
undocumented functions. Far from producing unreliable software, in the some-
what twisted land of DOS, undocumented functions are sometimes necessary to
produce reliable software!

Network Redirector

Another area that permits extensions but that does not support them is the DOS
file system. Anyone who has used a PC on a network knows how disk drives on
another machine, perhaps not even a PC running DOS, can be made to appear
like a local disk drive. You might type "DIR E:," for instance, to see the names of
files on a Macintosh (truncated to fit DOS’s pathetic 8.3 filename space). How
does that work? How are all the INT 21h calls necessary to produce a directory
listing sent over the network to another machine, and how can you write such
software yourself?

That this is not necessarily just a network issue is shown by the Microsoft
CD-ROM Extensions (MSCDEX), a fascinating piece of software that uses undoc-
umented DOS file system features to make a CD-ROM appear like a normal DOS
device. Obviously, there must be some features in DOS that allow you to write
fiction, as it were: taking a CD-ROM with the High Sierra or ISO-9660 file system
and making it look as though it were a standard DOS device with a File Alloca-
tion Table (FAT) file system.

Again, Microsoft has issued snippets of information. An article by then
Microsoft spokesman Tony Rizzo ("MS-DOS CD ROM Extensions: A Standard
PC Access Method," Microsoft Systems Journal, September 1987, pp. 54-62) reveals
that MSCDEX designates the drive letters it assigns to CD-ROM device drivers,
not as local drives, but as remote, network drives, even though the CD-ROM
player is probably sitting on the disk next to the computer, not connected to it via
a network (though the second scenario is also possible, as in the case of Lotus
CD/Networker). According to Rizzo, MSCDEX uses a component of MS-DOS
called the "network redirector.” Microsoft has never documented the network
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redirector, but chapter 4 of this book explains it in detail, showing that networks
and installable file systems (IFSs) use the network redirector in part by writing an
interrupt handler for INT 2Fh Function 11h.

In this case, it is at first less clear that undocumented DOS is absolutely nec-
essary. After all, Novell has been producing reliable, high-performance networks
for MS-DOS since long before Microsoft added the network redirector. Rather
than hook INT 2Fh Function 11h, Novell hooks INT 21h itself. Although this
avoids use of the undocumented network redirector, however, NetWare simply
uses other undocumented features of DOS.

Support for Debugging

One last example: one thing you need in order to write a DOS debugger like
DEBUG, Symdeb, CodeView, or Turbo Debugger is a function that loads a pro-
gram without executing it. DOS provides this as Subfunction 01 to INT 21h Func-
tion 4Bh (EXEC), and it is used in all three generations of the Microsoft debugger.
Unfortunately, the official MS-DOS technical references simply list Function 4Bh
Subfunctions 00 and 03; Subfunction 01 is undocumented.

Fear of the Undocumented

We can see that DOS includes a lot of undocumented functionality. Microsoft
doesn’t document these features, because it wants the freedom to change or dis-
card them in future versions of DOS. Armed with Undocumented DOS, you now
know all about these functions and data structures. It’s interesting to know that
MS-DOS will return the address of its internal variable table if you invoke INT
21h Function 52h, or that EXEC Subfunction 1 loads a program without execut-
ing it. But can you really use this stuff in real programs?

Of course, Microsoft says no. So do other programmers as well. After all, in
many areas of computing, the use of reserved, undocumented, or unspecified
features is a one-way ticket to unstable, nonportable software. Use of undocu-
mented features is not generally part of any approved software engineering cur-
riculum. It is hard to believe that using undocumented features is often the only
way to write stable and correct MS-DOS TSRs, network drivers, and debuggers.

There is a certain mystique surrounding undocumented DOS, and some pro-
grammers have found it easiest to take the dogmatic view that programmers
should never, never use undocumented DOS functions in programs they plan to
distribute to others.
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For example, the author of a well-written, well-organized, and enjoyable in-
troduction to TSR programming, writes:

"None of the programs in this book use the INDOS call, and for good reason.
INDOS is ‘undocumented,’ a term that has two meanings. The first is, of course,
that you cannot look it up in the DOS manual. The second is that Microsoft, the
vendors of DOS, reserve the right to change or delete this function from subse-
quent versions of DOS. In fact, the INDOS call as shown here is useful only
under DOS version 2.x (where x is any of the minor version numbers). In DOS
version 3.x the call still exists, but has changed quite a bit from the older ver-
sions. In DOS 4.0, this function does something quite different; thus, calls to the
INDOS function will fail miserably.

"For that reason, use of the INDOS function call or any undocumented DOS
function is not recommended" (Thomas A. Wadlow, Memory Resident Program-
ming on the IBM PC, Reading, MA: Addison-Wesley, 1987, p. 239).

In fact, the appendix to Wadlow’s book contains entire pages with only a note
at the top such as:

AH = 034H (52) Unsupported
‘INT 021H (33) Universal function

with the rest of the page left blank!

A lot more can be said about INT 21h Function 34h than that. If you have all
the information about changes made from one DOS version to the next, then calls
to the INDOS function will not "fail miserably." Ray Michels’ TSRs from Chapter
5 of this book use Function 34h and other undocumented DOS functions and
data structures, but these programs work correctly in DOS 2.x, 3.x, 4x and
higher, in the DOS box of OS/2, and in Digital Research’s DR DOS.

Thus, use of undocumented DOS does not necessarily prevent a program
from running in the widest possible range of the DOS family. By following some
of the techniques spelled out in this book, you can safely use INDOS and other
undocumented DOS features in real programs. Such programs will have almost
as good a chance of running properly in future versions of DOS than programs
that restrict themselves to only documented DOS functions.

But you don’t have to take our word for it. Many of the most successful com-
mercial programs on the PC use undocumented DOS. We saw earlier that Lotus
and Borland claimed that undocumented DOS was "critical for TSRs to work con-
sistently." Of course they, like we, would prefer this functionality to be docu-
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mented and supported by Microsoft. But in the meantime, far from adopting a
hands-off policy regarding undocumented DOS, these companies make careful
use of it.

An informal poll seems to indicate that developers of commercial PC soft-
ware—software that must maintain a minimum of reliability and compatibility,
sometimes on millions of different machines—are in general less fearful of undoc-
umented DOS than programmers whose work needs to run only on one or two
machines. A curious paradox.

One possible explanation is that programmers who work for large commer-
cial software houses can better afford the possible higher cost of working with
undocumented DOS. Perhaps software that uses these functions requires more
testing and more maintenance than "normal" above-board DOS code. Another
possibility is that it is mostly "system software" that requires undocumented
DOS, and that most programs really don’t require this stuff.

In any event, attitudes toward undocumented DOS resemble current opin-
ions about the "goto" construct in programming languages. Many professional
programmers recognize that goto, possibly disguised as "longjmp," is sometimes
necessary. Undocumented DOS, like goto, should be avoided as long as possible,
but not when its use becomes unavoidable. Software construction involves
tradeoffs and compromises, not fixed dogmas. Software construction aspires to
be engineering, not religion.

Reserved and Undocumented 80x86 Features

The fact remains, however, that in many other areas of computing, "reserved" fea-
tures really shouldn’t be tampered with. The fear of using reserved MS-DOS
functions stems in part from a confusion with these other areas. Let’s look more
closely at one example: the practice of relying on reserved processor bits. We will
see that there is a large difference between using undocumented DOS and using
reserved or undocumented aspects of the Intel microprocessors.

At first, it certainly sounds as if undocumented DOS and what we might call
"undocumented assembly language” could be considered the same thing. Intel’s
standard statement regarding undocumented assembly language sounds similar
to Microsoft’s statement, quoted earlier in this chapter, on undocumented DOS:

"Depending upon values of reserved or undefined bits risks making software in-

compatible with future processors that define usages for those bits. Avoid any

software dependence upon the state of reserved or undefined bits" (Intel, 386 DX
Microprocessor Programmer’s Reference Manual, 1990, pp. 1-7).
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Likewise, the following statement, from a brilliant survey of high-end micro-
processors, sounds like it could just as well be talking about the use of undocu-
mented operating system features: "When you see ‘reserved’ in a reference
manual it really means that you should pay attention to it—it’s very wrong to
stomp on it" (Robert Dewar and Matthew Smosna, Microprocessors: A
Programmer’s View, New York: McGraw-Hill, 1990, p. 129). The example the au-
thors give is quite instructive: In all the literature on the Intel 8088, INT 05 was
marked as "reserved." When putting together the PC, however, IBM decided to
use INT 05 as the ROM BIOS Print Screen function. Along came the 80286, and
Intel (which had, after all, long before marked INT 05 as "reserved for use by
Intel") picked INT 05 for the bounds exception interrupt.

The PC software industry is still cleaning up the resulting mess. INT 05 is ac-
tually just one of several cases where Intel says INT XX means one thing and IBM
says it means something completely different. IBM’s use of reserved Intel inter-
rupt numbers was a hideous mistake.

If nothing else, this should caution us against thinking that simply because a
major company does something seemingly "down and dirty," the practice in fact
is necessarily safe. IBM totally blew it with INT 05. Are we about to do the same
when we incorporate calls to INT 21h Function 52h in our programs?

No. IBM took a number that Intel reserved for future expansion and used it
for its own purposes. But we're not proposing, as Microsoft has marked Function
52h as "reserved," that you go ahead and use it for your nifty new Dial Modem or
Clear Screen function. Instead, we are saying that Function 52h already has a pur-
pose, that what it does is in fact an "open secret," and that—assuming you exer-
cise some precautions, as detailed in chapter 2 of this book—INT 21h Function
52h can be used in commercial software. That it has been used in commercial soft-
ware does provide some added reassurance.

Undocumented assembly Language

Now, there is an aspect of "undocumented assembly language" that seems closer
in spirit to undocumented DOS, and that is the use of undocumented Intel in-
structions, or the use of undocumented side effects of instructions. For example,
the AAD and AAM instructions have "undocumented extensions," which can be
used to multiply or divide by something other than ten.

Tim Paterson, author of this book’s chapter on debugging (but perhaps better
known as the author of MS-DOS 1.x itself), has written that relying on undocu-
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mented features of the Intel 80x86 family "is a very dangerous practice. . . . There
are too many different processors in the family—and too many different manu-
facturers—to consider using undocumented features. Let’s all play by the rules."
(Dr. Dobb’s Journal, May 1990, p. 8).

So what's the difference between using undocumented aspects of the AAD
instruction, on the one hand, which Tim deplores as a "very dangerous practice,”
and using undocumented DOS Function 4Bh Subfunction 01h, on the other hand,
which he regards as essential for any DOS debugging, and to which he has de-
voted a chapter of this book?

Several key differences exist. First, there are several different manufacturers
of 80x86 compatible processors, and there is no guarantee that all chips from
NEC, AMD, and Harris will contain the same undocumented features as the Intel
chips. In contrast, Microsoft is the only manufacturer of DOS that truly matters.
(In any case, as we will see later, the manufacturers of DOS emulators have taken
great pains to preserve its undocumented features.) And although Microsoft does
make MS-DOS available to so-called original equipment manufacturers (OEMs),
it is worth noting that the standard OEM license was apparently revised for MS-
DOS 3.0 to require that OEM versions of MS-DOS not alter its internal data struc-
tures, which are required by SHARE and the network redirector.

Second, the range of the 80x86 family is far wider than that of DOS versions.
This is perhaps unfortunate: it would be nice if somehow there were several vari-
eties of DOS from which one could pick and choose ("okay, I'll use this one for
my 8086 portable, and this one for the 80386"), but the fact is that there aren’t.
There are fewer differences between DOS 3.x and DOS 4.x than between, say, the
80286 and the 80386.

Third, Intel is quite simply less committed to preserving undocumented fea-
tures in the 80x86 family than Microsoft is to preserving them in DOS. It’s true
that Microsoft won’t openly support these functions, but Microsoft is committed
to keeping DOS compatible with all the important PC applications. Furthermore,
as you will see shortly, too many important programs rely on undocumented
DOS for someone to seriously consider coming out with a version of DOS that
doesn’t provide at least the core undocumented DOS functions. In contrast, far
fewer programs rely on undocumented assembly language.

Which brings us to the fourth point: fewer programs use undocumented as-
sembly language than use undocumented DOS because it is not necessary to use
undocumented assembly language tricks. The only possible use for using the
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undocumented extension to AAD and AAM, for example, is not to perform an
otherwise impossible operation, but to boost performance. In contrast, in Undocu-
mented DOS we don’t advocate the use of undocumented DOS for anything other
than performing operations that would otherwise be impossible. Chapter 2 ex-
plains in detail that, given a combination of documented DOS functions that can
do the same thing as an undocumented DOS function, you should use the docu-
mented interface. This is quite different from the motivation for using undocu-
mented assembly tricks.

Finally, with the exception of multitaskers that use the Get PSP and Set PSP
functions as part of context switching or debuggers that use the same two func-
tions for switching between the debugger and the debuggee, most programs
should not make many undocumented DOS calls. In particular, many undocu-
mented DOS calls will be made once, at initialization time, when a program can
afford to do rigorous checking of the DOS version number and perhaps a num-
ber of "sanity checks," such as those suggested in chapter 2 of this book. In as-
sembly language, however, when undocumented CPU features are used to gain a
few clock cycles, the undocumented feature is presumably being used in a block
of code that is frequently called. Otherwise, why use it? If speed is the goal, how-
ever, branching to different blocks of code depending on the CPU (8088 versus
80286, etc.) is out of the question.

LOADALL

There is one undocumented Intel instruction that closely resembles our use of un-
documented DOS and that is widely used in commercial software:

Go into a debugger, enter the bytes OF 05 at CS:IP, and then unassemble
CS:IP. In newer debuggers such as Microsoft CodeView 3.0 or Borland Turbo De-
bugger 2.0, you will see the name "LOADALL." Now, open one of the Intel
programmer’s reference manuals for the 80286 and higher. Find LOADALL?
Didn’t think you would. Even the "Opcode Map" just shows a blank for OF 05,
much like the holes in the DOS interface.

LOADALL is available only on the 80286 and can be used to access extended
memory. A discussion of LOADALL itself is outside the scope of this book. What
is relevant here is a discussion (from a book that is in many ways similar to this
one) of whether or not to use LOADALL. This is analogous to discussions of
whether or not to use undocumented DOS:
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"Assuming LOADALL is used cautiously, can it be used safely? That is, can we
expect a program containing the LOADALL instruction to run correctly and reli-
ably on a range of DOS versions, PC clone brands, and hardware configuration?
The answer, at least on 80286-based PCs, seems to be a qualified yes. Microsoft
uses LOADALL in the RAMDRIVE.SYS virtual disk driver supplied with Win-
dows and the OEM versions of MS-DOS, and also uses it in the DOS compatibil-
ity environment of OS/2, so we can predict (given Microsoft’s close relationship
with Intel) that LOADALL isn't likely to vanish from future steppings of Intel’s
80286 chips. For the same reason, the 80286 CPUs from second sources such as
AMD and Harris will be obligated to support LOADALL indefinitely" (Ray Dun-
can, ed., Extending DOS, Reading, MA: Addison-Wesley, 1990, pp. 100-103).

This undocumented 80286 instruction is so important that all decent 80386
BIOSes contain emulation for LOADALL, which is missing from the 80386 chip
itself. In fact, emulation of the LOADALL instruction is one way of judging
whether an 80386 BIOS is truly "compatible." In the somewhat twisted PC world,
an undocumented feature, far from being an obstacle to compatibility, can be es-
sential to compatibility!

So once again we see how our industry’s heavy-hitters make almost flagrant
use of undocumented features. The next section takes a closer look.

Where Angels Fear to Tread: Programs That Use Undocumented DOS

What commercial software for the PC, including software written by Microsoft,
uses undocumented DOS functions? We've already mentioned MSCDEX,
DEBUG, Symdeb, and CodeView, but let's approach this in a more systematic way.

How do we find out what DOS functions, documented or undocumented, a
program relies on? If we have access to the source code, we can just look at it. But
disassembling programs like CodeView or MSCDEX violates your license agree-
ment, and, furthermore, sounds as though it would be a pain.

Disassembling is also overkill, if you're just interested in what DOS calls a
program makes. We said earlier that the architecture of MS-DOS lets you hook
into system interrupts, including INT 21h itself. Why not write a utility that
hooks INT 21h and other DOS interrupts and that tells you whenever a program
makes a undocumented DOS call?

David Maxey’s program INTRSPY was designed for this very purpose. It is
an event-driven, script-driven DOS debugger that can also be used for many
tasks having nothing to do with undocumented DOS. It is described in detail in
chapter 8 of this book. You can write an INTRSPY script that logs information to
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a file every time a program makes an undocumented DOS call. A very simple
INTRSPY script that monitors undocumented DOS calls, but that doesn’t use
many INTRSPY features, looks like this:

; UNDOC.SCR (abridged version)
intercept 21h
function 1fh on_exit output "211F: Get Default DPB: " DS ":" BX
function 32h on_entry output "2132: Get DPB: " DL
function 34h on_exit output "2134: InDOS flag: " ES ":" BX
function 50h on_entry output "2150: Set PSP: " BX
function 51h on_exit output "2151: Get PSP: " BX
function 52h on_exit output "2152: Get List of Lists: " ES ":" BX
function 53h on_exit output "2153: Translate BPB"
function 55h on_entry output "2155: Create PSP: " DX
function 5dh subfunction 06h
on_exit output "215D06: Get DOSSWAP: " DS ":" SI
function 60h on_entry
output "2160: Canon File: " (DS:SI->byte,asciiz, 64)
function 4bh
; use this just to show which program made undoc DOS call
subfunction 00h
on_entry
output (DS:DX->byte,asciiz,64)
subfunction 01h
on_entry
output "214B01: EXEC debug: " (DS:DX—>byte, ,asciiz,64)
function 4ch on_entry output " "
function 31h on_entry output '"—-———-———- TSR —=————————— "
function 25h -
on_entry
if (al == 28h) output "SetVect INT 28h: KBD busy loop"
; not complete, because many programs unfortunately hook
; interrupts by poking the Low-memory interrupt vector table
intercept 2eh
on_entry output "2E: Execute command”

By loading INTRSPY into memory, feeding it UNDOC.SCR, running some
programs, and then examining the report, you can see which programs use
undocumented DOS. Let’s try out the simple DOS utilities SUBST, JOIN, PRINT,
CHKDSK, and APPEND:

intrspy
cmdspy compile undoc.scr
subst d: c:\swap
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\dos33\join a: c:\floppy
print

chkdsk

append \undoc\intrspy
cmdspy report undoc.log

After you issue this series of DOS commands, the file UNDOC.LOG holds
your report on undocumented DOS usage by some of the key utilities shipped
with MS-DOS itself:

C:\DOS33\SUBST.EXE
2152: Get List of Lists: 028E:0026

C:\dos33\JOIN.EXE

2152: Get List of Lists: 028E:0026
2152: Get List of Lists: 028E:0026
2152: Get List of Lists: 028E:0026

C:\DOS33\PRINT.COM
2151: Get PSP: 1376
2150: Set PSP: 1376
2152: Get List of Lists: 028E:0026
SetVect INT 28h: KBD busy loop
2134: InDOS flag: 028E:02CF
2150: Set PSP: 1376
2151: Get PSP: 1376
2150: Set PSP: 1376
2150: Set PSP: 1376
————————— TSR ————————em
C:\DO0S33\CHKDSK.COM
2160: Canon File: C:\
2132: Get DPB: 03
2160: Canon File: C:\FLOPPY

C:\DOS33\APPEND.EXE
-- TSR -
\undoc\maxey\CMDSPY.EXE

What this report shows you is that SUBST and JOIN both use INT 21h Func-
tion 52h. (For some reason, JOIN calls the function three times, which is probably
unnecessary.) PRINT also uses Function 52h, but, more important, calls INT 21h
" Functions 50h, 51h, and 34h and hooks INT 28h—all necessary for PRINT’s abil-
ity to multitask in the background. In addition to using Function 60h as a some-
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what roundabout way of determining whether a DOS drive letter or directory
corresponds to a physical device, CHKDSK also calls Function 32h to get the
Drive Parameter Block (DPB). Finally, APPEND doesn’t call any of the undocu-
mented functions the program was monitoring (though it does use other undoc-
umented functions, including the Installable Command facility provided by INT
2Fh Function AEh).

This script watches only some undocumented DOS functions because COM-
MAND.COM and DOS itself use so many that, if you watched them all, you
could never tell which ones were being used by a program you were interested in
and which ones were just part of the normal 3-degree background radiation of
undocumented DOS calls.

Other Microsoft Software

Let's branch out now and look at some other Microsoft software: Windows 3.0,
CodeView, and the Programmer’s WorkBench from Microsoft C 6.0 (which,
because of the performance of its real-mode DOS version, is also known as
"Programmer’s WasteBasket"). With INTRSPY still loaded in memory, and still
processing the script UNDOC.SCR, run the following programs:

\win30\system\win /e
\c600\bin\cv \undoc\mem
\c600\bin\pwb \undoc\mem.c
cmdspy report undoc.log

C:\WIN30\WIN.COM
C:\WIN30\system\win386.exe

2152: Get List of Lists: 028E:0026

2151: Get PSP: 40A3

2150: Set PSP: 40A3

2150: Set PSP: 40A3

2134: InDOS flag: 028E:02CF

2152: Get List of Lists: 028E:0026

2151: Get PSP: 40A3

215D06: Get DOSSWAP: 028E:02CE
C:\win30\system\KRNL386.EXE

2134: InDOS flag: 028E:02CF

2151: Get PSP: 4215

2150: Set PSP: 40A3

2150: Set PSP: 4215
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c:\c600\bin\CV.EXE
List of Lists: 028E:0026

2152:
2151:
2150:
2150:
2150:
2150:
2151

Get
Get
Set
Set
Set
Set
Get

PSP:
PSP:
PSP:
PSP:
PSP:
PSP:

40A3
0000
FFFF
40A3
0E7B
0E7B

214B01: EXEC debug:
Get PSP: 441D
2150: Set PSP: OQOE7B

2151:

C:\UNDOC\mem.EXE

c:\c600\bin\PWB.COM

c:\c600\bin\pwbed.EXE

2152: Get List of Lists: 028E:0026

2151:
2151:
2151:
2150:
2151:
2150:
2151:
2150:

Get
Get
Get
Set
Get
Set
Get
Set

PSP:
PSP:
PSP:
PSP:
PSP:
PSP:
PSP:
PSP:

41D3
4103
41D3
0000
0000
FFFF
FFFF
41D3

Examining the new entries in UNDOC.LOG, you see first of all that Windows
3.0 makes extensive use of undocumented DOS. In addition to retrieving the
INDOS flag and the address of the List Of Lists, Windows 3.0 continuously calls
the Get PSP and Set PSP functions in order to multitask between applications.
Windows also uses INT 21h Function 5Dh Subfunction 06h to get the address of
the "DOS swappable data area,” whose structure is detailed in the appendix to
this book and which is used in chapter 4 on the DOS file system, and in chapter 5
on TSRs. Microsoft CodeView also uses the Get PSP and Set PSP functions to
switch between the debugger and the debugee, and it uses the undocumented
EXEC Debug subfunction in order to load the debugee without immediately exe-
cuting it. Finally, PWB also uses Functions 50, 51, and 52.
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Other Software That Uses Undocumented DOS

By monitoring a series of popular PC commercial software from companies other
than Microsoft, you can see how frequently undocumented DOS is used. With
INTRSPY still processing UNDOC.SCR, run the following programs:

SideKick (Borland)
DESQView (Quarterdeck)
Manifest (Quarterdeck)
Norton Utilities

DOS/16M (Rational Systems)
386 | DOS-Extender (Phar Lap)

C:\SK.COM
2134: InDOS flag: 028E:02CF

C:\DV\DV.EXE
2134: InDOS flag: 028E:02CF
2152: Get List of Lists: 028E:0026
2151: Get PSP: 168A
2150: Set PSP: 168A
2134: InDOS flag: 028E:02CF
2134: InDOS flag: 028E:02CF
2150: Set PSP: 168A
2150: Set PSP: 168A
2150: Set PSP: 168A

2155: Create PSP: 425E
2150: Set PSP: 425E

C:\QEMM\MFT.EXE

2152: Get List of Lists: 028E:0026

2134: InDOS flag: 028E:02CF
SetVect INT 28h: KBD busy Lloop

2134: InDOS flag: 028E:02CF
SetVect INT 28h: KBD busy Loop

————————— TSR ———————————
C:\BIN\NU.EXE

2132: Get DPB: 03

2132: Get DPB: 03

C:\BIN\NDD.EXE
2160: Canon File: A:CON
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2160: Canon File: C:CON
2132: Get DPB: 03
2132: Get DPB: 03
C:\BIN\SD.EXE
2160: Canon File: A:CON
2160: Canon File: C:CON
2132: Get DPB: 03
2132: Get DPB: 03

C:\16M\LOADER.EXE
2152: Get List of Lists: 028E:0026
2152: Get List of Lists: 028E:0026

C:\PHARLAP\RUN386.EXE
2155: Create PSP: 8C40
2150: Set PSP: 1D7F
2150: Set PSP: 8C40

SideKick gets the address of the INDOS flag because the INDOS flag will tell
it if it’s safe to "pop up" (if the user activates SK’s hot key and SK can’t pop up,
SK makes an odd chirping sound). The only surprise here is that there’s no men-
tion of the fact that SK hooks INT 28h: presumably it does so by poking the low-
memory interrupt vector table instead of by calling documented INT 21h
Function 25h. Sure, INT 28h is an undocumented interrupt, but that by itself is
not a good reason to hook it in an underhanded, undocumented fashion as SK
seems to do here.

DESQView, Quarterdeck’s superb DOS multitasker, makes all the undocu-
mented DOS calls that you by now expect of any DOS multitasking program.
Quarterdeck’s lovely diagnostic program, Manifest, explores many areas of
undocumented DOS, so naturally it gets the List of Lists. If the user chooses to
make Manifest memory resident, it gets the address of the INDOS flag and
installs an INT 28h handler before going TSR.

Several key components of the Norton Utilities (NU), including the Norton
Disk Doctor (NDD) and Speed Disk (SD) make the same undocumented DOS
calls as CHKDSK.

Lotus 1-2-3 Release 3 incorporates a 16-bit protected-mode DOS extender,
DOS/16M, from Rational Systems. In the absence of a VCPI control program
such as Quarterdeck QEMM or Qualitas 386-to-the-Max, DOS/16M figures out
whether VDISK or some other user of extended memory is loaded. The most reli-
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able method of looking for VDISK is to use INT 21h Function 52h to find the
head of the DOS device chain, and then to walk the device chain looking for
VDISK.

Products such as IBM Interleaf Publisher, AutoCAD/386, Mathematica, and
Paradox /386 all incorporate Phar Lap Software’s 32-bit protected-mode DOS ex-
tender, 386! DOS-Extender. The DOS extender makes two different undocu-
mented DOS calls: a PSP is created for the protected-mode program, and then the
Set PSP call is used to switch back and forth between the DOS extender and the
protected-mode program itself. This is part of the mechanism that allows 32-bit
protected-mode programs to call 16-bit real-mode MS-DOS.

So, there is a large collection of popular PC applications that use undocu-
mented DOS. Are the vendors of all these programs going to get burned with the
next version of DOS? It’s instructive to read what Microsoft's Chief Architect for
System Software says about this issue:

"It may seem that if a popular application ‘pokes’ the operating system and oth-
erwise engages in unsavory practices that the authors or users of the application
will suffer because a future release, such as OS/2, may not run the application
correctly. To the contrary, the market dynamics state that the application has now
set a standard, and it's the operating system developers who suffer because they
must support that standard. Usually, that ‘standard’ operating system interface is
not even known; a great deal of experimentation is necessary to discover exactly
which undocumented side effects, system internals, and timing relationships the
application is dependent on" (Gordon Letwin, Inside OS/2, Redmond, WA:
Microsoft Press, 1988, pp. 20-21).

In other words, when popular applications use undocumented DOS, it’s ulti-
mately Microsoft that is inconvenienced, not the application’s developer. Smaller
developers, meanwhile, can "ride the coattails" of the larger developer’s use of
undocumented DOS. If enough important applications use it, yesterday’s undoc-
umented hack becomes tomorrow’s de facto "standard." The market has spoken.
Amen.

Ain’t Misbehavin’

As the previous section showed, many popular PC programs, mostly falling into
the category of system software, use undocumented DOS. With the important ex-
ception of the multitasking programs PRINT, Windows, and DESQView, all of
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which make very frequent use of the Get PSP and Set PSP functions as part of
their context-swapping, these programs make very few undocumented DOS calls.
This is somewhat like losing one’s virginity, however: it takes only one undocu-
mented DOS call to change the nature of a program.

Let’s say that you start using one or two undocumented DOS calls in your
program. What type of program do you now have? The chapter on "Compatibil-
ity and Portability" in Duncan’s Advanced MS-DOS Programming categorizes MS-
DOS applications by degrees of compatibility, and programs that use
undocumented DOS are unequivocally exiled to the innermost circle of this DOS
inferno:

"Ill-behaved’ applications are those that rely on undocumented MS-DOS func-
tion calls or data structures, interception of MS-DOS or ROM BIOS interrupts, or
direct access to mass storage devices (bypassing the MS-DOS file system). These
programs tend to be extremely sensitive to their environment and typically must
be 'adjusted’ in order to work with each new MS-DOS version or PC model. Vir-
tually all popular terminate-and-stay-resident (TSR) utilities, network programs,
and disk repair/optimization packages are in this category" (second edition,
1988, p. 315).

The most important sentence here is the last one: if you write "ill-behaved"
DOS applications, you will be in good company. Indeed, the purpose of Undocu-
mented DOS is to show how you too can write such "ill-behaved" programs: pro-
grams like SideKick, the Norton Utilities, Windows, DESQView, and PRINT! All
these programs do tend to be "extremely sensitive to their environment." Some of
them do have to be "adjusted’ in order to work with each new MS-DOS version."
Start using undocumented DOS, and that will be true of your software as well.

But that already is a fact of life in the MS-DOS world. In fact, using undocu-
mented DOS has many of the same benefits and liabilities as the standard prac-
tice of bypassing DOS and writing directly to the hardware.

The need to use undocumented functions and data structures for many im-
portant tasks tells you much more about MS-DOS than it does about any sort of
standard recommended engineering practice. Before we start knocking MS-DOS,
though, let’s not forget that, if for no other reason than that it has ridden on the
coattails of the PC’s wild success, DOS has succeeded in a way that no other, sup-
posedly better, operating system can match. DOS, with all its warts, is an ines-
capable reality. Using undocumented DOS may not find a place in any software
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engineering curriculum, but it is a good exercise in accommodating your princi-
ples to the real world.

Having said all this, let’s see what we can salvage of good engineering prac-
tice as we make our descent into undocumented DOS. This book presents many
techniques for using undocumented DOS in a relatively safe and reliable manner.
Some of the techniques recommended in this book are:

Rigorous checking of the MS-DOS version number

»  Verifying the basic integrity of undocumented DOS internals by perform-
ing an undocumented DOS call and comparing its output with a known
value

s Computing structure sizes dynamically as a double check for sizes com-
puted from the DOS version number

Programs that use undocumented DOS are obligated to do a better job of DOS
version checking, error checking and basic "sanity" checking than many other
programs that otherwise play by the book. In fact, most of the programs in
Undocumented DOS and its accompanying disk have been tested, and work prop-
erly, in MS-DOS versions 2.x, 3.x, 4x and higher. Some of the programs have
been ported to protected mode using DOS extenders. Many have been tested
under different configurations, including Windows, DESQview, and QEMM and
386MAX with various DOS components loaded into high memory.

Simulated DOS

Many of the programs in this book have also been tested under environments
such as the DOS compatibility boxes found in OS/2 1.x and 2.0, and Digital
Research’s DR DOS. These environments may or may not be important to you,
but it is important to gauge the quality of their support for undocumented DOS,
because any support they do provide is completely intentional. Unlike versions of
MS-DOS itself, which may support one or another undocumented DOS feature
simply out of inertia, these simulated DOS environments can only support an un-
documented DOS function call or data structure if someone consciously put it there.
Let's look first at Digital Research’s DR DOS 3.40, which provides an
extremely close emulation of DOS 3.31 with SHARE.EXE loaded. So close, in fact,
that many programs from this book run under DR DOS. We have already men-
tioned that Ray Michels’ TSR from chapter 5 runs in this environment—that
means DR DOS properly supports INT 21h Functions 34h, 50h, 51h, 5D06h, and
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5DO0AN, and INT 28h. INT 21h Function 52h is of course supported, as is most of
the DOS List of Lists, so MCB walkers and programs that walk the DOS device
chain work just fine. Unfortunately, the DOS Current Directory Structure (CDS)
is not supported, so many of the file system programs from chapter 4 of this book
won’t work in DR DOS 3.40. On the other hand, the oddball "installable com-
mand" functions discussed in Jim Kyle’s chapter 6 on command interpreters are
supported. Finally, INT 21h Function 60h is supported, but, in the version we ex-
amined, it had a bug (it always returned the name of the root directory, e.g.,
"C:\"). All in all, though, this product does an excellent job of emulation. Some-
one went to a lot of trouble to support the undocumented DOS interface, because
that interface is essential to DOS compatibility.

The DOS compatibility boxes of OS/2 also provide an interesting perspective
on undocumented DOS. The DOS box in the first release of OS/2 (so-called DOS
10.00) provided very little support for undocumented DOS. The Microsoft Systems
Journal (May 1987) said that "since OS/2 does not recognize most of the undocu-
mented MS-DOS services, programs that use them won’t run in the compatibility
mode." Lotus 1-2-3, Release 2.01 and dBase III Plus don’t seem to make any un-
documented DOS calls, so there probably didn’t seem to be any good reason to
support undocumented DOS. On the other hand, most popular TSRs do depend
on undocumented DOS, so enough of undocumented DOS was supported so
that SideKick would run in compatibility mode.

By the time of OS/2 1.1 and 1.2 (DOS 10.10 and 10.20), it was becoming clear
that OS/2 was not going to replace DOS any time soon (and, in fact, might never
replace DOS). Support for undocumented DOS was considerably beefed up. INT
21h Function 52h was supported and, for example, although most of the fields
were set to FFFFh and you can’t walk the DOS device chain (there is none!), you
can walk the MCB chain. Most of Quarterdeck’s Manifest can run properly in the
0S/2 1.1 DOS box.

The forthcoming 32-bit OS5/2 2.0 has greatly enhanced MS-DOS compatibil-
ity. In fact, it will allow you to run multiple DOS boxes, much as you can do today
under DESQview or Windows 3.0. The support for undocumented DOS will be
improved again. There seems to be a DOS device chain, and the LASTDRIVE
field in the DOS List of Lists is supported, for example.

Again, the key point here is that this support for undocumented DOS isn’t an
accident. The market dynamics state that it has to be there: A DOS environment
that can’t support SideKick?! You must be kidding!
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Categories of Undocumented DOS

It is helpful to try to take the large mass of undocumented DOS and break it into
categories according to how reliable we think the different components are. A
few undocumented DOS functions (in particular, INT 2Fh Function 12h) are unre-
liable in the sense that they were never meant to be called from outside the DOS
kernel, so calling these functions from an application program is too tricky to be
worthwhile. However, for all the features we've discussed in this chapter, reli-
ability simply means how likely it is that the function or data structure will
remain unchanged in future releases of MS-DOS.

In some cases, there appears to have been no good reason for the function to
be undocumented in the first place, and the function has remained unchanged
throughout its lifetime. Functions 50h (Set PSP) and 51h (Get PSP) are good
examples of this category.

Function 52h (Get List of Lists) is an interesting case. The function itself has
been remarkably stable and is relied upon by so many important applications
that Microsoft would be foolish indeed to get rid of it. However, the List of Lists
data structure itself has changed significantly from one DOS version to the next.

Get List Of Lists is probably the most important of all undocumented DOS
functions, because with this single call you can access almost all of MS-DOS's
internals. However, it is also easy to understand why this call is undocumented:
the data structures it points to (either directly or indirectly) are the key data
structures of MS-DOS itself. These must change when significant improvements
are made to DOS. In some cases, new fields can be added to the end of a struc-
ture, so that none of its existing clients "break," and so that, over time, the data
structure starts to resemble a "grab bag" (which is probably another reason it’s
undocumented; the interface is so messy it’s embarrassing!) But in other cases,
fields must be expanded or moved, and then any application that relies on a par-
ticular order or size of the undocumented data structures will break, and will
need to be upgraded.

Therefore, it would be next to impossible for Microsoft to support use of this
function in third-party software. It is probably difficult enough for Microsoft to
keep all its own software that uses Function 52h happy from one DOS version
change to the next. For example, hypothetically speaking, if the DOS 5 team
needs to change a data structure pointed to by the List of Lists, and if Windows 3
relies on that undocumented data structure, what happens? If Windows 3 devel-
opers win the argument, this may prevent the DOS 5 developers from making an
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important improvement. On the other hand, if the DOS 5 developers win the ar-
gument, a lot of Windows 3 update disks go out in the mail.

In any case, Functions 51h and 52h seem to belong to different categories of
undocumented DOS. Is there some, more systematic, way to categorize undocu-
mented DOS? One useful set of categories was drawn up by Ken W. Christopher,
Jr, Barry A. Feigenbaum, and Shon O. Saliga, all IBM employees who were lead
engineers for IBM’s part in DOS 4. Their book, Developing Applications Using DOS
(New York: John Wiley & Sons, 1990), is one source of information on undocu-
mented DOS. Unfortunately, the book restricts its focus to PC-DOS 4.0. However,
the author’s DOS categorization (pp. 384-388) not only appears to be sensible,
but, given that the authors work at IBM, may also reflect an insider’s point of
view:

"P Published interface. Will be supported in future DOS versions.

"O Obsolete function. Use the more modern function instead.

"X Excluded function. Do not use.

"U Unpublished function. Although not guaranteed by IBM or Microsoft to remain
unchanged in the future, this function has been unchanged in DOS for several
versions and is unlikely to change in future DOS versions.

‘R Restricted unpublished function. This function should only be used when abso-
lutely necessary to accomplish your program’s function. This function is highly
subject to change with each DOS version so your program should be both major
and minor DOS version specific.

"D Implemented on Asian (DBCS) versions of DOS only."

Table 1-1 shows how the three IBMers apply these categories to undocu-
mented INT 21h functions. The list uses their names for these functions, rather
than the names used elsewhere in this book:

Table 1-1: Undocumented INT 21h functions from Christopher, Feigenbaum, and Saliga

Function . Description Use
1Fh Get Default DPB UR
32h Get DPB UR
34h GET INDOS Flag Address U
37h Get/Set Switch Character U
4B01h Load Program U
50h Set Active Process Data Block U
51h Get Active Process Data Block U
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Function
52h

53h

55h

58h
5D00h
5D01h
5D02h
5D03h
5D04h
5D05h
5D06h
5D07/08h
5D0%h
5D0AhO
5D0Bh
5E01h
5E04/05h
5F00/01h
5F05h
60h
6520h
6521h
6522h
6523h
6%h

Description

Get DOS Internal Values

Set DPB

Duplicate Process Data Block
Get/Set Allocation Method

Server DOS Call

Commit All Files

Close File by Name

Close All Files for a Particular Computer
Close All Files for a Particular Process
Get Open File List Entry

Get DOS Data Area Address

Get/Set Print Stream State

Truncate Print Stream

Set DOS Extended Error Information
Get DOS Data Areas

Set Machine Name

Set/Get Printer Mode

Get/Set Redirection Mode

Get Redirection List Entry Extended
Translate Filespec

Capitalize Character

Capitalize String

Capitalize ASCIIZ String

Capitalize Yes/No Check

Get/Set Media ID

The Case of the Missing One-Quarter

Here, we have only listed the functions in category U and R. What percentage of
all INT 21h functions do these comprise? The three IBM authors list a total of 170
functions. Of these, 38 carry a U and/or an R. We might therefore conclude, only
half jokingly, that MS-DOS is 22 percent undocumented. Oddly enough, this cor-
responds closely with our own findings: at one point, the complete "Interrupt
List" found on the disk that accompanies this book was 747KB, and at the same
time the electronic manuscript for Appendix A, which lists only undocumented
DOS, was 180KB.

This means that we decided that about 1/4 of the material in the "Interrupt
List" constitutes undocumented DOS. It's now time to take a closer look at this

missing one-quarter of the PC programer’s interface.

Use
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Chapter 2

Programming for Documented and
Undocumented DOS: A Comparison

Andrew Schulman

This chapter looks at how to incorporate the information in the rest of the book
into working code in C, 80x86 assembly language, Turbo Pascal, and BASIC. It
also discusses the important issue of when not to use undocumented features,
while showing that certain PC programming tasks absolutely require them.

We will also illustrate that exploiting undocumented features of MS-DOS
usually requires only a few lines of code. On the other hand, programs that use
undocumented DOS features must be more aware of the MS-DOS version num-
ber than code that uses only documented DOS. In particular, whereas undocu-
mented MS-DOS function calls have remained remarkably stable from one version
of DOS to another, the equally important DOS data structures vary significantly
with each new release of the operating system, and programs that use undocu-
mented DOS must take strict account of this.

At the end of the chapter, we will examine the issue of using undocumented
DOS from protected-mode DOS extenders and from the DOS Protected-Mode In-
terface (DPMI), as found in Windows 3.0 386 enhanced mode.

29
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Using Documented DOS Functions

Before examining how to use undocumented DOS in programs, let’s review how
to use documented DOS function calls. This detour into documented DOS (we
might even say over-documented DOS, because so much has been written about
it!) will pay off when we write programs using undocumented DOS.

If you know all about calling DOS from your chosen programming language,
skip to the section on "Using Undocumented DOS."

If you're still here, let’s pretend we work in the installation software group of
a commercial software company. For some reason, we have been asked to pro-
duce a small utility that, when run from a DOS batch file, will return the number
of "logical drives" on the system, corresponding to the LASTDRIVE statement in
a user’s CONFIG.SYS. Perhaps the company is installing software in a Novell
NetWare environment, where LASTDRIVE determines the starting letter for net-
work drives.

The utility is to be called LASTDRV.EXE, and the idea is that when it exits
back to DOS, it should return a number corresponding to LASTDRIVE. For ex-
ample, if LASTDRIVE=C, then LASTDRV.EXE should return the number 3. This
is different from other DOS utilities that return 0 to indicate success and 1 (or
more) to indicate an error. This number can be interrogated using the IF
ERRORLEVEL facility in MS-DOS'’s somewhat demented batch language.

The LASTDRYV utility should also display a string such as "LASTDRIVE=E,"
but in such a way that the output can be discarded by redirecting the program’s
output to the NUL "bit bucket" device.

For example, to make sure that there are at least six logical drives (LAST-
DRIVE is F: or higher), someone in the batch files team of the installation soft-
ware group (large software companies really are organized that way!) would
take our wonderful utility and incorporate it into the following batch file:

echo off

rem needé6.bat

Llastdrv > nul

if errorlevel 6 goto end

echo Requires at least six drives
:end

How do we write LASTDRV.EXE? Trying to find the user’s CONFIG.SYS file
and then locate the LASTDRIVE statement is a very bad idea. Aside from the fact
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that LASTDRIVE didn’t make its appearance until DOS 3.0 and that its use is op-
tional (E: is the default LASTDRIVE), we would have no guarantee that, once we
locate a CONFIG.SYS, it’s actually the one with which the system was booted. It
also appears to be impossible to locate the boot drive reliably in MS-DOS prior to
version 4.0 (DOS 4 and higher do provide such a function, however: INT 21h
Function 3305h).

If we are writing in a high-level programming language like C or Pascal, it's
unlikely that the compiler’s subroutine library comes with a function that returns
the number of drives. True, Microsoft C has the function _bios_equiplist(), for ex-
ample, and Borland Turbo C and Turbo C++ have the function biosequip(),
which can be used to find the number of floppy drives. But what about fixed
disks?

More important, we were asked to retrieve the number of DOS logical drives,
so interrogating the PC’s BOM BIOS does not meet the functional specification
for this utility. "Logical" drives also include RAM disks, network drives, CD-
ROM drives, tape back-up units, and the like. "Logical," in other words, means
both physical drives and fictional drives. As shown in this book’s chapter on the
DOS file system, much of DOS’s extensibility comes from the ability to have
drive letters assigned to things that really aren’t drives at all!

Thus, "logical drive" is an MS-DOS construct, having nothing to do with PC
hardware or the ROM BIOS. To learn how a program finds out the value of
LASTDRIVE, then, the first thing to do is browse through a reference book on the
DOS programmer’s interface, looking for an INT 21h function that returns the
number of logical drives.

Flipping through any DOS programmer’s reference, we find that INT 21h
Function OEh, which is used to select the current disk drive in the system, some-
what illogically (the two have little to do with each other) also returns the total
number of drives:

Int 21H Function OEH

Select Disk

Selects the drive specified in DL (if valid)
as the default drive.

Call with:

AH = OEH

DL = drive code (0=A, 1=B, etc.)
Returns:

AL = number of logical drives in system
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In single-drive IBM PCs in DOS 1.x and 2.x (the latter will be present at more
customer sites than you would think), the value 2 is returned in AL, because DOS
supports two logical drives (A: and B:) hanging off the same single physical
floppy drive. Further, in DOS 3.x and higher, the value returned in AL is either 5
or the drive code corresponding to the LASTDRIVE entry (if any) in CON-
FIG.SYS, whichever is greater.

This return value is what we want. Actually, it’s almost what we want. In one
important special case—DOS machines using Novell NetWare—the value re-
turned in AL by Function OEh is not equal to LASTDRIVE. Given the number of
PC machines running Novell NetWare, this is indeed an important exception,
and we will return to it later in this chapter.

How do we get back the return value without also selecting a new current
drive? The answer is obviously to specify the drive that is already current as the
"new" one. Where do we find the current drive? Once again we flip through our
DOS programmer’s reference (DOS programming has a lot in common with
using a mail-order or gardening catalog!) until we stumble upon Function 19h
(Get Current Disk):

Int 21H Function 19H
Get Current Disk
Returns the drive code of the current, or
default, disk drive.
Call with:
AH = 19H
Returns:
AL = drive code (0=A, 1=B, etc.)

It's really quite simple to take all this information and turn it into a program.
In the remainder of this section, we will produce versions of LASTDRV.EXE in
assembly language, C, Turbo Pascal, and QuickBASIC. Throughout, we will be
using only thoroughly documented portions of the DOS programmer’s interface,
in preparation for our descent into the world of undocumented DOS.

DOS Calls From assembly Language

The following small assembly language program shows how the reference mate-
rial on DOS Functions OEh and 1%h translates into a working version of
LASTDRV.EXE. This code also uses DOS Function 0%h to display output on the
screen; the output can also be redirected to a file or to the NUL "bit bucket."
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Finally, DOS Function 4Ch is called to exit to DOS, passing the numeric value of
LASTDRIVE as a return code:

; LASTDRV.ASM —- uses only documented DOS

_STACK
_STACK

_DATA
msg
dletter
_DATA

_TEXT

main

main

_TEXT

segment para stack 'STACK'
ends

segment word public 'DATA'

db '"LASTDRIVE="
db ?)

db 0dh, Oah, '$'
ends

segment word public "CODE'

assume cs:_TEXT, ds:_DATA,
proc near

mov ax, _DATA

mov ds, ax

mov ah, 19h

int 21h ;
mov diL, al ;
mov ah, OEh ;
int 21h H
mov blL, al H
add al, ('A' - 1) ;
mov dletter, al ;
mov dx, offset msg ;
mov ah, 9 ;
int 21h ;
mov ah, 4Ch ;
mov al, bl H
int 21h ;
endp

ends

end main

ss:_STACK

; set DS to data segment
; Get Current Disk function

call MS-DOS

AL now holds current drive
Select Disk function

call MS-DOS

LASTDRIVE in AL; save in BL
convert to drive Lletter
insert into string

string in DS:DX
Display String function
call MS-DOS

Return to DOS
LASTDRIVE dis exit code
call MS-DOS

LASTDRV can be assembled with any number of assemblers and then linked
with any MS-DOS compatible linker:
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Microsoft Macro Assembler (MASM):

masm Llastdrv.asm;
Link lastdrv.obj;

Borland Turbo Assembler (TASM):

tasm lastdrv
tlink Llastdrv

Phar Lap 386 | ASM/LinkLoc:

386asm —-8086 Llastdrv
Linkloc -8086 Lastdrv

DOS Calls From C

There is a problem making DOS calls using the C programming language. It’s not
that it is difficult to access MS-DOS services from C: the problem is there are too
many different ways to do so. Never satisfied with one technique where a dozen
techniques will do, C compiler manufacturers for the PC, such as Microsoft, Bor-
land, JPI, Watcom, and MetaWare (it is amazing that the PC marketplace appar-
ently can support so many good C compilers), offer a wide variety of techniques
for calling MS-DOS and ROM BIOS services. Having many different ways to per-
form the same operation is never a good idea.

The problem isn’t really with the compilers, however. Ultimately, we have to
ask why MS-DOS itself doesn’t come with a set of standard include files, the way
0S/2 does. On the other hand, this lack of standard programming facilities in
MS-DOS has done nothing to stop MS-DOS'’s spectacular success, and may even
have aided it slightly, because it gives programmers one more thing to manipu-
late. In any case, we need to discuss a few of the techniques that can be used to
make MS-DOS calls from C, including the int86() and intdos() functions, in-line
assembly language, and register pseudo-variables.

int86() Until recently, the most popular way of calling system services from C on
the PC was to use the int86() family of functions, which invoke Intel 80x86 soft-
ware interrupts:

/* LASTDRV.C -- uses only documented DOS */

#include <stdio.h>
#include <dos.h>
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main{void)

{
union REGS r;
unsigned Llastdrv;
r.h.ah = 0x19; /* Get Current Disk */
int86(0x21, &r, &r); /* call MS-DOS */
r.h.dl = r.h.al; /* r.h.al now holds current drive */
r.h.ah = 0x0E; /* Select Disk */
int86(0x21, &r, &r); /* call MS-DOS */
lastdrv = r.h.al; /* r.h.al now holds number of drives */
fputs("LASTDRIVE=", stdout); /* output string */
putchar('A' - 1 + lastdrv); /* output drive letter */
putchar('\n'); /* output newline */
return lastdrv; /* return drive number to MS-DOS */
}

This can be compiled with any Microsoft-compatible C compiler for the IBM
PC, using either the full-screen or the command-line version of the compiler. For
example:

Microsoft C 6.0:
cl -qc lastdrv.c
Borland Turbo C++:

tcc lastdrv

The C source code is almost half the length of the corresponding assembly
language code we examined earlier. On the other hand, the size of the executable
file has grown from less than 600 bytes in assembly language to almost 5,000
bytes in C.

In-line Assembler A better way to write PC system-level software in C is to use an
in-line assembler: that is, put Intel assembly-language code directly in your C
code. True, an in-line assembler is inherently nonportable, but so are calls to
int86(). You can’t expect MS-DOS or ROM BIOS calls to work on non-Intel archi-
tectures anyway, so this is in fact a perfect place to use in-line assembly language.

Microsoft C 6.0, Microsoft Quick C 2.5, Borland Turbo C, and Borland Turbo
C++ all include an in-line assembler. There is a slight difference between the
Microsoft and Borland dialects. Microsoft offers an _asm block, whereas Borland
requires that the asm keyword precede each line. Microsoft put a scaled-down
assembler right into its C compiler, whereas Borland passes the in-line assembler
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through to a separate assembler such as TASM or MASM, allowing you to in-
clude assembly-language directives (such as DB), assembly-language macros, or
386 instructions directly in your C code. Either way, the essentials are the same.
Note how the preprocessor directives ensure the compiler can support an in-line
assembler:

/* LASTDRV2.C —-- uses only documented DOS */

#include <stdlib.h>
#include <stdio.h>

main()
{
unsigned Llastdrv;

#ifdef __TURBOC__
asm mov ah, 19h /* C-style comments only */
asm int 21h
asm mov dlL, al

asm mov ah, OxO0e /* C-style hex */
asm int 21h /* assembly-style hex */
asm xor ah, ah
asm mov lastdrv, ax /* refer to C variables */
#elif (defined(_MSC_VER) && (_MSC_VER >= 600)) || defined(_QC)
asm {
mov ah, 1%h ; can include assembly-style comments
int 21h /* and C-style as well */
mov dl, al // and this style as well
mov ah, OxOE ; can include C-style hex numbers
int 21h ; or assembly-style hex numbers
xor ah, ah
mov lastdrv, ax ; can refer to C variables in _asm
}
#Helse
#error Requires inline assembler
#endif

fputs("LASTDRIVE=", stdout);
putchar('A' - 1 + Llastdrv);
putchar('\n');

return lastdrv;
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The comments inside the _asm block show the odd mixtures of C and assem-
bly language that can be produced.

You do have to be careful when using in-line assembly language. In particu-
lar, you must know your compiler’s rules about preserving registers. For
Microsoft C and Turbo C, the rules are simple: you are free to change AX, BX, CX,
DX, and ES. Inside a function, you can change BP. You can change any flag except
the direction flag. You must always preserve the DI, SI, DS, SS, and SP registers,
however.

Register Pseudo-Variables Borland and JPI both provide yet another way of writ-
ing low-level code: register pseudo-variables. Not to be confused with C register
variables, register pseudo-variables map onto the CPU registers but look like C
variables:

/* LASTDRV3.C -- uses only documented DOS */

#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

main()

{
unsigned lastdrv;
_AH = 0x19;
geninterrupt(0x21);
_DL = _AL;
_AH = Ox0E;
geninterrupt(0x21);

lastdrv = _AL;
fputs("LASTDRIVE=", stdout);
putchar('A' - 1 + Llastdrv);
putchar('\n');

return lastdrv;

Note that geninterrupt(0x21) is not a function call but a compiler directive to
emit an INT 21h directly into the compiled code. Also, although the register
pseudo-variables such as _AL are extremely handy, the code generated by the
compiler uses the same CPU registers, so you can’t rely on values staying in the
registers for very long.
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DOS Library Functions  Actually, this exact same operation could have been per-
formed without int86() or _asm blocks. Most C compilers for the PC provide a set
of functions that map directly onto the most popular DOS functions. Microsoft C
provides functions with names such as _dos_getdrive() and _dos_setdrive(), for
instance, and Turbo C provides getdisk() and setdisk(). In Turbo C, the DOS
lastdrive() function is thus equivalent to setdisk(getdisk()). (Again with the im-
portant exception of Novell NetWare, which we will be discussing later.)

DOS Calls From Turbo Pascal

What about other calling MS-DOS functions from other high-level languages? In
some ways, it is much simpler to make these calls from other languages, such as
Turbo Pascal, because you don’t have to worry about which method to use. As
noted earlier, having the wide variety of techniques available in C ultimately isn't
so terrific, because programmers (and writers) end up spending too much time
deciding which technique to use.

Calling DOS functions from Turbo Pascal requires the Dos unit, which in-
cludes the Registers variant record (similar to union REGS in C) and the MsDos()
function:

{ LASTDRV.PAS —- uses only documented DOS 1}

program LastDrv;

uses dos;

var
r : Registers;
Llastdrive : Word;

begin

with r do begin
ah = $19; { Get Current Disk }
MsDos(r);
dlL := al;
ah := $0E; { Select Disk }
MsDos(r);
lastdrive := al;

end;

Writeln('LASTDRIVE=', Chr(Ord('A') - 1 + Llastdrive));

Halt(lastdrive);

end.
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Note that Pascal’s with construct allows us to refer to fields of the Registers
record as, for example, ah rather than r.ah.

Using the command-line version of Turbo Pascal, LASTDRV.PAS can be
turned into LASTDRV.EXE by typing;:

tpc lastdrv.pés

True to Turbo Pascal’s reputation for producing extremely tight code, the re-
sulting Turbo Pascal executable file is only 2KB. The smallest C version was
about 4KB.

DOS Calls from BASIC

Finally, what about BASIC? The following version of LASTDRV displays the
LASTDRIVE letter and returns the numeric value of LASTDRIVE to the DOS
ERRORLEVEL:

REM LASTDRVIVE -- uses only documented DOS
REM $INCLUDE: '@B.BI'

SUB DOSEXIT(errorlevel)

CLOSE
DIM Regs AS RegType
Regs.ax = &H4C00 + errorlevel ' Terminate Process

CALL INTERRUPT(&H21, Regs, Regs)
PRINT "this is never executed"
END SUB

DIM Regs AS RegType

Regs.ax = &H1900 ' Get Current Disk
CALL INTERRUPT(&H21, Regs, Regs)

Regs.dx = Regs.ax

Regs.ax = &HOEOO ' Select Disk

CALL INTERRUPT(&H21, Regs, Regs)

lastdrv = Regs.ax AND &HFF

PRINT "LASTDRIVE=",; CHR$(ASC("A") - 1 + lastdrv)

CALL DOSEXIT(lastdrv)

END

To turn this source code into an executable file, you can use either Microsoft
Quick BASIC or the Microsoft BASIC 6.0 compiler:
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BASIC 6.0 compiler:

bc /o lastdrv.bas;
Link lastdrv,,,qb.lib;

Quick BASIC (must produce a stand-alone executable file!):
gb lastdrv.bas /L gb.qlb

Using the BC /O switch or producing a stand-alone executable file from
within QuickBASIC is mandatory. Surprising as it seems, Microsoft BASIC has
no provision for returning exit codes to DOS. In order to return the value of
lastdrv as the DOS ERRORLEVEL, LASTDRV.BAS uses the subroutine
DOSEXIT(), which directly calls MS-DOS Function 4Ch (Terminate Process with
Return Code) and never returns, thereby bypassing BASIC’s normal exit routine.
This will not work from an executable file that uses the BASIC run-time module
(for example, BRUNG0OEP). In fact, directly calling INT 21h Function 4Ch from an
executable that uses the BASIC run-time module can easily hang the machine.

There’s another problem. Because we never return after calling INT 21h
Function 4Ch, we do an end-run around BASIC’s exit routine, and BASIC never
gets to clean up after itself. The result is that the cursor is lost when we return to
the DOS prompt. Thus, although this code shows how to make low-level system
calls from Microsoft BASIC, it really isn’t a useful piece of software. BASIC has
many features going for it as a programming language, but returning exit levels
to the operating system apparently is not one of them. (Microsoft’s latest incarna-
tion of BASIC, though—the Professional Development System (PDS) 7.0—finally
does allow BASIC programs to set the DOS exit code.)

Using Undocumented DOS

Quarterdeck’s expanded memory manager, QEMM, comes with a program
called LASTDRIV.COM, one of whose uses is to report the value of LASTDRIVE.
Interestingly enough, this program does not use documented Function OEh. In-
stead, it uses undocumented Function 52h. We won’t see why until later. For
now, though, the point is that if Quarterdeck can do it, so can you. Just as you
eventually have to learn about direct screen writes or programming the 8259 in-
terrupt controller to be a successful PC programmer, so you need to learn about
the proper use of undocumented DOS.

What better place to start than with a program whose operation is well
known to us: LASTDRYV. In the next section, we will again show how to write the
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LASTDRV utility in assembly language, C, Turbo Pascal, and QuickBASIC, this
time using undocumented DOS. In particular, we will highlight the larger role
that the DOS version number plays when using undocumented DOS.

We just went through the process of using a standard DOS programmer’s ref-
erence like an office-supply catalog or a handbook of mathematical functions,
trying to find a tool that would help us write the LASTDRV utility. We never
found a single function called Last Drive, but we did find two functions (Get
Current Disk and Select Disk) that could be used together to achieve the same effect.

In other words, we saw lastdrive() is similar to setdisk(getdisk()). But there’s
something illogical in this: why should DOS return the total number of drives
when you set the current drive? MS-DOS presumably keeps the value of
LASTDRIVE somewhere internally. Is there some way to find it?

If you leaf through Ralf Brown’s appendix to this book you will find DOS’s
internal location for LASTDRIVE in the middle of a DOS data structure called the
List of Lists. The following shows the format of the List of Lists:

Offset  Size Description

DOS 2.x

10h BYTE number of logical drives in system

DOS 3.0

1Bh BYTE value of LASTDRIVE command in CONFIG.SYS (default 5)
DOS 3.1-3.3

21h BYTE value of LASTDRIVE command in CONFIG.SYS (default 5)
DOS 4.x

21h BYTE value of LASTDRIVE command in CONFIG.SYS (default 5)

The List of Lists, or DOS internal variable table, is probably the most impor-
tant undocumented DOS data structure, and INT 21h Function 52h, which re-
turns in the ES:BX register pair a pointer to the List of Lists, is probably the most
important undocumented DOS function.
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Note how the offset of the LASTDRIVE field within the DOS internal variable
table changed from DOS 2.0 to DOS 3.0 to DOS 3.1. This is the sort of undocu-
mented DOS behavior our programs will have to deal with. What the offset will
be in future versions is anyone’s guess, and that, of course, is the whole problem
with using undocumented DOS features.

In future versions of DOS, the LASTDRIVE field might even disappear,
breaking whatever programs depend upon its presence. The only comfort is that,
should the DOS List of Lists be changed radically, not only will our own pro-
grams start to fail but practically all important Microsoft software will break, too!
In fact, the reliance of key pieces of Microsoft software such as Windows 3.0 on
the internal structure of DOS might make this internal structure less likely to
change. However, that perhaps is too much to hope for in a large company,
where the Windows 3.0 group might not even talk with the DOS 5 group.

In the midst of the changes to the position of LASTDRIVE within the List of
Lists—and, if you look at the appendix entry for INT 21h Function 52h, massive
changes throughout the List of Lists as a whole—one thing s remained con-
stant: INT 21h Function 52h itself, which from DOS 2.0 onward has been as stable
as any documented DOS function and which is supported even in simulated
DOS environments such as the compatibility box of 05/21.10:

INT 21 - DOS 2+ internal - GET LIST OF LISTS
AH = 52h
Return: ES:BX —> DOS List of Llists

No Magic Numbers

Because the List of Lists is so central to DOS programming, many books on the
subject end up using INT 21h Function 52h somewhere in their sample source
code. However, because of their authors’ possibly guilty feelings about using un-
documented DOS in the first place, these books simply leave the code unex-
plained. For example, from the Turbo Pascal source code in a useful book on
LAN programming, the following appears without any explanation:

regs.ah := $52;

intr($21, regs);

ofs := regs.bx + $22;

seg := regs.es;

while memwlseg:ofsl <> $ffff do
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The author needed to use INT 21h Function 52h because it is the only way to
accomplish certain key tasks in DOS programming. To use this function and then
not explain what it does, though, seems far worse than any explicit use of undoc-
umented DOS. To use undocumented DOS and not explain it gives your code a
mysterious quality. As used above, 52h and 22h are certainly "magic numbers."
Let’s see if we can’t completely demystify INT 21h Function 52h.

You can try out this function, without even writing a program, by using the
DOS DEBUG utility. First assemble the DOS call and execute it:

C:\UNDOC2>debug

-a

775A:0100 mov ah, 52
775A:0102 int 21
775A:0104 nop
775A:0105

-g 104

AX=5200 BX=0026 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=775A ES=028E SS=775A (S=775A 1IP=0104 NV UP EI PL NZ NA PO NC
775A:0104 90 NOP

The register dump shows that in this sample DEBUG session, ES:BX points to
028E:0026. As we will see later, from DOS 3.1 on, the DOS internal variable table
actually starts at offset -12 (decimal) from the address returned in ES:BX. In this
case, therefore, the table starts at offset 0026h - 0Ch (12 decimal), or 001Ah:

-d es:001a

028E:0010 0300010000000  ......
028E:0020 FF OA 00 00 F3 09 FO 75-8E 02 98 00 8E 02 A4 01 ....... Ueeoncoan
028E:0030 70 00 6E 01 70 00 00 02-00 00 49 0OC 00 00 EE OC P-N.Peceoloa...
028E:0040 00 00 6D OA 00 00 03 05-12 00 F4 09 04 80 99 15 ceMecicancanaan
028E:0050 9F 15 4E 55 4C 20 20 20-20 20 00 90 43 17 8E 02 ..NUL ..C...

028E:0060 47 17 8E 02 47 17 8E 02-43 17 8E 02 43 17 8 02 G...G...C...C...
028E:0070 43 17 8E 02 43 17 8E 02-43 17 8E 02 47 17 8E 02 C...C...C...G...
028E:0080 43 17 8E 02 43 17 8E 02-43 17 8E 02 47 17 8E 02 C...C...C...G...
028E:0090 43 17 8E 02 43 17 8E 02-00 00 C...C.....

Aside from the header for the NUL device driver, it is difficult to find our
way around here. If we compare the DEBUG dump with the format of the List of
Lists as shown in the appendix entry for INT 21h Function 52h, however, it all
makes sense. We can even see that the Turbo Pascal code quoted earlier was add-
ing 22h to the value returned from Function 52h so that it could get a pointer to
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the NUL device, which is at the head of DOS’s device chain. This is one of the
most popular uses of INT 21h Function 52h, but clearly the DOS List of Lists
holds many other goodies as well:

Offset  Size Description

-12 WORD  sharing retry count 0003

-10 WORD  sharing retry delay 0001

-8 DWORD pointer to current disk buffer 0AFF:0000
-4 WORD  unread CON input 0000

-2 WORD  first Memory Control Block 09F3

00h DWORD first Disk Parameter Block 028E:75F0
04h DWORD list of DOS file tables 028E:0098
08h DWORD pointer to CLOCK$ device driver 0070:01A4
0Ch DWORD pointer to CON device driver 0070:016E
---DOS 3.1-3.3---

10h WORD  max bytes/block 0200

12h DWORD first disk buffer 0C49:0000
16h DWORD Current Directory Structures 0CEE:0000
1Ah DWORD pointer to FCB table 0A6D:0000
1Eh WORD  number of protected FCBs 0000

20h BYTE number of block devices 03

21h BYTE LASTDRIVE 05

22h 18 BYTEs actual NUL device driver header [..NUL..]
34k BYTE number of JOIN’ed drives 00

Because the value of the LASTDRIVE field in the List of Lists is 5, LAST-
DRIVE=E, which is the default value when CONFIG.SYS does not include a
LASTDRIVE statement.

Having seen a little bit of what the DOS List of Lists looks like, we can now
retrace our steps in building the LASTDRV utility, this time using INT 21h Func-
tion 52h and the LASTDRIVE field within the DOS internal variable table.

You may be thinking that this is a futile exercise, because we already know
how to get the value of LASTDRIVE using a completely safe and documented
function that doesn’t change with each new version of DOS. However, we will
see later on that using the undocumented internal value of LASTDRIVE can actu-
ally be more reliable than using the documented Function OE return value (after
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all, Quarterdeck must have some reason for using Function 52h instead of Func-
tion OE!).

Undocumented DOS Calls From assembly Language

The following small assembly language program shows how the reference mate-
rial on DOS Function 52h and the DOS List of Lists translates into a working ver-
sion of LASTDRV.EXE. All use of undocumented DOS is confined within the
subroutine _Istdrv:

; LASTDRV2.ASM —- uses undocumented DOS
assume cs:_TEXT, ds:_DATA, ss:_STACK

_STACK segment para stack 'STACK'

_STACK ends
_DATA segment word public 'DATA'
msg db '"LASTDRIVE="'
dletter db (?)

db 0dh, Oah, '$'
_DATA ends

_TEXT segment word public 'CODE'

public Lstdrv

_Llstdrv proc far
push si
push bx
push cx
mov si, 1Bh ; assume DOS 3.0
mov ax, 3000h ; Get MS-DOS version number
int 21h ; major=AL, minor=AH
cmp al, 2
jL fail ; Requires DOS 2+
jne ofs21 ; DOS 3+
mov si, 10h ; DOS 2.x
jmp short get )
cmp al, 3
jne ofs21

and ah, ah ; DOS 3.0
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jz get
ofs21: mov si, 21h ; DOS 3.1+, DOS 4.x
get: mov ah, 52h ; Get List of Lists
xor bx, bx ; lero out ES:BX so we can check
mov es, bx ; for NULL after INT 21h
int 21h ; List=ES:BX
mov cx, es
or cx, bx ; Is ES:BX NULL?
jz fail ; Function 52h not supported
mov al, byte ptr es:Lbx+sil
xor ah, ah ; return LASTDRIVE in AX
jmp short Lleave
fail: xor ax, ax ; return 0 in AX
Leave: pop cX
pop bx
pop si
ret

_Llstdrv endp

main proc near
mov ax, _DATA
mov ds, ax
call _Lstdrv
and ax, ax ; test for failure
jz done
mov blL, al ; save LASTDRIVE in BL
add al, ('A'" - 1) ; convert LASTDRIVE to drive letter
mov dletter, al ; insert into string
mov ah, 9 ; Display String
mov dx, offset msg
int 21h
done: mov ah, 4Ch ; Return to DOS
mov al, bl ; exit code
int 21h
main endp
_TEXT ends

END main
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The main subroutine contains boring documented DOS code for displaying
output and exiting to DOS. All the really interesting code is in the slightly convo-
luted _lstdrv subroutine, paraphrased in the following pseudocode:

offset := 1Bh;

ver := DosVersion();

if (ver.major < 2)
return failure;

else if (ver.major == 2)
offset := 10h;
else if (ver.major !'= 3 and ver.minor != 0)

offset := 21h;
ListOfLists := GetListOfLists();
if (ListOfLists == NULL)

return failure;
else

return ListOfListsCoffset];

The goal of the various DOS version number tests is to put the correct loca-
tion of LASTDRIVE into the SI register, so that it can be added to the base address
of the List of Lists that we get back from DOS undocumented Function 52h. The
Sl register is preloaded with the offset of LASTDRIVE for DOS 3.0, in an attempt
to somewhat reduce the large number of JMPs.

Note how, in all DOS versions greater than 3.0, we will store 21h into the
offset. When testing the DOS version number, it is generally useful to test for
numbers greater than or equal to the highest known version (for example, version
>= 4). Testing simply for equality (for example, version == 4) means that your
application won't work in a future version such as DOS 5. It is amazing how
many programs do DOS version checking incorrectly, thereby unknowingly cutt-
ing themselves off from future DOS versions.

By treating all DOS versions higher than 3.0 as one unit, obviously we are
assuming that, for example, DOS 5 will store LASTDRIVE in the same place as
DOS 3.3. When dealing with undocumented DOS, you can either make this as-
sumption or you can take the more conservative approach of halting the program
under unknown versions of MS-DOS. This "versionitis" is really the only problem
with using undocumented DOS. If your application uses some of the less stable
undocumented functions or data structures, perhaps you should use == rather
than >= to test DOS version numbers. On the other hand, there are several dou-
ble-checks your program could perform so that it is not simply left floundering
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in the shifting sands of DOS internals; you will see several such double checks
later in this chapter and in the next chapter.

When testing the DOS version numbers returned from DOS documented
Function 30h, note that the major version number is counterintuitively returned
in AL (the low portion of AX), and the minor version number is returned in AH
(the high portion of AX). When testing DOS version numbers, it is also important
to remember that a version number such as 3.1 is actually 3.10. In the case of DOS
3.10, the minor version number in AH is not 01h, nor 10h, but 10 decimal (OAh).

In any case, once SI holds an offset appropriate to the version of DOS the pro-
gram is running under, the rest is easy:

mov ah, 52h

int 21h

mov al, byte ptr es:[bx+sil
xor ah, ah

Actually, in LASTDRV2.ASM the code is slightly more complicated than this
because we have taken the precaution of ensuring that undocumented INT 21h
Function 52h is really supporting by checking that the pointer in ES:BX is not
NULL. The ES:BX register pair is loaded with NULL prior to invoking INT 21h so
that, in a really screwy simulated DOS environment that doesn’t support this
function, ES:BX will at least hold a reasonable value we can test for.

Note that we don’t check whether the carry flag (CF) is set, however. Unless
the documentation specifically says that a function sets or clears CF, the state of
CF is undefined. The entry for INT 21h Function 52h in the appendix to this book
says nothing about CF. Thus, far from being an extra-careful precaution, checking
CF in fact would be a perfect example of relying on undefined behavior. As noted
in chapter 1, using undocumented DOS is completely different from relying on
undefined behavior.

Although this version of LASTDRV looks completely different from the ver-
sion that used only documented DOS calls, the result is similar: the value of
LASTDRIVE is both displayed and returned. The difference is that now we're
getting our information straight from the horse’s mouth, by examining the DOS
internal variable table.
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Undocumented DOS Calls From C

This book has spent so much time on the LASTDRV utility, and on various ways
of performing DOS calls from C, that you would think there would be nothing
new to say about making undocumented DOS calls from C. In fact, the following
version (LASTDRV4.C) introduces a number of important topics, including the
use of far pointers in C, the MK_FP() macro, testing the DOS version number in
C, and the use of int86x() rather than int86():

/* LASTDRV4.C -- uses undocumented DOS */

#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

#ifndef MK_FP
#define MK_FP(seg,ofs) \

(Cvoid far *)(((unsigned Long)(seg) << 16) | (ofs)))
#endif

main()

{
union REGS r;
struct SREGS s;
char far *doslist;
unsigned lastdrv_ofs;
unsigned lastdrv;

/* get offset for LASTDRIVE within DOS List of Lists */
if (_osmajor < 2)
return 0;
else if (_osmajor == 2)
lastdrv_ofs = 0x10;
else if (_osmajor == 3 && _osminor == Q)
lastdrv_ofs = 0Ox1b;
else
lastdrv_ofs = 0x21;

/* Get DOS Lists of Lists */

r.h.ah = 0x52;

segread(&s);

s.es = r.x.bx = 0;

int86x(0x21, &r, &r, &s);

/* make sure Function 52h is supported */
if (! s.es && ! r.x.bx)
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return 0;
doslist = MK_FP(s.es, r.x.bx);

/* Get LASTDRIVE number */
lastdrv = doslistClastdrv_ofsl;

/* 0S/2 DOS compatibility box sets LASTDRIVE to FFh */
if (lastdrv == OxFF)
return 0;

/* Print LASTDRIVE Lletter */
fputs("LASTDRIVE=", stdout);
putchar('A' - 1 + lastdrv);
putchar('\n");

/* return LASTDRIVE number to DOS */
return lastdrv;

If you contrast LASTDRV4.C with the earlier versions that used only docu-
mented DOS calls, you will notice a number of significant differences:

- Rather than call INT 21h Function 30h to get the DOS version number, as we
did from assembly langauge, we now use the global variables _osmajor and _os-
minor, provided by most C compilers for the PC. In Microsoft C, Watcom C 386,
and MetaWare High C 386, these variables are declared in STDLIB.H; in Turbo C
and JPI TopSpeed C, they are declared in DOS.H. It is important to remember
that in DOS 3.3, for example, _osminor is 30 (decimal), not 3, and not 0x30, either.

Because DOS Function 52h returns the address of the List of Lists in ES:BX,
and because int86() doesn’t handle segment registers such as ES, we need to use
int86x() and struct SREGS. We don’t need to pass any segment registers into
Function 52h, so it seems as though it doesn’t much matter what values struct
SREGS holds before calling int86x(). Nonetheless, it is a good habit to call the
segread() function to load the struct SREGS, as we do here, because if you ever
try to move your code to a protected-mode DOS extender, it will be crucial that
the segment registers are never loaded with garbage values, even if these regis-
ters are seemingly not used.

Because the List of Lists is part of DOS, not located inside our program, it
must be addressed with a four-byte (far) pointer. The C variable doslist is in-
tended to hold this address, and is declared as a char far *, rather than as a char *.
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This allows us to peek and poke DOS's internal variable table even from a C pro-
gram that otherwise uses only two-byte (near) pointers.

After DOS Function 52h has returned the address of the List of Lists in ES:BX,
int86x() returns it to us in s.es and r.x.bx. How do we move these into char far
*doslist? LASTDRV4.C uses the macro MK_FP(), which (as its name implies)
makes a far pointer from a segment and an offset. This handy macro is provided
in the DOS.H include file with Turbo C and TopSpeed C but, unfortunately, not
with Microsoft C. In LASTDRV4.C, we use the C preprocessor to define a
MK_FP() macro if one is not already present. While the definition of MK_FP()
makes it appear as if a shift left (SHL) is being performed, but in fact any good C
compiler for the PC will turn this code:

void far *fp = ((void far *)(((unsigned long)(seg) << 16) | (ofs)))
into this:

mov ax, _seg

mov dx, _ofs

mov word ptr _fp, dx
mov word ptr _fp+2, ax

(You can examine your C compiler’s output by compiling, for example, with
the -Fa or -Fc switch in Microsoft C, or the -S switch in Turbo C.)

Rather than use the MK_FP() macro, in Microsoft C we could also use the fol-
lowing construct:

FP_SEG(doslist)
FP_OFF(doslist)

s.es;
r.x.bx;

FP_SEG() and FP_OFF() are two other important macros for PC systems pro-
gramming in C. Whereas MK_FP() constructs a far pointer from a segment and
an offset, FP_SEG() and FP_OFF() perform the opposite operation: FP_SEG() ex-
tracts the segment of a far pointer, and FP_OFF() extracts the offset. Microsoft’s
versions of FP_SEG() and FP_OFF() are a little strange in that they are C lvalues
and can therefore be assigned to.

This C version of LASTDRV also does a bit more work than the assembly lan-
guage version. Before printing out the LASTDRIVE letter, LASTDRV4.C checks
to see if lastdrv is OFFh. This is the value that the OS/2 1.10 DOS compeatibility
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box (also known as the "penalty box") uses for the LASTDRIVE field in the DOS
List of Lists. A program running in this compatibility box thinks it is running
under DOS 10.10, so you might think we should simply fail if (_osmajor >= 10).
However, the support for undocumented DOS has improved in each version of
the DOS box, so there is no reason to cut ourselves off unnecessarily from this
simulated DOS environment. For instance, the DOS boxes in OS/2 2.0 (which
masquerade as DOS version 20.0!) do provide proper support for LASTDRIVE,
and for most other fields in the List of Lists as well. It is worth noting that, al-
though the DOS version number is in the double digits, in fact the OS/2 compati-
bility box closely resembles DOS 3.10 with SHARE.EXE loaded.

What, No Structures? To most C programmers, the big question in LASTDRV4.C
is "Where are the structures?!" You need only look at the entry for DOS Function
52h and the List of Lists in the appendix to see that all these offsets seem to cry
out to be represented with a C structure. In fact, you might ask why this book
doesn’t present an UNDOC.H include file!

The reason we do not have an UNDOC.H include file for you is that pro-
grams that use undocumented DOS functions should use only a few of them. An
UNDOC.H file could be an invitation to overuse undocumented DOS calls. We
don’t want to promote undocumented DOS as yet another “application
programmer’s interface" (API) consisting of several hundred "new" functions and
data structures!

There is in fact an additional, more serious, problem with using data struc-
tures in undocumented DOS programming. This will become clear as we discuss
the next program, LASTDRV5.C, which uses a C structure to represent much of
the DOS List of Lists:

/* LASTDRV5.C */

#include <stdlib.h>
#include <dos.h>

#pragma pack(1)
#define LISTOFLISTS_DECR 12
typedef struct {

unsigned shareretrycount;

unsigned shareretrydelay;
void far *currdiskbuff;
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void near *unreadcon;
unsigned mcb;
void far *dpb;
void far *filetable;
void far *clock;
void far *con;
union {
struct {
unsigned char numdrive;
unsigned maxbytes;
void far *first_diskbuff;
unsigned char null[181];
} dos2;
struct {
unsigned char numblkdev;
unsigned maxbytes;
void far *first_diskbuff;
void far *currdir;
unsigned char lastdrive;
void far *stringarea;
unsigned size_stringarea;
void far *fcbtab;
unsigned fcb_y;
unsigned char null18];
} dos30;
struct {
unsigned maxbytes;
void far *diskbuff;
void far *currdir;
void far *fcb;
unsigned numprotfcb;
unsigned char numblkdev;
unsigned char Llastdrive;
unsigned char nullL18];
unsigned numjoin;
} dos31; /* and higher */
} vers;
} ListOfLists;

main()

{
union REGS r;
struct SREGS s;
ListOfLists far *doslist;
unsigned lastdrive;

/* No List Of Lists in DOS 1.x */
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if (_osmajor < 2)
return 0;

/* Get DOS List of Lists */
r.h.ah = 0x52;
segread(&s);
s.es = r.x.bx = 0;
intdosx(&r, &r, &s);
if (! s.es && ! r.x.bx)
return 0;
doslist = MK_FP(s.es, r.x.bx — LISTOFLISTS_DECR);

/* Get LASTDRIVE value, depending on DOS version */

if (_osmajor == 3 && _osminor == 0)

lastdrive = doslist->vers.dos30.lastdrive;
else if (_osmajor == 2)

lastdrive = doslist->vers.dos2.numdrive;
else

Llastdrive = doslist->vers.dos31.lastdrive;

/* print LASTDRIVE letter, return LASTDRIVE number */
printf("LASTDRIVE=%c\n", 'A' - 1 + lastdrive);
return lastdrive;

From looking over struct ListOfLists, you should understand why the DOS
internal variable table is called the List of Lists: most of the fields are just pointers
to other data structures, including the list of DOS Memory Control Blocks
(MCBs), the list of Drive Parameter Blocks (DPBs), the DOS device chain, and the
File Control Block (FCB) table. In fact, in a complete struct ListOfLists, these
other fields, rather than using void far *, would each use, for example, FCB far *
or DPB far *.

Within struct ListOfLists, a C union is used to manage the differences be-
tween DOS versions. Unions help represent the changes that each version of DOS
brought to the List of Lists. Each component of a C union is allocated storage
starting at the beginning of the union, and the size of a union is the amount of
storage necessary to represent its largest component. In other words, as in a vari-
ant record in Pascal, the components are overlaid. In the union vers within struct
ListOfLists, the same block of memory can be viewed as a struct dos2, a struct
dos30, or a struct dos31.

The line that reads #pragma pack(1) is essential. By default, C compilers for
the PC align structures on word (two-byte) boundaries. For our C structure to
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correspond exactly with the layout of the DOS internal variable table, we need to
pack the structure on byte boundaries. Otherwise, an unsigned char followed by
an unsigned short would occupy four bytes, not three, and our structure would
not reflect DOS'’s internal variable table.

Note that we create a far pointer to a struct ListOfLists, not a struct ListOf-
Lists. The memory for the structure already exists inside DOS.

As noted earlier, rather than using ES:BX as a pointer to the List of Lists, we
use ES:BX-12. The appendix entry on INT 21h Function 52h shows that the List of
Lists actually begins at offset -12 (decimal) from the address returned in ES:BX.
This wasn’t important when we were using numeric offsets from the value Func-
tion 52h returns in ES:BX, but now that we’re using a structure, we have to make
sure we're really pointing at the beginning of the List of Lists.

This example demonstrates a fundamental problem with using data struc-
tures when working with undocumented DOS: structures are inflexible. The C
compiler, seeing a reference such as doslist->vers.dos31.lastdrive, simply turns this
into an offset into doslist. But these offsets are computed at compile time, not
when the program is running, so they can’t respond to run-time conditions such
as different versions of an operating system.

Some of the simpler information-hiding features of C++ could be used to cre-
ate a ListOfLists structure that responded to the DOS version number. When
working with undocumented DOS data structures, programmers often wish they
weren’t so unruly, and one benefit of C++ is its ability to implement such "wish-
ful thinking" by creating classes that manage and hide the complexity of underly-
ing structures.

Most of us are working in C, however, not C++. Therefore, when using only
one or two fields from an undocumented DOS data structure, and when place-
ment of the fields within the structure differs from one DOS version to the next, it
is best not to use data structures, but to compute offsets instead. Structures may
be self-documenting, but they are also static. Remember the convoluted expres-
sion used earlier to extract the lastdrive field from the appropriate component of
the union vers in struct ListOfLists? Note how much simpler it is when you use
offsets:

if (_osmajor == && _osminor == 0)
lastdrv_ofs = 0x1B;
else if (_osmajor == 2)

lastdrv_ofs = 0x10;
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else
lastdrv_ofs = 0x21;
lastdrv doslistLlastdrv_ofsl;

or:

lastdrv_ofs = (_osmajor ==
(_osmajor == 2) ?
/* otherwise */

Lastdrv doslistClastdrv_ofs];

or the even more compact C expression, which also uses the C ?: ternary condi-

3 && _osminor == 0) ? 0Ox1B

0x10
0x21

Na ss s

tional operator in the next version of this utility:

/* LASTDRV6.C */

#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

#ifdef __TURBOC__
##define ASM asm

#elif defined(_MSC_VER) && (_MSC_VER >= 600)

#define ASM _asm

#else

#error Requires inline assembler
#endif

unsigned _dos_Llastdrive(void)
{
char far *doslist;

if (_osmajor < 2)
return 0;

ASM
ASM
ASM
ASM

mov ah, 52h

int 21h

mov doslist+2, es
mov doslist, bx

return doslistCL(_osmajor
(_osmajor
/* otherwi

S

e

main()

3 && _osminor == 0) ? Ox1B
2) ? 0x10
*/ 0x211

Na s as
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unsigned lastdrive = _dos_Llastdrive();
if (lastdrive == OxFF)

return 0;
fputs("LASTDRIVE=", stdout);
putchar('A' - 1 + lastdrive);
putchar('\n');
return lastdrive;

The other item of interest in LASTDRV6.C is the use of in-line assembly
within the function _dos_lastdrive(). In-line assembly language often seems like
an invitation to produce extremely in-line code: C programmers encountering in-
line assembly language for the first time seem to forget all about subroutines. Es-
pecially when working with the combination of undocumented DOS and in-line
assembler, you should remember to use subroutines. But also remember our ear-
lier warning to preserve the DI, SI, DS, SS, SP registers! The in-line assembler in
_dos_lastdrive() only changes AX, BX, and ES, so we're okay here. The name was
chosen to conform to the Microsoft C naming convention (_dos_getdrive(),
_dos_setdrive(), etc.).

Undocumented DOS Calls From Turbo Pascal

Turbo Pascal programs that make undocumented DOS calls are similar to those
that make documented calls, except that, as we saw with assembly language and
C, such programs need to be especially aware of the version of MS-DOS under
which they are running. The following program, LASTDRV2.PAS, uses the func-
tion DosVersion(), added in Turbo Pascal 5.0:

{ LASTDRV2.PAS }

program LastDrv;
uses dos;

var
r : registers;
Llastdrv_ofs : Word;
Lastdrive : Word;
vers : Word;

begin
{ determine offset of LASTDRIVE within DOS List of Lists J}
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lastdrv_ofs := $21;
vers := DosVersion;
case Lo(vers) of

0 : Halt(0)>; { DOS 1 }

2 : lastdrv_ofs := $10;

3 : if HiC(vers) = 0 then lastdrv_ofs := $1B;
end;

{ Get pointer to DOS List of Lists }
with r do begin

ah := $52;

es := 0; bx := 0;

MsDos(r);’

if (es = 0) and (bx = 0) then

Halt(0);

lastdrive := Mem[es:bx+lastdrv_ofs];
end;
if Llastdrive = $FF then

Halt(0);

{ Print LASTDRIVE letter; return LASTDRIVE value }
Writeln('LASTDRIVE="', Chr(Ord('A') - 1 + Llastdrive));
Halt(lastdrive);

end.

If you are working with a version of Turbo Pascal earlier than 5.0 and don’t
have the DosVersion() function, it is easy to write your own:

function DosVersion : Word;
var
r : registers;
begin
Wwith r do begin
ax := $3000;
MsDos(r);
DosVersion := ax;
end;
end;

Note that LASTDRV2.PAS uses the predefined Turbo Pascal array Mem[] in
order to peek at the DOS List of Lists. Mem[], MemWT[], and MemL[] map onto
the first megabyte of physical memory in the machine and are addressed with a
segment:offset index, such as Mem[seg:ofs].
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Rather than peek at a raw physical memory address with Mem[], we could
use a data structure. Just as structures and unions can be used when making un-
documented DOS calls from C, so variant records can be used from Turbo Pascal,
as shown in LASTDRV3.PAS:

{ LASTDRV3.PAS }

program LastDrv;
uses dos;

type
Dos20 = record
numdrives : Byte;
maxbytes : Word;
first_diskbuff : Longint;
nul : array [1..181 of Byte;
end;

Dos30 = record
numblkdev : Byte;
maxbytes : Word;
first_diskbuff : Longint;
currdir : Longint;
lastdrive : Byte;
stringarea : Longint;
size_stringarea : Word;
fcbtab : Longint;
fcb_y : Word;
nul : array [1..18]1 of Byte;
end;

Dos31 = record { DOS 3.1 and higher }
maxbytes : Word;
diskbuff : Longint;
currdir : Longint;
fcb : Longint;
numprotfcb : Word;
numblkdev : Byte;
lastdrive : Byte;
nul : array [1..18]1 of Byte;
numjoin : Word;
end;

ListOfLists = record
shareretrycount : Word;
shareretrydelay : Word;
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currdiskbuf :
unreadcon : Word;
mcb : Word;
dpb : Longint;
filetable :
clock : Longint;
con : Longint;
case Word of

20 : (dos20 :
30 : (dos30 :
31 : (dos31 :
end;

var
Lastdrive : Word;
function GetLastDrive :
var
doslist :
ro:
vers
begin

AListOfLists;
registers;
: Word;

{ Get pointer to DOS List

with r do begin

ah := $52;
es := 0; bx := 0;
MsDos(r);

if (es = 0) and (bx
GetLastDrive :=
Exit;
end;
doslist :=
end;

Longint;

Longint;

Dos20);
Dos30);
Dos31);

Word;

of Lists }

0) then begin

-
4

Ptr(es, bx - 12);

{ LASTDRIVE offset depends on DOS version }
GetLastDrive := doslist”*.dos31.lastdrive;

vers := DosVersion;
case Lo(vers) of

0 : GetLastDrive := 0; { DOS 1 }
2 : GetLastDrive := doslist”.dos20.numdrives;
3 : if HiCvers) = 0 then
GetLastDrive := doslist”.dos30.lastdrive;
end;
end;
begin
lastdrive := GetLastDrive;
if lastdrive = 0 then
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Halt(O);
Writeln('LASTDRIVE=", Chr(Ord('A') - 1 + lastdrive));
Halt(lastdrive);
end.

LASTDRV3.PAS has nice self-documenting structures but doesn’t adjust itself
to the DOS version number as well as LASTDRV2.PAS, which simply used nu-
meric offsets. This is the same tradeoff we saw when using the C programming

language.

Undocumented DOS Calls From BASIC

The first BASIC version of the LASTDRV utility, which used only documented
DOS calls, required a DOSEXIT() subroutine in order to return an exit code to
MS-DOS. The second BASIC version of LASTDRV, which uses the undocu-
mented DOS List of Lists, also needs a DOSVERSION() function so that it can de-
termine the offset of LASTDRIVE within the DOS List of Lists:

REM LASTDRV2.BAS
REM SINCLUDE: 'QB.BI'

DEF FNHI (x)
DEF FNLO (x)

x \ &H100
x AND &HFF

FUNCTION DOSVERSION
DIM Regs AS RegType
Regs.ax = &H3000
CALL INTERRUPT(&H21, Regs, Regs)
DOSVERSION = Regs.ax
END FUNCTION

SUB DOSEXIT(errorlevel)
CLOSE
DIM Regs AS RegType
Regs.ax = &H4C00 + errorlevel
CALL INTERRUPT(&H21, Regs, Regs)
END SUB

REM based on DOS version number, find offset of LASTDRIVE
Lastdrvofs = &H21

vers = DOSVERSION

IF FNLO(vers) < 3 THEN DOSEXIT(O0)

IF (FNLOCvers) = 3) AND (FNHI(vers) = 0) THEN Llastdrvofs = &H1B
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REM get address of DOS List of Lists
DIM Regs AS RegTypeX

Regs.ax = &H5200
Regs.es = 0
Regs.bx = 0

REM to use current value of DS, set to -1

Regs.ds = -1

CALL INTERRUPTX(&H21, Regs, Regs)

IF (Regs.es = 0) AND (Regs.bx = 0) THEN DOSEXIT(O0)

REM peek at LASTDRIVE field within DOS List Of Lists
DEF SEG = Regs.es

lastdrv = PEEK(Regs.bx + lastdrvofs)

IF Llastdrv = &HFF THEN DOSEXIT(0)

REM print LASTDRIVE Lletter, return LASTDRIVE number
PRINT "LASTDRIVE="; CHR$(ASC("A") - 1 + lastdrv)
CALL DOSEXIT(Lastdrv)

END

Once INT 21h Function 52h returns the address of the List of Lists in the
ES:BX register pair, DEF SEG and PEEK() are used to read the LASTDRIVE field.
Instructions for compiling this code into a stand-alone executable can be found in
the earlier section on "DOS calls from BASIC."

When Not to Use Undocumented Features

You might think that the last few sections descended into the very depths of DOS
simply to bring back a piece of information that was readily available all the
while using DOS’s well-documented function interface. This could be compared
to an American who learns Japanese and then uses his newly acquired skill only
to watch American movies dubbed into Japanese.

This provides us with a fine example of when not to use undocumented DOS.
If there is a way to perform an operation using the documented DOS
programmer’s interface, use it. In fact, go out of your way to use the documented
interfaces. If there is a seemingly convenient way to accomplish some task using
the undocumented calls described in this book, and a less convenient way in-
volving only documented calls, use the documented calls. (You'll see a good ex-
ample of this in chapter 3 where we discuss the temptation to use INT 29h.)

The "Mount Everest" approach to programming—the desire to use a function,
simply because it is there—is wonderful when you are experimenting with a new
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operating system, but it has no place in commercial software. One of our worries
in producing this book was that it might encourage the over-use of undocu-
mented DOS. Please don’t use undocumented DOS when documented DOS will do.

Having said all this, though, let’s remember that lots of successful commer-
cial software on the PC uses undocumented DOS features. Certain things can’t be
done using only the documented interfaces. This is somewhat analogous to the
situation with DOS calls, BIOS calls, and direct hardware access: clearly direct
hardware access should be used only as a last resort, but almost all successful PC
software does some direct hardware access!

Verifying Undocumented DOS

Actually, there is one good reason for using undocumented DOS when there is
equivalent documented functionality. It would be nice to have a way to perform
a baseline validation of the usability of undocumented DOS in any given envi-
ronment. Obviously, the best way to validate a value computed using undocu-
mented DOS is to compare it to a known value with which it should be
equivalent.

It seems we can’t double check the results of undocumented DOS against
documented DOS because, if we could, we would be using documented DOS in
the first place! To check that doslist->lastdrive really is equal to setdisk(getdisk()),
for example, seems pointless. But what if you were interested in some value
other than LASTDRIVE from the DOS List of Lists? Then, successfully comparing
doslist->lastdrive against a known value might give your program enough confi-
dence to proceed using undocumented DOS, whereas a mismatch might indicate
that something is very wrong.

Therefore, you might want to incorporate something similar to the following
function in your programs:

typedef enum { FALSE, TRUE } BOOL;

/* one possible way of veryifying undocumented DOS */
BOOL undoc_dos_okay(void)
{

char far *doslist;

/* get offset for LASTDRIVE within DOS List of Lists */
unsigned lastdrv_ofs = 0x21;
if (_osmajor==2) lastdrv_ofs = 0x10;
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else if ((_osmajor==3) && (_osmajor==0)) Léstdrv_ofs = 0Ox1b;

/* Get DOS Lists of Lists */
ASM mov ah, 52h

ASM xor bx, bx

ASM mov es, bx

ASM int 21h

ASM mov doslist, bx

ASM mov doslist+2, es

if (! doslist)
return FALSE;

/* use documented DOS to verify results */
#ifdef __TURBOC___

return (setdisk(getdisk()) == doslistLlastdrv_ofsl);
flelse

{
unsigned drive;
unsigned lastdrive;
_dos_getdrive(&drive);
_dos_setdrive(drive, &lastdrive);
return (lastdrive == doslistLClastdrv_ofsl);
}
#endif

}

If undoc_dos_okay() returns TRUE in, say, DOS 7.8, it is no guarantee that all
code that employs undocumented DOS will work. However, if undoc_dos_
okay() returns FALSE, there’s a good chance that your code will need to be fixed
before it will run properly. For example, undoc_dos_okay() fails in the OS/2 1.10
DOS box, but it succeeds in the vastly improved multiple DOS boxes of OS/2 2.0.

An Important Special Case: Novell NetWare

We noted earlier that Quarterdeck’s LASTDRIV.COM utility uses the undocu-
mented rather than the documented technique for retrieving the value of
LASTDRIVE. One reason for this seemingly outrageous flouting of the normal
rules of good behavior is that LASTDRIV.COM can also be used to change the
value of LASTDRIVE, dynamically adding or subtracting drives from DOS'’s in-
ternal table. That is precisely the kind of operation which requires undocu-
mented DOS.
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But there’s an additional reason why Quarterdeck’s LASTDRIV.COM uses
undocumented DOS for getting LASTDRIVE: the documented method is actually
less reliable than the undocumented method! On any of the many PCs that are
Novell NetWare workstations, INT 21h Function OEh doesn’t return the value of
LASTDRIVE; it returns the number 32, corresponding to the number of possible
workstation drive mappings (drive letters A through Z, plus temporary drives
with the silly names [, \, 1, A, _, and ‘). Thus, under NetWare, the versions of
LASTDRV which use undocumented DOS display correct values for LAST-
DRIVE, whereas the supposedly "well-behaved" version of LASTDRV that uses
only documented DOS always prints out the following display:

C>lastdrv
LASTDRIVE="

Likewise, under NetWare our carefully written undoc_dos_okay() function
returns FALSE! This happens not because undocumented DOS is "broken" but
because documented Function OEh is returning a strange value.

It is important to look into this. Novell is by far the largest supplier of PC
local area network (LAN) software; its share of the PC LAN software market is
twice that of even IBM. Therefore, if the version of LASTDRV that uses docu-
mented DOS doesn’t work under Novell, it essentially doesn’t work!

In any case, this gives us an excuse to look into what it means for a program
to "hook DOS." How does the NetWare shell running on a workstation change
DOS so that Function OE returns 32 instead of the value of LASTDRIVE? Easy: it
"hooks DOS." That is, the NetWare shell inspects every INT 21h function request
before DOS itself sees it, and the shell decides whether to pass that function
request along to DOS or to pass the request over the network to another machine,
the server (which is not even a DOS machine!). Finally, even if the shell does
decide to pass the INT 21h function request along to DOS, it gets to modify any
registers before returning control to the application (such as LASTDRV) that
called INT 21h in the first place.

In order to hook DOS, all a program has to do is get the address of the cur-
rent interrupt handler for INT 21h and then install its own handler for INT 21h.
There’s nothing difficult or undocumented about this capability: it’s built right
into DOS itself and is one of the key facilities that makes DOS so extensible.

In fact, it's so simple that we can simulate NetWare’s handling of Function
OEh, and provide a realistic example of hooking DOS, with just a few lines of
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code. Generally programs that hook DOS (like Novell's ANET3) are memory-res-
ident. However, building a TSR would complicate this discussion unnecessarily,
so the following program, FUNCOE32, instead acts as a "shell" around another
program. For example:

C:\UNDOC>funcOe32 lastdrv.exe
LASTDRIVE="

10 DOS calls
1 changed

Note, however, that although the documented version of LASTDRYV is fooled
by FUNCOE32, the version that uses undocumented DOS isn’t:

C:\UNDOC>func0e32 Llastdrv.exe
LASTDRIVE=E

10 DOS calls
1 changed

FUNCOE32 consists of two functions: The function dos() is our INT 21h han-
dler. Each time INT 21h is invoked, we want dos() to get control. The function
changes the value Function OEh returns in AL to 32, and also keeps count of how
many INT 21h calls it has seen and how many it has changed. The function
main() installs dos() as the INT 21h handler, spawns the program named on the
command line, and then restores the original INT 21h handler (which may be
DOS itself, but which, on most PCs, will be some other program that had earlier
hooked DOS, such as NetWare, CED, the Epsilon text editor, etc.):

/*
FUNCOE32.C —-— take over INT 21h Function OEh; return 32 in AL
*/

#include <stdlib.h>
#include <stdio.h>
#include <process.h>
#include <dos.h>
#pragma pack(1)

typedef struct {
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#ifdef __TURBOC__

unsigned bp,di,si,ds,es, dx,cx,bx,ax;
#else

unsigned es,ds,di,si, bp,sp,bx,dx,cx,ax; /* same as PUSHA */
#endif

unsigned 1ip,cs,flags;

} REG_PARAMS;

void interrupt far dos(REG_PARAMS r);

void (interrupt far *old)();
unsigned long calls = 0;
unsigned long changed = 0;

void fail(char *s) { puts(s); exit(1); }

main(int argc, char *argv[1)
{
if C(argc < 2)
fail("usage: funcOe32 Lprogram namel <args...>");

/* hook INT 21 */
old = _dos_getvect(0x21);
_dos_setvect(0x21, dos);

/* run command */
spawnvp(P_WAIT, argv[C11, &argv[11);

/* unhook INT 21h */
_dos_setvect(0x21, old);
printf("\n%lu DOS calls\n", calls);
printf("%Llu changed\n", changed);

}

void interrupt far dos(REG_PARAMS r)
{
calls++;
if ((r.ax >> 8) == 0x0E)
{
(*old)();
r.ax = Ox0EQ0 + 32;
changed++;
}
else
_chain_intr(old);
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This code is important, not only to illustrate how it is perfectly legal (and
completely documented!) for a company like Novell to change the return value
from a DOS function but also as an example of how to hook a DOS interrupt like
INT 21h. Some undocumented DOS functions are not for you to call, but for you
to implement so that DOS can call them ("don’t call us, we'll call you"). Such func-
tions are indicated in Appendix A with the phrase "Called with" rather than "Call
with." For example, the DOS network redirector (which, incidentally, Novell does
not use), is one such set of "call back" functions (actually, subfunctions to INT 21h
Function 11h).

Novell’s altering of Function OEh was probably a mistake: in fact, Novell pro-
vides an alternate function, INT 21h Function DBh, which does return the correct
value of LASTDRIVE. This is not part of undocumented DOS, so it does not ap-
pear in Appendix A; however, it is documented in the "Interrupt List" on the ac-
companying disk.

To be compatible with NetWare, we need to change all of our validity check-
ing. Instead of asserting that undocumented DOS is unusable simply because
doslist->lastdrive != setdisk(getdisk()), we now perform a slightly more compli-
cated test, as shown in the following improved version of undoc_dos_okay():

BOOL netware(void);
unsigned lastdrv_netware(void);

BOOL undoc_dos_okay(void)
{
char far *doslist;
unsigned lastdrv_doc;
unsigned drive;

/* get offset for LASTDRIVE within DOS List of Lists */
unsigned lastdrv_ofs = 0x21;

if (_osmajor==2) lastdrv_ofs = 0x10;

else if ((_osmajor==3) && (_osmajor==0)) Llastdrv_ofs = Ox1b;

/* Get DOS Lists of Lists */
ASM mov ah, 52h

ASM xor bx, bx

ASM mov es, bx

ASM int 21h

ASM mov doslist, bx

ASM mov doslist+2, es
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if (! doslist)
return FALSE;

/* use documented DOS to verify results */

#ifdef __TURBOC__

lastdrv_doc = setdisk(getdisk());

#else

_dos_getdrive(&drive);
_dos_setdrive(drive, &lastdrv_doc);

#endif

/*

*/

if (doslistClastdrv_ofsl == lastdrv_doc)
‘return TRUE;
else if (netware())
{
if (lastdrv_doc != 32)
puts("NetWare Function OEh Looks strange");
return (doslistLlastdrv_ofs] == lastdrv_netware());

return FALSE;

Novell Return Shell Version function (INT 21h AH=EAh AL=01h)
see "Interrupt List” on accompanying disk; also see Barry
Nance, Networking Programming in C, pp. 117, 341-2. Could also
test for presence of Novell IPX with INT 2Fh AX=7A00h.

BOOL netware(void)

{

}
/%

*/

char bufL401];

char far *fp = buf;
ASM push di

ASM mov ax, OEAO1h
ASM mov bx, O

ASM les di, fp

ASM int 21h

ASM xor al, al

ASM mov ax, bx

/* if BX still 0, then NetWare not present; return in AX */
ASM pop di

Novell Get Number of Local Drives function C(INT 21h AH=DBh)
see "Interrupt List" on accompanying disk

unsigned lastdrv_netware(void)
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{
ASM mov ah, 0ODBh
ASM 1int 21h
/* AL now holds number of "local drives" (i.e., LASTDRIVE) */
ASM xor ah, ah
/* unsigned returned in AX */
}

Undocumented DOS Calls from Protected Mode

It is testimony to the great diversity of MS-DOS that we are still not finished with
our catalog of the basic ways to make undocumented DOS calls.

We have often referred to changes in the internal structure of DOS from one
version to the next. These versions of DOS must be taken to include, not only
DOS 3.1, 4.0, and so on, but also the most important extensions of DOS: Microsoft
Windows 3.0, the OS/2 compatibility box, the DOS Protected-Mode Interface
(DPMI), and protected-mode DOS extenders such as Phar Lap’s 3861 DOS-
Extender (incorporated in such products as AutoCAD/386, IBM Interleaf Pub-
lisher, and Mathematica) and Rational Systems’s DOS/16M (incorporated in
Lotus 1-2-3 Release 3, for example).

A thorough discussion of the world of protected-mode DOS may be found in
the book Extending DOS, edited by Ray Duncan (Reading, MA: Addison-Wesley,
1990). Here, we need to look quickly at how running in protected mode alters the
way undocumented DOS calls are made.

DOS extenders break the DOS 640KB barrier by running your application in
the protected mode of the 80286, 80386, and 80486 processors. Your application
continues to use the services of MS-DOS, which is running in real mode in the
lower 640KB. DOS extenders make access to DOS as transparent as possible. For
example, a protected-mode application allocates memory using INT 21h Func-
tion 48h, just as do real-mode DOS applications. The difference is that, under a
DOS extender, INT 21h Function 48h can allocate multiple megabytes of
extended memory.
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Because it is not limited to one megabyte of immediately addressable mem-
ory, protected mode uses a fundamentally different addressing scheme than real
mode. DOS extenders transparently handle almost all of these differences for
you: your application makes normal DOS calls, and the DOS extender takes care
of the rest.

Notice that we just said "normal DOS calls.” What happens when you take an
application that makes undocumented DOS calls and port it to a protected-mode
DOS extender? According to the Phar Lap manual, "386 | DOS-Extender extends
all of the documented MS-DOS system calls, and most of the BIOS system calls,
so that they can be made directly from protected mode. However, some pro-
grams also need access to undocumented MS-DOS functions . . . If the system call
uses segment reglsters, then additional processing is requlred by the protected
mode program.” What does this additional processing look like?

All DOS extenders provide a small set of services for making real-mode soft-
ware interrupts from protected mode. Usually you don’t need to use this service,
because the DOS extender already provides the software interrupt in protected
mode. Undocumented DOS, however, is a perfect example of a case in which you
need to use these special services.

In the remainder of this section, we will look at two final examples of the
LASTDRYV utility. Naturally, tiny programs like this are not likely ever to use a
DOS extender. But large programs that are likely candidates for using protected
mode may well contain undocumented DOS calls, so it is important to know how
to get these working in this new and important environment.

386/DOS-Extender

Our first example uses Phar Lap 386 | DOS-Extender, which runs 32-bit applica-
tions under MS-DOS on 80386 and 80486 processors. Watcom C/386, one of sev-
eral 32-bit C compilers now available for MS-DOS, is used as well. Note that
386 | DOS-Extender requires DOS 3.0 or greater, which simplifies our DOS ver-
sion checking:

/* LD386.C —- undocumented DOS call from 386|DO0S-Extender */

#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

#ifndef __WATCOMC___
#lerror This program requires Watcom C/386
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#endif

typedef struct {

unsigned short intno, ds, es, fs, gs;
unsigned eax, edx;
} RMODE_PARAM_BLOCK;

main()

{

RMODE_PARAM_BLOCK rpb;
union REGS r;

struct SREGS s;

char far *doslist;
unsigned lastdrv;

/* load real-mode param block for INT 21h AH=52h */
memset(&rpb, 0, sizeof(RMODE_PARAM_BLOCK)); /* zero it out */
rpb.intno = 0x21;

rpb.eax = 0x5200;

/* call 386|D0S-Extender service to "Issue Real Mode Interrupt,
Registers Specified" C(INT 21h AX=2511h). */

r.x.eax = 0x2511;

r.x.edx = &rpb;

segread(&s);

int386x(0x21, &r, &r, &s);

/* use 386|D0S-Extender selector 34h (writeable data segment that
maps the entire first megabyte of memory used by MS-DOS) */
doslist = MK_FP(0Ox34, (rpb.es << 4) + r.x.ebx);

/* we now have protected-mode ptr to DOS List Of Lists —-
use normally */

lastdrv = doslist[_osmajor==3 && _osminor==0 ? Ox1B : 0x21]1;

fputs("LASTDRIVE=", stdout);

putchar('A' = 1 + lastdrv);

putchar('\n");

return lastdrv;

This example can be compiled, linked, and run with the following DOS com-

mand lines (WCL386 is the Watcom C driver program, and RUN386 is the Phar
Lap DOS extender):

wcl386 Lastdrv
run386 Llastdrv
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In this example, we call the service to issue a real-mode interrupt, specifying
our INT 21h Function 52h call inside the "real-mode parameter block." Thus, we
invoke Phar Lap Function 2511h, and ask it to invoke DOS Function 52h in real
mode. This sort of indirect call is only necessary for those weird calls (like undoc-
umented DOS) not transparently supported in protected mode. This indirect
method of making the undocumented DOS call is typical of all DOS extenders.
When we return from the real-mode interrupt, the ES:EBX register pair contains
an address such as 028E:00000026 (offsets are four bytes wide in true 80386 code).
This is a real-mode address, and has no real meaning in protected mode. In order
to use this address, we need to turn it into a protected-mode pointer. In
3861 DOS-Extender selector 34h is a writeable data segment which maps the en-
tire first megabyte of memory (the entire DOS machine fits in one small portion
of one 32-bit protected-mode selector!). We form a six-byte protected-mode far
pointer using the Watcom C MK_FP() macro, and then use it as we would nor-
mally.

DPMI

Our second example doesn’t actually use a DOS extender per se, but the DOS
Protected-Mode Interface (DPMI), a specification drawn up by a committee com-
prised of Microsoft, Intel, IBM, Lotus, Phar Lap, Rational Systems, Borland,
Quarterdeck, and other companies. DPMI describes a set of services which can be
called from protected mode using INT 31h. Providers of these services, such as
Microsoft Windows 3.0, are known as DPMI servers, whereas users of these ser-
vices, such as protected-mode DOS extenders, are DPMI clients. A DPMI server
can be built in many different environments, including OS/2 2.0 or even UNIX,
offering the possibility (when all this is actually implemented) of running DOS
extended applications in many different (even non-DOS) environments. Maybe
one day INT 21h and ROM BIOS calls will be available on non-Intel architectures!

Unlike the expanded memory (EMS) or extended memory (XMS) specifica-
tions, DPMI is not intended to be used in application programs. DPMI is really
meant for use by a DOS extender which, in turn, provides services to application
programs. It is nonetheless instructive to examine a DPMI version of LASTDRV.
Many Windows 3.0 programmers, who need to access real-mode drivers and
TSRs from Windows enhanced mode, have had no choice but to learn about
DPML
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The following sample program uses Microsoft C 6.0. The program starts up
in real mode, and makes an INT 2Fh AX=1687h call to check for the presence of
DPMI (note that INT 2Fh AH=16h and AH=17h generally is used as a Microsoft
Windows interface for non-Windows applications; for more information, see the
on-disk "Interrupt List"). If DPMI is present (for example, if running in a DOS
box in Windows 3.0 enhanced mode), the address of the DPMI "protected-mode
switch entry point" is returned in ES:DL This is a function which switches the
program into protected mode. Because this program starts off in real mode and
then switches into protected mode, all the segment registers change in mid-
stream! If we want to use the C standard library, then, the program must be com-
piled with small model:

/*
LDDPMI.C -- undocumented DOS call from DPMI

sample output:
in protected mode
Real mode DOS List Of Lists
Protected DOS List Of Lists
LASTDRIVE=E

028E:0026
00AD:0026

cl -AS Llddpmi.c
*/

#ifndef M_I86SM
#error Requires Microsoft C small model
flendif

#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <dos.h>

#define ABSADDR(seg, ofs) \
(((Cunsigned long) seg) << 4) + ((ofs) & OxFFFF))

#pragma pack(1)

typedef struct {
unsigned long edi, esi, ebp, reserved, ebx, edx, ecx, eax;
unsigned flags, es, ds, fs, gs, ip, ¢s, sp, ss;
} RMODE_CALL;
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typedef struct {
unsigned accessed
unsigned read_write
unsigned conf_exp
unsigned code
unsigned xsystem
unsigned dpl
unsigned present

EEN N R G ST QR G
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} ACCESS;

typedef struct {
unsigned Limit;
unsigned addr_Llo;
unsigned char addr_hi;
ACCESS access;
unsigned reserved;

} DESCRIPTOR;
typedef enum { FALSE, TRUE )} BOOL;

BOOL dpmi_rmode_intr(unsigned intno, unsigned flags,
unsigned copywords, RMODE_CALL far *rmode_call);

void dos_exit(unsigned err)

{
_asm mov al, err
_asm mov ah, 0Qé4ch
_asm int 21h

}

void pmode_putchar(int c) //call real-mode INT21 AH=2 from pmode
{
static RMODE_CALL r;
static RMODE_CALL *pr = (void *) 0;
if (! pr)
{ //just do one time
pr = &r;
memset(pr, 0, sizeof(RMODE_CALL));
r.eax = 0x0200;
}
r.edx = ¢;
dpmi_rmode_intr(0x21, 0, 0, pr);
}

void pmode_puts(char *s)
{
while (*s)
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pmode_putchar(*s);
s++;
}
pmode_putchar(0x0d);
pmode_putchar(0x0a);

}
void cdecl pmode_printf(const char *fmt, ...)
{
char buf[1281, *s=buf;
va_Llist marker; //use ANSI C stdarg facility
va_start(marker, fmt);
vsprintf(buf, fmt, marker);
va_end(marker);
while (*s)
pmode_putchar(*s++);
}
void fail(char *s) { puts(s); exit(1); }

void pmode_fail(char *s) { pmode_puts(s); dos_exit(1); }

/* Determines if DPMI is present and, if so, switches into

protected mode */
BOOL dpmi_init(void)

{
void (far *dpmi)();
unsigned hostdata_seg, hostdata_para, dpmi_flags;
_asm {
mov ax, 1687h ; test for DPMI presence
int 2Fh
and ax, ax
jnz nodpmi ; if (AX == 0) DPMI is present
mov dpmi_flags, bx
mov hostdata_para, si ; paras for DPMI host private data
mov dpmi, di
mov dpmi+2, es ; DPMI protected-mode switch entry point
jmp short gotdpmi
}
nodpmi :
return FALSE;
gotdpmi:
if (_dos_allocmem(hostdata_para, &hostdata_seg) != 0)

pmode_fail("can't allocate memory");

/* enter protected mode */
_asm {
mov ax, hostdata_seg
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mov es, ax
mov ax, dpmi_flags
}

(*dpmi) O);

return TRUE;
}

/* Performs a real-mode interrupt from protected mode */
BOOL dpmi_rmode_intr(unsigned intno, unsigned flags,
unsigned copywords, RMODE_CALL far *rmode_call)
{
if (flags) intno |= 0x100;
_asm {
push di
push bx
push cx

simulate real-mode interrupt

interrupt number, flags

words to copy from pmode to rmode stack
ES:DI = address of rmode call struct
call DPMI

mov ax, 0300h
mov bx, intno
mov c¢cx, copywords;
Les di, rmode_call
int 31h
jc error
mov ax, 1 ; return TRUE
jmp short done
error: mov ax, 0 ; return FALSE
done: pop cx
pop bx
pop di
}

Ne Ne N2 N N

}

/* Allocates a single protected-mode LDT selector */
unsigned dpmi_sel(void)

{
_asm {
mov ax, O ; Allocate LDT Descriptors
mov cx, 1 ; allocate just one
int 31h ; call DPMI
jc err
jmp short done ; AX holds new LDT selector
err: mov ax, O ; failed
done: }
}

BOOL dpmi_set_descriptor(unsigned pmodesel, DESCRIPTOR far *d)
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_asm {
push di
push bx
mov ax, 000ch
mov bx, pmodesel

Set Descriptor
protected mode selector

N

r
les di, d ; descriptor
int 31h ; call DPMI
jc error
mov ax, 1 ; return TRUE

jmp short done
error: mov ax, 0
done: pop di

return FALSE

N

pop bx
}
}
BOOL dpmi_sel_free(unsigned pmodesel)
{
_asm {
mov ax, 0001h ; Free LDT Descriptor
mov bx, pmodesel ; selector to free
int 31h ; call DPMI
jc error
mov ax, 1 ; return TRUE
jmp short done
error: mov ax, 0 ; return FALSE
done: }
}

main(int argc, char *argv[1)
{
DESCRIPTOR d;
RMODE_CALL r;
void far *fp;
char far *doslist = (char far *) 0;
unsigned long addr;
unsigned pmodesel;
unsigned offset, lastdrv_ofs, lastdrv;

/*
Determine if DPMI present and, if so, switch
to protected mode

*/

if (dpmi_init())
pmode_puts("now in protected mode");

else
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fail("DPMI not present");

/*
Call INT 21h AH=52h (Get DOS List Of Lists)
*/
memset(&r, 0, sizeof(RMODE_CALL));
r.eax = 0x5200;
if (! dpmi_rmode_intr(0x21, 0, 0, &r))
pmode_fail("DPMI rmode intr failed");
FP_SEG(doslist) = r.es;
FP_OFF(doslist) = r.ebx;
pmode_printf("Real mode DOS List Of Lists = %Fp\r\n", doslist);

/* doslist now holds a real-mode address: in order to address it
in protected mode, allocate an LDT descriptor and set its
contents; when done, deallocate the LDT descriptor

*/

if (! (pmodesel = dpmi_sel()))

pmode_fail("DPMI can't alloc pmode selector”);

d.limit = OxFFFF;

addr = ABSADDR(r.es, 0);

d.addr_Lo = addr & OxFFFF;

d.addr_hi = addr >> 16;

d.access.accessed = 0; /* never been used */
d.access.read_write = 1; /* read-write */
d.access.conf_exp = 0; /* not a stack */
d.access.code = 0; /* data */

d.access.xsystem = 1; /* not system descriptor */

fp = (void far *) main;

d.access.dpl = FP_SEG(fp) & 3; /* protection level */

d.access.present = 1; /* it's present in memory */

d.reserved = 0;

if (! dpmi_set_descriptor(pmodesel, &d))
pmode_fail("DPMI can't set descriptor");

FP_SEG(doslist) pmodesel; /* convert to protected-mode address */
FP_OFF(doslist) = r.ebx;
pmode_printf("Protected mode DOS List Of Lists = %Fp\r\n", doslist);

/* now have protected-mode selector to DOS List of Lists */
/* Get LASTDRIVE number, print LASTDRIVE letter */

lastdrv = doslistl_osmajor==3 &8& _osminor==0 ? Ox1b : 0x211;
pmode_printf("LASTDRIVE=%c\r\n", 'A' - 1 + Llastdrv);

if (! dpmi_sel_free(pmodesel))
pmode_fail("DPMI can't free selector");

/* in protected mode, flush output and quit */
dos_exit(0);
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dpmifail:
pmode_fail("DPMI failure");
}

There is a lot of code here, but the workings of LDDPMI are actually fairly
simple: in order to call INT 21h Function 52h from protected mode, we must do
so indirectly via INT 31h Function 0300h (see the function dpmi_rmode_intr).
What we get back, of course, is the real-mode address is the DOS List of Lists,
which we must convert into a protected-mode address. We therefore allocate a
descriptor from the Local Descriptor Table (LDT; see the function dpmi_sel), and
set its base address. An image of the descriptor is created in mainy; it is placed in
the LDT using INT 31h Function 000Ch (see dpmi_set_descriptor). We now have
a protected-mode pointer to the DOS List of Lists, which we can use in the usual
way. Before exiting, we free up the descriptor (see dpmi_sel_free).

Sheesh! All this mixing of real and protected modes in the same program is
pretty hair-raising, but the next few years of MS-DOS will probably see more and
more of this sort of code.

In addition to the restriction to small-model, another restriction is that, once
you enter protected mode, you can’t debug this thing using a real-mode debug-
ger like CodeView: stepping over the (*dpmi)() call in dpmit_init() hangs the ma-
chine. These restrictions illustrate why, even with the availability of DPMI, you
probably want to use a commercial DOS extender rather than "roll your own.”

Because this program switches in midstream from real to protected mode,
pointers that are going to be used in real mode can’t be initialized on the real-
mode side of the fence. Instead, the program must not assign the value to fpr
until after it has switched into protected mode.

Note that, after switching into protected mode, LDDPMI uses functions such
as pmode_printf() rather than plain old printf(). The reason is that, somewhere in
the depths of the C run-time library, functions such as printf() eventually make
INT 21h calls. But recall that we are now running in protected mode. Most DPMI
servers will in fact provide protected-mode INT 21h services (the Windows 3.x
DOS extender does, for example), but that is a facility provided by the DPMI
server, not by DPMI itself. Therefore, a few routines have been cobbled together
in LDDPMI so we can do output.

With the comparative intricacies of this program, it is a relief that at least the
DOS version checking is greatly simplified: we don’t ever have to worry about a
DPMI server running under DOS 2.x!



Chapter 3

MS-DOS Resource Management:
Memory, Processes, Devices

Jim Kyle

Resource management is the primary task of any operating system, and MS-DOS
is no exception. This chapter concentrates on such facets of resource management
as device drivers, DOS memory allocation, and process management.

Throughout the discussion, sample code fragments and programs are used;
the conclusion brings everything together in a utility that lets you install a device
driver from the DOS command line, without requiring that you edit your CON-
FIG.SYS file or reboot the system.

The earliest operating systems, in the dim prehistory of mainframe days,
managed resources by default: only one process could be loaded into the ma-
chine at a time, and that process had full access to all resources.

Operating systems evolved, though, and it became possible to load several
processes at the same time. Any true operating system must, in fact, contain at
least two processes: the supervisor or system program (often called the kernel), and
the real user program. As soon as there is more than one process it becomes nec-
essary to manage memory and devices so that no process intrudes on another.
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Memory Management

MS-DOS allows programs to allocate, free, and resize memory through three doc-
umented functions (INT 21h, Functions 48h, 49h, and 4Ah), but the actions of the
DOS memory manager itself are not officially documented. This section describes
how memory is organized to make these functions possible.

The memory management scheme used by MS-DOS divides the first mega-
byte of the system’s memory into contiguous blocks, each of which has a Mem-
ory Control Block (MCB) as its first paragraph. Each MCB provides enough
information to get to the next MCB. It is important to note that this chain is not a
linked list but a contiguous block of memory: the size of one block is added onto
its starting address to get to the next block. This structure is referred to in official
documentation (and in Ray Duncan’s better-than-official Advanced MS-DOS Pro-
gramming) as the memory arena, and the MCB that begins each block is referred to
as an arena header.

The initial memory arena structure is built at system boot time, just after the
parsing of CONFIG.SYS directives. This structure omits memory below the DOS
data segment, because all RAM in that area was assigned earlier in the boot-up
procedure and is not subject to reallocation.

Memory Control Blocks

Each block of memory begins with an MCB, which is a single paragraph. That is,
the MCB is 16 bytes long and begins at an address that is an exact multiple of 16.
The memory block itself also is always an exact number of paragraphs in length.
This paragraph alignment makes it possible to refer to a memory block using a
16-bit segment address rather than a full 20-bit address.

When a program requests a block of memory with INT 21h Function 48h,
DOS must find the number of requested paragraphs, plus one more for the MCB.
Assuming that a block of memory is available, DOS sets up its first paragraph as
an MCB and hands the segment address of the second paragraph back to the pro-
gram. Let’s say you've made this call:

mov ah, 48h ; Allocate Memory Block
mov bx, 1 ; one paragraph

int 21h

jc fail

; AX now holds initial segment of allocated block
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Let's say AX now holds the value 1234h. This means that an MCB is located
at 1233h. What does this MCB look like?

The first byte of every MCB except the last one in the chain is 4Ch (the ASCII
code for ‘M’); the last MCB's first byte is instead 5Ah (“Z’). It may be only coinci-
dental that these two letters are the initials of the principal architect of the DOS
memory manager, Mark Zbikowski. In our example, this field could either be ‘M’
or ‘Z’, though ‘M’ is far more likely.

Following this tag byte is a 16-bit value (in Intel low-high format) that identi-
fies the "owner" of the MCB. These 16 bits will be 0000 if the memory block is
available for use. Otherwise, they will contain the ID number of the process to
which the block has been allocated (the "owner" process). This information is
used to locate free blocks (owner is zero) and to release allocated blocks when a
process terminates. This ID number is the Program Segment Prefix (PSP; see
below) of the owner. In our example, this field would hold the PSP of whatever
program called INT 21h Function 48h.

Following the "owner" word is another word giving the size in paragraphs of
the memory block controlled by this MCB. In our example, this field will be set to
1, indicating that the MCB at 1233h controls only the next paragraph at 1234h. In
other words, this size value does not include the paragraph taken by the MCB it-
self; consequently, it’s possible to have a valid MCB that shows a free block with
size equal to zero. This happens when all but one paragraph of a previously free
block is allocated, and it is, in fact, not unusual.

The three bytes following the "size" word are unused in all versions of MS-
DOS to date. In versions 2 and 3, all remaining bytes of the MCB were unused,
but in DOS 4.x the final 8 bytes of the MCB may contain the filename of the own-
ing program. The name is included only in the MCB that controls the memory
used by the program’s PSP; otherwise, the final 8 bytes are ignored.

To find the next MCB in memory (remember, it’s not really a linked list), you
start with the MCB'’s own segment address, add 1 to it to get the segment address
of the RAM it controls, then add to that the size from the word at byte 3 of the
MCB. The result is the segment address of the next MCB. In our example, the
next MCB is at 1235h. If the byte at 1235:0000 is anything other than ‘M’ or ‘Z,
the MCB chain has been corrupted and continued operation is not possible.

The first MCB is always the one that controls DOS’s own data segment. Its
"owner" word is usually 0008h, for reasons that are not fully understood. It corre-
sponds to the memory allocated based on commands given in CONFIG.SYS.
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The final MCB, identified by ‘Z’ as its first byte, will in a normal 640KB sys-
tem generate a "next-MCB" address of 0A000h, although that address should not
be used, because the ‘Z’ code indicates no "next MCB" exists.

In DOS 4.x and higher, the DOS data segment memory block is subdivided
into "subsegments"; each subsegment has its own variant of the standard MCB.
However, the ‘M’-coded MCB for the data segment includes the entire area, so
you don’t need to trace the subsegments when going through the MCB chain.

The DOS 4.x subsegments follow a format similar to, but not identical with,
the MCB layout: the first byte is a letter indicating usage, but the word at byte 1
is not the "owner." Instead, it is the actual segment address of the item controlled
by the block. The word at byte 3 is the size in paragraphs of the controlled item.
Bytes 8 through 15 contain the filename, padded with blanks, of the file from
which a driver was loaded.

Possible codes used in these subsegment control blocks are as follows:

Table 3-1: Codes used in subsegment control blocks.

Code Directive Meaning

D DEVICE= device driver

E device driver appendage

I IFS (Installable File System) driver

F FILES= control block storage area (for FILES>5)

X FCBS= control block storage area, if present

C BUFFERS EMS workspace area (if BUFFERS /X option used)
B BUFFERS= storage area

L LASTDRIVE= drive info table storage area

S STACKS= code and data area

Because these subsegment control blocks appear only in the DOS data seg-
ment and are meaningless elsewhere, they appear to be of limited use. Their pur-
pose appears to be simplification of the MEM command introduced in DOS 4.0,
although most of the information contained in them is duplicated elsewhere in
each of the applicable DOS structures.

Actually, similar abbreviations are found in the buffer used internally by
DOS for parsing CONFIG.SYS: ‘X’ represents FCBS=, for example, and ‘D’ repre-
sents DEVICE=. The abbreviations are not identical, however. For example, the
CONFIG.SYS buffer uses ‘K’ to represent STACKS=, since ‘S’ apparently is
needed for the SHELL= statement. (For more information on the CONFIG.SYS
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buffer, see Michael J. Mefford, "Choose CONFIG.SYS Options at Boot," PC Maga-
zine, 29 November, 1988, pp. 323-344: a fascinating article explaining a brilliant
DOS utility.)

How to Find the Start of the MCB Chain

The key to locating any MCB is in the undocumented DOS List of Lists, whose
address is retrieved with INT 21h Function 52h. Although the List of Lists re-
turned by this function differs significantly from one version of DOS to the next,
the MCB pointer’s location is one of the very few items that is the same in all
DOS versions to date. It's always located two bytes in front of the pointer re-
turned in ES:BX, that is, at ES:[BX-2].

The value located there, however, is actually not a pointer to the first MCB,
but its segment number. To use it as a pointer, you must provide an offset of 0000.

The following assembly language code fragment shows how to force the
MCB pointer into ES:SI so that it may be used to retrieve the key byte, the owner
word, and the size word:

mov ah, 52h ; Get List of Lists

int 21h

mov ax, es:L[bx-21] ; First MCB Segment Address
mov es, ax

xor si, si ; force offset to be zero

or, to be safe:

xor bx, bx

mov es, bx ; set ES:BX to 0:0

mov ah, 52h

int 21h

mov cx, es

or cx, bx ; is ES:BX still 0:0?

jz fail ; then Function 52h not supported
mov ax, es:L[bx-21] ; First MCB Segment Address

mov es, ax

xor si, si ; force offset to be zero

fail:

The next code sequence retrieves the key byte, the owner word, and the size
word, respectively; it assumes that ES:SI is unchanged from the preceding example:
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mov al, es:L[sil ; gets key byte, 'M' or 'Z'
mov bx, es:L[si+1] ; gets owner word or 0000
mov cx, es:[si+3] ; gets size in paragraphs

For most applications, the following code fragment may be more useful; it
can be used in Microsoft C 5.0 and higher, QuickC 2.0 and higher, and Borland
Turbo C 2.0 and higher:

typedef struct {

unsigned char type; /* "M'=in chain; 'Z'=at end */
unsigned owner; /* PSP of owner */
unsigned size; /* in 16-byte paragraphs */

unsigned char unused[3];
unsigned char dos4L8];
} MCB;

#ifndef MK_FP
#define MK_FP(seg, ofs) \

((void far *) ((Cunsigned long)(seg)<<16) | (ofs)))
#endif

MCB far *Get_First_MCB( void ) /* locates first MCB */
{ union REGS reg;

struct SREGS seg;

unsigned *tmpp;

segread( &seg ); /* set up seg regs */
reg.h.ah = 0x52; /* get List of Lists */
intdosx( &reg, &reg, &seg );

tmpp = Cunsigned far *) MK_FP( seg.es, reg.x.bx - 2 );
return (MCB far *) MK_FP( *tmpp, 0 );

Get_First_MCB() is functionally identical to the first assembly-language frag-
ment. It uses the segread() library function to avoid modifying the values of DS
and SS while getting the List of Lists pointer in ES, and uses the MK_FP() macro
to create the returned pointer value, rather than stuffing the appropriate quanti-
ties into ES and SI. As explained in chapter 2, you can also use in-line assembler
or register pseudo-variables, if your compiler supports these options.
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How to Trace the MCB Chain

Let's look at how to build a program, MEM, which you may already have on
your machine: versions of this popular utility include PMAP (Chris Dunford),
MAPMEM (TurboPower Software), TDMEM (Borland Turbo Debugger 2.0), and
the commands MEM /PROGRAM and MEM /DEBUG in DOS 4.0 and higher. A
program of this type walks through the MS-DOS MCBs. Because some MCBs
control PSPs, the program can be used to trace through all PSPs, showing which
programs are resident in memory. For example, here is sample output from
MAPMEM on a Compaq 386 running Quarterdeck QEMM, making extensive use
of LOADHI (CHKDSK typically reports 704,880 bytes free on this system!):

Allocated Memory Map - by TurboPower Software - Version 2.9

PSP blks bytes owner command Lline hooked vectors
0008 1 3904 config

0AE9 2 3776 command 22 2E

OBEA 2 18432 TSREXAMP 09 28 2F F1 FA
106B 2 686416 free

When we refer to MCBs controlling PSPs, we merely mean that the block of
memory controlled by an MCB happens to be a program. (To be precise, it is not
a program, but a process: a program that has been loaded into memory.) All DOS
processes begin with a 256-byte (16-paragraph) PSP. The MCB controls the PSP
only in the sense that the MCB is the arena header for the memory used by the
PSP and by the process itself. For example, in the display above, the PSP at 0AE9
is "controlled" by an MCB at 0AES. In turn, the "owner" field of the MCB at 0AE8
would be 0AE9.

Our MEM program will display the segment number of each MCB, the Pro-
gram Segment Prefix (PSP) of its owner, and the size of the MCB (in hex para-
graphs and decimal bytes). For MCBs that hold actual PSPs, MEM also displays
the segment for the corresponding environment, the ASCII filename of the owner
(which in DOS 3.0 and higher is kept in a program’s environment), and any inter-
rupt vectors that point into the block of memory. Here is what MEM’s output
looks like:

C:\UNDOC\KYLE>mem
Seg Owner Size Env
09F3 0008 00F4 ( 3904) config [15 4B 67 1
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OAE8 OAE9 00p3 ¢ 3376) 0BC1 c:\dos33\command.com [22 23 24 2E 1]
0BBC 0000 0003 ( 48) free

0BCO OAE9 0019 ¢ 400)

0BDA OBEA 000E (¢

OBE9 OBEA 0472 (

[09 28 2F F1 FA 1]

105¢C 106B 000D ¢ 208)

106A 106B 1218 ( 74112) 105D C:\UNDOC\KYLE\MEM.EXE [00 1]
2283 0000 957C (612288) free [30 F4 F5 F8 1

18208) 0BDB C:\UNDOC\KYLE\. .\rmichels\TSREXAMP.EXE

INTSs 15h, 4Bh, and 67h point into the "config" block because QEMM is loaded
with a DEVICE=QEMM.SYS statement in CONFIG.SYS. INT 67h is used for the
Expanded Memory Specification (EMS), INT 4Bh is used for "DMA Services" im-
plemented by QEMM and other 386 memory managers (it is also present in
newer PS/2 BIOSes), and INT 15h is taken over to control access to extended
memory.

Before running MEM, we also ran the program TSREXAMP from Ray
Michels’s chapter. We can see that Ray’s program takes about 18,000 bytes of
memory, and that it hooks INTs 09h, 28h, and 2Fh. (But why are F1h and FAh
pointing in there?!) In this example, we ran an early version of Ray’s TSR that
didn’t free its environment: that's why the program name is still accessible. We
also see that the filename stored in a program’s environment is not reduced to its
canonical form. The filename could be reduced to its canonical form,
(C:\UNDOC\RMICHELS\TSREXAMP.EXE), using undocumented INT 21h
Function 60h, which is discussed in chapter 4.

One limitation of many MCB walkers is that they assume the presence of
only one MCB chain. In fact, programs such as 386MAX and QEMM allow mem-
ory resident programs to be loaded "high" by creating secondary MCB chains in
high DOS memory. You can view these secondary MCB chains only by running
PMAP or MAPMEM inside the LOADHI utility (for example, C\QEMM>LOADHI
PMAP). In the version of MEM developed here, we will allow the user to specify
a segment on the DOS command line that can be used as the address of a possi-
ble secondary MCB chain. For example:

C:\UNDOC>mem BCOO

Seg Ouwner Size Env

BCOO BES80 0004 ( 64)

BCO5 BC06 0279 ( 10128)

BET7F BE80 0237 ( 9072) BCO1 C:\DOS\MOUSE.COM [OB 10 33 1]
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coB7 cOBD 0004 ( 64)
coscC coBD 055E ( 21984) coB8 C:\CED\CED.COM [1B 21 61 1
Cc61B 0000 21E4 (138816) free

This shows there is a secondary MCB chain at BC00, both MOUSE.COM and
CED.COM have been loaded "high," and there is still 138,000 bytes free of high
DOS memory.

It is useful to write MEM in two stages: first, just print out raw information
about DOS memory control blocks. Then, after that simple program is working,
write an improved version that displays the ASCII filenames of the owners of the
MCBs (which gives us a display of all programs resident in memory including, of
course, the MEM program itself). Here is our first version of the MEM utility:

/%
MEM.C —- walks DOS MCB chain(s): simple version
Andrew Schulman and Jim Kyle, July 1990

*/

#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned Long ULONG;
typedef void far *FP;

#ifndef MK_FP
#define MK_FP(seg,ofs) ((FP)((C(ULONG)(seg) << 16) | (ofs)))
#endif ‘

#ifdef __TURBOC__
f#fidefine ASM asm
#else

#idefine ASM _asm
#endif '

#pragma pack(1)

typedef struct {
BYTE type; /* 'M'=in chain; 'Z'=at end */
WORD owner; /* PSP of the owner */

WORD size; /* in 16-byte paragraphs */



90 UNDOCUMENTED DOS

BYTE unused[3];
BYTE dos4[81;
} MCB;

void fail(char *s) { puts(s); exit(1); }

MCB far *get_mcb(void)
{

ASM mov ah, 52h

ASM int 21h

ASM mov dx, es:[bx-21

ASM xor ax, ax

/* in both Microsoft C and Turbo C, far* returned in DX:AX */
}

void display(MCB far *mcb)
{
char bufC801];
sprintf(buf, "%04X %04X #04X (Z6Llud",
FP_SEG(mcb), mcb->owner, mcb->size, (long) mcb->size << 4);
if (! mcb->owner)
strcat(buf, " free");
puts(buf);
}

void walk(MCB far *mcb)
{
printf("Seg Owner Size\n");
for (;;)
switch (mcb->type)
{
case '"M' : /* Mark : belongs to MCB chain */
display(mcb);
mcb = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0);
break;
case 'Z' : /* Zbikowski : end of MCB chain */
display(mcb);
return;
default :
fail("error in MCB chain");

}

main(int argc, char *argv[L1)
{
if (argc < 2)
walk(get_mcb()); /* walk "normal" MCB chain */
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else
{

unsigned seg;

sscanf(argv[11, "%Z04X", &seg);

walk(MK_FP(seg, 0)); /* walk arbitrary MCB chain */
}

return 0;

This code simply displays the raw MCB chain. The function get_mcb(), writ-
ten with in-line assembler, returns a far pointer to the first MCB. Even though
we're calling undocumented DOS Function 52h here, we don’t bother to check
DOS version numbers because the segment of the first MCB is always located at
offset -2 in the List of Lists. It's even supported in the DOS compatibility box of
0S/2 1.1 (DOS version 10.10). The start of the MCB chain is passed to the func-
tion walk(), which goes into an infinite loop, displaying an MCB and moving to
the next MCB, until the end of the chain (or an error) is found. The MCB is dis-
played using the function display(). The output of this program looks like this:

Seg Owner Size
09F3 0008 03E1
0DpD5 0DD6 00D3
0EA9 0000 0003 48) free
OEAD 0DpDé 0040 1024)

( 15888)
(
(
(
OEEE cobé 0004 ( 64)
(
(
(

3376)

OEF3 0F02 000D 208)
O0F01 0F02 1204 ( 73792)
2106 0000 7EF9 (520080) free

MCB Consistency Checks

Actually, this code is useful by itself. It can be linked into other programs (with
the exception of main()) and used to track their DOS memory allocation. This is
particularly useful when you are trying to debug a program that trashes the MCB
chain. By modifying the walk() function, you can check the MCB chain for consis-
tency before DOS does. The chain is inconsistent if mcb->type is equal to any-
thing other than ‘M’ or ‘Z":

mcb_chk(MCB far *mcb)
{
for (;;)
if (mcb->type == 'M')
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mcb = MK_FP(FP_SEG(mcb) + mcb->size + 1, 0);
else
return (mcb->type == '72');

With mcb_chk(), a program can periodically check the MCB chain with a call
such as the following:

if (! mcb_chk(get_mcb()))

{
/* maybe do stack backtrace here, or dump registers */
puts("Error in MCB chain - prepare for halt...");
getchar();

)

Of course, if mcb_chk() does return false, then the next time any memory allo-
cation is performed, the system will halt with a message such as:

Memory allocation error
Cannot lLoad COMMAND, system halted

DOS merely performs the same consistency check as mcb_chk(), except that,
if it does find anything other than ‘M’ or ‘Z,’ it has no choice but to halt the sys-
tem. There seems to be no way that the MCB chain could be reliably repaired. In
multitasking 80386 control programs such as DESQview or Windows 3.0, though,
trashing the MCB chain in a "DOS box" (virtual machine) is far less catastrophic:
you just throw the virtual machine away and get a new one.

Our minimal MCB walker has one other use. We can use it to reveal a bug in
DOS itself. In the entry for INT 21h Function 4Ah (Resize Memory Block), Ap-
pendix A notes that "if there is insufficient memory to expand the block as much
as requested, the block will be made as large as possible.” Don’t believe it? Just
substitute the following main() for the one provided earlier:

main(void)
{
unsigned segm;
ASM mov ah, 48h /* Allocate Memory Block */
ASM mov bx, 64h /* get 100 paragraphs */
ASM int 21h
ASM jc done
/* ax now holds initial segment of allocated block */
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ASM mov segm, ax
printf("before: "); display(MK_FP(segm - 1, 0));

ASM mov ax, segm

ASM mov es, ax /* now resize the block */

ASM mov ah, 4Ah /* Resize Memory Block */

ASM mov bx, OFFFFh /* impossible (at least in real mode!) */

ASM int 21h

ASM jnc done /* something seriously wrong if _didn't_ fail!
*/

printf("after: "); display(MK_FP(segm - 1, 0));
done:

return 0;
}

The resulting display shows that all remaining memory has in fact been
given to the block, even though the call failed:

before: 1D4C OBEA 0064 ¢ 1600
after: 1D4C OBEA 9AB3 (633648)

The enormous number of bytes allocated to MCB 1D4C in the second line
shows that, even though Function 4Ah returned with the carry flag set, indicat-
ing an error, the block was still made as large as possible. (It's particularly large
here because this test was run on a system with Quarterdeck QEMM.) This is def-
initely a bug in DOS, not an undocumented feature on which you should depend!
As it stands, reallocations that fail but that nonetheless snarf memory can cause
mysterious program behavior.

This example also shows that the display() function can be useful all by itself:
just pass it an MCB and it displays some useful information. Given the segment
address of a block of memory, though, remember that the MCB is located at the
preceding paragraph. If a PSP, for instance, is 1234h, its MCB is 1233h. This is why
segm - 1, rather than segm, is used above in the call to display().

A More Detailed MEM Program

To produce a more complete display, we need only change the display() function,
and add supporting functions and macros:
void display(MCB far *mcb)

{
static void far *vect_2e = (void far *) 0;
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unsigned env_seg;

printf("%04X %04X %04X (%6Llu) ",
FP_SEG(mcb), mcb->owner, mcb->size, (long) mcb->size << 4);

if (IS_PSP(mcb))

{

void far *e = env(mcb); /* MSC wants Lvalue */
if (env_seg = FP_SEG(e)) printf("%Z04X ", env_seg);
else printf(" ");
display_progname(mcb);

}

if (! vect_2e)
vect_2e = GETVECT(Ox2e); /* do just once */
if (! mcb->owner)
printf("free ");
/* 0008 is not really a PSP; belongs to CONFIG.SYS */
else if (mcb->owner == 8)
printf("config ");
/* INT 2Eh belongs to master COMMAND.COM (or other shell) */
else if (belongs(vect_2e, FP_SEG(mcb), mcb->size))
printf("%s ", getenv("COMSPEC"));

/* presence of command lLine is independent of program name */
if (IS_PSP(mcb))
display_cmdline(mcb);
display_vectors(mcb);
printf("\n");

The new display() calls env() to find out if the MCB contains the PSP of its
owner and therefore has an associated environment block. Some of the relation-
ships between MCB, PSP, and environment can get a little confusing, so we also
use a few simple macros:

#define MCB_FM_SEG(seg) ((seg) - 1)
f#idefine IS_PSP(mcb) (FP_SEG(mcb) + 1 == (mcb)->owner)
#define ENV_FM_PSP(psp_seg) (*((WORD far *) MK_FP(psp_seg, 0x2c)))

char far *env(MCB far *mcb)
{

char far *e;

unsigned env_mcb;
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unsigned env_owner;

/%
if the MCB owner is one more than the MCB segment then
psp := MCB owner
env_seg := make_far_pointer(psp, 2Ch)
e := make_far_pointer(env_seg, 0)
else
return NULL
*/

if (IS_PSP(mcb))

e = MK_FP(ENV_FM_PSP(mcb->owner), 0);
else

return (char far *) 0;

/*
Does this environment really belong to this PSP? An
environment is just another memory block, so its MCB is
Llocated in the preceding paragraph. Make sure the env
MCB's owner is equal to the PSP whose environment this
supposedly is! Thanks to Rob Adams of Phar Lap Software
for pointing out the need for this check; this is a
good example of the sort of consistency check one must
do when working with undocumented DOS.

*/

env_mcb = MCB_FM_SEG(FP_SEG(e));

env_owner = ((MCB far *) MK_FP(env_mcb, 0))->owner;

return (env_owner == mcb->owner) ? e : (char far *) 0;

The env() function uses the IS_PSP() macro, which tells whether an MCB cor-
responds to a PSP by verifying that the next paragraph in memory is the MCB’s
owner. env() further makes sure we don’t pick up a stray environment for a pro-
gram that has freed its environment: usually such programs don’t bother to zero
out the environment segment number located at offset 2Ch in the PSP.

Next, display() calls display_progname(), which in turn calls prog-
name_fm_psp(), a useful utility function that, given a PSP, tries to return a far
pointer to the name of the corresponding program:

char far *progname_fm_psp(unsigned psp)
{

char far *e;

unsigned len;

/* is there an environment? */
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if (! (e = env(MK_FP(MCB_FM_SEG(psp), 0)))
return (char far *) 0;

/* program name only available in DOS 3+ */
if (_osmajor >= 3)

{
/* skip past environment variables */
do e += (len = fstrlen(el)) + 1;
while (len);
/%
e now points to WORD containing number of strings following
environment; check for reasonable value: signed because
could be FFFFh; will normally be 1
*/
if ((*((signed far *) e) >= 1) & (*((signed far *) e) < 10))
{
e += sizeof(signed);
if (isalpha(*e))
return e; /* could make canonical with INT 21h AH=60h */
}
}
return (char far *) 0;
}
void display_progname(MCB far *mcb)
{
char far *s;
if (IS_PSP(mcb))
if (s = progname_fm_psp((FP_SEG(mcb) + 1)))
printf("%Fs ", s);
}

If an MCB corresponds to a PSP [IS_PSP() is TRUE], display_progname() calls
progname_fm_psp(), which first verifies if there is an environment. There is pos-
sibly a little foo much verification and double-checking in this program, but any
program that traffics in undocumented DOS should definitely be more paranoid
than programs that rely only on documented interfaces. In DOS 3+, prog
name_fm_psp() walks past all variables in the environment to find the ASCIIZ
pathname of the program owning the environment (see the description of the
DOS environment block in the appendix entry for INT 21h Function 26h).

The new version of display() next performs a number of tests to see if the
block is free, if it is the very first block allocated by DOS (at CONFIG.SYS time),
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or if it belongs to the master copy of COMMAND.COM. As explained in the
chapter on command interpreters, undocumented INT 2Eh points into the master
copy of COMMAND.COM. The simple function belongs() is used to find if an in-
terrupt vector points into the block controlled by a given MCB:

typedef enum { FALSE, TRUE } BOOL;
BOOL belongs(void far *vec, unsigned start, unsigned size)
{

unsigned seg = FP_SEG(vec) + (FP_OFF(vec) >> 4); /* normalize */
return (seg >= start) & (seg <= (start + size));

Next, display() calls display_cmdline():

void display_cmdline(MCB far *mcb)

{
/*
psp := MCB owner
cmdline_Len := pspl80h1]
cmdline := pspl[81h]
print cmdline (display width := cmdline_Llen)
*/
int len = *((BYTE far *) MK_FP(mcb->owner, 0x80));
char far *cmdline = MK_FP(mcb->owner, 0x81);
printf("%Z.*Fs ", len, cmdline);
}

Note that display_cmdline() uses the C printf() mask "%.*Fs" to display a far
string, using the maximum length given by the variable len (whose value may be
zero). Sometimes garbage is printed by MEM, or by any similar program, be-
cause the disk transfer area (DTA) located inside the PSP overlays the beginning
of the command line.

Finally, display() calls display_vectors() to show any interrupts hooked by
the program whose PSP is contained in this MCB. The function finds these
hooked interrupt simply by seeing if CS:IP for the interrupt handler falls within
this MCB:

#ifdef __TURBOC___
#define GETVECT(x) getvect(x)
#else
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#define GETVECT(x) _dos_getvect(x)
#endif

void display_vectors(MCB far *mcb)
{
static void far **vec = (void far **) 0;
WORD vec_seg;
int i;
int did_one=0;

if (! vec)
{
if (! (vec = calloc(256, sizeof(void far *))))
fail("insufficient memory");
for (i=0; i<256; i++)
veclLil = GETVECT(i);
}

for (i=0; i<256; i++)
if (vec[il &% belongs(vec[il, FP_SEG(mcb), mcb->size))
{
if (! did_one) { did_one++; printf("C["); }
printf("%02Xx ", 1);
vecLil = 0;
}
if (did_one) printf("1");

In DOS 4.0 and higher, some memory-resident software can be loaded using
the INSTALL= statement in CONFIG.SYS. Such programs can show up in the
MEM display as MCBs that aren’t associated with any program but that may
have hooked interrupt vectors. Note that MEM calls display_vectors() for all
MCBs, even when there seems to be no associated program. For example, in DOS
40 and higher, if CONFIG.SYS contains the statement INSTALL=
C:\CED\CED.COM to load Chris Dunford’s CED command-line editor, then
MEM will display something like the following;:

0E81 0E82 065F ( 26096) [1B 21 61 1

Another benefit of calling display_vectors() for all MCBs is that occasionally
we find "orphaned" interrupt vectors that point into free memory:

2A2A 0000 75D5 (482640) free C30 F4 F5 F8 1
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INT 30h is a far jump instruction, not an interrupt vector, but INTs F4h, F5h,
and F8h are real interrupt vectors: let’s hope no program invokes them while
they’re pointing into free memory!

Finally, the following boring little function is used so that we can easily get
the length of far strings, even from a small-model program:

unsigned fstrlen(char far *s)
{
#if defined (_MSC_VER) && (_MSC_VER >= 600)
return _fstrlen(s);
#else
unsigned len=0;
while (*s++)
len++;
return len;
#endif

We now have a fairly complete implementation of the MEM program.

Allocation Precautions

Each time DOS INT 21h Function 4Bh loads a program for execution, it allocates
memory for it as well. For a COM-format file, the loader requests all available
RAM. For an EXE-format file, the amount of RAM is specified in the file’s reloca-
tion header. If this amount is not explicitly defined at link time, however, the EXE
takes all available space.

Because most programs therefore hog all RAM each time they are loaded,
whether they need it or not, it's up to you as a programmer to be sure that your
programs trim themselves back to no more than they need, if they are going to be
spawning other processes. Failure to do so will result in "out of memory" errors
no matter how much RAM your system contains.

Each time a program terminates normally and returns control to its parent
process, all RAM allocated to that program is once again made available for allo-
cation. If the program terminates via one of the TSR functions, only part (or pos-
sibly none) of its memory is released to be used again. ‘

The upshot is that programs get all available space while they are executing,
and can turn it back when they finish. Memory allocation for your programs can
thus be handled automatically (and invisibly) by DOS itself. Unfortunately, get-
ting one large block of memory at start-up, and having it deallocated for you at
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termination, is often inconvenient because it means your program can’t spawn
other processes. Modern C compilers usually include, in their start-up code, the
necessary calls to cut their RAM usage back to just what they require, or 64K,
whichever is larger, but at least one popular high-level language (Turbo Pascal)
does not do this automatically. Instead, TP gives you a compiler option ("$M")
that lets you specify how much memory to use.

Unfortunately, this option (like the DOS loader) defaults to "all available
space,” so an error condition will result from attempts to EXEC or SPAWN a child
process from TP without using the $M option to make RAM available for the
child process. Because of this, the Turbo Pascal Exec() procedure gained a reputa-
tion for being broken; actually, it just was not adequately documented.

If you happen to be writing in assembly language, it’s entirely your responsi-
bility to manage your memory allocations properly.

In most high-level language programming, you won’t use the three DOS
RAM allocation functions directly, but if you use the C library functions malloc()
and free(), or the Turbo Pascal functions new() and dispose(), you'll be using
them indirectly.

The strategy behind malloc() and free() is to obtain large blocks of RAM
using the DOS functions and then dole it out to the program in much smaller
portions, as requested. This is a heritage from UNIX, where the allocation of sys-
tem RAM was a time-consuming process. Under MS-DOS, the reverse is true,
and a number of "improved performance” packages that replace the standard li-
brary versions of malloc() and free() with more-direct calls to the DOS functions
have appeared recently.

On the other hand, each block of memory allocated from DOS requires the
additional 16-byte MCB (arena), and all DOS allocations are consequently para-
graph-based, so if you want to allocate 4 bytes from DOS, for instance, you have
to ask INT 21h Function 48h for one paragraph (16 bytes). In order to satisfy this
request, DOS then actually needs two paragraphs: the one you asked for, plus one
for the MCB to "control" the paragraph. The point is that the smallest possible di-
rect DOS memory allocation actually uses 32 bytes.

The Turbo Pascal new() and dispose() functions are more direct than the C
malloc() and free() functions: they depend on your program having already taken
all available RAM from DOS, and then simply maintain a pointer to the lowest
unused byte in the "heap” (the unused data area above your program’s minimum
requirement). A call to new(), with the number of bytes needed supplied as its
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argument, returns the current value of that pointer, and increments the pointer
past the number requested so that the next call to new() will get still-available
space. A call to dispose(), which takes a pointer as its argument, simply sets that
pointer into the FreeHeap variable that new() uses, thus making all RAM above
that address available for reallocation.

RAM Allocation Strategies

When a program requests x paragraphs of memory and the memory manager
has more than one block free, it’s possible to satisfy that request in several differ-
ent ways. These different ways of allocating memory are known as "allocation
strategies,” and DOS provides a function (INT 21h Function 58h) to select from
three different strategies.

This function isn’t always documented, however. For example, it is described
in Microsoft’s MS-DOS Encyclopedia, but not in IBM’s Technical Reference for DOS
3.3. Thus, like several other functions, it’s neither officially documented across
the board nor truly undocumented. We'll refer to it as "semi-documented.” At
any rate, the function permits you to select a "first fit," "best fit," or "last fit" strat-
egy for the memory manager to follow.

First-fit Strategy  The first-fit strategy is optimized for speed, with the possible re-
sult of excessively fragmenting memory. In a predominantly single-process sys-
tem (which is the normal condition of DOS), such fragmentation is unlikely,
though, so this is the default action unless you explicitly change things.

Even if you do change strategies, DOS will change back to first-fit whenever
it loads a program, although it follows your selected strategy for all other loading
actions.

When using the first-fit strategy, the memory manager begins looking for free
RAM at the start of the MCB chain and makes the allocation from the first block
it finds that is large enough to satisfy the request. If the block is larger than re-
quested, only enough is taken off the front to fill the request, and a new, still free,
block is created for the remainder.

In normal everyday DOS operation, there’s usually only one such block in
the system when a program is loaded. Because the loader often asks for "all avail-
able" RAM, no new block is created. Under these conditions, there’s no difference
between first-fit and best-fit strategies.
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If, however, the available RAM has become highly fragmented, and at the
same time the block being allocated is small enough to fit in the first free block
encountered, the first-fit strategy will use that first block and will stop searching.

Best-fitStrategy  The best-fit strategy must continue all the way to the end of the
MCB chain. This strategy is optimized for tightest use of RAM space, without re-
gard to operating speed; such an approach is sometimes essential. Unlike the
first-fit strategy, which accepts the first usable space, the best-fit strategy requires
that all available RAM be examined and then allocates the request from the small-
est block that will do the job, regardless of whether it is the first one encountered.
As with the first-fit strategy, the block is allocated from the front, and any left-
over space is put into a new, still free, block.

This approach guarantees that multiple allocations of small blocks will not
fragment RAM unnecessarily. So long as blocks are released at approximately the
same rate as they are allocated, the best-fit strategy will continue using the same
small blocks over and over, leaving the larger blocks free to accommodate re-
quests that require them.

As pointed out in the previous section, in normal operation with only one or
two blocks of RAM free, there’s little difference in action between first-fit and
best-fit. If, however, you are programming an application that does its own RAM
management and that makes short-term use of large numbers of small blocks of
RAM, you’'ll want to keep this strategy in mind. It could keep you from running
out of RAM unexpectedly just because none of the remaining free blocks is large
enough to fill your latest request!

Having said this, it is important not to oversell best-fit. In fact, as any text-
book on operating systems will tell you, first-fit is almost always the correct strat-
egy to use.

Last-fitStrategy  Unlike either of the other strategies, the last-fit technique is de-
signed specifically for allocations that you expect to hang around for a long time,
such as TSRs or device drivers. Unfortunately, DOS doesn’t let you use the last-fit
technique to load programs.

When a block of RAM is allocated using the last-fit strategy, the highest pos-
sible block of memory that can satisfy the request is assigned. Normally this will
be the highest part of the final block of free RAM. The idea is that memory allo-
cated at the end of the MCB chain won’t ever need to be searched, if you switch
back to the default first-fit strategy for subsequent normal allocations.
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Because the DOS loader won't honor this strategy for loading program mate-
rial, the last-fit strategy is of limited usefulness. You can use it to force things to
the top of the normal 640KB conventional-RAM area, though.

Selecting The Strategy

The following C language sample program (STRATST.C) illustrates the use of the
semi-documented strategy function and verifies its operation. Like the previous
sample programs in this chapter, it compiles with either Microsoft or Turbo C.
Note that in STRATST.C each different DOS action has been encapsulated
into a unique function. This not only makes it easier for you to extract them into
your own programs but also simplifies the logical flow of the illustration itself.

/%
STRATST.C - Jim Kyle - June 5, 1990

demonstrates RAM-management strategy function
*/

#include <dos.h>
#include <stdio.h>

union REGS reg;

struct SREGS seg;

unsigned bigblok, tinyblok;

char *codes[l = { "First-fit", " Best-fit", " Last-fit" };

unsigned int GetRam ( unsigned para ) /* paragraphs! */

{ reg.x.bx = para;
reg.x.ax = 0x4800; /* get RAM from DOS */
intdos( &reg, &reg );
printf("Got blk at %04X, size=%u\n", reg.x.ax, reg.x.bx );
return reg.x.ax;

}

void RelRam ( unsigned segmt ) /* release RAM to DOS */
{ segread( &seg );

seg.es = segmt;

reg.x.ax = 0x4900;

printf("\nReleased block at %04X", seg.es );

intdosx( &reg, &reg, &seg );
}

void SetStrat ( char strat )
{ reg.x.ax = 0x5801; /* set strategy code */
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reg.h.bl = strat;
intdos( &reg, &reg )

Ne

}

void GetStrat ( void )
{ reg.x.ax = 0x5800; /* read strategy code */
intdos( &reg, &reg );
printf("\nStrategy code: %u (%s): ",
reg.x.ax, codesCreg.x.ax] );
}

void main ( void )
{ bigblok = GetRam ( 0x100 ); /* allocate big block */

GetRam ( 0x080 ); /* allocate a fence */
tinyblok = GetRam ( 0x080 ); /* allocate tiny block */
GetRam ( 0x080 ); /* allocate a fence */
RelRam ( bigblok ); /* now free two blocks */
RelRam ( tinyblok ); /* but leave fences */
SetStrat ( 0 ); /* set first-fit */

GetStrat ();
RelRam ( GetRam ( 0x80 )); /* get, then release */

SetStrat ( 1 ); /* set best-fit */
GetStrat ();
RelRam ( GetRam ( 0x80 )); /* get, then release */

SetStrat ( 2 ); /* set last-fit */
GetStrat ();
RelRam ( GetRam ( 0x80 )); /* get, then release */

SetStrat ( 0 ); /* set first-fit at end */

The program assigns four consecutive blocks of RAM, with the first of the
four twice as large as each of the other three. The first and third blocks are then
released to create artificial fragmentation so that you can see the effects of the dif-
ferent strategy selections. Aside from any small blocks of free space that might
exist as leftovers from TSR installation, your system should at this point have
three blocks of free RAM available for allocation: the 4,096-byte (0x100 para-
graphs) block allocated as "bigblok," the 2,048-byte block allocated as "tinyblok,"
and "all the rest" between the second "fence" block and the top of memory.
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With this preparation, STRATST.C sets the first-fit strategy via SetStrat(), ver-
ifies it by means of GetStrat(), and then allocates and immediately frees a block of
2,048 bytes (0x80 paragraphs). GetRam reports the address of the block obtained;
releasing it restores the status quo for the next test.

Similarly, the best-fit and the last-fit strategies are tested. Before returning to
DOS, the program restores first-fit as the strategy to be used (failure to do so in
early test versions led to startling reports from other demonstrations—such as
environments appearing in memory after their respective programs—although
everything continued to work properly).

Here is the report generated by STRATST; the exact addresses will differ for
your system, but the results should be similar:

Got blk at 89E9, size=256

Got blk at 8AEA, size=128

Got blk at 8B6B, size=128

Got blk at 8BEC, size=128

Released block at 89E9

Released block at 8B6B

Strategy code: 0 (First-fit): Got blk at 89E9, size=128
Released block at 89E9

Strategy code: 1 ( Best-fit): Got blk at 8B6B, size=128
Released block at 8B6B

Strategy code: 2 ( Last-fit): Got blk at 9F80, size=128
Released block at 9F80

In addition to printf() statements embedded directly in the program, we
could also have viewed this program’s memory allocation using the INTRSPY
program, presented in chapter 8. That chapter includes an INTRSPY script for
tracking calls to INT 21h Functions 48h, 49h, and 4Ah.

Process Management

The concept of a "process” as a separate executable program that has been loaded
into memory but that may or may not be executing currently is central to the op-
eration of MS-DOS. The whole basis of TSR programming is that a process may
be retained "in residence" after once terminating, but TSRs are not the only pro-
cesses that DOS manages. Every program loaded for execution, including the
command interpreter itself, is a process.
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The PSP: How It Identifies a Process

Even when we are discussing DOS memory management, there was no way to
avoid mentioning the Program Segment Prefix (PSP). Now we can examine this
crucial DOS data structure in more detail. The PSP, a 256-byte block located im-
mediately preceding the actual process memory, is the key to process manage-
ment in MS-DOS. The PSP contains the DOS state (file handles, etc.) for its
process; the segment address of the PSP itself provides a unique identifier by
which the process can be located and managed.

History, Purpose, andUse  The Program Segment Prefix came to MS5-DOS by way
of Seattle Computer Products’s 86-DOS, which, for compatibility, took the con-
cept from the Digital Research’s 8080 CP/M operating system.

As MS-DOS developed through the years, however, the PSP has evolved into
far more than its CP/M equivalent. It now embodies many of the concepts pro-
vided in other operating systems (such as UNIX and Multics) by the "stack
frame" or the "process directory." By proper use of information kept in the PSP, a
process can pass data to other processes that it spawns, or it can return informa-
tion back to its parent process. At the same time, many fields of the PSP are ves-
tigial, holdovers from the days of CP/M.

The primary purpose of the PSP is to contain the system information neces-
sary to start, run, and finish a specific process. This includes, but is not limited to,
the address of the routine to which control should transfer when the process ter-
minates, the list of "handles" by which the process identifies its files and devices,
the address of the environment space belonging to the process, the identity of the
process’ parent process, and last but far from least, any arguments passed di-
rectly to the process when it was invoked.

A secondary purpose is to provide methods of accessing DOS functions with-
out INT 21h; this was much more important in earlier times than it is today. With
CP/M, the interface to BDOS (Basic Disk Operating System, the ancestor of the
INT 21h functions) was by way of a subroutine call to location 0005h. Conse-
quently, to provide the same functionality, offset 0005h in the PSP of every pro-
cess contains a rather cryptically coded far jump to the dispatcher area of
MS-DOS itself.

Similarly, many UNIX systems provided similar capabilities through a far call
in the user’s stack frame area, so with the introduction of UNIX-like capabilities
in MS-DOS 2.0, a special far call to INT 21h was added to the PSP at offset 0050h.
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Neither of these capabilities is widely used; most programs today simply use
INT 21h or, if the program is coded in a high-level language, its equivalent.

Unique Process Identifier MS-DOS can have only one "current process,” because it
uses the associated PSP as a scratch-pad area for much of its file management ac-
tivity. Yet M5-DOS can be used for multitasking between multiple processes. A
key to multitasking in an operating system with only one "current process" is
simply to change this current process.

Throughout much of the MS-DOS documentation, you'll find references to an
entity called the "process identifier," often abbreviated to "process ID" or even
"PID." This is a 16-bit value that uniquely identifies each process currently resi-
dent in the system, regardless of whether it is active. However the documenta-
tion never explains precisely what the PID is. ‘

This mysterious "process identifier" is nothing more than the segment ad-
dress of the PSP associated with that process. DOS provides two undocumented
functions, and one documented one, to store or retrieve the PID of the "current
process,” thus activating one or another set of data stored in different PSPs. The
current process is set using undocumented INT 21h Function 50h, and the cur-
rent process can be queried either with undocumented INT 21h Function 51h or,
in DOS 3.x and higher, with the equivalent documented Function 62h.

It is important to understand that the two Get PSP functions do not necessar-
ily retrieve the PSP of the program that calls them. There appears to be a great
deal of confusion on this point. For example, even Duncan’s Advanced MS-DOS
Programming states that Function 62h "allows a program to conveniently recover
the PSP address at any point during its execution, without having to save it at
program entry."

In fact, the two Get PSP functions always return the value that was last estab-
lished with Set PSP. This corresponds to the "current process" in DOS, not neces-
sarily to the PSP of the calling program. If Get PSP is called from a TSR that has
been activated by an interrupt, Get PSP returns the PSP of the foreground pro-
cess, not the TSR’s PSP. That is what makes the Get/Set PSP functions important:
they are the basis for the ability to switch between multiple tasks in MS-DOS. It is
often said that DOS is single-tasking, but this merely means that only one process
"owns" DOS at any given time.

Whenever the current process is switched, whether by your own multitask-
ing code or by a TSR popping up for action, it’s essential that the current PID also
be switched if any I/O activity is to occur. Otherwise, the files or devices
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"owned" by the old foreground process will be affected, rather than your own
files.

The three get/set PSP functions are described in further detail in Ray
Michels’s chapter on TSRs and DOS multitasking.

Undocumented Areas of the PSP Less than 1/3 of the 256-byte area in the PSP has
been documented officially; this section supplies information about the remain-
ing parts. Not all of them, however, have ever been put to use.

This description is organized in the form of an assembly-language data seg-
ment, though without the SEGMENT directives:

FINI: INT 20H ;0000 CP/M-Like exit point
NXTGRAF DW 0AO00O0hA ;0002 first unused segment
DB 0 ;0004 filler to align next
CPMCAL: CALLF INT21DSP ;0005 cP/M-Like service call
1sv22 DD 0 ;000A documented ISR vectors
Isv23 DD 0 ;000E " (saved at start)
1SV24 DD 0 ;0012 ¢
PARENT DW PARENT_ID ;0016 PSP of parent
HANDLES DB 1,1,1,0,2 ;0018 indices into SFT
DB 15 DUP(255) ; maintained by DOS
ENVPTR DW ENVIRON ;002C environment segment
SAVSTK DD 0 ;002E saved SS:SP at INT21
NHDLS DW 20 ;0032 nbr of handles avail
HTBLPTR DD HANDLES ;0034 ptr to handle table
DD -1 ;0038 SHARE's previous PSP
RSVD1 DB 14 DUPCOD) ;003C never used
DISP: INT 21H ;0050 Unix-Like dispatcher
RETF
RSVD2 DB 9 DUP(0) ; never used
FCB1 DB 0, ' ;005C documented FCB areas
DB 0,0,0,0
FCB2 DB 0,' ' ;006C "
DB 0,0,0,0
TAILC DB 5 ;0080 "command tail" count
TAIL DB ' args' ;0081 start actual data here
DB ODH

DOS Termination Address

Although the three interrupt service vectors saved in the PSP are documented,
their usage is not, and one of them provides a way to hook into a process at ter-
mination time no matter what causes the process to terminate, thus providing
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DOS "Exit List" capability. The magic vector is ISV22, the INT 22h vector, docu-
mented as the "termination address.” What is not documented is the fact that the
address in the PSP, rather than the one in the interrupt service region, is the one
used when the process terminates!

To hook this vector and cause your own code to be executed when the pro-
cess terminates, before control returns to the calling program, just use the follow-
ing routines, with your own code inserted as noted. Execute "SetHook" during
your program’s initialization, while ES still points to the PSP (as it will upon
entry to the program for an EXE file, or at any time before you change it for a
COM file); "DoHook" will be called automatically at termination time:

SetHook PROC

MOV AX,CES:000AR1] ; save old offset
MOV word ptr CS:0ldVec,AX

MOV AX,LES:000Ch1] ; save old segment
MoV word ptr CS:0ldVec+2,AX

Mov AX,offset DoHook

MOV CES:000Ah],AX ; set in new vector
MoV AX,CS

MOV CES:000Ch1,AX

SetHook ENDP

oldvec DD 0 ; place for old vector

DoHook PROC FAR
; whatever you need to do is coded here...

JMP [CS:0ldVec] ; then chain to original
DoHook ENDP

The "termination address" stored at ISV22 in the PSP is just the return ad-
dress to the Exec function call (INT 21h Function 4B00h) that the parent used to
invoke this process. Obviously, then, when DOS transfers control to this address,
it is ready to return to the parent. DoHook is grabbing control instead, so when
DoHook is executed, all memory allocated to the terminating process has already
been released—including the memory containing the DoHook code. All files
have been closed and the current PSP has been set to that of the parent. In DOS 3
and later, the registers have been restored to the values they had when the parent
performed the Exec. Basically, all that DoHook should do is de-install any special
handlers that the program had installed, so that they will not be left pointing to
no-longer-valid addresses. No other actions should be attempted and by all means no
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file access or other I/O should be tried since the context could easily vary de-
pending on the parent programs. For more complex on-exit processing, you are
better off using routines such as atexit() in C.

Other PSP Fields

The first fully undocumented area of the PSP is the word at offset 0016h, which
contains the PID of this process’ parent process. If this process is the current com-
mand interpreter, its own PID will appear here, even if it is really a spawned
shell that can be terminated by the EXIT command. Were it not for this, you
could trace back through these pointers from one PSP to the parent PSP and thus
locate the master command interpreter. However, all you can do by tracing this is
to locate the current shell, which may not be the master. (As noted earlier, INT
2Eh can be used to find the master copy of COMMAND.COM; more details are
given in the chapter on Command Interpreters.)

Immediately following the PARENT pointer, at offset 0018h, is the 20-byte
handle table. Each byte in this list represents an index into the System File Tables
maintained by DOS. As shown in the example code, the first five of these are au-
tomatically set up by the loader routines to predefine handles for stdin, stdout,
stderr, stdaux, and stdprn; note that the first three handles all reference the same
System File Table (SFT; see the chapter on the DOS file system) entry for device
CON. All unused handles have the value OxFE.

The next undocumented area is the doubleword at offset 002Eh, which the
DOS dispatch code uses to save SS and SP each time this process enters INT 21h.
Saving the stack location in the PSP, rather than in DOS’ own data area, makes
multitasking possible by permitting DOS to switch current processes, resuming
each process where it was last halted (that is, treating the processes as
coroutines). However, MS-DOS itself has not yet taken advantage of this capability.

Right behind ENVPTR comes a 6-byte group added at version 3.1, which per-
mits you to relocate the handle table and thus make more than 20 file handles
available to your process. A documented DOS function (INT 21h Function 67h)
exists to manipulate this area. An alternative to Function 67h appears in FHAN-
DLE.C, in chapter 4.

The first two bytes of this region are the word NHDLS at offset 0032h, which
defines the number of handles available to this process; attempting to open
another file or device when this many handles are already in use will trigger a
DOS error.
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The following four bytes, HTBLPTR at offset 0034h, are a far pointer to the
first byte of the handle table.

By default, NHDLS is set to 20, and HTBLPTR to PSP:0018h, thus describing
the handle table in the PSP.

The doubleword at offset 0038h is always set to OFFFF:FFFFh in DOS ver-
sions prior to 3.3. Later DOS versions set this to point to the parent PSP when
SHARE is in use.

Spawning Child Processes

As is discussed further in chapter 6, every program run under MS-DOS can be
thought of as a child process. Even the very first one loaded as part of the boot
process (that is, the loader that is read in from the boot sector of the disk) is a
“child" of the ROM Bootstrap routine! This section describes in detail the differ-
ences between a child process and the generic "process" concept.

A "child process" is simply a process spawned by some other process, which
is called the "parent.” Again, except for the bootstrap loader code that initially
brings your system into action, every process in the system is a child of some
other process.

The bootstrap loader spawns only one child: the command interpreter speci-
fied by the SHELL= line in CONFIG.SYS, or COMMAND.COM by default if no
SHELL is specified. This process is what most users perceive to be DOS itself.
Each time a program’s name is typed on the command line, that program is
spawned as a child of the command interpreter, for execution.

If the spawned program is, itself, a menu or other type of shell routine, it may
in turn spawn children of its own, which execute and return control to their par-
ent. Should control ever return to the bootstrap loader, the result is the error mes-
sage "Bad or missing command interpreter” and a locked system requiring
rebooting.

Locating Parent Processes

From time to time, a process needs to be able to trace its ancestry. This isn’t al-
ways possible, because MS-DOS has a few quirks in some areas (for example, a
shell program such as COMMAND.COM is always its own parent, and so the
chain stops right there—see chapter 6 for more details). However, if the process is
running as the child of anything other than a command interpreter such as COM-
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MAND.COM, the job of locating its ancestors is straightforward though undocu-
mented.

Locating Ancestors One undocumented field in the PSF, the PARENT word de-
scribed previously, makes it possible for a program to trace its ancestry to the
point of the closest command interpreter shell (any shell program modifies this
field to show that it is its own parent).

Thus, a program that needs to trace its ancestry need only locate its own PSP,
extract the PARENT process ID, then use that to access the parent’s PSP. The pro-
cess continues until the point at which PARENT points to the PSP that contains it;
this will be the first command interpreter program encountered in the trace.

Use of this Capability A sample program in C that uses this capability to trace its
ancestry follows:

/*

ROOTS.C (with apologies to Alex Haley)
Trace Your Ancestry!

Jim Kyle, 1990

*/

#include <stdio.h>

/* grr! different locations for _psp global variable! */
#ifdef __TURBOC___

#include <dos.h>

#else

#include <stdlib.h>

#endif

unsigned parent, self;

#define WORD(seg, ofs) \
(*(Cunsigned far *) ((Cunsigned lLong)(seg)<<16) | Cofs))))

main ( void )

{ self = _psp; /* start with own PSP value */
parent = WORD( self, 0x16 );
do

{ printf("PID = %04X, PARENT = %04X\n", self, parent );
self = parent;

}
while (C parent = WORD( self, 0x16 ) ) != self );
return 0;
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The program simply copies its own PID into the variable "self" and then uses
it and the defined offset of PARENT in the PSP to retrieve the parent’s PID in
"parent.”

From there, the program loops reporting the values of "self" and "parent" at
each level and then redefining them both, until it reaches the level at which the
two values match. This will be the command interpreter. At this point, the pro-
gram returns. It’s most instructive, by the way, to run this program from some
environment, rather than from the command line, because that will guarantee at
least one level of ancestry before the command interpreter is reached. For exam-
ple, we can run ROOTS inside of DEBUG, inside another copy of DEBUG:

C:\UNDOC\KYLE>debug \bin\debug.exe roots.exe

-9
-9
PID = 932A, PARENT = 8F20
PID = 8F20, PARENT = 8B16
PID = 8B16, PARENT = 8A27

Here, 932A is ROOTS, and 8F20 and 8B16 are DEBUG. Naturally, we could
use the code developed earlier in MEM, especially the function prog-
name_fm_psp(), to find the ASCIIZ names of these ancestors.

Device Management

In addition to memory, the operating system must manage all devices connected
to the CPU, such as the disk drives, the keyboard, and any displays. Although
much of the detailed interface between any device and DOS is handled by the
BIOS (Basic Input Output System) code (for example, BIOS INT 13h handles the
disk), the actual management of devices remains the responsibility of DOS itself.

Why Device Drivers Exist

Older operating systems, and even MS-DOS 1.x, included all hardware-depen-
dent code necessary to deal with input and output as an integral part of the
system itself. This made it necessary to bring out version 1.1 of MS-DOS when
IBM made available the 360KB double-sided floppy disk drive, and made it im-
possible to use any kind of hard disk conveniently on a DOS 1.x system. Im-
provements were obviously in order.
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A major part of the upgrade provided by MS-DOS 2.0 was the "installable de-
vice driver" capability. This concept, borrowed from Bell Labs’s UNIX, concen-
trates all hardware dependencies into small modules that can be installed and
removed separately from the main operating system code itself.

An installable device driver is a code package that forms a self-contained unit
capable of initializing itself, and through which all communication to and from a
specific hardware device can be channeled. The format of the driver, and of its
command interface, is rigidly specified by the MS-DOS documentation.

By separating hardware dependencies into such a module, only new drivers,
rather than a complete operating-system upgrade, need be developed when a
new hardware device becomes available; the new device is then immediately us-
able with any older system that can accept the driver.

Hardware Dependent Details

In general, three types of action tend to be highly device-specific and vary from
one device to the next. These are the actions required to initialize the device and
prepare it for use, those required to send data to it, and those required to receive
data from it.

You might think that some devices need only two of these groups, because
you don’t usually send data to a keyboard or receive data from a printer. How-
ever, the keyboard does have to receive certain commands from the operating
system to acknowledge that its output has been accepted, and similarly the sys-
tem needs to read status conditions from the printer. These peripherals really are
1/0 devices, not just I or O devices.

Other details that are associated with specific hardware items rather than
with generic logical functions include port addresses through which communica-
tion is achieved, the "handshake" protocol used to transfer data to and from the
device, and the actual bit patterns transferred as commands and status.

All of these hardware-dependent details are concentrated within the single
driver that serves each device. In order for DOS to use them, they are grouped
into a small collection of logical functions as specified in the DOS documentation.

Logically Required Functions The DOS documentation specifies 17 logical func-
tions, all of which must be recognized and responded to by every device driver,
regardless of whether that function makes sense for the driver (as in the amusing
case of "media check" for a CRT). These functions provide adequate flexibility to
deal with virtually any I/O requirement you can imagine.
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Normally function dispatching is implemented with a jump table. The
function’s code is used as the index into a table of offset addresses, and control
transfers to the indexed address. If the specific function does not apply to this
driver, the code reached normally returns an appropriate status code with no
other action performed.

Congruence of Filesand Devices One of the most useful results of the device
driver concept is that MS-DOS can treat files and devices in exactly the same way.
This means that you can write programs which deal simply with "streams" of
data and not be at all concerned whether the streams come from (or go to) a de-
vice or a file. This is a major advantage when compared to older techniques that,
to retrieve data from, for example, the keyboard, required totally different pro-
gramming than that used to retrieve data from a file.

Unfortunately, not all the capability of the keyboard as an input device can be
used through the drivers, nor can maximum display speed be obtained from the
CRT. If you are programming a real-time video image display system, with
hotkey control, you'll be forced to go direct to the video display controller with
your output, and to use BIOS routines to read the keyboard without waiting until
the operator presses ENTER.

Thus, not all programs which run under MS-DOS are able to take full advan-
tage of the power offered by the driver concept. This is not a limitation inherent
in the concept itself, but rather an artificial one imposed by the design of MS-
DOS and failure to anticipate all future needs. Or maybe it’s an inherent limita-
tion in the concept of "device independence.”

One interesting by-product of the files-devices congruence is that all your
named devices can be accessed as files in any disk directory! This comes about
because the DOS routines that open both devices and files always search for de-
vices first, and if a device name is the same as the name of the file you are trying
to open, the device will be opened instead. Because most of the procedures used
to determine whether a given file exists depend on trying to open the file and
then detecting the error if it cannot be opened, these routines will show that any
device exists as a file in any directory you happen to test. Nevertheless, it will not
show in the directory listing.

This can be used to test for the existence of a directory itself, because if you
try to open a device by referring to it as a file in a nonexistent directory, the direc-
tory error will occur before the device access attempt. That error, in turn, indicates
that the directory itself cannot be accessed, for if the directory can be accessed,
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the device can also always be accessed. The following batch file uses this aspect
of DOS devices:

decho off

rem isdir.bat

if exist %1\nul goto exists
echo No such directory

goto done

texists

echo Directory exists

:done

C:\UNDOC\KYLE>isdir \foobar

No such directory
C:\UNDOC\KYLE>isdir \undoc\kyle
Directory exists

Tracing the Driver Chain

In order to operate at all, MS-DOS must provide at least a minimal set of built-in
device drivers. Yet to achieve the full advantages of expansion, it’s necessary to
be able to insert new drivers at will and to have the power of replacing an exist-
ing driver with a new version.

In order to make these things possible, DOS organizes the drivers as a singly
linked chain, with a defined starting point that is always at the same place within
any specific DOS version (the location differs from one version to the next, how-
ever). Each driver in the chain includes as part of its structure a pointer to the
next one, and the end of the chain is signified by the value FFFFh in the offset po-
sition of the final driver’s link. Unlike the MCB chain, this is a true linked list.

The original device chain is prebuilt in the hidden system file I0.SYS (in PC-
DOS, IBMBIO.COM). If you add drivers to your system via the DEVICE= com-
mand in the CONFIG.SYS file, they are patched into the chain by the
initialization portion of I0.SYS each time you boot your system.

Subsequent sections of this chapter describe the detailed organization of the
device driver chain, tell how drivers are initialized during system boot-up, and
then show you how to locate the start of the chain for any version of DOS and
how to trace the driver chain and find out what is in your system.

Organization of the Device Driver Chain  The device driver chain is a singly linked
list structure with a defined starting point. The link itself is a far pointer (32-bit
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segment:offset format) that forms the first four bytes of each device driver, and
the starting point is the driver for the NUL device.

The NUL device is the "bit bucket" for both input and output; any output sent
to NUL simply vanishes without trace, and any attempt to read input from this
device encounters a permanent EOF condition. In itself, a device with these char-
acteristics is handy. NUL also serves as the "anchor" location for the driver chain.

As delivered, NUL's link pointer holds the address of the supplied CON
driver (the default console or keyboard/CRT routines), which is located near the
front of the I0.SYS data area (which normally is at absolute address 0700h). The
NUL driver however, is located near the front of the DOS data area itself, which
is at a much higher address.

Because the DOS handle-processing routines know where the NUL driver is
located, they can trace through the chain to locate any required driver.

As already mentioned, the DOS routines always go through the device chain,
looking for a match between the name of each character device and the requested
filename, when any attempt is made to open a handle for input or output. Only
when no match is found in the driver chain will DOS go search the directory for a
named file. This makes it impossible to either create or access a file that has the
same name as any device. It might be possible to develop a form of security sys-
tem based on this fact, by first creating a file and then installing a device with the
same name and providing a secure method for changing the device’s name dur-
ing operation.

Note that only character devices have names that are used in the search;
block devices are referred to by "drive letter" instead of by name. During the
search, these drivers are simply skipped. Because the first match to a name ends
the search, an existing driver is replaced simply by inserting the replacement into
the chain where it will be encountered first and being sure that it has the same
name.

How Drivers Are Initialized When you add new drivers via CONFIG.SYS, each
driver is added to the front of the chain as it is encountered. This is done by copy-
ing the link values from NUL into the new driver’s link and then putting the new
driver’s address into the NUL link instead.

Both block and character device drivers are added into the chain in the same
way. Because the search always begins at the NUL driver, this guarantees that
any new drivers added will be found before the built-in ones.
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The pointer-patching that inserts each driver into the chain is not actually
done, though, until the last step of driver installation. First, the driver’s own in-
ternal initialization code is called. If an error occurs, the installation is skipped
with an advisory message. If the initialization completes without error, DOS
checks the driver’s attribute word to determine whether the driver is for a char-
acter device or for a block device. If it’s for a character device, it is added to the
chain immedjiately.

However, if it’s a block device, DOS checks the number of units installed by
the initialization code; if this is zero, that signals DOS not to install the driver
even though no errors were detected. Otherwise, the unit count is used to assign
the next drive letter in sequence, a Disk Parameter Block (DPB; see appendix) for
the device is created and filled in from information returned by the initialization
process, and a Current Directory Structure (CDS; see appendix) entry for that
drive letter is built, which relates the letter back to the device driver. Only after
all these actions are successfully completed does the driver get patched into the
chain.

The device driver specifications let you put several device drivers into a sin-
gle file and specify them all by means of the single filename in the DEVICE= line.
However, when you do this, you must be aware of several "gotchas" that exist.
The most serious of these applies only to block devices; the code that processes
CONFIG.SYS assigns memory for the Disk DPB for each such device immedi-
ately following the driver’s break address. Thus, if you have more than one block
device driver in the same file, all of them should return different break addresses,
and these addresses should not be followed by any code that will be needed after
DOS calls the driver’s initialization function.

If you mix character and block device drivers in the same file (which is not
prohibited by the specs but which is definitely a risky thing to do), you must be
sure that all the character drivers appear in the file before any of the block driv-
ers, for the same reason.

The best practice, of course, is to follow a rule of "one driver, one file" and
thus avoid these possible problems. Sometimes, however, it may be necessary to
do otherwise. When that’s the case, be very careful, and if you run into strange
system crashes, look closely to be sure that an errant break address pointer is not
wiping out driver code.

Locating the Start of the Chain  The start of the device driver chain, like that of the
MCB chain discussed earlier in this chapter, can be determined using the undoc-
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umented INT 21h Function 52h (Get List of Lists), described in chapter 4. The
"NUL" device driver that forms the anchor point for the chain is always located
in the List of Lists.

For DOS 2.x, the driver begins 17h bytes past the address returned in ES:BX
by INT 21h Function 52h. With DOS 3.0, the offset is 28h, but with 3.1 that came
down to 22h, and there it has remained.

The following code fragment shows how to load ES:BX with the address of
the NUL driver for DOS 3.1 and up; for earlier versions, change the constant 22h
to the appropriate value:

mov ah, 52h ; get List of Lists
int 21h
add bx, 22h ; NUL driver offset, DOS 3.1+

Tracing it Through  Once you have located the start of the device driver chain, ac-
tual tracing through all devices (to duplicate the action of DOS during an OPEN
function) is simple. The only complicating factor is the need to distinguish be-
tween character and block devices and to report block devices differently because
they have no names.

The following sample program, written for MASM version 5.1 but usable
with other assemblers that support the simplified segmenation directives, shows
how simple it is:

; DEV.ASM
.model small
.stack
.data
blLkdev db 'Block: ' ; block driver message
blkcnt db '0 unit(s)s’
.code
dev proc
mov ah,52h ; get List of Lists
int 21h
mov ax,es ; segment to AX
add bx,22h ; driver offset, 3.1 and up
mov di,seg blkdev
mov dx ,offset blkdev

dev1: mov ds,ax
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lea
test
jz

mov
dev2: Lodsb
IFDEF INT29
int
ELSE
push
mov
mov
int
pop
ENDIF
Loop
jmp
dev3: Lodsb
add
push
mov
mov
mov
int
pop

IFDEF INT29
devé: mov
int
mov
int
ELSE
devé: push
mov
mov
int
mov
int
pop
ENDIF
mov
Lodsw
xchg
Lodsw
cmp
jne

si, [bx+101]

byte ptr L[bx+51, 80h

dev3

cx,8

29h

dx

dL, al
ah, 2
21h
dx

dev2

short devé

al,'0"

ds

ds ,di
blkent,al
ah,9

21h

ds

al 13
2%h
al,10
2%h

dx
ah,2
dL,13
21h
dL,10
21h
dx

si, bx
ax,bx

bx,0FFFFh
dev1

r

r’

N

N

Ne

step to name/units field
; check driver type
is BLOCK driver

is CHAR driver
so output its name

gratuitous use of undoc DOS

Character Output

then go look for next one

get number of units

set into message

send CR and LF to CRT

; gratuitous use of undoc DOS

Ns No

N

Character Output
send CR and LF to CRT

back up to front of driver
get offset of next one

and then its segment
was this end of chain?
no, loop back
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mov ax,4CO0H ; yes, return to DOS
int 21h

dev endp
end dev

When DEV.EXE is run on a MS-DOS 3.3 system, it produces the following list
of drivers. The bottom 12 are those contained in hidden file IO.SYS, the 3-unit
block driver controls drives A:, B:, and C:, and the other 11 are the standard DOS
devices:

NUL

4DOSSTAK

BRNDEV

CON

MS$MOUSE

Block: 1 unit(s)
XMSXXXX0

Block: 2 unit(s)
CON

AUX

PRN

CLOCKS$

Block: 3 unit(s)
com1

LPT1

LPT2

LPT3

com2

CoM3

coOM4

The 2-unit block driver is the OnTrack disk manager required to partition an
80MB unit into three 26MB logical drives, and the single-unit block driver is
Intel’s QUIKMEM2.5YS RAMdisk. The duplicate name of CON is UV-ANSLSYS;
because it appears in the chain ahead of the "standard" CON driver, it is always
used.

It is worth noting that, if assembled with a /DINT29 flag, DEV.ASM will
make gratuitous use of undocumented DOS. INT 29h is the "fast putchar” inter-
rupt called from DOS when sending characters to a device whose attribute word
has bit 4 set. It is tempting to use INT 2%h here, because it does simplify the code
just below label dev2. However, chapter 1 notes that there really are places you
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should use documented DOS instead of undocumented DOS, even when it seems
like more trouble. Performing output in this program is one of those places. Al-
though this program absolutely demands use of undocumented INT 21h Func-
tion 52h, there are several reasons for it not to use undocumented INT 29h:

The same functionality is available with INT 21h Function 2

Not all CON drivers support the "fast putchar" bit

INT 29h output is not redirectable: because this program displays block
devices using INT 21h Function 9, which is redirectable, using INT 2%h
elsewhere means that running DEV > TMP.TMP ends up displaying char-
acter devices on the screen, and block devices in the file: pretty silly!

Thus, DEV provides a nice demonstration of when undocumented DOS is
needed and when it definitely isn’t needed. Exercise some discretion here. Don’t
use undocumented DOS if you don’t need to. End of lecture.

Always Double-check Your Work In chapters 1 and 2, much emphasis was laid on
trying to double-check any values returned from undocumented DOS. Verifica-
tion depends on redundancy, though, and we noted that it is somewhat difficult
to verify undocumented DOS, because if you already had one copy of some piece
of information, you probably didn’t need to go to undocumented DOS to get it in
the first place!

The device driver chain, however, does provide ample opportunity for dou-
ble checking. Because device driver headers contain the 8-byte name of the
driver, when we think we have a pointer to a device driver header, we can (and
should!) check that we really do! This idea is developed in the following short
sample C program, which uses in-line assembler and the _fmemcmp() function
from Microsoft C 6.0:

/* DEVCON.C */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <dos.h>

/* some device attribute bits */
#define CHAR_DEV (1 << 15)
#define INT29 (1 << 4)
#define IS_CLOCK (1 << 3)
#define IS_NUL (1 << 2)
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#pragma pack(1)

typedef unsigned char BYTE;

typedef struct DeviceDriver {

struct DeviceDriver far *next;

unsigned
unsigned
unsigned
union {
BYTE
BYTE
} u;

attr;
strategy;
intr;

namel81;
blk_cnt;

} DeviceDriver;

typedef struct {

void far
void far

*dpb;
*sft,

DeviceDriver far *clock;
DeviceDriver far *con;

unsigned
void far
void far
void far
unsigned
unsigned
unsigned

DeviceDriver nul;

unsigned
/1l ...

max_bytes;
*disk_buff;
*cds;

*fcb;
prot_fcb;
char blk_dev;
char lastdrv;

char join;

} ListOfLists; // DOS

3.1+

/* not a pointer */

void fail(char *s) { puts(s); exit(1); }

main(int argc, char *argv[1l)

{

ListOfLists far *doslist;
DeviceDriver far *dd;

_asm {

xor bx, bx

mov es, bx

mov ah, 52h

int 21h

mov doslist, bx
mov doslist+2, es

}
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if (! doslist)
fail("INT 21h Function 52h not supported");

if (_fmemcmp(doslist—->nul.u.name, "NUL ", 8) 1=0
fail("NUL name wrong");

if (! (doslist->nul.attr & IS_NUL))
fail("NUL attr wrong");

if (_fmemcmp(doslist->con->u.name, "CON ", 8) =0
fail("CON name wrong");

if (! (doslist->con->attr & CHAR_DEV))
fail("CON attr wrong");

if (_fmemcmp(doslist->clock->u.name, "CLOCK$ ", 8) != 0)
fail("CLOCK$ name wrong");

if (! (doslist->clock->attr & IS_CLOCK))
fail("CLOCK$ attr wrong");

if (argvC11L0] == '-")

/* print out device chain */
dd = &doslist->nul;
do {
if (dd->attr & CHAR_DEV)
printf("%.8Fs\n", dd->u.name);
else
printf("Block dev: %u unit(s)\n", dd->u.blk_cnt);
dd = dd->next;
} while (FP_OFF(dd->next) !'= -1);
}

/* go back to first CON driver */

dd = &doslist->nul;

while (_fmemcmp(dd->u.name, "CON ", 8) =0
dd = dd->next;

/* DOS List Of Lists holds separate ptr to lLatest CON driver */
puts(dd == doslist->con ? "no new CON" : "new CON");

return 0;

This program relies heavily on the redundancy built into the DOS device
chain. We can check that doslist->clock, for example, really does point to a
CLOCKS$ device, using both the name "CLOCKS$ " and the CLOCK bit in the de-
vice attribute word. This is particularly important because the program provides
structures for DOS 3.1 and higher only. If the program is run under a version of
DOS where these structures are not accurate, such as DOS 2.0, 3.0, or perhaps



Chapter 3: MS-DOS Resource Management 125

7.18 (though we have every expectation that these structures will be the same in
that anxiously awaited version!), the program will print out an error message
and then quit, rather than blindly following bogus pointers and spewing out gar-
bage on the screen.

Because a more limited range of DOS versions is handled, the C structures
really do make this program more readable than if you were using numeric off-
sets. It's nice to be able to say doslist.nul->next.name, for instance, and see at a
glance that you're talking about the name of the device pointed to by the next
field of the NUL device. The -> and . notation also makes clear that the DOS List
of Lists contains the actual NUL header (doslist.nul), whereas it contains pointers
to CLOCKS$ (doslist->clock) and CON (doslist->con).

If you run DEVCON a dash on the command line it prints out the same list as
the earlier DEV assembly-language program. Otherwise, it simply determines
whether the system’s current CON driver is the default CON driver located in
10.SYS (IBMBIO.COM), or whether a new one is located in front of it in the DOS
device chain. This capability will be used to test out the next program.

Loading Device Drivers from the DOS Command Line

To complete what you've learned about DOS resource management, let’s create a
program you can use to load device drivers from the DOS command line, with-
out having to edit CONFIG.SYS and reboot.

Ever have an MS-DOS program that required the presence of a device driver,
and wish you had a way to install the driver from the command line prompt
rather than having to edit your CONFIG.SYS file and then reboot the system?

Of course you can be thankful that it's so much easier to reboot MS-DOS
than it is to rebuild the kernel, which is what must be done to add a device driver
to UNIX. While DOS 2.x borrowed the idea of installable device drivers from
UNIX, it’s often forgotten that DOS in fact improved on the installation of device
drivers by replacing the building of a new kernel with the simple editing of
CONFIG.SYS. '

Still, most of us occasionally wish we could just type a command line to load
a device driver and be done with it, for truly installable device drivers.

Also, developers of device drivers often wish they had a way to debug the
initialization phase of a device driver. This type of debugging usually requires a
debug device driver that loads before your device driver, or it requires hard-
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ware in-circuit emulation. But if you could only load device drivers after the nor-
mal CONFIG.SYS stage. . .

Well, wish no more. Command-line loading of MS-DOS device drivers is not
only possible, it’s relatively simple to accomplish once you know a little about
undocumented DOS. We will now present such a program, DEVLOD, written in
a combination of C and assembly language. All you have to do is type DEVLOD
followed by the name of the driver to be loaded, and any parameters needed, just
as you would supply them in CONFIG.SYS. For example, instead of placing the
following in CONFIG.SYS:

device=c:\dos\ansi.sys
you would simply type the following on the DOS command line:
C:\>devlod c:\dos\ansi.sys

There are several ways to verify that this worked. First, you can write ANSI
strings to CON and see if they are properly interpreted as ANSI commands. For
example, after a DEVLOD ANSLSYS, the following DOS command should pro-
duce a DOS prompt in reverse video:

C:\>prompt $elL7m$pSg$elOm

On systems that don’t already have a CON replacement driver, you can also
use the DEVCON program just developed to verify that DEVLOD ANSL.SYS
really did something:

C:\UNDOC\KYLE>devcon
no new CON

C:\UNDOC\KYLE>devlod \dos\ansi.sys

C:\UNDOC\KYLE>devcon
new CON

Finally, you can tell the new driver has been installed by running DEV and
inspecting its display of the device chain: you can see your new driver at the top
of the list, right after NUL, and ahead of any identically-named drivers loaded
earlier:
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C:\UNDOC\KYLE>dev
NUL
QEMM386%

C:\UNDOC\KYLE>devlod \dos\clock.sys

C:\UNDOC\KYLE>dev
NUL

CLOCKS

QEMM386%

DEVLOD loads both character device drivers (such as ANSLSYS) and block
device drivers (drivers that support one or more drive units, such as VDISK.SYS),
whether located in .SYS or .EXE files.

How DEVLOD Works
Here is the basic structure of the DEVLOD program:

startup code (CO.ASM)
main (DEVLOD.C)
Move_Loader
movup (MOVUP.ASM)
Load_Drvr
INT 21h Function 4B03h (Load Overlay)
Get_List
INT 21h Function 52h (Get List of Lists)
based on DOS version number:
get number of block devices
get value of LASTDRIVE
get Current Directory Structure (CDS) base
get pointer to NUL device
Init_Drvr
call DD init routine
build command packet
call Strategy
call Interrupt
Get_Out
if block device:
Put_Blk_Dev
for each unit:
Next_Drive
get next available drive letter



128 UNDOCUMENTED DOS

INT 21h Function 32h (Get DPB)
INT 21h Function 53h (Translate BPB -> DPB)
poke CDS
link into DPB chain

Fix_DOS_Chain

Llink into dev chain
release environment space
INT 21h Function 31h (TSR)

DEVLOD's first job is to move itself out of the way to the top of memory.
This lets it load the device driver as low as possible, reducing memory fragmen-
tation. DEVLOD loads device drivers into memory using the documented DOS
function for loading overlays, INT 21h Function 4B03h. An earlier version of
DEVLOD read the driver into memory using DOS file calls to open, read, and
close the driver, but this made it difficult to handle .EXE driver types. By using
the EXEC function instead, DOS handes both .SYS and .EXE files properly.

DEVLOD then calls our good friend, undocumented INT 21h Function 52h,
to retrieve the number of block devices currently present in the system, the value
of LASTDRIVE, a pointer to the DOS Current Directory Structure (CDS) array,
and a pointer to the NUL device. The location of these variables within the List of
Lists varies with the DOS version number.

DEVLOD requires a pointer to the NUL device because (as we saw earlier in
this chapter when discussing the DEV and DEVCON programs) NUL acts as the
"anchor” to the DOS device chain. Since DEVLOD’s whole purpose is to add new
devices into this chain, it must update this linked list.

If the DOS version indicates operation under MS-DOS 1.x, or in the OS/2
compatibility box, DEVLOD quits with an appropriate message. Otherwise, a
pointer to the name field of the NUL driver is created, and the eight bytes at that
location are compared to the constant "NUL " to verify that the driver is pres-
ent and that the pointer is correct.

In glancing over the appendix to this book, the astute reader may have
noticed an undocumented DOS function, INT 2Fh Function 122Ch, which returns
in BX:AX a pointer to the header of the second device driver (NUL is first). Since
DOS links together all device-driver headers, this effectively gets a pointer to the
DOS driver chain. So why call INT 21h Function 52h instead?

The reason is that, like all the internal INT 2Fh AH=12h functions, INT 21h
Function 122Ch was meant to be called only from DOS itself (with all segment
registers set to DOS’s kernel segment). In any case, you still need those other
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variables from the List of Lists, in case you are loading a block device (which you
won’t know until later, after you've called the driver’s INIT routine).

Once DEVLOD has retrieved this information, it sends the device driver an
initialization packet. This is straightforward: the function Init Drvr() forms a
packet with the INIT command, calls the driver’s Strategy routine, and then calls
the driver’s Interrupt routine. As elsewhere, DEVLOD merely mimicks what
DOS does when it loads a device driver.

If the device driver INIT fails, there is naturally nothing you can do but bail
out. It is important to note that you have not yet linked the driver into the DOS
driver chain, so it is easy to exit if the driver INIT fails. If the driver INIT suc-
ceeds, DEVLOD can then proceed with its true mission, which takes place (oddly
enough) in the function Get_Out().

It is only at this point that DEVLOD knows whether it has a block or charac-
ter device driver, so it is here that DEVLOD takes special measures for block
device drivers, by calling Put_Blk_Dev(). For each unit provided by the driver,
that function calls undocumented DOS INT 21h Function 32h (Get DPB) and INT
21h Function 53h (Translate BPB to DPB), alters the CDS entry for the new drive,
and links the new DPB into the DPB chain. These new DPBs are added after the
device driver’s "break address.” (The BPB, DPB, and CDS are explained in detail
in chapter 4 on the DOS file system.) The key point is that in Put_Blk_Dev(),
DEVLOD takes information returned by a block driver’s INIT routine, and pro-
duces a new DOS drive.

When loading a block device driver, DEVLOD needs a drive letter to assign
to the new driver. As will be explained in great detail in chapter 4, the CDS is an
undocumented array of structures, sometimes also called the Drive Info Table,
which maintains the current state of each drive in the system. The array is n ele-
ments long, where n equals LASTDRIVE. DEVLOD pokes the CDS in order to
install a block device driver.

The function Next_Drive() is where DEVLOD determines the drive letter to
assign to a block device (if there is an available drive letter). One technique for
determining the next letter, #ifdefed out within DEVLOD.C, is simply to read the
"Number of Block Devices" field (nblkdrs) out of the List of Lists. However, this
fails to take account of SUBSTed or network-redirected drives. Therefore, we
instead walk the CDS, looking for the first free drive. In any case, DEVLOD will
update the nblkdrs field, if it successfully loads a block device.
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Whether loading a block or character driver, DEVLOD also uses the "break
address" (the first byte of the driver’s address space which can safely be turned
back to DOS for reuse) returned by the driver. For block devices, the break
address has been increased to include the newly-created DPBs. Get_Out() con-
verts the break address into a count of paragraphs to be retained.

The function copyptr() is called three times in succession to first save the con-
tent of the NUL driver’s link field, then copy it into the link field of the new
driver, and finally store the far address of the new driver in the NUL driver’s link
field. The copyptr() function is provided in MOVUP.ASM, shown later in this
chapter. Note again that the DOS linked list is not altered until after you know
that the driver’s INIT succeeded.

DEVLOD then links the device header into DOS’s linked list of driver head-
ers, and saves some memory by releasing its environment. (The resulting "hole in
RAM" will cause no harm, contrary to popular belief. It will, in fact, be used as
the environment space for any program subsequently loaded, if the size of the
environment is not increased.) Finally, DEVLOD calls the documented DOS TSR
function INT 21h Function 31h to exit without releasing the memory now occu-
pied by the driver.

DEVLOD.C

Before you look at how this dynamic loader accomplishes all this in less than
2,000 bytes of executable code, some constraints should be mentioned:

Many confusing details were eliminated by implementing DEVLOD as a
.COM program, using the tiny memory model of Turbo C. The way the program
moves itself up in memory became much clearer when the .COM format
removed the need to individually manage each segment register.

In order to move the program while it is executing, it's necessary to know
every address that the program can reach during its execution. This precludes
using any part of the libraries supplied with the compiler. Fortunately, in this case
that’s not a serious restriction; nearly everything can be handled without them.
Two assembly-language listings take care of the few things that cannot easily be
done in C itself.

Only one readily available implementation of C makes it easy to completely
sever the link to the runtime libraries. That is Borland’s Turbo C, which provides
sample code showing how. (Microsoft also provides such a capability, but its doc-
umentation is quite cryptic.)
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Thus the program, as presented, requires Turbo C with its register pseudo-
variables, geninterrupt(), and __emit__() features. As explained in chapter 2,
register pseudo-variables such as _AX provide a way to directly read or load the
CPU registers from C. Both geninterrupt() and _ _emit_ _() simply emit bytes into
the code stream; neither are actually functions.

Here is the main program, DEVLOD.C:

[Rhekdedkddeddedhdhkhkdhhkhkhhhhhkhhkhhkhhkkhhhdkhhhhkhhdhhkhkdhhkhhkhhhhhkhhhkhhkirdrkk

* DEVLOD.C - Jim Kyle - 08/20/90 *
* Copyright 1990 by Jim Kyle - ALL Rights Reserved *
* (minor revisions by Andrew Schulman - 9/12/90) *
* Dynamic loader for device drivers *
*

Requires Turbo C; see DEVLOD.MAK also for ASM helpers.*
********************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

typedef unsigned char BYTE;

#define GETFLAGS emit__(Ox9F)

fidefine FIXDS _emit__(0x16,0x1F)/* PUSH SS, POP DS */
fidefine PUSH_BP __emit___(0x55)

#define POP_BP __emit__(0x5D)

unsigned _stklen = 0x200;

unsigned _heaplen = 0;

char FileNamel651; /* filename global buffer */
char * dvrarg; /* points to char after name in cmdline buffer */
unsigned movsize; /* number of bytes to be moved up for driver */
void (far * driver)(); /* used as pointer to call driver code */
void far * drvptr; /* holds pointer to device driver */
void far * nuldrvr; /* additional driver pointers */

void far * nxtdrvr;
BYTE far * nblkdrs; /* points to block device count in List of Lists*/

unsigned lastdrive; /* value of LASTDRIVE in List of Lists */
BYTE far * CDSbase; /* base of Current Dir Structure */
int CDSsize; /* size of CDS element */
unsigned nulseg; /* hold parts of ListOfLists pointer */

unsigned nulofs;
unsigned LolLofs;
#pragma pack(1)
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struct packet{
BYTE hdrlen;
BYTE unit;
BYTE command;
unsigned status;
BYTE reserv[8];
BYTE nunits;
unsigned brkofs;
unsigned brkseg;
unsigned inpofs;
unsigned 1inpseg;
BYTE NextDrv;

} CmdPkt;

typedef struct {
BYTE path[O0x43];
unsigned flags;
void far *dpb;

unsigned start_cluster;

unsigned Long ffff;

/*
/*

/*
/*
/*
/*
/*

unsigned slash_offset;
// next for DOS4+ only

BYTE unknown;
void far *ifs;
unsigned unknown2;
} CDS;

extern unsigned _psp;

extern unsigned _heaptop;

extern BYTE _osmajor;
extern BYTE _osminor;

void _exit( int );
void abort( void );

0 to initialize
0x8000 is error

break adr on return
break seg on return

SI on input
_psp on input
next available drive */

/*

/*
/*
/*
/*

[*
/*

offset of '\!

established
established
established
established

established
established

void movup( char far *, char far *, int );
void copyptr( void far *src, void far *dst

void exit(int c)
{ _exit(c);}

/* device driver's command packet

*/
*/

*/
*/
*/
*/

startup
startup
startup
startup

startup
startup

/* Current Directory Structure (CDS)

code
code
code
code

code
code

in MOVUP.ASM
/* in MOVUP.ASM file

in current path field

in c0

in c0
*/
*/

in c0
in c0

file

/* called by startup code's sequence

int Get_Driver_Name ( void )

{ char *nameptr;
int i, j, cmdlinesz;

nameptr = (char *)0x80;

/* check command Line for driver name

*/

*/

*/

*/
*x/

*/
*/

*/
*/

*/
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cmdlinesz =
if (cmdlinesz < 1)
return 0;

(unsigned)*nameptr++;
/* if nothing there, return FALSE

for (i=0; i<cmdlinesz && nameptrCil<'!'; i++) /* skip blanks

dvrarg = (char *)&nameptrLCil; /*

for ( j=0; i<cmdlinesz && nameptrLil>"'

FileName[j++] = nameptrl[il;
FileNameLjl = '\0';

return 1; /* and

void Put_Msg ( char *msg )
{
#ifdef INT29

save to put in SI

'y oi+4) /* copy name

return TRUE to keep going

/* gratuitous use of undocumented DOS */

while (*msg)

{ _AL = *msg++; /*
geninterrupt(0x29); /*
}
Helse
_AH = 2; /* doesn't need to

while (*msg)
{ _DL = *msg++;
geninterrupt(0x21);

MOV AL,*msg */
INT 29h */

be inside loop */

print message and abort

send CR,LF */

vacate lower part of RAM

= _heaptop - _psp; /* size of loader in paragraphs
destseg = *(unsigned far *)MK_FP( _psp, 2 ); /* end of memory

movup ( MK_FP(C _psp, 0 ), MK_FP( destseg - movsize, 0 ),

}
#endif
}
void Err_Halt ( char *msg ) /*
{ Put_Msg ( msg );
Put_Msg ( "\r\n" ); /*
abort();
}
void Move_Loader ( void ) /*
{
unsigned movsize, destseg;
movsize
movsize << 4); /*
}

void Load_Drvr ( void ) /*

move and fix segregs

Lload driver file into RAM

*/

*/

*/
*/

*/

*/

*/

*/
*/

*/
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{ unsigned handle;
struct {
unsigned LoadSeg;
unsigned RelocSeg;
} ExecBlock;

ExecBlock.LoadSeg = _psp + 0x10;
ExecBlock.RelocSeg = _psp + 0x10;
DX = (unsigned)&FileNamel[0];

_BX = (unsigned)&ExecBlock;

_ES = _SS; /* es:bx point to ExecBlock */
_AX = 0x4B03; /* load overlay ‘ */
geninterrupt ( 0x21 ); /* DS is okay on this call */
GETFLAGS;

if ( _AH & 1)
Err_Halt ( "Unable to load driver file." );
}

void Get_List ( void ) /* set up pointers via List */
{ _AH = 0x52; /* find DOS List of Lists */
geninterrupt ( 0x21 );
nulseg _ES; /* DOS data segment */
LoLofs _BX; /* current drive table offset */

sWwitch( _osmajor ) /* NUL adr varies with version */
{
case O: ,
Err_Halt ( "Drivers not used in DOS V1." );
case 2:
nblkdrs = NULL;
nulofs = LoLofs + 0x17;
break;
case 3: ,
if (_osminor == 0)
{
nblkdrs = (BYTE far *) MK_FP(nulseg, LoLofs + 0x10);
lastdrive = *((BYTE far *) MK_FP(nulseg, LolLofs + 0x1b));
nulofs = LoLofs + 0x28;

3}

else

{
nblkdrs = (BYTE far *) MK_FP(nulseg, LoLofs + 0x20);
lastdrive = *((BYTE far *) MK_FP(nulseg, LoLofs + 0x21));
nulofs = LoLofs + 0x22;

>

CDSbase = *(BYTE far * far *)MK_FP(nulseg, LoLofs + 0x16);
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CDSsize = 81;

break;
case 4:
case 5:

nblkdrs = (BYTE far *) MK_FP(nulseg, LoLofs + 0x20);
lastdrive = *((BYTE far *) MK_FP(nulseg, LoLofs + 0x21));

nulofs = LoLofs + 0x22;
CbSbase = *(BYTE far * far *) MK_FP(nulseg, LoLofs + 0x16);
CDSsize = 88;
break;
case 10:
case 20:
Err_Halt ( "0S2 DOS Box not supported." );
default:
Err_Halt ( "Unknown version of DOS!");
)
}
void Fix_DOS_Chain ( void ) /* patches driver into DOS chn */

{ unsigned i;

nuldrvr = MK_FP( nulseg, nulofs+0x0A ); /* verify the drvr */
drvptr = "NUL ";
for ( i=0; i<8; ++i )
if ( *((BYTE far *)nuldrvr+i) != *((BYTE far *)drvptr+i) )
Err_Halt ( "Failed to find NUL driver." );

nuldrvr = MK_FP( nulseg, nulofs ); /* point to NUL driver */
drvptr = MK_FP( _psp+0x10, 0 ); /* new driver's address */
copyptr ( nuldrvr, &nxtdrvr ); /* hold old head now */
copyptr ( &drvptr, nuldrvr ); /* put new after NUL */
copyptr ( &nxtdrvr, drvptr ); /* and old after new */

}

// returns number of next free drive, -1 if none available
int Next_Drive ( void )
{
#ifdef USE_BLKDEV

return (nblkdrs && (*nblkdrs < Lastdrive)) ? *nblkdrs : -1;
#else

/* The following approach takes account of SUBSTed and

network-redirector drives */

CDS far *cds;

int i;

/* find first unused entry in CDS structure */
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for (i=0, cds=CDSbase; i<lastdrive; i++, ((BYTE far *)cds)+=CDSsize)

if (! cds->flags) /* found a free drive */
break;
return (i == lastdrive) ? -1 : i;
#Hendif

}

int Init_Drvr ( void )

{ unsigned tmp;

#define INIT O
CmdPkt.command = INIT; /* build command packet */
CmdPkt.hdrlen = sizeof (struct packet);

CmdPkt.unit = 0;
CmdPkt.inpofs = (unsigned)dvrarg; /* points into cmd Lline */
CmdPkt.inpseg = _psp;

/* can't really check for next drive here, because don't yet know
if this is a block driver or not */

CmdPkt.NextDrv = Next_Drive();

drvptr = MK_FP( _psp+0x10, 0 ); /* new driver's address */

tmp = *((unsigned far *)drvptr+3); /* STRATEGY pointer */
driver = MK_FP( FP_SEG( drvptr ), tmp );

_ES = FP_SEG( (void far *)&CmdPkt );

_BX = FP_OFF( (void far *)&CmdPkt );

(*driver)(); /* set up the packet address */
tmp = *((unsigned far *)drvptr+4); /* COMMAND pointer */
driver = MK_FP( FP_SEG( drvptr ), tmp );
(*driver)(); /* do the initialization */
/* check status code in command packet */
return (! ( CmdPkt.status & 0x8000 ));

}

int Put_Blk_Dev ( void ) /* TRUE if Block Device failed */

{ int newdrv;

int retval = 1; /* pre-set for failure */
int unit = 0;

BYTE far *DPBLlink;

CDS far *cds;

int i;
if ((Next_Drive() == -1) || CmdPkt.nunits == 0)

return retval; /* cannot install block driver */
if (CmdPkt.brkofs != 0) /* align to next paragraph */
{

CmdPkt.brkseg += (CmdPkt.brkofs >> 4) + 1;
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}

CmdPkt.brkofs 0;

while( CmdPkt.nunits—-- )

{

if ((newdrv Next_Drive()) == -1)
return 1;

(*nblkdrs)++;

_AH = 0x32;

_DL = newdrv;

geninterrupt ( 0x21 );

_AX = _DS;

FIXDS;

DPBLlink = MK_FP(_AX, _BX);

(unsigned) DPBlink += (_osmajor < 4 ? 24 :

/* get last DPB and set poiner

*/

/* save segment to make the pointer */

25 );

_SI = *(unsigned far *)MK_FP(CmdPkt.inpseg, CmdPkt.inpofs);
_ES = CmdPkt.brkseg;
_DS = CmdPkt.inpseg;
_AH = 0x53;
PUSH_BP;
_BP = 0;
geninterrupt ( 0x21 ); /* build the DPB for this unit */
POP_BP;
FIXDS;
*(void far * far *)DPBlink = MK_FP( CmdPkt.brkseg, 0 );
/* set up the Current Directory Structure for this drive */
cds = (CDS far *) (CDSbase + (newdrv * CDSsize));
cds—>flags = 1 << 14; /* PHYSICAL DRIVE */
cds->dpb = MK_FP(CmdPkt.brkseg, 0);
cds->start_cluster = OxFFFF;
cds=>ffff = -1L;
cds->slash_offset = 2;
if (_osmajor > 3)
{ cds->unknown = 0;
cds—=>ifs = (void far *) 0;
cds->unknown2 = 0;
}

/* set up pointers for DPB, driver */
DPBlLink = MK_FP( CmdPkt.brkseg, 0);
*DPBLink = newdrv;
*(DPBLink+1) = unit++;
if (_osmajor > 3)

DPBLink++; /* add one if DOS 4 */
*(long far *)(DPBLink+0x12) = (Long)MK_FP( _psp+0x10, 0 );
*(long far *)(DPBLink+0x18) = OxFFFFFFFF;

CmdPkt.brkseg += 2; /* Leave two paragraphs for DPB */



138 UNDOCUMENTED DOS

CmdPkt.inpofs += 2; /* Point to next BPB pointer */
} /* end of nunits Loop */
return 0; /* all went okay */

}

void Get_Out ( void )
{ unsigned temp;

temp = *((unsigned far *)drvptr+2); /* attribute word */
if ((temp & 0x8000) == 0 ) /* if block device, set up tbls */
if (Put_BLlLk_bev() )
Err_Halt( "Could not dinstall block device" );

Fix_D0S_Chain (); /* else patch it into DOS */

_ES *((unsigned *)MK_FP( _psp, 0x002C )J);
_AH 0x49; /* release environment space */

geninterrupt ( 0x21 );

/* then set up regs for KEEP function, and go resident */
temp = (CmdPkt.brkofs + 15); /* normalize the offset */
temp >>= 4;

temp += CmdPkt.brkseg; /* add the segment address */
temp -= _psp; /* convert to paragraph count */
_AX = 0x3100; /* KEEP function of DOS */
_DX = (unsigned)temp; /* paragraphs to retain */
geninterrupt ( 0x21 ); /* won't come back from here! */

}

void main ( void )
{ if ('Get_Driver_Name() )
Err_Halt ( "Device driver name required.”);

Move_Loader (); /* move code high and jump */
Load_Drvr (); /* bring driver into freed RAM */
Get_List(); /* get DOS internal variables */
if (Init_Drvr ()) /* let driver do its thing */
Get_O0ut(); /* check init status, go TSR */
else
Err_Halt C "Driver initialization failed.” );
}
MOVUP.ASM

The small assembly-language module MOVUP contains two functions used in
DEVLOD: movup() and copyptr(). Recall that, in order not to fragment memory,



Chapter 3: MS-DOS Resource Management 139

DEVLOD moves itself up above area into which the driver will be loaded. It
accomplishes this feat with movup().

The function copyptr() is located here merely because it’s written in assembly
language. It could have been written in C, but doing so would have required the
kind of contorted expressions that have given C the reputation of being a "write-
only" language. Using assembly language to transfer four bytes from source to
destination makes the function much easier to understand.

NAME movup

J——- L1
MOVUP.ASM —— helper code for DEVLOD.C |
Copyright 1990 by Jim Kyle - ALL Rights Reserved |

Me——rr

Ns N N NG

_TEXT SEGMENT BYTE PUBLIC 'CODE’
_TEXT ENDS

_DATA  SEGMENT WORD PUBLIC 'DATA'
_DATA  ENDS

_BSS  SEGMENT WORD PUBLIC 'BSS'
_BSS ENDS
DGROUP GROUP  _TEXT, _DATA, _BSS

ASSUME CS:_TEXT, DS:DGROUP

_TEXT SEGMENT BYTE PUBLIC 'CODE'

movup( src, dst, nbytes )
src and dst are far pointers. area overlap is NOT okay

Ne N NN

PUBLIC _movup

_movup PROC NEAR
push bp
mov bp, sp
push si
push di
Lds si,Cbp+4] J source
les di,Cbp+81] ; destination
mov bx,es ; save dest segment

mov cx,[bp+121] ; byte count
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cld
rep movsb ;
mov ss ,bx ;
mov ds , bx ;
pop di
pop si
mov sp, bp
pop bp
pop dx ;
push bx ;
push dx ;
retf

_movup ENDP

move everything to high ram
fix stack segment ASAP
adjust DS too

Get return address
Put segment up first
Now a far address on stack

copyptr( src, dst )
src and dst are far pointers.

Ne N N N

moves exactly 4 bytes from src to dst.
14
PUBLIC _copyptr
_copyptr PROC NEAR
push bp
mov bp, sp
push si
push di
push ds
lds si, [bp+4] ; source
les di,Cbp+81] ; destination
cld
movsw
movsw
pop ds
pop di
pop si
mov sp, bp
pop bp
ret
_copyptr ENDP
_TEXT ENDS
end
C0.ASM

Finally, startup code appears in C0.ASM, which has been extensively modified
from startup code provided by Borland with Turbo C. This, or similar, code forms
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part of every C program, and provides the linkage between the DOS command
line and the C program itself. Normal start-up code, however, does much more
than this stripped-down version: it parses the argument list, sets up pointers to
the environment, and arranges things so that the signal() library functions can
operate.

Since our program has no need for any of these actions, our C0.ASM module
omits them. What's left just determines the DOS version in use, saving it in a pair
of global variables, and trims the RAM used by the program down to the mini-
mum. Then the module calls main(), PUSHes the returned value onto the stack,
and calls exit(). Actually, if the program succeeds in loading a device driver, it
will never return from main().

NAME cO
;L] L1
H CO0.ASM -- Start Up Code |
; based on Turbo-C startup code, extensively modified |
;L1 -C1

_TEXT SEGMENT BYTE PUBLIC 'CODE’

_TEXT ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS

_BSS SEGMENT WORD PUBLIC 'BSS'
_BSS ENDS

DGROUP GROUP  _TEXT, _DATA, _BSS
; External References

EXTRN _main : NEAR
EXTRN _exit : NEAR

EXTRN __stklen : WORD
EXTRN __ _heaplen : WORD
PSPHigh equ 00002h
PSPEnv equ 0002ch

MINSTACK equ 128 ; minimal stack size in words
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-
r

At the start, DS, ES, and SS are all equal to CS

2 * */
A Start Up Code */
A —-—%/
_TEXT SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:_TEXT, DS:DGROUP
ORG 100h
STARTX PROC NEAR
mov dx, cs ; DX = GROUP Segment address
mov DGROUP®, dx
mov ah, 30h ; get DOS version
int 21h
mov bp, ds:CPSPHighl; BP = Highest Memory Segment Addr
mov word ptr __heaptop, bp
mov bx, ds:LPSPEnv] ; BX = Environment Segment address
mov __version, ax ; Keep major and minor version number
mov __Psp, es ; Keep Program Segment Prefix address
; Determine the amount of memory that we need to keep
mov dx, ds ; DX = GROUP Segment address
sub bp, dx ; BP = remaining size in paragraphs
mov di, __stklen ; DI = Requested stack size
;
; Make sure that the requested stack size is at lLeast MINSTACK words.
;
cmp di, 2*MINSTACK ; requested stack big enough ?
jae AskedStackOK ; yYes, use it
mov . di, 2*MINSTACK ; no, wuse minimal value
mov __stklen, di ; override requested stack size
AskedStackOK:
add di, offset DGROUP: edata
jb InitFailed ; DATA segment can NOT be > 64 Kbytes
add di, __heaplen
jb InitFailed ; DATA segment can NOT be > 64 Kbytes
mov cl, &4
shr di, cl ; $3% Do not destroy CL $$$
inc di ; DI = DS size in paragraphs
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cmp
jnb

; AlLL

InitFailed:
jmp

; Set

TooMuchRAM:
mov
shl
add
mov
mov

Set

N N N

cli
mov
mov
sti

mov
add
shr
add
mov

Ne Na N

xor
mov
mov
mov
sub
rep

N,

Ns Na

call
push
call

bp,

di

TooMuchRAM ; Enough to run the program

initialization errors arrive here

near ptr _abort

heap base and pointer

the

bx,
di,
bx,

di ; BX = total paragraphs in DGROUP
cl ; 388 CX is still equal to &4 $$%
dx ; BX = seg adr past DGROUP

__heapbase, bx
_brklvl, bx

program stack down into RAM that will be kept.

ss, dx ; DGROUP

sp, di ; top of (reduced) program area
bx,__heaplen ; set up heap top pointer

bx,15

bx,cl ; length in paragraphs
bx,___heapbase

__heaptop, bx

ax,
es,
di,
cX,
cx,

Clear uninitialized data area to zeroes

ax
cs:DGROUPQ

offset DGROUP: bdata
offset DGROUP: edata
di

stosb

exit(main());

_main ; the real C program

ax

_exit ; part of the C program too
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N,

_exit()
Restore interrupt vector taken during startup.
Exit to DOS.

Ns N

Ns

N

PUBLIC __exit

__exit PROC NEAR
push ss
pop ds
; Exit to DOS
ExitToDOS:
mov bp,sp
mov ah,4Ch
mov al ,Cbp+21]
int 21h ; Exit to DOS
exit ENDP

STARTX ENDP

;L1 -1
H . Miscellaneous functions |
;01——- L1
ErrorDisplay PROC NEAR

mov ah, 040h

mov bx, 2 ; stderr device

int 021h

ret

ErrorDisplay ENDP

PUBLIC _abort

_abort PROC NEAR

mov cx, lLgth_abortMséG

mov dx, offset DGROUP: abortMsG
MsgExit3 Label near

push ss

pop ds

call ErrorDisplay
CallExit3 Label near

mov ax, 3

push ax

call _exit ; _exit(3);
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_abort ENDP

; The DGROUP@ variable is used to reload DS with DGROUP

PUBLIC DGROUPa

DGROUP@ dw

_TEXT ENDS

H Start Up Data Area I
;[J -1

_DATA SEGMENT WORD PUBLIC 'DATA'

abortMsG db

Lgth_abortMsG equ

Ne

Ne N

PUBLIC __psp

'Quitting program...', 13, 10
$ - abortMsG

Miscellaneous variables

PUBLIC __version
PUBLIC __osmajor
PUBLIC _ osminor

__psp dw

__version Label

__osmajor db
__osminor db

0
word
0
0

; Memory management variables

PUBLIC __ heapbase
PUBLIC brklvl
PUBLIC heaptop

PUBLIC
PUBLIC
PUBLIC

__ heapbase dw
___brklvl dw
___ heaptop dw
__heapbase dw

heapbase

heaptop

DGROUP:edata
DGROUP:edata
DGROUP:edata
0
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__brklvl dw 0
__heaptop dw 0
_DATA ENDS

_BSS SEGMENT WORD PUBLIC 'BSS'

bdata Label byte

edata Label byte ; mark top of used area
_BSS ENDS
END STARTX

Make File, Plus a Brief Digression on Not Patching EXE2BIN

Since this sample program includes two assembly language modules in addition
to the C source, a MAKEFILE greatly simplifies its creation. Here’s one for use
with Borland’s MAKE utility:

# makefile for DEVLOD.COM - last revised 05/23/90 - jk
# can substitute other assemblers for TASM

c0.o0bj : cO.asm
tasm c0 /t/mx/la;

movup.obj: movup.asm
tasm movup /t/mx/la;

devlod.obj: devlod.c
tcc -c -ms devlod

devlod.com: deviod.obj c0.obj movup.obj
tlink c0 movup devlod /c/m,devlod
if exist devlod.com del devlod.com
exe2bin devlod.exe devlod.com
del devlod.exe

Ah, EXE2BIN: You may have some trouble here. Because Microsoft has for
some time been trying to move developers away from the binary image .COM
file format, and towards the more hierarchical .EXE file format, it has been diffi-
cult to find copies of the EXE2BIN utility, which attempts to convert an .EXE into
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a flat binary image. Once distributed with DOS itself, EXE2BIN now comes only
with the DOS Technical Reference.

Even if you do have a copy of EXE2BIN, you may run into the problem that it
is needlessly very strict about the DOS version number. If you have EXE2BIN for
DOS 3.0 and are running under DOS 3.3, for example, EXE2BIN will quit with an
"Incorrect DOS Version" error message.

What to do? Several PC- and DOS-oriented magazines have published
patches for EXE2BIN, showing how you can alter your personal copy so that it
tests for a more conveninent DOS version number. This practice is extremely
popular with sophisticated end-users (for example, the mammoth book PC Maga-
zine DOS Power Tools contains patches for EXE2BIN and other DOS utilities).

However, the reader may have noticed that we have said next to nothing
about patching DOS in this book. It is almost never necessary to patch DOS or
the DOS utilities. If you have a copy of EXE2BIN.EXE that thinks it needs to run
under DOS 3.0, you really don’t need to smack the executable so that it will run
under DOS 3.3. Instead, all you need is a tiny shell that briefly takes over the
DOS Get Version Number function (INT 21h Function 30h) so that it temporarily
returns a more convenient version number. Such a program uses only supported,
documented DOS interfaces (particularly the supported ability to hook INT 21h
itself). This is one area where you definitely don’t need underhanded tricks.

The following short program, DOSVER.C, takes over INT 21h, altering the re-
turn value from Function 30h according to what you specify on the command
line. It then spawns a single program. When that program calls INT 21h Function
30h, it will actually be calling the INT 21h handler in DOSVER. When the
spawned program exits, DOSVER sets back the INT 21h interrupt vector, and re-
turns to DOS:

/*
DOSVER.C -- set different DOS version numbers

an alternate to patching programs such as EXE2BIN
*/

#include <stdlib.h>
#include <stdio.h>
#include <process.h>
#include <dos.h>
#pragma pack(1)

void (interrupt far *old)();
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unsigned dosver, old_bx, old_cx;

typedef struct {
unsigned es,ds,di,si,bp,sp,bx,dx,cx,ax,ip,cs,flags;
} REG_PARAMS;

void interrupt far dos(REG_PARAMS r)

if ((r.ax >> 8) == 0x30)

dosver;
old_bx;
old_cx;

_chain_intr(old);

{
{
r.ax
r.bx
r.cx
}
else
}

void fail(cha
main(int argc
{

int major

if (argc <

r

’

’

*s) { puts(s); exit(1); }
char *argv[1)

minor;

4)

fail("usage: dosver <major> <minor> <command...>\n\
example: dosver 3 31 exe2bin devlod.exe devlod.com");

if (! (major = atoi(argvi11)))
fail("bad version number");

if ((minor

= atoi(argvl[21)) < 10

minor *= 10;
(minor << 8) + major;

dosver =

_asm mov
_asm int
_asm mov

_asm mov

ax, 3000h
21h
old_cx, cx
old_bx, bx

old = _dos_getvect(0x21);
_dos_setvect(0x21, dos);
spawnvp(P_WAIT, argv[31, &argvL[31);
_dos_setvect(0x21, old);

return 0;

/*

/*

/*
/*
/*
/*

e.g. 3.1 to 3.10 */

OEM, serial# */

save INT 21h */
hook INT 21h */
run command */
unhook INT 21h */

If you fail to produce DEVLOD.COM with the MAKE file shown earlier, and
EXE2BIN version checking is the culprit, you can substitute something like the
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following line (for "3 0," substitute the DOS version that your copy of EXE2BIN
thinks it needs):

dosver 3 0 exe2bin devlod.exe devlod.com

Of course, you can use DOSVER with programs other than EXE2BIN. Appar-
ently so many programs get their DOS version number checking wrong that the
next version of DOS will come with a utility, similar to DOSVER, that will let
users set the DOS version number on an application-by-application basis: yuk!

How Well Does DEVLOD Work?

A fitting conclusion to this chapter is to use some of the utilities developed ear-
lier, MEM and DEYV, to see what your system looks like after you've loaded up a
large number of device drivers with DEVLOD:

C:\UNDOC\KYLE>devlod \dos\smartdrv.sys 256 /a
Microsoft SMARTDrive Disk Cache version 3.03
Cache size: 256K in Expanded Memory
Room for 30 tracks of 17 sectors each
Minimum cache size will be 0K

C:\UNDOC\KYLE>devlod \dos\ramdrive.sys
Microsoft RAMDrive version 3.04 virtual disk D:
Disk size: 64k
Sector size: 512 bytes
Allocation unit: 1 sectors
Directory entries: 64

C:\UNDOC\KYLE>devlod \dos\vdisk.sys
VDISK Version 3.2 virtual disk E:
Buffer size adjusted
Sector size adjusted
Directory entries adjusted

Buffer size: 64 KB
Sector size: 128
Directory entries: 64

C:\UNDOC\KYLE>devlod \dos\ansi.sys

C:\UNDOC\KYLE>mem

Seg Owner Size Env

09F3 0008 00F4 ¢ 3904) config [15 2F 4B 67 1

OAES8 0AE9 0003 ¢ 3376) 0BC1 c:\dos33\command.com [22 23 24 2E 1
0BBC 0000 0003 ¢( 48) free
0BCO 0AE9 0019 ( 400)
0BDA 0AE9 0004 ¢ 64)
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0BDF 3074 000D
0BED 0000 0000
OBEE OBEF 0367 13936) OBEO \msc\bin\smartdrv.sys 256 /a [13 19 1
0F56 0F57 1059 66960) O0BEO \msc\bin\ramdrive.sys L[F1 FA 1

« 208
(
(
(
1FBO 1FB1 104C ( 66752) OBEO \dos33\vdisk.sys
(
(
(

(1)) free

2FFD 2FFE 0075 1872) OBEO \dos33\ansi.sys [1B 29 1
3073 3074 1218 ( 74112) OBEO C:\UNDOC\KYLE\MEM.EXE [00 1
428C 0000 7573 (481072) free [30 F8 1

C:\UNDOC\KYLE>dev
NUL

CON

Block: 1 unit(s)
Block: 1 unit(s)
SMARTAAR
QEMM386%
EMMXXXX0

CON

AUX

PRN

CLOCKS

Block: 3 unit(s)
comM1

LPT1

LPT2

LPT3

coM2

COM3

COM4

The output from MEM shows quite clearly that your device drivers really are
resident in memory. Meanwhile, the output from DEV shows that they really are
linked into the DOS device chain (for example, "SMARTAAR" is
SMARTDRV.SYS). Of course, the real test is that, after loading SMARTDRYV,
RAMDRIVE, VDISK, and ANSL.SYS, my disk accesses went a bit faster (because
of the new 256KB SMARTDRYV disk cache in expanded memory), I had some ad-
ditonal drives (created by RAMDRIVE and VDISK), and programs that assume
the presence of ANSLSYS (for shame!) suddenly started producing reasonable
output. And, of course, I had a lot less memory.

One other interesting item in the MEM output is the environment segment
number displayed for the four drivers. Recall that, in order to save some mem-
ory, DEVLOD releases its environment. The MEM program correctly detects that
the OBEOh environment segment still shown in the PSP for each resident instance
of DEVLOD, does not in fact belong to them. The name "DEVLOD" does not pre-
cede the names of the drivers, because, as noted earlier in the discussion of MEM,
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program names (which only became available in DOS 3+) are located in the envi-
ronment segment, not in the PSP. Each instance of DEVLOD has jettisoned its en-
vironment, so its program name is gone too.

Who then does it belong to? Actually, it belongs to MEM.EXE itself. Since
each instance of DEVLOD has released its environment, when MEM comes along
there is a nice environment-sized block of free memory just waiting to be used,
and MEM uses this block of memory for its environment. The reason 0BEQ shows
up as an environment, not only for MEM.EXE, but for each instance of DEVLOD
as well, is that when DEVLOD releases the environment, it doesn’t do anything
to the environment segment address at offset 2Ch in its PSP. Probably DEVLOD
(and any other program that frees its environment) ought to zero out this address.

It should be noted that some device drivers appear not to be properly loaded
by DEVLOD. These include some memory managers and drivers that use ex-
tended memory. For example, Microsoft’s XMS driver HIMEM.SYS often crashes
the system if you attempt to load it with DEVLOD. Furthermore, while DEVLOD
VDISK.SYS definitely works in that a valid RAM disk is created, other programs
that check for the presence of VDISK (such as protected-mode DOS extenders)
often fail mysteriously when VDISK has been loaded in this unusual fashion. In
the MEM display, note that the INT 19h vector is not pointing at VDISK.SYS as it
should.

For another perspective on loading drivers, see the article by Giles Todd, "In-
stalling MS-DOS Device Drivers from the Command Line," published in the Brit-
ish magazine .EXE (August, 1989). For background on DOS device drivers in
general, two excellent books are the classic Writing MS-DOS Device Drivers by
Robert S. Lai (Reading, MA: Addison-Wesley, 1987), and the recent Writing DOS
Device Drivers in C by Phillip M. Adams and Clovis L. Tondo (Englewood Cliffs,
NJ: Prentice Hall, 1990).

Many of the complexities of loading block devices—in particular, the impor-
tance of updating the CDS—will become clear in the next chapter, where we dis-
cuss the DOS file system.



Chapter 4

The DOS File System and Network Redirector

Jim Kyle, David Maxey, and Andrew Schulman

The file system is a truly irreplaceable part of MS-DOS. While most successful PC
software bypasses many of DOS’s services, and goes directly to the hardware to
produce screen output or to read the keyboard, when it comes to reading and
writing files, few programs spurn the DOS file system.

Actually, there are two DOS file systems. One, known as the FAT file system
from the name of its key data structure (the File Allocation Table), is the logical
structure that DOS uses for physical media such as floppy disks and hard drives.
The FAT is probably the world’s best-known DOS internal data structure, having
entered popular culture via Peter Norton’s book Inside the IBM PC. Along with
the FAT, the other key underpinning of this file system is a structure called the
Drive Parameter Block (DPB), which we will be discussing in detail later in this
chapter.

The other file system, introduced in DOS 3.1, is known as the MS-DOS net-
work redirector. It is used for mapping a DOS directory hierarchy onto "alien"
(non-FAT) systems such as network file servers and CD-ROM devices, and is
known as the MS-DOS network redirector. Drives created with the network
redirector do not have FATs or DPBs. While networks are a tremendously impor-
tant part of the DOS file system (and one that is frequently ignored in discussions
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of DOS internals), the network redirector is somewhat misnamed: it isn’t just for
networks anymore.

All drives, whether FAT-based or non-FAT, have entries in another key DOS
data structure called the Current Directory Structure (CDS) table. (The only im-
portant exceptions to this statement are drives created under Novell NetWare,
which bypasses the CDS.) Many programs in this chapter manipulate the CDS in
some way.

In this chapter, you will read about DOS drives, directories, and files and, like
most such discussions, we will begin with physical magnetic media and work
our way to the directory structure seen by a typical DOS user. However, this
chapter takes a somewhat different slant, because having shown how DOS ap-
plies a logical ordering to physical media, it then proceeds to show how this
same logical ordering can be applied to things other than hard drives and floppy
disks. In other words, any file system is a fiction, and this chapter emphasizes
how generic the DOS notion of a drive is: it isn’t just for physical media (or even
RAM disks) anymore.

This chapter contains an enormous number of sample programs, giving it
more of a "cookbook" approach than other parts of the book. The chapter’s piéce
de résistance is PHANTOM.PAS, a complete example of using the DOS network
redirector interface to create a new drive. Other code in this chapter includes rou-
tines to:

Free orphaned file handles

Derive a filename or attribute from a file handle

Use wildcards in the DOS handle-based Rename File function
Increase the number of program file handles before DOS 3.3
Determine the FILES= and BUFFERS= values

Set or turn off drive letters

Walk the Current Directory Structure (CDS)

Walk the System File Table (SFT)

Get the "true" (canonical) name of a file

What ties all this together is an emphasis on the logical rather than the physical
aspects of the DOS file system. But first, take a quick look at the physical aspects.
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The Physical Disk: How DOS Sees It

The starting point for the FAT file system is the physical disk and the drive mech-
anism itself. These marvels of mechanical precision convert a stream of informa-
tion represented as a sequence of bits into a corresponding sequence of magnetic
flux reversals that are placed at a known location on the surface of the disk.

Entire volumes could be written on the methods by which this is done, but
they would be of interest primarily to disk drive designers. As programmers, we
are more interested in what has to be done to translate program-oriented descrip-
tions of data into the form required by the actual disk hardware.

These translations occur in several layers. Our programs organize data into a
stream of bytes, and store these streams into files which are later read back as
streams. DOS translates our references to files into references to physical drive lo-
cations such as "drive" and "cluster,” and then at a lower level converts the "clus-
ter" reference into the more hardware-oriented values of "track," "head,” and
"sector" for transmission to the specified drive. The BIOS and the drive controller
then translate those values into sequences of pulses that select the addressed
drive, position the actuator to the desired cylinder of tracks, select the specified
head, and begin reading from it when the correct sector is identified.

A concrete look at these multiple layers is provided in chapter 8 of this book,
where the INTRSPY utility is used to examine in detail the process of formatting
a floppy disk.

Surfaces, Tracks, and Sectors |

One starting point for gaining an understanding of the DOS file system is the
surface of the magnetic medium itself, as exemplified by the familiar floppy disk-
ette (the hard disk operates in much the same way, but with much greater preci-
sion).

In the earliest days of MS-DOS, the original IBM PC came equipped with a
single-head, single-sided disk drive that had a storage capacity of 160KB per
disk. The head made contact with the underside of the diskette, which was
placed into the drive in normal operating position, that is, on the side opposite to
that on which the manufacturer’s label was affixed. Balancing the pressure of the
head against the lower side of the diskette was a felt pressure pad that rubbed
against the upper surface.

On the single active surface, the head wrote and later read back information
in one of 40 concentric tracks. The head actuator mechanism was moved in or out
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to position the head accurately over the desired track. The track nearest the outer
edge of the disk was designated as Track 00, and that nearest the hub hole as
Track 39.

A small "index" hole near the large hub hole served as a reference point to de-
termine disk rotation. A sensor generated an index pulse each time this hole
passed over it, and since the disk rotated at a constant speed of 300 RPM (200
milliseconds per revolution), the associated controller card could measure off
"sectors" around the track in which to store data. These first drives contained
eight sectors per track, each sector with room for 512 bytes storage. Between sec-
tors, an "address mark" and some special identification codes helped the control-
ler verify that all was well with the drive.

Thus, each track contained 8*512 bytes of data, or 4,096 bytes, and the 40
tracks held a total of 163,840 bytes (which was rounded down in speech and writ-
ings to "160KB" since 1KB=1,024 bytes).

Before long, the single-sided drive was supplanted by a two-headed model
that could read and write on both surfaces, immediately doubling the storage ca-
pacity to 320KB per disk. Not long after that (but before the introduction of DOS
2.0), an extra sector was added to the format, bringing the storage capacity up to
the 360KB we know today.

Later, high-density 1.2MB drives, rotating at 360 RPM and holding 80 rather
than 40 tracks, came along, but the basic principles hold true for them too, as for
the 3.5-inch units and today’s huge hard drives.

In all cases, the drive itself can only identify storage locations in terms of
which head is to be used, which track (or cylinder, an alternative term) the head
is to be positioned over, and which sector of that track is to be dealt with
(whether reading from or writing to it).

Humans, however, have difficulty remembering a large collection of numeric
values. Instead, we like to name things. It seems much simpler to remember that
this text is stored in a file named "CHAP4.DOC" than that it is located at sector
14, cylinder 93, head 5, of drive 3.

That's part of what the DOS file system is all about: it permits us to deal with
our programs and data as named files, and turns over to the computer the job of
translating these names into the sequence of numeric data that the hardware re-
quires. Since computers excel at dealing with numeric information, it is just an-
other example of letting the computer do what it does best, so that the human
can do likewise.
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Another aspect of the DOS file system permits this type of mapping to be ex-
tended to non-storage devices. RAM disks, for example, map a directory/file
structure onto fast, volatile memory. The simple I/O redirection facility provided
by DOS allows you to treat the screen and keyboard (CON), serial ports (COMXx)
and parallel ports (LPTx) as files. "Drives" created with the DOS network redirec-
tor allow a file-system structure to be mapped onto packets that are sent over the
network to another machine, possibly running a completely different file system.
The file system, in other words, not only simplifies access to hardware, but also
provides a unified form of access to otherwise disparate devices.

Logical Sector Numbers and The Cluster Concept

The first step toward simplifying the head /track/sector number sequence was to
recognize that there is an alternate way of uniquely specifying every sector on a
disk unit, with a single number rather than with three. The way it’s done is to as-
sign the sectors unique numbers in logical sequence. That is, the first sector of the
first track under the first head (which in the fully hardware-oriented scheme
would be H=0 T=00 S=0), becomes Logical Sector Number (LSN) 000. The rest of
the way around that first track, on the same surface, follows in sequence, so there
the LSN and the plain sector number are the same. Then, however, the LSN
jumps to the other surface of the disk. For a 360KB diskette, with nine sectors per
track on both sides, LSN 10 would be H=1 T=00 S=0. After all sectors on this sec-
ond side are accounted for, the numbering returns H=0 T=01 S=0, which becomes
LSN 19.

For other disk capacities, the exact transition points differ, but the essential
point is that you can always translate a head/track/sector reference into a
unique LSN—if you know how many sectors are in each track, and how many
heads the disk includes. The reverse translation can be readily performed as well.

For high capacity storage units (which may contain hundreds of thousands of
512-byte sectors), the LSN is a more accurate address than DOS really needs in
order to allocate disk space, and to access files. Thus, the "cluster" concept came
into being.

This was actually inherited from the older CP/M operating system, though a
different word ("extent") was used to describe it there. A cluster is simply a group
of adjacent sectors that are always assigned as a unit. If a file needs only one byte,
it gets a whole cluster anyway. This serves a number of purposes.
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One is that it greatly reduces DOS overhead in allocating and freeing disk
space, since these actions are done only a fraction as frequently as they would be
if space were allocated directly in sectors. It also serves to speed up disk access
by assuring that a file does not become scattered all over the drive. Even if no
two clusters in the file are adjacent to each other, at least within each cluster all
the sectors are together. And since "seek time" is a major part of disk 1/O delay,
this improves overall system performance.

One obvious disadvantage of clusters is that (when there is more than one
sector per cluster) they increase the amount of disk space occupied by tiny files.
For example, if there are 512 bytes/sector, and eight sectors/cluster, then the
minimum space allocated to a file is 4KB, even for a file whose size in a directory
listing is one byte. Not exactly a peanut cluster!

So how big is a cluster? The answer is, "it depends.” Some RAMdisk pro-
grams (such as Microsoft's RAMDRIVE.SYS) actually use 1-sector clusters for
space economy. Most diskette formats use a cluster of only two sectors. Hard
disks for the most part use either 4-sector or 8-sector clusters. Prior to DOS 3.0,
only the 8-sector cluster was used; one of the major reasons many users to up-
grade was the opportunity to reduce waste space on their disks by changing to
the newer 4-sector arrangement.

To tell which clusters are used by files and which are available for assign-
ment, DOS uses a File Allocation Table or FAT. Naturally, this structure is the
backbone of the FAT file system, and if it is damaged, all data on the affected disk
unit may be lost.

The FAT Structure

The FAT is always located near the front of each disk volume, immediately after
the Boot Record. It may begin at what would normally be a cluster boundary, or
at the first sector boundary after the Boot Record (which is always at LSN 000).
Two copies of the FAT are normally maintained by DOS, but no real reason for
doing so has been determined; when disaster strikes one copy, the other usually
dies also!

The FAT is arranged as an array of numeric values, but unlike most other
numeric arrays in the MS-DOS world, each element in this array may be 12 bits
long rather than 8 or 16.

Prior to DOS 3.0, all FAT entries were 12 bits in size; then an optional 16-bit
size was introduced, together with a flag bit in the format records (BIOS Parame-
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ter Block [BPB] and Drive Parameter Block [DPB], both of which are described in
more detail in the appendix, and later in this chapter) to tell which size is in use
for any specific volume.

Note that, even with the huge volume sizes permitted by DOS 4.x and up, the
FAT element size never exceeds 16 bits (despite occasional claims to the con-
trary). What does increase as the volume size grows is the cluster size, and the LSN.

Each element in the FAT, whether 12 or 16 bits long, corresponds to a single
cluster of the drive’s storage space. The first two elements, which would refer to
cluster 0 and cluster 1, instead indicate the drive’s type. The first cluster number
actually used is always 2.

Cluster 2 is the first one available for data; since both copies of the FAT and
the volume’s root directory area precede this space, the LSN for Cluster 2 must
be calculated by DOS from the values provided in the DPB. From that point on,
the LSN at which any cluster starts can be determined by multiplying the cluster
number (minus 2) times the number of sectors per cluster, and adding the known
LSN for Cluster 2. That's how DOS translates cluster numbers taken from direc-
tory entries into LSN's required by the BIOS routines that actually deal with the
disk. But we're getting ahead of ourselves: DPBs are explained shortly.

The value contained in each FAT element tells whether the corresponding
cluster is in use or not, and if it is, gives essential information about the file that is
using it. A zero indicates that the cluster is free and can be allocated. A value of 1
or 2 never occurs. The last eight possible values (FF8h-FFFh for 12-bit FATSs, or
FFF8h-FFFFh for 16-bit FATs) indicate that this cluster is the last one being used
by its file. Any other value indicates that the file using this cluster is continued in
the cluster having that value.

Thus, the FAT forms a linked list of clusters that threads the pieces of each
file together, in addition to indicating where space is available. All you have to do
is determine where the very first cluster for any specified file is located, and you
will be able to access everything in it. That’s done by the directory structure, to
which we now turn.

Directory Structure

Every disk volume (that is, each diskette in the case of drives with removeable
media, or each partition in the case of those in which the media cannot be re-
moved) has a root directory which is the starting point for translating human-ori-
ented file names into system-oriented cluster numbers.



160 UNDOCUMENTED DOS

The root directory immediately follows the FAT and precedes the data stor-
age area. Its size is established when the disk is formatted and, unlike non-root
directories (which are implemented as files), can never change. A typical size for
a 360KB floppy is 112 entries; for a hard disk, it's usually larger: 512 entries is
typical. ‘

Each entry in a directory, whether in the root or in a subdirectory that is
reached by going through the root, consists of a 32-byte structure that contains
the following information:

#pragma pack(1)

struct _diritem { :
char filenamel8]; /* uppercase, blank padded */

char ext[3]; /* uppercase, blank padded */
unsigned char attr; /* see text for details */
char unused[101;

unsigned ftime;

unsigned fdate;

unsigned clstr;

unsigned long fsize;

}; '

In this structure, the first byte of the filename field has special significance, as
does the attr byte. If the first byte of the filename is E5h, that indicates the entry
refers to a file which has been ERASEd from the volume, and is free to be reused
for a new file or directory entry (or possibly UNerased if you get to it in time!). If
the first byte is 05h, that indicates the actual first byte value should be E5h, which
is a valid character for use in a filename. Finally, if the first byte is 00, that indi-
cates that neither this entry, nor any subsequent one in the directory, has ever
been used. This permits searches to stop as soon as a 00 byte is found. (It also
means that a stray 00 byte can make it appear as if not just one bad entry, but also
all the entries following it, have disappeared from your disk.)

The attr byte indicates whether the entry refers to a file, to a subdirectory
(10h), or is a volume label (08h), and, if it’s a file, provides other information as
well. The ftime and fdate words encode the time and date at which the file was
last modified, and the fsize field indicates effective file size. Use of all these items
is documented; DOS functions exist to give you their values once you access the
file.



Chapter 4: The DOS File System and Network Redirector 161

The undocumented item here, and the one we’re most interested in at the
moment, is the word identified as clstr; this is the cluster number for the first
cluster used by the file. That's what DOS uses to translate the name to a physical
address. Later in this chapter, when we trace through the process that DOS goes
through in opening a file, we’ll deal with clstr again.

FAKEFRMT: Initializing the FAT and Root Directory

Before going any deeper into the DOS file system’s secrets, we can use what we
already know to create a simple utility that will quickly erase floppy disks. It
overwrites the FAT with all zeroes starting at the entry for Cluster 2 (Byte 2 of the
sector for a 12-bit FAT, or byte 4 for the 16-bit version), and then writes 00 bytes
over the entire root directory. Also, it rewrites the boot sector, just in case the
diskette had been "bootable" before, to indicate that it is not now a system disk-
ette.

The program, FAKEFRMT.ASM, gives the same end result you would obtain
by completely reformatting the diskette, but does the job much more rapidly. It
can be assembled using either MASM or TASM, then LINKed and converted to a
COM file.

The program is written to deal with only a single diskette size (5.25-inch
360KB), and only one drive (A:), to keep it as simple as possible. The comments
give alternate figures for using other diskette sizes or the B: drive.

While the source code is extremely simple, the final program’s executable
size (6KB) may shock you; that’s because it includes the zeroes for all the sectors
it writes. By letting the assembler calculate how many bytes are needed, we free
ourselves from the chance of small typing errors:

title FAKEFRMT - fake format program

CODE segment
assume c¢s:CODE, ds:CODE

org 100h
start: mov dx,offset AnyKey
mov ah,9
int 21h
mov ax,0Cc08h ; wait for user keystroke
int 21h

xor al,3 ; test for CTRL-C (quit)
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jz

mov
xor
mov

mov
int
pop
jnc
mov
mov
int
Fini: mov
int
AnyKey db
ErrMsg db
bootsec:

jmp
nop

Fini

bx,offset bootse
dx,dx

cx,12

al,0

26h

bx

start

dx,offset ErrMsg
ah,9

21h

ah,4Ch

21h

c

Ns N N

N

N Ne No NG

Ne

logical sector number

number of full sectors, 360K
change to 14 for 3.5-in 720K,
29 for 1.2Meg, or 33 for 1.44M
drive code, 1 for B:

absolute sector write

flush leftover flags word

Loop unless error

terminate program

'Press any key (AC to stop)', ODh, OAh, '$'
'Error on Drive A', ODh, OAh, 'S$'

short bootsnd

; BIOS Parameter Block (BPB)

DiskName
BytesPerSect
ClusterSize
RsrvdSect
NbrFATs
RootDirSize
TotalSectors
MediaCode
SecPerFAT
SecPerTrack
NbrOfHeads
HiddenSects
NotUsed

bootsnd:
mov
cli
mov
mov
sti
mov
mov

bootloop:

db "FAKEFRMT'
dw 0200h

db 2

dw 1

db 2

dw 112

dw 720

db OFDh

dw 2

dw 9

dw 2

dd 0

db 11 dup (OO
ax,cs

ss,ax

sp,7C00h ;
ds ,ax

si,7C00h + msg

4

this will be the Boot Sector

must be exactly 8 chars

same for all diskettes

same for all diskettes

boot sec, same for all

same for all

same for 720K, 224 for 1.2/1.44
720K=1440, 1.2M=2400, 1.44=2880
720K=F9, 1.2M=F9, 1.44M=F0
720K=3, 1.2M=7, 1.44M=9

same for 720K, 1.2=15, 1.44=18
same for all

same for all

large sectors, etc.

Na N Ne N N Na N N NN

Ns Na N

; set up segment regs

Ne

Disable interrupts

where boot sec loads
Enable interrupts

start of message



Chapter 4: The DOS File System and Network Redirector 163

Lodsb

cmp al,0 ; at end yet?

je boothalt ; yes, lock things up

mov ah,0Eh ; no, send via BIOS code

mov bx,7

int 10h

jmp short bootloop ; and go back for next char
boothalt:

jmp short boothalt ; dynamic halt
msg equ $ - bootsec + 0 ; calc message start

db 'This is a DATA disk only;', ODh, OAh

db '"Insert system disk, press any key when '

db 'ready', 0ODh, OAh, O

org bootsec + 510 ; skip to end of sector

db 55h, 0AAh ; boot sector signature
fat1 db OFDh ; make this match MediaCode

db OFFh, OFFh

db 509 dup(0) - ; let assembler do the calc!

db 1*512 dup (0) ; 2*%512for 720K, 6*512 for 1.2M,

. ; or 8*%512 for 1.44 meg
fat2 db OFDh ; make this match MediaCode

db OFFh, OFFh

db 509 dup(0)

db 1*512 dup (0) ; 2*512for 720K, 6*512 for 1.2M,

; or 8*512 for 1.44 meg

rootdir db 7*512 dup (0) ; 720K same, 14*512 for others
CODE ends

end start

The program can be assembled, linked, and turned into a .COM file using the
following commands:

masm fakefrmt;

Link fakefrmt;

exe2bin fakefrmt.exe fakefrmt.com
del fakefrmt.exe
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As mentioned earlier, the program only formats 360KB floppies in drive A:.
Each time it displays the "Press any key" message, it’s ready to accept another
diskette for total erasure. Hit ~C to stop.

FAKEFRMT creates an image of the first 12 sectors of a freshly-formatted
diskette in memory, and then uses the documented DOS Absolute Sector Write
interrupt (INT 26h) to overwrite the first 12 sectors of any diskette in Drive A
with that image. To change it for use with 1.2MB 5.25-inch diskettes, or with
720KB or 1.44MB 3.5-inch units, change the numbers as indicated by the com-
ment lines, then reassemble and relink.

Notice how, wherever possible, calculation is left to the assembler. This tech-
nique permits easy changing of such things as FAT size or the length of the root
directory, and of the message written into each boot sector. (Note that
FAKEFRMT's message is friendlier than the default one on PC disks.)

The 40 bytes in the program starting at DiskName are the BIOS Parameter
Block (BPB); the values used are for the standard 360KB diskette, while the
names indicate the meanings for each item in the block, and comments indicate
the appropriate values for alternate disk sizes.

The List of Lists

Since the introduction of CONFIG.SYS with DOS version 2.0, a collection of
pointers has been maintained near the start of the DOS kernel’s data segment.
Since the existence of this collection of pointers has never been officially docu-
mented, it’s known by several names. Sometimes (for example, in Terry
Dettmann and Jim Kyle’s popular DOS Programmer’s Reference, 2nd edition) it is
called a "Configuration Variable Table" by analogy to minicomputer conventions,
but here it is called the List of Lists since that’s quite descriptive of what it actu-
ally is, and has a nice biblical ring to it as well. "List of Lists" is the name used
throughout this book.

The List of Lists is a central clearinghouse for virtually all of the undocu-
mented data concerning the DOS file system. In addition, it provides the start of
the Memory Control Block chain and the device driver chain, as already dis-
cussed in chapter 3. More than any other single structure, the List of Lists is the
key to reaching the undocumented areas of DOS. The following is a schematic
listing of just some of the structures that can be accessed via the List of Lists:
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DOS List of Lists
Utility functions
Memory Control Block (MCB)
Program Segment Prefix (PSP)
Environment segment
File handle table
DOS 4.x data segment subsegment control blocks
STACKS segments
Drive Parameter Block (DPB)
File Allocation Table (FAT)
System File Table (SFT)
Device driver chain
Disk buffers
Current Directory Structure (CDS)
Installable File System (IFS) record
FCB table
SHARE.EXE hooks
sharing record
lock record

There is a great deal of interconnection between these structures. For exam-
ple, SFT entries for block devices contain a pointer to the corresponding DPB—so
do disk buffers. One of the items contained in the DPB is a pointer to its corre-
sponding device driver. Meanwhile, the heads of both the DPB and device chains
are found directly in the List of Lists. Since the various undocumented structures
inside DOS are interwoven with each other so tightly, you'll have to take parts of
the process "in good faith" right now, without detailed explanation. That would
be true no matter which of the structures we looked at first.

How the List of Lists is Arranged

The layout of the List of Lists has changed, sometimes significantly, from one ver-
sion of DOS to another. Refer to the Appendix for full details. Here we emphasize
only those items in the list that deal either directly or indirectly with the File System.
Prior to the introduction of network support in DOS 3.1, this area of undocu-
mented DOS was notoriously unstable. However, once network support became
available, stability was forced onto these structures, since without it, network
software would not operate. Now variations between versions are (for the most
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part) minor, and variations from one OEM to another in the same version are
practically nonexistent. The structures reached via the List of Lists are possibly
the most reliable parts of all those in undocumented DOS.

As said countless times already in this book, a far pointer to the List of Lists
is returned by undocumented INT 21h Function 52h in ES:BX. In all versions to
date, the actual item addressed by ES:BX is a far pointer to the first Drive Param-
eter Block. We identify this location as LoL+0 in the following descriptions (with
LoL an unsigned char pointer, so that the offsets applied to it are always in
bytes).

While DOS 4 is not as important as DOS 3, it is more convenient to discuss
the DOS 4 List of Lists first, and then highlight the differences found in DOS 3. In
any case, DOS 5 internals should strongly resemble those in 4, and hopefully it
will be more successful than DOS 4 was, so knowledge of DOS 4 internals will
have lasting benefit.

Current (DOS 4+) ListLayout In DOS 4.0 and above, the important file system in-
formation kept in the List of Lists is arranged as follows:

s AtLoL-8 is a far (4-byte) pointer to the currently active disk buffer.

= At LoL+0 is a far pointer to the first Drive Parameter Block. Each DPB
links to the next one, forming a chain that can be used to access the DPB
for any drive actually present in the system. The DPBs can also be ac-
cessed via a far pointer located in the Current Directory Structure (CDS)
for the drive. Undocumented DOS function INT 21h Function 32h returns
a pointer to the DPB in DS:BX; if DL contains 0 when this function is
called, the DPB for the current drive will be found. If DL=1, that for Drive
A is located, and so forth. In addition, undocumented INT 21h Function
1Fh does the same thing but always returns the pointer for the default
drive (it sets DL to 0, then falls into the code for the more generic func-
tion). INT 21h Functions 32h and the DPB are quite important, and will
be discussed in more detail below.

m At LoL+4 is a far pointer to the list of System File Tables (SFTs). These
hold access information for files or devices that are accessed via handles.

s At LoL+10h is a word that contains the maximum bytes/sector of any
block device in the system. Each time a block device is iristalled, its sector
size is compared to this value, and, if larger, this value is replaced by the
new maximum value.



Chapter 4: The DOS File System and Network Redirector 167

At LoL+12h is a far pointer to disk buffer information. The nature of this
information varies depending on whether buffers are located in conven-
tional memory or in EMS (the "/X" option to the BUFFERS= command in
CONFIG.SYS).

At LoL+16h is a far pointer to the array of Current Directory Structures
(CDSs). Each drive in the system has its own CDS, which contains the
path and points to the DPB for that drive. This structure also contains at-
tribute bits that specify whether the drive exists or not, is modified by the
JOIN, ASSIGN, and SUBST commands, and if it’s a network drive. The
CDS will be discussed in great detail later in this chapter.

At LoL+1Ah is a far pointer to the system File Control Block (FCB) table.
Remember FCBs? This table exists to permit older programs that still use
FCBs instead of file handles to be used in a network situation; the FCBs in
this table have a structure identical to that of the SFT entries used with
handles. When a program uses FCBs, the necessary information is copied
from its internal FCB to any available system FCB in this table, and the
system FCB is actually used for all access. The notion of a "system FCB" is
something of an oxymoron.

At LoL+1Eh is a word that contains the number of protected FCBs (the y
in the FCBS=x,y statement in CONFIG.SYS). Since the number of system
FCBs is limited, while the number that may be required in a multitasking
environment is not, this parameter lets you specify how many of the sys-
tem FCBs must be protected against swapping when more system FCBs
are requested than are actually available.

At LoL+20h is a byte indicating the total number of block devices actu-
ally installed in the system.

At LoL+21h is a byte that contains the value set by the LASTDRIVE com-
mand in CONFIG.SYS (the default value is 5); this value may be larger
than the number of block devices actually installed, up to a maximum of
26 (LASTDRIVE=Z). Chapter 2 looked at this single byte in agonizing de-
tail.

At LoL+34h is a byte that shows the number of JOIN’ed drives.

At LoL+3Bh is a far pointer to the chain of IFS (installable file system)
drivers, if any are present. If the Microsoft CD-ROM Extensions
(MSCDEX) are loaded under DOS 4, for instance, this field will contain a
pointer to an MSCDEX device driver header such as HITACHI.SYS.
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m At LoL+3Fh is a word that contains the total number of buffers (the x in
the CONFIG.SYS BUFFERS x,y statement), rounded up to a multiple of
30 if the buffers are located in EMS. Following this at LoL+41h is a word
that contains the number of lookahead buffers (the y in BUFFERS x,y).

= Finally, at LoL+43h is a byte that identifies the boot drive (1=A:). DOS 4
was the first version of DOS that made available the drive letter from
which the system was booted. The boot drive is important knowledge for
install programs, or for any program that needs to find a user’s CON-
FIG.SYS or AUTOEXEC.BAT files.

Differences atDOS3 With DOS 3.x, two sets of List of Lists layouts were used.
The first existed only under the short-lived version 3.0; at version 3.1, when full
network support was made available, this was modified significantly. We discuss
the later version first (versions 3.1 through 3.3).

Sharing retry information was provided at LoL-0Ch and LoL-0Ah; the word
at LoL-0Ch indicates how many times to retry an operation in case of conflict,
and the word at LoL-0Ah indicates how long (in machine-dependent loops) to
wait between tries.

The far pointer at LoL+12h, which points only to buffer information in DOS
4+, points to the actual buffer chain in versions 3.1 through 3.3. As shown later in
this chapter, the value of BUFFERS= (available directory in 4+ but not in DOS 3)
can be computed by walking the buffer chain.

The only other significant change from the layout used in version 4 and
above is that none of the information at offsets above LoL+34h (the number of
JOIN’d drives) exists in version 3.

The differences at version 3.0 were more major. In fact, the similarity between
3.0 and later versions stops at LoL+10h. In DOS 3.0, that location contains a sin-
gle byte that indicated the number of block devices installed in the system (like
the byte at LoL+20h in later versions).

At LoL+11h in DOS 3.0 is the word indicating maximum sector size in bytes,
at LoL+13h the far pointer to the first disk buffer, and at LoL+17h the pointer to
the CDS array. The far pointer to the "system FCB" table is at LoL+22h, and the
number of protected FCBs is in the word at LoL+26h. No higher addresses are
used. Neither were any offsets lower than LoL-8 used.
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The Blind Alley: DOS2 In version 2.x, DOS didn’t do as much with the List of
Lists. The List began at LoL-2 with the pointer to the MCB chain; none of the
lower addresses found in later versions was used.

While the byte at LoL+10h, the word at LoL+11h, and the far pointer at
LoL+13h all had the same meaning as they did with DOS 3.0, no CDS existed in
DOS 2. Instead, the information contained in later versions in this structure (in-
cluding the current directory path string) was stored in the DPB for each drive.

In addition, it’s possible that any specific version of DOS in the 2.x range may
vary significantly from the layout described here; when these versions were re-
leased, they were distributed only through OEM channels, and each OEM was
free to modify these data structures in any way. Since none of the structures were
officially documented, several OEMs did modify them. For that reason, many of
our file system utilities described in this chapter are not designed to work at all
with versions earlier than 3.0. That’s one more reason to upgrade.

When the List is Built

As you can tell from the descriptions of the information it contains, the List of
Lists is a dynamic structure that reflects any changes made to CONFIG.SYS, and
even by using DOS commands that change the identity of various drives or di-
rectories while the system is running. For that reason, it is built "on the fly" each
time you boot your system.

10.SYS Initialization Code  The first thing that happens when you boot your system
is that the computer’s "bootstrap ROM" reads the "boot sector" from the floppy
disk in Drive A, if one is present. If not, it reads the boot sector from the hard
drive if possible. If neither of these can be done, the system proclaims that no
boot device is available and waits for you to provide one.

When the boot sector is read into RAM, at absolute address 07C00h, the code
it contains then locates the first DOS hidden file (either IO.SYS or IBMBIO.COM)
which always starts at Cluster 2 of the boot disk, loads it into RAM, and then
transfers control to that file’s initialization code.

This initialization code does many things: moves itself to the top of available
memory, loads and initializes the other DOS hidden file (Which sets up the DOS
kernel for operation), processes the CONFIG.SYS file if one is present, uses the
information contained there to build the List of Lists, and finally dispatches the
primary shell, which displays the familiar "DOS prompt."
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While all of these actions are undocumented, and most of them are interest-
ing, here we should concentrate on those things that set up the List of Lists, and
particularly the File System, for operation. The starting point is the processing of
CONFIG.SYS, which makes any installable device drivers part of the DOS kernel,
and possibly modifies certain values (for example, LASTDRIVE) that control how
the List of Lists is built. ,

But what happens if no CONFIG.SYS file exists? Obviously no drivers will be
installed, but the values that control the building of the List of Lists are assembled
into I0.SYS with default values that will take effect anyway. Thus the FILES=
value will be set to 8, LASTDRIVE= will be set to 5, an appropriate BUFFERS=
value will be calculated from memory size and drive data, a system FCBS= value
of 4,0 will take effect, and the primary shell will default to C:\COMMAND.COM
/P (if C: is the boot drive).

As CONFIG.SYS is processed, any of these commands encountered will over-
write the default values. When the entire file has been parsed, with all commands
executed or passed over with error messages, the List of Lists is then built from
the values which then exist in DOS’s CONFIG control variables. Once the list has
been built, the control variables (along with the rest of the now-surplus initializa-
tion code) are discarded.

Drive Parameter Blocks  For every block device (disk drive) in the system, there is
a Drive Parameter Block (DPB). These 32-byte blocks contain the information that
DOS uses to convert cluster numbers into Logical Sector Numbers for passing to
the BIOS, and also associate the device driver for that device with its assigned
drive letter. The DPBs are described in detail in the Appendix, in connection with
INT 21h Function 32h.

The DPB for each drive is created immediately after DOS calls the driver’s
Initialize routines, during the boot process (recall in chapter 3 how the DEVLOD
program loaded block device drivers: it was just mimicking DOS’s operation).
Those for the drivers built into IO.SYS or IBMBIO.COM (normally floppies A:
and B: together with hard disk C:) are created when IO.SYS initializes itself be-
fore processing CONFIG.SYS; those for all other block devices are created as one
of the final steps of installing the device’s driver, while CONFIG.SYS is being
processed.

To create the DPB, the code that installs drivers uses undocumented DOS
function INT 21h Function 53h, passing it a far pointer to the drive’s BIOS Pa-
rameter Block (BPB). A copy of that block normally is built into the device driver
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itself, and the pointer is part of the information returned by the driver’s Initialize
routine. For the built-in disk drives, the BPBs are contained in the boot sector of
each volume, and each time a volume is changed, DOS uses this BPB to rebuild
the DPB in case the new volume’s characteristics differ from the original values.

No DPB exists for drive letters which have no drive associated with them; the
exception to this is "Drive B:" in a single-floppy system; it's always assumed to
exist, even when it doesn’t. Also, note that non-physical devices masquerading as
drives (such as RAM disks) generally do have DPBs.

Each DPB is linked to the next one by a far pointer in the DPB structure (at
offset 18h from the start of the block before DOS 4.0, and at offset 19h from DOS
4.0 on); the end of this linked list is indicated by FFFFh in the pointer’s "offset"
position.

While DPBs are chained together in a linked list whose root is available from
the List of Lists, a better way to get the DPB for a given drive is to use the undoc-
umented DOS Get DPB function (INT 21h Function 32h), which we saw in chap-
ter 3 as part of DEVLOD's facility for loading block device drivers, and which is
often used in disk programs such as Norton Utilities or PC Tools.

The following sample program uses INT 21h Function 32h to display capac-
ity information for each drive on the system with a DPB. For example, on a sys-
tem with a 1.2 megabyte floppy drive that had a 360KB floppy in it at the time, a
70 megabyte hard disk, and a 64KB RAMdrive (installed with DEVLOD, of
course!), here is the output from the program:

Drive A: 512 bytes/sector * 2 sectors/cluster =
1024 bytes/cluster * 354 clusters = 362496 bytes

Drive C: 512 bytes/sector * 8 sectors/cluster =
4096 bytes/cluster * 17648 clusters = 72286208 bytes

Drive E: 512 bytes/sector * 1 sectors/cluster =
512 bytes/cluster * 122 clusters = 62464 bytes

Actually, the program displays this information twice: once by walking the
DPB linked list (wWhose head is at offset 0 in the List of Lists), and once by calling
INT 21h Function 32h for each drive < lastdrive:

/*
DPBTEST.C -- uses undocumented INT 21h Function 32h (Get DPB)
to display bytes per drive; but first walks the DPB chain,
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*/

showing the difference between the two access methods

#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

#pragma pack(1)

typedef unsigned char BYTE;

typedef struct dpb {

BYTE drive;
BYTE unit;
unsigned bytes_per_sect;
BYTE sectors_per_cluster; // plus 1
BYTE shift; // for sectors
unsigned boot_sectors;
BYTE copies_fat;
unsigned max_root_dir;
unsigned first_data_sector;
unsigned highest_cluster;
union {
struct { .
unsigned char sectors_per_fat;
unsigned first_dir_sector;
void far *device_driver;
BYTE media_descriptor;
BYTE access_flag;
struct dpb far *next;
unsigned long reserved;
} dos3;
struct {

per cluster

unsigned sectors_per_fat; // WORD, not BYTE!

unsigned first_dir_sector;
void far *device_driver;
BYTE media_descriptor;
BYTE access_flag;
struct dpb far *next;
unsigned long reserved;
} dosé&;
} vers;
} DPB;

#ifndef MK_FP
#define MK_FP(seg,ofs) \
((void far *)(((unsigned Long)(seg) << 16) | (ofs)))
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#endif
void fail(char *s) { puts(s); exit(1); }

void display(DPB far *dpb)

{
unsigned long bytes_per_clust =
dpb->bytes_per_sect * (dpb->sectors_per_cluster + 1);
printf("Drive Z%c: ", '"A' + dpb->drive);
printf("%u bytes/sector * ", dpb->bytes_per_sect);
printf("%u sectors/cluster = \n",
dpb->sectors_per_cluster + 1);
printf(” %lu bytes/cluster * ", bytes_per_clust);
printf("%Zu clusters = ", dpb->highest_cluster - 1);
printf("%lu bytes\n\n",
bytes_per_clust * (dpb->highest_cluster - 1));
}
main()
{

DPB far *dpb;
union REGS r;
struct SREGS s;

/* floppy = single disk drive logical drive dindicator O=a 1=b */
unsigned char far *pfloppy = (BYTE far *) 0x504L;

int i;

#ifdef __TURBOC__

unsigned lastdrive = setdisk(getdisk());
#else

unsigned Lastdrive;

unsigned curdrv;

_dos_getdrive(&curdrv);

_dos_setdrive(curdrv, &Llastdrive);
#endif

puts("Using DPB linked Llist");

s.es = r.x.bx = 0;

r.h.ah = 0x52;

intdosx(&r, &r, &s);

/* pointer to first DPB at offset Oh in List of Lists */

if (! (dpb = *((void far * far *) MK_FP(s.es, r.x.bx))))
return 1;
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do {
/* skip either drive A: or drive B: */
if (((*pfloppy == 1) && (dpb->drive != 0)) ||
((*pfloppy == 0) && (dpb->drive '= 1)))
display(dpb);
if (_osmajor < 4)
dpb = dpb->vers.dos3.next;
else
dpb = dpb->vers.dos4.next;
} while (FP_OFF(dpb) !'= -1);

puts("Using INT 21h Function 32h");

segread(&s);
for (i=1; di<=lastdrive; i++)

{
/* skip either drive A: or drive B: */
if ((*pfloppy == 1) && (i == 1)) continue;
else if ((*pfloppy == 0) && (i == 2)) continue;
r.h.ah = 0x32;
r.h.dl = i;
intdosx(&r, &r, &s);
if (r.h.al !'= OxFF)
display((DPB far *) MK_FP(s.ds, r.x.bx));
}
return 0; -

This program brings up an important reason to use INT 21h Function 32h in-
stead of walking the DPB linked list: for removable media, INT 21h Function 32h
goes to the disk, and therefore picks up the most current information. Walking
the linked list, merely gets whatever DPB happens to be in memory. If you access
a 360KB floppy in drive A:, put in a 1.2 megabyte floppy without accessing it,
and then walk the DPB linked list, you will get the DPB for the 360KB floppy.
INT 21h Function 32h would not make this mistake.

Because the DOS Get DPB function hits the disk, it is worth avoiding a read
for both drives A: and B: in a system where these logical drives are mapped to
the same physical floppy drive. Therefore, DPBTEST decides whether to read the
DPB off of drive A: or drive B: by peeking at the logical drive indicator in the
DOS low-memory data area (absolute address 0000:0504).
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One last note about DPBs: many crucial DOS disk utilities were thrown into
temporary confusion by the introduction of DOS 4.0, because of one byte that
was changed in the DPB structure. The sectors-per-FAT field at offset OFh (see
Appendix A) grew from a byte to a word, so all subsequent fields (including the
dpb->next field) were bumped one byte as well. As noted in an extremely useful
article on DPBs published at the time (Ted Mirecki, "Function 32h in DOS," PC
Tech Journal, February 1989), this one-byte modification produced a major ripple
effect in all disk utilities that relied on this undocumented DOS data structure.

System File Tables While the DPBs relate actual physical devices to the drive let-
ters DOS uses to refer to those devices, the System File Tables (SFTs) form the
backbone of the DOS file system, and have been present in DOS since version 2.0.

An SFT maintains the state of an open file. This includes associating a
filename with a directory entry and with a physical data address, keeping track
of the current position of activity within the file (the file pointer), determining file
size, and maintaining the time and date stamps when a file is modified. All infor-
mation contained in the directory entry for a file gets there from the SFT, and is
brought back into the SFT when the file is opened.

All DOS systems have at least five SFT entries; many have 20 or more. The
number of SFT entries is established by the FILES= value set in CONFIG.SYS,
and defaults to eight if no such command is present. Every file handle that a pro-
gram obtains from DOS by opening either a file or a device eventually leads to
one of the SFTs. Later on, when we see how to develop sample programs to ex-
tract various bits of information from the SFTs, we'll see exactly how the tables
are organized. Here, we take a look at how DOS uses them, first when trying to
open an existing file, and then when creating a new file.

When you ask DOS to open a file, by calling the documented Open File func-
tion (INT 21h Function 3Dh), or by calling a higher-level function like fopen()
which in turn calls INT 21h Function 3Dh for you, the following take place:

First, DOS searches through the handle table (also called the Job File Table, or
JFT) normally located in your program’s PSP to find a slot that is not currently in
use, and remembers the index into the table for the first such slot that it finds.
This index eventually will become the "handle" associated with the open file if all
goes well; the search for a slot happens first because if no such slot is available,
the file cannot be opened and there’s no need to do anything more.

The chain of SFTs is now searched, looking for the first SFT entry that shows
a "handle count" of zero. That indicates that the entry is available for use. If no



176 UNDOCUMENTED DOS

such entry is found, an "Out of handles" error is returned, and again the open
fails.

If a free handle exists and an available SFT entry is found, DOS then accesses
the root directory of the drive specified in the pathspec you passed in, by using
the Current Directory Structure (CDS) for that drive. We haven’t yet examined
this structure in detail, but—if you're dealing with a real physical dri