
. 2nd· EDITION!

MICHAEL ABRASH'S

2nd EDITION!

-
~ ~ - -

OF GRAPHICS
PROGRAMMING

2nd EDITION!

~ ~ ~__.....I

OF GRAPHICS
PROGRAMMING

Michael Abrash

i CORIOLIS GROUP BOOKS

Publisher
Editorial Director
Cover /Interior Design
Layout Production
Indexer

Keith Weiskamp

Jeff Duntemann
Gary Smith and Bradley Grannis
Rob Mauhar and Dorothy Bungert

Jenni Aloi and Diane Green Cook

Trademarks: Microsoft is a trademark and Windows is a registered trademark of
Microsoft Corporation. All other brand names and product names included in this
book are trademarks, registered trademarks, or trade names of their respective
holders.

Copyright© 1996 by The Coriolis Group, Inc.

All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by
section 107 or 108 of the 1976 United States Copyright Act without the written
permission of the copyright owner is unlawful. Requests for permission or further
information should be addressed to The Coriolis Group, 7339 E. Acoma Drive,
Suite 7, Scottsdale, Arizona 85260.

The Coriolis Group, Inc.
7339 E. Acoma Drive, Suite 7
Scottsdale, AZ 85260
Phone: (602) 483-0192
Fax: (602) 483-0193
Web address: http:/ /www.coriolis.com

ISBN 1-883577-89-6 : $44.99

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

2nd EDITION!

}-

OFGRAPHICS
PROGRAMMING

Who Is This Book for?
This book is for intermediate to advanced PC programmers in C, C++,
and assembly language who want to learn the techniques of fast graph
ics programming and animation including 3-D animation.

What Do I Need to Use It?
You need some background in programming in C and assembly. An
Intel-based PC is required to run the code. Most of the assembly code is
applicable to any Intel-based PC. Some of the listings require a 386,
486, or Pentium, and will not run on earlier processors. A VGA graphics
adapter is required to run nearly all of the demo code.

A debugger like CodeView or Turbo Debugger is very helpful in
examining the machine code generated by C and C++ compilers.

What Sort of Code Is Present on the Code Disk?
The code disk contains Michael Abrash's well-known X-Sharp library
for 3-D animation, as well as numerous programs that demonstrate
graphics techniques of various kinds, including VGA setup, optimized
graphics primitives, Mode X, 2-D animation, and 3-D animation includ
ing texture mapping.

These programs have been tested with the latest Borland compilers
and assemblers, and most will work with earlier versions of those compilers
and assemblers. The code is quite generic and performs ve1y little 1/0, so
translation to other C compilers or assemblers like Microsoft CI C++ ,
MASM, Mix C or A86 should not be difficult. Please note that we cannot
provide technical assistance with such conversions.

To my parents, Merritt and Barbara, for hanging in there
until I finally grew up, for always being there when I needed
them, and for teaching me to care.

Dear Reader:

Time and again, I'll bet you've looked
at some three-inch-thick software
manual and wondered, How do I make
sense of all this? All the facts may be
there, but something important is usu
ally missing: that not-quite-definable
right-brain sense of ori
entation that comes of
knowing what the big
picture is and how to
impose its order on
that impenetrable
ocean of details.

To help you move
in the direction of
that necessary big
picture understand
ing of the software
tools you use, The
Coriolis Group has created the Zen se
ries of books for software developers .
Early books in the series will focus on
code optimization, high-performance
graphics, component-oriented pro
gramming, and arcade game develop
ment. Mastering these subjects re
quires more than just a list of API calls

and a haphazard description of how
things work.

No. Mastering topics like these re
quires that you study the experience of
the Zen masters in each area, people like
Michael Abrash, Peter Aitken, and

Diana Gruber
people who have
spent years of study,
experimentation, and
thought becoming
what they are. Bring
ing this experience to
you in readable, acces
sible, enjoyable form is
what we're doing with
our Zen titles.
We don't think there's
ever been anything quite

like these books, and we invite your
comments and suggestions. In what ar
eas have you encountered the sorts of
walls that only a Zen master can truly
climb? Let us know. We'll do our best
to bring the wisdom down the moun
tain and place it on your bookshelf
-Jeff Duntemann KG7JF

Contents
Introduction

PART I THE CORE OF THE VGA

Chapter 1 Bones and Sinew
At the Very Heart of Standard PC Graphics

The VGA

An Introduction to VGA Programming

At the Core
Linear Planes and True VGA Modes
Smooth Panning
Color Plane Manipulation
Page Flipping

The Hazards ofVGA Clones

Just the Beginning
The Macro Assembler

Chapter 2 Parallel Processing with the VGA
Taking on Graphics Memory Four Bytes at a Time

VGA Programming: ALUs and Latches

Notes on the ALU/Latch Demo Program

Chapter 3 VGA Data Machinery
The Barrel Shifter, Bit Mask, and Set/Reset Mechanisms

VGA Data Rotation

The Bit Mask

The VGA's Set/Reset Circuitry
Setting all Planes to a Single Color
Manipulating Planes Individually

Notes on Set/Reset

An Brief Note on Word OUTs

ix

xxiii

1
1
2
3

3
5

16
19
20
22
23
23

25
25
25
32

35
35
35
36
43
45
48
50
51

x Ill Contents

Chapter 4 VGA Write Mode 3
The Write Mode that Grows on You

A Mode Bom in Strangeness

A Note on Preserving Register Bits

Chapter 5 Yet Another VGA Write Mode
Write Mode 2, Chunky Bitmaps, and Text-Graphics Coexistence
Write Mode 2 and Set/Reset

A Byte's Progress in Write Mode 2
Copying Chunky Bitmaps to VGA Memory Using Write Mode 2
Drawing Color-Patterned Lines Using Write Mode 2

When to Use Write Mode 2 and when to Use Set/Reset
Mode 13H-320x200 ~th 256 Colors
Flipping Pages from Text to Graphics and Back

Chapter 6 Reading VGA Memory
Read Modes 0 and 1, and the Color Don't Care Register

ReadMode0

Read Mode 1

When all Planes "Don't Care"

53
53
53
66

67
67
67
68
70
75
81

81

82

89
89

89
94
98

Chapter 7 Saving Screens and Other VGA Mysteries 103
Useful Nuggets from the VGA Zen File

Saving and Restoring EGA and VGA Screens

16 Colors out of 64
Overscan

A Bonus Blanker

Modifying VGA Registers

Chapter 8 Video Est Omnis Divisa

103
103
110

117
118
120

123
The Joys and Galling Problems of Using Split Screens on the EGA and VGA 123
How the Split Screen Works 123

The Split Screen in Action 125
VGA and EGA Split-Screen Operation Don't Mix 132

Setting the Split-Screen-Related Registers 132

I
Contents g} xi

The Problem with the EGA Split Screen 133

Split Screen and Panning 134
The Split Screen and Horizontal Panning: An Example 135

Notes on Setting and Reading Registers 142
Split Screens in Other Modes 144
How Safe? 144

PART II VGA COLORS AND COLOR CYCLING

Chapter 9 Higher 256-Color Resolution on the VGA 147
When Is 320x200 Really 320x400?
Why 320X200? Only IBM Knows for Sure
320x400 256-Color Mode

Display Memory Organization in 320x400 Mode
Reading and Writing Pixels

Two 256-Color Pages
Something to Think About

Chapter 10 Be it Resolved: 360x480

147
148
148
149
151

158
163

165
Taking 256-Color Modes About as Far as the Standard VGA Can Take Them 165
Extended 256-Color Modes: What's Not to Like? 165
360x480 256-Color Mode 167
How 360x480 256-Color Mode Works 175

480 Scan Lines per Screen: A Little Slower, But No Big Deal 175
360 Pixels per Scan Line: No Mean Feat 175
Accessing Display Memory in 360x480 256-Color Mode 176

Chapter 11 Yogi Bear and Eurythmics
Confront VGA Colors 179

The Basics ofVGA Color Generation 179
VGA Color Basics 180

The Palette RAM 180
The DAC 180
Color Paging with the Color Select Register 182
256-Color Mode 183

xii Ill Contents

Setting the Palette RAM
Setting the DAC

IfYou Can't Call the BIOS, Who Ya Gonna Call?
An Example of Setting the DAC

Chapter 12 Paging Mr. VGA ...
More Colors in 16-Color Mode through VGA Color Paging
Breaking Code by Upgrading Compilers
Color Paging

How to Perform Color Paging
Obtaining the Color Paging State
An Example of Color Paging

Paging Invisible Pages

183
184

185
186

191
191
191
193
196
197
198
203

Chapter 13 Changing Colors without Writing Pixels 205
Special Effects through Realtime Manipulation of DAC Colors
Color Cycling
The Heart of the Problem

Loading the DAC via the BIOS
Loading the DAC Directly

A Test Program for Color Cycling
Color Cycling Approaches that Work
Odds and Ends

TheDACMask
Reading the DAC
Cycling Down

PART Ill LINES LIKE LIGHTNING

205
205
206
207
208

209
215
217
217
217
218

Chapter 14 Bresenham Is Fast, and Fast Is Good 219
Implementing and Optimizing Bresenham's Line Drawing Algorithm 219
The Task at Hand 220
Bresenham's Line-Drawing Algorithm 221

Strengths and Weaknesses 224
An Implementation in C 224

Looking at EVGALine 229
Drawing Each Line 232

Contents g} xiii

Drawing Each Pixel 233

Comments on the C Implementation 234

Bresenham's Algorithm in Assembly 235

Chapter 15 The Good, the Bad, and the Run-Sliced 243
Faster Bresenham Lines with Run-Length Slice Line Drawing

Run-Length Slice Fundamentals

Run-Length Slice Implementation

Run-Length Slice Details

Chapter 16 Dead Cats and Lightning Lines
Optimizing Run-Length Slice Line Drawing in a Major Way

Fast Run-Length Slice Line Drawing
How Fast Is Fast?
Further Optimizations

PART IV CIRCLES AND ELLIPSES

Chapter 17 Circling Around the VGA
Understanding Hardenbu.rgh's Algorithm for Fast Circles

Why and when Circles and Ellipses Matter

The Basics of Drawing a Circle

Drawing a Circle More Efficiently
An Incremental Circle Drawing Approach
Notes on the Implementation

Continuing in Circles

Chapter 18 Circling in for the Kill
Optimizing Hardenbu.rgh's Circle Algorithm with a Vengeance

Slimming Down the Main Loop

Reflecting Octants

Faster Circles in C
Notes on the C Implementation

Circles to the Metal: Assembly Language

Supporting VGA Write Mode 3

Circles? Done

243
245
247
249

257
257
258
264
265

267
267
268
269
273
274
277

277

279
279
280
281
281
286
287
295
296

xiv Ill Contents

Chapter 19 Circles that Squish
An Efficient Algorithm for Drawing Ellipses
A Quick Primer on Ellipses

Why Ellipses Matter

Learning to Draw Ellipses Fast: Divide and Conquer
Drawing An Ellipse the Easy-and Slow-Way
Ellipse Drawing: An Incremental .Approach

A Thumbnail Derivation of the Incremental Approach
Notes and Caveats on the Code

How Fast Is It?

Chapter 20 Ellipses that Rip
Optimizing Ellipse Drawing with a Draw List for Each Octant
Ellipses, Continued
Ellipse Drawing Made Fast

Notes on the Ellipse-Drawing Implementations

Why Optimizing Isn't a Science

PART V POLYGONS

Chapter 21 The Polygon Primeval
Drawing Polygons Efficiently and Quickly
Filled Polygons

Which Side Is Inside?

How Do You Fit Polygons Together?
Filling Non-Overlapping Convex Polygons
Oddball Cases

Chapter 22 Fast Convex Polygons
Filling Polygons in a Hurry
Fast Convex Polygon Filling

Fast Drawing
Fast Edge Tracing

The Finishing Touch: Assembly Language
Maximizing REP STOS

Faster Edge Tracing

297
297
298
299
299
300
305
308
310
311

313
313
314
314
329
329

331
331
332
332
334
335
343

345
345
346
347
350
353
355
355

Contents ~ xv

Chapter 23 Of Songs, Taxes, and the Simplicity
of Complex Polygons 359

Dealing with Irregular Polygonal Areas 359
Filling Arbitrary Polygons 360

Active Edges 360

Complex Polygon Filling: An Implementation 368
More on Active Edges 371
Performance Considerations 371

Nonconvex Polygons 373
Details, Details 373

Chapter 24 Those Way-Down Polygon
Nomenclature Blues 375

Names Do Matter when You Conceptualize a Data Structure 375
Nomenclature in Action 376

PART VI ANTIALIASED LINES

Chapter 25 The VGA versus the Jaggies
The Sierra Hicolor DAC as the Means to Antialiased Lines
Unreal Color

The Gamma Correction Disadvantage

Polygon Antialiasing
256-Color Antialiasing
Unweighted Antialiasing: How Good?

Chapter 26 Lines, Italian Style
Using the Sierra Hicolor DAC to Make Errant Lines Look Good
A Brief Primer on the Sierra Hicolor DAC
Programming the Hicolor DAC

Non-Antialiased Hicolor Drawing

Simple Unweighted Antialiasing
Notes on the Antialiasing Implementation

Further Thoughts on Antialiasing

389
389
390
391

391
392
403

405
405
406
408
410
415
420

421

xvi gJ Contents

Chapter 27 Wu'ed in Haste; Fried, Stewed
at Leisure

Fast Antialiased Lines Using Wu's Algorithm
Wu Antialiasing

Tracing and Intensity in One
Sample Wu Antialiasing

Notes on Wu Antialiasing

PART VII ANIMATION

Chapter 28 Bit-Plane Animation
A Simple and Extremely Fast Animation Method for Limited Color

Bit-Planes: The Basics
Stacking the Palette Registers

Bit-Plane Animation in Action

Limitations of Bit-Plane Animation

Shearing and Page Flipping

Beating the Odds in the Jaw-Dropping Contest

423
423
424

426

429
439

441
441
442
444
446
456

459
460

Chapter 29 Split Screens Save the Page-Flipped Day 461
640x480 Page Flipped Animation in 64K. • .Almost
A Plethora of Challenges

A Page Flipping Animation Demonstration
Write Mode 3
Drawing Text
Page Flipping
Knowing when to Flip

Enter the Split Screen

Chapter 30 Dog Hair and Dirty Rectangles
Different Angles on Animation

Plus ? Change ...
VGA Access Times
Dirty-Rectangle Animation

So Why Not Use Page Flipping?

Dirty Rectangles in Action

461
461

462
473
474
475
477

478

481
481
482
482
484
484
486

Contents gJ xvii

Hi-Res VGA Page Flipping 491
Another Interesting Twist on Page Flipping 495

Chapter 31 Who Was that Masked Image?
Optimizing Dirty-Rectangle Animation
Dirty-Rectangle Animation, Continued

Masked Images
Internal Animation

Dirty-Rectangle Management

Drawing Order and Visual Quality

PART VIII MODE X

Chapter 32 Mode X: 256-Color VGA Magic
Introducing the VGA's Undocumented ''Animation-Optimal" Mode

What Makes Mode X Special?
Selecting 320x240 256-Color Mode

Designing from a Mode X Perspective
Hardware Assist from an Unexpected Quarter

Chapter 33 Mode X Marks the Latch
The Internals of Animation's Best Video Display Mode

Allocating Memory in Mode X

Copying Pixel Blocks within Display Memory
Copying to Display Memory

Who Was that Masked Image Copier?

Chapter 34 Mode X 256-Color Animation
How to Make the VGA Really Get up and Dance

Masked Copying
Faster Masked Copying
Notes on Masked Copying

Animation

Mode X Animation in Action

Works Fast, Looks Great

499
499
500
509
510
510
511

513
513
514
515
521
526

531
531

537
539
542

545

547
547
547
550
555
556
556
562

xviii [lJ Contents

PART IX 3-D ANIMATION WITH X-SHARP

Chapter 35 Adding a Dimension
3-D Animation Using Mode X

References on 3-D Drawing
The 3-D Drawing Pipeline

Projection
Translation
Rotation

A Simple 3-D Example
Notes on the 3-D Animation Example

An Ongoing Journey

Chapter 36 Sneakers in Space
Using Backface Removal to Eliminate Hidden Surfaces

One-sided Polygons: Backface Removal
Backface Removal in Action

Incremental Transformation
A Note on Rounding Negative Numbers

Object Representation

563
563
564
565
567
567
568
569
578
579

581
581
582
585
591
594
594

Chapter 37 Fast 3-D Animation: Meet X-Sharp 595
The First Iteration of a Generalized 3-D Animation Package
This Chapter's Demo Program

A New Animation Framework: X-Sharp
Three Keys to Real-Time Animation Performance

Drawbacks
Where the Time Goes

Chapter 38 Raw Speed and More
The Naked Truth About Speed in 3-D Animation

Raw Speed, Part 1: Assembly Language
Raw Speed, Part II: Look it Up

Hidden Surfaces
Rounding

Having a Ball

595
596
608
609
610
610

611
611
612
619
619
622
623

Chapter 39 3-D Shading
Putting Realistic Surfaces on Animated 3-D Objects
Support for Older Processors
Shading

Ambient Shading
Diffuse Shading

Shading: Implementation Details

Contents lK} xix

625
625
625
640
641
641

645

Chapter 40 Color Modeling in 256-Color Mode 647
Pondering X-Sharp's Color Model in an RGB State of Mind
A Color Model
A Bonus from the BitMan

Chapter 41 Pooh and the Space Station

647
647

653

659
Using Fast Texture Mapping to Place Pooh on a Polygon 659
Principles of Quick-and-Dirty Texture Mapping 660

Mapping Textures Made Easy 661
Notes on DOA Texture Mapping 664

Fast Texture Mapping: An Implementation 665

Chapter 42 10,000 Freshly-Sheared Sheep
on the Screen 673

The Critical Role of Experience in Implementing Fast, Smooth
Texture Mapping 673

Visual Quality: A Black Hole ... Er, Art 67 4
Fixed-Point Arithmetic, Redux 67 4
Texture Mapping: Orientation Independence 676
Mapping Textures across Multiple Polygons 678

Fast Texture Mapping 678

Chapter 43 Heinlein's Crystal Ball, Spock's Brain,
and the 9-Cycle Dare 685

Using the Whole-Brain Approach to Accelerate Texture Mapping 685
Texture Mapping Redux 686

Left-Brain Optimization 687
A 90-Degree Shift in Perspective 690

xx /gJ Contents

That's Nice-But it Sure as Heck Ain't 9 Cycles
Don't Stop Thinking about Those Cycles

Texture Mapping Notes

PART X BSP TREES FOR LIGHTNING ANIMATION

Chapter 44 The Idea of BSP Trees
What BSP Trees Are and How to Walk Them

BSPTrees
Visibility Determination
Limitations of BSP Trees

Building a BSP tree
Visibility Ordering

lnorder Walks of BSP Trees
Know It Cold
Measure and Learn

Surfing Amidst the Trees
Related Reading

Chapter 45 Compiling BSP Trees
Taking BSP Trees from Concept to Reality

Compiling BSP Trees
Parametric Lines
Parametric Line clipping
The BSP Compiler

Optimizing the BSP tree

BSP Optimization: An Undiscovered Country

Chapter 46 Frames of Reference
The Fundamentals of the Math behind 3-D Graphics

3-D Math
Foundation Definitions

The Dot Product
Dot Products of Unit Vectors

Cross Products and the Generation of Polygon Normals

Using the Sign of the Dot Product

Using the Dot Product for Projection
Rotation by Projection

692
697
698

701
701

702
703
704
705
708
711
713
715

717
718

719
719

721
721
723
724
730

731

733
733
734
734
735
736
737
740

742
744

Contents gJ xxi

Chapter 47 One Story, Two Rules, and a BSP
Renderer

Taking a Compiled BSP Tree from Logical to Visual Reality

BSP-based Rendering

The Rendering Pipeline
Moving the Viewer
Transformation into Viewspace
Clipping
Projection to Screenspace
Walking the Tree, Backface Culling and Drawing

Notes on the BSP Renderer

747
747
748
757
757
758
758
760
760

762

Chapter 48 Quake's Visible-Surface Determination 763
The Challenge of Separating All Things Seen from All Things Unseen

VSD: The Toughest 3-D Challenge of All

The Structure of Quake Levels

Culling and Visible Surface Determination
Nodes Inside and Outside the View Frustum

Overdraw

The Beam Tree

3-D Engine du Jour
Subdividing Raycast
Vertex-Free Surfaces
The Draw-Buffer
Span-Based Drawing
Portals

Breakthrough!

Simplify, and Keep on Trying New Things

Learn Now, Pay Forward

References

Chapter 49 3-0 Clipping and Other Thoughts
Determining What's Inside Your Field of View

3-D Clipping Basics
Intersecting a Line Segment with a Plane

Polygon Clipping
Clipping to the Frustum
The Lessons of Listing 49.3

763
764
765
766
767

768
769
771
771
771
771
772
772

772
773
774
775

777
777
778
779

782
784
790

xxii ll} Contents

Advantages of Viewspace Clipping

Further Reading

Chapter 50 Quake's Hidden-Surface Removal
Struggling with Z-Order Solutions to the Hidden Surface Problem
Creative Flux and Hidden Surfaces

Drawing Moving Objects
Performance Impact
Leveling and Improving Performance

Sorted Spans
Edges Versus Spans

Edge-Sorting Keys
Where That 1/Z Equation Comes From
Quake and Z-Sorting
Decisions Deferred

Chapter 51 Sorted Spans in Action

791
791

793
793
794
794
795
795
796
798
801
803
803
804

805
Implementing Independent Span Sorting for Rendering without Overdraw 805
Quake and Sorted Spans 806
Types of 1/z Span Sorting 808

Intersecting Span Sorting 808
Abutting Span Sorting 809
Independent Span Sorting 810

1/z Span Sorting in Action 810
Implementation Notes 819

Further Reading 821

Afterword 823

Index 825

What's on This CD? 834

Introduction

If you want to write graphics programs-especially games-that look terrific and run
like greased lightning, you've come to the right place. Simply put, this is a book about
high-performance graphics programming for PCs. This book has every last bit of the
Mode X and X-Sharp 2-D and 3-D animation code that started many game authors on
their way, and much more: Hardware, software, performance, algorithms, animation,
you name it-anything and everything to do with PC graphics, explained thoroughly,
implemented in C and assembly language, and finally scraped down to the bare metal
so that it runs like nobody's business.

This isn't intended to be the only graphics book you'll ever need; no one book can
do that. Neither is it a book about how to do any single sort of graphics-it's not about
how to do a flight simulator, for example-nor is it an exhaustive, dry, reference book.
What this is is a book that will teach you, by example, about the key graphics elements
of PC graphics applications such as games, animation, visualization, CAD, graphing,
and yes, flight simulators, and will show you how to write top-flight graphics code.
What's even more important is that this book will show you how to explore further on
your own, how to keep expanding the limits of your graphics knowledge and skills. In
short, this book will give you a good start on PC graphics, along with a ton of working
code-enough so that you will have the core skills needed for commercial-quality game
graphics when you're done-and will then be your springboard to bigger and better
things.

Who This Book Is for
This book is for anyone who wants to be a PC graphics programmer, and is not yet an
expert. Even intermediate graphics programmers will surely learn many new things
from this book, and novices should find this to be a treasure trove. This is the book I
wish I could have had ten years ago, when I wrote PC video games for a living; back
then, I could have opened this book to almost any page and learned something new
and useful. The only prerequisite for this book is that you must already be able to
program; it will also help a good deal if you're able to at least read C and assembly
language code, although there is no code in here that's so complicated that, say, a Pascal
programmer couldn't figure it out given good C and assembly reference books to help.

Basically, if you know how to program and want to write software with screaming
fast, great-looking PC graphics, read on!

xxiii

xxiv fgJ Introduction

Where all This Came From
When I had pulled together all the many years' worth of material that make up this
book, I started to wonder when the making of this book had started; where exactly had
this particular accumulation of knowledge begun? In one sense, it began when Jeff
Duntemann's Coriolis Group got into the book publishing business, and Jeff called to
ask if I wanted to do a book based on my years of writing about PC graphics. Did I
ever! Readers had been asking me for such a book for years, and I had actually tried to
get Jeff and a couple of other publishers to do it once or twice before, but all the pieces
had never fallen into place-until now. I leaped at the chance.

In another sense, this book began when Jon Erickson at Dr. Dobb's journal gave me
the chance back in 1990 to write a graphics column for 100,000 readers. It wasn't until
I wrote for DD] that I really understood what a remarkably large and diverse group
graphics programmers were, and how much they cared about their work. (One par
ticularly instructive lesson came when I published an early version of Mode X that had
a mode set bug. Fixes rolled in from all over the net-and not one person was the
slightest bit mean or mean-spirited, bless their souls!)

The key to this book came way back in 1986, though-back when an 8 MHz AT
was a high-end system and an EGA was state of the art, at $ 500 to $1,000 a pop. While
living in Pennsylvania back then, I read an article in Programmer's journal (now long
gone, but a wonderful home-brewed mishmash of hardcore technical stuff and corny
puns in its day) about 8088 optimization-and I knew that the article, though well
intentioned, was just wrong. In a fit of passion, I dashed off an article that politely but
thoroughly explained why the first article was mistaken, and sent my work off to Pf.
When I didn't hear from Pf for months, I figured they had round-filed my article. By
that time, I had other things on my mind anyway; I had decided it was time to see what
life was like at the heart of the microcomputer industry, and moved to Silicon Valley.

Right after I got to California, however, I had the pleasant surprise of opening the
mailbox one day to find a contract from Pf (for a princely $265, lousy money even then,
but a sale was and is a sale). Better yet, the West Coast Computer Faire was coming up,
and Robert Keller, the editor of Pf, wanted to know if we could get together.

We could, and did, and Robert, his wife, and I went out for my first (and so far last,
but highly enjoyable) experience with Indonesian cuisine. On the way back, Robert
wanted to know ifl would write a column for him. The idea intrigued me-there was
a lot I wanted to write about in the areas of graphics and performance programming
but although I had written some articles, I wasn't an experienced writer, wasn't sure I
could actually deliver good stuff on a regular basis, and was busy as heck with a highly
stressful job and a one-year-old child, so I hemmed and hawed. I think Robert thought
the problem was money, and chat might indeed have been a factor; he had offered
$200 per column, probably all the old Pf crew (which ran on the shortest shoestring
I've ever seen or care to see) could comfortably manage. So as I made noncommittal

Introduction /gJ xxv

noises, Robert drove like a maniac (a lost maniac, at that) through San Francisco,
bumping the price up in increments detectable only with a magnifying glass.

"Two-twenty-five," Robert said.
"Well," I said.
"Two-fifty."
"Um."
"Two-sixry," he ventured.
''.Ah.."
And so on; by the time we pulled up at my car, Robert had worked his way up to

$325, practically a dollar at a time. I was trying hard not to laugh by this point, and
though I was tempted to see whether he'd start going by quarters next, I actually did
want to do the column, and I was late getting home anyway. So I said okay, and we
shook hands, and that was really the beginning of all the pages you hold in your hand.
The twenty-two columns I did for Pf taught me how to write, how to meet a deadline,
how much fun it is to share information-and how much fun it is to get knowledge
back in return.

In the years since, I have written several books and innumerable articles and col
umns, and I've enjoyed it all immensely-and my guess is that none of that would
have happened without Robert's persistence in the face of limited resources. So thank
you, Robert!

What This Book Is all About
Many, many people have seen one or another of my articles over the years since Robert
got me started, and a sizeable number of them have asked where they can find the rest
of my work. Until recently, I have had to suggest they refer back to the original articles,
but that's a problem because the articles are spread out over about one hundred issues
of several magazines, some of which haven't been around for years now. Likewise, Power
Graphics Programming, which collected the early Pf articles, has been out of print for
years. Happily, with the help ofJeff Duntemann and the Coriolis Group, that problem
is now solved. The best of my performance programming articles were collected to
gether last year in Zen of Code Optimization, (also from Coriolis Group Books) and
now the best of my graphics programming articles (from my columns in Pf and DD],
plus some articles I wrote for PC TECHNIQUES) are gathered together in this book.

I say "the best," but what I really mean is "all the mater;ial that's still useful"; I have
culled those articles that the passing of time has rendered irrelevant, but everything
else-nearly 50 articles in all-is in here. Better yet, I've gone over all the material,
updating it as needed, and improving it when I see that there's a better way to explain
than my original approach. As I reread all this material in preparation for this book, I
was astonished at the broad range of topics covered, from VGA internals to 3-D animation,
from sprites to blurry-fast lines, circles, and ellipses. My readers and I have explored an

xxvi rJ Introduction

amazingly eclectic set of graphics topics, touching on a great many important areas of
PC graphics, and always-alway.l'-with both in-depth explanation and high-performance,
high-quality code as part of the package. You can talk all you want about concepts and
design and algorithms, and those all matter-but if you're doing graphics and you
don't have pedal-to-the-metal code, you don't have anything much to speak of.

This book reflects my personal evolution as a graphics programmer over many years;
after all, I wasn't born knowing this stuffi A large part of why I write articles is because
I invariably learn something new, and in reading this book you'll be taking much the
same journey of exploration that I've taken-but without the annoying and time
wasting mistakes and wrong turns.

Another reason I write is the sheer pleasure of sharing what I've learned. Some of the
code and concepts in this book have gotten broad use in the real world, and every time
I hear of a nifty program that uses some of the code I've published, or that started with
my code (and there are a quite a few such programs), all the late-night hours that went
into these articles are justified. Even better, it truly warms my heart when someone
comes up to me at a conference or sends me e-mail thanking me for getting them
started with graphics. All the good stuff that helped all those people is in here-a
complete tour of performance programming for the VGA, the Mode X material that
made the unique, undocumented capabilities of that superb VGA game mode avail
able to everyone, the X-Sharp 3-D code that jump-started many a game programmer,
a rich set of graphics primitives, and much more. Enjoy!

Or, as Mr. Spock might say, live long and write much fast graphics code.

What You'll Find in This Book
This book covers three broad graphics topics: VGA programming, graphics primitives,
and animation. The topics are intertwined; for example, many of the graphics primi
tive implementations use techniques developed in the discussion of VGA program
ming, and the animation software builds heavily on the rest of the book. The book isn't
as sequential as that might imply, however, because both the VGA and graphics are
such large and complex subjects that there is no linear way to discuss them. Instead,
this book discusses one particular feature or technique in depth at a time, with plenty
of code, and then another, and another, and so on. Over the course of the book, the
broad picture comes into focus, especially as new algorithms or features use features
discussed earlier, but in different ways. So if you sometimes feel like you need more
explanation of a particular topic, look in the index or read on; odds are it'll come up
again in another context, one in which it may well make more sense to you.

One important point is that while most of the code in this book is written specifi
cally for the VGA, it is almost entirely applicable to Super VGAs, given some minor
changes for banking, although there is only a smattering of Super VGA-specific code.
Also, Parts I, II, and VIII are the only truly hardware-specific portions of this book;

Introduction [g} xxvii

much of the rest of the code is easily ported to other environments. For example, it
took only a day to port X-Sharp from DOS to Windows. Also, VGA capability, though
no longer at the cutting edge, is near-universal nowadays, because almost every graph
ics accelerator contains full VGA functionality; that means that it's very worthwhile for
you to understand the VGA, all the more so because there is no equivalent standard for
accelerated graphics. Furthermore, widespread VGA compatibility means that the VGA
is the ideal hardware platform for us to use in our explorations, since it will allow the
software in this book to run on at least 95 percent of the PCs out there, and surely
more than three-quarters of all the computers in existence.

There are nine parts to this book, as follows:
Part I describes the core of the VGA, the internal workings that can be harnessed to

double, triple, and even quadruple graphics performance. This is the unglamorous but
essential foundation for much of the high-performance code to follow, and although
it's not the most exciting part of the book, I suggest you at least skim through it for
maximum benefit from the splashy stuff later on. Part I covers only VGA 16-color
mode, but the VG.N.s hardware is the same in 256-color mode, and, in fact, a thorough
understanding of the hardware in 16-color mode turns out to be essential for proper
understanding of Mode X later on.

Part II discusses the VG.N.s powerful color capabilities, and lays the groundwork for
the Mode X discussion in Part VIII.

Part III kicks off the discussion of graphics primitives with a look at two ways to
draw lines fast, and Part N tackles drawing circles and ellipses similarly fast.

Part V covers the intricacies of filled polygons, the fundamental building block of
realtime 3-D graphics.

Part VI returns to lines and polygons, but in the context of antialiasing, the process
of smoothing graphics images to improve their perceived quality.

Part VII delves into several sorts of animation, both hardware-dependent (page
flipping) and hardware-independent (dirty rectangles), leading into Part VIII, which
describes Mode X, and puts it to work in a full-fledged sprite-based animation program.

Part IX pulls together much of what we've covered in the rest of the book into the X
Sharp 3-D package. X-Sharp uses Mode X and the page flipping and polygon-filling
code developed earlier to implement realtime 3-D animation, and goes on to add light
ing, texture mapping, and more.

And after Part IX ... Why, then it's time for you to apply what you've learned, keep
exploring and learning, write your own graphics applications, and make some jaws
drop!

A Couple of Notes before We Begin
There are two things I need to attend to before we get underway. First, please be aware
that some of the listings in this book look rather compressed, in that some additional

xxviii ~ Introduction

whitespace would make them more aesthetically pleasing, and arguably more readable.
Most of these listings were originally squeezed down to fit in the 300 to 400 lines of
listings that I was typically allowed for a magazine article; I tend to be aggressive in
getting as much functionality as possible into my published code, so even 400 lines
was almost always a tight fit. The good news is that the code has been well tested, by
thousands of readers (the bugs that did show up, like the Mode X mode set bug men
tioned above, have been fixed in this book), so you can have a high level of confidence
that it works as advertised.

Second, I need to define a few basic graphics acronyms that may be unfamiliar to
some of you. VGA stands for Video Graphics Array, originally the graphics chip that
IBM put on the motherboards of Micro Channel machines, but now the base standard
for graphics for the PC world. Documented standard VGA modes go up to 640x480
resolution in 16 colors, and 320x200 in 256 colors, although in this book we'll see
undocumented 256-color modes with resolutions up to 360x480. SVGA stands for
Super VGA, evolutionary descendants of the VGA with higher resolutions and more
colors; unfortunately, there is no standard for SVGA, because each manufacturer ex
tended the VGA in a proprietary way. EGA is Enhanced Graphics Adapter, the direct
ancestor of the VGA and the graphics standard in the mid-1980s; the EGA was much
like the VGA, but had a maximum resolution of 640x350, and didn't support any
256-color modes. CGA is Color/Graphics Adapter, the first graphics adapter for the PC,
back in 1981, with maximum resolution of 640x200 and a maximum of four simulta
neous colors in graphics mode. MDA is Monochrome Display Adapter, the first black
and-white adapter for the PC. The MDA supported only text mode, with no graphics
capabilities, leaving the door open for the Hercules Graphics Card (HGC) to set the
standard for graphics capabilities in monochrome mode. Partly because of its low cost,
the HGC was very popular for many years, but dirt-cheap VGAs replaced the HGC in
the early 1990s.

Acknowledgments
Because this book was written over many years, in many different settings, an unusu
ally large number of people have played a part in making this book possible. First and
foremost, thanks (yet again) to Jeff Duntemann for getting this book started, doing the
dirty work, and keeping things on track and everyone's spirits up. Thanks to Dan
Illowsky for not only contributing ideas and encouragement, but also getting me started
writing articles long ago, when I lacked the confidence to do it on my own-and for
teaching me how to handle the business end of things. Thanks to Will Fastie for giving
me my first crack at writing for a large audience in the long-gone but still-missed PC
Tech Journal, and for showing me how much fun it could be in his even longer-van
ished but genuinely terrific column in Creative Computing (the most enjoyable single
column I have ever read in a computer magazine; I used to haunt the mailbox around

Introduction [l} xxix

the beginning of the month just to see what Will had to say). Thanks to Robert Keller,
Erin O'Connor, Liz Oakley, Steve Baker, and the rest of the cast of thousands that
made Pf a uniquely fun magazine-especially Erin, who did more than anyone to
teach me the proper use of the English language. (To this day, Erin will still patiently
explain to me when one should use "that" and when one should use "which," even
though eight years of instruction on this and related topics have left no discernible
imprint on my brain.) Thanks to Jon Erickson, Tami Zemel, Monica Berg, and the rest
of the DD] crew for excellent, professional editing, and for just being great people.
Thanks to the Coriolis gang for their tireless hard work: Jeff Duntemann and Keith
Weiskamp on the editorial and publishing side, and Brad Grannis, Rob Mauhar, and
Michelle Stroup who handled art, design, and layout. Thanks to Jim Mischel who did
a terrific job testing code for the book and putting the code disk together. Thanks to
Jack Tseng, for teaching me a lot about graphics hardware, and even more about how
much difference hard work can make. Thanks to John Cockerham, David Stafford,
Terje Mathisen, the BitMan, Chris Hecker, Jim Mackraz, Melvin Lafitte, John Navas,
Phil Coleman, Anton Truenfels, John Carmack, John Miles, John Bridges, Jim Kent,
Hal Hardenberg, Dave Miller, Steve Levy, Jack Davis, Duane Strong, Daev Rohr, Bill
Weber, Dan Gochnauer, Patrick Milligan, Tom Wilson, the people in the ibm.pc/
fast.code topic on Bix, and all the rest of you who have been so generous with your
ideas and suggestions. I've done my best to acknowledge contributors by name in this
book, but if your name is omitted, my apologies, and consider yourself thanked; this
book could not have happened without you. And, of course, thanks to Shay and Emily
for their generous patience with my passion for writing and computers.

And, finally, thanks to the readers of my articles and to you, the reader of this book.
You are, after all, the ultimate reason why I write, and I hope you learn as much and
have as much fun reading this book as I did writing it!

Michael Abrash (mabrash@bix.com, mabrash@mcimail.com)
Redmond, Washington, 1994

Bones
and
Sinew

.. u
I r = ca
.c:: u

At the Very Heart of Standard PC Graphics
The VGA is unparalleled in the history of computer graphics, for it is by far the most
widely-used graphics standard ever, the closest we may ever come to a lingua franca of
computer graphics. No other graphics standard has even come close to the 50,000,000
or so VGAs in use today, and virtually every PC compatible sold today has full VGA
compatibility built in. There are, of course, a variety of graphics accelerators that out
perform the standard VGA, and indeed, it is becoming hard to find a plain vanilla
VGA anymore-but there is no standard for accelerators, and every accelerator con
tains a true-blue VGA at its core.

What that means is that if you write your programs for the VGA, you'll have the
largest possible market for your software. In order for graphics-based software to suc
ceed, however, it must perform well. Wringing the best performance from the VGA is
no simple task, and it's impossible unless you really understand how the VGA works
unless you have the internals down cold . This book is about PC graphics at many
levels, but high performance is the foundation for all that is to come, so it is with the
inner workings of the VGA that we will begin our exploration of PC graphics.

The rest of Part I is a guided tour of the heart of the VGA; after you've absorbed
what we' ll cover in this and the next seven chapters, you'll have the foundation for
understanding just about everything the VGA can do, including the fabled Mode X
and more. As you read through this part of the book, please keep in mind that the
really exciting stuff- animation, 3-D, blurry-fast lines and circles and polygons-has
to wait until we have the fundamentals out of the way. So hold on and follow along,
and before you know it the fireworks will be well underway.

We'll start our exploration with a quick overview of the VGA, and then we'll dive
right in and get a taste of what the VGA can do.

1

2 /gJ Chapter 1

The VGA
The VGA is the baseline adapter for modern IBM PC compatibles, present in virtually
every PC sold today or in the last several years. (Note that the VGA is often nothing
more than a chip on a motherboard, with some memory, a DAC, and maybe a couple
of glue chips; nonetheless, I'll refer to it as an adapter from now on for simplicity.) It
guarantees that every PC is capable of documented resolutions up to 640x480 (with
16 possible colors per pixel) and 320X200 (with 256 colors per pixel), as well as un
documented-but nonetheless thoroughly standard-resolutions up to 360x480 in
256-color mode, as we'll see in Parts II and VIII. In order for a video adapter to claim
VGA compatibility, it must support all the features and code discussed in this book
(with a very few minor exceptions that I'll note)-and my experience is that just about
100 percent of the video hardware currently shipping or shipped since 1990 is in fact
VGA compatible. Therefore, VGA code will run on nearly all of the 50,000,000 or so
PC compatibles out there, with the exceptions being almost entirely obsolete machines
from the 1980s. This makes good VGA code and VGA programming expertise valu
able commodities indeed.

Right off the bat, I'd like to make one thing perfectly clear: The VGA is hard
sometimes very hard-to program for good performance. Hard, but not impossible
and that's why I like this odd board. It's a throwback to an earlier generation of micros,
when inventive coding and a solid understanding of the hardware were the best tools
for improving performance. Increasingly, faster processors and powerful coprocessors
are seen as the solution to the sluggish software produced by high-level languages and
layers of interface and driver code, and that's surely a valid approach. However, there
are tens of millions of VGAs installed right now, in machines ranging from 6-MHz
286s to 90-MHz Pentiums. What's more, because the VGAs are generally 8- or at best
16-bit devices, and because of display memory wait states, a faster processor isn't as
much of a help as you'd expect. The upshot is that only a seasoned performance pro
grammer who understands the VGA through and through can drive the board to its
fullest potential.

Throughout this book, I'll explore the VGA by selecting a specific algorithm or
feature and implementing code to support it on the VGA, examining aspects of the
VGA architecture as they become relevant. You'll get to see VGA features in context,
where they are more comprehensible than in IBM's somewhat arcane documentation,
and you'll get working code to use or to modify to meet your needs.

The prime directive of VGA programming is that there's rarely just one way to
program the VGA for a given purpose. Once you understand the tools the VGA pro
vides, you'll be able to combine .them to generate the particular synergy your applica
tion needs. My VGA routines are not intended to be taken as gospel, or to show "best"
implementations, but rather to start you down the road to understanding the VGA.

Let's begin.

Bones and Sinew Jg} 3

An Introduction to VGA Programming
Most discussions of the VGA start out with a traditional "Here's a block diagram of the
VGA" approach, with lists of registers and statistics. I'll get to that eventually, but you
can find it in IBM's VGA documentation and several other books. Besides, it's numb
ing to read specifications and explanations, and the VGA is an exciting adapter, the
kind that makes you want to get your hands dirty probing under the hood, to write
some nifty code just to see what the board can do. What's more, the best way to under
stand the VGA is to see it work, so let's jump right into a sample of the VGA in action,
getting a feel for the VG/ts architecture in the process.

Listing 1.1 is a sample VGA program that pans around an animated 16-color me
dium-resolution (640x350) playfield. There's a lot packed into this code; I'm going to

focus on the VGA-specific aspects so we don't get sidetracked. I'm not going to explain
how the ball is animated, for example; we'll get to animation in Parts VII, VIII, and IX
of this book. What I will do is cover each of the VGA features used in this program
the virtual screen, vertical and horizontal panning, color plane manipulation, multi
plane block copying, and page flipping-at a conceptual level, letting the code itself
demonstrate the implementation details. We'll return to many of these concepts in
more depth later in this book.

At the Core
A little background is necessary before we're ready to examine Listing 1.1. The VGA is
built around four functional blocks, named the CRT Controller (CRTC), the Sequence
Controller (SC), the Attribute Controller (AC), and the Graphics Controller (GC).
The single-chip VGA could have been designed to treat the registers for all the blocks
as one large set, addressed at one pair of 1/0 ports, but in the EGA, each of these
blocks was a separate chip, and the legacy of EGA compatibility is why each of these
blocks has a separate set of registers and is addressed at different 1/0 ports in the VGA.

Each of these blocks has a sizable complement of registers. It is not particularly
important that you understand why a given block has a given register; all the registers
together make up the programming interface, and it is the entire interface that is of
interest to the VGA programmer. However, the means by which most VGA registers
are addressed makes it necessary for you to remember which registers are in which
blocks.

Most VGA registers are addressed as internally indexed registers. The internal ad
dress of the register is written to a given block's Index register, and then the data for
that register is written to the block's Data register. For example, GC register 8, the Bit
Mask register, is set to OFFH by writing 8 to port 3CEH, the GC Index register, and
then writing OFFH to port 3CFH, the GC Data register. Internal indexing makes it
possible to address the 9 GC registers through only two ports, and allows the entire

4 Ill Chapter 1

VGA programming interface to be squeezed into fewer than a dozen ports. The down
side is that two I/O operations are required to access most VGA registers.

The ports used to control the VGA are shown in Table 1.1 The CRTC, SC, and GC
Data registers are located at the addresses of their respective Index registers plus one.
However, the AC Index and Data registers are located at the same address, 3C0H. The
function of this port toggles on every OUT to 3C0H, and resets to Index mode (in
which the Index register is programmed by the next OUT to 3C0H) on every read
from the Input Status 1 register (3DAH when the VGA is in a color mode, 3BAH in
monochrome modes). Note that all CRTC registers are addressed at either 3DXH or
3BXH, the former in color modes and the latter in monochrome modes. This provides
compatibility with the register addressing of the now-vanished Color/Graphics Adapter
and Monochrome Display Adapter.

The method used in the VGA BIOS to set registers is to point DX to the desired
Index register, load AL with the index, perform a byte OUT, increment DX to point to
the Data register (except in the case of the AC, where DX remains the same), load AL
with the desired data, and perform a byte OUT. A handy shortcut is to point DX to
the desired Index register, load AL with the index, load AH with the data, and perform
a word OUT. Since the high byte of the OUT value goes to port DX+ 1, this is equivalent to
the first method but is faster. However, this technique does not work for programming
the AC Index and Data registers; both AC registers are addressed at 3C0H, so two
separate byte OUTs must be used to program the AC. (Actually, word OUTs to the AC

Table 1.1 The Ports Through which the VGA Is Controlled.

Register

AC Index/Data register

AC Index register

AC Data register

Miscellaneous Output register

Input Status 0 register

SC Index register

SC Data register

GC Index register

GC Data register

CRTC Index register

CRTC Data register

Input Status 1 register/
AC Index/Data reset

Feature Control

Address

3C0H (write with toggle)

3C0H (read)

3C1H (read)

3C2H (write)
3CCH (read)

3C2H (read)

3C4H (read/write)

3C5H (read/write)

3CEH (read/write)

3CFH (read/write)

3B4H/3D4H (read/write)

3B5H/3D5H (read/write)

3 BAH/3DAH (read)

3BAH/3DAH (write)
3CAH (read)

Bones and Sinew ~ 5

do work in the EGA, but not in the VGA, so they shouldn't be used.) As mentioned
above, you must be sure which mode-Index or Data-the AC is in before you do an
OUT to 3C0H; you can read the Input Status 1 register at any time to force the AC to
Index mode.

How safe is the word-OUT method of addressing VGA registers? I have, in the past,
run into adapter/computer combinations that had trouble with word OUTs; however,
all such problems I am aware of have been fixed. Moreover, a great deal of graphics
software now uses word OUTs, so any computer or VGA that doesn't properly support
word OUTs could scarcely be considered a clone at all.

A speed tip: The setting of each chip's Index register remains the
same until it is reprogrammed. This means that in cases where you
are setting the same internal register repeatedly, you can set the
Index register to point to that internal register once, then write to
the Data register multiple times. For example, the Bit Mask register
(GC register 8) is often set repeatedly inside a loop when drawing
lines. The standard code for this is:

MOY DX. 03CEH
MOY AL,8
OUT DX.AX

;point to GC Index register
;internal index of Bit Mask register
;AH contains Bit Mask register setting

Alternatively, the GC Index register could initially be set to point to
the Bit Mask register with:

MOY
MOY
OUT
INC

DX,03CEH
AL,8
DX ,AL
DX

;point to GC Index register
;internal index of Bit Mask register
;set GC Index register
;point to GC Data register

and then the Bit Mask register could be set repeatedly with the
byte-size OUT instruction:

OUT DX.AL ;AL contains Bit Mask register setting

which is generally faster (and never slower) than a word-sized OUT,
and which does not require AH to be set, freeing up a register. Of
course, this method only works if the GC Index register remains un
changed throughout the loop.

Linear Planes and True VGA Modes
The VGA's memory is organized as four 64K planes. Each of these planes is a linear
bitmap; that is, each byte from a given plane controls eight adjacent pixels on the

6 /gJ Chapter 1

screen, the next byte controls the next eight pixels, and so on to the end of the scan
line. The next byte then controls the first eight pixels of the next scan line, and so on to
the end of the screen.

The VGA adds a powerful twist to linear addressing; the logical width of the screen
in VGA memory need not be the same as the physical width of the display. The pro
grammer is free to define all or part of the VGN.s large memory map as a logical screen
of up to 4,080 pixels in width, and then use the physical screen as a window onto any
part of the logical screen. What's more, a virtual screen can have any logical height up
to the capacity of VGA memory. Such a virtual screen could be used to store a spread
sheet or a CAD/CAM drawing, for instance. As we will see shortly, the VGA provides
excellent hardware for moving around the virtual screen; taken together, the virtual
screen and the VGN.s smooth panning capabilities can generate very impressive effects.

All four linear planes are addressed in the same 64K memory space starting at
A000:0000. Consequently, there are four bytes at any given address in VGA memory.
The VGA provides special hardware to assist the CPU in manipulating all four planes,
in parallel, with a single memory access, so that the programmer doesn't have to spend
a great deal of time switching between planes. Astute use of this VGA hardware allows
VGA software to as much as quadruple performance by processing the data for all the
planes in parallel.

Each memory plane provides one bit of data for each pixel. The bits for a given pixel
from each of the four planes are combined into a nibble that serves as an address into
the VGN.s palette RAM, which maps the one of sixteen colors selected by display memory
into any one of sixty-four colors, as shown in Figure 1.1. All sixty-four mappings for all
sixteen colors are independently programmable. (We'll discuss the VGN.s color capa
bilities in detail starting in Chapter 11.)

The VGA BIOS supports several graphics modes (modes 4, 5, and 6) in which VGA
memory appears not to be organized as four linear planes. These modes exist for CGA
compatibility only, and are not true VGA graphics modes; use them when you need
CGA-type operation and ignore them the rest of the time. The VGN.s special features
are most powerful in true VGA modes, and it is on the 16-color true-VGA modes
(modes OOH (320x200), 0EH (640x200), l0H (640x350), and 12H (640x480))
that I will concentrate in this part of the book. There is also a 256-color mode, mode
13H, that appears to be a single linear plane, but, as we will see in Parts II and VIII of
this book, that's a polite fiction-and discarding that fiction gives us an opportunity to
unleash the power of the VGN.s hardware for vastly better performance. VGA text
modes, which feature soft fonts, are another matter entirely, upon which we'll touch
from time to time.

With that background out of the way, we can get on to the sample VGA program
shown in Listing 1.1. I suggest you run the program before continuing, since the ex
planations will mean far more to you if you've seen the features in action.

Bones and Sinew lll 7

Byte from

~
8 bite; from plane 0

Plane 0 (blue plane) byte, e;hifted
out 1 bit per dot clock,

0 -moe;t-e;ignificant bit firat

Palette RAM
Byte from

~ C O (16 6-Bit-wide 1 -Plane 1
8 bite; from plane 1
(green plane) byte, e;torage

2 -e;hifted out 1 bit per locatione;
dot clock, moe;t-e;lgnificant

2 addreeeed bitfirat 3 -Byte from

~
r with four bite;

8 bite; from plane 2 (red) 3 from memory) 4 Plane 2 plane byte, e;hifted out 1 ~ -per dot clock, moe;t-
5 -e;ignificant bit fire;t

Byte from

~
8 bite; from plane 3

Plane 3 (intene;ity plane) byte,
e;hifted out 1 per dot clock,
moe;t-e;ignificant bit firat

Figure 1.1 Video Data from Memory to Pixel

LISTING 1.1 L1-1.ASM
Sample VGA program.
Animates four balls bouncing around a playfield by using
page flipping. Playfield is panned smoothly both horizontally
and vertically.
By Michael Abrash.

stack segment para stack 'STACK'
db 512 dup(?)

stack ends

equ O :define for 640x350 video mode
: comment out for 640x200 mode

OaOOOh :display memory segment for
: true VGA graphics modes

One pixel
per dot
clock to
digital-to-
analog
converter
(DAC)

MEDRES_VIDEO_MODE

VIDEO_SEGMENT equ

LOGICAL_SCREEN_WIDTH
LOGICAL_SCREEN_HEIGHT

equ 672/8 :width in bytes and height in scan

PAGED equ
PAGEl equ
PAGEO_OFFSET equ
PAGEl_OFFSET equ

equ 384 lines of the virtual screen
we'll work with

0 ;flag for page O when page flipping
1 ;flag for page 1 when page flipping
0 :start offset of page O in VGA memory
LOGICAL_SCREEN_WIDTH * LOGICAL_SCREEN_HEIGHT

:start offset of page 1 (both pages
: are 672x384 virtual screens)

8 [g} Chapter 1

BALL_WIDTH equ
BALL_HEIGHT equ
BLANK_OFFSET equ

BALL_OFFSET equ

NUM_BALLS equ

: VGA register equates.

SC_INDEX equ
MAP_MASK equ
GC_INDEX equ
GC_MODE equ
CRTC_INDEX equ

24/8 ;width of ball in display memory bytes
24 ;height of ball in scan lines
PAGE! OFFSET* 2 :start of blank image

: in VGA memory
BLANK_OFFSET + (BALL_WIDTH * BALL_HEIGHT)

;start offset of ball image in VGA memory
4 :number of balls to animate

3c4h ;SC index register
2 ;SC map mask register
3ceh :GC index register
5 :GC mode register
O3d4h :CRTC index register

START_ADDRESS_HIGH equ Och ;CRTC start address high byte
START_ADDRESS_LOW equ Odh ;CRTC start address low byte
CRTC_OFFSET equ 13h ;CRTC offset register
INPUT_STATUS_l equ O3dah :VGA status register
VSYNC_MASK equ O8h :vertical sync bit in status register 1
DE_MASK equ Olh ;display enable bit in status register 1
AC_INDEX equ O3cOh ;AC index register
HPELPAN equ 2Oh OR 13h :AC horizontal pel panning register

(bit 7 is high to keep palette RAM
addressing on)

dseg segment para common 'DATA'
CurrentPage db PAGE! ;page to draw to
CurrentPageOffset dw PAGEl_OFFSET

: Four plane's worth of multicolored ball image.

BallPlaneOimage 1 abe 1 byte ;blue plane image
db OOOh, O3ch, OOOh, OOlh, Offh, O8Oh
db OO7h, Offh, OeOh, OOfh, Offh, OfOh
db 4 * 3 dup(OOOh)
db O7fh, Offh, Ofeh, Offh, Offh, Offh
db Offh, Offh, Offh, Offh, Offh, Offh
db 4 * 3 dupCOOOh)
db O7fh, Offh, Ofeh, O3fh, Offh, Ofch
db O3fh, Offh, Ofch, Olfh, Offh, OfBh
db 4 * 3 dup(OOOh)

Ball Pl anellmage 1 abel byte ;green plane image
db 4 * 3 dup(OOOh)
db Olfh, Offh, OfBh, O3fh, Offh, Ofch
db O3fh, Offh, Ofch, O7fh, Offh, Ofeh
db O7fh, Offh, Ofeh, Offh, Offh, Offh
db Offh, Offh, Offh, Offh, Offh, Offh
db 8 * 3 dup(OOOh)
db OOfh, Offh, OfOh, OO7h, Offh, OeOh
db OOlh, Offh, O8Oh, OOOh, O3ch, OOOh

Bal1Plane2Image 1 abel byte :red plane image
db 12 * 3 dup(OOOh)
db Offh, Offh, Offh, Offh, Offh, Offh
db Offh, Offh, Offh, O7fh, Offh, Ofeh
db O7fh, Offh, Ofeh, O3fh, Offh, Ofch
db O3fh, Offh, Ofch, Olfh, Offh, OfBh
db OOfh, Offh, Of Oh, OO7h, Offh, OeOh
db OOlh, Offh, O8Oh, OOOh, O3ch, OOOh

Bal1Plane3Image 1 abel byte ;intensity on for all planes,
; to produce high-intensity colors

db OOOh, O3ch, OOOh, OOlh, Offh, O8Oh

db
db
db
db
db
db
db
db
db
db
db

007h,
Olfh,
03fh,
07fh,
Offh,
Offh,
Offh,
07fh,
03fh,
OOfh,
OOlh,

BallX dw
BallY dw
LastBallX dw
LastBallY dw
BallXInc dw
BallYinc dw
Ball Rep dw

Ball Control dw
dw

BallControlString

Offh. OeOh, OOfh, Offh,
Offh, Of8h, 03fh. Offh,
Offh, Ofch, 07fh. Offh,
Offh, Ofeh, Offh. Offh,
Offh, Offh, Offh, Offh,
Offh. Offh, Offh, Offh,
Offh. Offh, 07fh, Offh,
Offh, Ofeh, 03fh, Offh,
Offh, Ofch. Olfh, Offh,
Offh, OfOh, 007h, Offh,
Offh, 080h, OOOh, 03ch,

15, 50, 40, 70
40, 200, 110, 300
15, 50, 40, 70
40, 100. 160, 30
1. 1, 1, 1
8. 8, 8, 8
1, 1, 1,

Bones and Sinew

OfOh
Ofch
Ofeh
Offh
Offh
Offh
Ofeh
Ofch
Of8h
OeOh
OOOh

;array of ball x coords
;array of ball y coords
;previous ball x coords
;previous ball y coords
;x move factors for ball
;y move factors for ball
;# times to keep moving
; ball according to current
; increments

BallOContfol, BalllControl ;pointers to current

dw
dw

Ball2Control, Ball3Control ; locations in ball
; control strings

BallOControl. BalllControl ;pointers to
Ball2Control. Ball3Control start of ball

; control strings

Ball control strings.

BallOControl
dw

BalllControl
dw

Ball2Control
dw

Ball3Control
dw

label word
10, 1, 4, 10, -1. 4, 10, -1. -4. 10, 1, -4. 0
label word
12, -1. 1, 28, -1. -1, 12, 1, -1, 28, 1, 1, 0
label word
20, o. -1. 40. o. 1, 20, o. -1. 0
label word
8, 1, 0, 52, -1. o. 44. 1, o. 0

Panning control string.

ifdef MEDRES_VIDEO_MODE
PanningControlString
else
PanningControlString
endif
PanningControl dw

PanningRep dw

PanningXInc dw
PanningYinc dw
HPan db
PanningStartOffset dw

dseg ends

dw

dw

32, 1, o. 34, o. 1, 32, -1. o. 34. o. -1. 0

32. 1. o. 184, 0, 1, 32, -1, 0, 184, 0, -1. 0

PanningControlString ;pointer to current location
; in panning control string

1 ;# times to pan according to current
; panning increments

1 ;x panning factor
O ;y panning factor
0 ;horizontal pel panning setting
0 ;start offset adjustment to produce vertical

; panning & coarse horizontal panning

Macro to set indexed register P2 of chip with index register
at Pl to AL.

SETREG macro Pl. P2

jg) 9

10 gJ Chapter 1

mov dx,Pl
mov ah, al
mov al ,P2
out dx, ax
endm

cseg segment para public 'CODE'
assume cs:cseg, ds:dseg

start proc near
mov ax,dseg
mov ds,ax

Select graphics mode.

if def MEDRES_VIDEO_MODE
mov ax,OlOh

else
mov ax,Oeh

end if
int 10h

ES always points to VGA memory.

mov ax,VIDEO_SEGMENT
mov es ,ax

Draw border around playfield in both pages.

mov di ,PAGEO_OFFSET
call DrawBorder ;page 0 border
mov di, PAGEl_OFFSET
call DrawBorder ;page 1 border

Draw all four plane's worth of the ball to undisplayed VGA memory.

mov al ,Olh ;enable plane 0
SETREG SC_INDEX, MAP_MASK
mov si,offset BallPlaneOimage
mov di ,BALL_OFFSET
mov cx,BALL_WIDTH * BALL_HEIGHT
rep movsb
mov al , 02h ;enable plane 1
SETREG SC_INDEX, MAP_MASK
mov si,offset BallPlanelimage
mov di ,BALL_OFFSET
mov ex, BALL_WIDTH * BALL_HEIGHT
rep movsb
mov al ,04h ;enable plane 2
SETREG SC_INDEX, MAP_MASK
mov si,offset Bal1Plane2Image
mov di ,BALL_OFFSET
mov ex. BALL_WIDTH * BALL_HEIGHT
rep movsb
mov al , 08h ;enable plane 3
SETREG SC_INDEX, MAP_MASK
mov si,offset Bal1Plane3Image
mov di,BALL_OFFSET
mov cx,BALL_WIDTH * BALL_HEIGHT
rep movsb

Bones and Sinew ll} 11

Draw a blank image the size of the ball to undisplayed VGA memory.

mov
SETREG
mov
mov
sub

al • Ofh
SC_INDEX, MAP_MASK

;enable all memory planes, since the
: blank has to erase all planes

di ,BLANK_OFFSET
cx,BALL_WIDTH * BALL_HEIGHT
al. al

rep stosb

Set VGA to write mode 1, for block copying ball and blank images.

mov dx,GC_INDEX
mov al ,GC_MODE
out dx,al ;point GC Index to GC Mode register
inc dx ;point to GC Data register
jmp $+2 ;delay to let bus settle
in al ,dx ;get current state of GC Mode
and al. not 3 ;clear the write mode bits
or al. I ;set the write mode field to 1
jmp $+2 ;delay to let bus settle
out dx,al

Set VGA offset register in words to define logical screen width.

mov al,LOGICAL_SCREEN_WIDTH / 2
SETREG CRTC_INDEX, CRTC_OFFSET

Move the balls by erasing each ball, moving it, and
redrawing it, then switching pages when they're all moved.

BallAnimationloop:
mov bx,(NUM_BALLS * 2 l - 2

EachBallloop:

Erase old image of ball in this page Cat location from one more earlier).

mov si,BLANK_OFFSET ;point to blank image
mov cx,[LastBallX+bx]
mov dx,[LastBallY+bx]
call DrawBal l

Set new last ball location.

mov ax,[BallX+bx]
mov [LastballX+bx],ax
mov ax,[BallY+bx]
mov [LastballY+bx],ax

Change the ball movement values if it's time to do so.

dee
jnz
mov
lodsw

[BallRep+bx]
MoveBall

;has current repeat factor run out?

and
jnz
mov
lodsw

SetNewMove:

si ,[BallControl+bx]

ax.ax

;it's time to change movement
;get new repeat factor from
: control string
;at end of control string?

SetNewMove
si,[BallControlString+bx] :reset control string

new repeat factor ;get

values

12 gJ Chapter 1

mov
lodsw
mov
lodsw
mov
mov

[BallRep+bx],ax

[BallXInc+bx],ax

[BallYinc+bxJ,ax
[BallControl+bx],si

;set new movement repeat factor
;set new x movement increment

;set new y movement increment

;save new control string pointer

Move the ball.

MoveBa 11 :
mov
add
mov
add

Draw ball

mov
mov
mov
call

dee
dee
jns

at

ax,[BallXInc+bx]
[Ba 11 X+bx]. ax
ax, [Ba 11 YI nc+bx]
[Ba 11 Y+bx]. ax

new location.

si ,BALL_OFFSET
cx,[BallX+bx]
dx,[BallY+bx]
DrawBall

bx
bx
EachBallloop

;move in x direction

;move in y direction

;point to ball's image

Set up the next panning state (but don't program it into the
VGA yet).

call AdjustPanning

Wait for display enable (pixel data being displayed) so we know
we're nowhere near vertical sync, where the start address gets
latched and used.

call WaitDisplayEnable

Flip to the new page by changing the start address.

mov ax,[CurrentPageOffset]
add ax,[PanningStartOffsetJ
push ax
SETREG CRTC_INDEX, START_ADDRESS LOW
mov al ,byte ptr [CurrentPageOffset+lJ
pop ax
mov al , ah
SETREG CRTC_l NDEX, START_ADDRESS_HIGH

Wait for vertical sync so the new start address has a chance
to take effect.

call WaitVSync

Set horizontal panning now, just as new start address takes effect.

mov
mov
in
mov

al, [HPanJ
dx,INPUT_STATUS_l
al ,dx
dx,AC_INDEX

;reset AC addressing to index reg

Bones and Sinew [g) 13

mov
out
mov
out

al ,HPELPAN
dx,al
al,[HPan]
dx,al

;set ~C index to pel pan reg

;set new pel panning

Flip the page to draw to to the undisplayed page.

IsPagel:

xor
jnz
mov
jmp

mov
End Fl i pPage:

[CurrentPage],l
IsPagel
[CurrentPageOffset],PAGEO_OFFSET
short EndFlipPage

[CurrentPageOffset],PAGEl_OFFSET

Exit if a key's been hit.

mov ah,l
int 16h
jnz Done
jmp BallAnimationLoop

Finished, clear key, reset screen mode and exit.

Done:
mov ah,O ;clear key
int 16h

mov ax,3 ;reset to text mode
int !Oh

mov ah,4ch ;exit to DOS
int 21h

start endp

Routine to draw a ball-sized image to all planes, copying from
offset SI in VGA memory to offset CX,DX (x,y) in VGA memory in
the current page.

DrawBa 11
mov
mul
add
add
mov
mov
push
push
pop

proc near
ax,LOGICAL_SCREEN_WIDTH
dx ;offset of start of top image scan line
ax.ex ;offset of upper left of image
ax,[CurrentPageOffset] ;offset of start of page
di, ax
bp,BALL_HEIGHT
ds
es
ds ;move from VGA memory to VGA memory

di
cx,BALL_WIDTH

movsb
di

DrawBallloop:
push
mov
rep
pop
add
dee
jnz
pop
ret

;draw a scan line of image

DrawBall

di ,LOGICAL_SCREEN_WIDTH
bp
DrawBallloop
ds

endp

;point to next destination scan line

14 [lJ Chapter 1

Wait for the leading edge of vertical sync pulse.

WaitVSync proc near
mov dx,INPUT_STATUS_l

WaitNotVSyncloop:
in al ,dx
and al,VSYNC_MASK
jnz WaitNotVSyncloop

WaitVSyncloop:
in
and
jz
ret

WaitVSync

al ,dx
al,VSYNC_MASK
WaitVSyncLoop

endp

Wait for display enable to happen (pixels to be scanned to
the screen, indicating we're in the middle of displaying a frame).

WaitDisplayEnable proc near
mov dx,INPUT_STATUS_l

WaitDELoop:
in
and
jnz
ret

al ,dx
al ,DE_MASK
WaitDELoop

WaitDisplayEnable endp

Perform horizontal/vertical panning.

AdjustPanning
dee
jnz
mov

proc near
[PanningRep] ;time to get new panning values?

lodsw
and
jnz

DoPan
si,[PanningControl]

ax.ax
SetnewPanValues

;point to current location in
; panning control string
;get panning repeat factor
;at end of panning control string?

mov
lodsw

si,offset PanningControlString ;reset to start of string

SetNewPanValues:
mov [PanningRep],ax
lodsw
mov [PanningXInc],ax
lodsw
mov [PanningYinc],ax
mov [PanningControl],si

Pan according to panning values.

DoPan:
mov ax,[PanningXInc]
and ax.ax
js Pan Left
jz CheckVerticalPan
mov al, [HPan]
inc al
cmp al ,8

;get panning repeat factor

;set new panning repeat value

;horizontal panning value

;vertical panning value
;save current location in panning
; control string

;horizontal panning

;negative means pan left

;pan right; if pel pan reaches
; 8, it's time to move to the

jb
sub
inc
jmp

SetHPan
al , al
[PanningStartOffsetJ
short SetHPan

Bones and Sinew Ii.I 15

next byte with a pel pan of 0
anr a start offset that's one
higher

PanLeft:
mov
dee
jns
mov
dee

al, [HPan]
al
SetHPan
al, 7
[PanningStartOffset]

;pan left; if pel pan reaches -1,
it's time to move to the next
byte with a pel pan of 7 and a
start offset that's one lower

SetHPan:
mov [HPanJ,al

CheckVerticalPan:
;save new pel pan value

;vertical panning

PanUp:

End Pan:

mov
and
js
jz
add

jmp

ax,[PanningYincJ
ax.ax
PanUp ;negative means pan up
EndPan
[PanningStartOffset],LOGICAL_SCREEN_WIDTH

short EndPan

;pan down by advancing the start
; address by a scan line

sub [PanningStartOffset],LOGICAL_SCREEN_WIDTH

ret

;pan up by retarding the start
; address by a scan line

Draw textured border around playfield that starts at DI.

DrawBorder proc near

Draw the left border.

push di
mov cx,LOGICAL_SCREEN_HEIGHT / 16

DrawLeftBorderLoop:
mov al ,Och ;select red color for block
call DrawBorderBlock
add di ,LOGICAL_SCREEN_WIDTH * 8
mov al ,Oeh ;select yellow color for block
call DrawBorderBlock
add di ,LOGICAL_SCREEN_WIDTH * 8
loop DrawLeftBorderLoop
pop di

Draw the right border.

push di
add di ,LOG!CAL_SCREEN_WIDTH - 1
mov cx,LOGICAL_SCREEN_HEIGHT / 16

DrawRightBorderLoop:
mov al,Oeh ;select yellow color for block
call DrawBorderBlock
add di ,LOGICAL_SCREEN_WIDTH * 8
mov al ,Och ;select red color for block
ca 11 DrawBorderBl ock
add di,LOGICAL_SCREEN_WIDTH * 8
loop DrawRightBorderLoop
pop di

16 g} Chapter 1

Draw the top border.

push di
mov cx,(LOGICAL_SCREEN_WIDTH - 2) / 2

DrawTopBorderLoop:
inc di
mov al,Oeh ;select yellow color for block
call DrawBorderBlock
inc di
mov al ,Och ;select red color for block
call DrawBorderBlock
loop DrawTopBorderLoop
pop di

Draw the bottom border.

add di ,(LOGICAL_SCREEN_HEIGHT - 8) * LOGICAL_SCREEN_WIDTH
mov cx,(LOGICAL_SCREEN_WIDTH - 2) / 2

DrawBottomBorderLoop:
inc di
mov al ,Och ;select red color for block
call DrawBorderBlock
inc di
mov al ,Oeh ;select yellow color for block
call DrawBorderBlock
loop
ret

DrawBorder

DrawBottomBorderloop

endp

; Draws an 8x8 border block in color in AL at location DI.
; DI preserved.

DrawBorderBlock
push
SETREG
mov
rept 8
stosb
add
endm
pop
ret

DrawBorderBlock
AdjustPanning
cseg ends

end

proc near
di
SC_INDEX, MAP_MASK
al ,Offh

di ,LOGICAL_SCREEN_WIDTH - 1

di

endp
endp

start

Smooth Panning
The first thing you'll notice upon running the sample program is the remarkable smooth
ness with which the display pans from side-to-side and up-and-down. That the display
can pan at all is made possible by two VGA features: 256K of display memory and the
virtual screen capability. Even the most memory-hungry of the VGA modes, mode
12H (640x480), uses only 37.SK per plane, for a total of 150K out of the total 256K
of VGA memory. The medium-resolution mode, mode 1 OH (640x350), requires only
28K per plane, for a total of 112K. Consequently, there is room in VGA memory to
store more than two full screens of video data in mode lOH (which the sample pro-

Bones and Sinew {gJ 17

gram uses), and there is room in all modes to store a larger virtual screen than is actu
ally displayed. In the sample program, memory is organized as two virtual screens,
each with a resolution of 672x384, as shown in Figure 1.2. The area of the virtual
screen actually displayed at any given time is selected by setting the display memory
address at which to begin fetching video data; this is set by way of the start address
registers (Start Address High, CRTC register OCH, and Start Address Low, CRTC
register OOH). Together these registers make up a 16-bit display memory address at
which the CRTC begins fetching data at the beginning of each video frame. Increasing
the start address causes higher-memory areas of the virtual screen to be displayed. For
example, the Start Address High register could be set to 80H and the Start Address
Low register could be set to OOH in order to cause the display screen to reflect memory
starting at offset 8000H in each plane, rather than at the default offset of 0.

The logical height of the virtual screen is defined by the amount of VGA memory
available. As the VGA scans display memory for video data, it progresses from the start
address toward higher memory one scan line at a time, until the frame is completed.
Consequently, if the start address is increased, lines farther toward the bottom of the
virtual screen are displayed; in effect, the virtual screen appears to scroll up on the
physical screen.

The logical width of the virtual screen is defined by the Offset register (CRTC
register 13H), which allows redefinition of the number of words of display memory
considered to make up one scan line. Normally, 40 words of display memory constitute a

A000:0000

Page 0
672 X 384
Virtual Page

A000:7E00

Page 1
672 X 384
Virtual Page

A000:FC00 Ball image and blank image

Figure 1.2 Video Memory Organization for Listing 1.1

18 {gJ Chapter 1

scan line; after the CRTC scans these 40 words for 640 pixels worth of data, it advances 40
words from the start of that scan line to find the start of the next scan line in memory.
This means that displayed scan lines are contiguous in memory. However, the Offset
register can be set so that scan lines are logically wider (or narrower, for that matter)
than their displayed width. The sample program sets the Offset register to 2AH, malc
ing the logical width of the virtual screen 42 words, or 42 * 2 * 8 = 672 pixels, as
contrasted with the actual width of the mode 1 Oh screen, 40 words or 640 pixels. The
logical height of the virtual screen in the sample program is 384; this is accomplished
simply by reserving 84 * 384 contiguous bytes of VGA memory for the virtual screen,
where 84 is the virtual screen width in bytes and 384 is the virtual screen height in scan
lines.

The start address is the key to panning around the virtual screen. The start address
registers select the row of the virtual screen that maps to the top of the display; panning
down a scan line requires only that the start address be increased by the logical scan line
width in bytes, which is equal to the Offset register times two. The start address registers
select the column that maps to the left edge of the display as well, allowing horizontal
panning, although in this case only relatively coarse byte-sized adjustments-panning
by eight pixels at a time-are supported.

Smooth horizontal panning is provided by the Horizontal Pel Panning register, AC
register 13H, working in conjunction with the start address. Up to 7 pixels worth of
single pixel panning of the displayed image to the left is performed by increasing the
Horizontal Pel Panning register from 0 to 7. This exhausts the range of motion pos
sible via the Horizontal Pel Panning register; the next pixel's worth of smooth panning
is accomplished by incrementing the start address by one and resetting the Horizontal
Pel Panning register to 0. Smooth horizontal panning should be viewed as a series of
fine adjustments in the 8-pixel range between coarse byte-sized adjustments.

A horizontal panning oddity: Alone among VGA modes, text mode (in most cases)
has 9 dots per character clock. Smooth panning in this mode requires cycling the
Horizontal Pel Panning register through the values 8, 0, 1, 2, 3, 4, 5, 6, and 7. 8 is the ,, . ,, .
no pannmg settmg.

There is one annoying quirk about programming the AC. When the AC Index
register is set, only the lower five bits are used as the internal index. The next most
significant bit, bit 5, controls the source of the video data sent to the monitor by the
VGA. When bit 5 is set to 1, the output of the palette RAM, derived from display
memory, controls the displayed pixels; this is normal operation. When bit 5 is 0, video
data does not come from the palette RAM, and the screen becomes a solid color. The
only time bit 5 of the AC Index register should be 0 is during the setting of a palette
RAM register, since the CPU is only able to write to palette RAM when bit 5 is 0.
(Some VGAs do not enforce this, but you should always set bit 5 to 0 before writing to
the palette RAM just to be safe.) Immediately after setting palette RAM, however, 20h
(or any other value with bit 5 set to 1) should be written to the AC Index register to
restore normal video, and at all other times bit 5 should be set to 1.

Jg/
Bones and Sinew [{I 19

By the way, palette RAM can be set via the BIOS video interrupt
(interrupt 1OH), function 1OH. Whenever an VGA function can be per
formed reasonably well through a BIOS function, as it can in the
case of setting palette RAM, it should be, both because there is no
point in reinventing the wheel and because the BIOS may well mask
incompatibilities between the IBM VGA and VGA clones.

Color Plane Manipulation
The VGA provides a considerable amount of hardware assistance for manipulating the
four display memory planes. Two features illustrated by the sample program are the
ability to control which planes are written to by a CPU write and the ability to copy
four bytes-one from each plane-with a single CPU read and a single CPU write.

The Map Mask register (SC register 2) selects which planes are written to by CPU
writes. If bit O of the Map Mask register is 1, then each byte written by the CPU will be
written to VGA memory plane 0, the plane that provides the video data for the least
significant bit of the palette RAM address. If bit O of the Map Mask register is 0, then
CPU writes will not affect plane 0. Bits 1, 2, and 3 of the Map Mask register similarly
control CPU access to planes 1, 2, and 3, respectively. Any of the sixteen possible
combinations of enabled and disabled planes can be selected. Beware, however, of writing
to an area of memory that is not zeroed. Planes that are disabled by the Map Mask
register are not altered by CPU writes, so old and new images can mix on the screen,
producing unwanted color effects as, say, three planes from the old image mix with one
plane from the new image. The sample program solves this by ensuring that the memory
written to is zeroed. A better way to set all planes at once is provided by the set/reset
capabilities of the VGA, which I'll cover in Chapter 3.

The sample program writes the image of the colored ball to VGA memory by en
abling one plane at a time and writing the image of the ball for that plane. Each image
is written to the same VGA addresses; only the destination plane, selected by the Map
Mask register, is different. You might think of the ball's image as consisting of four
colored overlays, which together make up a multicolored image. The sample program
writes a blank image to VGA memory by enabling all planes and writing a block of
zero bytes; the zero bytes are written to all four VGA planes simultaneously.

The images are written to a nondisplayed portion of VGA memory in order to take
advantage of a useful VGA hardware feature, the ability to copy all four planes at once.
As shown by the image-loading code discussed above, four different sets of reads and
writes-and several OUTs as well-are required to copy a multicolored image into
VGA memory as would be needed to draw the same image into a non-planar pixel
buffer. This causes unacceptably slow performance, all the more so because the wait
states that occur on accesses to VGA memory make it very desirable to minimize dis
play memory accesses, and because OUTs tend to be very slow.

20 /gJ Chapter 1

The solution is to take advantage of the VGXs write mode 1, which is selected via
bits 0 and 1 of the GC Mode register (GC register 5). (Be careful to preserve bits 2-7
when setting bits 0 and 1, as is done in Listing 1.1.) In write mode 1, a single CPU read
loads the addressed byte from all four planes into the VGXs four internal latches, and
a single CPU write writes the contents of the latches to the four planes. During the
write, the byte written by the CPU is irrelevant.

The sample program uses write mode 1 to copy the images that were previously
drawn to the high end of VGA memory into a desired area of display memory, all in a
single block copy operation. This is an excellent way to keep the number of reads,
writes, and OUTs required to manipulate the VGXs display memory low enough to
allow real-time drawing.

The Map Mask register can still mask out planes in write mode 1. All four planes are
copied in the sample program because the Map Mask register is still 0Fh from when
the blank image was created.

The animated images appear to move a bit jerkily because they are byte-aligned and
so must move a minimum of 8 pixels horizontally. This is easily solved by storing
rotated versions of all images in VGA memory, and then in each instance drawing the
correct rotation for the pixel alignment at which the image is to be drawn; we'll see this
technique in action in Chapter 34.

Don't worry if you're not catching everything in this chapter on the first pass; the
VGA is a complicated beast, and learning about it is an iterative process. We'll be going
over these features again, in different contexts, over the course of the rest of this book.

Page Flipping
When animated graphics are drawn directly on the screen, with no intermediate frame
composition stage, the image typically flickers and/or ripples, an unavoidable result of
modifying display memory at the same time that it is being scanned for video data.
The display memory of the VGA makes it possible to perform page flipping, which
eliminates such problems. The basic premise of page flipping is that one area of display
memory is displayed while another is being modified. The modifications never affect
an area of memory as it is providing video data, so no undesirable side effects occur.
Once the modification is complete, the modified buffer is selected for display, causing
the screen to change to the new image in a single frame's time, typically 1160th or 1/
70th of a second. The other buffer is then available for modification.

As described above, the VGA has 64K per plane, enough to hold two pages and
more in 640x350 mode lOH, but not enough for two pages in 640x480 mode 12H.
For page flipping, two non-overlapping areas of display memory are needed. The sample
program uses two 672X384 virtual pages, each 32,256 bytes long, one starting at
A000:0000 and the other starting at A000:7£00. Flipping between the pages is as
simple as setting the start address registers to point to one display area or the other
but, as it turns out, that's not as simple as it sounds.

Bones and Sinew Jg} 21

The timing of the switch between pages is critical to achieving flicker-free anima
tion. It is essential that the program never be modifying an area of display memory as
that memory is providing video data. Achieving this is surprisingly complicated on the
VGA, however.

The problem is as follows. The start address is latched by the VGXs internal cir
cuitry exactly once per frame, typically (but not always on all clones) at the start of the
vertical sync pulse. The vertical sync status is, in fact, available as bit 3 of the Input
Status O register, addressable at 3BAH (in monochrome modes) or 3DAH (color).
Unfortunately, by the time the vertical sync status is observed by a program, the start
address for the next frame has already been latched, having happened the instant the
vertical sync pulse began. That means that it's no good to wait for vertical sync to
begin, then set the new start address; if we did that, we'd have to wait until the next
vertical sync pulse to start drawing, because the page wouldn't flip until then.

Clearly, what we want is to set the new start address, then wait for the start of the
vertical sync pulse, at which point we can be sure the page has flipped. However, we
can't just set the start address and wait, because we might have the extreme misfortune
to set one of the start address registers before the start of vertical sync and the other
after, resulting in mismatched halves of the start address and a nasty jump of the dis
played image for one frame.

One possible solution to this problem is to pick a second page start address that has
a O value for the lower byte, so only the Start Address High register ever needs to be set,
but in the sample program in Listing I. I I've gone for generality and always set both
bytes. To avoid mismatched start address bytes, the sample program waits for pixel data
to be displayed, as indicated by the Display Enable status; this tells us we're somewhere
in the displayed portion of the frame, far enough away from vertical sync so we can be
sure the new start address will get used at the next vertical sync. Once the Display
Enable status is observed, the program sets the new start address, waits for vertical sync
to happen, sets the new pel panning state, and then continues drawing. Don't worry
about the details right now; page flipping will come up again, at considerably greater
length, in later chapters.

fiJ
As an interesting side note, be aware that if you run DOS software
under a multitasking environment such as Windows NT, times/icing
delays can make mismatched start address bytes or mismatched
start address and pet panning settings much more likely, for the
graphics code can be interrupted at any time. This is also possible,
although much less likely, under non-multitasking environments such
as DOS, because strategically placed interrupts can cause the same
sorts of problems there. For maximum safety, you should disable
interrupts around the key portions of your page-flipping code, al
though here we run into the problem that if interrupts are disabled
from the time we start looking for Display Enable until we set the Pel

22 [lJ Chapter 1

Panning register, they will be off for far too long, and keyboard, mouse,
and network events will potentially be lost. Also, disabling interrupts
won't help in true multitasking environments, which never let a pro
gram hog the entire CPU. This is one reason that pel panning, al
though indubitably flashy, isn't widely used and should be reserved
for only those cases where it's absolutely necessary.

Waiting for the sync pulse has the side effect of causing program execution to syn
chronize to the VGX.s frame rate of 60 or 70 frames per second, depending on the
display mode. This synchronization has the useful consequence of causing the pro
gram to execute at the same speed on any CPU that can draw fast enough to complete
the drawing in a single frame; the program just idles for the rest of each frame that it
finishes before the VGA is finished displaying the previous frame.

An important point illustrated by the sample program is that while the VGA's dis
play memory is far larger and more versatile than is the case with earlier adapters, it is
nonetheless a limited resource and must be used judiciously. The sample program uses
VGA memory to store two 672X384 virtual pages, leaving only 1024 bytes free to store
images. In this case, the only images needed are a colored ball and a blank block with
which to erase it, so there is no problem, but many applications require dozens or
hundreds of images. The tradeoffs between virtual page size, page flipping, and image
storage must always be kept in mind when designing programs for the VGA.

To see the program run in 640x200 16-color mode, comment out the EQU line for
MED RES_ VIDEO_MODE.

The Hazards of VGA Clones
Earlier, I said that any VGA that doesn't support the features and functionality covered
in this book can't properly be called VGA compatible. I also noted that there are some
exceptions, however, and we've just come to the most prominent one. You see, all
VGAs really are compatible with the IBM VGA's functionality when it comes to draw
ing pixels into display memory; all the write modes and read modes and set/reset capa
bilities and everything else involved with manipulating display memory really does
work in the same way on all VGAs and VGA clones. That compatibility isn't as airtight
when it comes to scanning pixels out of display memory and onto the screen in certain
infrequently-used ways, however.

The areas of incompatibility of which I'm aware are illustrated by the sample pro
gram, and may in fact have caused you to see some glitches when you ran Listing 1.1.
The problem, which arises only on certain VGAs, is that some settings of the Row
Offset register cause some pixels to be dropped or displaced to the wrong place on the
screen; often, this happens only in conjunction with certain start address settings. (In
my experience, only VRAM (Video RAM)-based VGAs exhibit this problem, no doubt

Bones and Sinew fg/ 23

due to the way that pixel data is fetched from VRAM in large blocks.) Panning and
large virtual bitmaps can be made to work reliably, by careful selection of virtual bitmap
sizes and start addresses, but it's difficult; that's one of the reasons that most commercial
software does not use these features, although a number of games do. The upshot is that if
you're going to use oversized virtual bitmaps and pan around them, you should take
great care to test your software on a wide variety ofVRAM- and DRAM-based VGAs.

Just the Beginning
That pretty well covers the important points of the sample VGA program in Listing 1.1.
There are many VGA features we didn't even touch on, but the object was to give you
a feel for the variety of features available on the VGA, to convey the flexibility and
complexity of the VG/\s resources, and in general to give you an initial sense of what
VGA programming is like. Starting with the next chapter, we'll begin to explore the
VGA systematically, on a more detailed basis.

The Macro Assembler
The code in this book is written in both C and assembly. I think C is a good develop
ment environment, but I believe that often the best code (although not necessarily the
easiest to write or the most reliable) is written in assembly. This is especially true of
graphics code for the x86 family, given segments, the string instructions, and the asym
metric and limited register set, and for real-time programming of a complex board like
the VGA, there's really no other choice for the lowest-level code.

Before I'm deluged with protests from C devotees, let me add that the majority of
my productive work is done in C; no programmer is immune to the laws of time, and
C is simply a more time-efficient environment in which to develop, particularly when
working in a programming team. In this book, however, we're after the sine qua non of
PC graphics-performance-and we can't get there from here without a fair amount
of assembly language.

Now that we know what the VGA looks like in broad strokes and have a sense of
what VGA programming is like, we can start looking at specific areas in depth. In the
next chapter, we'll take a look at the hardware assistance the VGA provides the CPU
during display memory access. There are four latches and four ALUs in those chips,
along with some useful masks and comparators, and it's that hardware that's the differ
ence between sluggish performance and making the VGA get up and dance.

Parallel
Processing
with the VGA

.. u
I r = ca -= u

Taking on Graphics Memory Four Bytes at a Time
This heading refers to the ability of the VGA chip to manipulate up to four bytes of
display memory at once. In particular, the VGA provides four ALUs (Arithmetic Logic
Units) to assist the CPU during display memory writes, and chis hardware is a tremen
dous resource in the cask of manipulating the VGNs sizable frame buffer. The ALUs
are actually only one part of the surprisingly complex data flow architecture of the
VGA, but since they're involved in almost all memory access operations, they're a good
place to begin.

VGA Programming: ALUs and Latches
I'm going to begin our detailed tour of the VGA at the heart of the flow of data through the
VGA: the four ALUs built into the VGNs Graphics Controller (GC) circuitry. The ALUs
(one for each display memory plane) are capable of ORing, ANDing, and XO Ring CPU
data and display memory data together, as well as masking off some or all of the bits in
the data from affecting the final resulc. All the ALUs perform the same logical opera
tion at any given time, but each ALU operates on a different display memory byte.

Recall chat the VGA has four display memory planes, with one byte in each plane at
any given display memory address. All four display memory bytes operated on are read
from and written to the same address, but each ALU operates on a byte chat was read
from a different plane and writes the resulc to chat plane. This arrangement allows four
display memory bytes to be modified by a single CPU write (which must often be
preceded by a single CPU read, as we will see). The benefit is vastly improved perfor
mance; if the CPU had to select each of the four planes in turn via OUTs and perform
the four logical operations itself, VGA performance would slow to a crawl.

25

26 fgJ Chapter 2

Figure 2.1 is a simplified depiction of data flow around the ALUs. Each ALU has a
matching latch, which holds the byte read from the corresponding plane during the
last CPU read from display memory, even if that particular plane wasn't the plane that
the CPU actually read on the last read access. (Only one byte can be read by the CPU
with a single display memory read; the plane supplying the byte is selected by the Read
Map register. However, the bytes at the specified address in all four planes are always
read when the CPU reads display memory, and those four bytes are stored in their
respective latches.)

Each ALU logically combines the byte written by the CPU and the byte stored in
the matching latch, according to the settings of bits 3 and 4 of the Data Rotate register
(and the Bit Mask register as well, which I'll cover next time), and then writes the result
to display memory. It is most important to understand that neither ALU operand
comes directly from display memory. The temptation is to think of the ALUs as com
bining CPU data and the contents of the display memory address being written to, but
they actually combine CPU data and the contents of the last display memory location
read, which need not be the location being modified. The most common application
of the ALUs is indeed to modify a given display memory location, but doing so re
quires a read from that location to load the latches before the write that modifies it.
Omission of the read results in a write operation that logically combines CPU data
with whatever data happens to be in the latches from the last read, which is normally
undesirable.

Byte
written

by
CPU

cl Latch

cl Latch

cl Latch

Figure 2.1 VGA ALU Data Flow

Display Memory
Plane3

Parallel Processing with the VGA [g} 27

Occasionally, however, the independence of the latches from the display memory
location being written to can be used to great advantage. The latches can be used to
perform 4-byte-at-a-time (one byte from each plane) block copying; in this applica
tion, the latches are loaded with a read from the source area and written unmodified to
the destination area. The latches can be written unmodified in one of two ways: By
selecting write mode I (for an example of this, see the last chapter), or by setting the
Bit Mask register to O so only the latched bits are written.

The latches can also be used to draw a fairly complex area fill pattern, with a differ
ent bit pattern used to fill each plane. The mechanism for this is as follows: First,
generate the desired pattern across all planes at any display memory address. Generat
ing the pattern requires a separate write operation for each plane, so that each plane's
byte will be unique. Next, read that memory address to store the pattern in the latches.
The contents of the latches can now be written to memory any number of times by
using either write mode I or the bit mask, since they will not change until a read is
performed. If the fill pattern does not require a different bit pattern for each plane
that is, if the pattern is black and white-filling can be performed more easily by
simply fanning the CPU byte out to all four planes with write mode 0. The set/reset
registers can be used in conjunction with fanning out the data to support a variety of
two-color patterns. More on this in Chapter 3.

The sample program in Listing 2.1 fills the screen with horizontal bars, then illustrates
the operation of each of the four ALU logical functions by writing a vertical 80-pixel
wide box filled with solid, empty, and vertical and horizontal bar patterns over that
background using each of the functions in turn. When observing the output of the sample
program, it is important to remember that all four vertical boxes are drawn with exactly
the same code-only the logical function that is in effect differs from box to box.

All graphics in the sample program are done in black-and-white by writing to all
planes, in order to show the operation of the ALUs most clearly. Selective enabling of
planes via the Map Mask register and/or set/reset would produce color effects; in that
case, the operation of the logical functions must be evaluated on a plane-by-plane
basis, since only the enabled planes would be affected by each operation.

LISTING 2.1 L2-1.ASM
Program to illustrate operation of ALUs and latches of the VGA's
Graphics Controller. Draws a variety of patterns against
a horizontally striped background, using each of the 4 available
logical functions (data unmodified, AND, OR, XOR) in turn to combine
the images with the background.

By Michael Abrash.

stack segment para stack 'STACK'
db 512 dup(?)

stack ends

VGA_VIDEO_SEGMENT
SCREEN_HEIGHT

equ
equ

OaOOOh ;VGA display memory segment
350

28 jg} Chapter 2

SCREEN_WIDTH_IN_BYTES equ 8D
DEMO_AREA_HEIGHT equ 336 ;# of scan lines in area

; logical function operation
; is demonstrated in

DEMO_AREA_WIDTH_IN_BYTES equ 40 ;width in bytes of area
; logical function operation
; is demonstrated in

VERTICAL_BOX_WIDTH_IN_BYTES equ 10 ;width in bytes of the box used to
; demonstrate each logical function

VGA register equates.

GC_INDEX equ 3ceh ;GC index register
GC_ROTATE equ 3 ;GC data rotate/logical function

; register index
GC_MODE equ 5 ;GC mode register index

dseg segment para common 'DATA'

; String used to label logical functions.

LabelString label byte
db 'UNMODIFIED AND OR XOR

LABEL_STRING_LENGTH equ $-Label String

; Strings used to label fill patterns.

Fill Pattern FF db 'Fill Pattern: OFFh'
FILL_PATTERN_FF_LENGTH equ $ - FillPatternFF
Fi 11 PatternOO db 'Fi 11 Pattern: OOOh'
FILL_PATTERN_OO_LENGTH equ $ - FillPatternOO
FillPatternVert db 'Fill Pattern: Vertical Bar'
FILL_PATTERN_VERT_LENGTH equ $ - FillPatternVert
FillPatternHorz db 'Fill Pattern: Horizontal Bar'
FILL_PATTERN_HORZ_LENGTH equ $ - FillPatternHorz

dseg ends

; Macro to set indexed register INDEX of GC chip to SETTING.

SETGC macro INDEX, SETTING
mov dx,GC_INDEX
mov ax,(SETTING SHL 8) OR INDEX
out dx,ax
endm

Macro to call BIOS write string function to display text string
TEXT_STRING, of length TEXT_LENGTH, at location ROW.COLUMN.

TEXT_UP macro
mov
mov
mov
mov
sub
mov
int
endm

TEXT_STRING, TEXT_LENGTH, ROW, COLUMN
ah,13h ;BIOS write string function
bp,offset TEXT_STRING ;ES:BP points to string
cx,TEXT_LENGTH
dx, (ROW SHL 8)
al , al
bl .7
10h

OR COLUMN ;position
;string is chars only, cursor not moved
;text attribute is white (light gray)

cseg segment para public 'CODE'

start
assume
proc
mov
mov

cs:cseg, ds:dseg
near
ax,dseg
ds,ax

Parallel Processing with the VGA fgJ 29

Select 640x350 graphics mode.

mov ax,OlOh
int 10h

ES points to VGA memory.

mov ax,VGA_VIDEO_SEGMENT
mov es.ax

Draw background of horizontal bars.

mov dx,SCREEN_HEIGHT/4
;# of bars to draw (each 4 pixels high)

sub di.di ;start at offset O in display memory
mov ax,Offffh ;fill pattern for light areas of bars
mov bx,DEMO_AREA_WIDTH_IN_BYTES / 2 ;length of each bar
mov si,SCREEN_WIDTH_IN_BYTES - DEMO_AREA_WIDTH_IN_BYTES
mov bp,(SCREEN_WIDTH_IN_BYTES * 3) - DEMO_AREA_WIDTH_IN_BYTES

Backgroundloop:
mov ex.bx ; 1 ength of bar

rep stosw ;draw top half of bar
add di ,si ;point to start of bottom half of bar
mov cx,bx ; 1 ength of bar

rep stosw ;draw bottom half of bar
add di ,bp ;point to start of top of next bar
dee dx
jnz Backgroundloop

Draw vertical boxes filled with a variety of fill patterns
using each of the 4 logical functions in turn.

SETGC GC_ROTATE, 0 ;select data unmodified
; logical function ...

mov di ,0
call DrawVerticalBox ; ... and draw box

SETGC GC_ROTATE, 08h ;select AND logical function ...
mov di, 10
call DrawVerticalBox ; ... and draw box

SETGC GC_ROTATE, 10h ;select OR logical function ...
mov di ,20
call DrawVerticalBox ; ... and draw box

SETGC GC_ROTATE, 18h ;select XOR logical function ...
mov di ,30
call DrawVerticalBox ; •.. and draw box

Reset the logical function to data unmodified, the default state.

SETGC GC_ROTATE, 0

Label the screen.

push ds

30 fg} Chapter 2

pop es ;strings we'll display are passed to BIOS
; by pointing ES:BP to them

Label the logical functions, using the VGA BIOS's
write string function.

TEXT_UP LabelString, LABEL_STRING_LENGTH, 24, 0

Label the fill patterns, using the VGA BIOS's
write string function.

TEXT_UP FillPatternFF, FILL_PATTERN_FF_LENGTH, 3, 42
TEXT_UP FillPatternOO, FILL_PATTERN_OO_LENGTH, 9, 42
TEXT_UP FillPatternVert, FILL_PATTERN_VERT_LENGTH, 15, 42
TEXT_UP FillPatternHorz. FILL_PATTERN_HORZ_LENGTH. 21, 42

Wait until a key's been hit to reset screen mode & exit.

WaitForKey:
mov ah,l
int 16h
jz WaitForKey

Finished. Clear key, reset screen mode and exit.

Done:
mov ah,O ;clear key that we just detected
int 16h

mov ax,3 ;reset to text mode
int 10h

mov ah,4ch ;exit to DOS
int 21h

start endp

Subroutine to draw a box 80x336 in size, using currently selected
logical function. with upper left corner at the display memory offset
in DI. Box is filled with four patterns. Top quarter of area is
filled with OFFh (solid) pattern, next quarter is filled with OOh
(empty) pattern. next quarter is filled with 33h (double pixel wide
vertical bar) pattern. and bottom quarter is filled with double pixel
high horizontal bar pattern.

Macro to draw a column of the specified width in bytes. one-quarter
of the height of the box. with the specified fill pattern.

DRAW_BOX_QUARTER macro FILL. WIDTH
local RowLoop. ColumnLoop
mov al ,FILL ;fill pattern
mov dx,DEMO_AREA_HEIGHT / 4 ;1/4 of the full box height

RowLoop:
mov

ColumnLoop:
ex.WIDTH

mov ah,es:[di]

stosb

;load display memory contents into
; GC latches (we don't actually care
; about value read into AH)
;write pattern, which is logically

combined with latch contents for each
plane and then written to display
memory

Parallel Processing with the VGA ~ 31

loop Column Loop
add di ,SCREEN_WIDTH_IN_BYTES - WIDTH

;point to start of next line down in box
dee dx
jnz Row Loop
endm

DrawVerticalBox proc near
DRAW_BOX_QUARTER Offh, VERTICAL_BOX_WIDTH_IN_BYTES

;first fill pattern: solid fill
0, VERTICAL_BOX_WIDTH_IN_BYTES DRAW_BOX_QUARTER

DRAW_BOX_QUARTER
: second fi 11 pattern: empty fil 1

033h, VERTICAL_BOX_WIDTH IN BYTES

mov

sub
mov

HorzBarLoop:
dee
mov

HBLoopl:

HBLoop2:

mov
stosb
1 oop
add
mov

:third fil 1 pattern: double-pixel
: wide vertical bars

dx,DEMO_AREA_HEIGHT / 4 I 4

ax.ax

:fourth fill pattern: horizontal bars in
: sets of 4 scan lines

si,VERTICAL_BOX_WIDTH_IN_BYTES ;width of fill area

ax
cx,si

bl ,es:[di]

HBLoopl

;Offh fill (smaller to do word than byte DEC)
;width to fi 11

:load latches (don't care about value)
:write solid pattern, through ALUs

di ,SCREEN_WIDTH_IN_BYTES - VERTICAL_BOX_WIDTH_IN_BYTES
cx,si :width to fill

mov bl ,es:[di] :load latches

HBLoop3:

HBLoop4:

stosb
loop
add
inc
mov

mov
stosb
loop
add
mov

mov
stosb
loop
add
dee
jnz

ret

:write solid pattern, through ALUs
HBLoop2
di ,SCREEN_WIDTH_IN_BYTES - VERTICAL_BOX_WIDTH_IN_BYTES
ax :0 fill (smaller to do word than byte DEC)
cx,si :width to fill

bl ,es:[di] :load latches
:write empty pattern, through ALUs

HBLoop3
di ,SCREEN_WIDTH_IN_BYTES - VERTICAL_BOX_WIDTH_IN_BYTES
cx,si ;width to fill

bl ,es:[di] ; 1 oad 1 atches
:write empty pattern, through ALUs

HBLoop4
di ,SCREEN_WIDTH_IN_BYTES - VERTICAL_BOX_WIDTH_IN_BYTES
dx
HorzBarLoop

DrawVerticalBox endp
cseg ends

end start

Logical function 0, which writes the CPU data unmodified, is the standard mode of
operation of the ALUs. In this mode, the CPU data is combined with the latched data
by ignoring the latched data entirely. Expressed as ~ logical function, this could be consid
ered CPU data ANDed with 1 (or ORed with O). This is the mode to use whenever

32 [lJ Chapter 2

you want to place CPU data into display memory, replacing the previous contents
entirely. It may occur to you that there is no need to latch display memory at all when
the data unmodified function is selected. In the sample program, that is true, but if the
bit mask is being used, the latches must be loaded even for the data unmodified func
tion, as I'll discuss in the next chapter.

Logical functions 1 through 3 cause the CPU data to be ANDed, ORed, and XO Red
with the latched data, respectively. Of these, XOR is the most useful, since exclusive
ORing is a traditional way to perform animation. The uses of the AND and OR logical
functions are less obvious. AND can be used to mask a blank area into display memory,
or to mask off those portions of a drawing operation that don't overlap an existing
display memory image. OR could conceivably be used to force an image into display
memory over an existing image. To be honest, I haven't encountered any particularly
valuable applications for AND and OR, but they're the sort of building-block features
that could come in handy in just the right context, so keep them in mind.

Notes on the ALU/Latch Demo Program
VGA settings such as the logical function select should be restored to their default
condition before the BIOS is called to output text or draw pixels. The VGA BIOS does
not guarantee that it will set most VGA registers except on mode sets, and there are so
many compatible BIOSes around that the code of the IBM BIOS is not a reliable guide.
For instance, when the BIOS is called to draw text, it's likely that the result will be
illegible if the Bit Mask register is not in its default state. Similarly, a mode set should
generally be performed before exiting a program that tinkers with VGA settings.

Along the same lines, the sample program does not explicitly set the Map Mask register
to ensure that all planes are enabled for writing. The mode set for mode 1 OH leaves all
planes enabled, so I did not bother to program the Map Mask register, or any other register
besides the Data Rotate register, for that matter. However, the profusion of compatible
BIOSes means there is some small risk in relying on the BIOS to leave registers set
properly. For the highly safety-conscious, the best course would be to program data
control registers such as the Map Mask and Read Mask explicitly before relying on
their contents.

On the other hand, any function the BIOS provides explicitly-as part of the inter
face specification-such as setting the palette RAM, should be used in preference to
programming the hardware directly whenever possible, because the BIOS may mask
hardware differences between VGA implementations.

The code that draws each vertical box in the sample program reads from display
memory immediately before writing to display memory. The read operation loads the
VGA latches. The value that is read is irrelevant as far as the sample program is con
cerned. The read operation is present only because it is necessary to perform a read to
load the latches, and there is no way to read without placing a value in a register. This
is a bit of a nuisance, since it means that the value of some 8-bit register must be

Parallel Processing with the VGA fgJ 33

destroyed. Under certain circumstances, a single logical instruction such as XOR or
AND can be used to perform both the read to load the latches and then write to
modify display memory without affecting any CPU registers, as we'll see later on.

All text in the sample program is drawn by VGA BIOS function 13H, the write
string function. This function is also present in the AT's BIOS, but not in the XT's or
PC's, and as a result is rarely used; the function is always available if a VGA is installed,
however. Text drawn with this function is relatively slow. If speed is important, a pro
gram can draw text directly into display memory much faster in any given display
mode. The great virtue of the BIOS write string function in the case of the VGA is that
it provides an uncomplicated way to get text on the screen reliably in any mode and
color, over any background.

The expression used to load DX in the TEXT_ UP macro in the sample program
may seem strange, but it's a convenient way to save a byte of program code and a few cycles
of execution time. DX is being loaded with a word value that's composed of two inde
pendent immediate byte values. The obvious way to implement this would be with:

MOV DL,VALUEl
MOV DH, VALUE2

which requires four instruction bytes. By shifting the value destined for the high byte
into the high byte with MASM's shift- left operator, SHL (*IOOH would work also),
and then logically combining the values with MASM's OR operator (or the ADD
operator), both halves of DX can be loaded with a single instruction, as in:

MOV DX,(VALUE2 SHL 8) OR VALUE!

which takes only three bytes and is faster, being a single instruction. (Note, though,
that in 32-bit protected mode, there's a size and performance penalty for 16-bit in
structions such as the MOV above; see my book Zen of Code Optimization for details.)
As shown, a macro is an ideal place to use this technique; the macro invocation can
refer to two separate byte values, making matters easier for the programmer, while the
macro itself can combine the values into a single word-sized constant.

A minor optimization tip illustrated in the listing is the use of INC
AX and OEC AX in the OrawVertical8ox subroutine when only AL ac
tually needs to be modified. Word-sized register increment and dec
rement instructions (or dword-sized instructions in 32-bit protected
mode) are only one byte long, while byte-sized register increment
and decrement instructions are two bytes long. Consequently, when
size counts, it is worth using a whole 16-bit (or 32-bit) register
instead of the low 8 bits of that register for INC and OEC-if you
don't need the upper portion of the register for any other purpose,
or if you can be sure that the INC or OEC won't affect the upper
part of the register.

34 gJ Chapter 2

The latches and ALUs are central to high-performance VGA code, since they allow
programs to process across all four memory planes without a series of OUTs and read/
write operations. It is not always easy to arrange a program to exploit this power, however,
because the ALUs are far more limited than a CPU. In many instances, however, additional
hardware in the VGA, including the bit mask, the set/reset features, and the barrel
shifter, can assist the ALUs in controlling data, as we'll see in the next few chapters.

VGA Data
Machinery

The Barrel Shifter, Bit Mask,
and Set/Reset Mechanisms

.. u
I 7 = ca = u

In the last chapter, we examined a simplified model of data flow within the GC por
tion of the VGA, featuring the latches and ALUs. Now we're ready to expand that
model to include the barrel shifter, bit mask, and the set/reset capabilities, leaving only
the write modes to be explored over the next few chapters.

VGA Data Rotation
Figure 3.1 shows an expanded model of GC data flow, featuring the barrel shifter and
bit mask circuitry. Let's look at the barrel shifter first. A barrel shifter is circuitry ca
pable of shifting-or rotating, in the VGNs case-data an arbitrary number of bits in
a single operation, as opposed to being able to shift only one bit position at a time. The
barrel shifter in the VGA can rotate incoming CPU data up to seven bits to the right
(toward the least significant bit), with bit O wrapping back to bit 7, after which the
VGA continues processing the rotated byte just as it normally processes unrotated
CPU data. Thanks to the nature of barrel shifters, this rotation requires no extra pro
cessing time over unrotated VGA operations. The number of bits by which CPU data
is shifted is controlled by bits 2-0 of GC register 3, the Data Rotate register, which also
contains the ALU function select bits (data unmodified, AND, OR, and XOR) that
we looked at in the last chapter.

The barrel shifter is powerful, but (as sometimes happens in this business) it sounds
more useful than it really is. This is because the GC can only rotate CPU data, a task
that the CPU itself is perfectly capable of performing. Two OUTs are needed to select
a given rotation: One to set the GC Index register, and one to set the Data Rotate

35

36 [K} Chapter 3

Byte
written

by
CPU

Barrel
Shifter

Figure 3.1 Data Flow through the Graphics Controller

-

Display Memory
Plane 3

Display Memory
Plane 2 •

Display Memory
Plane 1

■

Display Memory
Plane 0 •

register. However, with careful programming it's sometimes possible to leave the GC
Index always pointing to the Data Rotate register, so only one OUT is needed. Even
so, it's often easier and/or faster to simply have the CPU rotate the data of interest CL
times than to set the Data Rotate register. (Bear in mind that a single OUT takes from
11 to 31 cycles on a 486- and longer if the VGA is sluggish at responding to OUTs, as
many VGAs are.) If only the VGA could rotate Latched data, then there would be all
sorts of useful applications for rotation, but, sadly, only CPU data can be rotated.

The drawing of bit-mapped text is one use for the barrel shifter, and I'll demonstrate
that application below. In general, though, don't knock yourself out trying to figure out
how to work data rotation into your programs-it just isn't all that useful in most cases.

The Bit Mask
The VGA has bit mask circuitry for each of the four memory planes. The four bit
masks operate in parallel and are all driven by the same mask data for each operation,
so they're g~nerally referred to in the singular, as "the bit mask." Figure 3.2 illustrates
the operation of one bit of the bit mask for one plane. This circuitry occurs eight times
in the bit mask for a given plane, once for each bit of the byte written to display
memory. Briefly, the bit mask determines on a bit-by-bit basis whether the source for
each byte written to display memory is the ALU for that plane or the latch for that plane.

Bit Mask
Regist er Bit

D
Q

Figure 3.2 Bit Mask Operation

VGA Data Machinery g} 37

ALU Bit Latch Bit

Selected by 1 Selected by 0

Select > .._ _______ . Multiplexer

~
Display Memory

The bit mask is controlled by GC register 8, the Bit Mask register. If a given bit of
the Bit Mask register is 1, then the corresponding bit of data from the AL Us is written
to display memory for all four planes, while if chat bit is 0, then the corresponding bit
of data from the latches for the four planes is written co display memory unchanged.
(In write mode 3, the actual bit mask that's applied to data written to display memory
is the logical AND of che contents of the Bit Mask register and the data written by the
CPU, as ~e'll see in Chapter 4.)

The most common use of the bit mask is to allow updating of selected bits within a
display memory byte. This works as follows: The display memory byte of interest is
latched; the bit mask is set to preserve all but the bit or bits to be changed; the CPU
writes to display memory, with che bit mask preserving the indicated latched bits and
allowing ALU data through co change the other bits. Remember, though, chat it is not
possible to alter selected bits in a display memory byte directly; the byte must first be
latched by a CPU read, and then the bit mask can keep selected bits of the latched byte
unchanged.

Listing 3.1 shows a program that uses the bit mask data rotation capabilities of the
GC to draw bitmapped text at any screen location. The BIOS only draws characters on
character boundaries; in 640x480 graphics mode the default font is drawn on byte
boundaries horizontally and every 16 scan lines vertically. However, with direct
bitmapped text drawing of the sort used in Listing 3.1, it's possible to draw any font of
any size anywhere on the screen (and a lot faster than via DOS or the BIOS, as well).

38 ~ Chapter 3

LISTING 3.1 L3-1.ASM
Program to illustrate operation of data rotate and bit mask
features of Graphics Controller. Draws SxS character at
specified location, using VGA's SxS ROM font. Designed
for use with modes ODh. OEh, OFh. 10h, and 12h.

By Michael Abrash.

stack segment para stack 'STACK'
db 512 dup(?)

stack ends

VGA_VIDEO_SEGMENT equ
SCREEN_WIDTH_IN_BYTES equ
FONT_CHARACTER_SIZE equ

: VGA register equates.

GC_INDEX
GC_ROTATE

GC_BIT _MASK

dseg segment
TEST_TEXT_ROW
TEST_TEXT_COL
TEST_ TEXT _WIDTH

equ
equ

equ

para
equ
equ
equ

3ceh
3

8

common
69
17
8

label byte

OaOOOh :VGA display memory segment
044ah :offset of BIOS variable
8 :# bytes in each font char

;GC index register
:GC data rotate/logical function
: register index
:GC bit mask register index

'DATA'
;row to display test text at
:column to display test text at
:width of a character in pixels

TestString
db

FontPointer
'Hello, world!' ,0 :test string to print.

:font offset dd ?
dseg ends

: Macro to set indexed register INDEX of GC chip to SETTING.

SETGC macro INDEX, SETTING
mov dx,GC_INDEX
mov ax,(SETTING SHL 8) OR INDEX
out dx,ax
endm

cseg segment para public 'CODE'
assume cs:cseg, ds:dseg

start proc near
mov ax,dseg
mov ds, ax

Select 640x480 graphics mode.

mov ax,012h
int 10h

Set driver to use the SxS font.

mov
mov
mov
int
call

ah,llh
al , 30h
bh,3
10h
Select Font

VGA BIOS character generator function,
return info subfunction

get SxS font pointer

Print the test string.

mov
mov
mov

StringOutLoop:
lodsb
and
jz
call
add
jmp

StringOutDone:

sf ,offset TestStrfng
bx,TEST_TEXT_ROW
cx,TEST_TEXT_COL

al ,al
StringOutDone
DrawChar
cx,TEST_TEXT_WIDTH
StringOutLoop

Reset the data rotate and bit mask registers.

SETGC
SETGC

GC_ROT A TE , 0
GC_BIT_MASK, Offh

Wait for a keystroke.

mov ah,1
int 21h

Return to text mode.

mov ax,03h
int 10h

Exit to DOS.

mov
int

Start endp

ah,4ch
21h

VGA Data Machinery ~ 39

Subroutine to draw a text character in a linear graphics mode
(ODh, OEh, OFh, 010h, 012h).

Font used should be pointed to by FontPointer.

Input:
AL - character to draw
BX - row to draw text character at
CX - column to draw text character at

Forces ALU function to "move".

DrawChar
push
push
push
push
push
push
push
push

Set DS:SI

lds
mov

to

proc near
ax
bx
ex
dx
sf
di
bp
ds

point to font and ES to

sf ,[FontPointer]
dx,VGA_VIDEO_SEGMENT

point to display

:point to font

memory.

40 Ill Chapter 3

mov es,dx ;point to display memory

Calculate screen address of byte character starts in.

push
sub
mov
xchg
mov

ds ;point to BIOS data segment
dx,dx
ds,dx
ax.bx
di ,ds:[SCREEN_WIDTH_IN_BYTES] : retrieve BIOS

: screen width
pop
mul
push
mov
and
shr
shr
shr
add

ds
di
di

:calculate offset of start of row
:set aside screen width

di ,ex
cl ,Olllb
di. 1
di, 1
di ,1
di,ax

:set aside the column
;keep only the column in-byte address

;divide column by 8 to make a byte address
:and point to byte

Calculate font address of character.

sub
shl
shl
shl
add

bh,bh
bx,1
bx,1
bx,1
si,bx

Set up the GC rotation.

:assumes 8 bytes per character: use
: a multiply otherwise
:offset in font of character
;offset in font segment of character

mov dx,GC_INDEX
mov al,GC_ROTATE
mov ah.cl
out dx,ax

Set up BH as bit mask for left· half,
BL as rotation for right half.

mov bx,Offffh
shr bh,cl
neg cl
add cl ,8
shl bl ,cl

Draw the character, left half first, then right half in the
succeeding byte, using the data rotation to position the character
across the byte boundary and then using the bit mask to get the
proper portion of the character into each byte.
Does not check for case where character is byte-aligned and
no rotation and only one write is required.

mov
mov
pop
dee
dee

Characterloop:

bp,FONT_CHARACTER_SIZE
dx,GC_INDEX
ex : get back screen width
ex
ex : -2 because do two bytes for ~ach char

Set the bit mask for the left half of the character.

VGA Data Machinery g} 41

mov al ,GC_BIT_MASK
mov ah,bh
out dx,ax

Get the next character byte & write it to display memory.
(Left half of character.)

mov al,[si]
mov ah,es:[di]
stosb

;get character byte
:load latches
:write character byte

Set the bit mask for the right half of the character.

mov al ,GC_BIT_MASK
mov ah.bl
out dx,ax

Get the character byte again & write it to display memory.
(Right half of character.)

lodsb
mov ah,es:[di]

;get character byte
: load latches

stosb :write character byte

Point to next line of character in display memory.

add di ,ex

dee bp
jnz Characterloop

pop ds
pop bp
pop di
pop Si
pop dx
pop ex
pop bx
pop ax
ret

DrawChar endp

; Set the pointer to the font to draw from to ES:BP.

SelectFont
mov
mov
ret

Select Font

cseg ends
end

proc near
word ptr [FontPointer],bp
word ptr [FontPointer+2],es

endp

start

;save pointer

The bit mask can be used for much more than bit-aligned fonts. For example, the
bit mask is useful for fast pixel drawing, such as that performed when drawing lines, as
we'll see in Chapter 14. It's also useful for drawing the edges of primitives, such as filled
polygons, that potentially involve modifying some but not all of the pixels controlled
by a single byte of display memory.

42 gJ Chapter 3

display memory need to be changed, because it allows full use of the VGN.s four-way
parallel processing capabilities for the pixels that are to be drawn, without interfering
with the pixels that are to be left unchanged. The alternative would be plane-by-plane
processing, which from a performance perspective would be undesirable indeed.

It's worth pointing out again that the bit mask operates on the data in the latches,
not on the data in display memory. This makes the bit mask a flexible resource that
with a little imagination can be used for some interesting purposes. For example, you
could fill the latches with a solid background color (by writing the color somewhere in
display memory, then reading that location to load the latches), and then use the Bit
Mask register (or write mode 3, as we'll see later) as a mask through which to draw a
foreground color stencilled into the background color without reading display memory
first. This only works for writing whole bytes at a time (dipped bytes require the use of
the bit mask; unfortunately, we're already using it for stencilling in this case), but it
completely eliminates reading display memory and does foreground-plus-background
drawing in one blurry-fast pass.

Ill
[his last-described example is a good illustration of how I'd suggest
you approach the VGA: As a rich collection of hardware resources
that can profitably be combined in some non-obvious ways. Don't let
yourself be limited by the obvious applications for the latches, bit
mask, write modes, read modes, map mask, ALUs, and set/reset
circuitry. Instead, try to imagine how they could work together to
perform whatever task you happen to need done at any given time.
I've made my code as much as four times faster by doing this, ae;
the discussion of Mode X in Part VIII demonstrates.

The example code in Listing 3.1 is designed to illustrate the use of the Data Rotate
and Bit Mask registers, and is not as fast or as complete as it might be. The case where
text is byte-aligned could be detected and performed much faster, without the use of
the Bit Mask or Data Rotate registers and with only one display memory access per
font byte (to write the font byte), rather than four (to read display memory and write
the font byte to each of the two bytes the character spans). Likewise, non-aligned text
drawing could be streamlined to one display memory access per byte by ha,ving the
CPU rotate and combine the font data directly, rather than setting up the VGN.s hard
ware to do it. (Listing 3.1 was designed to illustrate VGA data rotation and bit mask
ing rather than the fastest way to draw text. We'll see faster text-drawing code soon.)
One excellent rule of thumb is to minimize display memory accesses of all types, espe
cially reads, which tend to be considerably slower than writes. Also, in Listing 3.1 it
would be faster to use a table lookup to calculate the bit masks for the two halves of
each character rather than the shifts used in the example.

For another (and more complex) example of drawing bit-mapped text on the VGA,

VGA Data Machinery /gJ 43

see John Cockerham's article, "Pixel Alignment of EGA Fonts," PC Tech Journal,, January,
1987. Parenthetically, I'd like to pass along John's comment about the VGA: "When
programming the VGA, everything is complex."

He's got a point there.

The VGA's Set/Reset Circuitry
At last we come to the final aspect of data flow through the GC on write mode 0 writes: the
set/reset circuitry. Figure 3.3 shows data flow on a write mode 0 write. The only differ
ence between this figure and Figure 3.1 is that on its way to each plane potentially the
rotated CPU data passes through the set/reset circuitry, which may or may not replace
the CPU data with set/reset data. Briefly put, the set/reset circuitry enables the pro
grammer to elect to independently replace the CPU data for each plane with either 00
or 0FFH.

What is the use of such a feature? Well, the standard way to control color is to set the
Map Mask register to enable writes to only those planes that need to be set to produce
the desired color. For example, the Map Mask register would be set to 09H to draw in
high-intensity blue; here, bits 0 and 3 are set to 1, so only the blue plane (plane 0) and
the intensity plane (plane 3) are written to.

Remember, though, that planes that are disabled by the Map Mask register are not
written to or modified in any way. This means that the above approach works only if

Byte
written

by
CPU

Bit Masks (4)

Seti i Display Memory
Reset 1-------• c I latch 1 • r :1 ~ I

.--S-et_/....,

Reset '---[_l_~_L_at_c_h~I ::::~::::::::::::::::---+~·.....;;I=-~ ___.n
.--S-et_/....,

Reset 1---r-1=Lat=ch=1 ~~ I ~

Plane 3

Display Memory
Plane 2

I

Display Memory I Plane 1 •
Display Memory
Plane 0

...--S-et_/....,

Reset i--[-,-, =La=tc=h -,-+J-~ ~ I 7 •

Figure 3.3 Data Flow During a Write Mode 0 Write Operation

44 {g} Chapter 3

Remember, though, that planes that are disabled by the Map Mask register are not
written to or modified in any way. This means that the above approach works only if
the memory being written to is zeroed; if, however, the memory already contains non
zero data, that data will remain in the planes disabled by the Map Mask, and the end
result will be that some planes contain the data just written and other planes contain
old data. In short, color control using the Map Mask does not force all planes to con
tain the desired color. In particular, it is not possible to force some planes to zero and
other planes to one in a single write with the Map Mask register.

The program in Listing 3.2 illustrates this problem. A green pattern (plane 1 set to
1, planes 0, 2, and 3 set to O) is first written to display memory. Display memory is
then filled with blue (only plane O set to 1), with a Map Mask setting of OlH. Where
the blue crosses the green, cyan is produced, rather than blue, because the Map Mask
register setting ofOlH that produces blue leaves the green plane (plane 1) unchanged.
In order to generate blue unconditionally, it would be necessary to set the Map Mask
register to OFH, clear memory, and then set the Map Mask register to OlH and fill
with blue.

LISTING 3.2 L3-2.ASM
Program to illustrate operation of Map Mask register when drawing

; to memory that already contains data.
; By Michael Abrash.

stack segment para stack 'STACK'
db 512 dup(?)

stack ends

EGA_VIDEO_SEGMENT

; EGA register equates.

SC_INDEX
SG_MAP_MASK

equ
equ

equ

3c4h
2

OaOOOh ;EGA display memory segment

;SC index register
;SC map mask register

; Macro to set indexed register INDEX of SC chip to SETTING.

SETSC macro INDEX, SETTING
mov dx,SC_INDEX
mov al ,INDEX
out dx,al
inc dx
mov al ,SETTING
out dx,al
dee dx
endm

cseg segment para public 'CODE'
assume cs:cseg

start proc near

Select 640x480 graphics mode.

VGA Data Machinery /gJ 45

mov ax,012h
int 10h

mov ax,EGA_VIDEO_SEGMENT
mov es ,ax ;point to video memory

Draw 24 10-scan-line high horizontal bars in green, 10 scan lines apart.

SETSC

sub
mov
mov

HorzBarLoop:

SC_MAP _MASK, 02h

di, di
al,Offh
bp,24

mov cx,80*10
rep stosb
add di ,80*10
dee bp
jnz HorzBarLoop

;map mask setting enables only
plane 1, the green plane

;start at beginning of video memory

:fl bars to draw

:# bytes per horizontal bar
;draw bar
:point to start of next bar

Fill screen with blue, using Map Mask register to enable writes
to blue plane only.

SETSC sc_MAP_MASK,Olh :map mask setting enables only
; plane 0, the blue plane

sub di, di
mov cx,80*480 ;# bytes per screen
mov al,Offh
rep stosb ;perform fill (affects only

: plane 0, the blue plane)

Wait for a keystroke.

mov ah,1
int 21h

Restore text mode.

mov ax,03h
int 10h

Exit to DOS.

mov ah,4ch
int 21h

start endp
cseg ends

end start

Setting all Planes to a Single Color
The set/reset circuitry can be used to force some planes to 0-bits and others to I-bits
during a single write, while letting CPU data go to still other planes, and so provides an
efficient way to set all planes to a desired color. The set/reset circuitry works as follows:

For each of the bits 0-3 in the Enable Set/Reset register (Graphics Controller regis
ter 1) that is 1, the corresponding bit in the Set/Reset register (GC register O) is ex
tended to a byte (O or OFFH) and replaces the CPU data for the corresponding plane.

46 Ill Chapter 3

For each of the bits in the Enable Set/Reset register that is 0, the CPU data is used
unchanged for that plane (normal operation). For example, if the Enable Set/Reset
register is set to OIH and the Set/Reset register is set to 05H, then the CPU data is
replaced for plane O only (the blue plane), and the value it is replaced with is OFFH (bit
0 of the Set/Reset register extended to a byte). Note that in this case, bits 1-3 of the Set/
Reset register have no effect.

It is important to understand that the set/reset circuitry directly replaces CPU data
in Graphics Controller data flow. Refer back to Figure 3.3 to see that the output of the
set/reset circuitry passes through (and may be transformed by) the ALU and the bit mask
before being written to memory, and even then the Map Mask register must enable the
write. When using set/reset, it is generally desirable to set the Map Mask register to
enable all planes the set/reset circuitry is controlling, since those memory planes which
are disabled by the Map Mask register cannot be modified, and the purpose of en
abling set/reset for a plane is to force that plane to be set by the set/reset circuitry.

Listing 3.3 illustrates the use of set/reset to force a specific color to be written. This
program is the same as that of Listing 3.2, except that set/reset rather than the Map
Mask register is used to control color. The preexisting pattern is completely overwrit
ten this time, because the set/reset circuitry writes 0-bytes to planes that must be off as
well as OFFH-bytes to planes that must be on.

LISTING 3.3 L3-3.ASM
Program to illustrate operation of set/reset circuitry to force

; setting of memory that already contains data.
; By Michael Abrash.

stack segment para stack 'STACK'
db 512 dup(?)

stack ends

EGA_VIDEO_SEGMENT equ

; EGA register equates.

SC_INDEX equ 3c4h
SC_MAP_MASK equ 2
GC_INDEX equ 3ceh
GC_SET_RESET equ 0
GC_ENABLE_SET_RESET equ 1

OaOOOh ;EGA display memory segment

;SC index register
;SC map mask register
;GC index register
;GC set/reset register
;GC enable set/reset register

; Macro to set indexed register INDEX of SC chip to SETTING.

SETSC macro INDEX, SETT! NG
mov dx,SC_INDEX
mov al.INDEX
out dx,al
inc dx
mov al ,SETTING
out dx,al
dee dx
endm

VGA Data Machinery [g) 47

Macro to set indexed register INDEX of GC chip to SETTING.

SETGC macro INDEX. SETTING
mov dx.GC_INDEX
mov al ,INDEX
out dx,al
inc dx
mov al ,SETTING
out dx,al
dee dx
endm

cseg segment para public 'CODE'
assume cs:cseg

start proc near

Select 640x480 graphics mode.

mov ax,012h
int 10h

mov
mov

ax.EGA_VIDEO_SEGMENT
es.ax ;point to video memory

Draw 24 10-scan-line high horizontal bars in green, 10 scan lines apart.

SETSC

sub
mov
mov

HorzBarLoop:

SG_MAP_MASK,02h

di ,di
al,Offh
bp.24

mov cx,80*10
rep stosb
add di ,80*10
dee bp
jnz HorzBarLoop

;map mask setting enables only
plane 1, the green plane

;start at beginning of video memory

:41 bars to draw

;# bytes per horizontal bar
;draw bar
;point to start of next bar

Fill screen with blue, using set/reset to force plane Oto l's and all
other plane to O's.

SETSC SC_MAP_MASK.Ofh ;must set map mask to enable all
; planes. so set/reset values can
; be written to memory

SETGC GC_ENABLE_SET_RESET,Ofh ;CPU data to all planes will be
; replaced by set/reset value

SETGC GC_SET_RESET,Olh ;set/reset value is Offh for plane 0

sub di ,di
mov cx,80*480
mov al .Offh

rep stosb

Turn off set/reset.

SETGC GC_ENABLE_SET_RESET,O

(the blue plane) and O for other
; planes

;# bytes per screen
;since set/reset is enabled for all

planes, the CPU data is ignored
; only the act of writing is
; important
:perform fill (affects all planes)

48 ~ Chapter 3

Wait for a keystroke.

mov ah.I
int 21h

Restore text mode.

mov ax.03h
int 10h

Exit to DOS.

mov ah.4ch
int 21h

start endp
cseg ends

end start

Manipulating Planes Individually
Listing 3.4 illustrates the use of set/reset to control only some, rather than all, planes.
Here, the set/reset circuitry forces plane 2 to 1 and planes O and 3 to 0. Because bit 1 of
the Enable Set/Reset register is 0, however, set/reset does not affect plane 1; the CPU
data goes unchanged to the plane 1 ALU. Consequently, the CPU data can be used to
control the value written to plane 1. Given the settings of the other three planes, this
means that each bit of CPU data that is 1 generates a brown pixel, and each bit that is
0 generates a red pixel. Writing alternating bytes of 07H and OEOH, then, creates a
vertically striped pattern of brown and red.

In Listing 3.4, note that the vertical bars are 10 and 6 bytes wide, and do not start
on byte boundaries. Although set/ reset replaces an entire byte of CPU data for a plane,
the combination of set/ reset for some planes and CPU data for other planes, as in the
example above, can be used to control individual pixels.

LISTING 3.4 L3-4.ASM
Program to illustrate operation of set/reset circuitry in conjunction

: with CPU data to modify setting of memory that already contains data.
: By Michael Abrash.

stack segment para stack 'STACK'
db 512 dup(?)

stack ends

EGA_VIDEO_SEGMENT equ OaOOOh :EGA display memory segment

: EGA register equates.

SC_INDEX equ 3c4h :SC index register
SC_MAP_MASK equ 2 :SC map mask register
GC_INDEX equ 3ceh ;GC index register
GC_SET_RESET equ 0 :GC set/reset register
GC_ENABLE_SET_ RESET equ 1 :GC enable set/reset register

VGA Data Machinery [g} 49

Macro to set indexed register INDEX of SC chip to SETTING.

SETSC macro INDEX, SETTING
mov dx,SC_INDEX
mov al, INDEX
out dx,al
inc dx
mov al ,SETTING
out dx,al
dee dx
endm

Macro to set indexed register INDEX of GC chip to SETTING.

SETGC macro INDEX, SETTING
mov dx,GC_INDEX
mov a 1 , INDEX
out dx, al
inc dx
mov al.SETTING
out dx,al
dee dx
endm

cseg segment para public 'CODE'
assume cs:cseg

start proc near

Select 640x350 graphics mode.

mov ax,OlOh
int 10h

mov ax,EGA_VIDEO_SEGMENT
mov es.ax ;point to video memory

Draw 18 10-scan-line high horizontal bars in green, 10 scan lines apart.

SETSC

sub
mov
mov

HorzBarLoop:

SC_MAP_MASK,02h

di, di
al ,Offh
bp, 18

mov cx,80*10
rep stosb
add di ,80*10
dee bp
jnz HorzBarloop

;map mask setting enables only
; plane 1, the green plane

;start at beginning of video memory

;// bars to draw

;# bytes per horizontal bar
;draw bar

;point to start of next bar

Fill screen with alternating bars of red and brown. using CPU data
to set plane 1 and set/reset to set planes 0, 2 & 3.

SETSC SC_MAP_MASK,Ofh :must set map mask to enable all
planes, so set/reset values can
be written to planes 0, 2 & 3
and CPU data can be written to
plane 1 (the green plane)

SETGC GC_ENABLE_SET_RESET,Odh ;CPU data to planes 0, 2 & 3 will be

50 Jg} Chapter 3

SETGC GC_SET_RESET,04h

sub di ,di
mov cx,80*350/2
mov ax,07e0h

rep stosw ;perform fill

Turn off set/reset.

; replaced by set/reset value
;set/reset value is Offh for plane 2

; (the red plane) and O for other
; planes

;# words per screen
;CPU data controls only plane l;
; set/reset controls other planes

(affects all planes)

SETGC GC_ENABLE_SET_RESET,O

Wait for a keystroke.

mov ah,l
int 21h

Restore text mode.

mov ax,03h
int !Oh

Exit to DOS.

mov ah,4ch
int 21h

start endp
cseg ends

end start

There is no clearly defined role for the set/reset circuitry, as there is for, say, the bit
mask. In many cases, set/reset is largely interchangeable with CPU data, particularly
with CPU data written in write mode 2 (write mode 2 operates similarly to the set/
reset circuitry, as we'll see in Chapter 5). The most powerful use of set/reset, in my
experience, is in applications such as the example of Listing 3.4, where it is used to
force the value written to certain planes while the CPU data is written to other planes.
In general, though, think of set/reset as one more tool you have at your disposal in
getting the VGA to do what you need done, in this case a tool that lets you force all bits
in each plane to either zero or one, or pass CPU data through unchanged, on each
write to display memory. As tools go, set/reset is a handy one, and it'll pop up often in
this book.

Notes on Set/Reset
The set/reset circuitry is not active in write modes 1 or 2. The Enable Set/Reset register
is inactive in write mode 3, but the Set/Reset register provides the primary drawing
color in write mode 3, as discussed in the next chapter.

VGA Data Machinery ll] 51

Be aware that because set/reset directly replaces CPU data, it does
not necessarily have to force an entire display memory byte to O or
OFFH, even when set/reset is replacing CPU data for all planes. For
example, if the Bit Mask register is set to 80H, the set/reset cir
cuitry can only modify bit 7 of the destination byte in each plane,
since the other seven bits will come from the latches for each plane.
Similarly, the set/reset value for each plane can be modified by that
plane's ALU. Once again, this illustrates that set/reset merely re
places the CPU data for selected planes; the set/reset value is then
processed in exactly the same way that CPU data normally is.

A Brief Note on Word OUTs
In the early days of the EGA and VGA, there was considerable debate about whether it
was safe to do word OUTs (OUT DX,AX) to set Index/Data register pairs in a single
instruction. Long ago, there were a few computers with buses that weren't quite PC
compatible, in that the two bytes in each word OUT went to the VGA in the wrong
order: Data register first, then Index register, with predictably disastrous results. Con
sequently, I generally wrote my code in those days to use two 8-bit OUTs to set in
dexed registers. Later on, I made it a habit to use macros that could do either one
16-bit OUT or two 8-bit OUTs, depending on how I chose to assemble the code, and
in fact you'll find both ways of dealing with OUTs sprinkled through the code in this
part of the book. Using macros for word OUTs is still not a bad idea in that it does no
harm, but in my opinion it's no longer necessary. Word OUTs are standard now, and
it's been a long time since I've heard of them causing any problems.

VGA
Write
Mode3

... u
I 7 = ca -= C.:»

The Write Mode that Grows on You
Over the last three chapters, we've covered the VGNs write path from stem to stern
with one exception. Thus far, we've only looked at how writes work in write mode 0,
the straightforward, workhorse mode in which each byte that the CPU writes to dis
play memory fans out across the four planes. (Actually, we also took a quick look at
write mode 1, in which the latches are always copied unmodified, but since exactly the
same result can be achieved by setting the Bit Mask register to O in write mode 0, write
mode 1 is of little real significance.)

Write mode O is a very useful mode, but some ofVGNs most interesting capabilities
involve the two write modes that we have yet to examine: write mode 1, and, especially,
write mode 3. We'll get to write mode 1 in the next chapter, but right now I want to

focus on write mode 3, which can be confusing at first, but turns out to be quite a bit
more powerful than one might initially think.

A Mode Born in Strangeness
Write mode 3 is strange indeed, and irs use is not immediately obvious. The first time
I encountered write mode 3, I understood immediately how it functioned, but could
think of very few useful applications for it. As time passed, and as I came to understand
the atrocious performance characteristics of OUT instructions, and the importance of
text and pattern drawing as well, write mode 3 grew considerably in my estimation. In
fact, my esteem for this mode ultimately reached the point where in the last major
chunk of 16-color graphics code I wrote, write mode 3 was used more than write mode
0 overall, excluding simple pixel copying. So write mode 3 is well worth using, but to

use it you must first understand it. Here's how it works.

53

54 gJ Chapter 4

In write mode 3, set/reset is automatically enabled for all four planes (the Enable
Set/Reset register is ignored). The CPU data byte is rotated and then ANDed with the
contents of the Bit Mask register, and the result of this operation is used as the contents
of the Bit Mask register alone would normally be used. (If this is Greek to you, have a
look back at Chapters 1 through 3. There's no way to understand write mode 3 with
out understanding the rest of the VGN.s write data path first.)

That's what write mode 3 does-but what is it for? It turns out that write mode 3 is
excellent for a surprisingly large number of purposes, because it makes it possible to
avoid the bane of VGA performance, 0 UTs. Some uses for write mode 3 include lines,
circles, and solid and two-color pattern fills. Most importantly, write mode 3 is ideal
for transparent text; that is, it makes it possible to draw text in 16-color graphics mode
quickly without wiping out the background in the process. (As we'll see at the end of
this chapter, write mode 3 is potentially terrific for opaque text-text drawn with the
character box filled in with a solid color-as well.)

Listing 4.1 is a modification of code I presented in Chapter 3. That code used the
data rotate and bit mask features of the VGA to draw bit-mapped text in write mode 0.
Listing 4.1 uses write mode 3 in place of the bit mask to draw bit-mapped text, and in
the process gains the useful ability to preserve the background into which the text is
being drawn. Where the original text-drawing code drew the entire character box for
each character, with O bits in the font pattern causing a black box to appear around
each character, the code in Listing 4.1 affects display memory only when 1 bits in the
font pattern are drawn. As a result, the characters appear to be painted into the back
ground, rather than over it. Another advantage of the code in Listing 4.1 is that the
characters can be drawn in any of the 16 available colors.

LISTING 4.1 L4-1.ASM
Program to illustrate operation of write mode 3 of the VGA.
Draws 8x8 characters at arbitrary locations without disturbing
the background, using VGA's 8x8 ROM font. Designed
for use with modes ODh, OEh, OFh, 10h, and 12h.

Runs only on VGAs (in Models 50 & up and IBM Display Adapter
and 100% compatibles).

Assembled with MASM
By Michael Abrash

stack segment para stack 'STACK'
db 512 dup(?)

stack ends

VGA_VIDEO_SEGMENT equ
SCREEN_WIDTH_IN_BYTES equ
FONT_CHARACTER_SIZE equ

; VGA register equates.

SC_INDEX
SC_MAP_MASK
GC_l NDEX

equ
equ
equ

3c4h
2
3ceh

OaOOOh ;VGA display memory segment
044ah :offset of BIOS variable
8 ;# bytes in each font char

;SC index register
;SC map mask register index
;GC index register

VGA Write Mode 3 [lJ 55

GC_SET_RESET equ 0
GC_ENABLE_SET_RESET equ 1
GC_ROTATE equ 3

;GC set/reset register index
;GC enable set/reset register index
;GC data rotate/logical function

GC_MODE
GC_BIT_MASK

equ
equ

5
8

; register index
;GC Mode register
;GC bit mask register index

dseg segment para common
69
17
8

'DATA'
TEST_TEXT_ROW equ ;row to display test text at

;column to display test text at
;width of a character in pixels

TEST_TEXT_COL
TEST_ TEXT _WIDTH
TestString

db
FontPointer
dseg ends

cseg segment
assume

start proc
mov
mov

equ
equ
1 abel
'Hello,
dd

byte
world!' .o
?

para public 'CODE'
cs:cseg, ds:dseg
near
ax,dseg
ds,ax

;test string to print.
;font offset

Select 640x480 graphics mode.

mov ax,012h
int 10h

Set the screen to all blue, using the readability of VGA registers
to preserve reserved bits.

Set

mov
mov
out
inc
in
and
or
out
dee
mov
out
inc
in
and
or
out
mov
mov
mov
mov
mov

rep

driver

mov
mov
mov
int
call

dx,GC_INDEX
al ,GC_SET_RESET
dx,al
dx
al ,dx
al ,OfOh
al ,1 ;blue plane only set, others reset
dx,al
dx
al ,GC_ENABLE_SET_RESET
dx,al
dx
al ,dx
al ,OfOh
al ,Ofh ;enable set/reset for all planes
dx,al
dx,VGA_VIDEO_SEGMENT
es,dx ;point to display memory
di, 0
cx,8000h
ax,Offffh

;fill all 32k words

stosw

;because of set/reset, the value
; written actually doesn't matter
;fill with blue

to use the 8x8

ah,llh
al, 30h
bh,3
10h
SelectFont

font.

VGA BIOS character generator function,
return info subfunction

get 8x8 font pointer

56 Jg_) Chapter 4

Print the test string, cycling through colors.

mov si ,offset TestString
mov bx,TEST_TEXT_ROW
mov cx,TEST_TEXT_COL
mov ah,O ;start with color O

StringOutLoop:
lodsb
and a 1 , a 1
jz StringOutDone
push ax ;preserve color
call DrawChar
pop ax ;restore color
inc ah ;next color
and ah,Ofh ;colors range from
add cx,TEST_TEXT_WIDTH
jmp StringOutLoop

StringOutDone:

Wait for a key, then set to text mode & end.

mov
int
mov
int

Exit to DOS.

ah,1
21h
ax,3
10h

mov ah,4ch
int 21h

Start endp

;wait for a key

;restore text mode

Oto 15

Subroutine to draw a text character in a linear graphics mode
(ODh, OEh, OFh, 010h, 012h). Background around the pixels that
make up the character is preserved.

Font used should be pointed to by FontPointer.

Input:
AL= character to draw
AH color to draw character in (0-15)
BX= row to draw text character at
CX = column to draw text character at

Forces ALU function to "move".
Forces write mode 3.

DrawChar proc near
push ax
push bx
push ex
push dx
push si
push di
push bp
push ds

push ax ;preserve character to draw in AL

Set up set/reset to produce character color, using the readability
of VGA register to preserve the setting of reserved bits 7-4.

VGA Write Mode 3 ll) 57

mov dx,GC_INDEX
mov al , GC_SET _RESET
out dx,al
inc dx
in al ,dx
and al , Of Oh
and ah,Ofh
or al , ah
out dx,al

Select write mode 3, using the readability of VGA registers
to leave bits other than the write mode bits unchanged.

mov dx,GC_INDEX
mov al ,GC_MODE
out dx, al
inc dx
in al ,dx
or al ,3
out dx,al

Set DS:SI to point to font and ES to point to display memory.

lds
mov
mov

si, [FontPointer]
dx,VGA_VIDEO_SEGMENT
es,dx

:point to font

:point to display memory

Calculate screen address of byte character starts in.

ax

ds
dx,dx
ds,dx
ax.bx

;get back character to draw in AL

:point to BIOS data segment

pop

push
sub
mov
xchg
mov di ,ds:[SCREEN_WIDTH_IN_BYTES] : retrieve BIDS

screen width
pop
mul
push
mov
and
shr
shr
shr
add

ds
di
di
di. ex
cl ,Olllb
di, 1
di, 1
di, 1
di ,ax

:calculate offset of start of row
:set aside screen width
:set aside the column
:keep only the column in-byte address

:divide column by 8 to make a byte address
:and point to byte

Calculate font address of character.

sub
shl
shl
shl
add

bh,bh
bx,l
bx,l
bx,l
si, bx

:assumes 8 bytes per character: use
: a multiply otherwise
:offset in font of character
:offset in font segment of character

Set up the GC rotation. In write mode 3, this is. the rotation
of CPU data before it is ANDed with the Bit Mask register to
form the bit mask. Force the ALU function to "move". Uses the
readability of VGA registers to leave reserved bits unchanged.

mov dx,GC_INDEX
mov al ,GC_ROTATE

58 [g] Chapter4

out dx,al
inc dx
in al ,dx
and al,OeOh
or a 1 , C 1
out dx,al

Set up BH as bit mask for left half, BL as rotation for right half.

mov bx,Offffh
shr bh,cl
neg cl
add cl ,8
shl b 1 • cl

Draw the character, left half first, then right half in the
succeeding byte, using the data rotation to position the character
across the byte boundary and then using write mode 3 to combine the
character data with the bit mask to allow the set/reset value (the
character color) through only for the proper portion (where the
font bits for the character are 1) of the character for each byte.
Wherever the font bits for the character are O, the background
color is preserved.
Does not check for case where character is byte-aligned and
no rotation and only one write is required.

mov bp,FONT_CHARACTER_SIZE
mov dx,GC_INDEX
pop
dee
dee

ex
ex
ex

;get back screen width

; -2 because do two bytes for each char
CharacterLoop:

Set the bit mask for the left half of the character.

mov al ,GC_BIT_MASK
mov ah,bh
out dx.ax

Get the next character byte & write it to display memory.
(Left half of character.)

mov
mov
stosb

al.[si]
ah,es:[di]

;get character byte
; load latches
;write character byte

Set the bit mask for the right half of the character.

mov al ,GC_BIT_MASK
mov ah.bl
out dx. ax

Get the character byte again & write it to display memory.
(Right half of character.)

1 odsb
mov
stosb

ah.es:[di]
;get character byte
; 1 oad 1 atches
;write character byte

Point to next line of character in display memory.

VGA Write Mode 3 ~ 59

add di ,ex

dee bp
jnz Charaeterloop

pop ds
pop bp
pop di
pop Si
pop dx
pop ex
pop bx
pop ax
ret

DrawChar endp

; Set the pointer to the font to draw from to ES:BP.

Seleetfont
mov
mov
ret

proe near
word ptr [FontPointer].bp
word ptr [FontPointer+2],es

;save pointer

Seleetfont endp

eseg ends
end start

The key to understanding Listing 4.1 is understanding the effect of ANDing the
rotated CPU data with the contents of the Bit Mask register. The CPU data is the
pattern for the character to be drawn, with bits equal to 1 indicating where character
pixels are to appear. The Data Rotate register is set to rotate the CPU data to pixel
align it, since without rotation characters could only be drawn on byte boundaries.

As I pointed out in Chapter 3, the CPU is perfectly capable of rotating
the data itself, and it's often the case that that's more efficient.
The problem with using the Data Rotate register is that the OUT
that sets that register is time-consuming, especially for propor
tional text, which requires a different rotation for each character.
Also, if the code performs full-byte accesses to display memory
that is, if it combines pieces of two adjacent characters into one
byte-whenever possible for efficiency, the CPU generally has to do
extra work to prepare the data so the VGA's rotator can handle it.

At the same time that the Data Rotate register is set, the Bit Mask register is set to
allow the CPU to modify only that portion of the display memory byte accessed that
the pixel-aligned character falls in, so that other characters and/or graphics data won't
be wiped out. The result of ANDing the rotated CPU data byte with the contents of
the Bit Mask register is a bit mask that allows only the bits equal to 1 in the original
character pattern (rotated and masked to provide pixel alignment) to be modified by

60 Ill Chapter 4

the CPU; all other bits come straight from the latches. The latches should have previ
ously been loaded from the target address, so the effect of the ultimate synthesized bit
mask value is to allow the CPU to modify only those pixels in display memory that
correspond to the 1 bits in that part of the pixel-aligned character that falls in the
currently addressed byte. The color of the pixels set by the CPU is determined by the
contents of the Set/Reset register.

Whew. It sounds complex, but given an understanding of what the data rotator, set/
reset, and the bit mask do, it's not that bad. One good way to make sense of it is to refer
to the original text-drawing program in Listing 3.1 back in Chapter 3, and then see
how Listing 4.1. differs from that program.

It's worth noting that the results generated by Listing 4.1 could have been accomplished
without write mode 3. Write mode O could have been used instead, but at a significant
performance cost. Instead of letting write mode 3 rotate the CPU data and AND it with
the contents of the Bit Mask register, the CPU could simply have rotated the CPU data
directly and ANDed it with the value destined for the Bit Mask register and then set the Bit
Mask register to the resulting value. Additionally, enable set/reset could have been forced on
for all planes, emulating what write mode 3 does to provide pixel colors.

The write mode 3 approach used in Listing 4.1 can be efficiently extended to draw
ing large blocks of text. For example, suppose that we were to draw a line of 8-pixel
wide bit-mapped text 40 characters long. We could then set up the bit mask and data
rotation as appropriate for the left portion of each bit-aligned character (the portion of
each character to the left of the byte boundary) and then draw the left portions only of
all 40 characters in write mode 3. Then the bit mask could be set up for the right
portion of each character, and the right portions of all 40 characters could be drawn.
The VGNs fast rotator would be used to do all rotation, and the only OUTs required
would be those required to set the bit mask and data rotation. This technique could
well outperform single-character bit-mapped text drivers such as the one in Listing 4.1
by a significant margin. Listing 4.2 illustrates one implementation of such an approach.
Incidentally, note the use of the 8x14 ROM font in Listing 4.2, rather than the 8x8
ROM font used in Listing 4.1. There is also an 8x16 font stored in ROM, along with
the tables used to alter the 8x14 and 8x16 ROM fonts into 9x14 and 9x16 fonts.

LISTING 4.2 L4-2.ASM
Program to illustrate high-speed text-drawing operation of
write mode 3 of the VGA.
Draws a string of 8xl4 characters at arbitrary locations
without disturbing the background, using VGA's 8x14 ROM font.
Designed for use with modes ODh, OEh, OFh, 10h, and 12h.

Runs only on VGAs (in Models 50 & up and IBM Display Adapter
and 100% compatibles).

Assembled with MASM
By Michael Abrash

stack segment para stack 'STACK'

db 512 dup(?)
stack ends

VGA_VIDEO_SEGMENT equ
SCREEN_WIDTH_IN_BYTES equ
FONT_CHARACTER_SIZE equ

; VGA register equates.

SC_I NDEX
SC_MAP_MASK
GC_INDEX
GC_SET_RESET
GC_ENABLE_SET_RESET
GC_ROTATE

GC_MODE
GC_BIT_MASK

equ
equ
equ
equ
equ
equ

equ
equ

OaOOOh
044ah
14

3c4h
2
3ceh
0
1
3

5
8

dseg segment para common 'DATA'
TEST_ TEXT _ROW
TEST_TEXT_COL
TEST_TEXT_COLOR
TestString

db
FontPointer
dseg ends

cseg segment
assume

start proc
mov
mov

equ 69
equ 17
equ Ofh

label byte
'Hello, world!',O
dd ?

para public 'CODE'
cs:cseg, ds:dseg
near
ax,dseg
ds,ax

Select 640x480 graphics mode.

mov ax,012h
int 10h

VGA Write Mode 3 fl) 61

;VGA display memory segment
;offset of BIOS variable
;# bytes in each font char

;SC index register
;SC map mask register index
;GC index register
;GC set/reset register index
;GC enable set/reset register index
;GC data rotate/logical function
; register index
;GC Mode register
;GC bit mask register index

;row to display test text at
;column to display test text at
;high intensity white

;test string to print.
;font offset

Set the screen to all blue, using the readability of VGA registers
to preserve reserved bits.

mov
mov
out
inc
in
and
or
out
dee
mov
out
inc
in
and
or
out
mov
mov
mov

dx,GC_INDEX
al ,GC_SET_RESET
dx,al
dx
al. dx
al ,OfOh
a 1 • 1
dx.al
dx

;blue plane only set. others reset

al ,GC_ENABLE_SET_RESET
dx,al
dx
al ,dx
al ,OfOh
al , Ofh
dx,al
dx,VGA_VIDEO_SEGMENT

;enable set/reset for all planes

es,dx ;point to display memory
di.O

62 [lJ Chapter 4

mov cx,8000h
mov ax,Offffh

rep stosw

Set driver to use the 8x14 font.

;fill all 32k words
;because of set/reset, the value
; written actually doesn't matter
;fill with blue

mov
mov
mov
int
call

ah, llh
al ,30h
bh,2

;VGA BIOS character generator function,
; return info subfunction

10h
SelectFont

Print the test string.

;get 8x14 font pointer

mov si ,offset TestString
mov bx,TEST_TEXT_ROW
mov cx,TEST_TEXT_COL
mov ah,TEST_TEXT_COLOR
call Drawstring

Wait for a key, then set to text mode & end.

mov ah,l
int 21h ;wait for a key
mov ax,3
int 10h ;restore text mode

Exit to DOS.

mov ah,4ch
int 21h

Start endp

Subroutine to draw a text string left-to-right in a linear
graphics mode (ODh, OEh, OFh, 010h, 012h) with 8-dot·wide
characters. Background around the pixels that make up the
characters is preserved.

Font used should be pointed to by FontPointer.

Input:
AH= color to draw string in
BX= row to draw string on
CX = column to start string at
DS:SI = string to draw

Forces ALU function to "move".
Forces write mode 3.

Drawstring proc near
push ax
push bx
push ex
push dx
push si
push di
push bp
push ds

Set up set/reset to produce character color, using the readability
of VGA register to preserve the setting of reserved bits 7-4.

VGA Write Mode 3 Ill 63

mov dx,GC_INDEX
mov al ,GC_SET_RESET
out dx,al
inc dx
in al ,dx
and al ,OfOh
and ah,Ofh
or a 1 • ah
out dx,al

Select write mode 3, using the readability of VGA registers
to leave bits other than the write mode bits unchanged.

mov dx,GC_INDEX
mov al ,GC_MODE
out dx,al
inc dx
in al ,dx
or al ,3
out dx,al
mov dx,VGA_VIDEO_SEGMENT
mov es,dx ;point to display memory

Calculate screen address of byte character starts in.

ds
dx,dx
ds,dx

;point to BIOS data segment push
sub
mov
mov di ,ds:[SCREEN_WIDTH_IN_BYTES] ;retrieve BIOS

; screen width
pop ds
mov
mul
push
mov
and
shr
shr
shr
add

ax.bx
di
di
di ,ex
cl ,Olllb
di , 1
di, 1
di, 1
di ,ax

;row
;calculate offset of start of row
;set aside screen width
;set aside the column
;keep only the column in-byte address

;divide column by B to make a byte address
;and point to byte

Set up the GC rotation. In write mode 3, this is the rotation
of CPU data before it is ANDed with the Bit Mask register to
form the bit mask. Force the ALU function to "move". Uses the
readability of VGA registers to leave reserved bits unchanged.

mov dx, GC_INDEX
mov al ,GC_ROTATE
out dx,al
inc dx
in al .dx
and al ,OeOh
or al • cl
out dx,al

Set up BH as bit mask for left half, BL as rotation for right half.

mov bx,Offffh
shr bh,cl
neg cl
add cl ,8
shl bl ,cl

64 {g} Chapter 4

Draw all characters, left portion first, then right portion in the
succeeding byte, using the data rotation to position the character
across the byte boundary and then using write mode 3 to combine the
character data with the bit mask to allow the set/reset value (the
character color) through only for the proper portion (where the
font bits for the character are 1) of the character for each byte.
Wherever the font bits for the character are 0, the background
color is preserved.
Does not check for case where character is byte-aligned and
no rotation and only one write is required.

Draw the left portion of each character in the string.

pop ex ;get back screen width
push si
push di
push bx

Set the bit mask for the left half of the character.

mov
mov
mov
out

LeftHalfloop:
l odsb

dx,GC_INDEX
al ,GC_BIT_MASK
ah,bh
dx,ax

and al ,al
jz LeftHalfloopDone
call CharacterUp
inc di ;point to next character location
jmp LeftHalfloop

LeftHalfLoopDone:
pop bx
pop di
pop si

Draw the right portion of each character in the string.

inc di ;right portion of each character is across
; byte boundary

Set the bit mask for the right half of the character.

mov
mov
mov
out

RightHalfloop:
l odsb

dx,GC_INDEX
al ,GC_BIT_MASK
ah, bl
dx,ax

and al ,al
jz RightHalfLoopDone
call CharacterUp
inc di ;point to next character location
jmp RightHalfloop

RightHalfLoopDone:

pop ds
pop bp
pop di
pop Si

pop dx
pop ex
pop bx
pop ax
ret

Drawstring endp

Draw a character.

Input:
AL= character
CX = screen width
ES:DI = address to draw character at

CharacterUp proc near
push ex
push si
push di
push ds

Set DS:SI to point to font and ES to point to display

lds si, [Font Pointer] ; point to font

Calculate font address of character.

bl, 14
bl

;14 bytes per character

VGA Write Mode 3 '{gj 65

memory.

mov
mul
add s i, ax ;offset in font segment of character

mov bp,FONT_CHARACTER_SIZE
dee ex ; -1 because one byte per char

Characterloop:
lodsb
mov ah,es:[di]

;get character byte
;load latches

stosb ;write character byte

Point to next line of character in display memory.

add di ,ex

dee bp
jnz Character Loop

pop ds
pop di
pop Si
pop ex
ret

CharacterUp endp

; Set the pointer to the font to draw from to ES:BP.

SelectFont
mov
mov
ret

SelectFont

cseg ends
end

proc near
word ptr [FontPointer],bp
word ptr [FontPointer+2],es

endp

start

;save pointer

66 fl} Chapter 4

In this chapter I've tried to give you a feel for how write mode 3 works and what it
might be used for, rather than providing polished, optimized, plug-it-in-and-go code.
Like the rest of the VGN.s write path, write mode 3 is a resource that can be used in a
remarkable variety of ways, and I don't want to lock you into thinking of it as useful in
just one context. Instead, you should take the time to thoroughly understand what
write mode 3 does, and then, when you do VGA programming, think about how write
mode 3 can best be applied to the task at hand. Because I focused on illustrating the
operation of write mode 3, neither listing in this chapter is the fastest way to accom
plish the desired result. For example, Listing 4.2 could be made nearly twice as fast by
simply having the CPU rotate, mask, and join the bytes from adjacent characters, then
draw the combined bytes to display memory in a single operation.

Similarly, Listing 4.1 is designed to illustrate write mode 3 and its interaction with
the rest of the VGA as a contrast to Listing 3.1 in Chapter 3, rather than for maximum
speed, and it could be made considerably more efficient. If we were going for perfor
mance, we'd have the CPU not only rotate the bytes into position, but also do the
masking by ANDing in software. Even more significantly, we would have the CPU
combine adjacent characters into complete, rotated bytes whenever possible, so that
only one drawing operation would be required per byte of display memory modified.
By doing this, we would eliminate all per-character OUTs, and would minimize dis
play memory accesses, approximately doubling text-drawing speed.

As a final note, consider that non-transparent text could also be accelerated with
write mode 3. The latches could be filled with the background (text box) color, set/
reset could be set to the foreground (text) color, and write mode 3 could then be used
to turn monochrome text bytes written by the CPU into characters on the screen with
just one write per byte. There are complications, such as drawing partial bytes, and
rotating the bytes to align the characters, which we'll revisit later on in Chapter 40,
while we're working through the details of the X-Sharp library. Nonetheless, the per
formance benefit of this approach can be a speedup of as much as four times-all
thanks to the decidedly quirky but surprisingly powerful and flexible write mode 3.

A Note on Preserving Register Bits
If you take a quick look, you'll see that the code in Listing 4.1 uses the readable register
feature of the VGA to preserve reserved bits and bits other than those being modified.
Older adapters such as the CGA and EGA had few readable registers, so it was neces
sary to set all bits in a register whenever that register was modified. Happily, all VGA
registers are readable, which makes it possible to change only those bits of immediate
interest, and, in general, I highly recommend doing exactly that, since IBM (or clone
manufacturers) may well someday use some of those reserved bits or change the mean
ings of some of the bits that are currently in use.

Yet Another
VGA Write
Mode

Write Mode 2, Chunky Bitmaps,
and Text-Graphics Coexistence

.. cu
I 7 = = -= c.:t

In the last chapter, we learned about the markedly peculiar write mode 3 of the VGA,
after having spent three chapters learning the ins and outs of the VGNs data path in
write mode 0, touching on write mode 1 as well in the first chapter. In all, the VGA
supports four write modes-write modes 0, 1, 2, and 3-and read modes 0 and 1 as
well. Which leaves two burning questions: What is write mode 2, and how the heck do
you readVGA memory?

Write mode 2 is a bit unusual but not really hard to understand, particularly if you
followed the description of set/reset in Chapter 3 . Reading VGA memory, on the other
hand, can be stranger than you could ever imagine.

Let's start with the easy stuff, write mode 2, and save the read modes for the next
chapter.

Write Mode 2 and Set/Reset
Remember how set/reset works? Good, because that's pretty much how write mode 2
works. (You don't remember? Well, I'll provide a brief refresher, but I suggest that you
go back through Chapters 1 through 3 and come up to speed on the VGA.)

Recall that the set/reset circuitry for each of the four planes affects the byte written
by the CPU in one of three ways: By replacing the CPU byte with 0, by replacing it
with 0FFH, or by leaving it unchanged. The nature of the transformation for each
plane is controlled by two bits. The enable set/reset bit for a given plane selects whether
che CPU byte is replaced or not, and the set/reset bit for chat plane selects the value
with which the CPU byte is replaced if the enable sec/reset bit is 1. The nee effect of

67

68 fg} Chapter 5

set/reset is to independently force any, none, or all planes to either of all ones or all
zeros on CPU writes. As we discussed in Chapter 3, this is a convenient way to force a
specific color to appear no matter what color the pixels being overwritten are. Set/ reset
also allows the CPU to control the contents of some planes while the set/reset circuitry
controls the contents of other planes.

Write mode 2 is basically a set/reset-type mode with enable set/reset always on for
all planes and the set/reset data coming directly from the byte written by the CPU. Put
another way, the lower four bits written by the CPU are written across the four planes,
thereby becoming a color value. Put yet another way, bit O of the CPU byte is ex
panded to a byte and sent to the plane O ALU (if bit O is 0, a O byte is the CPU-side
input to the plane O ALU, while if bit O is 1, a OFFH byte is the CPU-side input);
likewise, bit 1 of the CPU byte is expanded to a byte for plane 1, bit 2 is expanded for
plane 2, and bit 3 is expanded for plane 3.

It's possible that you understand write mode 2 thoroughly at this point; nonetheless, I
suspect that some additional explanation of an admittedly non-obvious mode wouldn't
hurt. Let's follow the CPU byte through the VGA in write mode 2, step by step.

A Bytes Progress in Write Mode 2
Figure 5 .1 shows the write mode 2 data path. The CPU byte comes into the VGA and
is split into four separate bits, one for each plane. Bits 7-4 of the CPU byte vanish into
the bit bucket, never to be heard from again. Speculation long held that those 4 unused
bits indicated that IBM would someday come out with an 8-plane adapter that sup
ported 256 colors. When IBM did finally come out with a 256-color mode (mode
13H of the VGA), it turned out not to be planar at all, and the upper nibble of the
CPU byte remains unused in write mode 2 to this day.

The bit of the CPU byte sent to each plane is expanded to a O or OFFH byte,
depending on whether the bit is O or 1, respectively. The byte for each plane then
becomes the CPU-side input to the respective plane's ALU. From this point on, the
write mode 2 data path is identical to the write mode O data path. As discussed in
earlier articles, the latch byte for each plane is the other ALU input, and the ALU
either ANDs, ORs, or XORs the two bytes together or simply passes the CPU-side
byte through. The byte generated by each plane's ALU then goes through the bit mask
circuitry, which selects on a bit-by-bit basis between the ALU byte and the latch byte.
Finally, the byte from the bit mask circuitry for each plane is written to that plane if the
corresponding bit in the Map Mask register is set to 1.

It's worth noting two differences between write mode 2 and write
mode 0, the standard write mode of the VGA. First, rotation of the
CPU data byte does not take place in write mode 2. Second, the
Set/Reset and Enable Set/Reset registers have no effect in write
mode 2.

Yet Another VGA Write Mode g} 69

Byte written by CPU

Bit 7 6

0 ~ OOOh
1 ~ OFFh

Latch I

Bit Mask I
l
. Dieplay
Memory
Plane3

5 4 3

0 ~ OOOh
1 ~ OFFh

Latch I

Bit Mask I
1

Figure 5.1 VGA Data Flow in Write Mode 2

0~ OOOh
1 ~ OFFh

Latch I
I

Bit Mask I
i

Di!qplll!Y
Memory
Plane 1

0 ~ OOOh
1 ~ OFFh

Latch I
I

Bit Mask I
•
Di6play
Memory
Plane 0

Now that we understand the mechanics of write mode 2, we can step back and get
a feel for what it might be useful for. View bits 3-0 of the CPU byte as a single pixel in
one of sixteen colors. Next imagine that nibble turned sideways and written across the
four planes, one bit to a plane. Finally, expand each of the bits to a byte, as shown in
Figure 5.2, so that 8 pixels are drawn in the color selected by bits 3-0 of the CPU byte.
Within the constraints of the VGN.s data paths, that's exactly what write mode 2 does.

70 gJ Chapter 5

Bit

0

1

2

3

4

5

6

7

Byte written
by CPU

Figure 5.2 Bit-To-Byte Expansion in Write Mode 2

Display Memory

By "the constraints of the VGN.s data paths," I mean the ALUs, the bit mask, and
the map mask. As Figure 5 .1 indicates, the AL Us can modify the color written by the
CPU, the map mask can prevent the CPU from altering selected planes, and the bit
mask can prevent the CPU from altering selected bits of the byte written to. (Actually,
the bit mask simply substitutes latch bits for ALU bits, but since the latches are normally
loaded from the destination display memory byte, the net effect of the bit mask is usually to
preserve bits of the destination byte.) These are not really constraints at all, of course,
but rather features of the VGA; I simply want to make it clear that the use of write
mode 2 to set 8 pixels to a given color is a rather simple special case among the many
possible ways in which write mode 2 can be used to feed data into the VGN.s data path.

Write mode 2 is selected by setting bits 1 and 0 of the Graphics Mode register
(Graphics Controller register 5) to I and 0, respectively. Since VGA registers are read
able, the correct way to select write mode 2 on the VGA is to read the Graphics Mode
register, mask off bits 1 and 0, OR in 00000010b (02H), and write the result back to
the Graphics Mode register, thereby leaving the other bits in the register undisturbed.

Copying Chunky Bitmaps to VGA Memory Using Write Mode 2
Let's take a look at two examples of write mode 2 in action. Listing 5.1 presents a
program that uses write mode 2 to copy a graphics image in chunky format to the
VGA. In chunky format adjacent bits in a single byte make up each pixel: mode 4 of the
CGA, EGA, and VGA is a 2-bit-per-pixel chunky mode, and mode 13H of the VGA is
an 8-bit-per-pixel chunky mode. Chunky format is convenient, since all the information
about each pixel is contained in a single byte; consequently chunky format is often
used to store bitmaps in system memory.

Yet Another VGA Write Mode Ill 71

Unfortunately, VGA memory is organized as a planar rather than chunky bitmap in
modes 0DH through 12H, with the bits that make up each pixel spread across four
planes. The conversion from chunky to planar format in write mode O is quite a nui
sance, requiring a good deal of bit manipulation. In write mode 2, however, the con
version becomes a snap, as shown in Listing 5.1. Once the VGA is placed in write
mode 2, the lower four bits (the lower nibble) of the CPU byte (a single 4-bit chunky
pixel) become eight planar pixels, all the same color. As discussed in Chapter 3, the bit
mask makes it possible to narrow the effect of the CPU write down to a single pixel.

Given the above, conversion of a chunky 4-bit-per-pixel bitmap to the VGN.s planar
format in write mode 2 is trivial. First, the Bit Mask register is set to allow only the
VGA display memory bits corresponding to the leftmost chunky pixel of the two stored
in the first chunky bitmap byte to be modified. Next, the destination byte in display
memory is read in order to load the latches. Then a byte containing two chunky pixels
is read from the chunky bitmap in system memory, and the byte is rotated four bits to
the right to get the leftmost chunky pixel in position. This rotated byte is written to the
destination byte; since write mode 2 is active, each bit of the chunky pixel goes to its
respective plane, and since the Bit Mask register is set up to allow only one bit in each
plane to be modified, a single pixel in the color of the chunky pixel is written to VGA
memory.

The above process is then repeated for the rightmost chunky pixel, if necessary, and
repeated again for as many pixels as there are in the image.

LISTING 5.1 L5-1.ASM
Program to illustrate one use of write mode 2 of the VGA and EGA by
animating the image of an "A" drawn by copying it from a chunky
bit-map in system memory to a planar bit-map in VGA or EGA memory.

Assemble with MASM or TASM

By Mi cha el Abra sh

Stack segment para stack 'STACK'
db 512 dup(O)

Stack ends

SCREEN_WIDTH_IN_BYTES
DISPLAY_MEMORY_SEGMENT
SC_INDEX
MAP_MASK
GC_I NDEX
GRAPHICS_MODE
BIT_MASK

equ BO
equ OaOOOh
equ 3c4h
equ 2
equ 03ceh

equ 5
equ 8

Data segment para common 'DATA'

:Sequence Controller Index register
:index of Map Mask register
:Graphics Controller Index reg

:index of Graphics Mode reg
:index of Bit Mask reg

; Current location of "A" as it is animated across the screen.

CurrentX
CurrentY

dw
dw

72 [g} Chapter 5

Remaininglength dw ?

: Chunky bit-map image of a yellow "A" on a bright blue background

Aimage 1 abel byte
dw 13, 13 :width, height in pixels
db OOOh, OOOh, OOOh, OOOh, OOOh, OOOh, OOOh
db 009h, 099h, 099h, 099h. 099h, 099h, OOOh
db 009h, 099h, 099h, 099h, 099h, 099h, OOOh
db 009h, 099h, 099h, Oe9h, 099h, 099h, 000h
db 009h, 099h, 09eh, Oeeh, 099h, 099h, OOOh
db 009h, 099h, Oeeh. 09eh, Oe9h, 099h, OOOh
db 009h, 09eh, Oe9h, 099h, Oeeh. 099h, OOOh
db 009h, 09eh, Oeeh, Oeeh, Oeeh, 099h, OOOh
db 009h, 09eh, Oe9h. 099h, Oeeh, 099h, OOOh
db 009h, 09eh, Oe9h. 099h. Oeeh, 099h, OOOh
db 009h, 099h, 099h. 099h. 099h, 099h. OOOh
db 009h, 099h, 099h, 099h, 099h, 099h, OOOh
db OOOh, OOOh, OOOh, OOOh, OOOh, OOOh, OOOh

Data ends

Code segment para public 'CODE'
assume cs:Code, ds:Data

Start proc near
mov ax.Data
mov ds. ax
mov ax,lOh
int 10h :select video mode 10h (640x350)

Prepare for animation.

mov [CurrentX],O
mov [CurrentY],200
mov [Remaininglength],600 :move 600 times

Animate. repeating Remaininglength times. It's unnecessary to erase
the old image, since the one pixel of blank fringe around the image
erases the part of the old image not overlapped by the new image.

Animationloop:
mov bx,[CurrentX]
mov cx,[CurrentY]
mov si,offset Aimage
call DrawFromChunkyBitmap :draw the "A" image
inc [CurrentX] :move one pixel to the right

mov
Delayloop:

cx,O

loop Delayloop

dee [Remaininglength]
jnz Animation loop

Wait for a key before returning

mov ah,Olh
int 21h
mov ax,03h
int 10h
mov ah,4ch

:delay so we don't move the
image too fast: adjust as

: needed

to text mode and ending.

Yet Another VGA Write Mode fg} 73

int 21h
Start endp

Draw an image stored in a chunky-bit map into planar VGA/EGA memory
at the specified location.

Input:
BX= X screen location at which to draw the upper left corner

of the image
ex= Y screen location at which to draw the upper left corner

of the image
DS:SI = pointer to chunky image to draw, as follows:

word at 0: width of image, in pixels
word at 2: height of image, in pixels
byte at 4: msb/lsb = first & second chunky pixels,

repeating for the remainder of the scan line
of the image, then for all scan lines. Images
with odd widths have an unused null nibble
padding each scan line out to a byte width

AX, BX, ex, DX, SI, DI. ES destroyed.

DrawFromehunkyBitmap
cld

Select write mode 2.

proc

mov dx,Ge_INDEX
mov al,GRAPHieS_MODE
out dx,al
inc dx
mov al ,02h
out dx,al

Enable writes to all 4 planes.

mov dx,SG_INDEX
mov al ,MAP_MASK
out dx,al
inc dx
mov a 1 , Ofh
out dx,al

near

Point ES:DI to the display memory byte in which the first pixel
of the image goes, with AH set up as the bit mask to access that
pixel within the addressed byte.

mov ax,SCREEN_WIDTH_IN_BYTES
mul ex ;offset of start of top scan line
mov di ,ax
mov cl.bl
and cl ,lllb
mov ah,BOh :set AH to the bit mask for the
shr ah.cl ; initial pixel
shr bx,l
shr bx,l
shr bx,l ;X in bytes
add di,bx :offset of upper left byte of image
mov bx,DISPLAY_MEMORY_SEGMENT
mov es.bx :ES:DI points to the byte at which the

: upper left of the image goes

7 4 Ill Chapter 5

Get the width and height of the image.

Rowloop:

mov
inc
inc
mov
inc
inc
mov
mov
out
inc

cx,[si]
si
Si
bx,[si]
si
Si
dx,GC_INDEX
al ,BIT_MASK
dx,al
dx

;get the width

;get the height

;leave the GC Index register pointing
; to the Bit Mask register

push ax ;preserve the left column's bit mask
push ex ;preserve the width
push di ;preserve the destination offset

Columnloop:
mov
out
mov
mov
shr
shr
shr
shr
stosb
ror
jc
dee

a 1 , ah
dx,al
al,es:[di]
al ,[si]

;set the bit mask to draw this pixel
;load the latches
;get the next two chunky pixels

a 1 , 1
a 1 , 1
a 1 , 1
a 1 , 1

ah,l
CheckMorePixels
di

;move the first pixel into the lsb
;draw the first pixel
:move mask to next pixel position
;is next pixel in the adjacent byte?
; no

CheckMorePixels:
dee
jz
mov

ex
AdvanceToNextScanline
a 1 ,ah

:see if there are any more pixels
across in image

out
mov
lodsb

stosb
ror
jc
dee

dx,al
al,es:[di]

ah,l
CheckMorePixels2
di

CheckMorePixels2:
loop Column Loop

;set the bit mask to draw this pixel
:load the latches
;get the same two chunky pixels again
: and advance pointer to the next
; two pixels
;draw the second of the two pixels
:move mask to next pixel position

:is next pixel in the adjacent byte?
:no

;see if there are any more pixels
across in the image

jmp short CheckMoreScanlines

AdvanceToNextScanline:
inc si

CheckMoreScanLines:
pop di
pop ex
pop ax

;advance to the start of the next
; scan line in the image

;get back the destination offset
;get back the width
;get back the left column's bit mask

add

dee
jnz
ret

Yet Another VGA Write Mode 1l} 75

di ,SCREEN_WIDTH_IN_BYTES

bx
Rowloop

;point to the start of the next scan
; line of the image
;see if there are any more scan lines
; in the image

DrawFromChunkyBitmap endp
Code ends

end Start

"That's an interesting application of write mode 2," you may well say, "but is it
really useful?" While the ability to convert chunky bitmaps into VGA bitmaps does
have its uses, Listing 5.1 is primarily intended to illustrate the mechanics of write
mode 2.

For performance, it's best to store 16-color bitmaps in pre-separated
four-plane format in system memory, and copy one plane at a time
to the screen. Ideally, such bitmaps should be copied one scan line at a
time, with all four planes completed for one scan line before moving
on to the next. I say this because when entire images are copied one
plane at a time, nasty transient color effects can occur as one plane
becomes visibly changed before other planes have been modified.

Drawing Color-Patterned Lines Using Write Mode 2
A more serviceable use of write mode 2 is shown in the program presented in Listing 5.2.
The program draws multicolored horizontal, vertical, and diagonal lines, basing the
color patterns on passed color tables. Write mode 2 is ideal because in this application
color can vary from one pixel to the next, and in write mode 2 all that's required to set
pixel color is a change of the lower nibble of the byte written by the CPU. Set/reset
could be used to achieve the same result, but an index/data pair of OUTs would be
required to set the Set/Reset register to each new color. Similarly, the Map Mask regis
ter could be used in write mode O to set pixel color, but in this case not only would an
index/data pair of OUTs be required but there would also be no guarantee that data
already in display memory wouldn't interfere with the color of the pixel being drawn,
since the Map Mask register allows only selected planes to be drawn to.

Listing 5.2 is hardly a comprehensive line drawing program. It draws only a few
special line cases, and although it is reasonably fast, it is far from the fastest possible
code to handle those cases, because it goes through a dot-plot routine and because it
draws horizontal lines a pixel rather than a byte at a time. Write mode 2 would, how
ever, serve just as well in a full-blown line drawing routine. For any type of patterned
line drawing on the VGA, the basic approach remains the same: Use the bit mask to
select the pixel (or pixels) to be altered and use the CPU byte in write mode 2 to select
the color in which to draw.

76 ll] Chapter 5

LISTING 5.2 L5-2.ASM
Program to illustrate one use of write mode 2 of the VGA and EGA by
drawing lines in color patterns.

Assemble with MASM or TASM

By Michael Abrash

Stack segment para stack 'STACK'
db 512 dup(O)

Stack ends

SCREEN_WIDTH_IN_BYTES
GRAPHICS_SEGMENT
sc_INDEX

equ 80
equ OaOOOh
equ 3c4h

;mode 10 bit-map segment
;Sequence Controller Index register
;index of Map Mask register
;Graphics Controller Index reg

MAP_MASK
GC_INDEX
GRAPHICS_MODE
BIT_MASK

Data segment
PatternO

Pattern!

Pattern2

Pattern3

Data ends

para
db
db
db
db
db
db
db
db
db

equ 2
equ 03ceh

equ 5
equ 8

common 'DATA'
16

;index of Graphics Mode reg
;index of Bit Mask reg

0, 1, 2, 3, 4. 5, 6, 7, 8
9, 10, 11. 12, 13, 14. 15
6
2, 2. 2, 10, 10, 10
8
15, 15, 15, o. o. 15, 0, 0
9
1, 1. 1. 2. 2, 2, 4, 4, 4

Code segment para public 'CODE'
assume cs:Code, ds:Data

Start proc near

Draw

Draw

Draw

mov ax.Data
mov
mov
int

8 radial

mov
mov
mov
call

8 radial

mov
mov
mov
call

8 radial

mov
mov
mov
call

ds,ax
ax,lOh
10h

lines

bx,O
cx,O

in

;select video mode lOh (640x350)

upper left quadrant in pattern O.

si,offset PatternO
QuadrantUp

lines in upper right quadrant in pattern 1.

bx,320
cx.O
si ,offset Pattern!
QuadrantUp

lines in lower left quadrant in pattern 2.

bx,O
ex, 175
si ,offset Pattern2
QuadrantUp

Yet Another VGA Write Mode r} 77

Draw 8 radial lines in lower right quadrant in pattern 3.

mov bx,320
mov cx,175
mov si,offset Pattern3
call Quadrant Up

Wait for a key before returning to text mode and ending.

mov ah,Olh
int 21h
mov ax,03h
int !Oh
mov ah,4ch
int 21h

Draws 8 radial lines with specified pattern in specified mode 10h
quadrant.

Input:
BX= X coordinate of upper left corner of quadrant
ex= Y coordinate of upper left corner of quadrant
SI= pointer to pattern. in following form:

Byte 0: Length of pattern
Byte 1: Start of pattern, one color per byte

AX, BX. ex. DX destroyed

QuadrantUp proc near
add bx, 160
add cx,87 :point to the center of the quadrant
mov ax.0
mov dx. 160
call Lineup :draw horizontal line to right edge
mov ax.I
mov dx,88
call Lineup :draw diagonal line to upper right
mov ax,2
mov dx,88
call Lineup :draw vertical line to top edge
mov ax,3
mov dx,88
call Lineup :draw diagonal line to upper left
mov ax.4
mov dx,161
call Li neUp :draw horizontal line to left edge
mov ax,5
mov dx,88
call Lineup :draw diagonal line to lower left
mov ax,6
mov dx,88
call Li neUp :draw vertical line to bottom edge
mov ax,7
mov dx,88
call Lineup :draw diagonal line to bottom right
ret

QuadrantUp endp

Draws a horizontal. vertical. or diagonal line (one of the eight
possible radial lines) of the specified length from the specified
starting point.

78 [lJ Chapter 5

Input:
AX= line direction, as follows:

3 2 1
4 * 0
5 6 7

BX= X coordinate of starting point
ex= Y coordinate of starting point
DX= length of line (number of pixels drawn)

All registers preserved.

Table of vectors to routines for each of the 8 possible lines.

label word LineUpVectors
dw
dw

LineUpO, LineUpl, LineUp2, LineUp3
LineUp4, Lineups, LineUp6, LineUp7

Macro to draw horizontal, vertical, or diagonal line.

Input:
XParm = 1 to draw right, -1 to draw left, Oto not move horz.
YParm = 1 to draw up, -1 to draw down, 0 to not move vert.
BX= X start location
ex= Y start location
DX= number of pixels to draw
DS:SI line pattern

XParm, YParm MLineUp macro
1 ocal
mov

LineUploop, CheckMoreline

l odsb
di,si ;set aside start offset of pattern

;get length of pattern
mov ah.al

LineUpLoop:
l odsb
call DotUpinColor

if XParm EQ 1
inc bx

end if
if XParm EQ -1

dee bx
endif
if YParm EQ 1

inc ex
endif
if YParm EQ -1

dee ex
endif

dee ah
jnz CheckMoreLine
mov s i, di
l odsb
mov ah.al

CheckMoreLine:
dee
jnz
jmp
endm

dx
LineUploop
LineUpEnd

;get color of this pixel ...
; ... and draw it

;at end of pattern?

;get back start of pattern

;reset pattern count

Yet Another VGA Write Mode [lJ 79

Lineup proc near
push ax
push bx
push ex
push dx
push si
push di
push es

mov di ,ax

mov ax,GRAPHICS_SEGMENT
mov es.ax

push dx ;save line length

Enable writes to all planes.

mov dx,SC_INDEX
mov al ,MAP_MASK
out dx,al
inc dx
mov al,Ofh
out dx,al

Select write mode 2.

mov dx,GC_INDEX
mov al ,GRAPHICS_MODE
out dx,al
inc dx
mov al ,02h
out dx,al

Vector to proper routine.

pop dx ;get back line length

shl di,1
jmp cs:[LineUpVectors+di]

Horizontal line to right.

LineUpO:
MLineUp 1. 0

Diagonal line to upper right.

LineUpl:
MLineUp 1, -1

Vertical line to top.

LineUp2:
MLineUp o. -1

Diagonal line to upper left.

LineUp3:
MLineUp -1. -1

80 fg} Chapter 5

Horizontal line to left.

LineUp4:
MlineUp -1. o

Diagonal line to bottom left.

LineUpS:
MLineUp -1, 1

Vertical line to bottom.

LineUp6:
MLineUp 0, 1

Diagonal line to bottom right.

LineUp7:
Mli neUp 1, 1

LineUpEnd:
pop es
pop di
pop Si
pop dx
pop ex
pop bx
pop ax
ret

Lineup endp

Draws a dot in the specified color at the specified location.
Assumes that the VGA is in write mode 2 with writes to all planes
enabled and that ES points to display memory.

Input:
AL= dot color
BX= X coordinate of dot
ex= Y coordinate of dot
ES= display memory segment

All registers preserved.

DotUpinColor
push
push
push
push

proc
bx
ex
dx
di

near

Point ES:DI to the display memory byte in which the pixel goes, with
the bit mask set up to access that pixel within the addressed byte.

push ax ;preserve dot color
mov ax,SCREEN_WIDTH_IN_BYTES
mul ex ;offset of start of top scan line
mov di ,ax
mov cl ,bl
and cl ,lllb
mov dx,GC_INDEX
mov al ,BIT_MASK

out
inc
mov
shr
out
shr
shr
shr
add
mov
pop
stosb

pop
pop
pop
pop
ret

DotUplnColor
Start endp
Code ends

end

dx,al
dx
a 1 , 80h
a 1 • cl
dx,al
bx.I
bx.I
bx.I
di.bx
al,es:[di]
ax

di
dx
ex
bx

endp

Start

Yet Another VGA Write Mode fg) 81

;set the bit mask for the pixel

: X in bytes
;offset of byte pixel is in
: 1 oad 1 atches
;get back dot color
:write dot in desired color

When to Use Write Mode 2 and when to Use Set/Reset
As indicated above, write mode 2 and set/reset are functionally interchangeable. Write
mode 2 lends itself to more efficient implementations when the drawing color changes
frequently, as in Listing 5.2.

Set/reset tends to be superior when many pixels in succession are drawn in the same
color, since with set/ reset enabled for all planes the Set/Reset register provides the color
data and as a result the CPU is free to draw whatever byte value it wishes. For example,
the CPU can execute an OR instruction to display memory when set/reset is enabled
for all planes, thus both loading the latches and writing the color value with a single
instruction, secure in the knowledge that the value it writes is ignored in favor of the
set/reset color.

Set/reset is also the mode of choice whenever it is necessary to force the value writ
ten to some planes to a fixed value while allowing the CPU byte to modify other
planes. This is the mode of operation when set/reset is enabled for some but not all
planes.

Mode 13H-320x200 with 256 Colors
I'm going to take a minute-and I do mean a minute-to discuss the programming
model for mode 13H, the VGNs 320X200 256-color mode. Frankly, there's just not
much to it, especially compared to the convoluted 16-color model that we've explored
over the lase five chapters. Mode 13H offers the simplest programming model in the
history of PC graphics: A linear bitmap starting at A000:0000, consisting of 64,000
bytes, each controlling one pixel. The byte at offset O controls the upper left pixel on

82 ~ Chapter 5

the screen, the byte at offset 319 controls the upper right pixel on the screen, the byte
at offset 320 controls the second pixel down at the left of the screen, and the byte at
offset 63,999 controls the lower right pixel on the screen. That's all there is to it; it's so
simple that I'm not going to spend any time on a demo program, especially given that
some of the listings later in this book, such as the antialiasing code in Chapter 25, use
mode 13H.

Flipping Pages from Text to Graphics and Back
A while back, I got an interesting letter from Phil Coleman, of La Jolla, who wrote:

"Suppose I have the EGA in mode l0H (640x350 16-color graphics). I would like
to preserve some or all of the image while I temporarily switch to text mode 3 to give
my user a 'Help' screen. Naturally memory is scarce so I'd rather not make a copy of
the video buffer at A000H to 'remember' the image while I digress to the Help text.
The EGA BIOS says that the screen memory will not be cleared on a mode set if bit 7
of AL is set. Yet if I try that, it is clear that writing text into the BS00H buffer trashes
much more than the 4K bytes of a text page; when I switch back to mode 1 OH, "ghosts"
appear in the form of bands of colored dots. (When in text mode, I do make a copy of
the 4K buffer at BS00H before showing the help; and I restore the 4K before switching
back to mode 1 OH.) Is there a way to preserve the graphics image while I switch to text
mode?"

"A corollary to this question is: Where does the 64/128/256K of EGA memory
"hide" when the EGA is in text mode? Some I guess is used to store character sets, but
what happens to the rest? Or rather, how can I protect it?"

Those are good questions. Alas, answering them in full would require extensive
explanation that would have little general application, so I'm not going to do that.
However, the issue of how to go to text mode and back without losing the graphics
image certainly rates a short discussion, complete with some working code. That's
especially true given that both the discussion and the code apply just as well to the
VGA as to the EGA (with a few differences in mode 12H, the VGA's high-resolution
mode, as noted below).

Phil is indeed correct in his observation that setting bit 7 of AL instructs the BIOS
not to clear display memory on mode sets, and he is also correct in surmising that a
font is loaded when going to text mode. The normal mode 1 OH bitmap occupies the
first 28,000 bytes of each of the VGA's four planes. (The mode 12H bitmap takes up
the first 38,400 bytes of each plane.) The normal mode 3 character/attribute memory
map resides in the first 4000 bytes of planes 0 and 1 (the blue and green planes in
mode l0H). The standard font in mode 3 is stored in the first SK of plane 2 (the red
plane in mode lOH). Neither mode 3 nor any other text mode makes use of plane 3
(the intensity plane in mode l0H); if necessary, plane 3 could be used as scratch memory
in text mode.

Yet Another VGA Write Mode ~ 83

Consequently, you can get away with saving a total of just under 16K bytes-the
first 4000 bytes of planes O and I and the first 8K bytes of plane 2-when going from
mode lOH or mode 12H to mode 3, to be restored on returning to graphics mode.

That's hardly all there is to the matter of going from text to graphics and back
without bitmap corruption, though. One interesting point is that the mode I OH bitmap
can be relocated to A000:8000 simply by doing a mode set to mode I OH and setting
the start address (programmed at CRT Controller registers OCH and ODH) to 8000H.
You can then access display memory starting at AS00:8000 instead of the normal
A000:0000, with the resultant display exactly like that of normal mode I OH. There are
BIOS issues, since the BIOS doesn't automatically access display memory at the new
start address, but if your program does all its drawing directly without the help of the
BIOS, that's no problem.

The mode 12H bitmap can't start at A000:8000, because it's so long that it would
run off the end of display memory. However, the mode 12H bitmap can be relocated
to, say, A000:6000, where it would fit without conflicting with the default font or the
normal text mode memory map, although it would overlap two of the upper pages
available for use (but rarely used) by text-mode programs.

At any rate, once the graphics mode bitmap is relocated, flipping to text mode and
back becomes painless. The memory used by mode 3 doesn't overlap the relocated
mode 1 OH bitmap at all (unless additional portions of font memory are loaded), so all
you need do is set bit 7 of AL on mode sets in order to flip back and forth between the
two modes.

Another interesting point about flipping from graphics to text and back is that the
standard mode 3 character/attribute map doesn't actually take up every byte of the first
4000 bytes of planes 0 and 1. The standard mode 3 character/attribute map actually
only takes up every even byte of the first 4000 in each plane; the odd bytes are left
untouched. This means that only about 12K bytes actually have to be saved when
going to text mode. The code in Listing 5.3 flips from graphics mode to text mode and
back, saving only those 12K bytes that actually have to be saved. This code saves and
restores the first SK of plane 2 (the font area) while in graphics mode, but performs the
save and restore of the 4000 bytes used for the character/attribute map while in text
mode, because the characters and attributes, which are actually stored in the even bytes
of planes 0 and 1, respectively, appear to be contiguous bytes in memory in text mode
and so are easily saved as a single block.

Explaining why only every other byte of planes 0 and I is used in text mode and
why characters and attributes appear to be contiguous bytes when they are actually in
different planes is a large part of the explanation I'm not going to go into now. One bit
of fallout from this, however, is that if you flip to text mode and preserve the graphics
bitmap using the mechanism illustrated in Listing 5.3, you shouldn't write to any text
page other than page 0 (that is, don't write to any offset in display memory above 3999
in text mode) or alter the Page Select bit in the Miscellaneous Output register (3C2H)
while in text mode. In order to allow completely unfettered access to text pages, it

84 [lJ Chapter 5

would be necessary to save every byte in the first 32K of each of planes O and 1. (On
the other hand, this would allow up to 16 text screens to be stored simultaneously, with
any one displayable instantly.) Moreover, if any fonts other than the default font are
loaded, the portions of plane 2 that those particular fonts are loaded into would have
to be saved, up to a maximum of all 64K of plane 2. In the worst case, a full 128K
would have to be saved in order to preserve all the memory potentially used by text
mode.

As I said, Phil Coleman's question is an interesting one, and I've only touched on
the intriguing possibilities arising from the various configurations of display memory
in VGA graphics and ~ext modes. Right now, though, we've still got the basics of the
remarkably complex (but rewarding!) VGA to cover.

LISTING 5.3 L5-3.ASM
Program to illustrate flipping from bit-mapped graphics mode to
text mode and back without losing any of the graphics bit-map.

Assemble with MASM or TASM

By Michael Abrash

Stack segment para stack 'STACK'
db 512 dup(O)

Stack ends

GRAPHICS_SEGMENT equ OaOOOh :mode 10 bit-map segment
TEXT_SEGMENT equ Ob800h :mode 3 bit-map segment
SC_INDEX equ 3c4h :Sequence Controller Index register
MAP_MASK equ 2 : index of Map Mask register
GG_INDEX equ 3ceh :Graphics Controller Index register
READ_MAP equ 4 : index of Read Map register

Data segment para common 'DATA'

GStrikeAnyKeyMsgO label byte
db Odh, Oah, 'Graphics mode', Odh, Oah
db 'Strike any key to continue ... '. Odh, Oah, '$'

GStrikeAnyKeyMsgl label byte
db Odh, Oah, 'Graphics mode again', Odh, Oah
db 'Strike any key to continue ... •, Odh, Oah, '$'

TStri keAnyKeyMsg label byte
db Odh, Oah, 'Text mode', Odh, Oah
db 'Strike any key to continue ... ', Odh, Oah, '$'

Plane2Save

CharAttSave

Data ends

db

db

2000h dup (?) ;save area for plane 2 data
; where font gets loaded

4000 dup (?) :save area for memory wiped
out by character/attribute

: data in text mode

Code segment para public 'CODE'
assume cs:Code, ds:Data

Yet Another VGA Write Mode [lJ 85

Start proc
mov
int

near
ax, 10h
10h ;select video mode 10h (640x350)

Fill the graphics bit-map with a colored pattern.

ax,GRAPHICS_SEGMENT
es.ax
ah,3
cx,4

;initial fill pattern
;four planes to fill

cld
mov
mov
mov
mov
mov
mov
out
inc

dx, SC_INDEX
al ,MAP_MASK
dx.al
dx

;leave the SC Index pointing to the
; Map Mask register

Fi 11 Bit Map:
mov
shr
out
sub
mov
push

al, lOh
al. cl
dx,al
di ,di
a 1 • ah
ex
cx,BOOOh

;generate map mask for
;set map mask for this
;start at offset 0
;get the fi 11 pattern
;preserve plane count
; fil 1 32K words mov

rep
pop
shl
shl
loop

stosw ;do fill for this plane
;get back plane count

Put

Wait

Save

ex
ah,1
ah,1
Fi 11 BitMap

up "strike any key" message.

mov
mov
mov
mov
int

for a

mov
int

the BK

ax.Data
ds,ax
dx,offset GStrikeAnyKeyMsgO
ah,9
21h

key.

ah,Olh
21h

of plane 2 that

dx,GC_INDEX
al ,READ_MAP
dx. al
dx
al, 2

wi 11 be used by the font.

this plane
plane

mov
mov
out
inc
mov
out dx. al ;set up to read from plane 2
mov ax.Data
mov es. ax
mov ax,GRAPHICS_SEGMENT
mov ds. ax
sub si ,si
mov di ,offset Plane2Save
mov cx,2000h/2 ;save BK (length of default font)
rep movsw

Go to text mode without clearing display memory.

86 gJ Chapter 5

mov ax,083h
int 10h

Save the text mode bit-map.

mov ax.Data
mov es, ax
mov ax,TEXT_SEGMENT
mov ds.ax
sub Si ,Si
mov di ,offset CharAttSave
mov cx,4000/2 ;length of one text screen in words
rep movsw

Fill the text mode screen with dots and put up "strike any key"
message.

mov ax,TEXT_SEGMENT
mov es.ax
sub di ,di
mov a 1 • I • I ;fill character
mov ah,7 ;fill attribute
mov cx.4000/2 ;length of one text screen in words
rep stosw
mov ax.Data
mov ds.ax
mov dx,offset TStrikeAnyKeyMsg
mov ah,9
int 21h

Wait for a key.

mov ah,Olh
int 21h

Restore the text mode screen to the state it was in on entering
text mode.

mov ax.Data
mov ds ,ax
mov ax,TEXT_SEGMENT
mov es, ax
mov si ,offset CharAttSave
sub di ,di
mov cx,4000/2 ;length of one text screen in words
rep movsw

Return to mode 10h without clearing display memory.

mov ax,90h
int 10h

Restore the portion of plane 2 that was wiped out by the font.

mov
mov
out
inc
mov
out

dx,SC_INDEX
al,MAP_MASK
dx,al
dx
al ,4
dx,al

mov ax.Data
;set up to write to plane 2

Yet Another VGA Write Mode g) 87

mov ds ,ax
mov ax,GRAPHICS_SEGMENT
mov es.ax
mov si,offset Plane2Save
sub di ,di
mov cx,2000h/2 ;restore BK (length of default font)
rep movsw

Put up "strike any key" message.

mov ax.Data
mov ds, ax
mov dx,offset GStrikeAnyKeyMsgl
mov ah,9
int 21 h

Wait for a key before returning to text mode and ending.

mov ah,Olh
int 21h
mov ax,03h
int 10h
mov ah,4ch
int 21h

Start endp
Code ends

end Start

Reading VGA
Memory

... u
I 7 = m = c.:,

Read Modes O and 1, and the Color Don't Care Register
Well, it's taken five chapters, but we've finally covered the data write path and all four
write modes of the VGA. Now it's time to tackle the VGN.s two read modes. While the
read modes aren't as complex as the write modes, they're nothing to sneeze at. In par
ticular, read mode 1 (also known as color compare mode) is rather unusual and not at
all intuitive.

You may well ask, isn't anything about programming the VGA straightforward?
Well ... no. But then, clearing up the mysteries of VGA programming is what this part
of the book is all about, so let's get started.

Read Mode 0
Read mode 0 is actually relatively uncomplicated, given that you understand the four
plane nature of the VGA. (If you don't understand the four-plane nature of the VGA,
I strongly urge you to read Chapters 1-5 before continuing with this chapter.) Read
mode 0, the read mode counterpart of write mode 0, lets you read from one (and only
one) plane of VGA memory at any one time.

Read mode 0 is selected by setting bit 3 of the Graphics Mode register (Graphics
Controller register 5) to 0. When read mode 0 is active, the plane that supplies the data
when the CPU reads VGA memory is the plane selected by bits 1 and 0 of the Read
Map register (Graphics Controller register 4). When the Read Map register is set to 0,
CPU reads come from plane 0 (the plane that normally contains blue pixel data).
When the Read Map register is set to 1, CPU reads come from plane 1; when the Read
Map register is 2, CPU reads come from plane 2; and when the Read Map register is 3,
CPU reads come from plane 3.

89

90 /g] Chapter 6

That all seems simple enough; in read mode 0, the Read Map register acts as a
selector among the four planes, determining which one of the planes will supply the
value returned to the CPU. There is a slight complication, however, in that the value
written to the Read Map register in order to read from a given plane is not the same as
the value written to the Map Mask register (Sequence Controller register 2) in order to
write to that plane.

Why is that? Well, in read mode 0, one and only one plane can be read at a time, so
there are only four possible settings of the Read Map register: 0, 1, 2, or 3, to select
reads from plane 0, 1, 2, or 3. In write mode 0, by contrast (in fact, in any write mode),
any or all planes may be written to at once, since the byte written by the CPU can "fan
out" to multiple planes. Consequently, there are not four but sixteen possible settings
of the Map Mask register. The setting of the Map Mask register to write only to plane
0 is 1; to write only to plane 1 is 2; to write only to plane 2 is 4; and to write only to
plane 3 is 8.

As you can see, the settings of the Read Map and Map Mask registers for accessing
a given plane don't match. The code in Listing 6.1 illustrates this. Listing 6.1 simply
copies a sixteen-color image from system memory to VGA memory, one plane at a
time, then animates by repeatedly copying the image back to system memory, again
one plane at a time, clearing the old image, and copying the image to a new location in
VGA memory. Note the differing settings of the Read Map and Map Mask registers.

LISTING 6.1 L6-1.ASM
Program to illustrate the use of the Read Map register in read mode 0.
Animates by copying a 16-color image from VGA memory to system memory,
one plane at a time, then copying the image back to a new location
in VGA memory.

By Michael Abrash

stack segment word stack 'STACK'
db 512 dup (?)

stack ends

data segment word
IMAGE WIDTH EQU
IMAGE_HEIGHT EQU
LEFT_B0UND EQU
RIGHT_B0UND EQU
VGA_SEGMENT EQU
SCREEN_WIDTH EQU
SC_INDEX EQU
GC_INDEX EQU
MAP_MASK EQU
READ_MAP EQU

'DATA'
4
32
10
66
0a000h
80
3c4h
3ceh
2
4

; Base pattern for 16-color image.

PatternPl ane0 label byte
db 32 dup (0ffh,0ffh,0,0)

:in bytes
;in pixels
:in bytes
: in bytes

:in bytes
;Sequence Controller Index register
:Graphics Controller Index register
:Map Mask register index in SC
: Read Map register index in GC

PatternPlanel
db

PatternPlane2
db

PatternPlane3
db

1 abel
32 dup
label
32 dup
l ab e 1
32 dup

byte
(Offh,0,0ffh,O)
byte
(OfOh,OfOh,OfOh,OfOh)
byte
(Occh,Occh,Occh,Occh)

Reading VGA Memory g} 91

Temporary storage for 16-color image during animation.

ImagePlaneO
ImagePlanel
ImagePlane2
ImagePlane3

db
db
db
db

32*4 dup (?)

32*4 dup (?)

32*4 dup (?)
32*4 dup (?)

; Current image location & direction.

ImageX dw
ImageY dw
ImageXDi rect ion dw
data ends

40
100
1

code segment word 'CODE'
assume cs:code,ds:data

Start proc near
cld
mov ax.data
mov ds,ax

Select graphics mode 10h.

mov ax,lOh
int 10h

Draw the initial image.

; in bytes
;in pixels
; in bytes

mov si ,offset PatternPlaneO
call Drawimage

Loop to animate by copying the image from VGA memory to system memory,
erasing the image, and copying the image from system memory to a new
location in VGA memory. Ends when a key is hit.

Animateloop:

Copy the image from VGA memory to system memory.

mov di ,offset ImagePlaneO
call Getimage

Clear the image from VGA memory.

call Eraseimage

Advance the image X coordinate, reversing direction if either edge
of the screen has been reached.

mov ax,[ImageX]
cmp ax,LEFT_BOUND
jz ReverseDirection
cmp ax,RIGHT_BOUND
jnz SetNewX

92 /gJ Chapter 6

ReverseDirection:
neg [ImageXDirectionJ

SetNewX:
add
mov

ax,[ImageXDirection]
[ImageXJ,ax

Draw the image by copying it from system memory to VGA memory.

mov si ,offset ImagePlaneO
call Drawlmage

Slow things down a bit for visibility (adjust as needed).

mov
Delayloop:

loop

cx,O

Delayloop

See if a key has been hit, ending the program.

ah,1
16h

mov
int
jz AnimateLoop

Clear the key, return to text mode, and return to DOS.

sub ah.ah
int 16h
mov ax,3
int 10h
mov ah,4ch
int 21h

Start endp

Draws the image at offset DS:SI to the current image location in
VGA memory.

Drawlmage
mov

proc near
ax,VGA_SEGMENT

mov es.ax
cal 1 GetimageOffset ;ES:DI is the destination address for the

mov dx,SC_INDEX
mov al,l

DrawimagePlaneLoop:
push di

push
mov
out
pop
inc
out

dee
mov

Drawlmageloop:

ax
al ,MAP_MASK
dx,al
ax
dx
dx,al

dx
bx,IMAGE_HEIGHT

; image in VGA memory

;do plane O first

; image is drawn at the same offset in
; each plane
;preserve plane select
;Map Mask index
;point SC Index to the Map Mask register
;get back plane select
;point to SC index register
;set up the Map Mask to allow writes to
; the plane of interest
; point back to SC Data register
;fl of scan lines in image

mov ex, IMAGE_WIDTH ;ii of bytes across image
rep movsb
add di ,SCREEN_WIDTH-IMAGE_WIDTH

; point to next scan 1 i ne of image
dee bx ;any more scan lines?

Reading VGA Memory [g} 93

jnz Drawlmageloop
pop di ;get back image start offset in VGA memory
shl al,1 :Map Mask setting for next plane
cmp al,lOh ;have we done all four planes?
jnz DrawimagePlaneLoop
ret

Draw Image endp

Copies the image from its current location in VGA memory into the
buffer at DS:DI.

Getlmage
mov
call
xchg
push
pop
mov
mov

proc near
s i , di
GetlmageOffset
si ,di ;SI is
ds
es
ax,VGA_SEGMENT
ds,ax

mov dx,GC_INDEX
sub al ,al

GetlmagePlaneloop:
push si
push ax
mov al ,READ_MAP
out dx,al
pop ax
inc dx
out dx,al

dee
mov

Getlmageloop:

dx
bx,IMAGE_HEIGHT

:move destination offset into SI
:DI is offset of image in VGA memory

offset of image, DI is des ti nation offset

;ES:DI is destination

:DS:SI is source

;do plane O first

:image comes from same offset in each plane
;preserve plane select
; Read Map index
;point GC Index to Read Map register
;get back plane select
;point to GC Index register
: set up the Read Map to se 1 ect reads from
: the plane of interest
; point back to GC data register
;II of scan lines in image

mov ex, IMAGE_WIDTH ;II of bytes across image
rep movsb
add si,SCREEN_WIDTH·IMAGE_WIDTH

dee
jnz
pop
inc
cmp
jnz
push
pop
ret

Getlmage

bx
Getlmageloop

; point to next scan line of image
;any more scan lines?

s i ;get back image start offset
al ;Read Map setting for next plane
al ,4 ;have we done all four planes?
GetlmagePlaneLoop
es
ds

endp

:restore original DS

; Erases the image at its current 1 ocati on.

Erase Image
mov
mov
out
inc
mov
out

proc near
dx,SC_INDEX
al ,MAP_MASK
dx, a 1
dx
a 1 , Ofh
dx,al

mov ax,VGA_SEGMENT
mov es,ax

;point SC Index to the Map Mask register
; point to SC Data register

:set up the Map Mask to all ow writes to go to
: all 4 planes

94 Jg} Chapter 6

call GetlmageOffset :ES:DI points to the start address
; of the image

sub al ,al ;erase with zeros
mov bx,IMAGE_HEIGHT :ff of scan lines in image

EraselmageLoop:
mov
rep
add

dee
jnz
ret

Eraselmage

ex, IMAGE_WIDTH ;ft of bytes across image
stosb
di ,SCREEN_WIDTH-IMAGE_WIDTH

;point to next scan line of image
bx :any more scan lines?
EraseimageLoop

endp

; Returns the current offset of the image in the VGA segment in DI.

GetlmageOffset
mov
mul
add
mov
ret

GetlmageOffset
code ends

end

proc near
ax, SCREEN_W IDTH
[ImageY]
ax,[ImageX]
di, ax

endp

Start

By the way, the code in Listing 6.1 is intended only to illustrate read mode 0, and is,
in general, a poor way to perform animation, since it's slow and tends to flicker. Later
in this book, we'll take a look at some far better VGA animation techniques.

As you'd expect, neither the read mode nor the setting of the Read Map register
affects CPU writes to VGA memory in any way.

An important point regarding reading VGA memory involves the VG A's
latches. (Remember that each of the four latches stores a byte for
one plane; on CPU writes, the latches can provide some or all of the
data written to display memory, allowing fast copying and efficient
pixel masking.) Whenever the CPU reads a given address in VGA
memory, each of the four latches is loaded with the contents of the
byte at that address in its respective plane. Even though the CPU
only receives data from one plane in read mode 0, all four planes are
always read, and the values read are stored in the latches. fhis is
true in read mode 1 as well. In short, whenever the CPU reads VGA
memory in any read mode, all four planes are read and all four latches
are always loaded.

Read Mode 1
Read mode O is the workhorse read mode, but it's got an annoying limitation: When
ever you want to determine the color of a given pixel in read mode 0, you have to

Reading VGA Memory Ill 95

perform four VGA memory reads, one for each plane, and then interpret the four bytes
you've read as eight 16-color pixels. That's a lot of programming. The code is also likely
to run slowly, all the more so because a standard IBM VGA takes an average of 1.1
microseconds to complete each memory read, and read mode O requires four reads in
order to read the four planes, not to mention the even greater amount of time taken by
the OUTs required to switch between the planes. (1.1 microseconds may not sound
like much, but on a 66-MHz 486, it's 73 clock cycles! Local-bus VGAs can be a good
deal faster, but a read from the fastest local-bus adapter I've yet seen would still cost in
the neighborhood of 10 486/66 cycles.)

Read mode 1, also known as color compare mode, provides special hardware assis
tance for determining whether a pixel is a given color. With a single read mode 1 read,
you can determine whether each of up to eight pixels is a specific color, and you can
even specify any or all planes as "don't care" planes in the pixel color comparison.

Read mode 1 is selected by setting bit 3 of the Graphics Mode register (Graphics
Controller register 5) to 1. In its simplest form, read mode 1 compares the cross-plane
value of each of the eight pixels at a given address to the color value in bits 3-0 of the
Color Compare register (Graphics Controller register 2), and returns a 1 to the CPU
in the bit position of each pixel that matches the color in the Color Compare register
and a O for each pixel that does not match.

That's certainly interesting, but what's read mode 1 good for? One obvious applica
tion is in implementing flood-fill algorithms, since read mode 1 makes it easy to tell
when a given byte contains a pixel of a boundary color. Another application is in
detecting on-screen object collisions, as illustrated by the code in Listing 6.2.

LISTING 6.2 L6-2.ASM
Program to illustrate use of read model (color compare model
to detect collisions in display memory. Draws a yellow line on a
blue background, then draws a perpendicular green line until the
yellow line is reached.

By Mi cha el Ab rash

stack segment word stack 'STACK'
db 512 dup (?)

stack ends

VGA_SEGMENT
SCREEN_WIDTH
GC_INDEX
SET_RESET
ENABLE_SET_RESET
C0L0R_C0MPARE
GRAPHICS_M0DE
BIT_MASK

code

Start

segment
assume
proc
cld

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

0a000h
80 ;in bytes
3ceh ;Graphics Controller Index register
0 ;Set/Reset register index in GC
1 ;Enable Set/Reset register index in GC
2 ;Color Compare register index in GC
5 ;Graphics Mode register index in GC
8 ;Bit Mask register index in GC

word 'C00E'
cs:code
near

96 gJ Chapter 6

Select graphics mode 10h.

mov ax, lOh
int 10h

Fill the screen with blue.

a 1 • 1
SelectSetResetColor
ax,VGA_SEGMENT
es.ax
di , di

;blue is color 1
;set to draw in blue

mov
call
mov
mov
sub
mov
rep

cx,7000h
stosb ;the value written actually doesn't

matter. si nee set/reset is providing
; the data written to display memory

Draw a vertical yellow line.

mov
ca 11
mov
mov
out
inc
mov
out
mov
mov

a 1 • 14
SelectSetResetColor
dx,GC_INDEX
al ,BIT_MASK
dx,al
dx
al,lOh
dx, a 1
di ,40
cx,350

al,es:[di]

;yellow is color 14
;set to draw in yellow

;point GC Index to Bit Mask
;point to GC Data

;set Bit Mask to 10h
;start in the middle of the top line
:do ful 1 height of screen

; 1 oad the 1 atches
Vlineloop:

mov
stosb ;write next pixel of yellow 1 ine (set/reset

provides the data written to display
memory, and AL is actually ignored)

add
1 oop

di,SCREEN_WIDTH-1
Vlineloop

Select write mode O and read mode 1.

mov dx,GC_INDEX
mov al ,GRAPHICS_MODE

;point to the next scan line

out dx,al ;point GC Index to Graphics Mode register
inc dx ;point to GC Data
mov al ,OOOOlOOOb ;bit 3=1 is read mode 1, bits 1 & 0=00

out dx,al
: is write mode O
; set Graphics Mode to read mode 1,
: write mode O

Draw a horizontal green line, one pixel at a time. from left
to right until color compare reports a yellow pixel is encountered.

Draw in green.

mov
ca 11

a 1 , 2
SelectSetResetColor

Set color compare to look for yellow.

mov dx,GC_INDEX
mov al ,COLOR_COMPARE

;green is color 2
;set to draw in green

out dx.al
inc dx
mov a 1. 14
out dx,al
dee dx

Set up for quick access to

mov al ,BIT_MASK
out dx,al
inc dx

Set initial pixel mask and

a 1 , 80h

Reading VGA Memory 1I} 97

;point GC Index to Color Compare register
; point to GC Data
;we're looking for yellow, color 14
;set color compare to look for yellow
;point to GC Index

Bit Mask register.

;point GC Index to Bit Mask register
;point to GC Data

display memory offset.

;initial pixel mask mov
mov di ,lOO*SCREEN_WIDTH

Hli neloop:
mov

and
jnz

out

mov

ror
adc

ah ,es: [di]

ah.al
WaitKeyAndDone

dx, al

es:[di].al

a 1 • 1
di. 0

: start at 1 eft edge of scan 1 i ne 100

;do a read mode 1 (color compare) read.
; This also loads the latches.
;is the pixel of current interest yellow?
;yes-we've reached the yellow 1 ine, so we' re
; done
;set the Bit Mask register so that we
; modify only the pixel of interest
;draw the pixel. The value written is
; irrelevant, since set/reset is providing
; the data written to display memory
;shift pixel mask to the next pixel
;advance the display memory offset if
; the pixel mask wrapped

Slow things down a bit for visibility (adjust as needed).

mov
Delayloop:

loop

jmp

cx,O

Delayloop

Hlineloop

Wait for a key to be pressed to end. then return to text mode and
return to DOS.

WaitKeyAndDone:
WaitKeyloop:

mov ah.I
int 16h
jz WaitKeyloop
sub ah.ah
int 16h ;cl ear the key
mov ax,3
int 10h ;return to text mode
mov ah,4ch
int 21h ;done

Start endp

Enables set/reset for all planes, and sets the set/reset color
to AL.

SelectSetResetColor proc near
mov dx,GC_INDEX

98 ~ Chapter 6

push ax ;preserve col or
mov al ,SET_RESET
out dx,al ;point GC Index to Set/Reset register
inc dx ;point to GC Data
pop ax ;get back color
out dx,al ;set Set/Reset register to selected color
dee dx ;point to GC Index
mov al ,ENABLE_SET_RESET
out dx,al ;point GC Index to Enable Set/Reset register
inc dx ;point to GC Data
mov al,Ofh
out dx,al :enable set/reset for all planes
ret

SelectSetResetColor endp
code ends

end Start

When all Planes "Don't Care"
Still and all, there aren't all that many uses for basic color compare operations. There is,
however, a genuinely odd application of read mode 1 that's worth knowing about; but
in order to understand that, we must first look at the "don't care" aspect of color com
pare operation.

As described above, during read mode 1 reads the color stored in the Color Compare
register is compared to each of the 8 pixels at a given address in VGA memory. But
and it's a big but-any plane for which the corresponding bit in the Color Don't Care
register is a O is always considered a color compare match, regardless of the values of
that plane's bits in the pixels and in the Color Compare register.

Let's look at this another way. A given pixel is controlled by four bits, one in each
plane. Normally (when the Color Don't Care register is OFH), the color in the Color
Compare register is compared to the four bits of each pixel; bit O of the Color Compare
register is compared to the plane O bit of each pixel, bit 1 of the Color Compare register is
compared to the plane 1 bit of each pixel, and so on. That is, when the lower four bits
of the Color Don't Care register are all set to 1, then all four bits of a given pixel must
match the Color Compare register in order for a read mode 1 read to return a 1 for that
pixel to the CPU.

However, if any bit of the Color Don't Care register is 0, then the corresponding bit
of each pixel is unconditionally considered to match the corresponding bit of the Color
Compare register. You might think of the Color Don't Care register as selecting exactly
which planes should matter in a given read mode 1 read. At the extreme, if all bits of
the Color Don't Care register are 0, then read mode 1 reads will always return OFFH,
since all planes are considered to match all bits of all pixels.

Now, we're all prone to using tools the "right" way-that is, in the way in which
they were intended to be used. By that token, the Color Don't Care register is clearly
intended to mask one or more planes out of a color comparison, and as such, has
limited use. However, the Color Don't Care register becomes far more interesting in
exactly the "extreme" case described above, where all planes become "don't care" planes.

Reading VGA Memory g} 99

Why? Well, as I've said, when all planes are "don't care" planes, read mode 1 reads
always return OFFH. Now, when you AND any value with OFFH, the value remains
unchanged, and that can be awfully handy when you're using the bit mask to modify
selected pixels in VGA memory. Recall that you must always read VGA memory to
load the latches before writing to VGA memory when you're using the bit mask. Tradi
tionally, two separate instructions-a read followed by a write-are used to perform
this task. The code in Listing 6.2 uses this approach. Suppose, however, that you've set
the VGA to read mode 1, with the Color Don't Care register set to O (meaning all reads
of VGA memory will return OFFH). Under these circumstances, you can use a single
AND instruction to both read and write VGA memory, since ANDing any value with
OFFH leaves that value unchanged.

Listing 6.3 illustrates an efficient use of write mode 3 in conjunction with read
mode I and a Color Don't Care register setting of 0. The mask in AL is passed directly
to the VGXs bit mask (that's how write mode 3 works-see Chapter 4 for details).
Because the VGA always returns OFFH, the single AND instruction loads the latches,
and writes the value in AL, unmodified, to the VGA, where it is used to generate the
bit mask. This is more compact and register-efficient than using separate instructions
to read and write, although it is not necessarily faster by cycle count, because on a 486
or a Pentium MOY is a I-cycle instruction, but AND with memory is a 3-cycle in
struction. However, given display memory wait states, it is often the case that the two
approaches run at the same speed, and the register that the above approach frees up can
frequently be used to save one or more cycles in any case.

By the way, Listing 6.3 illustrates how write mode 3 can make for excellent pixel
and line-drawing code.

LISTING 6.3 L6-3.ASM
Program that draws a diagonal line to i 11 ustrate the use of a
Color Don't Care register setting of DFFH to support fast
read-modify-write operations to VGA memory in write mode 3 by
drawing a diagonal line.

Note: Works on VGAs only.

By Michael Abra sh

stack segment word stack 'STACK'
db 512 dup (?)

stack ends

VGA_SEGMENT EQU OaOOOh
SCREEN_WIDTH EOU 80
GC_!NDEX EQU 3ceh
SET_RESET EQU 0
ENABLE_SET_RESET EQU 1
GRAPHICS_MODE EOU 5
COLOR_DONT_CARE EQU 7

; in bytes
:Graphics Controller Index register
:Set/Reset register index in GC
:Enable Set/Reset register index in GC
:Graphics Mode register index in GC
;Color Don't Care register index in GC

100 ~ Chapter 6

code segment word 'CODE'
assume cs:code

Start proc near

Select graphics mode 12h.

mov ax,12h
int 10h

Select write mode 3 and read mode 1.

Set

Set

mov dx,GC_ INDEX
mov al ,GRAPHICS_MODE
out dx, a 1
inc dx
in al, dx
or al ,OOOOlOllb

jmp $+2
out dx,al
dee dx

up set/reset to always

mov al, SET_RESET
out dx,al
inc dx
mov al , Ofh
out dx, al
dee dx

:VGA registers are readable, bless them!
;bit 3=1 selects read mode 1, and
: bits 1 & 0-ll selects write mode 3
:delay between IN and OUT to same port

draw in white.

mov al ,ENABLE_SET_RESET
out dx, al
inc dx
mov al , Ofh
out dx,al
dee dx

Color Don't Care to 0, so reads of VGA memory al ways return OFFH.

mov al ,COLOR_DONT_CARE
out dx,al
inc dx
sub al ,al
out dx,al

Set up the initial memory pointer and pixel mask.

mov ax,VGA_SEGMENT
mov ds,ax
sub bx.bx
mov al,SOh

Draw 400 points on a diagonal line sloping down and to the right.

mov cx,400
DrawDiagonalLoop:

and [bx].al :reads display memory, loading the latches,
then writes AL to the VGA. AL becomes the
bit mask, and set/reset provides the
actual data written

Reading VGA Memory ~ 101

add bx,SCREEN_WIDTH
point to the next scan 1 i ne

ror al, 1 :move the pixel mask one pixel to the right
adc bx,O :advance to the next byte if the pixel mask wrapped
loop DrawDiagonalLoop

Wait for a key to be pressed to end, then return to text mode and
return to DOS.

WaitKeyloop:
mov ah,1
int 16h
jz WaitKeyLoop
sub ah.ah
int 16h ;clear the key
mov ax,3
int 10h :return to text mode
mov ah,4ch
int 21h ;done

Sta rt endp
code ends

end Start

I hope I've given you a good feel for what color compare mode is and what it might
be used for. Color compare mode isn't particularly easy to understand, but it's not that
complicated in actual operation, and it's certainly useful at times; take some time to
study the sample code and perform a few experiments of your own, and you may well
find useful applications for color compare mode in your graphics code.

A final note: The Read Map register has no effect in read mode 1, and the Color
Compare and Color Don't Care registers have no effect either in read mode O or when
writing to VGA memory. And with that, by gosh, we're actually done with the basics of
accessing VGA memory!

Not to worry-that still leaves us a slew of interesting VGA topics, including smooth
panning and scrolling, the split screen, color selection, page flipping, and Mode X.
And that's not to mention actual uses to which the VGNs hardware can be put, includ
ing lines, circles, polygons, and my personal favorite, animation. We've covered a lot of
challenging and rewarding ground-and we've only just begun.

Saving Screens
and Other VGA
Mysteries

... u
I 7 = ca -= u

Useful Nuggets from the VGA Zen File
There are a number of VGA graphics topics that aren't quite involved enough to war
rant their own chapters, yet still cause a fair amount of programmer headscratching
and thus deserve treatment somewhere in this book. This is the place, and during the
course of this chapter we'll touch on saving and restoring 16-color EGA and VGA
screens, the 16-out-of-64 colors issue, and techniques involved in reading and writing
VGA control registers.

That's a lot of ground to cover, so let's get started!

Saving and Restoring EGA and VGA Screens
The memory architectures of EGAs and VGAs are similar enough to treat both to

gether in this regard. The basic principle for saving EGA and VGA 16-color graphics
screens is astonishingly simple: Write each plane to disk separately. Let's take a look at
how this works in the EGA's hi-res mode l0H, which provides 16 colors at 640x350.

All we need do is enable reads from plane 0 and write the 28,000 bytes of plane 0
that are displayed in mode l0H to disk, then enable reads from plane 1 and write the
displayed portion of that plane to disk, and so on for planes 2 and 3. The result is a file
that's 112,000 (28,000 * 4) bytes long, with the planes stored as four distinct 28,000-
byte blocks, as shown in Figure 7 .1 .

The program shown later on in Listing 7.1 does just what I've described above,
putting the screen into mode 1 OH, putting up some bit- mapped text so there's some
thing to save, and creating the 112K file SNAPSHOT.SCR, which contains the visible
portion of the mode l0H frame buffer.

The only part of Listing 7 .1 that's even remotely tricky is the use of the Read Map
register (Graphics Controller register 4) to make each of the four planes of display

103

104 /gJ Chapter 7

EGA/VGA Display Memory File SNAPSHOT.SCR

Dieplayed portion of plane 0, I 28,000 bytee
e;tarting at A000: 0000 when
the Read Map register= 0 ----------------------

from plane 0

Displayed portion of plane 1, I 28,000 bytee
starting at A000: 0000 when
the Read Map regieter = 1 ---------------------

from plane 1

Displayed portion of plane 2, I 28,000 bytes
etarting at AOOO: 0000 when from plane 2
the Read Map register = 2 ,-.---------------------.

Displayed portion of plane 3, I 28,000 bytes
starting at AOO0: 0000 when
the Read Ma_p regieter = 3 • ~-------- -----------

from plane 3

Figure 7 .1 Saving EGANGA Display Memory

memory readable in turn. The same code is used to write 28,000 bytes of display
memory to disk four times, and 28,000 bytes of memory starting at A000:0000 are
written to disk each time; however, a different plane is read each time, thanks to the
changing setting of the Read Map register. (If this is unclear, refer back to Figure 7 .1;
you may also want to reread Chapter 6 to brush up on the operation of the Read Map
register in particular and reading EGA and VGA memory in general.)

Of course, we'll want the ability to restore what we've saved, and Listing 7.2 does
this. Listing 7.2 reverses the action of Listing 7.1, selecting mode l0H and then load
ing 28,000 bytes from SNAPSHOT.SCR into each plane of display memory. The Map
Mask register (Sequence Controller register 2) is used to select the plane to be written
to. If your computer is slow enough, you can see the colors of the text change as each
plane is loaded when Listing 7.2 runs. Note that Listing 7.2 does not itself draw any
text, but rather simply loads the bit map saved by Listing 7 .1 back into the mode 10 H
frame buffer.

Saving Screens and Other VGA Mysteries [lJ 105

LISTING 7.1 L7-1.ASM
Program to put up a mode 10h EGA graphics screen, then save it

: to the fi 1 e SNAPSHOT. SCR.

VGA_SEGMENT
GC_INDEX
READ_MAP

equ OaOOOh
equ 3ceh
equ 4

:Graphics Controller Index register
:Read Map register index in GC

DISPLAYED SCREEN_SIZE equ (640/8)*350 ;# of displayed bytes per plane in a
; hi-res graphics screen

stack segment para stack 'STACK'
db 512 dup (?)

stack ends

Data segment word 'DATA'
SampleText db 'This is bit-mapped text, drawn in hi-res •

db 'EGA graphics mode 10h.', Odh, Oah, Oah
db 'Saving the screen (including this text) ... '
db Odh, Oah, '$'

Filename
ErrMsgl
ErrMsg2
WaitKeyMsg
Handle

db 'SNAPSHOT.SCR' ,0 :name of file we're saving to
db '*** Couldn' 't open SNAPSHOT.SCR ***' ,Odh,Oah, '$'
db '*** Error writing to SNAPSHOT.SCR ***' ,Odh,Oah, '$'
db Odh, Oah, 'Done. Press any key to end ... ' ,Odh,Oah, '$'

dw ? :handle of file we' re saving to
Plane db ? ;plane being read
Data ends

Code segment
assume

Start proc
mov
mov

Go to hi - res

mov

int

cs:Code,
near
ax.Data
ds,ax

graphics

ax,lOh

10h

ds:Data

mode.

:AH = 0 means mode set, AL = 10h selects
; hi-res graphics mode
;BIOS video interrupt

Put up some text, so the screen isn't empty.

mov ah,9 :DOS print string function
mov dx. offset Sampl eText
int 21h

Delete SNAPSHOT.SCR if it exists.

mov ah,41h :DOS unlink file function
mov dx. offset Fi 1 ename
int 21h

Create the fi 1 e SNAPSHOT. SCR.

mov ah ,3ch ;DOS create file function
mov dx, offset Fi 1 ename
sub ex.ex ;make it a normal file
int 21h
mov [Handle].ax ;save the handle
jnc SaveTheScreen;we're ready to save if no error
mov ah,9 ;DOS print string function

106 {gJ Chapter 7

mov dx, offset ErrMsgl
int 21h :notify of the error
j mp short Done : and done

Loop through the 4 planes, making each readable in turn and
writing it to disk. Note that all 4 planes are readable at
A000:0000: the Read Map register selects which plane is readable
at any one time.

SaveTheScreen:
mov

Save loop:
mov
mov
out
in C

mov

out
mov
mov
mov
sub
push
mov
mov
int
pop
cmp
jz
mov
mov
int
jmp

SaveloopBottom:
mov
inc
mov
cmp
j be

[Plane].0 ;start with plane 0

dx,GC_INDEX
al ,READ_MAP ;set GC Index to Read Map register
dx,al
dx
al,[Plane] ;get

: to
;set
;DOS

the ff of the plane we want
save

dx,al to read from the desired plane
ah,40h write to file function
bx,[Handle]
cx,DISPLAYED_SCREEN_SIZE
dx,dx :write all
ds
si,VGA_SEGMENT

;ff of bytes to save
displayed bytes at A000:0000

d s , s i
21h ;write the displayed portion of this plane
ds
ax,DISPLAYED_SCREEN_SIZE :did all bytes get written?

SaveloopBottom
ah,9 ;DOS print string function
dx,offset ErrMsg2
21h ;notify about the error
short DoCl ose: and done

al,[Plane]
ax
[Plane]. al
a 1 , 3
Saveloop

;point to the next plane

;have we done all planes?
;no, so do the next plane

Close SNAPSHOT. SCR.

DoClose:
mov ah,3eh ;DOS close file function
mov bx,[Handle]
int 21h

Wait for a keypress.

mov ah,9 ;DOS print string function
mov dx,offset WaitKeyMsg
int 21h ;prompt
mov ah,B ;DOS input without echo function
int 21h

Restore text mode.

mov ax ,3
int 10h

Saving Screens and Other VGA Mysteries ~ 107

Done.

Done:
mov ah,4ch ; DOS terminate function
int 21h

Start endp
Code ends

end Sta rt

LISTING 7.2 L7-2.ASM
Program to restore a mode !Oh EGA graphics screen from

; the fi 1 e SNAPSHOT. SCR.

VGA_SEGMENT equ OaOOOh
SC_INDEX
MAP_MASK
DISPLAYED_SCREEN_SIZE

equ 3c4h
equ 2

; Sequence Controller Index register
;Map Mask register index in SC

equ (640/8)*350 ;/t of displayed bytes per plane in a
: hi-res graphics screen

stack segment para stack 'STACK'
db 512 dup (? J

stack ends

Data segment word. 'DATA'
Filename
ErrMsgl
ErrMsg2
WaitKeyMsg
Handle
Plane

db 'SNAPSHOT.SCR' ,0 ;name of file we're restoring from

Data

Code

Start

Go to

db '*** Coul dn' 't open SNAPSHOT. SCR ***' , Odh, Oah. '$'
db '*** Error reading from SNAPSHOT.SCR ***' ,Odh,Oah, '$'
db Odh, Oah, 'Done. Press any key to end ... ' ,Odh,Oah, '$'
dw ? ;handle of file we're restoring from
db ? ;plane being written

ends

segment
assume
proc
mov
mov

hi - res

mov

int

cs:Code,
near
ax.Data
ds,ax

graphics

ax,lOh

!Oh

ds:Data

mode.

;AH = 0 means mode set, AL = !Oh selects
; hi -res graphics mode
; BIOS video interrupt

Open SNAPSHOT .SCR.

mov ah,3dh ;DOS open file function
mov dx,offset Filename
sub al • a 1 ;open for reading
int 21h
mov [Handle]. ax ;save the handle
jnc RestoreTheScreen :we're ready to restore if no error
mov ah,9 ;DOS print string function
mov dx,offset ErrMsgl
int 21h ;notify of the error
jmp short Done ; and done

108 1lJ Chapter 7

Loop through the 4 planes, making each writable in turn and
reading it from disk. Note that all 4 planes are writable at
A000:0000; the Map Mask register selects which planes are readable
at any one time. We only make one plane readable at a time.

RestoreTheScreen:
mov [Plane],O

Restoreloop:
mov
mov
out
in C

mov

mov
sh 1

dx,SC_INOEX
al ,MAP_MASK
dx,al
dx
cl,[Plane]

al , 1
al, cl

dx,al
ah,3fh
bx,[Handle]
cx,DISPLAYED_SCREEN_SIZE
dx,dx
ds
si ,VGA_SEGMENT

:start with plane O

:set SC Index to Map Mask register

: get the /f of the plane we want
: to restore

: set the bit enabling writes to
: only the one desired plane
: set to read from desired plane
: DOS read from file function

;# of bytes to read
;start loading bytes at A000:0000

out
mov
mov
mov
sub
push
mov
mov
int
pop
jc
cmp
jz

ds,si
21h :read the displayed portion of this plane
ds
ReadError
ax,DISPLAYED_SCREEN_SIZE
RestoreloopBottom

Read Error:
mov ah ,9
mov dx, offset ErrMsg2
int 21h
jmp short DoClose

RestoreLoopBottom:
mov al,[Plane]
inc
mov
cmp
jbe

ax
[Plane].al
al , 3
Restore Loop

Close SNAPSHOT. SCR.

DoClose:
mov
mov
int

ah,3eh
bx,[Handle]
21h

Wait for a keypress.

mov
int

ah,B
21h

Restore text mode.

mov ax,3
int 10h

Done.

; did all bytes get read?

:DOS print string function

:notify about the error
: and done

;point to the next plane

:have we done all planes?
:no, so do the next plane

:DOS close file function

: DOS input without echo function

Saving Screens and Other VGA Mysteries /g} 109

Done:
mov ah,4ch ;DOS terminate function
int 21h

Start endp
Code ends

end Sta rt

If you compare Listings 7 .1 and 7 .2, you will see that the Map Mask register setting
used to load a given plane does not match the Read Map register setting used to read
that plane. This is so because while only one plane can ever be read at a time, anywhere
from zero to four planes can be written to at once; consequently, Read Map register
settings are plane selections from O to 3, while Map Mask register settings are plane
masks from O to 15, where a bit O setting of 1 enables writes to plane 0, a bit 1 setting
of 1 enables writes to plane 1, and so on. Again, Chapter 6 provides a detailed explana
tion of the differences between the Read Map and Map Mask registers.

Screen saving and restoring is pretty simple, eh? There are a few caveats, of course,
but nothing serious. First, the adapter's registers must be programmed properly in
order for screen saving and restoring to work. For screen saving, you must be in read
mode O; if you're in color compare mode, there's no telling what bit pattern you'll save,
but it certainly won't be the desired screen image. For screen restoring, you must be in
write mode 0, with the Bit Mask register set to OFFH and Data Rotate register set to 0
(no data rotation and the logical function set to pass the data through unchanged).

While these requirements are no problem if you're simply calling a
subroutine in order to save an image from your program, they pose a
considerable problem if you're designing a hot-key operated TSR that
can capture a screen image at any time. With the EGA specifically,
there's never any way to tell what state the registers are currently
in, since the registers aren't readable. (More on this issue later in
this chapter.) As a result, any TSR that sets the Bit Mask to OFFH,
the Data Rotate register to 0, and so on runs the risk of interfering
with the drawing code of the program that's already running.

What's the solution? Frankly, the solution is to get VGA-specific. A TSR designed
for the VGA can simply read out and save the state of the registers of interest, program
those registers as needed, save the screen image, and restore the original settings. From
a programmer's perspective, readable registers are certainly near the top of the list of
things to like about the VGA! The remaining installed base of EGAs is steadily dwin
dling, and you may be able to ignore it as a market today, as you couldn't even a year or
two ago.

If you are going to write a hi-res VGA version of the screen capture program, be sure
to account for the increased size of the VG/\.s mode 12H bit map. The mode 12H

11 0 llJ Chapter 7

(640x480) screen uses 37.5K per plane of display memory, so for mode 12H the dis
played screen size equate in Listings 7.1 and 7.2 should be changed to:

DISPLAYED_SCREEN_SIZE equ (640/8)*480

Similarly, if you're capturing a graphics screen that starts at an offset other than 0 in
the segment atA000H, you must change the memory offset used by the disk functions
to match. You can, if you so desire, read the start offset of the display memory provid
ing the information shown on the screen from the Start Address registers (CRT Con
troller registers OCH and 0DH); these registers are readable even on an EGA.

Finally, be aware that the screen capture and restore programs in Listings 7 .1 and 7 .2 are
only appropriate for EGANGA modes 0DH, 0EH, 0FH, 0lOH, and 012H, since they
assume a four- plane configuration of EGNVGA memory. In all text modes and in CGA
graphics modes, and in VGA modes 1 lH and 13H as well, display memory can simply
be written to disk and read back as a linear block of memory, just like a normal array.

While Listings 7.1 and 7.2 are written in assembly, the principles they illustrate
apply equally well to high-level languages. In fact, there's no need for any assembly at
all when saving an EGA/VGA screen, as long as the high-level language you're using
can perform direct port 1/0 to set up the adapter and can read and write display
memory directly.

g]
One tip if you're saving and restoring the screen from a high-level
language on an EGA, though: After you've completed the save or
restore operation, be sure to put any registers that you've changed
back to their default settings. Some high-level languages (and the
BIOS as well) assume that various registers are left in a certain
state, so on the EGA it's safest to leave the registers in their most
likely state. On the VGA, of course, you can just read the registers
out before you change them, then put them back the way you found
them when you're done.

16 Colors out of 64
How does one produce the 64 colors from which the 16 colors displayed by the EGA
can be chosen? The answer is simple enough: There's a BIOS function that lets you
select the mapping of the 16 possible pixel values to the 64 possible colors. Let's lay out
a bit of background before proceeding, however.

The EGA sends pixel information to the monitor on 6 pins. This means that there are 2
to the 6th, or 64 possible colors that an EGA can generate. However, for compatibility
with pre-EGA monitors, in 200-scan-line modes Enhanced Color Display-compatible
monitors ignore two of the signals. As a result, in CGA-compatible modes (modes 4,

Saving Screens and Other VGA Mysteries ~ 111

5, 6, and the 200-scan-line versions of modes 0, 1, 2, and 3) you can select from only
16 colors (although the colors can still be remapped, as described below). If you're not
hooked up to a monitor capable of displaying 350 scan lines (such as the old IBM
Color Display), you can never select from more than 16 colors, since those monitors
only accept four input signals. For now, we'll assume we're in one of the 350-scan line
color modes, a group which includes mode lOH and the 350-scan-line versions of
modes 0, 1, 2, and 3.

Each pixel comes out of memory (or, in text mode, out of the attribute-handling
portion of the EGA) as a 4-bit value, denoting 1 of 16 possible colors. In graphics
modes, the 4-bit pixel value is made up of one bit from each plane, with 8 pixels' worth
of data stored at any given byte address in display memory. Normally, we think of the
4-bit value of a pixel as being that pixel's color, so a pixel value of 0 is black, a pixel
value of 1 is blue, and so on, as if that's a built-in feature of the EGA.

Actually, though, the correspondence of pixel values to color is absolutely arbitrary,
depending solely on how the color-mapping portion of the EGA containing the pal
ette registers is programmed. If you cared to have color 0 be bright red and color 1 be
black, that could easily be arranged, as could a mapping in which all 16 colors were
yellow. What's more, these mappings affect text-mode characters as readily as they do
graphics-mode pixels, so you could map text attribute 0 to white and text attribute 15
to black to produce a black on white display, if you wished.

Each of the 16 palette registers stores the mapping of one of the 16 possible 4-bit
pixel values from memory to one of 64 possible 6-bit pixel values to be sent to the
monitor as video data, as shown in Figure 7.2. A 4-bit pixel value of 0 causes the 6-bit
value stored in palette register 0 to be sent to the display as the color of that pixel, a
pixel value of 1 causes the contents of palette register 1 to be sent to the display, and so
on. Since there are only four input bits, it stands to reason that only 16 colors are
available at any one time; since there are six output bits, however, those 16 colors can
be mapped to any of 64 colors. The mapping for each of the 16 pixel values is controlled by
the lower six bits of the corresponding palette register, as shown in Figure 7 .3. Second
ary red, green, and blue are less-intense versions of red, green, and blue, although their
exact effects vary from monitor to monitor. The best way to figure out what the 64
colors look like on your monitor is to see them, and that's just what the program in
Listing 7.3, which we'll discuss shortly, lets you do.

How does one go about setting the palette registers? Well, it's certainly possible to
set the palette registers directly by addressing them at registers 0 through 0FH of the
Attribute Controller. However, setting the palette registers is a bit tricky-bit 5 of the
Attribute Controller Index register must be 0 while the palette registers are written to,
and glitches can occur if the updating doesn't take place during the blanking interval
and besides, it turns out that there's no need at all to go straight to the hardware on this
one. Conveniently, the EGA BIOS provides us with video function l0H, which sup
ports setting either any one palette register or all 16 palette registers (and the overscan
register as well) with a single video interrupt.

112 [g) Chapter 7

Palette Registers

0 6-bit color
!';j 6-bit color

4 bits per pixel
from display ~
memory or from

2 6-bit color
3 6-bit color

6-bit color

a text attribute, 6-bit color

used to look up a
palette register

6-bit color
6-bit color
6-bit color
6-bit color
6-bit color
6-bit color
6-bit color
6-bit color
6-bit color
6-bit color

Figure 7.2 Color Translation via the Palette Registers

6 bits per pixel
~ to the display,

from the palette
register selected
by the 4-bit
pixel value

Video function 1 OH is invoked by performing an INT 1 OH with AH set to 1 OH. If
AL is O (subfunction O), then BL contains the number of the palette register to set, and
BH contains the value to set that register to. If AL is 1 (subfunction 1), then BH
contains the value to set the overscan (border) color to. Finally, if AL is 2 (subfunction
2), then ES:DX points to a 17-byte array containing the values to set palette registers
0-15 and the overscan register to. (For completeness, although it's unrelated to the
palette registers, there is one more subfunction of video function lOH. If AL = 3

Palette
Register

Bit 7 6

R'

5

G' B' R

4 3 2
R' = secondary red
G' = secondary green
B' = secondary blue
R= red
G = green
B = blue

Figure 7 .3 Bit Organization within a Palette Register

G B

0

Saving Screens and Other VGA Mysteries g] 113

(subfunction 3), bit O of BL is set to 1 to cause bit 7 of text attributes to select blinking,
or set to Oto cause bit 7 of text attributes to select high-intensity reverse video).

Listing 7.3 uses video function IOH, subfunction 2 to step through all 64 possible
colors. This is accomplished by putting up 16 color bars, one for each of the 16 pos
sible 4-bit pixel values, then changing the mapping provided by the palette registers to
select a different group of 16 colors from the set of 64 each time a key is pressed.
Initially, colors 0-15 are displayed, then 1-16, then 2-17, and so on up to color 3FH
wrapping around to colors 0-14, and finally back to colors 0-15. (By the way, at mode
set time the 16 palette registers are not set to colors 0-15, but rather to OH, lH, 2H,
3H, 4H, 5H, 14H, 7H, 38H, 39H, 3AH, 3BH, 3CH, 3DH, 3EH, and 3FH, respectively.
Bits 6, 5, and 4---secondary red, green, and blue-are all set to 1 in palette registers 8-15 in
order to produce high-intensity colors. Palette register 6 is set to 14H to produce brown,
rather than the yellow that the expected value of 6H would produce.)

When you run Listing 7.3, you'll see that the whole screen changes color as each
new color set is selected. This occurs because most of the pixels on the screen have a
value of 0, selecting the background color stored in palette register 0, and we're repro
gramming palette register O right along with the other 15 palette registers.

It's important to understand that in Listing 7.3 the contents of display memory are
never changed after initialization. The only change is the mapping from the 4-bit pixel
data coming out of display memory to the 6-bit data going to the monitor. For this
reason, it's technically inaccurate to speak of bits in display memory as representing
colors; more accurately, they represent attributes in the range 0-15, which are mapped
to colors 0-3FH by the palette registers.

LISTING 7 .3 L7-3.ASM
; Program to illustrate the color mapping capabilities of the
; EGA's palette registers.

VGA_S EGMENT
SC_INDEX
MAP_MASK
BAR_HEIGHT
TDP_BAR

equ
equ
equ
equ
equ

OaOOOh
3c4h
2
14
BAR_HEIGHT*6

stack segment para stack 'STACK'
db 512 dup (?)

stack ends

Data segment word 'DATA'

;Sequence Controller Index register
;Map Mask register index in SC
;height of each bar
;start the bars down a bit to

leave room for text

KeyMsg db 'Press any key to see the next color set. '
db 'There· are 64 color sets in all.'
db Odh, Oah, Oah, Oah, Oah
db 13 dup (' '), 'Attribute'
db 38 dup (' '), 'Color$'

Used to label the attributes of the color bars.

114 fg) Chapter 7

AttributeNumbers label byte
x= 0

rept 16
if X lt 10

db IO If x+'O', I h'. Oah, 8, 8, 8
else

db ·o·. x+'A'-10, 'h' • Oah, 8, 8, 8
end if
x= x+l

endm
db • $.

Used to label the colors of the color bars. (Color values are
filled in on the fly.)

ColorNumbers label byte
rept 16
db 'OOOh', Oah, 8, 8, 8, 8
endm

COLOR ENTRY_LENGTH equ ($-ColorNumbers)/16
db '$'

CurrentColor db ?

Space for the array of 16 colors we'll pass to the BIOS, plus
an overscan setting of black.

ColorTable db 16 dup (?), 0
Data ends

Code segment
assume cs:Code, ds:Data

Start proc near
cld
mov ax.Data
mov ds,ax

Go to hi-res graphics mode.

mov ax,lOh :AH - 0 means mode set, AL= 10h
: hi-res graphics mode

int 10h ;BIOS video interrupt

Put up relevant text.

selects

mov
mov
int

ah,9 ;DOS print string function
dx,offset KeyMsg
21h

Put up the color bars, one in each of the 16 possible pixel values
(which we'll call attributes).

mov
sub

BarLoop:
push
push
Ca]]

pop
pop

cx,16
al , al

ax
ex
BarUp
ex
ax

;we'll put up 16 color bars
:start with attribute 0

Saving Screens and Other VGA Mysteries ~ 115

inc
loop

ax
Barloop

Put up the attribute 1 abel s.

;select the next attribute

mov
sub
mov

ah,2
bh,bh

;video interrupt set cursor position function
; page O

dh, TOP _BAR/14 ;counting in character rows, match to
; top of first bar, counting in

mov d 1 , 16
int 10h
mov ah,9
mov dx,offset
int 21h

: scan lines
:just to left of bars

;DOS print string function
AttributeNumbers

Loop through the color set, one new setting per keypress.

mov
Colorloop:

[CurrentColorJ,O ;start with color zero

Set the palette registers to the current color set, consisting
of the current color mapped to attribute 0, current color + 1
mapped to attribute 1. and so on.

mov
mov
mov

PaletteSetLoop:
and

al, [CurrentCol or]
bx.offset ColorTable
cx,16 ;we have 16 colors to set

;limit to 6-bit color values
mov
inc

al , 3fh
[bx].al
bx

:build the 16-color table used for setting
; the palette registers

inc
loop
mov
mov

ax
PaletteSetloop
ah,lOh
al • 2

:video interrupt palette function
;subfunction to set all 16 palette
; and overscan at once

dx,offset
ds

ColorTable

es :ES:DX points to the color table

registers

mov
push
pop
int 10h ;invoke the video interrupt to set the palette

Put up the col or numbers, so we can see how attributes map
to color values, and so we can see how each color tf looks
Cat least on this particular screen).

call ColorNumbersUp

Wait for a keypress. so they can see this color set.

WaitKey:
mov
int

ah,8
21h

;DOS input without echo function

Advance to the next col or set.

mov al, [CurrentCol or]
inc ax
mov [CurrentColor],al
cmp a 1 . 64

116 Ill Chapter 7

jbe Colorloop

Restore text mode.

Done.

Done:

mov ax,3
int 10h

mov
int

ah,4ch
21h

:DOS terminate function

Puts up a bar consisting of the specified attribute (pixel value),
at a vertical position corresponding to the attribute.

Input: AL - attribute

BarUp proc near
mov dx,SC_INDEX
mov ah.al
mov al ,MAP_MASK
out dx,al
inc dx
mov a 1 , ah
out dx,al

mov ah,BAR_HEIGHT
mul ah
add ax,TOP_BAR

mov dx,80
mul dx

add ax,20
mov di .ax
mov ax,VGA_SEGMENT
mov es.ax

mov dx,BAR_HEIGHT
mov al ,Offh

Barlineloop:
mov cx,40
rep stosb
add di, 40

dee dx
jnz Barlineloop
ret

BarUp endp

: Converts AL to a hex digit in

BinToHexDigit proc near
cmp a 1 • 9
ja IsHex
add al,' 0'
ret

IsHex:
add al,'A'-10

:set the Map Mask register to produce
: the desired col or

: row of top of bar
: start a few 1 i nes down to 1 eave room for
: text
:rows are 80 bytes long
:offset in bytes of start of scan line bar
: starts on
;offset in bytes of upper left corner of bar

: ES: DI points to offset of upper 1 eft
: corner of bar

;make the bars 40 wide
:do one scan 1 i ne of the bar
;point to the start of the next scan 1 i ne
; of the bar

the range 0-F.

Saving Screens and Other VGA Mysteries l{] 117

ret
BinToHexDigit endp

Displays the color values generated by the color bars given the
current palette register settings off to the right of the color
bars.

ColorNumbersUp proc near
mov ah,2
sub bh,bh

;video interrupt set cursor position function
: page O

mov dh,TOP_BAR/14 : counting in character rows. match to
: top of first bar, counting in
: scan lines

mov d l , 20+40+1 ;just to right of bars
int 10h
mov
mov

al. [CurrentColor] ;start with the current color
bx, offset Col orNumbers+l

mov cx,16
ColorNumberLoop:

push
and
shr
shr
shr

ax
al ,3fh
al • 1
al , 1
a 1 , 1

;build color number text string
;we've got 16 col ors to do

: save the col or II
:limit to 6-bit color values

on the fly

shr
ca 11

al . 1
BinToHexDigit
[bx].al

;isolate the high nibble of the color II
:convert the high color II nibble

mov
pop
push
and
call

mov
add
pop
inc
loop
mov
mov
int
ret

ax
ax
al . Ofh
BinToHexDigit

: and put it into the text
;get back the color If
;save the col or II
;isolate the low color II nibble
;convert the low nibble of the
; color II to ASCII

[bx+ 1]. al : and put it into the text
bx,COLOR_ENTRY_LENGTH ;point to the next entry
ax ;get back the color II
ax ;next color II
ColorNumberLoop
ah,9 :DOS print string function
dx, offset Col orNumbers
21h ;put up the attribute numbers

Col orNumbersUp endp

Start endp
Code ends

end Sta rt

Overscan
While we're at it, I'm going to touch on overscan. Overscan is the color of the border of
the display, the rectangular area around the edge of the monitor that's outside the
region displaying active video data but inside the blanking area. The overscan (or bor
der) color can be programmed to any of the 64 possible colors by either setting At
tribute Controller register 11 H directly or calling video function 1 OH, subfunction 1.

118 gJ Chapter 7

fl} On ECO-compatible monitors, however; there's too little scan time
to display a proper border when the EGA is in 350-scan-line mode,
so overscan should always be O (black) unless you're in 200-scan-line
mode. Note, though, that a VGA can easily display a border on a
VGA-compatible monitor; and VGAs are in fact programmed at mode
set for an 8-pixel-wide border in all modes; all you need do is set the
overscan color on any VGA to see the border.

A Bonus Blanker
An interesting bonus: The Attribute Controller provides a very convenient way to
blank the screen, in the form of the aforementioned bit 5 of the Attribute Controller
Index register (at address 3COH after the Input Status 1 register-3DAH in color,
3BAH in monochrome-has been read and on every other write to 3COH thereafter).
Whenever bit 5 of the AC Index register is 0, video data is cut off, effectively blanking
the screen. Setting bit 5 of the AC Index back to 1 restores video data immediately.
Listing 7.4 illustrates this simple but effective form of screen blanking.

LISTING 7 .4 L7-4.ASM
; Program to demonstrate screen blanking via bit 5 of the
; Attribute Cont roll er Index register.

AC_INDEX
INPUT_STATUS_l

equ 3c0h
equ 3dah

;Attribute Controller Index register
;color-mode address of the Input
; Status 1 register

; Macro to wait for and clear the next keypress.

WAIT_KEY macro
mov
int
endm

ah,8
21h

; DOS input without echo function

stack segment para stack 'STACK'
db 512 dup (?)

stack ends

Data segment word 'DATA'
SampleText db

Data

Code

Start

ends

db
db
db
db

segment
assume
proc
mov
mov

'This is bit-mapped text, drawn in hi-res '
'EGA graphics mode lOh.', Odh, Oah, Oah
'Press any key to blank the screen, then '
'any key to unblank it,', Odh, Oah
'then any key to end.$•

cs:Code, ds:Data
near
ax.Data
ds,ax

Saving Screens and Other VGA Mysteries Ill 119

Go to hi-res graphics mode.

mov

int

ax.lOh

1Oh

;AH - O means mode set, AL - 1Oh selects
; hi-res graphics mode
;BIOS video interrupt

Put up some text, so the screen isn't empty.

mov ah,9 ;DOS print string function
mov dx, offset Sampl eText
int 21 h

WAIT KEY

Blank the screen.

mov dx,INPUT_STATUS_l
in al , dx ; reset port 3c0h to index (rather than data)

; mode
mov
sub
out

WAIT KEY

dx,AC_INDEX
al , al
dx, al

; make bit 5 zero ...
; •.. which blanks the screen

Unbl ank the screen.

mov dx,INPUT_STATUS_l
in al ,dx ;reset port 3cOh to Index (rather than data)

; mode
mov dx,AC_INDEX
mov al ,2Oh ;make bit 5 one ...
out dx,al ; ... which unblanks the screen

WAIT_KEY

Restore text mode.

Done.

Done:

Sta rt
Code

mov
int

mov
int

end

ax,2
1Oh

ah,4ch
21h
endp
ends
Start

;DOS terminate function

Does that do it for color selection? Yes and no. For the EGA, we've covered the
whole of color selection-but not so for the VGA. The VGA can emulate everything
we've discussed, but actually performs one 4-bit to 8-bit translation (except in 256-color
modes, where all 256 colors are simultaneously available), followed by yet another
translation, this one 8-bit to 18-bit. What's more, the VGA has the ability to flip
instantly through as many as sixteen 16-color sets. The VGN.s color selection capabili-

120 ~ Chapter 7

ties, which are supported by another set of BIOS functions, can be used to produce
stunning color effects, as we'll see when we cover them starting in Chapter 11.

Modifying VGA Registers
EGA registers are not readable. VGA registers are readable. This revelation will not come as
news to most of you, but many programmers still insist on setting entire VGA registers even
when they're modifying only selected bits, as if they were programming the EGA. This
comes to mind because I recently received a query inquiring why write mode 1 (in
which the contents of the latches are copied directly to display memory) didn't work in
Mode X. (I'll go into Mode X in detail later in this book.) Actually, write mode 1 does
work in Mode X; it didn't work when this particular correspondent enabled it because
he did so by writing the value 0lH to the Graphics Mode register. As it happens, the
write mode field is only one of several fields in that register, as shown in Figure 7.4. In
256-color modes, one of the other fields-bit 6, which enables 256-color pixel format
ting-is not 0, and setting it to O messes up the screen quite thoroughly.

0 1

Bit 7

Graphics Mode Register
(Graphics controller register #5)

a a o I a I 01 I

Figure 7 .4 Graphics Mode Register Fields

BitO

Write mode 1

Reserved

Read mode 0

Odd/even
addressing off

CGA pixel
formatting off

256-color pixel
formatting on

Reserved

Saving Screens and Other VGA Mysteries ~ 121

The correct way to set a field within a VGA register is, of course, to read the register,
mask off the desired field, insert the desired setting, and write the result back to the
register. In the case of setting the VGA to write mode 1, do this:

mov dx,3ceh ;Graphics controller index
mov a 1 • 5 ;Graphics mode reg index
out dx, a 1 ;point GC index to G_MODE
inc dx ;Graphics controller data
in a 1. dx ;get current mode setting
and al. not 3 ;mask off write mode field
or a 1 , 1 ;set write mode field to 1
out dx. al ;set write mode 1

This approach is more of a nuisance than simply setting the whole register, but it's
safer. It's also slower; for cases where you must set a field repeatedly, it might be worth
while to read and mask the register once at the start, and save it in a variable, so that the
value is readily available in memory and need not be repeatedly read from the port.
This approach is especially attractive because INs are much slower than memory ac
cesses on 386 and 486 machines.

Astute readers may wonder why I didn't put a delay sequence, such as JMP $+2,
between the IN and OUT involving the same register. There are, after all, guidelines
from IBM, specifying that a certain period should be allowed to elapse before a second
access to an 1/0 port is attempted, because not all devices can respond as rapidly as a
286 or faster CPU can access a port. My answer is that while I can't guarantee that a
delay isn't needed, I've never found a VGA that required one; I suspect that the delay
specification has more to do with motherboard chips such as the timer, the interrupt
controller, and the like, and I sure hate to waste the delay time if it's not necessary.
However, I've never been able to find anyone with the definitive word on whether
delays might ever be needed when accessing VGAs, so if you know the gospel truth, or
if you know of a VGA/processor combo that does require delays, please let me know by
contacting me through the publisher. You'd be doing a favor for a whole generation of
graphics programmers who aren't sure whether they're skating on thin ice without
those legendary delays.

Video Est
Omnis Divisa

.. cu
I r = ca -= u

The Joys and Galling Problems of Using Split Screens
on the EGA and VGA

The ability to split the screen into two largely independent portions-one displayed
above the other on the screen-is one of the more intriguing capabilities of the VGA
and EGA. The split screen feature can be used for popups (including popups that slide
smoothly onto the screen), or simply to display two separate portions of display memory
on a single screen. While it's possible to accomplish the same effects purely in software
without using the split screen, software solutions tend to be slow and hard to implement.

By contrast, the basic operation of the split screen is fairly simple, once you grasp
the various coding tricks required to pull it off, and understand the limitations and
pitfalls-like the fact that the EGA's split screen implementation is a little buggy. Fur
thermore, panning with the split screen enabled is not as simple as it might seem. All in
all, we do have some ground to cover.

Let's start with the basic operation of the split screen.

How the Split Screen Works
The operation of the split screen is simplicity itself. A split screen start scan line value is
programmed into two EGA registers or three VGA registers. (More on exactly which
registers in a moment.) At the beginning of each frame, the video circuitry begins to

scan display memory for video data starting at the address specified by the start address
registers, just as it normally would. When the video circuitry encounters the specified
split screen start scan line in the course of scanning video data onto the screen, it
completes that scan line normally, then resets the internal pointer which addresses rhe
next byte of display memory to be read for video data to zero. Display memory from

123

124 fl} Chapter 8

address zero onward is then scanned for video data in the usual way, progressing to
ward the high end of memory. At the end of the frame, the pointer to the next byte of
display memory to scan is reloaded from the start address registers, and the whole
process starts over.

The net effect: The contents of display memory starting at offset zero are displayed
starting at the scan line following the specified split screen start scan line, as shown in
Figure 8.1. It's important to understand that the scan line that matches the split screen
scan line is not part of the split screen; the split screen starts on the following scan line.
So, for example, if the split screen scan line is set to zero, the split screen actually starts
at scan line 1, the second scan line from the top of the screen.

If both the start address and the split screen start scan line are set to 0, the data at
offset zero in display memory is displayed as both the first scan line on the screen and
the second scan line. There is no way to make the split screen cover the entire screen
it always comes up at least one scan line short.

So, where is the split screen start scan line stored? The answer varies a bit, depending
on whether you're talking about the EGA or the VGA. On the EGA, the split screen
start scan line is a 9-bit value, with bits 7-0 stored in the Line Compare register (CRTC
register 18H) and bit 8 stored in bit 4 of the Overflow register (CRTC register 7).
Other bits in the Overflow register serve as the high bits of other values, such as the
vertical total and the vertical blanking start. Since EGA registers are-alas!-not readable,

Offset 0➔ ____ D_ls-'-p_la_y_M_e_m_o_ry __ __,
(start
of split
screen
area of
display
memory)

This text will appear in the split
screen, while diagonal lines will
appear in the normal screen, which
displays the contents of display
memory starting at the start
address. The split screen always
displays the contents of diaplay
memory at offaet 0.

Start ➔ 1-,.------,----,--,...-1
address
(start of
normal
screen
area of
display
memory)

The Split Screen

Figure 8.1 Display Memory and the Split Screen

The text will appear in the split
screen, while diagonal lines will
appe.ir in the norm.ii screen, which
diaplaya the contenta of display

Split-screen
start scan line

Video Est Omnis Divisa fg} 125

you must know the correct settings for the other bits in the Overflow registers to use
the split screen on an EGA. Fortunately, there are only two standard Overflow register
settings on the EGA: l lH for 200-scan-line modes and lFH for 350-scan-line modes.

The VGA, of course, presents no such problem in setting the split screen start scan
line, for it has readable registers. However, the VGA supports a 10-bit split screen start
scan line value, with bits 8-0 stored just as with the EGA, and bit 9 stored in bit 6 of
the Maximum Scan Line register (CRTC register 9).

Turning the split screen on involves nothing more than setting all bits of the split
screen start scan line to the scan line after which you want the split screen to start
appearing. (Of course, you'll probably want to change the start address before using
the split screen; otherwise, you'll just end up displaying the memory at offset zero
twice: once in the normal screen and once in the split screen.) Turning off the split
screen is a simple matter of setting the split screen start scan line to a value equal to or
greater than the last scan line displayed; the safest such approach is to set all bits of the
split screen start scan line to 1. (That is, in fact, the split screen start scan line value
programmed by the BIOS during a mode set.)

The Split Screen in Action
All of the above points are illustrated by Listing 8 .1. Listing 8 .1 fills display memory
starting at offset zero (the split screen area of memory) with text identifying the split screen,
fills display memory starting at offset 8000H with a graphics pattern, and sets the start
address to 8000H. At this point, the normal screen is being displayed (the split screen
start scan line is still set to the BIOS default setting, with all bits equal to l, so the split
screen is off), with the pixels based on the contents of display memory at offset 8000H.
The contents of display memory between offset O and offset 7FFFH are not visible at all.

Listing 8.1 then slides the split screen up from the bottom of the screen, one scan
line at a time. The split screen slides halfway up the screen, bounces down a quarter of
the screen, advances another half-screen, drops another quarter-screen, and finally slides
all the way up to the top. If you've never seen the split screen in action, you should run
Listing 8.1; the smooth overlapping of the split screen on top of the normal display is
a striking effect.

Listing 8.1 isn't done just yet, however. After a keypress, Listing 8.1 demonstrates
how to turn the split screen off (by setting all bits of the split screen start scan line to 1).
After another keypress, Listing 8.1 shows that the split screen can never cover the
whole screen, by setting the start address to O and then flipping back and forth be
tween the normal screen and the split screen with a split screen start scan line setting of
zero. Both the normal screen and the split screen display the same text, but the split
screen displays it one scan line lower, because the split screen doesn't start until after
the first scan line, and that produces a jittering effect as the program switches the split
screen on and off. (On the EGA, the split screen may display two scan lines lower, for
reasons I'll discuss shortly.)

Finally, after another keypress, Listing 8.1 halts.

126 [l/ Chapter 8

LISTING 8.1 LS-1.ASM
; Demonstrates the VGA/EGA split screen in action.

:***
IS VGA

VGA_SEGMENT
SCREEN_WIDTH
SCREEN_HEIGHT
C RTC_I NDEX
OVERFLOW
MAXIMUM SCAN LINE

START ADDRESS HIGH

START_ADDRESS_LOW

LINE COMPARE

INPUT_STATUS 0
WORD OUTS_OK

equ 1 ; set to O to assemble for EGA

equ
equ
equ
equ
equ
equ

equ

equ

equ

equ
equ

OaOOOh
640
350
3d4h ;CRT Controller Index register

;index of Overflow reg in CRTC 7
9

Och

Odh

18h

3dah
1

:index of Maximum Scan Line register
; in CRTC
;index of Start Address High register
; in CRTC
:index of Start Address Low register
; in CRTC
;index of Line Compare reg (bits 7-0
; of split screen start scan line)
: in CRTC
; Input Status O register
; set to O to assemble for
; computers that can't handle
; word outs to indexed VGA registers

;***
; Macro to output a word value to a port.

OUT_WORD macro
if WORD OUTS_OK

else

endif

out dx, ax

out
inc
xchg
out
dee
xchg

dx,al
dx
ah, a 1
dx, al
dx
ah.al

endm
;***
MyStack segment para stack 'STACK'

db 512 dup (0)
MyStack ends
;***
Data segment
SplitScreenLine dw

StartAddress dw

: Message displayed
Spl itScreenMsg db
Digitlnsert

Data ends

?

;line the split screen currently
; starts after
;display memory offset at which
; scanning for video data starts

in split screen.
'Split screen text row ifo'
dw ?
db ' ..• $'

:***
Code segment

assume cs:Code, ds:Data
;***
Start proc near

Video Est Omnis Divisa ll} 127

mov ax.Data
mov ds,ax

Select mode 10h, 640x350 16-color graphics mode.

mov ax,OOlOh ;AH=O is select mode function
:AL-lOh is mode to select,
; 640x350 16-color graphics mode

int 10h

Put text into display memory starting at offset 0, with each row
labelled as to number. This is the part of memory that will be
displayed in the split screen portion of the display.

mov cx,25 :II of lines of text we'll draw into
; the split screen part of memory

FillSplitScreenloop:
mov ah ,2
sub bh,bh
mov dh,25
sub dh,cl
sub dl,dl
int 10h
mov
sub
sub
mov
div
add
mov

mov
mov
int
loop

al , 2 5
a 1 , C 1
ah.ah
dh,10
dh
ax,' 00'
[Digitinsert],ax

ah,9
dx,offset Spl itScreenMsg
21h
FillSplitScreenloop

;set cursor location function
;set cursor in page 0

;calculate row to draw in
; start in co 1 umn O
;set the cursor location

it

; ca 1 cul ate row to draw i n a g a i n
:make the value a word for division

:split the row ff into two digits
;convert the digits to ASCII
;put the digits into the text
; to be displayed

; print the text

Fill display memory starting at 8000h with a diagonally striped
pattern.

mov
mov
mov
mov
mov
cld

Rowloop:
mov
rep
ror
dee
jnz

ax, VGA_S EGMENT
es.ax
di ,8000h
dx,SCREEN_HEIGHT
ax,8888h

cx,SCREEN_WIDTH/8/2
stosw
ax,l
dx
Rowloop

;fil 1 all lines
;starting fill pattern

;fill 1 scan line a word at a time
;fi 11 the scan line
;shift pattern word

Set the start address to 8000h and display that part of memory.

mov [StartAddress],8000h
call SetStartAddress

Slide the split screen half way up the screen and then back down
a quarter of the screen.

mov [SplitScreenline],SCREEN_HEIGHT-1

128 {gJ Chapters

:set the initial line just off
: the bottom of the screen

mov cx,SCREEN_HEIGHT/2
call SplitScreenUp
mov cx,SCREEN_HEIGHT/4
ca 11 SplitScreenDown

Now move up another half a screen and then back down a quarter.

mov cx,SCREEN_HEIGHT/2
ca 11 SplitScreenUp
mov cx,SCREEN_HEIGHT/4
ca 11 SplitScreenDown

Finally move up to the top of the screen.

mov cx,SCREEN_HEIGHT/2-2
call SplitScreenUp

Wait for a key press (don't echo character).

mov
int

ah,8
21h

:DOS console input without echo function

Turn the split screen off.

mov [SplitScreenLine],Offffh
call SetSplitScreenScanLine

Wait for a key press (don't echo character).

mov
int

ah ,8
21h

:DOS console input without echo function

Display the memory at O (the same memory the split screen displays).

mov [StartAddress],O
call SetStartAddress

Flip between the split screen and the normal screen every 10th
frame until a key is pressed.

Fl i ploop:
xor [SplitScreenline],Offffh
call SetSplitScreenScanLine
mov cx.10

CountVerticalSyncsLoop:
call WaitforVerticalSyncEnd
loop CountVerticalSyncsloop
mov ah,Obh :DOS character available status
int 21h
and al ,al ;character available?
jz Fliploop ;no, toggle split screen on/off status
mov ah,1
int 21h ;clear the character

Return to text mode and DOS.

mov ax,0003h :AH=O is select mode function
; AL-3 is mode to select, text mode

Start

int
mov
int
endp

10h
ah,4ch
21h

Video Est Omnis Divisa [lJ 129

: return to text mode

: return to OOS

;***
Waits for the leading edge of the vertical sync pulse.

Input: none

Output: none

Registers altered: AL. DX

WaitForVerticalSyncStart proc near
mov dx,INPUT_STATUS_O

WaitNotVerticalSync:
in al,dx
test al ,OBh
jnz WaitNotVerticalSync

WaitVerticalSync:
in al,dx
test al ,OBh
jz WaitVerticalSync
ret

WaitForVerticalSyncStart endp
:***

Waits for the trailing edge of the vertical sync pulse.

Input: none

Output: none

Registers altered: AL, DX

WaitForVerticalSyncEnd proc near
mov dx,INPUT_STATUS_O

WaitVerticalSync2:
in al,dx
test al ,OBh
jz WaitVerticalSync2

WaitNotVerticalSync2:
in al,dx
test al ,OBh
jnz WaitNotVerticalSync2
ret

WaitForVerticalSyncEnd endp
;***

Sets the start address to the value specifed by StartAddress.
Wait for the trailing edge of vertical sync before setting so that
one half of the address i sn • t loaded before the start of the frame
and the other half after, resulting in flicker as one frame is
displayed with mismatched halves. The new start address won't be
loaded until the start of the next frame: that is, one full frame
will be displayed before the new start address takes effect.

Input: none

Output: none

Registers altered: AX, OX

130 ~ Chapter 8

SetStartAddress
call
mov
mov
mov

proc near
WaitForVerticalSyncEnd
dx,CRTC_INDEX
al ,START_ADDRESS_HIGH
ah.byte ptr [StartAddress+l]

cl i
OUT_WORD

;make sure both

mov al,START_ADDRESS_LOW
mov ah.byte ptr [StartAddress]
OUT WORD
sti
ret

registers get set at once

SetStartAddress endp
:***

Sets the scan line the split screen starts after to the scan line
specified by SplitScreenline.

Input: none

Output: none

All registers preserved

SetSplitScreenScanline proc near
push ax
push ex
push dx

Wait for the leading edge of the vertical sync pulse. This ensures
that we don't get mismatched portions of the split screen setting
while setting the two or three split screen registers (register 18h
set but register 7 not yet set when a match occurs, for example),
which could produce brief flickering.

call WaitForVerticalSyncStart

Set the split screen scan line.

mov
mov
mov
cl i
OUT
mov
and
mov
shl

mov
if IS_VGA

dx,CRTC_INDEX
ah.byte ptr [SplitScreenline]
al, LINE_COMPARE

WORD
ah.byte
ah,1
cl ,4
ah, cl

;make sure all the registers get set at once
;set bits 7-0 of the split screen scan line

ptr [SplitScreenline+l]

;move bit 8 of the split split screen scan
; line into position for the Overflow reg

al ,OVERFLOW

The Split Screen, Overflow, and Line Compare registers all contain
part of the split screen start scan line on the VGA. We'll take
advantage of the readable registers of the VGA to leave other bits
in the registers we access undisturbed.

out
inc
in
and

dx,al
dx
al, dx
al . not 10h

;set CRTC Index reg to point to Overflow
; point to CRTC Data reg
;get the current Overflow reg setting
;turn off split screen bit 8

or

out
dee
mov
and
mov
ror

al • ah

dx,al
dx
ah.byte
ah.2
cl , 3
ah, cl

ptr

Video Est Omnis Divisa gJ 131

:insert the new split screen bit 8
; (works in any model
;set the new split screen bit 8
; point to C RTC Index reg

[SplitScreenLine+l]

;move bit 9 of the split split screen scan
; line into position for the Maxi mum Scan

mov
; Line register

al ,MAXIMUM_SCAN_LINE
out dx,al ;set CRTC Index reg to point to Maximum

inc
i n
and
or

out
else

dx
al, dx
al , not
al , ah

dx,al

40h

; Scan Line
; point to CRTC Data reg
;get the current Maximum Scan Line setting
;turn off split screen bit 9
;insert the new split screen bit 9
; (works in any mode)
;set the new split screen bit 9

Only the Split Screen and Overflow registers contain part of the
Split Screen start scan line and need to be set on the EGA.
EGA registers are not readable, so we have to set the non-split
screen bits of the Overflow register to a preset value, in this
case the value for 350-scan-l ine modes.

or ah,Ofh

OUT_WORD
end if

sti
pop dx
pop ex
pop ax
ret

SetSplitScreenScanLine endp

;insert the new split screen bit 8
; (only works in 350-scan-line EGA modes)
;set the new split screen bit 8

:***
Moves the split screen up the specified number of scan lines.

Input: CX - !f of scan lines to move the split screen up by

Output: none

Registers altered: CX

SplitScreenUp proc near
SplitScreenUpLoop:

dee [SplitScreenLine]
call SetSplitScreenScanLine
loop SplitScreenUpLoop
ret

SplitScreenUp endp
:***

Moves the split screen down the specified number of scan lines.

Input: CX - !f of scan lines to move the split screen down by

Output: none

132 gJ Chapter 8

; Registers altered: ex

Spl itScreenDown proc near
SplitScreenDownLoop:

inc [SplitScreenline]
call SetSplitScreenScanline
loop SplitScreenDownLoop
ret

SplitScreenDown endp
;***
Code ends

end Start

VGA and EGA Split-Screen Operation Don't Mix
You must set the IS_ VGA equate at the start of Listing 8.1 correctly for the adapter the
code will run on in order for the program to perform properly. This equate determines
how the upper bits of the split screen start scan line are set by SetSplitScreenRow. If
IS_ VGA is O (specifying an EGA target), then bit 8 of the split screen start scan line is
set by programming the entire Overflow register to lFH; this is hard-wired for the
350-scan-line modes of the EGA. IfIS_ VGA is I (specifying a VGA target), then bits
8 and 9 of the split screen start scan line are set by reading the registers they reside in,
changing only the split-screen-related bits, and writing the modified settings back to
their respective registers.

The VGA version of Listing 8.1 won't work on an EGA, because EGA registers
aren't readable. The EGA version of Listing 8.1 won't work on a VGA, both because
VGA monitors require different vertical settings than EGA monitors and because the
EGA version doesn't set bit 9 of the split screen start scan line. In short, there is no way
that I know of to support both VGA and EGA split screens with common code; sepa
rate drivers are required. This is one of the reasons that split screens are so rarely used in
PC programming.

By the way, Listing 8.1 operates in mode lOH because that's the highest-resolution
mode the VGA and EGA share. That's not the only mode the split screen works in,
however. In fact, it works in all modes, as we'll see later.

Setting the Split-Screen-Related Registers
Setting the split-screen-related registers is not as simple a matter as merely outputting
the right values to the right registers; timing is also important. The split screen start
scan line value is checked against the number of each scan line as that scan line is
displayed, which means that the split screen start scan line potentially takes effect the
moment it is set. In other words, if the screen is displaying scan line 1 S and you set the
split screen start to 16, that change will be picked up immediately and the split screen
will start after the next scan line. This is markedly different from changes to the start
address, which take effect only at the start of the next frame.

Video Est Omnis Divisa [g} 133

The instantly-effective nature of the split screen is a bit of a problem, not because
the changed screen appears as soon as the new split screen start scan line is set-that
seems to me to be an advantage-but because the changed screen can appear before the
new split screen start scan line is set.

Remember, the split screen start scan line is spread out over two or
three registers. What if the incompletely-changed value matches
the current scan line after you've set one register but before you've
set the rest? For one frame, you'll see the split screen in a wrong
place-possibly a very wrong place-resulting in jumping and flicker.

The solution is simple: Set the split screen start scan line at a time when it can't
possibly match the currently displayed scan line. The easy way to do that is to set it
when there isn't any currently displayed scan line-during vertical non-display time.
One safe time that's easy to find is the start of the vertical sync pulse, which is typically
pretty near the middle of vertical non-display time, and that's the approach I've fol
lowed in Listing 8.1. I've also disabled interrupts during the period when the split
screen registers are being set. This isn't absolutely necessary, but if it's not done, there's
the possibility that an interrupt will occur between register sets and delay the later
register sets until display time, again causing flicker.

One interesting effect of setting the split screen registers at the start of vertical sync
is that it has the effect of synchronizing the program to the display adapter's frame rate.
No matter how fast the computer running Listing 8.1 may be, the split screen will
move at a maximum rate of once per frame. This is handy for regulating execution
speed over a wide variety of hardware performance ranges; however, be aware that the
VGA supports 70 Hz frame rates in all non-480-scan-line modes, while the VGA in
480-scan-line-modes and the EGA in all color modes support 60 Hz frame rates.

The Problem with the EGA Split Screen
I mentioned earlier that the EGA'.s split screen is a little buggy. How? you may well ask,
particularly given that Listing 8.1 illustrates that the EGA split screen seems pretty
functional.

The bug is this: The first scan line of the EGA split screen-the scan line starting at
offset zero in display memory-is displayed not once but twice. In other words, the
first line of split screen display memory, and only the first line, is replicated one unnec
essary time, pushing all the other lines down by one.

That's not a fatal bug, of course. In fact, if the first few scan lines are identical, it's
not even noticeable. The EGA's split-screen bug can produce visible distortion given
certain patterns, however, so you should try to make the top few lines identical (if
possible) when designing split-screen images that might be displayed on EGAs, and
you should in any case check how your split-screens look on both VGAs and EGAs.

134 [gJ Chapter B

/g]
I have an important caution here: Don't count on the EGA's split
screen bug; that is, don't rely on the first scan line being doubled
when you design your split screens. IBM designed and made the origi
nal EGA, but a lot of companies cloned it, and there's no guarantee
that all EGA clones copy the bug. ft is a certainty, at least, that
the VGA didn't copy it.

There's another respect in which the EGA is inferior to the VGA when it comes to
the split screen, and that's in the area of panning when the split screen is on. This isn't
a bug-it's just one of the many areas in which the VGN.s designers learned from the
shortcomings of the EGA and went the EGA one better.

Split Screen and Panning
Back in Chapter I, I presented a program that performed smooth horizontal panning.
Smooth horizontal panning consists of two parts: Byte-by-byte (8-pixel) panning by
changing the start address, and pixel-by-pixel intrabyte panning by setting the Pel Panning
register (AC register 13H) to adjust alignment by Oto 7 pixels. (IBM prefers its own jargon
and uses the word "pel" instead of "pixel" in much of their documentation, hence "pel
panning." Then there's DASD, a.k.a. Direct Access Storage Device-IBM-speak for
hard disk.)

Horizontal smooth panning works just fine, although I've always harbored some
doubts that any one horizontal-smooth-panning approach works properly on all dis
play board clones. (More on this later.) There's a catch when using horizontal smooth
panning with the split screen up, though, and it's a serious catch: You can't byte-pan
the split screen (which always starts at offset zero, no matter what the setting of the
start address registers)-but you can pel-pan the split screen.

Put another way, when the normal portion of the screen is horizontally smooth
panned, the split screen portion moves a pixel at a time until it's time to move to the
next byte, then jumps back to the start of the current byte. As the top part of the screen
moves smoothly about, the split screen will move and jump, move and jump, over and over.

Believe me, it's not a pretty sight.

/g]
What's to be done? On the EGA, nothing. Unless you're willing to
have your users' eyes doing the jitterbug, don't use horizontal smooth
scrolling while the split screen is up. Byte panning is fine-Just don't
change the Pel Panning register from its default setting.

On the VGA, there is recourse. A VGA-only bit, bit 5 of the AC Mode Control
register (AC register 1 OH), turns off pel panning in the split screen. In other words,

Video Est Omnis Divisa Ill 135

when this bit is set to 1, pel panning is reset to zero before the first line of the split
screen, and remains zero until the end of the frame. This doesn't allow you to pan the
split screen horizontally, mind you-there's no way to do that-but it does let you pan
the normal screen while the split screen stays rock-solid. This can be used to produce
an attractive "streaming tape" effect in the normal screen while the split screen is used
to display non-moving information.

The Split Screen and Horizontal Panning: An Example
Listing 8.2 illustrates the interaction of horizontal smooth panning with the split screen,
as well as the suppression of pel panning in the split screen. Listing 8.2 creates a virtual
screen 1024 pixels across by setting the Offset register (CRTC register 13H) to 64, sets
the normal screen to scan video data beginning far enough up in display memory to
leave room for the split screen starting at offset zero, turns on the split screen, and fills
in the normal screen and split screen with distinctive patterns. Next, Listing 8.2 pans
the normal screen horizontally without setting bit 5 of the AC Mode Control register
to 1. As you'd expect, the split screen jerks about quite horribly. After a key press,
Listing 8.2 sets bit 5 of the Mode Control register and pans the normal screen again.
This time, the split screen doesn't budge an inch-if the code is running on a VGA.

By the way, ifIS_ VGA is set to O in Listing 8.2, the program will assemble in a form
that will run on the EGA and only the EGA. Pel panning suppression in the split screen
won't work in this version, however, because the EGA lacks the capability to support
that feature. When the EGA version runs, the split screen simply jerks back and forth
during both panning sessions.

LISTING 8.2 LB-2.ASM
Demonstrates the interaction of the split screen and
horizontal pel panning. On a VGA, first pans right in the top
half while the split screen jerks around. because split screen
pel panning suppression is disabled, then enables split screen
pel panning suppression and pans right in the top half while the
split screen remains stable. On an EGA, the split screen jerks
around in both cases, because the EGA doesn't support split
screen pel panning suppression.

The jerking in the split screen occurs because the split screen
is being pel panned (panned by single pixels--intrabyte panning),
but is not and cannot be byte panned (panned by single bytes-
"extrabyte" panning) because the start address of the split screen
is forever fixed at O.

:***
IS_VGA equ 1 ;set to 0 to assemble for EGA

VGA_SEGMENT equ OaOOOh
LOGICAL_SCREEN WIDTH equ 1024 ;1{ of pixels across virtual

; screen that we' 11 pan across
SCREEN_HEIGHT equ 350
SPLIT_SCREEN_START equ 200 ;start scan line for split screen

136 ~ Chapter 8

SPLIT_SCREEN HEIGHT
CRTC_INDEX
AC_INDEX
OVERFLOW
MAXIMUM_SCAN_LINE

START_ADDRESS_HIGH

START_ADDRESS LOW

HOFFSET

LINE COMPARE

AC_MODE_CONTROL
PEL_PANNING
INPUT_STATUS 0
WORD_OUTS OK

equ
equ
equ
equ
equ

equ

equ

equ

equ

equ
equ
equ
equ

SCREEN_HEIGHT-SPLIT_SCREEN_START-1
3d4h ;CRT Controller Index register
3c0h ;Attribute Controller Index reg
7 ; index of Overflow reg in CRTC
9 ;index of Maximum Scan Line register

: in CRTC
Och :index of Start Address High register

: in CRTC
Odh :index of Start Address Low register

: in CRTC
13h

18h

10h
13h
3dah
1

:index of Horizontal Offset register
: in CRTC
:index of Line Compare reg (bits 7-0
: of split screen start scan line)
: in CRTC
: index of Mode Control reg in AC
:index of Pel Panning reg in AC
: Input Status O register
;set to O to assemble for
; computers that can't handle
; word outs to indexed VGA registers

;***
: Macro to output a word value to a port.

OUT_WORD macro
if WORD_OUTS_OK

out dx, ax
else

out dx,al
inc dx
xchg ah, a 1
out dx,al
dee dx
xchg ah.al

end if
endm

:***
MyStack segment para stack 'STACK'

db 512 dup (0)
MyStack ends
;***
Data segment
SplitScreenline

StartAddress

Pel Pan

Data ends

dw

dw

db

? ;line the split screen currently
: starts after
;display memory offset at which
: scanning for video data starts
:current intrabyte horizontal pel
: panning setting

;***
Code segment

assume cs:Code, ds:Data
;***
Start proc

mov
mov

near
ax.Data
ds,ax

Select mode 10h, 640x350 16-color graphics mode.

mov ax,OOlOh :AH=O is select mode function
:AL=lOh is mode to select,

640x350 16-col or graphics mode

Video Est Omnis Divisa ~ 137

int 10h

Set the Offset register to make the offset from the start of one
scan line to the start of the next the desired number of pixels.
This gives us a virtual screen wider than the actual screen to
pan across.
Note th.at the Offset register is programmed with the logical
screen width in words, not bytes, hence the final division by 2.

mov dx,CRTC_INDEX
mov ax,(LOGICAL_SCREEN_WIDTH/8/2 shl 8) or HOFFSET
OUT WORD

Set the start address to display the memory just past the split
screen memory.

mov [StartAddress],SPLIT_SCREEN_HEIGHT*(LOGICAL_SCREEN_WIDTH/8)
call SetStartAddress

Set the split screen start scan line.

mov [SplitScreenLine],SPLIT_SCREEN_START
call SetSplitScreenScanLine

Fill the split screen portion of display memory (starting at
offset 0) with a choppy diagonal pattern sloping left.

mov ax,VGA_SEGMENT
mov es.ax
sub di ,di
mov dx,SPLIT_SCREEN_HEIGHT

;fill all lines in the split screen
mov ax,OFFOh ;starting fill pattern
cld

RowLoop:
mov cx,LOGICAL_SCREEN_WIDTH/8/4

;fill 1 scan line
Column Loop:

stosw
mov word ptr es:[di].O

di

;draw part of a diagonal line
;make vertical blank spaces so

inc
inc
loop
rol
dee

di
Column Loop
ax,1
dx

jnz RowLoop

; panning effects can be seen easily

;shift pattern word

Fill the portion of display memory that will be displayed in the
normal screen (the non-split screen part of the display) with a
choppy diagonal pattern sloping right.

mov di ,SPLIT_SCREEN_HEIGHT*(LOGICAL_SCREEN_WIDTH/8)
mov dx,SCREEN_HEIGHT ;fill all lines
mov ax,Oc510h ;starting fill pattern
cld

RowLoop2:
mov cx,LOGICAL_SCREEN_WIDTH/8/4

;fill 1 scan line
ColumnLoop2:

stosw ;draw part of a diagonal line

138 gJ Chapters

if

mov word ptr es:[di].O ;make vertical blank spaces so
: panning effects can be seen easily

inc di
inc di
loop Columnloop2
ror ax,l : shift pattern word
dee dx
jnz Rowloop2

Pel pan the non-split screen portion of the display: because
split screen pel panning suppression is not turned on, the split
screen jerks back and forth as the pel panning setting cycles.

mov
Ca 11

cx,200
PanRight

;pan 200 pixels to the left

Wait for a key press (don't echo character).

mov
int

ah,8
21h

:DOS console input without echo function

Return to the original screen location, with pel panning turned off.

mov [StartAddress],SPLIT_SCREEN_HEIGHT*(LOGICAL_SCREEN_WIDTH/8)
call SetStartAddress
mov [PelPan],O
call SetPel Pan

Turn on split screen pel panning suppression, so the split screen
won't be affected by pel panning. Not done on EGA because both
readable registers and the split screen pel panning suppression bit
aren't supported by EGAs.

IS_VGA
mov
in

mov

mov
out
inc
in
or

dee

out

dx,INPUT_STATUS_O
al , dx : reset the AC Index/Data toggle to

: Index state
al,20h+AC_MODE_CONTROL

dx,AC_INDEX
dx,al
dx
a 1 , dx
al, 20h

dx

dx,al

;bit 5 set to 1 to keep video on
;point to AC Index/Data register

;point to AC Data reg (for reads only)
;get the current AC Mode Control reg
;enable split screen pel panning
; suppression
; point to AC Index/Data reg (Data for

writes only)
:write the new AC Mode Control setting

with split screen pel panning
suppression turned on

end if

Pel pan the non-split screen portion of the display; because
split screen pel panning suppression is turned on, the split
screen will not move as the pel panning setting cycles.

mov
Ca 11

cx,200
PanRight

;pan 200 pixels to the left

Wait for a key press (don't echo character).

mov
int

Return to

mov

int
mov
int

Sta rt endp

ah,8
21h

text mode and

ax,OOO3h

!Oh
ah,4ch
21h

DOS.

Video Est Omnis Divisa /g} 139

:DOS console input without echo function

:AH~O is select mode function
:AL-3 is mode to select, text mode
: return to text mode

: return to DOS

;***
Waits for the leading edge of the vertical sync pulse.

Input: none

Output: none

Registers altered: AL, DX

WaitForVerticalSyncStart proc near
mov dx,INPUT_STATUS_O

WaitNotVerticalSync:
in al ,dx
test al,O8h
jnz WaitNotVerticalSync

WaitVerticalSync:
in al,dx
test al,O8h
jz WaitVerticalSync
ret

WaitForVerticalSyncStart endp
:***

Waits for the trailing edge of the vertical sync pulse.

Input: none

Output: none

Registers altered: AL, DX

WaitForVerticalSyncEnd proc near
mov dx,INPUT_STATUS_O

WaitVerticalSync2:
in al, dx
test al ,O8h
jz WaitVerticalSync2

WaitNotVerticalSync2:
in al,dx
test al ,O8h
jnz WaitNotVerticalSync2
ret

WaitForVerticalSyncEnd endp
;***

Sets the start address to the value specifed by StartAddress.
Wait for the trailing edge of vertical sync before setting so that
one half of the address isn't 1 oaded before the start of the frame
and the other half after, resulting in flicker as one frame is
displayed with mismatched halves. The new start address won't be
loaded until the start of the next frame: that is, one full frame
will be displayed before the new start address takes effect.

140 ~ Chapter 8

Input: none

Output: none

Registers altered: AX, DX

SetStartAddress proc near
call WaitForVerticalSyncEnd
mov dx,CRTC_INDEX
mov al ,START_ADDRESS_HIGH
mov ah.byte ptr [StartAddress+l]
cl i :make sure both registers get set at once
OUT WORD
mov al ,START_ADDRESS_LOW
mov ah.byte ptr [StartAddress]
OUT WORD
sti
ret

SetStartAddress endp
:***

Sets the horizontal pel panning setting to the value specified
by PelPan. Waits until the start of vertical sync to do so, so
the new pel pan setting can be loaded during non-display time
and can be ready by the start of the next frame.

Input: none

Output: none

Registers altered: AL, DX

Set Pel Pan
ca 11

mov
mov
out
mov
out
ret

proc near
WaitForVerticalSyncStart

dx,AC_INDEX
al, PEL_PANNING+2Oh
dx, al
al, [Pel Pan]
dx, al

SetPelPan endp

: al so resets the AC
Index/Data toggle

: to Index state

:bit 5 set to 1 to keep video on
: point the AC Index to Pel Pan reg

:load the new Pel Pan setting

:***
Sets the scan line the split screen starts after to the scan line
specified by Spl i tScreenL i ne.

Input: none

Output: none

A 11 registers preserved

SetSplitScreenScanline proc near
push ax
push ex
push dx

Wait for the leading edge of the vertical sync pulse. This ensures
that we don't get mismatched portions of the split screen setting
while setting the two or three split screen registers (register 18h

Video Est Omnis Divisa [lJ 141

set but register 7 not yet set when a match occurs, for example),
which could produce brief flickering.

call WaitForVerticalSyncStart

Set the split screen scan line.

mov
mov

dx, CRTC_INDEX

mov
cl i
OUT WORD
mov
and
mov
shl

ah.byte ptr [SplitScreenLine]
al, LINE_COMPARE

ah.byte
ah,l
cl, 4
ah, cl

;make sure all the registers get set at once
;set bits 7-0 of the split screen scan line

ptr [SplitScreenLine+l]

;move bit 8 of the split split screen scan
; line into position for the Overflow reg

mov
if IS VGA

al ,OVERFLOW

The Split Screen, Overflow, and Line Compare registers all contain
part of the split screen start scan line on the VGA. We'll take
advantage of the readable registers of the VGA to leave other bits
in the registers we access undisturbed.

out
inc
in
and
or

out
dee
mov
and
mov
ror

mov
out

inc
in
and
or

out
else

dx, al
dx
al, dx
al ,not 10h
al ,ah

dx,al
dx

; set CRTC Index reg to point to Overflow
; point to CRTC Data reg
;get the current Overflow reg setting
;turn off split screen bit 8
;insert the new split screen bit 8
; (works in any mode)
;set the new split screen bit 8
; point to CRTC Index reg

ah.byte ptr
ah,2

[SplitScreenLine+l]

cl, 3
ah, cl

al ,MAXIMUM_SCAN_LINE
dx,al

dx
al, dx
al ,not 40h
al , ah

dx,al

;move bit 9 of the split split screen scan
line into position for the Maximum Scan

; Line register

;set CRTC Index reg to point to Maximum
; Scan Line
; point to CRTC Data reg
;get the current Maximum Scan Line setting
;turn off split screen bit 9
;insert the new split screen bit 9
; (works in any mode)
;set the new split screen bit 9

Only the Split Screen and Overflow registers contain part of the
Split Screen start scan line and need to be set on the EGA.
EGA registers are not readable, so we have to set the non-split
screen bits of the Overflow register to a preset value, in this
case the value for 350-scan-line modes.

or ah,Ofh

OUT WORD
endif

sti

insert the new split screen bit 8
(only works in 350-scan-line EGA modes)

set the new split screen bit 8

142 gJ Chapter B

pop dx
pop ex
pop ax
ret

SetSplitScreenScanline endp
:***

Pan horizontally to the right the number of pixels specified by ex.

Input: ex = If of pixels by which to pan horizontally

Output: none

Registers altered: AX, ex, DX

PanRight
Pan loop:

proc near

inc [Pel Pan]
and [Pe1Pan],07h
jnz DoSetStartAddress
inc [StartAddress]

DoSetStartAddress:
call SetStartAddress
call SetPelPan
loop Panloop
ret

PanRight endp
:***
Code ends

end Start

Notes on Setting and Reading Registers
There are a few interesting points regarding setting and reading registers to be made
about Listing 8.2. First, bit 5 of the AC Index register should be set to 1 whenever
palette RAM is not being set (which is to say, all the time in your code, because palette
RAM should normally be set via the BIOS). When bit 5 is 0, video data from display
memory is no longer sent to palette RAM, and the screen becomes a solid color-not
normally a desirable state of affairs.

Recall also that the AC Index and Data registers are both written to at 1/0 address
3C0H, with the toggle that determines which one is written to at any time switching
state on every write to 3C0H; this toggle is reset to index mode by each read from the
Input Status 0 register (3DAH in color modes, 3BAH in monochrome modes). The
AC Index and Data registers can also be written to at 3ClH on the EGA, but not on
the VGA, so steer clear of that practice.

On the VGA, reading AC registers is a bit different from writing to them. The AC
Data register can be read from 3C0H, and the AC register currently addressed by the
AC Index register can be read from 3CIH; reading does not affect the state of the AC
index/data toggle. Listing 8.2 illustrates reading from and writing to the AC registers.
Finally, setting the start address registers (CRTC registers OCH and 0DH) has its com
plications. As with the split screen registers, the start address registers must be set to
gether and without interruption at a time when there's no chance of a partial setting

Video Est Omnis Divisa ~ 143

being used for a frame. However, it's a little more difficult to know when that might be
the case with the start address registers than it was with the split screen registers, be
cause it's not clear when the start address is used.

You see, the start address is loaded into the EGA's or VGA's internal display memory
pointer once per frame. The internal pointer is then advanced, byte-by-byte and line
by-line, until the end of the frame (with a possible resetting to zero if the split screen
line is reached), and is then reloaded for the next frame. That's straightforward enough;
the real question is, Exactly when is the start address loaded?

In his excellent book Programmer's Guide to PC Video Systems (Microsoft Press) Ri
chard Wilton says that the start address is loaded at the start of the vertical sync pulse.
(Wilton calls it vertical retrace, which can also be taken to mean vertical non-display
time, but given that he's testing the vertical sync status bit in the Input Status O register,
I assume he means that the start address is loaded at the start of vertical sync.) Conse
quently, he waits until the end of the vertical sync pulse to set the start address registers,
confident that the start address won't take effect until the next frame.

I'm sure Richard is right when it comes to the real McCoy IBM VGA and EGA, but
I'm less confident that every clone out there loads the start address at the start of
vertical sync.

~
For that very reason, I generally advise people not to use horizontal
smooth panning unless they can test their software on all the makes
of display adapter it might run on. I've used Richard's approach in
Listings 8.1 and 8.2, and so far as I've seen it works fine, but be
aware that there are potential, albeit unproven, hazards to relying
on the setting of the start address registers to occur at a specific
time in the frame.

The interaction of the start address registers and the Pel Panning register is worthy
of note. After waiting for the end of vertical sync to set the start address in Listing 8.2,
I wait for the start of the next vertical sync to set the Pel Panning register. That's be
cause the start address doesn't take effect until the start of the next frame, but the pel
panning setting takes effect at the start of the next line; if we set the pel panning at the
same time we set the start address, we'd get a whole frame with the old start address and
the new pel panning settings mixed together, causing the screen to jump. As with the
split screen registers, it's safest to set the Pel Panning register during non-display time.
For maximum reliability, we'd have interrupts off from the time we set the start address
registers to the time we change the pel planning setting, to make sure an interrupt
doesn't come in and cause us to miss the start of a vertical sync and thus get a mis
matched pel panning/start address pair for a frame, although for modularity I haven't
done this in Listing 8.2. (Also, doing so would require disabling interrupts for much
too long a time.)

144 ll} Chapter 8

What if you wanted to pan faster? Well, you could of course just move two pixels at
a time rather than one; I assure you no one will ever notice when you're panning at a
rate of 10 or more times per second.

Split Screens in Other Modes
So far we've only discussed the split screen in mode 1 OH. What about other modes?
Generally, the split screen works in any mode; the basic rule is that when a scan line on
the screen matches the split screen scan line, the internal display memory pointer is
reset to zero. I've found this to be true even in oddball modes, such as line-doubled
CGA modes and the 320x200 256-color mode (which is really a 320x400 mode with
each line repeated. For split-screen purposes, the VGA and EGA seem to count purely
in scan lines, not in rows or doubled scan lines or the like. However, I have run into
small anomalies in those modes on clones, and I haven't tested all modes (nor, lord
knows, all clones!) so be careful when using the split screen in modes other than modes
ODH-12H, and test your code on a variety of hardware.

Come to think of it, I warn you about the hazards of running fancy VGA code on
clones pretty often, don't I? Ah, well-just one of the hazards of the diversity and competi
tion of the PC market! It is a fact oflife, though-if you're a commercial developer and
don't test your video code on at least half a dozen VGAs, you're living dangerously.

What of the split screen in text mode? It works fine; in fact, it not only resets the
internal memory pointer to zero, but also resets the text scan line counter-which
marks which line within the font you're on-to zero, so the split screen starts out with
a full row of text. There's only one trick with text mode: When split screen pel panning
suppression is on, the pel panning setting is forced to O for the rest of the frame.
Unfortunately, 0 is not the "no-panning" setting for 9-dot-wide text; 8 is. The result is
that when you turn on split screen pel panning suppression, the text in the split screen
won't pan with the normal screen, as intended, but will also display the undesirable
characteristic of moving one pixel to the left. Whether this causes any noticeable on
screen effects depends on the text displayed by a particular application; for example,
there should be no problem if the split screen has a border of blanks on the left side.

How Safe?
So, how safe is it to use the split screen? My opinion is that it's perfectly safe, although
I'd welcome input from people with extensive split screen experience-and the effects
are striking enough that the split screen is well worth using in certain applications.

I'm a little more leery of horizontal smooth scrolling, with or without the split
screen. Still, the Wilton book doesn't advise any particular caution, and I haven't heard
any horror stories from the field lately, so the clone manufacturers must finally have
gotten it right. (I vividly remember some early clones years back that didn't quite get it

Video Est Omnis Divisa ~ 145

right.) So, on balance, I'd say to use horizontal smooth scrolling if you really need it; on
the other hand, in fast animation you can often get away with byte scrolling, which is
easier, faster, and safer. (I recently saw a game that scrolled as smoothly as you could
ever want. It was only by stopping it with Ctrl-NumLock that I was able to be sure that
it was, in fact, byte-panning, not pel panning)

In short, use the fancy stuff-but only when you have to.

Higher
256-Color
Resolution on
the VGA

.. u
I 7 = ca
.c:: u

When Is 320x200 Really 320x400?
One of the more appealing features of the VGA is its ability to display 256 simulta
neous colors. Unfortunately, one of the less appealing features of the VGA is the lim
ited resolution (320x200) of the one 256-color mode the IBM-standard BIOS supports.
(There are, of course, higher resolution 256-color modes in the legion of SuperVGAs,
but they are by no means a standard, and differences between seemingly identical modes
from different manufacturers can be vexing.) More colors can often compensate for
less resolution, but the resolution difference between the 640x480 16-color mode and
the 320x200 256-color mode is so great that many programmers must regretfully de
cide chat they simply can't afford co use the 256-color mode.

If there's one thing we've learned about the VGA, however, it's that there's never just
one way to do things. With the VGA, alternatives always exist for the clever program
mer, and that's more true than you might imagine with 256-color mode. Not only is
there a high 256-color resolution, there are lots of higher 256-color resolutions, going
all the way up to 360x480-and chat's with the vanilla IBM VGA!

In this chapter, I'm going co focus on one of my favorite 256-color modes, which
provides 320x400 resolution and two graphics pages and can be set up with very little
reprogramming of the VGA. In the next chapter, I'll discuss higher-resolution 256-
color modes, and starting in Chapter 32, I'll cover the high-performance "Mode X"
256-color programming chat many games use.

So. Let's get started.

147

148 [g} Chapter 9

Why 320x200? Only IBM Knows for Sure
The first question, of course, is, "How can it be possible to get higher 256-color reso
lutions out of the VGA?" After all, there were no unused higher resolutions to be found
in the CGA, Hercules card, or EGA.

The answer is another question. "Why did IBM not use the higher-resolution 256-
color modes of the VGA?" The VGA is easily capable of twice the 200-scan-line verti
cal resolution of mode 13H, the 256-color mode, and IBM clearly made a decision not
to support a higher-resolution 256-color mode. In fact, mode 13H does display 400
scan lines, but each row of pixels is displayed on two successive scan lines, resulting in
an effective resolution of 320x200. This is the same scan-doubling approach used by
the VGA to convert the CGA's 200-scan-line modes to 400 scan lines; however, the
resolution of the CGA has long been fixed at 200 scan lines, so IBM had no choice
with the CGA modes but to scan-double the lines. Mode 13H has no such historical
limitation-it's the first 256-color mode ever offered by IBM, if you don't count the
late and unlamented Professional Graphics Controller (PGC). Why, then, would IBM
choose to limit the resolution of mode 13H?

There's no way to know, but one good guess is that IBM wanted a standard 256-
color mode across all PS/2 computers (for which the VGA was originally created), and
mode 13H is the highest-resolution 256-color mode that could fill the bill. You see,
each 256-color pixel requires one byte of display memory, so a 320X200 256-color
mode requires 64,000 bytes of display memory. That's no problem for the VGA, which
has 256K of display memory, but it's a stretch for the MCGA of the Model 30, since
the MCGA comes with only 64K.

On the other hand, the smaller display memory size of the MCGA also limits the
number of colors supported in 640x480 mode to 2, rather than the 16 supported by
the VGA. In this case, though, IBM simply created two modes and made both avail
able on the VGA: mode 11 H for 640x480 2-color graphics and mode 12H for 640x480
16-color graphics. The same could have been done for 256-color graphics-but wasn't.
Why? I don't know. Maybe IBM just didn't like the odd aspect ratio of a 320x400
graphics mode. Maybe they didn't want to have to worry about how to map in more
than 64K of display memory. Heck, maybe they made a mistake in designing the chip.
Whatever the reason, mode 13H is really a 400-scan-line mode masquerading as a
200-scan-line mode, and we can readily end that masquerade.

320x400 256-Color Mode
Okay, what's so great about 320x400 256-color mode? Two things: easy, safe mode sets
and page flipping.

As I said above, mode 13H is really a 320x400 mode, albeit with each line doubled
to produce an effective resolution of 320X200. That means that we don't need to change

Higher 256-Color Resolution on the VGA fl} 149

any display timings, widths, or heights in order to tweak mode 13H into 320x400
mode-and that makes 320x400 a safe choice. Basically, 320x400 mode differs from
mode 13H only in the settings of mode bits, which are sure to be consistent from one
VGA clone to the next and which work equally well with all monitors. The other hi-res
256-color modes differ from mode 13H not only in the settings of the mode bits but
also in the settings of timing and dimension registers, which may not be exactly the
same on all VGA clones and particularly not on all multisync monitors. (Because
multisyncs sometimes shrink the active area of the screen when used with standard
VGA modes, some VGAs use alternate register settings for multisync monitors that
adjust the CRT Controller timings to use as much of the screen area as possible for
displaying pixels.)

The other good thing about 320x400 256-color mode is that two pages are sup
ported. Each 320x400 256-color mode requires 128,000 bytes of display memory, so
we can just barely manage two pages in 320x400 mode, one starting at offset 0 in
display memory and the other starting at offset 8000H. Those two pages are the largest
pair of pages that can fit in the VGN.s 256K, though, and the higher-resolution 256-
color modes, which use still larger bitmaps (areas of display memory that control pixels
on the screen), can't support two pages at all. As we've seen in earlier chapters and will
see again in this book, paging is very useful for off-screen construction of images and
fast, smooth animation.

That's why I like 320x400 256-color mode. The next step is to understand how
display memory is organized in 320x400 mode, and that's not so simple.

Display Memory Organization in 320x400 Mode
First, let's look at why display memory must be organized differently in 320x400 256-
color mode than in mode 13H. The designers of the VGA intentionally limited the
maximum size of the bitmap in mode 13H to 64K, thereby limiting resolution to
320x200. This was accomplished in hardware, so there is no way to extend the bitmap
organization of mode 13H to 320x400 mode.

That's a shame, because mode 13H has the simplest bitmap organization of any
mode-one long, linear bitmap, with each byte controlling one pixel. We can't have
that organization, though, so we'll have to find an acceptable substitute if we want to
use a higher 256-color resolution.

We're talking about the VGA, so of course there are actually several bitmap organi
zations that let us use higher 256-color resolutions than mode 13H. The one I like best
is shown in Figure 9 .1. Each byte controls one 256-color pixel. Pixel 0 is at address 0 in
plane 0, pixel 1 is at address 0 in plane 1, pixel 2 is at address 0 in plane 2, pixel 3 is at
address 0 in plane 3, pixel 4 is at address 1 in plane 0, and so on.

Let's look at this another way. Ideally, we'd like one long bitmap, with each pixel at
the address that's just after the address of the pixel to the left. Well, that's true in this
case too, if you consider the number of the plane that the pixel is in to be part of the

150 {gJ Chapter 9

Note: Dashed lines show
the order in which bytes
are scanned to generate
pixels. Solid lines show the
correspondence of bytes in
display memory to pixels on
the screen. Each byte
controls one 256-color pixel.

i'
.}f}ytf@l

Figure 9.1 Bitmap Organization in 320x400 256-Color Mode

Plane 3

pixel's address. View the pixel numbers on the screen as increasing from left to right
and from the end of one scan line to the start of the next. Then the pixel number, n, of
the pixel at display memory address address in plane plane is:

n = (address* 4) + plane

To turn that around, the display memory address of pixel number n is given by:

address = n I 4

and the plane of pixel n is given by:

Higher 256-Color Resolution on the VGA [g} 151

plane = n modulo 4

Basically, the full address of the pixel, its pixel number, is broken into two compo
nents: the display memory address and the plane.

By the way, because 320X400 mode has a significantly different memory organiza
tion from mode 13H, the BIOS text routines won't work in 320x400 mode. If you
want to draw text in 320x400 mode, you'll have to look up a font in the BIOS ROM
and draw the text yourself. Likewise, the BIOS read pixel and write pixel routines
won't work in 320x400 mode, but that's no problem because I'll provide equivalent
routines in the next section.

Our next task is to convert standard mode 13H into 320x400 mode. That's accom
plished by undoing some of the mode bits that are set up especially for mode 13H, so
that from a programming perspective the VGA reverts to a straightforvvard planar model
of memory. That means taking the VGA out of chain 4 mode and doubleword mode,
turning off the double display of each scan line, making sure chain mode, odd/ even mode,
and word mode are turned off, and selecting byte mode for video data display. All that's
done in the Set320By400Mode subroutine in Listing 9.1, which we'll discuss next.

Reading and Writing Pixels
The basic graphics functions in any mode are functions to read and write single pixels.
Any more complex function can be built on these primitives, although that's rarely the
speediest solution. "What's more, once you understand the operation of the read and
write pixel functions, you've got all the knowledge you need to create functions that
perform more complex graphics functions. Consequently, we'll start our exploration of
320x400 mode with pixel-at-a-time line drawing.

Listing 9 .1 draws 8 multi-colored octagons in turn, drawing a new one on top of the
old one each time a key is pressed. The main-loop code of Listing 9.1 should be easily
understood; a series of diagonal, horizontal, and vertical lines are drawn one pixel at a
time based on a list of line descriptors, with the draw colors incremented for each
successive time through the line list.

LISTING 9.1 L9-1.ASM
Program to demonstrate pixel drawing in 320x400 256-color
mode on the VGA. Draws 8 lines to form an octagon, a pixel
at a time. Draws 8 octagons in all, one on top of the other,
each in a different color set. Although it's not used, a
pixel read function is also provided.

VGA_SEGMENT equ OaOOOh
SC_INDEX equ 3c4h ;Sequence Controller Index register
GC_INDEX equ 3ceh ;Graphics Controller Index register
CRTC_INOEX equ 3d4h ;CRT Controller Index register
MAP_MASK equ 2 ;Map Mask register index in SC
MEMORY _MODE equ 4 ;Memory Mode register index in SC

152 Jg) Chapter9

MAX_SCAN_LI NE equ
START_ADDRESS HIGH equ
UNDERLINE equ
MODE_CONTROL equ
READ_MAP equ
GRAPHICS_MODE equ
MISCELLANEOUS equ
SCREEN_WIDTH equ
SCREEN_HEIGHT equ
WORD_OUTS_OK equ

stack segment para
db

stack ends

Data segment word

BaseColor db 0

9
Och
14h
17h
4
5
6
320
400
1

stack 'STACK'
512 dup (?)

'DATA'

;Maximum Scan Line reg index in CRTC
;Start Address High reg index in CRTC
;Underline Location reg index in CRTC
;Mode Control register index in CRTC
:Read Map register index in GC
;Graphics Mode register index in GC
;Miscellaneous register index in GC
;# of pixels across screen
;# of scan lines on screen
;set to Oto assemble for

computers that can't handle
; word outs to indexed VGA registers

; Structure used to control drawing of a line.

Li neControl struc
StartX dw ?
StartY dw ?
Li neXInc dw ?
LineYinc dw ?
BaseLength dw ?
LineColor db ?
LineControl ends

; List of descriptors.for lines to draw.

Li neL i st label Li neControl
LineControl <130,110,1,0,60,0>
LineControl <190,110,1,1,60,1>
LineControl <250,170,0,1,60,2>
LineControl <250,230,-1,1,60,3>
LineControl <190,290,-1,0,60,4>
LineControl <130,290,-1,-1,60,5>
LineControl <70,230,0,-1,60,6>
LineControl <70.170,1,-1,60,7>
LineControl <·1,0,0,0,0,0>

Data ends

; Macro to output a word value to a port.

OUT_WORD macro
if WORD_OUTS_OK

out dx,ax
else

out dx,al
inc dx
xchg ah.al
out dx,al
dee dx
xchg ah.al

endif
endm

Higher 256-Color Resolution on the VGA [lJ 153

Macro to output a constant va 1 ue to an indexed VGA register.

C0NSTANT_TO_IN0EXED_REGISTER macroADDRESS, INDEX, VALUE
mov dx,ADDRESS
mov ax,(VALUE shl 8) + INDEX
0UT_W0RD
endm

Code segment
assume cs:Code, ds:Data

Start proc near
mov ax.Data
mov ds,ax

Set 320x400 256-color mode.

call Set320By400Mode

We're in 320x400 256-color mode. Draw each line in turn.

Colorloop:
mov

Lineloop:
mov
cmp
jz

mov
mov
mov
add

Pi xe lloop:
push
push
call
pop
pop
add
add
dee
jnz
add
jmp

LinesDone:
ca 11
inc
cmp
jb

si,offset Linelist

cx,[si+Startx]
ex, -1
LinesDone

dx. [s i+Sta rtv]
bl, [si+L i neCol or]
bp,[si+Baselength]
bl. [BaseCol or]

ex
dx
WritePixel
dx
ex
cx,[si+LineXInc]
dx,[si+LineYinc]
bp
Pi xelloop
si ,size LineControl
Lineloop

GetNextKey
[BaseColor]
[BaseColor],8
Color Loop

;point to the start of the
: line descriptor list

;set the initial X coordinate

;a descriptor with a -1 X
; coordinate marks the end
; of the list
;set the initial Y coordinate.
; line color,
; and pixel count
;adjust the line color according
; to BaseCol or

; save the coordinates

;draw this pixel
; retrieve the coordinates

; set the coordinates of the
; next point of the line
; any more points?
;yes. draw the next
;point to the next line descriptor

and draw the next line

;wait for a key, then
: bump the col or selection and
: see if we' re done
; not done yet

Wait for a key and return to text mode and end when
one is pressed.

call
mov
int
mov
int

GetNextKey
ax,0003h
10h
ah,4ch
21h ;done

; text mode

154 gJ Chapter 9

Start endp

Sets up 320x400 256-col or modes.

Input: none

Output: none

Set320By400Mode proc near

First, go to normal 320x200 256-color mode, which is really a
320x400 256-color mode with each line scanned twice.

mov

int

ax,0013h

10h

:AH= 0 means mode set, AL= 13h selects
: 256-color graphics mode
:BIOS video interrupt

Change CPU addressing of video memory to linear (not odd/even,
chain, or chain 4), to allow us to access all 256K of display
memory. When this is done, VGA memory will look just like memory
in modes 10h and 12h, except that each byte of display memory wi 11
control one 256-color pixel, with 4 adjacent pixels at any given
address, one pixel per plane.

mov dx,SC_INDEX
mov al,MEMORY_MODE
out dx,al
inc dx
in al, dx
and al, not 08h :turn off chain 4
or al, 04h : turn off odd/even
out dx,al
mov dx,GC_INDEX
mov al,GRAPHICS_MODE
out dx,al
inc dx
in al, dx
and al, not 10h : turn off odd/even
out dx,al
dee dx
mov al.MISCELLANEOUS
out dx,al
inc dx
in al, dx
and al, not 02h : turn off chain
out dx,al

Now clear the whole screen, since the mode 13h mode set only
cleared 64K out of the 256K of display memory. Do this before
we switch the CRTC out of mode 13h, so we don• t see garbage
on the screen when we make the switch.

C0NSTANT_TO_INDEXED_REGISTER SC_INDEX,MAP_MASK,0fh
:enable writes to all planes, so
: we can clear 4 pixels at a time

mov ax,VGA_SEGMENT
mov es.ax
sub di ,di
mov ax.di
mov ex, BO00h :// of words in 64K

cld
rep stosw

Higher 256-Color Resolution on the VGA Jg} 155

:clear all of display memory

Tweak the mode to 320x400 256-col or mode by not scanning each
1 ine twice.

mov dx,CRTC_INDEX
mov a 1, MAX_SCAN_LI NE
out dx,al
inc dx
in al. dx
and a 1 , not lfh :set maximum scan line - O
out dx,al
dee dx

Change CRTC scanning from doubleword mode to byte mode, allowing
the CRTC to scan more than 64K of video data.

mov al.UNDERLINE
out dx,al
inc dx
in
and
out
dee
mov
out
inc
in
or

a 1 , dx
al ,not 40h
dx,al
dx
al,MODE_CONTROL
dx,al
dx
a 1 , dx
a 1 , 40 h

out dx,al
ret

Set320By400Mode end p

;turn off doubleword

; turn on the byte mode bit, so memory is
scanned for video data in a purely

: 1 i near way, just as in modes 10h and 12h

Draws a pixel in the specified color at the specified
location in 320x400 256-color mode.

Input:
CX - X coordinate of pixel
DX - Y coordinate of pixel
BL - pixel color

Output: none

Registers altered: AX. ex. DX, DI, ES

WritePixel
mov
mov
mov

mul
push
shr
shr
add
mov

proc near
ax,VGA_SEGMENT
es.ax
ax,SCREEN_WIDTH/4

dx
ex
ex.I
cx,1
ax.ex
di , ax

;point to display memory

:there are 4 pixels at each address, so
: each 320-pixel row is 80 bytes wide
; in each plane
;point to start of desired row
;set aside the X coordinate
:there are 4 pixels at each address
; so divide the X coordinate by 4
: point to the pixel• s address

156 [lJ Ghapter9

pop ex
and cl , 3
mov ah,1
sh l ah. cl

mov al ,MAP_MASK
mov dx,Se_INDEX
OUT_WORD

mov
ret

WritePixel

es: [di].bl

endp

;get back the X coordinate
;get the plane fl of the pixel

:set the bit corresponding to the plane
; the pixel is in

: set to write to the proper plane for
: the pixel
:draw the pixel

Reads the col or of the pixel at the specified 1 ocat ion in 320x400
256-color mode.

Input:
ex
DX

Output:
AL

Registers

ReadPixel
mov
mov
mov

mul

-
=

-

push
shr
shr
add
mov
pop
and
mov
mov
mov
OUT

l ods
ret

ReadPixel

X coordinate of pixel to
y coordinate of pixel to

pixel color

altered: AX, ex. DX, SI,

proc near
ax,VGA_SEGMENT
es.ax
ax,SeREEN_WIDTH/4

dx
ex
cx,1
cx,1
ax.ex
s i , ax
ax
al. 3
ah.al
al,READ_MAP
dx,Ge_INDEX

WORD

byte ptr es:[si]

endp

read
read

ES

;point to display memory

:there are 4 pixels at each address, so
: each 320-pixel row is 80 bytes wide
; in each plane
;point to start of desired row
: set aside the X coordinate
:there are 4 pixels at each address
: so divide the X coordinate by 4
:point to the pixel• s address

;get back the X coordinate
;get the plane fl of the pixel

;set to read from the proper plane for
: the pixel
: read the pixel

Waits for the next key and returns it in AX.

Input: none

Output:
AX = full 16-bit code for key pressed

GetNextKey
WaitKey:

mov
int
jz

proc near

ah,1
16h
Wait Key :wait for a key to become available

Higher 256-Color Resolution on the VGA ~ 157

sub ah,ah
int 16h : read the key
ret

GetNextKey endp
;
Code ends

end Start

The interesting aspects of Listing 9.1 are three. First, the Set320By400Mode sub
routine selects 320x400 256-color mode. This is accomplished by performing a mode 13 H
mode set and then putting the VGA into standard planar byte mode. Set320By400Mode
zeros display memory as well. It's necessary to clear display memory even after a mode
13H mode set because the mode 13H mode set clears only the 64K of display memory
that can be accessed in that mode, leaving 192K of display memory untouched.

The second interesting aspect of Listing 9.1 is the WritePixel subroutine, which
draws a colored pixel at any x,y addressable location on the screen. Although it may not
be obvious because I've optimized the code a little, the process of drawing a pixel is
remarkably simple. First, the pixel's display memory address is calculated as:

address= (y * (SCREEN_ WIDTH / 4)) + (x I 4)

which might be more recognizable as:

address = ((y * SCREEN_ WIDTH) + x) I 4

(There are 4 pixels at each display memory address in 320x400 mode, hence the divi
sion by 4.) Then the pixel's plane is calculated as:

plane = x and 3

which is equivalent to:

plane = x modulo 4

The pixel's color is then written to the addressed byte in the addressed plane. That's all
there is to it!

The third item of interest in Listing 9 .1 is the ReadPixel subroutine. ReadPixel is
virtually identical to WritePixel, save that in ReadPixel the Read Map register is pro
grammed with a plane number, while WritePixel uses a plane mask to set the Map
Mask register. Of course, that difference merely reflects a fundamental difference in
the operation of the two registers. (If that's Greek to you, refer back to Part I of this
book for a refresher on VGA programming.) ReadPixel isn't used in Listing 9.1, but
I've included it because, as I said above, the read and write pixel functions together can
support a whole host of more complex graphics functions.

158 {gJ Chapter 9

How does 320x400 256-color mode stack up as regards performance? As it turns
out, the programming model of 320x400 mode is actually pretty good for pixel draw
ing, pretty much on a par with the model of mode 13H. When you run Listing 9.1,
you'll no doubt notice that the lines are drawn quite rapidly. (In fact, the drawing
could be considerably faster still with a dedicated line-drawing subroutine, which would
avoid the multiplication associated with each pixel in Listing 9 .1.)

In 320x400 mode, the calculation of the memory address is not significantly slower
than in mode 13H, and the calculation and selection of the target plane is quickly
accomplished. As with mode 13H, 320x400 mode benefits tremendously from the
byte-per-pixel organization of 256-color mode, which eliminates the need for the time
consuming pixel-masking of the 16-color modes. Most important, byre-per-pixel modes
never require read-modify-write operations (which can be extremely slow due to dis
play memory wait states) in order to clip and draw pixels. To draw a pixel, you just
store its color in display memory-what could be simpler?

More sophisticated operations than pixel drawing are less easy to accomplish in
320x400 mode, but with a little ingenuity it is possible to implement a reasonably
efficient version of just about any useful graphics function. A fast line draw for 320x400
256-color mode would be simple (although not as fast as would be possible in mode
13H). Fast image copies could be implemented by copying one-quarter of the image to
one plane, one-quarter to the next plane, and so on for all four planes, thereby elimi
nating the OUT per pixel that sequential processing requires. If you're really into per
formance, you could store your images with all the bytes for plane O grouped together,
followed by all the byres for plane 1, and so on. That would allow a single REP MOVS
instruction to copy all the bytes for a given plane, with just four REP MOVS instruc
tions copying the whole image. In a number of cases, in fact, 320x400 256-color mode
can actually be much faster than mode 13H, because the VG.N.s hardware can be used
to draw four or even eight pixels with a single access; I'll return to the topic of high
performance programming in 256-color modes other than mode 13H ("non-chain 4"
modes) in Chapter 32.

It's all a bit complicated, but as I say, you should be able to design an adequately
fast-and often very fast-version for 320x400 mode of whatever graphics function
you need. If you're not all that concerned with speed, WritePixel and ReadPixel should
meet your needs.

Two 256-Color Pages
Listing 9.2 demonstrates the two pages of320x400 256-color mode by drawing slant
ing color bars in page 0, then drawing color bars slanting the other way in page 1 and
flipping to page 1 on the next key press. (Note that page 1 is accessed starting at offset
8000H in display memory, and is-unsurprisingly-displayed by setting the start ad
dress to 8000H.) Finally, Listing 9.2 draws vertical color bars in page O and flips back
to page O when another key is pressed.

Higher 256-Color Resolution on the VGA ~ 159

The color bar routines don't use the WritePixel subroutine from Listing 9 .1; they go
straight to display memory instead for improved speed. As I mentioned above, better
speed yet could be achieved by a color-bar algorithm that draws all the pixels in plane
0, then all the pixels in plane 1, and so on, thereby avoiding the overhead of constantly
reprogramming the Map Mask register.

LISTING 9.2 L9-2.ASM
Program to demonstrate the two pages available in 320x400
256-color modes on a VGA. Draws diagonal color bars in all
256 colors in page 0, then does the same in page 1 (but with
the bars tilted the other way), and finally draws vertical
color bars in page 0.

VGA_SEGMENT equ OaOOOh
SC_INDEX equ 3c4h :Sequence Controller Index register
GC_INDEX
CRTC_INDEX
MAP_MASK
MEMORY_MODE
MAX_SCAN_Ll NE
START_ADDRESS_ HIGH
UNDERLINE
MODE_CONTROL
GRAPHICS_MODE
MISCELLANEOUS
SCREEN_WIDTH
SCREEN_HEIGHT
WORD_OUTS_OK

stack segment
db

stack ends

equ 3ceh :Graphics Controller Index register
equ 3d4h :CRT Controller Index register
equ 2 :Map Mask register index in SC
equ 4 :Memory Mode register index in SC
equ 9 :Maximum Scan Line reg index in CRTC
equ Och :Start Address High reg index in CRTC
equ 14h :Underline Location reg index in CRTC
equ 17h :Mode Control register index in CRTC
equ 5 :Graphics Mode register index in GC
equ 6 :Miscellaneous register index in GC
equ 320 :# of pixels across screen
equ 400 :# of scan lines on screen
equ 1 :set to Oto assemble for

: computers that can't handle
: word outs to indexed VGA registers

para stack 'STACK'
512 dup (?)

: Macro to output a word value to a port.

OUT_WORD macro
if WORD_OUTS OK

out dx,ax
else

out dx. a 1
inc dx
xchg ah. al
out dx. al
dee dx
xchg ah. al

endif
endm

Macro to output a constant value to an indexed VGA register.

CONSTANT_TO_INDEXED_REGISTER macroADDRESS. INDEX, VALUE
mov dx,ADDRESS
mov ax, (VALUE shl 8) + INDEX
OUT WORD
endm

160 {g} Chapter 9

Code segment
assume

Sta rt proc
cs:Code
near

Set 320x400 256-color mode.

cal 1 Set320By400Mode

We're in 320x400 256-color mode, with page 0 displayed.
Let's fill page 0 with color bars slanting down and to the right.

sub
mov

ca 11

di, di
b 1 , l

ColorBarsUp

;page 0 starts at address 0
;make color bars slant down and
; to the right
;draw the col or bars

Now do the same for page 1, but with the color bars
tilting the other way.

mov
mov

call

di ,8000h
bl , -1

ColorBarsUp

;page 1 starts at address 8000h
;make color bars slant down and
; to the left
;draw the col or bars

Wait for a key and flip to page 1 when one is pressed.

call GetNextKey
C0NSTANT_T0_INDEXED_REGISTER CRTC_INDEX,START_ADDRESS_HIGH,80h

;set the Start Address High register
; to 80h, for a start address of 8000h

Draw vertical bars in page 0 while page 1 is displayed.

sub
sub
call

di , di
bl, bl
ColorBarsUp

;page 0 starts at address 0
;make color bars vertical
;draw the col or bars

Wait for another key and flip back to page 0 when one is pressed.

cal 1 GetNextKey
C0NSTANT_T0_INDEXED_REGISTER CRTC_INDEX,START_ADDRESS_HIGH,00h

; set the Sta rt Address High register
; to 00h, for a start address of 0000h

Wait for yet another key and return to text mode and end when
one is pressed.

ca 11 GetNextKey
mov ax,0003h
int 10h
mov ah,4ch
int 21h

Sta rt endp

Sets up 320x400 256-col or modes.

Input: none

;text mode

;done

Higher 256-Color Resolution on the VGA Lr} 161

; Output: none

Set320By400Mode proc near

First, go to normal 320x200 256-color mode, which is really a
320x400 256-color mode with each 1 ine scanned twice.

mov

int

ax,0013h

10h

;AH = 0 means mode set, AL - 13h selects
; 256-col or graphics mode
; BIOS video interrupt

Change CPU addressing of video memory to 1 i near (not odd/ even.
chain, or chain 4), to allow us to access all 256K of display
memory. When this is done, VGA memory will look just like memory
in modes 10h and 12h. except that each byte of display memory wil 1
control one 256-color pixel. with 4 adjacent pixels at any given
address. one pixel per plane.

mov dx,SC_INDEX
mov al ,MEMORY_MODE
out dx. a 1
inc dx
in a 1. dx
and al. not 08h ;turn off chain 4
or a 1. 04h ;turn off odd/even
out dx,al
mov dx,GC_INDEX
mov al ,GRAPHICS_MODE
out dx. a 1
inc dx
in a 1 • dx
and al. not 10h ;turn off odd/even
out dx,al
dee dx
mov al ,MISCELLANEOUS
out dx,al
inc dx
in a 1 • dx
and al. not 02h ;turn off chain
out dx,al

Now clear the whole screen, since the mode 13h mode set only
cl eared 64K out of the 256K of display memory. Do this before
we switch the CRTC out of mode 13h, so we don't see garbage
on the screen when we make the switch.

CONSTANT_TO_INDEXED_REGISTER SC_INDEX,MAP_MASK,Ofh
;enable writes to all planes, so
: we can clear 4 pixels at a time

mov ax,VGA_SEGMENT
mov es.ax
sub di. di
mov ax, di
mov cx,BOOOh ;ff of words in 64K
cld
rep stosw :cl ear all of display

Tweak the mode to 320x400 256-col or mode by not scanning each
1 ine twice.

memory

162 !I] Chapter 9

mov dx,CRTC_INDEX
mov al ,MAX_SCAN_LINE
out dx,al
inc dx
in al, dx
and al.not lfh ;set maximum scan 1 ine = 0
out dx,al
dee dx

Change CRTC scanning from doubleword mode to byte mode, allowing
the CRTC to scan more than 64K of video data.

mov al ,UNDERLINE
out dx,al
inc dx
i n a 1 , dx
and al.not 40h
out dx,al
dee dx
mov al,M0DE_C0NTR0L
out dx,al
inc dx
in al. dx
or al ,40h

out dx,al
ret

Set320By400Mode endp

:turn off doubleword

; turn on the byte mode bit, so memory is
scanned for video data in a purely

; linear way, just as in modes 10h and 12h

Draws a full screen of slanting color bars in the specified page.

Input:
DI = page start address
BL = 1 to make the bars slant down and to the right, -1 to

make them slant down and to the left, 0 to make
them vertical.

ColorBarsUp
mov
mov
sub
mov
mov
mov
out
inc

Rowloop:
mov

push
Column Loop:
MAP _SELECT =

rept

mov
out
mov
inc

proc near
ax,VGA_SEGMENT
es.ax
bh,bh
si,SCREEN_HEIGHT
dx,SC_INDEX
al,MAP_MASK
dx,al ;point
dx ;point

cx,SCREEN_WIDTH/4

bx

4

al,MAP_SELECT
dx,al
es: [di].bh
bh

: point to display memory
:start with color 0
:/f of rows to do

the SC Index reg to the Map Mask reg
DX to the SC Data register

;4 pixels at each address, so
: each 320- pi xe 1 row is 80 bytes wide
: in each plane
:save the row-start color

;do all 4 pixels at this address with
; in-line code

select planes 0, 1, 2, and 3 in turn
write this plane's pixel
set the col or for the next pixel

MAP_SELECT =
endm
inc

loop
pop
add

dee
jnz
ret

ColorBarsUp

MAP_SELECT shl

di

Columnloop
bx
bh,bl

si
Rowloop

endp

1

Higher 256-Color Resolution on the VGA ill 163

; point to the address containing the next
; 4 pixels
;do any remaining pixels on this line
;get back the row-start color
;select next row-start color (controls
; slanting of color bars)
;count down 1 ines on the screen

: Waits for the next key and returns it in AX.

GetNextKey proc near
WaitKey:

mov ah, 1
int 16h
jz Wait Key ;wait for a key to become available
sub ah.ah
int 16h ; read the key
ret

Get Next Key endp

Code ends

end Start

When you run Listing 9.2, note the extremely smooth edges and fine gradations of
color, especially in the screens with slanting color bars. The displays produced by List
ing 9.2 make it clear that 320x400 256-color mode can produce effects that are simply
not possible in any 16-color mode.

Something to Think About
You can, if you wish, use the display memory organization of 320x400 mode in 320x200
mode by modifying Set320By400Mode to leave the maximum scan line setting at 1 in
the mode set. (The version of Set320x400Mode in Listings 9.1 and 9.2 forces the
maximum scan line to 0, doubling the effective resolution of the screen.) Why would
you want to do that? For one thing, you could then choose from not two but four
320X200 256-color display pages, starting at offsets 0, 4000H, 8000H, and 0C000H
in display memory. For another, having only half as many pixels per screen can as
much as double drawing speeds; that's one reason that many games run at 320x200,
and even then often limit the active display drawing area to only a portion of the
screen.

Be it
Resolved:
360x480

..
CD
I 7 = ca -= u

Taking 256-Color Modes About as Far as the
Standard VGA Can Take Them

In the last chapter, we learned how to coax 320x400 256-color resolution out of a
standard VGA. At the time, I noted that the VGA was actually capable of supporting
256-color resolutions as high as 360x480, but didn't pursue the topic further, prefer
ring to concentrate on the versatile and easy-to-set 320x400 256-color mode instead.

Some time back I was sent a particularly useful item from John Bridges, a longtime
correspondent and an excellent programmer. It was a complete mode set routine for
360x480 256-color mode that he has placed into the public domain. In addition, John
wrote, "I also have a couple of freeware (free, but not public domain) utilities out
there, including PICEM, which displays .PIC, .PCX, and .GIF images not only in
360x480x256 but also in 640x350x256, 640x400x256, 640x480x256, and
800x600X256 on SuperVGAs."

In this chapter, I'm going to combine John's mode set code with appropriately modi
fied versions of the dot-plot code from Chapter 9 and the line-drawing code that we'll
develop in Chapter 14. Together, those routines will make a pretty nifty demo of the
capabilities of 360x480 256-color mode.

Extended 256-Color Modes: What's Not to Like?
When last we left 256-color programming, we had found that the standard 256-color
mode, mode 13H, which officially offers 320x200 resolution, actually displays 400,
not 200, scan lines, with line-doubling used to reduce the effective resolution to
320x200. By tweaking a few of the VG.N.s mode registers, we converted mode 13H to
a true 320x400 256-color mode. As an added bonus, that 320x400 mode supports

165

166 gJ Chapter 10

two graphics pages, a distinct improvement over the single graphics page supported by
mode 13H. (We also learned how to get four graphics pages at 320X200 resolution,
should that be needed.)

I particularly like 320X400 256-color mode for two reasons: It supports two-page
graphics, which is very important for animation applications; and it doesn't require
changing any of the monitor timing characteristics of the VGA. The mode bits that we
changed to produce 320x400 256-color mode are pretty much guaranteed to be the
same from one VGA to another, but the monitor-oriented registers are less certain to
be constant, especially for VGAs that provide special support for the extended capa
bilities of various multiscanning monitors.

All in all, those are good arguments for 320x400 256-color mode. However, the
counter-argument seems compelling as well-nothing beats higher resolution for pro
ducing striking graphics. Given that, and given that John Bridges was kind enough to
make his mode set code available, I'm going to look at 360x480 256-color mode next.
However, bear in mind that the drawbacks of this mode are the flip side of the strengths
of 320X400 256-color mode: Only one graphics page, and direct setting of the
monitor-oriented registers. Also, this mode has a peculiar and unique aspect ratio,
with 480 pixels (as many as high-resolution mode 12H) vertically and only 360 hori
zontally. That makes for fairly poor horizontal resolution and sometimes-jagged draw
ing; on the other hand, the resolution is better in both directions than in mode 13H,
and mode 13 H itself has an odd aspect ratio, so it seems a bit petty to complain.

The single graphics page isn't a drawback if you don't need page flipping, of course,
so there's not much to worry about there: If you need page flipping, don't use this
mode. The direct setting of the monitor-oriented registers is another matter altogether.

I don't know how likely this code is to produce problems with clone VGAs in gen
eral; however, I did find that I had to put an older Video Seven VRAM VGA into
"pure" mode-where it treats the VRAMs as DRAMs and exactly emulates a plain
vanilla IBM VGA-before 360x480 256-color mode would work properly. Now, that
particular problem was due to an inherent characteristic of VRAMs, and shouldn't
occur on Video Seven's Fastwrite adapter or any other VGA clone. Nonetheless, 360x480
256-color mode is a good deal different from any standard VGA mode, and while the
code in this chapter runs perfectly well on all other VGAs in my experience, I can't
guarantee its functionality on any particular VGA/monitor combination, unlike
320x400 256-color mode. Mind you, 360x480 256-color mode should work on all
VGAs-there are just too many variables involved for me to be certain. Feedback from
readers with broad 360x480 256-color experience is welcome.

The above notwithstanding, 360x480 256-color mode offers 64 times as many col
ors and nearly three times as many pixels as IBM's original CGA color graphics mode,
making startlingly realistic effects possible. No mode of the VGA (at least no mode
that I know ofl), documented or undocumented, offers a better combination of resolu
tion and color; even 320x400 256-color mode has 26% fewer pixels.

In other words, 360x480 256-color mode is worth considering-so let's have a look.

Be it Resolved: 360x480 g} 167

360x480 256-Color Mode
I'm going to start by showing you 360x480 256-color mode in action, after which
we'll look at how it works. I suspect that once you see what this mode looks like, you'll
be more than eager to learn how to use it.

Listing 10.1 contains three C-callable assembly functions. & you'd expect,
Set360x480Mode places the VGA into 360x480 256-color mode. Draw360x480Dot
draws a pixel of the specified color at the specified location. Finally, Read360x480Dot
returns the color of the pixel at the specified location. (This last function isn't actually
used in the example program in this chapter, but is included for completeness.)

Listing 10.2 contains an adaptation of some Cline-drawing code I'll be presenting
shortly in Chapter 14. If you're reading this book in serial fashion and haven't gotten
there yet, simply take it on faith. If you really really need to know how the line-draw
code works right now, by all means make a short forward call to Chapter 14 and digest
it. The line-draw code presented below has been altered to select 360x480 256-color
mode, and to cycle through all 256 colors that this mode supports, drawing each line
in a different color.

LISTING 10.1 L10-1.ASM
Borland C/C++ tiny/small/medium model-callable assembler
subroutines to:

* Set 360x480 256-col or VGA mode
* Draw a dot in 360x480 256-col or VGA mode
* Read the col or of a dot in 360x480 256-col or VGA mode

Assembled with TASM

The 360x480 256-col or mode set code and parameters were provided
by John Bridges, who has placed them into the public domain.

VGA_SEGMENT equ OaOOOh ;display memory segment
SC_INDEX equ 3c4h ;Sequence Controller Index
GC_INDEX equ 3ceh :Graphics Cont roll er Index
MAP_MASK equ 2 :Map Mask register index in
READ_MAP equ 4 :Read Map register index in
SCREEN_WIDTH equ 360 ;// of pixels across screen
WORD_OUTS_OK equ 1 ;set to 0 to assemble for

register
register

SC
GC

computers that can't handle
: word outs to indexed

DATA segment public byte 'DATA'

; 360x480 256-color mode CRT Controller register settings.
; (Courtesy of John Bridges.)

vptbl dw 06b00h horz total
dw 05901h horz displayed
dw 05a02h start horz blanking
dw 08e03h end horz blanking
dw 05e04h start h sync
dw 08a05h end h sync

VGA registers

168 [lJ Chapter 10

dw 00d06h
dw 03e07h
dw 04009h
dw OealOh
dw Oacllh
dw Odfl2h
dw 02dl3h
dw 00014h
dw Oe715h
dw 00616h
dw Oe317h

vpend 1 abel word
_DATA ends

; Macro to output a word value to

OUT_WORD macro
if WORD_OUTS OK

out dx,ax
else

out dx,al
inc dx
xchg ah. a 1
out dx, a 1
dee dx
xchg ah,al

endif
endm

_TEXT segment byte public 'CODE'
assume cs:_TEXT, ds:_DATA

Sets up 360x480 256-color mode.
(Courtesy of John Bridges.)

Call as: void Set360By480Mode()

Returns: nothing

publ 1 c _Set360x480Mode
_Set360x480Mode proc near

push si
push di
mov ax,12h
int 10h

mov ax,13h
int 10h

mov dx,3c4h
mov ax,0604h
out dx,ax

mov ax,OlOOh
out dx,ax
mov dx,3c2h
mov al,Oe7h
out dx,al
mov dx,3c4h
mov ax,0300h
out dx,ax

a port.

vertical total
overflow
cell height
v sync start
v sync end and protect cr0-cr7
vertical displayed
offset
turn off dword mode
v blank start
V blank end
turn on byte mode

;preserve C register vars

start with mode 12h
let the BIOS clear the video memory

start with standard mode 13h
let the BIOS set the mode

a 1 ter sequencer registers
disable chain 4

synchronous reset
asserted
misc output
use 28 mHz dot clock
select it
sequencer again
restart sequencer
running again

@b:

mov

mov
out
inc
in
and
out
dee
cld
mov
mov

lodsw
out
loop
pop
pop
ret

dx,3d4h

al, llh
dx, al
dx
al ,dx
al, 7fh
dx, al
dx

si ,offset vptbl

Be it Resolved: 360x4BO fgJ 169

alter crtc registers

crll
current value
point to data
get crll value
remove cr0 -> er?
write protect
point to index

cx,((offset vpend)-(offset vptbl)) shr 1

dx,ax
@b
di
s i

;restore C register vars

_Set360x480Mode endp

Draws a pixel in the specified col or at the specified
location in 360x480 256-color mode.

Call as: void Draw360x480Dot(int X, int Y, int Color)

Returns: nothing

DParms struc
dw ? ;pushed BP
dw ? ;return address

DrawX dw ? ;X coordinate at which to draw
DrawY dw ? ;Y coordinate at which to draw
Color dw ? ;color in which to draw (in the

; range 0-255; upper byte ignored)
DParms ends

public _Draw360x480Dot
_Draw360x480Dot proc near

push bp
mov bp,sp
push si
push di
mov ax,VGA_SEGMENT
mov
mov

es.ax
ax,SCREEN_WIDTH/4

[bp+DrawY]
di,[bp+DrawX]
di, 1
di. 1
di. ax

;preserve caller's BP
; point to stack frame
;preserve C register vars

;point to display memory

;there are 4 pixels at each address, so
each 360-pixel row is 90 bytes wide

; in each pl an e
; point to start of desired row
;get the X coordinate
;there are 4 pixels at each address
; so di vi de the X coordinate by 4

mul
mov
shr
shr
add
mov
and
mov
shl

cl ,byte ptr [bp+DrawX]
cl , 3

;point to the pixel's address
;get the X coordinate again
;get the plane # of the pixel

mov
mov

ah, 1
ah, cl

al ,MAP_MASK
dx,SC_INDEX

; set the bit corresponding to the plane
; the pixel is in

170 fgJ Chapter 10

OUT_WORO ;set to write to the proper plane for
; the pixel

mov al ,byte ptr
stosb

[bp+Color] ;get the color
;draw the pixel

pop di ;restore C register vars
pop s i
pop bp ;restore caller's BP
ret

_Draw360x480Dot endp

Reads the col or of the pixel at the specified
location in 360x480 256-color mode.

Call as: int Read360x480Dot(int X, int Y)

Returns: pixel color

RParms struc
dw ?
dw ?

ReadX dw ?
ReadY dw ?
RParms ends

public _Read360x480Dot
_Read360x480Dot proc near

push bp
mov bp,sp
push si
push di
mov ax,VGA_SEGMENT
mov
mov

es.ax
ax,SCREEN_WIDTH/4

[bp+DrawYJ
si,[bp+DrawXJ
s i , 1
s i .1

;pushed BP
;return address
;X coordinate from which
;Y coordinate from which

; preserve ca 11 er' s BP
; point to stack frame
;preserve C register vars

;point to display memory

to read
to read

;there are 4 pixels at each address, so
each 360-pixel row is 90 bytes wide
in each plane

:point to start of desired row
: get the X coordinate
:there are 4 pixels at each address
: so divide the X coordinate by 4
;point to the pixel's address

mu l
mov
shr
shr
add
mov
and

s i. ax
ah.byte ptr
ah,3

[bp+DrawXJ :get the X coordinate again

mov al .READ_MAP
mov dx.GC_INDEX
OUT WORD

l ods byte
sub ah.ah
pop di
pop s i
pop bp
ret

_Read360x480Dot endp
TEXT ends

end

ptr es:[si]

: get the plane II of the pixel

: set to read from the proper plane for
: the pixel
:read the pixel
;make the return value a word for C
; restore C register vars

: restore call er' s BP

Be it Resolved: 360x480 ll} 171

LISTING 10.2 L 10-2.C
* Sample program to i 11 ustrate VGA line drawing in 360x480
* 256-color mode.

*
* Compiled with Borland CIC++.
*
* Must be linked with Listing 10.1 with a command line like:

*
* bee 110-2.c 110-1.asm

*
* By Michael Abrash
*I

//include <dos.h> /* contains geninterrupt */

#define TEXT_MODE
//define BIOS_VIDEO INT
//define X_MAX

Ox03
OxlO
360
480

/* working screen width */
/* working screen height */ //define Y_MAX

extern void Draw360x480Dot():
extern void Set360x480Mode():

/*
* Draws a line in octant O or 3 (IDeltaXI >- DeltaY).
* IDeltaXj+l points are drawn.
*/

void OctantO(XO, YO,
unsigned int XO, YO:
unsigned int DeltaX.
int XDirection:

DeltaX, DeltaY, XDirection, Color)
/* coordinates of start of the line*/

DeltaY: /* length of the line */
/* 1 if line is drawn left to right,

-1 if drawn right to left*/
int Color: /* color in which to draw line*/
{

int DeltaYx2:
int DeltaYx2Mi nus Del taXx2:

int ErrorTerm:

/* Set up initial error term and values used inside drawing loop */
DeltaYx2 - DeltaY * 2:
DeltaYx2MinusDeltaXx2 - DeltaYx2 - (int) (DeltaX * 2):
ErrorTerm - DeltaYx2 - (int) DeltaX:

/* Draw the line*/
Draw360x480Dot(XO, YO, Color): /* draw the first pixel*/
while (DeltaX--) {

/* See if it• s ti me to advance the Y coordinate * /
if < ErrorTerm >- o) {

/* Advance the Y coordinate & adjust the error term
back down*/

YO++:
ErrorTerm +- DeltaYx2MinusDeltaXx2:

else {
/* Add to the error term*/
ErrorTerm +- DeltaYx2:

XO+- XDirection;
Draw360x480Dot(XO, YO, Color):

/* advance the X coordinate * /
I* draw a pixel * /

172 fgJ Chapter 1 O

I*
* Draws a line in octant 1 or 2 (IDeltaXI < DeltaY).
* IDeltaYl+l points are drawn.
*/

void Octantl(XO, YO, DeltaX,
unsigned int XO, YO;

DeltaY, XDirection, Color)
/* coordinates of start of the line*/

/* length of the line */ unsigned int DeltaX, DeltaY;
int XDirection: /* 1 if line is drawn left to right,

-1 if drawn right to left*/
int Color; /* color in which to draw line*/
{

int DeltaXx2;
int DeltaXx2MinusDeltaYx2;

int ErrorTerm;

/* Set up initial error term and values used inside drawing loop */
DeltaXx2 = DeltaX * 2;
DeltaXx2MinusDeltaYx2 = DeltaXx2 - (int) (DeltaY * 2 l;
ErrorTerm = DeltaXx2 - (int) DeltaY;

Draw360x480Dot(XO, YO, Color); /* draw the first pixel */
while C DeltaY--) {

/* See if it's time to advance the X coordinate*/
if (ErrorTerm >= 0) {

/* Advance the X coordinate & adjust the error term
back down*/

XO+= XDirection;
ErrorTerm += DeltaXx2MinusDeltaYx2;

else {
/* Add to the error term*/
ErrorTerm += DeltaXx2;

YO++; I* advance the Y coordinate */
Draw360x480Dot(XO, YO.Color); /* draw a pixel */

I*
* Draws a line on the EGA or VGA.
*I

void EVGALine(XO, YO, Xl, Yl, Color)
int XO. YO; /* coordinates of one end of the line * /
int Xl, Yl; /* coordinates of the other end of the line*/
unsigned char Color; /* color in which to draw line */
{

int DeltaX, DeltaY;
int Temp;

/* Save half the line-drawing cases by swapping YO with Yl
and XO with Xl if YO is greater than Yl. As a result, DeltaY
is always > 0, and only the octant 0-3 cases need to be
handled. */

if C YO > Yl)
Temp - YO;
YO = Yl;
Yl = Temp:
Temp - XO;
XO= Xl;
Xl = Temp;

I*

Be it Resolved: 360x480 Ill 173

/* Handle as four separate cases, for the four octants in which
Yl is greater than YO*/

DeltaX - Xl - XO: /* calculate the length of the line
in each coordinate*/

DeltaY - Yl YO:
if (DeltaX > 0) {

if (DeltaX > DeltaY) {
OctantO(XO, YO, DeltaX, DeltaY, 1, Color):

else {
Octantl(XO, YO, DeltaX, DeltaY, 1, Color):

else
DeltaX - -DeltaX; /* absolute value of DeltaX */
if (DeltaX > DeltaY) {

OctantO(XO, YO, DeltaX, DeltaY, -1, Color):
else {

Octantl(XO, YO, DeltaX, DeltaY, -1, Color);

* Subroutine to draw a rectangle full of vectors, of the
* specified length and in varying colors, around the
* specified rectangle center.
*I

void Vectors Up(XCenter,
int XCenter, YCenter:
int XLength, YLength:

YCenter, XLength, Ylength)
/* center of rectangle to fi 11 */
I* di stance from center to edge

I*

of rectangle*/

int WorkingX, WorkingY, Color - 1;

/* Lines from center to top of rectangle */
Worki ngX - XCenter - XLength:
Worki ngY - YCenter - YLength:
for (: Worki ngX < (XCenter + XLength) : Worki ngX++)

EVGALine(XCenter, YCenter, WorkingX, WorkingY, Color++):

/* Lines from center to right of rectangle */
WorkingX - XCenter + XLength - 1:
Worki ngY - YCenter - YLength;
for (: Worki ngY < (YCenter + YLength) : Worki ngY++)

EVGALine(XCenter, YCenter, WorkingX, WorkingY, Color++);

/* Lines from center to bottom of rectangle * /
Worki ngX - XCenter + XLength - 1:
WorkingY - YCenter + Ylength - l;
for (: WorkingX >- (XCenter - XLength) ; WorkingX- -)

EVGALine(XCenter, YCenter. WorkingX, WorkingY, Color++);

/* Lines from center to 1 eft of rectangle * /
Worki ngX - XCenter - XLength;
Worki ngY - YCenter + YLength - 1:
for (: WorkingY >- (YCenter - Ylength); WorkingY--)

EVGALine(XCenter, YCenter, WorkingX, WorkingY, Color++);

* Sample program to draw four rectangles full of 1 i nes.
*I

174 fgJ Chapter 10

void main()
{

char temp:

Set360x480Mode();

/* Draw each of four rectangles full of vectors */
VectorsUp(X_MAX / 4, Y_MAX / 4, X_MAX / 4, Y_MAX / 4, 1);
VectorsUp(X_MAX * 3 / 4. Y_MAX / 4, X_MAX / 4. Y_MAX / 4, 2):
VectorsUp(X_MAX / 4, Y_MAX * 3 / 4, X_MAX / 4, Y_MAX / 4, 3):
VectorsUp(X_MAX * 3 / 4, Y_MAX * 3 / 4, X_MAX / 4, Y_MAX / 4, 4):

/* Wait for the. enter key to be pressed */
scanf("%c", &temp);

/* Back to text mode * /
_AX = TEXT _MODE:
geninterrupt(BIOS_VIDEO_INT):

The first thing you'll notice when you run this code is that the speed of 360x480
256-color mode is pretty good, especially considering that most of the program is
implemented in C.

Drawing in 360X480 256-color mode can sometimes actually be
faster than in the 16-color modes, because the byte-per-pixel dis
play memory organization of 256-color mode eliminates the need to
read display memory before writing to it in order to isolate individual
pixels coexisting within a single byte. In addition, 360X480 256-
color mode is a variant of Mode X, which we'll encounter in detail in
Chapter 32, and supports all the high-performance features of Mode X.

The second thing you'll notice is that exquisite shading effects are possible in 360x480
256-color mode; adjacent lines blend together remarkably smoothly, even with the
default palette. The VGA allows you to select your 256 colors from a palette of 256K,
so you could, if you wished, set up the colors to produce still finer shading albeit with
fewer distinctly different colors available. For more on this and related topics, see the
coverage of palette reprogramming that begins in the next chapter.

The one thing you may not notice right away is just how much detail is visible on
the screen, because the blending of colors tends to obscure the superior resolution of
this mode. Each of the four rectangles displayed measures 180 pixels horizontally by
240 vertically. Put another way, each one of those rectangles has two-thirds as many
pixels as the entire mode 13H screen; in all, 360x480 256-color mode has 2.7 times as
many pixels as mode 13H! As mentioned above, the resolution is unevenly distributed,
with vertical resolution matching that of mode 12H but horizontal resolution barely
exceeding that of mode 13H-but resolution is hot stuff, no matter how it's laid out,
and 360x480 256-color mode has the highest 256-color resolution you're ever likely to

Be it Resolved: 360x480 g} 175

see on a standard VGA. (SuperVGAs are quite another matter-but when you require
a SuperVGA you're automatically excluding what might be a significant chunk of the
market for your code.)

Now that we've seen the wonders of which our new mode is capable, let's take the
time to understand how it works.

How 360x480 256-Color Mode Works
In describing 360x480 256-color mode, I'm going to assume that you're familiar with the
discussion of 320x400 256-color mode in the last chapter. If not, go back to that chapter
and read it; the two modes have a great deal in common, and I'm not going to bore you
by repeating myself when the goods are just a few page flips (the paper kind) away.

360x480 256-color mode is essentially 320x400 256-color mode, but stretched in both
dimensions. Let's look at the vertical stretching first, since that's the simpler of the two.

480 Scan Lines per Screen: A Little Slower, But No Big Deal
There's nothing unusual about 480 scan lines; standard modes 1 lH and 12H support
that vertical resolution. The number of scan lines has nothing to do with either the
number of colors or the horizontal resolution, so converting 320X400 256-color mode
to 320x480 256-color mode is a simple matter of reprogramming the VGXs vertical
control registers-which control the scan lines displayed, the vertical sync pulse, verti
cal blanking, and the total number of scan lines-to the 480-scan-line settings, and
setting the polarities of the horizontal and vertical sync pulses to tell the monitor to
adjust to a 480-line screen.

Switching to 480 scan lines has the effect of slowing the screen refresh rate. The
VGA always displays at 70 Hz except in 480-scan-line modes; there, due to the time
required to scan the extra lines, the refresh rate slows to 60 Hz. (VGA monitors always
scan at the same rate horizontally; that is, the distance across the screen covered by the
electron beam in a given period of time is the same in all modes. Consequently, adding
extra lines per frame requires extra time.) 60 Hz isn't bad-that's the only refresh rate
the EGA ever supported, and the EGA was the industry standard in its time-but it
does tend to flicker a little more and so is a little harder on the eyes than 70 Hz.

360 Pixels per Scan Line: No Mean Feat
Converting from 320 to 360 pixels per scan line is more difficult than converting from
400 to 480 scan lines per screen. None of the VGXs graphics modes supports 360
pixels across the screen, or anything like it; the standard choices are 320 and 640 pixels
across. However, the VGA does support the horizontal resolution we seek-360 pix
els-in 40-column text mode.

176 [g} Chapter 10

Unfortunately, the register settings that select those horizontal resolutions aren't
directly transferable to graphics mode. Text modes display 9 dots (the width of one
character) for each time information is fetched from display memory, while graphics
modes display just 4 or 8 dots per display memory fetch. (Although it's a bit confusing,
it's standard terminology to refer to the interval required for one display memory fetch
as a "character," and I'll follow that terminology from now on.) Consequently, both
modes display either 40 or 80 characters per scan line; the only difference is that text
modes display more pixels per character. Given that graphics modes cant display 9 dots
per character (there's only enough information for eight 16-color pixels or four 256-
color pixels in each memory fetch, and that's that), we'd seem to be at an impasse.

The key to solving this problem lies in recalling that the VGA is designed to drive a
monitor that sweeps the electron beam across the screen at exactly the same speed, no
matter what mode the VGA is in. If the monitor always sweeps at the same speed, how
does the VGA manage to display both 640 pixels across the screen (in high-resolution
graphics modes) and 720 pixels across the screen (in 80-column text modes)? Good
question indeed-and the answer is that the VGA has not one but two clocks on board,
and one of those clocks is just sufficiently faster than the other clock so that an extra 80
(or 40) pixels can be displayed on each scan line.

In other words, there's a slow clock (about 25 MHz) that's usually used in graphics
modes to get 640 (or 320) pixels on the screen during each scan line, and a second, fast
clock (about 28 MHz) that's usually used in text modes to crank out 720 (or 360)
pixels per scan line. In particular, 320X400 256-color mode uses the 25 MHz clock.

I'll bet that you can see where I'm headed: We can switch from the 25 MHz clock to
the 28 MHz clock in 320x480 256-color mode in order to get more pixels. It takes two
clocks to produce one 256-color pixel, so we'll get 40 rather than 80 extra pixels by
doing this, bringing our horizontal resolution to the desired 360 pixels.

Switching horiwntal resolutions sounds easy, doesn't it? Alas, it's not. There's no standard
VGA mode that uses the 28 MHz clock to draw 8 rather than 9 dots per character, so the
timing parameters have to be calculated from scratch. John Bridges has already done
that for us, but I want you to appreciate that producing this mode took some work.
The registers controlling the total number of characters per scan line, the number of
characters displayed, the horiwntal sync pulse, horiwntal blanking, the offset from the start
of one line to the start of the next, and the clock speed all have to be altered in order to set
up 360x480 256-color mode. The function Set360x480Mode in Listing I 0.1 does all
that, and sets up the registers that control vertical resolution, as well.

Once all that's done, the VGA is in 360x480 mode, awaiting our every high-resolu
tion 256-color graphics whim.

Accessing Display Memory in 360x480 256-Color Mode
Setting up for 360x480 256-color mode proved to be quite a task. Is drawing in this
mode going to be as difficult?

Be it Resolved: 360x480 {g] 177

No. In fact, if you know how to draw in 320x400 256-color mode, you already
know how to draw in 360x480 256-color mode; the conversion between the two is a
simple matter of changing the working screen width from 320 pixels to 360 pixels. In
fact, if you were to take the 320X400 256-color pixel reading and pixel writing code
from Chapter 9 and change the SCREEN_ WIDTH equate from 320 to 360, those
routines would work perfectly in 360x480 256-color mode.

The organization of display memory in 360x480 256-color mode is almost exactly
the same as in 320x400 256-color mode, which we covered in detail in the last chapter.
However, as a quick refresher, each byte of display memory controls one 256-color
pixel, just as in mode 13H. The VGA is reprogrammed by the mode set so that adja
cent pixels lie in adjacent planes of display memory. Look back to Figure 9 .1 in the last
chapter to see the organization of the first few pixels on the screen; the bytes control
ling those pixels run cross-plane, advancing to the next address only every fourth pixel.
The address of the pixel at screen coordinate (x,y) is:

address= ((t360)+x)/4

and the plane of a given pixel is:

plane = x modulo 4

A new scan line starts every 360 pixels, or 90 bytes, as shown in Figure 10.1. This is
the major programming difference between the 360x480 and 320x400 256-color
modes; in the 320X400 mode, a new scan line starts every 80 bytes.

The other programming difference between the two modes is that the area of dis
play memory mapped to the screen is longer in 360x480 256-color mode, which is

AOOOO 00 06 00 03 04

A005A OF 06 00 5A 9F

AOOB4 01 01 01 01 01

AOlOE 01 OF 01 14 22

A0168

Plane O of Display Memory

•••ooo•••• o•••oooo•• •••••••••• ••000000•• •••••ooo••
The Screen

Figure 10.1 Pixel Organization in 360x480 256-Color Mode

178 fl} Chapter 1 O

only common sense given that there are more pixels in that mode. The exact amount of
memory required in 360x480 256-color mode is 360 times 480 = 172,800 bytes.
That's more than half of the VGP:s 256 Kb memory complement, so page-flipping is
out; however, there's no reason you couldn't use that extra memory to create a virtual
screen larger than 360x480, around which you could then scroll, if you wish.

That's really all there is to drawing in 360x480 256-color mode. From a program
ming perspective, this mode is no more complicated than 320x400 256-color mode
once the mode set is completed, and should be capable of good performance given
some clever coding. It's not particular straightforward to implement bitblt, block move,
or fast line-drawing code for any of the extended 256-color modes, but it can be done
and it's worth the trouble. Even the small taste we've gotten of the capabilities of these
modes shows that they put the traditional CGA, EGA, and generally even VGA modes
to shame.

There's more and better to come, though; in later chapters, we'll return to high
resolution 256-color programming in a big way, by exploring the tremendous poten
tial of these modes for real time 2-D and 3-D animation.

Yogi Bear
and
Eurythmics
Confront
VGA Colors

... u
I 7 = --= u

The Basics of VGA Color Generation
Kevin Mangis wanes to know about the VG/\s 4-bit to 8-bit to 18-bit color translation.
Mansur Loloyan would like to find out how to generate a look-up table containing
256 colors and how to change the default color palette. And surely they are only the tip
of the iceberg; hordes of screaming programmers from every corner of the planet are
no doubt tearing the place up looking for a discussion of VGA color, and venting their
frustration at my mailbox. Let's have it, they've said, clearly and in considerable num
bers. As Eurythmics might say, who is chis humble writer to disagree?

On the ocher hand, I hope you all know what you're getting into. To paraphrase
Yogi, the VGA is smarter (and more confusing) than the average board. There's the
basic 8-bit to 18-bit translation, there's the EGA-compatible 4-bit to 6-bit translation,
there's the 2- or 4-bit color paging register chat's used to pad 6- or 4-bit pixel values out
to 8 bits, and then there's 256-color mode. Fear not, it will all make sense in the end,
but it may cake us a couple of additional chapters to get there-so lee's get started.

Before we begin, though, I must refer you to Michael Covingcon's excellent article,
"Color Vision and the VGA," in the June/July 1990 issue of PC TECHNIQUES.
Michael, one of the most brilliant people it has ever been my pleasure to meet, is an
expert in many areas I know nothing about, including linguistics and artificial intelli
gence. Add to chat list the topic of color perception, for his article superbly describes
the mechanisms by which we perceive color and ties chat information to the VGN.s
capabilities. After reading Michael's article, you'll understand what colors the VGA is
capable of generating, and why.

Our topic in this chapter complements Michael's article nicely. Where he focused
on color perception, we'll focus on color generation; chat is, the ways in which the

179

180 Jg} Chapter 11

VGA can be programmed to generate those colors that lie within its capabilities. To
find out why a VGA can't generate as pure a red as an LED, read Michael's article. If
you want to find out how to flip between 16 different sets of 16 colors, though, don't
touch that dial!

I would be remiss ifl didn't point you in the direction of two more articles, these in
the July 1990 issue of Dr. Dobb's journal "Super VGA Programming," by Chris Howard,
provides a good deal of useful information about SuperVGA chipsets, modes, and
programming. "Circles and the Digital Differential Analyzer," by Tim Paterson, is a
good article about fast circle drawing, a topic we'll tackle soon. All in all, the dog days
of 1990 were good times for graphics.

VGA Color Basics
Briefly put, the VGA color translation circuitry takes in one 4- or 8-bit pixel value at a
time and translates it into three 6-bit values, one each of red, green, and blue, that are
converted to corresponding analog levels and sent to the monitor. Seems simple enough,
doesn't it? Unfortunately, nothing is ever that simple on the VGA, and color transla
tion is no exception.

The Palette RAM
The color path in the VGA involves two stages, as shown in Figure 11.1. The first stage
fetches a 4-bit pixel from display memory and feeds it into the EGA-compatible pal
ette RAM (so called because it is functionally equivalent to the palette RAM color
translation circuitry of the EGA), which translates it into a 6-bit value and sends it on
to the DAC. The translation involves nothing more complex than the 4-bit value of a
pixel being used as the address of one of the 16 palette RAM registers; a pixel value of
0 selects the contents of palette RAM register 0, a pixel value of 1 selects register 1, and
so on. Each palette RAM register stores 6 bits, so each time a palette RAM register is
selected by an incoming 4-bit pixel value, 6 bits of information are sent out by the
palette RAM. (The operation of the palette RAM was described back in Chapter 7.)

The process is much the same in text mode, except that in text mode each 4-bit
pixel value is generated based on the character's font pattern and attribute. In 256-
color mode, which we'll get to eventually, the palette RAM is not a factor from the
programmer's perspective and should be left alone.

The DAC
Once the EGA-compatible palette RAM has fulfilled its karma and performed 4-bit to
6-bit translation on a pixel, the resulting value is sent to the DAC (Digital/Analog
Converter). The DAC performs an 8-bit to 18-bit conversion in much the same man
ner as the palette RAM, converts the 18-bit result to analog red, green, and blue signals

Yogi Bear and Eurythmics Confront VGA Colors {gJ 181

4-bit pixel value from display memory
(graphics mode) or from font/attribute
control (text mode)

Color Select Reg ister
(AC reg 14h)

L_J
Bits 2-3 outl

L_J 1 Bits 0 -1 out

l Bit s 0 -3 in

Palette RAM

Uses incoming 4-bit
pixel values to look
up one of the 16 6 -bit
registers, then sends
the contents of that
register out (4-bit to
6 -bit conversion)

Bits 0 -3 out

If bit 7 of AC Mode
reg is 0, select
pa lette RAM source;
if 1, select Color
Select reg source

Bits 4-5 out

Bits 6-7 in l l Bits 4-5 in l Bits 0-3 in

DAC

Uses incoming 8 -bit pixel va lue to look up one of 256
18-bit registers, then sends the contents of that
register, organized as 6-bit red, green, and blue color
components, on to analog conversion circuitry, where
they are converted t o three proportional analog signals
and sent to the monitor (8-bit to 18-bit conversion)

Red ana log signal
to monitor (one of
64 possible levels)

l
Green analog signal
to monitor (one of
64 possible levels)

Figure 11.1 The VGA Color Generation Path

Blue analog signal
to monitor (one of
64 possible levels)

182 Jg) Chapter 11

(6 bits for each signal), and sends the three analog signals to the monitor. The DAC is
a separate chip, external to the VGA chip; but it's an integral part of the VGA standard
and is present on every VGA.

(I'd like to take a moment to point out that you can't speak of "color" at any point in
the color translation process until the output stage of the DAC. The 4-bit pixel values
in memory, 6-bit values in the palette RAM, and 8-bit values sent to the DAC are all
attributes, not colors, because they're subject to translation by a later stage. For ex
ample, a pixel with a 4-bit value of O isn't black, it's attribute 0. It will be translated to

3FH if palette RAM register 0 is set to 3FH, but that's not the color white, just another
attribute. The value 3FH coming into the DAC isn't white either, and if the value
stored in DAC register 63 is red=7, green=0, and blue=0, the actual color displayed for
that pixel that was 0 in display memory will be dim red. It isn't color until the DAC
says it's color.)

The DAC contains 256 18-bit storage registers, used to translate one of 256 possible
8-bit values into one of 256K (262,144, to be precise) 18-bit values. The 18-bit values
are actually composed of three 6-bit values, one each for red, green, and blue; for each color
component, the higher the number, the brighter the color, with 0 turning that color
off in the pixel and 63 (3FH) making that color maximum brightness. Got all that?

Color Paging with the Color Select Register
"Wait a minute," you say bemusedly. ''.Aren't you missing some bits between the palette
RAM and the DAC?" Indeed I am. The palette RAM puts out 6 bits at a time, and the
DAC takes in 8 bits at a time. The two missing bits-bits 6 and 7 going into the
DAC-are supplied by bits 2 and 3 of the Color Select register (Attribute Controller
register 14H). This has intriguing implications. In 16-color modes, pixel data can select
only one of 16 attributes, which the EGA palette RAM translates into one of 64 attributes.
Normally, those 64 attributes look up colors from registers O through 63 in the DAC,
because bits 2 and 3 of the Color Select register are both zero. By changing the Color
Select register, however, one of three other 64 color sets can be selected instantly. I'll
refer to the process of flipping through color sets in this manner as color paging.

That's interesting, but frankly it seems somewhat half-baked; why bother expand
ing 16 attributes to 64 attributes before looking up the colors in the DAC? What we'd
really like is to map the 16 attributes straight through the palette RAM without chang
ing them and supply the upper 4bits going to the DAC from a register, giving us 16
color pages. As it happens, all we have to do to make that happen is set bit 7 of the
Attribute Controller Mode register (register 1 OH) to 1. Once that's done, bits 0 through
3 of the Color Select register go straight to bits 4 through 7 of the DAC, and only bits
3 through O coming out of the palette RAM are used; bits 4 and 5 from the palette
RAM are ignored. In this mode, the palette RAM effectively contains 4-bit, rather
than 6-bit, registers, but that's no problem because the palette RAM will be programmed
to pass pixel values through unchanged by having register 0 set to 0, register 1 set to 1,

Yogi Bear and Eurythmics Confront VGA Colors g} 183

and so on, a configuration in which the upper two bits of all the palette RAM registers
are the same (zero) and therefore irrelevant. As a matter of fact, you'll generally want to
set the palette RAM to this pass-through state when working with VGA color, whether
you're using color paging or not.

Why is it a good idea to set the palette RAM to a pass-through state? It's a good idea
because the palette RAM is programmed by the BIOS to EGA-compatible settings and
the first 64 DAC registers are programmed to emulate the 64 colors that an EGA can
display during mode sets for 16-color modes. This is done for compatibility with EGA
programs, and it's useless if you're going to tinker with the VGN.s colors. As a VGA
programmer, you want to take a 4-bit pixel value and turn it into an 18-bit RGB value;
you can do that without any help from the palette RAM, and setting the palette RAM
to pass-through values effectively takes it out of the circuit and simplifies life some
thing wonderful. The palette RAM exists solely for EGA compatibility, and serves no
useful purpose that I know of for VGA-only color programming.

256-Color Mode
So far I've spoken only of 16-color modes; what of256-color modes?

Ill
The rule in 256-color modes is: Don't tinker with the VGA palette.
Period. You can select any colors you want by reprogramming the DAC,
and there's no guarantee as to what will happen if you mess around
with the palette RAM. There's no benefit that I know of to changing
the palette RAM in 256-color mode, and the effect may vary from
VGA to VGA. So don't do it unless you know something I don't.

On the other hand, feel free to alter the DAC settings to your heart's content in
256-color mode, all the more so because this is the only mode in which all 256 DAC
settings can be displayed simultaneously. By the way, the Color Select register and bit
7 of the Attribute Controller Mode register are ignored in 256-color mode; all 8 bits
sent from the VGA chip to the DAC come from display memory. Therefore, there is
no color paging in 256-color mode. Of course, that makes sense given that all 256
DAC registers are simultaneously in use in 256-color mode.

Setting the Palette RAM
The palette RAM can be programmed either directly or through BIOS interrupt 1 OH,
function I0H. I strongly recommend using the BIOS interrupt; a clone BIOS may
mask incompatibilities with genuine IBM silicon. Such incompatibilities could in
clude anything from flicker to trashing the palette RAM; or they may not exist at all,
but why find out the hard way? My policy is to use the BIOS unless there's a clear
reason not to do so, and there's no such reason that I know of in this case.

184 ~ Chapter 11

When programming specifically for the VGA, the palette RAM needs to be loaded
only once, to store the pass-through values 0 through 15 in palette RAM registers 0
through 15. Setting the entire palette RAM is accomplished easily enough with
subfunction 2 (AL=2) of function lOH (AH= lOH) of interrupt lOH. A single call to
this subfunction sets all 16 palette RAM registers (and the Overscan register) from a
block of 17 bytes pointed to by ES:DX, with ES:DX pointing to the value for register
0, ES:DX+l pointing to the value for register 1, and so on up to ES:DX+16, which
points to the overscan value. The palette RAM registers store 6 bits each, so only the
lower 6 bits of each of the first 16 bytes in the 17-byte block are significant. (The
Overscan register, which specifies what's displayed between the area of the screen that's
controlled by the values in display memory and the blanked region at the edges of the
screen, is an 8-bit register, however.)

Alternatively, any one palette RAM register can be set via subfunction 0 (AL=0) of
function lOH (AH= lOH) of interrupt lOH. For this subfunction, BL contains the
number of the palette RAM register to set and the lower 6 bits of BH contain the value
to which to set that register.

Having said that, let's leave the palette RAM behind (presumably in a pass-through
state) and move on to the DAC, which is the right place to do color translation on the
VGA.

Setting the OAC
Like the palette RAM, the DAC registers can be set either directly or through the
BIOS. Again, the BIOS should be used whenever possible, but there are a few compli
cations here. My experience is that varying degrees of flicker and screen bounce occur
on many VGAs when a large block of DAC registers is set through the BIOS. That's
not a problem when the DAC is loaded just once and then left that way, as is the case
in Listing 11.1, which we'll get to shortly, but it can be a serious problem when the
color set is changed rapidly ("cycled") to produce on-screen effects such as rippling
colors. My (limited) experience is that it's necessary to program the DAC directly in
order to cycle colors cleanly, although input from readers who have worked extensively
with VGA color is welcome.

At any rate, the code in this chapter will use the BIOS to set the DAC, so I'll
describe the BIOS DAC-setting functions next. Later, I'll briefly describe how to set
both the palette RAM and DAC registers directly, and I'll return to the topic in detail
in an upcoming chapter when we discuss color cycling.

An individual DAC register can be set by interrupt lOH, function l0H (AH=lO),
subfunction 1 OH (AL= lOH), with BX indicating the register to be set and the color to
which that register is to be set stored in DH (6-bit red component), CH (6-bit green
component), and CL (6-bit blue component).

A block of sequential DAC registers ranging in size from one register up to all 256
can besetviasubfunction 12H (AL=l2H) of interrupt l0H, function lOH (AH=lOH).

Yogi Bear and Eurythmics Confront VGA Colors 1l} 185

In this case, BX contains the number of the first register to set, CX contains the num
ber of registers to set, and ES:DX contains the address of a table of color entries to
which DAC registers BX through BX+CX-1 are to be set. The color entry for each
DAC register consists of three bytes; the first byte is a 6-bit red component, the second
byte is a 6-bit green component, and the third byte is a 6-bit blue component, as
illustrated by Listing 11.1.

If You Can't Call the BIOS, Who Ya Gonna Call?
Although the palette RAM and DAC registers should be set through the BIOS when
ever possible, there are times when the BIOS is not the best choice or even a choice at
all; for example, a protected-mode program may not have access to the BIOS. Also, as
mentioned earlier, it may be necessary to program the DAC directly when performing
color cycling. Therefore, I'll briefly describe how to set the palette RAM and DAC
registers directly; in the next chapter I'll discuss programming the DAC directly in
more detail.

The palette RAM registers are Attribute Controller registers 0 through 15. They are
set by first reading the Input Status 1 register (at 3DAH in color mode or 3BAH in
monochrome mode) to reset the Attribute Controller toggle to index mode, then load
ing the Attribute Controller Index register (at 3C0H) with the number (0 through 15)
of the register to be loaded. Do not set bit 5 of the Index register to 1, as you normally
would, but rather set bit 5 to 0. Setting bit 5 to 0 allows values to be written to the
palette RAM registers, but it also causes the screen to blank, so you should wait for the
start of vertical retrace before loading palette RAM registers if you don't want the
screen to flicker. (Do you see why it's easier to go through the BIOS?) Then, write the
desired register value to 3C0H, which has now toggled to become the Attribute Con
troller Data register. Write any desired number of additional register number/register
data pairs to 3C0H, then write 20H to 3C0H to unblank the screen.

The process of loading the palette RAM registers depends heavily on the proper
sequence being followed; if the Attribute Controller Index register or index/data toggle
data gets changed in the middle of the loading process, you'll probably end up with a
hideous display, or no display at all. Consequently, for maximum safety you may want
to disable interrupts while you load the palette RAM, to prevent any sort of interfer
ence from a TSR or the like that alters the state of the Attribute Controller in the
middle of the loading sequence.

The DAC registers are set by writing the number of the first register to set to the
DAC Write Index register at 3C8H, then writing three bytes-the 6-bit red compo
nent, the 6-bit green component, and the 6-bit blue component, in that order-to the
DAC Data register at 3C9H. The DAC Write Index register then autoincrements, so if
you write another three-byte RGB value to the DAC Data register, it'll go to the next
DAC register, and so on indefinitely; you can set all 256 registers by sending 256*3 =

768 bytes to the DAC Data Register.

186 {gJ Chapter 11

Loading the DAC is just as sequence-dependent and potentially susceptible to interfer
ence as is loading the palette, so my personal inclination is to go through the whole
process of disabling interrupts, loading the DAC Write Index, and writing a three-byte
RGB value separately for each DAC register; although that doesn't take advantage of
the autoincrementing feature, it seems to me to be least susceptible to outside influences. (It
would be even better to disable interrupts for the entire duration of DAC register loading,
but that's much too long a time to leave interrupts off.) However, I have no hard
evidence to offer in support of my conservative approach to setting the DAC, just an
uneasy feeling, so I'd be most interested in hearing from any readers.

A final point is that the process ofloading both the palette RAM and DAC registers
involves performing multiple OUTs to the same register. Many people whose opinions
I respect recommend delaying between 1/0 accesses to the same port by performing a
JMP $+2 (jumping flushes the prefetch queue and forces a memory access--or at least
a cache access-to fetch the next instruction byte). In fact, some people recommend two
JMP $+2 instructions between 1/0 accesses to the same port, and three jumps between
1/0 accesses to the same port that go in opposite directions (OUT followed by IN or
IN followed by OUT). This is clearly necessary when accessing some motherboard
chips, but I don't know how applicable it is when accessing VGAs, so make of it what
you will. Input from knowledgeable readers is eagerly solicited.

In the meantime, if you can use the BIOS to set the DAC, do so; then you won't
have to worry about the real and potential complications of setting the DAC directly.

An Example of Setting the DAC
This chapter has gotten about as big as a chapter really ought to be; the VGA color saga
will continue in the next few. Quickly, then, Listing 11.1 is a simple example of setting
the DAC that gives you a taste of the spectacular effects that color translation makes
possible. There's nothing particularly complex about Listing 11.1; it just selects 256-
color mode, fills the screen with one-pixel-wide concentric diamonds drawn with se
quential attributes, and sets the DAC to produce a smooth gradient of each of the
three primary colors and of a mix of red and blue. Run the program; I suspect you'll be
surprised at the stunning display this short program produces. Clever color manipula
tion is perhaps the easiest way to produce truly eye-catching effects on the PC.

LISTING 11.1 L 11-1.ASM
Program to demonstrate use of the DAC registers by selecting a
smoothly contiguous set of 256 colors, then filling the screen
with concentric diamonds in all 256 colors so that they blend
into one another to form a continuum of color .

. model small

. stack 200h

.data

Yogi Bear and Eurythmics Confront VGA Colors [g} 187

Table used to set all 256 DAC entries.

Table format:
Byte D: DAC register 0 red value
Byte 1: DAC register 0 green value
Byte 2: DAC register 0 blue value
Byte 3: DAC register 1 red value
Byte 4: DAC register 1 green value
Byte 5: DAC register 1 blue value

Byte 765: DAC register 255 red value
Byte 766: DAC register 255 green value
Byte 767: DAC register 255 blue value

ColorTable label byte

; The first 64 entries are increasingly dim pure green.
x-o

REPT 64
db 0,63-X,O

X~X+l
ENDM

; The next 64 entries are increasingly strong pure blue.
x-o

REPT 64
db 0,0,X

X=X+l
ENDM

; The next 64 entries fade through violet to red.
x-o

REPT 64
db X,0,63-X

X~X+l
ENDM

; The last 64 entries are increasingly dim pure red.
X=O

REPT 64
db 63-X,O,O

X=X+l
ENDM

.code
Start:

mov ax,0013h

int 10h

mov ax.@data
mov es.ax
mov dx,offset

mov ax,1012h

ColorTable

;AH=O selects set mode function,
AL-13h selects 320x200 256-col or

; mode

;load the DAC registers with the
; color settings
; point ES to the default
; data segment

;point ES:DX to the start of the
; block of RGB three-byte values
; to load into the DAC registers
;AH-lOh selects set col or function.

AL=12h selects set block of DAC
; registers subfunction

188 fgJ Chapter 11

sub bx.bx :1 oad the block of registers
; starting at DAC register f/0

mov cx,lOOh :set all 256 registers
int 10h :1 oad the DAC registers

;now fill the screen with
; concentric diamonds in all 256
; color attributes

mov ax,OaOOOh :point OS to the display memory
mov ds,ax : segment

:draw diagonal lines in the upper
: left quarter of the screen

mov al, 2 :start with color attribute //2
mov ah,-1 :cycle down through the colors
mov bx,320 :draw top to bottom (distance from

: one line to the next)
mov dx, 160 :width of rectangle
mov si,100 :height of rectangle
sub di • di :start at (0,0)
mov bp,1 ;draw left to right (distance from

: one column to the next)
ca 11 Fill Block :draw it

;draw diagonal lines in the upper
; right quarter of the screen

mov al, 2 ;start with color attribute //2
mov ah, -1 ;cycle down through the colors
mov bx,320 ;draw top to bottom (distance from

: one line to the next)
mov dx,160 :width of rectangle
mov s i , 100 ;height of rectangle
mov di,319 :start at (319,0)
mov bp,-1 :draw right to left (distance from

; one column to the next)
call FillBlock :draw it

;draw diagonal lines in the lower
: left quarter of the screen

mov al , 2 :start with color attribute //2
mov ah,-1 :cycle down through the colors
mov bx, -320 :draw bottom to top (distance from

: one line to the next)
mov dx,160 :width of rectangle
mov s i, 100 :height of rectangle
mov di,199*320 ;start at (0,199)
mov bp,1 : draw left to right (distance from

: one column to the next)
ca 11 Fi 11 Block :draw it

:draw diagonal 1 ines in the lower
: right quarter of the screen

mov al , 2 ; start with color attribute /12
mov ah,-1 : cycle down through the colors
mov bx,-320 :draw bottom to top (distance from

: one line to the next)
mov dx,160 ;width of rectangle
mov si,100 :height of rectangle
mov di ,199*320+319 ; start at (319,199)
mov bp, · l :draw right to left (distance from

; one column to the next)

Yogi Bear and Eurythmics Confront VGA Colors {gJ 189

ca 11 Fill Block :draw it

mov ah,1 :wait for a key
int 21h

mov ax,0003h : return to text mode
int 10h

mov ah,4ch ; done- - return to DOS
int 21h

Fills the specified rectangular area of the screen with diagonal lines.

Input:
AL = initial attribute with which to draw
AH = amount by which to advance the attribute from

one pixel to the next
BX = di stance to advance from one pixel to the next
DX = width of rectangle to fi 11
SI = height of rectangle to fill
DS:DN = screen address of first pixel to draw
BP = offset from the start of one column to the start of

the next

FillBlock:
Fi 11 Horzloop:

push
push
mov

FillVertloop:
mov
add
add
loop
pop
add

pop
add
dee
jnz
ret

end

di
ax
cx,si

[di].al
di, bx
al • ah
Fi 11 Vert Loop
ax
al • ah

di
di. bp
dx
FillHorzloop

Start

; preserve pointer to top of column
;preserve initial attribute
; column height

;set the pixel
;point to the next row in the column
:advance the attribute

:restore initial attribute
:advance to the next attribute to
: start the next column
;retrieve pointer to top of column
;point to next column
;have we done all columns?
;no, do the next column

Note the jagged lines at the corners of the screen when you run Listing 11.1. This
shows how coarse the 320X200 resolution of mode 13H actually is. Now look at how
smoothly the colors blend together in the rest of the screen. This is an excellent ex
ample of how careful color selection can boost perceived resolution, as for example
when drawing antialiased lines, as discussed in Chapter 27.

Finally, note that the border of the screen turns green when Listing 11.1 is run.
Listing 11.1 reprograms DAC register O to green, and the border attribute (in the
Overscan register) happens to be 0, so the border comes out green even though we
haven't touched the Overscan register. Normally, attribute O is black, causing the bor
der to vanish, but the border is an 8-bit attribute that has to pass through the DAC just

190 fKl Chapter 11

like any other pixel value, and it's just as subject to DAC color translation as the pixels
controlled by display memory. However, the border color is not affected by the palette
RAM or by the Color Select register.

In this chapter, we traced the surprisingly complex path by which the VGA turns a
pixel value into RGB analog signals headed for the monitor. In the next chapter and
the one that follows, it we'll look at some more code that plays with VGA color. We'll
explore in more detail the process of reading and writing the palette RAM and DAC
registers, and we'll observe color paging and cycling in action.

Paging
Mr. VGA ...

.. u
I 7 = ca -= ~

More Colors in 16-Color Mode through VGA Color Paging
When last we looked, our hero had learned how to set the VG./'\s Digital to Analog
Converter (DAC) to select 16 or 256 colors from a set of256K colors. However, he or
she (or both) still had a lot to learn about color paging, loading and reading the DAC,
and color cycling, so that's where we're headed next. Before we get into any serious
graphics, though, let me address a potential problem you may encounter-even with
your very own C code-as you upgrade your programming tools to new technology.

Breaking Code by Upgrading Compilers
In its day, Microsoft C 6.0 was a solid compiler, but it broke much of the C graphics
code I had presented in my various writings up to its release. You see, in order to set a
single pixel in EGA/VGA memory, it's necessary to perform a read to latch display
memory followed by a write to draw the pixel. (If you don't understand why this is the
case, I suggest that you refer back to Part I of this book, but for now, just take my word
for it.) Ideally we'd like to perform the read and write in close succession, with a single
instruction if possible. In assembly language, that's no problem; just XCHG, AND,
XOR, or OR an appropriate value with memory. In the code in question, the value
actually written to memory is irrelevant, because of the way set/reset and the bit mask
are set up; all that's needed is a read followed by a write with any value at all.

Matters are not so simple in C. Long ago, I tried to use code like this

*ScreenPtr I- 0;

to perform a read/write operation to display memory. Unfortunately, the optimizer in
Microsoft C 5.0 (not 6.0) considered this to be a null operation, because any value

191

192 {gJ Chapter 12

ORed with 0 remains unchanged (when the destination is system memory, that is; as
described above, ORing with 0 is a useful operation when performed to VGA memory).
Having concluded that it had encountered what amounted to a null operation, MSC
5.0 then declined to generate any code at all.

That was easy enough to fix. I just substituted

*ScreenPtr !- OxFF;

which is definitely not a null operation (remember, for our purposes the value ORed
with display memory is irrelevant, so 0xFF served just as well as 0). MSC 5.0 oblig
ingly assembled the desired OR with memory, and there matters stood until the arrival
ofMSC6.0.

MSC 6.0 doesn't think *ScreenPtr I= OxFF; is a null operation-but it doesn't think
it's an OR operation either. ORing a value with 0xFF invariably produces 0xFF as the
result, so MSC 6.0 treated that code as if it were:

*ScreenPtr - OxFF;

and assembled a MOV instruction, not an OR instruction. That eliminated the read we
needed before writing to display memory, and that's what broke so much graphics code.

The solution is simple: Instead of:

*ScreenPtr I- OxFF;

use

*ScreenPtr I- OxFE:

and you should be all set.

fi.l
There's an important point to all this beyond simply getting read
modify-write operations to work in C. Many people believe that it's
possible to write low-level graphics code in C that's as efficient as
code written in assembly language, and more portable, if you know
exactly what code the compiler generates. This example shows why
that's a fool's game; code that depends on the compiler's code gen
eration isn't necessarily even portable from one release of the com
piler to the next, let alone between compilers. Besides, the graphics
adapters you're likely to encounter under MS-DOS are generally found
only in x86-based computers, so it's hard to imagine what portabil
ity benefits there might be. On top of all that, I'm still waiting to
encounter C graphics code that matches good assembly language
code in the performance department.

Paging Mr. VGA... /gJ 193

All in all, my advice is to stick to assembly language for your key graphics code.
And with that out of the way, let's move on to color paging.

Color Paging
As you'll recall from the previous chapter, the VGXs DAC contains 256 storage loca
tions, each holding one 18-bit color organized as one 6-bit red component, one 6-bit
green component, and one 6-bit blue component. In 256-color mode, each 8-bit pixel
value in memory selects one of the 256 DAC locations, the value in that location is
looked up and sent to the screen as the pixel's color, and that's that. In 16-color modes,
however, each pixel is represented in display memory by a 4-bit value, so each pixel can
only look up one of 16 DAC locations to be sent to the screen. What about those other
240 DAC locations? Are they useless in 16-color modes?

Not at all. Normally (as configured by the BIOS at mode set time in 16-color modes),
the first 64 locations in the DAC are set to colors that are equivalent to the 64 colors an
EGA can display. (The other 192 DAC locations may or may not be set to any particu
lar values, so be sure to load them before relying on their contents.) At the same time,
the EGA-compatible palette RAM is set to the same values an EGA is normally set to.
This is dandy if you're writing code for an EGA, because when you tweak the palette
RAM on a VGA you'll get exactly the results you'd expect on an EGA. If you're writing
VGA-specific code, however, you're shortchanging yoursel£

The ideal 16-color arrangement on a VGA is as follows: Load palette RAM register
0 with the value 0, palette RAM register 1 with the value 1, and so on up to palette
RAM register 15, which should be set to 15. (I described how to load the palette RAM
in the previous chapter, and in a little while we'll see working code that loads the
palette.) The object here is to cause the palette RAM to pass pixel values through
unchanged, so we can ignore it; the DAC will do all the color work.

Now load DAC locations O through 15 with any 16 colors you'd care to display. A
pixel value of O in memory will cause the color in DAC location O to be displayed, a
pixel value of 1 in memory will select DAC location 1, and so on. You can change the
values stored in the DAC whenever you want to work with a different set of colors.
(Loading the DAC was discussed in the previous chapter, and will be revisited in detail
in the next chapter.)

Things get more exciting with the addition of color paging. If you set bit 7 of the
Attribute Controller Mode register (Attribute Controller register IOH) to 1, bits 3
through O of the Color Select register (Attribute Controller register 14H) become bits
7 through 4 of the 8-bit values used to address locations within the DAC. The Color
Select register operates in conjunction with the pixel data from display memory, which
provides DAC address bits 3 through 0, as shown in Figure 12.1. I'll call this mode of
operation "16-pages-of-16-colors" paging. When bit 7 of the AC Mode register is 0
(the EGA-compatible default), "4-pages-of-64-colors" paging is selected, as described
in the previous chapter.

194 [lJ Chapter 12

•.,,,., ",.'
'"

VGA Chip
Color Select Register A pixel value or a character/attribute
(Attribute Controller pair from display memory, after
register 14h) being processed for graphics or text

mode and then transformed by the
I I .r·,,1.'/:I :51? 11 10 I palette RAM

I I
:., -_ I ,' •'"~ ··:1 . •' 'i:·: ·•·1-- .. .· • ·.:• l B~,3-0M

4-bit pixel
attribute out

Bits 7-4 in Bits 3-0 in
. ;,, ,,, ...

1·:- DAC I•

Uses incoming 8-bit value to look up one of 256 18-bit registers :-

1··
for each pixel, then sends the contents of that register, organized
as 6-bit red, green, and blue color components, on to analog
conversion circuitry. There they are converted to three proportional
analog signals and sent to the monitor to form a pixel on the screen.

.i;

.. ..

t t t

Red analog signal Green analog signal Blue analog signal
to monitor to monitor to monitor
(one of 64 (one of 64 (one of 64
possible levels) possible levels) possible levels)

Figure 12.1 Color Selection with 16-Pages-of-16-Colors Paging

The Color Select register gives us the ability to perform color paging; that is, to flip
instantly between color sets and thereby provide a new color interpretation for every
pixel on the screen without changing the contents of display memory. If you view the
DAC as consisting of 16 pages each containing 16 colors, as shown in Figure 12.2,
then the Color Select register selects one of those pages and the pixel data selects one of
16 colors from within the currently selected page. (Remember that the palette RAM is
set to a pass-through state, so pixel values of O through 15 come through the palette
RAM to the DAC unaltered.) Basically, the Color Select register gives you instanta
neous access to any one of 16 completely independent pages of 16 colors each. (By the
way, color paging isn't available in 256-color mode. The reason should be obvious;
there are only enough DAC locations for one set of 256 colors.)

When 16-pages-of-16-colors paging is
enabled, the 256 DAC locations are
logically organized as 16 color pages
each containing 16 DAC locations.

Figure 12.2 16-Pages-of-16-Colors Paging

0
15
16
31
32
47
48
63

224
239
240
255

Paging Mr. VGA... g} 195

Color Page 0

Color Page 1

Color Page 2

Color Page 3

Color Page 14

Color Page 15

Big deal, you say; why not just reprogram the first 16 DAC locations if you want
different colors? First, it's considerably faster to program the Color Select register with
a few 1/0 operations than it is to reprogram 16 DAC registers, a process which takes
64 OUT instructions. Second, it's much easier to avoid flicker when using the Color
Select register; all you have to do is wait for the vertical sync pulse and set one register.
In fact, you don't even have to wait for the vertical sync pulse, because the colors will
change instantly, with no glitching, starting at the location of the electron beam at the
very instant you set the Color Select register. The only reason to wait for the sync pulse
is to make sure that all the pixels in each frame are drawn with the same color set, in order
to avoid having the top and bottom of the screen appear briefly in a mismatched state.

On the other hand, loading the DAC without flicker or glitching is no picnic. The
loading has to take place during non-display time; otherwise for a short time part of
the screen will be drawn with a mix of the old color set and the new color set, resulting
in unintended and often highly undesirable on-screen effects. However, it can be diffi
cult on slow computers to load a large block of DAC locations during a single vertical
blanking period, so there may be no way to reload the DAC cleanly between one frame
and the next (although this is more of a problem in 256-color mode, where it's some
times necessary to reload all 256 DAC locations at once). Furthermore, some BIOSes
glitch or bounce the screen when called to load the DAC, and some are faster than
others.

We'll return to issues of loading the DAC in the next chapter. For now, what all this
amounts to is that if you need to switch color sets frequently and color paging can do
the job you need done, it's far superior to constantly reloading the DAC-and easier,
too.

196 {gJ Chapter 12

How to Perform Color Paging
Color paging can be performed either directly or through the BIOS. As usual, the BIOS
route is the better choice if there's no good reason not to use it, but there is one possible
drawback that we'll come across shortly. In any case, I'll describe both techniques.

Color paging directly (without the BIOS) is a two-step process: The first step is
enabling color paging, and the second step is selecting the desired color page. Enabling
color paging such that you have 16 pages of 16 colors is a simple matter of setting bit
7 of the AC Mode register to 1, and is accomplished as follows:

• Read the Input Status 1 register at 3BAH (in monochrome mode) or 3DAH (in
color mode) to reset the AC Index/Data toggle;

• Write 30H to the AC Index register at 3C0H to address AC register 1 OH, the AC
Mode register (the index value is 30H rather than lOH because bit 5 of the AC
Index register should always be 1 except when setting the palette RAM; when bit 5
is 0, the screen blanks);

• Read the AC Mode register setting from the AC Data register at 3CIH;

• OR 80H with the value just read to set bit 7 (this selects 16-pages-of-16-colors
operation rather than 4-pages-of-64-colors operation, the default);

• Write the result to the AC Mode register via the AC Data register at 3C0H. (Re
member that the AC Data register is at 3C1H for reads, but is at 3C0H on every
other OUT-alternating with the AC Index register-for writes, in order to pro
vide EGA compatibility.)

At this point, color paging with 16 pages of 16 colors each is enabled.
Once color paging is enabled, you can select a color page as follows:

• Read the Input Status 1 register at 3XAH to reset the AC Index/Data toggle;

• Write 34H to the AC Index register at 3COH to address AC register 14H, the Color
Select register;

• Write the desired page number (0 through 15) to the Color Select register via the
AC Data register at 3C0H.

Repeat this process whenever you want to switch to another color page.

Ill
Although it's not required, you'll generally want to wait for the lead
ing edge of the vertical sync pulse before switching pages, as this
provides the smoothest color transition, as described above. Take
the vertical sync wait out of Listing 12.1 (which I'll present a little
later) and set USE_BIOS to 0, and you'll see that the appearance
of the program suffers considerably.

Paging Mr. VGA... {gj 197

Controlling color paging through the BIOS is a similar two-step process. The first step is
to enable 16-pages-of-16-colors paging, and that's done by invoking interrupt lOH, the
video interrupt, with AH= lOH, AL= 13H, BL= 0, and BH = 1. (IfBH = 0, 4-pages
of-64-colors operation is selected.) The second step is to select the desired color page
by invoking interrupt lOH with AH= lOH, AL= 13H, BL= 1, and BH = the number
of the desired page, in the range 0 through 15.

Of those I've seen, at least one VGA BIOS waits for the leading edge of the vertical
sync pulse before switching color pages, and at least one VGA BIOS does not. This
poses a significant problem; if you wait for the leading edge of vertical sync before
calling the BIOS to switch pages and then the BIOS waits for the leading edge of
vertical sync before switching pages, you'll only switch pages once every two frames at
most. On the other hand, if you don't wait for vertical sync and neither does the BIOS,
you'll end up switching pages in the middle of frames and doing so much too often.
You can determine which is the case in your color page-flipping programs by timing
how long it takes the BIOS to do several color page switches at start-up, although that's
certainly a nuisance. As usual, only with your own software that programs the hard
ware directly do you have complete control and full knowledge of what's going on.

At any rate, you can try it both ways, because Listing 12.1 supports both BIOS and
direct color paging. In Listing 12.1, I assume that the BIOS does wait for the leading
edge of the vertical sync pulse.

Obtaining the Color Paging State
If you want to check whether 16-pages-of-16-colors paging is enabled and which color
page is currently selected, you can again do that either directly or through the BIOS.
Obtaining the color paging state through the BIOS is ridiculously easy: Just invoke
INT l0H with AH= lOH and AL= lAH. On return, BL will contain the state of bit
7 of the AC Mode register (1 for 16-pages-of-16-colors paging, 0 for 4-pages-of-64-
colors), and BH will contain the number of the currently selected color page.

To obtain the color paging state directly, do the following:

• Read the Input Status 1 register at 3XAH to reset the AC Index/Data toggle;

• Write 30H to the AC Index register at 3C0H to address the AC Mode register;

• Read the AC Mode register setting from the AC Data register at 3C 1 H. Bit 7 of this
value controls the color paging state, as described above;

• Read the Input Status 1 register at 3XAH to reset the AC Index/Data toggle;

• Write 34H to the AC Index register at 3C0H to address the Color Select register;

• Read the Color Select register setting from the AC Data register at 3C 1 H.

198 [gJ Chapter 12

An Example of Color Paging
Listing 12.1 is an example of color paging. Listing 12.1 first sets the display to 640x480
16-color graphics mode, then sets the palette RAM to a pass-through state and loads
the upper 240 DAC locations with 240 colors, which are logically organized as 15
pages of 16 colors each. The palette RAM and the DAC must be set up after the mode
set, because each mode set reprograms all of the palette RAM and at least part of the
DAC. During EGA compatible mode sets, the first 64 DAC locations are programmed
to match the EGA's set of colors, and during mode sets for mode 13H, 256-color
mode, all 256 DAC locations are programmed.

Once the hardware is set up, Listing 12.1 draws dozens of concentric circles, using
code we'll develop in Part N of this book. I've used C rather than assembly language
circle-drawing code (both versions are provided in Part IV) because drawing speed isn't
an issue here; Listing 12.1 is written entirely in C, and while the drawing part of
Listing 12.1 looks slow, the color paging part does not. By its very nature, which in
volves working with a few control registers rather than a large bitmap, color manipula
tion tends to produce snappy results with little effort.

LISTING 12.1 L12-1.C
I*

* Illustrates color paging by color-animating a series of
* concentric circles to produce the illusion of motion.
* Runs on the VGA only, because color paging isn't available on
* the EGA.
*/

/linclude <dos.h>

//define USE_BIOS O /* set to l to use BIOS functions to perform

/ldefi ne SCREEN_WIDTH

color paging, 0 to program color paging
registers directly*/

_IN_BYTES BO I* If of bytes across one
line in mode 12h */

scan

/ldefi ne SCREEN_SEGMENT OxAOOO I* mode 12h display memory seg
/ldefi ne GC_INDEX Ox3CE I* Graphics Cont roll er index */
/ldefi ne SET_RESET_INDEX 0 I* Set/Reset reg index in GC *I
//define SET_RESET_ENABLE INDEX l I* Set/Reset Enable reg index

in GC * /
/ldefi ne BIT_MASK_INDEX 8 I* Bit Mask reg index in GC */
/ldefi ne INPUT_STATUS_l Ox3DA I* Input Status l port *I

*I

//define AC_INDEX Ox3CO /* Attribute Controller index *I
/ldefi ne AC_DATA_W Ox3CO I* Attribute Cont roll er data

register for writes */
//define AC_DATA_R Ox3Cl I* Attribute Cont roll er data

register for reads */

//define AC_MODE_INDEX Ox30 I* AC Mode reg index. with bit 6
set to avoid blanking screen *I

Paging Mr. VGA... [l} 199

lfdefine Ac_coLOR_SELECT_INDEX Ox34 /* Color Select reg index, with
bit 6 set to avoid blanking
screen */

void main():
void DrawDot(int X, int Y):
void DrawCircle(int X, int Y, int Radius, int Color):

/* Array used to load the DAC. Organized as 256 RGB triplets */
static unsigned char DACSettings[256*3];

/* Array used to 1 oad the palette RAM to a pass-through state.
The 17th entry sets the border color to O */

static unsigned char PaletteRAMSettings[J = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0};

void main() {
int Radius, Color, Page, Element, i:
uni on REGS Regs:
struct SREGS Sregs:
unsigned char GreenComponent:

/* Select VGA's hi-res 640x480 graphics mode, mode 12h */
Regs.x.ax = Ox0012:
int86(0xl0, &Regs, &Regs):

/* Draw concentric circles */
for (Radius = 10, Color = 1: Radius < 240; Radius += 2) {

DrawCircle(640/2, 480/2, Radius, Color);
if (++Color >= 16)

Color= l; /* skip color O */

/* Load the upper 240 DAC locations (15 pages) with one-position
rotations of a series of increasingly green col ors. Because
page O is being displayed, the screen remains unchanged while
the other 15 color pages are being loaded. */

/* First, fill DACSettings with the desired green settings
(because it's a static array, all locations are initialized to
zero, so we don't need to initialize the red or green color
components, which we want to be zero). */

GreenComponent = 8:
for C Page = 1; Page <= 15: Page++

GreenComponent = Page * 4;
for C Element = 1; Element <= 15; Element++) {

DACSettings[Page*l6*3 + Element*3 + l] = GreenComponent;
if (C GreenComponent +- 4) >= 64)

GreenComponent - 4:

/* Now call the BIOS to load the upper 240 DAC locations */
Regs.h.ah - OxlO;
Regs.h.al Oxl2;
Regs.x.bx = 16;
Regs.x.cx = 240;
Regs.x.dx = (unsigned intlCDACSettings + 16*3);
segread(&Sregs);

Sregs.es = Sregs.ds: /* point ES:DX to DACSettings */
int86x(Oxl0, &Regs, &Regs, &Sregs):

200 /l] Chapter 12

/* Put the palette RAM in a pass-through state and set the Overscan
register (border color) to 0. We've saved this for last because
it changes the colors being displayed. */

Regs.h.ah = OxlO:
Regs. h. a 1 = 2;
Regs.x.dx = (unsigned int)PaletteRAMSettings;
segread(&Sregs);
Sregs.es = Sregs.ds; /* point ES:DX to PaletteRAMSettings */
i nt86x(Ox10, &Regs, &Regs, &Sregs);

/* Enable 16-pages-of-16-colors paging */
/!if USE_BIOS

Regs.h.ah = OxlO;
Regs.h.al = Ox13;
Regs.h.bl = O;
Regs,h.bh = 1;
int86(0x10, &Regs, &Regs);

/felse
inp(INPUT_STATUS_l);
outp(AC_INDEX, AC_MODE_INDEX);
outp(AC_DATA_W, inp(AC_DATA_R) I Ox80);

/lendif /* USE_BIOS */

/* We' re read to roll; the upper 15 pages are set up, the
palette RAM is in a pass-through state, and 16-pages-of-16-
colors paging is enabled. Now we'll loop through and display
each of pages 15 through 1 and then back to 15 for one frame
until a key is pressed. */

for (Page = 15, i = O ; i < 1000; 1++) {

/Ii f USE_BlOS
/* Select the desired color page*/
Regs.h.ah = OxlO;
Regs.h.al = Oxl3;
Regs.h.bl = 1;
Regs.h.bh = Page;
i nt86 (OxlO, &Regs, &Regs);

lie 1 s e
/* Wait for the leading edge of the vertical sync pulse; this

ensures that we change col or pages during vertical
non-display time, and that the page flips are even spaced

over time*/
while ((inpCINPUT_STATUS_l) & Ox08) != 0)

/* wait for non-vertical sync time*/
while (inp(INPUT_STATUS_l) & Ox08) == 0)

/* wait for vertical sync time */
inp(INPUT_STATUS_l);
outp(AC_INDEX, AC_COLOR_SELECT_INDEX);

outp(AC_DATA_W, Page);
//end if /* USE_BIOS * /

/* Cycle from page 15 down to page 1, and then back to page 15.
Avoid page O entirely */

if (--Page== O)
Page= 15;

/* Restore text mode and done * /
Regs.x.ax = Ox0003;
int86(0x10, &Regs, &Regs);

/* Draws a pixel at screen coordinate (X,Y) */
void DrawDot(int X, int Y) {

unsigned char far *ScreenPtr:

/* Point to the byte the pixel is in */
/lifdef _TURBOC_

ScreenPtr = MK_FP (SCREEN_SEGMENT,
(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8)):

#else
FP_SEG(ScreenPtr) = SCREEN_SEGMENT;

Paging Mr .. VGA... Ill 201

FP_OFF(ScreenPtr) =(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8):
/fend if

/* Set the bit mask within the byte for the pixel */
outp(GC_INDEX + 1. Ox80 » (X & Ox07)):

/* Draw the pixel. ORed to force read/write to 1 cad 1 atches.
Data written doesn • t matter, because set/ reset is enabled
for all planes. Note: don't OR with O: MSC optimizes that
statement to no operation. */

*ScreenPtr I= OxFF:

/* Draws a ci rel e of radius Radius in col or Col or centered at
* screen coordinate (X, Y) */

void DrawCircle(int X, int Y, int Radius, int Color) {
int MajorAxis, MinorAxis:
unsigned 1 ong Radi usSqMi nusMaj orAxi sSq;
unsigned long MinorAxisSquaredThreshold;

/* Set drawing color via set/reset */
outpw(GC_INDEX, (OxOF « 8) I SET_RESET_ENABLE_INDEX):

/* enable set/reset for all planes*/
outpw(GC_INDEX, (Color « 8) SET_RESET_INDEX):

/* set set/reset (drawing) color*/
outp(GC_INDEX, BIT_MASK_INDEX):

/* leave the GC Index reg pointing to
the Bit Mask reg*/

/* Set up to draw the circle by setting the initial point to one
end of the I/8th of a circle arc we'll draw*/

MajorAxis = O;
MinorAxis = Radius:
/* Set initial Radius**2 - MajorAxis**2 (MajorAxis is initially 0) */
RadiusSqMinusMajorAxisSq =Radius* Radius:
/* Set threshold for minor axis movement at (MinorAxis - 0.5)**2 */
MinorAxisSquaredThreshold = MinorAxis * MinorAxis - MinorAxis:

/* Draw all points along an arc of I/8th of the circle, drawing
all 8 symmetries at the same time */

do {
/* Draw all 8 symmetries of current point */
DrawDot (X+Maj orAxi s, Y-Mi norAxi s);
DrawDot(X-MajorAxis, Y-MinorAxis):
DrawDot(X+MajorAxis, Y+MinorAxis);
DrawDot(X-MajorAxis, Y+MinorAxis);
DrawDot(X+MinorAxis, Y-MajorAxis);
DrawDot(X-MinorAxis, Y-MajorAxis):
DrawDot (X+Mi norAxi s, Y+Maj or Axis) :
DrawDot(X-MinorAxis, Y+MajorAxis):

202 /gJ Chapter 12

/* Advance (Radius**2 - MajorAxis**2); if it equals or passes
the MinorAxis**2 threshold, advance one pixel along the minor
axis and set the next MinorAxis**2 threshold.*/

if ((RadiusSqMinusMajorAxisSq -=
MajorAxis + MajorAxis + 1) <= MinorAxisSquaredThreshold > {

MinorAxis··:
Mi norAxi sSqua red Th res ho 1 d -= Mi norAxi s + Mi nor Axis;

MajorAxis++; /* advance one pixel along the major axis */
while (MajorAxis <= MinorAxis);

/* Reset the Bit Mask register to normal */
outp(GC_INDEX + 1, 0xFF);

/* Turn off set/reset enable */
outpw(GC_INDEX, (0x00 « 8) I SET_RESET_ENABLE_INDEX);

The circles in Listing 12.1 are drawn in sequential colors 1 through 15, cycling back
from 15 to 1. Color O is reserved for the background and is the same in all 16 color
pages; otherwise the background would change color as we changed color pages, de
stroying the subtle color cycling effect we're striving for. The background wouldn't be
the only potential problem, either; if page O is involved, the border could also change,
creating a still more bizarre effect. Remember, the DAC modifies pixels after they've
been fully processed by the VGA, and so far as the DAC is concerned, pixel attribute 0
is attribute 0, irrespective of whether it came from the Overscan (border) register, a
background pixel with value 0, or, indeed, by way of translation in the palette RAM.
Consequently, you should take care when performing color paging not to modify the
DAC locations that the Overscan register and background colors select, unless, of course,
you intend to change the border and background colors.

This is a good time to point out that the DAC is always available and active. It's
obvious that the DAC can be used to select color sets in 256- and 16-color modes, but
the DAC processes whatever comes out of the VGA in any mode. You can use the
DAC to transform pixel colors in text mode, or even in modes 4 and 6, the CGA
compatible 4- and 2-color graphics modes (although in order to do that you need to
understand the format in which pixels comes out of the VGA and into the DAC in
those modes; once again, setting the palette to a pass-through state makes life easier).
In fact, you can also use color paging in any mode other than 256-color mode. The
basic principle here is that the color-processing steps that occur farther down the pipe
line toward the display can modify anything that comes earlier. As the last stage in the
pipeline, the DAC can modify pixels in any mode at all, and as the lead-in to the DAC
stage, color paging can modify pixels in all modes except 256-color mode.

Back to Listing 12.1. Once the circles are drawn, Listing 12.1 switches from the
default color page, page 0, which we haven't changed, to page 15, and then starts
flipping through the color pages in the order 14, 13, and so on down to 1 and then
back round to 15 at the rate of one page per frame, or 60 times per second. What does
this accomplish? Well, the color pages were carefully selected as one-position rotations

Paging Mr. VGA... g/ 203

of increasingly bright green colors. That is, color page 1 translates a pixel value of 1
into dim green, a pixel value of 2 into next-to-dimmest green, and so on up to a pixel
value of 15, which is as green a color as the VGA can produce. Color page 2 is a
one-position rotation of color page 1; a pixel value of 1 produces next-to-dimmest
green, a pixel value of 2 produces slightly brighter green, a pixel value of 14 produces
brightest green, and a pixel value of 15 produces dimmest green. Each successive color
page is a one-position rotation of the preceding page, except for color page 0, which
isn't used because we need only 15 color pages to represent all possible rotations of a set
of 15 colors.

Cycling through these color pages causes the circles on the screen to seem to pulse
outward. The net effect is one of smooth motion, but not one pixel in display memory
is being modified. This is the wonder of color manipulation: effects worthy of high
end graphics systems with little effort. Of course, there are limits to what color ma
nipulation can do, but what it does, it does very well.

Listing 12.1 can perform color paging using either the direct or BIOS approach,
depending on the setting of USE_BIOS. On my computer, both versions look exactly
the same. Experiment for yourself and choose whichever you prefer.

Paging Invisible Pages
One advantage of color paging is that you can change the contents of non-displayed
color pages without affecting the display in any way. Manipulating the color pages in
this way is much like page flipping-based animation; while you're displaying one color
page, you alter another one, then display the other one when it's ready to go. The
advantage of this over simply changing the palette is that the user will see only the
finished color configuration, not an intermediate state. This approach effectively ex
pands the number of available color pages from 16 to more than 4 million (16 colors
per set times 256K choices for each color; that is, every combination of 16 colors
possible on the VGA).

Although it's not the main thrust of the code, Listing 12.1 does illustrate the tech
nique of changing a non-displayed color page so as to leave the display unaffected
while the DAC is being loaded. At the outset of Listing 12.1, page O is displayed while
the DAC locations for pages 1 through 15 are loaded. Once the loading is complete,
the program switches away from page O to begin cycling through the newly-loaded
pages 15 through 1.

That brings us to the end of color paging, but certainly not to the end of color on
the VGA. We still haven't looked closely at color cycling, so that's where we'll head in
the next chapter.

Changing
Colors
without
Writing
Pixels

.. u
I 7 = ca -= u

Special Effects through Realtime Manipulation
of DAC Colors

Sometimes, strange as it may seem, the harder you try, the less you accomplish. Brute
force is fine when it suffices, but it does not always suffice, and when it does not,
finesse and alternative approaches are called for. Such is the case with rapidly cycling
through colors by repeatedly loading the VG/\s Digital to Analog Converter (DAC).
No matter how much you optimize your code, you just can't reliably load the whole
DAC cleanly in a single frame, so you had best find other ways to use the DAC to cycle
colors. What's more, BIOS support for DAC loading is so inconsistent that it's unus
able for color cycling; direct loading through the 1/0 ports is the only way to go. We'll
see why next, as we explore color cycling, and then finish up this chapter and this
section by cleaning up some odds and ends about VGA color.

There's a lot to be said about loading the DAC, so let's dive right in and see where
the complications lie.

Color Cycling
As we've learned in past chapters, rhe VG/\s DAC contains 256 storage locations, each
holding one 18-bit value representing an RGB color triplet organized as 6 bits per
primary color. Each and every pixel generated by the VGA is fed into the DAC as an
8-bit value (refer to the previous two chapters to see how pixels become 8-bit values in
non-256 color modes) and each 8-bit value is used to look up one of the 256 values

205

206 fgJ Chapter 13

stored in the DAC. The looked-up value is then converted to analog red, green, and
blue signals and sent to the monitor to form one pixel.

That's straightforward enough, and we've produced some pretty impressive color
effects by loading the DAC once and then playing with the 8-bit path into the DAC.
Now, however, we want to generate color effects by dynamically changing the values
stored in the DAC in real time, a technique which I'll call color cycling. The potential of
color cycling should be obvious: Smooth motion can easily be simulated by altering
the colors in an appropriate pattern, and all sorts of changing color effects can be
produced without altering a single bit of display memory.

For example, a sunset can be made to color and darken by altering the DAC loca
tions containing the colors used to draw the sunset, or a river can be made to appear to
flow by cycling through the colors used to draw the river. Another use for color cycling
is in providing more realistic displays for applications like realtime 3-D games, where
the VGN.s 256 simultaneous colors can be made to seem like many more by changing
the DAC settings from frame to frame to match the changing color demands of the
rendered scene. Which leaves only one question: How do we load the DAC smoothly
in realtime?

Actually, so far as I know, you can't. At least you can't load the entire DAC-all 256
locations-frame after frame without producing distressing on-screen effects on at
least some computers. In non-256 color modes, it is indeed possible to load the DAC
quickly enough to cycle all displayed colors (of which there are 16 or fewer), so color
cycling could be used successfully to cycle all colors in such modes. On the other hand,
color paging (which flips among a number of color sets stored within the DAC in all
modes other than 256 color mode, as discussed in the previous chapter) can be used in
non-256 color modes to produce many of the same effects as color cycling and is
considerably simpler and more reliable then color cycling, so color paging is generally
superior to color cycling whenever it's available. In short, color cycling is really the
method of choice for dynamic color effects only in 256-color mode-but, regrettably,
color cycling is at its least reliable and capable in that mode, as we'll see next.

The Heart of the Problem
Here's the problem with loading the entire DAC repeatedly: The DAC contains 256
color storage locations, each loaded via either 3 or 4 OUT instructions (more on which
next), so at least 768 OUTs are needed to load the entire DAC. That many OUTs take
a considerable amount of time, all the more so because OUTs are painfully slow on
486s and Pentiums, and because the DAC is frequently on the ISA bus (although VLB
and PCI are increasingly common), where wait states are inserted in fast computers. In
an 8 MHz AT, 768 OUTs alone would take 288 microseconds, and the data loading
and looping that are also required would take in the ballpark of 1,800 microseconds
more, for a minimum of 2 milliseconds total.

Changing Colors without Writing Pixels [l.J 207

As it happens, the DAC should only be loaded during vertical blanking; that is, the
time between the end of displaying the bottom border and the start of displaying the
top border, when no video information at all is being sent to the screen by the DAC.
Otherwise, small dots of snow appear on the screen, and while an occasional dot of this
sort wouldn't be a problem, the constant DAC loading required by color cycling would
produce a veritable snowstorm on the screen. By the way, I do mean "border," not
"frame buffer"; the overscan pixels pass through the DAC just like the pixels controlled
by the frame buffer, so you can't even load the DAC while the border color is being
displayed without getting snow.

The start of vertical blanking itself is not easy to find, but the leading edge of the
vertical sync pulse is easy to detect via bit 3 of the Input Status 1 register at 3DAH;
when bit 3 is 1, the vertical sync pulse is active. Conveniently, the vertical sync pulse
starts partway through but not too far into vertical blanking, so it serves as a handy way
to tell when it's safe to load the DAC without producing snow on the screen.

So we wait for the start of the vertical sync pulse, then begin to load the DAC.
There's a catch, though. On many computers-Pentiums, 486s, and 386s sometimes,
286s most of the time, and 8088s all the time-there just isn't enough time between
the start of the vertical sync pulse and the end of vertical blanking to load all 256 DAC
locations. That's the crux of the problem with the DAC, and shortly we'll get to a tool that
will let you explore for yourself the extent of the problem on computers in which you're
interested. First, though, we must address another DAC loading problem: the BIOS.

Loading the OAC via the BIOS
The DAC can be loaded either directly or through subfunctions 1 OH (for a single
DAC register) or 12H (for a block of DAC registers) of the BIOS video service interrupt
1 OH, function 1 OH, described in Chapter 11. For cycling the contents of the entire DAC,
the block-load function (invoked by executing INT lOH with AH= lOH and AL= 12H to
load a block of CX DAC locations, starting at location BX, from the block of RGB
triplets-3 bytes per triplet-starting at ES:DX into the DAC) would be the better of
the two, due to the considerably greater efficiency of calling the BIOS once rather than
256 times. At any rate, we'd like to use one or the other of the BIOS functions for color
cycling, because we know that whenever possible, one should use a BIOS function in
preference to accessing hardware directly, in the interests of avoiding compatibility
problems. In the case of color cycling, however, it is emphatically not possible to use
either of the BIOS functions, for they have problems. Serious problems.

The difficulty is this: IBM's BIOS specification describes exactly how the param
eters passed to the BIOS control the loading of DAC locations, and all clone BIOSes
meet that specification scrupulously, which is to say that if you invoke INT 1 OH,
function lOH, subfunction 12H with a given set of parameters, you can be sure that
you will end up with the same values loaded into the same DAC locations on all VGAs
from all vendors. IBM's spec does not, however, describe whether vertical retrace should

208 {gJ Chapter 13

be waited for before loading the DAC, nor does it mention whether video should be
left enabled while loading the DAC, leaving cloners to choose whatever approach they
desire-and, alas, every VGA cloner seems to have selected a different approach.

I tested four clone VGAs from different manufacturers, some in a 20 MHz 386
machine and some in a 10 MHz 286 machine. Two of the four waited for vertical retrace
before loading the DAC; two didn't. Two of the four blanked the display while loading the
DAC, resulting in flickering bars across the screen. One showed speckled pixels spattered
across the top of the screen while the DAC was being loaded. Also, not one was able to
load all 256 DAC locations without showing some sort of garbage on the screen for at
least one frame, but that's not the BI OS's fault; it's a problem endemic to the VGA.

gJ The above findings lead me inexorably to the conclusion that the
BIOS should not be used to load the DAG dynamically. That is, if
you're loading the DAG just once in preparation for a graphics ses
sion-sort of a DAG mode set-by all means load by way of the
BIOS. No one will care that some garbage is displayed for a single
frame; heck, I have boards that bounce and flicker and show garbage
every time I do a mode set, and the amount of garbage produced by
loading the DAC once is far less noticeable. If, however, you intend to
load the DAC repeatedly for color cycling, avoid the BIOS DAC load
functions like the plague. They will bring you only heartache.

As but one example of the unsuitability of the BIOS DAC-loading functions for
color cycling, imagine that you want to cycle all 256 colors 70 times a second, which is
once per frame. In order to accomplish that, you would normally wait for the start of
the vertical sync signal (marking the end of the frame), then call the BIOS to load the
DAC. On some boards-boards with BIOSes that don't wait for vertical sync before
loading the DAC-that will work pretty well; you will, in fact, load the DAC once a
frame. On other boards, however, it will work very poorly indeed; your program will
wait for the start of vertical sync, and then the BIOS will wait for the start of the next
vertical sync, with the result being that the DAC gets loaded only once every two
frames. Sadly, there's no way, short of actually profiling the performance of BIOS DAC
loads, for you to know which sort of BIOS is installed in a particular computer, so
unless you can always control the brand of VGA your software will run on, you really
can't afford to color cycle by calling the BIOS.

Which is not to say that loading the DAC directly is a picnic either, as we'll see next.

Loading the DAC Directly
So we must load the DAC directly in order to perform color cycling. The DAC is
loaded directly by sending (with an OUT instruction) the number of the DAC location to

Changing Colors without Writing Pixels ~ 209

be loaded to the DAC Write Index register at 3C8H and then performing three OUTs
to write ~n RGB triplet to the DAC Data register at 3C9H. This approach must be
repeated 256 times to load the entire DAC, requiring over a thousand OUTs in all.

There is another, somewhat faster approach, but one that has its risks. After an RGB
triplet is written to the DAC Data register, the DAC Write Index register automatically
increments to point to the next DAC location, and this repeats indefinitely as succes
sive RGB triplets are written to the DAC. By taking advantage of this feature, the
entire DAC can be loaded with just 769 OUTs: one OUT to the DAC Write Index
register and 768 OUTs to the DAC Data register.

So what's the drawback? Well, imagine that as you're loading the DAC, an inter
rupt-driven TSR (such as a program switcher or multitasker) activates and writes to the
DAC; you could end up with quite a mess on the screen, especially when your program
resumes and continues writing to the DAC-but in all likelihood to the wrong loca
tions. No problem, you say; just disable interrupts for the duration. Good idea-but it
takes much longer to load the DAC than interrupts should be disabled for. If, on the
other hand, you set the index for each DAC location separately, you can disable inter
rupts 256 times, once as each DAC location is loaded, without problems.

As I commented two chapters back, I don't have any gruesome tale to relate that
mandates taking the slower but safer road and setting the index for each DAC location
separately while interrupts are disabled. I'm merely hypothesizing as to what ghastly
mishaps could happen. However, it's been my experience that anything that can hap
pen on the PC does happen eventually; there are just too dang many PCs out there for
it to be otherwise. However, load the DAC any way you like; just don't blame me if you
get a call from someone who's claims that your program sometimes turns their screen
into something resembling month-old yogurt. It's not really your fault, of course-but
try explaining that to them!

A Test Program for Color Cycling
Anyway, the choice of how to load the DAC is yours. Given that I'm not providing you
with any hard-and-fast rules (mainly because there don't seem to be any), what you
need is a tool so that you can experiment with various DAC-loading approaches for
yourself, and that's exactly what you'll find in Listing 13.1.

Listing 13.1 draws a band of vertical lines, each one pixel wide, across the screen.
The attribute of each vertical line is one greater than that of the preceding line, so
there's a smooth gradient of attributes from left to right. Once everything is set up, the
program starts cycling the colors stored in however many DAC locations are specified
by the CYCLE_SIZE equate; as many as all 256 DAC locations can be cycled. (Actu
ally, CYCLE_SIZE-1 locations are cycled, because location O is kept constant in order
to keep the background and border colors from changing, but CYCLE_SIZE loca
tions are loaded, and it's the number of locations we can load without problems that
we're interested in.)

210 gJ Chapter 13

LISTING 13.1 L13-1.ASM
Fil 1 s a band across the screen with vertical bars in all 256
attributes, then cycles a portion of the palette until a key is
pressed.
Assemble with MASM or TASM

USE_BIOS equ

GUARD_AGAINST_INTS equ

WAIT_VSYNC equ

NOT _8088 equ

CYCLE_SIZE equ
SCREEN_SEGMENT equ
SCREEN_WIDTH_IN_BYTES equ
INPUT_STATUS_l equ
DAC_READ_INDEX equ
DAC_WRITE_INDEX equ
DAC_DATA equ

if NOT _8088
.286

endif :NOT_8088

.model small

. stack 100h

.data

1

0

;set to 1 to use BIOS functions to access the
: DAC, 0 to read and write the DAC directly
;l to turn off interrupts and set write index
; before loading each DAC location, Oto rely
; on the DAC auto-incrementing
;set to 1 to wait for the leading edge of

vertical sync before accessing the DAC, O
not to wait

;set to 1 to use REP INSB and REP OUTSB when
; accessing the DAC directly, Oto use
; IN/STOSB and LODSB/OUT

256
OaOOOh
320
03dah
03c7h

;fl of DAC locations to cycle, 256 max
;mode 13h display memory segment
;ff of bytes across the screen in mode 13h
: input status 1 register port
:DAC Read Index register

03c8h
03c9h

; DAC Write Index register
:DAC Data register

; Storage for all 256 DAC 1 ocati ans. organized as one three-byte
; (actually three 6-bit values; upper two bits of each byte aren't
; significant) RGB triplet per color.
PaletteTemp db 256*3 dup(?)

.code
start:

mov ax,@data
mov ds,ax

;Select VGA's standard 256-color graphics mode, mode 13h.
mov ax,0013h :AH = 0: set mode function,
int 10h : AL= 13h: mode# to set

;Read all 256 DAC locations into PaletteTemp (3 6-bit values, one
; each for red, green, and blue, per DAC location).

if WAIT_VSYNC
:Wait for the leading edge of the vertical sync pulse: this ensures

that we read the DAC starting during the vertical non-display
: period.

mov
WaitNotVSync:

i n
and
jnz

WaitVSync:

dx,INPUT_STATUS_l

al , dx
al , 08h
WaitNotVSync

in al,dx

;wait to be out of vertical sync

;wait until vertical sync begins

Changing Colors without Writing Pixels ~ 211

and a 1 , 08h
jz WaitVSync

endif

if USE_ BIOS
rnov ax,1017h

subfunction
sub bx.bx
mov cx,256
mov dx,seg PaletteTemp
mov es,dx
mov dx,offset PaletteTemp

int 10h
else

if GUARD_AGAINST_INTS
mov cx,CYCLE_SIZE-
mov
mov
mov
sub

di ,seg PaletteTemp
es.di
di ,offset PaletteTemp
ah.ah

DACStoreloop:
mov dx,DAC_READ_INDEX
mov al. ah
Cl i
out dx,al
mov dx,DAC_DATA
in a 1 , dx
stosb
in al,dx
stosb
in al.dx
stosb
sti
inc ah
loop DACStoreloop

else ; !GUARD_AGAINST_INTS
mov dx,DAC_READ_INDEX
sub al ,al
out dx,al
mov di ,seg PaletteTernp
mov es ,di
mov di, offset Pal etteTemp
mov dx,DAC_DATA

if NOT_BOBB
mov cx,CYCLE_SIZE*3
rep insb

once
else :!NOT_BOBB

mov cx,CYCLE_SIZE
DACStoreloop:

in al.dx
stosb
in al,dx
stosb
in al.dx
stosb
loop DACStoreloop

endif
endif

endif ;USE_BIOS

;WAIT_VSYNC

:AH = 10h: set DAC function,
: AL = 17h: read DAC block

;start with DAC location O
:read out all 256 locations

;point ES:DX to array in which
; the DAG values are to be stored
; read the DAC
: ! USE_B !OS

:/I of DAG locations to load

: dump the DAG into this array
;start with DAG location O

; set the DAC location /I

;get the red component

; get the green component

; get the blue component

;set the initial DAC location to O

;dump the DAC into this array

;read CYCLE_SIZE DAC locations at

;/I of DAC locations to load

; get the red component

; get the green component

;get the blue component

;NOT_8088
;GUARD_AGAINST_INTS

212 Ill Chapter 13

:Draw a series of 1-pixel-wide vertical bars across the screen in
attributes 1 through 255.

mov ax,SCREEN_SEGMENT
mov
mov

cld
mov

Rowloop:
mov
mov

Column Loop:
stosb
add
adc

es.ax
di,50*SCREEN_WIDTH_IN_BYTES

dx,100

a 1 , 1
cx,SCREEN_WIDTH_IN_BYTES

a 1 , 1
a 1, 0

loop Columnloop
dee dx
jnz Row Loop

;point ES:0I to the start
; of 1 i ne 50 on the screen

:draw 100 lines high

;start each line with attr
:do a full line across

:draw a pixel
; increment the attribute
; if the attribute just turned

over to 0, increment it to 1
because we're not going to
cycle DAC location D, so
attribute O won't change

;Cycle the specified range of DAC locations until a key is pressed.
Cycleloop:
:Rotate colors 1-255 one position in the PaletteTemp array:

location 0 is always left unchanged so that the background
: and border don't change.

push word ptr PaletteTemp+(1*3)
push word ptr PaletteTemp+(1*3)+2
mov cx,254
mov si ,offset PaletteTemp+(2*3)
mov di ,offset PaletteTemp+(l*3)
mov ax,ds
mov es.ax
mov cx,254*3/2

: set aside Pal etteTemp
: setting for attr 1

rep movsw ;rotate PaletteTemp settings
; for attrs 2 through 255 to
; attrs 1 through 254

pop bx ;get back original settings
pop ax for attribute 1 and move
stosw them to the PaletteTemp
mov es:[di].bl location for attribute 255

if WAIT_VSYNC
:Wait for the leading edge of the vertical sync pulse: this ensures

that we reload the DAC starting during the vertical non-display
; period.

mov
WaitNotVSync2:

in
and
jnz

WaitVSync2:

dx,INPUT_STATUS_l

al , dx
a 1 , 08h
WaitNotVSync2

in al,dx
and al ,08h
jz WaitVSync2

endif ;WAIT_VSYNC

if USE BIOS

;wait to be out of vertical sync

;wait until vertical sync begins

Changing Colors without Writing Pixels Ill 213

; Set the new. rotated palette.
mov ax,1012h

sub bx, bx
mov cx,CYCLE_SIZE
mov dx,seg PaletteTemp
mov es ,dx
mov dx,offset PaletteTemp

int !Oh
else ;!USE_BIOS

if GUARD_AGA INST _I NTS
mov cx,CYCLE_SIZE
mov si. offset Pal etteTemp
sub ah.ah

DACLoadloop:
mov dx,DAC_WRITE_INDEX
mov al . ah
cl i
out dx. a 1
mov dx,DAG_DATA
lodsb
out dx,al
lodsb
out dx, al
lodsb
out dx, a 1
sti
inc ah
loop DACLoadloop

else ; !GUARD_AGAINST_INTS
mov dx,DAG_WRITE_INDEX
sub al ,al
out dx, al
mov si ,offset PaletteTemp
mov dx,DAG_DATA

if NOT_8O88
mov cx,CYGLE_SIZE*3
rep outsb

else ;!NOT_8O88
mov cx,GYGLE_SIZE

DAGLoadloop:
1 odsb
out dx,al
1 ods b
out dx,al
lodsb
out dx,al
loop DAGLoadloop

endif ;NOT_8088
endif ;GUARD_AGAINST_INTS

endif ;USE_BIOS

;See if a key has been pressed.
mov ah,Obh
int 21h
and a 1 , a 1
jz Gycleloop

;Clear the keypress.
mov ah, 1
int 21h

;AH - 10h: set DAC function,
: AL - 12h: set DAC block subfunction
;start with DAG location 0
;ff of DAC locations to set

;point ES:DX to array from which
; to 1 oad the DAG
; 1 oad the DAG

;ff of DAC locations to load
; 1 oad the DAC from this array
;start with DAG location 0

;set the DAC location ff

;set the red component

:set the green component

;set the blue component

;set the initial DAC location to O
;load the DAC from this array

;load CYCLE_SIZE DAG locations at once

;fl of DAC 1 ocati ons to 1 oad

; set the red component

; set the green component

;set the blue component

;DOS check standard input status fn

; is a key pending?
:no, cycle some more

;DOS keyboard input fn

214 1l} Chapter 13

;Restore text mode and done.
mov ax,0003h
int 10h
mov ah,4ch
int 21h

end start

;AH = 0: set mode function,
; AL= 03h: mode# to set
; DOS terminate process fn

The big question is, How does Listing 13.1 cycle colors? Via the BIOS or directly?
With interrupts enabled or disabled? Et cetera?

However you like, actually. Four equates at the top of Listing 13.1 select the sort of
color cycling performed; by changing these equates and CYCLE_SIZE, you can get a
feel for how well various approaches to color cycling work with whatever combination
of computer system and VGA you care to test.

The USE_BIOS equate is simple. Set USE_BIOS to 1 to load the DAC through
the block-load-DAC BIOS function, or to O to load the DAC directly with OUTs.

If USE_BIOS is 1, the only other equate of interest is WAIT_ VSYNC. If
WAIT_ VSYNC is 1, the program waits for the leading edge of vertical sync before
loading the DAC; ifWAIT _ VSYNC is 0, the program doesn't wait before loading. The
effect of setting or not setting WAIT_ VSYNC depends on whether the BIOS of the
VGA the program is running on waits for vertical sync before loading the DAC. You
may end up with a double wait, causing color cycling to proceed at half speed, you may
end up with no wait at all, causing cycling to occur far too rapidly (and almost cer
tainly with hideous on-screen effects), or you may actually end up cycling at the proper
one-cycle-per-frame rate.

IfUSE_BIOS is 0, WAIT_ VSYNC still applies. However, you will always want to
set WAIT_ VSYNC to 1 when USE_BIOS is O; otherwise, cycling will occur much too
fast, and a good deal of continuous on-screen garbage is likely to make itself evident as
the program loads the DAC non-stop.

IfUSE_BIOS is 0, GUARD_AGAINST_INTS determines whether the possibility
of the DAC loading process being interrupted is guarded against by disabling inter
rupts and setting the write index once for every location loaded and whether the DAC's
autoincrementing feature is relied upon or not.

If GUARD _AGAINST _INTS is 1, the following sequence is followed for the load
ing of each DAC location in turn: Interrupts are disabled, the DAC Write Index regis
ter is set appropriately, the RGB triplet for the location is written to the DAC Data
register, and interrupts are enabled. This is the slow but safe approach described earlier.

Matters get still more interesting if GUARD _AGAINST _INTS is 0. In that case, if
NOT _8088 is 0, then an autoincrementing load is performed in a straightforward
fashion; the DAC Write Index register is set to the index of the first location to load
and the RGB triplet is sent to the DAC by way of three LODSB/OUT DX,AL pairs,
with LOOP repeating the process for each of the locations in turn.

If, however, NOT _8088 is 1, indicating that the processor is a 286 or better (per
haps AT_LEAST_286 would have been a better name), then after the initial DAC

Changing Colors without Writing Pixels fg] 215

Write Index value is set, all 768 DAC locations are loaded with a single REP OUTSB.
This is clearly the fastest approach, but it runs the risk, albeit remote, that the loading
sequence will be interrupted and the DAC registers will become garbled.

My own experience with Listing 13.1 indicates that it is sometimes possible to load
all 256 locations cleanly but sometimes it is not; it all depends on the processor, the
bus speed, the VGA, and the DAC, as well as whether autoincrementation and REP
OUTSB are used. I'm not going to bother to report how many DAC locations I could
successfully load with each of the various approaches, for the simple reason that I don't
have enough data points to make reliable suggestions, and I don't want you acting on
my comments and running into trouble down the pike. You now have a versatile tool
with which to probe the limitations of various DAC-loading approaches; use it to
perform your own tests on a sampling of the slowest hardware configurations you
expect your programs to run on, then leave a generous safety margin.

One thing's for sure, though-you're not going to be able to cycle all 256 DAC
locations cleanly once per frame on a reliable basis across the current generation of
PCs. That's why I said at the outset that brute force isn't appropriate to the task of color
cycling. That doesn't mean that color cycling can't be used, just that subtler approaches
must be employed. Let's look at some of those alternatives.

Color Cycling Approaches that Work
First of all, I'd like to point out that when color cycling does work, it's a thing of
beauty. Assemble Listing 13.1 so that it doesn't use the BIOS to load the DAC, doesn't
guard against interrupts, and uses 286-specific instructions if your computer supports
them. Then tinker with CYCLE_SIZE until the color cycling is perfectly clean on
your computer. Color cycling looks stunningly smooth, doesn't it? And this is crude
color cycling, working with the default color set; switch over to a color set that gradu
ally works its way through various hues and saturations, and you could get something
that looks for all the world like true-color animation (albeit working with a small
subset of the full spectrum at any one time).

Given that, how can we take advantage of color cycling within the limitations of
loading the DAC? The simplest approach, and my personal favorite, is that of cycling
a portion of the DAC while using the rest of the DAC locations for other, non-cycling
purposes. For example, you might allocate 32 DAC locations to the aforementioned
sunset, reserve 160 additional locations for use in drawing a static mountain scene, and
employ the remaining 64 locations to draw images of planes, cars, and the like in the
foreground. The 32 sunset colors could be cycled cleanly, and the other 224 colors
would remain the same throughout the program, or would change only occasionally.

That suggests a second possibility: If you have several different color sets to be cycled,
interleave the loading so that only one color set is cycled per frame. Suppose you are
animating a night scene, with stars twinkling in the background, meteors streaking
across the sky, and a spaceship moving across the screen with its jets flaring. One way

216 Jg} Chapter 13

to produce most of the necessary effects with little effort would be to draw the stars in
several attributes and then cycle the colors for those attributes, draw the meteor paths
in successive attributes, one for each pixel, and then cycle the colors for those attributes,
and do much the same for the jets. The only remaining task would be to animate the
spaceship across the screen, which is not a particularly difficult task.

The key to getting all the color cycling to work in the above example,
however, would be to assign each color cycling task a different part
of the DAC, with each part cycled independently as needed. If, as is
likely, the total number of DAC locations cycled proved to be too
great to manage in one frame, you could simply cycle the colors of
the stars after one frame, the colors of the meteors after the next,
and the colors of the jets after yet another frame, then back around
to cycling the colors of the stars. By splitting up the DAC in this
manner and interleaving the cycling tasks, you can perform a great
deal of seemingly complex color animation without loading very much
of the DAC during any one frame.

Yet another and somewhat odder workaround is that of using only 128 DAC loca
tions and page flipping. (Page flipping in 256-color modes involves using the VG/\s
undocumented'256-color modes; see Chapters 9, 28, and 32 for details.) In this mode
of operation, you'd first display page 0, which is drawn entirely with colors 0-127.
Then you'd draw page 1 to look just like page 0, except that colors 128-255 are used
instead. You'd load DAC locations 128-255 with the next cycle settings for the 128
colors you're using, then you'd switch to display the second page with the new colors.
Then you could modify page Oas needed, drawing in colors 0-127, load DAC loca
tions 0-127 with the next color cycle settings, and flip back to page 0.

The idea is that you modify only those DAC locations that are not used to display
any pixels on the current screen. The advantage of this is not, as you might think, that
you don't generate garbage on the screen when modifying undisplayed DAC locations;
in fact, you do, for a spot of interference will show up if you set a DAC location,
displayed or not, during display time. No, you still have to wait for vertical sync and
load only during vertical blanking before loading the DAC when page flipping with
128 colors; the advantage is that since none of the DAC locations you're modifying is
currently displayed, you can spread the loading out over two or more vertical blanking
periods-however long it takes. If you did this without the 128-color page flipping,
you might get odd on-screen effects as some of the colors changed after one frame,
some after the next, and so on-or you might not; changing the entire DAC in chunks
over several frames is another possibility worth considering.

Yet another approach to color cycling is that of loading a bit of the DAC during
each horizontal blanking period. Combine that with counting scan lines, and you
could vastly expand the number of simultaneous on-screen colors by cycling colors as

Changing Colors without Writing Pixels g} 217

a frame is displayed, so that the color set changes from scan line to scan line down the
screen.

The possibilities are endless. However, were I to be writing 256-color software that
used color cycling, I'd find out how many colors could be cycled after the start of
vertical sync on the slowest computer I expected the software to run on, I'd lop off at
least 10 percent for a safety margin, and I'd structure my program so that no color
cycling set exceeded that size, interleaving several color cycling sets if necessary.

That's what I'd do. Don't let yourself be held back by my limited imagination, though!
Color cycling may be the most complicated of all the color control techniques, but it's
also the most powerful.

Odds and Ends
In my experience, when relying on the autoincrementing feature while loading the
DAC, the Write Index register wraps back from 255 to 0, and likewise when you load
a block of registers through the BIOS. So far as I know, this is a characteristic of the
hardware, and should be consistent; also, Richard Wilton documents this behavior for
the BIOS in the VGA bible, Programmer's Guide to PC Video Systems, Second Edition
(Microsoft Press), so you should be able to count on it. Not that I see that DAC index
wrapping is especially useful, but it never hurts to understand exactly how your re
sources behave, and I never know when one of you might come up with a serviceable
application for any particular quirk.

TheOACMask
There's one register in the DAC that I haven't mentioned yet, the DAC Mask register,
at 03C6H. The operation of this register is simple but powerful; it can mask off any or
all of the 8 bits of pixel information coming into the DAC from the VGA. Whenever
a bit of the DAC Mask register is 1, the corresponding bit of pixel information is
passed along to the DAC to be used in looking up the RGB triplet to be sent to the
screen. Whenever a bit of the DAC Mask register is 0, the corresponding pixel bit is
ignored, and a O is used for that bit position in all look-ups of RGB triplets. At the
extreme, a DAC Mask setting of O causes all 8 bits of pixel information to be ignored,
so DAC location O is looked up for every pixel, and the entire screen displays the color
stored in DAC location 0. This makes setting the DAC Mask register to O a quick and
easy way to blank the screen.

Reading the OAC
The DAC can be read directly, via the DAC Read Index register at 3C7H and the
DAC Data register at 3C9H, in much the same way as it can be written directly by way
of the DAC Write Index register-complete with autoincrementing the DAC Read

218 [g) Chapter 13

Index register after every three reads. Everything I've said about writing to the DAC
applies to reading from the DAC. In fact, reading from the DAC can even cause snow,
just as loading the DAC does, so it should ideally be performed during vertical blanking.

The DAC can also be read by way of the BIOS in either of two ways. INT l0H,
function l0H (AH=l0H), subfunction 15H (AL=15H) reads out a single DAC loca
tion, specified by BX; this function returns the RGB triplet stored in the specified
location with the red component in the lower 6 bits of DH, the green component in
the lower 6 bits of CH, and the blue component in the lower 6 bits of CL.

INT l0H, function lOH (AH=l0H), subfunction 17H (AL=l 7H) reads out a block
of DAC locations of length CX, starting with the location specified by BX. ES:DX
must point to the buffer in which the RGB values from the specified block of DAC
locations are to be stored. The form of this buffer (RGB, RGB, RGB ... , with three
bytes per RGB triple) is exactly the same as that of the buffer used when calling the
BIOS to load a block of registers.

Listing 13.1 illustrates reading the DAC both through the BIOS block-read func
tion and directly, with the direct-read code capable of conditionally assembling to
either guard against interrupts or not and to use REP INSB or not. As you can see,
reading the DAC settings is very much symmetric with setting the DAC.

Cycling Down
And so, at long last, we come to the end of our discussion of color control on the VGA.
If it has been more complex than anyone might have imagined, it has also been most
rewarding. There's as much obscure but very real potential in color control as there is
anywhere on the VGA, which is to say that there's a very great deal of potential indeed.
Put color cycling or color paging together with the page flipping and image drawing
techniques explored elsewhere in this book, and you'll leave the audience gasping and
wondering "How the heck did they do that?"

Bresenham
Is Fast, and
Fast Is Good

..
CD
I 7 = --= ~

Implementing and Optimizing Bresenham's Line
Drawing Algorithm

For all the complexity of graphics design and programming, surprisingly few primitive
functions lie at the heart of most graphics software. Heavily-used primitives include
routines that draw dots, circles, area fills, bit block logical transfers, and, of course,
lines. For many years, computer graphics were created primarily with specialized line
drawing hardware, so lines are in a way the lingua franca of computer graphics. Lines
are used in a wide variety of microcomputer graphics applications today, notably CAD/
CAM and computer-aided engineering.

Probably the best-known formula for drawing lines on a computer display is called
Bresenham's line-drawing algorithm. (We have to be specific here because there is also
a less-well-known Bresenham's circle-drawing algorithm.) In this chapter, I'll present
two implementations for the EGA and VGA of Bresenham's line-drawing algorithm,
which provides decent line quality and excellent drawing speed.

The first implementation is in rather plain C, with the second in not-so-plain as
sembly, and they're both pretty good code. The assembly implementation is damned
good code, in fact, but if you want to know whether it's the fastest Bresenham's imple
mentation possible, I must tell you that it isn't. First of all, the code could be sped up a
bit by shuffling and combining the various error-term manipulations, but that results
in truly cryptic code. I wanted you to be able to relate the original algorithm to the
final code, so I skipped those optimizations. Also, write mode 3, which is unique to the
VGA, could be used for considerably faster drawing. I've described write mode 3 in
earlier chapters, and I strongly recommend its use in VGA-only line drawing.

Second, horizontal, vertical, and diagonal lines could be special-cased, since chose
particular lines require little calculation and can be drawn very rapidly. (This is espe
cially true of horizontal lines, which can be drawn 8 pixels at a time.)

219

220 {g} Chapter 14

Third, run-length slice line drawing could be used to significantly reduce the num
ber of calculations required per pixel, as I'll demonstrate in the next two chapters.

Finally, unrolled loops and/or duplicated code could be used to eliminate most of
the branches in the final assembly implementation, and because x86 processors are
notoriously slow at branching, that would make quite a difference in overall perfor
mance. If you're interested in unrolled loops and similar assembly techniques, I refer
you to my recent book on high-performance assembler programming, Zen of Code
Optimization.

That brings us neatly to my final point: Even ifl didn't know that there were further
optimizations to be made to my line-drawing implementation, I'd assume that there
were. As I'm sure the experienced assembly programmers among you know, there are
dozens of ways to tackle any problem in assembly, and someone else always seems to
have come up with a trick that never occurred to you. I've incorporated a suggestion
made by Jim Mackraz in the code in this chapter, and I'd be most interested in hearing
of any other tricks or tips you may have.

Notwithstanding, the line-drawing implementation in Listing 14.3 is plenty fast
enough for most purposes, so let's get the discussion underway.

The Task at Hand
There are two important characteristics of any line-drawing function. First, it must
draw a reasonable approximation of a line. A computer screen has limited resolution,
and so a line-drawing function must actually approximate a straight line by drawing a
series of pixels in what amounts to a jagged pattern that generally proceeds in the
desired direction. That pattern of pixels must reliably suggest to the human eye the
true line it represents. Second, to be usable, a line-drawing function must be fast.
Minicomputers and mainframes generally have hardware that performs line drawing,
but most microcomputers offer no such assistance. True, nowadays graphics accelera
tors such as the S3 and ATI chips have line drawing hardware, but some other accelera
tors don't; when drawing lines on the latter sort of chip, when drawing on the CGA,
EGA, and VGA, and when drawing sorts of lines not supported by line-drawing hard
ware as well, the PC's CPU must draw lines on its own, and, as many users of graphics
oriented software know, that can be a slow process indeed.

Line drawing quality and speed derive from two factors: The algorithm used to
draw the line and the implementation of that algorithm. The first implementation
(written in Borland C++) that I'll be presenting in this chapter illustrates the workings
of the algorithm and draws lines at a good rate. The second implementation, written in
assembly language and callable directly from Borland C++, draws lines at extremely
high speed, on the order of three to six times faster than the C version. Between them,
the two implementations illuminate Bresenham's line-drawing algorithm and provide
high-performance line-drawing capability.

Bresenham Is Fast, and Fast Is Good ~ 221

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

• 0 0 0 0 0 0

Figure 14.1 Approximating a True Line from a Pixel Array

The difficulty in drawing a line lies in generating a set of pixels that, taken together,
are a reasonable facsimile of a true line. Only horizontal, vertical, and 1: 1 diagonal
lines can be drawn precisely along the true line being represented; all other lines must
be approximated from the array of pixels that a given video mode supports, as shown
in Figure 14.1.

Considerable thought has gone into the design of line-drawing algorithms, and a
number of techniques for drawing high-quality lines have been developed. Unfortu
nately, most of these techniques were developed for powerful, expensive graphics work
stations and require very high resolution, a large color palette, and/or floating-point
hardware. These techniques tend to perform poorly and produce less visually impres
sive results on all but the best-endowed PCs.

Bresenham's line-drawing algorithm, on the other hand, is uniquely suited to micro
computer implementation in that it requires no floating-point operations, no divides,
and no multiplies inside the line-drawing loop. Moreover, it can be implemented with
surprisingly little code.

Bresenham's Line-Drawing Algorithm
The key to grasping Bresenham's algorithm is to understand that when drawing an
approximation of a line on a finite-resolution display, each pixel drawn will lie either
exactly on the true line or to one side or the other of the true line. The amount by
which the pixel actually drawn deviates from the true line is the error of the line draw
ing at that point. & the drawing of the line progresses from one pixel to the next, the
error can be used to tell when, given the resolution of the display, a more accurate
approximation of the line can be drawn by placing a given pixel one unit of screen
resolution away from its predecessor in either the horizontal or the vertical direction,
or both.

222 [Kl Chapter 14

0 2 3 4 5 6

0 0 0 0 0 0

0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0 0 0

Figure 14.2 Drawing between Two Pixel Endpoints

Let's examine the case of drawing a line where the horizontal, or X length of the line
is greater than the vertical, or Y length, and both lengths are greater than 0. For ex
ample, suppose we are drawing a line from (O,O) to (5,2), as shown in Figure 14.2.
Note that Figure 14.2 shows the upper left~hand corner of the screen as (O,O), rather
than placing (O,O) at its more traditional lower left-hand corner location. Due to the
way in which the PC's graphics are mapped to memory, it is simpler to work within
this framework, although a translation ofY from increasing downward to increasing
upward could be effected easily enough by simply subtracting the Y coordinate from
the screen height minus 1; if you are more comfortable with the traditional coordinate
system, feel free to modify the code in Listings 14.1 and 14.3.

In Figure 14.2, the endpoints of the line fall exactly on displayed pixels. However,
no other part of the line squarely intersects the center of a pixel, meaning that all other pixels
will have to be plotted as approximations of the line. The approach to approximation that
Bresenham's algorithm takes is to move exactly 1 pixel along the major dimension of the
line each time a new pixel is drawn, while moving 1 pixel along the minor dimension each
time the line moves more than halfway between pixels along the minor dimension.

In Figure 14.2, the X dimension is the major dimension. This means that 6 dots,
one at each ofX coordinates 0, 1, 2, 3, 4, and 5, will be drawn. The trick, then, is to
decide on the correct Y coordinates to accompany those X coordinates.

It's easy enough to select the Y coordinates by eye in Figure 14.2. The appropriate Y
coordinates are 0, 0, 1, 1, 2, 2, based on the Y coordinate closest to the line for each X
coordinate. Bresenham's algorithm makes the same selections, based on the same crite
rion. The manner in which it does this is by keeping a running record of the error of
the line-that is, how far from the true line the current Y coordinate is-at each X
coordinate, as shown in Figure 14.3. When the running error of the line indicates that
the current Y coordinate deviates from the true line to the extent that the adjacent Y
coordinate would be closer to the line, then the current Y coordinate is changed to that
adjacent Y coordinate.

Bresenham Is Fast, and Fast Is Good Ill 223

0
'

A --e---
B

5 --t----0---~ -
E ----------------

2
'

0
3

0
' ' '

F ------------------------

G --2----G---G---G---O---

3 0 0 0 0 0

Figure 14.3 The Error Term in Bresenham's Algorithm

5 6

0 0
' ' '

0 0
' ' '

0

0 0

Let's take a moment to follow the steps Bresenham's algorithm would go through in
drawing the line in Figure 14.3. The initial pixel is drawn at (0,0), the starting point of
the line. At this point the error of the line is 0.

Since X is the major dimension, the next pixel has an X coordinate of 1. The Y
coordinate of this pixel will be whichever of 0 (the last Y coordinate) or 1 (the adjacent
Y coordinate in the direction of the end point of the line) the true line at this X coordinate
is closer to. The running error at this point is B minus A, as shown in Figure 14.3. This
amount is less than 1/2 (that is, less than halfway to the next Y coordinate), so the Y coordi
nate does not change at X equal to 1. Consequently, the second pixel is drawn at (1,0).

The third pixel has an X coordinate of 2. The running error at this point is C minus
A, which is greater than 1/2 and therefore closer to the next than to the current Y
coordinate. The third pixel is drawn at (2,1), and 1 is subtracted from the running
error to compensate for the adjustment of one pixel in the current Y coordinate. The
running error of the pixel actually drawn at this point is C minus D.

The fourth pixel has an X coordinate of 3. The running error at this point is E
minus D; since this is less than 1/2, the current Y coordinate doesn't change. The
fourth pixel is drawn at (3,1).

The fifth pixel has an X coordinate of 4. The running error at this point is F minus
D; since this is greater than 1/2, the current Y coordinate advances. The third pixel is
drawn at (4,2), and 1 is subtracted from the running error. The error of the pixel drawn
at this point is G minus F.

Finally, the sixth pixel is the end point of the line. This pixel has an X coordinate of 5.
The running error at this point is G minus G, or 0, indicating that this point is squarely on
the true line, as of course it should be given that it's the end point, so the current Y coordi
nate remains the same. The end point of the line is drawn at (5,2), and the line is complete.

224 [g} Chapter 14

That's really all there is to Bresenham's algorithm. The algorithm is a process of
drawing a pixel at each possible coordinate along the major dimension of the line, each
with the closest possible coordinate along the minor dimension. The running error is
used to keep track of when the coordinate along the minor dimension must change in
order to remain as close as possible to the true line. The above description of the case
where X is the major dimension, Y is the minor dimension, and both dimensions are
greater than zero is readily generalized to all eight octants in which lines could be
drawn, as we will see in the C implementation.

The above discussion summarizes the nature rather than the exact mechanism of
Bresenham's line-drawing algorithm. I'll provide a brief seat-of-the-pants discussion of
the algorithm in action when we get to the C implementation of the algorithm; for a
full mathematical treatment, I refer you to pages 433-436 of Foley and Van Dam's
Fundamentals oflnteracti.ve Computer Graphics (Addison-Wesley, 1982), or pages 72-78 of
the second edition of that book, which was published under the name Computer Graph
ics: Principles and Practice (Addison-Wesley, 1990). These sources provide the deriva
tion of the integer-only, divide-free version of the algorithm, as well as Pascal code for
drawing lines in one of the eight possible octants.

Strengths and Weaknesses
The overwhelming strength of Bresenham's line-drawing algorithm is speed. With no
divides, no floating-point operations, and no need for variables that won't fit in 16
bits, it is perfectly suited for PCs.

The weakness of Bresenham's algorithm is that it produces relatively low-quality
lines by comparison with most other line-drawing algorithms. In particular, lines gen
erated with Bresenham's algorithm can tend to look a little jagged. On the PC, how
ever, jagged lines are an inevitable consequence of relatively low resolution and a small
color set, so lines drawn with Bresenham's algorithm don't look all that much different
from lines drawn in other ways. Besides, in most applications, users are far more inter
ested in the overall picture than in the primitive elements from which that picture is
built. As a general rule, any collection of pixels that trend from point A to point B in a
straight fashion is accepted by the eye as a line. Bresenham's algorithm is successfully
used by many current PC programs, and by the standard of this wide acceptance the
algorithm is certainly good enough.

Then, too, users hate waiting for their computer to finish drawing. By any standard
of drawing performance, Bresenham's algorithm excels.

An Implementation in C
It's time to get down and look at some actual working code. Listing 14.1 is a C imple
mentation of Bresenham's line-drawing algorithm for modes OEH, OFH, 1 OH, and

Bresenham Is Fast, and Fast Is Good rJ 225

12H of the VGA, called as function EVGALine. Listing 14.2 is a sample program to
demonstrate the use of EVGALine.

LISTING 14.1 L 14-1.C
I*

* C implementation of Bresenham's line drawing algorithm
* for the EGA and VGA. Works in modes OxE, OxF, OxlO, and Ox12.

*
* Compiled with Borland C++
*
* By Mi cha el Abra sh
*I

/Ii ncl ude <dos. h> /* contains MK_FP macro */

!/define EVGA_SCREEN_WIDTH_IN_BYTES 80

#define EVGA_SCREEN_SEGMENT

!/define GC_INDEX

/* memory offset from start of
one row to start of next*/

OxAOOO
/* display memory segment*/

Ox3CE

/fdefi ne GC_DATA

/* Graphics Controller
Index register port*/

Ox3CF
/* Graphics Controller

Data register port*/
#define SET_RESET_INDEX
!/define ENABLE_SET_RESET_INDEX
#define BIT_MASK_INOEX

0 /* indexes of needed*/
1 /* Graphics Controller */
8 /* registers * /

I*
* Draws a dot at {XO.YO)
* set up for. Leaves the
* dot required.
*I

in whatever color the EGA/VGA hardware is
bit mask set to whatever value the

void EVGADot{XO, YO)
unsigned int XO;
unsigned int YO:

/* coordinates at which to draw dot. with * /
/* (0,0) at the upper left of the screen */

{
unsigned char far *PixelBytePtr:
unsigned char PixelMask:

/* Cal cul ate the offset in the screen segment of the byte in
which the pixel lies */

PixelBytePtr = MK_FP(EVGA_SCREEN_SEGMENT,
(YO * EVGA_SCREEN_WIOTH_IN_BYTES) + (XO / 8)) :

I* Generate a mask with a 1 bit in the pixel's position within the
screen byte */

Pixel Mask - Ox80 » (XO & Ox07) ;

I* Set up the Graphics Controller's Bit Mask register to all ow
only the bit corresponding to the pixel being drawn to

be modified *I
outportb(GC_INOEX, BIT_MASK_INDEX):
outportb(GC_OATA, PixelMask):

226 /gJ Chapter 14

I*

/* Draw the pixel. Because of the operation of the set/reset
feature of the EGA/VGA, the value written doesn't matter.
The screen byte is ORed in order to perform a read to latch the
display memory, then perform a write in order to modify it. */

*Pi xe 1 BytePt r I= Ox FE;

* Draws a line in octant O or 3 ([DeltaXJ >= DeltaY).
*I

void OctantO(XO, YO, DeltaX, DeltaY, XDirection)
unsigned int XO, YO; /* coordinates of start of the line*/
unsigned int DeltaX, DeltaY; /* length of the line (both > 0) */
int XDirection; /* 1 if line is drawn left to right,

/*

int DeltaYx2;
int Del taYx2Mi nusDeltaXx2:

int ErrorTerm;

-1 if drawn right to left*/

/* Set up initial error term and values used inside drawing loop */
DeltaYx2 = DeltaY * 2;
DeltaYx2MinusDeltaXx2 = DeltaYx2 - (int) (DeltaX * 2) ;
ErrorTerm = DeltaYx2 - (int) DeltaX;

/* Draw the line*/
EVGADot(XO, YO);
while (DeltaX--) {

/* draw the first pixel*/

/* See if it's time to advance the Y coordinate */
if (ErrorTerm >= O) {

}

/* Advance the Y coordinate & adjust the error term
back down*/

YO++;
ErrorTerm += DeltaYx2MinusDeltaXx2;

else {
/* Add to the error term*/
ErrorTerm +- DeltaYx2;

XO+= XDirection;
EVGADot(XO, YO);

/* advance the X coordinate*/
/* draw a pixel */

* Draws a line in octant 1 or 2 (JDeltaXI < DeltaY).
*/

void Octantl(XO, YO, DeltaX,
unsigned int XO. YO;
unsigned int DeltaX, DeltaY;
int XDi recti on;

int DeltaXx2;
int DeltaXx2MinusDeltaYx2;
int ErrorTerm;

DeltaY, XDi recti on)
/* coordinates of start of the line*/

/* 1 ength of the 1 i ne (both > O) * /
/* 1 if line is drawn left to right,

-1 if drawn right to left*/

I* Set up initial error term and values used inside drawing loop */
DeltaXx2 = DeltaX * 2;
DeltaXx2MinusDeltaYx2 = DeltaXx2 - (int) (DeltaY * 2) ;
ErrorTerm = DeltaXx2 - (int) DeltaY;

Bresenham Is Fast, and Fast Is Good fg} 227

EVGADot(XO, YO); /* draw the first pixel */
while C DeltaY--) {

/* See if it• s time to advance the X coordinate */
if I ErrorTerm >- 0) {

/* Advance the X coordinate & adjust the error term
back down*/

XO+- XDirection;
ErrorTerm +- DeltaXx2MinusDeltaYx2;

else {
/* Add to the error term*/
ErrorTerm +- DeltaXx2;

YO++;
EVGADotlXO, YO);

/* advance the Y coordinate*/
/* draw a pixel */

I*
* Draws a line on the EGA or VGA.
*/

void EVGALinelXO, YO, Xl. Yl, Color)
int XO, YO; /* coordinates of one end of the line*/
int Xl, Yl; /* coordinates of the other end of the line */
char Color: /* color to draw line in */
{

int DeltaX, DeltaY;
int Temp;

/* Set the drawing col or */

/* Put the drawing color in the Set/Reset register */
outportb(GC_INDEX, SET_RESET_INDEX);
outportb(GC_DATA, Color);
/* Cause all planes to be forced to the Set/Reset color*/
outportb(GC_INDEX, ENABLE_SET_RESET_INDEX);
outportb(GC_DATA, OxF):

/* Save half the line-drawing cases by swapping YO with Yl
and XO with Xl if YO is greater than Yl. As a result, DeltaY
is always > 0, and only the octant 0-3 cases need to be
handled. */

if I YO > Y1)
Temp= YO:
YO = Y1;
Y1 = Temp:
Temp= XO:
XO - Xl;
Xl = Temp;

/* Handle as four separate cases, for the four octants 1 n which
Yl is greater than YO*/

DeltaX - Xl XO; /* calculate the length of the line
in each coordinate*/

DeltaY = Yl - YO:
if (DeltaX > 0)

if (DeltaX > DeltaY) {

OctantO(XO, YO, DeltaX, DeltaY. 1);

else {
Octant!(XO. YO, DeltaX, DeltaY, 1);

228 gJ Chapter 14

else {
DeltaX = ·DeltaX: /* absolute value of DeltaX */
if (DeltaX > DeltaY) {

OctantO(XO, YO. DeltaX, DeltaY, -1):

else {
Octantl(XO, YO, DeltaX, DeltaY, -1):

/* Return the state of the EGA/VGA to normal */
outportb(GC_INDEX, ENABLE_SET_RESET_INDEX):
outportb(GC_DATA, 0):
outportb(GC_INDEX, BIT_MASK_INDEX):
outportb(GC_DATA, OxFF):

LISTING 14.2 L 14-2.C
I*

* Sample program to illustrate EGA/VGA line drawing routines.

*
* Compiled with Borland C++

*
* By Michael Abrash
*I

!/include <dos.h> I* contains geninterrupt *I

#define GRAPHICS_MODE OxlO
1/defi ne TEXT_MODE Ox03
1/defi ne BIOS_VIDEO_INT OxlO
#define X_MAX 640 I* working screen width */
1/defi ne Y_MAX 348 I* working screen height * /

extern void EVGALine():

I*
* Subroutine to draw a rectangle full of vectors, of the specified
* length and color, around the specified rectangle center.
*I

void VectorsUp(XCenter,
int XCenter. YCenter:
int X Length, Y Length:

YCenter, XLength, Ylength, Color)
/* center of rectangle to fi 11 * /
/* di stance from center to edge

of rectangle*/
int Color: /* color to draw lines in*/
{

int Worki ngX, Worki ngY:

/* Lines from center to top of rectangle * /
Worki ngX = XCenter - XLength:
Worki ngY = YCenter - YLength:
for (: Worki ngX < (XCenter + Xlength) : Worki ngX++)

EVGALine(XCenter, YCenter, WorkingX, WorkingY, Color);

/* Lines from center to right of rectangle * /
Worki ngX = XCenter + XLength - 1:
Worki ngY = YCenter - Ylength:
for (; Worki ngY < (YCenter + Ylength) ; Worki ngY++)

EVGALine(XCenter, YCenter, WorkingX, WorkingY, Color);

/*

Bresenham Is Fast, and Fast Is Good g} 229

/* Lines from center to bottom of rectangle*/
Worki ngX = XCenter + XLength - 1;
WorkingY - YCenter + YLength - l;
for (; Worki ngX >= (XCenter - XLength) ; Worki ngX- -)

EVGALine(XCenter, YCenter, WorkingX, WorkingY, Color);

/* Lines from center to left of rectangle */
Worki ngX = XCenter - XLength;
WorkingY = YCenter + YLength - l;
for (; WorkingY >= (YCenter - Ylength); WorkingY--

EVGAL i ne(XCenter. YCenter. Worki ngX. Worki ngY. Col or) ;

* Sample program to draw four rectangles full of 1 i nes.
*/

void main()
{

char temp;

/* Set graphics mode * /
_AX = GRAPHICS_MODE;
geninterrupt(BIOS_VIDEO_INT);

I* Draw each of four rectangles full of vectors
VectorsUp(X_MAX I 4, Y_MAX I 4, X_MAX I 4,

Y_MAX I 4, 1);

VectorsUp(X_MAX * 3 I 4, Y_MAX I 4, X_MAX 4,
Y_MAX I 4, 2);

VectorsUp(X_MAX I 4, Y_MAX * 3 I 4. X_MAX I 4,
Y_MAX / 4, 3);

VectorsUp(X_MAX * 3 I 4. Y_MAX * 3 I 4, X_MAX
Y_MAX I 4, 4);

/* Wait for the enter key to be pressed */
scanf("%c". &temp);

/* Return back to text mode */
_AX= TEXT_MODE;
geninterrupt(BIOS_VIDEO_INT);

Looking at EVGALine

I

*I

4.

The EVGALine function itself performs four operations. EVGALine first sets up the
VGN.s hardware so that all pixels drawn will be in the desired color. This is accom
plished by setting two of the VGN.s registers, the Enable Set/Reset register and the Set/
Reset register. Setting the Enable Set/Reset to the value OFH, as is done in EVGALine,
causes all drawing to produce pixels in the color contained in the Set/Reset register.
Setting the Set/Reset register to the passed color, in conjunction with the Enable Set/
Reset setting of OFH, causes all drawing done by EVGALine and the functions it calls
to generate the passed color. In summary, setting up the Enable Set/Reset and Set/
Reset registers in this way causes the remainder of EVGALine to draw a line in the
specified color.

230 [g} Chapter 14

EVGALine next performs a simple check to cut in half the number of line orienta
tions that must be handled separately. Figure 14.4 shows the eight possible line orien
tations among which a Bresenham's algorithm implementation must distinguish. (In
interpreting Figure 14.4, assume that lines radiate outward from the center of the
figure, falling into one of eight octants delineated by the horizontal and vertical axes
and the two diagonals.) The need to categorize lines into these octants falls out of the
major/minor axis nature of the algorithm; the orientations are distinguished by which
coordinate forms the major axis and by whether each of X and Y increases or decreases
from the line start to the line end.

A moment of thought will show, however, that four of the line orien
tations are redundant. Each of the four orientations for which OeltaY,
the Y component of the line, is less than O (that is, for which the line
start Y coordinate is greater than the line end Y coordinate) can be
transformed into one of the four orientations for which the line start
Y coordinate is less than the line end Y coordinate simply by revers
ing the line start and end coordinates, so that the line is drawn in
the other direction. EVGALine does this by swapping (XO, YO) (the
line start coordinates) with (X1, Y1) (the line end coordinates) when
ever YO is greater than Y1.

Decreasing Y

"- Octant5
DeltaX < 0
DeltaY < 0
JDeltaYJ > JDeltaXJ

Octant 4
DeltaX < O
DeltaY < 0

Decreasing X
JDeltaXI > JDeltaYI

JDeltaXI > JDeltaYJ
DeltaX < 0
DeltaY > O

Octant 3
JDeltaYJ > JDeltaXJ
Del tax < o

Octant/
DeltaX > O
DeltaY < 0
JDeltaYJ > JDeltaXJ

Octant 7
DeltaX > 0
DeltaY < 0
JDeltaXJ > JDeltaYI

lncreae;ing X
JDeltaXI > JDeltaYJ
DeltaX > 0

Octant 0
JDeltaYI > JDeltaXJ
OeltaX > 0 "'-.

jt DeltaY > 0

Octant 2
DeltaY > O

1
~

Octant 1
Increasing Y

Figure 14.4 Bresenham's Eight Possible Line Orientations

Bresenham Is Fast, and Fast Is Good ~ 231

This accomplished, EVGALine must still distinguish among the four remaining
line orientations. Those four orientations form two major categories, orientations for
which the X dimension is the major axis of the line and orientations for which the Y
dimension is the major axis. As shown in Figure 14.4, octanes 1 (where X increases
from start to finish) and 2 (where X decreases from start to finish) fall into the latter
category, and differ in only one respect, the direction in which the X coordinate moves
when it changes. Handling of the running error of the line is exactly the same for both
cases, as one would expect given the symmetry of lines differing only in the sign of
DeltaX, the X coordinate of the line. Consequently, for those cases where DeltaX is
less than zero, the direction ofX movement is made negative, and the absolute value of
DeltaX is used for error term calculations.

Similarly, octants O (where X increases from start to finish) and 3 (where X decreases
from start to finish) differ only in the direction in which the X coordinate moves when
it changes. The difference between line drawing in octants O and 3 and line drawing in
octants 1 and 2 is that in octants O and 3, since X is the major axis, the X coordinate
changes on every pixel of the line and the Y coordinate changes only when the running
error of the line dictates. In octants 1 and 2, the Y coordinate changes on every pixel
and the X coordinate changes only when the running error dictates, since Y is the
maJor axis.

There is one line-drawing function for octanes O and 3, Octant0, and one line
drawing function for octanes 1 and 2, Octantl. A single function with if statements
could certainly be used to handle all four octants, but at a significant performance cost.
There is, on the other hand, very little performance cost to grouping octants O and 3
together and octanes 1 and 2 together, since the two octanes in each pair differ only in
the direction of change of the X coordinate.

EVGALine determines which line-drawing function to call and with what value for
the direction of change of the X coordinate based on two criteria: whether DeltaX is
negative or not, and whether the absolute value ofDeltaX (IDeltaXI) is less than DeltaY
or not, as shown in Figure 14.5. Recall that the value of DeltaY, and hence the direc
tion of change of the Y coordinate, is guaranteed to be non-negative as a result of the
earlier elimination of four of the line orientations.

After calling the appropriate function to draw the line (more on those functions
shortly), EVGALine restores the state of the Enable Set/Reset register to its default of
zero. In this state, the Set/Reset register has no effect, so it is not necessary to restore
the state of the Set/Reset register as well. EVGALine also restores the state of the Bit
Mask register (which, as we will see, is modified by EVGADot, the pixel-drawing routine
actually used to draw each pixel of the lines produced by EVGALine) to its default of
OFFH. While it would be more modular to have EVGADot restore the state of the Bit
Mask register after drawing each pixel, it would also be considerably slower to do so. The
same could be said of having EVGADot set the Enable Set/Reset and Set/Reset regis
ters for each pixel: While modularity would improve, speed would suffer markedly.

232 [gJ Chapter 14

Decreaeing X
Call OctantO
with X
decreasing

Decreaeing Y

Increasing X

Octant 3 Octant 0
Call Octant1 Call Octant1

/withx withX ~ j/' ~ decreasing increaeing

Octant 2 Octant 1
Increasing Y

Figure 14.5 EVGALine's Decision Logic

Drawing Each Line
The Octant0 and Octantl functions draw lines for which IDeltaXI is greater than
DeltaY and lines for which IDeltaXI is less than or equal to DeltaY, respectively. The
parameters to Octant0 and Octantl are the starting point of the line, the length of the
line in each dimension, and XDirection, the amount by which the X coordinate should
be changed when it moves. XDirection must be either 1 (to draw toward the right edge
of the screen) or -1 (to draw toward the left edge of the screen). No value is required
for the amount by which the Y coordinate should be changed; since DeltaY is guaran
teed to be positive, the Y coordinate always changes by 1 pixel.

Octant0 draws lines for which IDeltaXI is greater than DeltaY. For such lines, the X
coordinate of each pixel drawn differs from the previous pixel by either 1 or -1, de
pending on the value of XDirection. (This makes it possible for Octant0 to draw lines
in both octant 0 and octant 3.) Whenever ErrorTerm becomes non-negative, indicat
ing that the next Y coordinate is a better approximation of the line being drawn, the Y
coordinate is increased by 1.

Octantl draws lines for which IDeltaXI is less than or equal to DeltaY. For these
lines, the Y coordinate of each pixel drawn is 1 greater than the Y coordinate of the
previous pixel. Whenever ErrorTerm becomes non-negative, indicating that the next
X coordinate is a better approximation of the line being drawn, the X coordinate is
advanced by either 1 or -1, depending on the value of XDirection. (This makes it
possible for Octantl to draw lines in both octant 1 and octant 2.)

Bresenham Is Fast, and Fast Is Good ill 233

Drawing Each Pixel
At the core of OctantO and Octant! is a pixel-drawing function, EVGADot. EVGADot
draws a pixel at the specified coordinates in whatever color the hardware of the VGA
happens to be set up for. As described earlier, since the entire line drawn by EVGALine
is of the same color, line-drawing performance is improved by setting the VGN.s hard
ware up once in EVGALine before the line is drawn, and then drawing all the pixels in
the line in the same color via EVGADot.

EVGADot makes certain assumptions about the screen. First, it assumes that the
address of the byte controlling the pixels at the start of a given row on the screen is 80
bytes after the start of the row immediately above it. In other words, this implementa
tion of EVGADot only works for screens configured to be 80 bytes wide. Since this is
the standard configuration of all of the modes EVGALine is designed to work in, the
assumption of 80 bytes per row should be no problem. If it is a problem, however,
EVGADot could easily be modified to retrieve the BIOS integer variable at address
0040:004A, which contains the number of bytes per row for the current video mode.

Second, EVGADot assumes that screen memory is organized as a linear bitmap
starting at address A000:0000, with the pixel at the upper left of the screen controlled
by bit 7 of the byte at offset 0, the next pixel to the right controlled by bit 6, the ninth
pixel controlled by bit 7 of the byte at offset 1, and so on. Further, it assumes that the
graphics adapter's hardware is configured such that setting the Bit Mask register to
allow modification of only the bit controlling the pixel of interest and then ORing a
value of 0FEH with display memory will draw that pixel correctly without affecting
any other dots. (Note that 0FEH is used rather than 0FFH or 0 because some optimiz
ing compilers turn ORs with the latter values into simpler operations or optimize them
away entirely. As explained later, however, it's not the value that's ORed that matters,
given the way we've set up the VGN.s hardware; it's the act of ORing itself, and the
value 0FEH forces the compiler to perform the OR operation.) Again, this is the nor
mal way in which modes 0EH, 0FH, l0H, and 12H operate. As described earlier,
EVGADot also assumes that the VGA is set up so that each pixel drawn in the above
mentioned manner will be drawn in the correct color.

Given those assumptions, EVGADot becomes a surprisingly simple function. First,
EVGADot builds a far pointer that points to the byte of display memory controlling
the pixel to be drawn. Second, a mask is generated consisting of zeros for all bits except
the bit controlling the pixel to be drawn. Third, the Bit Mask register is set to that
mask, so that when display memory is read and then written, all bits except the one
that controls the pixel to be drawn will be left unmodified.

Finally, 0FEH is ORed with the display memory byte controlling the pixel to be
drawn. ORing with 0FEH first reads display memory, thereby loading the VGN.s in
ternal latches with the contents of the display memory byte controlling the pixel to be
drawn, and then writes to display memory with the value 0FEH. Because of the un
usual way in which the VGN.s data paths work and the way in which EVGALine sets
up the VGN.s Enable Set/Reset and Set/Reset registers, the value that is written by the

234 gJ Chapter 14

OR instruction is ignored. Instead, the value that actually gets placed in display memory
is the color that was passed to EVGALine and placed in the Set/Reset register. The Bit
Mask register, which was set up in step three above, allows only the single bit control
ling the pixel to be drawn to be set to this color value. For more on the various machin
eries the VGA brings to bear on graphics data, look back to Chapter 3.

The result of all this is simply a single pixel drawn in the color set up in EVGALine.
EVGADot may seem excessively complex for a function that does nothing more that
draw one pixel, but programming the VGA isn't trivial (as we've seen in the early chap
ters of this book). Besides, while the explanation of EVGADot is lengthy, the code
itself is only five lines long.

Line drawing would be somewhat faster if the code of EVGADot were made an
inline part of Octant0 and Octant!, thereby saving the overhead of preparing param
eters and calling the function. Feel free to do this if you wish; I maintained EVGADot
as a separate function for clarity and for ease of inserting a pixel-drawing function for
a different graphics adapter, should that be desired. If you do install a pixel-drawing
function for a different adapter, or a fundamentally different mode such as a 256-color
SuperVGA mode, remember to remove the hardware-dependent outportb lines in
EVGALine itself.

Comments on the C Implementation
EVGALine does no error checking whatsoever. My assumption in writing EVGALine
was that it would be ultimately used as the lowest-level primitive of a graphics software
package, with operations such as error checking and clipping performed at a higher
level. Similarly, EVGALine is tied to the VGX.s screen coordinate system of (0,0) to
(639,199) (in mode 0EH), (0,0) to (639,349) (in modes 0FH and lOH), or (0,0) to
(639,479) (in mode 12H), with the upper left corner considered to be (0,0). Again,
transformation from any coordinate system to the coordinate system used by EVGALine
can be performed at a higher level. EVGALine is specifically designed to do one thing:
draw lines into the display memory of the VGA. Additional functionality can be sup
plied by the code that calls EVGALine.

The version of EVGALine shown in Listing 14.1 is reasonably fast, but it is not as
fast as it might be. Inclusion of EVGADot directly into Octant0 and Octant!, and,
indeed, inclusion of Octant0 and Octant! directly into EVGALine would speed ex
ecution by saving the overhead of calling and parameter passing. Handpicked register
variables might speed performance as well, as would the use of word O UTs rather than
byte OUTs. A more significant performance increase would come from eliminating
separate calculation of the address and mask for each pixel. Since the location of each
pixel relative to the previous pixel is known, the address and mask could simply be
adjusted from one pixel to the next, rather than recalculated from scratch.

These enhancements are not incorporated into the code in Listing 14.1 for a couple
of reasons. One reason is that it's important that the workings of the algorithm be

Bresenham Is Fast, and Fast Is Good ~ 235

clearly visible in the code, for learning purposes. Once the implementation is under
stood, rewriting it for improved performance would certainly be a worthwhile exercise.
Another reason is that when flat-out speed is needed, assembly language is the best way
to go. Why produce hard-to-understand C code to boost speed a bit when assembly
language code can perform the same task at two or more times the speed?

Given which, a high-speed assembly language version ofEVGALine would seem to
be a logical next step.

Bresenham's Algorithm in Assembly
Listing 14.3 is a high-performance implementation of Bresenham's algorithm, written
entirely in assembly language. The code is callable from C just as is Listing 14.1, with
the same name, EVGALine, and with the same parameters. Either of the two can be
linked to any program that calls EVGALine, since they appear to be identical to the
calling program. The only difference between the two versions is that the sample pro
gram in Listing 14.2 runs over three times as fast on a 486 with an ISA-bus VGA when
calling the assembly-language version of EVGALine as when calling the C version, and
the difference would be considerably greater yet on a local bus, or with the use of write
mode 3. Link each version with Listing 14.2 and compare performance-the differ
ence is startling.

LISTING 14.3 L 14-3.ASM
Fast assembler implementation of Bresenham's line-drawing algorithm
for the EGA and VGA. Works in modes OEh, OFh, 10h, and 12h.
Borland C++ near-callable.
Bit mask accumulation technique when IDeltaXI >= IDeltaYI

suggested by Jim Mackraz.

Assembled with TASM

By Michael Abrash

:**
; C-compatible line-drawing entry point at _EVGALine.
: Near C-callable as:

*
*
* EVGALine(XO, YO, Xl, Yl, Color);

;**

model small
.code

Equates.

EVGA_SCREEN WIDTH IN BYTES

EVGA_SCREEN_SEGMENT

equ 80

equ OaOOOh

: memory offset from start of
: one row to start of next
: in display memory
;display memory segment

236 ;gJ Chapter 14

GC_INDEX

SET_RESET_INDEX
ENABLE_SET_RESET_INDEX
BIT_MASK_INDEX

equ

equ
equ

equ

3ceh

0
1
8

;Graphics Controller
; Index register port
;indexes of needed

Graphics Controller
; registers

Stack frame.

EVGALineParms struc
dw

XO
YO
Xl
Y1
Color

dw

dw
dw
dw
dw

db
db

?

?
?
?
?

?
?

;pushed BP
;pushed return address (make double

; word for far call)
:starting X coordinate of line
;starting Y coordinate of line
:ending X coordinate of line
:ending Y coordinate of line

:color of line
;dummy to pad to word size

EVGALineParms ends

;**
: Line drawing macros. *
:**

Macro to loop through length of line. drawing each pixel in turn.
Used for case of IDeltaXI >= IDeltaYI.
Input:

LINEl

MOVE LEFT: 1 if DeltaX < 0, 0 else
AL: pixel mask for initial pixel
BX: I DeltaXI
DX: address of GC data register, with index register set to

index of Bit Mask register
SI: DeltaY

ES:DI: display memory address of byte containing initial
pixel

macro
1 ocal
1 oca l

mov
jcxz

sh l
mov
sub
shl
sub
add
mov

MOVE_LEFT
Li neloop, MoveXCoord, Next Pixel, Li nelEnd
MoveToNextByte. ResetBitMaskAccumulator

ex.bx :fl of pixels in line
LinelEnd :done if there are no more

; (there's always at least
; at the start location)

pixels
the one pixel

si , 1
bp,si
bp,bx
bx,1
si, bx
bx,si
ah.al

:DeltaY * 2
;error term
:error term starts at DeltaY * 2 - DeltaX
:DeltaX * 2
;DeltaY * 2 - DeltaX * 2 (used in loop)
;DeltaY * 2 (used in loop)
:set aside pixel mask for initial pixel

with AL (the pixel mask accumulator) set
; for the initial pixel

Lineloop:

See if it's time to advance the Y coordinate yet.

and
js

bp,bp
MoveXCoord

;see if error term is negative
;yes, stay at the same Y coordinate

if

Bresenham Is Fast, and Fast Is Good {g/ 237

Advance the Y coordinate, first writing all pixels in the current
byte, then move the pixel mask either left or right, depending
on MOVE_LEFT.

out dx,al ;set up bit mask for pixels in this byte
xchg byte ptr [di].al

;load latches and write pixels, with bit mask
preserving other latched bits. Because

; ·set/reset is enabled for all planes, the
; value written actually doesn't matter

add di ,EVGA_SCREEN_WIDTH_IN_BYTES ;increment Y coordinate
add bp,si ;adjust error term back down

Move pixel mask one pixel (either right or left, depending
on MOVE_LEFT), adjusting display memory address when pixel mask wraps.

MOVE_LEFT
rol ah,1 ;move pixel mask pixel to the left

else
ror ah,1 ;move pixel mask 1 pixel to the right

endif
jnc ResetBitMaskAccumulator ;didn't wrap to next byte
jmp short MoveToNextByte ;did wrap to next byte

Move pixel mask one pixel (either right or left, depending
on MOVE_LEFT), adjusting display memory address and writing pixels
in this byte when pixel mask wraps.

MoveXCoord:
add

if MOVE_LEFT
rol

else
ror

endif
jnc

out
xchg

MoveToNextByte:
if MOVE_LEFT

dee
else

inc

bp,bx

ah,l

ah,1

NextPixel

dx,al
byte

di

di

ptr

endif
ResetBitMaskAccumulator:

sub al ,al
NextPixel:

or al , ah

loop LineLoop

; increment error term & keep same

;move pixel mask 1 pixel to the left

;move pixel mask pixel to the right

;if still in same byte, no need to
; modify display memory yet
;set up bit mask for pixels in this byte.

[di].al
;load latches and write pixels, with bit mask

preserving other latched bits. Because
set/reset is enabled for all planes, the
value written actually doesn't matter

;next pixel is in byte to left

;next pixel is in byte to right

;reset pixel mask accumulator

;add the next pixel to the pixel mask
; accumulator

Write the pixels in the final byte.

LinelEnd:
out
xchg

dx,al ;set up bit mask for pixels in this byte
byte ptr [di].al

238 fl} Chapter 14

endm

;load latches and write pixels, with bit mask
preserving other latched bits. Because
set/reset is enabled for all planes, the
value written actually doesn't matter

Macro to loop through length of line, drawing each pixel in turn.
Used for case of Del tax < Del taY.
Input:

MOVE LEFT: 1 if DeltaX < O. 0 else
AL: pixel mask for initial pixel
BX: I DeltaXJ
DX: address of GC data register. with index register set to

index of Bit Mask register
SI: DeltaY

ES:DI: display memory address of byte containing initial
pixel

LINE2 macro MOVE_LEFT
local Lineloop, MoveYCoord, ETermAction, Line2End

mov cx,si :lt of pixels in line
jcxz Line2End :done if there are no more pixels
shl bx.1 ;DeltaX * 2
mov bp,bx :error term
sub bp,si :error term starts at DeltaX * 2 - DeltaY
shl s i . 1 : DeltaY * 2
sub bx.si : DeltaX * 2 - DeltaY * 2 (used in loop)
add si ,bx : DeltaX * 2 {used in loop)

Set up initial bit mask & write initial pixel.

out dx,al
xchg byte ptr [di].ah

Line Loop:

: 1 oad latches and write pixel, with bit mask
preserving other latched bi ts. Because
set/reset is enabled for all planes, the
value written actually doesn't matter

See if it's time to advance the X coordinate yet.

and
jns
add
jmp

ETermAction:

Move pixel

bp,bp
ETermAction
bp,si
short MoveYCoord

mask one pixel { either
on MOVE_LEFT). adjusting display

if MOVE_LEFT
rol al , 1
sbb di, 0

else
ror al • 1
adc di. 0

endif
out dx,al
add bp,bx

right
memory

: see if error term is negative
: no. advance X coordinate
;increment error term & keep same
; X coordinate

or left. depending
address when pixel mask wraps.

;set new bit mask
;adjust error term back down

Bresenham Is Fast, and Fast Is Good ill 239

; Advance Y coordinate.

MoveYCoord:
add di ,EVGA_SCREEN_WIDTH_IN_BYTES

Write the next pixel .

xchg byte ptr [di].ah
:load latches and write pixel. with bit mask

preserving other latched bi ts. Because
set/reset is enabled for all planes, the
value written actually doesn't matter

loop
Line2End:

endm

Lineloop

:**
: Line drawing routine. *
:**

public EV GAL i ne
EV GAL i ne proc near

push bp
mov bp,sp
push si :preserve register variables
push di
push ds

Point OS to display memory.

mov ax,EVGA_SCREEN_SEGMENT
mov ds,ax

Set the Set/Reset and Set/Reset Enable registers for
the selected color.

mov
mov

out
inc
mov
out
dee

mov
out
inc
mov
out

Get DeltaY.

mov
mov

sub
jns

dx, GC_INDEX
al ,SET_RESET_INDEX

dx, al
dx
al ,[bp+ColorJ

dx, al
dx

al ,ENABLE_SET_RESET_INDEX
dx, al
dx
al , Offh
dx, al

si ,[bp+Yl]
ax,[bp+YOJ

si, ax
CalcStartAddress

:line Y start
;line Y end, used later in
:calculating the start address
:calculate OeltaY
;if positive, we're set

DeltaY is negative -- swap coordinates so we're always working
with a positive DeltaY.

240 Ill Chapter 14

mov ax, [bp+Yl] : set line start to Y1, for use
: in calculating the start address

mov dx, [bp+xO]
xchg dx,[bp+Xl]
mov [bp+XO],dx : swap X coordinates
neg si :convert to positive DeltaY

Calculate the starting address in display memory of the line.
Hardwired for a screen width of 80 bytes.

CalcStartAddress:
shl ax,1
shl ax,1
shl ax,1
shl ax,1
mov di.ax
shl ax,1
shl ax,1
add di,ax
mov dx,[bp+XO]
mov cl ,dl
and cl,7
shr dx,1
shr dx,1
shr dx,1
add di,dx

Set up GC Index register to point

mov dx,GC_INDEX
mov al ,BIT_MASK_INDEX
out dx,al
inc dx

Set up pixel mask (in-byte pixel

mov al,80h
shr al ,cl

Calculate DeltaX.

mov bx,[bp+Xl]
sub bx,[bp+XO]

:YO * 2 :YO is already in AX
:YO * 4
:YO * 8
: YO * 16

: YO * 32
: YO * 64
: YO * 80

:set aside lower 3 bits of column for
: pixel masking

;get byte address of column (X0/8)
;offset of line start in display segment

to the Bit Mask register.

: leave DX pointing to the GC Data register

address).

Handle correct one of four octants.

js NegDeltaX
cmp bx,si
jb Octantl

DeltaX >= DeltaY >= O.

LINEl
jmp

0
EVGALineDone

DeltaY > DeltaX >= 0.

Octantl:
LINE2
jmp

0
short EVGALineDone

Bresenham Is Fast, and Fast Is Good [lJ 241

NegDeltaX:
neg bx ; IDeltaXI
cmp bx,si
jb Octant2

IDeltaXI >= DeltaY and DeltaX < 0.

LINEl 1
jmp short EVGALineDone

IDeltaXI < DeltaY and OeltaX < 0.

Octant2:
LINE2 1

EVGALineDone:

Restore EVGA state.

mov al ,Offh
out dx,al ;set Bit Mask register to Offh
dee dx

mov al,ENABLE_SET_RESET_INDEX
out dx,al
inc dx
sub al ,al
out dx,al ;set Enable Set/Reset register to O

pop ds
pop di
pop s i
pop bp
ret

_EVGALine endp

end

An explanation of the workings of the code in Listing 14.3 would be a lengthy one,
and would be redundant since the basic operation of the code in Listing 14.3 is no
different from that of the code in Listing 14.1, although the implementation is much
changed due to the nature of assembly language and also due to designing for speed
rather than for clarity. Given that you thoroughly understand the C implementation in
Listing 14.1, the assembly language implementation in Listing 14.3, which is
well-commented, should speak for itself.

One point I do want to make is that Listing 14.3 incorporates a clever notion for
which credit is due Jim Mackraz, who described the notion in a letter written in re
sponse to an article I wrote long ago in the late and lamented Programmer's journal
Jim's suggestion was that when drawing lines for which IDeltaXI is greater than IDeltaYI,
bits set to 1 for each of the pixels controlled by a given byte can be accumulated in a
register, rather than drawing each pixel individually. All the pixels controlled by that
byte can then be drawn at once, with a single access to display memory, when all pixel
processing associated with that byte has been completed. This approach can save many
OUTs and many display memory reads and writes when drawing nearly-horizontal

242 /gJ Chapter 14

lines, and that's important because EGAs and VGAs hold the CPU up for a consider
able period of time on each 1/0 operation and display memory access.

All too many PC programmers fall into the high-level-language trap of thinking
that a good algorithm guarantees good performance. Not so: As our two implementa
tions of Bresenham's algorithm graphically illustrate {pun not originally intended, but
allowed to stand once recognized), truly great PC code requires both a good algorithm
and a good assembly implementation. In Listing 14.3, we've got both-and my-oh
my, isn't it fun?

The Good,
the Bad,
and the
Run-Sliced

.. u
I 7 = ca -= u

Faster Bresenham Lines with Run-Length Slice
Line Drawing

Years ago, I worked at a company that asked me to write blazingly fast line-drawing
code for an AutoCAD driver. I implemented the basic Bresenham's line-drawing algorithm;
streamlined it as much as possible; special-cased horizontal, diagonal, and vertical lines;
broke out separate, optimized routines for lines in each octant; and massively unrolled the
loops. When I was done, I had line drawing down to a mere five or six instructions per pixel,
and I handed the code over to the AutoCAD driver person, content in the knowledge that
I had pushed the theoretical limits of the Bresenham's algorithm on the 80x86 architecture,
and that this was as fast as line drawing could get on a PC. That feeling lasted for about
a week, until Dave Miller, who these days is a Windows display-driver whiz at Engenious
Solutions, casually mentioned Bresenham's faster run-length slice line-drawing algorithm.

Remember Bill Murray's safety tip in Ghostbusters? It goes something like this. Harold
Ramis tells the Ghostbusters not to cross the beams of the antighost guns. "Why?"
Murray asks.

"It would be bad," Ramis says.
Murray says, 'Tm fuzzy on the whole good/bad thing. What exactly do you mean

by 'bad'?" It turns out that what Ramis means by bad is basically the destruction of the
universe.

"Important safety tip," Murray comments dryly.
I learned two important safety tips from my line-drawing experience; neither in

volves the possible destruction of the universe, so far as I know, but they are nonethe
less worth keeping in mind. First, never, never, never think you've written the fastest
possible code. Odds are, you haven't. Run your code past another good programmer,
and he or she will probably say, "But why don't you do this?" and you'll realize that you

243

244 Jg} Chapter 15

could indeed do that, and your code would then be faster. Or relax and come back to your
code later, and you may well see another, faster approach. There are a million ways to
implement code for any task, and you can almost always find a faster way if you need to.

Second, when performance matters, never have your code perform the same calcu
lation more than once. This sounds obvious, but it's astonishing how often it's ignored.
For example, consider this snippet of code:

for (i=0; i<Runlength; i++l
{

*Worki ngScreenPtr = Col or:
if (XDelta > 0l
{

WorkingScreenPtr++;

else
{

WorkingScreenPtr·-;

Here, the programmer knows which way the line is going before the main loop be
gins-but nonetheless performs that test every time through the loop, when calculat
ing the address of the next pixel. Far better to perform the test only once, outside the
loop, as shown here:

if (XDelta > 0l
{

for (i=0; i<Runlength; i++l
{

else
{

*WorkingScreenPtr++ = Color;

for (i=0: i<Runlength; i++l
{

*WorkingScreenPtr·· = Color;

Think of it this way: A program is a state machine. It takes a set of inputs and
produces a corresponding set of outputs by passing through a set of states. Your pri
mary job as a programmer is to implement the desired state machine. Your additional
job as a performance programmer is to minimize the lengths of the paths through the
state machine. This means performing as many tests and calculations as possible out
side the loops, so that the loops themselves can do as little work-that is, pass through
as few states-as possible.

Which brings us full circle to Bresenham's run-length slice line-drawing algorithm,
which just happens to be an excellent example of a minimized state machine. In case
you're fuzzy on the good/bad performance thing, that's "good"-as in fast.

The Good, the Bad, and the Run-Sliced /gJ 245

Run-Length Slice Fundamentals
First off, I have a confession to make: I'm not sure that the algorithm I'll discuss is
actually, precisely Bresenham's run-length slice algorithm. It's been a long time since I
read about this algorithm; in the intervening years, I've misplaced Bresenham's article,
and have been unable to unearth it. As a result, I had to derive the algorithm from
scratch, which was admittedly more fun than reading about it, and also ensured that I
understood it inside and out. The upshot is that what I discuss may or may not be
Bresenham's run-length slice algorithm-but it surely is fast.

The place to begin understanding the run-length slice algorithm is the standard
Bresenham's line-drawing algorithm. (I discussed the standard Bresenham's line-draw
ing algorithm at length in the previous chapter.) The basis of the standard approach is
stepping one pixel at a time along the major axis (the longer dimension of the line),
while maintaining an integer error term that indicates at each major-axis step how
close the line is to advancing halfway to the next pixel along the minor axis. Figure
15.1 illustrates standard Bresenham's line drawing. The key point here is that a calcu
lation and a test are performed once for each step along the major axis.

The run-length slice algorithm rotates matters 90 degrees, with salubrious results.
The basis of the run-length slice algorithm is stepping one pixel at a time along the minor
axis (the shorter dimension), while maintaining an integer error term indicating how close
the line is to advancing an extra pixel along the major axis, as illustrated by Figure 15 .2.

Consider this: When you're called upon to draw a line with an X-dimension of 35
and a Y-dimension of I 0, you have a great deal of information available, some of which
is ignored by standard Bresenham's. In particular, because the slope is between 1/3 and

Midway points
between pixels

along minor axis

0 0 0 0
/---i -----

0 0 •
t !

~~o
Pixels are stepped one at a time along the major axis,
and the error term evaluated after each step, to see

if it's time for the minor axis to advance.

Figure 15.1 Standard Bresenham's Line Drawing

246 fgJ Chapter 15

F'ixela are atepped one Q
at a time along the /
minor axis and the
error term evaluated
after each step, to see Q
whether to draw -
RUNLENGTH or
RUNLENGTH+1 pixela "\.
along the major axis. ~

Q

Figure 15.2 Run-Length Slice Line Drawing

a

0

Errorterma
(cumulative partial pixela)

~Moofru~ \.

---------------~----
' ' ' ' ' '

0

0 Q 0
' '

1/4, you know that every single run-a run being a set of pixels at the same minor-axis
coordinate-must be either three or four pixels long. No other length is possible, as
shown in Figure 15.3 (apart from the first and last runs, which are special cases that I'll
discuss shortly). Therefore, for this line, there's no need to perform an error-term cal
culation and test for each pixel. Instead, we can just perform one test per run, to see
whether the run is three or four pixels long, thereby eliminating about 70 percent of
the calculations in drawing this line.

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 ' ' 0 0 0 0 0
-- --, e: 0 0 0 0 0 0 0 0

---- -- ------ --__ , \
Runs are three pixels long

Runs are four pixels long

Figure 15.3 Runs in a Slope 1/3.5 Line

The Good, the Bad, and the Run-Sliced ~ 247

Take a moment to let the idea behind run-length slice drawing soak in. Periodic deci
sions must be made to control pixel placement. The key to speed is to make those
decisions as infrequently and as quickly as possible. Of course, it will work to make a deci
sion at each pixel-that's standard Bresenham's. However, most of those per-pixel decisions
are redundant, and in fact we have enough information before we begin drawing to
know which are the redundant decisions. Run-length slice drawing is exactly equivalent to
standard Bresenham's, but it pares the decision-making process down to a minimum.
It's somewhat analogous to the difference between finding the greatest common divisor of
two numbers using Euclid's algorithm and finding it by trying every possible divisor.
Both approaches produce the desired result, but that which takes maximum advantage
of the available information and minimizes redundant work is preferable.

Run-Length Slice Implementation
We know that for any line, a given run will always be one of two possible lengths. How,
though, do we know which length to select? Surprisingly, this is easy to determine. For
the following discussion, assume that we have a slope of 1/3.5, so that Xis the major
axis; however, the discussion also applies to Y-major lines, with X and Y reversed.

The minimum possible length for any run in an X-major line is int(XDelta/YDelta),
where XDelta is the X-dimension of the line and YDelta is the Y-dimension. The
maximum possible length is int(XDelta/YDelta)+ 1. The trick, then, is knowing which
of these two lengths to select for each run. To see how we can make this selection, refer
to Figure 15.4. For each one-pixel step along the minor axis (Y, in this case), we advance at

0

0

•

minimum run length == 3

' \o cb 0 0 CD 0
' '
' '
' '
' " ' ' ' ' 0 0 0 1•

ei
' '

0 0 Q
------------------r--• '

0
' '

0 cb 0 0
'

Cumulative error term < 1,
so don't draw an extra pixel

' ' ' cp

Figure 15.4 How the Error Term Determines Run Length

0

o\ o
o\o

Cumulative error
term > 1, so draw
an extra pixel

248 gJ Chapter 15

least three pixels. The full advance distance along X (the major axis) is actually three
plus pixels, because there is also a fractional portion to the advance along X for a single
pixel Y step. This fractional advance is the key to deciding when to add an extra pixel to
a run. The fraction indicates what portion of an extra pixel we advance along X (the
major axis) during each run. If we keep a running sum of the fractional parts, we have
a measure of how dose we are to needing an extra pixel; when the fractional sum
reaches 1, it's time to add an extra pixel to the current run. Then, we can subtract 1
from the running sum (because we just advanced one pixel), and continue on.

Practically speaking, however, we can't work with fractions because floating-point
arithmetic is slow and fixed-point arithmetic is imprecise. Therefore, we take a cue
from standard Bresenham's and scale all the error-term calculations up so that we can
work with integers. The fractional X (major axis) advance per one-pixel Y (minor axis)
advance is the fractional portion of XDelta/YDelta. This value is exactly equivalent to
(XDelta o/o YDelta)/YDelta. We'll scale this up by multiplying it by YDelta*2, so that
the amount by which we adjust the error term up for each one-pixel minor-axis ad
vance is (XDelta o/o YDelta)*2.

We'll similarly scale up the one pixel by which we adjust the error term down after
it turns over, so our downward error-term adjustment is YDelta*2. Therefore, before
drawing each run, we'll add (XDelta o/o YDelta)*2 to the error term. If the error term
runs over (reaches one full pixel), we'll lengthen the run by 1, and subtract YDelta*2
from the error term. (All values are multiplied by 2 so that the initial error term, which
involves a 0.5 term, can be scaled up to an integer, as discussed next.)

This is not a complicated process; it involves only integer addition and subtraction
and a single test, and it lends itself to many and varied optimizations. For example, you
could break out hardwired optimizations for drawing each possible pair of run lengths.
For the aforementioned line with a slope of 1/3.5, for example, you could have one
routine hardwired to blast in a run of three pixels as quickly as possible, and another
hardwired to blast in a run of four pixels. These routines would ideally have no loop
ing, but rather just a series of instructions customized to draw the desired number of
pixels at maximum speed. Each routine would know that the only possibilities for the
length of the next run would be three and four, so they could increment the error term,
then jump directly to the appropriate one of the two routines depending on whether
the error term turned over. Properly implemented, it should be possible to reduce the
average per-run overhead ofline drawing to less than one branch, with only two addi
tions and two tests (the number of runs must also be counted down), plus a subtrac
tion half the time. On a 486, this amounts to something on the order of 150 nanoseconds
of overhead per pixel, exclusive of the time required to actually write the pixel to dis
play memory.

That's good.

The Good, the Bad, and the Run-Sliced ll} 249

Run-Length Slice Details
A couple of run-length slice implementation details yet remain. First is the matter of
how error-term turnover is detected. This is done in much the same way as it is with
standard Bresenham's: The error term is maintained as a negative valve and advances
for each step; when the error term reaches 0, it's time to add an extra pixel to the
current run. This means that we only have to test for carry after advancing the error
term to determine whether or not to add an extra pixel to each run. (Actually, the code
in this chapter tests for the error term being greater than zero, but the assembly code in
the next chapter will use the very efficient carry approach.)

The second and more difficult detail is balancing the runs so that they're centered
around the ideal line, and therefore draw the same pixels that standard Bresenham's
would draw. If we just drew full-length runs from the start, we'd end up with an unbal
anced line, as shown in Figure 15.5. Instead, we have to split the initial pixel plus one

0 0 0 0 0 0 0 0

0 0 0 0 0 • 0

0 0 • 0 0 0 0

0 0 0 0 0 0 0
(a)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
(b)

Figure 15.5 Balancing Run-Length Slice Lines: a) Unbalanced; b) Balanced

250 Jg) Chapter 15

full run as evenly as possible between the first and last runs of the line, and adjust the
initial error term appropriately for the initial half-run.

The initial error term is advanced by one-half of the normal per-step fractional
advance, because the initial step is only one-half pixel along the minor axis. This half-step
gets us exactly halfway between the initial pixel and the next pixel along the minor axis.
All the error-term adjustments are scaled up by two times precisely so that we can scale
up this halved error term for the initial run by two times, and thereby make it an
integer.

The other trick here is that if an odd number of pixels are allocated between the first
and last partial runs, we'll end up with an odd pixel, since we are unable to draw a half
pixel. This odd pixel is accounted for by adding half a pixel to the error term.

That's all there is to run-length slice line drawing; the partial first and last runs are
the only tricky part. Listing 15 .1 is a run-length slice implementation in C. This is not
an optimized implementation, nor is it meant to be; this listing is provided so that you
can see how the run-length slice algorithm works. In the next chapter, I'll move on to
an optimized version, but for now, Listing 15.1 will make it much easier to grasp the
principles of run-length slice drawing, and to understand the optimized code I'll present
in the next chapter.

LISTING 15.1 L 15-1.C
/* Run-length slice line drawing implementation for mode Oxl3, the VGA's
320x200 256-color mode. Not optimized! Tested with Borland C++ in
the small model. */

#include <dos.h>

#define SCREEN_WIDTH 320
#define SCREEN_SEGMENT OxAOOO

void DrawHorizontalRun(char far **ScreenPtr, int XAdvance, int Runlength,
int Color):

void DrawVerticalRun(char far **ScreenPtr, int XAdvance, int Runlength.
int Color):

/* Draws a line between the specified endpoints in color Color. */
void LineDraw(int XStart, int YStart. int XEnd, int YEnd, int Color)
{

int Temp, AdjUp, AdjDown, ErrorTerm, XAdvance, XDelta, YDelta;
int WholeStep, InitialPixelCount, Final Pixel Count, i. Runlength:
char far *ScreenPtr:

/* We'll always draw top to bottom. to reduce the number of cases we have to
handle, and to make lines between the same endpoints draw the same pixels*/
if (YStart > YEnd) {

Temp - YStart:
YStart = YEnd:
YEnd - Temp:
Temp - XStart;
XStart = XEnd;
XEnd = Temp;

/* Point to the bitmap address first pixel to draw*/
ScreenPtr = MK_FP(SCREEN_SEGMENT, YStart * SCREEN_WIDTH + XStart):

The Good, the Bad, and the Run-Sliced Jg} 251

/* Figure out whether we're going left or right, and how far we're
going horizontally*/

if ((XDelta = XEnd · XStart) < 0)
{

XAdvance = ·1;
XDelta = ·XDelta;

else
{

XAdvance l;

/* Figure out how far we're going vertically*/
YDelta = YEnd · YStart;

/* Special-case horizontal. vertical. and diagonal lines. for speed
and to avoid nasty boundary conditions and division by 0 */

if (XDelta == 0)
{

/* Vertical line*/
for (i=0; i<=YDelta; i++)
{

*ScreenPtr = Color;
ScreenPtr += SCREEN_WIDTH;

return;

if (YDelta = 0)
{

/* Horizontal line*/
for (i=0; i<=XDelta; i++)
{

*ScreenPtr = Color;
ScreenPtr += XAdvance;

return;

if (XDelta == YDelta)
{

/* Diagonal line*/
for (i=0; i<=XDelta; i++)
{

*ScreenPtr = Color;
ScreenPtr += XAdvance + SCREEN_WIDTH;

return;

/* Determine whether the line is X or Y major, and handle accordingly*/
if (XDelta >= YDelta)
{

/* X major line*/
/*Minimum# of pixels in a run in this line*/
WholeStep = XDelta / YDelta;

/* Error term adjust each time Y steps by 1; used to tell when one
extra pixel should be drawn as part of a run, to account for
fractional steps along the X axis per 1-pixel steps along Y */

AdjUp = (XDelta % YDelta) * 2;

/* Error term adjust when the error term turns over, used to factor
out the X step made at that time*/

AdjDown = YDelta * 2;

252 [Kl Chapter 15

/* Initial error term: reflects an initial step of 0.5 along the Y
axis */

ErrorTerm = (XDelta % YDelta) - (YDelta * 2):

/* The initial and last runs are partial, because Y advances only 0.5
for these runs, rather than 1. Divide one full run, plus the
initial pixel, between the initial and last runs */

InitialPixelCount = (WholeStep / 2) + 1;
FinalPixelCount = InitialPixelCount:

/* If the basic run length is even and there's no fractional
advance, we have one pixel that could go to either the initial
or last partial run, which we'll arbitrarily allocate to the
last run*/

if ((AdjUp == 0) && ((WholeStep & OxOl) = 0))
{

lnitialPixelCount--:

/* If there're an odd number of pixels per run, we have 1 pixel that can't
be allocated to either the initial or last partial run, so we'll add 0.5
to error term so this pixel will be handled by the normal full-run loop*/
if ((WholeStep & OxOl) I= 0)

ErrorTerm += YDelta;

/* Draw the first, partial run of pixels*/
DrawHorizontalRun(&ScreenPtr, XAdvance, lnitialPixelCount, Color):
/* Draw all full runs */
for (i=O: i<(YOelta-1); i++)
{

Runlength = WholeStep; /* run is at least this long*/
/* Advance the error term and add an extra pixel if the error

term so indicates*/
if ((ErrorTerm += AdjUp) > OJ
{

Run Length++;
ErrorTerm AdjDown: /* reset the error term*/

/* Draw this scan line's run*/
DrawHorizontalRun(&ScreenPtr, XAdvance, Runlength, Color);

/* Draw the final run of pixels*/
DrawHorizontalRun(&ScreenPtr, XAdvance, FinalPixelCount, Color):
return;

else
{

I* Y major line*/

/*Minimum# of pixels in a run in this line*/
WholeStep = YDelta / XDelta;

/* Error term adjust each time X steps by 1: used to tell when 1 extra
pixel should be drawn as part of a run, to account for
fractional steps along the Y axis per 1-pixel steps along X */

AdjUp = (YDelta % XDelta) * 2;

/* Error term adjust when the error term turns over, used to factor
out the Y step made at that time*/

AdjDown = XDelta * 2:

The Good, the Bad, and the Run-Sliced ~ 253

/* Initial error term; reflects initial step of 0.5 along the X axis*/
ErrorTerm = (YDelta % XDelta) - (XDelta * 2);

/* The initial and last runs are partial, because X advances only 0.5
for these runs, rather than 1. Divide one full run, plus the
initial pixel, between the initial and last runs*/

InitialPixelCount = (WholeStep / 2) + l;
FinalPixelCount = InitialPixelCount;

/* If the basic run length is even and there's no fractional advance, we
have 1 pixel that could go to either the initial or last partial run,
which we'll arbitrarily allocate to the last run*/

if ((AdjUp == 0) && ((WholeStep & OxOl) == 0))
{

InitialPixelCount--;

/* If there are an odd number of pixels per run, we have one pixel
that can't be allocated to either the initial or last partial
run, so we' 11 add O. 5 to the error term so this pixel will be
handled by the normal full - run l cop * /

if ((WholeStep & OxOl) != 0)
{

ErrorTerm += XDelta;

/* Draw the first, partial run of pixels*/
DrawVerticalRun(&ScreenPtr, XAdvance, InitialPixelCount, Color);

/* Draw a 11 full runs * /
for (i=O; i<(XDelta-1); i++)
{

Runlength = WholeStep; /* run is at least this long*/
/* Advance the error term and add an extra pixel if the error

term so indicates*/
if ((ErrorTerm += AdjUp) > 0)
{

Run Length++;
ErrorTerm Adj Down; /* reset the error term*/

/* Draw this scan line's run*/
DrawVerticalRun(&ScreenPtr, XAdvance, Runlength, Color);

/* Draw the final run of pixels*/
DrawVerticalRun(&ScreenPtr, XAdvance, FinalPixelCount, Color);
return;

/* Draws a horizontal run of pixels, then advances the bitmap pointer to
the first pixel of the next run. */

void DrawHorizontalRun(char far **ScreenPtr, int XAdvance,
int Runlength, int Color)

int i;
char far *WorkingScreenPtr = *ScreenPtr;

for (i=O; i <Run Length; i++)
{

*WorkingScreenPtr = Color;
WorkingScreenPtr += XAdvance;

I* Advance to the next scan line *I

254 gJ Chapter 15

WorkingScreenPtr += SCREEN_WIDTH;
*ScreenPtr = WorkingScreenPtr;

/* Draws a vertical run of pixels, then advances the bitmap pointer to
the first pixel of the next run. */

void DrawVerticalRun(char far **ScreenPtr, int XAdvance,
int Runlength, int Color)

int i;
char far *WorkingScreenPtr = *ScreenPtr;

for (i=O; i<Runlength; i++)
{

*WorkingScreenPtr = Color;
WorkingScreenPtr += SCREEN_WIDTH;

/* Advance to the next column*/
WorkingScreenPtr += XAdvance;
*ScreenPtr = WorkingScreenPtr;

Notwithstanding that it's not optimized, Listing 15.1 is reasonably fast. If you run
Listing 15.2 (a sample line-drawing program that you can use to test-drive Listing 15.1),
you may be as surprised as I was at how quickly the screen fills with vectors, consider
ing that Listing 15.1 is entirely in C and has some redundant divides. Or perhaps you
won't be surprised-in which case I suggest you not miss the next chapter.

LISTING 15.2 L15-2.C
/* Sample line-drawing program. Uses the optimized
line-drawing functions coded in LListing L15.l.C.
Tested with Borland C++ in the small model. */

#include <dos.h>

#define GRAPHICS_MODE
#define TEXT_MODE
#define BIOS_VIDEO_INT
/fdefi ne X_MAX
#define Y_MAX

Oxl3
Ox03
OxlO
320
200

/* working screen width*/
/* working screen height*/

extern void LineDraw(int XStart, int YStart, int XEnd, int YEnd, int Color);

/* Subroutine to draw a rectangle full of vectors, of the specified
* length and color, around the specified rectangle center. */

void VectorsUp(XCenter, YCenter, Xlength, Ylength, Color)
int XCenter, YCenter; /* center of rectangle to fill */
int XLength, YLength; /* distance from center to edge of rectangle*/
int Color; /* color to draw lines in*/
{

int WorkingX, WorkingY;

/* lines from center to top of rectangle*/
WorkingX = XCenter - Xlength;
WorkingY = YCenter - Ylength;
for (; WorkingX < XCenter + Xlength); WorkingX++)
(

LineDraw(XCenter, YCenter, WorkingX, WorkingY, Color);

The Good, the Bad, and the Run-Sliced Ill 255

/* lines from center
WorkingX = XCenter +
WorkingY = YCenter
for (; WorkingY <

to right of rectangle*/
Xlength - 1;
Ylength;
YCenter + Ylength); WorkingY++)

{
LineDraw(XCenter, YCenter, WorkingX, WorkingY, Color);

/* lines from center to bottom of rectangle*/
WorkingX = XCenter + Xlength - l;
WorkingY = YCenter + YLength - l;
for (; WorkingX >= (XCenter - Xlength); WorkingX--)
{

LineDraw(XCenter, YCenter, WorkingX, WorkingY, Color);

/* lines from center to left of rectangle*/
WorkingX = XCenter - Xlength;
WorkingY = YCenter + Ylength - l;
for (; WorkingY >= (YCenter - Ylength); WorkingY--)
{

LineDraw(XCenter, YCenter, WorkingX, WorkingY, Color);

/* Sample program to draw four rectangles full of lines. */
int main()
{

union REGS regs;

/* Set graphics mode*/
regs.x.ax = GRAPHICS_MODE;
int86(BIOS_VIDEO_INT, ®s, ®s);

/* Draw each of four rectangles full of vectors*/
VectorsUp(X_MAX / 4, Y_MAX / 4, X_MAX / 4, Y_MAX / 4, l);
VectorsUp(X_MAX * 3 / 4, Y_MAX / 4, X_MAX / 4, Y_MAX / 4, 2);
VectorsUp(X_MAX / 4, Y_MAX * 3 / 4, X_MAX / 4, Y_MAX / 4, 3);
VectorsUp(X_MAX * 3 / 4, Y_MAX * 3 / 4, X_MAX / 4, Y_MAX / 4, 4);

/* Wait for a key to be pressed*/
getch();

/* Return back to text mode*/
regs.x.ax = TEXT_MODE;
int86(BIOS_VIDEO_INT, ®s, ®s);

Dead Cats
and Lightning
Lines

.. u
I 7

i -= c.:t

Optimizing Run-Length Slice Line Drawing in a Major Way
As I write this, the wife, the kid, and I are in the throes of yet another lightning-quick
transcontinental move, this time to Redmond, Washington to work for You Know
Who. Moving is never fun, but what makes it worse for us is the pets. Getting them
into kennels and to the airport is hard; there's always the possibility that they might not
be allowed to fly because of the weather; and, worst of all, they might not make it.
Animals don't usually end up injured or dead, but it does happen.

In a (not notably successful) effort to cheer me up about the prospect of shipping
my animals, a friend told me the following story, which he swears actually happened to
a friend of his. I don't know-to me, it has the ring of an urban legend, which is to say
it makes a good story, but you can never track down the person it really happened to;
it's always a friend of a friend. But maybe it is true, and anyway, it's a good story.

This friend of a friend (henceforth referred to as FOP), worked in an air-freight terminal.
Consequently, he handled a lot of animals, which was fine by him, because he liked
animals; in fact, he had quite a few cats at home. You can imagine his dismay when, one
day, he took a kennel off the plane to find chat the cat it carried was quite thoroughly
dead. (No, it wasn't resting, nor pining for the fjords; this cat was bloody deceased)

FOP knew how upset the owner would be, and came up with a plan to make every
thing better. At home, he had a cat of the same size, shape, and markings. He would
substitute that cat, and since all cats treat all humans with equal disdain, the owner
would never know the difference, and would never suffer the trauma of the loss of her
cat. So FOP drove home, got his cat, put it in the kennel, and waited for the owner to

show up-at which point, she took one look at the kennel and said, "This isn't my cat.
My cat is dead."

As it turned out, she had shipped her recently deceased feline home to be buried.
History does not record how our FOP dug himself out of chis one.

257

258 {gJ Chapter 16

Okay, hut what's the point? The point is, if it isn't broken, don't fix it. And if it is
broken, maybe that's all right, too. Which brings us, neat as a pin, to the topic of
drawing lines in a serious hurry.

Fast Run-Length Slice Line Drawing
In the last chapter, we examined the principles of run-length slice line drawing, which
draws lines a run at a time rather than a pixel at a time, a run being a series of pixels
along the major (longer) axis. It's time to turn theory into useful practice by developing
a fast assembly version. Listing 16.1 is the assembly version, in a form that's plug
compatible with the C code from the previous chapter.

LISTING 16.1 L 16-1.ASM
Fast run-length slice line drawing implementation for mode Oxl3, the VGA's
320x200 256-color mode.
Draws a line between the specified endpoints in color Color.
C near-callable as:

void LineDraw(int XStart, int YStart, int XEnd, int YEnd, int Color)
Tested with TASM

SCREEN_WIDTH
SCREEN_SEGMENT

.model small

.code

Parameters to call.
parms struc

dw ?
dw ?

XStart dw ?
YStart dw ?
XEnd dw ?
YEnd dw ?
Color db ?

db ?
pa rms ends

; Local variables.
AdjUp
AdjDown
WholeStep
XAdvance
LOCAL_SIZE

public _LineDraw
_Li neDraw proc near

cld
bp

equ 320
equ OaOOOh

equ -2
equ -4
equ -6
equ -8
equ 8

push
mov
sub sp,
push
push
push

bp,sp
LOCAL SIZE
si
di
ds

; pushed BP
;pushed return address
; X start coordinate of line
; Y start coordinate of line
; X end coordinate of line
;Y end coordinate of line
;color in which to draw line
;dummy byte because Color is really a word

error term adjust up on each advance
error term adjust down when error term turns over
minimum run length

;l or -1. for direction in which X advances

;preserve caller's stack frame
;point to our stack frame
;allocate space for local variables
;preserve C register variables

;preserve caller's OS

Dead Cats and Lightning Lines IK] 259

We'll draw top to bottom, to reduce the number of cases we have to handle,
and to make lines between the same endpoints always draw the same pixels.

mov ax,[bp].YStart
cmp ax,[bp].YEnd
jle LineisTopToBottom
xchg [bp].YEnd,ax ;swap endpoints
mov [bp].YStart,ax
mov bx,[bp].XStart
xchg [bp].XEnd,bx
mov [bp].XStart,bx

LineisTopToBottom:
Point DI to the first pixel to draw.

mov dx,SCREEN_WIDTH
mul dx
mov si ,[bp].XStart
mov di,si
add di ,ax

Figure out how far we're going
mov cx,[bp].YEnd

:YStart * SCREEN_WIDTH

;DI= YStart * SCREEN_WIDTH + XStart
; = offset of initial pixel

vertically (guaranteed to be positive).

sub cx,[bp].YStart ;CX = YDelta
Figure out whether we're going left or right, and how far we're going
horizontally. In the process, special-case vertical lines, for speed and
to avoid nasty boundary conditions and division by 0.

mov dx,[bp].XEnd
sub dx,si
jnz NotVerticalLine

mov
mov
mov

VLoop:

ax,SCREEN_SEGMENT
ds,ax
al, [bp]. Col or

mov [di],al
add di ,SCREEN_WIDTH
dee
jns
jmp

ex
Vloop
Done

Special-case code for horizontal lines.
align 2

IsHorizontalline:
mov ax,SCREEN_SEGMENT
mov es.ax
mov al,[bp].Color
mov ah.al
and bx, bx
jns DirSet
sub di ,dx

Di rSet:
mov
inc
shr
rep
adc
rep

cx,dx
ex
cx,l
stosw
ex.ex
stosb

jmp Done
Special-case code for diagonal lines.

align 2

: XDelta
;XDelta == O means vertical line
;it is a vertical line
;yes, special case vertical line

;point DS:DI to the first byte to draw

:point ES:DI to the first byte to draw

;duplicate in high byte for word access
:left to right?
;yes
:currently right to left, point to left

end so we can go left to right
(avoids unpleasantness withright to
left REP STD SW)

:# of pixels to draw
;# of words to draw
;do as many words as possible

;do the odd byte, if there is one

260 gJ Chapter 16

IsDiagonal Line:
mov ax,SCREEN_SEGMENT
mov
mov
add

DLoop:

ds,ax
al ,[bp].Color
bx, SCREEN_WIDTH

mov [di],al
add di ,bx
dee ex
jns DLoop
jmp Done

align 2
NotVerticalLine:

mov

jns
neg
neg

LeftToRight:
Special-case

and
jz

Special cease
cmp
jz

bx,1

LeftToRight
bx
dx

horizontal lines.
ex.ex
IsHorizontalLine

:point DS:DI to the first byte to draw

:advance distance from one pixel to next

:assume left to right, so XAdvance
:***leaves flags unchanged***
:left to right, all set
:right to left. so XAdvance = -1
: IXDeltal

:YDelta -- O?
:yes

:YDelta == XDelta?
;yes

= 1

Determine
cmp

diagonal lines.
cx,dx
lsDiagonalLine

whether the line is X or Y major. and handle accordingly.

jae
jmp

X-major (more
align

XMajor:

dx,cx
XMajor
YMajor

horizontal
2

than vertical) line.

mov ax,SCREEN_SEGMENT
mov
and
jns
std

DFSet:
mov
sub
div

es.ax
bx,bx
DFSet

ax,dx
dx,dx
ex

mov bx,dx
add bx, bx
mov [bp].AdjUp,bx

mov si.cx
add si ,Si
mov [bp].AdjDown,si

Initial error term: reflects an
sub dx,si

;point ES:DI to the first byte to draw
: 1 eft to right?
:yes, CLO is already set
:right to left. so draw backwards

: XDelta
:prepare for division
:AX= XDelta/YDelta
; (minimum# of pixels in a run in this line)
:DX= XDelta % YDelta
:error term adjust each time Y steps by 1:

used to tell when one extra pixel should be
drawn as part of a run, to account for
fractional steps along the X axis per
1-pixel steps along Y

:error term adjust when the error term turns
: over. used to factor out the X step made at
: that time

initial step of 0.5 along the Y axis.
:(XDelta % YDelta) - (YDelta * 2)
:DX= initial error term

The initial and last runs are partial, because Y advances only 0.5 for
these runs, rather than 1. Divide one full run, plus the initial pixel.
between the initial and last runs.

mov
mov
shr

si ,ex
ex.ax
cx,1

;SI - YDelta
;whole step (minimum run length)

inc ex

Dead Cats and Lightning Lines rJ 261

;initial pixel count = (whole step / 2) + 1:
; (may be adjusted later). This is also the
; final run pixel count

push ex ;remember final run pixel count for later
If the basic run length is even and there's no fractional advance, we have
one pixel that could go to either the initial or last partial run, which
we'll arbitrarily allocate to the last run.
If there is an odd number of pixels per run, we have one pixel that can't
be allocated to either the initial or last partial run. so we'll add 0.5 to
the error term so this pixel will be handled by the normal full-run loop.

add dx,si ;assume odd length, add YDelta to error term

test
jnz
sub
and
jnz

dee

XMajorAdjustDone:

al , 1
XMajorAdjustDone
dx,si
bx.bx
XMajorAdjustDone

ex

mov [bp].WholeStep,ax
mov al ,[bp].Color

: (add 0.5 of a pixel to the error term)
;is run length even?
:no, already did work for odd case, all set
;length is even, undo odd stuff we just did
;is the adjust up equal to 0?
:no (don't need to check for odd length,
: because of the above test)
;both conditions met; make initial run 1
; shorter

:whole step (minimum run length)
;AL= drawing color

Draw the first, partial run of pixels.
rep stosb
add di,SCREEN_WIDTH

Draw all full runs.
cmp si. 1

jna
dee

XMajorDrawLast
dx

;draw the final run
;advance along the minor axis (Y)

;are there more than 2 scans, so there are
: some full runs? (SI=# scans - 1)
:no, no full runs
;adjust error term by -1 so we can use
; carry test

shr
jnc

si,l :convert from scan to scan-pair count
XMajorFullRuns0ddEntry ;if there is an odd number of scans.

: do the odd scan now
XMajorFullRunsLoop:

mov cx,[bp].WholeStep
add dx,bx
jnc XMajorNoExtra
inc
sub

XMajorNoExtra:

ex
dx,[bp].AdjDown

rep stosb
add di.SCREEN_WIDTH

XMajorFullRuns0ddEntry:

mov
add
jnc
inc
sub

XMajorNoExtra2:
rep
add

dee
jnz

Draw the final
XMaj orDrawLast:

pop
rep

cx.[bp].WholeStep
dx,bx
XMajorNoExtra2
ex
dx,[bpJ.AdjDown

stosb
di, SCREEN_WIDTH

si
XMajorFullRunsLoop
run of pixels.

ex
stosb

:run is at least this long
;advance the error term and add an extra
; pixel if the error term so indicates
:one extra pixel in run
:reset the error term

:draw this scan line's run
;advance along the minor axis (Y)
;enter loop here if there is an odd number
: of full runs
:run is at least this long
;advance the error term and add an extra
; pixel if the error term so indicates
;one extra pixel in run
;reset the error term

;draw this scan line's run
;advance along the minor axis CY)

;get back the final run pixel length
;draw the final run

262 /g/ Chapter 16

cld :restore normal direction flag
jmp Done

Y·major {more vertical than horizontal) line.
align 2

YMajor:
mov
mov
mov
mov
mov
sub
div

mov
add
mov

mov
add
mov

[bp].XAdvance,bx
ax,SCREEN_SEGMENT
ds,ax
ax.ex
cx,dx
dx,dx
ex

bx,dx
bx.bx
[bp].AdjUp,bx

si,cx
s i • s i
[bp] .Adj Down. Si

: remember which way X advances

; point DS: DI to the first byte to draw
;YDelta
:XDelta
;prepare for division
:AX= YDelta/XDelta
: {minimum# of pixels in a run in this line)
;DX= YDelta % XDelta
:error term adjust each time X steps by l;

used to tell when one extra pixel should be
drawn as part of a run, to account for
fractional steps along the Y axis per
l·pixel steps along X

:error term adjust when the error term turns
over, used to factor out the Y step made at

: that time

Initial error term: reflects an initial step of 0.5 along the X axis.
sub dx,si :(YDelta % XDeltal · (XDelta * 2)

;DX= initial error term
The initial and last runs are partial, because X advances only 0.5 for
these runs, rather than 1. Divide one full run, plus the initial pixel,
between the initial and last runs.

mov
mov
shr
inc

push

si, ex
ex.ax
cx,1
ex

ex

;SI = XDelta
:whole step (minimum run length)

:initial pixel count = (whole step / 2) + 1:
: (may be adjusted later)
;remember final run pixel count for later

If the basic run length is even and there's no fractional advance, we have
one pixel that could go to either the initial or last partial run, which
we'll arbitrarily allocate to the last run.
If there is an odd number of pixels per run, we have one pixel that can't
be allocated to either the initial or last partial run. so we'll add 0.5 to
the error term so this pixel will be handled by the normal full-run loop.

add dx,si :assume odd length, add XDelta to error term
test al ,1 ;is run length even?
jnz YMajorAdjustDone :no, already did work for odd case, all set
sub dx,si ;length is even, undo odd stuff we just did
and bx.bx ;is the adjust up equal to O?
jnz YMajorAdjustDone :no {don't need to check for odd length,

; because of the above test)
dee

YMajorAdjustDone:

ex :both conditions met: make initial run 1
: shorter

mov [bp].WholeStep,ax :whole step (minimum run length)
mov al,[bp].Color :AL= drawing color
mov bx,[bp].XAdvance ;which way X advances

Draw the first, partial run of pixels.
YMajorFirstloop:

mov
add

[di].al
di ,SCREEN_WIDTH

dee ex

:draw the pixel
:advance along the major axis (Y)

jnz YMajorFirstLoop
add di.bx

Draw al 1 full runs.
cmp si, 1

jna YMajorDrawLast
dee dx

Dead Cats and Lightning Lines Ill 263

;advance along the minor axis (X)

;# of full runs. Are there more than 2
; columns, so there are some full runs?
; (SI=# columns - 1)
;no, no full runs
;adjust error term by -1 so we can use
; carry test

shr si ,1 ;convert from column to column-pair count
jnc YMajorFullRunsOddEntry ;if there is an odd number of

YMajorFullRunsloop:
mov cx,[bp].WholeStep
add dx,[bp].AdjUp
jnc YMajorNoExtra
inc ex
sub dx,[bp].AdjDown

YMajorNoExtra:
;draw the run

YMaj or Run Loop:
mov
add

[di].al
di, SCREEN_WIDTH

dee ex
jnz YMajorRunLoop
add di.bx

YMajorFullRunsOddEntry:

mov
add
jnc
inc
sub

YMajorNoExtra2:
;draw the run

YMajorRunLoop2:
mov
add
dee
jnz
add

cx.[bp].WholeStep
dx,[bp].AdjUp
YMajorNoExtra2
ex
dx,[bp].AdjDown

[di] ,al
di, SCREEN_WIDTH
ex
YMajorRunLoop2
di ,bx

dee si
jnz YMajorFullRunsLoop

Draw the final run of pixels.
YMajorDrawlast:

pop ex
YMajorlastloop:

Done:

mov [di],al
add di,SCREEN_WIDTH
dee ex
jnz YMajorLastLoop

pop
pop
pop
mov
pop
ret

ds
di
si
sp,bp
bp

LineDraw
end

endp

; columns, do the odd column now

;run is at least this long
;advance the error term and add an extra
; pixel if the error term so indicates
:one extra pixel in run
;reset the error term

;draw the pixel
;advance along the major axis CY)

;advance along the minor axis (X)
;enter loop here if there is an odd number
; of full runs
;run is at least this long
;advance the error term and add an extra
; pixel if the error term so indicates
;one extra pixel in run
;reset the error term

;draw the pixel
;advance along the major axis (Y)

;advance along the minor axis (X)

;get back the final run pixel length

;draw the pixel
;advance along the major axis (Yl

;restore caller's DS

;restore C register variables
;deallocate local variables
;restore caller's stack frame

264 [g} Chapter 16

How Fast Is Fast?
Your first question is likely to be the following: Just how fast is Listing 16.1? Is it
optimized to the hilt, or just pretty fast? The quick answer is: It's fast. Listing 16.1
draws lines at a rate of nearly 1 million pixels per second on my 486/33, and is capable
of still faster drawing, as I'll discuss shortly. (The heavily optimized AutoCAD line
drawing code that I mentioned in the last chapter drew 150,000 pixels per second on
an EGA in a 386/16, and I thought I had died and gone to Heaven. Such is progress.)
The full answer is a more complicated one, and ties in to the principle that if it is
broken, maybe that's okay-and to the principle oflooking before you leap, also known
as profiling before you optimize.

When I went to speed up run-length slice lines, I initially manually converted the
last chapter's C code into assembly. Then I streamlined the register usage and used
REP STOS wherever possible. Listing 16.1 is that code. At that point, line drawing
was surely faster, although I didn't know exactly how much faster. Equally surely, there
were significant optimizations yet to be made, and I was itching to get on to them, for
they were bound to be a lot more interesting than a basic C-to-assembly port.

Ego intervened at this point, however. I wanted to know how much of a speed-up I
had already gotten, so I timed the performance of the C code and compared it to the
assembly code. To my horror, I found that I had not gotten even a two-times improve
ment! I couldn't understand how that could be-the C code was decidedly
unoptimized-until I hit on the idea of measuring the maximum memory speed of the
VGA to which I was drawing.

Bingo. The Paradise VGA in my 486/33 is fast for a single display-memory write,
because it buffers the data, lets the CPU go on its merry way, and finishes the write
when display memory is ready. However, the maximum rate at which data can be
written to the adapter turns out to be no more than one byte every microsecond. Put
another way, you can only write one byte to this adapter every 33 clock cycles on a
486/33. Therefore, no matter how fast I made the line-drawing code, it could never
draw more than 1,000,000 pixels per second in 256-color mode in my system. The C
code was already drawing at about half that rate, so the potential speed-up for the
assembly code was limited to a maximum of two times, which is pretty close to what
Listing 16.1 did, in fact, achieve. When I compared the C and assembly implementa
tions drawing to normal system (nondisplay) memory, I found that the assembly code
was actually four times as fast as the C code.

In fact, Listing 16.1 draws VGA lines at about 92 percent of the
maximum possible rate in my system-that is, it draws very nearly
as fast as the VGA hardware will allow. All the optimization in the
world would get me less than 10 percent faster line drawing-and
only if I eliminated all overhead, an unlikely proposition at best. The
code isn't fully optimized, but so what?

Dead Cats and Lightning Lines [lJ 265

Now it's true that faster line-drawing code would likely be more beneficial on faster
VGAs, especially local-bus VGAs, and in slower systems. For that reason, I'll list a
variety of potential optimizations to Listing 16.1. On the other hand, it's also true that
Listing 16.1 is capable of drawing lines at a rate of 2.2 million pixels per second on a
486/ 33, given fast enough VGA memory, so it should be able to drive almost any non
local-bus VGA at nearly full speed. In short, Listing 16.1 is very fast, and, in many
systems, further optimization is basically a waste of time.

Profile before you optimize.

Further Optimizations
Following is a quick tour of some of the many possible further optimizations to
Listing 16.1.

The run-handling loops could be unrolled more than the current two times. How
ever, bear in mind that a two-times unrolling gets more than half the maximum unroll
ing benefit with less overhead than a more heavily unrolled loop.

BX could be freed up in the Y-major code by breaking out separate loops for X
advances of 1 and -1. DX could be freed up by using AH as the counter for the run
loops, although this would limit the maximum line length that could be handled. The
freed registers could be used to keep more of the whole-step and error variables in
registers. Alternatively, the freed registers could be used to implement more esoteric
approaches like unrolling the Y-major inner loop; such unrolling could take advantage
of the knowledge that only two run lengths are possible for any given line. Strangely
enough, on the 486 it might also be worth unrolling the X-major inner loop, which
consists of REP STOSB, because of the slow start-up time of REP relative to the speed
of branching on that processor.

Special code could be implemented for lines with integral slopes, because all runs
are exactly the same length in such lines. Also, the X-major code could try to write an
aligned word at a time to display memory whenever possible; this would improve the
maximum possible performance on some 16-bit VGAs.

One weakness of Listing 16.1 is that for lines with slopes between 0.5 and 2, the
average run length is less than two, rendering run-length slicing ineffective. This can
be remedied by viewing lines in that range as being composed of diagonal, rather than
horizontal or vertical runs. I haven't space to take this idea any further in this book, but
it's not very complicated, and it guarantees a minimum run length of 2, which renders
run drawing considerably more efficient, and makes techniques such as unrolling the
inner run-drawing loops more attractive.

Finally, be aware that run-length slice drawing is best for long lines, because it has
more and slower setup than a standard Bresenham's line draw, including a divide. Run
length slice is great for 100-pixel lines, but not necessarily for 20-pixel lines, and it's a
sure thing that it's not terrific for 3-pixel lines. Both approaches will work, but ifline
drawing performance is critical, whether you'll want to use run-length slice or standard

266 gJ Chapter 16

Bresenham's depends on the typical lengths of the lines you'll be drawing. For lines of
widely varying lengths, you might want to implement both approaches, and choose
the best one for each line, depending on the line length-assuming, of course, that
your display memory is fast enough and your application demanding enough to make
that level of optimization worthwhile.

If your code looks broken from a performance perspective, think before you fix it;

that particular cat may be dead for a perfectly good reason. I'll say it again: Profile
before you optimize.

Circling
Around
the VGA

... u
I 7 = ca = u

Understanding Hardenburgh's Algorithm for Fast Circles
Whenever I pick up one of the classic books about graphics algorithms, I come away
thinking that those guys must be awfully smart, because I sure as heck don't under
stand what they're talking about. The explanations are cryptic, difficult to follow, and
often leave key elements as the legendary "exercise for the reader." Worse, they're diffi
cult to relate to the real world; the authors tell you how to derive an algorithm, when
what you really want to know is how it works and how to implement it efficiently
and that final and most important step is, sadly, often omitted, or, at best, shown in
marginally useful pseudocode.

I don't know why this state of affairs exists, but exist it does. One theory is that
academics think in abstractions, not implementations. Maybe so. Another, more cyni
cal, school of thought holds that academics must publish "major" works in order to get
degrees, tenure, grants, and the like, so they dress up relatively simple concepts with a
great deal of theory to make them seem more important or profound than they might
be. Again, maybe so. At any rate, you and I are left holding the bag, with graphics code
waiting to be written on the one hand and cryptic, highly theoretical explanations on
the other, and a yawning gap in between.

It is against this background that I received a letter from Hal Hardenberg (who
many may remember from his wild and wildly entertaining "DTACK Grounded" news
letter and "Offramp" column in Programmer's journal some years ago) regarding an
article I wrote on line drawing. Hal's letter began thusly:

"Ten pages of typeset text on drawing a LINE??? Yikes! I had in mind 5 pages on
drawing three kinds of curves!" (Hal is inordinately fond of italics and exclamation
points.)

This gentle missive was followed by a call from Hal asking whether I'd be interested
in writing an article with him about drawing circles and ellipses. He felt strongly that

267

268 ~ Chapter 17

there was nothing particularly complicated about any of the above, and that one article
should do it for both.

In a world of people who puff themselves up by making the simple complex, I was
more than slightly intrigued to meet someone who promised to make the complex
simple. Hal and I got together, and while he decided to leave the article writing to me
(he merely instructed me in the concepts and gave me his 68000 circle and ellipse
drawing code; the man is remarkably generous with his considerable knowledge), he
did indeed make the whole topic seem simple. Not quite so simple that it'll fit in one
chapter-I'm going to spend two chapters on circle drawing and two on ellipses-but
remarkably simpler than the graphics books would make it seem to be, and the credit
for the concepts in these installments goes enthusiastically to Hal.

Hal thinks his approach may be the one used by Bresenham's circle-drawing algo
rithm, but he's not sure; he got fed up with the turgid nature of the standard references
and derived his own approach. That's our good fortune, for Hal's approach is both
fast-almost in a class with line drawing-and easy to understand.

With the credits and history out of the way, let's get started with circle drawing.
We'll spend this chapter and the next on circles and then progress to the more flexible
but more complicated ellipses. In the process, we'll do a good deal of the sort of low
level C and assembly optimization that I've demonstrated many times before in my
articles, columns, and books like Zen of Code Optimization (Coriolis Group Books,
1994); we'll also learn more than a little about the sort of optimization that springs
from understanding the operation of an algorithm thoroughly and then reshaping it to
match the PC's capabilities. Only by applying both sorts of optimization can we test
the limits of the PC's performance.

Why and when Circles and Ellipses Matter
Circles and ellipses rank no better than fourth on the list of most-used graphics ele
ments, after bitblts, lines, and area fills. Nonetheless, they are used for many sorts of
drawing, particularly in CAD and CAE applications, and their importance is magni
fied because most software takes so darn long to draw them.

True circles-that is, objects for which every point, as measured in pixels, not screen
distance, is the same distance from the center-are useful only on screens that offer
square pixels (pixels spaced equidistant along both axes). On any other sort of screen,
true circles come out squashed or distended along one axis or the other. Fortunately, all
graphics modes in common use today-640x480, 800x600, and 1024x768-offer
square pixels on popular displays, or close enough to square pixels as makes no difference.

Just to be sure we're all speaking the same language, let me define some terms.
Ellipses are ovals drawn around two foci, with a constant combined distance from the
two foci to each point on the ellipse. For the purposes of this book, ellipses will further
be defined to have symmetry around the X and Y axes (the foci share either a common

Circling Around the VGA ll] 269

Y coordinate or a common X coordinate). That is, their major axes are either vertical or
horizontal. Tilted ellipses, which I'm not going to tackle here, need not have symmetry
around any axis. Basically, ellipses are specific 90-degree alignments of tilted ellipses,
and circles are ellipses where the foci are both at the same point. As a final definition,
I'll discuss all drawing of circles and ellipses in terms of pixels, not screen distance,
except where otherwise noted, because pixels are the units with which we'll always
work directly.

For this chapter and the next, we'll put ellipses aside and focus on circles.

The Basics of Drawing a Circle
Drawing a circle is actually pretty easy. The basic equation for a circle is

Radius' = X2 + Y2

which is nothing more than a way of saying that every point on a circle is exactly
Radius distance away from the center of the circle. (X and Y form two legs of a right
triangle, with Radius as the hypotenuse. If you know your Pythagoras, you know how
to draw circles.)

Viewing circle drawing in computer implementation terms, we can first cut our
workload by realizing that we actually only need to generate I/8th of a circle; symme
try does the rest. Next, we can generate that I/8th-circle arc by starting at the zero
setting for the major axis (the axis which advances more rapidly) and the maximum
setting (Radius) for the minor axis, then advancing one pixel along the major axis at a
time, and using the following formula to calculate the corresponding minor axis point,
as shown in Figure 1 7 .1 :

MinorAxis = sqrt(Radius' - MajorAxis 2)

Note that I'm using the terms "major axis" and "minor axis" rather than X and Y
because the eight-way symmetry allows us to use the same arc calculations when either
X or Y is the major axis. The arc is complete when the major axis coordinate equals or
exceeds the minor axis coordinate for a point. The arc can be regenerated for each of
the eight symmetries, but it's easier and less calculation-intensive to draw all eight
symmetries for each point at once.

That sounds a little complicated, but is in fact less so than you might think. Listing 17 .1
shows a straightforward C implementation of the above approach for 16-color modes
such as modes 10 H and 12H. As you can see, the code isn't very long or complicated at
all, and what complication there is largely results from controlling the VGNs bit mask
and set/reset features. Basically, Listing 17.1 advances one pixel along the major axis,
calculates the corresponding minor axis point, and then translates that result to all eight
symmetries, drawing the eight points one after another through a dot-plot routine.

270 fgJ Chapter 17

.y

(0,-100)

(-100,0) (100,0)

X -x --------------------•
Y (minor axi5 coordinate)=

\
5qrt(Radiu5 2 - X2) =

5qrt(100 2 - 452) =
5qrt(10000 - 2025) =

5qrt(7975) = 89.30
which round5 to 89

Point drawn (45, 89)

---(0,100) X (major axi5 coordinate)= 45
(X advance5 by 1

Y for each point drawn)

Figure 17 .1 Calculating the Arc

mooooooooooooooooooooooo
000000000000000000 e

y 99 0 0 0 0 0 0 0 0 0 0 e e e 0 0 0

100 e e 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

X

0 Pixels on screen
-- Ideal arc from X = 0 to X = 22 for a circle of radius 100

• Actual points drawn from X = 0 to X = 22 for a circle of radius 100

Figure 17 .2 Incremental Arc Drawing

Circling Around the VGA [lJ 271

Listing 17 .2 is a demonstration program for Listing 17 .1. It calls the function in
Listing 17.1 to draw a screen full of multicolored concentric circles. If you run Listing
17.2, you'll find that it does indeed draw circles, albeit none too quickly.

LISTING 17.1. L 17-1.C
I*
* Draws a circle of the specified radius and color.
* Compiles with either Borland or Microsoft compilers.
* Will work on VGA or EGA in 16-color mode.
*I

#include <math.h>
/Ii ncl ude <dos. h>

/* Handle differences between Borland and Micrsoft. Note that Borland accepts
outp as a synonym for outportb, but not outpw for outport. */

#ifdef _TURBOC_
#define outpw outport
/fen di f

/fdefi ne SCREEN_WIDTH_IN_BYTES 80 I* If of bytes across one scan
line in mode 12h */

#define SCREEN_SEGMENT OxAOOO I* mode 12h display memory seg
/fdefi ne GC_INDEX Ox3CE I* Graphics Controller port*/
//define SET_RESET_INDEX 0 I* Set/Reset reg index in GC */

*I

/fdefi ne SET_RESET_ENABLE_ INDEX 1 I* Set/Reset enable reg index in
/fdefi ne BIT_MASK_INDEX 8 /*

/* Draws a pixel at screen coordinate (X.Y) */
void DrawDot(int X, int Y) {

unsigned char far *ScreenPtr;

/* Point to the byte the pixel is in*/
#ifdef _TURBOC_

ScreenPtr - MK_FP(SCREEN_SEGMENT,
(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8)):

//else
FP_SEG(ScreenPtr) - SCREEN_SEGMENT;

Bit Mask reg index in GC */

FP_OFF(ScreenPtr) ~(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8);
/fend if

/* Set the bit mask within the byte for the pixel */
outp(GC_INDEX + 1, Ox80 » (X & Ox07));

/* Draw the pixel. ORed to force read/write to load latches.
Data written doesn't matter, because set/reset is enabled
for all planes. Note: don't OR with 0: MSC optimizes that
statement to no operation. */

*ScreenPtr I- OxFE:

/* Draws a circle of radius Radius in color Color centered at
screen coordinate (X,Y) */

void DrawCircle(int X, int Y, int Radius. int Color)
int MajorAxis, MinorAxis;

double RadiusSquared - (double) Radius* Radius;

GC */

272 1l} Chapter 17

/* Set drawing color via set/reset*/
outpw(GC_INDEX, (OxOF « 8) I SET_RESET_ENABLE_INDEX):

/* enable set/reset for all planes */
outpw(GC_INDEX, (Color« 8) I SET_RESET_INDEX);

/* set set/reset (drawing) color*/
outp(GC_INDEX, BIT_MASK_INDEX):

/* leave the GC pointing to Bit Mask reg*/

/*Setup to draw the circle by setting the initial point to one
end of the 118th of a circle arc we'll draw */

MajorAxis = O;
Mi norAxi s = Radius:

/* Draw all points along an arc of 118th of the circle, drawing
all 8 symmetries at the same time*/

do {
/* Draw all 8 symmetries of current point*/

DrawDot(X+MajorAxis, Y-MinorAxis);
DrawDot(X-MajorAxis, Y-MinorAxis);
DrawDot(X+MajorAxis, Y+MinorAxis);
DrawDot(X-MajorAxis, Y+MinorAxis);
DrawDot(X+MinorAxis, Y-MajorAxis);
DrawDot(X-MinorAxis, Y-MajorAxis);
DrawDot(X+MinorAxis, Y+MajorAxis);
DrawDot(X-MinorAxis, Y+MajorAxis);
MajorAxis++: /* advance one pixel along major axis*/
MinorAxis =

sqrt(RadiusSquared - ((double) MajorAxis * MajorAxisll + 0.5;
/* calculate corresponding point along minor axis*/

while (MajorAxis <= MinorAxis);

/* Reset the Bit Mask register to normal */
outp(GC_INDEX + 1, OxFF);

/*Turnoff set/reset enable*/
outpw(GC_INDEX, (OxOO « 8) / SET_RESET_ENABLE_INDEX):

LISTING 17 .2 L17-2.C
I*
* Draws a series of concentric circles.
* For VGA only, because mode 12h is unique to VGA.
* Compile and link with L17-X Cl or 3) with Borland C++:
* Bee L17 - X.C L17 - 2.C
*
*/

#include <dos.h>

main() (
int
union

Radius, Temp, Color:
REGS Regs;

/* Select VGA's hi-res 640x480 graphics mode, mode 12h */
Regs.x.ax = Ox0012;
int86(0x10, &Regs, &Regs);

Circling Around the VGA g} 273

/* Draw concentric circles*/
for (Radius - 10, Color= 7; Radius< 240; Radius+- 2) {

DrawCircle(640/2, 480/2, Radius, Color);
Color= (Color+ 1) & OxOF; /* cycle through 16 colors*/

/* Wait for a key, restore text mode, and done*/
scanf("%c", &Temp);
Regs.x.ax - Ox0003;
int86(0x10, &Regs, &Regs);

Drawing a Circle More Efficiently
Now that we know how to draw a circle, let's think about how we might do it better.
There are two paths to take, algorithmic refinement and implementation optimization
(that is, converting to assembly, code massaging, fine-tuning, things like that). When
given this choice, always take the algorithmic approach first, for it's easy to fine-tune
after settling on an algorithm, but it's very difficult to change algorithms without wast
ing effort once you've fine-tuned. We'll concentrate on algorithmic refinement for the
remainder of this chapter, continuing to work in C code with a dot-plot routine so that
the operation of the algorithm is apparent. Then, in the next chapter, we'll tighten up
the C code by eliminating the independent plotting of each point, and we'll finally
arrive at a high-speed assembly implementation.

The optimization we'll make to Listing 17 .1 is this: Rather than calculating each
minor axis point by taking an extremely time-consuming floating-point square root,
we'll use purely integer calculations to determine when it's time to advance one pixel
along the minor axis. (Granted, a floating-point coprocessor would speed up the square
root calculation, but integer approaches are faster still, and even in these days where
the 486 is the baseline Intel CPU, much of the installed base still doesn't have floating
point coprocessors.) In this respect, the faster circle-drawing implementation will be
similar to the line-drawing code presented in Chapter 14; knowing as we do that the
minor axis can only advance zero pixels or one pixel, we'll use an integer threshold
variable (which we called an error term variable in line drawing) to determine when to
advance along the minor axis. However, the circle drawing approach is a tad more
complicated, because it involves squares.

Let's take a moment to work out the internals of our new, faster approach. This
approach will also serve as a beautiful illustration of the point that you can only max
out the performance of your code if you really understand what that code is doing
(rather than blindly implementing an algorithm you've looked up), to the point where
you can alter it into forms that are radically different and better suited to the PC, but
nonetheless functionally equivalent.

27 4 [l} Chapter 17

An Incremental Circle Drawing Approach
Here's the trick to integer-only circle drawing: Use expansions of squared elements to
keep track of when the minor axis should advance. In other words, rather than calcu
lating each minor axis point independently through this expression

MinorAxis - sqrt(Radius2 - MajorAxis 2)

maintain the running states ofMinorAxis2 and Radius2 -MajorA:xis2, and decrement
the minor axis by one pixel whenever MinorA:xis2 drops below Radius2 - MajorA:xis2•

Okay, I admit it's a little more complicated than that, but not much. Consider this:
Suppose that we're drawing a circle of radius 100, centered about (0,0), and we're
drawing the arc starting at (O, 100), as shown in Figure 17.1. A simple multiply gives us
Radius2 (10,000), which also happens to be Radius2 -X2, because Xis zero. Now, as
we advance X (the major axis) one pixel at a time, we want to know when it's time to
advance Y one pixel; that occurs when Y (which equals sqrt(Radius2 - X2)) drops be
low 99.5 (that is, moves more than halfway from the initial Y of 100 to the next pixel
along the Y axis, at 99). Another way to express that is to say that we want to advance
Y when Y2 (which equals Radius2 -X2) drops below 99.52-or, more conveniently for
us, we want to advance Y when Radius2 - X2 drops below 9900.25.

Why is that convenient? Well, we already know the initial Radius2 - X2, which is
10,000. It's easy to maintain Radius2 - X2 as X advances, because (X + 1)2 is simply X2

+ 2X + 1, a simple integer calculation given X2 and X. Consequently, Radius2 - (X + 1)2 can
be calculated as Radius2 - (X2 + 2X + 1), with no floating-point arithmetic needed.

Now that we know Radius2 - X2 for each X as we move to the right, all we need to
know is the threshold value for Radius2 -X2 below which we must advance Y. Initially,
that threshold value is the value we calculated earlier, 9900.25, which is 99.52•

We seem to have a problem here, in that our threshold is not an integer. That's easily
dealt with, however, as follows: First of all, that initial threshold is calculated as (Y - 0.5)2

(the square of the coordinate of the midpoint between Y and Y - 1). That expression
expands to Y2 - Y + 0.25. Now, Y2 - Y is an easily-calculated integer expression; it's
only the 0.25 that's a sticking point. It turns out, however, that we can just ignore the
0.25, because the Radius2 - X2 values we'll compare to the Y thresholds are always
integers. If a given Radius2 - X2 value matches the integer portion of a Y2 - Y + 0.25
value, we'll know that it actually is less than the threshold, because of the 0.25 we'll be
carrying along.

For the example in Figure 17.2, the initial point plotted is (0, 100) relative to the
center of the circle. (We'll always do our calculations relative to the center of the circle,
and then adjust for the center of the circle and perform symmetry calculations later.)
Radius2 -X2 is 10,000 at this point, and the initial threshold, (Y - 0.5)2, is 9900.25-
but we'll use Y2- Y to derive a working threshold of 9,900.

Next, Xadvances one pixel to coordinate 1. Radius2 -X2 goes to 10,000- (2X+ 1),
which is 9,999 (X refers to the last X drawn, which is zero at the moment.) That still

Circling Around the VGA ~ 275

exceeds the threshold of9,900, so Y doesn't change. X then advances to coordinate 2.
Radius2 - X2 goes to 9,999 - (2X + 1), which is 9,996, so Y still doesn't advance.
Radius2 - X2 then advances to 9,991, 9,984, 9,975, 9,964, 9,951, 9,936, 9,919, and
finally to 9,900 as X advances to 10. Remember, we've only performed integer addi
tion and subtraction as X has moved, and a mere two integer multiplications were
required to set up the squared terms at the outset.

When X equals 10, Radius2 - X2 has finally matched our threshold for advancing Y;
in fact, because of the implied 0.25 we've been carrying around, we know that Radiu.s2

- X2 has passed the threshold. Consequently, we subtract 1 from Y to advance to the next
pixel along the Y axis, and draw the next point at (10,99). That's precisely what we want,
since the rounded integer portion of sqrt{1002 - 102) (which is Radius2 -X2) is 99.

Our only remaining task is to reset the threshold so that we know when to advance
Y again. That's accomplished by calculating the new threshold as (Y - 1)2; much as we
did earlier with X, we can expand this to Y2 - 2Y + 1 in order to perform integer-only
arithmetic. Given that we already know the Y2 for the threshold we just reached, it's a
simple matter to calculate (Y - 1)2 for the next threshold each time we advance Y.

There's a trick here, though: The Y we use in the threshold isn't the Y we just ad
vanced to or the Y we just advanced from--it's the Y of the threshold we just reached;
99.5 is our sample case. Consequently, when Y advances to 99, the threshold advances
to 9,900 - (99.5 * 2) + 1, which is 9,702. The 0.5 element doesn't mean we have to
perform floating-point arithmetic, because 0.5 * 2 is always 1, so the above equation
can also be expressed as 9,900- (100 * 2-1) + 1. Consequently, the formula we'll use
to advance the threshold is Y2 - 2Y, where Y2 is the last threshold value and Y is the Y
coordinate of the last pixel drawn.

That's really all there is to it; reread the last section and work through an example or
two of your own and you'll see how straightforward integer-only circle drawing is. It's
remarkably easy to implement this approach, too; Listing 17 .3, which is such an imple
mentation, is scarcely longer than Listing 17 .1. Listing 17 .3 is functionally equivalent
to Listing 1 ?.I-except that it runs more than five times faster than Listing 17.1.

Integer arithmetic is a wonderful thing, isn't it?

LISTING 17.3 L17-3.C
I*
* Draws a circle of the specified radius and color. using a fast
* integer-only & square-root-free approach.
* Compiles with Borland or Microsoft
* Will work on VGA, or EGA in 16-color mode.
*I

#include <dos.h>
#include <math.h>

/* Handle differences between Borland and Microsft compilers. Note that Borland
accepts outp as a synonym for outportb, but not outpw for outport. */

#ifdef _TURBOC_

276 fl} Chapter 17

#define outpw outport
/fendi f

#define SCREEN_WIDTH IN BYTES

/fdefi ne SCREEN_SEGMENT
/fdefi ne GC_INDEX
#define SET_RESET_INDEX
/fdefi ne SET_RESET_ENABLE_INDEX

/fdefi ne BIT_MASK_INDEX

80

OxAOOO
Ox3CE
0
1

8

I*

I*
I*
I*
I*

I*

of bytes across one scan
line in mode 12h */
mode 12h display memory seg */
Graphics Controller port*/
Set/Reset reg index in GC */
Set/Reset enable reg index
in GC */
Bit Mask reg index in GC */

/* Draws a pixel at screen coordinate (X,Y) */
void DrawDot(int X, int Y) {

unsigned char far *ScreenPtr:

/* Point to the byte the pixel is in*/
#ifdef _TURBOC_

ScreenPtr = MK_FP(SCREEN_SEGMENT,
(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8)):

ffe l se
FP_SEG(ScreenPtr) = SCREEN_SEGMENT;
FP_OFF(ScreenPtr) =(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8):

/lend if

/* Set the bit mask within the byte for the pixel */
outp(GC_INDEX + 1, Ox80 >> (X & Ox07)):

/* Draw the pixel. ORed to force read/write to load latches.
Data written doesn't matter, because set/reset is enabled
for all planes. Note: don't OR with O; MSC optimizes that
statement to no operation.*/

*ScreenPtr 1- OxFE:

/* Draws a circle of radius Radius in color Color centered at
* screen coordinate (X,Y) */

void DrawCircle(int X, int Y, int Radius, int Color) {
int MajorAxis, MinorAxis:
unsigned long RadiusSqMinusMajorAxisSq:
unsigned long MinorAxisSquaredThreshold:

/* Set drawing color via set/reset*/
outpw(GC_INDEX, (OxOF << 8) I SET_RESET_ENABLE_INDEXl:

/* enable set/reset for all planes*/
outpw(GC_INDEX, (Color<< 8) I SET_RESET_INDEX):

/* set set/reset (drawing) color*/
outp(GC_INDEX, BIT_MASK_INDEX);

/* leave the GC pointing to Bit Mask
reg*/

/*Setup to draw the circle by setting the initial point to one
end of the 118th of a circle arc we'll draw*/

MajorAxis = 0:
MinorAxis = Radius:
/* Set initial Rad1us**2 - MajorAxis**2 (MajorAxis is initially O */
RadiusSqMinusMajorAxisSq = (unsigned long) Radius* Radius:
/* Set threshold for minor axis movement at (MinorAxis - 0.5)**2 */
MinorAxisSquaredThreshold =

(unsigned long) MinorAxis * MinorAxis - MinorAxis:

Circling Around the VGA ~ 277

/* Draw all points along an arc of 1/Bth of the circle, drawing
all 8 symmetries at the same time*/

do {
/* Draw all 8 symmetries of current point*/
DrawDot(X+MajorAxis, Y-MinorAxis):
DrawDot(X-MajorAxis, Y-MinorAxis):
DrawDot(X+MajorAxis, Y+MinorAxis):
DrawDot(X-MajorAxis, Y+MinorAxis):
DrawDot(X+MinorAxis, Y-MajorAxis):
DrawDot(X-MinorAxis, Y-MajorAxis);
DrawDot(X+MinorAxis, Y+MajorAxis):
DrawDot(X-MinorAxis, Y+MajorAxis):
MajorAxis++: /* advance one pixel along major axis*/
if ((RadiusSqMinusMajorAxisSq --

MajorAxis + MajorAxis - 1) <= MinorAxisSquaredThreshold) {
MinorAxis--;
MinorAxisSquaredThreshold -= MinorAxis + MinorAxis;

while (MajorAxis <= MinorAxis):

/* Reset the Bit Mask register to normal */
outp(GC_INDEX + 1, OxFF):

/*Turnoff set/reset enable*/
outpw(GC_INDEX. (OxOO << 8) I SET_RESET_ENABLE_INDEX):

Notes on the Implementation
The obvious question about Listing 17.3 is, Does it work? It's certainly fast, but if it
doesn't draw circles properly, it's of little use.

I'm confident that Listing 17.3 does indeed work. The theory is sound, and I com
pared all coordinates generated by Listing 17 .1 when linked to Listing 17 .2 to the
coordinates generated by Listing 17.3, and they were the same for all circles drawn.

Listing 17.3 uses long integers, an unavoidable consequence of lugging around
squared terms of values that exceed 255. Long arithmetic is relatively slow; it might be
worthwhile to special-case circles with radii less than 256 and draw them with a sepa
rate routine that uses short integers.

Listing 17.3 also treats the Y coordinates of circle centers as increasing from the top
of the screen to the bottom, contrary to the normal graphing convention. If necessary,
the sense of the Y axis can be inverted by subtracting each Y coordinate from the screen
height minus l; that's the only adjustment necessary, because circles are symmetric
about the X axis.

Continuing in Circles
That takes us halfway through our exploration of circle drawing. Coming up in the
next chapter is the other portion of our optimization agenda: fine-tuning for the VGA
and conversion to assembly. The end result should be an additional improvement of at
least three times, bringing the total to at least 15 times over that of Listing 17 .1 !

Circling in for
the Kill.

..
CD
I 7 = -= u

Optimizing Hardenburgh's Circle Algorithm
with a Vengeance

Two years back, I set out to write the fastest possible line-drawing code for the PC. I
took Bresenham's algorithm apart piece by piece until I understood it completely, then
unleashed all the assembly-language skills I had on the task of implementing that algo
rithm. When I was done, I had boosted performance by about two times over a stan
dard Bresenham's assembly-language implementation, and I couldn't for the life of me
imagine how the code could be improved one iota. In other words, I was confident
that I had written just about the fastest possible code.

That was an incorrect conclusion- to put it mildly.
Over the years, it seems as though every graphics programmer I know has decided

to clue me in on his or her favorite way to draw lines. I've heard about state-machine
line drawing, run-based line drawing, fixed-point line drawing, and even a technique
that lets the floating-point processor perform a single division while the line-drawing
routine sets up, then uses the bits of the floating-point remainder to control line draw
ing. Wildly different as these approaches are, they have one thing in common-they're
all faster than my original "optimized" code.

Which brings us to this chapter. In the previous chapter, we learned how to draw
circles, then we vastly improved performance by switching from floating-point code to
Hal Hardenbergh's integer-only algorithm that requires multiplication and division
only during the initial setup. That was step 1 of graphics optimization: selection of
algorithm. Steps 2 (matching the algorithm to the hardware) and 3 (conversion of
critical code to assembly language) are coming up next. When we're done, we'll have
circle-drawing code that's more than 20 times as fast as the original implementation.
Our final circle-drawing code will be more than 3 times as fast as the faster routine we

279

280 Ill Chapter 18

developed last time, even though both routines use exactly the same algorithm. Clearly,
there is more to performance than selecting the right algorithm, although that is an
essential starting point.

Fast as our final implementation will be, however, I wouldn't dream of calling it
optimized. As I said in the opening to this chapter, it's presumptuous indeed to think
you've come up with the best possible graphics code, and circle drawing is no excep
tion. In fact, the code could easily be speeded up by using unrolled loops to draw
multiple pixels without looping, and could possibly be made faster yet with fixed-point
arithmetic or by encoding the pixel list in a more readily usable format. There are also
many small improvements-simplified calculations, eliminated redundancies, and the
like-to be made throughout the code, although optimizing outside the inner loops
tends to be a waste of time and effort.

My point is this: Don't take the code in this chapter as gospel. It's fast, but it could
be at least a little faster-and maybe a lot faster. Understand what I've done, then try
to come up with a way to do it better; one of the great things about PC graphics
programming is that it's almost always possible to do exactly that.

Slimming Down the Main Loop
In order to be able to focus on specific optimizations in this chapter, I'm going to
assume that you're familiar with circle drawing in general. If not, I suggest you read the
previous chapter, which discussed the fundamentals of circle drawing and described in
detail Hal Hardenburgh's integer-only algorithm that we'll use here.

The question at hand is this: How can we speed up the circle-drawing code we saw
at the end of the previous chapter, which used integer-only calculations and required
no multiplication or division inside the main loop? If you refer back to that code, you'll
see that while the main loop is quite compact, it calls a separate routine to draw each
pixel, and it's there that we can save a whole slew of processor cycles.

The pixel-drawing routine in the previous chapter was short, but it performed two
time-consuming and avoidable tasks. First, it calculated each pixel's display memory
offset from scratch, requiring both a multiply and the construction of a far pointer.
Similarly, it generated each pixel's bit mask from scratch with a little arithmetic and a
shift. As it turns out, neither of those actions is actually necessary, because with the
circle-drawing approach we were using (and will continue to use) the offset and mask
for each pixel can be calculated incrementally from the offset and mask for the previous
pixel.

In other words, once we've drawn pixel n, we can generate the bit mask for pixel n+ I
with at most a single-bit rotation. Likewise, we can calculate the offset for pixel n+ I
with at most an increment or decrement followed by an addition. Those simpler calcu
lations can save many cycles relative to calculating each pixel from scratch. We can also
save some cycles by moving the code that draws each pixel into the drawing loop and
eliminating the call to and return from the drawing function.

Circling in for the Kill ~ 281

Reflecting Octants
There's another, less obvious optimization we can make. Consider this: The process of
calculating adjacent points along one-eighth of a circle is nothing more than a matter
of deciding whether to move along both axes after each pixel or only along the major
axis; making these moves and drawing the corresponding pixels illuminates precisely
those pixels closest to the desired arc. Given that, it should be clear that it's possible to
calculate the set of moves from one pixel to the next and store that set in an array, then
play back the array with varying major and minor axis directions eight times in order
to draw the circle. Put another way, we could calculate and store the information needed
to determine when to advance along the minor axis just once for a given circle, then
play back that information eight times to draw the eight symmetric arcs that make up
the circle, interpreting the information slightly differently each time.

What does that buy us? It lets us separate the arc calculation code from the arc
drawing code so that each can be better optimized. Truth to tell, that's not such a big
deal in C; we could just calculate each point and draw all eight symmetries on the spot,
as we did in the last chapter, although that would require maintaining eight display
memory pointers and eight masks. When we get to assembly language, however, sepa
ration of calculation and drawing will stand us in good stead; by reducing complexity
it will allow us to keep all variables in registers for the duration of both the calculation
and drawing loops-and that will translate directly into better performance.

I don't know whether the separation of calculation from drawing has a similarly
large advantage in C, or indeed any advantage at all. However, given that the major
purpose of the C code in this chapter is to prototype and illuminate the assembler
code, I'll use the same approach of separating calculation and drawing in the C code
that I'll use later in the assembly code.

Faster Circles in C
Listing 18.1 shows a C circle-drawing function that uses the separate calculation and
drawing approach, along with the incremental offset and mask calculation technique
described earlier. Arcs with horizontal major axes are handled separately from arcs with
vertical major axes because the process of advancing across a scan line of EGA/VGA
memory is fundamentally different from that of advancing from one scan line to the
next. When compiled and linked to Listing 18.2, which repeats the drawing of a set of
circles 20 times for timing purposes, Listing 18.1 is about 40 percent faster than List
ing 17.3 in the previous chapter, which was our speed champ until now, as shown in
Table 18.1. That's nowhere near the improvement that Listing 17 .3 produced over
Listing 17 .1, but it's certainly significant.

282 rg} Chapter 18

Table 18.1 Hardenburg Circles versus Optimized Hardenburgh Circles

Compiler/Processor

Microsoft C 5.0 Turbo C 2.0

Listing 286 386 286 386

17.1 468 sec 175 sec 339 sec 127 sec
(C/floating point)

17.3 44 sec 16 sec 47 sec 18 sec
(C/inreger)

18.1 (C/incremental 31 sec 12 sec 32 sec 13 sec
pixel addressing)

18.3/4 (ISVGA=0) 14 sec 7 sec 14 sec 7 sec
(ASM)

18.3/4 (ISVGA=l) 13 sec 5.5 sec 13 sec 5.5 sec
(ASM/write mode 3)

Notes: The execution times shown are for the various circle-drawing implementations in this chapter
and the last when linked to Listing 18.2. Maximum optimization (/Ox for Microsoft C, -G -0 -Z -r
for Turbo C) was used to compile all C code. Times in the columns labelled "286" were recorded on a
Video Seven VRAM VGA running on a 10-MHz 1-wait-state AT clone (a monochrome adapter was
also installed, making the VGA an 8-bit device); times in the columns labelled "386" were recorded on
a the built-in Paradise VGA in a 20-MHz, 32K-0-wait-state-cache Toshiba 5200 (a monochrome
adapter was also installed). No floating-point processor was installed in either computer. Results could
vary considerably on different hardware.

LISTING 18.1 L 18-1.C
I*
* Draws a circle of the specified radius and color, using a fast
* integer-only & square-root-free approach, and generating the
* arc for one octant into a buffer, then drawing all 8 symmetries
* from that buffer.
* Compiles with either Borland or Microsoft.
* Will work on VGA or EGA, but will draw what appears to be an
* ellipse in non-square-pixel modes.
*I

#include <dos.h>

/* Handle differences between Borland and Micrsoft. Note that Borland accepts
outp as a synonym for outportb, but not outpw for outport */

#ifdef _TURBOC_
#define outpw outport
/tendi f

/tdefi ne SCREEN_WIDTH_IN_BYTES 80 I* It of bytes across one scan
line in mode 12h */

#define SCREEN_SEGMENT OxAOOO I* mode 12h display memory seg
#define GC_I NDEX Ox3CE I* Graphics Controller port*/
#define SET_RESET_INOEX 0 /* Set/Reset reg index in GC */

*/

Circling in tor the Kill rJ 283

#define SET_RESET_ENABLE_INDEX
#define BIT_MASK_INDEX

1
B

/* Set/Reset Enable reg index in GC */
/* Bit Mask reg index in GC */

unsigned char PixList[SCREEN_WIDTH_IN_BYTES*8/2];
/* maximum major axis length is

1/2 screen width, because we're
assuming no clipping is needed*/

/* Draws the arc for an octant in which Y is the major axis. (X,Y) is the
starting point of the arc. HorizontalMoveDirection selects whether the
arc advances to the left or right horizontally (O=left, l=right).
RowOffset contains the offset in bytes from one scan line to the next,
controlling whether the arc is drawn up or down. Length is the
vertical length in pixels of the arc, and DrawList is a list
containing O for each point if the next point is vertically aligned,
and 1 if the next point is 1 pixel diagonally to the left or right. */

void DrawVOctant(int X, int Y, int Length, int RowOffset,
int HorizontalMoveDirection, unsigned char *DrawList)

unsigned char far *ScreenPtr, BitMask;

/* Point to the byte the initial pixel is in */
#ifdef _TURBOC_

ScreenPtr = MK_FP(SCREEN_SEGMENT,
(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8));

#else
FP_SEG(ScreenPtr) = SCREEN_SEGMENT;
FP_OFF(ScreenPtr) =(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8);

/,!end if
/* Set the initial bit mask*/
BitMask = Ox80 >> CX & Ox07):

/* Draw all points in Drawlist */
while (Length--) {

/* Set the bit mask for the pixel */
outp(GC_INDEX + 1, BitMask):
/* Draw the pixel. ORed to force read/write to load latches.

Data written doesn't matter, because set/reset is enabled
for all planes. Note: don't OR with O: MSC optimizes that
statement to no operation. */

*ScreenPtr I= OxFE;
/* Now advance to the next pixel based on DrawList. */
if (*DrawList++) {

/* Advance horizontally to produce a diagonal move. Rotate
the bit mask. advancing one byte horizontally if the bit
mask wraps. */

if (HorizontalMoveDirection == 1
/* Move right*/
if ((BitMask >>= 1) = 0) {

BitMask = Ox80;
ScreenPtr++;

else {
/* Move left*/
if ((BitMask <<=

BitMask = OxOl;
ScreenPtr--;

/* wrap the mask*/
/* advance 1 byte to the right*/

1)==0){
/* wrap the mask*/
/* advance 1 byte to the left*/

284 Jg} Chapter 18

ScreenPtr += RowOffset: /* advance to the next scan line*/

/* Draws the arc for an octant in which X is the major axis. (X,Y) is the
starting point of the arc. HorizontalMoveDirection selects whether the
arc advances to the left or right horizontally (O=left, l=right).
RowOffset contains the offset in bytes from one scan line to the next,
controlling whether the arc is drawn up or down. Length is the
horizontal length in pixels of the arc, and Drawlist is a list
containing O for each point if the next point is horizontally aligned,
and 1 if the next point is 1 pixel above or below diagonally. */

void DrawHOctant(int X, int Y. int Length, int RowOffset,
int HorizontalMoveDirection, unsigned char *Drawlist)

unsigned char far *ScreenPtr, BitMask:

/* Point to the byte the initial pixel is in */
#ifdef _TURBOC_

ScreenPtr = MK_FP(SCREEN_SEGMENT,
(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8)):

#else
FP_SEG(ScreenPtr) = SCREEN_SEGMENT:
FP_OFF(ScreenPtr) =(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8):

ifendi f
/* Set the initial bit mask*/
BitMask = Ox80 >> (X & Ox07):

/* Draw a 11 points in Drawl i st * /
while (Length--) {

/* Set the bit mask for the pixel */
outp(GC_INDEX + 1, BitMask):
/* Draw the pixel (see comments above for details)*/
*ScreenPtr I= OxFE:
/* Now advance to the next pixel based on Drawlist */
if (*Drawlist++) {

/*

if

/* Advance vertically to produce a diagonal move*/
ScreenPtr += RowOffset: /* advance to the next scan line*/

Advance horizontally. Rotate the bit mask, advancing one
byte horizontally if the bit mask wraps */
(HorizontalMoveDirection 1) {

I* Move right*/
if ((BitMask »= 1) 0) {

BitMask = Ox80; /* wrap the mask*/
ScreenPtr++; I* advance 1 byte to the right*/

else {
/* Move left*/
if ((BitMask <<= 1) == 0) {

BitMask = OxOl; /* wrap the mask*/
ScreenPtr--; /* advance 1 byte to the left*/

/* Draws a circle of radius Radius in color Color centered at
screen coordinate (X,Y) */

void DrawCircle(int X, int Y. int Radius, int Color)
int MajorAxis, MinorAxis;

Circling in for the Kill ~ 285

unsigned long RadiusSqMinusMajorAxisSq, MinorAxisSquaredThreshold;
unsigned char *PixListPtr;

/* Set drawing color via set/reset*/
outpw(GC_INDEX, (OxOF << 8) J SET_RESET_ENABLE_INDEX):

/* enable set/reset for all planes*/
outpw(GC_INDEX, (Color<< 8) I SET_RESET_INDEX);

/* set set/reset (drawing) color*/
outp(GC_INDEX, BIT_MASK_INDEX); /* leave the GC Index reg pointing

to the Bit Mask reg*/

/*Setup to draw the circle by setting the initial point to one
end of the 118th of a circle arc we'll draw*/

MajorAxis = O;
MinorAxis = Radius;
/* Set initial Radius**2 MajorAxis**2 (MajorAxis is initially O) */
RadiusSqMinusMajorAxisSq = (unsigned long) Radius* Radius;
/* Set threshold for minor axis movement at (MinorAxis - 0.5)**2 */
MinorAxisSquaredThreshold = (unsigned long) MinorAxis * MinorAxis -

MinorAxis:

/* Calculate all points along an arc of 118th of the circle and
store that info in Pixlist for later drawing*/

PixListPtr = Pixlist:
do {

/* Advance (Radius**2 - MajorAxis**2); if it equals or passes
the MinorAxis**2 threshold, advance one pixel along both the
major and minor axes and set the next MinorAxis**2 threshold;
otherwise, advance one pixel only along the major axis. */

RadiusSqMinusMajorAxisSq -=
MajorAxis + MajorAxis + 1:

if (RadiusSqMinusMajorAxisSq <= MinorAxisSquaredThreshold)
/* Advance 1 pixel along both the major and minor axes*/
MinorAxis--:
MinorAxisSquaredThreshold -= MinorAxis + MinorAxis;
PixlistPtr++ = 1: / advance along both axes*/

} else {
PixListPtr++ = 0: / advance only along the major axis*/

MajorAxis++; /* always advance one pixel along the major axis*/
while (MajorAxis <= MinorAxis);

/* Now draw each of the 8 symmetries of the octant in turn*/
/* Draw the octants for which Y is the major axis*/
DrawVOctant(X-Radius,Y,MajorAxis,-SCREEN_WIDTH_IN_BYTES,l,Pixlist):
DrawVOctant(X-Radius,Y,MajorAxis,SCREEN_WIDTH_IN_BYTES,l,Pixlist);
DrawVOctant(X+Radius,Y,MajorAxis,-SCREEN_WIDTH_IN_BYTES,O,Pixlist);
DrawVOctant(X+Radius,Y,MajorAxis,SCREEN_WIDTH_IN_BYTES,0,Pixlist):

/* Draw the octants for which X is the major axis*/
DrawHOctant(X,Y-Radius,MajorAxis,SCREEN_WIDTH_IN_BYTES,0,Pixlist);
DrawHOctant(X,Y-Radius,MajorAxis,SCREEN_WIDTH_IN_BYTES,1,Pixlist):
DrawHOctant(X,Y+Radius,MajorAxis,-SCREEN_WIDTH_IN_BYTES,O,Pixlist);
DrawHOctant(X,Y+Radius,MajorAxis,-SCREEN_WIDTH_IN_BYTES,l,Pixlist);

/* Reset the Bit Mask register to normal */
outp(GC_INDEX + 1, OxFF):
/*Turnoff set/reset enable*/
outpw(GC_INDEX, (OxOO « 8) I SET_RESET_ENABLE_INDEX);

286 /gJ Chapter 18

It's worth noting that Listings 18.1 and 17 .3 both use the same integer-only algo
rithm presented in the previous chapter. The performance difference between the two
listings comes from understanding the code the compiler generates for each and the
performance implications of that code. In particular, Listing 18.1 virtually eliminates
multiplication, multi-bit shifts, and call and return instructions, all of which are rela
tively slow on x86 processors.

LISTING18.2 L18-2.C
I*
* Draws a series of concentric circles.
* For VGA only, because mode 12h is unique to VGA.
* Compile and link using Borland C++ with accompanying listings as follows:
* bee -ms 118-1 118-2 (or)
* bee -ms 118-3 118-2 118-4.asm
*
*
*
*I

#include <dos.h>

main() {
int Radius, Temp, Color, i;
union REGS Regs;

/* Select VGA's hi-res 640x480 graphics mode, mode 12h. */
Regs.x.ax = Ox0012;
intB6(0xlO, &Regs, &Regs):

/* Draw 20 sets of concentric circles for timing purposes. */
for (i = O: i < 20: i++) {

for (Radius= 10, Color= 7; Radius< 240: Radius+= 2) {
DrawCircle(640/2, 480/2, Radius, Color):
Color= (Color+ 1) & OxOF; /* cycle through 16 colors*/

/* Wait for a key, restore text mode, and done. */
scanf("lc", &Temp);
Regs.x.ax = Ox0003;
int86(0xl0, &Regs, &Regs);

Notes on the C Implementation
Listing 18.1, like Listing 17.3, uses long integers because the squared values used can
grow too large for short integers. The performance cost oflong integers can be avoided
by special-casing circles with radii less than 256. In order for circles with radii less than
256 to work with short integers, however, short unsigned integers must be used, or
comparisons may not work correctly when squared quantities exceed 32,767.

Listing 18.1 (and, indeed, all the listings in this chapter and the previous one) as
sumes that no clipping is needed. If that's not the case, the approach of generating a
pixel list and then drawing the eight symmetries from the list would lend itself well to

Circling in for the Kill fg] 287

clipping, because the drawing routine could use the list to skip quickly over any initial
portion of an octant that's outside a clip region, and could terminate processing imme
diately when the far edge of the clip region is reached. At the very least, clipping from
a pixel list is surely more manageable than attempting to draw and clip all eight sym
metries simultaneously, and is undoubtedly more efficient than calculating and draw
ing the clipped arcs for each of the eight octants separately.

Circles to the Metal: Assembly Language
I believe that the critical code for graphics primitives should be written in assembly
language, and circle drawing is no exception. Listings 18.3 and 18.4 show a C/assem
bly language hybrid circle-drawing routine that is a good deal faster yet than Listing
18.1; as Table 18.1 shows, the code in Listings 18.3 and 18.4 is about twice as fast as
Listing 18 .1.

LISTING 18.3 L 18-3.C
I*
* Draws a circle of the specified radius and color, using a fast
* integer-only & square-root-free approach, and generating the
* arc for one octant into a buffer, then drawing all 8 symmetries
* from that buffer. Uses assembly language for inner loops of octant
* generation & drawing.
* Compiles with either Borland or Microsoft.
* Will work on VGA or EGA, but will draw what appears to be an
* ellipse in non-square-pixel modes.
*I

#define ISVGA O /* set to 1 to use VGA write mode 3*/
/* keep synchronized with Listing 4 */

#include <dos.h>

/* Handle differences between Borland and Microsoft. Note that Borland accepts
outp as a synonym for outportb, but not outpw for outport. */

#ifdef _TURBOC_
#define outpw outport
#end if

#define SCREEN_WIDTH IN BYTES 80 I*# of bytes across one scan
line in mode 12h */

/tdefi ne SCREEN_SEGMENT OxAOOO I* mode 12h display memory seg *I
/tdefi ne GC_INDEX Ox3CE I* Graphics Controller port*/
/tdefi ne SET_RESET_INDEX 0 I* Set/Reset reg index in GC */
/tdefi ne SET_RESET_ENABLE_ INDEX 1 I* Set/Reset Enable reg index in
/tdefi ne GC_MDDE_INDEX 5 I* Graphics Mode reg index in GC
#define COLOR_DONT_CARE 7 I* Color Don't Care reg index in
/tdefi ne BIT_MASK_INDEX 8 I* Bit Mask reg index in GC */

unsigned char Pixlist[SCREEN_WIDTH_IN_BYTES*B/2];
/* maximum major axis length is

GC
*I
GC

1/2 screen width, because we're
assuming no clipping is needed*/

/* Draws a circle of radius Radius in color Color centered at
* screen coordinate (X,Y) */

*I

*I

288 Jg} Chapter 18

void DrawCircle(int X, int Y, int Radius, int Color) {
int MajorAxis, MinorAxis:
unsigned long RadiusSqMinusMajorAxisSq, MinorAxisSquaredThreshold:
unsigned char *PixListPtr, OriginalGCMode:

/* Set drawing color via set/reset*/
outpw(GC_INDEX, (OxOF « 8) I SET_RESET_ENABLE_INDEX):

/* enable set/reset for all planes*/
outpw(GC_INDEX, (Color« 8) I SET_RESET_INDEX):

/* set set/reset (drawing) color*/
4/if I SVGA

/* Remember original read/write mode & select
read mode 1/write mode 3, with Color Don't Care
set to ignore all planes and therefore always return OxFF */

outp(GC_INDEX, GC_MODE_INDEXJ:
OriginalGCMode = inp(GC_INDEX + 1):
outp(GC_INDEX+l, OriginalGCMode I OxOB):
outpw(GC_INDEX, (OxOO << 8) I COLOR_DONT_CARE):
outpw(GC_INDEX, (OxFF « 8) I BIT_MASK_INDEX):

4/e 1 se
outp(GC_INDEX, BIT_MASK_INDEXJ: /* leave the GC Index reg pointing

to the Bit Mask reg*/
4/endi f

/*Setup to draw the circle by setting the initial point to one
end of the 118th of a circle arc we'll draw*/

MajorAxis - 0:
MinorAxis = Radius:
/* Set initial Radius**2 - MajorAxis**2 (MajorAxis is initially OJ */
RadiusSqMinusMajorAxisSq = (unsigned long) Radius* Radius:
/* Set threshold for minor axis movement at (MinorAxis - 0.5)**2 */
MinorAxisSquaredThreshold = (unsigned long) MinorAxis * MinorAxis

MinorAxis:

/* Calculate all points along an arc of I/8th of the circle.
Results are placed in PixList */

MajorAxis = GenerateOctant(PixList, MajorAxis, MinorAxis,
RadiusSqMinusMajorAxisSq, MinorAxisSquaredThreshold):

/* Now draw each of the 8 symmetries of the octant in turn*/
/* Draw the octants for which Y is the major axis*/
DrawVOctant(X-Radius,Y,MajorAxis,-SCREEN_WIDTH_IN_BYTES,l,PixList):
DrawVOctant(X-Radius,Y,MajorAxis,SCREEN_WIDTH_IN_BYTES,1,PixListl:
DrawVOctant(X+Radius,Y,MajorAxis,-SCREEN_WIDTH_IN_BYTES,O,PixList):
DrawVOctant(X+Radius,Y,MajorAxis,SCREEN_WIDTH_IN_BYTES,O,PixList);

/* Draw the octants for which Xis the major axis*/
DrawHOctant(X,Y-Radius,MajorAxis,SCREEN_WIDTH_IN_BYTES,O,PixList):
DrawHOctant(X,Y-Radius,MajorAxis,SCREEN_WIDTH_IN_BYTES,1,PixList):
DrawHOctant(X,Y+Radius,MajorAxis,-SCREEN_WIDTH_IN_BYTES,O, PixList);
DrawHOctant(X,Y+Radius,MajorAxis,-SCREEN_WIDTH_IN_BYTES,1, PixList);

4/if ISVGA
/* Restore original write mode*/
outpw(GC_INDEX, (OriginalGCMode « 8) I GC_MODE_INDEX):
/* Restore normal Color Don't Care setting*/
outpw(GC_INDEX, (OxOF << 8) I COLOR_DONT_CAREJ:

4/el se
/* Reset the Bit Mask register to normal */
outp(GC_INDEX + 1, OxFF):

4/endif

Circling in for the Kill g} 289

/*Turnoff set/reset enable*/
outpw(GC_INDEX. (OxOO << 8) I SET_RESET_ENABLE_INDEX);

LISTING 18.4 L18-4.ASM
Contains 3 C-callable routines: GenerateOctant, DrawVOctant. and

DrawHOctant. See individual routines for comments.

Works with TASM or MASM

ISVGA equ 0 ;set to 1 to use VGA write mode 3
; keep synchronized with Listing 3

. model sma 11

.code
:**

Generates an octant of the specified circle, placing the results in
Pixlist, with a O in Pixlist meaning draw pixel & move only along
major axis, and a 1 in Pixlist meaning draw pixel & move along both
axes.
C near-callable as:
int GenerateOctant(unsigned char *Pixlist. int MajorAxis,

int MinorAxis, unsigned long RadiusSqMinusMajorAxisSq,
unsigned long MinorAxisSquaredThreshold);

Return value= MajorAxis

GenerateOctantParms
dw ?
dw ?

Pixlist dw ?
MajorAxis dw ?
MinorAxis dw ?
RadiusSqMinusMajorAxisSq
MinorAxisSquaredThreshold
GenerateOctantParms

struc
;pushed BP
;return address
;pointer to list to store draw control data in
;initial major/minor axis coords relative to
; to the center of the circle
dd? ;initial Radius**2 - MajorAxis**2
dd? ;initial threshhold for minor axis
ends ; movement is MinorAxis**2 - MinorAxis

public _GenerateOctant
GenerateOctant proc near

push bp
mov bp,sp
push si
push di

;preserve caller's stack frame
;point to our stack frame
;preserve C register variables

;get all parms into registers
mov di ,[Pixlist+bp] ;point DI to Pixlist
mov ax,[MajorAxis+bp] :AX=MajorAxis
mov bx,[MinorAxis+bp] ;BX=MinorAxis
mov ex.word ptr [RadiusSqMinusMajorAxisSq+bp]
mov dx,word ptr [RadiusSqMinusMajorAxisSq+bp+2]

;DX:CX=RadiusSqMinusMajorAxisSq
mov si,word ptr [MinorAxisSquaredThreshold+bp]
mov bp,word ptr [MinorAxisSquaredThreshold+bp+2]

Genloop:
sub
sbb

cx.l
dx,O

sub ex.ax
sbb dx,O
sub ex.ax
sbb dx,O

;BP:SI=MinorAxisSquaredThreshold

;subtract MajorAxis + MajorAxis + 1 from
; RadiusSqMinusMajorAxisSq

290 ll1 Chapter 18

cmp
jb
ja
cmp
ja

IsMinorMove:
dee
sub
sbb
sub
sbb
mov
inc
inc
cmp
jbe
jmp

NoMinorMove:
mov
inc
inc
cmp
jbe

Done:
pop
pop
pop
ret

GenerateOctant

dx,bp
IsMinorMove
NoMinorMove
cx.si
NoMinorMove

bx
si,bx
bp,O
si,bx
bp,O
byte ptr [di]. 1
di
ax
ax.bx
Genloop
short Done

byte ptr [di]. 0
di
ax
ax.bx
Genloop

di
si
bp

endp

;if RadiusSqMinusMajorAxisSq <=
MinorAxisSquaredThreshold, move along
minor as well as major, otherwise move
only along major

;move along minor as well as major
;decrement MinorAxis
;subtract MinorAxis + MinorAxis from
; MinorAxisSquaredThreshold

;enter 1 (move both axes) in Pixlist
;advance Pixlist pointer
;increment MajorAxis
;done if MajorAxis > MinorAxis. else
; continue generating Pixlist entries

;enter O (move only major) in Pixlist
;advance Pixlist pointer
;increment MajorAxis
;done if MajorAxis > MinorAxis, else
; continue generating Pixlist entries

;restore C register variables

;**
Draws the arc for an octant in which Y is the major axis. (X.Y) is the
starting point of the arc. HorizontalMoveDirection selects whether the
arc advances to the left or right horizontally (O=left, l=right).
RowOffset contains the offset in bytes from one scan line to the next,
controlling whether the arc is drawn up or down. Drawlength is the
vertical length in pixels of the arc, and Drawlist is a list
containing O for each point if the next point is vertically aligned,
and 1 if the next point is 1 pixel diagonally to the left or right.

The Graphics Controller Index register must already point to the Bit
Mask register.

C near-callable as:
void DrawVOctant(int X, int Y, int Drawlength, int RowOffset,

int HorizontalMoveDirection, unsigned char *Drawlist);

DrawParms
dw
dw

X dw
Y dw
Drawlength dw
RowOffset dw

struc
?
?
?
?
?
?

HorizontalMoveDirection
Drawlist dw ?
DrawParms ends

;pushed BP
;return address
;initial coordinates

;vertical length
;distance from one scan line to the next
dw? ;l to move right, Oto move left
;pointer to list containing 1 to draw
; diagonally, Oto draw vertically for

; each point
SCREEN_SEGMENT equ OaOOOh ;display memory segment in mode 12h

;distance from one scan line to next
;GC Index register address

SCREEN_WIDTH IN BYTES equ BO
GC_INDEX equ 3ceh

public _DrawVOctant

_DrawVOctant
push
mov
push
push

;Point ES:DI to
mov
mov
mov
mul
mov
mov
shr
shr
shr
add
and

if ISVGA
mov
shr
cld

else
mov
shr
mov

endif
mov
sub
mov
jcxz
cmp
mov
jz

VDrawRightLoop:
if ISVGA

and

lodsb
and
jz
ror

else
out
and

cmp
jz
ror

endif

Circling in for the Kill [g} 291

near proc
bp
bp,sp
si
di

;preserve caller's stack frame
;point to our stack frame
;preserve C register variables

the byte the initial
ax,SCREEN_SEGMENT

pixel is in.

es ,ax
ax,SCREEN_WIDTH_IN_BYTES
[bp+Y] ;Y*SCREEN_WIDTH_IN_BYTES
di , [bp+XJ ; X
cx,di ;set x aside in ex
di , 1
di, 1
di, 1
di. ax
cl. 07h

ah,80h
ah, cl

;X/8
;screen offset= Y*SCREEN_WIDTH_IN_BYTES+X/8
;X modulo B
;--VGA--
;keep VGA bit mask in AH
;initial bit mask= 80h shr (X modulo 8);
;for LODSB, used below
;--EGA--

al ,80h ;keep EGA bit mask in AL
al ,cl ;initial bit mask= 80h shr (X modulo 8):
dx,GC_INDEX+l ;point DX to GC Data reg/bit mask

·--------.
si ,[bp+DrawList] ;SI points to list to draw from
bx.bx ;so we have the constant O in a reg
cx.[bp+DrawLength] ;CX=// of pixels to draw
VDrawDone :skip this if no pixels to draw
[bp+HorizontalMoveDirection],O :draw right or left
bp,[bp+RowOffset] :BP=offset to next row
VGoLeft :draw from right to left

;draw from left to right
;--VGA--

es:[di],ah ;AH becomes bit mask in write mode 3,
: set/reset provides color
;get next draw control byte

al ,al :move right?
VAdvanceOneLineRight :no move right
ah,1 ;move right

;--EGA--
dx,al
es:[di].al

;set the desired bit mask
;data doesn't matter (set/reset provides
; color); just force read then write

[si],bl :check draw control byte; move right?
VAdvanceOneLineRight ;no move right
al. 1 ;move right

adc di,bx ;move one byte to the right if mask wrapped
VAdvanceOnelineRight:
ife ISVGA

endif

VGoLeft:

inc

add
1 oop
jmp

VD raw Left Loop:
if ISVGA

si

di ,bp
VDrawRightLoop
short VDrawDone

and es:[di],ah
1 odsb

;--EGA--
;advance draw control list pointer

:move to the next scan line up or down
;do next pixel, if any
:done
;draw from right to left

;--VGA--
;AH becomes bit mask in write mode 3
;get next draw control byte

292 fg} Chapter 18

and al ,al :move left?
jz VAdvanceOnelineleft :no move left
rol ah,1 :move left

else :--EGA--
out dx,al :set the desired bit mask
and es:[di].al :data doesn't matter: force read/write
cmp [si],bl :check draw control byte: move left?
jz VAdvanceOnelineleft :no move left
rol al , 1 : move left

end if
sbb di,bx :move one byte to the left if mask wrapped

VAdvanceOnelineleft:
ife ISVGA :--EGA--

inc
end if

add
loop

VDrawDone:
pop
pop
pop
ret

DrawVOctant

si

di,bp
VDrawLeftLoop

di
Si
bp

endp

:advance draw control list pointer

:move to the next scan line up or down
:do next pixel, if any

:restore C register variables

:**
Draws the arc for an octant in which Xis the major axis. (X.Y) is the
starting point of the arc. HorizontalMoveDirection selects whether the
arc advances to the left or right horizontally (O=left. l=right).
RowOffset contains the offset in bytes from one scan line to the next,
controlling whether the arc is drawn up or down. Drawlength is the
horizontal length in pixels of the arc, and Drawlist is a list
containing O for each point if the next point is horizontally aligned,
and 1 if the next point is 1 pixel above or below diagonally.

Graphics Controller Index register must already point to the Bit Mask
register.

C near-callable as:
void DrawHOctant(int X, int Y, int Drawlength, int RowOffset,

int HorizontalMoveDirection, unsigned char *Drawlist)

Uses same parameter structure as DrawVOctant().

public
_DrawHOctant

push
mov
push
push

:Point ES:DI to
mov
mov
mov
mul
mov
mov
shr
shr
shr
add
and
mov
shr

_DrawHOctant
proc
bp
bp,sp

near
;preserve caller's stack frame
;point to our stack frame

si :preserve C register variables
di
the byte the initial pixel is in.
ax,SCREEN_SEGMENT
es.ax
ax,SCREEN_WIDTH_IN_BYTES
[bp+Y] :Y*SCREEN_WIDTH_IN_BYTES
di,[bp+X] :X
cx,di :set X aside in ex
di, 1
di, 1
di ,1 :X/8
di.ax
cl ,07h
bh,80h
bh,cl

:screen offset= Y*SCREEN_WIDTH_IN_BYTES+X/8
:X modulo 8

:initial bit mask= 80h shr (X modulo 8):

if ISVGA

else

end if

cld

mov

mov
sub
mov
jcxz

if ISVGA
sub

else

endif
sub

cmp
mov
jz

HDrawRightloop:
if ISVGA

else

or
l odsb
and

or
cmp

endif

if ISVGA

else

endif

jz

and
sub

out
and
sub

Circling in for the Kill gJ 293

;··VGA··
;for LODSB, used below
;··EGA··

dx,GC_INDEX+l ;point DX to GC Data reg/bit mask

si,[bp+Drawlist] ;SI points to list to draw from
bl ,bl ;so we have the constant O in a reg
cx,[bp+Drawlength] ;CX=# of pixels to draw
HDrawDone ;skip this if no pixels to draw

;··VGA··
ah.ah

al , al

;clear bit mask accumulator
;··EGA··
;clear bit mask accumulator

[bp+HorizontalMoveDirection],O ;draw right or left
bp,[bp+RowOffset] ;BP=offset to next row
HGoleft

ah,bh

al , al

al,bh
[si].bl

;draw from right to left
;draw from left to right
;··VGA··
;put this pixel in bit mask accumulator
;get next draw control byte
;move up/down?
;··EGA··
;put this pixel in bit mask accumulator
;check draw control byte; move up/down?

HAdvanceOnelineRight ;no move up/down
;move up/down; first draw accumulated pixels

es:[di].ah
ah.ah

dx,al
es:[di].al
al , al

;··VGA··
;AH becomes bit mask in write mode 3
;clear bit mask accumulator
;··EGA-·
;set the desired bit mask
;data doesn't matter: force read/write
:clear bit mask accumulator

add di,bp ;move to the next scan line up or down
HAdvanceOnelineRight:
i fe ISVGA

inc Si
endif

; ··EGA··
;advance draw control list pointer

ror bh,1 ;move to right; shift mask

if JSVGA

jnc HDrawloopRightBottom ;didn't wrap to the next byte
:move to next byte: 1st draw accumulated pixels

;··VGA·-

else

endif

and
sub

out
and
sub

es:[di].ah
ah, ah

dx,al
es:[di].al
al , al

inc di
HDrawloopRightBottom:

loop HDrawRightloop
jmp short HDrawDone

HGoleft:
HDrawleftloop:
if JSVGA

or ah,bh
lodsb
and al ,al

;AH becomes bit mask in write mode 3
;clear bit mask accumulator

;set the desired bit mask
;data doesn't matter; force read/write
;clear bit mask accumulator

;move 1 byte to the right

;draw next pixel, if any
;done
;draw from right to left

:··VGA·-
;put this pixel in bit mask accumulator
;get next draw control byte
:move up/down?

294 Ill Chapter 18

else
or
cmp

endif
jz

if ISVGA
and
sub

else
out
and
sub

end if

al ,bh
[si] ,bl

;--EGA--
;put this pixel in bit mask accumulator
;check draw control byte; move up/down?

HAdvanceOnelineleft ;no move up/down
;move up/down; first draw accumulated pixels

;--VGA--
es:[di],ah ;AH becomes bit mask in write mode 3
ah.ah ;clear bit mask accumulator

;--EGA--
dx,al
es:[di].al
al , al

;set the desired bit mask
;data doesn't matter; force read/write
;clear bit mask accumulator

add di,bp ;move to the next scan line up or down
HAdvanceOnelineleft:
ife ISVGA

inc Si
endif

;--EGA--
;advance draw control list pointer

rol bh,l :move to left; shift mask
jnc

if ISVGA
and
sub

else
out
and
sub

endif

HDrawloopleftBottom :didn't wrap to next byte
:move to next byte; 1st draw accumulated pixels

;--VGA--
es:[di].ah
ah.ah

dx,al
es:[di],al
al , a 1

;AH becomes bit mask in write mode 3
;clear bit mask accumulator
;--EGA--
;set the desired bit mask
;data doesn't matter: force read/write
;clear bit mask accumulator

dee di :move 1 byte to the left
HDrawloopleftBottom:

loop HDrawleftloop
HDrawDone:

if ISVGA
and es: [di].ah

else
out dx,al
and es:[di].al

end if
pop di
pop Si
pop bp
ret

_DrawHOctant endp
end

;draw next pixel, if any

;draw any remaining accumulated pixels
;--VGA--
;AH becomes bit mask in write mode 3
;--EGA--
;set the desired bit mask
;data doesn't matter; force read/write

;restore C register variables

Why didn't I use pure assembly language? Primarily because it's rarely worth using as
sembly outside of heavily-used loops. The overall performance improvement resulting from
assembly language used anywhere else is generally imperceptible and hard to justify; assem
bly is difficult to write and harder to read and change. Listings 18.3 and 18.4 strike a good
balance between performance, ease of coding and comprehension, and maintainability.

Listings 18.3 and 18.4 generally correspond directly to Listing 18.1, although that
may be obscured by the considerable optimization performed in Listing 18.4. Two
aspects of Listings 18.3 and 18.4 do not correspond to Listing 18.1, however, and bear
further discussion.

Circling in for the Kill ~ 295

When the major axis is horizontal, multiple horizontally adjacent pixels are often
drawn. Whenever multiple adjacent pixels are controlled by the same display memory
byte, it is possible to draw all the pixels that reside in that byte with a single display
memory read/write operation. This is highly desirable because display memory is ex
tremely slow relative to normal system memory, especially on 386 and later computers.
Consequently, Listing 18.4 accumulates pixels that reside in the same byte when draw
ing horizontal-major-axis arcs, and accesses display memory only when all pixels that
could possibly belong in a given byte have been processed. (See Chapter 14 for the
application of this technique to straight-line drawing.) Pixel accumulation is a good
example of matching an algorithm to the hardware; the basic operation of the algo
rithm is unchanged, but the code is fine-tuned so that the implementation suffers less
from the poor performance of display memory.

Supporting VGA Write Mode 3
Listings 18.3 and 18.4 contain another example of matching the circle-drawing algorithm
to the hardware: Optional support for write mode 3, which only the VGA supports.
When the ISVGA symbols in both Listing 18.3 and Listing 18.4 are set to 1 (make sure
both symbols are the same at all times), write mode 3 is used to draw pixels, improving
overall performance by as much as 25 percent. ISVGA makes Listing 18.4 in particular
a little hard to follow-but I hope that you'll agree that the performance improvement
and the exposure to a useful VGA-specific optimization are worth the trouble.

The virtue of write mode 3 is that it ANDs the Bit Mask register with the byte
written by the CPU to form the working bit mask; that in turn means that there's no need
to do an OUT when write mode 3 is used, thereby eliminating both an instruction and
the many wait states that occur during 1/0 to most VGAs. What's more, by eliminat
ing the need to perform OUTs we free up AL and DX for other purposes, in this case
making it possible to use LODSB. (Note, though, that LODSB is not as fast as

MOV AL,[SI]
INC SI

on 486 and Pentium computers.) See Chapter 4 for more information about write mode 3.
In order for write mode 3 to work properly, the desired bit mask must be written to

memory. (The set/reset circuitry provides the pixel color.) First, however, display memory
must be read to latch the surrounding pixels, so that the bit mask can work its magic.
An efficient way to both read from and write to display memory is to do so in a single
instruction with AND, OR, or XCHG. (On 486s and Pentiums, using one MOV to
read display memory followed by another MOV to write to display memory is a little
faster than the single-instruction solutions, but it makes for more instruction bytes
and destroys the contents of a register.) However, XCHG wipes out the register con
taining the working copy of the bit mask, and AND with any value other than 0FFH
or OR with any value other than 0 normally alters the value written to memory so that

296 ill Chapter 18

it no longer sets the desired bit mask. (We just want to write the desired bit mask
straight from the register to display memory.) This is solved by selecting read mode 1
(color compare mode) and setting the Color Don't Care register to 0, with the result
that 0FFH is always read from display memory. Once that is done, we can AND the
desired bit mask with display memory without altering either the value written to
memory or the register containing the working copy of the bit mask. (See Chapter 6
for a discussion of this application of read mode 1.)

By the way, Listings 18.3 and 18.4 run just as well on VGAs as on EGAs if both
ISVGA symbols are set to zero-they just run more slowly than if compiled/assembled
specifically for the VGA.

There's no reason that the C code in Listing 18.1 couldn't be made faster by using
both the write mode 3/read mode 1 and pixel accumulation techniques we've applied
in the assembler code. However, such approaches, which save an approximately fixed
number of cycles, have a greater percentage impact on overall performance after all
other aspects of the code have been streamlined, and so are most worth using in high
performance assembler code.

When graphics code is truly streamlined across the board, as in Listing 18.4, the
characteristics of the display adapter can affect performance significantly. For example,
the 286 timings in Table 1 were all performed in a 10-MHz AT with both a Video
Seven VRAM VGA and a monochrome adapter installed. It's a little-known fact that
when a monochrome adapter is present, all VGAs must revert to being 8-bit memory
devices. When the monochrome adapter was removed from the test-unit AT, allowing
the VRAM VGA to become a 16-bit device, the time for the non-VGA specific version
of Listings 18.3 and 18.4 dropped from 14 seconds to 12.5 seconds-an improvement
of more than 10%. This means that Listing 18.4 has reached the point where it is
starting to bump up against the hardware's inherent limits-a sure sign of
high-performance code, and an indication that perceptible performance variations from
one make of VGA to the next are likely to occur.

Circles? Done
In the last two chapters, we've seen performance improvements of as much as 36 times
from our initial circle-drawing implementation. Viewing this in terms of the three
optimization steps I described at the outset, that very roughly breaks down as 5 to 10
times improvement from algorithm selection; 1.5 to 2.5 times improvement from
matching the algorithm to the hardware; and 1.5 to 2 times improvement from con
version to assembly.

The conclusions are two: 1) algorithm selection is indeed important, but processor
and hardware-specific optimizations are important too, and 2) circles, not normally
considered to be one of the speedier graphics primitives, can be drawn surprisingly
rapidly, in the ballpark with if not quite so fast as lines.

Circles? Done. Now it's on to ellipses.

Circles
that
Squish

.. u
I 7 = m = u

An Efficient Algorithm for !Drawing Ellipses
First things first. The best circle-drawing routine I know of gets faster seemingly by the
day, so much so that I'm beginning to think that the ultimate circle-drawing routine
will consist of nothing more than a single NOP once we figure out how to trim away
all the superfluous instructions. Consider this:

Hal Hardenbergh's circle-drawing approach (presented in this space over the last
two chapters) drew circles faster than I would have thought was possible. Even so, in
the previous chapter I went to great pains to point out that I did not think that my
implementation of Hal's approach was the fastest possible way to draw circles, but
rather just one good way among many. Good thing, too, because not long after I wrote
those words, I chanced to talk once again with Hal. I mentioned that there was really
no need for even the few multiplications used in his algorithm; the squared terms
cancelled out right at the beginning, allowing circles to be drawn without a single
multiply or divide. Hal went home, thought about that for a while, and realized that,
given the elimination of the squared terms, we didn't need 32-bit integers any more;
plain old 16-bit integers would do jiust fine. Whereupon he devised yet another
circle-drawing algorithm, this one using 16-bit integers and requiring less than 10
instructions per point to generate a circle arc.

To put that in more readily-understood terms, I suspect that Hal's new algorithm
can be used to draw circles faster than the Bresenham's line-drawing algorithm I pre
sented back in Chapter 14 draws lines!

I'm not going to present Hal's new circle-drawing algorithm here, for a couple of
reasons: I've probably overdosed you on circles by this point, and Hal may want to
publish his new findings himself. If you know what you're doing, it should be easy
enough to apply the above information to my discussions in the last two chapters to

derive the new approach.

298 ~ Chapter 19

At any rate, the moral is clear. If you think your code is optimized to the limit,
maybe it is-but don't bet your house on it.

And with that in mind, let's get on with learning how to draw ellipses pretty doggone
fast.

A Quick Primer on Ellipses
An ellipse is an oval, which is to say a squished (or, possibly, non-squished) circle.
Ellipses are centered around two foci; the sum of the distances from the two foci to any
point on a given ellipse is a constant. A circle is actually a special case of ellipse for
which every point is equidistant from the center, where both foci reside atop one an
other.

A circle has a single radius that is the distance from the center to every point on the
circle. An ellipse has two basic radii, one that is the distance from the center of the
ellipse to the edge along the X axis, and one that is the distance along the Y axis, as
shown in Figure 19 .1. These two distances, which we'll call the X radius (of length A)
and the Y radius (oflength B), along with the center of the ellipse (the point at which
the X and Y radii meet) are the fundamental parameters with which we'll work; we
won't concern ourselves with the foci or distances from the foci from now on. You
might think of ellipses as being defined by the smallest rectangle that contains them;
however, for our purposes there's an additional limitation that A and B must be inte
gers, so the encompassing rectangle must have even dimensions to allow the center to
fall squarely on a pixel. (It's quite possible to support ellipses with fractionally-located
centers, but it's generally not necessary and complicates matters, so we'll avoid it.)

X Radius
length A) Cen

Figure 19.1 The Geometry of an Ellipse

Circles that Squish Jg} 299

Circles are certainly faster and easier to calculate than ellipses; whereas the equation
for a circle is

X2 + Y2 = R2

the equation for an ellipse is:

X2 /A 2 + Y2/B 2 = 1

(Make A and B the same and you get a circle.) By the way, the equation above is for
non-tilted ellipses-that is, ellipses with horizontal and vertical axes, where the foci
share either a common X coordinate or a common Y coordinate-and that's all we'll
work with in this book. Tilted ellipses are both flexible and useful, but they're also
slower, more complicated, and generally quite a different kettle of fish from non-tilted
ellipses.

Why Ellipses Matter
The question, as always, is how to get a PC to draw the object implied by the above
equation for a non-tilted ellipse as quickly as possible, and that's what we'll spend this
chapter and the next figuring out. It's well worth knowing how to draw ellipses quickly,
for they're extremely useful. Of course, it's often necessary to draw ovals, and ellipses
are handy for that alone, but there's more to it than that. You see, true circles, of the
sort we learned to draw in the previous two chapters, are useless on displays with non
square pixels (that is, displays with aspect ratios other than 1: 1.) On such displays, true
circles, which space pixels evenly in both directions, appear as ellipses. Examples of
such displays are Hercules graphics, all CGA and EGA graphics modes, and all stan
dard VGA graphics modes except 640x480. In other words, you can't use a true circle
drawing algorithm to draw circles in any standard IBM mode except one.

You can use ellipses to draw circles in all those modes, though; just adjust the ratio
of the X and Y radii of each ellipse to balance the aspect ratio of the display, and bingo;
you have a circle. For example, the aspect ratio of the mode 10 H display is about 4:3 (4
pixels in the X direction covers the same physical distance on the screen as 3 pixels in
the Y direction), so if you draw an ellipse with an eccentricity (A/B ratio) of 4/3, it will
appear as a circle in mode 1 OH. We'll see an example of this shortly. The important
point is that the capability to draw ellipses is not only useful for drawing ovals but
essential for drawing circles in many PC graphics modes.

Learning to Draw Ellipses Fast: Divide and Conquer
Now that we've established that ellipses are good stuff, how will we draw them fast?
The path we'll take will be familiar to those of you who have followed the past two

300 ~ Chapter 19

chapters on circles. First, we'll learn how to draw ellipses using the basic ellipse equa
tion and floating-point arithmetic. Next, we'll derive a far more efficient algorithm,
one which uses no non-integer arithmetic or square roots and requires no multiplies or
divides in the main loops, and implement it in C. That will take us to the end of this
chapter. In the next chapter, we'll tune the C implementation to the quirks of the EGA
and VGA, and finally we'll convert the critical code to assembly language.

So, let's start learning how to draw ellipses. We'll start by drawing them slowly, but
you can be sure that that will change.

Drawing an Ellipse the Easy-and Slow-Way
The straightforward way to draw an ellipse is implemented in Listing 19 .1. This listing
takes advantage of the four-way symmetry of non-tilted ellipses, shown in Figure 19 .2,
by generating one arc in which Xis the major axis (that is, the X coordinate advances
faster) and drawing all four symmetries at once via four calls to a dot-plot function,
then generating one arc in which Y is the major axis and drawing all four symmetries
the same way.

Arc generation is accomplished by starting at the point where the major axis is 0
relative to the center of the ellipse and the minor axis is the maximum distance from
the center, then stepping the major axis by 1 pixel each time and calculating the corre
sponding minor axis point via floating-point arithmetic according to the ellipse equa
tion I stated earlier. This continues until the arc reaches the point at which the major
axis changes, which is the point at which the slope of the arc reaches 45 degrees.

X-major-axis symmetries
I

Figure 19.2 The Symmetry of Non-Tilted Ellipses

Circles that Squish Ill 301

So, for example, when drawing an arc for which Xis the major axis, the initial point
drawn would be (O,B). The next point drawn would be (1,y), where y is calculated as
follows:

x2 /A2 + y2 /B 2 = 1
y2 /B 2 = 1 - x'I A2

y' = B' - B2*x2/A2

Therefore,

y = sqrt(B2 - B2*x2/A 2)

rounded to the nearest integer. The same calculation is repeated for each and every xas
xis incremented along the arc, with the calculated coordinates reflected around the
ellipse. (Allx and y coordinates discussed are relative to the center of the ellipse.) That's
easy enough, eh? The only trick is knowing when to stop, and that happens when the
y component of

x2/ A2 + y2 /B 2 = 1

is no longer the larger component, as detected by

y 2/B 2 <= x2/A2

As you'd expect, the same thing is done for the arc where y advances faster, but with x

and y, A and B swapped in the calculations.

LISTING 19.1 L 19-1.C
I*
* Draws an ellipse of the specified X and Y axis radii and color,
* using floating-point calculations.
* Compiles with either Borland or Microsoft.
* VGA or EGA.
*I

#include <math.h>
/Ii ncl ude <dos. h>

/* Borland accepts outp for outportb, but not outpw for outport */
#ifdef _TURBOC_
#define outpw outport
//end if

//define SCREEN_WIDTH IN BYTES 80 /*#of bytes across one scan
line in modes 10h and 12h */

//define SCREEN_SEGMENT OxAOOO I* mode 10h/12h display memory seg */
//define GC_INDEX Ox3CE /* Graphics Controller Index port*/
//define SET_RESET_INDEX 0 /* Set/Reset reg index in GC */
//define SET_RESET_ENABLE_ INDEX 1 I* Set/Reset Enable reg index in GC */
#define BIT_MASK_INDEX B I* Bit Mask reg index in GC */

302 gJ Chapter 19

/* Draws a pixel at screen coordinate (X,Y) */
void DrawDot(int X, int Y) {

unsigned char far *ScreenPtr:

/* Point to the byte the pixel is in*/
#ifdef _TURBOC_

ScreenPtr = MK_FP(SCREEN_SEGMENT, (Y*SCREEN_WIDTH_IN_BYTES) + (X/B)):
1fe 1 se

FP_SEG(ScreenPtr) = SCREEN_SEGMENT:
FP_OFF(ScreenPtr) = (Y * SCREEN_WIDTH_IN_BYTES) + (X / 8):

1/endif

/* Set the bit mask within the byte for the pixel */
outp(GC_INDEX + 1, Ox80 >> (X & Ox07)):

/* Draw the pixel. ORed to force read/write to load latches.
Data written doesn't matter. because set/reset is enabled
for all planes. Note: don't OR with 0: MSC optimizes that
statement to no operation. */

*ScreenPtr I= OxFE:

/* Draws an ellipse of X axis radius A and Y axis radius Bin
* color Color centered at screen coordinate (X,Y). Radii must
* both be non-zero. */

void DrawEllipse(int X, int Y, int A, int B, int Color) {
int WorkingX, WorkingY:
double ASquared = (double) A* A:
double BSquared = (double) B * B:
double Temp:

/* Set drawing color via set/reset*/
outpw(GC_INDEX, (OxOF << 8) I SET_RESET_ENABLE_INDEX):

/* enable set/reset for all planes*/
outpw(GC_INDEX, (Color<< 8) I SET_RESET_INDEX):

/* set set/reset (drawing) color*/
outp(GC_INDEX, BIT_MASK_INDEX): /* leave the GC Index reg pointing

to the Bit Mask reg*/

/* Draw the four symmetric arcs for which X advances faster (that is,
for which X is the major axis) */

/* Draw the initial top & bottom points*/
DrawDot(X, Y+B):
DrawDot(X, Y-B):

/* Draw the four arcs*/
for (WorkingX = O: :) {

/* Advance one pixel along the X axis*/
WorkingX++:

/* Calculate the corresponding point along the Y axis. Guard
against floating-point roundoff making the intermediate term
less than O */

Temp= BSquared - (BSquared *
(double)WorkingX * (double)WorkingX / ASquared):

if (Temp>= 0) {
WorkingY = sqrt(Temp) + 0.5:

else {
WorkingY = O:

Circles that Squish ~ 303

/* Stop if Xis no longer the major axis (the arc has passed the
45-degree point)*/

if (((double)WorkingY/BSquared) <= ((double)WorkingX/ASquared))
break;

/* Draw the 4 symmetries of the current point*/
DrawDot(X+WorkingX, Y-WorkingY);
DrawDot(X-WorkingX, Y-WorkingY);
DrawDot(X+WorkingX, Y+WorkingY);
DrawDot(X-WorkingX, Y+WorkingY);

/* Draw the four symmetric arcs for which Y advances faster (that is.
for which Y is the major axis) */

/* Draw the initial left & right points*/
DrawDot(X+A, Y);
DrawDot(X-A, Y);

/* Draw the four arcs*/
for (WorkingY - O; ;) {

/* Advance one pixel along the Y axis*/
WorkingY++;

/* Calculate the corresponding point along the X axis. Guard
against floating-point roundoff making the intermediate term
less than O */

Temp= ASquared - (ASquared *
(double)WorkingY * (double)WorkingY / BSquared);

i f (Temp >= O) {
WorkingX = sqrt(Temp) + 0.5;

else {
WorkingX = O: /* floating-point roundoff*/

/* Stop if Y is no longer the major axis (the arc has passed the
45-degree point)*/

if (((double)WorkingX/ASquared) < ((double)WorkingY/BSquared))
break;

/* Draw the 4 symmetries of the current point*/
DrawDot(X+WorkingX, Y-WorkingY);
DrawDot(X-WorkingX, Y-WorkingY):
DrawDot(X+WorkingX, Y+WorkingY);
DrawDot(X-WorkingX, Y+WorkingY);

/* Reset the Bit Mask register to normal */
outp(GC_INDEX + 1, OxFF):

/*Turnoff set/reset enable*/
outpw(GC_INDEX, (OxOO << 8) I SET_RESET_ENABLE_INDEX);

LISTING 19.2 L19-2.C
/*
* Draws a series of concentric ellipses that should appear to be
* circles in the EGA's hi-res mode, mode !Oh. (They may not appear
* to be circles on monitors that don't display mode 10h with the
* same aspect ratio as the Enhanced Color Display.)

304 [gl Chapter 19

* For EGA or VGA.
* Compile and link (using Borland C++) with 119-X.c (where X is 1 or 4) with:
* bee -ms -el19-2X.EXE L19-2.C L19-X.C
*
*/

#include <dos.h>

main() {
int BaseRadius, Temp, Color:
union REGS Regs:

/* Select EGA's hi-res 640x350 graphics mode, mode 10h */
Regs.x.ax = 0x00l0:
int86(0x10, &Regs, &Regs):

/* Draw concentric ellipses*/
for (BaseRadius = 2, Color= 7: BaseRadius < 58: BaseRadius++)

DrawEllipse(640/2, 350/2, BaseRadius*4, BaseRadius*3, Color):
Color= (Color+ 1) & 0x0F: /* cycle through 16 colors*/

/* Wait for a key, restore text mode, and done*/
scanf("%c", &Temp):
Regs.x.ax = 0x0003:
int86(0x10, &Regs, &Regs):

LISTING 19.3 L 19-3.C
/*
* Draws nested ellipses of varying eccentricities in the VGA's
* hi-res mode, mode 12h.
* For VGA only.
* Compile and link (using
* bee -ms -el19-3X.EXE

Borland C++) with 119-X.c (where X is 1 or 4) with:
L19-3.C L19-X.C

*
*I

/Ii ncl ude <dos. h>

main() {
int XRadius, YRadius, Temp, Color:
union REGS Regs:

/* Select VGA's hi-res 640x480 graphics mode, mode 12h */
Regs.x.ax = 0x0012:
int86(0x10, &Regs, &Regs):

/* Draw nested ellipses*/
for (XRadius = 100, YRadius = 2, Color= 7: YRadius < 240:

XRadius++, YRadius += 2) {
DrawEllipse(640/2, 480/2, XRadius, YRadius, Color):
Color= (Color+ 1) & 0x0F: /* cycle through 16 colors*/

/* Wait for a key, restore text mode, and done*/
scanf("%c", &Temp):
Regs.x.ax = 0x0003:
int86(0x10, &Regs, &Regs):

Circles that Squish Jg} 305

Link Listing 19 .1 to Listing 19 .2 to see ellipses drawn to appear as circles in mode
IOH. Some multiscanning monitors don't provide a 4:3 aspect ratio in mode IOH, so
the ellipses may not look all that circular. Trust me, they do have an eccentricity of
1.33. Link Listing 19.1 to Listing 19.3 to see ellipses drawn with a variety of eccen
tricities. When you run these listings, you will see that ellipses drawn by stepping the
major axis tend to look rather jagged; that's the cost of performance, and the appear
ance of these ellipses is nonetheless perfectly acceptable. The alternative is antialiased
drawing, which can produce stunning results in 256-color and high-color modes, but
would be orders of magnitude slower than the step-based ellipse drawing we'll see
shortly.

AB you can see, drawing an ellipse is no great trick. However, drawing an ellipse with
reasonable performance requires a little more thought.

Ellipse Drawing: An Incremental Approach
Remember the incremental, integer-only algorithm we used to speed up circle drawing
two chapters back? I hope so, because fast ellipse drawing, as implemented in Listing
19.4, is strikingly similar, if slightly more complicated, and I'm not going to discuss
the process in as much detail this time. Basically, instead of calculating the minor axis
coordinate from scratch for each pixel, the incremental approach calculates it as a delta
from the last pixel.

LISTING 19.4 L19-4.C
I*
* Draws an ellipse of the specified X and Y axis radii and color,
* using a fast integer-only & square-root-free approach.
* Compiles with either Borland or Microsoft.
* VGA or EGA.
*I

#include <math.h>
#include <dos.h>

/* Borland accepts outp for outportb, but not outpw for outport */
#ifdef _TURBOC_
#define outpw outport
#endif

//define SCREEN_WIDTH IN BYTES 80 I*# of bytes across one scan
line in modes 10h and 12h */

/ldefi ne SCREEN_SEGMENT OxAOOO /* mode 10h/12h display memory seg */
/ldefi ne GC_INDEX Ox3CE /* Graphics Controller Index port*/
//define SET_RESET_INDEX 0 /* Set/Reset reg index in GC */
/ldefi ne SET_RESET_ENABLE_ INDEX 1 /* Set/Reset Enable reg index in
/ldefi ne BIT _MASK_! NDEX 8 /* Bit Mask reg index in GC */

/* Draws a pixel at screen coordinate (X,Y) */
void DrawDot(int X, int Yl {

unsigned char far *ScreenPtr;

GC *I

306 fl} Chapter 19

/* Point to the byte the pixel is in*/
#ifdef _TURBOC_

ScreenPtr = MK_FP(SCREEN_SEGMENT, (Y*SCREEN_WIDTH_IN_BYTES) + (X/8)):
fie l se

FP_SEG(ScreenPtr) = SCREEN_SEGMENT:
FP_OFF(ScreenPtr) = (Y * SCREEN_WIDTH_IN_BYTES) + (X / 8):

fiend if

/* Set the bit mask within the byte for the pixel */
outp(GC_INDEX + 1, Ox80 >> (X & Ox07)):

/* Draw the pixel. ORed to force read/write to load latches.
Data written doesn't matter, because set/reset is enabled
for all planes. Note: don't OR with 0: MSC optimizes that
statement to no operation. */

*ScreenPtr I= OxFE:

/* Draws an ellipse of X axis radius A and Y axis radius B in
* color Color centered at screen coordinate (X,Y). Radii must
* both be non-zero. */

void DrawEllipse(int X, int Y, int A, int B, int Color) {
int WorkingX, WorkingY:
long Threshold:
long ASquared = (long) A* A:
long BSquared = (long) B * B:
long XAdjust, YAdjust:

/* Set drawing color via set/reset*/
outpw(GC_INDEX, (OxOF << 8) I SET_RESET_ENABLE_INDEX):

/* enable set/reset for all planes*/
outpw(GC_INDEX, (Color<< 8) I SET_RESET_INDEX):

/* set set/reset (drawing) color*/
outp(GC_INDEX, BIT_MASK_INDEX): /* leave the GC Index reg pointing

to the Bit Mask reg*/

/* Draw the four symmetric arcs for which X advances faster (that is,
for which X is the major axis) */

/* Draw the initial top & bottom points*/
DrawDot(X, Y+B):
DrawDot(X, Y-B):

/* Draw the four arcs: set draw parameters for initial point (0,B) */
WorkingX = 0:
WorkingY = B:
XAdjust = 0:
YAdjust = ASquared * 2 * B:
Threshold= ASquared / 4 - ASquared * B:

for (: :) {
/* Advance the threshold to the value for the next X point

to be drawn*/
Threshold+= XAdjust + BSquared:

/* If the threshold has passed 0, then the Y coordinate has
advanced more than halfway to the next pixel and it's time
to advance the Y coordinate by 1 and set the next threhold
accordingly*/

if (Threshold>= 0) {
YAdjust -= ASquared * 2:
Threshold -= YAdjust:

WorkingY--;

/* Advance the X coordinate by 1 */
XAdjust += BSquared * 2;
WorkingX++;

Circles that Squish [lJ 307

/* Stop if X is no longer the major axis (the arc has passed the
45-degree point) */

if (XAdjust >= YAdjust l
break;

/* Draw the 4 symmetries of the current point*/
DrawDot(X+WorkingX, Y-WorkingY);
DrawDot(X-WorkingX, Y-WorkingY):
Draw0ot(X+WorkingX, Y+WorkingY):
0rawDot(X-WorkingX, Y+WorkingY):

/* Draw the four symmetric arcs for which Y advances faster (that is,
for which Y is the major axis) */

/* Draw the initial left & right points*/
DrawDot(X+A, Y):
DrawDot(X-A, Y):

/* Draw the four arcs; set draw parameters for initial point (A,0} */
WorkingX = A:
WorkingY - 0:
XAdjust = BSquared * 2 * A:
YAdjust = 0;
Threshold= BSquared / 4 - BSquared * A:

for (::) {
/* Advance the threshold to the value for the next Y point

to be drawn*/
Threshold - YAdjust + ASquared:

/* If the threshold has passed 0, then the X coordinate has
advanced more than halfway to the next pixel and it's time
to advance the X coordinate by 1 and set the next threhold
accordingly*/

if C Threshold>= 0) {
XAdjust -= BSquared * 2:
Threshold= Threshold - XAdjust:
WorkingX--:

/* Advance the Y coordinate by 1 */
YAdjust += ASquared * 2:
WorkingY++:

/* Stop if Y is no longer the major axis (the arc has passed the
45-degree point} */

if (YAdjust > XAdjust l
break:

/* Draw the 4 symmetries of the current point*/
DrawDot(X+WorkingX, Y-WorkingY};
DrawDot(X-WorkingX, Y-WorkingY):
DrawDot(X+WorkingX, Y+WorkingY):
DrawDot(X-WorkingX, Y+WorkingY};

308 [lJ Chapter 19

/* Reset the Bit Mask register to normal */
outp(GC_INDEX + 1, OxFF);
/*Turnoff set/reset enable*/
outpw(GC_INDEX, (OxOO << 8) J SET_RESET_ENABLE_INDEX);

The tremendous advantage of the incremental approach is that all terms used can be
maintained as integers rather than floating-point values. Better yet, no multiplication
or division is required to advance from one point to the next (not counting multiplica
tion by 2, which is really an add or shift). The incremental approach isn't quite as fast
for ellipses as for circles, but it nonetheless makes ellipses nearly as fast as the circles
we've drawn in the last two chapters, and that's remarkably fast.

That said, let's take a quick trip through the math of the incremental ellipse-drawing
approach for those of you with a mind to do some tinkering on your own.

A Thumbnail Derivation of the Incremental Approach
As with the floating-point approach, the incremental approach draws ellipses by gener
ating an arc for which X advances more rapidly and then drawing the four symmetries,
then doing the same for Y. Also like the floating-point approach, the coordinate which
advances more rapidly-the major axis for the arc being drawn-is incremented by 1
each time, and the corresponding minor axis point is drawn. The only difference be
tween the two approaches lies in the way that the minor axis coordinate is determined.
-where the floating-point approach recalculates the minor axis coordinate, the incre
mental approach merely decides whether the minor axis coordinate has changed from
the previous point, and advances that coordinate by 1 if that is the case.

The trick to the incremental approach, then, lies in deciding when it's time to ad
vance the minor axis coordinate. Here, in a nutshell, is how that works. The equation
for an ellipse is

x2 /A2 + y2/B 2 = 1

which can be expressed as:

B2* x' + A'* y' - A'*B2 - 0

-when drawing an arc for which x is the major axis, all we'll do is evaluate the above
equation initially for x = 0 and y = B - 0.5, which will give us a measure of how far off
xis from the value at whichydoes equal B - 0.5 (B - 0.5 being the point atwhichygets
closer to the next pixel and advances). Then, we'll reevaluate the equation for x+ 1 each
time x advances one pixel. -when the result becomes positive, we'll have passed the
point at which y is closer to the next pixel, so we'll decrement y and adjust the equation
for the new y value, then start looking in the same way for the next time y advances.
That's really all there is to it.

Circles that Squish [l} 309

So, when drawing an arc for which x advances faster, we'll set the initial y to B - 0.5
and the initial x to 0, which, plugged into the above equation, gives us

which is to say (squaring B - 0.5)

0. 25*A2 - A2*B = 0

so the initial threshold is

A2/4 - A2*B.

This is easy enough to calculate with integer arithmetic. True, we're ignoring a pos
sible fractional term from N/4, but that's no problem; we'll simply choose to advance
y if the threshold becomes exactly 0, thereby correctly handling the case where there's
an implied fractional value.

Now that we have an initial threshold, we have to adjust it each time we advance x
until it becomes positive, indicating a change in y. That's done by advancing the x
based component of the threshold from

B2*x2

to

B2*(x+l) 2

which can be expressed as

B2* (x2+2* x+ 1)

or

B2* x' + 82*2* x + B2

B2*.x2 is already in the current threshold equation, so

B2*2*x + B2

is added to the x-based term each time x advances, and that quantity can be main
tained with integer arithmetic on an ongoing basis.

When the threshold is reached or exceeded, the y coordinate is decremented by 1,
and the threshold must be adjusted back down in preparation for the next advance.
This is done by adjusting they component of the ellipse equation to

B'*(y-1)'

310 fl} Chapter 19

which is

B2*(y2-2*y+l l

or

82* y 2 - 82*2* y + 82

Since B2*j is the value we're adjusting from, the incremental portion of this equa
tion is simply -B2*2*y + B2, and, like the x component above, that value is easily
maintained with integer arithmetic as y advances. (Note, however, that the y in the
above equation has a fractional component of 0.5 that ends up cancelling the B2 added
at the end of the equation. See Chapter 17 for a more detailed discussion of this phe
nomenon in the context of circles.)

Drawing stops when the 45 degree point is reached. That condition is detected
when the minor axis adjustment equals or exceeds the major axis adjustment, thereby
becoming the dominant component in calculating the threshold and causing the arc to
advance more rapidly along the minor axis.

I've gone fast here, because we covered this approach in detail when we discussed
circles, but everything you really need to know to understand how the incremental
approach works for ellipses is laid out above. If you had trouble following along, you
might refer back to the lengthier explanation of the incremental approach for circles in
Chapter 17.

Or you might not. After all, what you really need to know is how to draw ellipses
fast, and Listing 19.4 does that, with far better yet to come in the next chapter.

Notes and Caveats on the Code
Unlike our circle-drawing code, the ellipse-drawing code in Listing 19.4 won't handle
radii as large as 32K; the limit varies depending on the radii combination, but is never
less than 1 K. Given that 800 is the largest usable non-clipped radius on the highest
resolution SuperVGA available, a limit of lK shouldn't pose any problem. If a greater
range is needed, integers larger than 32 bits could be used, although that's more easily
done in assembly language than in C. Along the same lines, calculations for smaller
ellipses could potentially be performed using smaller integers. In general, no particular
attempt was made to optimize the code presented in this chapter. In the next chapter
we'll worry about fine-tuning, which is pointless without the foundation of a good
algorithm such as the one we've developed here.

The incremental approach used in Listing 19.4 is not Hal Hardenbergh's ellipse
drawing approach. Hal has come up with a fixed-point technique that is slightly less
precise due to fractional roundoff but looks to be faster than the approach I've pre
sented. I derived the approach I've presented from the circle-drawing approach we've
already covered, because I prefer exact plotting when I can get it at little cost and

Circles that Squish g/ 311

because I thought it would be easier for readers to understand an extension of what
we've already covered than something new.

Notwithstanding that this is not Hal's approach, he patiently let me bounce it off
him and kept me from getting wildly off track, for which I am most grateful.

How Fast Is It?
The big question, of course, is: How much faster is the incremental approach? Plenty.
Listing 19.2 runs about 20 times faster when linked to the version of DrawEllipse in
Listing 19 .4 than to the version in Listing 19 .1, and Listing 19 .3 produces similar
results. A numeric coprocessor would help Listing 19 .1, but not that much; anyway,
you can't count on every system having a coprocessor. And we've only begun to kick
ellipse drawing into high gear. In the next chapter we'll tackle the two remaining legs of
the optimization sequence by tailoring the code to the EGA/VGA and converting to
assembler. Based on our experience with circle drawing, I'd expect a performance im
provement of an additional two to three times, with the tally for our final code running
at around 40 to 60 times faster than Listing 19 .1.

Ellipses
that Rip

Optimizing Ellipse Drawing with a Draw List
for Each Octant

Do you believe in coincidence? You don't have to, you know; there's no rule that says
there has to be any such thing, and many people choose to believe otherwise. They
think that all events are interrelated; what appears to be coincidence actually reflects
deeper meaning in the universe. Personally, I prefer to believe in random coincidence,
because if coincidences are meaningful, the universe has been trying to send me a very
meaningful message lately- and while I can't imagine what chat message could possi
bly be, I'm not sure I want to find out!

To wit: In the previous chapter, I began by telling you chat I seemed to be encoun
tering faster circle implementations almost daily, and I mentioned Hal Hardenbergh's
extremely fast, 16-bic- integer-only circle-drawing approach. A few days after I wrote
the original article from which that chapter was derived, in what was either one hell of
a coincidence or a telegram from the Twilight Zone, an article by Tim Paterson in the
July, 1990 Dr. Dobbs journal crossed my desk. The topic of the article: drawing circles.
Fast. With no multiplies and no divides and plain old 16-bic integers.

Sound familiar?
Tim covers ground that we've already been over, but he looks at circle drawing from

a different and interesting perspective. Although the code is in C, you could convert it
to assembly language easily enough. The message? One (which pointedly includes that
fellow I) should never be too sure chat he or she has in fact nailed any topic for all time,
from all perspectives.

With that lesson firmly in mind, lee's draw some ellipses. Fast. Very fast, in fact.
Nonetheless, I'm sure there's something faster yet; in my experience, there always is.

313

314 If} Chapter 20

Ellipses, Continued
Last time we learned how to draw ellipses without using any multiplies, divides, or
floating-point numbers, thanks to an integer-only incremental algorithm. This time
I'll better attune that code to the hardware of the EGA and VGA by eliminating the
separate calculation of the screen address for each and every point. Instead, I'll generate
a draw list for an octant, that is, a set of commands to either advance or not advance
along the minor axis each time drawing advances one pixel along the major axis. Then
I'll draw the four symmetries of that draw list (the four octants which share the same
major axis-that is, advance more rapidly along the same axis) one at a time, using
specialized code that calculates the bit mask and offset for each pixel as a function of
the last pixel, thereby eliminating all multiplications and multi-bit rotations. I'll then
repeat the process for the four octants in which the other coordinate is the major axis.
Finally, I'll rewrite in assembly language the code that generates draw lists, and I'll do
the same for the code that draws octants from draw lists.

Ellipse Drawing Made Fast
Without further ado, let's get to the code. Listing 20.1 is C ellipse-drawing code, dif
fering from Listing 19.4 in that Listing 20.1 generates a draw list and draws the four
symmetries of that list, then does the whole thing again for the other axis, as described
above. That change produces a performance improvement of about 35 percent, as
shown in Table 20.1. Listing 20.2 is a sample C program that can call any of the
ellipse-drawing functions in this chapter and the last; Listing 20.2 was used for timing
the various implementations. (Because this chapter brings together a lot of familiar
stuff, I made the sample program a little more interesting than the standard concentric
ellipses. It's not a big deal-it's kind of a circle with pointy ears-but it gives you an
idea of the sorts of shapes that are easily created with sets of ellipses; run it yourself and
see.)

LISTING 20.1 L20-1.C
I*
* Draws an ellipse of the specified X and Y axis radii and color,
* using a fast integer-only & square-root-free approach, and
* generating the arc for one octant into a buffer, drawing four
* symmetries from that buffer, then doing the same for the other
* axis.
* Compiles with either Borland or Microsoft.
* VGA or EGA.
*I

I/include <dos.h>

/* Handle differences between Borland and Microsoft. Note that Borland accepts
outp as a synonym for outportb, but not outpw for outport */

/lifdef _TURBOC_
I/define outpw outport

Ellipses that Rip ~ 315

Table 20.1 Ellipse-Drawing Performance Comparison

Processor
Listing 286 386

19.1 1088 sec 406 sec
(C/floating point)

19.4 46 sec 17 sec
(Cl integer)

20.1 (C/incremental 33 sec 13 sec
pixel addressing)

20.3/4 (ISVGA=0) 14 sec 7 sec
(ASM)

20.3/4 (ISVGA=l) 13 sec 5 sec
(ASM/write mode 3)

Notes: These are the execution rimes of the various ellipse-drawing implementations in Chapters 19
and 20 when linked to Listing 20.2. Borland C was used to compile all C code, with maximum optimi
zation (-G -0 -Z -r) enabled. Times in the columns labelled "286" were recorded on a Video Seven
VRAM VGA running as a 16-bit device on a 10-MHz I-wait-state AT clone; rimes in the columns
labelled "386" were recorded on a the built- in Paradise VGA in a 20-MHz, 32K-0-wair-srare-cache
Toshiba 5200 (a monochrome adapter was also installed). No floating-point processor was installed in
either computer. Results could vary considerably on different hardware.

/,!end if

#define SCREEN_WIDTH_IN_BYTES 80 I* /I of bytes across one scan
line in mode 12h */

1/defi ne SCREEN_SEGMENT OxAOOO I* mode 12h display memory seg *I
//define GC_INDEX Ox3CE /* Graphics Controller port*/
//define SET_RESET_INDEX 0 I* Set/Reset reg index in GC */
1/defi ne SET_RESET_ENABLE_ INDEX /* Set/Reset Enable reg index

in GC */
//define BIT_MASK_INDEX 8 /* Bit Mask reg index in GC */

unsigned char PixList[SCREEN_WIDTH_IN_BYTES*B/2];
/* maximum major axis length is

1/2 screen width, because we're
assuming no clipping is needed*/

/* Draws the arc for an octant in which Y is the major axis. (X,Y) is the
starting point of the arc. HorizontalMoveDirection selects whether the
arc advances to the left or right horizontally (O=left, l=right).
RowOffset contains the offset in bytes from one scan line to the next,
controlling whether the arc is drawn up or down. Length is the
vertical length in pixels of the arc, and DrawList is a list
containing O for each point if the next point is vertically aligned,
and 1 if the next point is 1 pixel diagonally to the left or right. */

void DrawVOctant(int X, int Y, int Length, int RowOffset,
int HorizontalMoveDirection, unsigned char *DrawList)

unsigned char far *ScreenPtr, BitMask;

/* Point to the byte the initial pixel is in. */

316 fl} Chapter 20

#ifdef _TURBOC_
ScreenPtr = MK_FP(SCREEN_SEGMENT,

(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8));
i/e l se

FP_SEG(ScreenPtr) = SCREEN_SEGMENT;
FP_OFF(ScreenPtr) =(Y * SCREEN_WIDTH_IN_BYTES) + (X / 8);

fiend if
/* Set the initial bit mask*/
BitMask = Ox80 >> (X & Ox07);

/* Draw all points in DrawList */
while (Length--) {

/* Set the bit mask for the pixel */
outp(GC_INDEX + 1, BitMask);
/* Draw the pixel. ORed to force read/write to load latches.

Data written doesn't matter, because set/reset is enabled
for all planes. Note: don't OR with O; MSC optimizes that
statement to no operation*/

*ScreenPtr I= OxFE;
/* Now advance to the next pixel based on DrawList. */
if C *DrawList++) {

/* Advance horizontally to produce a diagonal move. Rotate
the bit mask, advancing one byte horizontally if the bit
mask wraps*/

if (HorizontalMoveDirection == 1) {
/* Move right*/
if C (BitMask »= 1)

BitMask = Ox80;
ScreenPtr++;

else {
/* Move left*/

0) {
/* wrap the mask*/
/* advance 1 byte to the right*/

if ((BitMask «=
BitMask = OxOl;
ScreenPtr--;

1) == 0) {
/* wrap the mask*/
/* advance 1 byte to the left*/

ScreenPtr += RowOffset; /* advance to the next scan line*/

/* Draws the arc for an octant in which Xis the major axis. (X,Y) is the
starting point of the arc. HorizontalMoveDirection selects whether the
arc advances to the left or right horizontally (O=left, l=right).
RowOffset contains the offset in bytes from one scan line to the next,
controlling whether the arc is drawn up or down. Length is the
horizontal length in pixels of the arc, and DrawList is a list
containing O for each point if the next point is horizontally aligned,
and 1 if the next point is 1 pixel above or below diagonally. */

void DrawHOctant(int X, int Y, int Length, int RowOffset,
int HorizontalMoveDirection, unsigned char *DrawList)

unsigned char far *ScreenPtr, BitMask;

/* Point to the byte the initial pixel is in */
#ifdef _TURBOC_

ScreenPtr = MK_FP(SCREEN_SEGMENT,
CY* SCREEN_WIDTH_IN_BYTES) + CX / 8));

i/e l se
FP_SEG(ScreenPtr) = SCREEN_SEGMENT;

Ellipses that Rip g} 317

FP_OFF(ScreenPtr) =CY* SCREEN_WIDTH_IN_BYTES) + (X / 8):
/Jendi f

/* Set the initial bit mask*/
BitMask = Ox80 >> (X & Ox07):

/* Draw all points in Drawlist */
while (Length--) {

/* Set the bit mask for the pixel */
outp(GC_INDEX + 1, BitMask):
/* Draw the pixel (see comments above for details)*/
*ScreenPtr I= OxFE:
/* Now advance to the next pixel based on Drawlist */
if (*Drawlist++) {

/* Advance vertically to produce a diagonal move*/
ScreenPtr += RowOffset: /* advance to the next scan line*/

/* Advance horizontally. Rotate
byte horizontally if the bit

if (HorizontalMoveDirection
/* Move right*/
if ((BitMask »= 1) == 0) {

the bit mask, advancing one
mask wraps*/
1) {

BitMask = Ox80: /* wrap the mask*/
ScreenPtr++:

else {
/* Move left*/
if ((BitMask <<= 1)

BitMask = OxOl:
ScreenPtr--:

/* advance 1 byte to the right*/

=- 0) {
/* wrap the mask*/
/* advance 1 byte to the left*/

/* Draws an ellipse of X axis radius A and Y axis radius Bin
* color Color centered at screen coordinate (X,Y). Radii must
* both be non-zero. */

void DrawEllipse(int X, int Y, int A, int B, int Color) {
int WorkingX, WorkingY:
long Threshold:
long ASquared = (long) A* A:
long BSquared = (long) B * B:
long XAdjust, YAdjust:
unsigned char *PixListPtr:

/* Set drawing color via set/reset*/
outpw(GC_INDEX, (OxOF << 8) I SET_RESET_ENABLE_INDEX):

/* enable set/reset for all planes*/
outpw(GC_INDEX, (Color<< 8) I SET_RESET_INDEX):

/* set set/reset (drawing) color*/
outp(GC_INDEX, BIT_MASK_INDEX): /* leave the GC Index reg pointing

to the Bit Mask reg*/

/* Draw the four symmetric arcs for which X advances faster (that is,
for which Xis the major axis)*/

/* Draw the four arcs: set draw parameters for initial point (0,B) *I
/* Calculate all points along an arc of 118th of the ellipse and

store that info in Pixlist for later drawing*/
PixlistPtr - Pixlist:
WorkingX = O:

318 Jg) Chapter 20

XAdjust = 0:
YAdjust = ASquared * 2 * B:
Threshold= ASquared / 4 - ASquared * B:

for (: :) {
/* Advance the threshold to the value for the next X point

to be drawn*/
Threshold+- XAdjust + BSquared:

I* If the threshold has passed 0, then the Y coordinate has
advanced more than halfway to the next pixel and it's time
to advance the Y coordinate by 1 and set the next threshold
accordingly*/

if (Threshold>= 0) {
YAdjust -= ASquared * 2:
Threshold -- YAdjust;
PixListPtr++ = 1: / advance along both axes*/

} else {
PixListPtr++ = 0: / advance only along the X axis*/

/* Advance the X coordinate by 1 */
XAdjust += BSquared * 2:
WorkingX++:

/* Stop if Xis no longer the major axis (the arc has passed the
45-degree point)*/

if (XAdjust >• YAdjust)
break:

/* Now draw each of 4 symmetries of the octant in turn, the
octants for which Xis the major axis. Adjust every other arc
so that there's no overlap. */

DrawH0ctant(X,Y-B,WorkingX,SCREEN_WIDTH_IN_BYTES,0,PixList):
DrawH0ctant(X+l,Y-B+(*PixList),WorkingX-1,SCREEN_WIDTH_IN_BYTES,l,

Pixlist+ll:
DrawH0ctant(X,Y+B,WorkingX,-SCREEN_WIDTH_IN_BYTES,0,PixList):
DrawHDctant(X+l,Y+B-(*PixList),WorkingX-1,-SCREEN_WIDTH_IN_BYTES,1,

Pi xli st+ 1):

/* Draw the four symmetric arcs for which X advances faster (that is,
for which Y is the major axis)*/

/* Draw the four arcs: set draw parameters for initial point (A,0) */
/* Calculate all points along an arc of !/8th of the ellipse and

store that info in PixList for later drawing*/
PixlistPtr = Pixlist:
WorkingY = 0:
XAdjust = BSquared * 2 * A:
YAdjust - D:
Threshold - BSquared / 4 - BSquared * A:

for (::) {
/* Advance the threshold to the value for the next Y point

to be drawn*/
Threshold+- YAdjust + ASquared;

/* If the threshold has passed 0, then the X coordinate has
advanced more than halfway to the next pixel and it's time
to advance the X coordinate by 1 and set the next threhold
accordingly*/

if (Threshold>= 0) {

XAdjust -= BSquared * 2;
Threshold= Threshold XAdjust;
PixlistPtr++ = 1; I advance along both

else {
Pixlistptr++ = 0; I advance

/* Advance the Y coordinate by 1 */
YAdjust += ASquared * 2;
WorkingY++;

only along

Ellipses that Rip ~ 319

axes *I

the X axis *I

/* Stop if Y is no longer the major axis (the arc has passed the
45-degree point) */

if (YAdjust > XAdjust)
break:

/* Now draw each of 4 symmetries of the octant in turn, the
octants for which Y is the major axis. Adjust every other arc
so that there's no overlap. */

DrawVOctant(X-A,Y,WorkingY,-SCREEN_WIDTH_IN_BYTES,1,Pixlist);
DrawVOctant(X-A+(*Pixlist),Y+l,WorkingY-1,SCREEN_WIDTH_IN_BYTES,1,

Pi XL i st+l);
DrawVOctant(X+A,Y,WorkingY,-SCREEN_WIDTH_IN_BYTES,O,Pixlist);
DrawVOctant(X+A-(*Pixlist),Y+l,WorkingY-1,SCREEN_WIDTH_IN_BYTES,0,

Pixlist+l);

/* Reset the Bit Mask register to normal */
outp(GC_INDEX + 1, OxFF);
/*Turnoff set/reset enable*/
outpw(GC_INDEX, (OxOO « 8) I SET_RESET_ENABLE_INDEX);

LISTING 20.2 L20-2.C
/*
* Draws ellipses of varying eccentricities in the VGA's hi-res mode,
* mode 12h.
* For VGA only.
* Compile and link (using Borland C++J with listing L20-X.C (where Xis 1 or 4)
* with:
* bee -ms L20-X.C L20-2.C
*
*I

/!include <dos.h>
/!include <stdio.h>

main () {
int XRadius, YRadius, Temp, Color, i;
union REGS Regs;

/* Select VGA's hi-res 640x480 graphics mode, mode 12h */
Regs.x.ax = Ox0012;
int86(0xl0, &Regs, &Regs);

/* Repeat 10 times*/
for (i = 0; i < 10; i++) {

320 gJ Chapter 20

/* Draw nested ellipses*/
for (XRadius = 319, YRadius - 1, Color= 7: YRadius < 240:

XRadius -= 1, YRadius +- 2) {
DrawEllipse(640/2, 480/2, XRadius, YRadius, Color):
Color= (Color+ 1) & OxOF: /* cycle through 16 colors*/

/* Wait for a key, restore text mode, and done*/
scanf("%c", &Temp):
Regs.x.ax - Ox0003:
int86(0x10, &Regs, &Regs):

I am well aware that Listing 20.1 is not fully optimized; for one thing, it doesn't take
advantage of the write mode 3 and pixel-accumulation techniques used by the assem
bly code in Listing 20.4. Listing 20.1 is intended as an illustrative bridge between the
standard ellipse-drawing code of the previous chapter and the fast but hard to under
stand code in Listing 20.4, so I've leaned toward comprehension rather than maxi
mum speed in Listing 20.1. To my mind, it's wasted effort to spend time squeezing
cycles out of Listing 20.1 when Listings 20.3 and 20.4 will always be faster no matter
how well-optimized Listing 20.1 is.

Listing 20.3 is the C portion of the final and fastest ellipse-drawing routine. Listing
20.3 calls functions in the assembly language module shown in Listing 20.4 in order to
perform the two critical aspects of ellipse drawing: draw list generation and the actual
octant drawing.

Listings 20.3 and 20.4 together are about twice as fast as Listing 20.1. They are in
the range of 2.5 to 3.5 times faster- than Listing 19.4. Lastly, they are 60 or so times
faster than the floating-point based implementation in Listing 19 .1.

See what a little forethought and attention to detail can do?

LISTING 20.3 L20-3.C
I*
* Draws an ellipse of the specified X and Y axis radii and color,
* using a fast integer-only & square-root-free approach, and
* generating the arc for one octant into a buffer, drawing four
* symmetries from that buffer, then doing the same for the other
* axis. Uses assembly language for inner loops of octant generation
* & drawing. Link to Listing 20.4.
*
* Compiles with either Borland or Microsoft.
* VGA or EGA.
*I

#define ISVGA O /* set to 1 to use VGA write mode 3*/
/* keep synchronized with Listing 4 */

#include <dos.h>

/* Handle differences between Borland and Microsift. Note that Borland accepts
outp as a synonym for outportb, but not outpw for outport */

#ifdef _TURBOC_
#define outpw outport
fiend if

Ellipses that Rip g} 321

I/define SCREEN_WIDTH_IN_BYTES 80 I* fl of bytes across one scan
line in mode 12h */

//define SCREEN_SEGMENT OxAOOO I* mode 12h display memory seg *I
//define GC_INDEX Ox3CE /* Graphics Controller port*/
//define SET_RESET_INDEX 0 I* Set/Reset reg index in GC */
//define SET_RESET_ENABLE_ INDEX 1 I* Set/Reset Enable reg index

in GC */
I/define GC_MODE_INDEX 5 I* Graphics Mode reg index in GC *I
//define COLOR_DONT_CARE 7 I* Color Don't Care reg index in GC
//define BIT_MASK_INDEX 8 I* Bit Mask reg index in GC */

unsigned char PixList[SCREEN_WIDTH_IN_BYTES*8/2]:
/* maximum major axis length is

1/2 screen width, because we're
assuming no clipping is needed*/

/* Draws an ellipse of X axis radius A and Y axis radius Bin
* color Color centered at screen coordinate (X,Y). Radii must
* both be non-zero. */

void DrawEllipse(int X, int Y, int A, int B, int Color) {
int Length:
long Threshold:
long ASquared = (long) A* A:
long BSquared = (long) B * B:
long XAdjust, YAdjust:
unsigned char *PixListPtr, OriginalGCMode:

/* Set drawing color via set/reset*/
outpw(GC_INDEX, (OxOF « 8) I SET_RESET_ENABLE_INDEX):

/* enable set/reset for all planes*/
outpw(GC_INDEX, (Color<< 8) I SET_RESET_INDEX):

/* set set/reset (drawing) color*/
Iii f I SVGA

/* Remember original read/write mode & select
read mode 1/write mode 3, with Color Don't Care
set to ignore all planes and therefore always return OxFF */

outp(GC_INDEX, GC_MODE_INDEX):
OriginalGCMode = inp(GC_INDEX + 1):
outp(GC_INDEX+l, OriginalGCMode I OxOB):
outpw(GC_INDEX, (OxOO « 8) I COLOR_DONT_CARE):
outpw(GC_INDEX, (OxFF « 8) I BIT_MASK_INDEX):

//else
outp(GC_INDEX, BIT_MASK_INDEX): /* leave the GC Index reg pointing

to the Bit Mask reg*/
//end if

/* Draw the four symmetric arcs for which X advances faster (that is,
for which Xis the major axis)*/

/* Generate the draw list for 1 octant*/
Length= GenerateEOctant(PixList, (long) ASquared * 2 * B,

(long) ASquared / 4 - ASquared * B, ASquared, BSquared):

/* Now draw each of 4 symmetries of the octant in turn, the
octants for which X is the major axis. Adjust every other arc
so that there's no overlap. */

DrawHOctant(X,Y-B,Length,SCREEN_WIDTH_IN_BYTES,O,Pixlist):
DrawHOctant(X+l,Y-B+(*Pixlist),Length-1,SCREEN_WIDTH_IN_BYTES,1,

Pi xli st+l l:
DrawHOctant(X,Y+B,Length,-SCREEN_WIDTH_IN_BYTES,O,Pixlist):
DrawHOctant(X+l,Y+B-(*Pixlist),length-1,-SCREEN_WIDTH_IN_BYTES,l,

Pixlist+l):

*I

322 /gJ Chapter 20

/* Draw the four symmetric arcs for which Y advances faster (that is,
for which Y is the major axis)*/

/* Generate the draw list for 1 octant*/
Length= GenerateEOctant(PixList. (long) BSquared * 2 * A,

(long) BSquared / 4 - BSquared * A. BSquared, ASquared);

/* Now draw each of 4 symmetries of the octant in turn, the
octants for which X is the major axis. Adjust every other arc
so that there's no overlap. */

DrawVOctant(X-A,Y,Length,-SCREEN_WIDTH_IN_BYTES,1,PixList);
DrawVOctant(X-A+(*PixList),Y+l,Length-1,SCREEN_WIDTH_IN_BYTES,1,

PixList+l);
DrawVOctant(X+A,Y,Length,-SCREEN_WIDTH_IN_BYTES,0,PixList);
DrawVOctant(X+A-(*PixList),Y+l,Length-1,SCREEN_WIDTH_IN_BYTES,O,

PixList+l);

/fif ISVGA
/* Restore original write mode*/
outpw(GC_INDEX, (OriginalGCMode « 8) I GC_MODE_INDEX);
/* Restore normal Color Don't Care setting*/
outpw(GC_INDEX, (OxOF << 8) I COLOR_DONT_CARE):

1fe l se
/* Reset the Bit Mask register to normal */
outp(GC_INDEX + 1, OxFF):

/fend if
/*Turnoff set/reset enable*/
outpw(GC_INDEX, (OxOO << 8) I SET_RESET_ENABLE_INDEX);

LISTING 20.4 L20-4.ASM
Contains 3 C-callable routines: GenerateEOctant, DrawVOctant. and

DrawHOctant. See individual routines for comments. Link to
Listing 20.3.

Works with TASM or MASM

ISVGA equ 0

.model small

.code

;set to 1 to use VGA write mode 3
: keep synchronized with Listing 3

;**
Generates an octant of the specified ellipse, placing the results in
PixList, with a O in PixList meaning draw pixel & move only along
major axis, and a 1 in PixList meaning draw pixel & move along both
axes.
C near-callable as:
int GenerateEOctant(unsigned char *PixList. long MinorAdjust,

long Threshold, long MajorSquared, long MinorSquared):

Return value= Pixel Count (# of points)

Passed parameters:

GenerateOctantParms struc
dw ? :pushed BP
dw ? return address pushed by ca 11

PixList dw ? pointer to list to store draw control data in
MinorAdjust dd ? initially MajorAxis**2 * 2 * MinorAxis, used

Ellipses that Rip g} 323

Threshold dd ?
; to adjust threshold after minor axis move
;initially MajorAxis**2 / 4 + MajorAxis**2 *
; MinorAxis, used to determine when to advance
; along the minor axis

MajorSquared dd 1
MinorSquared dd 1
GenerateOctantParms

;MajorAxis**2
:MinorAxis**2
ends

; Local variables (offsets relative to BP in stack frame):

Pixel Count equ -2 ;running major axis coordinate
; relative to center

MajorAdjust equ -6 ;used to adjust threshold after
; axis move

MajorSquaredTimes2 equ -10 ;MajorSquared * 2
MinorSquaredTimes2 equ -14 ;MinorSquared * 2

public _GenerateEOctant
_GenerateEOctant proc near

push bp ;preserve caller's stack frame
mov bp,sp ;point to our stack frame
add sp,MinorSquaredTimes2

;allocate room for local vars
push s1 ;preserve C register variables
push di

;Initialize local variables.

major

mov word ptr [bp+PixelCount],O ;initialize count of pixels
; to zero

mov ax.word ptr [bp+MajorSquared] ;set MajorSquaredTimes2
shl ax,1 ;lower word times 2
mov word ptr [bp+MajorSquaredTimes2],ax
mov ax.word ptr [bp+MajorSquared+2]
rel ax,1 ;upper word times 2
mov word ptr [bp+MajorSquaredTimes2+2].ax

mov ax.word ptr [bp+MinorSquared] ;set MinorSquaredTimes2
shl ax,1 ;lower word times 2
mov word ptr [bp+MinorSquaredTimes2],ax
mov ax.word ptr [bp+MinorSquared+2]
rel ax,1 ;upper word times 2
mov word ptr [bp+MinorSquaredTimes2+2],ax

;Set up registers for loop.
mov di ,[PixList+bpJ ;point DI to PixList

; Set MajorAdjust to 0.
sub ex.ex
mov si , ex ;SI:CX = MajorAdjust

mov bx.word ptr [bp+Threshold] ;DX:BX = threshold
mov dx,word ptr [bp+Threshold+2J

At this point:
DX:BX = threshold
SI:CX = MajorAdjust
DI= Pixlist pointer

GenLoop:
Advance the threshold by MajorAdjust + MinorAxis**2.

add bx.ex
adc dx,si
add bx.word ptr [bp+MinorSquared]
adc dx,word ptr [bp+MinorSquared+2]

If the threshold has passed O. then the minor coordinate has
advanced more than halfway to the next pixel and it's time to
advance the minor coordinate by 1 and set the next threshold

324 Ill Chapter 20

accordingly.
mov byte ptr [di].O :assume we won't move along the

; minor axis
js MoveMajor ;and, in fact. we won't move minor

Minor coordinate has advanced.
Adjust the minor axis adjust value.

mov ax.word ptr [bp+MajorSquaredTimes2]
sub word ptr [bp+MinorAdjust],ax
mov ax.word ptr [bp+MajorSquaredTimes2+2J
sbb word ptr [bp+MinorAdjust+2],ax

Adjust the threshold for the minor axis move
sub bx.word ptr [bp+MinorAdjust]
sbb dx,word ptr [bp+MinorAdjust+2]
mov byte ptr [di],1

MoveMajor:
inc di

Count this point.
inc word ptr [bp+PixelCount]

Adjust the major adjust for the new point.
add ex.word ptr [bp+MinorSquaredTimes2]
adc si,word ptr [bp+MinorSquaredTimes2+2]

Stop if the major axis has switched (the arc has passed the
45-degree point).

cmp si,word ptr [bp+MinorAdjust+2]
ja Done
jb Gen Loop
cmp ex.word ptr [bp+MinorAdjust]
jb Gen Loop

Done:
mov
pop
pop
mov
pop
ret

ax,[bp+PixelCount] ;return# of points
di ;restore C register variables
si
sp,bp
bp

;deallocate local vars
;restore caller's stack frame

_GenerateEOctant endp
:**

Draws the arc for an octant in which Y is the major axis. (X.Y) is the
starting point of the arc. HorizontalMoveDirection selects whether the
arc advances to the left or right horizontally (O=left, l=right).
RowOffset contains the offset in bytes from one scan line to the next.
controlling whether the arc is drawn up or down. Drawlength is the
vertical length in pixels of the arc, and Drawlist is a list
containing O for each point if the next point is vertically aligned,
and 1 if the next point is 1 pixel diagonally to the left or right.

The Graphics Controller Index register must already point to the Bit
Mask register.

C near-callable as:
void DrawVOctant(int X, int Y, int Drawlength, int RowOffset,

int HorizontalMoveDirection, unsigned char *Drawlist):

DrawParms
dw
dw

X dw
y dw

struc
?
?
?
?

;pushed BP
;return address
;initial coordinates

Drawlength dw ? ;vertical length
RowOffset dw ? ;distance from one scan line to the next
HorizontalMoveDirection dw? ;1 to move right. 0 to move left

Ellipses that Rip ll} 325

Drawlist dw ? ;pointer to list containing 1 to draw
DrawParms ends ; diagonally, Oto draw vertically for

; each point
SCREEN_SEGMENT equ OaOOOh ;display memory segment in mode 12h
SCREEN_WIDTH_IN_BYTES equ 80 ;distance from one scan line to next
GC_INDEX equ 3ceh ;GC Index register address

public _DrawVOctant
_DrawVOctant proc near

push
mov
push
push

;Point ES:DI to
mov
mov
mov
mul
mov
mov
shr
shr
shr
add
and

if ISVGA
mov
shr
cld

else
mov
shr
mov

endif
mov
sub
mov
jcxz
cmp
mov
jz

VDrawRightLoop:
if ISVGA

and

lodsb
and
jz
ror

else
out
and

cmp
jz
ror

endif

bp
bp,sp
si
di

;preserve caller's stack frame
;point to our stack frame
;preserve C register variables

the byte the initial
ax,SCREEN_SEGMENT

pixel is in.

es.ax
ax,SCREEN_WIDTH_IN_BYTES
[bp+Y] ;Y*SCREEN_WIDTH_IN_BYTES
di,[bp+X] ;X
ex.di ;set X aside in CX
di, 1
di. 1
di ,1 ;X/8
di ,ax ;screen offset= Y*SCREEN_WIDTH_IN_BYTES+X/8
cl ,07h ;X modulo 8

;--VGA--
ah,80h ;keep VGA bit mask in AH
ah.cl ;initial bit mask= 80h shr (X modulo 8);

;for LODSB, used below
;--EGA--

al ,80h ;keep EGA bit mask in AL
al ,cl ;initial bit mask= 80h shr (X modulo 8):
dx,GC_INDEX+l ;point DX to GC Data reg/bit mask

si,[bp+Drawlist] ;SI points to list to draw from
bx,bx ;so we have the constant O in a reg
cx,[bp+Drawlength] ;CX-1/ of pixels to draw
VDrawDone ;skip this if no pixels to draw
[bp+HorizontalMoveDirection],O ;draw right or left
bp,[bp+RowOffset] ;BP=offset to next row
VGoleft ;draw from right to left

es:[di].ah

;draw from left to right
;--VGA--
;AH becomes bit mask in write mode 3,
: set/reset provides color
;get next draw control byte

al ,al ;move right?
VAdvanceOnelineRight ;no move right
ah,1 ;move right

dx,al
es:[di].al

;--EGA--
;set the desired bit mask
:data doesn't matter (set/reset provides
; color); just force read then write

[si],bl ;check draw control byte: move right?
VAdvanceOnelineRight ;no move right
al ,1 ;move right

adc di,bx :move one byte to the right if mask wrapped

:--EGA--
VAdvanceOneLineRight:
ife ISVGA

inc si ;advance draw control list pointer

326 {gJ Chapter 20

end if

VGoleft:

add
1 oop
jmp

VDrawleftloop:
if ISVGA

else

endif

and
lodsb
and
jz
rol

out
and
cmp
jz
rol

di ,bp
VDrawRightLoop
short VDrawDone

es:[di].ah

a 1 • a 1

;move to the next scan line up or down
;do next pixel, if any
;done
;draw from right to left

;--VGA--
;AH becomes bit mask in write mode 3
;get next draw control byte
:move left?

VAdvanceOnelineleft ;no move left
ah,1 ;move left

;--EGA--
dx.al ;set the desired bit mask
es:[di].al :data doesn't matter; force read/write
[si],bl ;check draw control byte; move left?
VAdvanceOnelineleft ;no move left
al ,1 ;move left

sbb di.bx ;move one byte to the left if mask wrapped
VAdvanceOnelineLeft:
ife ISVGA

inc si
end if

add di ,bp
loop VDrawLeftloop

VDrawDone:
pop di
pop si
pop bp
ret

_DrawVOctant endp

;--EGA--
;advance draw control list pointer

;move to the next scan line up or down
;do next pixel, if any

;restore C register variables

;**
Draws the arc for an octant in which Xis the major axis. (X,Y) is the
starting point of the arc. HorizontalMoveDirection selects whether the
arc advances to the left or right horizontally CO-left, 1-rightl.
RowOffset contains the offset in bytes from one scan line to the next,
controlling whether the arc is drawn up or down. Drawlength is the
horizontal length in pixels of the arc, and Drawlist is a list
containing O for each point if the next point is horizontally aligned,
and 1 if the next point is 1 pixel above or below diagonally.

Graphics Controller Index register must already point to the Bit Mask
register.

C near-callable as:
void DrawHOctant(int X, int Y, int Drawlength, int RowOffset,

int HorizontalMoveDirection, unsigned char *Drawlist)

Uses same parameter structure as DrawVOctant().

public _DrawHOctant
_DrawHOctant proc near

;Point

push bp ;preserve caller's stack frame
;point to our stack frame
;preserve C register variables

mov
push
push

ES:DI
mov
mov
mov

to

bp,sp
Si
di
the byte the initial pixel is in.
ax,SCREEN_SEGMENT
es.ax
ax,SCREEN_WIDTH_IN_BYTES

Ellipses that Rip ~ 327

if ISVGA

else

end if

mul
mov
mov
shr
shr
shr
add
and
mov
shr

cld

mov

mov
sub
mov
jcxz

if ISVGA
sub

else

endif
sub

cmp
mov
jz

HDrawRightloop:
if ISVGA

[bp+Y] ;Y*SCREEN_WIDTH_IN_BYTES
di,[bp+XJ ;X
ex.di ;set X aside in CX
di, 1
di , 1
di,l ;X/B
di , ax
C 1 , 07 h
bh,BOh
bh, cl

;screen offset= Y*SCREEN_WIDTH_IN_BYTES+X/8
;X modulo 8

;initial bit mask= BOh shr (X modulo 8);
;--VGA--
;for LODSB, used below
;--EGA--

dx,GC_INDEX+l ;point DX to GC Data reg/bit mask

si ,[bp+Drawlist] ;SI points to list to draw from
bl ,bl ;so we have the constant O in a reg
cx,[bp+Drawlength] ;CX=# of pixels to draw
HDrawDone ;skip this if no pixels to draw

;--VGA--
ah.ah

a 1 , a 1

;clear bit mask accumulator
;--EGA--
;clear bit mask accumulator
·--------.

[bp+HorizontalMoveDirection],O ;draw right or left
bp,[bp+RowOffset] ;BP=offset to next row
HGoleft ;draw from right to left

;draw from left to right
; - -VGA- -

or ah,bh ;put this pixel in bit mask accumulator
;get next draw control byte

else

end if

l odsb
and al ,al

or al ,bh
cmp [si J ,bl

;move up/down?
;-·EGA--
;put this pixel in bit mask accumulator
;check draw control byte; move up/down?

jz HAdvanceOnelineRight ;no move up/down

if ISVGA
;move up/down; first draw accumulated pixels
;--VGA--

else

end if

and
sub

out
and
sub

es:[di].ah
ah.ah

dx, al
es:[di].al
al , a 1

add di ,bp
HAdvanceOneLineRight:
ife ISVGA

inc Si
endif

;AH becomes bit mask in write mode 3
;clear bit mask accumulator
; - • EGA- -
;set the desired bit mask
;data doesn't matter; force read/write
;clear bit mask accumulator

;move to the next scan line up or down

;--EGA--
;advance draw control list pointer

ror bh,l ;move to right; shift mask
jnc

if ISVGA
and
sub

else
out
and
sub

HDrawloopRightBottom ;didn't wrap to the next byte

es:[di].ah
ah.ah

dx,al
es:[di].al
al , al

;move to next byte; 1st draw accumulated
;--VGA--
;AH becomes bit mask in write mode 3
;clear bit mask accumulator

set the desired bit mask
data doesn't matter; force read/write
clear bit mask accumulator

pixels

328 Jg} Chapter 20

endif
inc di

HDrawLoopRightBottom:
loop HDrawRightLoop
jmp short HDrawDone

HGoLeft:
HDrawLeftLoop:
if ISVGA

or
1 odsb
and

else
or
cmp

endif

ah,bh

al ,al

al, bh
[si].bl

;move 1 byte to the right

;draw next pixel, if any
;done
;draw from right to left

;--VGA--
;put this pixel in bit mask accumulator
;get next draw control byte
;move up/down?
;--EGA--
;put this pixel in bit mask accumulator
;check draw control byte; move up/down?

jz HAdvanceOneLineLeft ;no move up/down

if ISVGA

else

end if

and
sub

out
and
sub

es:[di].ah
ah.ah

dx,al
es:[di].al
a 1 , al

add di,bp
HAdvanceOneLineLeft:
ife ISVGA

inc Si
endif

;move up/down; first draw accumulated pixels
;--VGA--
;AH becomes bit mask in write mode 3
;clear bit mask accumulator
;--EGA--
;set the desired bit mask
;data doesn't matter; force read/write
;clear bit mask accumulator

;move to the next scan line up or down

:-·EGA--
:advance draw control list pointer

rel bh,1 ;move to left: shift mask
jnc HDrawLoopLeftBottom ;didn't wrap to next byte

if ISVGA

else

end if

and
sub

out
and
sub

es:[di].ah
ah.ah

dx,al
es:[di].al
a 1 , a 1

dee di
HDrawLoopLeftBottom:

loop HDrawLeftloop
HDrawDone:

if ISVGA
and es:[di].ah

else
out dx,al
and es:[di].al

end if
pop di
pop Si
pop bp
ret

DrawHOctant endp
end

;move to next byte: 1st draw accumulated pixels
;--VGA--
;AH becomes bit mask in write mode 3
;clear bit mask accumulator
:-·EGA--
;set the desired bit mask
:data doesn't matter: force read/write
:clear bit mask accumulator

:move 1 byte to the left

;draw next pixel, if any

;draw any remaining accumulated pixels
;--VGA--
:AH becomes bit mask in write mode 3
:--EGA--
;set the desired bit mask
;data doesn't matter: force read/write

;restore C register variables

Ellipses that Rip {g} 329

Notes on the Ellipse-Drawing Implementations
This chapter is truly a synthesis of what has come before. We spent the previous chap
ter developing the incremental ellipse-drawing approach, and the chapter before that
developing the draw-list approach for circles. In fact, not only is there nothing particu
larly new, but there's a bit of optimization overkill in Listing 20.4.

I must in all honesty point out that it's scarcely worth bothering with
converting the draw list generation code to assembly language at all.
First, drawing from the draw list is likely to take much longer than gen
erating the draw list, because four octants are drawn for each draw
list generated and because drawing is usually slowed considerably by
video wait states. That means that draw list generation doesn't
represent a very large fraction of total execution time, and there
fore isn't a particularly fruitful place to expend optimization effort.

Second, draw list generation involves many 32-bit variables, too many to be able to

keep them all in the registers; when that's the case, particularly in fairly straightforward
add-subtract-compare code like that used in draw list generation, I've found that there's
not likely to be much difference between good assembly code and the code produced
by a good C compiler. Sure, the assembly-language code is better, but again the differ
ence isn't likely to translate into a sizable improvement in overall performance.

When you optimize code, it's important to understand where in your code the effort will
pay off best. In Listings 20.3 and 20.4, optimization effort is better spent in trying to draw
octants from draw lists faster than in trying to generate the draw lists themselves faster.

Why Optimizing Isn't a Science
There is one slightly tricky element to Listing 20.4. If you look closely, you'll note that
each draw list element is always set to 0. Later, that same element may be set again, this
time to 1, meaning that a single element may be set twice, incurring an extra instruc
tion and an extra memory access. Is this wise?

In this case, it probably is, although the truth of the matter is far from clear; the
question illustrates the hazards of optimizing in today's multi-platform (286, 386, 486,
and Pentium, with a variety of memory architectures) world. Presetting each element
to 0 allows us to branch and be done with it if there is no minor move, although it also
requires us to perform a second set for each element for which there is a minor move.
The alternative would be something like this:

js NoMoveMinor
<advance minor coordinate>
mov byte ptr [di]. 1

330 [l} Chapter 20

jmp short MoveMajor
NoMoveMinor:

mov byte ptr [di],O
MoveMajor:

inc di

This code only sets each draw list element once, but also requires a branch in the case
where the minor coordinate advances. That means that the latter approach saves one
MOV BYTE PTR [DI],0 when the minor coordinate advances, but adds one JMP
SHORT MoveMajor at the same time-not a good trade on any 80x86 processor.
Although in actual use, instruction fetching can alter those cycle counts somewhat; any
variation is usually to the relative detriment ofJMP, which empties the prefetch queue.

Well, then, why not load I or O into a register and then store the register, eliminat
ing a memory access? That code would look like this:

sub al ,al ;assume there's no minor move
js NoMoveMinor
<advance minor coordinate>
inc ax ;upper byte doesn't matter, but word INC

; is more efficient than byte INC
NoMoveMinor:

stosb

This last approach might be faster-or it might not. It all depends on the processor
and the memory architecture. On an 8088, there's no question but that the last ap
proach is faster; the 8088 instruction set favors both string instructions like STOSB
and keeping values in registers. On a 386, however, MOV [DI],0 takes just 2 cycles,
and INC DI takes another 2; STOSB takes 4, so there's no advantage to STOSB there.
(On a 486 and Pentium, STOSB is almost always a loser to MOV/INC.) However, the
latter approach requires not only STOSB but also SUB AL,AL and possibly INC AX,
so it's actually 2 cycles slower on a 386 in both cases.

At this point we get into issues such as whether the system has a cache, and if so
whether the code is in the cache and whether it's a write-back or write-through cache,
and if not whether we've hit a ready-to-go interleaved memory bank or the current
column in static-column RAM. In short, there's no clear answer as to which code is
fastest here unless you know not only your target processor but also your target memory
architecture. The only thing that's constant across all 80x86-family processors is that
branching is slow, so all of the alternative approaches we've discussed are faster than the
obvious approach that we first discussed, the approach of not preloading or presetting
at all and branching in both cases.

I'd like to be able to pull a clear, simple lesson out of all this, but the life of an
optimizing PC programmer is neither simple nor clear. If there's a moral here, it would
be: aim down the middle. That is, try to write code that provides good performance
(by assembly language standards) on every common 80x86 processor, and terrible per
formance on none. In this particular example, that translates into not branching any
more than you absolutely must.

The Polygon
Primeval

... u
I 7 = m = c.:,

Drawing Polygons Efficiently and Quickly
"Give me but one firm spot on which to stand, and I will move the Earth. "
- Archimedes

Were Archimedes alive today, he might say, "Give me but one fast polygon-fill routine
on which to call, and I will draw the Earth." Programmers often think of pixel drawing
as being the basic graphics primitive, but filled polygons are equally fundamental and
far more useful. Filled polygons can be used for constructs as diverse as a single pixel or
a 3-D surface, and virtually everything in between.

I'll spend some time in this chapter and the next several developing routines to draw
filled polygons and building more sophisticated graphics operations atop those rou
tines. Once we have that foundation, I'll get into 2-D manipulation and animation of
polygon-based entities as preface to an exploration of 3-D graphics. You can't get there
from here without laying some groundwork, though, so in this chapter I'll begin with
the basics of filling a polygon. In the next chapter, we'll see how to draw a polygon
considerably faster. That's my general approach for this sort of topic: High-level explo
ration of a graphics topic first, followed by a speedy hardware-specific implementation
for the IBM PC/VGA combination, the most widely used graphics system around.
Abstract, machine-independent graphics is a thing of beauty, but only by understand
ing graphics at all levels, including the hardware, can you boost performance into the
realm of the sublime.

And slow computer graphics is scarcely worth the bother.

331

332 /gJ Chapter 21

Filled Polygons
A polygon is simply a shape formed by lines laid end to end to form a continuous,
closed path. A polygon is filled by setting all pixels within the polygon's boundaries to
a color or pattern. For now, we'll work only with polygons filled with solid colors.

You can divide polygons into three categories: convex, nonconvex, and complex, as
shown in Figure 21.1. Convex polygons include what you'd normally think of as "con
vex" and more; as far as we're concerned, a convex polygon is one for which any hori
zontal line drawn through the polygon encounters the right edge exactly once and the
left edge exactly once, excluding horizontal and zero-length edge segments. Put an
other way, neither the right nor left edge of a convex polygon ever reverses direction
from up to down, or vice-versa. Also, the right and left edges of a convex polygon may
not cross one another, although they may touch so long as the right edge never crosses
over to the left side of the left edge. (Check out the second polygon drawn in Listing
21.3, which certainly isn't convex in the normal sense.) The boundaries of nonconvex
polygons, on the other hand, can go in whatever directions they please, so long as they
never cross. Complex polygons can have any boundaries you might imagine, which
makes for interesting problems in deciding which interior spaces to fill and which not
to fill. Each category is a superset of the previous one.

(See Chapter 24 for a more detailed discussion of polygon types and naming.)
Why bother to distinguish between convex, nonconvex, and complex polygons?

Easy: performance, especially when it comes to filling convex polygons. We're going to
start with filled convex polygons; they're widely useful and will serve well to introduce
some of the subtler complexities of polygon drawing, not the least of which is the
slippery concept of "inside."

Which Side Is Inside?
The basic principle of polygon filling is decomposing each polygon into a series of
horizontal lines, one for each horizontal row of pixels, or scan line, within the polygon
(a process I'll call scan conversion), and drawing the horizontal lines. I'll refer to the
entire process as rasterization. Rasterization of convex polygons is easily done by starting at

Convex Non convex Complex

Figure 21.1 Convex, Nonconvex, and Complex Polygons

The Polygon Primeval gJ 333

the top of the polygon and tracing down the left and right sides, one scan line (one
vertical pixel) at a time, filling the extent between the two edges on each scan line, until
the bottom of the polygon is reached. At first glance, rasterization does not seem to be
particularly complicated, although it should be apparent that this simple approach is
inadequate for nonconvex polygons.

There are a couple of complications, however. The lesser complication is how to

rasterize the polygon efficiently, given that it's difficult to write fast code that simulta
neously traces two edges and fills the space between them. The solution is to decouple
the process of scan-converting the polygon into a list of horizontal lines from that of
drawing the horizontal lines. One device-independent routine can trace along the two
edges and build a list of the beginning and end coordinates of the polygon on each
raster line. Then a second, device-specific, routine can draw from the list after the
entire polygon has been scanned. We'll see this in action shortly.

The second, greater complication arises because the definition of which pixels are
"within" a polygon is a more complicated matter than you might imagine. You might
think that scan-converting an edge of a polygon is analogous to drawing a line from
one vertex to the next, but this is not so. A line by itself is a one-dimensional construct,
and as such is approximated on a display by drawing the pixels nearest to the line on
either side of the true line. A line serving as a polygon boundary, on the other hand, is
part of a two-dimensional object. When filling a polygon, we want to draw the pixels
within the polygon, but a standard vertex-to-vertex line-drawing algorithm will draw
many pixels outside the polygon, as shown in Figure 21.2.

It's no crime to use standard lines to trace out a polygon, rather than drawing only
interior pixels. In fact, there are certain advantages: For example, the edges of a filled
polygon will match the edges of the same polygon drawn unfilled. Such polygons will

0000
000
000
00 0
00 0
00 0
00 0
oo--t,,e-4--o
00000000
Polygon boundary pixels
selected by a standard
line-drawing algorithm.

Polygon boundary pixels when
all drawing is kept inside or on
the polygon's bounding lines.

Figure 21.2 Drawing Polygons with Standard Line-Drawing Algorithms

334 gJ Chapter 21

0000 0
000 0
000 0
00 0
00 0
00 0
00 0
0 0 ~H!H~ID 0
00000000

The screen after a filled polygon
is drawn using a standard
line-drawing algorithm to trace
the edges.

Figure 21.3 The Adjacent Polygons Problem

ooa-.i
00
00
00
00
00
00

0
0
0
0
0
0
0

0 0 ... 11-f!!!!H!!I.IH!)) 0
00000000

The screen after a second, adjacent
polygon is drawn; the second polygon
wipes out several pixels drawn as part
of the first polygon, some of them within
the first polygon's boundaries.

look pretty much as they're supposed to, and all drawing on raster displays is, after all,
only an approximation of an ideal.

There's one great drawback to tracing polygons with standard lines, however: Adjacent
polygons won't fit together properly, as shown in Figure 21.3. If you use six equilateral
triangles to make a hexagon, for example, the edges of the triangles will overlap when
traced with standard lines, and more recently drawn triangles will wipe out portions of
their predecessors. Worse still, odd color effects will show up along the polygon bound
aries if XOR drawing is used. Consequently, filling out to the boundary lines just won't
do for drawing images composed of fitted-together polygons. And because fitting poly
gons together is exactly what I have in mind, we need a different approach.

How Do You Fit Polygons Together?
How, then, do you fit polygons together? very carefully. First, the line-tracing algorithm
must be adjusted so that it selects only those pixels that are truly inside the polygon.
This basically requires shifting a standard line-drawing algorithm horizontally by one
half-pixel toward the polygon's interior. That leaves the issue of how to handle points
that are exactly on the boundary, and points that lie at vertices, so that those points are
drawn once and only once. To deal with that, we're going to adopt the following rules:

• Points located exactly on nonhorizontal edges are drawn only if the interior of the
polygon is directly to the right (left edges are drawn, right edges aren't).

• Points located exactly on horizontal edges are drawn only if the interior of the poly
gon is directly below them (horizontal top edges are drawn, horizontal bottom edges
aren't).

The Polygon Primeval ll} 335

• A vertex is drawn only if all lines ending at that point meet the above conditions (no
right or bottom edges end at that point).

All edges of a polygon except those that are flat tops or flat bottoms will be consid
ered either right edges or left edges, regardless of slope. The left edge is the one that
starts with the leftmost line down from the top of the polygon.

These rules ensure that no pixel is drawn more than once when adjacent polygons
are filled, and that if polygons cover the full 360-degree range around a pixel, then that
pixel will be drawn once and only once-just what we need in order to be able to fit
filled polygons together seamlessly.

This sort of non-overlapping polygon filling isn't ideal for all purposes.
Polygons are skewed toward the top and left; edges, which not only
introduces drawing error relative to the ideal polygon but also means
that a filled polygon won't match the same polygon drawn unfilled.
Narrow wedges and one-pixel-wide polygons will show up spottily. All
in all, the choice of polygon-filling approach depends entirely on the
ways in which the filled polygons must be used.

For our purposes, nonoverlapping polygons are the way to go, so let's have at them.

Filling Non-Overlapping Convex Polygons
Without further ado, Listing 21.1 contains a function, FillConvexPolygon, that ac
cepts a list of points that describe a convex polygon, with the last point assumed to

connect to the first, and scans it into a list of lines to fill, then passes that list to the
function DrawHorizontalLineList in Listing 21.2. Listing 21.3 is a sample program
that calls FillConvexPolygon to draw polygons of various sorts, and Listing 21.4 is a
header file included by the other listings. Here are the listings; we'll pick up discussion
on the other side.

LISTING 21.1 L21-1.C
/* Color-fills a convex polygon. All vertices are offset by (XOffset,

YOffset). "Convex" means that every horizontal line drawn through
the polygon at any point would cross exactly two active edges
(neither horizontal lines nor zero-length edges count as active
edges; both are acceptable anywhere in the polygon), and that the
right & left edges never cross. (It's OK for them to touch, though,
so long as the right edge never crosses over to the left of the
left edge.) Nonconvex polygons won't be drawn properly. Returns 1
for success, O if memory allocation failed. */

#include <stdio.h>
#include <math.h>

336 Ill Chapter 21

#ifdef _TURB0C_
#include <alloc.h>
#else /*MSC*/
#include <malloc.h>
fiend if
#include "polygon.h"

/* Advances the index by one vertex forward through the vertex list,
wrapping at the end of the list*/

#define INDEX_F0RWARD(Index) \
Index - (Index+ 1) % Vertexlist->Length;

/* Advances the index by one vertex backward through the vertex list,
wrapping at the start of the list*/

#define INDEX_BACKWARD(Index) \
Index= (Index - 1 + Vertexlist->Length) % Vertexlist->Length;

/* Advances the index by one vertex either forward or backward through
the vertex list, wrapping at either end of the list*/

#define INDEX_M0VE(Index,Direction) \
if (Direction> 0) \

Index= (Index+ 1) % Vertexlist->Length: \
else \

Index= (Index - 1 + Vertexlist->Length) % Vertexlist->Length;

extern void DrawHorizontallineList(struct HLinelist *, int):
static void ScanEdge(int, int, int, int, int, int. struct Hline **):

int FillConvexPolygon(struct PointlistHeader * Vertexlist, int Color,
int X0ffset, int Y0ffset)

int i, MinindexL, Maxindex. MinindexR, SkipFi rst, Temp;
int MinPoint_Y, MaxPoint_Y, TopisFlat, LeftEdgeDir;
int Nextindex, Currentindex, Previousindex:
int DeltaXN, DeltaYN, DeltaXP, DeltaYP:
struct Hlinelist WorkingHLinelist;
struct Hline *EdgePointPtr;
struct Point *VertexPtr;

/* Point to the vertex list*/
VertexPtr = Vertexlist->PointPtr;

/* Scan the list to find the top and bottom of the polygon*/
if (Vertexlist->Length = 0)

return(l); /* reject null polygons*/
MaxPoint_Y - MinPoint_Y = VertexPtr[MinindexL - Maxindex = 0].Y:
for (i = l; i < Vertexlist->Length: i++) {

if (VertexPtr[i].Y < MinPoint_Y)
MinPoint_Y = VertexPtr[MinindexL = i].Y; /* new top*/

else if (VertexPtr[i].Y > MaxPoint_Y)
MaxPoint_Y = VertexPtr[Maxindex = i].Y; /* new bottom*/

if (MinPoint_Y
return(l):

MaxPoint_Y)
/* polygon is 0-height; avoid infinite loop below*/

/* Scan in ascending order to find the last top-edge point*/
MinindexR = MinindexL:
while (VertexPtr[MinindexR].Y = MinPoint_Y)

INDEX_F0RWARD(MinindexR);
INDEX_BACKWARD(MinindexR); /*backup to last top-edge point*/

The Polygon Primeval g} 337

/* Now scan in descending order to find the first top-edge point*/
while (VertexPtr[MinindexL].Y == MinPoint_YJ

INDEX_BACKWARD(MinindexLJ;
INDEX_FORWARD(MinindexLJ; /*backup to first top-edge point*/

/* Figure out which direction through the vertex list from the top
vertex is the left edge and which is the right*/

LeftEdgeDir = -1; /* assume left edge runs down thru vertex list*/
if ((TopisFlat = (VertexPtr[MinlndexL].X !=

VertexPtr[MinlndexR].Xl ? 1 : OJ== ll {
/* If the top is flat. just see which of the ends is leftmost*/
if (VertexPtr[MinlndexL].X > VertexPtr[MinlndexR].X) {

LeftEdgeDir = 1; /* left edge runs up through vertex list*/
Temp= MinlndexL: /* swap the indices so MinlndexL */
MinindexL = MinlndexR: /* points to the start of the left*/
MinindexR = Temp: /* edge, similarly for MinlndexR */

else {
/* Point to the downward end of the first line of each of the

two edges down from the top*/
Nextindex = MinindexR:
INDEX_FORWARD(Nextindex):
Previousindex = MinlndexL:
INDEX_BACKWARD(Previouslndex):
/* Calculate X and Y lengths from the top vertex to the end of

the first line down each edge: use those to compare slopes
and see which line is leftmost*/

DeltaXN = VertexPtr[Nextlndex].X - VertexPtr[MinindexL].X:
DeltaYN = VertexPtr[Nextindex].Y - VertexPtr[MinindexL].Y:
DeltaXP = VertexPtr[Previousindex].X - VertexPtr[MinlndexL].X:
DeltaYP = VertexPtr[Previousindex].Y - VertexPtr[MinlndexL].Y:
if (((long)DeltaXN * DeltaYP - (long)DeltaYN * DeltaXP) < OL) {

LeftEdgeDir = 1: /* left edge runs up through vertex list*/
Temp= MinindexL: /* swap the indices so Minlndexl */
MinlndexL = MinlndexR; /* points to the start of the left*/
MinlndexR = Temp: /* edge, similarly for MinindexR */

I* Set the# of scan lines in the polygon. skipping the bottom edge
and also skipping the top vertex if the top isn't flat because
in that case the top vertex has a right edge component, and set
the top scan line to draw. which is likewise the second line of
the polygon unless the top is flat*/

if ((WorkingHLineList.Length =
MaxPoint_Y - MinPoint_Y - 1 + TopisFlat) <= OJ

return(l): /* there's nothing to draw, so we're done*/
WorkingHLineList.YStart = YOffset + MinPoint_Y + 1 - TopisFlat:

/* Get memory in which to store the line list we generate*/
if ((WorkingHLineList.HLinePtr =

(struct HLine *) (malloc(sizeof(struct Hline) *
WorkingHLineList.Lengthl)) == NULL)

return(O); /* couldn't get memory for the line list*/

/* Scan the left edge and store the boundary points in the list*/
/* Initial pointer for storing scan converted left-edge coords */
EdgePointPtr = WorkingHLinelist.HLinePtr:
/* Start from the top of the left edge*/
Previousindex = Currentindex = MinlndexL:

338 [g} Chapter 21

/* Skip the first point of the first line unless the top is flat;
if the top isn't flat. the top vertex is exactly on a right
edge and isn't drawn*/

SkipFirst = TopisFlat ? 0 : l;
I* Scan convert each line in the left edge from top to bottom*/
do {

INDEX_MOVE(Currentindex.LeftEdgeDir);
ScanEdge(VertexPtr[Previousindex].X + XOffset,

VertexPtr[Previousindex].Y.
VertexPtr[Currentindex].X + XOffset.
VertexPtr[Currentindex].Y. 1. SkipFirst. &EdgePointPtr);

Previousindex = Currentindex;
SkipFirst = 0; /* scan convert the first point from now on*/

while (Currentlndex != Maxlndex);

/* Scan the right edge and store the boundary points in the list*/
EdgePointPtr = WorkingHLinelist.HLinePtr:
Previousindex = Currentindex = MinindexR:
SkipFirst = TopisFlat? 0 : l;
I* Scan convert the right edge, top to bottom. X coordinates are

adjusted 1 to the left, effectively causing scan conversion of
the nearest points to the left of but not exactly on the edge*/

do {
INDEX_MOVE(Currentlndex,-LeftEdgeDir);
ScanEdge(VertexPtr[Previousindex].X + XOffset - 1,

VertexPtr[Previouslndex].Y.
VertexPtr[Currentlndex].X + XOffset - 1,
VertexPtr[Currentindex].Y. O. SkipFirst, &EdgePointPtr);

Previousindex = Currentindex;
SkipFirst = 0; /* scan convert the first point from now on*/

while (Currentlndex !- Maxlndex);

/* Draw the line list representing the scan converted polygon*/
DrawHorizontalLineList(&WorkingHLineList. Color);

/* Release the line list's memory and we're successfully done*/
free(WorkingHLinelist.HLinePtr);
return(!);

/* Scan converts an edge from (Xl,Yl) to (X2,Y2), not including the
point at (X2,Y2). This avoids overlapping the end of one line with
the start of the next, and causes the bottom scan line of the
polygon not to be drawn. If SkipFirst != 0, the point at (Xl.Yl)
isn't drawn. For each scan line. the pixel closest to the scanned
line without being to the left of the scanned line is chosen. */

static void ScanEdge(int Xl. int Yl. int X2, int Y2, int SetXStart,
int SkipFirst, struct Hline **EdgePointPtr)

int Y, DeltaX. DeltaY:
double InverseSlope:
struct Hline *WorkingEdgePointPtr:

/* Calculate X and Y lengths of the line and the inverse slope*/
DeltaX - X2 - Xl:
if ((DeltaY = Y2 - Yl) <= 0)

return: /* guard against 0-length and horizontal edges*/
InverseSlope = (double)DeltaX / (double)DeltaY:

/* Store the X coordinate of the pixel closest to but not to the
left of the line for each Y coordinate between Yl and Y2. not
including Y2 and also not including Yl if SkipFirst != O */

The Polygon Primeval Ill 339

WorkingEdgePointPtr = *EdgePointPtr: /* avoid double dereference*/
for (Y = Yl + SkipFirst: Y < Y2; Y++, WorkingEdgePointPtr++) {

/* Store the X coordinate in the appropriate edge list*/
if (SetXStart == 1)

WorkingEdgePointPtr->XStart =
Xl + (int)(ceil((Y-Yl) * InverseSlope)):

else
WorkingEdgePointPtr->XEnd =

Xl + (intl(ceil((Y-Yl) * InverseSlope));

EdgePointPtr = WorkingEdgePointPtr: / advance caller's ptr */

LISTING 21.2 L21-2.C
/* Draws all pixels in the list of horizontal lines passed in, in

mode 13h. the VGA's 320x200 256-color mode. Uses a slow pixel-by
pixel approach, which does have the virtue of being easily ported
to any environment. */

#include <dos.h>
#include "polygon.h"

#define SCREEN_WIDTH 320
#define SCREEN_SEGMENT OxAOOO

static void DrawPixel(int, int, int):

void DrawHorizontallinelist(struct HLinelist * HLineListPtr,
int Color)

struct Hline *HLinePtr;
int Y, X:

/* Point to the XStart/XEnd descriptor for the first (top)
horizontal line*/

HLinePtr = HLineListPtr->HLinePtr:
/* Draw each horizontal line in turn. starting with the top one and

advancing one line each time*/
for (Y = HLineListPtr->YStart: Y < (HLinelistPtr->YStart +

HLinelistPtr->Length): Y++, HLinePtr++) {
/* Draw each pixel in the current horizontal line in turn,

starting with the leftmost one*/
for (X = HLinePtr->XStart; X <= HLinePtr->XEnd: X++)

DrawPixel(X, Y. Color);

/* Draws the pixel at (X, Y) in color Color in VGA mode 13h */
static void DrawPixel(int X, int Y, int Color) {

unsigned char far *ScreenPtr;

#ifdef _TURBOC_
ScreenPtr = MK_FP(SCREEN_SEGMENT, y * SCREEN_WIDTH + X):

#else /* MSC 5.0 */
FP_SEG(ScreenPtr) = SCREEN_SEGMENT:
FP_OFF(ScreenPtr) = Y * SCREEN_WIDTH + X:

//endi f
*ScreenPtr = (unsigned char)Color:

340 [l.J Chapter 21

LISTING 21.3 L21-3.C
/* Sample program to exercise the polygon-filling routines. This code

and all polygon-filling code has been tested with Borland and
Microsoft compilers. */

#include <conio.h>
#include <dos.h>
#include "polygon.h"

/* Draws the polygon described by the point list PointList in color
Color with all vertices offset by (X,Y) */

#define DRAW_POLYGON(PointList,Color,X,Y)
Polygon.Length - sizeof(PointList)/sizeof(struct
Polygon.PointPtr = PointList:
FillConvexPolygon(&Polygon, Color, X, Y):

void main(void);

\
Point): \

\

extern int FillConvexPolygon(struct PointListHeader * int, int, int):

void main() {
int i , j:
struct PointListHeader Polygon:
static struct Point ScreenRectangle[] =

{{0,0},{320,0},{320,200},{0,200}}:
static struct Point ConvexShape[] =

{{0,0},{121,0},{320,0},{200,51},{301,51},{250,51},{319,143},
{320,200},{22,200},{0,200},{50,180},{20,160},{50,140},
{20,120},{50,100},{20,80},{50,60},{20,40},{50,20}};

static struct Point Hexagon[]=
{{90,-50},{0,-90},{-90,-50},{-90,50}.{0.90},{90.50}};

static struct Point Triangle![]= {{30,0},{15,20},{0,0}}:
static struct Point Triangle2[] = {{30,20}.(15,0},(0,20}}:
static struct Point Triangle3[] = {{0,20},(20,10} ,{0,0}}:
static struct Point Triangle4[] = {{20,20},{20,0},{0,10}}:
union REGS regset:

/* Set the display to
regset.x.ax - Ox0013:

VGA mode 13h, 320x200 256-color mode*/
/*AH= O selects mode set function,

AL= Ox13 selects mode Ox13
when set as parameters for INT OxlO */

int86(0xl0. ®set, ®set);

/* Clear the screen to cyan*/
DRAW_POLYGON(ScreenRectangle, 3, 0, 0):

/* Draw an irregular shape that meets our definition of convex but
is not convex by any normal description*/

DRAW_POLYGON(ConvexShape, 6, O. 0):
getch(); /* wait for a keypress */

/* Draw adjacent triangles across the top half of the screen*/
for (j=O; j<=80; j+=20) {

for (i=O: i<290; i += 30) {
DRAW_POLYGON(Trianglel, 2, i, j):
DRAW_POLYGON(Triangle2, 4, i+l5, j):

/* Draw adjacent triangles across the bottom half of the screen*/
for (j=lOO; j<=170; j+=20)

/* Do a row of pointing-right triangles*/
for (i=D; 1<290; i += 20) {

DRAW_POLYGON(Triangle3, 40, i, j);

The Polygon Primeval /gJ 341

/* Do a row of pointing-left triangles halfway between one row
of pointing-right triangles and the next, to fit between*/

for (i=O; 1<290: i += 20) {
DRAW_POLYGON(Triangle4, 1, i, j+lO):

}
getch(): /* wait for a keypress */

/* Finally, draw a series of concentric hexagons of approximately
the same proportions in the center of the screen*/

for (i=O: 1<16; i++) {
DRAW_POLYGON(Hexagon, i, 160, 100):
for (j=O: j<sizeof(Hexagon)/sizeof(struct Point): j++) {

/* Advance each vertex toward the center*/
if (Hexagon[j].X !- 0) {

Hexagon[j].X Hexagon[j].X >- 0? 3 -3:
Hexagon[j].Y Hexagon[j].Y >- O? 2 -2;

else {
Hexagon[j].Y Hexagon[j].Y >= O? 3 -3:

getch(): /* wait for a keypress */

/* Return to text mode and exit*/
regset.x.ax = Ox0003: /*AL= 3 selects 80x25 text mode*/
int86(0x10, ®set, ®set);

LISTING 21.4 POLYGON.H
/* POLYGON.H: Header file for polygon-filling code*/

I* Describes a single point (used for a single vertex) *I
struct Point {

int X: I* X coordinate *I
int Y: I* y coordinate *I

} :

/* Describes a series of points (used to store a list of vertices that
describe a polygon; each vertex is assumed to connect to the two
adjacent vertices, and the last vertex is assumed to connect to the
fi rstl */

struct PointListHeader {
int Length;
struct Point* PointPtr:

} :

I*# of points*/
/* pointer to list of points*/

/* Describes the beginning and ending X coordinates of a single
horizontal line*/

struct HLi ne {
int XStart: /* X coordinate of leftmost pixel in line*/
int XEnd; /* X coordinate of rightmost pixel in line*/

} ;

342 {gJ Chapter 21

/* Describes a Length-long series of horizontal lines, all assumed to
be on contiguous scan lines starting at YStart and proceeding
downward (used to describe a scan-converted polygon to the
low-level hardware-dependent drawing code)*/

struct HLineList (
int Length; /*#of horizontal lines*/
int YStart; /* Y coordinate of topmost line*/
struct HLine * HLinePtr; /* pointer to list of horz lines*/

) ;

Listing 21.2 isn't particularly interesting; it merely draws each horizontal line in the
passed-in list in the simplest possible way, one pixel at a time. (No, that doesn't make
the pixel the fundamental primitive; in the next chapter I'll replace Listing 21.2 with a
much faster version that doesn't bother with individual pixels at all.)

Listing 21.1 is where the action is in this chapter. Our goal is to scan out the left and
right edges of each polygon so that all points inside and no points outside the polygon
are drawn, and so that all points located exactly on the boundary are drawn only if they
are not on right or bottom edges. That's precisely what Listing 21.1 does. Here's how:

Listing 21.1 first finds the top and bottom of the polygon, then works out from the
top point to find the two ends of the top edge. If the ends are at different locations, the
top is flat, which has two implications. First, it's easy to find the starting vertices and
directions through the vertex list for the left and right edges. (To scan-convert them
properly, we must first determine which edge is which.) Second, the top scan line of
the polygon should be drawn without the rightmost pixel, because only the rightmost
pixel of the horizontal edge that makes up the top scan line is part of a right edge.

If, on the other hand, the ends of the top edge are at the same location, the top is
pointed. In that case, the top scan line of the polygon isn't drawn; it's part of the right
edge line that starts at the top vertex. (It's part of a left-edge line, too, but the right edge
overrides.) When the top isn't flat, it's more difficult to tell in which direction through
the vertex list the right and left edges go, because both edges start at the top vertex. The
solution is to compare the slopes from the top vertex to the ends of the two lines
coming out of it in order to see which is leftmost. The calculations in Listing 21.1
involving the various deltas do this, using a rearranged form of the slope-based equa
tion:

(DeltaYN/DeltaXN)>(DeltaYP/DeltaXP)

Once we know where the left edge starts in the vertex list, we can scan-convert it a
line segment at a time until the bottom vertex is reached. Each point is stored as the
starting X coordinate for the corresponding scan line in the list we'll pass to

DrawHorizontalLineList. The nearest X coordinate on each scan line that's on or to
the right of the left edge is selected. The last point of each line segment making up the
left edge isn't scan-converted, producing two desirable effects. First, it avoids drawing
each vertex twice; two lines come into every vertex, but we want to scan-convert each
vertex only once. Second, not scan-converting the last point of each line causes the

The Polygon Primeval /gJ 343

bottom scan line of the polygon not to be drawn, as required by our rules. The first
scan line of the polygon is also skipped if the top isn't flat.

Now we need to scan-convert the right edge into the ending X coordinate fields of
the line list. This is performed in the same manner as for the left edge, except that every
line in the right edge is moved one pixel to the left before being scan-converted. Why?
We want the nearest point to the left of but not on the right edge, so that the right edge
itself isn't drawn. As it happens, drawing the nearest point on or to the right of a line
moved one pixel to the left is exactly the same as drawing the nearest point to the left of
but not on that line in its original location. Sketch it out and you'll see what I mean.

Once the two edges are scan-converted, the whole line list is passed to
DrawHorizontalLineList, and the polygon is drawn.

Finis.

Oddball Cases
Listing 21.1 handles zero-length segments (multiple vertices at the same location) by
ignoring them, which will be useful down the road because scaled-down polygons can
end up with nearby vertices moved to the same location. Horizontal line segments are
fine anywhere in a polygon, too. Basically, Listing 21.1 scan-converts between active
edges (the edges that define the extent of the polygon on each scan line) and both
horizontal and zero-length lines are non-active; neither advances to another scan line,
so they don't affect the edges being scanned.

I've limited this chapter's code to merely demonstrating the principles of filling
convex polygons, and the listings given are by no means fast. In the next chapter, we'll
spice things up by eliminating the floating point calculations and pixel-at-a-time drawing
and tossing a little assembly language into the mix.

Fast Convex
Polygons

Filling Polygons in a Hurry

.. u
I r = ca -= c.:t

In the previous chapter, we explored the surprisingly intricate process of filling convex
polygons. Now we're going to fill them an order of magnitude or so faster.

Two thoughts may occur to some of you at this point: "Oh, no, he's not going to get
into assembly language and device-dependent code, is he?" and, "Why bother with
polygon filling-or, indeed, any drawing primitives-anyway? Isn't that what GUis
and third-party libraries are for?"

To which I answer, "Well, yes, I am," and, "If you have to ask, you've missed the magic of
microcomputer programming." Actually, both questions ask the same thing, and that
is: "Why should I, as a programmer, have any idea how my program actually works?"

Put that way, it sounds a little different, doesn't it?
GUis, reusable code, portable code written entirely in high-level languages, and

object-oriented programming are all the rage now, and promise to remain so for the
foreseeable future. The thrust of this technology is to enhance the software develop
ment process by offloading as much responsibility as possible to other programmers,
and by writing all remaining code in modular, generic form. This modular code then
becomes a black box to be reused endlessly without another thought about what actu
ally lies inside. GUis also reduce development time by making many interface choices
for you. That, in turn, makes it possible to create quickly and reliably programs that
will be easy for new users to pick up, so software becomes easier to both produce and
learn. This is, without question, a Good Thing.

The "black box" approach does not, however, necessarily cause the software itself to
become faster, smaller, or more innovative; quite the opposite, I suspect. I'll reserve
judgement on whether that is a good thing or not, but I'll make a prediction: In the
short run, the aforementioned techniques will lead to noticeably larger, slower pro
grams, as programmers understand less and less of what the key parts of their programs

345

346 ~ Chapter 22

do and rely increasingly on general-purpose code written by other people. (In the long
run, programs will be bigger and slower yet, but computers will be so fast and will have
so much memory that no one will care.) Over time, PC programs will also come to be
more similar to one another-and to programs running on other platforms, such as
the Mac-as regards both user interface and performance.

Again, I am not saying that this is bad. It does, however, have major implications for
the future nature of PC graphics programming, in ways that will directly affect the
means by which many of you earn your livings. Not so very long from now, graphics
programming-all programming, for that matter-will become mostly a matter of
assembling in various ways components written by other people, and will cease to be
the all-inclusively creative, mindbendingly complex pursuit it is today. (Using legally
certified black boxes is, by the way, one direction in which the patent lawyers are
leading us; legal considerations may be the final nail in the coffin of homegrown code.)
For now, though, it's still within your power, as a PC programmer, to understand and
even control every single thing that happens on a computer if you so desire, to realize
any vision you may have. Take advantage of this unique window of opportunity to

create some magic!
Neither does it hurt to understand what's involved in drawing, say, a filled polygon,

even if you are using a GUI. You will better understand the performance implications
of the available GUI functions, and you will be able to fill in any gaps in the functions
provided. You may even find that you can outperform the GUI on occasion by doing
your own drawing into a system memory bitmap, then copying the result to the screen;
for instance, you can do this under Windows by using the WinG library available from
Microsoft. You will also be able to understand why various quirks exist, and will be
able to put them to good use. For example, the X Window System follows the polygon
drawing rules described in the previous chapter (although it's not obvious from the X
Window System documentation); if you understood the previous chapter's discussion,
you're in good shape to use polygons under X.

In short, even though doing so runs counter to current trends, it helps to under
stand how things work, especially when they're very visible parts of the software you
develop. That said, let's learn more about filling convex polygons.

Fast Convex Polygon Filling
In addressing the topic of filling convex polygons in the previous chapter, the imple
mentation we came up with met all of our functional requirements. In particular, it
met stringent rules that guaranteed that polygons would never overlap or have gaps at
shared edges, an important consideration when building polygon-based images. Un
fortunately, the implementation was also slow as molasses. In this chapter we'll work
up polygon-filling code that's fast enough to be truly usable.

Fast Convex Polygons gJ 34 7

Our original polygon filling code involved three major tasks, each performed by a
separate function:

• Tracing each polygon edge to generate a coordinate list (performed by the function
ScanEdge);

• Drawing the scanned-out horizontal lines that constitute the filled polygon
(DrawHorizontalLineList); and

• Characterizing the polygon and coordinating the tracing and drawing
(FillConvexPolygon).

The amount of time that the previous chapter's sample program spent in each of
these areas is shown in Table 22.1. AI, you can see, half the time was spent drawing and
the other half was spent tracing the polygon edges (the time spent in FillConvexPolygon
was relatively minuscule), so we have our choice of where to begin optimizing.

Fast Drawing
Let's start with drawing, which is easily sped up. The previous chapter's code used a
double-nested loop that called a draw-pixel function to plot each pixel in the polygon
individually. That's a ridiculous approach in a graphics mode that offers linearly mapped
memory, as does VGA mode 13H, the mode in which we're working. At the very least,
we could point a far pointer to the left edge of each polygon scan line, then draw each
pixel in that scan line in quick succession, using something along the lines of*ScrPtr++
= FillColor; inside a loop.

However, it seems silly to use a loop when the x86 has an instruction, REP STOS,
that's uniquely suited to filling linear memory buffers. There's no way to use REP
STOS directly in C code, but it's a good bet that the memset library function uses
REP STOS, so you could greatly enhance performance by using memset to draw each
scan line of the polygon in a single shot. That, however, is easier said than done. The
memset function linked in from the library is tied to the memory model in use; in
small (which includes Tiny, Small, or Medium) data models memset accepts only near
pointers, so it can't be used to access screen memory. Consequently, a large (which
includes Compact, Large, or Huge) data model must be used to allow memset to draw
to display memory-a clear case of the tail wagging the dog. This is an excellent ex
ample of why, although it is possible to use C to do virtually anything, it's sometimes
much simpler just to use a little assembly code and be done with it.

At any rate, Listing 22.1 for this chapter shows a version ofDrawHorizontalLineList
that uses memset to draw each scan line of the polygon in a single call. When linked to
Chapter 21's test program, Listing 22.1 shown below increases pure drawing speed
(disregarding edge tracing and other nondrawing time) by more than an order of mag
nitude over Chapter 21 's draw-pixel-based code, despite the fact that Listing 22.1 re
quires a large (in this case, the Compact) data model. Listing 22.1 works fine with

348 gJ Chapter 22

Table 22 .1. Polygon Fill Performance

Total Polygon Draw Horizontal FillConvex
Implementation Filling Time LineList ScanEdge Polygon

Drawing to display memory in mode 13h

C floating point scan/ 11.69 5.80 seconds 5.86 0.03
DrawPixel drawing
code from Chapter 21, (50% of total) (50%) (<1%)
(small model)

C floating point scan/ 6.64 0.49 6.11 0.04
memset drawing
(Listing 22.1, compact model) (7%) (92%) (<1 %)

C integer scan/ 0.60 0.49 0.07 0.04
memset drawing
(Listing 22.1 & Listing 22.2, (82%) (12%) (7%)
compact model)

C integer scan/ 0.45 0.36 0.06 0.03
ASM drawing
(Listing 22.2 & Listing 22.3, (80%) (13%) (7%)
small model)

ASM integer scan/ 0.42 0.36 0.03 0.03
ASM drawing
(Listing 23.3 & Listing 23.4, (86%) (7%) (7%)
small model)

Drawing to system memory

C integer scan/ 0.31 0.20 0.07 0.04
memset drawing
(Listing 22.1 & Listing 22.2,
compact model) (65%) (23%) (13%)

ASM integer scan/ 0.13 O.D7 0.03 0.03
ASM drawing
(Li sting 22.3 & Listing 22.4, (54%) (23%) (23%)
small model)

All times are in seconds, as measured with Turbo Profiler on a 20-MHz cached 386 with no math coprocessor installed. Note
that time spent in main() is not included. C code was compiled with Borland C++ with maximum optimization (-G -0 -Z
-r -a); assembly language code was assembled with TASM. Percentages of combined times are rounded to the nearest percent,
so the sum of the three percentages does not always equal 100.

Fast Convex Polygons [lJ 349

Borland C++, but may not work with other compilers, for it relies on the aforemen
tioned interaction between memset and the selected memory model.

LISTING 22.1 L22-1.C
/* Draws all pixels in the list of horizontal lines passed in, in

mode 13h, the VGA's 320x200 256-color mode. Uses memset to fill
each line, which is much faster than using DrawPixel but requires
that a large data model (compact, large, or huge) be in use when
running in real mode or 286 protected mode.
All C code tested with Borland C++. */

/ti ncl ude <string.h>
/!include <dos.h>
/{include "polygon.h"

/tdefi ne SCREEN_WIDTH 320
/tdefi ne SCREEN_SEGMENT 0xA000

void DrawHorizontalLineList(struct HLineList * HLineListPtr,
int Color)

struct HLine *HLinePtr:
int Length, Width:
unsigned char far *ScreenPtr:

/* Point to the start of the first scan line on which to draw*/
ScreenPtr = MK_FP(SCREEN_SEGMENT,

HLineListPtr->YStart * SCREEN_WIDTH):

/* Point to the XStart/XEnd descriptor for the first (top)
horizontal line*/

HLinePtr = HLineListPtr->HLinePtr:
/* Draw each horizontal line in turn, starting with the top one and

advancing one line each time*/
Length= HLineListPtr->Length:
while (Length-- > 0) {

/* Draw the whole horizontal line if it has a positive width*/
if ((Width= HLinePtr->XEnd - HLinePtr->XStart + ll > 0)

memset(ScreenPtr + HLinePtr->XStart, Color, Width):
HLinePtr++: /* point to next scan line X info*/
ScreenPtr += SCREEN_WIDTH: /* point to next scan line start*/

At this point, I'd like to mention that benchmarks are notoriously unreliable; the
results in Table 22.1 are accurate only for the test program, and only when running on
a particular system. Results could be vastly different if smaller, larger, or more complex
polygons were drawn, or if a faster or slower computer/VGA combination were used.
These factors notwithstanding, the test program does fill a variety of polygons of vary
ing complexity sized from large to small and in between, and certainly the order of
magnitude difference between Listing 22.1 and the old version of
DrawHorizontalLineList is a clear indication of which code is superior.

350 g} Chapter 22

Anyway, Listing 22.1 has the desired effect of vastly improving drawing time. There
are cycles yet to be had in the drawing code, but as tracing polygon edges now takes 92
percent of the polygon filling time, it's logical to optimize the tracing code next.

Fast Edge Tracing
There's no secret as to why last chapter's ScanEdge was so slow: It used floating point
calculations. One secret of fast graphics is using integer or fixed-point calculations,
instead. (Sure, the floating point code would run faster if a math coprocessor were
installed, but it would still be slower than the alternatives; besides, why require a math
coprocessor when you don't have to?) Both integer and fixed-point calculations are
fast. In many cases, fixed-point is faster, but integer calculations have one tremendous
virtue: They're completely accurate. The tiny imprecision inherent in either fixed or
floating-point calculations can result in occasional pixels being one position off from
their proper location. This is no great tragedy, but after going to so much trouble to
ensure that polygons don't overlap at common edges, why not get it exactly right?

In fact, when I tested out the integer edge tracing code by comparing an integer
based test image to one produced by floating-point calculations, two pixels out of the
whole screen differed, leading me to suspect a bug in the integer code. It turned out,
however, that's in those two cases, the floating point results were sufficiently imprecise
to creep from just under an integer value to just over it, so that the ceil function
returned a coordinate that was one too large.

fg} Floating point i@ very accurate-but it is not preci@e. Integer calcu
lation@, properly performed, are.

Listing 22.2 shows a C implementation of integer edge tracing. Vertical and diago
nal lines, which are trivial to trace, are special-cased. Other lines are broken into two
categories: Y-major (closer to vertical) and X-major (closer to horizontal). The han
dlers for the Y-major and X-major cases operate on the principle of similar triangles:
The number ofX pixels advanced per scan line is the same as the ratio of the X delta of
the edge to the Y delta. Listing 22.2 is more complex than the original floating point
implementation, but not painfully so. In return for that complexity, Listing 22.2 is
more than 80 times faster at scanning edges-and, as just mentioned, it's actually more
accurate than the floating point code.

Ya gotta love that integer arithmetic.

Fast Convex Polygons fgJ 351

LISTING 22.2 L22-2.C
I* Scan converts an edge from (Xl,Yl) to (X2,Y2), not including the

point at (X2,Y2). If SkipFirst == 1, the point at (Xl,Yl) isn't
drawn; if Ski pFi rst == 0, it is. For each scan line, the pixel
closest to the scanned edge without being to the left of the
scanned edge is chosen. Uses an all-integer approach for speed and
precision. */

#include <math.h>
#include "polygon.h"

void ScanEdge(int Xl, int Yl, int X2, int Y2, int SetXStart,
int SkipFirst, struct Hline **EdgePointPtr)

int Y, DeltaX, Height, Width, AdvanceAmt, ErrorTerm, i;
int ErrorTermAdvance, XMajorAdvanceAmt;
struct Hline *WorkingEdgePointPtr;

WorkingEdgePointPtr = *EdgePointPtr; /* avoid double dereference*/
AdvanceAmt = ((DeltaX = X2 - Xl) > 0) ? 1 : -1;

/* direction in which X moves (Y2 is
always > Yl, so Y always counts up) */

if ((Height= Y2 - Yl) <= 0) /* Y length of the edge*/
return; /* guard against 0-length and horizontal edges*/

/* Figure out whether the edge is vertical, diagonal, X-major
(mostly horizontal), or Y-major (mostly vertical) and handle
appropriately*/

if ((Width= abs(DeltaX)) == 0) {
/* The edge is vertical; special-case by just storing the same

X coordinate for every scan line*/
/* Scan the edge for each scan line in turn*/
for (i = Height - SkipFirst; i-- > 0; WorkingEdgePointPtr++)

/* Store the X coordinate in the appropriate edge list*/
if (SetXStart == 1)

WorkingEdgePointPtr->XStart = Xl;
else

WorkingEdgePointPtr->XEnd = Xl;

else if (Width== Height) {
/* The edge is diagonal; special-case by advancing the X

coordinate 1 pixel for each scan line*/
if (SkipFirst) /* skip the first point if so indicated*/

Xl += AdvanceAmt; /* move 1 pixel to the left or right*/
/* Scan the edge for each scan line in turn*/
for (i = Height - SkipFirst; i-- > 0; WorkingEdgePointPtr++)

/* Store the X coordinate in the appropriate edge list*/
if (SetXStart == 1)

WorkingEdgePointPtr->XStart = Xl;
else

WorkingEdgePointPtr->XEnd = Xl;
Xl += AdvanceAmt; /* move 1 pixel to the left or right*/

else if (Height> Width)
/* Edge is closer to vertical than horizontal CY-major) */
if (DeltaX >= 0)

ErrorTerm = 0; /* initial error term going left->right */

352 Jg] Chapter 22

else
ErrorTerm - -Height+ 1: /* going right->left */

if (SkipFirst) { /* skip the first point if so indicated*/
/* Determine whether it's time for the X coord to advance*/
if ((ErrorTerm +=Width)> 0) {

}

Xl += AdvanceAmt: /* move 1 pixel to the left or right*/
ErrorTerm -= Height: /* advance ErrorTerm to next point*/

/* Scan the edge for each scan line in turn*/
for (i = Height - SkipFirst: i-- > 0: WorkingEdgePointPtr++)

/* Store the X coordinate in the appropriate edge list*/
if (SetXStart == 1)

WorkingEdgePointPtr->XStart = Xl:
else

WorkingEdgePointPtr->XEnd - Xl:
/* Determine whether it's time for the X coord to advance*/
if ((ErrorTerm +-Width)> 0) {

else {

Xl += AdvanceAmt: /* move 1 pixel to the left or right*/
ErrorTerm -- Height: /* advance ErrorTerm to correspond*/

/* Edge is closer to horizontal than vertical ex-major) */
/* Minimum distance to advance X each time*/
XMajorAdvanceAmt =(Width/ Height) * AdvanceAmt:
/* Error term advance for deciding when to advance X 1 extra*/
ErrorTermAdvance = Width t Height:
if (DeltaX >= 0)

ErrorTerm = O: /* initial error term going left->right */
else

ErrorTerm =-Height+ 1: /* going right->left */
if (SkipFirst) { /* skip the first point if so indicated*/

Xl += XMajorAdvanceAmt: /* move X minimum distance*/
/* Determine whether it's time for X to advance one extra*/
if ((ErrorTerm +- ErrorTermAdvance) > 0) {

Xl += AdvanceAmt; /* move X one more*/
ErrorTerm -= Height: /* advance ErrorTerm to correspond*/

/* Scan the edge for each scan line in turn*/
for (i = Height - SkipFirst: i-- > 0: WorkingEdgePointPtr++)

/* Store the X coordinate in the appropriate edge list*/
if (SetXStart == 1)

WorkingEdgePointPtr->XStart - Xl:
else

WorkingEdgePointPtr->XEnd = Xl:
Xl += XMajorAdvanceAmt: /* move X minimum distance*/
/* Determine whether it's time for X to advance one extra*/
if ((ErrorTerm +- ErrorTermAdvance) > 0) {

Xl +- AdvanceAmt: /* move X one more*/
ErrorTerm -- Height: /* advance ErrorTerm to correspond*/

EdgePointPtr = WorkingEdgePointPtr: / advance caller's ptr */

Fast Convex Polygons fl} 353

The Finishing Touch: Assembly Language
The C implementation in Listing 22.2 is now nearly 20 times as fast as the original,
which is good enough for most purposes. Still, it requires that one of the large data
models be used (for memset), and it's certainly not the fastest possible code. The obvi
ous next step is assembly language.

Listing 22.3 is an assembly language version of DrawHorizontalLineList. In actual
use, it proved to be about 36 percent faster than Listing 22.1; better than a poke in the
eye with a sharp stick, but just barely. There's more to these timing results than meets
that eye, though. Display memory generally responds much more slowly than system
memory, especially in 386 and 486 systems. That means that much of the time taken
by Listing 22.3 is actually spent waiting for display memory accesses to complete, with
the processor forced to idle by wait states. If, instead, Listing 22.3 drew to a local buffer
in system memory or to a particularly fast VGA, the assembly implementation might
well display a far more substantial advantage over the C code.

And indeed it does. When the test program is modified to draw to a local buffer,
both the C and assembly language versions get 0.29 seconds faster, that being a mea
sure of the time taken by display memory wait states. With those wait states factored
out, the assembly language version of DrawHorizontalLineList becomes almost three
times as fast as the C code.

There is a lesson here. An optimization has no fixed payoff; its value
fluctuates according to the context in which it is used. There's rela
tively little benefit to further optimizing code that already spends
half its time waiting for display memory; no matter how good your
optimizations, you'll get only a two-times speedup at best, and gen-
erally much less than that. There is, on the other hand, potential for
tremendous improvement when drawing to system memory, so if
that's where most of your drawing will occur, optimizations such as
Listing 22.3 are well worth the effort.

Know the environments in which your code will run, and know where
the cycles go in those environments.

LISTING 22.3 L22-3.ASM
Draws all pixels in the list of horizontal lines passed in, in
mode 13h, the VGA's 320x200 256-color mode. Uses REP STOS to fill
each line.
C near-callable as:

void DrawHorizontalLineList(struct HLineList * HLineListPtr,
int Color):

All assembly code tested with TASM and MASM

354 fg] Chapter 22

SCREEN_WIDTH
SCREEN_SEGMENT

HLine struc
XS ta rt
XEnd
Hli ne

Hlinelist struc
Lngth
YStart
HLinePtr
HL i nel i st

Parms struc

HL i nel i stPtr
Color
Parms

equ
equ

dw
dw
ends

dw
dw
dw
ends

dw
dw
dw
ends

.model small

.code

320
OaOOOh

?
?

?
?
?

2 dup(?)
?
?

:X coordinate of leftmost pixel in line
:X coordinate of rightmost pixel in line

:# of horizontal lines
:Y coordinate of topmost line
:pointer to list of horz lines

:return address & pushed BP
;pointer to Hlinelist structure
:color with which to fill

public _DrawHorizontallineList
align 2

_DrawHorizontallinelist proc
push bp
mov bp,sp
push si
push di
cld

mov ax,SCREEN_SEGMENT
mov

mov
mov
mul
mov

mov

es,ax

si ,[bp+HLinelistPtr]
ax,SCREEN_WIDTH
[si+YStart]
dx,ax

bx,[si+HLinePtr]

Si' [si+Lngth]
Si, Si
Fill Done

:preserve caller's stack frame
:point to our stack frame
:preserve caller's register variables

:make string instructions inc pointers

:point ES to display memory for REP STOS

;point to the line list
:point to the start of the first scan
: line in which to draw
:ES:DX points to first scan line to
: draw
:point to the XStart/XEnd descriptor
: for the first (top) horizontal line
:# of scan lines to draw
:are there any lines to draw?
:no, so we're done

mov
and
jz
mov
mov

al ,byte ptr
ah.al

[bp+Color] :color with which to fill

Fi 11 Loop:
mov
mov
sub
js
inc
add
test
jz
stosb

dee
jz

Mai nFi 11:
shr

di,[bx+XStart]
cx,[bx+XEnd]
ex.di
LineFillDone
ex
di ,dx
di, 1
Mai nFi 11

ex
LineFillDone

cx,1

:duplicate color for STOSW

:left edge of fill on this line
:right edge of fill

:skip if negative width
:width of fill on this line
:offset of left edge of fill
:does fill start at an odd address?
:no
;yes, draw the odd leading byte to
: word-align the rest of the fill
:count off the odd leading byte
:done if that was the only byte

:11 of words in fill

rep
adc

rep
Li neFi l lDone:

add
add
dee
jnz

Fil lDone:
pop
pop
pop
ret

stosw
ex.ex

stosb

bx.size HLine
dx, SCREEN_WIDTH
Si
Fill Loop

di
si
bp

_DrawHorizontallineList endp
end

Maximizing REP STOS

Fast Convex Polygons ~ 355

:fill as many words as possible
:1 if there's an odd trailing byte to
: do, O otherwise
:fill any odd trailing byte

:point to the next line descriptor
:point to the next scan line
:count off lines to fill

:restore caller's register variables

:restore caller's stack frame

Listing 22.3 doesn't take the easy way out and use REP STOSB to fill each scan line;
instead, it uses REP STOSW to fill as many pixel pairs as possible via word-sized
accesses, using STOSB only to do odd bytes. Word accesses to odd addresses are always
split by the processor into 2-byte accesses. Such word accesses take twice as long as
word accesses to even addresses, so Listing 22.3 makes sure that all word accesses occur
at even addresses, by performing a leading STOSB first if necessary.

Listing 22.3 is another case in which it's worth knowing the environment in which
your code will run. Extra code is required to perform aligned word-at-a-time filling, result
ing in extra overhead. For very small or narrow polygons, that overhead might over
whelm the advantage of drawing a word at a time, making plain old REP STOSB
faster.

Faster Edge Tracing
Finally, Listing 22.4 is an assembly language version of ScanEdge. Listing 22.4 is a
relatively straightforward translation from C to assembly, but is nonetheless about twice
as fast as Listing 22.2.

The version of ScanEdge in Listing 22.4 could certainly be sped up still fur
ther by unrolling the loops. FillConvexPolygon, the overall coordination routine, hasn't
even been converted to assembly language, so that could be sped up as well. I haven't
bothered with these optimizations because all code other than DrawHorizontalLineList
takes only 14 percent of the overall polygon filling time when drawing to display
memory; the potential return on optimizing nondrawing code simply isn't great enough
to justify the effort. Part of the value of a profiler is being able to tell when to stop
optimizing; with Listings 22.3 and 22.4 in use, more than two-thirds of the time taken
to draw polygons is spent waiting for display memory, so optimization is pretty much
maxed out. However, further optimization might be worthwhile when drawing to sys
tem memory, where wait states are out of the picture and the nondrawing code takes a

356 fgJ Chapter 22

significant portion (46 percent) of the overall time.
Again, know where the cycles go.
By the way, note that all the versions of ScanEdge and FillConvexPolygon

that we've looked at are adapter-independent, and that the C code is also machine-indepen
dent; all adapter-specific code is isolated in DrawHorizontalLineList. This makes it
easy to add support for other graphics systems, such as the 8 514/ A, the XGA, or, for
that matter, a completely non-PC system.

LISTING 22.4 L22-4.ASM
Scan converts an edge from (Xl,Yl) to CX2,Y2), not including the
point at (X2,Y2). If SkipFirst == 1. the point at (Xl,Yl) isn't
drawn; if SkipFirst == 0, it is. For each scan line, the pixel
closest to the scanned edge without being to the left of the scanned
edge is chosen. Uses an all-integer approach for speed & precision.
C near-callable as:

void ScanEdge(int Xl, int Yl, int X2, int Y2, int SetXStart,
int SkipFirst, struct Hline **EdgePointPtr);

Edges must not go bottom to top: that is, Yl must be<= Y2.
Updates the pointer pointed to by EdgePointPtr to point to the next
free entry in the array of Hline structures.

Hline struc
XStart dw

dw
;X coordinate of leftmost pixel in scan line
;X coordinate of rightmost pixel in scan line XEnd

Hline ends

Parms struc

Xl
Yl
X2
Y2
SetXStart

SkipFirst

EdgePointPtr

Parms ends

dw
dw
dw
dw
dw
dw

dw

dw

;Offsets from BP in
AdvanceAmt equ
Height equ
LOCAL_SIZE equ

.model small

.code

2 dup(?) ;return address & pushed BP
? ;X start coord of edge
? ;Y start coord of edge
? ;X end coord of edge
? ;Y end coord of edge
? ;l to set the XStart field of each

; Hline struc, Oto set XEnd
? ;l to skip scanning the first point

; of the edge, 0 to scan first point
? ;pointer to a pointer to the array of

stack frame
-2
-4
4

Hline structures in which to store
; the scanned X coordinates

of local variables.

;total size of local variables

public _ScanEdge
align 2

_Scan Edge
push
mov
sub
push
push

proc
bp
bp,sp
sp,LOCAL_SIZE
si
di

;preserve caller's stack frame
;point to our stack frame
;allocate space for local variables
;preserve caller's register variables

Fast Convex Polygons [l} 357

mov di ,[bp+EdgePointPtr]
mov di ,[di] ;point to the HLine array
cmp [bp+SetXStart],1 ;set the XStart field of each HLine

jz
add

HL i nePtrSet:
mov
sub
jle
mov
sub

mov
mov
sub
jz
jns
mov
sub
neg
neg

HLinePtrSet
di ,XEnd

bx,[bp+Y2]
bx, [bp+Yl]
ToScanEdgeExit
[bp+Height],bx
ex.ex

dx,l
ax,[bp+X2]
ax,[bp+Xl]
IsVertical
SetAdvanceAmt
cx,1
cx,bx
dx
ax

[bp+AdvanceAmt],dx

; struc?
;yes, DI points to the first XStart
;no, point to the XEnd field of the
; first HLine struc

;edge height
;guard against 0-length & horz edges
;Height - Y2 - Yl
;assume ErrorTerm starts at O (true if
; we're moving right as we draw)
;assume AdvanceAmt - 1 (move right)

;DeltaX - X2 - Xl
;it's a vertical edge--special case it
;OeltaX >= 0
;OeltaX < 0 (move left as we draw)
:ErrorTerm =-Height+ 1
;AdvanceAmt = -1 (move left)
;Width= abs(OeltaX)

SetAdvanceAmt:
mov

Figure out
or Y-major

whether the edge is diagonal, X-major (more horizontal),
(more vertical) and handle appropriately.

cmp
jz
jb

sub
div

mov

test
jz
neg

ax.bx ;if Width==Height, it's a diagonal edge
IsDiagonal ;it's a diagonal edge--special case
YMajor ;it's a Y-major (more vertical) edge

dx,dx
bx

si, ax

;it's an X-major (more horz) edge
;prepare DX:AX (Width) for division
;Width/Height
:DX - error term advance per scan line
;SI= minimum# of pixels to advance X
: on each scan line

[bp+AdvanceAmt],8000h ;move left or right?
XMajorAdvanceAmtSet ;right, already set
si ;left, negate the distance to advance

: on each scan line
XMajorAdvanceAmtSet:

mov ax,[bp+Xl] ;starting X coordinate
cmp [bp+SkipFirst],1 ;skip the first point?

jz XMajorSkipEntry ;yes
XMajorLoop:

mov
add

XMajorSkipEntry:
add
add
jle

add
sub

XMajorNoAdvance:
dee
jnz
jmp
align

ToScanEdgeExit:
jmp

[di].ax
di ,size HLine

ax,si
cx,dx
XMajorNoAdvance

ax,[bp+AdvanceAmt]
cx,[bp+Height]

bx
XMajorLoop
ScanEdgeDone
2

ScanEdgeExit

;store the current X value
;point to the next Hline struc

;set X for the next scan line
;advance error term
;not time for X coord to advance one
; extra
;advance X coord one extra
;adjust error term back

;count off this scan line

358 {gJ Chapter 22

align 2
IsVertical:

mov
sub
jz

Vertical loop:
mov
add
dee
jnz
jmp
align

IsDiagonal:
mov
cmp
jz

Diagonal loop:

ax,[bp+Xl]
bx,[bp+SkipFirst]
ScanEdgeExit

[di],ax
di ,size Hline
bx
Vertical loop
ScanEdgeDone
2

ax, [bp+Xl]
[bp+SkipFirst],1
DiagonalSkipEntry

mov [di].ax
add di ,size Hline

DiagonalSkipEntry:
add ax,dx
dee bx

YMajor:

jnz
jmp
align

push
mov
cmp
mov
jz

YMajorloop:
mov
add

YMajorSkipEntry:
add
jle
add
sub

YMajorNoAdvance:
dee
jnz
pop

ScanEdgeDone:
cmp
jz
sub

Diagonal loop
ScanEdgeDone
2

bp
si,[bp+Xl]
[bp+SkipFirst],1
bp,bx
YMajorSkipEntry

[di].si
di ,size Hline

ex.ax
YMajorNoAdvance
si, dx
cx,bp

bx
YMajorloop
bp

[bp+SetXStart],1
UpdateHLinePtr
di,XEnd

;starting (and only) X coordinate
;loop count - Height - SkipFirst
;no scan lines left after skipping 1st

;store the current X value
;point to the next Hline struc
;count off this scan line

;starting X coordinate
;skip the first point?
;yes

;store the current X value
;point to the next Hline struc

;advance the X coordinate
;count off this scan line

;preserve stack frame pointer
:starting X coordinate
;skip the first point?
;put Height in BP for error term calcs
;yes, skip the first point

;store the current X value
;point to the next Hline struc

;advance the error term
:not time for X coord to advance
;advance the X coordinate
:adjust error term back

:count off this scan line

:restore stack frame pointer

:were we working with XStart field?
;yes, DI points to the next XStart
:no, point back to the XStart field

UpdateHLinePtr:
mov
mov

bx,[bp+EdgePointPtr] ;point to pointer to Hline array

ScanEdgeExit:
pop
pop
mov
pop
ret

_Scan Edge
end

[bx],di :update caller's Hline array pointer

di
Si
sp,bp
bp

endp

:restore caller's register variables

;deallocate local variables
:restore caller's stack frame

Of Songs,
Taxes, and
the Simplicity
of Complex
Polygons

..
a:,
I 7 = = -= c.:t

Dealing with Irregular Polygonal Areas
Every so often, my daughter asks me to sing her to sleep. (If you've ever heard me sing,
this may cause you concern about either her hearing or her judgement, but love knows
no bounds.) As any parent is well aware, singing a young child to sleep can easily take
several hours , or until sunrise, whichever comes last. One night, running low on
children's songs, I switched to a Beatles medley, and at long last her breathing became
slow and regular. At the end, I softly sang ''A Hard Day's Night," then quietly stood up
to leave. As I tiptoed out, she said, in a voice not even faintly tinged with sleep, "Dad,
what do they mean, 'working like a dog'? Chasing a stick? That doesn't make sense;
people don't chase sticks."

That led us into a discussion of idioms, which made about as much sense to her as
an explanation of quantum mechanics. Finally, I fell back on my standard explanation
of the Universe, which is that a lot of the time it simply doesn't make sense.

As a general principle, that explanation holds up remarkably well. (In fact, having
just done my taxes, I think Earth is actually run by blob-creatures from the planet
Mrxx, who are helplessly doubled over with laughter at the ridiculous things they can
make us do. "Let's make them get Social Security numbers for their pets next year!"
they're saying right now, gasping for breath.) Occasionally, however, one has the rare
pleasure of finding a corner of the Universe that makes sense, where everything fits
together as if preordained.

Filling arbitrary polygons is such a case.

359

360 [lJ Chapter 23

Filling Arbitrary Polygons
In Chapter 21, I described three types of polygons: convex, nonconvex, and complex.
The RenderMan Companion, a terrific book by Steve Upstill (Addison-Wesley, 1990)
has an intuitive definition of convex. If a rubber band stretched around a polygon
touches all vertices in the order they're defined, then the polygon is convex. If a poly
gon has intersecting edges, it's complex. If a polygon doesn't have intersecting edges
but isn't convex, it's nonconvex. Nonconvex is a special case of complex, and convex is
a special case of nonconvex. (Which, I'm well aware, makes nonconvex a lousy name
noncomplex would have been better-but I'm following X Window System nomen
clature here.)

The reason for distinguishing between these three types of polygons is that the more
specialized types can be filled with markedly faster approaches. Complex polygons
require the slowest approach; however, that approach will serve to fill any polygon of
any sort. Nonconvex polygons require less sorting, because edges never cross. Convex
polygons can be filled fastest of all by simply scanning the two sides of the polygon, as
we saw in Chapter 22.

Before we dive into complex polygon filling, I'd like to point out that the code in
this chapter, like all polygon filling code I've ever seen, requires that the caller describe
the type of the polygon to be filled. Often, however, the caller doesn't know what type
of polygon it's passing, or specifies complex for simplicity, because that will work for all
polygons; in such a case, the polygon filler will use the slow complex-fill code even if
the polygon is, in fact, a convex polygon. In Chapter 24, I'll discuss one way to im
prove this situation.

Active Edges
The basic premise of filling a complex polygon is that for a given scan line, we deter
mine all intersections between the polygon's edges and that scan line and then fill the
spans between the intersections, as shown in Figure 23.1. (Section 3.6 of Foley and van
Dam's Computer Graphics, Second Edition provides an overview of this and other as
pects of polygon filling.) There are several rules that might be used to determine which
spans are drawn and which aren't; we'll use the odd/even rule, which specifies that
drawing turns on after odd-numbered intersections (first, third, and so on) and off
after even-numbered intersections.

The question then becomes how can we most efficiently determine which edges
cross each scan line and where? As it happens, there is a great deal of coherence from
one scan line to the next in a polygon edge list, because each edge starts at a given Y
coordinate and continues unbroken until it ends. In other words, edges don't leap
about and stop and start randomly; the X coordinate of an edge at one scan line is a
consistent delta from that edge's X coordinate at the last scan line, and that is consis
tent for the length of the line.

Of Songs, Taxes, and the Simplicity of Complex Polygons ~ 361

Intersection #2 Intersection #3
turns off drawing turns on drawing

Intersection #1 O O \ O O O
turns on drawin~ ~ 0 0 O O

Scan line being filled ----0--- --G---G---G---

0 , • I \

0 ,o' • • I \
\

0 / 0 ._ • • 0
' ' 0 0 0 O',e

'
0

'
0 0 0 0 0 0 0

Figure 23.1 Filling One Scan Line by Finding Intersecting Edges

Intersection #4
turns off drawing

This allows us to reduce the number of edges that must be checked for intersection;
on any given scan line, we only need to check for intersections with the currently active
edges-edges that start on that scan line, plus all edges that start on earlier (above) scan
lines and haven't ended yet-as shown in Figure 23.2. This suggests that we can pro
ceed from the top scan line of the polygon to the bottom, keeping a running list of
currently active edges-called the active edge table (AET)-with the edges sorted in

0 0 0 0 0 0 0

0 0 0 0 0

Scan line being filled ----G---

0 , • I \

0 ,o' • • I \
\

0 / 0 ._ • • 0
' ' 0 0 0 O',e

'
0

'
0 0 0 0 0 0 0

Figure 23.2 Checking Currently Active Edges (Solid Lines)

362 Ill Chapter 23

order of ascending X coordinate of intersection with the current scan line. Then, we
can simply fill each scan line in turn according to the list of active edges at that line.

Maintaining the AET from one scan line to the next involves three steps: First, we
must add to the AET any edges that start on the current scan line, making sure to keep
the AET X-sorted for efficient odd/ even scanning. Second, we must remove edges that
end on the current scan line. Third, we must advance the X coordinates of active edges
with the same sort of error term-based, Bresenham's-like approach we used for convex
polygons, again ensuring that the AET is X-sorted after advancing the edges.

Advancing the X coordinates is easy. For each edge, we'll store the current X coordinate
and all required error term information, and we'll use that to advance the edge one scan line
at a time; then, we'll resort the AET by X coordinate as needed. Removing edges as
they end is also easy; we'll just count down the length of each active edge on each scan
line and remove an edge when its count reaches zero. Adding edges as their tops are
encountered is a tad more complex. While there are a number of ways to do this, one
particularly efficient approach is to start out by putting all the edges of the polygon,
sorted by increasing Y coordinate, into a single list, called the global edge table (GET).
Then, as each scan line is encountered, all edges at the start of the GET that begin on
the current scan line are moved to the AET; because the GET is Y-sorted, there's no
need to search the entire GET. For still greater efficiency, edges in the GET that share
common Y coordinates can be sorted by increasing X coordinate; this ensures that no
more than one pass through the AET per scan line is ever needed when adding new
edges from the GET in such a way as to keep the AET sorted in ascending X order.

What form should the GET and AET take? Linked lists of edge structures, as shown
in Figure 23.3. With linked lists, all that's required to move edges from the GET to the

Global Edge Table (GET)

X = 2 X = 2 X = 3
StartY = 3 StartY = 3 StartY = 5
Count= 3

I
Count= 2 I Count= 2

Next edge Next edge Null

Active Edge Table (AET)

X = 1 X = 2+ X = 6 X = 6+
StartY = 1 Startv = 1 StartY = O Startv = O
Count= 4

I
Count= 2 I Count= 2

I
Count= 5

Next edge Next edge Next edge Null

Figure 23.3 The Global and Active Edge Tables as Linked Lists

Of Songs, Taxes, and the Simplicity of Complex Polygons llJ 363

AET as they become active, sort the AET, and remove edges that have been fully drawn
is the exchanging of a few pointers.

In summary, we'll initially store all the polygon edges in Y-primary/X-secondary
sort order in the GET, complete with initial X and Y coordinates, error terms and error
term adjustments, lengths, and directions of X movement for each edge. Once the
GET is built, we'll do the following:

I. Set the current Y coordinate to the Y coordinate of the first edge in the GET.

2. Move all edges with the current Y coordinate from the GET to the AET, removing
them from the GET and maintaining the X-sorted order of the AET.

3. Draw all odd-to-even spans in the AET at the current Y coordinate.

4. Count down the lengths of all edges in the AET, removing any edges that are done,
and advancing the X coordinates of all remaining edges in the AET by one scan line.

5. Sort the AET in order of ascending X coordinate.

6. Advance the current Y coordinate by one scan line.

7. If either the AET or GET isn't empty, go to step 2.

That's really all there is to it. Compare Listing 23.1 below to the fast convex poly
gon filling code from Chapter 22, and you'll see that, contrary to expectation, complex
polygon filling is indeed one of the more sane and sensible corners of the universe.

LISTING 23.1 L23-1.C
/* Color-fills an arbitrarily-shaped polygon described by Vertexlist.

If the first and last points in Vertexlist are not the same, the path
around the polygon is automatically closed. All vertices are offset
by (XOffset, YOffset). Returns 1 for success, O if memory allocation
failed. All C code tested with Borland C++.
If the polygon shape is known in advance, speedier processing may be
enabled by specifying the shape as follows: "convex" - a rubber band
stretched around the polygon would touch every vertex in order;
"nonconvex" - the polygon is not self-intersecting, but need not be
convex; "complex" - the polygon may be self-intersecting, or, indeed,
any sort of polygon at all. Complex will work for all polygons; convex
is fastest. Undefined results will occur if convex is specified for a
nonconvex or complex polygon.
Define CONVEX_CODE_LINKED if the fast convex polygon filling code from
Chapter 21 is linked in. Otherwise, convex polygons are
handled by the complex polygon filling code.
Nonconvex is handled as complex in this implementation. See text for a
discussion of faster nonconvex handling. */

#include <stdio.h>
#include <math.h>
#ifdef _TURBOC_
#include <alloc.h>
#else /*MSC*/
#include <malloc.h>
if end if
#include "polygon.h"

364 ll} Chapter 23

#define SWAP(a,b) {temp= a; a= b; b = temp;}

struct EdgeState {

} :

struct EdgeState *NextEdge;
int X;
int StartY;
int WholePixelXMove;
int XDirection:
int ErrorTerm:
int ErrorTermAdjUp;
int ErrorTermAdjDown;
int Count:

extern void DrawHorizontalLineSeg(int, int, int, int);
extern int FillConvexPolygon(struct PointListHeader *, int, int, int):
static void BuildGET(struct PointListHeader *, struct EdgeState *, int, int);
static void MoveXSortedToAET(int);
static void ScanDutAET(int, int);
static void AdvanceAET(void);
static void XSortAET(void);

/* Pointers to global edge table (GET) and active edge table (AET) */
static struct EdgeState *GETPtr, *AETPtr;

int FillPolygon(struct PointListHeader * VertexList, int Color,
int PolygonShape, int XOffset, int YOffset)

struct EdgeState *EdgeTableBuffer;
int CurrentY;

#ifdef CONVEX_CODE LINKED
/* Pass convex polygons through to fast convex polygon filler*/
if (PolygonShape == CONVEX)

return(FillConvexPolygon(VertexList, Color, XOffset, YOffset));
/tend if

/* It takes a m1n1mum of 3 vertices to cause any pixels to be
drawn; reject polygons that are guaranteed to be invisible*/

if (VertexList->Length < 3)
return(l);

/* Get enough memory to store the entire edge table*/
if ((EdgeTableBuffer =

(struct EdgeState *) (malloc(sizeof(struct EdgeState) *
VertexList->Length))) == NULL)

return(O); /* couldn't get memory for the edge table*/
/* Build the global edge table*/
BuildGET(VertexList, EdgeTableBuffer, XOffset, YOffset);
/* Scan down through the polygon edges, one scan line at a time,

so long as at least one edge remains in either the GET or AET */
AETPtr = NULL; /* initialize the active edge table to empty*/
CurrentY = GETPtr->StartY; /* start at the top polygon vertex*/
while ((GETPtr I= NULL) 11 (AETPtr != NULL)) {

MoveXSortedToAET(CurrentY); /* update AET for this scan line*/
ScanOutAET(CurrentY, Color); /* draw this scan line from AET */
AdvanceAET(): /* advance AET edges 1 scan line*/
XSortAET(); /* resort on X */
CurrentY++; /* advance to the next scan line*/

/* Release the memory we've allocated and we're done*/
free(EdgeTableBuffer):

Of Songs, Taxes, and the Simplicity of Complex Polygons ~ 365

return(l);

/* Creates a GET in the buffer pointed to by NextFreeEdgeStruc from
the vertex list. Edge endpoints are flipped, if necessary, to
guarantee all edges go top to bottom. The GET is sorted primarily
by ascending Y start coordinate, and secondarily by ascending X
start coordinate within edges with common Y coordinates. */

static void BuildGET(struct PointListHeader * VertexList.
struct EdgeState * NextFreeEdgeStruc, int X0ffset, int Y0ffset)

inti. StartX, StartY. EndX, EndY, DeltaY, DeltaX, Width. temp;
struct EdgeState *NewEdgePtr;
struct EdgeState *FollowingEdge, **FollowingEdgeLink;
struct Point *VertexPtr;

/* Scan through the vertex list and put all non-0-height edges into
the GET, sorted by increasing Y start coordinate*/

VertexPtr = VertexList->PointPtr; /* point to the vertex list*/
GETPtr = NULL; /* initialize the global edge table to empty*/
for Ci = 0; i < VertexList->Length; i++) {

/* Calculate the edge height and width*/
StartX - VertexPtr[iJ.X + X0ffset;
StartY = VertexPtr[iJ.Y + Y0ffset;
/* The edge runs from the current point to the previous one*/
if (i == 0) {

/* Wrap back around to the end of the list*/
EndX = VertexPtr[VertexList->Length-1].X + X0ffset;
EndY = VertexPtr[VertexList->Length-1].Y + Y0ffset;

else (
EndX = VertexPtr[i-1].X + X0ffset;
EndY - VertexPtr[i-1].Y + Y0ffset;

/* Make sure the edge runs top to bottom*/
if (StartY > EndY) {

SWAP(StartX, EndX);
SWAP(StartY, EndY);

/* Skip if this can't ever be an active edge (has 0 height)*/
if C(DeltaY = EndY - StartY) != 0) {

/* Allocate space for this edge's info, and fill in the
structure*/

NewEdgePtr = NextFreeEdgeStruc++;
NewEdgePtr->XDirection = /* direction in which X moves*/

((DeltaX = EndX - StartX) > 0) ? 1 : -1;
Width= abs(DeltaX);
NewEdgePtr->X = StartX;
NewEdgePtr->StartY = StartY;
NewEdgePtr->Count = DeltaY;
NewEdgePtr->ErrorTermAdjDown = DeltaY;
if (DeltaX >= 0) /* initial error term going L->R */

NewEdgePtr->ErrorTerm = 0;
else /* initial error term going R->L */

NewEdgePtr->ErrorTerm = -DeltaY + 1:
if (DeltaY >= Width) { /* Y-major edge*/

NewEdgePtr->WholePixelXMove = 0;
NewEdgePtr->ErrorTermAdjUp = Width;

else { /* X-major edge*/
NewEdgePtr->WholePixelXMove =

(Width/ DeltaY) * NewEdgePtr->XDirection;
NewEdgePtr->ErrorTermAdjUp =Width% DeltaY;

366 Ill Chapter 23

/* Link the new edge into the GET so that the edge list is
still sorted by Y coordinate, and by X coordinate for all
edges with the same Y coordinate*/

FollowingEdgeLink = &GETPtr:
for (::) {

FollowingEdge = *FollowingEdgeLink:
if ((FollowingEdge == NULL) I I

(FollowingEdge·>StartY > StartY) I I
((FollowingEdge·>StartY == StartY) &&
(FollowingEdge·>X >= StartX))) {

NewEdgePtr·>NextEdge = FollowingEdge:
*FollowingEdgeLink = NewEdgePtr:
break:

FollowingEdgeLink = &FollowingEdge·>NextEdge;

/* Sorts all edges currently in the active edge table into ascending
order of current X coordinates*/

static void XSortAET() {
struct EdgeState *CurrentEdge, **CurrentEdgePtr, *TempEdge:
int Swap0ccurred:

/* Scan through the AET and swap any adjacent edges for which the
second edge is at a lower current X coord than the first edge.
Repeat until no further swapping is needed*/

if (AETPtr != NULL) {
do {

Swap0ccurred = 0:
CurrentEdgePtr = &AETPtr:
while ((CurrentEdge = *CurrentEdgePtr)·>NextEdge != NULL)

if (CurrentEdge·>X > CurrentEdge·>NextEdge·>X) {
/* The second edge has a lower X than the first:

swap them in the AET */
TempEdge = CurrentEdge·>NextEdge·>NextEdge;
*CurrentEdgePtr = CurrentEdge·>NextEdge;
CurrentEdge·>NextEdge·>NextEdge = CurrentEdge;
CurrentEdge·>NextEdge = TempEdge:
Swap0ccurred = 1:

CurrentEdgePtr = &(*CurrentEdgePtr)·>NextEdge;

while (Swap0ccurred != 0):

/* Advances each edge in the AET by one scan line.
Removes edges that have been fully scanned. */

static void AdvanceAET() {
struct EdgeState *CurrentEdge, **CurrentEdgePtr:

/*Countdown and remove or advance each edge in the AET */
CurrentEdgePtr = &AETPtr:
while ((CurrentEdge = *CurrentEdgePtr) != NULL)

/* Count off one scan line for this edge*/
if ((··(CurrentEdge·>Count)) == 0) {

/* This edge is finished, so remove it from the AET */
*CurrentEdgePtr = CurrentEdge·>NextEdge;

Of Songs, Taxes, and the Simplicity of Complex Polygons [gl 367

else {
/* Advance the edge's X coordinate by m1n1mum move*/
CurrentEdge->X += CurrentEdge->WholePixelXMove;
/* Determine whether it's time for X to advance one extra*/
if ((CurrentEdge->ErrorTerm +=

CurrentEdge->ErrorTermAdjUp) > 0)
CurrentEdge->X += CurrentEdge->XDirection;
CurrentEdge->ErrorTerm -= CurrentEdge->ErrorTermAdjDown;

}
CurrentEdgePtr = &CurrentEdge->NextEdge;

/* Moves all edges that start at the specified Y coordinate from the
GET to the AET, maintaining the X sorting of the AET. */

static void MoveXSortedToAET(int YToMovel {
struct EdgeState *AETEdge, **AETEdgePtr, *TempEdge;
int Currentx;

/* The GET is Y sorted. Any edges that start at the desired Y
coordinate will be first in the GET, so we'll move edges from
the GET to AET until the first edge left in the GET is no longer
at the desired Y coordinate. Also, the GET is X sorted within
each Y coordinate, so each successive edge we add to the AET is
guaranteed to belong later in the AET than the one just added. */

AETEdgePtr = &AETPtr;
while ((GETPtr != NULL) && (GETPtr->StartY == YToMove))

CurrentX = GETPtr->X;
/* Link the new edge into the AET so that the AET is still

sorted by X coordinate*/
for C;;) {

AETEdge = *AETEdgePtr;
if ((AETEdge -- NULL) I I (AETEdge->X >= CurrentX)) {

TempEdge = GETPtr->NextEdge;
AETEdgePtr = GETPtr; / link the edge into the AET */
GETPtr->NextEdge = AETEdge;
AETEdgePtr = &GETPtr·>NextEdge;
GETPtr = TempEdge; /* unlink the edge from the GET*/
break;

else {
AETEdgePtr = &AETEdge->NextEdge;

/* Fills the scan line described by the current AET at the specified Y
coordinate in the specified color, using the odd/even fill rule*/

static void ScanOutAET(int YToScan, int Color) {
int LeftX:
struct EdgeState *CurrentEdge;

/* Scan through the AET, drawing line segments as each pair of edge
crossings is encountered. The nearest pixel on or to the right
of left edges is drawn, and the nearest pixel to the left of but
not on right edges is drawn*/

CurrentEdge = AETPtr:
while (CurrentEdge != NULL) {

LeftX = CurrentEdge->X:
CurrentEdge = CurrentEdge->NextEdge;

368 fl} Chapter 23

DrawHorizontallineSeg(YToScan, LeftX, CurrentEdge->X-1, Color):
CurrentEdge = CurrentEdge->NextEdge;

Complex Polygon Filling: An Implementation
Listing 23.1 just shown presents a function, FillPolygon(), that fills polygons of all
shapes. If CONVEX_FILL_LINKED is defined, the fast convex fill code from Chap
ter 22 is linked in and used to draw convex polygons. Otherwise, convex polygons are
handled as if they were complex. Nonconvex polygons are also handled as complex,
although this is not necessary, as discussed shortly.

Listing 23.1 is a faithful implementation of the complex polygon filling approach
just described, with separate functions corresponding to each of the tasks, such as
building the GET and X-sorting the AET. Listing 23.2 provides the actual drawing
code used to fill spans, built on a draw pixel routine that is the only hardware depen
dency anywhere in the C code. Listing 23.3 is the header file for the polygon filling
code; note that it is an expanded version of the header file used by the fast convex
polygon fill code from Chapter 22. (They may have the same name but are not the
same file!) Listing 23.4 is a sample program that, when linked to Listings 23.1 and
23.2, demonstrates drawing polygons of various sorts.

LISTING 23.2 L23-2.C
/* Draws all pixels in the horizontal line segment passed in, from

(LeftX,Y) to (RightX,Y), in the specified color in mode 13h, the
VGA's 320x200 256-color mode. Both LeftX and RightX are drawn. No
drawing will take place if LeftX > RightX. */

#include <dos.h>
#include "polygon.h"

#define SCREEN_WIDTH 320
#define SCREEN_SEGMENT OxAOOO

static void DrawPixel(int, int, int);

void DrawHorizontallineSeg(Y, LeftX, RightX, Color) {
int X:

/* Draw each pixel in the horizontal line segment, starting with
the leftmost one*/

for (X = LeftX: X <= RightX: X++)
DrawPixel(X, Y, Color):

/* Draws the pixel at (X, Y) in color Color in VGA mode 13h */
static void DrawPixel(int X, int Y, int Color) {

unsigned char far *ScreenPtr:

#ifdef _TURBOC_

Of Songs, Taxes, and the Simplicity of Complex Polygons Ill 369

ScreenPtr = MK_FP(SCREEN_SEGMENT, Y * SCREEN_WIDTH + Xl;
#else /* MSC 5.0 */

FP_SEG(ScreenPtr) = SCREEN_SEGMENT;
FP_OFF(ScreenPtr) = Y * SCREEN_WIDTH + X;

/fendif
*ScreenPtr = (unsigned char) Color;

LISTING 23.3 POLYGON.H
/* POLYGON.H: Header file for polygon-filling code*/

#define CONVEX 0
#define NONCONVEX 1
#define COMPLEX 2

/* Describes a single point (used for a single vertex)*/
struct Point {

int X; /* X coordinate*/
int V; /* Y coordinate*/

} ;

/* Describes a series of points (used to store a list of vertices that
describe a polygon; each vertex connects to the two adjacent
vertices; the last vertex is assumed to connect to the first)*/

struct PointListHeader {
int Length; /*#of points*/
struct Point* PointPtr; /* pointer to list of points*/

} ;

/* Describes the beginning and ending X coordinates of a single
horizontal line (used only by fast polygon fill code)*/

struct HLine {
int XStart; /* X coordinate of leftmost pixel in line*/
int XEnd; /* X coordinate of rightmost pixel in line*/

} ;
/* Describes a Length-long series of horizontal lines, all assumed to

be on contiguous scan lines starting at YStart and proceeding
downward (used to describe a scan-converted polygon to the
low-level hardware-dependent drawing code) (used only by fast
polygon fill code). */

struct HLineList {
int Length;
int YStart:

/*#of horizontal lines*/

struct HLine * HLinePtr;
/* Y coordinate of topmost line*/
/* pointer to list of horz lines*/

} ;

LISTING 23.4 L23-4.C
/* Sample program to exercise the polygon-filling routines*/

#include <conio.h>
#include <dos.h>
#include "polygon.h"

#define DRAW_POLYGON(PointList,Color,Shape,X,YJ
Polygon.Length= sizeof(Pointlist)/sizeof(struct
Polygon.PointPtr = Pointlist;
FillPolygon(&Polygon, Color, Shape, X, Yl;

\
Point); \

\

370 gJ Chapter 23

void main(void);
extern int FillPolygon(struct PointListHeader *, int, int, int, int);

void main() {
int i • j;
struct PointListHeader Polygon;
static 9ot_ruct Point Polygonl[] =

{{0,0},{100,150}.{320,0},{0,200},{220,50},{320,200}};
static struct Point Polygon2[] =

{{0,0},{320,0}.{320,200} ,{0.200},{0,0},{50,50},
{270,S0},{270,150},{50,150},{50,SO}};

static struct Point Polygon3[] =
{{0,0},(10,0},{105,185},(260,30}.{15,150},(5,150},(5,140},

(260,5},(300,5},(300,15},{110,200} ,(100,200},(0,10}}:·
static struct Point Polygon4[] =

{{0,0} ,(30,-20}.{30,0},(0,20} .(-30,0},(-30,-20}};
static struct Point Trianglel[] = {{30,0}.(15,20),(0,0}};
static struct Point Triangle2[] = {{30,20),(15,0},(0,20}};
static struct Point Triangle3[] = {{0,20},(20,10).(0,0}};
static struct Point Triangle4[] = ({20,20},{20,0},{0,10}};
union REGS regset;

I* Set the display to VGA mode 13h, 320x200 256-color mode*/
regset.x.ax = Ox0013;
int86(0x10, ®set, ®set);

/* Draw three complex polygons*/
DRAW_POLYGON(Polygonl, 15, COMPLEX, 0, 0);
getch(); /* wait for a keypress */
DRAW_POLYGON(Polygon2, 5, COMPLEX. 0, 0);
getch(); /* wait for a keypress */
DRAW_POLYGON(Polygon3. 3, COMPLEX, 0, O);
getch(); /* wait for a keypress */

/* Draw some adjacent nonconvex polygons*/
for (i=O; i<S: i++) (

for (j=O: j<B: j++) {
DRAW_POLYGON(Polygon4, 16+i*8+j, NONCONVEX, 40+(i*60),

30+(j*20) l;

getch(); /* wait for a keypress */

/* Draw adjacent triangles across the screen*/
for (j=O; j<=BO; j+=20) {

for (i=O; i<290; i += 30) {
DRAW_POLYGON(Trianglel, 2, CONVEX, i, j);
DRAW_POLYGON(Triangle2, 4. CONVEX, 1+15, j);

for (j-100; j<=l70; j+=20) {
I* Do a row of pointing-right triangles*/
for (i-0; i<290; i += 201 (

DRAW_POLYGON(Triangle3, 40, CONVEX, i, j);

/* Do a row of pointing-left triangles halfway between one row
of pointing-right triangles and the next, to fit between*/

for (i=O; i<290: i += 20) {
DRAW_POLYGON(Triangle4, 1. CONVEX, i. j+lOI;

getch(J; /* wait for a keypress */

Of Songs, Taxes, and the Simplicity of Complex Polygons ~ 371

/* Return to text mode and exit*/
regset.x.ax = Ox0003;
int86(0xl0, ®set, ®setl:

Listing 23.4 illustrates several interesting aspects of polygon filling. The first and
third polygons drawn illustrate the operation of the odd/even fill rule. The second
polygon drawn illustrates how holes can be created in seemingly solid objects; an edge
runs from the outside of the rectangle to the inside, the edges comprising the hole are
d~ned, and then the same edge is used to move back to the outside; because the edges
joiµ seamlessly, the rectangle appears to form a solid boundary around the hole.

1The set of V-shaped polygons drawn by Listing 23.4 demonstrate that polygons
sharing common edges meet but do not overlap. This characteristic, which I discussed
~dength in Chapter 21, is not a trivial matter; it allows polygons to fit together with

. : out fear of overlapping or missed pixels. In general, Listing 23.1 guarantees that poly
gons are filled such that common boundaries and vertices are drawn once and only

'-· once. This has the side-effect for any individual polygon of not drawing pixels that lie
exactly on the bottom or right boundaries or at vertices that terminate bottom or right
boundaries.

By the way, I have not seen polygon boundary filling handled precisely this way
elsewhere. The boundary filling approach in Foley and van Dam is similar, but seems
to me to not draw all boundary and vertex pixels once and only once.

More on Active Edges
Edges of zero height-horizontal edges and edges defined by two vertices at the same
location-never even make it into the GET in Listing 23.1. A polygon edge of zero
height can never be an active edge, because it can never intersect a scan line; it can only
run along the scan line, and the span it runs along is defined not by that edge but by
the edges that connect to its endpoints.

Performance Considerations
How fast is Listing 23.1? When drawing triangles on a 20-MHz 386, it's less than one
fifth the speed of the fast convex polygon fill code. However, most of that time is spent
drawing individual pixels; when Listing 23.2 is replaced with the fast assembly line
segment drawing code in Listing 23.5, performance improves by two and one-half
times, to about half as fast as the fast convex fill code. Even after conversion to assem
bly in Listing 23.5, DrawHorizontalLineSeg still takes more than half of the total
execution time, and the remaining time is spread out fairly evenly over the various
subroutines in Listing 23.1. Consequently, there's no single place in which it's possible
to greatly improve performance, and the maximum additional improvement that's
possible looks to be a good deal less than two times; for that reason, and because of
space limitations, I'm not going to convert the rest of the code to assembly. However,

372 {gJ Chapter 23

when filling a polygon with a great many edges, and especially one with a great many
active edges at one time, relatively more time would be spent traversing the linked lists.
In such a case, conversion to assembly (which does a very good job with linked list
processing) could pay off reasonably well.

LISTING 23.5 L23-5.ASM
Draws all pixels in the horizontal line segment passed in, from

(LeftX,Y) to (RightX,Y), in the specified color in mode 13h, the
VGA's 320x200 256-color mode. No drawing will take place if
LeftX > RightX. Tested with TASM

C near-callable as:
void DrawHorizontallineSeg(Y, LeftX, RightX, Color);

SCREEN_WIDTH equ
SCREEN_SEGMENT equ

320
OaOOOh

Parms

y

LeftX
RightX
Color
Parms

struc
dw 2 dup(?) ;return address & pushed BP
dw ? ;Y coordinate of line segment to draw
dw ? :left endpoint of the line segment
dw ? ;right endpoint of the line segment
dw ? ;color in which to draw the line segment
ends

.model smal 1

.code
public _DrawHorizontallineSeg
align 2

_DrawHorizontallineSeg proc
push bp :preserve caller's stack frame

;point to our stack frame mov bp,sp
push di ;preserve caller's register variable

;make string instructions inc pointers
ax,SCREEN_SEGMENT

cl d
mov
mov
mov
mov
sub
jl
inc
mov
mul
add
mov
mov
shr
rep
adc
rep

DrawDone:
pop
pop
ret

es.ax ;point ES to display memory
di, [bp+LeftXJ
cx,[bp+Rightx]
cx,di
DrawDone
ex
ax,SCREEN_WIDTH
[bp+Y]
di ,ax

;width of line
;RightX < LeftX; no drawing to do
:include both endpoints

;offset of scan line on which to draw
;ES:DI points to start of line seg

al ,byte ptr
ah.al

[bp+Color] :color in which to draw
;put color in AH for STOSW

cx,1
stosw
ex.ex
stosb

di
bp

:# of words to fill
:fill a word at a time

;draw the odd byte, if any

;restore caller's register variable
:restore caller's stack frame

_DrawHorizontallineSeg endp
end

Of Songs, Taxes, and the Simplicity of Complex Polygons /gJ 373

The algorithm used to X-sort the AET is an interesting performance consideration.
Listing 23.1 uses a bubble sort, usually a poor choice for performance. However, bubble
sorts perform well when the data are already almost sorted, and because of the X coher
ence of edges from one scan line to the next, that's generally the case with the AET. An
insertion sort might be somewhat faster, depending on the state of the AET when any
particular sort occurs, but a bubble sort will generally do just fine.

An insertion sort that scans backward through the AET from the current edge rather
than forward from the start of the AET could be quite a bit faster, because edges rarely
move more than one or two positions through the AET. However, scanning backward
requires a doubly linked list, rather than the singly linked list used in Listing 23.1. I've
chosen to use a singly linked list partly to minimize memory requirements (double
linking requires an extra pointer field) and partly because supporting back links would
complicate the code a good bit. The main reason, though, is that the potential rewards
for the complications of back links and insertion sorting aren't great enough; profiling
a variety of polygons reveals that less than ten percent of total time is spent sorting the AET.

Ill
The potential 1 to 5 percent speedup gained by optimizing AET sort
ing just isn't worth it in any but the most demanding application
a good example of the need to keep an overall perspective when
comparing the theoretical characteristics of various· approaches.

Nonconvex Polygons
Nonconvex polygons can be filled somewhat faster than complex polygons. Because
edges never cross or switch positions with other edges once they're in the AET, the
AET for a nonconvex polygon needs to be sorted only when new edges are added. In
order for this to work, though, edges must be added to the AET in strict left-to-right
order. Complications arise when dealing with two edges that start at the same point,
because slopes must be compared to determine which edge is leftmost. This is certainly
doable, but because of space limitations and limited performance returns, I haven't
implemented this in Listing 23.1.

Details, Details
Every so often, a programming demon that I'd thought I'd forever laid to rest arises to
haunt me once again. A minor example of this-an imp, if you will-is the use of" = "
when I mean"==," which I've done all too often in the past, and am sure I'll do again.
That's minor deviltry, though, compared to the considerably greater evils of one of my
personal scourges, of which I was recently reminded anew: too-close attention to de
tail. Not seeing the forest for the trees. Looking low when I should have looked high.
Missing the big picture, if you catch my drift.

37 4 fl} Chapter 23

Thoreau said it best: "Our life is frittered away by detail.. .. Simplify, simplify." That
quote sprang to mind when I received a letter a while back from Anton Treuenfels of
Fridley, Minnesota, thanking me for clarifying the principles of filling adjacent convex
polygons in my ongoing writings on graphics programming. (You'll find this material
in the previous two chapters.) Anton then went on to describe his own method for
filling convex polygons.

Anton's approach had its virtues and drawbacks, foremost among the virtues being
a simplicity Thoreau would have admired. For instance, in writing my polygon-filling
code, I had spent quite some time trying to figure out the best way to identify which
edge was the left edge and which the right, finally settling on comparing the slopes of
the edges if the top of the polygon wasn't flat, and comparing the starting points of the
edges if the top was flat. Anton simplified this tremendously by not bothering to figure
out ahead of time which was the right edge of the polygon and which the left, instead
scanning out the two edges in whatever order he found them and letting the low-level
drawing code test, and if necessary swap, the endpoints of each horizontal line of the
fill, so that filling started at the leftmost edge. This is a little slower than my approach
(although the difference is almost surely negligible), but it also makes quite a bit of
code go away.

What that example, and others like it in Anton's letter, did was kick my mind into a
mode that it hadn't-but should have-been in when I wrote the code, a mode in
which I began to wonder, "How else can I simplify this code?"; what you might call
Occam's Razor mode. You see, I created the convex polygon-drawing code by first
writing pseudocode, then writing C code, and finally writing assembly code, and once
the pseudocode was finished, I stopped thinking about the interactions of the various
portions of the program.

In other words, I became so absorbed in individual details that I forgot to consider
the code as a whole. That was a mistake, and an embarrassing one for someone who
constantly preaches that programmers should look at their code from a variety of per
spectives; the next chapter shows just how much difference thinking about the big
picture can make. May my embarrassment be your enlightenment.

The point is not whether, in the final analysis, my code or Anton's code is better;
both have their advantages. The point is that I was programming with half a deck
because I was so fixated on the details of a single type of implementation; I ended up
with relatively hard-to-write, complex code, and missed out on many potentially use
ful optimizations by being so focused. It's a big world out there, and there are many
subtle approaches to any problem, so relax and keep the big picture in mind as you
implement your programs. Your code will likely be not only better, but also simpler.
And whenever you see me walking across hot coals in this book or elsewhere when
there's an easier way to go, please, let me know!

Thanks, Anton.

Names Do Matter wlien You Conceptualize
a Data Structure

After I wrote the columns on polygons in Dr. Dobb's Journal ̂2X became Chapters 21-23,
long-time reader Bill Huber wrote to take me to task—and a well-deserved kick in the
fanny it was, I might add—for my use of non-standard polygon terminology in those
columns. Unix's X-Window System (XWS) defines three categories of polygons: com
plex, nonconvex, and convex. These three categories, each a specialized subset of the
preceding category, not-so-coincidentally map quite nicely to three increasingly fast
polygon filling techniques. Therefore, I used the XWS names to describe the sorts of
polygons that can be drawn with each of the polygon filling techniques.
The problem is that those names don't accurately describe all the sorts of polygons

that the techniques are capable of drawing. Convex polygons are those for which no
interior angle is greater than 180 degrees. The "convex" drawing approach described in
the previous few chapters actually handles a number of polygons that are not convex;
in fact, it can draw any polygon through which no horizontal line can he drawn that
intersects the boundary more than twice. (In other words, the boundary reverses the Y
direction exactly twice, disregarding polygons that have degenerated into horizontal
lines, which I'm going to ignore.)

Bill was kind enough to send me the pages out of Computational Geometry, An
Introduction (Springer-Verlag, 1988) that describe the correct terminology; such poly
gons are, in fact, "monotone with respect to a vertical line" (which unfortunately makes
a rather long #define variable). Actually, to be a tad more precise, I'd call them "mono
tone with respect to a vertical line and simple," where "simple" means "not self-inter-

376 ^ Chapter 24

secting." Similarly, the polygon type I called "nonconvex" is actually "simple," and I
suppose what I called "complex" should be referred to as "nonsimple," or maybe just
"none of the above."

Thie may eeem like nit-picking, but actually it ien't; what it'e really
about ie the tremendoue importance of having a ehared language, in
one of hie booke, Richard Feynman deecribee having developed hie
own mathematical framework, complete with hie own notation and
terminology, in high echool. When he got to college and etarted work
ing with other people who were at hie level, he euddenly underetood
that people can't ehare ideae effectively unleee they epeak the eame
language; otherwiee, they waete a great deal of time on mieunder-
etandinge and explanation.

Or, as Bill Huber put it, "You are free to adopt your own terminology when it suits
your purposes well. But you risk losing or confusing those who could be among your
most astute readers—those who already have been trained in the same or a related
field." Ditto. Likewise. D'accord. And mea culpa; I shall endeavor to watch my lan
guage in the future.

Nomenclature In Action

Just to show you how much difference proper description and interchange of ideas can
make, consider the case of identifying convex polygons. When I was writing about
polygons in my column in DDJ, a nonfunctional method for identifying such poly
gons—checking for exactly two X direction changes and two Y direction changes around
the perimeter of the polygon—crept into the column by accident. That method, as I
noted in a later column, does not work. (That's why you won't find it in this book.)
Still, a fast method of checking for convex polygons would be highly desirable, because
such polygons can be drawn with the fast code from Chapter 22, rather than the rela
tively slow, general-purpose code from Chapter 23.
Now consider Bill's point that we're not limited to drawing convex polygons in our

"convex fill" code, but can actually handle any simple polygon that's monotone with
respect to a vertical line. Additionally, consider Anton Treuenfels's point, made back in
Chapter 23, that life gets simpler if we stop worrying about which edge of a polygon is
the left edge and which is the right, and instead just scan out each raster line starting at
whichever edge is left-most. Now, what do we have?
What we have is an approach passed along by Jim Kent, of Autodesk Animator

fame. If we modify the low-level code to check which edge is left-most on each scan
line and start drawing there, as just described, then we can handle any polygon that's
monotone with respect to a vertical line regardless of whether the edges cross. (I'll call

Those Way-Down Polygon Nomenclature Blues 377

Sampla monotona-vartical polygons

Figure 24.1 Monotone-Vertical Polygons

Sampla nonmonotona-vartical polygons

Figure 24,2 Non-Monotone-Verticai Polygons

this "monotone-vertical" from now on; if anyone wants to correct that terminology,
jump right in.) In other words, we can then handle nonsimple polygons that are monotone-
vertical; self-interseaion is no longer a problem. We just scan around the polygons perim
eter looking for exactly two direction reversals along the Y axis only, and if that proves
to be the case, we can handle the polygon at high speed. Figure 24.1 shows polygons
that can be drawn by a monotone-vertical capable filler; Figure 24.2 shows some that
cannot. Listing 24.1 shows code to test whether a polygon is appropriately monotone.

LISTING 24.1 L24-1.C
/* Returns 1 if polygon described by passed-in vertex list is monotone with
respect to a vertical line, 0 otherwise. Doesn't matter if polygon is simple
(non-self-intersecting) or not. Tested with Borland C++ in small model. */

^include "polygon.h"

#define SIGNUM(a) ((a>0)?l:((a<0)?-l:0))

378 ® Chapter 24

int PolygonlsMonotoneVertical(struct PointListHeader * VertexList)

{
int 1, Length, DeltaYSign, PreviousDeltaYSign;
int NumYReversals = 0;

struct Point *VertexPtr = VertexList->PointPtr;

/* Three or fewer points can't make a non-vertical-monotone polygon */
if ((Length=VertexList->Length) < 4) return(l);

/* Scan to the first non-horizontal edge */
PreviousDeltaYSign = SIGNUMCVertexPtr[Length-l].Y - VertexPtr[0].Y);
i = 0;

while ((PreviousDeltaYSign 0) && (i < (Length-1))) {
PreviousDeltaYSign = SIGNUM(VertexPtr[i].Y - VertexPtr[i+l].Y);
i++;

}

if (i — (Length-!)) return(l); /* polygon is a flat line */

/* Now count Y reversals. Might miss one reversal, at the last vertex, but
because reversal counts must be even, being off by one isn't a problem */

do {

if ((DeltaYSign = SIGNUM(VertexPtr[i].Y - VertexPtr[i+l].Y))

!= 0) {

if (DeltaYSign != PreviousDeltaYSign) {

/* Switched Y direction; not vertical-monotone if

reversed Y direction as many as three times */

if (++NumYReversals > 2) return(O);

PreviousDeltaYSign = DeltaYSign;

}

}

} while (i++ < (Length-!));
return(!); /* it's a vertical-monotone polygon */

Listings 24.2 and 24.3 are variants of the fast convex polygon fill code from Chapter
22, modified to be able to handle all monotone-vertical polygons, including nonsimple
ones; the edge-scanning code (Listing 22.4 from Chapter 22) remains the same, and so
is not shown again here.

LISTING 24.2 L24-2.C
/* Color-fills a convex polygon. All vertices are offset by (XOffset, YOffset).
"Convex" means "monotone with respect to a vertical line"; that is, every
horizontal line drawn through the polygon at any point would cross exactly two
active edges (neither horizontal lines nor zero-length edges count as active
edges; both are acceptable anywhere in the polygon). Right & left edges may
cross (polygons may be nonsimple). Polygons that are not convex according to
this definition won't be drawn properly. (Yes, "convex" is a lousy name for
this type of polygon, but it's convenient; use "monotone-vertical" if it makes
you happier!).

NOTE: the low-level drawing routine, DrawHorizontalLineList, must be able to
reverse the edges, if necessary to make the correct edge left edge. It must
also expect right edge to be specified in +! format (the X coordinate is ! past
highest coordinate to draw). In both respects, this differs from low-level
drawing routines presented in earlier columns; changes are necessary to make it
possible to draw nonsimple monotone-vertical polygons; that in turn makes it

Those Way-Down Polygon Nomenclature Blues ^ 379

possible to use Jim Kent's test for monotone-vertical polygons.

Returns 1 for success, 0 if memory allocation failed */

#include <stdio.h>

^include <math.h>

^include <stdlib.h>

^include "polygon.h"

/* Advances the index by one vertex forward through the vertex list,
wrapping at the end of the list */
#define INDEX_FORWARD(Index) \

Index = (Index + 1) % VertexList->Length;

/* Advances the index by one vertex backward through the vertex list,

wrapping at the start of the list */
#define INDEX_BACKWARD(Index) \

Index = (Index - 1 VertexList->Length) % VertexList->Length;

/* Advances the index by one vertex either forward or backward through

the vertex list, wrapping at either end of the list */
^define INDEX_MOVE(Index,Direction) \

if (Direction >0) \

Index = (Index + 1) % VertexList->Length; \

el se \

Index = (Index - 1 + VertexList->Length) % VertexList->Length;

extern void ScanEdgednt, int, int, int, int, int, struct HLine **);

extern void DrawHorizontalLineList(struct HLineList *, int);

int FillMonotoneVerticalPolygon(struct PointListHeader * VertexList,

int Color, int XOffset, int YOffset)

{

int i, Minlndex, Maxindex, MinPoint_Y, MaxPoint_Y;

int Nextlndex, Currentlndex, Previouslndex;

struct HLineList WorkingHLineList;

struct HLine *EdgePointPtr;

struct Point *VertexPtr;

/* Point to the vertex list */

VertexPtr = VertexList->PointPtr;

/* Scan the list to find the top and bottom of the polygon */
if (VertexList->Length ■== 0)

return(l); /* reject null polygons */
MaxPoint_Y = MinPoint_Y = VertexPtr[Minindex = Maxindex = 0].Y;
for (i =1; i < VertexList->Length; i++) {

if (VertexPtr[i].Y < MinPoint_Y)
MinPoint_Y = VertexPtr[Minindex = i].Y; /* new top */

else if (VertexPtrCi].Y > MaxPoint_Y)
MaxPoint_Y = VertexPtr[MaxIndex = i].Y; /* new bottom */

}

/* Set the # of scan lines in the polygon, skipping the bottom edge */
if ((WorkingHLineList.Length = MaxPoint_Y - MinPoint_Y) <= 0)

return(l); /* there's nothing to draw, so we're done */
WorkingHLineLiSt.YStart = YOffset + MinPoint_Y;

/* Get memory in which to store the line list we generate */
if ((WorkingHLineList.HLinePtr =

(struct HLine *) (malloc(sizeof(struct HLine) *
WorkingHLineList.Length))) =» NULL)

380 ^ Chapter 24

return(O); /* couldn't get memory for the line list */

/* Scan the first edge and store the boundary points in the list */
/* Initial pointer for storing scan converted first-edge coords */
EdgePointPtr => WorkingHLineList.HLinePtr;

/* Start from the top of the first edge */
Previouslndex - Currentlndex = Minlndex;

/* Scan convert each line in the first edge from top to bottom */
do {

INDEX_BACKWARD(CurrentIndex);

ScanEdge(VertexPtr[PreviousIndex].X + XOffset,
VertexPtr[PreviousIndex].Y.

VertexPtrCCurrentlndex].X + XOffset.

VertexPtr[CurrentIndex].Y. 1, 0, &EdgePointPtr);

Previouslndex = Currentlndex;

} while (Currentlndex != Maxindex);

/* Scan the second edge and store the boundary points in the list */
EdgePointPtr = WorkingHLineList.HLinePtr;

Previouslndex = Currentlndex = Minlndex;

/* Scan convert the second edge, top to bottom */
do {

INDEX_FORWARD(CurrentIndex);

ScanEdge(VertexPtr[PreviousIndex].X + XOffset,
VertexPtr[Previous Index].Y,

VertexPtrCCurrentlndex].X + XOffset,

VertexPtrCCurrentlndex].Y, 0, 0, &EdgePointPtr);

Previouslndex = Currentlndex;

} while (Currentlndex != Maxindex);

/* Draw the line list representing the scan converted polygon */
DrawHori zontalLi neLi st(&Worki ngHLi neLi st, Col or);

/* Release the line list's memory and we're successfully done */

free(WorkingHLineLi st.HLinePtr);

return(1);

}

LISTING 24.3 L24-3.ASM
Draws all pixels in list of horizontal lines passed in, in mode 13h, VGA's
320x200 256-color mode. Uses REP STOS to fill each line.
**

NOTE: is able to reverse the X coords for a scan line, if necessary to make

XStart < XEnd. Expects whichever edge is rightmost on any scan line to be in
+1 format; that is, XEnd is 1 greater than rightmost pixel to draw, if
XStart XEnd, nothing is drawn on that scan line.
★**★**★**★★*******★**•******★**★****★******★***■******•****★★********

C near-callable as:

void DrawHorizontalLineList(struct HLineList * HLineListPtr, int Color);

All assembly code tested with TASM and MASM

SCREEN_WIDTH equ 320
SCREEN_SEGMENT equ OaOOOh

HLine struc

XStart dw ? ;X coordinate of leftmost pixel in line
XEnd dw ? ;X coordinate of rightmost pixel in line
HLine ends

Those Way-Down Polygon Nomenclature Blues 381

HLIneLlst struc

Lngth dw ? of horizontal lines

YStart dw ? :Y coordinate of topmost line

HLInePtr dw ? ;po1nter to list of horz lines
HLineLlst ends

Farms struc

dw 2 dup(?) ;return address & pushed BP

HLIneLlstPtr dw ? ;po1nter to HLIneLlst structure

Col or dw ? ; col or with which to fill

Farms ends

.model smal 1

.code

publ1c _DrawHor1zontalLIneLIst

al Ign 2

_DrawHor1zontalLIneLlst proc
push bp ;preserve caller's stack frame
mov bp.sp ;point to our stack frame
push si ;preserve caller's register variables

push d1

eld ;make string Instructions Inc pointers

mov ax,SCREEN_SEGMENT

mov es.ax ;po1nt ES to display memory for REP STOS

mov si,[bp+HLIneLIstPtr] ;point to the line list
mov ax.SCREEN_WIDTH ;po1nt to the start of the first scan
mul [sl+YStart] : line In which to draw

mov dx,ax ;ES:DX points to first scan line to draw

mov bx,[sl+HLInePtr] ;po1nt to the XStart/XEnd descriptor
; for the first (top) horizontal line

mov si,[sl+Lngth] ;# of scan lines to draw

and s 1, s 1 ;are there any lines to draw?

jz Fi11 Done ;no, so we're done

mov al,byte ptr [bp+Color] ;color with which to fill
mov ah,al ;duplicate color for STOSW

F111 Loop:
mov d1,[bx+XStart] ;left edge of fill on this line

mov cx,[bx+XEnd] ;right edge of fill

cmp d1 .cx ;1s XStart > XEnd?

jle NoSwap ;no, we're all set

xchg di ,cx ;yes, so swap edges

NoSwap:
sub cx.dl ;width of fill on this line

jz LIneFI11 Done ;sk1p If zero width

add d1 ,dx ;offset of left edge of fill

test d1,1 ;does fill start at an odd address?

jz MainFi11 ;no

stosb ;yes, draw the odd leading byte to

; word-align the rest of the fill

dec cx ;count off the odd leading byte

jz LIneFI11 Done ;done If that was the only byte

MainFi11:

shr

rep

adc

rep

LineFillDone:

add

add

cx.l

stosw

cx.cx

stosb

of words in fill

fin as many words as possible
1 If there's an odd trailing byte to

do, 0 otherwise

fill any odd trailing byte

bx.size HLIne ;po1nt to the next line descriptor
dx,SCREEN_WIDTH ;po1nt to the next scan line

382 ® Chapter 24

dec si ;count off lines to fill

jnz Fill Loop
Fi11 Done:

pop di jrestore caller's register variables
pop si

pop bp jrestore caller's stack frame
ret

_DrawHorizontalLinelist endp
end

Listing 24.4 is almost identical to Listing 23.1 from Chapter 23. I've modified
Listing 23.1 to employ the vertical-monotone detection test we've been talking about
and use the fast vertical-monotone drawing code whenever possible; that's what List
ing 24.4 is. Note well that Listing 23.5 from Chapter 23 is also required in order for
this code to link. Listing 24.5 is an appropriately updated version of the POLYGON.H
header file.

LISTING 24.4 L24-4.C
/* Color-fills an arbitrarily-shaped polygon described by VertexList.
If the first and last points in VertexList are not the same, the path
around the polygon is automatically closed. All vertices are offset
by (XOffset, YOffset). Returns 1 for success, 0 if memory allocation

failed. All C code tested with Borland C++.

If the polygon shape is known in advance, speedier processing may be
enabled by specifying the shape as follows: "convex" - a rubber band
stretched around the polygon would touch every vertex in order;
"nonconvex" - the polygon is not self-intersecting, but need not be
convex; "complex" - the polygon may be self-intersecting, or, indeed,
any sort of polygon at all. Complex will work for all polygons; convex
is fastest. Undefined results will occur if convex is specified for a
nonconvex or complex polygon.

Define CONVEX_CODE_LINKED if the fast convex polygon filling code from
the February 1991 column is linked in. Otherwise, convex polygons are
handled by the complex polygon filling code.
Nonconvex is handled as complex in this implementation. See text for a
discussion of faster nonconvex handling. */

#include <stdio.h>

^include <math.h>

#ifdef _TURBOC_

^include <alloc.h>

#else /* MSC */

#include <malloc.h>

#endi f

^include "polygon.h"

#define SWAP(a,b) {temp = a; a = b; b = temp;}

struct EdgeState {

struct EdgeState *NextEdge;

int X;

int StartY;

int WholePixelXMove;

int XDirection;

Those Way-Down Polygon Nomenclature Blues ^ 383

int ErrorTerm;

int ErrorTermAdjUp;
int ErrorTermAdjDown;

Int Count;

};

extern void DrawHorizontal LineSegdnt, int, int, int);
extern int FilIMonotoneVerticalPolygonCstruct PointListHeader *,

int, int, int);

extern int PolygonlsMonotoneVertical(struct PointListHeader *);
static void Bui 1dGETCstruct PointListHeader *, struct EdgeState *,

int, int);

static void MoveXSortedToAETCint);

static void ScanOutAETCint, int);

static void AdvanceAETCvoid);

static void XSortAETCvoid);

/* Pointers to global edge table (GET) and active edge table (AET) */
static struct EdgeState *GETPtr, *AETPtr;

int Fi11Polygon(struct PointListHeader * VertexList, int Color,
int PolygonShape, int XOffset, int YOffset)

{
struct EdgeState *EdgeTableBuffer;

int CurrentY;

#ifdef CONVEX_CODE_LINKED

/* Pass convex polygons through to fast convex polygon filler */
if ((PolygonShape == CONVEX) ||

Polygon IsMonotoneVerti cal(VertexLi st))
return(Fi11 MonotoneVerticalPolygon(VertexList, Color, XOffset,

YOffset));

#endi f

/* It takes a minimum of 3 vertices to cause any pixels to be
drawn; reject polygons that are guaranteed to be invisible */

if (VertexList->Length < 3)

return(l);

/* Get enough memory to store the entire edge table */
if ((EdgeTableBuffer =

(struct EdgeState *) (malloc(sizeof(struct EdgeState) *
VertexList->Length))) == NULL)

return(O); /* couldn't get memory for the edge table */

/* Build the global edge table */
Bui 1dGEKVertexLiSt, EdgeTableBuffer, XOffset, YOffset);

/* Scan down through the polygon edges, one scan line at a time,
so long as at least one edge remains in either the GET or AET */

AETPtr = NULL; /* initialize the active edge table to empty */
CurrentY = GETPtr->StartY; /* start at the top polygon vertex */

while ((GETPtr != NULL) || (AETPtr != NULL)) {
MoveXSortedToAET(CurrentY); /* update AET for this scan line */
ScanOutAET(CurrentY, Color); /* draw this scan line from AET */

AdvanceAET(); /* advance AET edges 1 scan line */

XSortAETO; /* resort on X */

CurrentY++; /* advance to the next scan line */

}

/* Release the memory we've allocated and we're done */
free(EdgeTableBuffer);

return(l);

384 ^ Chapter 24

/* Creates a GET in the buffer pointed to by NextFreeEdgeStruc from
the vertex list. Edge endpolnts are flipped. If necessary, to
guarantee all edges go top to bottom. The GET Is sorted primarily
by ascending Y start coordinate, and secondarily by ascending X
start coordinate within edges with common Y coordinates. */

static void Bu11dGET(struct PolntLIstHeader * VertexLlst,

struct EdgeState * NextFreeEdgeStruc, Int XOffset, Int YOffset)

{

Int 1, StartX, StartY, EndX, EndY, DeltaY, DeltaX, Width, temp;
struct EdgeState *NewEdgePtr;

struct EdgeState *FollowlngEdge, **Fol1 owlngEdgeLInk;

struct Point *VertexPtr;

/* Scan through the vertex list and put all non-0-he1ght edges Into
the GET, sorted by Increasing Y start coordinate */

VertexPtr = VertexLIst->Po1ntPtr; /* point to the vertex list */
GETPtr •= NULL; /* Initialize the global edge table to empty */
for (1 =0; 1 < VertexLIst->Length; 1++) {

/* Calculate the edge height and width */

StartX - VertexPtrCn.X + XOffset;

StartY = VertexPtr[1].Y + YOffset;

/* The edge runs from the current point to the previous one */

If (1 == 0) {

/* Wrap back around to the end of the list */
EndX = VertexPtrCVertexL1st->Length-l].X + XOffset;

EndY = VertexPtr[VertexL1st->Length-l].Y + YOffset;

} else {

EndX = VertexPtrC1-l].X + XOffset;

EndY = VertexPtr[1-l].Y + YOffset;

}
/* Make sure the edge runs top to bottom */
If (StartY > EndY) {

SWAPCStartX, EndX);

SWAPCStartY, EndY);

}
/* Skip If this can't ever be an active edge (has 0 height) */
If ((DeltaY = EndY - StartY) != 0) {

/* Allocate space for this edge's Info, and fill In the
structure */

NewEdgePtr = NextFreeEdgeStruc++;

NewEdgePtr->XD1rection = /* direction In which X moves */

((DeltaX = EndX - StartX) > 0) ? 1 : -1;

Width = abs(DeltaX);

NewEdgePtr->X = StartX;
NewEdgePtr->StartY = StartY;

NewEdgePtr->Count = DeltaY;

NewEdgePtr->ErrorTermAdjDown = DeltaY;

If (DeltaX >= 0) /* Initial error term going L->R */
NewEdgePtr->ErrorTerm = 0;

else /* Initial error term going R->L */

NewEdgePtr->ErrorTerm = -DeltaY + 1;
If (DeltaY >•= Width) { /* Y-major edge */

NewEdgePtr->WholeP1xelXMove =■ 0;
NewEdgePtr->ErrorTermAdjUp = Width;

) else { /* X-major edge */
NewEdgePtr->WholePIxel XMove =

(Width / DeltaY) * NewEdgePtr->XD1rectlon;
NewEdgePtr->ErrorTermAdjUp = Width % DeltaY;

}
/* Link the new edge Into the GET so that the edge list Is

still sorted by Y coordinate, and by X coordinate for all
edges with the same Y coordinate */

Those Way-Down Polygon Nomenclature Blues ^ 385

FollowingEdgeLink = &GETPtr;

for (;;) {

FoilowingEdge = *Fol1owingEdgeLink;

if ((FoilowingEdge = NULL) ||
(FonowingEdge->StartY > StartY) ||
((FonowingEdge->StartY == StartY) &&

(FonowingEdge->X >= StartX))) {
NewEdgePtr->NextEdge = Fol1owingEdge;
*FonowingEdgeLink = NewEdgePtr;

break;

}
FollowingEdgeLink = &F0IlowingEdge->NextEdge;

}

}

/* Sorts all edges currently in the active edge table into ascending
order of current X coordinates */

static void XSortAETO {

struct EdgeState *CurrentEdge. **CurrentEdgePtr, *TempEdge;
int SwapOccurred;

/* Scan through the AET and swap any adjacent edges for which the
second edge is at a lower current X coord than the first edge.
Repeat until no further swapping is needed */

if (AETPtr != NULL) {

do {

SwapOccurred = 0;
CurrentEdgePtr = &AETPtr;

while ((CurrentEdge = *CurrentEdgePtr)->NextEdge != NULL) {
if (CurrentEdge->X > CurrentEdge->NextEdge->X) {

/* The second edge has a lower X than the first;
swap them in the AET */

TempEdge = CurrentEdge->NextEdge->NextEdge;
♦CurrentEdgePtr = CurrentEdge->NextEdge;
CurrentEdge->NextEdge->NextEdge = CurrentEdge;
CurrentEdge->NextEdge = TempEdge;
SwapOccurred = 1;

}
CurrentEdgePtr = &(*CurrentEdgePtr)->NextEdge;

}
} while (SwapOccurred != 0);

}
}

/* Advances each edge in the AET by one scan line.
Removes edges that have been fully scanned. */

static void AdvanceAETO {
struct EdgeState *CurrentEdge, **CurrentEdgePtr;

/* Count down and remove or advance each edge in the AET */
CurrentEdgePtr = &AETPtr;
while ((CurrentEdge = *CurrentEdgePtr) !«= NULL) {

/* Count off one scan line for this edge */
if ((- - (CurrentEdge->Count)) ■=«= 0) {

/* This edge is finished, so remove it from the AET */
♦CurrentEdgePtr = CurrentEdge->NextEdge;

} else {
/♦ Advance the edge's X coordinate by minimum move ♦/
CurrentEdge->X += CurrentEdge->WholePixelXMove;

386 gj Chapter 24

/* Determine whether it's time for X to advance one extra */

if ((CurrentEdge->ErrorTerm +=
CurrentEdge->ErrorTermAdjUp) > 0) {

CurrentEdge->X += CurrentEdge->XDirection;
CurrentEdge->ErrorTerm -= CurrentEdge->ErrorTermAdjDown;

}

CurrentEdgePtr = &CurrentEdge->NextEdge;

)

/* Moves all edges that start at the specified Y coordinate from the
GET to the AET, maintaining the X sorting of the AET. */

static void MoveXSortedloAEKint YToMove) {

struct EdgeState *AETEdge, **AETEdgePtr, *TempEdge;
int CurrentX;

/* The GET is Y sorted. Any edges that start at the desired Y

coordinate will be first in the GET, so we'll move edges from

the GET to AET until the first edge left in the GET is no longer
at the desired Y coordinate. Also, the GET is X sorted within

each Y coordinate, so each successive edge we add to the AET is

guaranteed to belong later in the AET than the one just added. */
AETEdgePtr = &AETPtr;

while ((GETPtr != NULL) && (GETPtr->StartY YToMove)) {

CurrentX = GETPtr->X;

/* Link the new edge into the AET so that the AET is still
sorted by X coordinate */

for (;;) {

AETEdge = *AETEdgePtr;

if ((AETEdge = NULL) || (AETEdge->X >= CurrentX)) {
TempEdge = GETPtr->NextEdge;
AETEdgePtr = GETPtr; / link the edge into the AET */
GETPtr->NextEdge = AETEdge;

AETEdgePtr = &GETPtr->NextEdge;

GETPtr = TempEdge; /* unlink the edge from the GET */
break;

} else {

AETEdgePtr = &AETEdge->NextEdge;

}

}

}

}

/* Fills the scan line described by the current AET at the specified Y
coordinate in the specified color, using the odd/even fill rule */

static void ScanOutAET(int YToScan, int Color) {

int LeftX;

struct EdgeState *CurrentEdge;

/* Scan through the AET, drawing line segments as each pair of edge
crossings is encountered. The nearest pixel on or to the right
of left edges is drawn, and the nearest pixel to the left of but
not on right edges is drawn */

CurrentEdge = AETPtr;

while (CurrentEdge != NULL) {
LeftX = CurrentEdge->X;

CurrentEdge = CurrentEdge->NextEdge;

DrawHorizontalLineSeg(YToScan, LeftX, CurrentEdge->X-l, Color);

CurrentEdge = CurrentEdge->NextEdge;

}

Those Way-Down Polygon Nomenclature Blues ^ 387

LISTING 24.5 POLYGON.H
/* Header file for polygon-filling code */

#define CONVEX 0

#define NONCONVEX 1

#define COMPLEX 2

/* Describes a single point (used for a single vertex) */
struct Point {

int X; /* X coordinate */

int Y; /* Y coordinate */

};

/* Describes series of points (used to store a list of vertices that describe
a polygon; each vertex is assumed to connect to the two adjacent vertices, and
last vertex is assumed to connect to the first) */

struct PointListHeader {

int Length; /* # of points */
struct Point * PointPtr; /* pointer to list of points */

};

/* Describes beginning and ending X coordinates of a single horizontal line */
struct HLine {

int XStart; /* X coordinate of leftmost pixel in line */
int XEnd; /* X coordinate of rightmost pixel in line */

};

/* Describes a Length-long series of horizontal lines, all assumed to be on
contiguous scan lines starting at YStart and proceeding downward (used to
describe scan-converted polygon to low-level hardware-dependent drawing code) */
struct HLineList {

int Length; /* # of horizontal lines */

int YStart; /* Y coordinate of topmost line */
struct HLine * HLinePtr; /* pointer to list of horz lines */

):

/* Describes a color as an RGB triple, plus one byte for other info */
struct RGB { unsigned char Red, Green, Blue, Spare; };

Is monotone-vertical polygon detection worth all this trouble? Under the right cir
cumstances, you bet. In a situation where a great many polygons are being drawn, and
the application either doesn't know whether they're monotone-vertical or has no way
to tell the polygon filler that they are, performance can be increased considerably if
most polygons are, in fact, monotone-vertical. This potential performance advantage
is helped along by the surprising fact that Jim's test for monotone-vertical status is
simpler and faster than my original, nonfunctional test for convexity.

See what accurate terminology and effective communication can do?

The Sierra Hlcoior DAC as the Means to Antlallased Lines

Does anything evolve faster than PC hardware? Not so long ago, we thought that
juicing up the crystal in an AT from 6 to 8 MHz was awesome. Now we take it for
granted when Intel triples the internal speed of a 33MHz CPU, and with the Pentium's
superscalar execution and 90 MHz clock speeds, the trend is, if anything, accelerating.
An awful lot of the PC's evolution has involved graphics adapters, and the next couple
of chapters are going to be about the first successful step away from the 256-color
SuperVGAs of the late 1980s, toward the Holy Grail of 24 bits per pixel.

In computer graphics, two display characteristics are paramount: color and resolu
tion. In 1991, SuperVGAs had taken resolution up to 1024x768, but were still stuck
at the 256-color resolution that IBM had designed into the original VGA. The rule for
graphics is simple—the more colors the better—and the PC world was primed for a
color breakthrough. The only questions were how and when it would happen.
The first shot was fired by Edsun Laboratories, in the form of the Edsun Continu

ous Edge Graphics (CEG) digital to analog converter (DAC, the chip that converts
pixel values from the VGA into analog signals for input to the monitor). The CEG
DAG was an ingenious bridge between SuperVGAs and higher color that required no
modification to VGA chips and no additional memory, yet achieved (with consider
able software effort) stunning results. If you're curious about ancient history, have a
look at my "Graphics Programming" column in Dr. Dobb's Journal for April and May
1991, where I discussed the CEG DAC in detail. If you do look up these columns,
you'll also find that my record as a prophet has its blemishes—I thought the CEG
DAC was going to take off, but, alas, the CEG DAC's programming model was more
than difficult and (far worse) delivery schedules slipped. Only a few Edsun-equippped
VGAs ever made it into the field, and the unique Edsun technology became a histori
cal oddity, its potential unrealized.

390 ^ Chapter 25

Time and technology marched on, and later in 1991 the spotlight settled on an
other new device, the Sierra Semiconductor Hicolor DAC, whose mission was much
the same as the CEG DAC, but with a more promising implementation. The Hicolor
DAC was and is easy to program, a simple extension of the 256-color programming
model; it s also affordable and a simple drop-in replacement for the standard VGA
DAC. Best of all, it shipped in good order and worked as advertised right off the bat,
and, consequently, met with good success.
A fairly typical high-end SuperVGA card in late 1991 and early 1992 was built

around the Tseng Labs ET4000 VGA chip, 1 MB of RAM, and the Hicolor DAC, a
combination that enabled support of the then-unprecedented 800x600 and 640x480,
32,768-color modes. Other technologies have appeared to crowd the Hicolor DAC off
the cutting edge, but the chip is still used in low-end VGAs, and almost all new video
adapters these days support high-color modes much like the ones that the Hicolor
DAC pioneered. Besides, there are still lots of Hicolor DACs around in the installed
base, and the Hicolor programming model is still used by most new adapters, so the
Hicolor DAC is well worth understanding as one of the keys to the generation of
graphics hardware that in the early 1990s swept far beyond the limits set by the origi
nal VGA.

Unreal Color

To those of us who remembered buying IBM EGAs for $1000, it was kind of unreal to
see an 800x600 32K-color VGA for less than $200 back in 1991. Understand, now,

that I'm not talking about clever bitmap encoding or color look-up tables or other
tricky ways of boosting color here. This is the real, 15-bpp (bits per pixel), almost true-
color McCoy, beautifully suited to imaging, antialiasing, and virtually any sort of high-
color graphics you might imagine. The Hicolor DAC supports normal bitmaps that
are just like 256-color bitmaps, except that each pixel is composed of 15 bits spread
across 2 bytes. If you know how to program 800x600 256-color mode, you should
have no trouble at all programming the 800x600 32K-color mode; for the most part,
just double the horizontal byte counts. (Lower-resolution 32K-color modes, such as
640x480, are also available.) The 32K-color banking schemes are the same as in 256-
color modes, except that there are half as many pixels in each bank. Even the complexi
ties of the DAC's programmable palette go away in 32K-color mode, because there is
no programmable palette.
And therein lies the strength of the Hicolor DAC: It's easy to program. Theoreti

cally, the Edsun CEG DAC could produce more precise images, with higher color
content, using less display memory than the Hicolor DAC, because with the CEG
DAC color resolutions of 24-bpp and even higher were possible. Practically speaking,
however, it was hard to write software—especially real-time software—that took full
advantage of the Edsun CEG DAC's capabilities. On the other hand, it's very easy to
extend existing 256-color SuperVGA code to support the Hicolor DAC, and although

The VGA versus the Jaggies 0 391

32K colors (15-bpp) is not the same as true color (24-bpp), its close enough for most
purposes, and astonishingly better than 256 colors. Digitized and rendered images look
terrific on the Hicolor DAC, just as they did on the Edsun CEG DAC—and it s a lot
easier and much faster to generate such images for the Hicolor DAC.

The Gamma Correction Disadvantage
The Hicolor DAC has three disadvantages. First, it requires twice as much memory at
a given resolution as does an equivalent 256-color mode. This is no longer a significant
problem; memory is cheap, with 1 MB essentially standard on SuperVGAs and 2MB
becoming common. (The 1024x768 32K color mode that was impossible on a 1 MB
SuperVGA is easy on a board with 2MB.) Second, graphics operations can take consid
erably longer, simply because there are twice as many bytes of display memory to be
dealt with; however, the latest generation of SuperVGAs provides for such fast memory
access that 32K-color software runs faster than 256-color software did on the first

generation of SuperVGAs. Finally, the Hicolor DAC neither performs gamma correc
tion in hardware nor provides a built-in look-up table to allow programmable gamma
correction.

To refresh your memory, gamma correction is the process of compensating for the
nonlinear response of pixel brightness to input voltage. A pixel with a green value of 60
is much more than twice as bright as a pixel of value 30. The Hicolor DAC s lack of
built-in gamma correction puts the burden on software to perform the correction so
that antialiasing will work properly, and so that images such as digitized photographs
will display with the proper brightness. Software gamma correction is possible, but it s
a time-consuming nuisance; it also decreases the effective color resolution of the Hicolor
DAC for bright colors because the bright colors supported by the Hicolor DAC are
spaced relatively farther apart than the dim colors.
The lack of gamma correction is, however, a manageable annoyance. On balance,

the Hicolor DAC is true to its heritage; a logical, inexpensive, and painless extension of
SuperVGA. The obvious next steps are 1024x768 in 32K colors (now common enough,
but very exotic in 1991), and 800x600 with 24 bpp; heck, 4 MB of display memory
(eight 4-Megabit RAMS) would be enough for 1024x768 24-bpp with room to spare,
and, as I write this, that s right around the corner. In short, the Hicolor DAC is squarely
in the mainstream of VGA evolution. (Note that although most of the first generation
of Hicolor boards were built around the Tseng ET4000, which quietly and for good
reason became the preeminent SuperVGA chip of 1991 and 1992, the Hicolor DAC
works with other VGA chips and can be found in SuperVGAs of all sorts.)

Polygon Antialiasing
To my mind, the best thing about the Hicolor DAC is that it makes fast, general
antialiasing possible. You see, what IVe been working toward in this book is real-time

392 ^ Chapter 25

3-D perspective drawing on a standard PC, without the assistance of any expensive
hardware. The object model Fii be using is polygon-based; hence the fast polygon fill
code I presented a few chapters back. With Mode X (320x240, 256 colors, undocu
mented by IBM but covered in this book in Part VIII), we now have a fast, square-
pixel, page-flipped, 256-color mode, the best that standard VGA has to offer. In this
mode, it s possible to do not only real-time, polygon-based perspective drawing and
animation, but also relatively sophisticated effects such as lighting sources, smooth
shading, and hidden surface removal. That's everything we need for real-time 3-D—
but things could still be better.

Pixels are so large in Mode X that polygons have very visibly jagged edges. These
jaggies are the result of aliasing, that is, distortion of the true image that results from
undersampling at the low pixel rate of the screen. Jaggies are a serious problem; the
whole point of real-time 3-D is to create the illusion of reality, but jaggies quickly
destroy that illusion, particularly when they're crawling along the edges of moving
objects. More frequent sampling (higher resolution) helps, but not as much as you'd
think. What's really needed is the ability to blend colors arbitrarily within a single
pixel, the better to reflect the nature of the true image in the neighborhood of that
pixel—that is, antialiasing The pixels are still as large as ever, but with the colors
blended properly, the eye processes the screen as a continuous image, rather than as a
collection of discrete pixels, and perceives the image at much higher resolution than
the display actually supports.

There are many waye to antiaWae, eome of them faet enough for
real-time proceeeing, and they can work wondere in improving image
appearance—but they aii re(\uire a high degree of freedom in chooe-
ing coiore. For many eorte of graphice, 256 eimuitaneoue ooiore ie
fine, but it'e not enough for generaliy ueefui antiaiiaeing (aithough
we wili ehortiy eee an intereeting eort of epeciai-caee antiaiiaeing
with 256 coiore). Therefore, the one element lacking in etandard
SuperVGA for affordabie reai-time 3-D hae been good antiaiiaeing.

Sierra filled that gap. The Hicolor DAG provides plenty of colors (although I sure
do wish the software didn't have to do gamma correction!) and makes them available in
away that allows for efficient programming. In the next chapter, I'll present antialiasing
code for the Hicolor DAC.

256-Color Antialiasing
In the next chapter, I'll explain how the Hicolor DAC actually works—how to detect
it, how to initialize it, the pixel format, banking, and so on—and then I'll demonstrate
Hicolor antialiasing. For now, I'm going to demonstrate antialiasing on a standard

The VGA versus the Jaggies ® 393

VGA, partly to introduce the uncomplicated but effective antialiasing technique that
I'll use in the next chapter, partly so you can see the improvement that even quick and
dirty antialiasing produces, and partly to show the sorts of interesting things that can
be done with the palette in 256-color mode.

I'm going to draw a cube in perspective. For reference. Listing 25.1 draws the cube
in mode 13H (320x200, 256 colors) using the standard polygon fill routine that I
developed back in Chapters 21 and 22. No, the perspective calculations aren't per
formed in Listing 25.1; I just got the polygon vertices out of some 3-D software that
I'm developing and hardwired them into Listing 25.1. Never fear, though; we'll get to
true 3-D soon enough.
Some listings from previous chapters are required to build the executable files for

this chapter (including the edge-scanning code in Listing 22.2 and POLYGON.H),
but to lessen the confusion all of these are present in the Chapter 25 subdirectory on
the listings diskette.

Listing 25.1 draws a serviceable cube, but the edges of the cube are very jagged.
Imagine the cube spinning, and the jaggies rippling along its edges, and you'll see the
full dimensions of the problem.

LISTING 25.1 L25-1.C
/* Demonstrates non-antialiased drawing in 256 color mode. Tested with

Borland C++ in 0 mode in the small model. */

yi^include <conio.h>

^include <dos.h>

^include "polygon.h"

/* Draws the polygon described by the point list PointList in color
Color with all vertices offset by (X,Y) */

#define DRAW_POLYGON(PointList,Color.X.Y) \

Polygon.Length = sizeof(PointList)/sizeof(struct Point); \
Polygon.PointPtr = PointList; \
Fi11ConvexPolygonC&Polygon, Color. X. Y);

void mainCvoid);

extern int FillConvexPolygon(struct PointListHeader *, int. int. int);

/* Palette RGB settings to load the first four palette locations with
black, pure blue, pure green, and pure red */

static char Palette[4*3] = {0, 0, 0, 0, 0, 63, 0, 63, 0, 63, 0, 0};

void main()

{
struct PointListHeader Polygon;

static struct Point FaceO[] =

{{198,138},{211,89},{169,44},{144,89}};

static struct Point Facel[] =

{{153,ISO},{198,138},{144,89},{105,113}};

static struct Point Face2[] =

{{169,44},{133,73},{105,113},{144,89}};

union REGS regset;

struct SREGS sregs;

394 @ Chapter 25

}

/* Set the display to VGA mode 13h, 320x200 256-color mode */
regset.x.ax = 0x0013; 1nt86(0xl0, ®set, ®set);

/* Set color 0 to black, color 1 to pure blue, color 2 to pure
green, and color 3 to pure red */

regset.x.ax = 0x1012; /* load palette block BIOS function */
regset.x.bx = 0; /* start with palette register 0 */
regset.x.cx = 4; /* set four palette registers */
regset.x.dx = (unsigned int) Palette;

segreadC&sregs);

sregs.es = sregs.ds; /* point ES:DX to Palette */
int86x(0xl0, ®set, ®set, &sregs);

/* Draw the cube */

DRAW_POLYGON(FaceO, 3, 0, 0);

DRAW_POLYGON(Facel, 2, 0, 0);

DRAW_P0LYG0N(Face2, 1, 0, 0);

getchO; /* wait for a keypress */

/* Return to text mode and exit */

regset.x.ax =» 0x0003; /* AL = 3 selects 80x25 text mode */

int86(0xl0, ®set, ®set);

Listings 25.2 and 25.3 together draw the same cube, but with simple, unweighted
antialiasing. The results are much better than Listing 25.1; theres no question in my
mind as to which cube Fd rather see in my graphics software.

LISTING 25.2 L25-2.C
/* Demonstrates unweighted antialiased drawing in 256 color mode.

Tested with Borland C++ in C mode in the small model. */

^include <conio.h>

#include <dos.h>

^include <stdlib.h>

yh'nclude <string.h>
^include "polygon.h"

/* Draws the polygon described by the point list PointList in color
Color, with all vertices offset by (X,Y), to ScanLineBuffer, at

double horizontal and vertical resolution */

#defi ne DRAW_POLYGON_DOUBLE_RES(Poi ntLi st,Col or,x,y)
Polygon.Length = sizeof(PointList)/sizeof(struct Point);

Polygon.PointPtr = PointTemp;
/* Double all vertical & horizontal coordinates */

for (k=0; k<sizeof(PointList)/sizeof(struct Point); k++) { \

PointlempEk].X = PointList[k].X * 2;
PointlempCk].Y = PointList[k].Y * 2;

}

Fi11CnvxPolyDrvr(&Polygon, Color, x, y, DrawBandedList);

#define SCREEN_WIDTH 320
//define SCREEN_HEIGHT 200
//define SCREEN_SEGMENT OxAOOO
//define SCAN_BAND_WIDTH (SCREEN_WIDTH*2) /* // of double-res pixels

across scan band */

The VGA versus the Jaggies @ 395

ifdefine BUFFER_SIZE (SCREEN_WIDTH*2*2) /* enough space for one scan
line scanned out at double

resolution horz and vert */

void main(void);

void DrawPixeKint, int, char);

int ColorComponentCint, int);
extern int Fi11CnvxPolyDrvrCstruct PointListHeader *, int, int, int,

void (*)());

extern void DrawBandedListCstruct HLineList *, int):

/* Pointer to buffer in which double-res scanned data will reside */

unsigned char *ScanLineBuffer;

int ScanBandStart, ScanBandEnd; /* top & bottom of each double-res
band we'll draw to ScanLineBuffer */

int ScanBandWidth = SCAN_BAND_WIDTH; /* # pixels across scan band */
static char Palette[256*3];

void mainC)

{

int i, j, k;

struct PointLiStHeader Polygon;

struct Point PointTemp[4];
static struct Point FaceO[] =

{{198,138},{211,89},{169,44},{144.89}};

static struct Point Facel[] =

{{153,150},{198,138},{144,89},{105,113}};

static struct Point Face2[] =

{{169,44},{133,73},{105,113},{144,89}};

unsigned char Megapixel;
union REGS regset;

struct SREGS sregs;

if ((ScanLineBuffer = mal1oc(BUFFER_SIZE)) == NULL) {

printf("Couldn't get memory\n");
exit(O);

}

/* Set the display to VGA mode 13h, 320x200 256-color mode */
regset.X.ax = 0x0013; int86(0xl0, ®set, ®set);

/* Stack the palette for the desired megapixel effect, with each
2-bit field representing 1 of 4 double-res pixels in one of four
colors */

for (i=0; i<256; i+-i-) {

Palette[i*3] = ColorComponent(i, 3); /* red component */
Palette[i*3-i-l] = ColorComponent(i, 2); /* green component */
Palette[i*3-H2] = ColorComponent(i, 1); /* blue component */

}

regset.X.ax = 0x1012; /* load palette block BIOS function */
regset.x.bx = 0; /* start with palette register 0 */
regset.x.cx = 256; /* set all 256 palette registers */
regset.x.dx = (unsigned int) Palette;
segread(&sregs);

sregs.es = sregs.ds; /* point ESiDX to Palette */
int86x(0xl0, ®set, ®set, &sregs);

/* Scan out the polygons at double resolution one screen scan line
at a time (two double-res scan lines at a time) */

for (i=0; i<SCREEN_HEIGHT; i++) {

/* Set the band dimensions for this pass */
ScanBandEnd = (ScanBandStart = i*2) + 1;

396 ® Chapter 25

}

/* Clear the drawing buffer */

memsetCScanLineBuffer, 0, BUFFER_SIZE);

/* Draw the current band of the cube to the scan line buffer */

DRAW_POLYGON_DOUBLE_RES(FaceO, 3. 0, 0);

DRAW_POLYGON_DOUBLE_RES(Facel, 2, 0. 0);

DRAW_P0LYG0N_D0UBLE_RES(Face2, 1, 0, 0);

/* Coalesce the double-res pixels into normal screen pixels
and draw them */

for (j=0; j<SCREEN_WIDTH; j++) {

Megapixel = (ScanLineBuffer[j*2] << 6) +
(ScanLineBuffer[j*2+l] << 4) +

(ScanLineBuffer[j*2+SCAN_BAND_WIDTH] « 2) +

(ScanLineBuffer[j*2+SCAN_BAND_WIDTH+l]);

DrawPixeKj, i, Megapixel);

}

getchO; /* wait for a keypress */

/* Return to text mode and exit */

regset.x.ax = 0x0003; /* AL = 3 selects 80x25 text mode */

int86(0xl0, ®set, ®set);

/* Draws a pixel of color Color at (X.Y) in mode 13h */
void DrawPixel(int X, int Y, char Color)

{
char far *ScreenPtr;

ScreenPtr = (char far *)MK_FP(SCREEN_SEGMENT, Y*SCREEN_WIDTH+X);

*ScreenPtr = Color;

}

/* Returns the gamma-corrected value representing the number of
double-res pixels containing the specified color component in a
megapixel with the specified value */

int ColorComponentCint Value, int Component)

{

/* Palette settings for 0%, 25%. 50%, 75%, and 100% brightness,
assuming a gamma value of 2.3 */

static int GammaTable[] = {0, 34, 47, 56, 63};

int i;

/* Add up the number of double-res pixels of the specified color
in a megapixel of this value */

i = (((Value & 0x03) = Component) ? 1 : 0) +
((((Value » 2) & 0x03) == Component) ? 1 : 0) +
((((Value » 4) & 0x03) — Component) ? 1 : 0) +
((((Value » 6) & 0x03) == Component) ? 1 : 0);

/* Look up brightness of the specified color component in a
megapixel of this value */

return GammaTable[i];

LISTING 25.3 L25-3.C
/* Draws pixels from the list of horizontal lines passed in; drawing

takes place only for scan lines between ScanBandStart and
ScanBandEnd, inclusive; drawing goes to ScanLineBuffer, with

The VGA versus the Jaggies ^ 397

the scan line at ScanBandStart mapping to the first scan line in
ScanLineBuffer. Intended for use in unweighted antialiasing,

whereby a polygon is scanned out into a buffer at a multiple of the
screen's resolution, and then the scanned-out info in the buffer is

grouped into megapixels that are mapped to the closest
approximation the screen supports and drawn. Tested with Borland
C++ in C mode in the small model */

^include <string.h>

^include <dos.h>

^include "polygon.h"

extern unsigned char *ScanLineBuffer; /* drawing goes here */
extern int ScanBandStart, ScanBandEnd; /* limits of band to draw */

extern int ScanBandWidth; /* # of pixels across scan band */

void DrawBandedList(struct HLineList * HLineListPtr, int Color)

{

struct HLine *HLinePtr;

int Length, Width, YStart = HLineListPtr->YStart:
unsigned char *BufferPtr;

/* Done if fully off the bottom or top of the band */

if (YStart > ScanBandEnd) return;

Length = HLineListPtr->Length;

if ((YStart + Length) <= ScanBandStart) return;

/* Point to the XStart/XEnd descriptor for the first (top)
horizontal 1ine */

HLinePtr = HLineListPtr->HLinePtr;

/* Confine drawing to the specified band */
if (YStart < ScanBandStart) {

/* Skip ahead to the start of the band */
Length -= ScanBandStart - YStart;
HLinePtr += ScanBandStart - YStart;

YStart = ScanBandStart;

}

if (Length > (ScanBandEnd - YStart + 1))
Length = ScanBandEnd - YStart + 1;

/* Point to the start of the first scan line on which to draw */

BufferPtr = ScanLineBuffer + (YStart - ScanBandStart) *

ScanBandWidth;

/* Draw each horizontal line within the band in turn, starting with

the top one and advancing one line each time */
while (Length-- > 0) {

/* Draw the whole horizontal line if it has a positive width */
if ((Width = HLinePtr->XEnd - HLinePtr->XStart + 1) > 0)

memset(BufferPtr + HLinePtr->XStart, Color, Width);

HLinePtr++; /* point to next scan line X info */
BufferPtr += ScanBandWidth; /* point to next scan line start */

}

The antialiasing technique used in Listing 25.2 is straightforward. Each polygon is
scanned out in the usual way, but at twice the screens resolution both horizontally and
vertically (which Til call "double-resolution," although it produces four times as many

398 ® Chapter 25

pixels), with the double-resolution pixels drawn to a memory buflFer, rather than di
rectly to the screen.

Then, after all the polygons have been drawn to the memory buffer, a second pass is
performed. This pass looks at the colors stored in each set of four double-resolution
pixels, and draws to the screen a single pixel that reflects the colors and intensities of
the four double-resolution pixels that make it up, as shown in Figure 25.1. In other
words. Listing 25.2 temporarily draws the polygons at double resolution, then uses the
extra information from the double-resolution bitmap to generate an image with an
effective resolution considerably higher than the screens actual 320x200 capabilities.
Two interesting tricks are employed in Listing 25.2. First, it would be best from the

standpoint of speed if the entire screen could be drawn to the double-resolution inter
mediate buffer in a single pass. Unfortunately, a buffer capable of holding one full
640x400 screen would be 256K bytes in size—too much memory for most programs
to spare. Consequently, Listing 25.2 instead scans out the image just two double-reso
lution scan lines (corresponding to one screen scan line) at a time. That is, the entire
image is scanned once for every two double-resolution scan lines, and all information
not concerning the two lines of current interest is thrown away. This banding is imple
mented in Listing 25.3, which accepts a ftxll list of scan lines to draw, but actually
draws only those lines within the current scan line band. Listing 25.3 also draws to the
intermediate buffer, rather than to the screen.

0
0
0
0 ®©

®®
0
©

©©

0
®
0
0 ®©

®®

•

•

•

• ••

Double-resolution buffer pixels
R=Red G=Green D=Dlue

0% Red 50% Red OX Red

Olo Green 257o Green \00% Green

100% Dlue 25% 5lue 0% 5lue

T
OO'O"
ooo
t \

75% Red 100% Red 75% Red

0% Green 0% Green 25% Green

25% 5lue 0% 5lue 0% 5lue

Screen pixels

Figure 25.1 Mapping Doubie-Resolution Pixeis to Singie Screen Pixeis

The VGA versus the Jaggies ® 399

The polygon-scanning code from Chapter 21 was hard-wired to call the function
DrawHorizontalLineList, which drew to the display; this is the polygon-drawing code
called by Listing 25.1. That was fine so long as there was only one possible drawing
target, but now we have two possible targets—the display (for nonantialiased draw
ing), and the intermediate buffer (for antialiased drawing). Its desirable to be able to
mix the two, even within a single screen, because antialiased drawing looks better but
nonantialiased is faster. Consequently, I have modified Listing 21.1 from Chapter 21—
the function FillConvexPolygon—to create FillCnvxPolyDrvr, which is the same as
FillConvexPoiygon, except that it accepts as a parameter the name of the function to
be used to draw the scanned-out polygon. The modified file is shown in its entirety in
Listing 25.4.

LISTING 25.4 FILCNVX.C
/* Color-fills a convex polygon, using the passed-in driver to perform

all drawing. All vertices are offset by (XOffset, YOffset).
"Convex" means that every horizontal line drawn through the polygon
at any point would cross exactly two active edges (neither
horizontal lines nor zero-length edges count as active edges; both
are acceptable anywhere in the polygon), and that the right & left
edges never cross. (It's OK for them to touch, though, so long as
the right edge never crosses over to the left of the left edge.)
Nonconvex polygons won't be drawn properly. Returns 1 for success,
0 if memory allocation failed. */

^include <stdio.h>

^include <math.h>

#ifdef _TURBOC_

#include <alloc.h>

#else /* MSC */

^include <malloc.h>

#endif

^include "polygon.h"

/* Advances the index by one vertex forward through the vertex list,
wrapping at the end of the list */

^define INDEX_FORWARD(Index) \

Index = (Index 1) % VertexList->Length;

/* Advances the index by one vertex backward through the vertex list,
wrapping at the start of the list */

#define INDEX_BACKWARD(Index) \

Index = (Index - 1 + VertexList->Length) % VertexList->Length;

/* Advances the index by one vertex either forward or backward through
the vertex list, wrapping at either end of the list */

#define INDEX_MOVE(Index,Direction) \
if (Direction >0) \

Index = (Index 1) % VertexList->Length; \

el se \

Index = (Index - 1 + VertexList->Length) % VertexList->Length;

void ScanEdge(int, int, int, int, int, int, struct HLine **);

400 ^ Chapter 25

int Fi11CnvxPolyDrvr(struct PointListHeader * VertexList, int Color,
int XOffset, int YOffset, void (*DrawL1stFunc)())

{

int i, MinlndexL, Maxindex, MinlndexR, SkipFirst, Temp;
int MinPoint_Y, MaxPoint_Y, TopIsFlat, LeftEdgeDir;
int Nextlndex, Currentlndex, Previouslndex;
int DeltaXN, DeltaYN. DeltaXP, DeltaYP;

struct HLineList WorkingHLineList;

struct HLine *EdgePointPtr;

struct Point *VertexPtr;

/* Point to the vertex list */

VertexPtr = VertexList->PointPtr;

/* Scan the list to find the top and bottom of the polygon */
if (VertexList->Length == 0)

return(l); /* reject null polygons */
MaxPoint_Y = MinPoint_Y = VertexPtr[MinIndexL = Maxindex =■ 0].Y;
for (i =1; i < VertexList->Length; i++) {

if (VertexPtr[i].Y < MinPoint_Y)
MinPoint_Y = VertexPtr[MinIndexL - i].Y; /* new top */

else if (VertexPtr[i].Y > MaxPoint_Y)
MaxPoint_Y = VertexPtr[MaxIndex = i].Y; /* new bottom */

}
if (MinPoint_Y == MaxPoint_Y)

return(l); /* polygon is 0-height; avoid infinite loop below */

/* Scan in ascending order to find the last top-edge point */
MinlndexR = MinlndexL;
while (VertexPtr[MinIndexR].Y = MinPoint_Y)

INDEX_FORWARD(MinIndexR);
INDEX_BACKWARD(MinIndexR); /* back up to last top-edge point */

/* Now scan in descending order to find the first top-edge point. */
while (VertexPtr[MinIndexL].Y = MinPoint_Y)

INDEX_BACKWARD(MinIndexL);
INDEX_FORWARD(MinIndexL); /* back up to first top-edge point */

/* Figure out which direction through the vertex list from the top
vertex is the left edge and which is the right */

LeftEdgeDir = -1; /* assume left edge runs down thru vertex list */
if ((TopIsFlat = (VertexPtr[MinIndexL].X !=

VertexPtr[MinIndexR].X) ? 1 : 0) = 1) {
/* If the top is flat, just see which of the ends is leftmost */
if (VertexPtr[MinIndexL].X > VertexPtr[MinIndexR].X) {

LeftEdgeDir =1; /* left edge runs up through vertex list */
Temp = MinlndexL; /* swap the indices so MinlndexL */
MinlndexL = MinlndexR; /* points to the start of the left */
MinlndexR = Temp; /* edge, similarly for MinlndexR */

}
} else {

/* Point to the downward end of the first line of each of the
two edges down from the top */

Nextlndex = MinlndexR;
INDEX_FORWARD(NextIndex);
Previouslndex = MinlndexL;
INDEX_BACKWARD(PreviousIndex);
/* Calculate X and Y lengths from the top vertex to the end of

the first line down each edge; use those to compare slopes
and see which line is leftmost */

DeltaXN = VertexPtr[NextIndex].X - VertexPtr[MinIndexL].X;

The VGA versus the Jaggies ^ 401

DeltaYN = VertexPtr[NextIndex].Y - VertexPtr[MinIndexL].Y;

DeltaXP = VertexPtr[PreviousIndex].X - VertexPtr[MinIndexL].X;

DeltaYP = VertexPtr[PreviousIndex].Y - VertexPtr[MinIndexL].Y;

if (((long)DeltaXN * DeltaYP - (long)DeltaYN * DeltaXP) < OL) {
LeftEdgeDir = 1; /* left edge runs up through vertex list */
Temp = MinlndexL; /* swap the indices so MinlndexL */
MinlndexL = MinlndexR; /* points to the start of the left */
MinlndexR = Temp; /* edge, similarly for MinlndexR */

}

}

/* Set the # of scan lines in the polygon, skipping the bottom edge
and also skipping the top vertex if the top isn't flat because
in that case the top vertex has a right edge component, and set
the top scan line to draw, which is likewise the second line of
the polygon unless the top is flat. */

if ((WorkingHLineList.Length =
MaxPoint_Y - MinPoint_Y - 1 + TopIsFlat) <= 0)

return(l); /* there's nothing to draw, so we're done */
WorkingHlinelist.YStart = YOffset + MinPoint_Y + 1 - TopIsFlat;

/* Get memory in which to store the line list we generate */
if ((WorkingHLineList.HLinePtr =

(struct HLine *) (malloc(sizeof(struct HLine) *
WorkingHLineList.Length))) == NULL)

return(O); /* couldn't get memory for the line list */

/* Scan the left edge and store the boundary points in the list */
/* Initial pointer for storing scan converted left-edge coords */
EdgePointPtr = WorkingHLineList.HLinePtr;
/* Start from the top of the left edge */
Previouslndex = Currentlndex = MinlndexL;

/* Skip the first point of the first line unless the top is flat;
if the top isn't flat, the top vertex is exactly on a right
edge and isn't drawn */

SkipFirst = TopIsFlat ? 0 : 1;
/* Scan convert each line in the left edge from top to bottom */
do {

INDEX_MOVE(Currentlndex,LeftEdgeDi r);
ScanEdge(VertexPtr[Previouslndex].X + XOffset,

VertexPtrCPrevi ouslndex].Y,

VertexPtr[CurrentIndex].X + XOffset,

VertexPtrCCurrentlndex].Y, 1, SkipFirst, &EdgePointPtr);

Previouslndex = Currentlndex;

SkipFirst = 0; /* scan convert the first point from now on */
} while (Currentlndex != Maxindex);

/* Scan the right edge and store the boundary points in the list */
EdgePointPtr = WorkingHLineList.HLinePtr;
Previouslndex = Currentlndex =■ MinlndexR;
SkipFirst = TopIsFlat ? 0 : 1;
/* Scan convert the right edge, top to bottom. X coordinates are

adjusted 1 to the left, effectively causing scan conversion of
the nearest points to the left of but not exactly on the edge */

do {
INDEX_MOVE(CurrentIndex,-LeftEdgeDir);
ScanEdge(VertexPtr[PreviousIndex].X + XOffset - 1,

VertexPtr[Previous Index].Y,
VertexPtr[CurrentIndex].X + XOffset - 1,
VertexPtr[CurrentIndex].Y, 0, SkipFirst, &EdgePointPtr);

Previouslndex = Currentlndex;

402 @ Chapter 25

SkipFirst = 0; /* scan convert the first point from now on */
} while (Currentlndex != Maxindex);

/* Draw the line list representing the scan converted polygon */
(*DrawListFunc)(&WorkingHLineList, Color);

/* Release the line list's memory and we're successfully done */
freeCWorki ngHLineLi st.HLi nePtr);

returnC1);

The second interesting trick in Listing 25.2 is the way in which the palette is stacked
to allow unweighted antialiasing. Listing 25.2 arranges the palette so that rather than
256 independent colors, we'll work with four-way combinations within each pixel of
three independent colors (red, green, and blue), with each pixel accurately reflecting
the intensities of each of the four color components (double-resolution pixels) that it
contains. This allows fast and easy mapping from four double-resolution pixels to the
single screen pixel to which they correspond. Figure 25.2 illustrates the mapping of
subpixels (double-resolution pixels) through the palette to screen pixels. This palette
organization converts mode 13H from a 256-color mode to a three-color antialiasing
mode.

Its worth noting that many palette registers are set to identical values by Listing 25.2,
because whereas the values of subpixels matter, arrangements of these values do not.

Value constructed

for corresponding
pixel in bitmap

90

91

Double resolution buffer

R=Red (3=Green 3=3\ue
92

Palette

•

Red=0 (0%)
Green=47 (50%)
5lue=47 (50%)

Ped=54 (25%)
Green=54 (25%)
5lue=47 (50%)

Red=54 (25%)
Green=0 (07,)
5lue=47 (50%)

•

25% Red

25% Green

50% 5lue

o

Screen

Figure 25.2 From the Double-Resolution Buffer to the Screen

The VGA versus the Jaggies ^ 403

For example, the pixel values 0x01, 0x04, 0x10, and 0x40 all map to 25 percent blue.
By using a table look-up to map sets of four double-resolution pixels to screen pixel
values, more than half the palette could be freed up for drawing with other colors.

Unweighted Antialiasing: How Good?
Is the antialiasing used in Listing 25.2 the finest possible antialiasing technique? It is
not. It is an unweightedantiaiiAsmg technique, meaning that no accounting is made for
how close to the center of a pixel a polygon edge might be. The edges are also biased a
half-pixel or so in some cases, so registration with the underlying image isn't perfect.
Nonetheless, the technique used in Listing 25.2 produces attractive results, which is
what really matters; keep in mind that all screen displays are approximations, and
unweighted antialiasing is certainly good enough for PC animation applications.
Unweighted antialiasing can also support good performance, although this is not the
case in Listings 25.2 and 25.3, where I have opted for clarity rather than performance.
Increasing the number of lines drawn on each pass, or reducing the area processed to
the smallest possible boimding rectangle, would help improve performance, as, of course,
would the use of assembly language.

For further information on antialiasing, you might check out the standard refer
ence: Computer Graphics: Principles and Practice, by Foley and Van Dam. Michael
Covington's "Smooth Views," in the May, 1990 Byte, provides a short but meaty dis
cussion of unweighted line antialiasing.

As relatively good as it looks. Listing 25.2 is still watered-down antialiasing, even of
the unweighted variety. For all our clever palette stacking, we have only five levels of
each primary color available; that's a far cry from the 32 levels of the Hicolor DAG, or
the 256 levels of true color. The limitations of 256-color modes, even with the palette,
are showing through.

In the next chapter, we'll take a look at how much better 15-bpp antialiasing can be.

Using the Sierra HIcolor DAC to Make Errant Lines
Look Good

There's an Italian saying, the gist of which is, "It need not he true, so long as it's well
said." This strikes close to the essential truth of antialiasing: The image need not he
accurate, so long as it looks like it is. You don't go to the trouble of antialiasing in order
to get a mathematically precise representation of an image; you do it so the amazing
human eye/brain integrating/pattern matching system will see what you want it to see.

This is a particularly relevant thought at the moment, for we're smack in the middle
of discussing the Sierra Hicolor DAC, which makes classic, high-quality antialiasing,
of the sort thatTarga hoards have offered for years, available at mass-market prices. To
recap, the Hicolor DAC extends SuperVGA to provide selection among enough colors
for serious rendering and antialiasing; 32,768 simultaneous colors, to be exact. The
Hicolor DAC falls short of the 24-bpp true color standard, but you aren't likely to find
a 24-bpp true color adapter priced anywhere close to what a Hicolor-based hoard is
(although this is changing).

In the previous chapter, we looked at simple, unweighted antialiasing in the context
of the VGA's standard 256-color mode, performing antialiasing between exactly three
colors—red, green, and blue—with five semi-independent levels of each of the three
primary colors available. In this chapter, we'll start off by discussing the basic Hicolor
programming model, rhen we'll do rhe same sort of antialiasing as we did in the previ
ous chapter—but this time with 32 fully independent levels of each primary color and
resolurions up to 800x600, which makes quite a difference indeed.

406 ® Chapter 26

A Brief Primer on the Sierra Hicoior DAC

The operation of the Hicoior DAC in 32K-coior mode is remarkably simple. First, the
VGA must be set to a 256-color mode with twice the desired horizontal resolution; for
example, a 1600x600 256-color mode would be selected if 800x600 32K-color mode
were desired. Then, the Hicoior DAC is set to high-color mode via the command
register; in high-color mode, the Hicoior DAC takes each pair of 256-color pixels,
joins them together into one 16-bit pixel, converts the red, green, and blue compo
nents (described shortly) directly to proportional analog values (no palette is involved),
and sends them to the monitor.

There is a serious problem here, however: There is no standard way for an applica
tion to select a high-color mode. It's not enough to set up the Hicoior DAC; the VGA
must also be set to the appropriate double-resolution 256-color mode, and the se
quence for doing that—especially selecting high-speed clocks—^varies from VGA to
VGA. There is no VESA mode number for high-color modes; there is a VESA pro
gramming guideline for high-color modes, but it's certainly not as simple as a mode
number. In any case, the VESA interface isn't always available.

Consequently, high-color mode selection is adapter-dependent. Fortunately, many
of the Hicolor-based boards are built around the Tseng Labs ET4000 VGA chip, and
Tseng provides a BIOS interface for high-color modes. (There's no guarantee that
manufacturers using the ET4000 will follow the Tseng interface, but I suspect they
will, as it's the closest thing to a standard at the moment.) Unfortunately, when I run
the ET4000 BIOS function that reports whether a Hicoior DAC is present on my
Toshiba portable without a Hicoior board installed, it hangs my system, so it's not a
good idea to rely on the BIOS functions alone.
My solution, shown in Listing 26.1, is to first check for a Hicoior DAC and an

ET4000 at the hardware level; if both are present, I call the BIOS (which is presumably
at least not hostile to the Tseng BIOS high-color extensions at this point) to check for
the availability of Hicoior modes, and finally, if all has gone well, to set the desired
high-color mode. This is probably overkill, but at least this way you get three kinds of
chip ID code to mix and match as you wish.

LISTING 26.1 L26-1.C
/* Looks for a Sierra Hicoior DAC; if one is present, puts the VGA into the
specified Hicoior (32K color) mode. Relies on the Tseng Labs ET4000 BIOS and
hardware; probably will not work on adapters built around other VGA chips.
Returns 1 for success, 0 for failure; failure can result from no Hicoior DAC,
too little display memory, or lack of an ET4000. Tested with Borland C++
in C mode in the small model. */

y/include <dos.h>

#define DAC_MASK 0x3C6 /* DAC pixel mask reg address, also Sierra
command reg address when enabled */

#define DAC_WADDR Gx3C8 /* DAC write address reg address */

Lines, Italian Style ^ 407

/* Mode selections: 0x20=640x350; 0x2E=640x480; 0x2F=640x400; 0x30=800x600 */
int SetHCModednt Mode) {

int 1, Tempi, Temp2, Temp3;
union REGS regset;

/* See if a Sierra SC1148X Hicolor DAC is present, by trying to
program and then read back the DAC's command register. (Shouldn't be
necessary when using the BIOS Get DAC Type function, but the BIOS function
locks up some computers, so it's safer to check the hardware first). */

inp(DAC_WADDR); /* reset the Sierra command reg enable sequence */
for (i=0; i<4; i++) inp(DAC_MASK); /* enable command reg access */
outp(DAC_MASK, 0x00); /* set command reg (if present) to 0x00, and

reset command reg enable sequence */
outp(DAC_MASK, OxFF); /* command reg access no longer enabled;

set pixel mask register to OxFF */
for (i=0; i<4; i++) inp(DAC_MASK); /* enable command reg access */
/* If this is a Hicolor DAC, we should read back the 0 in the

command reg; otherwise we get the OxFF in the pixel mask reg */
i - inp(DAC_MASK); inp(DAC_WADDR); /* reset enable sequence */
if (i = OxFF) return(O);

/* Check for a Tseng Labs ET4000 by poking unique regs, (assumes
VGA configured for color, w/CRTC addressing at 3D4/5) */

outp(0x3BF, 3); outp(0x3D8, OxAO); /* unlock extended registers */
/* Try toggling AC R16 bit 4 and seeing if it takes */
inp(0x3DA); outp(0x3C0, 0x16 1 0x20); •
outp(0x3C0, ((Tempi = inp(0x3Cl)) | 0x10)); Temp2 = inp(0x3Cl);
outp(0x3C0, 0x16 I 0x20); outp(0x3C0, (inp(0x3Cl) & -0x10));
Temp3 = inp(0x3Cl); outp(0x3C0, 0x16 | 0x20);
outp(0x3C0, Tempi); /* restore original AC R16 setting */
/* See if the bit toggled; if so, it's an ET3000 or ET4000 */
if ((Temp3 & 0x10) || !(Temp2 & 0x10)) return(O);
outp(0x3D4, 0x33); Tempi = inp(0x3D5); /* get CRTC R33 setting */
outp(0x3D5, OxOA); Temp2 = inp(0x3D5); /* try writing to CRTC */
outp(0x3D5, 0x05); Temp3 = inp(0x3D5); /* R33 */
outp(0x3D5, Tempi); /* restore original CRTC R33 setting */
/* If the register was writable, it's an ET4000 */
if ((Temp3 != 0x05) |1 (Temp2 != OxOA)) return(O);

/* See if a Sierra SC1148X Hicolor DAC is present by querying the
(presumably) ET4000-compatible BIOS. Not really necessary after
the hardware check above, but generally more useful; in the
future it will return information about other high-color DACs. */

regset.X.ax = OxlOFl; /* Get DAC Type BIOS function # */
int86(0xl0, ®set, ®set); /* ask BIOS for the DAC type */
if (regset.X.ax != 0x0010) return(O); /* function not supported */
switch (regset.h.bl) {

case 0: return(O); /* normal DAC (non-Hicolor) */
case 1: break; /* Sierra SC1148X 15-bpp Hicolor DAC */
default: return(O); /* other high-color DAC */

}

/* Set Hicolor mode */

regset.X.ax = OxlOFO; /* Set High-Color Mode BIOS function # */
regset.h.bl = Mode; /* desired resolution */
int86(0xl0, ®set, ®set); /* have BIOS enable Hicolor mode */
return (regset.x.ax == 0x0010); /* 1 for success, 0 for failure */

408 0 Chapter 26

Programming the HIcolor DAC
The pixel format of the Hicolor DAC is straightforward: Each pixel is stored in one
word of display memory, with the lowest 5 bits forming the blue component, the next
5 bits forming the green component, the next 5 bits forming the red component, and
bit 15 ignored, as shown in Figure 26.1. Pixels start at even addresses. The bits within
a word are organized Intel style, with the byte at the even address containing bits 7-0
(blue and part of green), and the byte at the odd address containing bits 15—8 (red and
the rest of green).

Pixels proceed linearly for the length of the bitmap; the organization is the same as
256-color mode, except that each pixel takes up one word, rather than one byte. As in
SuperVGA 256-color modes, the bitmap is too long to be addressed in the 64K video
memory window, so banking must be used; again, the banking is just like 256-color
banking, except that each bank contains only half as many pixels; 32,768, to be exact.
On the ET4000, the Segment Select register at 3CDH controls banking, as shown

in Figure 26.2. There are 16 banks, each spanning 64 Kbytes of the total 1-Mb bitmap.
Banks can be selected separately for read and write to facilitate scrolling and screen-to-
screen copies, although we won't need that in this chapter. Simple enough, but there's
a catch: broken rasters.

Banks are 64K in length. If each Hicolor scan line is 1,600 bytes long, then 65,536/
1,600=40 raster lines (lines 0-39) fit in bank 0—^with 1,536 bytes of the next line (line
40), also in the first bank. The last 64 bytes of line 40 are in bank 1, as shown in Figure
26.3, so the line is split by the bank boundary; hence the term "broken raster." Broken

Display Memory

Offset 0 ODFh

061h

OOh

OOh

OOh

OOh

One Hicolor Pixel

0 11000 OHIO 11111

3\ue = 51

Green = 14

Ked = 24

Color components sent to monitor
(full intensity ran^e is 0-31; 31 is
brightest)

Figure 26.1 The Hicolor DAC 32K-Color Pixel Format

Lines, Italian Style ^ 4C

Bank for read accesses (Q-.15) ; Bank for write accesses (0-15)

Bit? BitO

Figure 26.2 The ET4000 Segment Select Register (3CDH)

rasters crop up for other bank crossings as well, and make Hicolor programming some
what slower (the extent of the slowdown depends heavily on the quality of the code)
and considerably more complicated.

Broken rasters are not unique to Hicolor modes; 800x600 and 640x480 256-color
modes also normally have broken rasters. However, there's a clever workaround for
broken rasters in 256-color modes: Stretch the bitmap width to IK pixels, via the Row
Offset register, so that banks split between raster lines (although this works for 800x600
only if the VGA has 1 Mb or more of memory).

Sad to say, stretching the bitmap width to IK pixels doesn't work in Hicolor mode.
There's not enough memory on a 1MB SuperVGA to do it at 800x600, but that's not

Bank 0

_Raster_39_
Raster 40

Raster 41

3ank: boundary
between pixels
767 and 766

on raster #40

6ank 1

1
Figure 26.3 A Broken Raster

A: Offset in bitmap: 62,400
Offset in bank #0: 62,400

6: Offset in bitmap: 64,000
Offset in bank #0: 64,000

C: Offset in bitmap: 65,600
Offset in bank #1: 64

410 ^ Chapter 26

the problem at 640x480. The problem is that a Row OflFset register setting of 256
would be required to stretch the bitmap width to IK pixels—and the Row Offset
register only goes up to 255. Tm sure that when the VGA was being designed, 255
seemed like plenty, but then, 640K once seemed like pie in the sky.

The upshot is that Hicolor programming generally requires handling broken ras
ters. Generally—but not always. I learned of an exception from a a person I know only
as "rfrederick" from M&T Online. He or she pointed out that setting the bitmap
width—the offset from the start of one line to the start of the next—to 1,928 bytes in
640x480 Hicolor mode eliminates broken rasters (that is, displayed lines that span
banks). A bitmap width of 1,928 is selected by setting the Row Offset register (CRTC
register 13H) to 241, like so:

outpw(0x3d4, 0x13 | (241«8));

Once the width is set, all you have to do is use 1,928 for the offset from one row to the
next, rather than 1,280, and you re all set. Actually, the breaks are still there, but they
can be ignored because they happen off to the right of the displayed portion of the
bitmap. To get the Hicolor drawing code in this chapter to support 1,928-wide Hicolor
bitmaps, just change BitmapWidthlnBytes from 640*2 to 1,928. My online source
credited this insight to the folks at Everex, to whom I am indebted.

Without the above workaround, or in 800x600 Hicolor mode, broken rasters are
certainly a nuisance, but nonetheless a manageable one; next, we'll see polygon fill
code that deals with broken rasters.

Non-Antialiased Hicolor Drawing
Listing 26.2 draws a perspective cube in 640x480 32K color mode, with help from the
initialization code in Listing 26.1, the DrawPixel-based low-level polygon fill code in
Listing 26.3, and the POLYGON.H header file in Listing 26.7. (FILCNVXD.C from
the previous chapter and Listing 22.4 from Chapter 22 are also required; however, to
make things less confiosing for you, these will be in the Chapter 26 subdirectory on the
listings diskette.) Not surprisingly, the cube drawn by Listing 26.2 looks a lot like the
non-antialiased cube we drew in the previous chapter, but isn't as jagged because the
resolution is now much higher. Nonetheless, jaggies are still quite prominent, and they
remain clearly visible at 800x600. (I've used 640x480 mode so that the code will work
on fixed-frequency monitors, but Listing 26.2 can be altered for 800x600 mode sim
ply by changing the parameter passed to SetHCMode and the value of
BitmapWidthlnBytes.)

Listing 26.2 doesn't run very fast when linked to Listing 26.3; I suspect you'll like the
low-level polygon fill code in Listing 26.4 much better. This code handles broken rasters
reasonably efficiently, by checking for them at the beginning of each scan line, then
splitting up the fill and banking appropriately whenever a bank crossing is detected.

Lines, Italian style ^ 411

LISTING 26.2 L26-2.C
/* Demonstrates non-antialiased drawing in 640x480 Hicolor (32K color) mode on

an ET4000-based SuperVGA with a Sierra Hicolor DAC installed. Tested with
Borland C++ in C mode in the small model. */

#include <conio.h>

#include <dos.h>

#include "polygon.h"
/* Draws the polygon described by the point list PointList in color

Color, with all vertices offset by (x,y) */
^define DRAW_POLYGON(PointList.Color.x.y) { \

Polygon.Length = sizeof(PointList)/sizeof(struct Point); \
Polygon.PointPtr = PointList; \

Fi11CnvxPolyDrvrC&Polygon, Color, x, y, DrawHCLineList);}

void main(void);

extern int SetHCModeCint);

extern int FillCnvxPolyDrvrCstruct PointListHeader *, int, int, int,
void (*)());

extern void DrawHCLineListCstruct HLineList *, int);

int BitmapWidthlnBytes = 640*2; /* # of bytes per raster line */

void mainC)

{

struct PointLiStHeader Polygon;

static struct Point FaceO[] = {{396,276},{422,178},{338,88},{288,178}};

static struct Point Facel[] = {{306,300},{396,276},{288,178},{210,226}};

static struct Point Face2[] = {{338,88},{266,146},{210,226},{288,178}};

union REGS regset;

/* Attempt to enable 640x480 Hicolor mode */
if (SetHCMode(0x2E) == 0)

{ printfC'No Hicolor DAC detected\n"); exit(O); };

/* Draw the cube */

DRAW_POLYGON(FaceO, OxlF, 0, 0); /* ful1-intensity blue */

DRAW_POLYGON(Facel, OxlF << 5, 0, 0); /* ful 1-intensity green */
DRAW_P0LYG0N(Face2, OxlF « 10, 0, 0); /* ful1-intensity red */

getchO; /* wait for a keypress */

/* Return to text mode and exit */

regset.X.ax = 0x0003; /* AL = 3 selects 80x25 text mode */
int86(0xl0, ®set, ®set);

}

LISTING 26.3 L26-3.G
/* Draws all pixels in the list of horizontal lines passed in, in Hicolor
(32K color) mode on an ET4000-based SuperVGA. Uses a slow pixel-by-pixel
approach. Tested with Borland C++ in C mode in the small model. */

^include <dos.h>

//include "polygon.h"
//define SCREEN_SEGMENT OxAOOO

//define GC_SEGMENT_SELECT 0x3CD

void DrawPixel(int, int, int);

extern int BitmapWidthlnBytes; /* // of pixels per line */

412 ^ Chapter 26

void DrawHCLIneList(struct HLIneLlst * HLineListPtr,

int Color)

{

struct HLine *HL1nePtr;

int Y, X;

/* Point to XStart/XEnd descriptor for the first (top) horizontal line */
HLinePtr = HLineListPtr->HLinePtr;

/* Draw each horizontal line in turn, starting with the top one and
advancing one line each time */

for (Y =• HLineListPtr->YStart; Y < (HLineListPtr->YStart +

HLineListPtr->Length); Y++, HLinePtr-H-) {

/* Draw each pixel in the current horizontal line in turn,
starting with the leftmost one */

for (X = HLinePtr->XStart; X <= HLinePtr->XEnd; X++)

DrawPixeKX, Y, Color);

}

}

/* Draws the pixel at (X, Y) in color Color in Hicolor mode on an
ET4000-based SuperVGA */

void DrawPixeKint X, int Y, int Color) {

unsigned int far *ScreenPtr, Bank;

unsigned long BitmapAddress;

/* Full bitmap address of pixel, as measured from address 0 to
address OxFFFFF. (X << 1) because pixels are 2 bytes in size */

BitmapAddress =» (unsigned long) Y * BitmapWidthlnBytes + (X « 1);
/* Map in the proper bank. Bank # is upper word of bitmap addr */
Bank = *(((unsigned int *)&BitmapAddress) + 1);
/* Upper nibble is read bank #, lower nibble is write bank # */
outp(GC_SEGMENT_SELECT, (Bank « 4) | Bank);
/* Draw into the bank */

FP_SEG(ScreenPtr) = SCREEN_SEGMENT;

FP_OFF(ScreenPtr) = *((unsigned int *)&BitmapAddress);
*ScreenPtr = (unsigned int)Color;

LISTING 26.4 L26-4.ASM
Draws all pixels in the list of horizontal lines passed in, in
Hicolor (32K color) mode on an ET4000-based SuperVGA. Uses REP STOSW
to fill each line. Tested with TASM. C near-callable as:

void DrawHCLineList(struct HLineList * HLineListPtr, int Color);

SCREEN_SEGMENT equ GaOOOh
GC_SEGMENT_SELECT equ 03cdh

HLine struc

XStart dw ? ;X coordinate of leftmost pixel in line
XEnd dw ? ;X coordinate of rightmost pixel in line
HLine ends

HLineList struc

Lngth dw ? ;# of horizontal lines
YStart dw ? ;Y coordinate of topmost line
HLinePtr dw ? ;pointer to list of horz lines
HLineList ends

Lines, Italian style ^ 413

Parms struc

dw 2 dup(?) ;return address & pushed BP
HLineListPtr dw ? -.pointer to HLineLlst structure
Color dw ? ;color with which to fill

Parms ends

; Advances both the read and write windows to the next 64K bank.

; Note: Theoretically, a delay between IN and OUT may be needed under
; some circumstances to avoid accessing the VGA chip too quickly, but
; in actual practice. I haven't found any delay to be required.
INCREMENT_BANK macro

push ax -.preserve fill color
push dx ;preserve scan line start pointer
mov dx.GC_SEGMENT_SELECT

in al.dx ;get the current segment select

add al.llh jincrement both the read & write banks

out dx.al ;set the new bank #

pop dx ;restore scan line start pointer
pop ax ;restore fill color
endm

.model small

.data

extrn _BitmapWidthlnBytes:word
.code

public _DrawHCLineLiSt
align 2

_DrawHCLineLiSt proc near
push bp ;preserve caller's stack frame
mov bp.sp ;point to our stack frame
push si ;preserve caller's register variables
push di
eld ;make string instructions inc pointers
mov ax.SCREEN_SEGMENT

mov es.ax ;point ES to display memory for REP STOS
mov si.[bp+HLineListPtr] ;point to the line list
mov ax.[_BitmapWidthInBytes] ;point to the start of the
mul [siH-YStart]

mov di .ax

mov al .dl

mov cl .4

shl dl.cl

or al .dl

first scan line on which to draw

ES:DI points to first scan line to
draw: AL is the initial bank #

upper nibble of AL is read bank #.
lower nibble is write bank # (only

the write bank is really needed for

this module, but it's less confusing

to point both to the same place)
mov dx.GC_SEGMENT_SELECT

out dx.al ;set the initial bank

mov dx.di ;ES:DX points to first scan line

mov bx.[si+HLinePtr] ;point to the XStart/XEnd descriptor
; for the first (top) horizontal line

mov si.[si+Lngth] of scan lines to draw

and si.si ;are there any lines to draw?

jz FillDone ;no. so we're done
mov ax.[bp+Color] :color with which to fill
mov bp.[_BitmapWidthlnBytes] ;so we can keep everything

: in registers inside the loop
;***stack frame pointer destroyed!***

Fi11 Loop:
mov di.[bx+XStart] ;left edge of fill on this line

mov cx.[bx+XEnd] ;right edge of fill

414 0 Chapter 26

sub cx.di

jl LineFillDone

inc cx

add di,di

add dx,bp
jnc NormalFill

jz NormalFill

sub dx.bp
add d1,dx

jc CrossBankBeforeFi

add cx.cx

add di.cx

jnc CrossBankAfterFil

jz CrossBankAfterFil

sub di.cx

neg di

sub cx.di

push cx

mov cx.di

shr cx.l

neg di

rep stosw

pop cx

shr cx.l

INCREMENT_BANK

rep stosw

add dx.bp
jmp short CountDownLi

skip if negative width
if' of pixels to fill on this line
*2 because pixels are 2 bytes in size
do we cross a bank during this line?

no

no

yes. there is a bank crossing on this
line; figure out where

point back to start of line
offset of left edge of fill

lling ;raster splits before the left
edge of fill

fill width in bytes (pixels * 2)
do we split during the fill area?
ling ;raster splits after the right
ling ; edge of fill

bank boundary falls within fill area;
draw in two parts, one in each bank
point back to start of fill area
if of bytes left before split
if of bytes to fill to the right of
the bank split
remember right-of-split fill width
if of 1 eft-of-split bytes to fill
if of 1 eft-of-spl it words to fill
offset at which to start filling

fill left-of-split portion of line
get back right-of-split fill width
if of right-of-spl it words to fill
advance to the next bank

point to the next bank (DI already

points to offset 0. as desired)
fill right-of-split portion of line
point to the next scan line
ne ; (already advanced the bank)

align 2

CrossBankAfterFil1ing:

sub di.cx

shr cx.l

jmp

fill area is entirely to the left of

the bank boundary
point back to start of fill area
CX = fill width in pixels

short Fi11AndAdvance ;doesn*t split until after the
; fill area, so handle normally

align 2

CrossBankBeforeFi1 ling:

INCREMENT_BANK

rep

add

jmp

stosw

dx.bp

fill area is entirely to the right of

the bank boundary

first, point to the next bank, where

the fill area resides

fill this scan line

point to the next scan line

short CountDownLine ; (already advanced the bank)

al ign 2 ;no bank boundary problems; just fill
NormalFi11: ; normally

sub dx.bp ;point back to start of line
add di .dx ;offset of left edge of fill

Fi11AndAdvance:

rep stosw ;fill this scan line

Li neFi11 Done:

add dx.bp ;point to the next scan line

Lines, Italian style ^ 415

jnc CountDownLine ;didn't cross a bank boundary
INCREMENT_BANK ;did cross, so point to the next bank

CountDownLi ne:

add bx,size HLine ;point to the next line descriptor
dec si ;count off lines to fill

jnz Fill Loop
Pi 11 Done:

pop di ;restore caller's register variables
pop si
pop bp ;restore caller's stack frame
ret

_DrawHCLineLiSt endp

end

Simple Unweighted Antialiasing
As the saying goes, you can never be too rich, too thin, or have too many colors avail
able. Personally, I only buy one of those three assertions: You really cant have too many
colors. Listings 26.5 and 26.6, together with Listings 26.1, 26.3, and 26.7,
FILCNVXD.C from the previous chapter, and Listing 22.4 from Chapter 22, show
why. This program draws the same cube, but this time employing the simple, unweighted
antialiasing we used in the previous chapter—and taking advantage of the full color
range of the Hicolor DAG. The results are excellent: On my venerable NEC MultiSync,
at a viewing distance of one foot, all but two of the edges look absolutely smooth, with
not the slightest hint of jaggies, and the two imperfect edges show only slight ripples.
At two feet, the cube looks perfect. The difference between the non-antialiased and
antialiased cubes is astounding, considering that we re working with the same resolu
tion in both cases.

A quick review of the simple antialiasing used in this chapter and the previous one:
The image is drawn to a memory buffer at a multiple of the resolution that the actual
screen supports. Each pixel on the screen maps to a group of hi-res pixels (subpixels),
arranged in a square in the memory buffer. The colors of the subpixels in each square
are averaged, and the corresponding screen pixel is set to the average subpixel color.

There's not enough memory to scan out the entire image at high resolution (about
50K is required just to scan out one 800x600 raster line at 4x resolution!), so Listing
26.6 scans out just those pixels that lie in a specified band. (Each band corresponds to
a single raster line in Listing 26.5.) Note that Listing 26.6 draws 32-bit pixels to the
memory buffer; this is true color, plus an extra byte for flexibility. Consequently, List
ing 26.6 is a general-purpose tool, and can be used with any sort of adapter, as long as
the main program knows how to convert from true color to adapter-specific pixels.
Listing 26.5 does this by calculating the average intensity in each subpixel group of
each of the three primary colors, in the range 0-255, then looking up the gamma
corrected equivalent color value for the Hicolor DAC, mapped into the range 0—31.

416 ® Chapter 26

A quick look at the gamma-corrected color mapping tahle In Lleting
26.5 ehowe why hardware gamma correction le eorely mieeed In the
HIcolor PAC. The Mghteet half of the color range—from halflnten-

elty to full Intenelty—le epanned by only 9 of the HIcolor DACe 52
color valuee. That meane that for brighter colore, the HIcolor PAC
effectively hae only half the color resolution thatyoud expect from
5 bite per color gun, and the resolution le even worse at the highest
Intensities.

Fd like to take a moment to emphasize that although Listing 26.5 works with only the
three primary colors, it could just as easily work with the thousands of colors that can be
produced as mixes of the three primaries; there are none of the limitations of256-color
mode, and no special tricks (such as biasing the palette according to color frequency) need
be used. Inevitably, though, proportionately fewer intermediate blends are available
and hence antialiasing becomes less precise when there is less contrast between colors;
you re not going to be able to do much antialiasing between a pixel with a green true
color value of 250 and another with a value of 255. This is where the lack of gamma
correction and the difference between 15-bpp and true color become apparent.

LISTING 26.5 L26-5.C
/* Demonstrates unweighted antialiased drawing in 640x480 Hicolor (32K color)

mode. Tested with Borland C-h- in C mode in the small model. */

^include <conio.h>

^include <dos.h>

^include <stdlib.h>

^include <string.h>
^include "polygon.h"
/* Draws the polygon described by the point list PointList in the

color specified by RED, GREEN, AND BLUE, with all vertices
offset by (x,y), to ScanLineBuffer, at ResMul multiple of
horizontal and vertical resolution. The address of ColorTemp is
cast to an int to satisfy the prototype for Fi11CnvxPolyDrvr; this
trick will work only in a small data model. */

#define DRAW_POLYGON_HIGH_RES(PointList,RED,GREEN,BLUE,x,y,ResMul) {
Polygon.Length = sizeof(PointList)/sizeof(struct Point);

Polygon.PointPtr = PointTemp;
/* Multiply all vertical & horizontal coordinates */
for (k=0; k<sizeof(PointList)/sizeof(struct Point); k++) {

PointTemp[k].X = PointList[k].X * ResMul;
PointTempCk].Y = PointList[k].Y * ResMul;

}

ColorTemp.Red=RED; ColorTemp.Green=GREEN; ColorTemp.81ue=BLUE;
FillCnvxPolyDrvrC&Polygon, (int)&ColorTemp, x, y, DrawBandedList);

#define SCREEN_WIDTH 640
#define SCREEN_SEGMENT OxAOOO

void main(void);

extern void DrawPixel(int, int, char);

extern void DrawBandedList(struct HLineList *, struct RGB *);

extern int SetHCMode(int);

Lines, Italian style ^ 417

/* Table of gamma corrected mappings of linear color intensities in
the range 0-255 to the nearest pixel values in the range 0-31,
assuming a gamma of 2.3 */

static unsigned char ColorMappings[] = {
0, 3, 4, 4, 5. 6. 6, 6. 7, 7, 8, 8. 8, 8, 9, 9, 9,10,10,10,
10,10,11,11,11,11,11,12,12,12,12,12,13,13,13,13,13,13,14,14,

14,14,14,14,14,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,

17,17,17,17,17,17,17,17,17,18,18,18,18,18,18,18,18,18,19,19,

19.19.19.19.19.19.19.19.20.20.20.20.20.20.20.20.20.20.20.21,

21.21.21.21.21.21.21.21.21.21.22.22.22.22.22.22.22.22.22.22,
22.22.22.23.23.23.23.23.23.23.23.23.23.23.23.24.24.24.24.24,

24.24.24.24.24.24.24.24.24.25.25.25.25.25.25.25.25.25.25.25,

25.25.25.26.26.26.26.26.26.26.26.26.26.26.26.26.26.26.27.27,

27.27.27.27.27.27.27.27.27.27.27.27.27.27.28.28.28.28.28.28,

28.28.28.28.28.28.28.28.28.28.28.29.29.29.29.29.29.29.29.29,
29.29.29.29.29.29.29.29.30.30.30.30.30.30.30.30.30.30.30.30,

30,30,30,30,30,30,31,31,31,31,31,31,31,31,31,31};

/* Pointer to buffer in which high-res scanned data will reside */

struct RGB *ScanLineBuffer;

int ScanBandStart, ScanBandEnd; /* top & bottom of each high-res
band we'll draw to ScanLineBuffer */

int ScanBandWidth; /* # subpixels across each scan band */
int BitmapWidthlnBytes = 640*2; /* # of bytes per raster line in

Hi col or VGA display memory */

void mainO

{
int i, j, k, m. Red, Green, Blue, jXRes, kXWidth;
int SubpixelsPerMegapixel;
unsigned int Megapixel, ResolutionMultiplier;
long BufferSize;

struct RGB Colorlemp;
struct PointListHeader Polygon;

struct Point PointTemp[4];
static struct Point FaceO[] =•

{{396,276],{422,178},{338,88),{288,178}};

static struct Point Facel[] =
{{306,300},{396,276},{288,178},{210,226}};

static struct Point Face2[] =

{{338,88},{266,146},{210,226},{288,178}};

int LeftBound=210, RightBound=422, TopBound=88, BottomBound=300;
union REGS regset;

printf("Subpixel resolution multiplier:");
scanf("%d", &Resoluti onMultipl ier);
Subpi xelsPerMegapi xel = Resoluti onMulti pii er*Resoluti onMulti pii er;
ScanBandWidth = SCREEN_WIDTH*ResolutionMultipl ier;

/* Get enough space for one scan line scanned out at high
resolution horz and vert (each pixel is 4 bytes) */

if ((BufferSize = (long)ScanBandWidth*4*ResolutionMultiplier) >
OxFFFF) {

printfC'Band won't fit in one segmentXn"); exit(O); }
if ((ScanLineBuffer = mal1oc((int)BufferSize)) == NULL) {

printfC'Couldn't get memoryXn"); exit(O); }

/* Attempt to enable 640x480 Hi col or mode */
if (SetHCMode(0x2E) = 0)

{ printfC'No Hicolor DAG detectedXn"); exit(O); };

/* Scan out the polygons at high resolution one screen scan line at
a time (ResolutionMultiplier high-res scan lines at a time) */

418 @ Chapter 26

}

for (i=TopBound; i<=BottomBound; i++) {

/* Set the band dimensions for this pass */
ScanBandEnd = (ScanBandStart = i*ResolutionMultiplier) +

ResolutionMultiplier - 1;
/* Clear the drawing buffer */

memsetCScanLineBuffer, 0, BufferSize);

/* Draw the current band of the cube to the scan line buffer */

DRAW_POLYGON_HIGH_RES(FaceO.OxFF.0,0,0,0,ResolutionMultiplier);
DRAW_P0LYG0N_HIGH_RES(Facel,0,0xFF,0,0,0,ResolutionMultiplier);
DRAW_P0LYG0N_HIGH_RES(Face2,0,0,0xFF,0,0,ResolutionMultiplier);

/* Coalesce subpixels into normal screen pixels (megapixels) and draw them */
for (j=LeftBound; j<=RightBound; j++) {

jXRes = j*ResolutionMultiplier;
/* For each screen pixel, sum all the corresponding

subpixels, for each color component */
for (k=Red=Green=Blue=0; k<ResolutionMultiplier; k++) {

kXWidth =■ k*ScanBandWidth;
for (m=0; m<ResolutionMultipl ier; m++) {

Red += ScanLineBuffer[jXRes+kXWidth+m].Red;
Green += ScanLineBuffer[jXRes+kXWidth+m].Green;
Blue += ScanLineBuffer[jXRes+kXWidth+m].B1ue;

}
}
/* Calc each color component's average brightness; convert

that into a gamma corrected portion of a Hicolor pixel,
then combine the colors into one Hicolor pixel */

Red = ColorMappingsERed/SubpixelsPerMegapixel];
Green = ColorMappingsCGreen/SubpixelsPerMegapixel];
Blue = ColorMappingsCBlue/SubpixelsPerMegapixel];
Megapixel = (Red << 10) + (Green << 5) + Blue;
DrawPixeKj, i. Megapixel);

}
}
getchO; /* wait for a keypress */

/* Return to text mode and exit */
regset.x.ax = 0x0003; /* AL = 3 selects 80x25 text mode */
int86(0xl0, ®set, ®set);

LISTING 26.6 L26-6.C
/* Draws pixels from the list of horizontal lines passed in, to a 32-bpp
buffer; drawing takes place only for scan lines between ScanBandStart and
ScanBandEnd, inclusive; drawing goes to ScanLineBuffer, with the scan line at
ScanBandStart mapping to the first scan line in ScanLineBuffer. Note that
Color here points to an RGB structure that maps directly to the buffer's pixel
format, rather than containing a 16-bit integer. Tested with Borland C++
in C mode in the small model. */

#include "polygon.h"

extern struct RGB *ScanLineBuffer; /* drawing goes here */
extern Int ScanBandStart, ScanBandEnd; /* limits of band to draw */
extern int ScanBandWidth; /* # of subpixels across scan band */

void DrawBandedList(struct HLineList * HLineListPtr,
struct RGB *Color)

{

Lines, Italian style ^ 419

Struct HLine *HLinePtr;

int Length, Width, YStart = HLineListPtr->YStart, 1;

struct RGB *BufferPtr, *WorkingBufferPtr;

/* Done If fully off the bottom or top of the band */
if (YStart > ScanBandEnd) return;

Length = HLineLIstPtr->Length;

if ((YStart + Length) <= ScanBandStart) return;

/* Point to XStart/XEnd descriptor for the first (top) horizontal line */
HLInePtr = HL1neL1stPtr->HL1nePtr;

/* Confine drawing to the specified band */
If (YStart < ScanBandStart) {

/* Skip ahead to the start of the band */
Length -- ScanBandStart - YStart;

HLInePtr += ScanBandStart - YStart;

YStart = ScanBandStart;

}

If (Length > (ScanBandEnd - YStart + 1))

Length = ScanBandEnd - YStart + 1;

/* Point to the start of the first scan line on which to draw */

BufferPtr = ScanLIneBuffer + (YStart-ScanBandStart)*ScanBandW1dth;

/* Draw each horizontal line within the band In turn, starting with
the top one and advancing one line each time */

while (Length-- > 0) {

/* Fill whole horiz line with Color If It has positive width */
If ((Width = HL1nePtr->XEnd - HLInePtr->XStart + 1) > 0) {

WorklngBufferPtr = BufferPtr + HL1nePtr->XStart;
for (1 =0; 1 < Width; 1++) *Work1ngBufferPtr++ = *Color;

}

HL1nePtr++; /* point to next scan line X Info */
BufferPtr += ScanBandWIdth; /* point to start of next line */

}

LISTING 26.7 POLYGON.H
/* POLYGON.H: Header file for polygon-filling code */

/* Describes a single point (used for a single vertex) */
struct Point {

Int X; /* X coordinate */

Int Y; /* Y coordinate */

};

/* Describes a series of points (used to store a list of vertices that
describe a polygon; each vertex Is assumed to connect to the two adjacent
vertices, and the last vertex Is assumed to connect to the first) */

struct PolntLlstHeader {

Int Length; /* # of points */
struct Point * PolntPtr; /* pointer to list of points */

};

/* Describes the beginning and ending X coordinates of a single
horizontal line */

struct HLine {

Int XStart; /* X coordinate of leftmost pixel In line */

420 ^ Chapter26

int XEnd; /* X coordinate of rightmost pixel in line */
};

/* Describes a Length-long series of horizontal lines, all assumed to be on
contiguous scan lines starting at YStart and proceeding downward (used to
describe scan-converted polygon to low-level hardware-dependent drawing code)*/
struct HLineList {

int Length; /* y/ of horizontal lines */
int YStart; /* Y coordinate of topmost line */
struct HLine * HLinePtr; /* pointer to list of horz lines */

};

/* Describes a color as an RGB triple, plus one byte for other info */
struct RGB { unsigned char Red, Green, Blue, Spare; };

Notes on the Antialiasing implementation
Listing 26.5 features user-selectable subpixel resolution, which is the multiple of the
screen resolution at which the image should be drawn into the memory buffer. A subpixel
resolution of two times normal along both axes (2x) looks much better than
nonantialiased drawing, but still has visible jaggies. Subpixel resolution of 4x looks
terrific, as mentioned earlier. Higher subpixel resolutions are, practically speaking, re
served for 386 protected mode, because they would require a buffer larger than 64K to
hold the high-resolution equivalent of a single scan line.
On the downside. Listing 26.5 is very slow, even though the conversion process

from true color pixels to Hicolor pixels is limited to the bounding rectangle for the
cube being drawn, thereby saving the time that was wasted in the previous chapter
drawing the empty space around the cube. It could easily be sped up by (say) an order
of magnitude, in a number of ways. First, you could implement an ASM function
that's the equivalent of memset, but stores longs (dwords) rather than chars (bytes). In
the absence of any such C library function. Listing 26.6 uses a loop with a pointer to a
long; hardly a recipe for high performance.

Listing 26.5 could also be sped up by doing the screen pixel construction from each
square of subpixels in assembly language using pointers rather than array look-ups. It would
also help to organize the screen pixel drawing more as a variant rectangle fill, instead of
going through DrawPixel every time, so that the screen pointer doesn't have to be
recalculated from scratch and the bank doesn't need to be calculated and set for every pixel.
Clipping each polygon to the band before rather than after scanning it out would speed
things up, as would building an edge list for the polygons once, ahead of time, then
advancing it incrementally to scan out each band, rather than doing one complete scan
of each polygon for each band. Bigger bands would help; drawing the whole image to
the memory buffer in one burst, then converting the entire image to Hicolor pixels in
a single operation, would be ideal, but would require a ridiculous amount of memory.
(Would you believe, 31 MB for one full 800x600 Hicolor screen at 4x resolution?)

Finally, to alter Listing 26.5 for 800x600 Hicolor mode, change the parameter passed to
SetHCMode, the value of BitmapWidthlnBytes, and the value of SCREEN_WIDTH.

Lines, Italian Style ^ 421

Further Thoughts on Antialiasing
The banded true color approach of Listings 26.5 and 26.6 is easily extended to other
antialiasing approaches. For example, you could, if you wished, average together all the
subpixels not within a square, but rather within a circle of radius sqrt(2.0)*Resolution
Multiplier /2 around each pixel center. This approach is a little more complicated, but
it has one great virtue: An image will be antialiased identically, regardless of its rota
tion.

Why is the shape of the subpixel area that's collected into a screen pixel important
when the maximum resolution we can actually draw with is the resolution of the screen?
I'll quote William vanRyper, from the graphics.disp/vga conference on BIX:

"If you anti-alias an edge on the screen, and let the eye-brain pick the edge some
where in the gradient between the object color and the background, you can adjust the
placement of that perceptual edge by altering the ramp of the gradient. If the number
of intermediate values you can choose among is greater than the number of gradient
pixels you set (across the edge), you can adjust the position of the perceptual edge in
increments of less than a pixel. This means you can locate the antialiased object to sub-
pixel precision."

In other worde, by uelnq blende of color in ̂ emooth, coneietent gra-
dient acroee a boundary, you can get the eye to pick out the bound
ary location with a precieion that'e greater than the reeolution of
the ecreen. Thie ie, of couree, part and parcel of the wonderful eye!
brain magic that allowe color to eubetitute for reeolution and makee

antialiaeing worthwhile.

Given that we can draw images with perceived resolution higher than the screen,
consistency in subpixel placement is very important. Unfortunately, our simple square
antialiasing does not produce the same results (a consistent color gradient) for an im
age rotated 45 degrees as it does for an unrotated image—but antialiasing based on a
circular subpixel area does. So the shape of the subpixel area used for antialiasing mat
ters because if it's not symmetric in all directions, boundaries will appear to wiggle as
images rotate, destroying the image of reality that antialiased animation strives to cre
ate.

On the other hand, if you're drawing only static images, use a square subpixel area
for antialiasing; it's fast, easy, and looks just fine in that context. As I said at the outset,
we're not seeking mathematical perfection here, just a good-looking display for the
purpose at hand. If it looks good, it is good.

Fast Antialiased Lines Using Wu's Aigorithm
The thought first popped into my head as I unenthusiastically picked through the
salad bar at a local "family" restaurant, trying to decide whether the meatballs, the fried
clams, or the lasagna was likely to shorten my life the least. I decided on the chicken in
mystery sauce.

The thought recurred when my daughter asked, "Dad, is that fried chicken?"
"I don't think so," I said. "I think it's stewed chicken."

"It looks like fried chicken."

"Maybe it's fried, stewed chicken," my wife volunteered hopefully. I took a bite. It
was, indeed, fried, stewed chicken. I can now, unhesitatingly and without reservation,
recommend that you avoid fried, stewed chicken at all costs.
The thought I had was as follows: This is not goodfood. Not a profound thought, but

it raises an interesting question: Why was I eating in this restaurant? The answer, to
borrow a phrase from E.F. Schumacher, is appropriate technology. For a family on a
budget, with a small child, tired of staring at each other over the kitchen table, this was
a perfect place to eat. It was cheap, it had greasy food and ice cream, no one cared if
children dropped things or talked loudly or walked around, and, most important of
all, it wasn't home. So what if the food was lousy? Good food was a luxury, a bonus;
everything on the above list was necessary. A family restaurant was the appropriate
dining-out technology, given the parameters within which we had to work.
When I read through SIGGRAPH proceedings and other state-of-the-art computer-

graphics material, all too often I feel like I'm dining at a four-star restaurant with two-
year-old triplets and an empty wallet. We're talking incredibly inappropriate technology
for PC graphics here. Sure, I say to myself as I read about an antialiasing technique,
that sounds wonderful—if I had 24-bpp color, and dedicated hardware to do the pro
cessing, and all day to wait to generate one image. Yes, I think, that is a good way to do

424 ® Chapter 27

hidden surface removal—in a system with hardware z-buffering. Most of the stuff in
the journal Computer Graphics is riveting, but, alas, pretty much useless on PCs. When
an x86 has to do all the work, speed becomes the overriding parameter, especially for
real-time graphics.

Literature that's applicable to fast PC graphics is hard enough to find, but what we'd
really like is above-average image quality combined with terrific speed, and there's
almost no literature of that sort around. There is some, however, and you folks are
right on top of it. For example, alert reader Michael Chaplin, of San Diego, wrote to
suggest that I might enjoy the line-antialiasing algorithm presented in Xiaolin Wu's
article, "An Efficient Antialiasing Technique," in the July 1991 issue of Computer Graph
ics, Michael was dead-on right. This is a great algorithm, combining excellent antialiased
line quality with speed that's close to that of non-antialiased Bresenham's line drawing.
This is the sort of algorithm that makes you want to go out and write a wire-frame
animation program, just so you can see how good those smooth lines look in motion.
Wu antialiasing is a wonderful example of what can be accomplished on inexpensive,
mass-market hardware with the proper programming perspective. In short, it's a splen
did example of appropriate technology for PCs.

Wu Antialiasing
Antialiasing, as we've been discussing for the past few chapters, is the process of smooth
ing lines and edges so that they appear less jagged. Antialiasing is partly an aesthetic
issue, because it makes images more attractive. It's also partly an accuracy issue, be
cause it makes it possible to position and draw images with effectively more precision
than the resolution of the display. Finally, it's partly a flat-out necessity, to avoid the
horrible, crawling, jagged edges of temporal aliasing when performing animation.
The basic premise of Wu antialiasing is almost ridiculously simple: As the algorithm

steps one pixel unit at a time along the major (longer) axis of a line, it draws the two
pixels bracketing the line along the minor axis at each point. Each of the two bracketing
pixels is drawn with a weighted fraction of the full intensity of the drawing color, with
the weighting for each pixel equal to one minus the pixel's distance along the minor
axis from the ideal line. Yes, it's a mouthful, but Figure 27.1 illustrates the concept.
The intensities of the two pixels that bracket the line are selected so that they always

sum to exactly 1; that is, to the intensity of one fiilly illuminated pixel of the drawing
color. The presence of aggregate full-pixel intensity means that at each step, the line has
the same brightness it would have if a single pixel were drawn at precisely the correct
location. Moreover, thanks to the distribution of the intensity weighting, that bright
ness is centered at the ideal line. Not coincidentally, a line drawn with pixel pairs of
aggregate single-pixel intensity, centered on the ideal line, is perceived by the eye not as
a jagged collection of pixel pairs, but as a smooth line centered on the ideal line. Thus,
by weighting the bracketing pixels properly at each step, we can readily produce what

Wu'ed in Haste; Fried, Stewed at Leisure ® 425

\dea\ line is 0.1 pixel
epac'm^e from this pixel,
so the pixel is drawn
with 907o intensity.

Ideal line is 0.45 pixel
spacin^s from this pixel,
so the pixel is drawn
with 557o intensity.

Ideal line is 03 pixel
spacin^s from this pixel,
so the pixel is drawn
with 207o intensity.

Intensity is allocated
between each pixel
pair, alwaye summing
to full intensity of
a single pixel.

Ideal line is 0.9 pixel
spacin^s from this pixel,
so the pixel is drawn
with 107o intensity.

Ideal line is 0.55 pixel
spacin^s from this pixel,
so the pixel is drawn
with 457o intensity.

Ideal line is 0.2 pixel
spacin^s from this pixel,
so the pixel is drawn
with bO% intensity.

Figure 27.1 The Basic Concept of Wu Antiaiiasing

looks like a smooth line at precisely the right location, rather than the jagged pattern of
line segments that non-antialiased line-drawing algorithms such as Bresenhams (see
Part III) trace out.

You might expect that the implementation of Wu antialiasing would fall into two
distinct areas: tracing out the line (that is, finding the appropriate pixel pairs to draw)
and calculating the appropriate weightings for each pixel pair. Not so, however. The
weighting calculations involve only a few shifts, XORs, and adds; for all practical pur
poses, tracing and weighting are rolled into one step—and a very fast step it is. How
fast is it? On a 33-MHz 486 with a fast VGA, a good but not maxed-out assembly
implementation of Wu antialiasing draws a more than respectable 5,000 150-pixel-
long vectors per second. That's especially impressive considering that about 1,500,000
actual pixels are drawn per second, meaning that Wu antialiasing is drawing at around
50 percent of the maximum memory bandwidth—^half the fastest theoretically pos
sible drawing speed—of an AT-bus VGA. In short, Wu antialiasing is about as fast an
antialiased line approach as you could ever hope to find for the VGA.

426 @ Chapter 27

Tracing and Intensity In One
Horizontal, vertical, and diagonal lines do not require Wu antialiasing because they
pass through the center of every pixel they meet; such lines can be drawn with fast,
special-case code. For all other cases, Wu lines are traced out one step at a time along
the major axis by means of a simple, fixed-point algorithm. The move along the minor
axis with respect to a one-pixel move along the major axis (the line slope for lines with
slopes less than 1,1/slope for lines with slopes greater than 1) is calculated with a single
integer divide. This value, called the "error adjust," is stored as a fixed-point fraction,
in 0.16 format (that is, all bits are fractional, and the decimal point is just to the left: of
bit 15). An error accumulator, also in 0.16 format, is initialized to 0. Then the first

pixel is drawn; no weighting is needed, because the line intersects its endpoints exactly.
Now the error adjust is added to the error accumulator. The error accumulator

indicates how far between pixels the line has progressed along the minor axis at any
given step; when the error accumulator turns over, its time to advance one pixel along
the minor axis. At each step along the line, the major-axis coordinate advances by one
pixel. The two bracketing pixels to draw are simply the two pixels nearest the line along
the minor axis. For instance, if X is the current major-axis coordinate and Y is the
current minor-axis coordinate, the two pixels to be drawn are (X,Y) and (X,Y+1). In
short, the derivation of the pixels at which to draw involves nothing more complicated
than advancing one pixel along the major axis, adding the error adjust to the error
accumulator, and advancing one pixel along the minor axis when the error accumula
tor turns over.

So far, nothing special; but now we come to the true wonder of Wu antialiasing. We
know which pair of pixels to draw at each step along the line, but we also need to
generate the two proper intensities, which must be inversely proportional to distance
from the ideal line and sum to 1, and that's a potentially time-consuming operation.
Let's assume, however, that the number of possible intensity levels to be used for weight
ing is the value NumLevels = 2" for some integer n, with the minimum weighting (0
percent intensity) being the value 2"-l, and the maximum weighting (100 percent
intensity) being the value 0. Given that, lo and behold, the most significant n bits of
the error accumulator select the proper intensity value for one element of the pixel
pair, as shown in Figure 27.2. Better yet, 2"-l minus the intensity of the first pixel
selects the intensity of the other pixel in the pair, because the intensities of the two
pixels must sum to 1; as it happens, this result can be obtained simply by flipping the
n least-significant bits of the first pixel's value. All this works because what the error
accumulator accumulates is precisely the ideal line's current distance between the two
bracketing pixels.
The intensity calculations take longer to describe than they do to perform. All that's

involved is a shift of the error accumulator to right-justify the desired intensity weight
ing bits, and then an XOR to flip the least-significant n bits of the first pixel's value in

Wu 'ed in Haste; Fried, Stewed at Leisure ® 427

At this step, the error accumulator
is 0.25, describing this pixel's distance
from the ideal line. In 0.16

fixed-point format, 0.25 is0100000000000000b.\^^^

For a Z)2-\eve\ intensity wei^htin^,

the upper 5 bits of the error
accumulator, 01000b, form the

pixel value for the correct weighted
intensity for this pixel, 757o.

The inverse of the upper 5 bits of the error
■ accumulator, 10111b, forms the pixel value for
the correct weighted intensity for this pixel, 257o.

Figure 27.2 Wu intensity Caicuiations

order to generate the second pixels value. Listing 27.1 illustrates just how efficient Wu
antialiasing is; the intensity calculations take only three statements, and the entire Wu
line-drawing loop is only nine statements long. Of course, a single C statement can
hide a great deal of complexity, but Listing 27.6, an assembly implementation, shows
that only 15 instructions are required per step along the major axis—and the number
of instructions could be reduced to ten by special-casing and loop unrolling. Make no
mistake about it, Wu antialiasing is fast.

LISTING 27.1 L27-1.C
/* Function to draw an antialiased line from (XO.YO) to (XI.YD, using an

* antialiasing approach published by Xiaolin Wu in the July 1991 issue of
* Computer Graphics. Requires that the palette be set up so that there
* are NumLevels intensity levels of the desired drawing color, starting at
* color BaseColor (100% intensity) and followed by (NumLevels-1) levels of
* evenly decreasing intensity, with color (BaseColor+NumLevels-1) being 0%
* intensity of the desired drawing color (black). This code is suitable for
* use at screen resolutions, with lines typically no more than IK long; for
* longer lines, 32-bit error arithmetic must be used to avoid problems with
* fixed-point inaccuracy. No clipping is performed in DrawWuLine; it must be
* performed either at a higher level or in the DrawPixel function.
* Tested with Borland C-i-+ in C compilation mode and the small model.
*/

extern void DrawPixel(int, int, int);

/* Wu antialiased line drawer.

* (XO.YO),(XI,YD = line to draw

* BaseColor = color # of first color in block used for antialiasing, the
* 100% intensity version of the drawing color

428 ^ Chapter 27

* NumLevels = size of color block, with BaseColor+NumLevels-1 being the
* 0% intensity version of the drawing color
* IntensityBits = log base 2 of NumLevels; the # of bits used to describe
* the intensity of the drawing color. 2**IntensityBits=«=NumLevels
*/

void DrawWuLinednt XO, int YO, int XI, int Yl, int BaseColor, int NumLevels,

unsigned int IntensityBits)

{

unsigned int IntensityShift, ErrorAdj, ErrorAcc;

unsigned int ErrorAccTemp, Weighting, WeightingComplementMask;
int Del tax, DeltaY, Temp, XDir;

/* Make sure the line runs top to bottom */
if (YO > Yl) {

Temp = YO; YO = Yl; Yl = Temp;
Temp = XO; XO = XI; XI = Temp;

}
/* Draw the initial pixel, which is always exactly intersected by

the line and so needs no weighting */

DrawPixeKXO, YO, BaseColor);

if (CDeltaX = XI - XO) >= 0) {

XDir = 1;

} else {

XDir = -1;

DeltaX = -DeltaX; /* make DeltaX positive */

}

/* Special-case horizontal, vertical, and diagonal lines, which
require no weighting because they go right through the center of
every pixel */

if ((DeltaY = Yl - YO) — 0) {

/* Horizontal line */

while (DeltaX-- !- 0) {

XO XDir;

DrawPixeKXO, YO, BaseColor);

}

return;

}

if (DeltaX == 0) {

/* Vertical line */

do {

Y0++;

DrawPixeKXO, YO, BaseColor);

} while (--DeltaY != 0);

return;

}

if (DeltaX == DeltaY) {

/* Diagonal line */

do {

XO += XDir;

Y0++;

DrawPixeKXO, YO, BaseColor);

) whi1e (--DeltaY != 0);

return;

}
/* line is not horizontal, diagonal, or vertical */

ErrorAcc = 0; /* initialize the line error accumulator to 0 */

/* # of bits by which to shift ErrorAcc to get intensity level */
IntensityShift = 16 - IntensityBits;
/* Mask used to flip all bits in an intensity weighting, producing the

result (1 - intensity weighting) */

Wu'ed in Haste; Fried, stewed at Leisure 0 429

WeightingComplementMask = NumLevels - 1;
/* Is this an X-major or Y-major line? */
if (DeltaV > DeltaX) {

/* Y-major line; calculate 16-bit fixed-point fractional part of a
pixel that X advances each time Y advances 1 pixel, truncating the
result so that we won't overrun the endpoint along the X axis */

ErrorAdj = ((unsigned long) DeltaX << 16) / (unsigned long) DeltaY;
/* Draw all pixels other than the first and last */
while (--DeltaY) {

ErrorAccTemp =■ ErrorAcc; /* remember currrent accumulated error */
ErrorAcc += ErrorAdj; /* calculate error for next pixel */
if (ErrorAcc <= ErrorAccTemp) {

/* The error accumulator turned over, so advance the X coord */
XO += XDir;

}
Y0++; /* Y-major, so always advance Y */
/* The IntensityBits most significant bits of ErrorAcc give us the

intensity weighting for this pixel, and the complement of the
weighting for the paired pixel */

Weighting = ErrorAcc >> IntensityShift;
DrawPixel(XO, YD, BaseColor + Weighting);
DrawPixeKXO + XDir, YD,

BaseColor + (Weighting WeightingComplementMask));
}
/* Draw the final pixel , which is always exactly intersected by the line

and so needs no weighting */
DrawPixel(XI, Yl, BaseColor);
return;

}
/* It's an X-major line; calculate 16-bit fixed-point fractional part of a

pixel that Y advances each time X advances 1 pixel, truncating the
result to avoid overrunning the endpoint along the X axis */

ErrorAdj = ((unsigned long) DeltaY << 16) / (unsigned long) DeltaX;
/* Draw all pixels other than the first and last */
while (--DeltaX) {

ErrorAccTemp = ErrorAcc; /* remember currrent accumulated error */
ErrorAcc += ErrorAdj; /* calculate error for next pixel */
if (ErrorAcc <= ErrorAccTemp) {

/* The error accumulator turned over, so advance the Y coord */
Y0++;

}
XO += XDir; /* X-major, so always advance X */
/* The IntensityBits most significant bits of ErrorAcc give us the

intensity weighting for this pixel, and the complement of the
weighting for the paired pixel */

Weighting = ErrorAcc >> IntensityShift;
DrawPixel(XO, YO, BaseColor + Weighting);
DrawPixeKXO, YO + 1,

BaseColor + (Weighting WeightingComplementMask));
}
/* Draw the final pixel , which is always exactly intersected by the line

and so needs no weighting */
DrawPixel(XI, Yl, BaseColor);

Sample Wu Antialiasing
The true test of any antialiasing technique is how good it looks, so let s have a look at
Wu antialiasing in action. Listing 27.1 shown just above is a C implementation ofWu

430 ^ Chapter 27

antialiasing. Listing 17,2 is a sample program that draws a variety of Wu-antialiased
lines, followed by non-antialiased lines, for comparison. Listing 27.3 contains
DrawPixelQ and SetModeO functions for mode 13H, the VGA's 320x200 256-color
mode. Finally, Listing 27.4 is a simple, non-antialiased line-drawing routine. Link
these four listings together and run the resulting program to see both Wu-antialiased
and non-antialiased lines.

LISTING 27.2 L27-2.C
/* Sample line-drawing program to demonstrate Wu antialiasing. Also draws
* non-antialiased lines for comparison.
* Tested with Borland C++ in C compilation mode and the small model.
*/

^include <dos.h>

^include <conio.h>

void SetPalette(struct WuColor *);

extern void DrawWuLine(int, int, int, int, int, int, unsigned int);

extern void DrawLine(int, int, int, int, int);

extern void SetMode(void);

extern int ScreenWidthlnPixels; /* screen dimension globals */

extern int ScreenHeightlnPixels;

#define NUM_WU_COLORS 2 /* of colors we'll do antialiased drawing with */
struct WuColor { /* describes one color used for antialiasing */

int BaseColor; /* # of start of palette intensity block in DAC */
int Numlevels; /* # of intensity levels */
int IntensityBits; /* IntensityBits == log2 Numlevels */

int MaxRed; /* red component of color at full intensity */
int MaxGreen; /* green component of color at full intensity */
int MaxBlue; /* blue component of color at full intensity */

};

enum {WU_BLUE=0, WU_WHITE=1}; /* drawing colors */

struct WuColor WuColors[NUM_WU_COLORS] = /* blue and white */

{{192, 32, 5, 0, 0, 0x3F}, {224, 32, 5, 0x3F, 0x3F, 0x3F}};

void mainO

{

int CurrentColor, i;

union REGS regset;

/* Draw Wu-antialiased lines in all directions */

SetModeO;

SetPalette(WuColors);

for (i=5; i<ScreenWidthlnPixels; i += 10) {

DrawWuLine(ScreenWidthInPixels/2-ScreenWidthInPixels/lO+i/5,

ScreenHeightlnPixels/5, i, ScreenHeightInPixels-1,
WuColors[WU_BLUE].BaseColor, WuColors[WU_BLUE].NumLevels,

WuColors[WU_BLUE].Intensi tyBi ts);

}
for-(i=0; i<ScreenHeightlnPixels; i += 10) {

DrawWuLineCScreenWidthlnPixels/2-ScreenWidthInPixels/10, i/5, 0, i,

WuColors[WU_BLUE].BaseColor, WuColors[WU_BLUE].NumLevels,

WuColors[WU_BLUE].Intensi tyBi ts);

}

Wu'ed in Haste; Fried, Stewed at Leisure ® 431

for (i=0; i<ScreenHeightlnPixels; i +== 10) {
DrawWuLine(ScreenWidthInPixels/2+ScreenWidthInPixels/10, i/5,

ScreenWidthlnPixels-1, i, WuColors[WU_BLUE].BaseColor,

WuColors[WU_BLUE].NumLevels, WuColors[WU_BLUE].IntensityBits);

}
for (i=0; i<ScreenWidthInPixels; i += 10) {

DrawWuLine(ScreenWidthlnPixels/2-ScreenWidthInPixels/lO+i/5,

ScreenHeightlnPixels, i, 0, WuColors[WU_WHITE].BaseColor,
WuColors[WU_WHITE].NumLevels,
WuColors[WU_WHITE].IntensityBits);

}

getchO: /* wait for a key press */

/* Now clear the screen and draw non-antialiased lines */
SetModeC);

SetPalette(WuColors);

for (i=0; i<ScreenWidthlnPixels; i += 10) {
DrawLine(ScreenWidthInPixels/2-ScreenWidthInPixels/lO+i/5,

ScreenHeightlnPixels/5, i, ScreenHeightInPixels-1,
WuColors[WU_BLUE].BaseColor);

}

for (i=0; i<ScreenHeightlnPixels; i += 10) {
DrawLine(ScreenWidthInPixels/2-ScreenWidthInPixels/10, i/5, 0, i,

WuColors[WU_BLUE].BaseColor);

}

for (i=0; i<ScreenHeightlnPixels; i +■= 10) {
DrawLineCScreenWidthInPixels/2+ScreenWidthlnPixels/10, i/5,

ScreenWidthlnPixels-1, i, WuColors[WU_BLUE].BaseColor);
}
for (i=0; i<ScreenWidthInPixels; i += 10) {

DrawLi ne(ScreenWidthInPi xel s/2-ScreenWidthlnPixel s/lO-i-i /5,
ScreenHeightlnPixels, i. 0, WuColors[WU_WHITE].BaseColor);

}
getchO; /* wait for a key press */

regset.x.ax = 0x0003; /* AL = 3 selects 80x25 text mode */
intSeCOxlO, ®set, ®set); /* return to text mode */

}

/* Sets up the palette for antialiasing with the specified colors.
* Intensity steps for each color are scaled from the full desired intensity
* of the red, green, and blue components for that color down to 0%
* intensity; each step is rounded to the nearest integer. Colors are
* corrected for a gamma of 2.3. The values that the palette is programmed
* with are hardwired for the VGA's 6 bit per color DAC.
*/

void SetPaletteCstruct WuColor * WColors)
{

i nt i, j;
union REGS regset;
struct SREGS sregset;
static unsigned char PaletteBlock[256][3]; /* 256 RGB entries */
/* Gamma-corrected DAC color components for 64 linear levels from 0% to

100% intensity */
static unsigned char GammaTable[] = {

0, 10, 14, 17, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34,
35, 36, 37, 37, 38, 39, 40, 41, 41, 42, 43, 44, 44, 45, 46, 46,
47, 48, 48, 49, 49, 50, 51, 51, 52, 52, 53, 53, 54, 54, 55, 55,
56, 56, 57, 57, 58, 58, 59, 59, 60, 60, 61, 61, 62, 62, 63, 63);

for (i°0; i<NUM_WU_COLORS; i++) {
for (j=0; j<WColors[i].NumLevels; j++) {

432 ® Chapter 27

(1.0

(1.0 -

PaletteBlock[j][0] = GammaTable[((double)WColors[i].MaxRed * (1.0 -
(double)j / (doub1e)(WColors[i].NumLevels - 1))) + 0.5];

PaletteBlock[j][l] = GammaTable[((double)WColors[i].MaxGreen *
(double)j / (double)(WColors[i].NumLevels - 1))) + 0.5]

Pa]etteBlockCj]C2] = GammaTable[((double)WColors[i].MaxBlue *
(double)j / (double)(WColors[i].NumLevels - 1))) + 0.5];

}

/* Now set up the palette to do Wu antialiasing for this color */
regset.x.ax = 0x1012; /* set block of DAC registers function */
regset.x.bx ■= WColors[i].BaseColor; /* first DAC location to load */
regset.x.cx = WColors[i].NumLevels; /* # of DAC locations to load */
regset.x.dx = (unsigned int)PaletteBlock; /* offset of array from which

to load RGB settings */
sregset.es = _DS; /* segment of array from which to load settings */
int86x(0xl0, ®set, Sregset, &sregset); /* load the palette block */

LISTING 27.3 L27-3.C
/* VGA mode 13h pixel-drawing and mode set functions.
* Tested with Borland C++ in C compilation mode and the small model .
*/

#include <dos.h>

/* Screen dimension globals, used in main program to scale. */
int ScreenWidthlnPixels = 320;
int ScreenHeightlnPixels = 200;

/* Mode 13h draw pixel function. */
void DrawPixel(int X, int Y. int Color)
{
#define SCREEN_SEGMENT OxAOOO

unsigned char far *ScreenPtr;

FP_SEG(ScreenPtr) = SCREEN_SEGMENT;
FP_OFF(ScreenPtr) = (unsigned int) Y * ScreenWidthlnPixels + X;
*ScreenPtr = Color;

}

/* Mode 13h mode-set function. */
void SetModeO
{

union REGS regset;

/* Set to 320x200 256-color graphics mode */
regset.x.ax = 0x0013;
int86(0xl0, ®set. ®set);

}

LISTING 27.4 L27-4.C
/* Function to draw a non-antialiased line from (XO,YO) to (XI,YD, using a
* simple fixed-point error accumulation approach.
* Tested with Borland C++ in C compilation mode and the small model.
*/

extern void DrawPixel(int, int, int);

/* Non-antialiased line drawer.
* (XO,YO),(XI,Y1) = line to draw. Color = color in which to draw

M/u'ecf in Haste; Fried, Stewed at Leisure ^ 433

*/

void DrawLinednt XO, int YO, int XI, int Yl, int Color)

{
unsigned long ErrorAcc, ErrorAdj;
int DeltaX, DeltaY, XDir, Temp;

/* Make sure the line runs top to bottom */
if (YO > Yl) {

Temp = YO: YO = Yl; Yl = Temp;
Temp = XO; XO = XI; XI = Temp;

}
DrawPixeKXO, YO, Color); /* draw the initial pixel */
if ((DeltaX = XI - XO) >= 0) {

XDir = 1;

} else {

XDir = -1;

DeltaX —DeltaX; /* make DeltaX positive */

}
if ((DeltaY = Yl - YO) = 0) /* done if only one point in the line */

if (DeltaX = 0) return;

ErrorAcc = 0x8000; /* initialize line error accumulator to .5, so we can
advance when we get halfway to the next pixel */

/* Is this an X-major or Y-major line? */
if (DeltaY > DeltaX) {

/* Y-major line; calculate 16-bit fixed-point fractional part of a
pixel that X advances each time Y advances 1 pixel */

ErrorAdj = ((((unsigned long)DeltaX << 17) / (unsigned long)DeltaY) +
1) » 1;

/* Draw all pixels between the first and last */
do {

ErrorAcc +=■ ErrorAdj; /* calculate error for this pixel */
if (ErrorAcc & --OxFFFFL) {

/* The error accumulator turned over, so advance the X coord */
XO += XDir;
ErrorAcc &= OxFFFFL; /* clear integer part of result */

}
YO-H-; /* Y-major, so always advance Y */
DrawPixel(XO, YO, Color);

} while (--DeltaY);
return;

}
/* It's an X-major line; calculate 16-bit fixed-point fractional part of a

pixel that Y advances each time X advances 1 pixel */
ErrorAdj = ((((unsigned long)DeltaY << 17) / (unsigned long)DeltaX) +

1) » 1;
/* Draw all remaining pixels */
do {

ErrorAcc += ErrorAdj; /* calculate error for this pixel */
if (ErrorAcc & -OxFFFFL) {

/* The error accumulator turned over, so advance the Y coord */
Y0++;
ErrorAcc &= OxFFFFL; /* clear integer part of result */

}
XO += XDir; /* X-major, so always advance X */
DrawPixeKXO, YO, Color);

} while (--DeltaX);

Listing 27.1 isn't particularly fast, because it calls DrawPixel() for each pixel. On
the other hand, DrawPixeI() makes it easy to try out Wu antialiasing in a variety of

434 ® Chapter 27

modes; just adapt the code in Listing 27.3 for the 256-color mode you want to sup
port. For example, Listing 27.5 shows code to draw Wu-antialiased lines in 640x480
256-color mode on SuperVGAs built around the Tseng Labs ET4000 chip with at
least 512K of display memory installed. It s well worth checking out Wu antialiasing at
640x480. Although antialiased lines look much smoother than normal lines at 320x200
resolution, they're far from perfect, because the pixels are so big that the eye can t blend
them properly. At 640x480, however, Wu-antialiased lines look fabulous; from a couple
of feet away, they look as straight and smooth as if they were drawn with a ruler.

LISTING 27.5 L27-5.C
/* Mode set and pixel-drawing functions for the 640x480 256-color mode of
* Tseng Labs ET4000-based SuperVGAs.
* Tested with Borland C++ in C compilation mode and the small model.
*/

^include <dos.h>

/* Screen dimension globals, used in main program to scale */
int ScreenWidthlnPixels = 640;

int ScreenHeightlnPixels = 480;

/* ET4000 640x480 256-color draw pixel function. */
void DrawPixel(int X, int Y, int Color)

{

^define SCREEN.SEGMENT OxAOOO
#define GC_SEGMENT_SELECT 0x3CD /* ET4000 segment (bank) select reg */

unsigned char far *ScreenPtr;

unsigned int Bank;

unsigned long BitmapAddress;

/* full bitmap address of pixel, as measured from address 0 to OxFFFFF */
BitmapAddress = (unsigned long) Y * ScreenWidthlnPixels + X;
/* Bank # is upper word of bitmap addr */
Bank = BitmapAddress >> 16;
/* Upper nibble is read bank lower nibble is write bank # */
outp(GC_SEGMENT_SELECT. (Bank « 4) | Bank);
/* Draw into the bank */

FP_SEG(ScreenPtr) = SCREEN_SEGMENT;

FP_OFF(ScreenPtr) = (unsigned int) BitmapAddress;
*ScreenPtr = Color;

}

/* ET4000 640x480 256-color mode-set function. */

void SetMode()

{

union REGS regset;

/* Set to 640x480 256-color graphics mode */
regset.X.ax = 0x002E;

int86(0xl0, ®set, ®set);

}

Listing 27.1 requires that the DAC palette be set up so that a NumLevel-long block
of palette entries contains linearly decreasing intensities of the drawing color. The size
of the block is programmable, but must be a power of two. The more intensity levels.

\N[}'e6 in Haste; Fried, Stewed at Leisure ^ 435

the better. Wu says that 32 intensities is enough; on my system, eight and even four levels
looked pretty good. I found that gamma correction, which gives linearly spaced intensity
steps, improved antialiasing quality significantly. Fortunately, we can program the palette
with gamma-corrected values, so our drawing code doesnt have to do any extra work.

Listing 27.1 isht very fast, so I implemented Wu antialiasing in assembly, hard-
coded for mode 13H. The implementation is shown in full in Listing 27.6. High
speed graphics code and fast VGAs go together like peanut butter and jelly, which is to
say very well indeed; the assembly implementation ran more than twice as fast as the C
code on my 486. Enough said!

LISTING 27.6 L27-6.ASM
C near-callable function to draw an antialiased line from
(XO.YO) to (XI.YD, in mode 13h, the VGA's standard 320x200 256-color
mode. Uses an antialiasing approach published by Xiaolin Wu in the July
1991 issue of Computer Graphics. Requires that the palette be set up so
that there are NumLevels intensity levels of the desired drawing color,
starting at color BaseColor (100% intensity) and followed by (NumLevels-1)
levels of evenly decreasing intensity, with color (BaseColor+NumLevels-1)
being 0% intensity of the desired drawing color (black). No clipping is
performed in DrawWuLine. Handles a maximum of 256 intensity levels per
antialiased color. This code is suitable for use at screen resolutions,
with lines typically no more than IK long; for longer lines. 32-bit error
arithmetic must be used to avoid problems with fixed-point inaccuracy.
Tested with TASM.

C near-callable as:

void DrawWuLine(int XO. int YO. int XI. int Yl. int BaseColor.
int NumLevels. unsigned int IntensityBits);

SCREEN_WIDTH_IN_BYTES equ 320

SCREEN_SEGMENT equ GaOOOh

of bytes from the start of one scan line
; to the start of the next
•.segment in which screen memory resides

Parameters passed in stack frame.
parms struc

dw

XO dw

YO dw

XI dw

Yl dw

BaseColor dw

NumLevels dw

2 dup (?)
?

?

?

?

?

IntensityBits dw ?

parms ends

pushed BP and return address
X coordinate of line start point

Y coordinate of line start point
X coordinate of line end point
Y coordinate of line end point
color # of first color in block used for
antialiasing, the 100% intensity version of the
drawing color

size of color block, with BaseColor+NumLevels-1
being the 0% intensity version of the drawing color
(maximum NumLevels = 256)

log base 2 of NumLevels; the # of bits used to
describe the intensity of the drawing color.
2**1 n tens i tyBi ts=NumLevel s

(maximum IntensityBits = 8)

.model small

.code

; Screen dimension globals. used in main program to scale.

436 @ Chapter 27

_ScreenWidthInPixels dw 320

_ScreenHeightInPixels dw 200

. code

public _DrawWuL1ne
_DrawWuL1ne proc near

push bp ipreserve caller's stack frame
mov bp.sp ;point to local stack frame
push si ;preserve C's register variables
push di

push ds ;preserve C's default data segment
eld ;make string instructions increment their pointers

; Make sure the line runs top to bottom.
mov si,[bp].XO
mov ax,[bp].YO
cmp ax,[bp].Y1 ;swap endpoints if necessary to ensure that
jna NoSwap ; YO <= Y1

xchg [bp].Yl,ax
mov [bp].YO,ax
xchg [bp].XI,si
mov [bp].XO,si

NoSwap:

; Draw the initial pixel, which is always exactly intersected by the line
; and so needs no weighting.

mov dx,SCREEN_SEGMENT
mov ds ,dx ;point DS to the screen segment
mov dx,SCREEN.WIDTH_IN_BYTES
mul dx ;Y0 * SCREEN_WIDTH_IN_BYTES yields the offset

; of the start of the row start the initial

; pixel is on
add si ,ax ;point DS:SI to the initial pixel
mov al ,byte ptr [bp].BaseColor ;color with which to draw
mov [si],al :draw the initial pixel

mov bx,l ;XDir = 1; assume DeltaX >= 0
mov cx,[bp].XI
sub cx,[bp].XO iDeltaX; is it >= 1?
jns DeltaXSet ;yes, move left->right, all set

;no, move right->left
neg cx ;make DeltaX positive
neg bx ;XDir = -1

DeltaXSet:

; Special-case horizontal, vertical, and diagonal lines, which require no
; weighting because they go right through the center of every pixel.

mov dx,[bp].Yl
sub dx.[bp].YO ;DeltaY; is it 0?
jnz NotHorz ;no, not horizontal

;yes, is horizontal, special case
and bx,bx ;draw from left->right?
jns DoHorz ;yes, all set
std ;no, draw right->left

DoHorz:

lea di,[bx+si] ;point DI to next pixel to draw
mov ax,ds

mov es ,ax ;point ES:DI to next pixel to draw
mov al ,byte ptr [bp].BaseColor ;color with which to draw

;CX = DeltaX at this point
rep stosb ;draw the rest of the horizontal line

Wu'ed in Haste; Fried, Stewed at Leisure ® 437

NotHorz:

VertLoop;

NotVert:

Di agLoop:

eld ;restore default direction flag

jmp Done ;and we're done

al ign 2

and cx,cx ;is DeltaX 0?

jnz" NotVert ;no, not a vertical line

;yes, is vertical, special case

mov al ,byte ptr [bp].BaseColor ;color with which to draw

add si,$CREEN_WIDTH_IN_BYTES ;point to next pixel to draw

mov Csi],al ;draw the next pixel

dec dx ;--DeltaY

jnz VertLoop

jmp Done ;and we're done

al ign 2

cmp cx,dx ;DeltaX — DeltaY?

jnz NotDiag ;no, not diagonal

;yes, is diagonal, special case

mov al ,byte ptr [bp].BaseColor ;color with which to draw

1:

1 ea si,[si+SCREEN_WIDTH_IN_BYTES+bx]
;advance to next pixel to draw .1
; incrementing Y and adding XDi

mov Csi],al ;draw the next pixel

dec dx ;--DeltaY

jnz DiagLoop

jmp Done ;and we're done

; Line is not horizontal, diagonal, or vertical,
align 2

NotDiag:

; Is this an X-major or Y-major line?
cmp dx,cx
jb XMajor ;ifs X-major

; It's a Y-major line. Calculate the 16-bit fixed-point fractional part of a
; pixel that X advances each time Y advances 1 pixel, truncating the result
; to avoid overrunning the endpoint along the X axis.

xchg

sub

di V

mov

sub

mov

dx,cx

ax,ax

cx

di ,cx

si ,bx

dx, -1

mov

sub

cx,8
cx,[bp].IntensityBits

DX = DeltaX, CX = DeltaY

make DeltaX 16.16 fixed-point value in DX:AX
AX = (DeltaX « 16) / DeltaY. Won't overflow
because DeltaX < DeltaY

DI = DeltaY (loop count)
back up the start X by 1, as explained below
initialize the line error accumulator to -1,

so that it will turn over immediately and

advance X to the start X. This is necessary

properly to bias error sums of 0 to mean
"advance next time" rather than "advance

this time," so that the final error sum can

never cause drawing to overrun the final X
coordinate (works in conjunction with
truncating ErrorAdj, to make sure X can't
overrun)

CL = # of bits by which to shift
ErrorAcc to get intensity level (8
instead of 16 because we work only

with the high byte of ErrorAcc)

438 ® Chapter 27

mov ch.byte ptr [bp].NumLevels
dec ch

mov bp.BaseColor[bp]

xchg bp,ax

; Draw all remaining pixels.
YMajorLoop:

add dx,bp
jnc NoXAdvance

add

NoXAdvance:

add

si ,bx

si.SCREEN_WIDTH_IN_BYTES

;mask used to flip all bits in an
; intensity weighting, producing
; result (1 - intensity weighting)
;***stack frame not available***

.***from now on ***

;BP = ErrorAdj, AL = BaseColor,

; AH = scratch register

;calculate error for next pixel
;not time to step in X yet
;the error accumulator turned over,
;so advance the X coord

;add XDir to the pixel pointer

;Y-major, so always advance Y

; The IntensityBits most si
; weighting for this pixel ,
; pai red pixel.

mov

shr

add

mov

mov

shr

xor

add

ah.dh

ah ,cl

ah,al

[s i], a h

ah,dh

ah ,cl

ah ,ch

ah,al

Wei ghti ngComplementMask)
mov

BaseColor +

dec

jnz

jmp

It * s an X-ma

[si+bx],ah

(Weighting
di

YMajorLoop
Done

gnificant bits of ErrorAcc give us the intensity
and the complement of the weighting for the

;msb of ErrorAcc

;Weighting = ErrorAcc » IntensityShift;
;BaseColor + Weighting
;DrawPixel(X, Y, BaseColor + Weighting);
;msb of ErrorAcc

;Weighting = ErrorAcc >> IntensityShift;
;Weighting WeightingComplementMask
;BaseColor + (Weighting

;DrawPixel(X+XDir, Y,

WeightingComplementMask));
;--DeltaY

;we're done with this line

jor line,

align 2
XMajor:

; Calculate the 16-bit fixed-point fractional part of a pixel that Y advances
; each time X advances 1 pixel, truncating the result to avoid overrunning
; the endpoint along the X axis.

sub

di V

mov

sub

ax,ax

cx

di ,cx

si,SCREEN_WIDTH_IN_BYTES ;back up the
explained below

make DeltaY 16.16 fixed-point value in DX:AX
AX = (DeltaY << 16) / Deltax. Won't overflow
because DeltaY < DeltaX

DI = DeltaX (loop count)

start X by 1, as

dx, -1

mov

sub

cx,8

cx,[bp].Intensi tyBi ts

initialize the line error accumulator to -1,
so that it will turn over immediately and
advance Y to the start Y. This is necessary
properly to bias error sums of 0 to mean

"advance next time" rather than "advance
this time," so that the final error sum can

never cause drawing to overrun the final Y

coordinate (works in conjunction with
truncating ErrorAdj, to make sure Y can't
overrun)

;CL = # of bits by which to shift
ErrorAcc to get intensity level (8
instead of 16 because we work only
with the high byte of ErrorAcc)

Wu'ed in Haste; Fried, stewed at Leisure ^ 439

mov

dec

xchg

ch.byte ptr [bp].NumLevels :mask used to flip all bits in an
ch

bp.BaseColor[bp]

bp,ax

intensity weighting, producing
result (1 - intensity weighting)

stack frame not available

***from now on ***

BP = ErrorAdj, AL = BaseColor,
AH = scratch register

; Draw all remaining pixels.
XMajorLoop:

add

jnc

add

NoYAdvance:

add

dx.bp ;calculate error for next pixel
NoYAdvance ;not time to step in Y yet

;the error accumulator turned over,
; so advance the Y coord

si,SCREEN_WIDTH_IN_BYTES ;advance Y

si ,bx ;X-major, so add XDir to the pixel pointer

; The IntensityBits most significant bits of ErrorAcc give us the intensity
; weighting for this pixel, and the complement of the weighting for the
; paired pixel.

mov ah.dh

shr ah,cl

add ah,al

mov [si],ah

mov ah.dh

shr ah.cl

xor ah.ch

add ah.al

Wei ghti ngComplementMask)
mov [si+SCREEN_WIDTH_IN_BYTES],ah

;DrawPixel(X, Y+SCREEN_WIDTH_IN_BYTES,
; BaseColor + (Weighting WeightingComplementMask));

;msb of ErrorAcc

;Weighting = ErrorAcc » IntensityShift;
;BaseColor + Weighting

;DrawPixel(X, Y, BaseColor + Weighting);
;msb of ErrorAcc

;Weighting = ErrorAcc >> IntensityShift;
;Weighting WeightingComplementMask
;BaseColor + (Weighting

dec

jnz

Done:

pop

pop

pop

pop

ret

_DrawWuLine endp
end

di

XMajorLoop

ds

di

si

bp

;--DeltaX

;we're done with this line

;restore C's default data segment

;restore C's register variables

;restore caller's stack frame

;done

Notes on Wu Antialiasing
Wu antialiasing can be applied to any curve for which it's possible to calculate at each
step the positions and intensities of two bracketing pixels, although the implementa
tion will generally be nowhere near as efficient as it is for lines. However, Wu's article in
Computer Graphics diOes, describe an efficient algorithm for drawing antialiased circles.
Wu dso describes a technique for antialiasing solids, such as filled circles and polygons.
Wu's approach biases the edges of filled objects outward. Although this is no good for
adjacent polygons of the sort used in rendering, it's certainly possible to design a more
accurate polygon-antialiasing approach around Wu's basic weighting technique. The
results would not be quite so good as more sophisticated antialiasing techniques, but
they would be much faster.

440 ® Chapter 27

In general, the reeulte ohtained by Wu antialiaeing are only eo-eo, by
theoretical meaeuree. IVu antialiasing amounts to a simple box fil
ter placed over a fixed-point step approximation of a line, and that
process introduces a good deal of deviation from the ideal. On the
other hand, Wu notes that even a 10 percent error In intensity doesn't
lead to noticeable loss of image quality, and for Wu-antialiased lines
up to 1K pixels in length, the error is under 10 percent, if it looks
good, it is good—and it looks good.

With a 16-bit error accumulator, fixed-point inaccuracy becomes a problem for
Wu-antialiased lines longer than 1K. For such lines, you should switch to using 32-bit
error values, which would let you handle lines of any practical length.

In the listings, I have chosen to truncate, rather than round, the error-adjust value.
This increases the intensity error of the line but guarantees that fixed-point inaccuracy
won t cause the minor axis to advance past the endpoint. Overrunning the endpoint
would result in the drawing of pixels outside the line s bounding box, and potentially
even in an attempt to access pixels off the edge of the bitmap.

Finally, I should mention that, as published, Wu s algorithm draws lines symmetri
cally, from both ends at once. I haven t done this for a number of reasons, not least of
which is that symmetric drawing is an inefficient way to draw lines that span banks on
banked Super-VGAs. Banking aside, however, symmetric drawing is potentially faster,
because it eliminates half of all calculations; in so doing, it cuts cumulative error in
half, as well.

With or without symmetrical processing, Wu antialiasing beats fried, stewed chicken
hands-down. Trust me on this one.

A Simple and Extremely Fast Animation Method for
Limited Color

When it comes to computers, my first love is animation. There's nothing quite like the
satisfaction of fooling the eye and creating a miniature reality simply by rearranging a
few bytes of display memory. What makes animation particularly interesting is that it
has to happen fast (as measured in human time), and without blinking and flickering,
or else you risk destroying the illusion of motion and solidity. Those constraints make
animation the toughest graphics challenge—and also the most rewarding.

It pains me to hear industry pundits rag on the PC when it comes to animation.
Okay, I'll grant you that the PC isn't a Silicon Graphics workstation and never will be,
but then neither is anything else on the market. The VGA offers good resolution and
color, and while the hardware wasn't designedior animation, that doesn't mean we can't
put it to work in that capacity. One lesson that any good PC graphics or assembly
programmer learns quickly is that it's what the PC's hardware can do—not what it was
intended to do—that's important. (By the way, if I were to pick one aspect of the PC to
dump on, it would be sound, not animation. The PC's sound circuity really is lousy, and it's
hard to understand why that should be, given that a cheap sound chip—^which even
the almost-forgotten PCyVhad—would have changed everything. I guess IBM figured
"serious" computer users would be put off by a computer that could make fun noises.)

Anyway, my point is that the PC's animation capabilities are pretty good. There's a trick,
though; You can only push the VGA to its animation limits by stretching your mind a
bit and using some unorthodox approaches to animation. In fact, stretching your mind
is the key to producing good code for any task on the PC—that's the topic of my book
Zen of Code Optimization, also published by Coriolis Group Books. For most software,
however, it's not fatal if your code isn't excellent—there's slow but functional software

442 ® Chapter 28

all over the place. When it comes to VGA animation, though, you wont get to first
base without a clever approach.

So, what clever approaches do I have in mind? All sorts. The resources of the VGA
(or even its now-ancient predecessor, the EGA) are many and varied, and can be applied
and combined in hundreds of ways to produce effective animation. For example, refer
back to Chapter 1 for an example of page flipping. Or look at the July 1986 issue of PC
Tech Journal, which describes the basic block-move animation technique, or the Au
gust 1987 issue of PC Tech Journal, which shows a software-sprite scheme built around
the EGAs vertical interrupt and the AND-OR image drawing technique. Or look over
the rest of this book, which contains dozens of tips and tricks that can be applied to
animation, including Mode X-based techniques starting in Chapter 32 that are the
basis for many commercial games.

This chapter adds yet another sort of animation to the list. We re going to take
advantage of the bit-plane architecture and color palette of the VGA to develop an anima
tion architecture that can handle several overlapping images with terrific speed and
with virtually perfect visual quality. This technique produces no overlap effects or flicker
and allows us to use the fastest possible method to draw images—the REP MOVS
instruction. It has its limitations, but unlike Mode X and some other animation tech

niques, the techniques I'll show you in this chapter will also work on the EGA, which
may be important in some applications.
As with any technique on the PC, there are tradeoffs involved with bit-plane anima

tion. While bit-plane animation is extremely attractive as far as performance and visual
quality are concerned, it is somewhat limited. Bit-plane animation supports only four
colors plus the background color at any one time, each image must consist of only one
of the four colors, and it's preferable that images of the same color not intersect.

It doesn't much matter if bit-plane animation isn't perfect for all applications, though.
The real point of showing you bit-plane animation is to bring home the reality that the
VGA is a complex adapter with many resources, and that you can do remarkable things
if you understand those resources and come up with creative ways to put them to work
at specific tasks.

Bit-Planes: The Basics

The underlying principle of bit-plane animation is extremely simple. The VGA has four
separate bit planes in modes ODH, OEH, I OH, and I2H. Plane 0 normally contains
data for the blue component of pixel color, plane I normally contains green pixel data,
plane 2 red pixel data, and plane 3 intensity pixel data—but we're going to mix that up
a bit in a moment, so we'll simply refer to them as planes 0, 1,2, and 3 from now on.

Each bit plane can be written to independently. The contents of the four bit planes
are used to generate pixels, with the four bits that control the color of each pixel com
ing from the four planes. However, the bits from the planes go through a look-up stage
on the way to becoming pixels—they're used to look up a 6-bit color from one of the

Bit-Plane Animation ® 443

sixteen palette registers. Figure 28.1 shows how the bits from the four planes feed into
the palette registers to select the color of each pixel. (On the VGA specifically, the
output of the palette registers goes to the DAC for an additional look-up stage, as
described in Chapters 11, 12, and 13.)

Take a good look at Figure 28.1. Any light bulbs going on over your head yet? If
not, consider this. The general problem with VGA animation is that it s complex and
time-consuming to manipulate images that span the four planes (as most do), and that
it s hard to avoid interference problems when images intersect, since those images share
the same bits in display memory. Since the four bit planes can be written to and read
from independently, it should be apparent that if we could come up with a way to
display images from each plane independently of whatever images are stored in the
other planes, we would have four sets of images that we could manipulate very easily.
There would be no interference effects between images in different planes, because
images in one plane wouldn't share bits with images in another plane. What's more,
since all the bits for a given image would reside in a single plane, we could do away

Plane 5

Plane 2

Plane 1

Plane 0

1 bit per
pixel from
each plane

16 palette registers,
each storing 6 bits

rPPO
-PR1
-PR2
-PR3
-PR4
-PR5
-PR6
PR7
PR6
PR9
PR10
PR11

hPR12
-PR13
-PR14
•-PRIS
Palette register selection

Selects 1 of the 16

palette registers.
Plane 3 provides
the most

significant bit of
the palette register
#, while plane 0
provides the least
significant bit.

6 bits of

color data

per pixel
to the

screen (or
to the DAC

on a VGA)

Figure 28.1 How 4 Bits of Video Data Become 6 Bits ot Coior

444 Chapter 28

with the cumbersome programming of the VGA's complex hardware that is needed to
manipulate images that span multiple planes.

All in all, it would be a good deal if we could store each image in a single plane, as
shown in Figure 28.2. However, a problem arises when images in different planes overlap,
as shown in Figure 28.3. The combined bits from overlapping images generate new
colors, so the overlapping parts of the images dont look like they belong to either of
the two images. What we really want, of course, is for one of the images to appear to be
in front of the other. It would be better yet if the rearward image showed through any
transparent (that is, background-colored) parts of the forward image. Can we do that?

You bet.

Stacking the Palette Registers
Suppose that instead of viewing the four bits per pixel coming out of display memory
as selecting one of sixteen colors, we view those bits as selecting one offour colors. If the
bit from plane 0 is 1, that would select color 0 (say, red). The bit from plane 1 would
select color 1 (say, green), the bit from plane 2 would select color 2 (say, blue), and the
bit from plane 3 would select color 3 (say, white). Whenever more than I bit is 1, the
1 bit from the lowest-numbered plane would determine the color, and I bits from all

Plane 5

Plane 2

Plane 1

Plane 0

■

o

o

■ 1

Q>^=1 o.
Screen

Figure 28.2 Storing Images in Separate Planes

Bit-Plane Animation ® 445

Plane 5 m

Plane 2 n

Plane 1

o

Plane 0

1 1

Screen

Figure 28.3 The Problem of Overlapping Colors

other planes would be ignored. Finally, the absence of any 1 bits at all would select the
background color (say, black).

That would give us four colors and the background color. It would also give us nifiy
image precedence, with images in plane 0 appearing to be in front of images from the
other planes, images in plane 1 appearing to be in front of images from planes 2 and 3,
and so on. It would even give us transparency, where rearward images would show
through holes within and around the edges of images in forward planes. Finally, and
most importantly, it would meet all the criteria needed to allow us to store each image
in a single plane, letting us manipulate the images very quickly and with no repro-
gramming of the VGA's hardware other than the few OUT instructions required to
select the plane we want to write to.

Which leaves only one question: How do we get this magical pixel-precedence scheme
to work? As it turns out, all we need to do is reprogram the palette registers so that the
1 bit from the plane with the highest precedence determines the color. The palette
RAM settings for the colors described above are summarized in Table 28.1.

Remember that the 4-bit values coming from display memory select which palette
register provides the actual pixel color. Given that, it's easy to see that the rightmost 1-
bit of the four bits coming from display memory in Table 28.1 selects the pixel color. If
the bit from plane 0 is 1, then the color is red, no matter what the other bits are, as

446 @ Chapter 28

Table 28.1 Palette RAM Settings for Bit-Plane Animation

Bit Value Palette Register Register setting
For Plane

32 10

0 0 0 0 0 OOH (black)

0 0 0 1 1 3CH (red)

0 0 1 0 2 3AH (green)

0 0 1 1 3 3CH (red)

0 1 0 0 4 39H (blue)

0 10 1 5 3CH (red)

0 1 1 0 6 3AH (green)

0 111 7 3CH (red)

1 0 0 0 8 3FH (white)

1 0 0 1 9 3CH (red)

10 10 10 3AH (green)

1011 11 3CH(red)

1 1 0 0 12 39H (blue)

110 1 13 3CH (red)

1110 14 3AH (green)

1111 15 3CH(red)

shown in Figure 28.4. If the bit from plane 0 is 0, then if the bit from plane 1 is 1 the
color is green, and so on for planes 2 and 3. In other words, with the above palette
register settings we instantly have exactly what we want, which is an approach that
keeps images in one plane from interfering with images in other planes while provid
ing precedence and transparency.

Seems almost too easy, doesn't it? Nonetheless, it works beautifully, as we'll see very
shordy. First, though, I'd like to point out that there's nothing sacred about plane 0 having
precedence. We could rearrange the palette register settings so that any plane had the
highest precedence, followed by the other planes in any order. I've chosen to make
plane 0 the highest precedence only because it seems simplest to think of plane 0 as
appearing in front of plane 1, which is in front of plane 2, which is in front of plane 3.

Bit-Plane Animation in Action

Without further ado. Listing 28.1 shows bit-plane animation in action. Listing 28.1
animates 13 rather large images (each 32 pixels on a side) over a complex background
at a good clip even on a primordial8088'based PC, Five of the images move very quickly,
while the other 8 bounce back and forth at a steady pace.

Bit-Plane Animation ^ 447

6it from plane 5

3it from plane 2

6it from plane 1

3it from plane 0

4-bit palette register #, which
selects 1 of 16 palette registers.
The selection is always red when
the bit from plane 0 is 1.

|— PRO 3\ack —

— PR1 Red —

— PR2 Green —

— PR3 Red —

— PR4 3\ue —

— PR5 Red —

— PR6 Green —

— PR7 Red —

— PR6 White —

— PR9 Red —

— PR10 Green —

— PR11 Red —

— PR12 3lue —

— PR13 Red —

— PR14 Green —

1— PR15 Red —

Figure 28.4 How Pixel Precedence Works

LISTING 28.1 L28-1.ASM
Program to demonstrate bit-plane animation. Performs
flicker-free animation with image transparency and
image precedence across four distinct planes, with
13 32x32 images kept in motion at once.

Set to higher values to slow down on faster computers.
0 is fine for a PC. 500 is a reasonable setting for an AT.

Slowing animation further allows a good look at
transparency and the lack of flicker and color effects
when images cross.

SLOWDOWN equ 10000

Plane selects for the four colors we're using.

RED equ Olh
GREEN equ 02h
BLUE equ 04h
WHITE equ 08h

VGA_SEGMENT equ OaOOOh ;mode lOh display memory
; segment

SC_INDEX equ 3c4h ^Sequence Controller Index
; register

MAP_MASK equ 2 ;Map Mask register index in
; Sequence Controller

SCREEN_WIDTH equ 80 ;# of bytes across screen
SCREEN_HEIGHT equ 350 :# of scan lines on screen

448 ^ Chapter 28

WORD_OUTS_OK equ 1 ;set to 0 to assemble for
; computers that can't
; handle word outs to

; indexed VGA regs

stack segment para stack 'STACK'
db 512 dup (?)

stack ends

Complete Info about one object that we're animating.

ObjectStructure struc

Delay dw ?

BaseDelay

Image

XCoord

XInc

XLeftLimit

XRightLimi t

YCoord

YInc

YTopLimit
YBottomLimit

PlaneSelect

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

db

db

used to delay for n passes
throught the loop to
control animation speed
reset value for Delay
pointer to drawing info

for object

object X location in pixels
of pixels to increment
location by in the X

direction on each move

left limit of X motion

right limit of X motion

object Y location in pixels
of pixels to increment
location by in the Y

direction on each move

top limit of Y motion
bottom limit of Y motion

mask to select plane to
which object is drawn

to make an even # of words

long, for better 286

performance (keeps the
following structure

word-aligned)

ObjectStructure ends

Data segment word 'DATA'

Palette settings to give plane 0 precedence, followed by
planes 1, 2, and 3. Plane 3 has the lowest precedence (is
obscured by any other plane), while plane 0 has the
highest precedence (displays in front of any other plane).

Colors db GOOh ;background color=black
db 03ch ;plane 0 only=red
db 03ah ;plane 1 only=green
db 03ch ;planes O&l^red (plane 0 priority)
db 039h ;plane 2 only=blue
db 03ch ;planes 0&2=red (plane 0 priority)
db 03ah ;planes l&2='green (plane 1 priority)
db 03ch ;planes 0&l&2=red (plane 0 priority)
db 03fh ;plane 3 only-white
db 03ch ;planes 0&3='red (plane 0 priority)
db 03ah ;planes l&3'=green (plane 1 priority)
db 03ch ;planes G&l&3=red (plane G priority)
db 039h ;planes 2&3='blue (plane 2 priority)
db 03ch ;planes 0&2&3=red (plane G priority)
db 03ah ;planes l&2&3'=green (plane 1 priority)

Bit-Plane Animation ® 449

db 03ch ;planes 0&l&2&3=red (plane 0 priority)
db OOOh ;border color=black

Image of a hollow square.
There's an 8-pixel-wide blank border around all edges
so that the image erases the old version of itself as
it's moved and redrawn.

Square
dw

rept

db

endm

. radi

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

. radi

rept

db

endm

label byte

48,6 ;height in pixels, width in bytes
8

0,0,0,0,0,0;top blank border

X 2

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

0,11111111

X 10

8

0,0,0,0,0,

,11111111,

,11111111,

,11111111,

,11111111,

,11111111,

,11111111,

,11111111,

,11111111,

,00000000,

,00000000,

,00000000,

,00000000,

,00000000,

,00000000,

,00000000.

,00000000.

,00000000.

,00000000.

,00000000.

,00000000.

,00000000,

,00000000,

,00000000,

,00000000,

,11111111,

,11111111,

,11111111,

,11111111,

,11111111,

,11111111

,11111111

,11111111

1111

1111

nil

nil

nil

nil

nil

nil

nil

nil

nil

nil

nil

nil

nil

nil

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

111

111

111

111

111

111

111

111

11111

11111

11111

11111

11111

11111

11111

11111

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

,11111111,0

O;bottom blank border

Image of a hollow diamond with a smaller diamond in the
middle.

There's an 8-pixel-wide blank border around all edges
so that the image erases the old version of itself as
it's moved and redrawn.

Diamond label byte

dw 48,6 ;height in pixels, width in bytes
rept 8
db 0,0,0,0,0,0;top blank border

450 ® Chapter 28

endm

.radix 2

db 0,00000000.00000001.10000000,00000000.0

db 0.00000000.00000011.11000000.00000000.0

db 0.00000000,00000111.11100000.00000000.0

db 0.00000000.00001111.11110000.00000000.0

db 0.00000000,00011111.11111000.00000000.0

db 0.00000000,00111110.01111100.00000000.0

db 0.00000000,01111100.00111110.00000000.0

db 0.00000000.11111000.00011111.00000000.0

db 0.00000001.11110000.00001111.10000000.0

db 0.00000011.11100000.00000111.11000000.0

db 0.00000111,11000000.00000011.11100000.0

db 0.00001111.10000001.10000001.11110000.0

db 0.00011111.00000011.11000000.11111000.0

db 0.00111110,00000111.11100000.01111100.0

db 0.01111100.00001111.11110000.00111110.0

db 0.11111000.00011111.11111000.00011111.0

db 0.11111000.00011111.11111000.00011111.0

db 0.01111100.00001111.11110000.00111110.0

db 0.00111110.00000111.11100000.01111100.0

db 0.00011111.00000011.11000000.11111000.0

db 0.00001111.10000001.10000001.11110000.0

db 0.00000111.11000000.00000011.11100000.0

db 0.00000011.11100000.00000111.11000000.0

db 0.00000001.11110000.00001111.10000000.0

db 0.00000000.11111000.00011111.00000000.0

db 0.00000000.01111100.00111110.00000000.0

db 0.00000000.00111110.01111100.00000000.0

db 0.00000000.00011111.11111000.00000000.0

db 0.00000000.00001111.11110000.00000000.0

db 0.00000000.00000111.11100000.00000000.0

db 0.00000000.00000011.11000000.00000000.0

db 0.00000000.00000001.10000000.00000000.0

.radix 10

rept 8

db 0.0.0.0.0.0 ;bottoni blank border

endm

; List of objects to animate.

even ;word-align for better 286 performance

ObjectList label ObjectStructure
ObjectStructure <1.21.Diamond.88.8.80.512.16.0.0.350.RED>

ObjectStructure <1.15.Square.296.8.112.480.144.0.0.350,RED>
ObjectStructure <1.23.Diamond.88.8.80.512.256.0.0.350.RED>

ObjectStructure <1.13.Square.120.0.0.640.144.4.0.280.BLUE>
ObjectStructure <1.11.Diamond.208.0.0.640.144.4.0.280.BLUE>

ObjectStructure <1.8.Square.296.0.0.640.144.4.0.288.BLUE>
ObjectStructure <1.9.Diamond.384.0.0.640.144.4.0.288.BLUE>

ObjectStructure <1.14.Square.472.0.0.640.144.4.0.280.BLUE>
ObjectStructure <1.8.Diamond.200.8.0.576.48.6.0.280.GREEN>

ObjectStructure <1.8.Square.248.8.0.576.96.6.0.280.GREEN>
ObjectStructure <1.8.Diamond.296.8.0.576.144.6.0.280.GREEN>

ObjectStructure <1.8.Square.344.8.0.576.192.6.0.280.GREEN>
ObjectStructure <1.8.Diamond.392.8.0.576.240.6.0.280.GREEN>

ObjectListEnd label ObjectStructure

Data ends

Bit-Plane Animation ^ 451

; Macro to output a word value to a port.

OUT_WORD macro

if WORD_OUTS_OK

out dx,ax

el se

out dx,a1

Inc dx

xchg ah.al

out dx.al

dec dx

xchg ah.al

endl f

endm

Macro to output a constant value to an Indexed VGA
regi ster.

CONSTANT_TO_INDEXED_REGISTER

mov dx,ADDRESS

mov ax,(VALUE shl 8) + INDEX

OUT_WORD

endm

macro ADDRESS, INDEX, VALUE

Code segment

assume csiCode, ds:Data

Start proc near
eld

mov ax,Data

mov ds,ax

Set 640x350 16-color mode.

mov ax.OOlOh

int lOh

AH=0 means select mode

AL=10h means select

mode lOh

BIOS video interrupt

Set the palette up to provide bit-plane precedence. If
planes 0 & 1 overlap, the plane 0 color will be shown;
if planes 1 & 2 overlap, the plane 1 color will be
shown; and so on.

mov ax,(10h shl 8) + 2

push ds
pop es

mov dx,offset Colors

int lOh

AH = lOh means

set palette
registers fn

AL = 2 means set

all palette
regi sters

ES:DX points to

the palette
setti ngs

call the BIOS to

set the palette

Draw the static backdrop in plane 3. All the moving images
will appear to be in front of this backdrop, since plane 3
has the lowest precedence the way the palette is set up.

CONSTANT_TO_INDEXED_REGISTER SC_INDEX, MAP_MASK, 08h

;allow data to go to

; plane 3 only

452 ® Chapter 28

Point ES to display memory for the rest of the program.

mov ax,VGA_SEGMENT

mov es,ax

sub di,di

mov bp,SCREEN_HEIGHT/16

BackdropBlockLoop:
call DrawGridCross

call DrawGridVert

dec bp
jnz BackdropBlockLoop
call DrawGridCross

;fill in the screen

; 16 lines at a time

;draw a cross piece
;draw the rest of a

; 15-high block

;bottom line of grid

Start animating!

AnimationLoop:
mov bx,offset ObjectList ;point to the first

; object in the list

For each object, see if it's time to move and draw that
object.

ObjectLoop:

See if it's time to move this object.

dec [bx+Delay]
jnz DoNextObject

mov ax,[bx+BaseOelay]

mov [bx+Delay],ax

;count down delay

;still delaying-don't move

;reset delay for next time

Select the plane that this object will be drawn in.

mov dx,SC_INDEX

mov ah,[bx+PlaneSelect]

mov al,MAP_MASK

OUT_WORD

Advance the X coordinate, reversing direction if either

; of the X margins has been reached.

mov cx,[bx+XCoord] jcurrent X location

cmp cx,[bx+XLeftLimit] ;at left limit?

ja CheckXRightlimit ;no

neg [bx+XInc] ;yes-reverse

CheckXRightlimit:

cmp cx,[bx+XRightLimit] ;at right limit?

jb SetNewX ;no

neg [bx+XInc] ;yes-reverse

SetNewX:

add cx,[bx+XInc] ;move the X coord

mov [bx+XCoord],cx ; & save it

Advance the Y coordinate, reversing direction if either

of the Y margins has been reached.

Bit-Plane Animation ® 453

mov dx,[bx+YCoord]

cmp dx,[bx+YTopLimit]
ja CheckYBottomLimit

neg [bx+YInc]

CheckYBottomLimit:

cmp dx,[bx+YBottomLimit]

jb SetNewY

neg [bx+YInc]

SetNewY:

add dx,[bx+YInc]

mov [bx+YCoord],dx

;current Y location

;at top limit?
;no

;yes-reverse

;at bottom limit?

;no

;yes-reverse

;move the Y coord

; & save it

Draw at the new location. Because of the plane select
above, only one plane will be affected.

mov si,[bx+Image]

call DrawObject

;point to the
; object's image

; info

Point to the next object in the list until we run out of

objects.

DoNextObject:

add bx,size ObjectStructure

cmp bx,offset ObjectListEnd
jb ObjectLoop

Delay as specified to slow things down.

if SLOWDOWN

mov cx,SLOWDOWN

DelayLoop:
loop DelayLoop

endif

If a key's been pressed, we're done, otherwise animate
again.

;is a key waiting?

;no

CheckKey:

mov ah,l

i nt 16h

jz Animati onLoop
sub ah ,ah

int 16h

; Back to text mode.

mov ax,0003h

i nt lOh

; Back to DOS.

mov ah,4ch

int 21h

;yes-clear the key & done

;AL=03h means select

; mode 03h

;DOS terminate function

;done

Start endp

Draws a single grid cross-element at the display memory
location pointed to by ES:DI. 1 horizontal line is drawn
across the screen.

454 ® Chapter 28

Input: ES:DI points to the address at which to draw

Output: ES:DI points to the address following the
line drawn

Registers altered: AX, CX, DI

DrawGridCross proc near
mov ax.Offffh ;draw a solid line

mov cx,SCREEN_WIDTH/2-l

rep stosw ;draw all but the rightmost

mov ax.OOSOh

stosw ;draw the right edge of the

ret

DrawGridCross endp

; edge

;draw t

; grid

Draws the non-cross part of the grid at the display memory
location pointed to by ES:DI. 15 scan lines are filled.

Input: ES:DI points to the address at which to draw

Output: ES:DI points to the address following the
part of the grid drawn

Registers altered: AX, CX, DX, DI

DrawGridVert proc near
mov ax,0080h ;pattern for a vertical line
mov dx,15 ;draw 15 scan lines (all of

; a grid block except the
; solid cross line)

BackdropRowLoop:

mov cx,SCREEN_WIDTH/2

rep stosw ;draw this scan line's bit
; of all the vertical lines

; on the screen

dec dx

jnz BackdropRowLoop
ret

DrawGridVert endp

Draw the specified image at the specified location.
Images are drawn on byte boundaries horizontally, pixel
boundaries vertically.

The Map Mask register must already have been set to enable
access to the desired plane.

Input:

CX - X coordinate of upper left corner
DX - Y coordinate of upper left corner
DS:SI - pointer to draw info for image
ES - display memory segment

Output: none

Registers altered: AX, CX, DX, SI, DI, BP

Bit-Plane Animation ® 455

DrawObject proc near

mov ax,SCREEN_WIDTH

dxmul

shr

shr

shr

cx,l

cx.l

cx, 1

add ax,cx

mov di,ax

1 odsw

mov dx.ax

lodsw

mov bp.SCREEN_WIDTH
sub bp,ax

DrawLoop:

mov cx,ax

rep movsb

add d1,bp

dec dx

jnz DrawLoop

ret

DrawObject endp

Code ends

end Start

;calculate the start offset in

; display memory of the row the
; image will be drawn at

divide the X coordinate in pixels
by 8 to get the X coordinate in

bytes

destination offset in display

memory for the image

point ES:DI to the address to
which the image will be copied
in display memory

of lines in the image

of bytes across the image

f of bytes to add to the display
memory offset after copying a line
of the image to display memory in
order to point to the address
where the next line of the image

will go in display memory

;width of the image

;copy the next line of the image
; into display memory
;point to the address at which the
; next line will go in display
; memory

;count down the lines of the image

For those of you who haven't experienced the frustrations of animation program
ming on a PC, there's a whole lot of animation going on in Listing 28.1. What's more,
the animation is virtually flicker-free, partly thanks to bit-plane animation and partly
because images are never really erased but rather are simply overwritten. (The principle
behind the animation is that of redrawing each image with a blank fringe around it
when it moves, so that the blank fringe erases the part of the old image that the new
image doesn't overwrite. For details on this sort of animation, see the above-mentioned
PC Tech Journal]\Ay 1986 article.) Better yet, the red images take precedence over the
green images, which take precedence over the blue images, which take precedence over
the white backdrop, and all obscured images show through holes in and around the
edges of images in front of them.

In short. Listing 28.1 accomplishes everything we wished for earlier in an anima
tion technique.

456 ^ Chapter 28

If you possibly can, run Listing 28.1. The animation may be a revelation to those of you
who are used to weak, slow animation on PCs with EGA or VGA adapters. Bit-plane
animation makes the PC look an awful lot like—dare I say it?—a games machine.

Listing 28.1 was designed to run at the absolute fastest speed, and as I mentioned it
puts in a pretty amazing performance on the slowest PCs of all. Assuming you'll be
running Listing 28.1 on an faster computer, you'll have to crank up the DELAY equate
at the start of Listing 28.1 to slow things down to a reasonable pace. (It's not a very
good game where all the pieces are a continual blur!) Even on something as modest as
a 286-based AT, Listing 28.1 runs much too fast without a substantial delay (although
it does look rather interesting at warp speed). We should all have such problems, eh? In
fact, we could easily increase the number of animated images past 20 on that old AT,
and well into the hundreds on a cutting-edge local-bus 486 or Pentium.

I'm not going to discuss Listing 28.1 in detail; the code is very thoroughly commented
and should speak for itself, and most of the individual components of Listing 28.1—the
Map Mask register, mode sets, word versus byte OUT instructions to the VGA—have
been covered in earlier chapters. Do notice, however, that Listing 28.1 sets the palette
exactly as 1 described earlier. This is accomplished by passing a pointer to a 17-byte
array (1 byte for each of the 16 palette registers, and 1 byte for the border color) to the
BIOS video interrupt (INT lOH), function lOH, subfiinction 2.

Bit-plane animation does have inherent limitations, which we'll get to in a second.
One limitation that is inherent to bit-plane animation but simply a shortcoming of
Listing 28.1 is somewhat choppy horizontal motion. In the interests of both clarity
and keeping Listing 28.1 to a reasonable length, 1 decided to byte-align all images
horizontally. This saved the many tables needed to define the 7 non-byte-aligned rota
tions of the images, as well as the code needed to support rotation. Unfortunately, it
also meant that the smallest possible horizontal movement was 8 pixels (1 byte of
display memory), which is far enough to be noticeable at certain speeds. The situation
is, however, easily correctable with the additional rotations and code. We'll see an imple
mentation of fully rotated images (in this case for Mode X, but the principles general
ize nicely) in Chapter 34. Vertically, where there is no byte-alignment issue, the images
move 4 or 6 pixels at a times, resulting in considerably smoother animation.
The addition of code to support rotated images would also open the door to sup

port for internal animation, where the appearance of a given image changes over time
to suggest that the image is an active entity. For example, propellers could whirl, jaws
could snap, and jets could flare. Bit-plane animation with bit-aligned images and in
ternal animation can look truly spectacular. It's a sight worth seeing, particularly for
those who doubt the PC's worth when it comes to animation.

Limitations of Bit-Piane Animation

As I've said, bit-plane animation is not perfect. For starters, bit-plane animation can
only be used in the VGA's planar modes, modes ODH, OEH, lOH, and 12H. Also, the

Bit-Plane Animation ^ 457

reprogramming of the palette registers that provides image precedence also reduces the
available color set from the normal 16 colors to just 5 (one color per plane plus the
background color). Worse still, each image must consist entirely of only one of the four
colors. Mixing colors within an image is not allowed, since the bits for each image are
limited to a single plane and can therefore select only one color. Finally, all images of
the same precedence must be the same color.

It is possible to work around the color limitations to some extent by using only one
or two planes for bit-plane animation, while reserving the other planes for multi-color
drawing. For example, you could use plane 3 for bit-plane animation while using planes
0-2 for normal 8-color drawing. The images in plane 3 would then appear to be in
front of the 8-color images. If we wanted the plane 3 images to be yellow, we could set
up the palette registers as shown in Table 28.2.

As you can see, the color yellow is displayed whenever a pixels bit from plane 3 is 1.
This gives the images from plane 3 precedence, while leaving us with the 8 normal
low-intensity colors for images drawn across the other 3 planes, as shown in Figure
28.5. Of course, this approach provides only 1 rather than 3 high-precedence planes,
but that might be a good tradeoff for being able to draw multi-colored images as a
backdrop to the high-precedence images. For the right application, high-speed flicker-
free plane 3 images moving in front of an 8-color backdrop could be a potent combi
nation indeed.

Table 28.2 Palette RAM Settings for Two-Plane Animation

Palette Register Register Setting

0 OOH (black)

1 OIH (blue)

2 02H (green)

3 03H (cyan)

4 04H (red)

5 05H (magenta)

6 14H (brown)

7 07H (light gray)

8 3 EH (yellow)

9 3EH (yellow)

10 3EH (yellow)

11 3EH (yellow)

12 3EH (yellow)

13 3EH (yellow)

14 3EH (yellow)

15 3EH (yellow)

458 0 Chapter 28

3\t from plane 5

3it from plane 2

3it from plane 1

3it from plane 0

4-bit palette register #, which
selects 1 of 16 palette registers.
The selection is always 1 of the &
normal low-intensity colors when
the bit from plane 5 is 0.

r— PRO Black —

— PR1 Blue —

— PR2 Green —

— PR5 Cyan —

— PR4 Red —

— PR5 Ma^^enta —

— PR6 Brown —

— PR7 Uaht Gray —

— PRe> Yellow —

— PR9 Yellow —

— PR10 Yellow —

— PR11 Yellow —

— PR12 Yellow —

— PR15 Yellow —

— PR14 Yellow —

1— PR15 Yellow —

1 of the

& normal

low-intensity
colors

Figure 28.5 Pixel Precedence for Plane 3 Only

Another limitation of bit-plane animation is that it s best if images stored in the
same plane never cross each other. Why? Because when images do cross, the blank
fringe around each image can temporarily erase the overlapped parts of the other image
or images, resulting in momentary flicker. While that's not fatal, it certainly detracts
from the rock-solid animation effect of bit-plane animation.

Not allowing images in the same plane to overlap is actually less of a limitation than
it seems. Run Listing 28.1 again. Unless you were looking for it, you'd never notice
that images of the same color almost never overlap—there's plenty of action to distract
the eye, and the trajectories of images of the same color are arranged so that they have
a full range of motion without running into each other. The only exception is the chain
of green images, which occasionally doubles back on itself when it bounces directly
into a corner and reverses direction. Here, however, the images are moving so quickly
that the brief moment during which one image's fringe blanks a portion of another
image is noticeable only upon close inspection, and not particularly unaesthetic even
then.

When a technique has such tremendous visual and performance advantages as does
bit-plane animation, it behooves you to design your animation software so that the
limitations of the animation technique don't get in the way. For example, you might
design a shooting gallery game with all the images in a given plane marching along in
step in a continuous band. The images could never overlap, so bit-plane animation
would produce very high image quality.

Bit-Plane Animation ^ 459

Shearing and Page Flipping
As Listing 28.1 runs, you may occasionally see an image shear, with the top and bot
tom parts of the image briefly offset. This is a consequence of drawing an image di
rectly into memory as that memory is being scanned for video data. Occasionally the
CRT controller scans a given area of display memory for pixel data just as the program
is changing that same memory. If the CRT controller scans memory faster than the
CPU can modify that memory, then the CRT controller can scan out the bytes of
display memory that have been already been changed, pass the point in the image that
the CPU is currently drawing, and start scanning out bytes that haven't yet been changed.
The result: Mismatched upper and lower portions of the image.

If the CRT controller scans more slowly than the CPU can modify memory (likely
with a 386, a fast VGA, and narrow images), then the CPU can rip right past the CRT
controller, with the same net result of mismatched top and bottom parts of the image,
as the CRT controller scans out first unchanged bytes and then changed bytes. Basi
cally, shear will occasionally occur unless the CPU and CRT proceed at exactly the
same rate, which is most unlikely. Shear is more noticeable when there are fewer but
larger images, since it's more apparent when a larger screen area is sheared, and because
it's easier to spot one out of three large images momentarily shearing than one out of
twenty small images.

Image shear isn't terrible—I've written and sold several games in which images occa
sionally shear, and I've never heard anyone complain—but neither is it ideal. One
solution is page flipping, in which drawing is done to a non-displayed page of display
memory while another page of display memory is shown on the screen. (We saw page
flipping back in Chapter 1, we'll see it again in the next chapter, and we'll use it heavily
starting in Chapter 32.) When the drawing is finished, the newly-drawn part of display
memory is made the displayed page, so that the new screen becomes visible all at once,
with no shearing or flicker. The other page is then drawn to, and when the drawing is
complete the display is switched back to that page.

Page flipping can be used in conjunction with bit-plane animation, although page
flipping does diminish some of the unique advantages of bit-plane animation. Page
flipping produces animation of the highest visual quality whether bit-plane animation
is used or not. There are a few drawbacks to page flipping, however.

Page flipping requires two display memory buffers, one to draw in and one to dis
play at any given time. Unfortunately, in mode 12H there just isn't enough memory
for two buffers, so page flipping is not an option in that mode.

Also, page flipping requires that you keep the contents of both buffers up to date,
which can require a good deal of extra drawing.

Finally, page flipping requires that you wait until you're sure the page has flipped
before you start drawing to the other page. Otherwise, you could end up modifying a
page while it's still being displayed, defeating the whole purpose of page flipping. Wait
ing for pages to flip takes time and can slow overall performance significantly. What's

460 @ Chapter 28

more, it s sometimes difficult to be sure when the page has flipped, since not all VGA
clones implement the display adapter status bits and page flip timing identically.
To sum up, bit-plane animation by itself is very fast and looks good. In conjunction

with page flipping, bit-plane animation looks a little better but is slower, and the over
all animation scheme is more difficult to implement and perhaps a bit less reliable on
some computers.

Beating the Odds in the Jaw-Dropping Contest
Bit-plane animation is neat stuff. Heck, good animation of any son is fiin, and the PC
is as good a place as any (well, almost any) to make peoples jaws drop. (Certainly its
the place to go if you want to make a lot of jaws drop.) Dont let anyone tell you that
you cant do good animation on the PC. You can—^you stretch your mind to find
ways to bring the full power of the VGA to bear on your applications. Bit-plane anima
tion isn t for every task; neither are page flipping, exclusive-ORing, pixel panning, or
any of the many other animation techniques you have available. One or more tricks
from that grab-bag should give you what you need, though, and the bigger your grab-
bag, the better your programs.

Page-Flipped
Day

640x480 Page Flipped Animation in 64K...Almost
Almost doesn't count, they say—at least in horseshoes and maybe a few other things.
This is especially true in digital circles, where if you need 12 MB of hard disk to install
something and you only have ten MB left (a situation that seems to be some sort of
eternal law) you're stuck.
And that's only infuriating until you dredge up the gumption to go in there and free

up some space. How would you feel if you were up against an "almost-but-not-quite"
kind of a wall that couldn't be breached by freeing up something elsewhere? Suppose
you were within a few KB of implementing a wonderful VGA animation scheme that
provided lots of screen space, square pixels, smooth motion and more than adequate
speed—but all the memory you have is all there is? What would you do?

Scream a little. Or throw something that won't break easily. Then you sit down and
let your right brain do what it was designed to do. Sure enough, there's a way, and in
this chapter I'll explain how a little VGA secret called page splittingczn save the day for
page flipped animation in 640x480 mode. But to do that, I have to lay a little ground
work first. Or maybe a lot of groundwork.
No horseshoes here.

A Plethora of Challenges
In its simplest terms, computer animation consists of rapidly redrawing similar images
at slightly differing locations, so that the eye interprets the successive images as a single
object in motion over time. The fact that the world is an analog realm and the images
displayed on a computer screen consist of discrete pixels updated at a maximum rate of
about 70 Hz is irrelevant; your eye can interpret both real-world images and pixel
patterns on the screen as objects in motion, and that's that.

461

462 @ Chapter 29

One of the key problems of computer animation is that it takes time to redraw a
screen, time during which the bitmap controlling the screen is in an intermediate state,
with, quite possibly, many objects erased and others half-drawn. Even when only briefly
displayed, a partially-updated screen can cause flicker at best, and at worst can destroy
the illusion of motion entirely.

Another problem of animation is that the screen must update often enough so that
motion appears continuous. A moving object that moves just once every second, shifting by
hundreds of pixels each time it does move, will appear to jump, not to move smoothly.
Therefore, there are two overriding requirements for smooth animation: 1) the bitmap
must be updated quickly (once per frame—60 to 70 Hz—is ideal, although 30 Hz will
do fine), and, 2) the process of redrawing the screen must be invisible to the user; only
the end result should ever be seen. Both of these requirements are met by the program
presented in Listings 29.1 and 29.2.

A Page Flipping Animation Demonstration
The listings taken together form a sample animation program, in which a single object
bounces endlessly off other objects, with instructions and a count of bounces displayed
at the bottom of the screen. I'll discuss various aspects of Listings 29.1 and 29.2 during
the balance of this article. The listings are too complex and involve too much VGA and
animation knowledge for for me to discuss it all in exhaustive detail (and I've covered
a lot of this stuff earlier in the book); instead, I'll cover the major elements, leaving it to
you to explore the finer points—and, I hope, to experiment with and expand on the
code I'll provide.

LISTING 29.1 L29-1.C
/* Split screen VGA animation program. Performs page flipping in the
top portion of the screen while displaying non-page flipped
information in the split screen at the bottom of the screen.
Compiled with Borland C++ in C compilation mode. */

^include <stdio.h>

^include <conio.h>

//include <dos.h>

//include <math.h>

//define SCREEN.SEG OxAOOO
//define SCREEN_PIXWIDTH 640 /* in pixels */
//define SCREEN_WIDTH 80 /* in bytes */
//define SPLIT_START_LINE 339
//define SPLIT_LINES 141
//define NONSPLIT_LINES 339
//define SPLIT_START_OFFSET 0
//define PAGEO_START_OFFSET (SPLIT_LINES*SCREEN_WIDTH)
//define PAGE1_START_0FFSET ((SPLIT_LINES+NONSPLIT_LINES)*SCREEN_WIDTH)
//define CRTC_INDEX 0x304 /* CRT Controller Index register */

Split Screens Save the Page-Flipped Day 463

#define

#clefi ne

CRTC_DATA

OVERFLOW

0x09 /*#define MAX_SCAN

#define LINE_COMPARE 0x18 /

#define

^define

#defi ne

NUM_BUMPERS

BOUNCER_COLOR 15

BACK_COLOR 1

0x305 /* CRT Controller Data register */

0x07 /* index of CRTC reg holding bit 8 of the
line the split screen starts after */
index of CRTC reg holding bit 9 of the
line the split screen starts after */
index of CRTC reg holding lower 8 bits
of line split screen starts after */

(sizeof(Bumpers)/sizeof(bumper))

/* playfield background color */

typedef struct { /* one solid bumper to be bounced off of */
int LeftX.TopY.RightX.BottomY;
int Color;

} bumper;

typedef struct { /* one bit pattern to be used for drawing */
int WidthlnBytes;

int Height;

unsigned char *BitPattern;

} image;

typedef struct { /* one bouncing object to move around the screen */
int LeftX.TopY; /* location */
int Width,Height; /* size in pixels */
int DirX.DirY; /* motion vectors */
int CurrentX[2],CurrentY[2]; /* current location in each page */

/* color in which to be drawn */

/* rotations for handling the 8 possible */
/* intrabyte start address at which the */
/* left edge can be */

int Color;

image *RotationO;
image *Rotationl;

image *Rotation2;

image *Rotation3;
image *Rotation4;

image *Rotation5;
image *Rotation6;
image *Rotation7;

} bouncer;

void main(void);

void DrawBumperListCbumper *, int, unsigned int);
void DrawSplitScreen(void);
void EnableSplitScreen(void);
void MoveBouncer(bouncer *, bumper *, int);
extern void DrawRectCint,int,int,int,int,unsigned int,unsigned int);

extern void ShowPageCunsigned int);
extern void Drawlmage(int,int,image **,int,unsigned int,unsigned int);
extern void ShowBounceCountCvoid);

extern void TextUpCchar *,int,int,unsigned int,unsigned int);
extern void SetBI0S8x8Font(void);

/* All bumpers in the playfield */
bumper Bumpers[] = {

{0,0,19,339,2}, {0,0,639,19,2}. {620,0,639,339,2},
{0,320,639,339,2}, {60,48,79,67,12}, {60,108,79,127,12},
{60,168,79,187,12}, {60,228,79,247,12}, {120,68,131,131,13},
{120,188,131,271,13}, {240,128,259,147,14}, {240,192,259,211,14},
{208,160,227,179,14}, {272,160,291,179,14}, {228,272,231,319,11},
{192,52,211,55,11}, {302,80,351,99,12}, {320,260,379,267,13},
{380,120,387,267,13}, {420,60,579,63,11}, {428,110,571,113,11},
{420,160,579,163,11}, {428,210,571,213.11}, {420,260,579,263,11} };

464 ^ Chapter 29

/* Image for bouncing object when left edge is aligned with bit 7 */
unsigned char _BouncerRotat1onO[] = {

OxFF,OxOF,OxFO, 0xFE,0x07,OxFO. 0xFC,0x03.0xF0. 0xFC,0x03,0xF0.
0xFE,0x07,0xF0, OxFF.OxFF.OxFO. 0xCF,0xFF.0x30, 0x87,OxFE,0x10,
0x07,OxOE,0x00, 0x07,OxOE,0x00, 0x07,OxOE,0x00, 0x07,OxOE,0x00,
0x87,OxFE,0x10, 0xCF,0xFF,0x30, OxFF,OxFF,OxFO, OxFE,0x07,OxFO,
0xFC,0x03,0xF0, OxFC,0x03,OxFO, OxFE,0x07,OxFO, OxFF,OxOF,OxFO};

Image BouncerRotatlonO = {3, 20, _BouncerRotat1onO};

/* Image for bouncing object when left edge Is aligned with bit 3 */
unsigned char _BouncerRotat1 on4[] =■ {

OxOF,OxFO,OxFF, 0x0F,0xE0,0x7F, 0x0F,0xC0,0x3F, 0x0F,0xC0,0x3F,
0x0F,0xE0,0x7F, OxOF,OxFF,OxFF, 0x0C,0xFF,0xF3, 0x08,0x7F,0xEl,
0x00,0x70,OxEO, 0x00,0x70,OxEO, 0x00,0x70,OxEO, 0x00,0x70,OxEO,
0x08,0x7F,0xEl, 0x0C,0xFF,0xF3, OxOF,OxFF,OxFF, OxOF,OxEO,0x7F,
0x0F,0xC0,0x3F, 0x0F,0xC0,0x3F, 0x0F,0xE0,0x7F, OxOF,OxFO,OxFF};

Image BouncerRotat1on4 = {3, 20, _BouncerRotat1on4};

/* Initial settings for bouncing object. Only 2 rotations are needed
because the object moves 4 pixels horizontally at a time */

bouncer Bouncer ° {156,60,20,20,4,4,156,156,60,60,BOUNCER_COLOR,
&BouncerRotat1onO,NULL,NULL,NULL,&BouncerRotat1on4,NULL,NULL,NULL);

unsigned Int PageStartOffsets[2] =
(PAGE0_START_0FFSET,PAGE1_START_0FFSET};

unsigned Int BounceCount;

void maInO {
Int DisplayedPage, NonDlsplayedPage, Done, 1;
union REGS regset;

regset.x.ax = 0x0012; /* set display to 640x480 16-color mode */
1nt86(0xl0, ®set, ®set);
SetBI0S8x8Font(); /* set the pointer to the BIOS 8x8 font */
EnableSpl1tScreen(); /* turn on the split screen */

/* Display page 0 above the split screen */
ShowPage(PageStartOffsets[D1splayedPage = 0]);

/*.Clear both pages to background and draw bumpers In each page */
for (1=0; 1<2; 1++) {

DrawRect(0,0,SCREEN_PIXWIDTH-l,N0NSPLIT_LINES-l,BACK_C0L0R,
PageStartOffsetsCI],SCREEN_SEG);

DrawBumperLIst(Bumpers,NUM_BUMPERS,PageStartOffsetsCI]);
}

DrawSpl1tScreenO; /* draw the static split screen Info */
BounceCount = 0;
ShowBounceCountO; /* put up the Initial zero count */

/* Draw the bouncing object at Its Initial location */
DrawImageCBouncer.LeftX,Bouncer.TopY,&Bouncer.RotatlonO,

Bouncer.Col or,PageStartOffsets[D1splayedPage],SCREEN_SEG);

/* Move the object, draw It In the nondlsplayed page, and flip the
page until Esc Is pressed */

Done = 0;
do {

NonDI spl ayedPage = Displ ayedPage 1;
/* Erase at current location In the nondlsplayed page */
DrawRectCBouncer.CurrentXCNonDIsplayedPage],

Bouncer.CurrentYCNonDIsplayedPage],

Split Screens Save the Page-Flipped Day ® 465

Bouncer.CurrentX[NonDisplayedPage]+Bouncer.Width-l,
Bouncer.CurrentYCNonDisplayedPage]+Bouncer.Height-1,
BACK_COLOR,PageStartOffsets[NonDi spl ayedPage],SCREEN_SEG);

/* Move the bouncer */

MoveBouncer(&Bouncer. Bumpers, NUM_BUMPERS);
/* Draw at the new location in the nondisplayed page */
DrawImage(Bouncer.LeftX,Bouncer.TopY.&Bouncer.RotatlonO,

Bouncer.Col or,PageStartOffsets[NonD1splayedPage].
SCREEN.SEG);

/* Remember where the bouncer is in the nondisplayed page */
Bouncer.CurrentX[NonDisplayedPage] = Bouncer.LeftX;
Bouncer.CurrentYCNonDisplayedPage] = Bouncer.TopY;
/* Flip to the page we just drew into */
ShowPage(PageStartOffsets[DisplayedPage = NonDisplayedPage]);
/* Respond to any keystroke */
if (kbhitO) {

switch (getchO) {
case OxlB: /* Esc to end */

Done = 1; break;

case 0; /* branch on the extended code */

switch (getchO) {

case 0x48: /* nudge up */
Bouncer.DirY = -absCBouncer.DirY); break;

case Ox4B: /* nudge left */
Bouncer.DirX - -abs(Bouncer.DirX); break;

case Ox4D: /* nudge right */
Bouncer.DirX = absCBouncer.DirX); break;

case 0x50: /* nudge down */
Bouncer.DirY = absCBouncer.DirY); break;

}
break;

default:

break;

}

}
} while CiDone);

/* Restore text mode and done */

regset.x.ax ■= 0x0003;
intsecOxlO, ®set, ®set);

}

/* Draws the specified list of bumpers into the specified page */
void DrawBumperListCbumper * Bumpers, int NumBumpers,

unsigned int PageStartOffset)
{

int i;

for Ci=0; i<NumBumpers; i++,Bumpers-H-) {
DrawRectCBumpers->LeftX,Bumpers->TopY,Bumpers->RightX.

Bumpers->BottomY.Bumpers->Color,PageStartOffset,
SCREEN_SEG);

}
}

/* Displays the current bounce count */
void ShowBounceCountC) {

char CountASCII[7];

itoaCBounceCount.CountASCII,10); /* convert the count to ASCII */
TextUpCCountASCII.344,64,SPLIT_START_0FFSET,SCREEN_SEG);

}

466 @ Chapter 29

/* Frames the split screen and fills it with various text */
void DrawSplitScreenC) {

DrawRect(0,0.SCREEN_PIXWIDTH-l,SPLIT_LINES-l,0.SPLIT_START_OFFSET,
SCREEN_SEG);

DrawRect(0.1,SCREEN_PIXWIDTH-1.4.15,SPLIT_START_0FFSET,
SCREEN_SEG);

DrawRect(0.SPLIT_LINES-4,SCREEN_PIXWIDTH-l,SPLIT_LINES-l,15.
SPLIT_START_OFFSET.SCREEN_SEG);

DrawRect(0,l,3,SPLIT_LINES-1.15,SPLIT_START_0FFSET.SCREEN_SEG);
DrawRect(SCREEN_PIXWIDTH-4,l.SCREEN_PIXWIDTH-l,SPLIT_LINES-l,15,

SPLIT_START_OFFSET,SCREEN_SEG);

TextUpCThis is the split screen area.. ,8.8,SPLIT_START_0FFSET,
SCREEN_SEG);

TextUpC'Bounces: ",272,64.SPLIT_START_OFFSET.SCREEN_SEG);
TextUp("\033: nudge left",520.78.SPLIT_START_0FFSET,SCREEN_SEG);
TextUp("\032: nudge right",520.90,SPLIT_START_0FFSET,SCREEN_SEG);
TextUp("\031: nudge down",520,102.SPLIT_START_OFFSET,SCREEN_SEG);
TextUp("\030: nudge up",520,114,SPLIT_START_OFFSET,SCREEN_SEG);
TextUpC'Esc to end".520,126.SPLIT_START_0FFSET,SCREEN_SEG);

}

/* Turn on the split screen at the desired line (minus 1 because the
split screen starts *after* the line specified by the LINE_C0MPARE
register) (bit 8 of the split screen start line is stored in the
Overflow register, and bit 9 is in the Maximum Scan Line reg) */

void EnableSpl i tScreenO {
outp(CRTC_INDEX, LINE_C0MPARE);
outp(CRTC_DATA. (SPLIT_START_LINE - 1) & OxFF);

outp(CRTC_INDEX. OVERFLOW);

outp(CRTC_DATA. (((((SPLIT_START_LINE - 1) & 0x100) » 8) « 4) |
(inp(CRTC_DATA) & -0x10)));

outp(CRTC_INDEX. MAX_SCAN);

outp(CRTC_DATA, (((((SPLIT_START_LINE - 1) & 0x200) » 9) « 6) |
(inp(CRTC_DATA) & -0x40)));

}

/* Moves the bouncer, bouncing if bumpers are hit */
void MoveBouncer(bouncer *Bouncer, bumper *BumperPtr, int NumBumpers) {

int NewLeftX, NewTopY, NewRightX, NewBottomY, i;

/* Move to new location, bouncing if necessary */
NewLeftX = Bouncer->LeftX + Bouncer->DirX; /* new coords */

NewTopY = Bouncer->TopY + Bouncer->DirY;
NewRightX = NewLeftX + Bouncer->Width - 1;
NewBottomY = NewTopY + Bouncer->Height - 1;
/* Compare the new location to all bumpers, checking for bounce */
for (i=0; i<NumBumpers; i++,BumperPtr++) {

/* If moving puts the bouncer inside this bumper, bounce */
if ((NewLeftX <= BumperPtr->RightX) &&

(NewRightX >= BumperPtr->LeftX) &&
(NewTopY <= BumperPtr->BottomY) &&
(NewBottomY >= BumperPtr->TopY)) {

/* The bouncer has tried to move into this bumper; figure
out which edge(s) it crossed, and bounce accordingly */

if (((Bouncer->LeftX > BumperPtr->RightX) &&
(NewLeftX <= BumperPtr->RightX)) ||
(((Bouncer->LeftX + Bouncer->Width - 1) <

BumperPtr->LeftX) &&
(NewRightX >= BuraperPtr->LeftX))) {

Bouncer->DirX = -Bouncer->DirX; /* bounce horizontally */
NewLeftX = Bouncer->LeftX + Bouncer->DirX;

}

Split Screens Save the Page-Flipped Day 467

if (((Bouncer->TopY > BuinperPtr->BottomY) &&
(NewTopY <= BumperPtr->BottomY)) ||
(((Bouncer->TopY + Bouncer->He1ght - 1) <
BumperPtr->TopY) &&
(NewBottomY >= BumperPtr->TopY))) {

Bouncer->D1rY = -Bouncer->D1rY; /* bounce vertically */
NewTopY = Bouncer->TopY + Bouncer->DirY;

}

/* Update the bounce count display; turn over at 10000 */
if (++BounceCount >= 10000) {

TextUpC'O ",344.64.SPLIT_START_0FFSET.SCREEN_SEG);
BounceCount ■= 0;

} else {
ShowBounceCountO;

}
}

}
Bouncer->LeftX = NewLeftX; /* set the final new coordinates */
Bouncer->TopY = NewTopY;

LISTING 29.2 L29-2.ASIVI
; Low-level animation routines.
; Tested with TASM

SCREEN_WIDTH equ 80 ;screen width in bytes
INPUT_STATUS_1 equ 03dah ;Input Status 1 register
CRTC_INDEX equ 03d4h ;CRT Controller Index reg
START_ADDRESS_HIGH equ Och ;bitmap start address high byte
START_ADDRESS_LOW equ Odh ;bitmap start address low byte
GC_INDEX equ 03ceh ;Graphics Controller Index reg
SET_RESET equ 0 ;GC index of Set/Reset reg
G_MODE equ 5 ;GC index of Mode register

.model small

.data
BIOSBxBPtr dd ? ;points to BIOS 8x8 font
; Tables used to look up left and right clip masks.
LeftMask db Offh. 07fh. 03fh. Olfh, OOfh, 007h, 003h, OOlh
RightMask db 080h, OcOh, OeOh, OfOh, 0f8h, Ofch, Ofeh, Offh

.code
; Draws the specified filled rectangle in the specified color.
; Assumes the display is in mode 12h. Does not clip and assumes
; rectangle coordinates are valid.

! C near-callable as: void DrawRectCint LeftX, int TopY, int RightX,
; int BottomY, int Color, unsigned int ScrnOffset,
; unsigned int ScrnSegment);

DrawRectParms
dw

LeftX
TopY
Ri ghtX
BottomY

Color

dw
dw
dw
dw
dw

struc

2 dup (?)
?

pushed BP and return address
X coordinate of left side of rectangle
Y coordinate of top side of rectangle
X coordinate of right side of rectangle
Y coordinate of bottom side of rectangle
color in which to draw rectangle (only the
lower 4 bits matter)

468 g} Chapter 29

ScrnOffset dw ?

ScrnSegment dw ?

DrawRectParms ends

;offset of base of bitmap in which to draw
;segment of base of bitmap in which to draw

public _DrawRect
_DrawRect

push

mov

push

push

eld

mov

mov

mov

out

mov

out

1 es

mov

mul

add

mov

mov

shr

shr

shr

add

and

mov

mov

mov

and

mov

mov

and

sub

shr

shr

shr

jnz

and

MasksSet:

mov

sub

Fi11 Loop:

push

mov

xchg

i nc

mov

dec

js

jz

mov

rep

DrawRi ghtEdge:

mov

xchg
Li neDone:

pop

proc

bp
bp.sp
si

di

jpreserve caller's stack frame

;point to local stack frame

;preserve caller's register variables

dx,GC_INDEX
al.SET_RESET

ah,byte ptr Color[bp]
dx.ax ;set the color in which to draw
ax,G_MODE + (0300h)

dx.ax ;set to write mode 3

di,dword ptr ScrnOffset[bp] ;point to bitmap start
ax,SCREEN_WIDTH

;point to the start of the top scan
; line to fill

TopYCbp]
di ,ax

ax.LeftXEbp]
bx.ax

ax, 1

ax, 1

ax,l

di ,ax

bx,7

dl,LeftMask[bx]

bx,RightX[bp]
si ,bx

bx,7

dh.RightMaskCbx]
bx.LeftXCbp]
bx.NOT 7

s i, bx

si ,1

si, 1

si, 1

MasksSet

dl ,dh

bx,BottomY[bp]
bx,TopYCbp]

di

al ,dl

es:[di],al

di

cx,si

cx

LineDone

DrawRi ghtEdge

al,Offh

stosb

al ,dh

es:[di],al

di

;/8 •=■ byte offset from left of screen

;point to the upper left corner of fill
;isolate intrapixel address
;set the left-edge clip mask

.•isolate intrapixel address of right edge
;set the right-edge clip mask

;intrapixel address of left edge

of bytes across spanned by rectangle - 1
;if there's only one byte across,
; combine the masks

of scan lines to fill - 1

;remember line start offset
;left edge clip mask
;draw the left edge
;point to the next byte

of bytes left to do
;# of bytes left to do - 1
;that's it if there's only 1 byte across
;no middle bytes if only 2 bytes across
;non-edge bytes are solid
;draw the solid bytes across the middle

;right edge clip mask
;draw the right edge

;retrieve line start offset

Split Screens Save the Page-Flipped Day ^ 469

add di,SCREEN_WIDTH ;point to the next line

dec bx ;count off scan lines

jns Fi11 Loop

pop di irestore caller's register variables

pop si

pop bp ;restore caller's stack frame

ret

_DrawRect endp

; Shows the page at the specified offset in the bitmap. Page is
; displayed when this routine returns.

: C near-callable as: void ShowPageCunsigned int StartOffset);

ShowPageParms struc

dw 2 dup (?) jpushed BP and return address

StartOffset dw ? ;offset in bitmap of page to display

ShowPageParms ends

publi c _ShowPage

_ShowPage proc near

push bp ;preserve caller's stack frame

mov bp.sp ;point to local stack frame

; Wait for display enable to be active (status is active low), to be

; sure both halves of the start address will take in the same frame.

mov bl,START_ADDRESS,_LOW ;preload for fastest

mov bh.byte ptr StartOffset[bp] ; flipping once display
mov cl,START_ADDRESS_HIGH ; enable is detected
mov ch.byte ptr StartOffset+l[bp]
mov dx,INPUT_STATUS_.1

WaitDE:

i n al ,dx

test al,01h

jnz WaitDE ;display enable is active low (0 - acti'
; Set the start offset in display memory of the page to display.

mov dx,CRTC_INDEX

mov ax,bx

out dx,ax ;start address low

mov ax,cx

out dx,ax ;start address high

Now wait for vertical sync, so the other page will be invisible when
we start drawing to it.

mov

WaitVS:

i n

test

jz

pop

ret

_ShowPage

dx.INPUT_STATUS_l

al ,dx

a1,08h

WaitVS

bp

endp

;vertical sync is active high (1

;restore caller's stack frame

active)

Displays the specified image at the'specified location in the
specified bitmap, in the desired color.

C near-callable as: void DrawImageCint LeftX. int TopY.
image **RotationTable, int Color, unsigned int ScrnOffset,
unsigned int ScrnSegment);

DrawImageParms

dw

struc

2 dup (?) ;pushed BP and return address

470 0 Chapter 29

DILeftX dw ?

DITopY dw ?

Rotati onTable dw ?

DIColor dw ?

DIScrnOffset dw ?

DIScrnSegment dw ?

DrawImageParms ends

image struc

Wi dthlnBytes dw ?

Height dw ?

BitPattern dw ?

image ends

;X coordinate of left side of image
;Y coordinate of top side of image
ipointer to table of pointers to image
; rotations

;color in which to draw image (only the
; lower 4 bits matter)

;offset of base of bitmap in which to draw
;segment of base of bitmap in which to draw

publi c _DrawImage
_DrawImage proc near

push bp ;preserve caller's stack frame
mov bp.sp ;point to local stack frame
push si ;preserve caller's register variables
push di

eld

mov dx.6C_INDEX

mov al.SET_RESET

mov ah,byte ptr DIColor[bp]
out dx, ax .-set the color in which to draw
mov ax,G_MODE + (0300h)

out dx ,ax ;set to write mode 3

1 es di.dword ptr DIScrnOffset[bp] ;point to bitmap start
mov ax,SCREEN_WIDTH

mul DITopYCbp] ;point to the start of the top scan
add di ,ax ; line on which to draw

mov ax,DILeftX[bp]
mov bx,ax

shr ax,l ;/8 = byte offset from left of screen
shr ax,l

shr ax. 1

add di ,ax ;point to the upper left corner of draw
and bx,7 ;isolate intrapixel address
shl bx, 1 ;*2 for word look-up
add bx.RotationTableCbp] ,-point to the image structure for
mov bx.Cbx] ; the intrabyte rotation
mov dx,[bx].WidthlnBytes ;image width
mov si,[bx].BitPattern ;pointer to image pattern bytes
mov bx,[bx].Height ;image height

DrawImageLoop:
push di ;remember line start offset
mov cx.dx of bytes across

DrawImageLi neLoop:
1 odsb ;get the next image byte
xchg es:[di],al ;draw the next image byte
inc di ;point to the following screen byte
loop DrawImageLi neLoop
pop di ;retrieve line start offset

add di,SCREEN_WIDTH ;point to the next line
dec bx ;count off scan lines

jnz DrawImageLoop

pop di ;restore caller's register variables

Split Screens Save the Page-Flipped Day ^ 471

pop si

pop bp ;restore caller's stack frame
ret

_DrawImage endp

; Draws a 0-terminated text string at the specified location in the

; specified bitmap in white, using the 8x8 BIOS font. Must be at an X

; coordinate that's a multiple of 8.

• C near-callable as: void TextUp(char *Text, int LeftX, int TopY,
; unsigned int ScrnOffset. unsigned int ScrnSegment);

TextUpParms struc

dw 2 dup (?) ;pushed BP and return address

Text dw ? ;pointer to text to draw

TULeftX dw ? ;X coordinate of left side of rectangle
; (must be a multiple of 8)

TUTopY dw ? ;Y coordinate of top side of rectangle

TUScrnOffset dw ? ;offset of base of bitmap in which to draw

TUScrnSegment dw ? ;segment of base of bitmap in which to draw

TextUpParms ends

publi c _TextUp

_TextUp proc near

push bp ;preserve caller's stack frame

mov bp.sp ;point to local stack frame

push si ;preserve caller's register variables

push di

eld

mov dx.GC_INDEX

mov ax.G_MODE + (OOOOh)

out dx,ax ;set to write mode 0

1 es di.dword ptr TUScrnOffset[bp] ;point to bitmap start
mov ax.SCREEN_WIDTH

mul TUTopYEbp] :point to the start of the top scan

add di ,ax ; line the text starts on

mov ax.TULeftXEbp]

mov bx,ax

shr ax,l ;/8 = byte offset from left of screen

shr ax,l

shr ax, 1

add di ,ax ;point to the upper left corner of first chai
mov si,Text[bp] ;point to text to draw

TextUpLoop:
;get the next character to drawlodsb

and al ,al

jz TextUpDone ;done if null byte

push si ;preserve text string pointer

push di ;preserve character's screen offset

push ds ;preserve default data segment

call CharUp ;draw this character

pop ds ;restore default data segment

pop di ;retrieve character's screen offset

pop si ;retrieve text string pointer

i nc di ;point to next character's start location

jmp TextUpLoop

TextUpDone:
;restore caller's register variablespop di

pop si

472 @ Chapter 29

pop bp :restore caller's stack frame
ret

CharUp: ;draws the character In AL at ESrDI
1 ds si .[BIOSBxBPtr] ;po1nt to the 8x8 font start
mov bl .al

sub bh.bh

shl bx. 1

shl bx.l

shl bx. 1 ;*8 to look up character offset In font
add s 1. bx ;po1nt DSrSI to character data In font
mov ex.8 ;characters are 8 high

CharUpLoop:
movsb ;copy the next character pattern byte
add d1.SCREEN_WIDTH-1 ;po1nt to the next dest byte
1 oop CharUpLoop
ret

_TextUp endp

Sets the pointer to the BIOS 8x8 font.

C near-callable as: extern void SetBI0S8x8Font(void);

publ1c

_SetBI0S8x8Font

push
push

push
push
mov

mov

mov

1 nt

mov

mov

pop

pop

pop

pop

ret

_SetBI0S8x8Font

end

_SetBI0S8x8Font

proc near

bp
si

d1

ds

ah,llh

al.30h

bh.3

lOh

.•preserve caller's stack frame

jpreserve caller's register variables
; and data segment (don't assume BIOS
; preserves anything)
;BIOS character generator function
;BIOS Information subfunctlon

;request 8x8 font pointer
;1nvoke BIOS video services

word ptr [BIOSBxBPtr].bp ;store the pointer
word ptr [BI0S8x8Ptr+2].es
ds

di ;restore caller's register variables
si

bp irestore caller's stack frame

endp

Listing 29.1 is written in C. It could equally well have been written in assembly
language, and would then have been somewhat faster. However, I wanted to make the
point (as I've made again and again) that assembly language, and, indeed, optimization
in general, is needed only in the most critical portions of any program, and then only
when the program would otherwise be too slow. Only in a highly performance-sensi
tive situation would the performance boost resulting from converting Listing 29.1 to
assembly justify the time spent in coding and the bugs that would likely creep in—and
the sample program already updates the screen at the maximum possible rate of once
per frame even on a 1985-vintage 8-MHz AT. In this case, faster performance would
result only in a longer wait for the page to flip.

Split Screens Save the Page-Flipped Day 0 473

Write Mode 3

It's possible to update the bitmap very efficiendy on the VGA, because the VGA can draw
up to 8 pixels at once, and because the VGA provides a number of hardware features to
speed up drawing. This article makes considerable use of one particularly imusual hardware
feature, write mode 3. We discussed write mode 3 back in Chapter 4, but we've covered a lot
of groimd since then—^so I'm going to nm throi^ a quick refresher on write mode 3.
Some background: In the standard VGA's high-resolution mode, mode 12H

(640x480 with 16 colors, the mode in which this chapter's sample program runs), each
byte of display memory controls 8 adjacent pixels on the screen. (The color of each
pixel is, in turn, controlled by 4 bits spread across the four VGA memory planes, but
we need not concern ourselves with that here.) Now, there will often be times when we
want to change some but not all of the pixels controlled by a particular byte of display
memory. This is not easily done, for there is no way to write half a byte, or two bits, or
such to memory; it's the whole byte or none of it at all.

You might think that using AND and OR to manipulate individual bits could solve
the problem. Alas, not so. ANDing and ORing would work if the VGA had only one
plane of memory (like the original monochrome Hercules Graphics Adapter) but the VGA
has four planes, and ANDing and ORing would work only if we selected and manipu
lated each plane separately, a process that would be hideously slow. No, with the VGA
you must use the hardware assist features, or you might as well forget about real-time
screen updates altogether. Write mode 3 will do the trick for our present needs.

Write mode 3 is useful when you want to set some but not all of the pixels in a single
byte of display memory to the same color. That is, if you want to draw a number of
pixels within a byte in a single color, write mode 3 is a good way to do it.

Write mode 3 works like this. First, set the Graphics Controller Mode register to
write mode 3. (Look at Listing 29.2 for code that does everything described here.)
Next, set the Set/Reset register to the color with which you wish to draw, in the range
0-15. (It is not necessary to explicitly enable set/reset via the Enable Set/Reset register;
write mode 3 does that automatically.) Then, to draw individual pixels within a single
byte, simply read display memory, and then write a byte to display memory with 1-bits
where you want the color to be drawn and 0-bits where you want the current bitmap
contents to be preserved. (Note well that the elata actually read by the CPU doesn't
matter, the read operation latches all four planes' data, as described way back in Chap
ter 2.) So, for example, if write mode 3 is enabled and the Set/Reset register is set to 1
(blue), then the following sequence of operations:

mov clx,OaOOOh

mov es.dx

mov al,es:[0]

mov byte ptr es:[0].0f0h

will change the first 4 pixels on the screen (the left nibble of the byte at offset 0 in
display memory) to blue, and will leave the next 4 pixels (the right nibble of the byte at
offset 0) unchanged.

474 ^ Chapter 29

Using one MOV to read from display memory and another to write to display
memory is not particularly efficient on some processors. In Listing 29.2,1 instead use
XCHG, which reads and then writes a memory location in a single operation, as in:

mov dx.OaOOOh

mov es.dx

mov al.OfOh

xchg es:[0],al

Again, the actual value that's read is irrelevant. In general, the XCHG approach is more
compact than two MOVs, and is faster on 386 and earlier processors, but slower on
486s and Pentiums.

If all pixels in a byte of display memory are to be drawn in a single color, it's not
necessary to read before writing, because none of the information in display memory
at that byte needs to be preserved; a simple write of OFFH (to draw all bits) will set all
8 pixels to the set/reset color:

mov dx.OaOOOh

mov es.dx

mov byte ptr es:[di].Offh

If you re familiar with VGA programming, you're no doubt aware that
everything that can be done with write mode 3 can aleo be accom-

piiehed in write mode O or write mode 2 by ueing the 3it Maek regie-
ter. However, eetting the 3it Maek regieter reguiree at leaet one
OUT per byte written, in addition to the read and write of diepiay
memory, and OUTe are often elower than diepiay memory acceeeee,
eepeciaily on 336e and 436e. One of the great virtuee of write mode
3 ie that it reguiree virtuaily no OUTe and ie therefore eubetantially
faeter for maeking than the other write modee.

In short, write mode 3 is a good choice for single-color drawing that modifies indi
vidual pixels within display memory bytes. Not coincidentally, the sample application
draws only single-color objects within the animation area; this allows write mode 3 to
be used for all drawing, in keeping with our desire for speedy screen updates.

Drawing Text
We'll need text in the sample application; is that also a good use for write mode 3?
Sometimes it is, but not in this particular case.

Each character in a font is represented by a pattern of bits, with 1-bits representing
character pixels and 0-bits representing background pixels. Since we'll be using the 8x8
font stored in the BIOS ROM (a pointer to which can be obtained by calling a BIOS

Split Screens Save the Page-Flipped Day ^ 475

service, as illustrated by Listing 29.2), each character is exactly 8 bits, or 1 byte wide.
We'll further insist that characters be placed on byte boundaries (that is, with their left
edges only at pixels with X coordinates that are multiples of 8); this means that the
character bytes in the font are automatically aligned with display memory, and no
rotation or clipping of characters is needed. Finally, we'll draw all text in white.

Given the above assumptions, drawing text is easy; we simply copy each byte of each
character to the appropriate location in display memory, and voila, we're done. Text
copying is done in write mode 0, in which the byte written to display memory is
copied to all four planes at once; hence, 1-bits turn into white (color value OFH, with
1-bits in all four planes), and 0-bits turn into black (color value 0). This is faster than
using write mode 3 because write mode 3 requires a read/write of display memory (or
at least preloading the latches with the background color), while the write mode 0
approach requires only a write to display memory.

le write mode 0 aiwaye the beet way to do texX^? Not at all. The write
mode 0 approach deecribed above drawe both foreground and back
ground pixele within the character box, forcing the background pix-
eie to black at the eame time that it forcee the foreground pixele to
white. If you want to draw traneparent text (that ie, draw only the
character pixele, not the eurrounding background box), write mode
3 ie ideal. Aieo, mattere get far more complicated if charactere
that aren't 3 pixele wide are drawn, or if charactere are drawn etart-
ing at arbitrary pixel locatione, without the muitiple-of-3 column
reetriction, eo that rotation and maeking are required. Laetly, the
Map Maek regieter can be ueed to draw text in coiore other than
white—but only if the background ie black. Otherwiee, the data re
maining in the pianee protected by the Map Maek wiii remain and
can interfere with the coiore of the text being drawn.

I'm not going to delve any deeper into the considerable issues of drawing VGA text;
I just want to sensitize you to the existence of approaches other than the ones used in
Listings 29.1 and 29.2. On the VGA, the rule is: If there's something you want to do,
there probably are ten ways to do it, each with unique strengths and weaknesses. Your
mission, should you decide to accept it, is to figure out which one is best for your
particular application.

Page Flipping
Now that we know how to update the screen reasonably quickly, it's time to get on to
the fun stuff. Page flipping answers the second requirement for animation, by keeping
bitmap changes off the screen until they're complete. In other words, page flipping
guarantees that partially updated bitmaps are never seen.

476 ^ Chapter 29

How is it possible to update a bitmap without seeing the changes as they're made?
Easy—with page flipping, there are two bitmaps; the program shows you one bitmap
while it updates the other. Conceptually, it's that simple. In practice, unfortunately, it's
not so simple, because of the design of the VGA. To understand why that is, we must
look at how the VGA turns bytes in display memory into pixels on the screen.
The VGA bitmap is a linear 64 KB block of memory. (True, most adapters nowa

days are SuperVGAs with more than 256K of display memory, but every make of
SuperVGA has its own way of letting you access that extra memory, so going beyond
standard VGA is a daunting and difficult task. Also, it's hard to manipulate the large
frame buffers of SuperVGA modes fast enough for real-time animation.) Normally,
the VGA picks up the first byte of memory (the byte at offset 0) and displays the
corresponding 8 pixels on the screen, then picks up the byte at offset 1 and displays the
next 8 pixels, and so on to the end of the screen. However, the offset of the first byte of
display memory picked up during each frame is not fixed at 0, but is rather program
mable by way of the Start Address High and Low registers, which together store the
16-bit offset in display memory at which the bitmap to be displayed during the next
frame starts. So, for example, in mode lOH (640x350, 16 colors), a large enough
bitmap to store a complete screen of information can be stored at display memory
offsets 0 through 27,999, and another full bitmap could be stored at offsets 28,000
through 55,999, as shown in Figure 29.1. (I'm discussing 640x350 mode at the mo
ment for good reason; we'll get to 640x480 shortly.) When the Start Address registers
are set to 0, the first bitmap (or page) is displayed; when they are set to 28,000, the
second bitmap is displayed. Page-flipped animation can be performed by displaying
page 0 and drawing to page 1, then setting the start address to page 1 to display that
page and drawing to page 0, and so on ad infinitum.

A000:0000
(offset 0
decimal)

A000:6D60
(offset 26,000
decimal)

AOOOrDACO
(offset 50,000
decimal)

Page 0

Page 1

Unused Memory

Figure 29.1 Memory Aliacation for Mode 10H Page Flipping

Split Screens Save the Page-Flipped Day ^ 477

Knowing when to Flip
There's a hitch, though, and that hitch is knowing exactly when it is that the page has
flipped. The page doesn't flip the instant that you set the Start Address registers. The
VGA loads the starting offset from the Start Address registers once before starting each
frame, then pays those registers no nevermind until the next frame comes around. This
means that you can set the Start Address registers whenever you want—but the page
actually being displayed doesn't change until after the VGA loads that new offset in
preparation for the next frame.
The potential problem should be obvious. Suppose that page 1 is being displayed,

and you're updating page 0. You finish drawing to page 0, set the Start Address registers
to 0 to switch to displaying page 0, and start updating page 1, which is no longer
displayed. Or is it? If the VGA was in the middle of the current frame, displaying page 1,
when you set the Start Address registers, then page 1 is going to be displayed for the
rest of the frame, no matter what you do with the Start Address registers. If you start
updating page 1 right away, any changes you make may well show up on the screen,
because page 0 hasn't yet flipped to being displayed in place of page 1—and that de
feats the whole purpose of page flipping.

To avoid this problem, it is mandatory that you wait until you're sure the page has
flipped. The Start Address registers are, according to my tests, loaded at the start of the
Vertical Sync signal, although that may not be the case with all VGA clones. The
Vertical Sync status is provided as bit 3 of the Input Status 1 register, so it would seem
that all you need to do to flip a page is set the new Start Address registers, wait for the
start of the Vertical Sync pulse that indicates that the page has flipped, and be on your
merry way.

Almost—but not quite. (Do I hear teeth gnashing in the background?) The prob
lem is this: Suppose that, by coincidence, you set one of the Start Address registers just
before the start of Vertical Sync, and the other right after the start of Vertical Sync.
Why, then, for one frame the Start Address High value for one page would be mixed
with the Start Address Low value for the other page, and, depending on the start ad
dress values, the whole screen could appear to shift any number of pixels for a single,
horrible frame. This must never happen!T]\t solution is to set the Start Address registers
when you're certain Vertical Sync is not about to start. The easiest way to know that is
to check for the Display Enable status (bit 0 of the Input Status 1 register) being active;
that means that bitmap-controlled pixels are being scanned onto the screen, and, since
Vertical Sync happens in the middle of the vertical non-display portion of the frame.
Vertical Sync can never be anywhere nearby if Display Enable is active. (Note that one
good alternative is to set up both pages with a start address that's a multiple of256, and
just change the Start Address High register and wait for Vertical Sync, with no Display
Enable wait required.)

So, to flip pages, you must complete all drawing to the non-displayed page, wait for
Display Enable to be active, set the new start address, and wait for Vertical Sync to be

478 ® Chapter 29

active. At that point, you can be fully confident that the page that you just flipped off
the screen is not displayed and can safely (invisibly) be updated. A side benefit of page
flipping is that your program will automatically have a constant time base, with the
rate at which new screens are drawn synchronized to the frame rate of the display
(typically 60 or 70 Hz). However, complex updates may take more than one frame to
complete, especially on slower processors; this can be compensated for by maintaining
a count of new screens drawn and cross-referencing that to the BIOS timer count
periodically, accelerating the overall pace of the animation (moving farther each time
and the like) if updates are happening too slowly.

Enter the Split Screen
So far, I've discussed page flipping in 640x350 mode. There's a reason for that: 640x350
is the highest-resolution standard mode in which there's enough display memory for
two full pages on a standard VGA. It's possible to program the VGA to a non-standard
640x400 mode and still have two full pages, but that's pretty much the limit. One
640x480 page takes 38,400 bytes of display memory, and clearly there isn't enough
room in 64 Kb of display memory for two of those monster pages.
And yet, 640x480 is a wonderful mode in many ways. It offers a 1:1 aspect ratio

(square pixels), and it provides by far the best resolution of any 16-color mode. Surely
there's some way to bring the visual appeal of page flipping to this mode?

Surely there is—but it's an odd solution indeed. The VGA has a feature, known as
the split screen, that allows you to force the offset from which the VGA fetches video
data back to 0 after any desired scan line. For example, you can program the VGA to
scan through display memory as usual until it finishes scan line number 338, and then
get the first byte of information for scan line number 339 from offset 0 in display
memory.

That, in turn, allows us to diwy up display memory into three areas, as shown in
Figure 29.2. The area from 0 to 11,279 is reserved for the split screen, the area from
11,280 to 38,399 is used for page 0, and the area from 38,400 to 65,519 is used for
page 1. This allows page flipping to be performed in the top 339 scan lines (about 70
percent) of the screen, and leaves the bottom 141 scan lines for non-animation purposes,
such as showing scores, instructions, statuses, and suchlike. (Note that the allocation
of display memory and number of scan lines are dictated by the desire to have as many
page-flipped scan lines as possible; you may, if you wish, have fewer page-flipped lines
and reserve part of the bitmap for other uses, such as off-screen storage for images.)
The sample program for this chapter uses the split screen and page flipping exactly

as described above. The playfield through which the object bounces is the page-flipped
portion of the screen, and the rectangle at the bottom containing the bounce count
and the instructions is the split (that is, not animatable) portion of the screen. Of
course, to the user it all looks like one screen. There are no visible boundaries between

the two unless you choose to create them.

m

AOOOiOOOO
{offeet 0
decimal)
A000:2C10
(offset M2dO
decimal)

A000:9600
(offset 56,400
decimal)

AOOO:FFFO
(offset 65,520
decimal)

Split Screens Save the Page-Flipped Day ^ 479

Split Screen
(always controls scan lines 359-479)

Pa0e 0
(controls scan lines 0-556
when start address = 11,260)

Pa^e 1
(controls scan lines 0-556

when start address = 56,400)

Screen

Unused Memory

Pa^e flipped
animation

Split screen

Figure 29.2 Memory Allocatlon for Mode 12H Page Flipping

Very few animation applications use the entire screen for animation. If you can get
by with 339 scan lines of animation, split-screen page flipping gives you the best com
bination of square pixels and high resolution possible on a standard VGA.

So. Is VGA animation worth all the fiiss? Mais out. Run the sample program; if
you've never seen aggressive VGA animation before, you'll be amazed at how smooth it
can be. Not every square millimeter of every animated screen must be in constant
motion. Most graphics screens need a little quiet space to display scores, coordinates,
file names, or ̂ f all else fails) company logos. If you don't tell the user they're only
getting 339 scan lines of animation, they'll probably never know.

Different Angles on Animation
We brought our pets with us when we moved to Seattle. At about the same time, our
Golden Retriever, Sam, observed his third birthday. Sam is relatively intelligent, in the
sense that he is clearly smarter than a banana slug, although if he were in the same
room with Jeff Duntemann's dog Mr. Byte, there's a reasonable chance that he would
mistake Mr. Byte for something edible (a category that includes rocks, socks, and a
surprising number of things too disgusting to mention), and Jeff would have to find a
new source of things to write about.

But that's not important now. What is important is that—and I am not making this
up—this morning I managed to find the one pair of socks Sam hadn't chewed holes in.
And what's even more important is that after we moved and Sam turned three, he
calmed down amazingly. We had been waiting for this magic transformation since Sam
turned one, the age at which most puppies turn into normal dogs who lie around a lot,
waking up to eat their Science Diet (motto, "The dog food that costs more than the
average neurosurgeon makes in a year") before licking themselves in embarrassing places
and going back to sleep. When Sam turned one and remained hopelessly out of control
we said, "Goldens take two years to calm down," as if we had a clue. When he turned
two and remained undeniably Sam we said, "Any day now." By the time he turned
three, we were reduced to figuring that it was only about seven more years until he
expired, at which point we might be able to take all the fur he had shed in his lifetime
and weave ourselves some clothes without holes in them, or quite possibly a house.

But miracle of miracles, we moved, and Sam instantly turned into the dog we thought
we'd gotten when we forked over $500—calm, sweet, and obedient. Weeks went by,
and Sam was, if anything, better than ever. Clearly, the change was permanent.
And then we took Sam to the vet for his annual check-up and found that he had an

ear infection. Thanks to the wonders of modern animal medicine, a $5 bottle of liquid

482 ^ Chapter 30

restored his health in just two days. And with his health, we got, as a bonus, the old Sam.
You see, Sam hadn't changed. He was just tired from being sick. Now he once again
joyously knocks down any stranger who makes the mistake of glancing in his direction,
and will, quite possibly, be booked any day now on suspicion of homicide by licking.

Plus ga Change
Okay, you give up. What exactly does this have to do with graphics? I'm glad you
asked. The lesson to be learned from Sam, The Dog With A Brain The Size Of A
Walnut, is that while things may look like they've changed, in fact they often haven't.
Take VGA performance. If you buy a 486 with a SuperVGA, you'll get performance
that knocks your socks off, especially if you run Windows. Things are liable to be so
fast that you'll figure the SuperVGA has to deserve some of the credit. Well, maybe it
does if it's a local-bus VGA. But maybe it doesn't, even if it is local bus—and it cer
tainly doesn't if it's an ISA bus VGA, because no ISA bus VGA can run faster than
about 300 nanoseconds per access, and VGAs capable of that speed have been com
mon for at least a couple of years now.

Your 486 VGA system is fast almost entirely because it has a 486 in it. (486 systems
with graphics accelerators such as the ATI Ultra or Diamond Stealth are another story
altogether.) Underneath it all, the VGA is still painfully slow—and if you have an old
VGA or IBM's original PS/2 motherboard VGA, it's incredibly slow. The fastest ISA-
bus VGA around is two to twenty times slower than system memory, and the slowest
VGA around is as much as 100 times slower. In the old days, the rule was, "Display
memory is slow, and should be avoided." Nowadays, the rule is, "Display memory is
not quite so slow, but should still be avoided."

So, as I say, sometimes things don't change. Of course, sometimes they do change.
For example, in just 49 dog years, I fully expect to own at least one pair of underwear
without a single hole in it. Which brings us, deus ex machina and the creek don't rise,
to yet another animation method: dirty-rectangle animation.

VGA Access Times

Actually, before we get to dirty rectangles, I'd like to take you through a quick refresher
on VGA memory and I/O access times. I want to do this pardy because the slow access
times of the VGA make dirty-rectangle animation particularly attractive, and partly as
a public service, because even I was shocked by the results of some I/O performance
tests I recently ran.

Table 30.1 shows the results of the aforementioned I/O performance tests, as run on
two 486/33 SuperVGA systems under the Phar Lap 386IDOS-Extender. (The systems
and VGAs are unnamed because this is a not-very-scientific spot test, and I don't want
to unfairly malign, say, a VGA whose only sin is being plugged into a lousy motherboard.

Dog Hair and Dirty Rectangies @ 483

Table 30.1 Results of I/O Performance Tests Run under the Phar Lap 386ID0S-Extender

OUT Time in Microseconds and Cycles
OUT Instruction Official Time 486#l/l6-bitVGA#l 486#2/16-bitVGA#2

OUT DX,AL

repeated 1,000 times nonstop 0.300 s 2.546 s 0.813 s

(maximum byte access) 10 cycles 84 cycles 27 cycles

OUT DX,AX

repeated 1,000 times nonstop 0.300 s 3.820 s 1.066 s

(maximum word access) 10 cycles 126 cycles 35 cycles

OUT DX,AL

repeated 1,000 times, but 0.300 s 1.610 s 0.780 s

interspersed with MULs 10 cycles 53 cycles 26 cycles
(random byte access)

OUT DX,AX

repeated 1,000 times, but 0.300 s 2.830 s 1.010 s

interspersed with MULs 10 cycles 93 cycles 33 cycles
(random word access)

or vice versa). Under Phar Lap, 32-bit protected-mode apps run with fiili I/O privileges,
meaning that the OUT instructions I measured had the best official cycle times possible on
the 486: 10 cycles. OUT officially takes 16 cycles in real mode on a 486, and officially
takes a mind-boggling 30 cycles in protected mode if running without full I/O privileges
(as is normally the case for protected-mode applications). Basically, I/O is just plain
slow on a 486.

As slow as 30 or even 10 cycles is for an OUT, one could only wish that VGA I/O
were actually that fast. The fastest measured OUT to a VGA in Table 30.1 is 26 cycles,
and the slowest is 126—this for an operation thats supposed to take 10 cycles. To put
this in context, MUL takes only 13 to 42 cycles, and a normal MOV to or from system
memory takes exactly one cycle on the 486. In short, OUTs to VGAs are as much as
100 times slower than normal memory accesses, and are generally two to four times
slower than even display memory accesses, although there are exceptions.
Of course, VGA display memory has its own performance problems. The fastest

ISA bus VGA can, at best, support sustained write times of about 10 cycles per word-
sized write on a 486/33; 15 or 20 cycles is more common, even for relatively fast
SuperVGAs; the worst case IVe seen is 65 cycles per byte. However, intermittent writes,
mixed with a lot of register and cache-only code, can effectively execute in one cycle,
thanks to the caching design of many VGAs and the 486 s 4-deep write buffer, which
stores pending writes while the CPU continues executing instructions. Display memory
reads tend to take longer, because coprocessing isn't possible—one microsecond is a
reasonable rule of thumb for VGA reads, although there's considerable variation. So
VGA memory tends not to be as bad as VGA I/O, but lord knows it isn't good.

484 ® Chapter 30

OUTe, in louey on the 436 (^nd to think they only took
three cyciee on the 2361). OUTe to VGAe are particularly louey. Die-
play memory performance le pretty poor, eepeclally for reade. The
concluelone are oMoue, I would hope. Structure your graphlce code,
and. In general, all 436 code, to avoid OUTe.

For graphics, this especially means using write mode 3 rather than the bit-mask
register. When you must use the bit mask, arrange drawing so that you can set the bit
mask once, then do a lot of drawing with that mask. For example, draw a whole edge at
once, then the middle, then the other edge, rather than setting the bit mask several
times on each scan line to draw the edge and middle bytes together. Don t read from
display memory if you don t have to. Write each pixel once and only once.

It is indeed a strange concept: The key to fast graphics is staying away from the
graphics adapter as much as possible.

Dirty-Rectangle Animation
The relative slowness of VGA hardware is part of the appeal of the technique that I call
"dirty-rectangle" animation, in which a complete copy of the contents of display memory
is maintained in offscreen system (nondisplay) memory. All drawing is done to this
system buffer. As offscreen drawing is done, a list is maintained of the bounding rect
angles for the drawn-to areas; these are the dirty rectangles, "dirty" in the sense that that
have been altered and no longer match the contents of the screen. After all drawing for
a frame is completed, all the dirty rectangles for that frame are copied to the screen in
a burst, and then the cycle of off-screen drawing begins again.
Why, exactly, would we want to go through all this complication, rather than sim

ply drawing to the screen in the first place? The reason is visual quality. If we were to do
all our drawing directly to the screen, there^ be a lot of flicker as objects were erased
and then redrawn. Similarly, overlapped drawing done with the painter s algorithm (in
which farther objects are drawn first, so that nearer objects obscure them) would flicker
as farther objects were visible for short periods. With dirty-rectangle animation, only
the finished pixels for any given frame ever appear on the screen; intermediate results
are never visible. Figure 30.1 illustrates the visual problems associated with drawing
directly to the screen; Figure 30.2 shows how dirty-rectangle animation solves these
problems.

So Why Not Use Page Flipping?
"Well, then, if we want good visual quality, why not use page flipping? For one thing,
not all adapters and all modes support page flipping. The CGA and MCGA don't, and
neither do the "VGA's 640x480 l6-color or 320x200 256-color modes, or many

Dog Hair and Dirty Rectangles ^ 485

Screen

Object in old position Object erased at
old position—flicker
occurs at this time

Object drawn at
new position

Figure 30.1 Drawing Directly to the Screen

System Buffer System Buffer

Object in
old position
on screen

Object in
old position
in system

Object erased in
old position in
system buffer

System Buffer

Object drawn at
new position in
system buffer

Dirty rectangles
copied to screen

Figure 30.2 Dirty Rectangle Animation

486 ® Chapter 30

SuperVGA modes. In contrast, all adapters support dirty-rectangle animation. Another
advantage of dirty-rectangle animation is that it s generally faster. While it may seem
strange that it would be faster to draw off-screen and then copy the result to the screen,
that is often the case, because dirty-rectangle animation usually reduces the number of
times the VGA's hardware needs to be touched, especially in 256-color modes.

This reduction comes about because when dirty rectangles are erased, it's done in
system memory, not in display memory, and since most objects move a good deal less
than their full width (that is, the new and old positions overlap), display memory is
written to fewer times than with page flipping. (In l6-color modes, this is not neces
sarily the case, because of the parallelism obtained from the VGA's planar hardware.)
Also, read/modify/write operations are performed in fast system memory rather than
slow display memory, so display memory rarely needs to be read. This is particularly
good because display memory is generally even slower for reads than for writes.

Also, page flipping wastes a good deal of time waiting for the page to flip at the end
of the frame. Dirty-rectangle animation never needs to wait for anything because par
tially drawn images are never present in display memory. Actually, in one sense, par
tially drawn images are sometimes present because it's possible for a rectangle to be
partially drawn when the scanning raster beam reaches that part of the screen. This
causes the rectangle to appear partially drawn for one frame, producing a phenomenon
I call "shearing." Fortunately, shearing tends not to be particularly distracting, espe
cially for fairly small images, but it can be a problem when copying large areas. This is
one area in which dirty-rectangle animation falls short of page flipping, because page
flipping has perfect display quality, never showing anything other than a completely
finished frame. Similarly, dirty-rectangle copying may take two or more frame times to
finish, so even if shearing doesn't happen, it's still possible to have the images in the
various dirty rectangles show up non-simultaneously. In my experience, this latter phe
nomenon is not a serious problem, but do be aware of it.

Dirty Rectangles in Action
Listing 30.1 demonstrates dirty-rectangle animation. This is a very simple implemen
tation, in several respects. For one thing, it's written entirely in C, and animation fairly
cries out for assembly language. For another thing, it uses far pointers, which C often
handles with less than optimal efficiency, especially because I haven't used library func
tions to copy and fill memory. (I did this so the code would work in any memory
model.) Also, Listing 30.1 doesn't attempt to coalesce rectangles so as to perform a
minimum number of display-memory accesses; instead, it copies each dirty rectangle
to the screen, even if it overlaps with another rectangle, so some pixels are copied
multiple times. Listing 30.1 runs pretty well, considering all of its failings; on my 486/33,
ten 11x11 images animate at a very respectable clip.

Dog Hair and Dirty Rectangles ® 487

LISTING 30.1 L30-1.C
/* Sample simple dirty-rectangle animation program. Doesn't attempt to coalesce

rectangles to minimize display memory accesses. Not even vaguely optimized!
Tested with Borland C++ in the small model. */

#include <stdlib.h>

#include <conio.h>

^include <alloc.h>

#include <memory.h>
^include <dos.h>

#define SCREEN_WIDTH 320

#define SCREEN_HEIGHT 200

#define SCREEN_SEGMENT OxAOOO

/* Describes a rectangle */

typedef struct {
int Top;

int Left;

int Right;

int Bottom;

} Rectangle;

/* Describes an animated object */

typedef struct {
int X; /* upper left corner in virtual bitmap */
int Y;

int XDirection; /* direction and distance of movement */

int YDirection;

} Entity;

/* Storage used for dirty rectangles */

#define MAX_DIRTY_RECTANGLES 100

int NumDirtyRectangles;

Rectangle DirtyRectangles[MAX_DIRTY_RECTANGLES];

/* If set to 1, ignore dirty rectangle list and copy the whole screen. */
int DrawWholeScreen = 0;

/* Pixels for image we'll animate */

#define IMAGE.WIDTH 11
#define IMAGE_HEIGHT 11
char ImagePixels[] = {

15,15,15, 9, 9, 9, 9, 9,15,15,15,

15,15, 9, 9, 9, 9, 9, 9, 9,15,15,

15, 9, 9,14,14,14,14,14, 9, 9,15,

9, 9,14,14,14,14,14,14,14, 9, 9,

9, 9,14,14,14,14,14,14,14, 9, 9,

9, 9,14,14,14,14,14,14,14, 9, 9,

9, 9,14,14,14,14,14,14,14, 9, 9,

9, 9,14,14,14,14,14,14,14, 9, 9,

15, 9, 9,14,14,14,14,14, 9, 9,15,

15,15, 9, 9, 9, 9, 9, 9, 9,15,15,

15,15,15, 9, 9, 9, 9, 9,15,15,15,

};

/* animated entities */

#define NUM_ENTITIES 10

Entity EntitiesCNUM_ENTITIES];

488 gj Chapter 30

/* pointer to system buffer into which we'll draw */
char far *SystemBufferPtr;

/* pointer to screen */
char far *ScreenPtr;

void EraseEntities(void);

void CopyDirtyRectanglesToScreenCvoid);
void DrawEntities(void);

void main()

{

int i, XTemp, YTemp;

unsigned int TempCount;
char far *TempPtr;
union REGS regs;

/* Allocate memory for the system buffer into which we'll draw */
if (KSystemBufferPtr = farmalloc((unsigned int)SCREEN_WIDTH*

SCREEN_HEIGHT))) {

printf("Couldn't get memoryVn");
exit(l);

}

/* Clear the system buffer */
TempPtr = SystemBufferPtr;
for (TempCount = ((unsigned)SCREEN_WIDTH*SCREEN_HEIGHT); TempCount--;) {

*TempPtr++ = 0;

}

/* Point to the screen */

ScreenPtr = MK_FP(SCREEN_SEGMENT. 0);

/* Set up the entities we'll animate, at random locations */
randomi ze();

for (i = 0: i < NUM.ENTITIES; i++) {

Entities[i].X = random(SCREEN_WIDTH - IMAGE_WIDTH);

Entities[i].Y = random(SCREEN_HEIGHT - IMAGE_HEIGHT);

Entities[i].XDirection = 1;

EntitiesEi].YDirection = -1;

}

/* Set 320x200 256-color graphics mode */
regs.X.ax = 0x0013;

int86(0xl0, ®s, ®s);

/* Loop and draw until a key is pressed */
do {

/* Draw the entities to the system buffer at their current locations,

updating the dirty rectangle list */
DrawEntitiesO;

/* Draw the dirty rectangles, or the whole system buffer if

appropriate */
CopyDi rtyRectanglesToScreen();

/* Reset the dirty rectangle list to empty */
NumDirtyRectangles = 0;

/* Erase the entities in the system buffer at their old locations,

updating the dirty rectangle list */
EraseEntitiesO;

/* Move the entities, bouncing off the edges of the screen */

for (i = 0; i < NUM_ENTITIES; i++) {

Dog Hair and Dirty Rectangies @ 489

)

XTemp = Entities[i].X + Entities[i].XDirection;
YTemp = Entities[i].Y + Ent1ties[i].YD1rection;
if ((XTemp < 0) 1| ((XTemp + IMAGE_WIDTH) > SCREEN_WIDTH)) {

Entit1es[1].XDIrection =■ -Entities[i].XDirection;
XTemp = EntitiesCi].X + Entities[i].XDirection;

}
if ((YTemp < 0) | | ((YTemp + IMAGE_HEIGHT) > SCREEN_HEIGHT)) {

Entities[i].YDirection = -Entities[i].YDirection;
YTemp = Entities[i].Y + Entities[i].YDirection;

}
Entities[i].X = XTemp;
EntitiesCi].Y = YTemp;

} while (IkbhitO);
getchO; /* clear the keypress */
/* Back to text mode */
regs.x.ax = 0x0003;
int86(0xl0, ®s, ®s);

}
/* Draw entities at current locations, updating dirty rectangle list. */
void DrawEntities()

{
int i, j, k;
char far *RowPtrBuffer;
char far *TempPtrBuffer;
char far *TempPtrImage;
for (i = 0; i < NUM_ENTITIES; i++) {

/* Remember the dirty rectangle info for this entity */
if (NumDirtyRectangles >= MAX_DIRTY_RECTANGLES) {

/* Too many dirty rectangles; just redraw the whole screen */
DrawWholeScreen = 1;

} else {
/* Remember this dirty rectangle */
DirtyRectanglesCNumDirtyRectangles].Left = EntitiesCi].X;
DirtyRectanglesCNumDirtyRectangles].Top = EntitiesCi].Y;
Di rtyRectanglesCNumDi rtyRectangles].Right =

EntitiesCi].X + IMAGE_WIDTH;
Di rtyRectanglesCNumDi rtyRectangles++].Bottom =

EntitiesCi].Y + IMAGE_HEIGHT;
}
/* Point to the destination in the system buffer */
RowPtrBuffer = SystemBufferPtr + (EntitiesCi].Y * SCREEN_WIDTH) +

EntitiesCi].X;
/* Point to the image to draw */
TempPtrlmage =■ ImagePixels;
/* Copy the image to the system buffer */
for (j = 0; j < IMAGE_HEIGHT; j++) {

/* Copy a row */
for (k = 0, TempPtrBuffer = RowPtrBuffer; k < IMAGE_WIDTH; k++)

*TempPtrBuffer++ = *TempPtrImage++;
}
/* Point to the next system buffer row */
RowPtrBuffer += SCREEN_WIDTH;

}
}

}
/* Copy the dirty rectangles, or the whole system buffer if appropriate,

to the screen. */
void CopyDirtyRectanglesToScreen()
{

490 ^ Chapter 30

int i, j, k, RectWidth, RectHeight;

unsigned int TempCount;
unsigned int Offset;

char far *TempPtrScreen;
char far *TempPtrBuffer;

if (DrawWholeScreen) {

/* Just copy the whole buffer to the screen */
DrawWholeScreen = 0;

TempPtrScreen = ScreenPtr;
TempPtrBuffer = SystemBufferPtr;
for (TempCount = ((unsigned)SCREEN_WIDTH*SCREEN_HEIGHT); TempCount--;) {

*TempPtrScreen++ = *TempPtrBuffer++;

)

} else {

/* Copy only the dirty rectangles */
for (i =0; i < NumDirtyRectangles; i++) {

/* Offset in both system buffer and screen of image */

Offset = (unsigned int) (DirtyRectangles[i].Top * SCREEN_WIDTH) +
Di rtyRectangles[1].Left;

/* Dimensions of dirty rectangle */

RectWidth = DirtyRectangles[i].Right - DirtyRectangles[i].Left;

RectHeight = DirtyRectangles[i].Bottom - DirtyRectangles[i].Top;
/* Copy a dirty rectangle */
for (j =0; j < RectHeight; j++) {

/* Point to the start of row on screen */

TempPtrScreen = ScreenPtr + Offset;

/* Point to the start of row in system buffer */

TempPtrBuffer = SystemBufferPtr + Offset;

/* Copy a row */
for (k = 0; k < RectWidth; k++) {

*TempPtrScreen++ = *TempPtrBuffer-H-;

}

/* Point to the next row */

Offset += SCREEN_WIDTH;

}

}

}

/* Erase the entities in the system buffer at their current locations,

updating the dirty rectangle list. */
void EraseEntitiesO

{

i nt i, j, k;

char far *RowPtr;

char far *TempPtr;

for (i = 0; i < NUM_ENTITIES; i++) {

/* Remember the dirty rectangle info for this entity */

if (NumDirtyRectangles >= MAX_DIRTY_RECTANGLES) {
/* Too many dirty rectangles; just redraw the whole screen */

DrawWholeScreen = 1;

} else {

/* Remember this dirty rectangle */

DirtyRectanglesCNumDirtyRectangles].Left = Entities[i].X;

DirtyRectangles[NumDirtyRectangles].Top = Entities[i].Y;
Di rtyRectangles[NumDi rtyRectangles].Right =

Entities[i].X + IMAGE_WIDTH;

Dog Hair and Dirty Rectangies @ 491

Di rtyRectangles[NumDi rtyRectangles++].Bottom =
Entities[i].Y + IMAGE.HEIGHT;

}

/* Point to the destination in the system buffer */

RowPtr = SystemBufferPtr + (Entities[i].Y*SCREEN_WIDTH) + Entities[i].X;

/* Clear the entity's rectangle */
for (j = 0; j < IMAGE_HEIGHT; j-H-) {

/* Clear a row */

for (k = 0, TempPtr = RowPtr; k < IMAGE_WIDTH; k++) {
*TempPtr++ = 0;

}
/* Point to the next row */

RowPtr += SCREEN.WIDTH;

}

One point Td like to make is that although the system-memory buffer in Listing
30.1 has exactly the same dimensions as the screen bitmap, thats not a requirement,
and there are some good reasons not to make the two the same size. For example, if the
system buffer is bigger than the area displayed on the screen, it s possible to pan the
visible area around the system buffer. Or, alternatively, the system buffer can be just
the size of a desired window, representing a window into a larger, virtual buffer. We
could then draw the desired portion of the virtual bitmap into the system-memory
buffer, then copy the buffer to the screen, and the effect will be of having panned the
window to the new location.

Another sirgument in fsvor of a emali viewing window \e that it re-
etricte the amount of dieplay memory actually drawn to. Keetricting
the dieplay memory ueed for animation reducee the totai number of
diepiay-memory acceeeee, which in turn booete overall performance;
it aleo improvee the performance and appearance of panning, in which
the whole window hae to be redrawn or copied.

If you keep a close watch, you 11 notice that many high-performance animation
games similarly restrict their full-featured animation area to a relatively small region.
Often, it s hard to tell that this is the case, because the animation region is surrounded
by flashy digitized graphics and by items such as scoreboards and status screens, but
look closely and see if the animation region in your favorite game isn't smaller than you
thought.

Hi-Res VGA Page Flipping
On a standard VGA, hi-res mode is mode 12H, which offers 640x480 resolution with
16 colors. That's a nice mode, with plenty of pixels, and square ones at that, but it lacks

492 ^ Chapter 30

one thing—^page flipping. The problem is that the mode 12H bitmap is 150 Kbytes in size,
and the standard VGA has only 256 Kbytes total, too little memory for two of those
monster mode 12H pages. With only one page, flipping is obviously out of the question,
and without page flipping, top-flight, hi-res animation cant be implemented. The
standard fallback is to use the EGAs hi-res mode, mode lOH (640x350,16 colors) for page
flipping, but this mode is less than ideal for a couple of reasons: It offers sharply lower
vertical resolution, and its lousy for handling scaled-up CGA graphics, because the
vertical resolution is a fractional multiple—1.75 times, to be exact—of that of the CGA.
CGA resolution may not seem important these days, but many images were originally
created for the CGA, as were many graphics packages and games, and it s at least convenient
to be able to handle CGA graphics easily. Then, too, 640x350 is also a poor multiple
of the 200 scan lines of the popular 320x200 256-color mode 13H of the VGA.

There are a couple of interesting, if imperfect, solutions to the problem of hi-res
page flipping. One is to use the split screen to enable page flipping only in the top two-
thirds of the screen; see the previous chapter for details, and for details on the mechan
ics of page flipping generally. This doesn't address the CGA problem, but it does yield
square pixels and a full 640x480 screen resolution, although not all those pixels are
flippable and thus animatable.
A second solution is to program the screen to a 640x400 mode. Such a mode uses

almost every byte of display memory (64,000 bytes, actually; you could add another
few lines, if you really wanted to), and thereby provides the highest resolution possible
on the VGA for a fully page-flipped display. It maps well to CGA and mode 13H
resolutions, being either identical or double in both dimensions. As an added benefit,
it offers an easy-on-the-eyes 70-Hz frame rate, as opposed to the 60 Hz that is the best
that mode 12H can offer, due to the design of standard VGA monitors. Best of all,
perhaps, is that 640x400 l6-color mode is easy to set up.
The key to 640x400 mode is understanding that on a VGA, mode lOH (640x350)

is, at heart, a 400-scan-line mode. What I mean by that is that in mode lOH, the
Vertical Total register, which controls the total number of scan lines, both displayed
and nondisplayed, is set to 447, exactly the same as in the VGA's text modes, which do
in fact support 400 scan lines. A properly sized and centered display is achieved in
mode lOH by setting the polarity of the sync pulses to tell the monitor to scan verti
cally at a faster rate (to make fewer lines fill the screen), by starting the overscan after
350 lines, and by setting the vertical sync and blanking pulses appropriately for the
faster vertical scanning rate. Changing those settings is all that's required to turn mode
lOH into a 640x400 mode, and that's easy to do, as illustrated by Listing 30.2, which
provides mode set code for 640x400 mode.

LISTING 30.2 L3D-2.C
/* Mode set routine for VGA 640x400 16-color mode. Tested with

Borland C++ in C compilation mode. */

^include <dos.h>

Dog Hair and Dirty Rectangles ® 493

void Set640x400()

{
union REGS regset;

/* First, set to standard 640x350 mode (mode lOh) */
regset.X.ax = 0x0010;

int86(0xl0, ®set, ®set);

/* Modify the sync polarity bits (bits 7 & 6) of the
Miscellaneous Output register (readable at OxSCC, writable at
0x3C2) to select the 400-scan-line vertical scanning rate */

outp(0x3C2, ((inp(0x3CC) & 0x3F) | 0x40));

/* Now. tweak the registers needed to convert the vertical
timings from 350 to 400 scan lines */

/* adjust the Vertical Sync Start register
for 400 scan lines */

/* adjust the Vertical Sync End register
for 400 scan lines */

/* adjust the Vertical Display End
register for 400 scan lines */

/* adjust the Vertical Blank Start
register for 400 scan lines */

/* adjust the Vertical Blank End register
for 400 scan lines */

outpw(0x3D4, 0x9C10)

outpw(0x3D4, OxBEll)

outpw(0x3D4, 0x8F12)

outpw(0x3D4, 0x9615)

outpw(0x3D4, 0x8916)

In 640x400, 16-color mode, page 0 runs from offset 0 to offset 31,999 (7CFFH),
and page 1 runs from offset 32,000 (7D00H) to 63,999 (0F9FFH). Page 1 is selected
by programming the Start Address registers (CRTC registers OCH, the high 8 bits, and
ODH, the low 8 bits) to 7D00H. Actually, because the low byte of the start address is
0 for both pages, you can page flip simply by writing 0 or 7DH to the Start Address
High register (CRTC register OCH); this has the benefit of eliminating a nasty class of
potential synchronization bugs that can arise when both registers must be set. Listing
30.3 illustrates simple 640x400 page flipping.

LISTING 30.3 L30-3.C
/* Sample program to exercise VGA 640x400 16-color mode page flipping, by

drawing a horizontal line at the top of page 0 and another at bottom of page 1,
then flipping between them once every 30 frames. Tested with Borland C++,
in C compilation mode. */

#include <dos.h>

^include <conio.h>

^define SCREEN_SEGMENT OxAOOO

#define SCREEN_HEIGHT 400

#define SCREEN_WIDTH_IN_BYTES 80

^define INPUT_STATUS_1 0x3DA /* color-mode address of Input Status 1
register */

/* The page start addresses must be even multiples of 256, because page
flipping is performed by changing only the upper start address byte */

#define PAGE_0_START 0

#define PAGE_1_START (400*SCREEN_WIDTH_IN_BYTES)

494 ^ Chapter 30

void main(vold);

void Wait30Frames(void);

extern void Set640x400(void);

void mainO

{

int i;

unsigned int far *ScreenPtr;

union REGS regset;

Set640x400(); /* set to 640x400 16-color mode */

/* Point to first line of page 0 and draw a horizontal line across screen */
FP_SEG(ScreenPtr) = SCREEN_SEGMENT:

FP_OFF(ScreenPtr) = PAGE_0_START;

for (i=0; i<(SCREEN_WIDTH_IN_BYTES/2); i++) *ScreenPtr++ = OxFFFF;

/* Point to last line of page 1 and draw a horizontal line across screen */
FP_OFF(ScreenPtr) =

PAGE_1_START + ((SCREEN_HEIGHT-1)*SCREEN_WIDTH_IN_BYTES);
for (i=0; i<(SCREEN_WIDTH_IN_BYTES/2); i++) *ScreenPtr++ = OxFFFF;

/* Now flip pages once every 30 frames until a key is pressed */
do {

Wait30Frames();

/* Flip to page 1 */
outpw(0x3D4, OxOC | ((PAGE_1_START » 8) « 8));

Wait30Frames();

/* Flip to page 0 */
outpw(0x3D4, OxOC | ((PAGE_0_START » 8) « 8));

} while (kbhitO = 0);

getchO; /* clear the key press */

/* Return to text mode and exit */

regset.X.ax = 0x0003; /* AL = 3 selects 80x25 text mode */

int86(0xl0, ®set, ®set);

}

void Wait30Frames()

{

i nt i ;

for (i=0; i<30; i++) {

/* Wait until we're not in vertical sync, so we can catch leading edge */
while ((inp(INPUT_STATUS_l) & 0x08) != 0) ;
/* Wait until we are in vertical sync */
while ((inp(INPUT_STATUS_l) & 0x08) — 0) ;

}

After I described 640x400 mode in a magazine article, Bill Lindley, of Mesa, Ari
zona, wrote me to suggest that when programming the VGA to a nonstandard mode of
this sort, its a good idea to tell the BIOS about the new screen size, for a couple of
reasons. For one thing, pop-up utilities often use the BIOS variables; Bill s memory-resident

Dog Hair and Dirty Rectangies ^ 495

screen printer, EGAD Screen Print, determines the number of scan lines to print by
multiplying the BIOS "number of text rows" variable times the "character height"
variable. For another, the BIOS itself may do a poor job of displaying text if not given
proper information; the active text area may not match the screen dimensions, or an
inappropriate graphics font may be used. (Of course, the BIOS isn t going to be able to
display text anyway in highly nonstandard modes such as Mode X, but it will do fine in
slightly nonstandard modes such as 640x400 l6-color mode.) In the case of the 640x400
16-color model described a little earlier. Bill suggests that the code in Listing 30.4 be
called immediately after putting the VGA into that mode to tell the BIOS that we re
working with 25 rows of l6-pixel-high text. I think this is an excellent suggestion; it
cant hurt, and may save you from getting aggravating tech support calls down the
road.

LISTING 30.4 L30-4.C
/* Function to tell the BIOS to set up properly sized characters for 25 rows of

16 pixel high text in 640x400 graphics mode. Call immediately after mode set.
Based on a contribution by Bill Lindley. */

^include <dos.h>

void Set640x400()

{

union REGS regs;

regs.h.ah = 0x11; /* character generator function */
regs.h.al = 0x24; /* use ROM 8x16 character set for graphics */
regs.h.bl = 2; /* 25 rows */
int86(0xl0, ®s, ®s); /* invoke the BIOS video interrupt

to set up the text */

The 640x400 mode Ive described here isn't exactly earthshaking, but it can come
in handy for page flipping and CGA emulation, and I'm sure that some of you will find
it useful at one time or another.

Another Interesting Twist on Page Fiipping
I've spent a fair amount of time exploring various ways to do animation. I thought I
had pegged all the possible ways to do animation: exclusive-ORing; simply drawing
and erasing objects; drawing objects with a blank fringe to erase them at their old
locations as they're drawn; page flipping; and, finally, drawing to local memory and
copying the dirty (modified) rectangles to the screen, as I've discussed in this chapter.

To my surprise, someone threw me an interesting and useful twist on animation not
long ago, which turned out to be a cross between page flipping and dirty-rectangle
animation. That someone was Serge Mathieu of Concepteva Inc., in Rosemere, Que
bec, who informed me that he designs everything "from a game point de vueP

496 ® Chapter 30

In normal page flipping, you display one page while you update the other page.
Then you display the new page while you update the other. This works fine, but the need to
keep two pages current can make for a lot of bookkeeping and possibly extra drawing,
especially in applications where only some of the objects are redrawn each time.

Serge didn't care to do all that bookkeeping in his animation applications, so he
came up with the following approach, which I've reworded, amplified, and slightly
modified in the summary here:

1. Set the start address to display page 0.

2. Draw to page 1.

3. Set the start address to display page 1 (the newly drawn page), then wait for the
leading edge of vertical sync, at which point the page has flipped and it's safe to
modify page 0.

4. Copy, via the latches, from page 1 to page 0 the areas that changed from the previ
ous screen to the current one.

5. Set the start address to display page 0, which is now identical to page 1, then wait
for the leading edge of vertical sync, at which point the page has flipped and it's safe
to modify page 1.

6. Go to step 2.

The great benefit of Serge's approach is that the only page that is ever actually drawn
to (as opposed to being block-copied to) is page 1. Only one page needs to be main
tained, and the complications of maintaining two separate pages vanish entirely. The
performance of Serge's approach may be better or worse than standard page flipping,
depending on whether a lot of extra work is required to maintain two pages or not. My
guess is that Serge's approach will usually be slower, owing to the considerable amount
of display-memory copying involved, and also to the double page-flip per frame. There's
no doubt, however, that Serge's approach is simpler, and the resultant display quality is
every bit as good as standard page flipping. Given page flipping's fair degree of compli
cation, this approach is a valuable tool, especially for less-experienced animation pro
grammers.

An interesting variation on Serge's approach doesn't page flip nor wait for vertical sync:

1. Set the start address to display page 0.

2. Draw to page 1.

3. Copy, via the latches, the areas that changed from the last screen to the current one
from page 1 to page 0.

4. Go to step 2.

This approach totally eliminates page flipping, which can consume a great deal of
time. The downside is that images may shear for one frame if they're only partially

Dog Hair and Dirty Rectangies ^ 497

copied when the raster beam reaches them. This approach is basically a standard dirty-
rectangle approach, except that the drawing buffer is stored in display memory, rather
than in system memory. Whether this technique is faster than drawing to system memory
depends on whether the benefit you get from the VGA's hardware, such as the Bit
Mask, the ALUs, and especially the latches (for copying the dirty rectangles) is suffi
cient to outweigh the extra display-memory accesses involved in drawing and copying,
since display memory is notoriously slow.

Finally, I'd like to point out that in any scheme that involves changing the display-
memory start address, a clever trick can potentially reduce the time spent waiting for
pages to flip. Normally, it's necessary to wait for display enable to be active, then set the
two start address registers, and finally wait for vertical sync to be active, so that you
know the new start address has taken effect. The start-address registers must never be
set around the time vertical sync is active (the new start address is accepted at either the
start or end of vertical sync on the EGAs and VGAs I'm familiar with), because it
would then be possible to load a half-changed start address (one register loaded, the
other not yet loaded), and the screen would jump for a frame. Avoiding this condition
is the motivation for waiting for display enable, because display enable is active only
when vertical sync is not active and will not become active for a long while.

Suppose, however, that you arrange your page start addresses so that they both have
a low-byte value of 0 (page 0 starts at OOOOH, and page 1 starts at 8000H, for ex
ample). Page flipping can then be done simply by setting the new high byte of the start
address, then waiting for the leading edge of vertical sync. This eliminates the need to
wait for display enable (the two bytes of the start address can never be mismatched);
page flipping will often involve less waiting, because display enable becomes inactive
long before vertical sync becomes active. Using the above approach reclaims all the
time between the end of display enable and the start of vertical sync for doing useful
work. (The steps I've given for Serge's animation approach assume that the single-byte
approach is in use; that's why display enable is never waited for.)

In the next chapter, I'll return to the original dirty-rectangle algorithm presented in
this chapter, and goose it a little with some assembly, so that we can see what dirty
rectangle animation is really made of. (Probably not dog hair...)

Optimizing Dirty-Rectangle Animation
Programming is, by and large, a linear process. One statement or instruction follows
another, in predictable sequences, with tiny building blocks strung together to make a
custom state machine. As programmers, we grow adept at this sort of idealized linear
thinking, which is, of course, A Good Thing. Still, it's important to keep in mind that
there's a large chunk of the human mind that doesn't work in a linear fashion.

I've written elsewhere about the virtues of nonlinear/right-brain/lateral/what-have-
you thinking in solving tough programming problems, such as debugging or optimiza
tion, but it bears repeating. The mind can be an awesome pattern-matching and
extrapolation tool, if you let it. For example, the other day I was grinding my way
through a particularly difficult bit of debugging. The code had been written by some
one else, and, to my mind, there's nothing worse than debugging someone else's code;
there's always the nasty feeling that you don't quite know what's going on. The overall
operation of this code wouldn't come clear in my head, no matter how long I stared at
it, leaving me with a rising sense of frustration and a determination not to quit until I
got this bug.

In the midst of this, a coworker poked his head through the door and told me he
had something I had to listen to. Reluctantly, I went to his office, whereupon he played
a tape of what is surely one of the most bizarre 911 calls in history. No doubt some of
you have heard this tape, which I will briefly describe as involving a deer destroying the
interior of a car and biting a man in the neck. Perhaps you found it funny, perhaps
not—but as for me, it hit me exactly right. I started laughing helplessly, tears rolling
down my face. When I went back to work—presto!—the pieces of the debugging
puzzle had come together in my head, and the work went quickly and easily.

Obviously, my mind needed a break from linear, left-brain, push-it-out thinking, so
it could do the sort of integrating work it does so well—but that it's rarely willing to do

500 @ Chapter 31

under conscious control. It was exactly this sort of thinking I had in mind when I titled
my 1989 optimization book Zen of Assembly Language. (Although I must admit that
few people seem to have gotten the connection, and I've had to field a lot of questions
about whether I'm a Zen disciple. I'm not—actually, I'm more of a Dave Barry dis
ciple. If you don't know who Dave Barry is, you should; he's good for your right brain.)
Give your mind a break once in a while, and I'll bet you'll find you're more productive.

We're strange thinking machines, but we're the best ones yet invented, and it's worth
learning how to up our ftdl potential. And with that, it's back to dirty-rectangle animation.

Dirty-Rectangle Animation, Continued
In the last chapter, I introduced the idea of dirty-rectangle animation. This technique
is an alternative to page flipping that's capable of producing animation of very high
visual quality, without any help at all from video hardware, and without the need for
any extra, nondisplayed video memory. This makes dirty-rectangle animation more
widely usable than page flipping, because many adapters don't support page flipping.
Dirty-rectangle animation also tends to be simpler to implement than page flipping,
because there's only one bitmap to keep track of. A final advantage of dirty-rectangle
animation is that it's potentially somewhat faster than page flipping, because display-
memory accesses can theoretically be reduced to exacdy one access for each pixel that
changes from one frame to the next.
The speed advantage of dirty-rectangle animation was entirely theoretical in the

previous chapter, because the implementation was completely in C, and because no
attempt was made to minimize display memory accesses. The visual quality of Chapter
30's animation was also less than ideal, for reasons we'll explore shortly. The code in
Listings 31.1 and 31.2 addresses the shortcomings of Chapter 30's code.

Listing 31.2 implements the low-level drawing routines in assembly language, which
boosts performance a good deal. For maximum performance, it would be worthwhile
to convert more of Listing 31.1 into assembly, so a call isn't required for each animated
image, and overall performance could be improved by streamlining the C code, but
Listing 31.2 goes a long way toward boosting animation speed. This program now
supports snappy animation of 15 images (as opposed to 10 for the software presented
in the last chapter), and the images are now two pixels wider. That level of performance
is all the more impressive considering that for this chapter I've converted the code from
using rectangular images to using masked images.

LISTING 31.1 L31-1.C
/* Sample simple d1rty-rectangle animation program, partially optimized and

featuring Internal animation, masked Images (sprites), and nonoverlapping dirty
rectangle copying. Tested with Borland C++ In the small model. */

//Include <stdl1b.h>

//Include <con1o.h>

Who Was that Masked Image? ® 501

^include <anoc.h>

#include <memory.h>

^include <dos.h>

/* Comment out to disable overlap elimination in the dirty rectangle list. */
^define CHECK_OVERLAP 1

#define SCREEN_WIDTH 320

#define SCREEN_HEIGHT 200
#define SCREEN_SE6MENT OxAOOO

/* Describes a dirty rectangle */
typedef struct {

void *Next; /* pointer to next node in linked dirty rect list */
int Top;

int Left;

int Right;

int Bottom;

} DirtyRectangle;
/* Describes an animated object

typedef struct {
int X;

int Y;

int /Direction;

int YDirection;

int InternalAnimateCount; /* tracking internal animation state */
int InternalAnimateMax; /* maximum internal animation state */

} Entity;

/* storage used for dirty rectangles */
#define MAX_DIRTY_RECTANGLES 100
int NumDirtyRectangles;

Di rtyRectangle Di rtyRectanglesCMAX_DIRTY_RECTANGLES];
/* head/tail of dirty rectangle list */
DirtyRectangle DirtyHead;
/* If set to 1, ignore dirty rectangle list and copy the whole screen. */
int DrawWholeScreen = 0;

/* pixels and masks for the two internally animated versions of the image
we'll animate */

#define IMAGE_WIDTH 13

#define IMAGE_HEIGHT 11
char ImagePixelsO[] = {

*^1

/* upper left corner in virtual bitmap */

/* direction and distance of movement */

0. 0, 0. 9. 9. 9. 9. 9. 0. 0. 0. 0. 0.

0. 0. 9. 9. 9. 9. 9. 9. 9. 0. 0. 0. 0.

0, 9, 9, 0. 0.14.14.14. 9. 9. 0. 0. 0.

9. 9. 0, 0. 0. 0.14.14.14. 9. 9. 0. 0,

9, 9, 0, 0. 0. 0.14.14.14. 9. 9. 0. 0.

9, 9,14. 0. 0.14.14.14.14. 9. 9. 0. 0.

9, 9.14.14.14.14.14.14.14. 9. 9. 0. 0.

9. 9,14.14.14.14.14.14.14. 9. 9. 0. 0.

0. 9. 9.14.14.14.14.14. 9. 9. 0. 0. 0.

0. 0. 9. 9. 9. 9. 9. 9. 9. 0. 0. 0. 0.

0, 0. 0. 9. 9. 9. 9. 9. 0. 0. 0. 0. 0.

ir ImageMaskO[] = {
0. 0, 0. 1, 1, 1. 1. 1. 0. 0. 0. 0. 0.

0. 0, 1. 1. 1. 1. 1, 1. 1. 0. 0. 0. 0.

0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0.

1. 1. 0. 0. 0. 0. 1. 1. 1. 1. 1. 0. 0.

1. 1, 0. 0. 0. 0. 1. 1. 1. 1. 1, 0. 0.

1, 1, 1. 0. 0. 1. 1. 1. 1. 1. 1. 0. 0.

1. 1. 1. 1. 1. 1, 1. 1. 1. 1. 1. 0. 0.

1. 1, 1. 1, 1, 1, 1. 1. 1. 1. 1. 0. 0.

0. 1, 1. 1, 1, 1. 1. 1, 1. 1. 0. 0. 0.

502 ^ Chapter 31

0.

0.

};

char

0.

0,

0.

9,

9,

9.

9,

9.

0.

0,

0,

0, 1. 1, 1, 1, 1. 1, 1.

0, 0. 1. 1, 1, 1, 1, 0.

ImagePixelsl[] = {

0. 0.

0,

0,

9. 9,

0, 9, 9. 9. 9

9. 9. 0. 0,14

9, 0. 0.

9. 0. 0,

9.14. 0. 0.14

9.14.14,14.14

9.14.14.14.14

9. 9.14.14.14

0. 9. 9. 9. 9

0. 0. 9. 9. 9

9. 9 9. 0.

. 9. 9. 9.

.14.14, 9.

,14,14.14.

,14,14. 0.

.14.14. 0.

.14.14. 0.

.14.14.14.

.14.14. 9.

. 9, 9. 9.

. 9. 9. 0.

0. 0.

0. 0.

0. 0.

0. 9.

9. 9.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

9. 9.

0. 9.

0. 0.

0. 0.

0. 0.

0. 9.

9. 9.

9. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

9. 0.

9. 9.

9. 9.

char ImageMasklE] = {

0. 0. 0. 1. 1. 1. 1. 1. 0, 0. 0. 0. 1.

0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1.

0. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1, 0.
1. 0. 0. 0. 0. 1. 1. 1, 0. 0. 0. 0.
1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0.

1. 1. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0.

1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0.
1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0.

0. 1. 1. 1. 1. 1. 1. 1, 1. 1. 1. 0.

0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 1, 1, 1.

0. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. 1. 1.

};

/* Pointers to pixel and mask data for various internally animated
versions of our animated image. */

char * ImagePixelArray[] = {ImagePixelsO, ImagePixelsi};
char * ImageMaskArrayC] = (ImageMaskO, ImageMaskl};
/* Animated entities */

#define NUM_ENTITIES 15
Entity Entities[NUM_ENTITIES];
/* pointer to system buffer into which we'll draw */
char far *SystemBufferPtr;

/* pointer to screen */
char far *ScreenPtr;

void EraseEntities(void);

void CopyDi rtyRectanglesToScreen(void);
void DrawEntities(void);

void AddDirtyRect(Entity *. int. int);
void DrawMaskedCchar far *. char *, char *. int. int. int);
void Fi11RectCchar far *. int. int. int. int);
void CopyRectCchar far *. char far *, int, int. int. int);

void main()

{

int i. XTemp, YTemp;
unsigned int TempCount;
char far *TempPtr;
union REGS regs;

/* Allocate memory for the system buffer into which we'll draw */
if (!(SystemBufferPtr = farmal1oc((unsigned int)SCREEN_WIDTH*

SCREEN_HEIGHT))) {

printf("Couldn't get memoryXn");
exit(l);

}

/* Clear the system buffer */
TempPtr = SystemBufferPtr;

Who Was that Masked Image? ^ 503

for (TempCount = ((unsigned)SCREEN_WIDTH*SCREEN_HEIGHT); TempCount--;) {
*TempPtr++ = 0;

}
/* Point to the screen */

ScreenPtr = MK_FP(SCREEN_SEGMENT, 0);
/* Set up the entities we'll animate, at random locations */
randomi ze();

for (i = 0; i < NUM_ENTITIES; i++) {
Entities[i].X = random(SCREEN_WIDTH - IMAGE_WIDTH);
Entities[i].Y = random(SCREEN_HEIGHT - IMAGE_HEIGHT);
Entities[i].XDirection = 1;

Entities[i].YDirection = -1;
EntitiesEi].InternalAnimateCount = i & 1;
Entities[i].InternalAnimateMax = 2;

}
/* Set the dirty rectangle list to empty, and set up the head/tail node

as a sentinel */

NumDirtyRectangles = 0;
DirtyHead.Next = &DirtyHead;
DirtyHead.Top = 0x7FFF;
DirtyHead.Left= Ox7FFF;
DirtyHead.Bottom = 0x7FFF;
DirtyHead.Right = 0x7FFF;
/* Set 320x200 256-color graphics mode */
regs.x.ax = 0x0013;

int86(0xl0. ®s. ®s);

/* Loop and draw until a key is pressed */
do {

/* Draw the entities to the system buffer at their current locations,
updating the dirty rectangle list */

DrawEntitiesC);

/* Draw the dirty rectangles, or the whole system buffer if
appropriate */

CopyDi rtyRectanglesToScreenC);
/* Reset the dirty rectangle list to empty */
NumDirtyRectangles = 0;

DirtyHead.Next = &DirtyHead;
/* Erase the entities in the system buffer at their old locations,

updating the dirty rectangle list */
EraseEntitiesC);

/* Move the entities, bouncing off the edges of the screen */
for (i = 0; i < NUM_ENTITIES; i++) {

XTemp = EntitiesEi].X + EntitiesEi].XDirection;
YTemp = EntitiesEi1.Y + EntitiesEi].YDirection;
if ((XTemp < 0) I I ((XTemp + IMAGE.WIDTH) > SCREEN_WIDTH)) {

EntitiesEi].XDirection = -EntitiesEi].XDirection;
XTemp = EntitiesEi].X + EntitiesEi].XDirection;

}
if ((YTemp < 0) || ((YTemp + IMAGE_HEIGHT) > SCREEN_HEIGHT)) {

EntitiesEi].YDirection = -EntitiesEi].YDirection;

YTemp = EntitiesEi].Y + EntitiesEi].YDirection;
}
EntitiesEi].X = XTemp;
EntitiesEi].Y = YTemp;

}

} while (IkbhitO);

getchO; /* clear the keypress */

/* Return back to text mode */
regs.x.ax = 0x0003;
int86(0xl0, ®s, ®s);

}

504 0 Chapter 31

/* Draw entities at their current locations, updating dirty rectangle list. */
void DrawEntities()

{

i nt i;

char far *RowPtrBuffer;
char *TempPtrImage;
char *TenipPtrMask;
Entity *EntityPtr;

for (i = 0, EntityPtr = Entities; i < NUM_ENTITIES; i++, EntityPtr++) {
/* Remember the dirty rectangle info for this entity */
AddDirtyRectCEntityPtr. IMAGE_HEIGHT. IMAGE_WIDTH);
/* Point to the destination in the system buffer */
RowPtrBuffer = SystemBufferPtr + (EntityPtr->Y * SCREEN_WIDTH) +

EntityPtr->X;
/* Advance the image animation pointer */
if (++EntityPtr->InternalAnimateCount >=

EntityPtr->InternalAnimateMax) {

EntityPtr->InternalAnimateCount = 0;
}

/* Point to the image and mask to draw */
TempPtrlmage = ImagePixelArray[EntityPtr->InternalAnimateCount];
TempPtrMask = ImageMaskArray[EntityPtr->InternalAnimateCount];
DrawMaskedCRowPtrBuffer, TempPtrlmage, TempPtrMask, IMAGE_HEIGHT,

IMAGE_WIDTH, SCREEN_WIDTH);

}

}

/* Copy the dirty rectangles, or the whole system buffer if appropriate,
to the screen. */

void CopyDirtyRectanglesToScreen()

{

int i, RectWidth, RectHeight;
unsigned int Offset;

DirtyRectangle * DirtyPtr;
if (DrawWholeScreen) {

/* Just copy the whole buffer to the screen */
DrawWholeScreen = 0;

CopyRectCScreenPtr, SystemBufferPtr, SCREEN_HEIGHT, SCREEN_WIDTH,
SCREEN_WIDTH, SCREEN_WIDTH);

} else {

/* Copy only the dirty rectangles, in the YX-sorted order in which
they're linked */

DirtyPtr = DirtyHead.Next;
for (i =0; i < NumDirtyRectangles; i++) {

/* Offset in both system buffer and screen of image */
Offset = (unsigned int) (DirtyPtr->Top * SCREEN_WIDTH) +

Di rtyPtr->Left;

/* Dimensions of dirty rectangle */
RectWidth = DirtyPtr->Right - DirtyPtr->Left;
RectHeight = DirtyPtr->Bottom - DirtyPtr->Top;
/* Copy a dirty rectangle */
CopyRect(ScreenPtr + Offset, SystemBufferPtr + Offset,

RectHeight, RectWidth, SCREEN_WIDTH, SCREEN_WIDTH);
/* Point to the next dirty rectangle */
DirtyPtr = DirtyPtr->Next;

}

}

}

/* Erase the entities in the system buffer at their current locations,
updating the dirty rectangle list. */

void EraseEntitiesO

Who Was that Masked Image? ^ 505

{

int i;

char far *RowPtr;

for (i = 0; i < NUM_ENTITIES; i++) {
/* Remember the dirty rectangle info for this entity */
AddDirtyRect(&Entities[i], IMAGE_HEI6HT. IMAGE_WIDTH);
/* Point to the destination in the system buffer */
RowPtr ■= SystemBufferPtr + (EntitiesCi].Y * SCREEN_WIDTH) +

Entities[i].X;
/* Clear the rectangle */
FillRectCRowPtr. IMAGE.HEIGHT, IMAGE_WIDTH. SCREEN.WIDTH, 0);

}
}
/* Add a dirty rectangle to the list. The list is maintained in top-to-bottom,

left-to-right (YX sorted) order, with no pixel ever included twice, to minimize
the number of display memory accesses and to avoid screen artifacts resulting
from a large time interval between erasure and redraw for a given object or for
adjacent objects. The technique used is to check for overlap between the
rectangle and all rectangles already in the list. If no overlap is found, the
rectangle is added to the list. If overlap is found, the rectangle is broken
into nonoverlapping pieces, and the pieces are added to the list by recursive
calls to this function. */
void AddDirtyRectCEntity * pEntity, int ImageHeight, int ImageWidth)

{
DirtyRectangle * DirtyPtr;
DirtyRectangle * TempPtr;
Entity TempEntity;
int i;
if (NumDirtyRectangles >= MAX_DIRTY_RECTANGLES) {

/* Too many dirty rectangles; just redraw the whole screen */
DrawWholeScreen = 1;
return;

}
/* Remember this dirty rectangle. Break up if necessary to avoid

overlap with rectangles already in the list, then add whatever
rectangles are left, in YX sorted order */

#ifdef CHECK_OVERLAP
/* Check for overlap with existing rectangles */
TempPtr = DirtyHead.Next;
for (i - 0; i < NumDirtyRectangles; 1++. TempPtr = TempPtr->Next) {

if ((TempPtr->Left < (pEntity->X + ImageWidth)) &&
(TempPtr->Right > pEntity->X) &&
(TempPtr->Top < (pEntity->Y + ImageHeight)) &&
(TempPtr->Bottom > pEntity->Y)) {

/* We've found an overlapping rectangle. Calculate the
rectangles, if any, remaining after subtracting out the
overlapped areas, and add them to the dirty list */

/* Check for a nonoverlapped left portion */
if (TempPtr->Left > pEntity->X) {

/* There's definitely a nonoverlapped portion at the left; add
it, but only to at most the top and bottom of the overlapping
rect; top and bottom strips are taken care of below */

TempEntity.X = pEntity->X;
TempEntity.Y = maxCpEntity->Y, TempPtr->Top);
AddDi rtyRect(&TempEntity,

min(pEntity->Y + ImageHeight, TempPtr->Bottom) -
TerapEntity.Y,

TempPtr->Left - pEntity->X);
}
/* Check for a nonoverlapped right portion */

506 ^ Chapter 31

if (TempPtr->Right < (pEntity->X + ImageWidth)) {
/* There's definitely a nonoverlapped portion at the right; add

it, but only to at most the top and bottom of the overlapping
rect; top and bottom strips are taken care of below */

TempEntity.X = TempPtr->Right;
TempEntity.Y = max(pEntity->Y, TempPtr->Top);
AddDi rtyRectC&TempEntity,

min(pEntity->Y + ImageHeight, TempPtr->Bottom) -
TempEntity.Y,
(pEntity->X + ImageWidth) - TempPtr->Right);

}

/* Check for a nonoverlapped top portion */
if (TempPtr->Top > pEntity->Y) {

/* There's a top portion that's not overlapped */
TempEntity.X = pEntity->X;
TempEntity.Y ■= pEntity->Y;
AddDirtyRect(&TempEntity, TempPtr->Top - pEntity->Y, ImageWidth);

}
/* Check for a nonoverlapped bottom portion */
if (TempPtr->Bottom < (pEntity->Y + ImageHeight)) {

/* There's a bottom portion that's not overlapped */
TempEntity.X = pEntity->X;
TempEntity.Y = TempPtr->Bottom;
AddDi rtyRect(&TempEntity,

(pEntity->Y + ImageHeight) - TempPtr->Bottom, ImageWidth);
}
/* We've added all non-overlapped portions to the dirty list */
return;

}
}

#endif /* CHECK_OVERLAP */
/* There's no overlap with any existing rectangle, so we can just

add this rectangle as-is */
/* Find the YX-sorted insertion point. Searches will always terminate,

because the head/tail rectangle is set to the maximum values */
TempPtr = &DirtyHead;
while (((DirtyRectangle *)TempPtr->Next)->Top < pEntity->Y) {

TempPtr = TempPtr->Next;
}
while ((((DirtyRectangle *)TempPtr->Next)->Top «== pEntity->Y) &&

(((DirtyRectangle *)TempPtr->Next)->Left < pEntity->X)) [
TempPtr = TempPtr->Next;

}
/* Set the rectangle and actually add it to the dirty list */
DirtyPtr = &DirtyRectangles[NumDirtyRectangles++];
DirtyPtr->Left = pEntity->X;
DirtyPtr->Top = pEntity->Y;
DirtyPtr->Right = pEntity->X + ImageWidth;
DirtyPtr->Bottom = pEntity->Y + ImageHeight;
DirtyPtr->Next = TempPtr->Next;
TempPtr->Next = DirtyPtr;

}

LISTING 31.2 L31-2.ASM
Assembly language helper routines for dirty rectangle animation. Tested with
TASM.
Fills a rectangle in the specified buffer.
C-cal1able as:
void Fi11Rect(char far * BufferPtr, int RectHeight, int RectWidth,

Who Was that Masked Image? ^ 507

int BufferWidth, int Color);

parms

.model

.code

struc

BufferPtr

RectHeight

RectWidth

BufferWidth

Col or

parms ends
publ1c

_F111Rect

eld

push
mov

push

1 es

mov

mov

sub

mov

mov

RowLoop:
mov

shr

rep

ado

rep

add

dec

jnz

smal 1

dw

dw

dd

dw

dw

dw

dw

;pushed BP
;pushed return address
;far pointer to buffer in which to fill
;height of rectangle to fill
;width of rectangle to fill

;width of buffer in which to fill

;color with which to fill

_FillRect

proc near

bp
bp.sp
di

di,[bp+BufferPtr]
dx,[bp+RectHeight]
bx.[bp+BufferWidth]
bx,[bp+RectWidth]

al.byte ptr [bp+Color]
ah ,al

cx,[bp+RectWidth]
cx,l

stosw

cx,cx

stosb

di ,bx

dx

RowLoop

;distance from end of one dest scan

; to start of next

;double the color for REP STOSW

;point to next scan to fill
;count down rows to fill

pop

pop

ret

_FillRect endp

di

bp

Draws a masked image (a sprite
void DrawMasked(char far *

int ImageHei

parms2 struc

) to the specified buffer. C-callable as:
BufferPtr. char * Pixels, char * Mask,

ght, int ImageWidth, int BufferWidth);

dw ? pushed BP
dw ? pushed return address

BufferPtrZ dd ? far pointer to buffer in

Pixels dw 7 pointer to image pixels

Mask dw ? pointer to image mask

ImageHei ght dw 7 height of image to draw

ImageWi dth dw 7 width of image to draw

BufferWidth2 dw 7 width of buffer in which

parms2 ends
publi c _DrawMasked

_DrawMasked proc near

eld

push bp

mov bp.sp
push si

push di

^ unapwrji

1 es d1,[bp+BufferPtr2]
mov si,[bp+Mask]
mov bx,[bp+Plxels]
mov dx,[bp+ImageHe1ght]
mov ax,[bp+BufferW1dth2]
sub ax,[bp+ImageWldth] ;d1stance from end of one dest

mov [bp+BufferW1dth2],ax ; to start of next

RowLoop2:
mov cx,[bp+ImageWldth]

ColumnLoop:
1 odsb ;get the next mask byte
and al .al ;draw this pixel?
Jz SklpPlxel ;no

mov al,[bx] ;yes, draw the pixel
mov es: [d1],al

SkipPlxel:
1 nc bx ;point to next source pixel
Inc d1 ;point to next dest pixel
dec cx

jnz ColumnLoop
add d1,[bp+BufferW1dth2] ipoint to next scan to fill

dec dx ;count down rows to fill

jnz RowLoop2

pop d1

pop si

pop bp
ret

_DrawMasked endp

Copies a rectangle from one buffer to another. C-callable as:
void CopyRect(DestBufferPtr, SrcBufferPtr. CopyHeight, CopyWidth,

DestBufferWidth, SrcBufferWidth);

parms3 struc

dw ? pushed BP
dw ? pushed return address

DestBufferPtr dd ? far pointer to buffer to which to copy
SrcBufferPtr dd ? far pointer to buffer from which to copy
CopyHeight dw ? height of rect to copy
CopyWIdth dw ? width of rect to copy
DestBufferWidth dw ? width of buffer to which to copy
SrcBufferWidth dw ? width of buffer from which to copy
parms3 ends

publ1c _CopyRect
_CopyRect proc near

eld

push bp
mov bp,sp
push
push
push

SI

di

ds

1es d1,[bp+DestBufferPtr]
Ids si,[bp+SrcBufferPtr]
mov dx,[bp+CopyHelght]
mov bx,[bp+DestBufferWIdth]
sub bx,[bp+CopyWIdth]
mov ax,[bp+SrcBufferW1dth]
sub ax,[bp+CopyW1dth]

;d1stance from end of one dest scan

; of copy to the next
;d1stance from end of one source scan

: of copy to the next

Who Was that Masked Image? ^ 509

RowLoop3:
mov ex,[bp+CopyWi dth] ;# of bytes to copy

shr cx,l

rep movsw ;copy as many words as possible

adc ex. ex

rep movsb ;copy odd byte, if any

add si ,ax ;point to next source scan line

add di ,bx ;point to next dest scan line

dec dx •.count down rows to fill

jnz RowLoopS

pop ds

pop di

pop si

pop bp

ret

:t endp
end

Masked Images
Masked images are rendered by drawing an objects pixels through a mask; pixels are
actually drawn only where the mask specifies that drawing is allowed. This makes it
possible to draw nonrectangular objects that don't improperly interfere with one another
when they overlap. Masked images also make it possible to have transparent areas (win
dows) within objects. Masked images produce far more realistic animation than do
rectangular images, and therefore are more desirable. Unfortunately, masked images
are also considerably slower to draw—^however, a good assembly language implementation
can go a long way toward making masked images draw rapidly enough, as illustrated
by this chapter's code. (Masked images are also known as sprites; some video hardware
supports sprites directly, but on the PC it's necessary to handle sprites in software.)

Masked images make it possible to render scenes so that a given image convincingly
appears to be in front of or behind other images; that is, so images are displayed in z-
order (by distance). By consistently drawing images that are supposed to be farther
away before drawing nearer images, the nearer images will appear in front of the other
images, and because masked images draw only precisely the correct pixels (as opposed
to blank pixels in the bounding rectangle), there's no interference between overlapping
images to destroy the illusion.

In this chapter, I've used the approach of having separate, paired masks and images.
Another, quite different approach to masking is to specify a transparent color for copy
ing, and copy only those pixels that are not the transparent color. This has the advan
tage of not requiring separate mask data, so it's more compact, and the code to implement
this is a little less complex than the full masking I've implemented. On the other hand,
the transparent color approach is less flexible because it makes one color undrawable.
Also, with a transparent color, it's not possible to keep the same base image but use
different masks, because the mask information is embedded in the image data.

510 0 Chapter 31

Internal Animation

IVe added another feature essential to producing convincing animation: internal animation,
which is the process of changing the appearance of a given object over time, as distin
guished from changing only the location of a given object. Internal animation makes
images look active and alive. I've implemented the simplest possible form of internal
animation in Listing 31.1—alternation between two images—but even this level of
internal animation greatly improves the feel of the overall animation. You could easily
increase the number of images cycled through, simply by increasing the value of
InternalAnimateMax for a given entity. You could also implement more complex im
age-selection logic to produce more interesting and less predictable internal-animation
effects, such as jumping, ducking, running, and the like.

Dirty-Rectangle Management
As mentioned above, dirty-rectangle animation makes it possible to access display
memory a minimum number of times. The previous chapter's code didn't do any of
that; instead, it copied all portions of every dirty rectangle to the screen, regardless of
overlap between rectangles. The code I've presented in this chapter goes to the other
extreme, taking great pains never to draw overlapped portions of rectangles more than
once. This is accomplished by checking for overlap whenever a rectangle is to be added
to the dirty list. When overlap with an existing rectangle is detected, the new rectangle
is reduced to between zero and four nonoverlapping rectangles. Those rectangles are
then again considered for addition to the dirty list, and may again be reduced, if addi
tional overlap is detected.
A good deal of code is required to generate a fully nonoverlapped dirty list. Is it

worth it? It certainly can be, but in the case of Listing 31.1, probably not. For one
thing, you'd need larger, heavily overlapped objects for this approach to pay off big.
Besides, this program is mostly in C, and spends a lot of time doing things other than
actually accessing display memory. It also takes a fair amount of time just to generate
the nonoverlapped list; the overhead of all the looping, intersecting, and calling re
quired to generate the list eats up a lot of the benefits of accessing display memory less
often. Nonetheless, fully nonoverlapped drawing can be useful under the right circum
stances, and I've implemented it in Listing 31.1 so you'll have something to refer to
should you decide to go this route.

There are a couple of additional techniques you might try if you want to wring
maximum performance out of dirty-rectangle animation. You could try coalescing rect
angles as you generate the dirty-rectangle list. That is, you could detect pairs of rect
angles that can be joined together into larger rectangles, so that fewer, larger rectangles
would have to be copied. This would boost the efficiency of the low-level copying
code, albeit at the cost of some cycles in the dirty-list management code.

Who Was that Masked Image? ^ 511

You might also try taking advantage of the natural coherence of animated graphics
screens. In particular, because the rectangle used to erase an image at its old location
often overlaps the rectangle within which the image resides at its new location, you
could just directly generate the two or three nonoverlapped rectangles required to copy
both the erase rectangle and the new-image rectangle for any single moving image. The
calculation of these rectangles could be very efficient, given that you know in advance
the direction of motion of your images. Handling this particular overlap case would
eliminate most overlapped drawing, at a minimal cost. You might then decide to ig
nore overlapped drawing between different images, which tends to be both less com
mon and more expensive to identify and handle.

Drawing Order and Visual Quality
A final note on dirty-rectangle animation concerns the quality of the displayed screen
image. In the last chapter, we simply stuffed dirty rectangles into a list in the order they
became dirty, and then copied all of the rectangles in that same order. Unfortunately,
this caused all of the erase rectangles to be copied first, followed by all of the rectangles
of the images at their new locations. Consequently, there was a significant delay be
tween the appearance of the erase rectangle for a given image and the appearance of the
new rectangle. A byproduct was the fact that a partially complete—part old, part new—
image was visible long enough to be noticed. In short, although the pixels ended up
correct, they were in an intermediate, incorrect state for a sufficient period of time to
make the animation look wrong.

This violated a fundamental rule of animation: No pixel should ever be displayed in a
perceptibly incorrect state. To correct the problem, I've sorted the dirty rectangles first by
Y coordinate, and secondly by X coordinate. This means the screen updates from the
top down, and from left to right, so the several nonoverlapping rectangles copied to
draw a given image should be drawn nearly simultaneously. Run the code from the last
chapter and then this chapter; you'll see quite a difference in appearance.

Avoid the trap of thinking animation is merely a matter of drawing the right pixels,
one after another. Animation is the art of drawing the right pixels at the right times so
that the eye and brain see what you want them to see. Animation is a lot more chal
lenging than merely cranking out pixels, and it sure as heck isn't a purely linear process.

Introducing the VGA's Undocumented
"Animation-Optimal" Mode

At a recent book signing for my book Zen of Code Optimization, an attractive young
woman came up to me, holding my book, and said, "You're Michael Abrash, aren't
you?" I confessed that I was, prepared to respond in an appropriately modest yet proud
way to the compliments I was sure would follow. (It was my own book signing, after
all.) It didn't work out quite that way, though. The first thing out of her mouth was:
'"Mode X' is a stupid name for a graphics mode." As my jaw started to drop, she

added, "And you didn't invent the mode, either. My husband did it before you did."
And they say there are no groupies in programming!
Well. I never claimed that I invented the mode (which is a 320x240 256-color

mode with some very special properties, as we'll see shortly). I did discover it independendy,
but so did other people in the game business, some of them no doubt before I did. The
difference is that all those other people held onto this powerful mode as a trade secret,
while I didn't; instead, I spread the word as broadly as I could in my column in Dr. Dobb's
Journal, on the theory that the more people knew about this mode, the more valuable
it would be. And I succeeded, as evidenced by the fact that this now widely-used mode
is universally known by the name I gave it in DDJ, "Mode X." Neither do I think thats
a bad name; it's short, catchy, and easy to remember, and it befits the mystery status of
this mode, which was omitted entirely from IBM's documentation of the VGA.

In fact, when all is said and done. Mode X is one of my favorite accomplishments. I
remember reading that Charles Schultz, creator of "Peanuts," was particularly proud of
having introduced the phrase "security blanket" to the English language. I feel much
the same way about Mode X; it's now a firmly-entrenched part of the computer lexicon,
and how often do any of us get a chance to do that? And that's not to mention all the
excellent games that would not have been as good without Mode X.

514 ® Chapter 32

So, in the end, Fm thoroughly pleased with Mode X; the world is a better place for
it, even if it did cost me my one potential female fan. (Contrary to popular belief, the
lives of computer columnists and rock stars are not, repeat, not, all that similar.) This
and the following two chapters are based on the DD/columns that started it all back in
1991, three columns that generated a tremendous amount of interest and spawned a
ton of games, and about which I still regularly get letters and e-mail. Ladies and gentle
men, I give you...Mode X.

What Makes Mode X Special?
Consider the strange case of the VGA's 320x240 256-color mode—Mode X—^which
is undeniably complex to program and isn't even documented by IBM—but which is,
nonetheless, perhaps the single best mode the VGA has to offer, especially for animation.

We've seen the VGA's undocumented 256-color modes, in Chapters 9 and 10, but now
it's time to delve into the wonders of Mode X itself. (Most of the performance tips I'll
discuss for this mode also apply to the other non-standard 256-color modes, however.)
Five features set Mode X apart from other VGA modes. First, it has a 1:1 aspect ratio,
resulting in equal pixel spacing horizontally and vertically (that is, square pixels). Square
pixels make for the most attractive displays, and avoid considerable programming ef
fort that would otherwise be necessary to adjust graphics primitives and images to
match the screen's pixel spacing. (For example, with square pixels, a circle can be drawn
as a circle; otherwise, it must be drawn as an ellipse that corrects for the aspect ratio—
a slower and considerably more complicated process.) In contrast, mode 13H, the only
documented 256-color mode, provides a nonsquare 320x200 resolution.

Second, Mode X allows page flipping, a prerequisite for the smoothest possible ani
mation. Mode 13H does not allow page flipping, nor does mode 12H, the VGA's
high-resolution 640x480 l6-color mode.

Third, Mode X allows the VGA's plane-oriented hardware to be used to process
pixels in parallel, improving performance by up to four times over mode 13H.

Fourth, like mode 13H but unlike all other VGA modes. Mode X is a byte-per-pixel
mode (each pixel is controlled by one byte in display memory), eliminating the slow
read-before-write and bit-masking operations often required in 16-color modes, where
each byte of display memory represents more than a single pixel. In addition to cutting
the number of memory accesses in half, this is important because the 486/Pentium
write FIFO and the memory caching schemes used by many VGA clones speed up
writes more than reads.

Fifth, unlike mode 13H, Mode X has plenty of offscreen memory free for image
storage. This is particularly effective in conjunction with the use of the VGA's latches;
together, the latches and the off-screen memory allow images to be copied to the screen
four pixels at a time.

Mode X:256-Color VGA Magic ® 515

There's a sixth feature of Mode X that's not so terrific: It's hard to program effi
ciently. As Part I of this book demonstrates, 16-color VGA programming can be de
manding. Mode X is often as demanding as 16-color programming, and operates by a
set of rules that turns everything you've learned in 16-color mode sideways. Program
ming Mode X is nothing like programming the nice, flat bitmap of mode 13H, or, for
that matter, the flat, linear (albeit banked) bitmap used by 256-color SuperVGA modes.
(I't's important to remember that Mode X works on a// VGAs, not just SuperVGAs.)
Many programmers 1 talk to love the flat bitmap model, and think that it's the ideal
organization for display memory because it's so straightforward to program. Here, how
ever, the complexity of Mode X is opportunity—opportunity for the best combination
of performance and appearance the VGA has to offer. If you do 256-color program
ming, and especially if you use animation, you're missing the boat if you're not using
ModeX.

Although some developers have taken advantage of Mode X, its use is certainly not
universal, being entirely undocumented; only an experienced VGA programmer would
have the slightest inkling that it even exists, and figuring out how to make it perform
beyond the write pixel/read pixel level is no mean feat. Little other than my DD/
columns has been published about it, although John Bridges has widely distributed his
code for a number of undocumented 256-color resolutions, and I'd like to acknowl

edge the influence of his code on the mode set routine presented in this chapter.
Given the tremendous advantages of Mode X over the documented mode 13H, I'd

very much like to get it into the hands of as many developers as possible, so I'm going
to spend the next few chapters exploring this odd but worthy mode. I'll provide mode
set code, delineate the bitmap organization, and show how the basic write pixel and
read pixel operations work. Then, I'll move on to the magic stuff: rectangle fills, screen
clears, scrolls, image copies, pixel inversion, and, yes, polygon fills (just a different
driver for the polygon code), all blurry fast; hardware raster ops; and page flipping. In
the end, I'll build a working animation program that shows many of the features of
Mode X in action.

The mode set code is the logical place to begin.

Selecting 320x240 256-ColGr Mode
We could, if we wished, write our own mode set code for Mode X from scratch—but

why bother? Instead, we'll let the BIOS do most of the work by having it set up mode
13H, which we'll then turn into Mode X by changing a few registers. Listing 32.1 does
exactly that.
The code in Listing 32.1 has been around for some time, and the very first version

had a bug that serves up an interesting lesson. The original DD/version made images
roll on IBM's fixed-frequency VGA monitors, a problem that didn't come to my atten
tion until the code was in print and shipped to 100,000 readers.

516 @ Chapter 32

The bug came about this way: The code I modified to make the Mode X mode set
code used the VGAs 28-MHz clock. Mode X should have used the 25-MHz clock, a

simple matter of setting bit 2 of the Miscellaneous Output register (3C2H) to 0 in
stead of 1.

Alas, I neglected to change that single bit, so frames were drawn at a faster rate than
they should have been; however, both of my monitors are multifrequency types, and
they automatically compensated for the faster frame rate. Consequently, my clock-
selection bug was invisible and innocuous—until it was distributed broadly and every
body started banging on it.
IBM makes only fixed-frequency VGA monitors, which require very specific frame

rates; if they don t get what you've told them to expect, the image rolls. The corrected
version is the one shown here as Listing 32.1; it does select the 25-MHz clock, and
works just fine on fixed-frequency monitors.
Why didn't I catch this bug? Neither I nor a single one of my testers had a fixed-

frequency monitor! This nicely illustrates how difficult it is these days to test code in all
the PC-compatible environments in which it might run. The problem is particularly
severe for small developers, who can't afford to buy every model of every hardware
component from every manufacturer; just imagine trying to test network-aware soft
ware in all possible configurations!
When people ask why software isn't bulletproof; why it crashes or doesn't coexist

with certain programs; why PC clones aren't always compatible; why, in short, the
myriad irritations of using a PC exist—this is a big part of the reason. I guess that's just
the price we pay for the unfettered creativity and vast choice of the PC market.

LISTING 32.1 L32-1.A$M
Mode X (320x240, 256 colors) mode set routine. Works on all VGAs.
★★**

* Revised 6/19/91 to select correct clock; fixes vertical roll *

* problems on fixed-frequency (IBM 851X-type) monitors. *
**

C near-callable as:

void Set320x240Mode(void);

Tested with TASM

Modified from public-domain mode set code by John Bridges.

SC_INDEX equ 03c4h ;Sequence Controller Index
CRTC_INDEX equ 03d4h ;CRT Controller Index
MISC_OUTPUT equ 03c2h ;Miseel 1aneous Output register
SCREEN_SEG equ OaOOOh ;segment of display memory in mode X

.model small

.data

; Index/data pairs for CRT Controller registers that differ between
; mode 13h and mode X.

CRTParms label word

dw 00d06h ;vertical total

dw 03e07h ;overflow (bit 8 of vertical counts)
dw 04109h ;cell height (2 to double-scan)

dw OealOh ;v sync start

Mode X:256-Color VGA Magic ® 517

dw Oacllh ;v sync end and protect cr0-cr7

dw 0dfl2h ;vertical displayed
dw 00014h ;turn off dword mode

dw 0e715h ;v blank start

dw ooeish ;v blank end

dw 0e317h ;turn on byte mode

LLENGTH equ (($-CRTParms)/2)

.code

public _Set320x240Mode
_Set320x240Mode proc near

push bp ;preserve caller's stack frame
push si ;preserve C register vars

push di ; (don't count on BIOS preserving anything)

mov ax,13h ;let the BIOS set standard 256-color

int lOh ; mode (320x200 linear)

mov dx,SC_INDEX

mov ax,0604h

out dx.ax ;disable chain4 mode

mov ax.OlOOh

out dx,ax ;synchronous reset while setting Misc Output
; for safety, even though clock unchanged

mov dx.MISC_OUTPUT

mov al,0e3h

out dx,al ;select 25 MHz dot clock & 60 Hz scanning rate

mov dx,SC_INDEX

mov ax,0300h

out dx,ax ;undo reset (restart sequencer)

mov dx,CRTC_INDEX ;reprogram the CRT Controller
mov al.llh ;VSync End reg contains register write

out dx.al ; protect bit
inc dx ;CRT Controller Data register

in al,dx ;get current VSync End register setting

and al,7fh ;remove write protect on various
out dx.al ; CRTC registers

dec dx :CRT Controller Index

eld

mov si,offset CRTParms ;point to CRT parameter table
mov cx,CRT_PARM_LENGTH ;# of table entries

SetCRTParmsLoop:

lodsw ;get the next CRT Index/Data pair
out dx,ax ;set the next CRT Index/Data pair
loop SetCRTParmsLoop

mov dx,SC_INDEX

mov ax,0f02h

out dx,ax ;enable writes to all four planes
mov ax,SCREEN_SEG ;now clear all display memory, 8 pixels
mov es,ax ; at a time

sub di,di ;point ES:DI to display memory
sub ax,ax ;clear to zero-value pixels
mov cx.BOOOh ;# of words in display memory
rep stosw ;clear all of display memory

pop di ;restore C register vars
pop si
pop bp ;restore caller's stack frame

518 @ Chapter 32

ret

_Set320x240Mode endp
end

After setting up mode 13H, Listing 32.1 alters the vertical counts and timings to
select 480 visible scan lines. (There's no need to alter any horizontal values, because
mode 13H and Mode X both have 320-pixel horizontal resolutions.) The Maximum
Scan Line register is programmed to double scan each line (that is, repeat each scan line
twice), however, so we get an effective vertical resolution of240 scan lines. It is, in fact,
possible to get 400 or 480 independent scan lines in 256-color mode, as discussed in
Chapter 9 and 10; however, 400-scan-line modes lack square pixels and can't support
simultaneous offscreen memory and page flipping. Furthermore, 480-scan-line modes
lack page flipping altogether, due to memory constraints.

At the same time. Listing 32.1 programs the VGA's bitmap to a planar organization
that is similar to that used by the l6-color modes, and utterly different from the linear
bitmap of mode 13H. The bizarre bitmap organization of Mode X is shown in Figure
32.1. The first pixel (the pixel at the upper left corner of the screen) is controlled by the
byte at offset 0 in plane 0. (The one thing that Mode X blessedly has in common with
mode 13H is that each pixel is controlled by a single byte, eliminating the need to

and eo on in

Incremente of 4...

Pixal 0 Pixel 4 Pixel 5 Pixell2

and eo on in

increments of 4...

PixelsPixell

Pixel 2 I Pixel 6] Pixel 10 and eo on in

increments of 4...

Pixel 14

Plane 2

Screen

Pixel 3 Pixel 7 Pixel 11 and so on in

increments of 4...

Figure 32.1 Mode X Display Memory Organization

Mode X:256-Color VGA Magic ® 519

mask out individual bits of display memory.) The second pixel, immediately to the
right of the first pixel, is controlled by the byte at offset 0 in plane 1. The third pixel
comes from offset 0 in plane 2, and the fourth pixel from offset 0 in plane 3. Then, the
fifth pixel is controlled by the byte at offset 1 in plane 0, and that cycle continues, with
each group of four pixels spread across the four planes at the same address. The offset M of
pixel N in display memory is M = N/4, and the plane P of pixel N is P = N mod 4. For
display memory writes, the plane is selected by setting bit P of the Map Mask register
(Sequence Controller register 2) to 1 and all other bits to 0; for display memory reads,
the plane is selected by setting the Read Map register (Graphics Controller register 4) to P.

It goes without saying that this is one ugly bitmap organization, requiring a lot of
overhead to manipulate a single pixel. The write pixel code shown in Listing 32.2 must
determine the appropriate plane and perform a 16-bit OUT to select that plane for
each pixel written, and likewise for the read pixel code shown in Listing 32.3. Calculating
and mapping in a plane once for each pixel written is scarcely a recipe for performance.

That's all right, though, because most graphics software spends little time drawing
individual pixels. I've provided the write and read pixel routines as basic primitives,
and so you'll understand how the bitmap is organized, but the building blocks of high-
performance graphics software are fills, copies, and bitblts, and it's there that Mode X
shines.

LISTING 32.2 L32-2.ASM
Mode X (320x240, 256 colors) write pixel routine. Works on all VGAs.
No clipping Is performed.
C near-callable as:

void WritePlxelXdnt X, Int Y, unsigned Int PageBase, Int Color);

SC_INDEX equ 03c4h ;Sequence Controller Index

MAP_MASK equ 02h ;1ndex In SC of Map Mask register

SCREEN_SEG equ OaOOOh ;segment of display memory In mode X

SCREEN_WIDTH equ 80 ;w1dth of screen In bytes from one scan line
; to the next

parms struc

dw

X dw

y dw

PageBase dw

Col or

parms

dw

ends

2 dup (?)
?

?

?

;pushed BP and return address
;X coordinate of pixel to draw
;Y coordinate of pixel to draw
;base offset In display memory of page In
; which to draw pixel
;color In which to draw pixel

.model small

.code

public _Wr1teP1xelX
_Wr1teP1xelX proc near

push bp
mov bp.sp

;preserve caller's stack frame
;po1nt to local stack frame

mov ax.SCREEN_WIDTH

520 ^ Chapter 32

mul

mov

shr

shr

add

add

mov

mov

mov

and

mov

shl

mov

out

mov

mov

pop

ret

_WritePixelX

end

[bp+Y]
bx,[bp+X]
bx.l

bx,l

bx,ax

bx,[bp+PageBase]
ax,SCREEN_SEG

es ,ax

c1,byte ptr [bp+X]
cl,011b

ax,0100h + MAP_MASK

ah,cl

dx,SC_INDEX

dx,ax

al,byte ptr [bp+Color]
es:[bx] ,al

bp

endp

;offset of pixel's scan line in page

;X/4 = offset of pixel in scan line
;offset of pixel in page
;offset of pixel in display memory

;point ES:BX to the pixel's address

;CL = pixel's piane
;AL =■ index in SC of Map Mask reg
;set only the bit for the pixel's plane to 1
;set the Map Mask to enable only the
; pixel's plane

;draw the pixel in the desired color

irestore caller's stack frame

LISTING 32.3 L32-3.ASM
Mode X (320x240, 256 colors) read pixel routine. Works on all VGAs.
No clipping is performed.
C near-callable as:

unsigned int ReadPixelXCint X, int Y, unsigned int PageBase);

GC_INDEX equ OSceh ;Graphics Controller Index
READ_MAP equ 04h ;index in GO of the Read Map register
SCREEN_SEG equ OaOOOh ;segment of display memory in mode X
SCREEN_WIDTH equ 80 ;width of screen in bytes from one scan line

; to the next
parms struc

dw 2 dup (?) ;pushed BP and return address
X dw ? ;X coordinate of pixel to read
Y dw 7 ;Y coordinate of pixel to read
PageBase dw ? ;base offset in display memory of page from

; which to read pixel
parms ends

.model smal 1

.code
publi c _ReadPixelX

_ReadPixelX proc near

push bp ;preserve caller's stack frame
mov bp,sp ;point to local stack frame

mov ax,SCREEN_WIDTH
mul [bp+Y] ;offset of pixel 's scan line in page
mov bx,[bp+X]
shr bx,l
shr bx,l ;X/4 = offset of pixel in scan line
add bx,ax ;offset of pixel in page
add bx,[bp+PageBase] ;offset of pixel in display memory

Mode X:256-Color VGA Magic ® 521

mov ax,SCREEN_SEG

mov es ,ax ;point ES:BX to the pixel's address

mov ah,byte ptr [bp+X]
and ah,011b ;AH = pixel's piane

mov al,READ_MAP ;AL =■ index in GO of the Read Map reg
mov dx,GC_INDEX ;set the Read Map to read the pixel's
out dx,ax ; plane

mov al,es:[bx] ;read the pixel's color
sub ah ,ah ;convert it to an unsigned int

pop bp ;restore caller's stack frame
ret

ReadPixelX endp
end

Designing from a Mode X Perspective
Listing 32.4 shows Mode X rectangle fill code. The plane is selected for each pixel in
turn, with drawing cycling from plane 0 to plane 3, then wrapping back to plane 0.
This is the sort of code that stems from a write-pixel line of thinking; it reflects not a
whit of the unique perspective that Mode X demands, and although it looks reason
ably efficient, it is in fact some of the slowest graphics code you will ever see. IVe
provided Listing 32.4 partly for illustrative purposes, but mostly so we'll have a point
of reference for the substantial speed-up that's possible with code that's designed from
a Mode X perspective.

LISTING 32.4 L32-4.ASM
Mode X (320x240, 256 colors) rectangle fill routine. Works on all
VGAs. Uses slow approach that selects the plane explicitly for each
pixel. Fills up to but not including the column at EndX and the row
at EndY. No clipping is performed.
C near-callable as:

void Fi11RectangleX(int StartX, int StartV, int EndX, int EndY,
unsigned int PageBase, int Color);

SC_INDEX equ 03c4h ;Sequence Controller Index
MAP.MASK equ 02h :;index in SC of Map Mask register
SCREEN..SEG equ OaOOOh :;segment of display memory in mode X
SCREEN..WIDTH equ 80 :;width of screen in bytes from one scan line

; to the next

parms struc

dw 2 dup (?) pushed BP and return address
StartX dw ? X coordinate of upper left corner of rect
StartY dw ? Y coordinate of upper left corner of rect
EndX dw ? X coordinate of lower right corner of rect

(the row at EndX is not filled)

EndY dw ? Y coordinate of lower right corner of rect
(the column at EndY is not filled)

PageBase dw ? base offset in display memory of page in
which to fill rectangle

Col or dw ? color in which to draw pixel

522 ® Chapter 32

parms ends

.model smal 1

. code

publi c _F111RectangleX
_Fi11Rectangl eX proc near

push bp ;preserve caller's stack frame
mov bp.sp ;point to local stack frame
push si ;preserve caller's register variables
push di

mov ax,SCREEN_WIDTH

mul [bp+StartY] ;offset in page of top rectangle scan line
mov di,[bp+StartX]
shr di ,1

shr di ,1 ;X/4 = offset of first rectangle pixel in scan
; line

add di ,ax ;offset of first rectangle pixel in page
add di,[bp+PageBase] ;offset of first rectangle pixel in

; display memory
mov ax.SCREEN_SEG

mov es,ax .•point ES:DI to the first rectangle pixel's
; address

mov dx.SC_INDEX ;set the Sequence Controller Index to
mov al,MAP_MASK ; point to the Map Mask register
out dx,al

i no dx :point DX to the SC Data register
mov cl.byte ptr [bp+StartX]

' and cl.011b ;CL = first rectangle pixel's plane
mov al,01h

shl al .cl ;set only the bit for the pixel's plane to 1
mov ah.byte ptr [bp+Color] ;col or with which to fill

mov bx.[bp+EndV]
sub bx.[bp+StartY] ;BX = height of rectangle
jle Fil1 Done ;skip if 0 or negative height
mov si.[bp+EndX]
sub si.[bp+StartX] ;CX =■ width of rectangle
Jle Fil1 Done ;skip if 0 or negative width

Fi11 Rows Loop:
push ax ;remember the plane mask for the left edge
push di jremember the start offset of the scan line
mov ex.si ;set count of pixels in this scan line

Fi11ScanlineLoop:
out dx.al ;set the plane for this pixel
mov es:[di] .ah ;draw the pixel
shl al .1 ;adjust the plane mask for the next pixel 's
and al.01111b ; bit. modulo 4
jnz AddressSet ;advance address if we turned over from
1 no di ; plane 3 to plane 0
mov al .00001b ;set plane mask bit for plane 0

AddressSet:
1 oop Fi11Scanli neloop
pop di ;retrieve the start offset of the scan line
add di.SCREEN_WIDTH ;point to the start of the next scan

; line of the rectangle
pop ax ;retrieve the plane mask for the left edge
dec bx :count down scan lines
jnz Fi11 Rows Loop

FI11 Done:
pop di ;restore caller's register variables
pop si

Mode X:256-Color VGA Magic ^ 523

pop bp ;restore caller's stack frame
ret

_Fi11RectangleX endp

end

The two major weaknesses of Listing 32.4 both result from selecting the plane on a
pixel by pixel basis. First, endless OUTs (which are particularly slow on 386s, 486s,
and Pentiums, much slower than accesses to display memory) must be performed, and,
second, REP STOS cant be used. Listing 32.5 overcomes both these problems by
tailoring the fill technique to the organization of display memory. Each plane is filled
in its entirety in one burst before the next plane is processed, so only five OUTs are
required in all, and REP STOS can indeed be used; I've used REP STOSB in Listings
32.5 and 32.6. REP STOSW could be used and would improve performance on most
VGAs; however, REP STOSW requires extra overhead to set up, so it can be slower for
small rectangles, especially on 8-bit VGAs. Note that doing an entire plane at a time
can produce a "fading-in" effect for large images, because all columns for one plane are
drawn before any columns for the next. If this is a problem, the four planes can be
cycled through once for each scan line, rather than once for the entire rectangle.

Listing 32.5 is 2.5 times faster than Listing 32.4 at clearing the screen on a 20-MHz
cached 386 with a Paradise VGA. Although Listing 32.5 is slightly slower than an
equivalent mode 13H fill routine would be, it's not grievously so.

In general, performing plane-^t-^'time operatione can make almoet
any Mode X operation, at the woret, nearly ae faet ae the eame
operation in mode 15H (although thie eort of Mode X programming
ie admittedly fairly complex), in thie pureuit, it can help to organize
data etructuree with Mode X in mind. For example, icone could he
prearranged in eyetem memory with the pixeie organized into four
plane-oriented eete (or, again, in four eete per ecan line to avoid a
fading-in effect) to facilitate copying to the ecreen a plane at a
time with RBF M0V3.

LISTING 32.5 L32-5.ASIVI
Mode X (320x240, 256 colors) rectangle fill routine. Works on all
VGAs. Uses medium-speed approach that selects each plane only once
per rectangle; this results in a fade-in effect for large
rectangles. Fills up to but not including the column at EndX and the
row at EndY. No clipping is performed.
C near-callable as:

void Fil1RectangleXCint StartX, int StartV, int EndX. int EndY,
unsigned int PageBase, int Color);

SC_INDEX equ 03c4h ;Sequence Controller Index

524 @ Chapter 32

MAP_MASK equ 02h ;;Index In SC of Map Mask register
SCREEN_SEG equ GaOOOh ;:segment of display memory In mode X
SCREEN_WIDTH equ 8G i:width of screen In bytes from one scan line

: to the next

parms struc

dw 2 dup (?) pushed BP and return address
StartX dw ? X coordinate of upper left corner of rect
StartV dw ? Y coordinate of upper left corner of rect
EndX dw ? X coordinate of lower right corner of rect

(the row at EndX Is not filled)

EndV dw ? Y coordinate of lower right corner of rect

(the column at EndY Is not filled)

PageBase dw ? base offset In display memory of page In
which to fill rectangle

Col or dw ? color In which to draw pixel
parms ends

StartOffset equ -2 ;local storage for start offset of rectangle
Width equ -4 :;local storage for address width of rectangle
Height equ -6 ;;local storage for height of rectangle
PIanelnfo equ -8 ;local storage for plane # and plane mask
STACK_FRAME_SIZE equ 8

.model small

.code

public _F111Rectangl eX
_F111RectangleX proc near

push bp
mov bp,sp
sub sp,STACK_FRAME_SIZE
push si
push di

;preserve caller's stack frame

;point to local stack frame
;allocate space for local vars
;preserve caller's register variables

eld

mov ax,SCREEN_WIDTH

mul [bp+StartY]
mov d1.[bp+StartX]
shr d1,l

shr d1,l

add d1,ax

add d1,[bp+PageBase]

mov ax,SCREEN_SEG

mov es,ax

mov [bp+StartOffset],d1

mov dx.SC_INDEX

mov al.MAP_MASK

out dx.al

mov bx,[bp+Endy]
sub bx,[bp+StartV]
jle Fill Done

mov [bp+Helght],bx
mov dx,[bp+EndX]
mov ex.[bp+StartX]
cmp dx.cx

jle Fill Done

dec dx

and cx,not Glib

sub dx.cx

;offset In page of top rectangle scan line

;X/4 = offset of first rectangle pixel In scan
; 11 ne

;offset of first rectangle pixel In page
;offset of first rectangle pixel In
; display memory

;po1nt ES:DI to the first rectangle pixel's
; address

;set the Sequence Controller Index to
; point to the Map Mask register

;BX = height of rectangle

-.skip if 0 or negative height

;sk1p If 0 or negative width

Mode X:256-Color VGA Magic ® 525

shr dx.l

shr dx,l

i nc dx ;# of addresses across rectangle to fill

mov [bp+Width].dx
mov word ptr [bp+Planelnfo]

o
o

o

;lower byte = plane mask for plane 0.
; upper byte = plane # for plane 0

Fi11 PIanesLoop:
mov ax,word ptr [bp+Planelnfo]
mov dx,SC_INDEX+l ;point DX to the SC Data register

out dx.al ;set the plane for this pixel

mov di,[bp+StartOffset] ;point ES:DI to rectangle start

mov dx.[bp+Width]
mov cl.byte ptr [bp+StartX]
and cl.011b jplane # of first pixel in initial byte
cmp ah .cl ;do we draw this plane in the initial byte?

jae InitAddrSet ;yes

dec dx ;no. so skip the initial byte

jz FillLoopBottom ;skip this plane if no pixels in it

i no di

InitAddrSet:

mov cl.byte ptr [bp+EndX]
dec cl

and cl .Glib iplane of last pixel in final byte

cmp ah.cl ;do we draw this plane in the final byte?

jbe WidthSet ;yes

dec dx ;no. so skip the final byte

jz Fi11LoopBottom ;skip this planes if no pixels in it

WidthSet:

mov si.SCREEN_WIDTH

sub si .dx jdistance from end of one scan line to start

; of next

mov bx.[bp+Height] of lines to fill

mov al.byte ptr [bp+Color] ;color with which to fill

Fi11 Rows Loop:
mov cx.dx ;# of bytes across scan line
rep stosb :fill the scan line in this plane

add di .si ;point to the start of the next scan
; line of the rectangle

dec bx ;count down scan lines

jnz Fi11 Rows Loop
Fi11LoopBottom:

mov ax.word ptr [bp+Planelnfo]
shl al .1 ;set the plane bit to the next plane

1 nc ah ;increment the plane #
mov word ptr [bp+Planelnfo].ax

cmp ah.4 ;have we done all planes?

jnz Fi11 PIanesLoop ;continue if any more planes

Fi ̂ 1 Done:

pop di ;restore caller's register variables

pop si

mov sp.bp ;discard storage for local variables

pop bp ;restore caller's stack frame

ret

_Fi11RectangleX endp

end

526 ^ Chapter 32

Hardware Assist from an Unexpected Quarter
Listing 32.5 illustrates the benefits of designing code from a Mode X perspective; this
is the software aspect of Mode X optimization, which suffices to make Mode X about
as fast as mode 13H. That alone makes Mode X an attractive mode, given its square
pixels, page flipping, and offscreen memory, but superior performance would none
theless be a pleasant addition to that list. Superior performance is indeed possible in
Mode X, although, oddly enough, it comes courtesy of the VGA's hardware, which was
never designed to be used in 256-color modes.

All of the VGA's hardware assist features are available in Mode X, although some are
not particularly useful. The VGA hardware feature that's truly the key to Mode X
performance is the ability to process four planes' worth of data in parallel; this includes
both the latches and the capability to fan data out to any or all planes. For rectangular
fills, we'll just need to fan the data out to various planes, so I'll defer a discussion of other
hardware features for now. (By the way, the ALUs, bit mask, and most other VGA
hardware features are also available in mode 13H—but parallel data processing is not.)

In planar modes, such as Mode X, a byte written by the CPU to display memory
may actually go to anywhere between zero and four planes, as shown in Figure 32.2.
Each plane for which the setting of the corresponding bit in the Map Mask register is I
receives the CPU data, and each plane for which the corresponding bit is 0 is not modified.

In 16-color modes, each plane contains one-quarter of each of eight pixels, with the
4 bits of each pixel spanning all four planes. Not so in Mode X. Look at Figure 32.1

CPU write of value

41h to offset 0 in

display memory
(AOOOrOOOO)

XXXX0101

Map Mask Register

The CPU value (41h) is written to offset 0 in each of
— the two planes enabled by the Map Mask register,

planes 0 and 2; planes 1 and 5 are not altered.

Plane Select Hardware

Display Memory L,

Plane 0

P ane

P ane 2

Plane 3

Figure 32.2 Selecting Planes with the Map Mask Register

Mode X:256-Color VGA Magic @ 527

again; each plane contains one pixel in its entirety, with four pixels at any given ad
dress, one per plane. Still, the Map Mask register does the same job in Mode X as in
16-color modes; set it to OFH (all 1-bits), and all four planes will be written to by each
CPU access. Thus, it would seem that up to four pixels could be set by a single Mode
X byte-sized write to display memory, potentially speeding up operations like rectangle
fills by four times.

And, as it turns out, four-plane parallelism works quite nicely indeed. Listing 32.6
is yet another rectangle-fill routine, this time using the Map Mask to set up to four
pixels per STOS. The only trick to Listing 32.6 is that any left or right edge that isnt
aligned to a multiple-of-four pixel column (that is, a column at which one four-pixel
set ends and the next begins) must be clipped via the Map Mask register, because not
all pixels at the address containing the edge are modified. Performance is as expected;
Listing 32.6 is nearly ten times faster at clearing the screen than Listing 32.4 and just
about four times faster than Listing 32.5—and also about four times faster than the
same rectangle fill in mode 13H. Understanding the bitmap organization and display
hardware of Mode X does indeed pay.

Note that the return from Mode X s parallelism is not always 4x; some adapters lack
the underlying memory bandwidth to write data that fast. However, Mode X parallel
access should always be faster than mode 13H access; the only question on any given
adapter is how much faster.

LISTING 32.6 L32-6.ASM
Mode X (320x240, 256 colors) rectangle fill routine. Works on all
VGAs. Uses fast approach that fans data out to up to four planes at
once to draw up to four pixels at once. Fills up to but not
including the column at EndX and the row at EndY. No clipping is
performed.
C near-callable as:

void Fi11RectangleX(int StartX, int StartY, int EndX, int EndY,
unsigned int PageBase, int Color);

SC_INDEX equ 03c4h ;Sequence Controller Index

MAP_MASK equ 02h ;index in SC of Map Mask register

SCREEN..SEG equ OaOOOh ;segment of display memory in mode X

SCREEN..WIDTH equ 80 ;iwidth of screen in bytes from one scan line
; to the next

parms struc

dw 2 dup (?) pushed BP and return address

StartX dw ? X coordinate of upper left corner of rect

StartY dw ? Y coordinate of upper left corner of rect

EndX dw ? X coordinate of lower right corner of rect
(the row at EndX is not filled)

EndY dw ? Y coordinate of lower right corner of rect

(the column at EndY is not filled)

PageBase dw ? base offset in display memory of page in
which to fill rectangle

Col or dw ? color in which to draw pixel

parms ends

528 @ Chapter 32

.model small

.data

; Plane masks for clipping left and right edges of rectangle.
LeftClipPlaneMask db 00fh,00eh,00ch,008h
RightClipPlaneMask db 00fh.001h,003h.007h

.code

public _FillRectangleX
_Fil1RectangleX proc near

push bp
mov bp.sp
push si
push di

;preserve caller's stack frame
;point to local stack frame

;preserve caller's register variables

eld

mov ax.SCREEN_WIDTH

mul [bp+StartY]
mov di.[bp+StartX]
shr di,l

s h r d i, 1

add di.ax

add di,[bp+PageBase]

mov ax,SCREEN_SEG

mov es,ax

mov dx,SC_INDEX

mov al.MAP_MASK

out dx,al

inc dx

mov si,[bp+StartX]
and si,0003h

mov bh,LeftClipPlaneMask[s
mov si,[bp+EndX]
and si.0003h

mov bl.RightClipPlaneMask[

loffset in page of top rectangle scan line

;X/4 = offset of first rectangle pixel in scan
; line

;offset of first rectangle pixel in page
;offset of first rectangle pixel in
; display memory
;point ES:DI to the first rectangle
; pixel's address

;set the Sequence Controller Index to
; point to the Map Mask register

;point DX to the SC Data register

:look up left edge plane mask
i] ; to clip & put in BH

;look up right edge plane
si] ; mask to clip & put in BL

mov

mov

cmp

jle

dec

and

sub

shr

shr

jnz

and

MasksSet:

mov

sub

jle
mov

mov

sub

dec

Fi11 Rows Loop:
push
mov

out

mov

stosb

dec

cx,[bp+EndX]
si,[bp+StartX]
cx,si

Fill Done

cx

si.not Glib

cx.si

cx, 1

cx, 1

MasksSet

bh,bl

si,[bp+EndV]
si,[bp+StartV]
Fi11 Done

ah,byte ptr [bp+Color]
bp,SCREEN_WIDTH
bp.cx
bp

cx

al ,bh

dx,al

al ,ah

cx

;calculate y/ of addresses across rect

.-skip if 0 or negative width

;yy of addresses across rectangle to fill - 1
;there's more than one byte to draw
;there's only one byte, so combine the left
; and right edge clip masks

;BX = height of rectangle

;skip if 0 or negative height
;col or with which to fill

;stack frame isn't needed any more

;distance from end of one scan line to start

; of next

;remember width in addresses - 1

:put left-edge clip mask in AL
;set the left-edge plane (clip) mask
:put color in AL

;draw the left edge
;count off left edge byte

Mode X:256'Color VGA Magic 529

js Fi11LoopBottom that's the only byte

jz DoRightEdge there are only two bytes

mov al,00fh middle addresses are drawn 4 pixels at a pop

out dx,al set the middle pixel mask to no clip

mov al ,ah put color in AL

rep stosb draw the middle addresses four pixels apiece

DoRightEdge:

mov al,bl ;put right-edge clip mask in AL

out dx,al ;set the right-edge plane (clip) mask

mov al ,ah ;put color in AL

stosb ;draw the right edge

Fi11LoopBottom:
add di,bp ;point to the start of the next scan line of

; the rectangle

pop cx ;retrieve width in addresses - 1

dec si ;count down scan lines

jnz Fi11 Rows Loop

FillDone:

pop di ;restore caller's register variables

pop si

pop bp ;restore caller's stack frame

ret

_Fi11RectangleX endp

end

Just so you can see Mode X in action, Listing 32.7 is a sample program that selects
Mode X and draws a number of rectangles. Listing 32.7 links to any of the rectangle fill
routines IVe presented.
And now, I hope, you re beginning to see why Fm so fond of Mode X. In the next

chapter, we'll continue with Mode X by exploring the wonders that the latches and
parallel plane hardware can work on scrolls, copies, blits, and pattern fills.

LISTING 32.7 L32-7.C
/* Program to demonstrate mode X (320x240, 256-colors) rectangle

fill by drawing adjacent 20x20 rectangles in successive colors from
0 on up across and down the screen */

^include <conio.h>

^include <dos.h>

void Set320x240Mode(void);

void FillRectangleXCint, int, int, int, unsigned int, int);

void mainO {

int i,j ;

union REGS regset;

Set320x240Mode();

FillRectangleXCO,0,320,240,0,0); /* clear the screen to black */
for (j = 1; j < 220; j += 21) {

for (i =1; i < 300; i +=21) {
Fi11RectangleX(i, j, i+20, j+20, 0, ((j/21*15)+i/21) & OxFF);

}

}

getchO;
regset.X.ax = 0x0003; /* switch back to text mode and done */
int86(0xl0, ®set, ®set);

The Internals of Animation's Best Video Display Mode
In the previous chapter, I introduced you to what I call Mode X, an undocumented
320x240 256-color mode of the VGA. Mode X is distinguished from mode 13H, the
documented 320x200 256-color VGA mode, in that it supports page flipping, makes
off-screen memory available, has square pixels, and, above all, lets you use the VGA's
hardware to increase performance by as much as four times. (Of course, those four
times come at the cost of more complex and demanding programming, to be sure—
but end users care about results, not how hard the code was to write, and Mode X
delivers results in a big way.) In the previous chapter we saw how the VGA's plane-
oriented hardware can be used to speed solid fills. That's a nice technique, but now
we're going to move up to the big guns—the VGA latches.
The VGA has four latches, one for each plane of display memory. Each latch stores

exactly one byte, and that byte is always the last byte read from the corresponding
plane of display memory, as shown in Figure 33.1. Furthermore, whenever a given
address in display memory is read, all four planes' bytes at that address are read and
stored in the corresponding latches, regardless of which plane supplied the byte re
turned to tbe CPU (as determined by the Read Map register). As with so much else
about the VGA, the above will make little sense to VGA neophytes, but the important
point is this: By reading one display memory byte, 4 bytes—one from each plane—can
be loaded into the latches at once. Any or all of those 4 bytes can then be written
anywhere in display memory with a single byte-sized write, as shown in Figure 33.2.
The upshot is that the latches make it possible to copy data around from one part of

display memory to another, 32 bits (four pixels) at a time—four times as fast as normal.
(Recall from the previous chapter that in Mode X, pixels are stored one per byte, with
four pixels in a row stored in successive planes at the same address, one pixel per plane.)
However, any one latch can only be loaded from and written to the corresponding

532 ® Chapter 33

e
Tha value 49, from plana 1, is raad by tha CPU

Jt , ,
-|l I Paad Map ra^lstar

Plana salact (
on raads

currantly salacts plana 1)

t t \-4-1 p4-. |-JL-j p4-j All four latchas are loaded from
|5#i| 1491 | 4g I tha corraspondln^ planas by avary

t display mamory read

rlane 1

Plana 2

Plana 3

Figure 33.1 How the VGA Latches Are Loaded

The value OFFh ie written by the CPU

[sTI Tha Latchas

3lt Mask ra^lstar; aach 1 bit salacts correeponding
0 I bit from CPU, aach 0 bit salacts bit from latchas.

A sattln^ of OOh salacts all bits from latchas

1101b
Map Mask ra^lstar; aach 1 bit anablas writas
to oorreepondin0 plana, aach 0 bit blocks

mr
51

0

43 Plane

Plane 1

Plane 2

Plane 3

Display Memory

Figure 33.2 Writing 4 Bytes to Dispiay Memory in a Singie Operation

Mode X Marks the Latch ® 533

plane, so an individual latch can only work with every fourth pixel on the screen; the
latch for plane 0 can work with pixels 0, 4, 8..., the latch for plane 1 with pixels 1, 5,
9..., and so on.
The latches aren't intended for use in 256-color mode—they were designed to allow

individual bits of display memory to be modified in l6-color mode—but they are
nonetheless very useful in Mode X, particularly for patterned fills and screen-to-screen
copies, including scrolls. Patterned filling is a good place to start, because patterns are
widely used in windowing environments for desktops, window backgrounds, and scroll
bars, and for textures and color dithering in drawing and game software.

Fast Mode X fills using patterns that are four pixels in width can be performed by
drawing the pattern once to the four pbcels at any one address in display memory,
reading that address to load the pattern into the latches, setting the Bit Mask register to
0 to specify that all bits drawn to display memory should come from the latches, and
then performing the fill pretty much as we did in the previous chapter—except that
each line of the pattern must be loaded into the latches before the corresponding scan
line on the screen is filled. Listings 33.1 and 33.2 together demonstrate a variety of fast
Mode X four-by-four pattern fills. (The mode set function called by Listing 33.1 is
from the previous chapter's listings.)

LISTING 33.1 L33-1.C
/* Program to demonstrate Mode X (320x240, 256 colors) patterned

rectangle fills by filling the screen with adjacent 80x60
rectangles in a variety of patterns. Tested with Borland C++
in C compilation mode and the small model */

#include <conio.h>

^include <dos.h>

void Set320x240Mode(void);

void FillPatternXCint, int, int. int, unsigned int. char*);

/* 16 4x4 patterns */
static char Patt0C]={10,0,10,0.0,10,0,10,10.0,10,0.0.10,0,10};
static char Pattl[]={9,0,0,0,0,9,0,0,0,0,9,0,0,0,0,9};
static char Patt2[]={5,0,0,0,0,0,5,0,5,0,0,0,0,0,5,0};
static char Patt3[]=C14,0,0,14,0.14,14,0,0,14,14,0,14,0,0,14};
static char Patt4[]=C15,15,15,l,15,15,l,l,15,l,l,l,l,l,l.l};
static char Patt5[]={12,12,12,12,6,6,6,12,6,6,6,12,6,6,6,12};
static char Patt6C]={80,80,80,80,80,80,80,80.80,80,80,80,80,80,80,15}
static char Patt7[]={78,78,78,78,80,80,80,80,82,82,82,82,84,84,84,84}
static char Patt8[]={78,80,82,84,80,82,84,78,82,84,78,80.84,78,80,82}
static char Patt9[]={78,80,82,84,78,80,82,84,78,80,82,84.78,80,82,84}
static char Pattl0[]={0,l,2,3,4,5,6,7,8,9,10,ll,12,13,14,15};
static char Pattll[]={0,l,2,3,0,l,2,3,0,l,2,3,0,l,2,3};
static char Pattl2[]={14,14,9,9,14,9,9,14,9,9,14,14,9,14,14,9};
static char Pattl3C]={15,8,8,8,15,15,15,8,15,15,15,8,15,8,8,8};
static char Pattl4[]='{3,3,3,3,3,7,7,3,3,7,7,3,3,3,3,3};
static char Pattl5[]={0,0,0,0,0,64,0,0,0,0,0,0,0,0,0,89};
/* Table of pointers to the 16 4x4 patterns with which to draw */
static char* PattTable[3 = {PattO,Pattl,Patt2,Patt3,Patt4,Patt5,Patt6

Patt7,Patt8.Patt9,PattlO,Pattll,Pattl2,Pattl3,Pattl4,Pattl5};

534 ® Chapter 33

void mainO {

int 1,j;
union REGS regset;

Set320x240Mode();

for (j = 0; j < 4; j++) {
for (i =0; i <4; i-H-) {

Fi llPatternXCi*80J*60,i*80+80,j*60+60,0,PattTable[j*4+i]);
}

}

getch();

regset.X.ax = 0x0003; /* switch back to text mode and done */

int86(0xl0, ®set. ®set);

LISTING 33.2 L33-2.ASM
Mode X (320x240, 256 colors) rectangle 4x4 pattern fill routine.
Upper left corner of pattern is always aligned to a multiple-of-4
row and column. Works on all VGAs. Uses approach of copying the
pattern to off-screen display memory, then loading the latches with
the pattern for each scan line and filling each scan line four
pixels at a time. Fills up to but not including the column at EndX
and the row at EndY. No clipping is performed. All ASM code tested
with TASM. C near-callable as:

void Fil1PatternXCint StartX, int StartY, int EndX, int EndY,

unsigned i nt PageBase, char* Pattern);

SC_INDEX equ 03c4h ;Sequence Controller Index register port
MAP_MASK equ 02h ;index in SC of Map Mask register
GC_INDEX equ 03ceh ;Graphics Controller Index register port
BIT_MASK equ 08h ;index in GC of Bit Mask register
PATTERN.BUFFER equ Offfch ;offset in screen memory of the buffer used

; to store each pattern during drawing
SCREEN.SEG equ OaOOOh ;;segment of display memory in Mode X
SCREEN.WIDTH equ 80 ;;width of screen in addresses from one scan

; line to the next

parms struc

dw 2 dup (?) pushed BP and return address
StartX dw ? X coordinate of upper left corner of rect
StartY dw ? Y coordinate of upper left corner of rect
EndX dw ? X coordinate of lower right corner of rect

(the row at EndX is not filled)
EndY dw ? Y coordinate of lower right corner of rect

(the column at EndY is not filled)

PageBase dw ? base offset in display memory of page in
which to fill rectangle

Pattern dw 9 4x4 pattern with which to fill rectangle
parms iends

NextScanOffset equ -2 ;local storage for distance from end of one
: scan line to start of next

RectAddrWidth equ -4 :;local storage for address width of rectangle
Height equ -6 ;local storage for height of rectangle
STACK_FRAME_SIZE equ

.model small

.data

Mode X Marks the Latch ^ 535

Plane masks for clipping left and right edges of rectangle.
LeftClipPlaneMask db
RightClipPlaneMask db

00fh,00eh,00ch,008h

00fh,001h,003h,007h

.code

publi c _Fi11PatternX

_Fi11PatternX proc near

push bp

mov bp.sp

sub sp.STACK_FRAME_SIZE
push si

push di

eld

mov ax.SCREEN_SEG

mov es ,ax

mov si,[bp+Pattern]
mov di,PATTERN_BUFFER

mov dx,SC_INDEX

mov al,MAP_MASK

out dx,al

inc dx

mov cx,4

DownloadPattern Loop:

mov al .1

out dx.al

movsb

dec di

mov al ,2

out dx.al

movsb

dec di

mov al ,4

out dx.al

movsb

dec di

mov al ,8

out dx.al

movsb

loop DownloadPatternLoop

mov dx.GC_INDEX

mov ax.OOOOOh+BIT_MASK

out dx.ax

mov ax.[bp+StartY]
mov si .ax

and si.Glib

add si.PATTERN_BUFFER

mov dx.SCREEN_WIDTH

mul dx

mov di.[bp+StartX]
mov bx.di

shr di. 1

shr di .1

add di .ax

add di.[bp+PageBase]

;preserve caller's stack frame
;point to local stack frame
;allocate space for local vars
;preserve caller's register variables

;point ES to display memory

;copy pattern to display memory buffer
;point to pattern to fill with
;point ES:DI to pattern buffer
;point Sequence Controller Index to
; Map Mask

;point to SO Data register
;4 pixel quadruplets in pattern

select plane 0 for writes
copy over next plane 0 pattern pixel
stay at same address for next plane

select plane 1 for writes

copy over next plane 1 pattern pixel
stay at same address for next plane

select plane 2 for writes
copy over next plane 2 pattern pixel
stay at same address for next plane

select plane 3 for writes
copy over next plane 3 pattern pixel
and advance address

;set the bit mask to select all bits

; from the latches and none from

; the CPU, so that we can write the

; latch contents directly to memory

;top rectangle scan line

;top rect scan line modulo 4
;point to pattern scan line that
; maps to top line of rect to draw

;offset in page of top rectangle scan line

;X/4 = offset of first rectangle pixel in scan
; line

;offset of first rectangle pixel in page
;offset of first rectangle pixel in
; display memory

536 ® Chapter 33

and

mov

mov

and

mov

mov

mov

mov

cmp

jle

dec

and

sub

shr

shr

jnz

and

MasksSet:

mov

sub

Jle

mov

mov

sub

dec

mov

mov

mov

Fi11 Rows Loop:
mov

mov

i nc

jnz

sub

NoWrap:
mov

out

stosb

dec

Js

jz
mov

out

rep

DoRi ghtEdge:

mov

out

stosb

bx,0003h

ah.LeftClipPlaneMask[bx]
bx,[bp+EndX]
bx.0003h

al,RightClipPlaneMask[bx]
bx.ax

;look up left edge plane mask
; to clip

;look up right edge plane
; mask to clip
;put the masks in BX

ex.[bp+EndX]
ax,[bp+StartX]
ex.ax

Fi11 Done

cx

ax,not 011b

cx,ax

cx,l

cx,l

MasksSet

bh.bl

ax,[bp+EndY]
ax,[bp+StartY]
Fill Done

[bp+Height],ax
ax,SCREEN_WIDTH

ax.cx

ax

[bp+NextScanOffset],ax
[bp+RectAddrWi dth],cx
dx,SC_INDEX+l

cx,[bp+RectAddrWidth]

al,es:[si 3

si

short NoWrap
si ,4

al ,bh

dx,al

cx

Fi11LoopBottom
DoRightEdge

al,00fh

dx,al

stosb

al ,bl

dx,al

FillLoopBottom:

add di,[bp+NextScanOffset]

dec word ptr [bp+Height]
jnz Fill Rows Loop

;calculate # of addresses across rect

;skip if 0 or negative width

;# of addresses across rectangle to fill - 1
;there's more than one pixel to draw
;there*s only one pixel, so combine the left
; and right edge clip masks

;AX = height of rectangle
;skip if 0 or negative height

;distance from end of one scan line to start

; of next

;remember width in addresses - 1

;point to Sequence Controller Data reg
; (SO Index still points to Map Mask)

;width across - 1

;read display memory to latch this scan
; line's pattern
;point to the next pattern scan line, wrapping
; back to the start of the pattern if
; we've run off the end

;put left-edge clip mask in AL
;set the left-edge plane (clip) mask
;draw the left edge (pixels come from latches;
; value written by CPU doesn't matter)
;count off left edge address

;that's the only address

;there are only two addresses

;middle addresses are drawn 4 pixels at a pop
;set the middle pixel mask to no clip
;draw the middle addresses four pixels apiece
; (from latches; value written doesn't matter)

;put right-edge clip mask in AL
;set the right-edge plane (clip) mask
;draw the right edge (from latches; value
; written doesn't matter)

;point to the start of the next scan
; line of the rectangle

;count down scan lines

Fi11 Done:

mov

mov

out

dx.GC_INDEX+l

al,Offh

dx.al

pop di
pop si
mov sp^bp
pop bp
ret

_FmPatternX endp
end

Mode X Marks the Latch ® 537

;restore the bit mask to its default,

; which selects all bits from the CPU

; and none from the latches (the GO

; Index still points to Bit Mask)
;restore caller's register variables

;discard storage for local variables
;restore caller's stack frame

Four-pixel-wide patterns are more useful than you might imagine. There are actu
ally 2^^® possible patterns (16 pixels, each with 2® possible colors); that set is certainly
large enough for most color-dithering purposes, and includes many often-used pat
terns, such as halftones, diagonal stripes, and crosshatches.

Furthermore, eight-wide patterns, which are widely used, can be drawn with two
passes, one for each half of the pattern. This principle can in fact be extended to pat
terns of arbitrary multiple-of-four widths. (Widths that arent multiples of four are
considerably more difficult to handle, because the latches are four pixels wide; one
possible solution is expanding such patterns via repetition until they are multiple-of-
four widths.)

Allocating Memory In Mode X
Listing 33.2 raises some interesting questions about the allocation of display memory
in Mode X. In Listing 33.2, whenever a pattern is to be drawn, that pattern is first
drawn in its entirety at the very end of display memory; the latches are then loaded
from that copy of the pattern before each scan line of the actual fill is drawn. Why this
double copying process, and why is the pattern stored in that particular area of display
memory?
The double copying process is used because it s the easiest way to load the latches.

Remember, there's no way to get information directly from the CPU to the latches; the
information must first be written to some location in display memory, because the
latches can be loaded only from display memory. By writing the pattern to off-screen
memory, we don't have to worry about interfering with whatever is currently displayed
on the screen.

As for why the pattern is stored exactly where it is, that's part of a master memory
allocation plan that will come to fruition in the next chapter, when I implement a
Mode X animation program. Figure 33.3 shows this master plan; the first two pages of
memory (each 76,800 pixels long, spanning 19,200 addresses—that is, 19,200 pixel
quadruplets—in display memory) are reserved for page flipping, the next page of
memory (also 76,800 pixels long) is reserved for storing the background (which is used
to restore the holes left after images move), the last 16 pixels (four addresses) of display

538 ^ Chapter 33

Offset 0

Offset 19200

Offset 55400

Offset 57600

Offset 65532

Display Memory,
starting at AOOQ: 0000

Page 0

Displayed on every
other page flip

Page 1

Displayed on every
other page flip

Dackground page

Stores complete static
background; used to

redraw other pages

Storage for images,
icons, and buffers

Temporary pattern
buffer

Figure 33.3 A Useful Mode X Display Memory Layout

memoiy are reserved for the pattern buffer, and the remaining 31,728 pixels (7,932
addresses) of display memory are free for storage of icons, images, temporary buffers,
or whatever.

This is an efficient organization for animation, but there are certainly many other
possible setups. For example, you might choose to have a solid-colored background, in
which case you could dispense with the background page (instead using the solid rect
angle fdl routine to replace the background after images move), freeing up another
76,800 pixels of off-screen storage for images and buffers. You could even eliminate
page-flipping altogether if you needed to free up a great deal of display memory. For
example, with enough free display memory it is possible in Mode X to create a virtual
bitmap three times larger than the screen, with the screen becoming a scrolling win
dow onto that larger bitmap. This technique has been used to good effect in a number
of animated games, with and without the use of Mode X.

Mode X Marks the Latch ^ 539

Copying Pixel Blocks within Display Memory
Another fine use for the latches is copying pixels from one place in display memory to
another. Whenever both the source and the destination share the same nibble align
ment (that is, their start addresses modulo four are the same), it is not only possible but
quite easy to use the latches to copy four pixels at a time. Listing 33.3 shows a routine
that copies via the latches. (When the source and destination do not share the same
nibble alignment, the latches cannot be used because the source and destination planes
for any given pixel differ. In that case, you can set the Read Map register to select a
source plane and the Map Mask register to select the corresponding destination plane.
Then, copy all pixels in that plane, repeating for all four planes.)

Although copying through the l^tchee ie, in general a epeedy tech-
nique, eepeciaiiy on eiower VGAe, it*3 not aiwaye a win. Reading video
memory tende to he quite a bit eiower than writing, and on a faet
VL3 or FCi adapter, it can be faeter to copy from main memory to
diepiay memory than it ie to copy from diepiay memory to diepiay
memory via the iatchee.

LISTING 33.3 L33-3.A$M
Mode X (320x240, 256 colors) display memory to display memory copy
routine. Left edge of source rectangle modulo 4 must equal left edge
of destination rectangle modulo 4. Works on all VGAs. Uses approach
of reading 4 pixels at a time from the source Into the latches, then
writing the latches to the destination. Copies up to but not
Including the column at SourceEndX and the row at SourceEndY. No
clipping Is performed. Results are not guaranteed If the source and
destination overlap. C near-callable as:

void CopyScreenToScreenXCInt SourceStartX, Int SourceStartY,
Int SourceEndX, Int SourceEndY, Int DestStartX,

Int DestStartY, unsigned Int SourcePageBase,

unsigned Int DestPageBase, Int SourceBItmapWIdth,
Int DestBltmapWIdth);

SC_INDEX equ 03c4h ;Sequence Controller Index register port
MAP_MASK equ 02h :;1ndex In SC of Map Mask register
GC_INDEX equ 03ceh :;Graph1cs Controller Index register port
BIT_MASK equ OSh :;Index In GC of Bit Mask register

SCREEN_SEG equ OaOOOh ;segment of display memory In Mode X

parms struc

dw 2 dup (?) pushed BP and return address
SourceStartX dw ? X coordinate of upper left corner of source
SourceStartY dw ? Y coordinate of upper left corner of source
SourceEndX dw ? X coordinate of lower right corner of source

(the row at SourceEndX Is not copied)
SourceEndY dw ? Y coordinate of lower right corner of source

(the column at SourceEndY Is not copied)
DestStartX dw ? X coordinate of upper left corner of dest

540 ® Chapter 33

DestStartY

SourcePageBase

DestPageBase

DestBitmapWidth

parms ends

SourceNextScanOffset equ

DestNextScanOffset equ

dw ?

dw ?

dw ?

dw ?

dw ?

RectAddrWidth equ -6
Height equ -8
STACK_FRAME_SIZE equ 8

Y coordinate of upper left corner of dest
base offset in display memory of page in
which source resides

base offset in display memory of page in
which dest resides

of pixels across source bitmap
(must be a multiple of 4)
of pixels across dest bitmap
(must be a multiple of 4)

;local storage for distance from end of

; one source scan line to start of next

jlocal storage for distance from end of

; one dest scan line to start of next

;local storage for address width of rectangle

;local storage for height of rectangle

.model small

.data

; Plane masks for clipping left and right edges of rectangle.
LeftCl ipPl aneMask db 00fh.00eh,00ch,008h
Ri ghtCl i pPl aneMask db OOfh.OOlh,003h,007h

.code

public _CopyScreenToScreenX
_CopyScreenToScreenX proc near

push bp ;preserve caller's stack frame

mov bp.sp ;point to local stack frame
sub sp.STACK_FRAME_SIZE ;allocate space for local vars
push si ;preserve caller's register variables

push di

push ds

eld

mov dx,GC_INDEX ;set the bit mask to select all bits

mov ax,OOOOOh+BIT_MASK ; from the latches and none from

out dx.ax ; the CPU, so that we can write the

; latch contents directly to memory

mov ax.SCREEN_SEG ;point ES to display memory
mov es ,ax

mov ax.Cbp+DestBitmapWidth]
shr ax,l ;convert to width in addresses

shr ax.l

mul [bp+DestStartY] ;top dest rect scan line

mov di,[bp+DestStartX]
shr di .1 ;X/4 = offset of first dest rect pixel in
shr di .1 ; scan line

add di ,ax ;offset of first dest rect pixel in page
add di.[bp+DestPageBase] ;offset of first dest rect pixel

; in display memory
mov ax,[bp+SourceBitmapWidth]
shr ax,l ^convert to width in addresses

shr ax.l

mul [bp+SourceStartY] ;top source rect scan line
mov si,[bp+SourceStartX]
mov bx.si

shr si ,1 ;X/4 = offset of first source rect pixel ii
shr si ,1 ; scan line

add si ,ax ;offset of first source rect pixel in page

Mode X Marks the Latch g} 541

add

and

mov

mov

and

mov

mov

mov

mov

cmp

jle

dec

and

sub

shr

shr

jnz

and

MasksSet:

mov

sub

jle
mov

mov

shr

shr

sub

dec

mov

mov

shr

shr

sub

dec

mov

mov

si,[bp+SourcePageBase]

bx.0003h

ah,LeftCl1pPlaneMask[bx]
bx,[bp+SourceEndX]
bx,0003h

al.RightClIpPlaneMask[bx]
bx.ax

cx,[bp+SourceEndX]
ax,[bp+SourceStartX]
cx.ax

CopyDone
cx

ax,not 011b

cx,ax

cx, 1

cx,l

MasksSet

bh,bl

;offset of first source rect

; pixel in display memory
;look up left edge plane mask
; to clip

;look up right edge plane
; mask to clip
;put the masks in BX

;calculate # of addresses across

; rect

;skip if 0 or negative width

of addresses across rectangle to copy - 1
there's more than one address to draw

there's only one address, so combine the

left and right edge clip masks

;AX = height of rectangle
;skip if 0 or negative height

mov dx,SC

mov

out

inc

mov

mov

CopyRowsLoop:

ax,[bp+SourceEndY]
ax,[bp+SourceStartV]
CopyDone
[bp+Height],ax
ax,[bp+DestBitmapWidth]
ax,l ;convert to width in addresses

ax,l

ax,cx ;distance from end of one dest scan line to

ax ; start of next

[bp+DestNextScanOffset],ax
ax,[bp+SourceBitmapWidth]
ax,l ;convert to width in addresses

ax,l

ax,cx ;distance from end of one source scan line to

ax ; start of next

[bp+SourceNextScanOffset],ax
[bp+RectAddrWidth],cx ;remember width in addresses - 1

BUG FIX

.INDEX

al,MAP_MASK

dx,al ;point SO Index reg to Map Mask
dx ;point to SC Data reg

BUG FIX

ax,es ;DS=ES=screen segment for MOVS

. ds,ax

mov cx,[bp+RectAddrWi dth] ;width across - 1

mov al ,bh ;put left-edge clip mask in AL
out dx,al ;set the left-edge plane (clip) mask
movsb ;copy the left edge (pixels go through

; latches)

dec cx ;count off left edge address

js CopyLoopBottom ;that's the only address

jz DoRightEdge ;there are only two addresses

mov al,00fh ;middle addresses are drawn 4 pixels at a pop
out dx,al ;set the middle pixel mask to no clip
rep movsb :draw the middle addresses four pixels apiece

; (pixels copied through latches)

542 ® Chapter 33

DoRi ghtEdge:

mov al.bl ;put right-edge clip mask in AL
out dx.al ;set the right-edge plane (clip) mask
movsb ;draw the right edge (pixels copied through

; latches)

CopyLoopBottom:

add si,[bp+SourceNextScanOffset] ;point to the start of
add di,[bp+DestNextScanOffset] ; next source & dest lines
dec word ptr [bp+Height] ;count down scan lines
jnz CopyRowsLoop

CopyDone:
mov dx,GC_INDEX+l ;restore the bit mask to its default,

mov al,Offh ; which selects all bits from the CPU

out dx,al ; and none from the latches (the GO

; Index still points to Bit Mask)

pop ds
pop di ;restore caller's register variables
pop si

mov sp,bp ;discard storage for local variables
pop bp ;restore caller's stack frame
ret

_CopyScreenToScreenX endp
end

Listing 33.3 has an important limitation: It does not guarantee proper handling
when the source and destination overlap, as in the case of a downward scroll, for ex
ample. Listing 33.3 performs top-to-bottom, left-to-right copying. Downward scrolls
require bottom-to-top copying; likewise, rightward horizontal scrolls require right-to-
left: copying. As it happens, my intended use for Listing 33.3 is to copy images between
off-screen memory and on-screen memory, and to save areas under pop-up menus and
the like, so I dont really need overlap handling—and I do really need to keep the
complexity of this discussion down. However, you will surely want to add overlap
handling if you plan to perform arbitrary scrolling and copying in display memory.
Now that we have a fast way to copy images around in display memory, we can draw

icons and other images as much as four times faster than in mode 13H, depending on
the speed of the VGA's display memory. (In case you're worried about the nibble-
alignment limitation on fast copies, don't be; I'll address that fully in due time, but the
secret is to store all four possible rotations in off-screen memory, then select the correct
one for each copy.) However, before our fast display memory-to-display memory copy
routine can do us any good, we must have a way to get pixel patterns from system
memory into display memory, so that they can then be copied with the fast copy
routine.

Copying to Display Memory
The final piece of the puzzle is the system memory to display-memory-copy-routine
shown in Listing 33.4. This routine assumes that pixels are stored in system memory in
exactly the order in which they will ultimately appear on the screen; that is, in the same
linear order that mode 13H uses. It would be more efficient to store all the pixels for

Mode X Marks the Latch ® 543

one plane first, then all the pixels for the next plane, and so on for all four planes,
because many OUTs could be avoided, but that would make images rather hard to
create. And, while it is true that the speed of drawing images is, in general, often a
critical performance factor, the speed of copying images from system memory to dis
play memory is not particularly critical in Mode X. Important images can be stored in
off-screen memory and copied to the screen via the latches much faster than even the
speediest system memory-to-display memory copy routine could manage.
Tm not going to present a routine to perform Mode X copies from display memory

to system memory, but such a routine would be a straightforward inverse of Listing 33.4.

LISTING 33.4 L33-4.ASM
Mode X (320x240, 256 colors) system memory to display memory copy
routine. Uses approach of changing the plane for each pixel copied;
this is slower than copying all pixels In one plane, then all pixels
In the next plane, and so on, but It Is simpler; besides. Images for
which performance Is critical should be stored In off-screen memory
and copied to the screen via the latches. Copies up to but not
Including the column at SourceEndX and the row at SourceEndY. No
clipping Is performed. C near-callable as:

void CopySystemToScreenXCInt SourceStartX, Int SourceStartY,
Int SourceEndX, Int SourceEndY, Int DestStartX,

Int DestStartY, char* SourcePtr, unsigned Int DestPageBase,

Int SourceBltmapWIdth, Int DestBltmapWIdth);

SC_INDEX equ 03c4h ;Sequence Controller Index register port

MAP_MASK equ 02h ;1ndex In SC of Map Mask register

SCREEN_SEG equ OaOOOh ;segment of display memory In Mode X

parms struc

dw 2 dup (?) pushed BP and return address

SourceStartX dw ? X coordinate of upper left corner of source

SourceStartY dw ? Y coordinate of upper left corner of source

SourceEndX dw ? X coordinate of lower right corner of source

(the row at EndX Is not copied)

SourceEndY dw ? Y coordinate of lower right corner of source

(the column at EndY Is not copied)

DestStartX dw ? X coordinate of upper left corner of dest

DestStartY dw ? Y coordinate of upper left corner of dest

SourcePtr dw ? pointer In DS to start of bitmap In which
source resides

DestPageBase dw ? base offset In display memory of page In
which dest resides

SourceBltmapWIdth dw ? # of pixels across source bitmap
DestBltmapWIdth dw ? # of pixels across dest bitmap

(must be a multiple of 4)

parms ends

RectWIdth equ 2 ;;local storage for width of rectangle

LeftMask equ 4 ;;local storage for left rect edge plane mask
STACK_FRAME_SIZE equ 4

.model small

.code

544 ^ Chapter 33

public _CopySystemToScreenX
_CopySystemToScreenX proc near

push bp
mov bp.sp
sub sp.STACK_FRAME_SIZE
push si
push di

;preserve caller's stack frame
;point to local stack frame
;allocate space for local vars
;preserve caller's register variables

eld

mov ax,SCREEN_SEG

mov es.ax

mov ax,Cbp+SourceBitmapWidth]
mul [bp+SourceStartY]
add ax,[bp+SourceStartX]
add ax,[bp+SourcePtr]
mov si ,ax

;point ES to display memory

;top source rect scan line

;offset of first source rect pixel
; in DS

mov ax,[bp+DestBitmapWidth]
shr ax,l

shr ax,l

mov [bp+DestBitmapWidth],ax
mul [bp+DestStartV]
mov di,[bp+DestStartX]
mov cx,di

shr di,l

shr di,l

add di.ax

add di,[bp+DestPageBase]

and cl.Ollb

mov al,llh

shl al,cl

mov [bp+LeftMask],al

mov

sub

jle

mov

mov

sub

jle

mov

mov

out

i nc

CopyRowsLoop:
mov

mov

push
push

CopyScanLineLoop:
out dx,al

movsb

rol al,l

cx,[b

ax.[b

p+SourceEndX]
cx,[bp+SourceStartX]
CopyDone
[bp+RectWidth],cx
bx,[bp+SourceEndV]
bx,[bp+SourceStartV]
CopyDone
dx,SC_INDEX

al,MAP_MASK

dx,al

dx

p+LeftMask]
cx,[bp+RectWidth]
si

di

cmc

sbb

1 oop
pop

di ,0

CopyScanLineLoop
di

;convert to width in addresses

;remember address width

;top dest rect scan line

X/4 = offset of first dest rect pixel in
scan line

offset of first dest rect pixel in page
offset of first dest rect pixel
in display memory

CL = first dest pixel's plane
upper nibble comes into play when
plane wraps from 3 back to 0

set the bit for the first dest pixel's
plane in each nibble to 1

;calculate # of pixels across
; rect

;skip if 0 or negative width

;BX = height of rectangle

;skip if 0 or negative height
;point to SC Index register

;point SC Index reg to the Map Mask
;point DX to SC Data reg

;remember the start offset in the source

;remember the start offset in the dest

;set the plane for this pixel
;copy the pixel to the screen
;set mask for next pixel's plane
jadvance destination address only when

; wrapping from plane 3 to plane 0
; (else undo INC DI done by MOVSB)

;retrieve the dest start offset

Mode X Marks the Latch ^ 545

add di,[bp+DestBi tmapWi dth]

pop si
add si,[bp+SourceBitmapWidth]

dec

jnz

CopyDone:
pop

pop

mov

pop

ret

_CopySystemToScreenX endp
end

bx

CopyRowsLoop

di

si

sp.bp
bp

;point to the start of the
; next scan line of the dest

.•retrieve the source start offset

;point to the start of the
; next scan line of the source

;count down scan lines

;restore caller's register variables

;discard storage for local variables

;restore caller's stack frame

Who Was that Masked Image Copier?
At this point, it s getting to be time for us to take ail the Mode X tools we've developed,
together with one more tool—masked image copying—and the remaining unexplored
feature of Mode X, page flipping, and build an animation application. I hope that
when we're done, you'll agree with me that Mode X is the way to animate on the PC.

In truth, though, it matters less whether or not you think that Mode X is the best
way to animate than whether or not your users think it's the best way based on results;
end users care only about results, not how you produced them. For my writing, you
folks are the end users—and notice how remarkably little you care about how this
book gets written and produced. You care that it turned up in the bookstore, and you
care about the contents, but you sure as heck don't care about how it got that far from
a bin of tree pulp. When you're a creator, the process matters. When you're a buyer,
results are everything. All important. Sine qua nan. The whole enchilada.

If you catch my drift.

How to Make the VGA Really Get up and Dance
OK—no amusing stories or informative anecdotes to kick off this chapter; lotta ground
to cover, gotta hurry—you're impatient, I can smell it. I won't talk about the time a
friend made the mistake of loudly saying "$100 bill" during an animated discussion
while walking among the bums on Market Street in San Francisco one night, thereby
graphically illustrating that context is everything. I can't spare a word about how my
daughter thinks my 11-year-old floppy-disk-based CP/M machine is more powerful
than my 386 with its 100-Mbyte hard disk because the CP/M machine's word proces
sor loads and runs twice as fast as the 386's Windows-based word processor, demon
strating that progress is not the neat exponential curve we'd like to think it is, and that
features and performance are often conflicting notions. And, lord knows, I can't take
the time to discuss the habits of small white dogs, notwithstanding that such dogs
seem to be relevant to just about every aspect of computing, as Jeff Duntemann's writ
ings make manifest. No lighthearted fluff for us; we have real work to do, for today we
animate with 256 colors in Mode X.

Masked Copying
Over the past two chapters, we've put together most of the tools needed to implement
animation in the VGA's undocumented 320 X 240 256-color Mode X. We now have mode

set code, solid and 4x4 pattern fills, system memory-to-display memory block copies, and
display memory-to-display memory block copies. The final piece of the puzzle is the
ability to copy a nonrectangular image to display memory. I call this masked copying.

Masked copying is sort of like drawing through a stencil, in that only certain pixels
within the destination rectangle are drawn. The objective is to fit the image seamlessly

548 ^ Chapter 34

into the background, without the rectangular fringe that results when nonrectangular
images are drawn by block copying their bounding rectangle. This is accomplished by
using a second rectangular bitmap, separate from the image but corresponding to it on
a pixel-by-pixel basis, to control which destination pixels are set from the source and
which are left unchanged. With a masked copy, only those pixels properly belonging to
an image are drawn, and the image fits perfectly into the background, with no rectan
gular border. In fact, masked copying even makes it possible to have transparent areas
within images.

Note that another way to achieve this effect is to implement copying code that
supports a transparent color; that is, a color that doesn t get copied but rather leaves the
destination unchanged. Transparent copying makes for more compact images, because
no separate mask is needed, and is generally faster in a software-only implementation.
However, Mode X supports masked copying but not transparent copying in hardware,
so we'll use masked copying in this chapter.

The system memory to display memory masked copy routine in Listing 34.1 imple
ments masked copying in a straightforward fashion. In the main drawing loop, the
corresponding mask byte is consulted as each image pixel is encountered, and the image
pixel is copied only if the mask byte is nonzero. As with most of the system-to-display code
I've presented. Listing 34.1 is not heavily optimized, because it's inherently slow; there's
a better way to go when performance matters, and that's to use the VGA's hardware.

LISTING 34.1 L34-1.ASM
Mode X (320x240, 256 colors) system memory-to-display memory masked copy
routine. Not particularly fast; Images for which performance Is critical
should be stored In off-screen memory and copied to screen via latches. Works
on all VGAs. Copies up to but not Including column at SourceEndX and row at
SourceEndY. No clipping Is performed. Mask and source Image are both byte-
per-plxel, and must be of same widths and reside at same coordinates In their
respective bitmaps. Assembly code tested with TASM C near-callable as:

void CopySystemToScreenMaskedXCInt SourceStartX,
Int SourceStartY, Int SourceEndX, Int SourceEndY,

Int DestStartX, Int DestStartY, char * SourcePtr,

unsigned Int DestPageBase, Int SourceBltmapWIdth,
Int DestBltmapWIdth, char * MaskPtr);

SC_INDEX

MAP.MASK

SCREEN_SEG

equ

equ

equ

03c4h

02h

OaOOOh

;Sequence Controller Index register port
;1ndex In SC of Map Mask register
;segment of display memory In mode X

parms struc

SourceStartX

SourceStartY

SourceEndX

SourceEndY

dw

dw

dw

dw

dw

2 dup (?)
?

?

?

pushed BP and return address
X coordinate of upper left corner of source
(source Is In system memory)

Y coordinate of upper left corner of source
X coordinate of lower right corner of source

(the column at EndX Is not copied)
Y coordinate of lower right corner of source

(the row at EndY Is not copied)

Mode X256-Color Animation ^ 549

DestStartX dw ? X coordinate of upper left corner of dest
(destination is in display memory)

DestStartV dw ? Y coordinate of upper left corner of dest

SourcePtr dw ? pointer in DS to start of bitmap which source resides
DestPageBase dw ? base offset in display memory of page in

which dest resides

SourceBitmapWidth dw ? # of pixels across source bitmap (also must
be width across the mask)

DestBitmapWidth dw ? # of pixels across dest bitmap (must be multiple of 4)
MaskPtr dw ? pointer in DS to start of bitmap in which mask

resides (byte-per-pixel format, just like the source
image; 0-bytes mean don't copy corresponding source
pixel, 1-bytes mean do copy)

parms ends

RectWidth equ -2 ;local storage for width of rectangle

RectHeight equ -4 :[local storage for height of rectangle
LeftMask equ -6 ;local storage for left rect edge plane mask
STACK_FRAME_SIZE equ 6

.model smal 1

.code

publi c _CopySystemToScreenMaskedX
_CopySysteniToScreenMaskedX proc near

push
mov

sub

push
push

mov

mov

mov

mul

add

mov

add

mov

add

mov

shr

shr

mov

mul

mov

mov

shr

shr

add

add

and

mov

shl

mov

mov

sub

jle
mov

bp
bp,sp
sp,STACK_FRAME_SIZE
si

di

;preserve caller's stack frame

;po1nt to local stack frame

;anocate space for local vars
;preserve caller's register variables

;point ES to display memoryax,SCREEN_SEG

es ,ax

ax,Cbp+SourceBi tmapWi dth]
[bp+SourceStartY] ;top source rect scan line
ax.[bp+SourceStartX]
bx.ax

ax,[bp+SourcePtr] ;offset of first source rect pixel
si,ax ; in DS

bx,[bp+MaskPtr] ;offset of first mask pixel in DS

ax,Cbp+DestBitmapWidth]
ax,l ;convert to width in addresses

ax,l

[bp+DestBitmapWidth],ax ;remember address width
[bp+DestStartV] ;top dest rect scan line
di,[bp+DestStartX]
cx,di

di ,1

di ,1

di ,ax

di,[bp+DestPageBase]

cl,011b

al,llh

al ,cl

Cbp+LeftMask],al

ax,Cbp+SourceEndX]
ax,[bp+SourceStartX]
CopyDone
[bp+RectWidth],ax

X/4 = offset of first dest rect pixel in
scan line

offset of first dest rect pixel in page
offset of first dest rect pixel
in display memory

CL = first dest pixel's plane
upper nibble comes into play when plane wraps
from 3 back to 0

set the bit for the first dest pixel's plane
in each nibble to 1

;calculate # of pixels across
; rect

;skip if 0 or negative width

550 gl Chapter 34

sub

mov

sub

jle

mov

mov

mov

out

inc

CopyRowsLoop:

mov

mov

push
CopyScanLi neLoop:

w

[

ord ptr [bp+SourceBitmapWidth],ax
;distance from end of one source scan line to start of next

ax,[bp+SourceEndY]
;height of rectangle

;skip if 0 or negative height
ax,[bp+SourceStartV]
CopyDone
bp+RectHei ght],ax

dx,SC_INDEX

al,MAP_MASK

dx,al

dx

al,[bp+LeftMask]
cx,[bp+RectWidth]
di

MaskOff:

cmp byte ptr [bx],0
jz MaskOff

out dx,al

mov ah, [si]

mov es:[di],ah

i nc bx

inc si

rol al,l

adc di,0

loop CopyScanLineLoop
pop di
add di,[bp+DestBitmapWidth]

add si,[bp+SourceBitmapWidth]

add bx,[bp+SourceBitmapWidth]

dec

jnz

CopyDone:
pop

pop

mov

pop

ret

_CopySystemToScreenMaskedX endp
end

word ptr [bp+RectHeight]
CopyRowsLoop

di

si

sp,bp

bp

;point to SC Index register

;point SC Index reg to the Map Mask
;point DX to SC Data reg

;remember the start offset in the dest

;is this pixel mask-enabled?
;no, so don't draw it

;yes, draw the pixel
;set the plane for this pixel
;get the pixel from the source
;copy the pixel to the screen

jadvance the mask pointer

;advance the source pointer

;set mask for next pixel's plane
;advance destination address only when

; wrapping from plane 3 to plane 0

;retrieve the dest start offset

;point to the start of the
: next scan line of the dest

jpoint to the start of the
; next scan line of the source

;point to the start of the
; next scan line of the mask

;count down scan lines

jrestore caller's register variables

;discard storage for local variables

;restore caller's stack frame

Faster Masked Copying
In the previous chapter we saw how the VGAs latches can be used to copy four pixels
at a time from one area of display memory to another in Mode X. We've further seen
that in Mode X the Map Mask register can be used to select which planes are copied.
That's all we need to know to be able to perform fast masked copies; we can store an
image in off-screen display memory, and set the Map Mask to the appropriate mask
value as up to four pixels at a time are copied.

There's a slight hitch, though. The latches can only be used when the source and
destination left edge coordinates, modulo four, are the same, as explained in the previ-

Mode X256-Color Animation ^ 551

ous chapter. The solution is to copy all four possible alignments of each image to
display memory, each properly positioned for one of the four possible destination-left-
edge-modulo-four cases. These aligned images must be accompanied by the four pos
sible alignments of the image mask, stored in system memory. Given all four image
and mask alignments, masked copying is a simple matter of selecting the alignment
thats appropriate for the destinations left edge, then setting the Map Mask with the 4-
bit mask corresponding to each four-pixel set as we copy four pixels at a time via the
latches.

Listing 34.2 performs fast masked copying. This code expects to receive a pointer to
a Maskedlmage structure, which in turn points to four AlignedMaskedlmage struc
tures that describe the four possible image and mask alignments. The aligned images
are already stored in display memory, and the aligned masks are already stored in sys
tem memory; further, the masks are predigested into Map Mask register-compatible
form. Given all that ready-to-use data. Listing 34.2 selects and works with the appro
priate image-mask pair for the destinations left edge alignment.

LISTING 34.2 L34-2.ASM
Mode X (320x240, 256 colors) display memory to display memory masked copy
routine. Works on all VGAs. Uses approach of reading 4 pixels at a time from
source into latches, then writing latches to destination, using Map Mask
register to perform masking. Copies up to but not including column at
SourceEndX and row at SourceEndY. No clipping is performed. Results are not
guaranteed if source and destination overlap. C near-callable as:

void CopyScreenToScreenMaskedXCint SourceStartX,
int SourceStartY, int SourceEndX, int SourceEndY,

int DestStartX, int DestStartY, Maskedlmage * Source,

unsigned int DestPageBase, int DestBitmapWidth);

SC.INDEX equ 03c4h ;Sequence Controller Index register port

MAP_MASK equ 02h ;index in SC of Map Mask register

GC_INDEX equ 03ceh ;Graphics Controller Index register port

BIT_MASK equ OBh ;index in GC of Bit Mask register

SCREEN.SEG equ OaOOOh ;segment of display memory in mode X

parms struc

dw 2 dup (?) ;pushed BP and return address
SourceStartX dw ? ;X coordinate of upper left corner of source
SourceStartY dw ? ;Y coordinate of upper left corner of source

SourceEndX dw ? ;X coordinate of lower right corner of source

; (the column at SourceEndX is not copied)

SourceEndY dw ? ;Y coordinate of lower right corner of source

; (the row at SourceEndY is not copied)

DestStartX dw ? ;X coordinate of upper left corner of dest

DestStartY dw ? ;Y coordinate of upper left corner of dest

Source dw ? ipointer to Maskedlmage struct for source
; which source resides

DestPageBase dw ? ;base offset in display memory of page in
; which dest resides

DestBitmapWidth dw ? ;# of pixels across dest bitmap (must be multiple
parms ends

552 ^ Chapter 34

SourceNextScanOffset equ -2 ;local storage for distance from end of

; one source scan line to start of next

DestNextScanOffset equ -4 ;local storage for distance from end of

; one dest scan line to start of next

RectAddrWidth equ -6 ;local storage for address width of rectangle
RectHei ght equ -8 ;local storage for height of rectangle

SourceBitmapWidth equ -10 jlocal storage for width of source bitmap
; (in addresses)

STACK_FRAME_SIZE equ 10

Maskedlmage struc
A1i gnments dw 4 dup(?) ;pointers to A1ignedMaskedlmages for the

; 4 possible destination image alignments
Maskedlmage ends
A1ignedMaskedlmage struc

ImageWidth dw ? ;image width in addresses (also mask width in bytes)
ImagePtr dw ? ;offset of image bitmap in display memory
MaskPtr dw ? ;pointer to mask bitmap in DS

A1ignedMaskedlmage ends

.model small

.code

publi c _Copy$creenToScreenMaskedX
_CopyScreenToScreenMaskedX proc near

push bp ;preserve caller's stack frame
mov bp.sp ;point to local stack frame
sub sp,STACK_FRAME_SIZE ;allocate space for local vars
push si ;preserve caller's register variables
push di

eld

mov dx,GC_INDEX ;set the bit mask to select all bits

mov ax,OOOOOh+BIT_MASK ; from the latches and none from

out dx,ax ; the CPU, so that we can write the

; latch contents directly to memory

mov ax,SCREEN_SEG ;point ES to display memory
mov es,ax

mov ax,[bp+DestBitmapWidth]
shr ax,l ;convert to width in addresses

shr ax,l

mul [bp+DestStartV] ;top dest rect scan line
mov di,[bp+DestStartX]
mov si ,di

shr di,l ;X/4 = offset of first dest rect pixel in
shr di,l ; scan line

add di ,ax ;offset of first dest rect pixel in page
add di,[bp+DestPageBase] ;offset of first dest rect pixel in display

and si,3

mov ex,si

shl s1,l

mov bx,[bp+Source]
mov bx,[bx+Alignments+si]

mov ax,[bx+ImageWidth]

mov [bp+SourceBItmapWidth],
mul [bp+SourceStartY]
mov si,[bp+SourceStartX]
shr s1,l

shr s1,l

add si,ax

memory, now look up the image that's
aligned to match left-edge alignment

of destination

DestStartX modulo 4

set aside alignment for later

prepare for word look-up
point to source Maskedlmage structure

point to A1ignedMaskedlmage
struc for current left edge alignment

image width in addresses
ax ;remember image width in addresses

;top source rect scan line

:X/4 = address of first source rect pixel in
; scan line

;offset of first source rect pixel in image

Mode X256-Color Animation 0 553

mov

add

mov

add

mov

add

add

cmp

jle

add

and

sub

shr

shr

mov

sub

jle

mov

mov

shr

shr

sub

mov

mov

sub

mov

mov

ax, si

si,[bx+MaskPtr]

bx,[bx+ImagePtr]

bx.ax

ax,[bp+SourceStartX]
ax,cx

cx,[bp+SourceEndX]
cx,ax

CopyDone

cx,3

ax,not 011b

cx,ax

cx, 1

cx,l

ax,[bp+SourceEndY]
ax,[bp+SourceStartV]
CopyDone

[bp+RectHeight],ax
ax,[bp+DestBitmapWidth]
ax,l ;convert to width in addresses

ax, 1

ax,cx ;distance from end of one dest scan line to start of next
[bp+DestNextScanOffset],ax
ax,[bp+SourceSitmapWidth] ;width in addresses
ax,cx ;distance from end of source scan line to start of next
[bp+SourceNextScanOffset],ax
[bp+RectAddrWidth],cx ;remember width in addresses

;point to mask offset of first mask pixel in OS
;offset of first source rect pixel
; in display memory

;calculate # of addresses across

; rect, shifting if necessary to

; account for alignment

;skip if 0 or negative width

;# of addresses across rectangle to copy

;AX =

;skip
height of rectangle

if 0 or negative height

mov

mov

out

i nc

CopyRowsLoop:
mov

CopyScanLineLoop:
1 odsb

d

c

x,SC_INDEX

al,MAP_MASK

dx,al

dx

;point SO Index register to Map Mask
;point to SC Data register

x,[bp+RectAddrWidth] ;width across

out

mov

mov

i nc

i nc

dec

jnz

mov

add

add

add

dec

jnz

CopyDone:

mov

mov

out

pop

pop

mov

pop

dx,al

al,es:[bx]

es:[di],al

bx

di

cx

CopyScanLi neLoop

;get the mask for this four-pixel set
; and advance the mask pointer

;set the mask

;load the latches with 4-pixel set from source
;copy the four-pixel set to the dest
;advance the source pointer
;advance the destination pointer
;count off four-pixel sets

ax,[bp+SourceNextScanOffset]
si ,ax

bx,ax

di,[bp+DestNextScanOffset]
word ptr [bp+RectHeight]
CopyRowsLoop

;point to the start of
; the next source, mask,

; and dest lines

;count down scan lines

dx,GC_INDEX+l

al ,Offh

dx,al

di

si

sp.bp
bp

restore the bit mask to its default,

which selects all bits from the CPU

and none from the latches (the GC

Index still points to Bit Mask)
restore caller's register variables

;discard storage for local variables

;restore caller's stack frame

554 ^ Chapter 34

ret

_CopyScreenToScreenMaskedX endp
end

It would be handy to have a function that, given a base image and mask, generates
the four image and mask alignments and fills in the Maskedlmage structure. Listing 34.3,
together with the include file in Listing 34.4 and the system memory-to-display memory
block-copy routine in Listing 33.4 (in the previous chapter) does just that. It would be
faster if Listing 34.3 were in assembly language, but there's no reason to think that
generating aligned images needs to be particularly fast; in such cases, I prefer to use C,
for reasons of coding speed, fewer bugs, and maintainability.

LISTING 34.3 L34-3.C
/* Generates all four possible mode X image/mask alignments, stores image
alignments in display memory, allocates memory for and generates mask
alignments, and fills out an A1ignedMaskedlmage structure. Image and mask must
both be in byte-per-pixel form, and must both be of width ImageWidth. Mask
maps isomorphically (one to one) onto image, with each 0-byte in mask masking
off corresponding image pixel (causing it not to be drawn), and each non-O-byte
allowing corresponding image pixel to be drawn. Returns 0 if failure, or # of
display memory addresses (4-pixel sets) used if success. For simplicity,
allocated memory is not deallocated in case of failure. Compiled with
Borland C++ in C compilation mode. */

#include <stdio.h>

^include <stdlib.h>

^include "maskim.h"

extern void CopySystemToScreenX(int, int, int, int, int, int, char *,
unsigned int, int, int);

unsigned int CreateAlignedMaskedImage(MaskedImage * ImageToSet,
unsigned int DispMemStart, char * Image, int ImageWidth,
int ImageHeight, char * Mask)

{

int Align, ScanLine, BitNum, Size, TempImageWidth;
unsigned char Masklemp;
unsigned int DispMemOffset =■ DispMemStart;
A1ignedMaskedlmage *WorkingAMImage;
char *NewMaskPtr, *01dMaskPtr;
/* Generate each of the four alignments in turn. */
for (Align = 0; Align < 4; Align++) {

/* Allocate space for the A1ignedMaskedlmage struct for this alignment. */
if ((WorkingAMImage = ImageToSet->Alignments[Align] =

mal1oc(sizeof(AlignedMaskedlmage))) == NULL)
return 0;

WorkingAMImage->ImageWidth =
(ImageWidth + Align + 3) / 4; /* width in 4-pixel sets */

WorkingAMImage->ImagePtr = DispMemOffset; /* image dest */
/* Download this alignment of the image. */
CopySystemToScreenX(0, 0, ImageWidth, ImageHeight, Align, 0,

Image, DispMemOffset, ImageWidth, WorkingAMImage->ImageWidth * 4);
/* Calculate the number of bytes needed to store the mask in

nibble (Map Mask-ready) form, then allocate that space. */
Size = WorkingAMImage->ImageWidth * ImageHeight;
if ((WorkingAMImage->MaskPtr = mal1oc(Size)) == NULL)

Mode X 256-Color Animation @ 555

return 0;

/* Generate this nibble oriented (Map Mask-ready) alignment of

the mask, one scan line at a time. */

OldMaskPtr = Mask;

NewMaskPtr = WorkingAMImage->MaskPtr;

for (ScanLine = 0; ScanLine < ImageHeight; ScanLine++) {
BitNum = A1ign;

MaskTemp = 0;
TempImageWidth = ImageWidth;
do {

/* Set the mask bit for next pixel according to its alignment. */
MaskTemp |= (*01dMaskPtr++ != 0) << BitNum;
if (++BitNum > 3) {

*NewMaskPtr++ = MaskTemp;
MaskTemp = BitNum = 0;

}

} while (--TempImageWidth);
/* Set any partial final mask on this scan line. */
if (BitNum != 0) *NewMaskPtr++ = MaskTemp;

}

DispMemOffset += Size; /* mark off the space we just used */
}

return DispMemOffset - DispMemStart;

LISTING 34.4 MASKIM.H
/* MASKIM.H: structures used for storing and manipulating masked

images */

/* Describes one alignment of a mask-image pair. */
typedef struct {

int ImageWidth; /* image width in addresses in display memory (also
mask width in bytes) */

unsigned int ImagePtr; /* offset of image bitmap in display mem */
char *MaskPtr; /* pointer to mask bitmap */

} A1ignedMaskedlmage;

/* Describes all four alignments of a mask-image pair. */
typedef struct {

A1ignedMaskedlmage *A1ignments[4]; /* ptrs to A1ignedMaskedlmage
structs for four possible destination
image alignments */

} Maskedlmage;

Notes on Masked Copying
Listings 34.1 and 34.2, like all Mode X code IVe presented, perform no clipping,
because clipping code would complicate the listings too much. While clipping can be
implemented directly in the low-level Mode X routines (at the beginning of Listing
34.1, for instance), another, potentially simpler approach would be to perform clip
ping at a higher level, modifying the coordinates and dimensions passed to low-level
routines such as Listings 34.1 and 34.2 as necessary to accomplish the desired clipping.
It is for precisely this reason that the low-level Mode X routines support programmable

556 ^ Chapter 34

start coordinates in the source images, rather than assuming (0,0); likewise for the
distinction between the width of the image and the width of the area of the image to
draw.

Also, it would be more efficient to make up structures that describe the source and
destination bitmaps, with dimensions and coordinates built in, and simply pass point
ers to these structures to the low level, rather than passing many separate parameters, as
is now the case. IVe used separate parameters for simplicity and flexibility.

de th^t nifty ̂ 3 Mode X y\ard\Nare-aeeieted maeked copy
ing ie, whether or not it'e actuaiiy faeter than eoftware-oniy maeked
or traneparent copying depende upon the proceeeor and the video
adapter. The advantage of Mode X maeked copying ie the 32-hit
paraileliem; the dieadvantagee are the need to read dieplay memory
and the need to perform an OUT for every four pixeie. (OUT ie a eiow
436/Fentium inetruction, and meet VGAe reepond to OUTe much
more elowly than to dieplay memory writee.)

Animation

Gosh. There's just no way I can discuss high-level animation fundamentals in any
detail here; I could spend an entire (and entirely separate) book on animation tech
niques alone. You might want to have a look at Part VTI before attacking the code in
this chapter; that will have to do us for the present volume. (I will return to 3-D
animation in Part IX of this book.)

Basically, I'm going to perform page-flipped animation, in which one page (that is,
a bitmap large enough to hold a full screen) of display memory is displayed while
another page is drawn to. When the drawing is finished, the newly modified page is
displayed, and the other—now invisible—page is drawn to. The process repeats ad
infinitum. For further information, some good places to start are Computer Graphics^
by Foley and van Dam (Addison-Wesley); Principles of Interactive Computer Graphics^
by Newman and Sproull (McGraw Hill); and "Real-Time Animation" by Rahner James
(January 1990, Dr. Dobb's Journal);

Some of the code in this chapter was adapted for Mode X from the code in Chapter
29—^yet another reason to read that chapter before finishing this one.

Mode X Animation in Action

Listing 34.5 ties together everything I've discussed about Mode X so far in a compact
but surprisingly powerful animation package. Listing 34.5 first uses solid and pat
terned fills and system-memory-to-screen-memory masked copying to draw a static
background containing a mountain, a sun, a plain, water, and a house with puffs of

Mode X 256-Color Animation ^ 557

smoke coming out of the chimney, and sets up the four alignments of a masked kite
image. The background is transferred to both display pages, and drawing of twenty
kite images in the nondisplayed page using fast masked copying begins. After all im
ages have been drawn, the page is flipped to show the newly updated screen, and the
kites are moved and drawn in the other page, which is no longer displayed. Kites are
erased at their old positions in the nondisplayed page by block copying from the back
ground page. (See the discussion in the previous chapter for the display memory orga
nization used by Listing 34.5.) So far as the displayed image is concerned, there is
never any hint of flicker or disturbance of the background. This continues at a rate of
up to 60 times a second until Esc is pressed to exit the program. See Figure 34.1 for a
screen shot of the resulting image—add the animation in your imagination.

LISTING 34.5 L34-5.G
/* Sample mode X VGA animation program. Portions of this code first appeared

in PC Techniques. Compiled with Borland C++ 2.0 In C compilation mode. */

#include <stdio.h>

#include <conio.h>

#include <dos.h>

#include <math.h>

#include "maskim.h"

#define SCREEN_SEG OxACaC

#define SCREEN_WIDTH 320

#define SCREENJEIGHT 240

#define PAGEO_START_OFFSET 0

#define PAGE1_START_0FFSET ({(1ong)SCREEN_HEIGHT*SCREEN„WIDTH)/4)

#define BG.STARTJFFSET (((1 ong) SCREEN„HEIGHT*SCREEN_WIDTH*2)/4)
#define DOWNLOAD_START_OFFSET (((1ong)SCREEN_HEIGHT*SCREEN_WIDTH*3)/4)

Figure 34.1 An animated Mode X Screen

558 ® Chapter 34

static unsigned Int PageStartOffsets[2] = {PAGEO_START_OFFSET.PAGE1_START_OFFSET};
Static char GreenAndBrownPatternC] = {2,6,2,6, 6,2,6,2, 2,6,2,6, 6,2,6,2};
static char P1neTreePattern[] - (2,2,2,2, 2,6,2,6, 2,2,6,2, 2,2,2,2};
static char BrlckPattern[] - {6,6,7,6, 7,7,7,7, 7,6,6,6, 7,7,7,7,};
static char RoofPattern[] = {8,8,8,7, 7,7,7,7, 8,8,8,7, 8,8,8,7};

#def1ne SMOKE_WIDTH 7
#def1ne SMOKE.HEIGHT 7
static char SmokePlxels[]

0, 0,15,15,15, 0, 0,

7, 7,15,15,15, 0,

7, 7,15,15,15,

7, 7,15,15,

7, 7, 7,15,

7, 7, 7, 0,

0.

8,

8,

0. 8,

7,

7, 7,

0. 0.

7,

8,

0, 0, 0, 8, 8, 0, 0};

static char SmokeMaskC] {

0. 0.

0. 1.

1,

1,

1,

0.

0, 0,

0, 0,

1,

1,

1,

1,

1,

0.

0,

1,

1,

1,

0,

0};
#def1ne KITE.WIDTH 10
#def1ne KITE_HEIGHT 16
static char K1teP1xels[] =

0, 0, 0, 0,45, 0, 0, 0.

0, 0, 0,46,46,46, 0, 0,

0, 0,47,47,47,47,47, 0,

0,48,48,48,48,48,48,48,

49,49,49,49,49,49,49,49,49,

0,50,50,50,50,50,50,50, 0,

0,51,51,51,51,51,51,51,

0, 0,52,52,52,52,52, 0,

0,53,53,53,53,53,

0,54,54,54, 0,

0,55,55,55, 0,

0,58, 0, 0,

0,59, 0, 0,

0,60, 0,

0, 0,61,

0, 0, 0, 0, 0,62,63,

{

0,

0, 0,

0, 0,

0, 0, 0,

0, 0, 0,

0, 0,

0, 0,

0,

0,

0,

0,

0,

0,

0,

0,

0,64,

0, 0,

static char K1teMask[]

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

66,

65,

0,

64};

0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 1, 1. 0, 0, 0, 0,

0, 0, 1, 1, 1. 1. 0, 0, 0,

0, 1, 1, 1, 1. 1, 1, 0, 0,

1. 1, 1. 1, 1. 1, 1, 1. 0,

0, 1, 1, 1, 1. 1, 1, 0, 0,

0, 1, 1, 1, 1. 1. 1, 0, 0,

0, 0, 1 1 1 1. 1. 0. 0, 0,

0, 0, 1, 1, 1. 1. 0, 0, 0,

0, 0, 0, 1, 1, 0, 0, 0, 0,

0, 0, 0, 1, 1. 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 1,

0, 0, 0, 0, 1, 0, 0, 1, 0, 1,

0, 0, 0, 0, 0, 1, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 1, 1, 0, 1}

static Maskedlmage Kitelmage;

Mode X256-Color Animation @ 559

#define NUM_OBJECTS 20

typedef struct {
int X.Y.Width.Height.XDi r.YDi r.XOtherPage.YOtherPage;
Maskedlmage *Iniage;

} AnimatedObject;

AnimatedObject AnimatedObjectsC] = {
{ 0, 0,KITE_WIDTH,KITE_HEIGHT, 1. 1, 0. 0,&Kitelmage}.
{ 10. 10,KITE_WIDTH,KITE_HEIGHT. 0. 1. 10. 10.&Kitelmage].
{ 20. 20.KITE_WIDTH.KITE_HEIGHT.-1. 1, 20. 20.&Kitelmage],
{ 30. 30.KITE_WIDTH.KITE_HEIGHT.-1.-1. 30, 30.&Kitelmage].
{ 40. 40.KITE_WIDTH.KITE_HEIGHT. l.-l. 40. 40.&Kitelmage].
{ 50. 50.KITE_WIDTH.KITE_HEIGHT. 0,-1. 50. 50.&Kitelmage].
{ 60. 60.KITE_WIDTH.KITE_HEIGHT. 1. 0. 60. 60.&Kitelmage].
{ 70. 70.KITE_WIDTH.KITE_HEIGHT.-1. 0. 70, 70.&Kitelmage].
{ 80. 80.KITE_WIDTH.KITE_HEIGHT. 1. 2. 80. 80.&Kitelmage].
{ 90. 90.KITE_WIDTH.KITE_HEIGHT. 0. 2. 90, 90,&Kitelmage].
{100.100.KITE_WIDTH.KITE_HEIGHT.-1. 2.100.100.&Kitelmage].
{110,no.KITE_WIDTH.KITE_HEIGHT.-1,-2.110,110,&Kitelmage],
{120.120.KITE_WIDTH.KITE_HEIGHT, 1,-2.120,120.&Kitelmage].
{130.130.KITE_WIDTH.KITE_HEIGHT, 0,-2.130.130,&Kitelmage].
{140.140.KITE_WIDTH.KITE_HEIGHT. 2. 0.140.140.&Kitelmage].
{150.150.KITE_WIDTH,KITE_HEIGHT.-2. 0.150.150.&Kitelmage].
{160.160.KITE_WIDTH.KITE_HEIGHT, 2. 2.160.160.&KiteImage].
{170.170.KITE_WIDTH.KITE_HEIGHT.-2. 2.170,170.&Kitelmage].
{180.180.KITE_WIDTH.KITE_HEIGHT.-2,-2.180.180.&KiteImage].
{190.190.KITE_WIDTH.KITE_HEIGHT. 2.-2,190,190.&Kitelmage].

];
void main(vold);

void DrawBackground(unsigned int);
void MoveObject(AnimatedObject *);
extern void Set320x240Mode(void);

extern void Pi 11RectangleX(int. int. int. int. unsigned int. int);
extern void Fil1PatternXCint. int, int. int. unsigned int, char*);

extern void CopySystemToScreenMaskedXCint. int. int. int. int. int.
char *. unsigned int. int. int. char *);

extern void CopyScreenToScreenXCint. int. int. int. int. int.
unsigned int. unsigned int. int. int);

extern unsigned int CreateAlignedMaskedlmageCMaskedlmage *.
unsigned int. char *. int. int. char *);

extern void CopyScreenToScreenMaskedXCint. int. int. int. int. int,
Maskedlmage *. unsigned int. int);

extern void ShowPageCunsigned int);

void mainO

{

int DisplayedPage. NonDisplayedPage. Done, i;
union REGS regset;

Set320x240Mode();

/* Download the kite image for fast copying later. */
if (CreateAlignedMaskedlmageC&Kitelmage, DOWNLOAD_START_OFFSET.

KitePixels. KITE_WIDTH. KITE_HEIGHT. KiteMask) == 0) {
regset.X.ax = 0x0003; int86(0xl0. ®set. ®set);
printf("Couldn't get memory\n"); exitO;

]

/* Draw the background to the background page. */
DrawBackground(BG_START_OFFSET);

/* Copy the background to both displayable pages. */
CopyScreenToScreenX(0. 0. SCREEN_WIDTH. SCREEN_HEIGHT, 0. 0.

BG_START_OFFSET. PAGEO_START_OFFSET. SCREEN_WIDTH. SCREEN_WIDTH);
CopyScreenToScreenX(0. 0. SCREEN_WIDTH. SCREEN_HEIGHT. 0. 0.

560 ^ Chapter 34

BG_START_OFFSET, PAGE1_START_0FFSET, SCREEN_WIDTH, SCREEN_WIDTH);
/* Move the objects and update their Images in the nondisplayed

page, then flip the page, until Esc Is pressed. */
Done = DisplayedPage = 0;
do {

NonDisplayedPage = DisplayedPage 1;
/* Erase each object In nondisplayed page by copying block from

background page at last location In that page. */
for (1=0; 1<NUM_0BJECTS; 1++) {

CopyScreenToScreenX(An1matedObjects[1].XOtherPage,
An1matedObjects[1].YOtherPage,
An1matedObjects[1].XOtherPage +
An1matedObjects[1].Width,

An1matedObjects[1].YOtherPage +
An1matedObjects[1].Height,
An1matedObjects[1].XOtherPage,
AnImatedObjectsCI].YOtherPage, BG_START_OFFSET,
PageStartOffsetsCNonDIsplayedPage], SCREEN_WIDTH, SCREEN_WIDTH);

}

/* Move and draw each object In the nondlsplayed page. */
for (1=0; 1<NUM_0BJECTS; 1++) {

MoveObject(&An1matedObjects[1]);
/* Draw object Into nondlsplayed page at new location */
CopyScreenToScreenMaskedX(0, 0, An1matedObjects[1].Width,

An1matedObjects[1].Height, AnImatedObjectsCI].X,
AnImatedObjectsCI].Y, AnImatedObjectsCI].Image,
PageStartOffsetsCNonDlsplayedPage], SCREEN_WIDTH);

}

/* Flip to the page Into which we just drew. */
ShowPage(PageStartOffsetsCDIsplayedPage = NonDIsplayedPage]);
/* See If It's time to end. */

If (kbhItO) {

If (getchO = OxlB) Done = 1; /* Esc to end */

}

} while (IDone);

/* Restore text mode and done. */

regset.x.ax = 0x0003; 1nt86(0xl0, ®set, ®set);

}

void DrawBackground(uns1gned Int PageStart)

{

Int 1,j,Temp;
/* Fill the screen with cyan. */

F111RectangleX(0, 0, SCREEN.WIDTH, SCREEN_HEIGHT, PageStart, 11);
/* Draw a green and brown rectangle to create a flat plain. */
F111PatternX(0, 160, SCREEN_WIDTH, SCREEN_HEIGHT, PageStart,

GreenAndBrownPattern);

/* Draw blue water at the bottom of the screen. */

F111RectangleX(0, SCREEN_HEIGHT-30, SCREEN_WIDTH, SCREEN_HEIGHT,
PageStart, 1);

/* Draw a brown mountain rising out of the plain. */
for (1=0; 1<120; 1++)

F111RectangleX(SCREEN_WIDTH/2-30-1, 51+1, SCREEN_WIDTH/2-30+1+l,

51+1+1, PageStart, 6);

/* Draw a yellow sun by overlapping rects of various shapes. */
for (1=0; 1<=20; 1++) {

Temp = (1nt)(sqrt(20.0*20.0 - (float)1*(float)1) + 0.5);

F111RectangleX(SCREEN_WIDTH-25-1, 30-Temp, SCREEN_WIDTH-25+1+l,
30+Temp+l, PageStart, 14);

}
/* Draw green trees down the side of the mountain. */
for (1=10; 1<90; 1 += 15)

Mode X256-Color Animation @ 561

for (j=0: j<20: j++)
FillPatternX<SCREEN_WIDTH/2+1-j/3-l5, 1+j+5l.SCREEN_WIDTH/2+i+j/3-15+l.

i+j+51+1, PageStart, PineTreePattern);

/* Draw a house on the plain. */
F111PatternX(265, 150, 295, 170, PageStart, BrickPattern);
FillPatternX(265, 130, 270, 150, PageStart, BrickPattern);

for (1=0; 1<12; 1++)

FinPatternX(280-1*2, 138+1, 280+1*2+1, 138+1+1, PageStart, Roof Pattern);

/* Finally, draw puffs of smoke rising from the chimney. */
for (1=0; 1<4; 1++)

CopySystemToScreenMaskedX(0, 0, SM0KE_WIDTH, SMOKE_HEIGHT, 264,
110-1*20, SmokePlxels, PageStart, SMOKE_WIDTH,SCREEN_WIDTH, SmokeMask);

}

/* Move the specified object, bouncing at the edges of the screen and
remembering where the object was before the move for erasing next time. */

void MoveObject(An1matedObject * ObjectToMove) {
Int X, Y;

X = ObjectToMove->X + ObjectToMove->XD1r;
Y = ObjectToMove->Y + ObjectToMove->YD1r;
If ((X < 0) I I (X > (SCREEN_WIDTH - ObjectToMove->W1dth))) {

ObjectToMove->XD1r = -ObjectToMove->XD1r;
X = ObjectToMove->X + ObjectToMove->XD1r;

}

If ((Y < 0) I I (Y > (SCREEN_HEIGHT - ObjectToMove->He1ght))) {
ObjectToMove->YD1r = -ObjectToMove->YD1r;
Y = ObjectToMove->Y + ObjectToMove->YD1r;

}
/* Remember previous location for erasing purposes. */
ObjectToMove->XOtherPage = ObjectToMove->X;
ObjectToMove->YOtherPage = ObjectToMove->Y;
ObjectToMove->X = X; /* set new location */
ObjectToMove->Y = Y;

}

Here's something worth noting: The animation is extremely smooth on a 20 MHz
386. It is somewhat more jerky on an 8 MHz 286, because only 30 frames a second can
be processed. If animation looks jerky on your PC, try reducing the number of kites.
The kites draw perfectly into the background, with no interference or fringe, thanks

to masked copying. In fact, the kites also cross with no interference (the last-drawn kite
is always in front), although that's not readily apparent because they all look the same
anyway and are moving fast. Listing 34.5 isn't inherently limited to kites; create your
own images and initialize the object list to display a mix of those images and see the full
power of Mode X animation.
The external functions called by Listing 34.5 can be found in Listings 34.1, 34.2,

34.3, and 34.6, and in the listings for the previous two chapters.

LISTING 34.6 L34-6.ASIVI
Shows the page at the specified offset In the bitmap. Page Is displayed when
this routine returns.

C near-callable as: void ShowPage(uns1gned Int StartOffset);

INPUT_STATUS_1 equ 03dah
CRTC_INDEX equ 03d4h
START_ADDRESS_HIGH equ Och
START_ADDRESS_LOW equ Odh

Input Status 1 register
CRT Controller Index reg

bitmap start address high byte
bitmap start address low byte

562 @ Chapter 34

ShowPageParms struc

dw 2 dup (?) ;pushed BP and return address
StartOffset dw ? ;offset in bitmap of page to display
ShowPageParms ends

.model small

. code

publi c _ShowPage

_ShowPage proc near

push bp ;preserve caller's stack frame
mov bp,sp ;point to local stack frame

Wait for display enable to be active (status is active low), to be
sure both halves of the start address will take in the same frame.

mov bl.START_ADDRESS_LOW

mov bh.byte ptr StartOffset[bp]
mov cl,START_ADDRESS_HIGH

mov ch.byte ptr StartOffset+l[bp]
mov dx,INPUT_STATUS_l

;preload for fastest
; flipping once display
; enable is detected

WaitDE:

in al.dx

test al,01h

jnz WaitDE

; Set the start offset

mov

mov

out

mov

out

;display enable is active low (0
in display memory of the page to display.

dx,CRTC_INDEX

ax.bx

dx, ax

ax,cx

dx,ax

;start address low

;start address high

active)

Now wait for vertical sync, so the other page will be invisible when
we start drawing to it.

WaitVS:

mov dx.INPUT_STATUS_l

i n al ,dx

test al .08h

jz WaitVS

pop bp
ret

le endp
end

;vertical sync is active high (1
;restore caller's stack frame

acti ve)

Works Fast, Looks Great
We now end our exploration of Mode X, although we'll use it again shordy for 3-D anima
tion. Mode X admittedly has its complexities; that's why I've provided a broad and
flexible primitive set. Still, so what if it is complex? Take a look at Listing 34.5 in
action. That sort of colorful, high-performance animation is worth jumping through a
few hoops for; drawing 20, or even 10, fair-sized objects at a rate of 60 Hz, with no
flicker, interference, or fringe, is no mean accomplishment, even on a 386.

There's much more we could do with animation in general and with Mode X in
particular, but it's time to move on to new challenges. In closing, I'd like to point out
that all of the VGA's hardware features, including the built-in AND, OR, and XOR
functions, are available in Mode X, just as they are in the standard VGA modes. If you
understand the VGA's hardware in mode 12H, try applying that knowledge to Mode X;
you might be surprised at what you find you can do.

3-D Animation Using Mode X
When I first started programming micros, more than 11 years ago now, there wasn't
much money in it, or visibility, or anything you could call a promising career. Some
times, it was a way to accomplish things that would never have gotten done otherwise
because minicomputer time cost too much; other times, it paid the rent; mostly, though,
it was just for fun. Given free computer time for the first time in my life, I went wild,
writing versions of all sorts of software I had seen on mainframes, in arcades, wherever.
It was a wonderful way to learn how computers work: Trial and error in an environ
ment where nobody minded the errors, with no meter ticking.
Many sorts of software demanded no particular skills other than a quick mind and

a willingness to experiment: Space Invaders, for instance, or full-screen operating sys
tem shells. Others, such as compilers, required a good deal of formal knowledge. Still
others required not only knowledge but also more horse-power than I had available.
The latter I filed away on my ever-growing wish list, and then forgot about for a while.

Three-dimensional animation was the most alluring of the areas I passed over long
ago. The information needed to do rotation, projection, rendering, and the like was
neither so well developed nor widely so available then as it is now, although, in truth,
it seemed more intimidating than it ultimately proved to be. Even had I possessed the
knowledge, though, it seems unlikely that I could have coaxed satisfactory 3-D animation
out of a 4 MHz Z80 system with 160x72 monochrome graphics. In those days, 3-D was
pretty much limited to outrageously expensive terminals attached to minis or mainframes.

Times change, and they seem to do so much faster in computer technology than in
other parts of the universe. A 486 is capable of decent 3-D animation, owing to its
integrated math coprocessor; not in the class of, say, an i860, but pretty good nonethe
less. A 386 is less satisfactory, though; the 387 is no match for the 486's coprocessor,
and most 386 systems lack coprocessors. However, all is not lost; 32-bit registers and

564 0 Chapter 35

built-in integer multiply and divide hardware make it possible to do some very inter
esting 3-D animation on a 386 with fixed-point arithmetic. Actually, its possible to do
a surprising amount of 3-D animation in real mode, and even on lesser x86 processors;
in fact, the code in this article will perform real-time 3-D animation (admittedly very
simple, but nonetheless real-time and 3-D) on a 286 without a 287, even though the
code is written in real-mode C and uses floating-point arithmetic. In short, the poten
tial for 3-D animation on the x86 family is considerable.

With this chapter, we kick off an exploration of some of the sorts of 3-D animation
that can be performed on the x86 family. Mind you, I'm talking about real-time 3-D
animation, with all calculations and drawing performed on-the-fly. Generating frames
ahead of time and playing them back is an excellent technique, but I'm interested in
seeing how far we can push purely real-time animation. Granted, we're not going to
make it to the level of Terminator 2, but we should have some fim nonetheless. The
first few chapters in this final section of the book may seem pretty basic to those of you
experienced with 3-D programming, and, at the same time, 3-D neophytes will inevi
tably be distressed at the amount of material I skip or skim over. That can't be helped,
but at least there'll be working code, the references mentioned later, and some explana
tion; that should be enough to start you on your way with 3-D.

Animating in three dimensions is a complex task, so this will be the largest single
section of the book, with later chapters building on earUer ones; and even this first 3-D
chapter will rely on polygon fill and ps^e-flip code from earlier chapters.

In a sense, I've saved the best for last, because, to my mind, real-time 3-D animation
is one of the most exciting things of any stripe that can be done with a computer—and
because, with today's hardware, it can in faa be done. Nay, it can be done amazingly well.

References on 3-D Drawing
There are several good sources for information about 3-D graphics. Foley and van
Dam's Computer Graphics: Principles and Practice (Second Edition, Addison-Wesley,
1990) provides a lengthy discussion of the topic and a great many references for further
study. Unfortunately, this book is heavy going at times; a more approachable discus
sion is provided in Principles of Interactive Computer Graphics, by Newman and Sproull
(McGraw-Hill, 1979). Although the latter book lacks the last decade's worth of graph
ics developments, it nonetheless provides a good overview of basic 3-D techniques,
including many of the approaches likely to work well in real time on a PC.
A source that you may or may not find usefiil is the series of six books on C graphics

by Lee Adams, as exemplified by High-Performance CAD Graphics in C (Windcrest/
Tab, 1986). (I don't know if all six books discuss 3-D graphics, but the four I've seen
do.) To be honest, this book has a number of problems, including: Relatively little
theory and explanation; incomplete and sometimes erroneous discussions of graphics
hardware; use of nothing but global variables, with cryptic names like "array3" and

Adding a Dimension ^ 565

"B21;" and—^well, you get the idea. On the other hand, the book at least touches on a
great many aspects of 3-D drawing, and there's a lot of C code to back that up. A
number of people have spoken warmly to me of Adams' books as their introduction to
3-D graphics. I wouldn't recommend these books as your only 3-D references, but if
you're just starting out, you might want to look at one and see if it helps you bridge the
gap between the theory and implementation of 3-D graphics.

The 3-D Drawing Pipeline
Each 3-D object that we'll handle will be built out of polygons that represent the
siuface of the object. Figure 35.1 shows the stages a polygon goes through enroute to being
drawn on the screen. (For the present, we'll avoid complications such as clipping, lighting.

3aee polygon definition in object space, typically centered at (0,0,0)

Object epace to world
space transformation

Polygon transformed into world space, the shared 5-P
universe. At this point, (0,0,0) is the origin of the 5-D
universe and is not affected by the location or
orientation of the polygon, the viewer, or the screen.

World space to view
space transformation

Polygon transformed into view space, the 3-P universe
as it looks from the viewpoint; the viewpoint becomes
the origin (0,0,0), with the viewer looking straight dowr\
the Z axis.

Perspective projection from view
space to the screen

Polygon perspective-projected to 2-D screen coordinates

Polygon fill routine

Transformed and projected polygon drawr\ on the screen

Figure 35.1 The 3-D Drawing Pipeline

566 @ Chapter 35

and shading.) First, the polygon is transformed from object space, the coordinate sys
tem the object is defined in, to world space, the coordinate system of the 3-D universe.
Transformation may involve rotating, scaling, and moving the polygon. Fortunately,
applying the desired transformation to each of the polygon vertices in an object is
equivalent to transforming the polygon; in other words, transformation of a polygon is
fiilly defined by transformation of its vertices, so it is not necessary to transform every
point in a polygon, just the vertices. Likewise, transformation of all the polygon verti
ces in an object fiilly transforms the object.

Once the polygon is in world space, it must again be transformed, this time into
view space, the space defined such that the viewpoint is at (0,0,0), looking down the Z axis,
with the Y axis straight up and the X axis oflF to the right. Once in view space, the
polygon can be perspective-projected to the screen, with the projected X and Y coordi
nates of the vertices finally being used to draw the polygon.

That's really all there is to basic 3-D drawing: transformation from object space to world
space to view space to the screen. Next, we'll look at the mechanics of transformation.
One note: I'll use a purely right-handedoomennon for coordinate systems. Right-handed

means that ifyou hold your right hand with your fingers curled and the thumb sticking out,
the thumb points along the Z axis and the fingers point in the direction of rotation from the
X axis to the Y axis, as shown in Figure 35.2. Rotations about an axis are counter-clockwise,
as viewed looking down an axis toward the origin. The handedness of a coordinate
system is just a convention, and lefr-handed would do equally well; however, right-
handed is generally used for object and world space. Sometimes, the handedness is
flipped for view space, so that increasing Z equals increasing distance from the viewer
along the line of sight, but I have chosen not to do that here, to avoid confusion.
Therefore, Z decreases as distance along the line of sight increases; a view space coordi
nate of (0,0,-1000) is directly ahead, twice as far away as a coordinate of (0,0,-500).

Pirection of positive rotation
around the Z axis,

from the X axis

to the Y axis

> X

Figure 35.2 A RIght-Handed Coordinate System

Adding a Dimension ^ 567

Projection
Working backward from the final image, we want to take the vertices of a polygon, as
transformed into view space, and project them to 2-D coordinates on the screen, which,
for projection purposes, is assumed to be centered on and perpendicular to the Z axis
in view space, at some distance from the screen. We're after visual realism, so we'll want
to do a perspective projection, in order that farther objects look smaller than nearer
objects, and so that the field of view will widen with distance. This is done by scaling
the X and Y coordinates of each point proportionately to the Z distance of the point
from the viewer, a simple matter of similar triangles, as shown in Figure 35.3. It doesn't
really matter how far down the Z axis the screen is assumed to be; what matters is the
ratio of the distance of the screen from the viewpoint to the width of the screen. This
ratio defines the rate of divergence of the viewing pyramid—the full field of view—
and is used for performing all perspective projections. Once perspective projection has
been performed, all that remains before calling the polygon filler is to convert the
projected X and Y coordinates to integers, appropriately clipped and adjusted as neces
sary to center the origin on the screen or otherwise map the image into a window, if
desired.

Translation

Translation means adding X, Y, and Z offsets to a coordinate to move it linearly through
space. Translation is as simple as it seems; it requires nothing more than an addition for
each axis. Translation is, for example, used to move objects from object space, in which
the center of the object is typically the origin (0,0,0), into world space, where the
object may be located anywhere.

+

Top of view
pyramid

Viewpoint

Screen

Sottom of view pyramid

3-D point
to be

- projected

Point projected to screen

(direction
of view)

Figure 35.3 Perspective Projection

568 ^ Chapter 35

Rotation

Rotation is the process of circularly moving coordinates around the origin. For our
present purposes, its necessary only to rotate objects about their centers in object space,
so as to turn them to the desired attitude before translating them into world space.

Rotation of a point about an axis is accomplished by transforming it according to
the formulas shown in Figure 35.4. These formulas map into the more generally useful
matrix-multiplication forms also shown in Figure 35.4. Matrix representation is more
useful for two reasons: First, it is possible to concatenate multiple rotations into a
single matrix by multiplying them together in the desired order; that single matrix can
then be used to perform the rotations more efficiently.

(^)
newx = X

navy/ = coafthata) * y - sin(thata) * z
nawz = 5in(thata) * y + coe{theta) * z

Matrix form of rotation around X axis:

1 0

0 cos(thata)
0 sin(thata)

(b)
nawx = cos(thata) * x + sin(thata) * z
navy/ = y

nawz = -0in(thata) * x + cos(thata) * z

Matrix form of rotation around Y axis:

0 X

-sin(thata) X y
cos(thata) z

cos(thata) 0
0 1

-sin(thata) 0

sin(thata)
0

cos(thata)

(C)
nawx = cos(thata) * x - sin(thata) * y
navvy = sin(thata) * x + cos(thata) * y
nawz = z

Matrix form of rotation around Z axis:

cos(thata) -sin(thata) 0
sin(thata) cos(thata) 0
0 0 1

Figure 35.4 3-D Rotation Formulas

Adding a Dimension @ 569

Rotation of 90 around the Y axis

1

Translation (move) of 100 units alon^ the
X axis and 10 units alon^ the Z axis

I
0 0 1

I

1

1
100 j X

0 1 0

1

1

1
1

0 1
V

y

-1 0 0
1

1 10 ! z

0 0 0 1 ! 1

Not used at the moment

t
A 3-D point represented In
homogeneous coordinates

Figure 35.5 A 4x4 Transformation Matrix

Second, 3x3 rotation matrices can become the upper-left-hand portions of 4x4
matrices that also perform translation (and scaling as well, but we won't need scaling in
the near future), as shown in Figure 35.5. A 4x4 matrix of this sort utilizes homoge
neous coordinates; that's a topic way beyond this book, but, basically, homogeneous
coordinates allow you to handle both rotations and translations with 4x4 matrices,
thereby allowing the same code to work with either, and making it possible to concat
enate a long series of rotations and translations into a single matrix that performs the
same transformation as the sequence of rotations and transformations.

There's much more to be said about transformations and the supporting matrix
math, but, in the interests of getting to working code in this chapter, I'll leave that to
be discussed as the need arises.

A Simple 3-D Example
At this point, we know enough to be able to put together a simple working 3-D animation
example. The example will do nothing more complicated than display a single polygon
as it sits in 3-D space, rotating around the Y axis. To make things a litde more interest
ing, we'll let the user move the polygon around in space with the arrow keys, and with
the "A" (away), and "T" (toward) keys. The sample program requires two sorts of
functionality: The ability to transform and project the polygon from object space onto
the screen (3-D functionality), and the ability to draw the projected polygon (com
plete with clipping) and handle the other details of animation (2-D functionality).

Happily (and not coincidentally), we put together a nice 2-D animation framework
back in Part VIII, during our exploratory discussion of Mode X, so we don't have much

570 ^ Chapter 35

to worry about in terms of non-3-D details. Basically, we'll use Mode X (320x240,
256 colors, as discussed in Part VIII), and we'll flip between two display pages, draw
ing to one while the other is displayed. One new 2-D element that we need is the
ability to clip polygons; while we could avoid this for the moment by restricting the
range of motion of the polygon so that it stays fiilly on the screen, certainly in the long
run we'll want to be able to handle partially or fully clipped polygons. Listing 35.1 is
the low-level code for a Mode X polygon filler that supports clipping. (The high-level
polygon fill code is mode independent, and is the same as that presented in Part V, as
noted further on.) The clipping is implemented at the low level, by trimming the Y
extent of the scan line list up front, then clipping the X coordinates of each scan line in
turn. This is not a particularly fast approach to clipping—ideally, the polygon would
be clipped before it was scanned into a line list, avoiding potentially wasted scanning
and eliminating the line-by-line X clipping—but it's much simpler, and, as we shall
see, polygon filling performance is the least of our worries at the moment.

LISTING 35.1 L35-1.ASIVI
Draws all pixels in the list of horizontal lines passed in, in
Mode X, the VGA's undocumented 320x240 256-color mode. Clips to
the rectangle specified by (C1ipMinX,ClipMinY),(C1ipMaxX,C1ipMaxY).
Draws to the page specified by CurrentPageBase.
C near-callable as:

void DrawHorizontalLineList(struct HLineList * HLineListPtr,
int Color);

All assembly code tested with TASM and MASM

SCREEN_WIDTH equ 320

SCREEN.SEGMENT equ OaOOOh

SC_INDEX equ 03c4h ;Sequence Controller Index
MAP_MASK equ 2 ;Map Mask register index in SC

HLine struc

XStart dw ? ;X coordinate of leftmost pixel in line
XEnd dw ? ;X coordinate of rightmost pixel in line
HLi ne ends

HLineList struc

Lngth dw ? ;# of horizontal lines
YStart dw ? ;Y coordinate of topmost line
HLi nePtr dw ? ;pointer to list of horz lines
HLi neLi st ends

Parms struc

dw 2 dup(?) ;return address & pushed BP
HLineListPtr dw ? ;pointer to HLineList structure
Col or dw ? ;color with which to fill
Parms ends

.model smal 1

.data

extrn _CurrentPageBase:word _C1ipMinXrword
extrn _ClipMinY:word,_C1ipMaxX:word,_C1ipMaxY:word

Adding a Dimension ^ 571

; Plane masks for clipping left and right edges of rectangle.
LeftClipPlaneMask db 00fh,00eh,00ch,008h
RightClipPlaneMask db 001h.003h,007h,00fh

.code

al ign 2

ToFi11 Done:

jmp Fi11 Done

publi c _DrawHori zontalLi neLi st

al ign 2

_DrawHorizontalLineLiSt proc

push bp ;preserve caller's stack frame
mov bp.sp ;:point to our stack frame

push si jpreserve caller's register variables
push di

eld ;make string instructions inc pointers

mov dx,SC_INDEX

mov al.MAP_MASK

out dx.al :;point SO Index to the Map Mask
mov ax.SCREEN_SEGMENT

mov es ,ax point ES to display memory for REP STOS

mov si,[bp+HLi neLi stPtr] point to the line list

mov bx,[si+HLi nePtr] point to the XStart/XEnd descriptor
for the first (top) horizontal line

mov cx,[si+YStart] first scan line to draw

mov si,[si+Lngth] # of scan lines to draw

cmp si .0 are there any lines to draw?

jle ToFi11 Done no, so we're done

cmp cx,[_C1i pMi nY] clipped at top?

jge Mi nYNotCli pped no

neg cx yes, discard however many lines are

add cx,[_ClipMinY] clipped
sub si ,cx that many fewer lines to draw

jle ToFi11 Done no lines left to draw

shl cx,l lines to skip*2
shl cx,l lines to skip*4

add bx,cx advance through the line list

mov cx,[_C1ipMinY] start at the top clip line

MinYNotClipped:
mov dx,si

add dx,cx bottom row to draw + 1

cmp dx,[_ClipMaxY] clipped at bottom?

jle MaxYNotCli pped no

sub dx,[_ClipMaxY] # of lines to clip off the bottom
sub si ,dx # of lines left to draw

jle ToFi11 Done all lines are clipped
MaxYNotCli pped:

mov ax,SCREEN_WIDTH/4 ;point to the start of the first

mul cx ; scan line on which to draw

add ax,[_CurrentPageBase] ;offset of first line

mov dx,ax ;ES:DX points to first scan line to draw

mov ah,byte ptr [bp+Color] ;col or with which to fill

Fi11 Loop:
push bx ;remember line list location

push dx :remember offset of start of line

push si ;remember # of lines to draw

mov di,[bx+XStart] ;left edge of fill on this line

cmp di,[_C1ipMinX] ;clipped to left edge?

jge MinXNotClipped ;no

mov di,[_ClipMinX] ;yes, clip to the left edge

Mi nXNotClipped:
mov s i, d i

572 @ Chapter 35

mov cx,[bx+XEnd] ;right edge of fill
cmp cx,[_C11pMaxX] ;clipped to right edge?

jl MaxXNotClipped ;no

mov ex.[_C1ipMaxX] ;yes. clip to the right edge
dec cx

MaxXNotClipped:
cmp cx.di

jl LineFi11 Done jskip if negative width
shr dl.l :X/4 = offset of first rect pixel in scan
shr dl.l ; line

add di ,dx ;offset of first rect pixel in display mem
mov dx.si ;XStart

and si.GGGSh ;look up left edge plane mask
mov bh,LeftClipPlaneMaskCsi] ; to clip & put in BH
mov si ,cx

and si,GGG3h ;look up right edge plane
mov bl,RightClipPlaneMask[si] ; mask to clip & put in BL
and dx.not Glib ;calculate # of addresses across rect

sub cx.dx

shr cx,l

shr cx, 1 ;# of addresses across rectangle to fill - 1
jnz MasksSet ;there's more than one byte to draw

and bh.bl .•there's only one byte, so combine the left

; and right edge clip masks
MasksSet:

mov dx.SC_INDEX+l ;already points to the Map Mask reg
Fi11 Rows Loop:

mov al .bh ;put left-edge clip mask in AL
out dx.al ;set the left-edge plane (clip) mask
mov al .ah ;put color in AL
stosb ;draw the left edge
dec cx ;count off left edge byte

js Fil1LoopBottom ;that's the only byte

jz DoRi ghtEdge ;there are only two bytes

mov al.GGfh :middle addresses are drawn 4 pixels at a pop
out dx.al ;set the middle pixel mask to no clip
mov al .ah ;put color in AL
rep stosb ;draw the middle addresses four pixels apiece

DoRightEdge:

mov al.bl ;put right-edge clip mask in AL
out dx.al ;set the right-edge plane (clip) mask
mov al .ah ;put color in AL

stosb ;draw the right edge

Fi11LoopBottom:
LineFniDone:

pop si ;retrieve # of lines to draw

pop dx ;retrieve offset of start of line

pop bx ;retrieve line list location

add dx.SCREEN_WIDTH/4 ipoint to start of next line
add bx.size HLine ;point to the next line descriptor
dec si ;count down lines

jnz Fill Loop
Fi11 Done:

pop di ;restore caller's register variables

pop si

pop bp ;restore caller's stack frame

ret

_DrawHor1zontalL1neList endp
end

Adding a Dimension ^ 573

The other 2-D element we need is some way to erase the polygon at its old location
before it s moved and redrawn. We'll do that by remembering the bounding reaangle of the
polygon each time it's drawn, then erasing by clearing that area with a rectangle fill.

With the 2-D side of the picture well under control, we're ready to concentrate on
the good stuff. Listings 35.2 through 35.5 are the sample 3-D animation program.
Listing 35.2 provides matrix multiplication functions in a straightforward fashion.
Listing 35.3 transforms, projects, and draws polygons. Listing 35.4 is the general header
file for the program, and Listing 35.5 is the main animation program.

Other modules required are: Listings 32.1 and 32.6 from Chapter 32 (Mode X mode
set, rectangle fill); Listing 34.6 from Chapter 34; Listing 22.4 fi:om Chapter 22 (polygon
edge scan); and the FiilConvexPolygon() function from Listing 21.1 in Chapter 21.
All necessary code modules, along with a project file, are present in the subdirectory
for this chapter on the listings diskette, whether they were presented in this chapter or
some earlier chapter. This will be the case for the next several chapters as well, where
listings from previous chapters are referenced. This scheme may crowd the listings
diskette a little bit, but it will certainly reduce confusion!

LISTING 35.2 L35-2.C
/* Matrix arithmetic functions.

Tested with Borland C++ in the small model. */

/* Matrix multiplies Xform by SourceVec, and stores the result in
DestVec. Multiplies a 4x4 matrix times a 4x1 matrix; the result
is a 4x1 matrix, as follows:

1 I I 4 I I 4 I
I 4x4 I X I X 1 = I X I

I I I 1 I I 1 I
- */

void XformVecCdouble Xform[4][4], double * SourceVec,

double * DestVec)

{

int i, j;

for (i=0; i<4; i++) {

DestVec[i] = 0;

for (j=0; j<4; j++)

DestVec[i] += Xform[i]Cj] * SourceVec[j];

}

}

/* Matrix multiplies SourceXforml by SourceXformZ and stores the
result in DestXform. Multiplies a 4x4 matrix times a 4x4 matrix;
the result is a 4x4 matrix, as follows:

I I I I I I
I 4x4 I X I 4x4 I = I 4x4 |

I I I I I I
-- */

void ConcatXforms(double SourceXforml[4][4]. double SourceXform2[4][4].

-double DestXforni[4]C4])

574 ^ Chapter 35

{

int i , j,k;

for (i=0; i<4; i++) {

for (j=0; j<4; j++) {

DestXform[i][j] = 0;

for (k=0; k<4; k-H-)

DestXform[i][j] += SourceXformlCi][k] * SourceXform2[k][j];

}

}

LISTING 35.3 L35-3.C
/* Transforms convex polygon Poly (which has PolyLength vertices),

performing the transformation according to Xform (which generally
represents a transformation from object space through world space
to view space), then projects the transformed polygon onto the
screen and draws it in color Color. Also updates the extent of the
rectangle (EraseRect) that's used to erase the screen later.

Tested with Borland C++ in the small model. */

^include "polygon.h"

void XformAndProjectPoly(double Xform[4][4], struct Points * Poly,

int PolyLength, int Color)

{

i nt i;

struct Points XformedPoly[MAX_POLY_LENGTH];

struct Point ProjectedPoly[MAX_POLY_LENGTH];

struct PointListHeader Polygon;

/* Transform to view space, then project to the screen */
for (i=0; i<PolyLength; i++) {

/* Transform to view space */
XformVec(Xform, (double *)&Poly[i], (double *)&XformedPoly[i]);
/* Project the X & Y coordinates to the screen, rounding to the

nearest integral coordinates. The Y coordinate is negated to
flip from view space, where increasing Y is up, to screen
space, where increasing Y is down. Add in half the screen
width and height to center on the screen */

ProjectedPolyCi].X = ((int) (XformedPoly[i].X/XformedPoly[i].Z *

PR0JECTI0N_RATI0*(SCREEN_WIDTH/2.0)+0.5))+SCREEN_WIDTH/2;

ProjectedPoly[i].Y = ((int) (XformedPoly[i].Y/XformedPoly[i].Z *

-1.0 * PROJECTION_RATIO * (SCREEN.WIDTH / 2.0) + 0.5)) +

SCREEN_HEIGHT/2;

/* Appropriately adjust the extent of the rectangle used to
erase this page later */
if (ProjectedPolyEi].X > EraseRect[NonDisplayedPage].Right)
if (ProjectedPolyEi].X < SCREEN_WIDTH)

EraseRectENonDisplayedPage].Right = ProjectedPolyEi].X;
else EraseRectENonDisplayedPage].Right = SCREEN_WIDTH;
if (ProjectedPolyEi].Y > EraseRectENonDisplayedPage].Bottom)

if (ProjectedPolyEi].Y < SCREEN_HEIGHT)

EraseRectENonDisplayedPage].Bottom = ProjectedPolyEi].Y;
else EraseRectENonDisplayedPage].Bottom = SCREEN_HEIGHT;
if (ProjectedPolyEi].X < EraseRectENonDisplayedPage].Left)
if (ProjectedPolyEi].X > 0)

EraseRectENonDisplayedPage].Left = ProjectedPolyEi].X;
else EraseRectENonDisplayedPage].Left = 0;

Adding a Dimension ^ 575

if (ProjectedPolyCi].Y < EraseRect[NonD1splayedPage].Top)
if (ProjectedPoly[i].Y > 0)

EraseRect[NonDisplayedPage].Top = ProjectedPoly[i].Y;
else EraseRectENonDisplayedPage].Top = 0;

}

/* Draw the polygon */
DRAW_POLYGON(ProjectedPoly, PolyLength, Color, 0, 0);

LISTING 35.4 POLYGCN.H
/* POLYGON.H: Header file for polygon-filling code, also includes

a number of useful items for 3-D animation. */

#define MAX_POLY_LENGTH 4 /* four vertices is the max per poly */
^define SCREEN.WIDTH 320

#define SCREEN_HEIGHT 240

#define PAGEO_START_OFFSET 0

#define PAGE1_START_0FFSET (((1ong)SCREEN_HEIGHT*SCREEN_WIDTH)/4)
/* Ratio: distance from viewpoint to projection plane / width of

projection plane. Defines the width of the field of view. Lower
absolute values = wider fields of view; higher values ■= narrower

#define PROJECTION_RATIO -2.0 /* negative because visible Z
coordinates are negative */

/* Draws the polygon described by the point list PointList in color
Color with all vertices offset by (X,Y) */

^define DRAW_POLYGON(PointList,NumPoints,Color,X,Y) \
Polygon.Length = NumPoints; \
Polygon.PointPtr = PointList; \
Fi11ConvexPolygonC&Polygon, Color, X, Y);

/* Describes a single 2-D point */
struct Point {

int X; /* X coordinate */
int Y; /* Y coordinate */

};
/* Describes a single 3-D point in homogeneous coordinates */
struct Point3 {

/* X coordinate */
/* Y coordinate */
/* Z coordinate */

double X
double Y
double Z
double W

};
/* Describes a series of points (used to store a list of vertices that

describe a polygon; each vertex is assumed to connect to the two
adjacent vertices, and the last vertex is assumed to connect to the
first) */

struct PointListHeader {
int Length; /* # of points */
struct Point * PointPtr; /* pointer to list of points */

};

/* Describes the beginning and ending X coordinates of a single
horizontal line */

struct HLine {
int XStart; /* X coordinate of leftmost pixel in line */
int XEnd; /* X coordinate of rightmost pixel in line */

};

576 ® Chapter 35

/* Describes a Length-long series of horizontal lines, all assumed to
be on contiguous scan lines starting at YStart and proceeding
downward (used to describe a scan-converted polygon to the
low-level hardware-dependent drawing code) */

struct HLineList {

int Length; /* # of horizontal lines */
int YStart; /* Y coordinate of topmost line */
struct HLine * HLinePtr; /* pointer to list of horz lines */

};

struct Rect { int Left, Top, Right, Bottom; };

extern void XformVecCdouble Xform[4][4], double * SourceVec,

double * DestVec);

extern void ConcatXforms(double SourceXforml[4][4],

double SourceXform2[4][4], double DestXform[4][4]);

extern void XformAndProjectPolyCdouble Xform[4][4],

struct Points * Poly, int PolyLength, int Color);

extern int FillConvexPolygonCstruct PointListHeader *, int, int, int);
extern void Set320x240Mode(void);

extern void ShowPageCunsigned int StartOffset);
extern void FillRectangleXCint StartX, int StartY, int EndX,

int EndY, unsigned int PageBase, int Color);

extern int DisplayedPage, NonOisplayedPage;
extern struct Rect EraseRect[];

LISTING 35.5 L35-5.C
/* Simple 3D drawing program to view a polygon as it rotates in

Mode X. View space is congruent with world space, with the
viewpoint fixed at the origin (0,0,0) of world space, looking in
the direction of increasingly negative Z. A right-handed
coordinate system is used throughout.
Tested with Borland C++ in the small model. */

^include <conio.h>

^include <stdio.h>

^include <dos.h>

^include <math.h>

^include "polygon.h"
void main(void);

/* Base offset of page to which to draw */
unsigned int CurrentPageBase = 0;
/* Clip rectangle; clips to the screen */
int ClipMinX=0, ClipMinY=0;
int ClipMaxX-SCREEN_WIDTH, C1ipMaxY=SCREEN_HEIGHT;
/* Rectangle specifying extent to be erased in each page */
struct Rect EraseRect[2] = { {0, 0, SCREEN_WIDTH, SCREEN_HEIGHT},

{0, 0, SCREEN_WIDTH, SCREEN_HEIGHT} };

/* Transformation from polygon's object space to world space.
Initially set up to perform no rotation and to move the polygon
into world space -140 units away from the origin down the Z axis.
Given the viewing point, -140 down the Z axis means 140 units away
straight ahead in the direction of view. The program dynamically
changes the rotation and translation. */

static double PolyWorldXformC4][4] = {

{1.0, 0.0, 0.0, 0.0),

{0.0, 1.0, 0.0, 0.0},

{0.0, 0.0, 1.0, -140.0},

{0.0, 0.0, 0.0, 1.0} };

Adding a Dimension ® 577

/* Transformation from world space into view space. In this program,
the view point is fixed at the origin of world space, looking down
the Z axis in the direction of increasingly negative Z, so view

space is identical to world space; this is the identity matrix. */
static double WorldViewXform[4][4] = {

{1.0, 0.0, 0.0, 0.0},

{0.0, 1.0, 0.0, 0.0],

{0.0, 0.0, 1.0, 0.0),

{0.0, 0.0, 0.0, 1.0}

};
static unsigned int PageStart0ffsets[2] =

{PAGE0_START_0FFSET,PAGE1_START_0FFSET};

int DisplayedPage, NonDisplayedPage;

void mainO {

int Done = 0;

double WorkingXform[4][4];
static struct Points TestPoly[] =

{{-30,-15,0,1},{0,15,0,1},{10,-5,0,1}};

#define TEST_POLY_LENGTH (sizeof(TestPoly)/sizeof(struct Points))
double Rotation = M_PI / 60.0; /* initial rotation = S degrees */
union REGS regset;

SetS20x240Mode();

ShowPageCPageStartOffsets[DisplayedPage = 0]);
/* Keep rotating the polygon, drawing it to the undisplayed page,

and flipping the page to show it */
do {

CurrentPageBase = /* select other page for drawing to */
PageStartOffsets[NonDisplayedPage = Displ ayedPage 1];

/* Modify the object space to world space transformation matrix
for the current rotation around the Y axis */

PolyWorldXform[0]C0] = PolyWorldXform[2][2] = cos(Rotation);
PolyWorldXform[2][0] = -(PolyWorldXform[0][2] - sin(Rotation));
/* Concatenate the object-to-world and world-to-view

transformations to make a transformation matrix that will

convert vertices from object space to view space in a single
operation */

ConcatXformsCWorldViewXform, PolyWorldXform, WorkingXform);

/* Clear the portion of the non-displayed page that was drawn
to last time, then reset the erase extent */

Fi11RectangleX(EraseRect[NonDisplayedPage].Left,
EraseRectCNonDi splayedPage].Top,
EraseRect[NonDi splayedPage].Ri ght,
EraseRectCNonDisplayedPage].Bottom, CurrentPageBase, 0);

EraseRect[NonDi splayedPage].Left =
EraseRect[NonDi spl ayedPage] .Top =• OxZFFF;

EraseRectCNonDi splayedPage].Ri ght =
EraseRectCNonDisplayedPage].Bottom = 0;

/* Transform the polygon, project it on the screen, draw it */
XformAndProjectPoly(WorkingXform, TestPoly, TEST_POLY_LENGTH,9);
/* Flip to display the page into which we just drew */
ShowPage(PageStartOffsets[DisplayedPage = NonDisplayedPage]);

/* Rotate 6 degrees farther around the Y axis */
if ((Rotation += (M_PI/SO.O)) >= (M_PI*2)) Rotation — M_PI*2;
if (kbhitO) {

switch (getchO) {

case OxlB: /* Esc to exit */

Done = 1; break;

case 'A': case 'a': /* away (-Z) */

PolyWorldXform[2][S] -= S.O; break;

578 @ Chapter 35

}

case 'T': /* towards (+Z). Don't allow to get too */
case 't': /* close, so Z clipping isn't needed */

if (PolyWorldXform[2][3] < -40.0)

PolyWorldXform[2][3] += 3.0; break;

case 0: /* extended code */

switch (getchO) {

case 0x4B: /* left (-X) */

PolyWorldXform[0][3] -= 3.0; break;

case 0x40: /* right (+X) */

PolyWorldXform[0][3] += 3.0; break;

case 0x48: /* up (+Y) */
PolyWorldXfonn[l][3] += 3.0; break;

case 0x50: /* down (-Y) */

PolyWorldXformCl][3] -= 3.0; break;

default:

break;

}

break;

default: /* any other key to pause */
getchO; break;

}

}

} while (IDone);

/* Return to text mode and exit */

regset.x.ax = 0x0003; /* AL = 3 selects 80x25 text mode */

int86(0xl0, ®set, ®set);

Notes on the 3-D Animation Exampie
The sample program transforms the polygons vertices from object space to world space
to view space to the screen, as described earlier. In this case, world space and view space
are congruent—^we re looking right down the negative Z axis of world space—so the
transformation matrix from world to view is the identity matrix; you might want to
experiment with changing this matrix to change the viewpoint. The sample program
uses 4x4 homogeneous coordinate matrices to perform transformations, as described
above. Floating-point arithmetic is used for all 3-D calculations. Setting the translation
from object space to world space is a simple matter of changing the appropriate entry
in the fourth column of the object-to-world transformation matrix. Setting the rota
tion around the Y axis is almost as simple, requiring only the setting of the four matrix
entries that control the Y rotation to the sines and cosines of the desired rotation.

However, rotations involving more than one axis require multiple rotation matrices,
one for each axis rotated around; those matrices are then concatenated together to
produce the object-to-world transformation. This area is trickier than it might initially
appear to be; more in the near future.
The maximum translation along the Z axis is limited to -40; this keeps the polygon

from extending past the viewpoint to positive Z coordinates. This would wreak havoc
with the projection and 2-D clipping, and would require 3-D clipping, which is far
more complicated than 2-D. We'll get to 3-D clipping at some point, but, for now, it's
much simpler just to limit all vertices to negative Z coordinates. The polygon does get

Adding a Dimension ^ 579

mighty close to the viewpoint, though; run the program and use the "T" key to move
the polygon as close as possible—the near vertex swinging past provides a striking
sense of perspective.

The performance of Listing 35.5 is, perhaps, surprisingly good, clocking in at 16 frames
per second on a 20 MHz 386 with a VGA of average speed and no 387, although there
is, of course, only one polygon being drawn, rather than the hundreds or thousands
we'd ultimately like. What's far more interesting is where the execution time goes. Even
though the program is working with only one polygon, 73 percent of the time goes for
transformation and projection. An additional 7 percent is spent waiting to flip the
screen. Only 20 percent of the total time is spent in all other activity—and only 2
percent is spent actually drawing polygons. Clearly, we'll want to tackle transformation
and projection first when we look to speed things up. (Note, however, that a math
coprocessor would considerably decrease the time taken by floating-point calculations.)

In Listing 35.3, when the extent of the bounding rectangle is calculated for later
erasure purposes, that extent is clipped to the screen. This is due to the lack of clipping
in the rectangle fill code from Listing 32.5 in Chapter 32; the problem would more
appropriately be addressed by putting clipping into the fill code, but, unfortunately, I
lack the space to do that here.

Finally, observe the jaggies crawling along the edges of the polygon as it rotates. This
is temporal aliasing at its finest! We won't address antialiasing further, real-time
antialiasing being decidedly nontrivial, but this should give you an idea of why
antialiasing is so desirable.

An Ongoing Journey
In the next chapter, we'll assign fronts and backs to polygons, and start drawing only
those that are facing the viewer. That will enable us to handle convex polyhedrons,
such as tetrahedrons and cubes. We'll also look at interactively controllable rotation, and at
more complex rotations than the simple rotation around the Y axis that we did this
time. In time, we'll use fixed-point arithmetic to speed things up, and do some shading
and texture mapping. The journey has only begun; we'll get to all that and more soon.

Using Backface Removal to Eliminate Hidden Surfaces
As I'm fond of pointing out, computer animation isn't a matter of mathematically
exact modeling or raw technical prowess, but rather of fooling the eye and the mind.
That's especially true for 3-D animation, where we're not only trying to convince view
ers that they're seeing objects on a screen—^when in truth that screen contains no ob
jects at all, only gaggles of pixels—but we're also trying to create the illusion that the
objects exist in three-space, possessing four dimensions (counting movement over time
as a fourth dimension) of their own. To make this magic happen, we must provide cues
for the eye not only to pick out boundaries, but also to detect depth, orientation, and
motion. This involves perspective, shading, proper handling of hidden surfaces, and
rapid and smooth screen updates; the whole deal is considerably more difficult to pull
off on a PC than 2-D animation.

In some senses, however, 3-D animation is easier than 2-D. Decause

there's more going on in 3-D animation, the eye and brain tend to
make more assumptions, and so are more apt to see what they
expect to see, rather than what's actually there.

If you're piloting a (virtual) ship through a field of thousands of asteroids at high
speed, you're unlikely to notice if the more distant asteroids occasionally seem to go
right through each other, or if the topographic detail on the asteroids' surfaces some
times shifts about a bit. You'll be busy viewing the asteroids in their primary role, as
objects to be navigated around, and the mere presence of topographic detail will suf
fice; without being aware of it, you'll fill in the blanks. Your mind will see the topogra
phy peripherally, recognize it for what it is supposed to be, and, unless the landscape

582 ^ Chapter 36

does something really obtrusive such as vanishing altogether or suddenly shooting a
spike miles into space, you will see what you expect to see: a bunch of nicely detailed
asteroids tumbling around you.
To what extent can you rely on the eye and mind to make up for imperfections in

the 3-D animation process? In some areas, hardly at all; for example, jaggies crawling
along edges stick out like red flags, and likewise for flicker. In other areas, though, the
human perceptual system is more forgiving than youd think. Consider this: At the end
of Return of the Jedi, in the battle to end all battles around the Death Star, there is a
sequence of about five seconds in which several spaceships are visible in the back
ground. One of those spaceships (and it s not very far in the background, either) looks
a bit unusual. What it looks like is a sneaker. In fact, it is a sneaker—but unless you
know to look for it, you 11 never notice it, because your mind is busy making simplify
ing assumptions about the complex scene it s seeing—and one of those assumptions is
that medium-sized objects floating in space are spaceships, unless proven otherwise.
(Thanks to Chris Hecker for pointing this out. Fd never have noticed the sneaker,
myself, without being tipped off—^which is, of course, the whole point.)

If its good enough for George Lucas, its good enough for us. And with that, lets
resume our quest for real-time 3-D animation on the PC.

One-sided Polygons: Backface Removal
In the previous chapter, we implemented the basic polygon drawing pipeline, trans
forming a polygon all the way from its basic definition in object space, through the
shared 3-D world space, and into the 3-D space as seen from the viewpoint, called view
space. From view space, we performed a perspective projection to convert the polygon
into screen space, then mapped the transformed and projected vertices to the nearest
screen coordinates and filled the polygon. Armed with code that implemented this
pipeline, we were able to watch as a polygon rotated about its Y axis, and were able to
move the polygon around in space freely.
One of the drawbacks of the previous chapter s approach was that the polygon had two

visible sides. Why is that a drawback? It isn t, necessarily, but in our case we want to use
polygons to build solid objects with continuous surfaces, and in that context, only one
side of a polygon is visible; the other side always faces the inside of the object, and can
never be seen. It would save time and simplify the process of hidden surface removal if we
could quickly and easily determine whether the inside or outside face of each polygon
was facing us, so that we could draw each polygon only if it were visible (that is, had
the outside face pointing toward the viewer). On average, half the polygons in an
object could be instantly rejected by a test of this sort. Such testing of polygon visibility
goes by a number of names in the literature, including backplane culling, backface
removal, and assorted variations thereon; Fll refer to it as backface removal.

For a single convex polyhedron, removal of polygons that aren't facing the viewer
would solve all hidden surface problems. In a convex polyhedron, any polygon facing

Sneakers in Space 0 583

the viewer can never be obscured by any other polygon in that polyhedron; this falls
out of the definition of a convex polyhedron. Likewise, any polygon facing away from the
viewer can never be visible. Therefore, in order to draw a convex polyhedron, ifyou draw all
polygons facing toward the viewer but none facing away from the viewer, everything will
work out properly, with no additional checking for overlap and hidden surfaces needed.

Unfortunately, backface removal completely solves the hidden surface problem for
convex polyhedrons only, and only if there s a single convex polyhedron involved; when
convex polyhedrons overlap, other methods must be used. Nonetheless, backface removal
does instantly halve the number of polygons to be handled in rendering any particular
scene. Backface removal can also speed hidden-surface handling if objects are built out
of convex polyhedrons. In this chapter, though, we have only one convex polyhedron
to deal with, so backface removal alone will do the trick.

Given that Ive convinced you that backface removal would be a handy thing to
have, how do we actually do it? A logical approach, often implemented in the PC
literature, would be to calculate the plane equation for the plane in which the polygon
lies, and see which way the normal (perpendicular) vector to the plane points. That
works, but there's a more efficient way to calculate the normal to the polygon: as the
cross-product of two of the polygons edges.
The cross-product of two vectors is defined as the vector shown in Figure 36.1. One

interesting property of the cross-product vector is that it is perpendicular to the plane
in which the two original vectors lie. If we take the cross-product of the vectors that
form two edges of a polygon, the result will be a vector perpendicular to the polygon;
then, we'll know that the polygon is visible if and only if the cross-product vector
points toward the viewer. We need one more thing to make the cross-product ap
proach work, though. The cross-product can actually point either way, depending on
which edges of the polygon we choose to work with and the order in which we evaluate
them, so we must establish some conventions for defining polygons and evaluating the
cross-product.

vr w, VaWs- VM

V = Va w = Wa VXW = V3W- V,W3

V3 W3 y Wa- VaW,

Figure 36.1 The Cross-Product of Two Vectors

584 Chapter 36

We'll define only convex polygons, w^ith the vertices defined in clockwise order, as
viewed from the outside; that is, if you're looking at the visible side of the polygon, the
vertices will appear in the polygon definition in clockwise order. With those assumptions,
the cross-product becomes a quick and easy indicator of polygon orientation with
respect to the viewer; we'll calculate it as the cross-product of the first and last vectors
in a polygon, as shown in Figure 36.2, and if it's pointing toward the viewer, we'll
know that the polygon is visible. Actually, we don't even have to calculate the entire
cross-product vector, because the Z component alone suffices to tell us which way the
polygon is facing: positive Z means visible, negative Z means not. The Z component
can be calculated very efficiently, with only two multiplies and a subtraction.
The question remains of the proper space in which to perform backface removal.

There's a temptation to perform it in view space, which is, after all, the space defined
with respect to the viewer, but view space is not a good choice. Screen space—the space
in which perspective projection has been performed—is the best choice. The purpose
of backface removal is to determine whether each polygon is visible to the viewer, and,
despite its name, view space does not provide that information; unlike screen space, it
does not reflect perspective effects.

Backface removal may also be performed using the polygon vertices in screen co
ordinates, which are integers. This is less accurate than using the screen space coordinates,
which are floating point, but is, by the same token, faster. In Listing 36.3, which we'll
discuss shordy, backface removal is performed in screen coordinates in the interests of speed.

Backface removal, as implemented in Listing 36.3, will not work reliably if the
polygon is not convex, if the vertices don't appear in clockwise order, if either the first
or last edge in a polygon has zero length, or if the first and last edges are collinear.
These latter two points are the reason it's preferable to work in screen space rather than
screen coordinates (which suffer from rounding problems), speed considerations aside.

Vector V

(polygon ed^e #0)
Vertex 0 / Polygon normal = v x w

Vector yN / (cross-product of v&w)
(polygon ed^e #5). ^ ^ ̂

Vertex 5^ Vertex 1

Vertex 2

Figure 36.2 Using the Cross Product to Generate a Poiygon Normai

Sneakers in Space 0 585

Backface Removal In Action

Listings 36.1 through 36.5 together form a program that rotates a solid cube in real
time under user control. Listing 36.1 is the main program; Listing 36.2 performs trans
formation and projection; Listing 36.3 performs backface removal and draws visible
faces; Listing 36.4 concatenates incremental rotations to the object-to-world transfor
mation matrix; Listing 36.5 is the general header file. Also required from previous
chapters are: Listings 35.1 and 35.2 from Chapter 35 (draw clipped line list, matrix
math functions); Listings 32.1 and 32.6 from Chapter 32, (Mode X mode set, rect
angle fill); Listing 34.6 from Chapter 34; Listing 22.4 from Chapter 22 (polygon edge
scan); and the FillConvexPolygon() function from Listing 21.1 from Chapter 21. All
necessary modules, along with a project file, will be present in the subdirectory for this
chapter on the listings diskette, whether they were presented in this chapter or some
earlier chapter. This may crowd the listings diskette a little bit, but it will certainly
reduce confusion!

LISTING 36.1 L36-1.C
/* 3D animation program to view a cube as it rotates in Mode X. The viewpoint

is fixed at the origin (0,0,0) of world space, looking in the direction of
increasingly negative Z. A right-handed coordinate system is used throughout.
All C code tested with Borland 0++ in C compilation mode. */

^include <conio.h>

#include <dos.h>

^include <math.h>
^include "polygon.h"

#define ROTATION (M_PI / 30.0) /* rotate by 6 degrees at a time */

/* base offset of page to which to draw */
unsigned int CurrentPageBase = 0;
/* Clip rectangle; clips to the screen */
int ClipMinX=0, ClipMinY=0;
int ClipMaxX=SCREEN_WIDTH, C1ipMaxY=SCREEN_HEIGHT;
/* Rectangle specifying extent to be erased in each page. */
struct Rect EraseRect[2] = { {0, 0, SCREEN.WIDTH, SCREEN_HEI6HT},

{0, 0, SCREEN_WIDTH, SCREEN_HEIGHT} };
static unsigned int PageStart0ffsets[2] =

{PAGE0_START_0FFSET,PAGE1_START_0FFSET};

int DisplayedPage, NonDisplayedPage;
/* Transformation from cube's object space to world space. Initially

set up to perform no rotation and to move the cube into world
space -100 units away from the origin down the Z axis. Given the
viewing point, -100 down the Z axis means 100 units away in the
direction of view. The program dynamically changes both the
translation and the rotation. */

static double CubeWorldXform[4][4] = {

{1.0, 0.0, 0.0, 0.0},

(0.0, 1.0, 0.0, 0.0},
{0.0, 0.0, 1.0, -100.0},

{0.0, 0.0, 0.0, 1.0} };

/* Transformation from world space into view space. Because in this
application the view point is fixed at the origin of world space,
looking down the Z axis in the direction of increasing Z, view space is
identical to world space, and this is the identity matrix. */

586 ^ Chapter 36

Static double WorldViewXform[4][4] = {

{1.0, 0.0, 0.0, 0.0),

{0.0, 1.0, 0.0, 0.0},

{0.0, 0.0, 1.0, 0.0},

(0.0, 0.0, 0.0, 1.0}

};

/* all vertices in the cube */

static struct Points CubeVerts[] = {

(15,15,15,1},(15,15,-15,1},(15,-15,15,1},(15,-15,-15,1},
(-15,15,15,1},(-15,15,-15,1},(-15,-15,15,1},(-15,-15,-15,1}};

/* vertices after transformation */

static struct Points

XformedCubeVerts[sizeof(CubeVerts)/sizeof(struct PointS)];
/* vertices after projection */
static struct Points

ProjectedCubeVerts[sizeof(CubeVerts)/sizeof(struct PointS)];
/* vertices in screen coordinates */

static struct Point

ScreenCubeVerts[sizeof(CubeVerts)/sizeof(struct PointS)];
/* vertex indices for individual faces */

static int Facel[] = {1,S,2,0};

static int Face2[] = {5,7,S,1};

static int FaceS[] = {4,5,1,0};

static int Face4[] = {S,7,6,2};

static int Face5[] = {5,4,6,7};

static int Face6[] = {0,2,6,4};

/* list of cube faces */

static struct Face CubeFaces[] = {{Facel,4,15},{Face2,4,14},
{Faces,4,12},{Face4,4,11},{Face5,4,10},{Face6,4,9}};

/* master description for cube */
static struct Object Cube = {sizeof(CubeVerts)/sizeof(struct Points),

CubeVerts, XformedCubeVerts, ProjectedCubeVerts, ScreenCubeVerts,
sizeof(CubeFaces)/sizeof(struct Face), CubeFaces};

void main() {

int Done = 0, RecalcXform = 1;

double WorkingXform[4][4];
union REGS regset;

/* Set up the initial transformation */
SetS20x240Mode(); /* set the screen to Mode X */

ShowPage(PageStartOffsets[DisplayedPage = 0]);
/* Keep transforming the cube, drawing it to the undisplayed page,

and flipping the page to show it */
do {

/* Regenerate the object->view transformation and
retransform/project if necessary */

if (RecalcXform) {

ConcatXforms(WorldViewXform, CubeWorldXform, WorkingXform);
/* Transform and project all the vertices in the cube */
XformAndProjectPoints(WorkingXform, &Cube);
RecalcXform = 0;

}

CurrentPageBase = /* select other page for drawing to */
PageStartOffsets[NonDisplayedPage = DisplayedPage 1];

/* Clear the portion of the non-displayed page that was drawn
to last time, then reset the erase extent */

FillRectangleX(EraseRectENonDisplayedPage].Left,
EraseRectENonDi splayedPage].Top,
EraseRectENonDi splayedPage].Ri ght,

EraseRectENonDisplayedPage].Bottom, CurrentPageBase, 0);

Sneakers in Space ^ 587

EraseRect[NonDi splayedPage].Left =
EraseRect[NonDisplayedPage].Top = 0x7FFF;

EraseRectCNonDisplayedPage].Right =
EraseRect[NonDisplayedPage].Bottom = 0;

/* Draw all visible faces of the cube */
DrawVisibleFaces(&Cube);

/* Flip to display the page into which we just drew */
ShowPage(PageStartOffsets[DisplayedPage = NonDisplayedPage]);
while (kbhitO) {

switch (getchO) {

case OxlB: /* Esc to exit */

Done = 1; break;

case 'A': case 'a': /* away (-Z) */
CubeWorldXform[2][3] -= 3.0; RecalcXform = 1; break;

case 'T': /* towards (+Z). Don't allow to get too */

case 't': /* close, so Z clipping isn't needed */
if (CubeWorldXform[2][3] < -40.0) {

CubeWorldXform[2][3] += 3.0;

RecalcXform = 1;

}
break;

case '4': /* rotate clockwise around Y */

AppendRotationY(CubeWorldXform, -ROTATION);
RecalcXform=l; break;

case '6': /* rotate counterclockwise around Y */
AppendRotationYCCubeWorldXform, ROTATION);
RecalcXform=l; break;

case '8': /* rotate clockwise around X */
AppendRotationX(CubeWorldXform, -ROTATION);
RecalcXform=l; break;

case '2': /* rotate counterclockwise around X */
AppendRotationXCCubeWorldXform, ROTATION);
RecalcXform=l; break;

case 0: /* extended code */

switch (getchO) {

case 0x3B: /* rotate counterclockwise around Z */
AppendRotationZCCubeWorldXform, ROTATION);
RecalcXform=l; break;

case 0x30: /* rotate clockwise around Z */

AppendRotati onZCCubeWorldXform, -ROTATION);
RecalcXform=l; break;

case Ox4B: /* left (-X) */

CubeWorldXformCO][3] -= 3.0; RecalcXform=l; break;

case 0x40: /* right (+X) */
CubeWorldXform[0][3] += 3.0; RecalcXform=l; break;

case 0x48: /* up (+Y) */
CubeWorldXform[l][3] += 3.0; RecalcXform=l; break;

case 0x50: /* down (-Y) */

CubeWorldXform[l][3] -= 3.0; RecalcXform^l; break;

default:

break;

}

break;

default: /* any other key to pause */
getchO; break;

}

}

} while (IDone);

/* Return to text mode and exit */

regset.x.ax = 0x0003; /* AL = 3 selects 80x25 text mode */
int86(0xl0, ®set, ®set);

588 @ Ct]apter36

LISTING 36.2 L36-2.C
/* Transforms all vertices in the specified object into view space, then

perspective projects them to screen space and maps them to screen coordinates,
storing the results in the object. */

^include <math.h>

^include "polygon.h'7

void XformAndProjectPoints(double Xform[4][4],

struct Object * ObjectToXform)

{

int i, NumPoints = ObjectToXform->NumVerts;

struct Points * Points = ObjectToXform->VertexList;

struct Points * XformedPoints = ObjectToXform->XformedVertexList;
struct Points * ProjectedPoints = ObjectToXform->ProjectedVertexList;
struct Point * ScreenPoints = ObjectToXform->ScreenVertexList;

for (i=0; KNumPoints; i++, Points++, XformedPoints++,

ProjectedPoints++, ScreenPoints++) {

/* Transform to view space */
XformVec(Xform, (double *)Points, (double *)XformedPoints);
/* Perspective-project to screen space */
ProjectedPoints->X = XformedPoints->X / XformedPoints->Z *

PROJECTION.RATIO * (SCREEN_WIDTH / 2.0);

ProjectedPoints->Y = XformedPoints->Y / XformedPoints->Z *

PROJECTION_RATIO * (SCREEN_WIDTH / 2.0);

ProjectedPoints->Z = XformedPoints->Z;
/* Convert to screen coordinates. The Y coord is negated to

flip from increasing Y being up to increasing Y being down,
as expected by the polygon filler. Add in half the screen
width and height to center on the screen. */

ScreenPoints->X = ((int) floor(ProjectedPoints->X + 0.5)) + SCREEN_WIDTH/2;
ScreenPoints->Y = (-((int) floor(ProjectedPoints->Y + 0.5))) +

SCREEN_HEIGHT/2;

}

LISTING 36.3 L36-3.C
/* Draws all visible faces (faces pointing toward the viewer) in the specified

object. The object must have previously been transformed and projected, so
that the ScreenVertexList array is filled in. */

#include "polygon.h"

void DrawVisibleFaces(struct Object * ObjectToXform)

{

int i, j, NumFaces = ObjectToXform->NumFaces, NumVertices;
int * VertNumsPtr;

struct Face * FacePtr = ObjectToXform->FaceList;

struct Point * ScreenPoints = ObjectToXform->ScreenVertexList;
long vl,v2,wl,w2;

struct Point Vertices[MAX_POLY_LENGTH];

struct PointListHeader Polygon;

/* Draw each visible face (polygon) of the object in turn */
for (i=0; KNumFaces; i++, FacePtr++) {

NumVertices = FacePtr->NumVerts;

/* Copy over the face's vertices from the vertex list */
for (j=0, VertNumsPtr=FacePtr->VertNums; j<NumVertices; j++)

Vertices[j] = ScreenPoints[*VertNumsPtr++];

Sneakers in Space ®

/* Draw only if outside face showing (if the normal to the
polygon points toward the viewer; that is, has a positive
Z component) */

vl - Vertices[1].X - Vertices[0].X:

wl - Vertices[NumVertices-1].X - Vertices[0].X;

v2 - Verticesfl].Y - Vertices[0].Y;

w2 - Vertices[NumVertices-1].Y - Vertices[0].Y;

if ((vl*w2 - v2*wl) > 0) {

/* It is facing the screen, so draw */

/* Appropriately adjust the extent of the rectangle used to
erase this page later */

for (j-0; j<NumVertices; j++) {
if (Vertices[j].X > EraseRect[NonDisplayedPage].Right)

if (Vertices[j].X < SCREEN_WIDTH)
EraseRect[NonDisplayedPage].Right - Vertices[j].X:

else EraseRect[NonDi spl ayedPage]. Ri ght - SCREENJIDTH;
if (Vertices[j].Y > EraseRect[NonDisplayedPage].Bottom)

if (Vertices[j].Y < SCREENJEIGHT)
EraseRectCNonDisplayedPage],Bottom - Vertices[j].Y;

else EraseRectCNonDisplayedPage].Bottom-SCREEN_HEIGHT:
if (Vertices[j].X < EraseRectCNonDisplayedPage].Left)

if (Vertices[j].X > 0)
EraseRectCNonDisplayedPage].Left - VerticesCj]•X;

else EraseRectCNonDisplayedPage].Left - D;
if (VerticesCj].Y < EraseRectCNonDisplayedPage].Top)

if (VerticesCj].Y > 0)
EraseRectCNonDisplayedPage].Top - VerticesCj].Y;

else EraseRectCNonDisplayedPage].Top - 0:

]

/* Draw the polygon */
DRAW_POLYGON(Vertices, NumVertices, FacePtr->Color, 0, 0);

Figure 36.3 Sample Screens from the 3-D Cube Program

590 ® Chapter 36

The sample program, as shjown in Figure 36.3, places a cube, floating in three-
space, under the complete control of the user. The arrow keys may be used to move the
cube left, right, up, and down, and the A and T keys may be used to move the cube
away from or toward the viewer. The F1 and F2 keys perform rotation around the Z axis,
the axis running from the viewer straight into the screen. The 4 and 6 keys perform
rotation around the Y (vertical) axis, and the 2 and 8 keys perform rotation around the
X axis, which runs horizontally across the screen; the latter four keys are most conve
niently used by flipping the keypad to the numeric state.
The demo involves six polygons, one for each side of the cube. Each of the polygons

must be transformed and projected, so it would seem that 24 vertices (four for each
polygon) must be handled, but some steps have been taken to improve performance.
All vertices for the object have been stored in a single list; the definition of each face
contains not the vertices for that face themselves, but rather indexes into the objects
vertex list, as shown in Figure 36.4. This reduces the number of vertices to be manipu
lated from 24 to 8, for there are, after all, only eight vertices in a cube, with three faces
sharing each vertex. In this way, the transformation burden is lightened by two-thirds.
Also, as mentioned earlier, backface removal is performed with integers, in screen coor
dinates, rather than with floating-point values in screen space. Finally, the RecalcXForm

struct Object

struct face

Vertices

15,15,15,1

15,15, -15,1

15, -15,15,1

15, -15, -15,1

-15,15,15,1

-15,15, -15,1

-15, -15,15,1

-15, -15, -15,1

VertNums

Figure 36.4 The Object Data Structure

Sneakers in Space ^ 591

flag is set whenever the user changes the object-to-world transformation. Only when
this flag is set is the full object-to-view transformation recalculated and the objects
vertices transformed and projected again; otherwise, the values already stored within
the object are reused. In the sample application, this brings no visual improvement,
because there's only the one object, but the underlying mechanism is sound: In a full
blown 3-D animation application, with multiple objects moving about the screen, it
would help a great deal to flag which of the objects had moved with respect to the
viewer, performing a new transformation and projection only for those that had.

With the above optimizations, the sample program is certainly adequately respon
sive on a 20 MHz 386 (sans 387; I'm sure it's wonderfully responsive with a math
coprocessor). Still, it couldn't quite keep up with the keyboard when I modified it to
read only one key each time through the loop—and we're talking about only eight
vertices here. This indicates that we're already near the limit of animation complexity
possible with our current approach. It's time to start rethinking that approach; over
two-thirds of the overall time is spent in floating-point calculations, and it's there that
we'll begin to attack the performance bottleneck we find ourselves up against.

Incremental Transformation

Listing 36.4 contains three functions; each concatenates an additional rotation around
one of the three axes to an existing rotation. To improve performance, only the matrix
entries that are affected in a rotation around each particular axis are recalculated (all
but four of the entries in a single-axis rotation matrix are either 0 or 1, as shown in Chapter
35). This cuts the number of floadng-point multiplies from the 64 required for the multi
plication of two 4x4 matrices to just 12, and floating point adds from 48 to 6.

Be aware that Listing 36.4 performs an incremental rotation on top of whatever
rotation is already in the matrix. The cube may already have been turned left, right, up,
down, and sideways; regardless. Listing 36.4 just tacks the specified rotation onto whatever
already exists. In this way, the object-to-world transformation matrix contains a his
tory of all the rotations ever specified by the user, concatenated one after another onto
the original matrix. Potential loss of precision is a problem associated with using such
an approach to represent a very long concatenation of transformations, especially with
fixed-point arithmetic; that s not a problem for us yet, but we'll run into it eventually.

LISTING 36.4 L36-4.C
/* Routines to perform incremental rotations around the three axes */
#include <math.h>

//include "polygon.h"

/* Concatenate a rotation by Angle around the X axis to the transformation in
XformToChange, placing result back in XformToChange. */
void AppendRotationXCdouble XformToChange[4][4], double Angle)

{
double TemplO, Templl, Templ2, Temp20, Temp21, Temp22;

592 0 Chapter 36

}

double CosTemp = cos(Angle), SinTemp = sin(Angle);
/* Calculate the new values of the four affected matrix entries */
TemplO = CosTeinp*XformToChange[l]CO]+ -SinTemp*XformToChangeC2][0]
Templl ■= CosTemp*XformToChange[l][1]+ -SinTemp*XformToChange[2]Cl]
Templ2 = CosTemp*XformToChange[l][2]+ -SinTemp*XformToChange[2][2]
Temp20 = SinTemp*XformToChange[l][0]+ CosTemp*XformToChange[2]C0]
Temp21 = SinTemp*XformToChange[l][1]+ CosTemp*XformToChange[2][1]
Temp22 = SinTemp*XformToChange[l][2]+ CosTemp*XformToChange[2][2]
/* Put the results back into XformToChange */
XformToChange[l][0] = TemplO; XformToChange[l][l] = Templl;
XformToChangeCl][2] = Templ2; XformToChange[2][0] = Temp20;
XformToChange[2][l] = Temp21; XformToChange[2][2] = Temp22;

/* Concatenate a rotation by Angle around the Y axis to the transformation
XformToChange, placing result back in XformToChange. */
void AppendRotationVCdouble XformToChangeC4][4], double Angle)

{

)

double TempOO, TempOl, Temp02, Temp20, Temp21, Temp22;
double CosTemp = cos(Angle), SinTemp = sin(Angle);

/* Calculate the new values of the four affected matrix entries */
TempOO = CosTemp*XformToChange[0][0]+ SinTemp*XformToChange[2][0];
TempOl = CosTemp*XformToChange[0][l]+ SinTemp*XformToChange[2]Cl];
Temp02 = CosTemp*XformToChange[0][2]+ SinTemp*XformToChange[2][2];
Temp20 = -SinTemp*XformToChange[0][0]+ CosTemp*XformToChange[2][0]
Temp21 = -SinTemp*XformToChange[0][l]+ CosTemp*XformToChange[2][l]
Temp22 = -SinTemp*XformToChange[0][2]+ CosTemp*XformToChange[2][2]
/* Put the results back into XformToChange */
XformToChange[0][0] = TempOO; XformToChange[0][1] =» TempOl;
XformToChange[0][2] = Temp02; XformToChange[2][0] = Temp20;
XformToChange[2][l] = Temp21; XformToChange[2]C2] = Temp22;

/* Concatenate a rotation by Angle around the Z axis to the transformation
XformToChange, placing result back in XformToChange. */
void AppendRotationZCdouble XformToChange[4][4], double Angle)

{
double TempOO, TempOl, Temp02, TemplO, Templl, Templ2;
double CosTemp = cos(Angle), SinTemp = sin(Angle);
/* Calculate the new values of the four affected matrix entries */
TempOO = CosTemp*XformToChange[0][0]+ -SinTemp*XformToChange[l][0]
TempOl = CosTemp*XformToChange[0]Cl]+ -SinTemp*XformToChange[l][l]
Temp02 = CosTemp*XformToChange[0][2]+ -SinTemp*XformToChange[l][2]
TemplO = SinTemp*XformToChange[0][0]+ CosTemp*XformToChange[l][0];
Templl = SinTemp*XformToChange[0][1]+ CosTemp*XformToChange[l][1];
Templ2 = SinTemp*XformToChange[0][2]+ CosTemp*XformToChange[l][2];
/* Put the results back into XformToChange */
XformToChange[0][0] = TempOO; XformToChange[0][1] = TempOl;
XformToChange[0][2] = Temp02; XformToChange[l][0] = TemplO;
XformToChange[l][l] = Templl; XformToChange[l][2] = Templ2;

LISTING 36.5 POLYGON.H
/* POLYGON.H: Header file for polygon-filling code, also includes a number of

useful items for 3D animation. */
^define MAX_POLY_LENGTH 4 /* four vertices is the max per poly */
#define SCREEN_WIDTH 320
//define SCREEN_HEIGHT 240

Sneakers in Space ® 593

#def1ne PAGEO_START_OFFSET 0

#define PAGE1_START_0FFSET (((1ong)SCREEN_HEIGHT*SCREEN_WIDTH)/4)
/* Ratio: distance from viewpoint to projection plane / width of projection

plane. Defines the width of the field of view. Lower absolute values = wider
fields of view; higher values = narrower. */

^define PROJECTION_RATIO -2.0 /* negative because visible Z coordinates are negative */
/* Draws the polygon described by the point list PointList in color Color with

all vertices offset by (X,Y) */

#define DRAW_POLYGON(PointList,NumPoints,Color,X,Y) \
Polygon.Length = NumPoints; Polygon.PointPtr = PointList; \
Fi11ConvexPolygonC&Polygon, Color, X, Y);

/* Describes a single 2D point */
struct Point {

int X; /* X coordinate */

int Y; /* Y coordinate */

};

/* Describes a single 3D point in homogeneous coordinates */
struct Points {

double X; /* X coordinate */
double Y; /* Y coordinate */

double Z; /* Z coordinate */

double W;

};
/* Describes a series of points (used to store a list of vertices that

describe a polygon; each vertex is assumed to connect to the two adjacent
vertices, and the last vertex is assumed to connect to the first) */
struct PointListHeader {

int Length; /* # of points */
struct Point * PointPtr; /* pointer to list of points */

};
/* Describes beginning and ending X coordinates of a single horizontal line */
struct HLine {

int XStart; /* X coordinate of leftmost pixel in line */
int XEnd; /* X coordinate of rightmost pixel in line */

};

/* Describes a Length-long series of horizontal lines, all assumed to be on
contiguous scan lines starting at YStart and proceeding downward (describes
a scan-converted polygon to low-level hardware-dependent drawing code) */

struct HLineList {

int Length; /* # of horizontal lines */
int YStart; /* Y coordinate of topmost line */
struct HLine * HLinePtr; /* pointer to list of horz lines */

};

struct Rect { int Left, Top, Right, Bottom; };
/* Structure describing one face of an object (one polygon) */
struct Face {

int * VertNums; /* pointer to vertex ptrs */
int NumVerts; /* # of vertices */
int Color; /* polygon color */

};

/* Structure describing an object */
struct Object {

int NumVerts;

struct Points * VertexList;

struct Points * XformedVertexList;

struct Points * ProjectedVertexList;
struct Point * ScreenVertexList;

int NumFaces;

struct Face * FaceList;

};

extern void XformVec(double Xform[4][4], double * SourceVec, double * DestVec);

594 @ Chapter 36

extern void ConcatXfornisCdouble SourceXforml[4][4],
double SourceXform2[4][4]. double DestXform[4][4]);

extern void XformAndProjectPoly(doub1 e Xforni[4][4],
struct Points * Poly, int PolyLength, int Color);

extern int Fi11ConvexPolygonCstruct PointListHeader *, int, int, int);
extern void Set320x240Mode(void);

extern void ShowPageCunsigned int StartOffset);
extern void Fil1RectangleXCint StartX, int StartY, int EndX,

int EndY, unsigned int PageBase, int Color);
extern void XformAndProjectPoints(double Xform[4][4],struct Object * ObjectToXform);
extern void DrawVisibleFaces(struct Object * ObjectToXform);
extern void AppendRotationX(double XformToChange[4][4], double Angle);
extern void AppendRotationYCdouble XformToChange[4][4]. double Angle);
extern void AppendRotationZCdouble XformToChange[4][4], double Angle);
extern int DisplayedPage, NonDisplayedPage;
extern struct Rect EraseRect[];

A Note on Rounding Negative Numbers
In the previous chapter, I added 0.5 and truncated in order to round values from
floating-point to integer format. Here, in Listing 36.2, I've switched to adding 0.5 and
using the floor() function. For positive values, the two approaches are equivalent; for
negative values, only the floor() approach works properly.

Object Representation
Each object consists of a list of vertices and a list of faces, with the vertices of each face
defined by pointers into the vertex list; this allows each vertex to be transformed ex
actly once, even though several faces may share a single vertex. Each object contains
the vertices not only in their original, untransformed state, but in three other forms as
well: transformed to view space, transformed and projected to screen space, and con
verted to screen coordinates. Earlier, we saw that it can be convenient to store the

screen coordinates within the object, so that if the object hasn't moved with respect to
the viewer, it can be redrawn without the need for recalculation, but why bother stor
ing the view and screen space forms of the vertices as well?
The screen space vertices are useful for some sorts of hidden surface removal. For

example, to determine whether two polygons overlap as seen by the viewer, you must
first know how they look to the viewer, accounting for perspective; screen space pro
vides that information. (So do the final screen coordinates, but with less accuracy, and
without any Z information.) The view space vertices are useful for collision and prox
imity detection; screen space can't be used here, because objects are distorted by the
perspective projection into screen space. World space would serve as well as view space
for collision detection, but because it's possible to transform directly from object space
to view space with a single matrix, it's often preferable to skip over world space. It's not
mandatory that vertices be stored for all these different spaces, but the coordinates in
all those spaces have to be calculated as intermediate steps anyway, so we might as well
keep them around for those occasions when they're needed.

The First Iteration of a Generalized
3-D Animation Package

Across the lake from Vermont, a few miles into upstate New York, the Ausable River has
carved out a fairly impressive gorge known as Ausable Chasm. Impressive for the East,
anyway; you might think of it as the poor mans Grand Canyon. Some time back, I did
the tour with my wife and five-year-old, and it was fun, although I confess that I didnt
loosen my grip on my daughter's hand until we were on the bus and headed for home;
that gorge is deep, and the railings tend to be of the single-bar, rusted-out variety.
New Yorkers can drive straight to this wonder of nature, but Vermonters must take

their cars across on the ferry; the alternative is driving three hours around the south
end of Lake Champlain. No problem; the ferry ride is an hour well spent on a beautiful
lake. Or, rather, no problem—once you're on the ferry. Getting to New York is easy,
but, as we found out, the line of cars waiting to come back from Ausable Chasm gets
lengthy about mid-afternoon. The ferry can hold only so many cars, and we wound up
spending an unexpected hour exploring the wonders of the ferry docks. Not a big deal,
with a good-natured kid and an entertaining mom; we got ice cream, explored the
beach, looked through binoculars, and told stories. It was a fun break, actually, and
before we knew it, the ferry was steaming back to pick us up.
A friend of mine, an elementary-school teacher, helped take 65 sixth graders to

Ausable Chasm. Never mind the potential for trouble with 65 kids loose on a ferry.
Never mind what it was like trying to herd that group around a gorge that looks like it
was designed to swallow children and small animals without a trace. The hard part was
getting back to the docks and finding they'd have to wait an hour for the next ferry. As
my friend put it, "Let me tell you, an hour is an eternity with 65 sixth graders scream
ing the song 'You Are My Sunshine.

596 ® Chapters/

Apart from reminding you how lucky you are to be working in a quiet, air-conditioned
room, in front of a gently humming computer, free to think deep thoughts and eat
Cheetos to your hearts content, this story provides a usefiil perspective on the malleable
nature of time. An hour isn't just an hour—^it can be forever, or it can be the wink of an eye.
Just think of the last hour you spent working under a deadline; I bet it went past in a
flash. Which is not to say, mind you, that I recommend working in a bus full of screaming
kids in order to make time pass more slowly; there are quality issues here as well.

In our 3-D animation work so far, we've used floating-point arithmetic. Floating
point arithmetic—even with a floating-point processor but especially without one—is
the microcomputer animation equivalent of working in a school bus: It takes forever to
do anything, and you just know you te never going to accomplish as much as you want
to. In this chapter, we'll address fixed-point arithmetic, which will give us an instant
order-of-magnitude performance boost. We'll also give our 3-D animation code a much
more powerful and extensible framework, making it easy to add new and different
sorts of objects. Taken together, these alterations will let us start to do some really
interesting real-time animation.

This Chapter's Demo Program
Three-dimensional animation is a complicated business, and it takes an astonishing
amount of functionality just to get off the launching pad: page flipping, polygon fill
ing, clipping, transformations, list management, and so forth. IVe been building to
ward a critical mass of animation functionality over the course of this book, and this
chapters code builds on the code from no fewer than five previous chapters. The code
that's required in order to link this chapter's animation demo program is the following:
• Listing 35.1 from Chapter 35 (draw clipped line list);
• Listings 32.1 and 32.6 from Chapter 32 (Mode X mode set, rectangle fill);
• Listing 34.6 from Chapter 34;

• Listing 22.4 from Chapter 22 (polygon edge scan); and
• The FillConvexPolygon() function from Listing 21.1 from Chapter 21. Note that

the struct keywords in FillConvexPolygon() must be removed to reflect the switch
to typedefs in the animation header file.

As always, all required files are in this chapter's subdirectory on the listings diskette.

LISTING 37.1 L37-1.C
/* 3-D animation program to rotate 12 cubes. Uses fixed point. All C code

tested with Borland C++ in C compilation mode and the small model. */

^include <conio.h>
^include <dos.h>
y/include "polygon.h"

Fast 3-D Animation: Meet X-Sharp ® 597

/* base offset of page to which to draw */
unsigned int CurrentPageBase = 0;
/* clip rectangle; clips to the screen */
int ClipMinX = 0, ClipMinY = 0;
int ClipMaxX = SCREEN_WIDTH, ClipMaxY = SCREEN_HEIGHT;
static unsigned int PageStartOffsetsC2] =

{PAGE0_START_0FFSET.PAGE1_START_0FFSET};

int DisplayedPage, NonDisplayedPage;
int RecalcAllXforms = 1, NumObjects = 0;
Xform WorldViewXform; /* initialized from floats */
/* pointers to objects */
Object *ObjectList[MAX_OBJECTS];

void mainO {

int Done = 0, i;

Object *ObjectPtr;
union REGS regset;

InitializeFixedPointO; /* set up fixed-point data */
InitializeCubesC); /* set up cubes and add them to object list; other

objects would be initialized now, if there were any */
Set320x240Mode(); /* set the screen to mode X */
ShowPage(PageStartOffsets[DisplayedPage = 0]);
/* Keep transforming the cube, drawing it to the undisplayed page,

and flipping the page to show it */
do {

/* For each object, regenerate viewing info, if necessary */
for (i=0; i<NumObjects; i++) {

if ((ObjectPtr = ObjectList[i])->RecalcXform |1
RecalcAllXforms) {

ObjectPtr->RecalcFunc(ObjectPtr);
ObjectPtr->RecalcXform = 0;

}

}
RecalcAllXforms = 0;

CurrentPageBase = /* select other page for drawing to */
PageStartOffsetsCNonDi spl ayedPage = DisplayedPage 1];

/* For each object, clear the portion of the non-displayed page
that was drawn to last time, then reset the erase extent */

for (i=0; i<NumObjects; i++) {
ObjectPtr = ObjectList[i];
FillRectangleX(ObjectPtr->EraseRect[NonDisplayedPage].Left,

ObjectPtr->EraseRect[NonDisplayedPage].Top,
ObjectPtr->EraseRect[NonDisplayedPage].Right,
ObjectPtr->EraseRect[NonDisplayedPage].Bottom,
CurrentPageBase, 0);

ObjectPtr->EraseRect[NonDisplayedPage].Left =
ObjectPtr->EraseRect[NonDisplayedPage].Top = 0x7FFF;

ObjectPtr->EraseRect[NonDisplayedPage].Right =
ObjectPtr->EraseRect[NonDisplayedPage].Bottom = 0;

}
/* Draw all objects */

for (i=0; i<NumObjects; i++)
ObjectLi st[i]->DrawFunc(ObjectLi st[i]);

/* Flip to display the page into which we just drew */
ShowPage(PageStartOffsets[DisplayedPage = NonDisplayedPage]);
/* Move and reorient each object */
for (i=0; i<NuraObjects; i++)

ObjectLi st[i]->MoveFunc(ObjectLi st[i]);
if (kbhitO)

if (getchO == OxlB) Done = 1; /* Esc to exit */
} while (IDone);

598 ^ Chapters/

/* Return to text mode and exit */

regset.x.ax = 0x0003; /* AL = 3 selects 80x25 text mode */
1nt86(0xl0, ®set, ®set);
exlt(l);

LISTING 37.2 L37-2.C
/* Transforms all vertices In the specified polygon-based object into view

space, then perspective projects them to screen space and maps them to screen
coordinates, storing results in the object. Recalculates object->view
transformation because only if transform changes would we bother
to retransform the vertices. */

//include <math.h>

//include "polygon.h"

void XformAndProjectPObject(PObject * ObjectToXform)
{

int i, NumPoints = ObjectToXform->NumVerts;
Point3 * Points = ObjectToXform->VertexList;
Point3 * XformedPoints = ObjectToXform->XformedVertexList;
Point3 * ProjectedPoints = ObjectToXform->ProjectedVertexList;
Point * ScreenPoints «= ObjectToXform->ScreenVertexList;

/* Recalculate the object->view transform */
ConcatXformsCWorldViewXform, ObjectToXform->XformToWorl d,

ObjectToXform->XformToVi ew);
/* Apply that new transformation and project the points */
for (i=0; KNumPoints; i++, Points-H-, XformedPoints++,

ProjectedPoints++, ScreenPoints-H-) {
/* Transform to view space */

XformVec(ObjectToXform->XformToView, (Fixedpoint *) Points,
(Fixedpoint *) XformedPoints);

/* Perspective-project to screen space */
ProjectedPoints->X =

FixedMul(FixedDiv(XformedPoints->X, XformedPoints->Z),
DOUBLE_TO_FIXED(PROJECTION_RATIO * (SCREEN_WIDTH/2)));

ProjectedPoints->Y =

FixedMuKFixedDiv(XformedPoints->Y, XformedPoints->Z),
DOUBLE_TO_FIXED(PROJECTION_RATIO * (SCREEN_WIDTH/2)));

ProjectedPoints->Z = XformedPoints->Z;
/* Convert to screen coordinates. The Y coord is negated to flip from

increasing Y being up to increasing Y being down, as expected by polygon
filler. Add in half the screen width and height to center on screen. */

ScreenPoints->X = ((int) ((ProjectedPoints->X +
D0UBLE_T0_FIXED(0.5)) » 16)) -H SCREEN_WIDTH/2;

ScreenPoints->Y = (-((int) ((ProjectedPoints->Y +
D0UBLE_T0_FIXED(0.5)) » 16))) + SCREEN_HEIGHT/2;

}

LISTING 37.3 L37-3.C
/* Routines to perform incremental rotations around the three axes. */

//include <math.h>

//include "polygon.h"

Fast 3-D Animation: Meet X-Sharp ^ 599

/* Concatenate a rotation by Angle around the X axis to transformation in
XformToChange, placing the result back into XformToChange. */

void AppendRotationX(Xform XformToChange, double Angle)

Fixedpoint TemplO, Templl, Templ2, Temp20, Temp21, Temp22;
Fixedpoint CosTemp = DOUBLE_TO_FIXED(cos(Angle));
Fixedpoint Sinlemp = DOUBLE_TO_FIXED(sin(Angle)):

/* Calculate the new values of the six affected matrix entries */
TemplO = FixedMul(CosTemp. XformToChange[l][0]) +

FixedMuK-SinTemp, XformToChange[2][0]);
Templl = FixedMuKCosTemp, XformToChange[l][1]) +

FixedMuK-SinTemp, XformToChange[2][l]);
Templ2 = FixedMuKCosTemp, XformToChange[l][2]) +

FixedMul(-SinTemp, XformToChange[2][2]);
Temp20 = FixedMuKSinTemp, XformToChange[l][0]) +

FixedMul(CosTemp, XformToChange[2][0]);
Temp21 = FixedMuKSinTemp, XformToChange[l][l]) +

FixedMul(CosTemp, XformToChange[2][l]);
Temp22 = Fi xedMuKSi nTemp, XformToChange[l][2]) +

FixedMul(CosTemp, XformToChange[2][2]);
/* Put the results back into XformToChange */
XformToChange[l]CO] = TemplO; XformToChange[l]Cl] = Templl;
XformToChange[l][2] = Templ2; XformToChange[2][0] = Temp20;
XformToChange[2][l] = Temp21; XformToChange[2][2] = Temp22;

/* Concatenate a rotation by Angle around the Y axis to transformation in
XformToChange, placing the result back into XformToChange. */

void AppendRotationY(Xform XformToChange, double Angle)
{

Fixedpoint TempOO, TempOl, Temp02, Temp20, Temp21, Temp22;
Fixedpoint CosTemp = DOUBLE_TO_FIXED(cos(Angle));
Fixedpoint SinTemp = DOUBLE_TO_FIXED(sin(Angle));

/* Calculate the new values of the six affected matrix entries */
TempOO = FixedMuKCosTemp, XformToChange[0][0]) +

FixedMul(SinTemp, XformToChange[2][0]);
TempOl = FixedMuKCosTemp, XformToChange[0][1]) +

FixedMul(SinTemp, XformToChange[2][l]);
Temp02 = FixedMuKCosTemp, XformToChange[0][2]) +

FixedMul(SinTemp, XformToChange[2][2]);
Temp20 = FixedMuK-SinTemp, XformToChange[0] [0]) +

FixedMuK CosTemp, XformToChange[2][0]);
Temp21 = FixedMuK-SinTemp, XformToChange[0][1]) +

FixedMul(CosTemp, XformToChange[2][l]);
Temp22 = FixedMuK-SinTemp, XformToChangeCO][2]) +

FixedMul(CosTemp, XformToChange[2][2]);
/* Put the results back into XformToChange */
XformToChange[0]C0] = TempOO; XformToChange[0][1] = TempOl;
XformToChange[0][2] = Temp02; XformToChange[2][0] = Temp20;
XformToChange[2][l] = Temp21; XformToChange[2][2] = Temp22;

}

/* Concatenate a rotation by Angle around the Z axis to transformation in
XformToChange, placing the result back into XformToChange. */

void AppendRotationZ(Xform XformToChange, double Angle)
{

Fixedpoint TempOO, TempOl, Temp02, TemplO, Templl, Templ2;
Fixedpoint CosTemp = DOUBLE_TO_FIXED(cos(Angle));
Fixedpoint SinTemp = DOUBLE_TO_FIXED(sin(Angle));

600 0 Chapters/

/* Calculate the new values of the six affected matrix entries */
TempOO = FixedMul(CosTemp, XformToChange[0][0]) +

FixedMul(-SinTemp, XformToChangeCl][0]);
TempOl = FixedMul(CosTemp. XformToChange[0][1]) +

FixedMul(-SinTemp. XformToChange[l][l]);
Temp02 = FixedMuKCosTemp. XformToChange[0][2]) +

FixedMul(-SinTemp. XformToChange[l][2]);
TemplO = FixedMul (SinTemp. XformToChange[0][0]) -h

FixedMul(CosTemp. XformToChange[l][0]);
Templl = FixedMul(SinTemp. XformToChange[0][l]) +

FixedMul(CosTemp. XformToChange[l][l]);
Templ2 = FixedMul (SinTemp. XformToChange[0][2]) +

FixedMul(CosTemp. XformToChange[l][2]);
/* Put the results back into XformToChange */
XformToChange[0][0] = TempOO; XformToChangeCO][1] = TempOl;
XformToChange[0][2] = Temp02; XformToChange[l][0] = TemplO;
XformToChange[l][l] = Templl; XformToChange[l][2] = Templ2;

LISTING 37.4 L37-4.C
/* Fixed point matrix arithmetic functions. */

y/include "polygon.h"

/* Matrix multiplies Xform by SourceVec. and stores the result in DestVec.
Multiplies a 4x4 matrix times a 4x1 matrix; the result is a 4x1 matrix. Cheats
by assuming the W coord is 1 and bottom row of matrix is 0 0 0 1, and doesn't
bother to set the W coordinate of the destination. */

void XformVec(Xform WorkingXform. Fixedpoint *SourceVec,
Fixedpoint *DestVec)

{

int i ;

for (i=0; i<3; i+-i-)

DestVecCi] = FixedMul (WorkingXform[i][0]. SourceVec[0]) -i-
FixedMul (WorkingXform[i][1] . SourceVec[l]) -i-
FixedMul (WorkingXform[i][2] . SourceVec[2])
WorkingXform[i][3]; /* no need to multiply by W = 1 */

/* Matrix multiplies SourceXforml by SourceXform2 and stores result in
DestXform. Multiplies a 4x4 matrix times a 4x4 matrix; result is a 4x4 matrix.
Cheats by assuming bottom row of each matrix is 0 0 0 1. and doesn't bother
to set the bottom row of the destination. */

void ConcatXforms(Xform SourceXforml. Xform SourceXform2.
Xform DestXform)

{

int i. j;

for (i=0; i<3; i-h+) {
for (j=0; j<4; j+-i-)

DestXform[i][j] =

FixedMul(SourceXforml[i][0]. SourceXform2[0][j]) -i-
FixedMul (SourceXforml[i][l]. SourceXform2[l][j])
FixedMul(SourceXforml[i][2]. SourceXform2[2][j]) +
SourceXforml[i][3];

}

}

Fast 3-D Animation: Meet X-Sharp ^ 601

LISTING 37.5 L37-5.C
/* Set up basic data that needs to be in fixed point, to avoid data

definition hassles. */

^include "polygon.h"

/* All vertices in the basic cube */
static IntPointS IntCubeVerts[NUM_CUBE_VERTS] = {

{15.15,15},{15,15.-15}.{15.-15,15}.{15,-15,-15},
{-15,15,15},{-15,15,-15},{-15,-15,15},{-15,-15,-15} };

/* Transformation from world space into view space (no transformation,
currently) */

static int IntWorldViewXform[3][4] = {
{1,0,0,0}, {0,1,0,0}, {0,0,1,0}};

void InitializeFixedPointO

{

int i, j ;

for (i=0; i<3; i++)

for (j=0; j<4; j++)
WorldViewXform[i][j] => INT_TO_FIXED(IntWorldViewXform[i][j]);

for (i=0; i<NUM_CUBE_VERTS; i++) {
CubeVerts[i].X = INT_TO_FIXED(IntCubeVerts[i].X);
CubeVertsCi].Y = INT_TO_FIXED(IntCubeVerts[i].Y);
CubeVerts[i].Z = INT_TO_FIXED(IntCubeVerts[i].Z);

}

LISTING 37.6 L37-6.G
/* Rotates and moves a polygon-based object around the three axes.

Movement is implemented only along the Z axis currently. */

^include "polygon.h"

void RotateAndMovePObjectCPObject * ObjectToMove)
{

if (--ObjectToMove->RDelayCount 0) { /* rotate */
ObjectToMove->RDelayCount = ObjectToMove->RDelayCountBase;
if (ObjectToMove->Rotate.RotateX != 0.0)

AppendRotationX(ObjectToMove->XformToWorld,
ObjectToMove->Rotate.RotateX);

if (ObjectToMove->Rotate.RotateY !=■ 0.0)
AppendRotationY(ObjectToMove->XformToWorld,

ObjectToMove->Rotate.RotateY);
if (ObjectToMove->Rotate.RotateZ != 0.0)

AppendRotationZ(ObjectToMove->XformToWorld,
ObjectToMove->Rotate.RotateZ);

ObjectToMove->RecalcXform ■= 1;
}
/* Move in Z, checking for bouncing and stopping */
if (--ObjectToMove->MDelayCount = 0) {

ObjectToMove->MDelayCount = ObjectToMove->MDelayCountBase;
0bjectToMove->XformToWorld[2][3] += ObjectToMove->Move.MoveZ;
if (0bjectToMove->XformToWorld[2][3]>0bjectToMove->Move.MaxZ)

ObjectToMove->Move.MoveZ = 0; /* stop if close enough */
ObjectToMove->RecalcXform = 1;

}

602 gl ChaplerST

LISTING 37.7 L37-7.C
/* Draws all visible faces in specified polygon-based object. Object must have

previously been transformed and projected, so that ScreenVertexList array is
filled in. */

^include "polygon.h"

void DrawPObject(PObject * ObjectToXform)
{

int i, j, NumFaces = ObjectToXform->NumFaces, NumVertices;
int * VertNumsPtr;

Face * FacePtr = ObjectToXform->FaceList;
Point * ScreenPoints - ObjectToXform->ScreenVertexList;
long vl, v2. wl, w2;
Point Verti cesCMAX_POLY_LENGTH];
PointListHeader Polygon;

/* Draw each visible face (polygon) of the object in turn */
for (i=0; i<NumFaces; i++, FacePtr-H-) {

NumVertices = FacePtr->NumVerts;
/* Copy over the face's vertices from the vertex list */
for (j=0, VertNumsPtr=FacePtr->VertNums; j<NumVertices; j++)

VerticesCj] = ScreenPointsC*VertNumsPtr++];
/* Draw only if outside face showing (if the normal to the

polygon points toward viewer; that is, has a positive Z component) */
vl = VerticesClj.X - Vertices[0].X;
wl = Vertices[NumVertices-l].X - Vertices[0].X;
v2 = VerticesCl].Y - Vertices[0].Y;
w2 = Vertices[NumVertices-l].Y - Vertices[0].Y;
if ((vl*w2 - v2*wl) > 0) {

/* It is facing the screen, so draw */
/* Appropriately adjust the extent of the rectangle used to

erase this object later */
for (j=0; j<NumVertices; j++) {

if (VerticesCj].X >

ObjectToXform->EraseRect[NonDisplayedPage].Right)
if (VerticesCj].X < SCREEN_WIDTH)

ObjectToXform->EraseRectCNonDisplayedPage].Right =
VerticesCj].X;

else ObjectToXform->EraseRectCNonDisplayedPage].Right =
SCREEN.WIDTH;

if (VerticesCj].Y >

ObjectToXform->EraseRectCNonDisplayedPage].Bottom)
if (VerticesCj].Y < SCREEN_HEI6HT)

ObjectToXform->EraseRectCNonDisplayedPage].Bottom =
Verti cesCj].Y;

else ObjectToXform->EraseRectCNonDisplayedPage].Bottom-
SCREEN_HEIGHT;

if (VerticesCj].X <

ObjectToXform->EraseRectCNonDisplayedPage].Left)
if (VerticesCj].X > 0)

ObjectToXform->EraseRectCNonDisplayedPage].Left =
VerticesCj].X;

else ObjectToXform->EraseRectCNonDi splayedPage].Left=0;
if (VerticesCj].Y <

ObjectToXform->EraseRectCNonDisplayedPage].Top)
if (VerticesCj].Y > 0)

ObjectToXform->EraseRectCNonDisplayedPage].Top -
VerticesCj].Y;

else ObjectToXform->EraseRectCNonDisplayedPage].Top=0;
}

Fast 3-D Animation: Meet X-Sharp ^ 603

/* Draw the polygon */
DRAW_POLYGON(Vertices, NumVertices, FacePtr->Color. 0, 0);

LISTING 37.8 L37-8.C
/* Initializes the cubes and adds them to the object list. */

^include <stdlib.h>

^include <math.h>

^include "polygon.h"

#define R0T_6 (M_PI / 30.0)

^define R0T_3 (M_PI / 60.0)

^define R0T_2 (M_PI / 90.0)

#define NUM_CUBES 12

/* rotate 6 degrees at a time */
/* rotate 3 degrees at a time */
/* rotate 2 degrees at a time */
/* # of cubes */

static int Facel[]

static int Face2[]

static int Face3[]

static int Face4[]

static int Face5[]

static int Face6[]

Point3 CubeVerts[NUM_CUBE_VERTS]; /* set elsewhere, from floats */
/* vertex indices for individual cube faces */

{1,3.2.0};

{5,7,3,1};

{4,5,1,0};

{3,7,6,2};

{5,4,6,7};

{0,2,6,4};

static int *VertNumListC]={Facel, Face2, Face3, Face4, Face5, Face6};
static int VertsInFace[]={ sizeof(Facel)/sizeof(int),

sizeof(Face2)/sizeof(int), sizeof(Face3)/sizeof(int),

sizeof(Face4)/sizeof(int), sizeofCFace5)/sizeof(int),
sizeof(Face6)/sizeof(int) };

/* X, Y, Z rotations for cubes */
static RotateControl InitialRotate[NUM_CUBES] = {

{0.0,R0T_6,R0T_6},{R0T_3,0.0,R0T_3},{R0T_3,R0T_3,0.0},
{R0T_3,-R0T_3,0.0},{-R0T_3,R0T_2,0.0},{-R0T_6,-R0T_3,0.0},
{ROT_3,0.0,-ROT_6},{-R0T_2,0.0,ROT_3},{-R0T_3,0.0,-ROT_3},

{0.0,R0T_2,-R0T_2},{0.0,-R0T_3,R0T_3},{0.0,-R0T_6,-R0T_6},};
static MoveControl InitialMove[NUM_CUBES] = {

{0,0,80,0,0,0,0,0,-350},{0,0,80,0,0,0,0,0,-350},
{0,0,80,0,0,0,0,0,-350},{0,0,80,0,0,0,0,0,-350} ,
{0,0,80,0,0,0,0,0,-350},{0,0,80,0,0,0,0,0,-350},
{0,0,80,0.0,0,0,0,-350},{0,0,80,0,0,0,0,0,-350},
{0,0,80,0,0,0,0,0,-350},{0,0,80,0,0,0,0,0,-350},
{0,0,80,0,0,0,0,0,-350},{0,0,80,0,0,0,0,0,-350}, } ;

/* face colors for various cubes */

static int Colors[NUM_CUBES][NUM_CUBE_FACES] - {
{15,14,12,11,10,9}.{1,2,3,4,5,6},{35,37,39,41,43,45},
{47,49,51,53,55,57},{59,61,63,65,67,69},{71,73,75,77,79,81},
{83,85,87,89,91,93},{95,97,99,101,103,105} ,
{107,109,111,113,115,117},{119,121,123,125,127,129},
{131,133,135,137,139,141},{143.145,147,149,151,153} };

/* starting coordinates for cubes in world space */
static int CubeStartCoords[NUM_CUBES][3] = {

{100,0,-6000}, {100,70,-6000}, {100,-70,-6000} , {33,0,-6000},
{33,70,-6000}, {33,-70,-6000}, {-33,0,-6000}, {-33,70,-6000},
{-33,-70,-6000},{-100,0,-6000}, {-100,70,-6000}, {-100,-70,-6000}};

/* delay counts (speed control) for cubes */
static int InitRDelayCounts[NUM_CUBES] = {1,2,1,2,1,1,1,1,1,2,1,1};
static int BaseRDelayCounts[NUM_CUBES] = {1,2.1,2,2,1,1,1,2,2,2,1};

604 ^ Chapters/

Static int InitMDelayCounts[NUM_CUBES] = {1,1,1,1,1,1,1,1.1,1.1.1};
static int BaseMDelayCountsCNUM_CUBES] = {1,1,1,1,1,1,1,1,1,1,1,1};

void InitializeCubesC)

{

int i, j, k;

PObject *WorkingCube;

for (i=0; i<NUM_CUBES; i++) {

if ((WorkingCube = malloc(sizeof(PObject))) == NULL) {
printf("Couldn't get memoryXn"); exit(l); }

WorkingCube->DrawFunc = DrawPObject;
WorkingCube->RecalcFunc = XformAndProjectPObject;
WorkingCube->MoveFunc = RotateAndMovePObject;
WorkingCube->RecalcXform = 1;
for (k=0; k<2; k++) {

Worki ngCube->EraseRect[k].Left =

WorkingCube->EraseRect[k].Top = 0x7FFF;
WorkingCube->EraseRect[k].Right = 0;
WorkingCube->EraseRect[k].Bottom = 0;

}

WorkingCube->RDelayCount «=• InitRDelayCounts[i];
WorkingCube->RDelayCountBase = BaseRDelayCounts[i];
WorkingCube->MDelayCount - InitMDelayCounts[i];
WorkingCube->MDelayCountBase = BaseMDelayCounts[i];
/* Set the object->world xform to none */
for (j-0; j<3; j++)

for (k=0; k<4; k-H-)

WorkingCube->XformToWorldCj][k] - INT_T0_FIXED(0);
WorkingCube->XformToWorldCO][0] =

WorkingCube->XformToWorld[l][l] =
WorkingCube->XformToWorld[2]C2] =

WorkingCube->XformToWorldC3][3] - INT_TO_FIXED(1);
/* Set the initial location */

for (j-0; j<3; j++) WorkingCube->XformToWorld[j][3] -
INT_TO_FIXED(CubeStartCoords[i][j]);

WorkingCube->NumVerts = NUM_CUBE_VERTS;
WorkingCube->VertexLiSt = CubeVerts;

WorkingCube->NumFaces = NUM_CUBE_FACES;

WorkingCube->Rotate = InitialRotate[i];
WorkingCube->Move.MoveX - INT_TO_FIXED(InitialMove[i].MoveX);
Worki ngCube->Move.MoveY = INT_TO_FIXED(Ini ti alMove[i].MoveY);
Worki ngCube->Move.MoveZ ■= INT_TO_FIXED(Ini ti alMove[i].MoveZ);
WorkingCube->Move.MinX =■ INT_TO_FIXED(InitialMove[i].MinX);
WorkingCube->Move.MinY = INT_TO_FIXED(InitialMove[i].MinY);
WorkingCube->Move.MinZ =■ INT_TO_FIXED(InitialMove[i].MinZ);
WorkingCube->Move.MaxX = INT_TO_FIXED(InitialMove[i].MaxX);
WorkingCube->Move.MaxY = INT_TO_FIXED(InitialMove[i].MaxY);
WorkingCube->Move.MaxZ = INT_TO_FIXEDCInitialMove[i].MaxZ);
if ((WorkingCube->XformedVertexList =

malloc(NUM_CUBE_VERTS*sizeof(Point3))) — NULL) {
printf("Couldn't get memoryXn"); exit(l); }

if ((WorkingCube->ProjectedVertexList =
malloc(NUM_CUBE_VERTS*sizeof(Point3))) = NULL) {

printfC'Couldn't get memoryXn"); exit(l); }
if ((WorkingCube->ScreenVertexLiSt =

malloc(NUM_CUBE_VERTS*sizeof(Point))) ™ NULL) {
printfC'Couldn't get memoryXn"); exit(l); }

if ((WorkingCube->FaceList =■
malloc(NUM_CUBE_FACES*sizeof(Face))) = NULL) {

printfC'Couldn't get memoryXn"); exit(l); }

Fast 3-D Animation: Meet X-Sharp ^ 605

/* Initialize the faces */

for (0=0; j<NUM_CUBE_FACES; j++) {
WorkingCube->FaceList[j].VertNums = VertNumList[j];
WorkingCube->FaceList[j].NuniVerts = VertsInFace[j];
WorkingCube->FaceList[j].Color = Colors[i][j];

}
ObjectListCNumObjects-H-] = (Object *)WorkingCube:

LISTING 37.9 L37-9.ASM
386-specific fixed point multiply and divide.

C near-callable as: Fixedpoint FixedMuKFixedpoint Ml, Fixedpoint M2);
Fixedpoint FixedDiv(Fixedpoint Dividend, Fixedpoint Divisor);

Tested with TASM

.model small

.386

.code

public _FixedMul,_FixedDiV
; Multiplies two fixed-point values together.
FMparms struc

2 dup(?)
?

;return address & pushed BPdw

Ml dd

M2 dd

FMparms ends
align

_FixedMul

push
mov

mov

imul

add

adc

shr

pop

ret

_FixedMul endp
; Divides one fixed-point value by another.
FDparms struc

2 dupC?) ;return address & pushed BP
?

2

proc near

bp
bp,sp
eax,[bp+Ml]
dword ptr [bp+M2] ;multiply
eax,8000h ;round by adding 2''(-16)

edx,0 ;whole part of result is in

dw

Dividend dd

DX
eax,16 ;put the fractional part in AX
bp

Divisor dd

FDparms ends
al i gn

_FixedDiV

push
mov

sub

mov

and

jns

inc

neg

subFDPl:

rol

2

proc near

bp
bp,sp
cx,cx ;assume positive result
eax,[bp+Dividend]
eax,eax ;positive dividend?
FDPl ;yes

cx ;mark it's a negative dividend

eax ;make the dividend positive
edx,edx ;make it a 64-bit dividend, then shift

; left 16 bits so that result will be in EAX

eax,16 ;put fractional part of dividend in
; high word of EAX

606 ^ Chapters/

FDP2:

FDP3:

mov

sub

mov

and

jns

dec

neg

di V

shr

ado

dec

cmp

adc

and

jz
neg

mov

shr

pop

ret

_FixedDi v

end

dx,ax

ax,ax

ebx,dword

ebx.ebx

FDP2

cx

ebx

ebx

ebx.l

ebx.O

ebx

ebx.edx

eax,0

cx,cx

FDP3

eax

edx.eax

edx,16

bp

endp

;put whole part of dividend in DX
;clear low word of EAX

ptr [bp+Divisor]
;positive divisor?
;yes

;mark it's a negative divisor

;make divisor positive
;di vi de

;divisor/2, minus 1 if the divisor is

; even

;set Carry if remainder is at least

; half as large as the divisor, then
; use that to round up if necessary
;should the result be made negative?
;no

;yes, negate it

;return result in DX:AX; fractional

; part is already in AX
;whole part of result in DX

LISTING 37.10 POLYGON.H
/* POLYGON.H: Header file for polygon-filling code, also includes

a number of useful items for 3-D animation. */

/* max simultaneous # objects supported
/* four vertices is the max per poly */

^define MAX_OBJECTS 100
^define MAX_POLY_LENGTH 4
#define SCREEN_WIDTH 320
^define SCREEN_HEIGHT 240
//define PAGEO_START_OFFSET 0
//define PAGE1_START_0FFSET (((long)SCREEN_HEIGHT*SCREEN_WIDTH)/4)
//define NUM_CUBE_VERTS 8 /* // of vertices per cube */
//define NUM_CUBE_FACES 6 /* // of faces per cube */
/* Ratio: distance from viewpoint to projection plane / width of

projection plane. Defines the width of the field of view. Lower

absolute values = wider fields of view; higher values = narrower */
//define PROJECTION_RATIO -2.0 /* negative because visible Z

coordinates are negative */
/* Draws the polygon described by the point list PointList in color

Color with all vertices offset by (X,Y) */
//define DRAW_POLYGON(PointList,NumPoints,Color,X,Y) \

Polygon.Length = NumPoints; Polygon.PointPtr = PointList; \
Fi11ConvexPolygon(&Polygon, Color, X, Y);

//define INT_TO_FIXED(x) (((1 ong) (int)x) « 16)
//define DOUBLE_TO_FIXED(x) ((long) (x * 65536.0 + 0.5))

typedef long Fixedpoint;
typedef Fixedpoint Xform[3][4];
/* Describes a single 2D point */
typedef struct { int X; int Y; } Point;
/* Describes a single 3D point in homogeneous coordinates; the W

coordinate isn't present, though; assumed to be 1 and implied */
typedef struct { Fixedpoint X, Y, Z; } Point3;
typedef struct { int X; int Y; int Z; } IntPoint3;

Fast 3-D Animation: Meet X-Sharp ^ 607

/* Describes a series of points (used to store a list of vertices that
describe a polygon; each vertex is assumed to connect to the two
adjacent vertices; last vertex is assumed to connect to first) */

typedef struct { int Length; Point * PointPtr; } PointListHeader;
/* Describes the beginning and ending X coordinates of a single

horizontal line */

typedef struct { int XStart; int XEnd; } HLine;
/* Describes a Length-long series of horizontal lines, all assumed to

be on contiguous scan lines starting at YStart and proceeding
downward (used to describe a scan-converted polygon to the
low-level hardware-dependent drawing code). */

typedef struct { int Length; int YStart; HLine * HLinePtr;} HLineList;
typedef struct { int Left, Top, Right, Bottom; } Rect;
/* structure describing one face of an object (one polygon) */
typedef struct { int * VertNums; int NumVerts; int Color;) Face;
typedef struct { double RotateX, RotateY, RotateZ; } RotateControl;
typedef struct { Fixedpoint MoveX, MoveY, MoveZ, MinX, MinY, MinZ,

MaxX, MaxY, MaxZ; } MoveControl;
/* fields common to every object */

#define BASE.OBJECT \
void (*DrawFunc)(); /* draws object */ \
void (*RecalcFunc)(); /* prepares object for drawing */ \
void (*MoveFunc)(); /* moves object */ \
int RecalcXform; /* 1 to indicate need to recalc */ \
Rect EraseRect[2]; /* rectangle to erase in each page */

/* basic object */
typedef struct { BASE_OBJECT } Object;
/* structure describing a polygon-based object */
typedef struct {

BASE_OBJECT

int RDelayCount, RDelayCountBase; /* controls rotation speed */
int MDelayCount, MDelayCountBase; /* controls movement speed */
Xform XformToWorld; /* transform from object->world space */
Xform XformToView; /* transform from object->view space */
RotateControl Rotate; /* controls rotation change over time */
MoveControl Move; /* controls object movement over time */
int NumVerts; /* # vertices in VertexList */
Points * VertexList; /* untransformed vertices */
Points * XformedVertexList; /* transformed into view space */
Points * ProjectedVertexList; /* projected into screen space */
Point * ScreenVertexList; /* converted to screen coordinates */
int NumFaces; /* # of faces in object */
Face * FaceList; /* pointer to face info */

} PObject;

extern void XformVec(Xform, Fixedpoint *, Fixedpoint *);
extern void ConcatXforms(Xform, Xform, Xform);

extern int FillConvexPolygon(PointListHeader *, int, int, int);
extern void SetS20x240Mode(void);

extern void ShowPage(unsigned int);
extern void FillRectangleXdnt, int, int, int, unsigned int, int);
extern void XformAndProjectPObject(PObject *);
extern void DrawPObject(PObject *);
extern void AppendRotationX(Xform, double);
extern void AppendRotationY(Xform, double);
extern void AppendRotationZ(Xform, double);
extern near Fixedpoint FixedMul(Fixedpoint, Fixedpoint);
extern near Fixedpoint FixedDiv(Fixedpoint, Fixedpoint);
extern void InitializeFixedPoint(void);

extern void RotateAndMovePObject(PObject *);
extern void InitializeCubes(void);

608 ® Chapters/

extern int DisplayedPage. NonDisplayedPage, RecalcAl1Xforms;
extern int NumObjects;
extern Xform WorldViewXform;

extern Object *0bjectL1st[];

extern Points CubeVerts[];

A New Animation Framework: X-Siiarp
Listings 37.1 through 37.10 shown earlier represent not merely faster animation in
library form, but also a nearly complete, extensible, data-driven animation framework.
Whereas much of the earlier animation code IVe presented in this book was hardwired
to demonstrate certain concepts, this chapter s code is intended to serve as the basis for
a solid animation package. Objects are stored, in their entirety, in customizable struc
tures; new structures can be devised for new sorts of objects. Drawing, preparing for
drawing, and moving are all vectored functions, so that variations such as shading or
texturing, or even radically different sorts of graphics objects, such as scaled bitmaps,
could be supported. The cube initialization is entirely data driven; more or different
cubes, or other sorts of convex polyhedrons, could be added by simply changing the
initialization data in Listing 37.8.

Somewhere along the way in writing the material that became this section of the
book, I realized that I had a generally useful animation package by the tail and gave it
a name: X-Sharp. {XioT Mode X, sharp because good animation looks sharp, and, well,
who would want a fiat animation package?)

Note that the X-Sharp library as presented in this chapter (and, indeed, in this
book) is not a fully complete 3-D library. Movement is supported only along the Z axis
in this chapters version, and then in a non-general fashion. More interesting movement
isn't supported at this point because of one of the two missing features in X-Sharp:
hidden-surface removal. (The other missing feature is general 3-D clipping.) Without
hidden surface removal, nothing can safely overlap. It would actually be easy enough to
perform hidden-surface removal by keeping the cubes in different Z bands and draw
ing them back to front, but this gets into sorting and list issues, and is not a complete
solution—and I've crammed as much as will fit into one chapter's code, anyway.

I'm working toward a goal in this last section of the book, and there are many
lessons to be learned and stories to be told along the way. So as X-Sharp grows, you'll
find its evolving implementations in the chapter subdirectories on the listings diskette.
This chapter's subdirectory, for example, contains the self-extracting archive file
XSHARP14.EXE, (to extract its contents you simply run it as though it were a pro
gram) and the code in that archive is the code I'm speaking of specifically in this chap
ter, with all the limitations mentioned above. Chapter 38's subdirectory, however,
contains the file XSHARP15.EXE, which is the next step in the evolution of X-Sharp,
and it is the version that I'll be specifically talking about in that chapter. Later chapters
will have their own implementations in their respective chapter subdirectories, in files
of the form XSHARPxx.EXE, where xx is an ascending number indicating the version.
The final and most recent X-Sharp version will be present in its own subdirectory

Fast 3-D Animation: Meet X-Sharp ® 609

called XSHARP22. If you're intending to use X-Sharp in a real project, use the most
recent version to be sure that you avail yourself of all new features and bug fixes.

Three Keys to Real-Time Animation Performance
As of the previous chapter, we were at the point where we could rotate, move, and draw
a solid cube in real time. Not too shabby...but the code I'm presenting in this chapter
goes a bit further, rotating 12 solid cubes at an update rate of about 15 frames per
second (^s) on a 20 MHz 386 with a slow VGA. That's 12 transformation matrices,
72 polygons, and 96 vertices being handled in real time; not Star Wars, granted, but a
giant step beyond a single cube. Rim the program if you get a chance; you may be
surprised at just how effective this level of animation is. I'd like to point out, in case
anyone missed it, that this is fully general 3-D. I'm not using any shortcuts or tricks,
like prestoring coordinates or pregenerating bitmaps; if you were to feed in different
rotations or vertices, the animation would change accordingly.
The keys to the performance increase manifested in this chapter's code are three. The

first key is fixed-point arithmetic. In the previous two chapters, we worked with float
ing-point coordinates and transformation matrices. Those values are now stored as 32-
bit fixed-point numbers, in the form 16.16 (16 bits of whole number, 16 bits of fraction).
32-bit fixed-point numbers allow sufficient precision for 3-D animation, but can be
manipulated with fast integer operations, rather than by slow floating-point processor
operations or excruciatingly slow floating-point emulator operations. Although the
speed advantage of fixed-point varies depending on the operation, on the processor,
and on whether or not a coprocessor is present, fixed-point multiplication can be as
much as 100 times faster than the emulated floating-point equivalent. (I'd like to take
a moment to thank Chris Hecker for his invaluable input in this area.)
The second performance key is the use of the 386's native 32-bit multiply and divide

instructions. C compilers operating in real mode call library routines to perform multiplica
tions and divisions involving 32-bit values, and those library functions are fairly slow,
especially for division. On a 386, 32-bit multiplication and division can be handled
with the bit of code in Listing 37.9—and most of even that code is only for rounding.
The third performance key is maintaining and operating on only the relevant por

tions of transformation matrices and coordinates. The bottom row of every transfor
mation matrbc we'll use (in this book) is [0 0 0 I], so why bother using or recalculating
it when concatenating transforms and transforming points? Likewise for the fourth
element of a 3-D vector in homogeneous coordinates, which is always 1. Basically,
transformation matrices are treated as consisting of a 3x3 rotation matrix and a 3x1
translation vector, and coordinates are treated as 3x1 vectors. This saves a great many
multiplications in the course of transforming each point.

Just for fun, I reimplemented the animation of Listings 37.1 through 37.10 with
floating-point instructions. Together, the preceeding optimizations improve the per
formance of the entire animation—including drawing time and overhead, and not just

610 ^ Chapters/

math—by more than ten times over the code that uses the floating-point emulator.
Amazing what one can accomplish with a few dozen lines of assembly and a switch in
number format, isn t it? Note that no assembly code other than the native 386 multiply
and divide is used in Listings 37.1 through 37.10, although the polygon fill code is of
course mostly in assembly; weVe achieved 12 cubes animated at 15 fps while doing the
3-D work almost entirely in Borland C++, and we re still doing sine and cosine via the
floating-point emulator. Happily, we re still nowhere near the upper limit on the ani
mation potential of the PC.

Drawbacks

The techniques we've used to turbocharge 3-D animation are very powerful, but there's
a dark side to them as well. Obviously, native 386 instructions won't work on 8088 and
286 machines. That's rectifiable; equivalent multiplication and division routines could
be implemented for real mode and performance would still be reasonable. It sure is nice to
be able to plug in a 32-bit IMUL or DIV and be done with it, though. More impor
tantly, 32-bit fixed-point arithmetic has limitations in range and accuracy. Points out
side a 64Kx64Kx64K space can't be handled, imprecision tends to creep in over the
course of multiple matrix concatenations, and it's quite possible to generate the dreaded
divide by 0 interrupt if Z coordinates with absolute values less than one are used.

I don't have space to discuss these issues in detail, but here are some brief thoughts: The
working 64Kx64Kx64K fixed-point space can be paged into a larger virtual space.
Imprecision of a pixel or two rarely matters in terms of display quality, and deterioration of
concatenated rotations can be corrected by restoring orthogonality, for example by
periodically calculating one row of the matrix as the cross-product of the other two (forcing
it to be perpendicular to both). Alternatively, transformations can be calculated from
scratch each time an object or the viewer moves, so there's no chance for cumulative
error. 3-D clipping with a front clip plane of -1 or less can prevent divide overflow.

Where the Time Goes

The distribution of execution time in the animation code is no longer wildly biased
toward transformation, but sine and cosine are certainly still sucking up cycles. Likewise,
the overhead in the calls to FixedMul() and FixedDiv() is cosdy. Much of this is correctable
with a litde carefully crafted assembly language and a lookup table; I'll provide that
shortly.

Regardless, with this chapter we have made the critical jump to a usable level of
performance and a serviceable general-purpose framework. From here on out, it's the
fun stuff.

The Naked Truth About Speed in 3-D Animation
Years ago, this friend of mine—let's call him Bert—went to Hawaii with three other
fellows to celebrate their graduation from high school. This was an unchaperoned trip,
and they behaved pretty much as responsibly as you'd expect four teenagers to behave,
which is to say, not; there's a story about a rental car that, to this day, Bert can't bring
himself to tell. They had a good time, though, save for one thing: no girls.
By and by, they met a group of girls by the pool, but the boys couldn't get past the

hi-howya-doin stage, so they retired to their hotel room to plot a better approach. This
being the early '70s, and them being slightly tipsy teenagers with raging hormones and
the effective combined IQ of four eggplants, it took them no time at all to come up
with a brilliant plan: streaking. The girls had mentioned their room number, so the
boys piled into the elevator, pushed the button for the girls' floor, shucked their clothes
as fast as they could, and sprinted to the girls' door. They knocked on the door and ran
on down the hall. As the girls opened their door, Bert and his crew raced past, toward
the elevator, laughing hysterically.

Bert was by far the fastest of them all. He whisked between the elevator doors just as they
started to close; by the time his friends got there, it was too late, and the doors slid shut in
their faces. As the elevator began to move, Bert could hear the frantic pounding of six fists
thudding on the closed doors. As Bert stood among the clothes littering the elevator floor,
the thought of his friends stuck in the hall, naked as jaybirds, was just too much, and he
doubled over with helpless laughter, tears streaming down his face. The imiverse had blessed
him with one of those exceedingly rare moments of perfect timing and execution.
The universe wasn't done with Bert quite yet, though. He was still contorted with

laughter—and still quite thoroughly undressed—^when the elevator doors opened again.
On the lobby.
And with that, we come to this chapter's topics: raw speed and hidden surfaces.

612 ^ Chapter 38

Raw Speed, Part 1: Assembly Language
I would like to state, here and for the record, that I am not an assembly language
fanatic. Frankly, I prefer programming in C; assembly language is hard work, and I can
get a whole lot more done with fewer hassles in C. However, I am a performance
fanatic, performance being defined as having programs be as nimble as possible in
those areas where the user wants fast response. And, in the course of pursuing perfor
mance, there are times when a little assembly language goes a long way.
We re now four chapters into development of the X-Sharp 3-D animation package.

In real-time animation, performance is sine qua non (Latin for "Make it fast or find
another line of work"), so some judiciously applied assembly language is in order. In the
previous chapter, we got up to a serviceable performance level by switching to fixed-
point math, then implementing the fixed-point multiplication and division functions
in assembly in order to take advantage of the 386 s 32-bit capabilities. There's another
area of the program that fairly cries out for assembly language: matrix math. The func
tion to multiply a matrix by a vector (XformVec()) and the function to concatenate
matrices (ConcatXformsO) both loop heavily around calls to FixedMul(); a lot of call
ing and looping can be eliminated by converting these functions to pure assembly
language.

Listing 38.1 is the module FIXED .ASM from this chapter's iteration of X-Sharp,
with XformVecO and ConcatXformsO implemented in assembly language. The code
is heavily optimized, to the extent of completely unrolling the loops via macros so that
looping is eliminated altogether. FIXED .ASM is highly effective; the time taken for
matrix math is now down to the point where it's a fairly minor component of execu
tion time, representing less than ten percent of the total. It's time to turn our optimiza
tion sights elsewhere.

LISTING 38.1 FIXED.ASM
; 386-specific fixed point routines.
; Tested with TASM

ROUNDING_ON equ 1 ;1 for rounding, 0 for no rounding
;no rounding Is faster, rounding Is

; more accurate

ALIGNMENT equ 2
.model small

.386

.code

; Multiplies two fixed-point values together.
; C near-callable as:

; Fixedpoint FIxedMul(F1xedpolnt Ml, Fixedpoint M2);
; Fixedpoint FIxedDIv(Fixedpolnt Dividend, Fixedpoint Divisor);
FMparms struc

dw 2 dup(?) ;return address & pushed BP
Ml dd ?

M2 dd ?

FMparms ends
align ALIGNMENT

Raw Speed and More ^ 613

public _F1xedMul
_FixedMul

push
mov

mov

imul

If ROUNDING_ON

add

adc

endif ;ROUNDING_ON

shr eax,16

pop bp
ret

_FixedMul endp

proc near

bp
bp.sp
eax,[bp+Ml]
dword ptr [bp+M2]

eax,8000h

edx.O

;mult1ply

;round by adding

;whole part of result is in DX

;put the fractional part in AX

; Divides one fixed-point value by another.
; C near-callable as:

; Fixedpoint FixedDivCFixedpoint Dividend. Fixedpoint Divisor);
FDparms struc

dw 2 dup(?)
Dividend dd ?

Divisor dd ?

FDparms ends
align ALIGNMENT

;return address & pushed BP

public _FixedDiV

_FixedDi v proc near

push bp
mov bp.sp

if ROUNDING_ON

sub cx.cx ;assume positive result

mov eax.[bp+Dividend]

and eax.eax ;positive dividend?

jns FDPl ;yes

inc cx ;mark it's a negative dividend

neg eax ;make the dividend positive

FDPl: sub edx.edx ;make it a 64-bit dividend, then shift

; left 16 bits so that result will be

; in EAX

rol eax.16 ;put fractional part of dividend in
; high word of EAX

mov dx.ax ;put whole part of dividend in DX

sub ax.ax ;clear low word of EAX

mov ebx.dword ptr [bp+Divisor]
and ebx.ebx ;positive divisor?

jns FDP2 ;yes

dec cx ;mark it's a negative divisor

neg ebx ;make divisor positive

FDP2: di V ebx ;divide

shr ebx.l ;divisor/2. minus 1 if the divisor is

adc ebx.O ; even

dec ebx

cmp ebx.edx ;set Carry if remainder is at least

adc eax.O ; half as large as the divisor, then

; use that to round up if necessary

and cx.cx ;should the result be made negative?

jz FDP3 ;no

neg eax ;yes.. negate it

FDP3:

else ; !ROUNDING_ON

mov edx,[bp+Dividend]

614 Chapter 38

endi f

sub

shrd

sar

idi V

shld

pop

ret

_FixedDi v

eax.eax

eax,edx,16

edx,16

dword ptr [bp+Divisor]

edx,eax,16

bp

endp

:position so that result ends up
; in EAX

;ROUNDING_ON

;whole part of result in DX;
; fractional part is already in AX

Returns the sine and cosine of an angle.

C near-callable as:

void CosSindAngle Angle, Fixedpoint *Cos, Fixedpoint *);

align ALIGNMENT

CosTable label dword

include costable.inc

SCparms struc

dw 2 dup(?) ;return address & pushed BP
Angl e dw ? ;angle to calculate sine & cosine

Cos dw ? ;pointer to cos destination

Sin dw ? ;pointer to sin destination
SCparms ends

align ALIGNMENT

public _Cos$in
_CosSin proc near

push bp
mov bp,sp

mov

and

jns

MakePos:

bx,[bp].Angle
bx,bx

ChecklnRange

;preserve stack frame

;set up local stack frame

jmake sure angle's between 0 and 2*pi

;less than 0, so make it positive
add bx,360*10

js MakePos

jmp short ChecklnRange

align ALIGNMENT

MakelnRange: ;make sure angle is no more

sub bx,360*10

ChecklnRange:
cmp bx,360*10

Jg MakelnRange

cmp bx,180*10 ;figure out which quadrant

ja BottomHalf ;quadrant 2 or 3

cmp bx,90*10 ;quadrant 0 or 1

Ja Quadrantl

;quadrant 0

shl bx,2

mov eax,CosTable[bx] ;look up sine
neg bx ;sin(Angle) = cos(90-Angle)

mov edx,CosTable[bx+90*10*4] ;look up cosine

Jmp short CSDone

align ALIGNMENT

Quadrantl:

neg bx

Raw Speed and More ^ 615

add bx,180*10 ;convert to angle between 0 and 90

shl bx. 2

mov eax,CosTable[bx] ;look up cosine

neg eax ;negative in this quadrant

neg bx ;sin(Angle) = cos(90-Angle)

mov edx,CosTable[bx+90*10*4] ;look up cosine

jmp short CSDone

align ALIGNMENT

BottomHalf ;quadrant 2 or 3

neg bx

add bx,360*10 ;convert to angle between 0 and 180

cmp bx,90*10 ;quadrant 2 or 3

ja Quadrant2

;quadrant 3

shl bx,2

mov eax,CosTable[bx] ;look up cosine

neg bx ;sin(Angle) = cos(90-Angle)

mov edx,CosTable[90*10*4+bx] ;look up sine

neg edx ;negative in this quadrant

jmp short CSDone

align ALIGNMENT

Quadrant2:

neg bx

add bx,180*10 ;convert to angle between 0 and 90

shl bx,2

mov eax,CosTable[bx] ;look up cosine

neg eax ;negative in this quadrant

neg bx ;sin(Angle) = cos(90-Angle)

mov edx,CosTable[90*10*4+bx] ;look up sine

neg edx ;negative in this quadrant

CSDone:

mov bx,[bp].Cos
mov [bx],eax

mov bx,[bp].Sin
mov [bx],edx

pop bp ;restore stack frame

ret

_CosSi n endp

Matrix multiplies Xform by SourceVec, and stores the result in
DestVec. Multiplies a 4x4 matrix times a 4x1 matrix; the result
is a 4x1 matrix. Cheats by assuming the W coord is 1 and the
bottom row of the matrix is 0 0 0 1. and doesn't bother to set

the W coordinate of the destination.

C near-callable as;

void XformVecCXform WorkingXform, Fixedpoint *SourceVec,
Fixedpoint *DestVec);

This assembly code is equivalent to this C code:
i nt i;

for (i=0; i<3; i++)

DestVec[i] = FixedMul(WorkingXform[i][0]. SourceVec[0]) +
FixedMul(WorkingXform[i][1], SourceVec[l]) +
FixedMul(WorkingXform[i][2], SourceVec[2]) +
WorkingXform[i][3]; /* no need to multiply by W = 1 */

XVparms struc

616 ^ Chapter 38

dw 2 dup(?) ;return address & pushed BP
WorkingXform dw ? ;po1nter to transform matrix
SourceVec dw ? ;po1nter to source vector

DestVec dw ? ;po1nter to destination vector
XVparms ends

align ALIGNMENT
publi c _XformVec

_XformVec proc near
push bp
mov bp.sp
push si
push di

;preserve stack frame

;set up local stack frame
;preserve register variables

mov si,[bp].WorklngXform
mov bx,[bp].SourceVec
mov d1,[bp].DestVec

soff=0

doff=0

REPT 3

mov eax,[sl+soff]

Imul dword ptr [bx]
If ROUNDING_ON

add eax.SOOOh

adc edx.O

endlf ;ROUNDING_ON

shrd eax,edx,16

mov ecx.eax

SI points to xform matrix
BX points to source vector
DI points to dest vector

;do once each for dest X, Y, and Z

;column 0 entry on this row

;xform entry times source X entry

;round by adding

;whole part of result Is In DX

;sh1ft the result back to 16.16 form

;set running total

mov eax,[s1+soff+4]

Imul dword ptr [bx+4]
If ROUNDING_ON

add eax,8000h

adc edx.O

endlf ;ROUNDING_ON

shrd eax,edx.l6

add ecx.eax

;column 1 entry on this row

;xform entry times source Y entry

;round by adding
;whole part of result Is In DX

;sh1ft the result back to 16.16 form

;running total for this row

mov eax,[s1+soff+8]

Imul dword ptr [bx+8]
If ROUNDING_ON

add eax,8000h

adc edx.O

endlf :ROUNDING_ON

shrd eax,edx,16

add ecx.eax

;column 2 entry on this row
;xform entry times source Z entry

;round by adding Z^i-17)
;whole part of result Is In DX

;sh1ft the result back to 16.16 form

;running total for this row

add ecx,[s1+soff+12]

mov [dl+doff].ecx

soff='Soff+16

doff=doff+4

ENDM

;add In translation

;save the result In the dest vector

pop d1
pop si

pop bp
ret

_XformVec endp

^restore register variables

;restore stack frame

; Matrix multiplies SourceXforml by SourceXform2 and stores the

Raw Speed and More @ 617

result in DestXforin. Multiplies a 4x4 matrix times a 4x4 matrix;
the result is a 4x4 matrix. Cheats by assuming the bottom row of
each matrix is 0 0 0 1, and doesn't bother to set the bottom
of the destination.

C near-callable as:

void ConcatXforms(Xform SourceXforml, Xform SourceXform2,
Xform DestXform)

This assembly code is equivalent to this C code:
int i, j;

for (i=0; i<3; i++) {

for (j=0; j<3; j++)
DestXformCi][j] =

FixedMul(SourceXforml[i][0], SourceXform2[0][j]) +

FixedMul(SourceXforml[i][1], SourceXform2[l][j]) +

FixedMul(SourceXforml[i][2], SourceXform2[2][j]);

DestXformCi]C3] =

FixedMul(SourceXformlCi][0], SourceXform2[0][3]) +

FixedMul(SourceXformlCi][1], SourceXform2[l][3]) +
FixedMul(SourceXforml[i][2], SourceXform2[2][3]) +

SourceXformlCi][3];

}

CXparms struc
dw 2 dupC?) ;return address & pushed BP

SourceXforml dw ? ;pointer to first source xform matrix

SourceXform2 dw ? ;pointer to second source xform matrix

DestXform dw ? ;pointer to destination xform matrix

CXparms ends

align ALIGNMENT

public _ConcatXforms
_ConcatXforms proc near

push bp
mov bp.sp
push si
push di

mov bx,Cbp].SourceXform2
mov si,Cbp].SourceXforml
mov di,Cbp].DestXform

;preserve stack frame
;set up local stack frame
;preserve register variables

BX points to xform2 matrix
SI points to xforml matrix
DI points to dest xform matrix

roff=0

REPT 3

coff=0

REPT 3

mov eax,Csi+roff]

imul dword ptr Cbx+coff]
if ROUNDING_ON

add eax,8000h

adc edx.O

endif ;ROUNDING_ON

shrd eax,edx,16

mov ecx.eax

;row offset

;once for each row

;column offset

;once for each of the first 3 columns,

; assuming 0 as the bottom entry (no
; translation)

;column 0 entry on this row

;times row 0 entry in column

;round by adding 2''(-17)

;whole part of result is in DX

;shift the result back to 16.16 form
;set running total

mov eax,Csi+roff+4]

imul dword ptr Cbx+coff+16]
if ROUNDING_ON

;column 1 entry on this row

;times row 1 entry in col

618 @ Chapter 38

add eax,8000h

adc edx,0

endif ;ROUNDING_ON

shrd eax,edx,16

add ecx.eax

;round by adding
;whole part of result is In DX

;shift the result back to 16.16 form

;running total

mov eax,[si+roff+8]

imul dword ptr [bx+coff+32]
if ROUNDING_ON

add eax,8000h

adc edx,0

endif ;ROUNDING_ON

shrd eax,edx,16

add ecx.eax

jcolumn 2 entry on this row

;times row 2 entry in col

;round by adding 2''(-17)

;whole part of result is in DX

;shift the result back to 16.16 form

;running total

mov [di+coff+roff],ecx

coff=coff+4

ENDM

mov eax,[si+roff]

imul dword ptr [bx+coff]
if ROUNDING_ON

add eax,8000h

adc edx.O

endif ;ROUNDING_ON

shrd eax,edx,16

mov ecx.eax

mov eax.Csi+roff+4]

imul dword ptr [bx+coff+16]
if ROUNDING_ON

add eax.8000h

adc edx.O

endif ;ROUNDING_ON

shrd eax.edx.l6

add ecx.eax

mov eax.Csi+roff+8]

imul dword ptr [bx+coff+32]
if ROUNDING_ON

add eax.8000h

adc edx.O

endif ;ROUNDING_ON

shrd eax.edx.l6

add ecx.eax

add ecx.[si+roff+12]

;save the result in dest matrix

;point to next col in xform2 & dest

;now do the fourth column, assuming
; 1 as the bottom entry, causing
; translation to be performed
;column 0 entry on this row

;times row 0 entry in column

;round by adding 2''(-17)

jwhole part of result is in DX

;shift the result back to 16.16 form

;set running total

;column 1 entry on this row

;times row 1 entry in col

;round by adding 2''(-17)

;whole part of result is in DX

.•shift the result back to 16.16 form

;running total

;column 2 entry on this row

;times row 2 entry in col

;round by adding 2''(-17)

;whole part of result is in DX

;shift the result back to 16.16 form

;running total

;add in translation

mov [di+coff+roff].ecx

coff=coff+4

roff-roff+16

ENDM

;save the result in dest matrix

;point to next col in xform2 & dest

;point to next col in xform2 & dest

pop

pop

pop

ret

_ConcatXforms

end

di

si

bp

endp

;restore register variables

;restore stack frame

Raw Speed and More ^ 619

Raw Speed, Part II: Look it tJp
Its a fiinny thing about Turbo Profiler: Time spent in the Borland C++ 80x87 emulator
doesn t show up directly anywhere that I can see in the timing results. The only way to
detect it is by way of the line that reports what percent of total time is represented by all the
areas that were profiled; if you re profiling all areas, whatever s not explicitly accounted
for seems to be the floating-point emulator time. This quirk fooled me for a while,
leading me to think sine and cosine weren't major drags on performance, because the
sin() and cos() functions spend most of their time in the emulator, and that time
doesn't show up in Turbo Profiler's statistics on those functions. Once I figured out
what was going on, it turned out that not only were sin() and cosQ major drags, they
were taking up over half the total execution time by themselves.
The solution is a lookup table. Listing 38.1 contains a function called CosSin() that

calculates both the sine and cosine of an angle, via a lookup table. The function accepts
angles in tenths of degrees; I decided to use tenths of degrees rather than radians be
cause that way it's always possible to look up the sine and cosine of the exact angle
requested, rather than approximating, as would be required with radians. Tenths of
degrees should be fine enough control for most purposes; if not, it's easy to alter CosSin()
for finer gradations yet. GENCOS.C, the program used to generate the lookup table
(COSTABLE.INC), included in Listing 38.1, can be found in the XSHARP22
subdirectory on the listings diskette. GENCOS.C can generate a cosine table with any
integral number of steps per degree.
FIXED .ASM (Listing 38.1) speeds X-Sharp up quite a bit, and it changes the per

formance balance a great deal. When we started out with 3-D animation, calculation
time was the dragon we faced; more than 90 percent of the total time was spent doing
matrix and projection math. Additional optimizations in the area of math could still be
made (using 32-bit multiplies in the backface-removal code, for example), but fixed-
point math, the sine and cosine lookup, and selective assembly optimizations have
done a pretty good job already. The bulk of the time taken by X-Sharp is now spent
drawing polygons, drawing rectangles (to erase objects), and waiting for the page to
flip. In other words, we've slain the dragon of 3-D math, or at least wounded it griev
ously; now we're back to the dragon of polygon filling. We'll address faster polygon
filling soon, but for the moment, we have more than enough horsepower to have some
fun with. First, though, we need one more feature: hidden surfaces.

Hidden Surfaces

So far, we've made a number of simplifying assumptions in order to get the animation
to look good; for example, all objects must currently be convex polyhedrons. What's
more, right now, objects can never pass behind or in front of each other. What that
means is that it's time to have a look at hidden surfaces.

620 ® Chapter 38

There are a passel of ways to do hidden surfaces. Way oflF at one end (the slow end)
of the spectrum is Z-buffering, whereby each pixel of each polygon is checked as its
drawn to see whether it s the frontmost version of the pixel at those coordinates. At the
other end is the technique of simply drawing the objects in back-to-front order, so that
nearer objects are drawn on top of farther objects. The latter approach, depth sorting,
is the one we'll take today. (Actually, true depth sorting involves detecting and resolv
ing possible ambiguities when objects overlap in Z; in this chapter, we'll simply sort
the objects on Z and leave it at that.)

This limited version of depth sorting is fast but less than perfect. For one thing, it
doesn't address the issue of nonconvex objects, so we'll have to stick with convex poly
hedrons. For another, there's the question of what part of each object to use as the
sorting key; the nearest point, the center, and the farthest point are all possibilities—
and, whichever point is used, depth sorting doesn't handle some overlap cases properly.
Figure 38.1 illustrates one case in which back-to-front sorting doesn't work, regardless
of what point is used as the sorting key.

For photo-realistic rendering, these are serious problems. For fast PC-based anima
tion, however, they're manageable. Choose objects that aren't too elongated; arrange
their paths of travel so they don't intersect in problematic ways; and, if they do overlap
incorrectly, trust that the glitch will be lost in the speed of the animation and the
complexity of the screen.

Listing 38.2 shows X-Sharp file OLIST.C, which includes the key routines for depth
sorting. Objects are now stored in a linked list. The initial, empty list, created by

X axis

N

Farthest points
/

Objectthat should
be drawn in front

Nearest points
Middle points

Objectthat is
drawn in front

Y\&Ner

Figure 38.1 Why Back-to-Front Sorting Doesn't Always Work Properly

Raw Speed and More 621

InitializeObjectListO, consists of a sentinel entry at either end, one at the farthest
possible z coordinate, and one at the nearest. New entries are inserted by AddObject()
in z-sorted order. Each time the objects are moved, before they're drawn at their new
locations, SortObjects() is called to Z-sort the object list, so that drawing will proceed
from back to front. The Z-sorting is done on the basis of the objects' center points; a
center-point field has been added to the object structure to support this, and the center
point for each object is now transformed along with the vertices. That's really all there
is to depth sorting—and now we can have objects that overlap in X and Y.

LISTING 38.2 OLIST.C
/* Object list-related functions. */
^include <std1o.h>

^include "polygon.h"

/* Set up the empty object list, with sentinels at both ends to
terminate searches */

void InitializeObjectListO

{
ObjectListStart.NextObject = &ObjectListEnd;
ObjectListStart.PreviousObject = NULL;
ObjectListStart.CenterlnView.Z = INT_TO_FIXED(-32768);
ObjectLi stEnd.NextObject =■ NULL;
ObjectListEnd.PreviousObject = &ObjectListStart;
ObjectListEnd.CenterlnView.Z = OxZFFFFFFFL;
NumObjects = 0;

}

/* Adds an object to the object list, sorted by center Z coord. */
void AddObject(Object *ObjectPtr)
{

Object *ObjectListPtr = ObjectListStart.NextObject;

/* Find the insertion point. Guaranteed to terminate because of
the end sentinel */

while (ObjectPtr->CenterInView.Z > ObjectListPtr->CenterInView.Z) {
ObjectListPtr = ObjectListPtr->NextObject;

}

/* Link in the new object */
ObjectListPtr->PreviousObject->NextObject = ObjectPtr;
ObjectPtr->NextObject = ObjectListPtr;
ObjectPtr->PreviousObject = ObjectListPtr->PreviousObject;
ObjectListPtr->PreviousObject = ObjectPtr;
NumObjects++;

}

/* Resorts the objects in order of ascending center Z coordinate in view space,
by moving each object in turn to the correct position in the object list. */

void SortObjectsO
{

int i;
Object *ObjectPtr, *ObjectCmpPtr, *NextObjectPtr;

/* Start checking with the second object */
ObjectCmpPtr = ObjectListStart.NextObject;

622 ® Chapter 38

ObjectPtr = ObjectCmpPtr->NextObject;
for (i=l; KNumObjects; i++) {

/* See if we need to move backward through the list */
if (ObjectPtr->CenterInView.Z < ObjectCmpPtr->CenterInView.Z) {

/* Remember where to resume sorting with the next object */
NextObjectPtr =• ObjectPtr->NextObject;
/* Yes, move backward until we find the proper insertion

point. Termination guaranteed because of start sentinel */
do {

ObjectCmpPtr = ObjectCmpPtr->PreviousObject;
} while (ObjectPtr->CenterInView.Z <

ObjectCmpPtr->CenterInView.Z):

/* Now move the object to its new location */
/* Unlink the object at the old location */

ObjectPtr->Previ ousObject->NextObject =
ObjectPtr->NextObject;

ObjectPtr->NextObject->Previ ousObject =
ObjectPtr->Previ ousObject;

/* Link in the object at the new location */

ObjectCmpPtr->NextObject->PreviousObject = ObjectPtr;
ObjectPtr->PreviousObject = ObjectCmpPtr;
ObjectPtr->NextObject = ObjectCmpPtr->NextObject;
ObjectCmpPtr->NextObject = ObjectPtr;

/* Advance to the next object to sort */

ObjectCmpPtr = NextObjectPtr->PreviousObject;
ObjectPtr =■ NextObjectPtr;

} else {
/* Advance to the next object to sort */
ObjectCmpPtr = ObjectPtr;
ObjectPtr = ObjectPtr->NextObject;

}

Rounding
FIXED .ASM contains the equate ROUNDING_ON. When this equate is 1, the re-
suits of multiplications and divisions are rounded to the nearest fixed-point values;
when its 0, the results are truncated. The difference between the results produced by
the two approaches is, at most, 2"^^; you wouldn't think that would make much differ
ence, now, would you? But it does. When the animation is run with rounding disabled,
the cubes start to distort visibly after a few minutes, and after a few minutes more they
look like they've been run over. In contrast, I've never seen any significant distortion
with rounding on, even after a half-hour or so. I think the difference with rounding is
not that it's so much more accurate, but rather that the errors are evenly distributed;
with truncation, the errors are biased, and biased errors become very visible when
they're applied to right-angle objects. Even with rounding, though, the errors will even
tually creep in, and reorthogonalization will become necessary at some point.

The performance cost of rounding is small, and the benefits are highly visible. Still,
truncation errors become significant only when they accumulate over time, as, for

Raw Speed and More ^ 623

example, when rotation matrices are repeatedly concatenated over the course of many
transformations. Some time could be saved by rounding only in such cases. For ex
ample, division is performed only in the course of projection, and the results do not
accumulate over time, so it would be reasonable to disable rounding for division.

Having a Ball
So far in our exploration of 3-D animation, we've had nothing to look at but triangles
and cubes. It's time for something a htde more visually appealing, so the demonstration
program now features a 72-sided ball. What's particularly interesting about this ball is
that it's created by the GENBALL.C program in the BALL subdirectory of X-Sharp,
and both the size of the ball and the number of bands of faces are programmable.
GENBALL.C spits out to a file all the arrays of vertices and faces needed to create the
ball, ready for inclusion in INITBALL.C. True, if you change the number of bands,
you must change the Colors array in INITBALL.C to match, but that's a tiny detail;
by and large, the process of generating a ball-shaped object is now automated. In fact,
we're not limited to ball-shaped objects; substitute a different vertex and face genera
tion program for GENBALL.C, and you can make whatever convex polyhedron you
want; again, all you have to do is change the Colors array correspondingly. You can
easily create multiple versions of the base object, too; INITCUBE.C is an example of
this, creating 11 different cubes.
What we have here is the first glimmer of an object-editing system. GENBALL.C is

the prototype for object definition, and INITBALL.C is the prototype for general-
purpose object instantiation. Certainly, it would be nice to someday have an interac
tive 3-D object editing tool and resource management setup. We have our hands full
with the drawing end of things at the moment, though, and for now it's enough to be
able to create objects in a semiautomated way.

3-D Shading

Putting Realistic Surfaces on Animated 3-D Objects
At the end of the previous chapter, X-Sharp had just acquired basic hidden-surface
capability, and performance had been vastly improved through the use of fixed-point
arithmetic. In this chapter, we're going to add quite a bit more; support for 8088 and
80286 PCs, a general color model, and shading. That's an awful lot to cover in one
chapter (actually, it'll spill over into the next chapter), so let's get to it!

Support for Older Processors
To date, X-Sharp has run on only the 386 and 486, because it uses 32-bit multiply and
divide instructions that sub-386 processors don't support. I chose 32-bit instructions for
two reasons: They're much faster for 16.16 fixed-point arithmetic than any approach that
works on the 8088 and 286; and they're much easier to implement than any other ap
proach. In short, I was after maximum performance, and I was perhaps just a little lazy.

I should have known better than to try to sneak this one by you. The most common
feedback I've gotten on X-Sharp is that I should make it support the 8088 and 286.
Well, I can take a hint as well as the next guy. Listing 39.1 is an improved version of
FIXED.ASM, containing dual 386/8088 versions of CosSin(), XformVec(), and
ConcatXformsO, as well as FixedMul() and FixedDiv().

Given the new version of FIXED.ASM, with USE386 set to 0, X-Sharp will now
run on any processor. That's not to say that it will run fast on any processor, or at least
not as fast as it used to. The switch to 8088 instructions makes X-Sharp's fixed-point
calculations about 2.5 times slower overall. Since a PC is perhaps 40 times slower than
a 486/33, we're talking about a hundred-times speed difference between the low end and
mainstream. A 486/33 can animate a 72-sided ball, complete with shading (as dis-

626 ^ Chapter 39

cussed later), at 60 frames per second (fps), with plenty of cycles to spare; an 8-MHz
AT can animate the same ball at about 6 fps. Clearly, the level of animation an applica
tion uses must be tailored to the available CPU horsepower.
The implementation of a 32-bit multiply using 8088 instructions is a simple matter

of adding together four partial products. A 32-bit divide is not so simple, however. In
fact, in Listing 39.1 IVe chosen not to implement a full 32x32 divide, but rather only
a 32x16 divide. The reason is simple: performance. A 32x16 divide can be imple
mented on an 8088 with two DIV instructions, but a 32x32 divide takes a great deal
more work, so far as 1 can see. (If anyone has a fast 32x32 divide, or has a faster way to
handle signed multiplies and divides than the approach taken by Listing 39.1, please
drop me a line care of the publisher.) In X-Sharp, division is used only to divide either
X or Y by Z in the process of projecting from view space to screen space, so the cost of
using a 32x 16 divide is merely some inaccuracy in calculating screen coordinates, espe
cially when objects get very close to the Z = 0 plane. This error is not cumulative (that
is, it doesn't carry over to later frames), and in my experience doesn't cause noticeable
image degradation; therefore, given the already slow performance of the 8088 and
286, I've opted for performance over precision.

At any rate, please keep in mind that the non-386 version of FixedDiv() is not a
general-purpose 32x32 fixed-point division routine. In fact, it will generate a divide-
by-zero error if passed a fixed-point divisor between -1 and 1. As I've explained, the
non-386 version of Fixed-Div() is designed to do just what X-Sharp needs, and no
more, as quickly as possible.

LISTING 39.1 FIXED.ASM
; Fixed point routines.
; Tested with TASM

USE386 equ 1 ;1 for 386-specific opcodes, 0 for
; 8088 opcodes

MUL_ROUNDING_ON equ 1 ;1 for rounding on multiplies,
; 0 for no rounding. Not rounding is faster,
; rounding is more accurate and generally a
; good idea

DIV_ROUNDING_ON equ 0 ;1 for rounding on divides,
; 0 for no rounding. Not rounding is faster,
; rounding is more accurate, but because

; division is only performed to project to
; the screen, rounding quotients generally
; isn't necessary

ALIGNMENT equ 2

.model small

.386

.code

Multiplies two fixed-point values together.
C near-callable as:

Fixedpoint FixedMul(Fixedpoint Ml, Fixedpoint M2);

3-D Shading ^ 627

FMparms struc
dw 2 dup(?)

Ml dd ?

M2 dd ?

FMparms ends
align ALIGNMENT
public _FixedMul

_FixedMul proc near

push bp
mov bp.sp

if USE386

mov eax,[bp+Ml]
imul dword ptr [bp+M2]

if MUL_ROUNDING_ON
add eax,8000h

ado edx,0

endif ;MUL_ROUNDING_ON
shr eax,16

;return address & pushed BP

;multiply

•.round by adding 2''(-17)
;whole part of result is in DX

;put the fractional part in AX

else ;!USE386

push si

push di

sub cx.cx

mov ax,word ptr [bp+Ml+2]
mov si.word ptr [bp+Ml]
and ax,ax

jns CheckSecondOperand

neg ax

neg si

sbb ax,0

i nc cx

CheckSecondOperand:

mov bx.word ptr [bp+M2+2]
mov di .word ptr [bp•^M2]
and bx.bx

jns SaveSi gnStatus

neg bx

neg di

sbb bx,0

xor cx, 1

SaveSi gnStatus:
push cx

push ax

mul bx

mov cx.ax

mov ax, si

mul bx

mov bx.ax

add cx.dx

pop ax

do four partial products and
add them together, accumulating
the result in CX:BX

preserve C register variables

;figure out signs, so we can use
; unsigned multiplies
jassume both operands positive

;first operand negative?
;no

;yes, so negate first operand

;mark that first operand is negative

;second operand negative?
;no

;yes, so negate second operand

;mark that second operand is negative

;remember sign of result; 1 if result
; negative, 0 if result nonnegative
;remember high word of Ml

;high word Ml times high word M2
;accumulate result in CX:BX (BX not used
; until next operation, however)
;assume no overflow into DX
;low word Ml times high word M2

;accumulate result in CXrBX
;retrieve high word of Ml

628 ^ Chapter 39

mul di ;high word Ml times low word M2
add bx.ax

adc cx,dx ;accumulate result in CXiBX
mov ax, si ;low word Ml times low word M2
mul di

if MUL_ROUNDING_ON
add ax.8000h ;round by adding 2''(-17)
adc bx,dx

else ;!MUL..ROUNDING.ON
add bx.dx ;don't round

endif ;MUL..ROUNDING_ON
adc cx,0 ;accumulate result in CX:BX
mov dx,cx

mov ax.bx

pop cx

and cx,cx ;is the result negative?
jz FixedMulDone ;no, we're all set

neg dx ;yes, so negate DX:AX
neg ax

sbb dx.O

FixedMulDone:

pop di ;restore C register variables
pop si

endif ;USE386

pop bp
ret

_FixedMul endp

Divides one fixed-point value by another.
; C near-callable as:

; Fixedpoint FixedDiv(Fixedpoint Dividend, Fixedpoint Divisor);
FDparms struc

dw 2 dup(?) ;return address & pushed BP
Dividend dd ?

Divisor dd ?

FDparms ends
al ign ALIGNMENT

public _FixedDiV

_FixedDiV proc near

push bp
mov bp.sp

if USE386

if DIV_ROUNDING._0N
sub cx,cx ;assume positive result
mov eax,[bp+Dividend]
and eax,eax ;positive dividend?
jns FDPl ;yes

inc cx ;mark it's a negative dividend
neg eax ;make the dividend positive

FDPl: sub edx,edx ;make it a 64-bit dividend, then shift
; left 16 bits so that result will be

rol eax,16 ;put fractional part of dividend in
; high word of EAX

mov dx,ax ;put whole part of dividend in DX
sub ax,ax ;clear low word of EAX

3-D Shading ^ 629

FDP2:

FDP3:

else

mov ebx.dword ptr [bp+Divi
and ebx.ebx

jns FDP2
dec cx

neg ebx
div ebx

shr ebx,l

ado ebx,0

dec ebx

cmp ebx.edx
adc eax.O

and cx.cx

jz FDP3
neg eax

sor]

;positive divisor?
;yes

;mark it's a negative divisor
;make divisor positive
;di vide

;divisor/2. minus 1 if the divisor is
; even

;set Carry if the remainder is at least
; half as large as the divisor, then
; use that to round up if necessary
;should the result be made negative?
;no

;yes, negate it

!DIV_ROUNDING_ON

mov

sub

edx,[bp+Dividend]
eax,eax

shrd eax,edx,16

sar edx,16

idiv dword ptr [bp+Divisor]
endif ;DIV_R0UNDIN6_0N

shld edx,eax,16

;position so that result ends up
; in EAX

;whole part of result in DX;
; fractional part is already in AX

else ;1USE386

NOTE!!! Non-386 division uses a 32-bit dividend but only the upper 16 bits
of the divisor; in other words, only the integer part of the divisor is
used. This is done so that the division can be accomplished with two fast
hardware divides instead of a slow software implementation, and is (in my
opinion) acceptable because division is only used to project points to the
screen (normally, the divisor is a Z coordinate), so there's no cumulative
error, although there will be some error in pixel placement (the magnitude
of the error is less the farther away from the Z-0 plane objects are). This
is *not* a general-purpose divide, though; if the divisor is less than 1,
for instance, a divide-by-zero error will result! For this reason, non-386
projection can't be performed for points closer to the viewpoint than Z-1.

sub cx.cx

mov ax,word ptr [bp+Dividend+2]
and ax,ax

jns CheckSecondOperandD.;no
neg ax

neg word ptr [bp+Dividend]
sbb ax,0

inc cx

CheckSecondOperandD:

mov

and

jns

neg

neg

sbb

xor

SaveSignStatusD:

push cx

bx.word ptr [bp+Divisor+2]
bx.bx

SaveSi gnStatusD

bx

word ptr [bp+Divisor]
bx,0

cx, 1

;figure out signs, so we can use

; unsigned divisions
;assume both operands positive

-.first operand negative?

;yes, so negate first operand

;mark that first operand is negative

;second operand negative?
;no

;yes, so negate second operand

;mark that second operand is negative

;remember sign of result; 1 if result
; negative, 0 if result nonnegative

630 ^ Chapter 39

sub dx.dx

div bx

mov cx,ax

mov ax,word ptr [bp+Dividend]

div bx

if DIV_ROUNDING_ON EQ 0

shr

adc

dec

cmp

adc

adc

bx, 1

bx,0

bx

bx,dx

ax,0

cx,0

endlf ;DIV_R0UNDIN6_0N

;put D1v1dend+2 (Integer part) in DX:AX
;f1rst half of 32/16 division, integer part
; divided by integer part
;set aside integer part of result
;concatenate the fractional part of
; the dividend to the remainder (fractional
; part) of the result from dividing the
; integer part of the dividend
;second half of 32/16 division

;divisor/2, minus 1 if the divisor is
; even

;set Carry if the remainder is at least

; half as large as the divisor, then
; use that to round up if necessary

mov

pop

and

jz

neg

neg

sbb

dx,cx

cx

cx,cx

Fi xedDi vDone

dx

ax

dx,0

FixedDi vDone:

endif ;USE386

;absolute value of result in DX:AX

;is the result negative?
;no, we're all set

;yes, so negate DX:AX

pop

ret

_FixedDi v

bp

endp

Returns the sine and cosine of an angle.
C near-callable as:

void CosSindAngle Angle, Fixedpoint *Cos, Fixedpoint *);

align ALIGNMENT
CosTable label dword

include costable.inc

SCparms struc

dw 2

Angl e dw ?

Cos dw ?

Sin dw ?

SCparms ends

align ALIGNMENT

public _CosSin
_CosSin proc near

push bp
mov bp,sp

if USE386

;return address & pushed BP
;angle to calculate sine & cosine for

;pointer to cos destination

;pointer to sin destination

;preserve stack frame

;set up local stack frame

mov bx,[bp].Angle
and bx,bx

jns ChecklnRange
;make sure angle's between 0 and 2*pi

3-D Shading ^ 631

MakePos:

add bx.360*10

js MakePos

jmp short ChecklnRange

al ign ALIGNMENT

MakelnRange

sub bx,360*10

ChecklnRange:

cmp bx,360*10

jg MakelnRange

cmp bx,180*10

ja BottomHalf

cmp bx,90*10

ja Quadrantl

shl bx,2

mov eax.CosTable[bx]

neg bx

mov edx,CosTable[bx+90*10*4]

jmp short CSDone

align ALIGNMENT

Quadrantl;

neg bx

add bx,180*10

shl bx,2

mov eax,CosTable[bx]

neg eax

neg bx

mov edx,CosTable[bx+90*10*4]

jmp short CSDone

align ALIGNMENT

BottomHalf

neg bx

add bx,360*10

cmp bx,90*10

ja Quadrant2

shl bx,2

mov eax,CosTable[bx]

neg bx

mov edx.CosTable[90*10*4+bx]
neg edx
jmp short CSDone

;less than 0, so make it positive

;make sure angle is no more than 2*pi

;figure out which quadrant
;quadrant 2 or 3
;quadrant 0 or 1

;quadrant 0

look up sine
sin(Angle) = cos(90-Angle)
look up cosine

;convert to angle between 0 and 90

;look up cosine
•.negative in this quadrant
;sin(Angle) = cos(90-Angle)
;look up cosine

;quadrant 2 or 3

;convert to angle between 0 and 180
;quadrant 2 or 3

iquadrant 3

;look up cosine
;sin(Angle) ~ cos(90-Angle)
;look up sine
;negative in this quadrant

align ALIGNMENT
Quadrant2:

neg bx

add bx,180*10

shl bx,2

mov eax,CosTable[bx]

neg eax

neg bx

mov edx.CosTable[90*10*4+bx]

neg edx

CSDone:

mov bx,[bp].Cos

mov [bx],eax

;convert to angle between 0 and 90

;look up cosine
;negative in this quadrant
;sin(Angle) = cos(90-Angle)
;look up sine
;negative in this quadrant

632 ^ Chapter 39

mov

mov

bx.[bp].Sin
[bx],edx

else ;!USE386

mov

and

jns

bx,[bp].Angle
bx,bx

ChecklnRange
;make sure angle's between 0 and 2*pi

MakePos: ;less than 0. so make it oositi
add bx.360*10

js MakePos

jmp short ChecklnRange

align ALIGNMENT
MakelnRange: ;make sure angle is no more thai

sub bx.360*10

ChecklnRange:
cmp bx.360*10

jg MakelnRange

cmp bx.180*10 ;figure out which quadrant
ja BottomHalf jquadrant 2 or 3
cmp bx.90*10 ;quadrant 0 or 1
ja Quadrantl

;quadrant 0
shl bx.2

mov ax.word ptr CosTableCbx] ;look up sine
mov dx.word ptr CosTable[bx+2]
neg bx ;sin(Angle) - cos(90-Angle)
mov ex.word ptr CosTable[bx+90*10*4+2] ;look up cosine
mov bx.word ptr CosTable[bx+90*10*4]
jmp CSDone

align ALIGNMENT

Quadrantl:

neg bx

add bx.180*10 ;convert to angle between 0 and
shl bx.2

mov ax.word ptr CosTable[bx] ;look up cosine
mov dx.word ptr CosTable[bx+2]
neg dx jnegative in this quadrant
neg ax

sbb dx.O

neg bx ;sin(Angle) = cos(90-Angle)
mov ex.word ptr CosTable[bx+90*10*4+2] ;look up cosine
mov bx.word ptr CosTable[bx+90*10*4]
jmp short CSDone

align ALIGNMENT
BottomHalf: ;quadrant 2 or 3

neg bx

add bx.360*10 ;convert to angle between 0 and
cmp bx.90*10 ;quadrant 2 or 3
ja Quadrant2

;quadrant 3
shl bx.2

mov ax.word ptr CosTable[bx] ;look up cosine
mov dx.word ptr CosTable[bx+2]
neg bx ;sin(Angle) = cos(90-Angle)
mov ex.word ptr CosTable[90*10*4+bx+2] ;look up sine
mov bx.word ptr CosTable[90*10*4+bx]

3-D Shading ^ 633

:negative in this quadrantneg cx

neg bx

sbb cx.O

jmp short CSDone

align ALIGNMENT

Quadrant2:

neg bx
add bx.180*10

shl bx.2

mov ax,word ptr CosTableCbx]
mov dx.word ptr CosTable[bx+2]
neg dx

neg ax

sbb dx.O

neg bx

mov cx.word ptr CosTable[90*10*4+bx+2] ;1ook up sine
mov bx.word ptr CosTable[90*10*4+bx]
neg cx ;negative in this quadrant
neg bx

sbb cx.O

CSDone:

push bx
mov bx,[bp].Cos
mov [bx],ax

mov [bx+2],dx

mov bx,[bp].Sin
pop ax

mov [bx],ax

mov [bx+2].cx

;convert to angle between 0 and 90

;look up cosine

•.negative in this quadrant

;sin(Angle) = cos(90-Angle)

endif ;USE386

pop bp
ret

_CosSin endp

;restore stack frame

Matrix multiplies Xform by SourceVec. and stores the result in
DestVec. Multiplies a 4x4 matrix times a 4x1 matrix; the result
is a 4x1 matrix. Cheats by assuming the W coord is 1 and the
bottom row of the matrix is 0 0 0 1. and doesn't bother to set
the W coordinate of the destination.

C near-callable as:

void XformVec(Xform WorkingXform. Fixedpoint *SourceVec.
Fixedpoint *DestVec);

This assembly code is equivalent to this C code:
int i;

for (i=0; i<3; i++)

DestVec[i] = FixedMul(WorkingXform[i][0]. SourceVec[0]) +
FixedMul(WorkingXform[i][l]. SourceVec[l]) +
FixedMul(WorkingXform[i]C2]. SourceVec[2]) +
WorkingXformCi][3]; /* no need to multiply by W - 1 */

XVparms struc

WorkingXform

SourceVec

DestVec

XVparms ends

dw

dw

dw

dw

2 dup(?)
?

?

?

;return address & pushed BP
;pointer to transform matrix
;pointer to source vector
;pointer to destination vector

634 ^ Chapter 39

; Macro for non-386 multiply. AX, BX, CX, DX destroyed.
FIXED_MUL MACRO M1,M2

1 ocal CheckSecondOperand.SaveSignStatus,FixedMulDone

sub cx,cx

mov bx,word ptr [&M1&+2]
and bx,bx

jns CheckSecondOperand
neg bx

neg word ptr [&M1&]
sbb bx,0

mov word ptr [&Ml&+2],bx
1 nc CX

CheckSecondOperand:
mov bx,word ptr C&M2&+2]
and bx,bx

jns SaveSlgnStatus
neg bx

neg word ptr [&M2&]
sbb bx,0

mov word ptr [&M2&+2],bx
xor cx,l

SaveSlgnStatus:
push CX

mov ax,word ptr [&M1&+2]
mul word ptr C&M2&+2]
mov cx,ax ;

mov ax,word ptr C&M1&+2]
mul word ptr [&M2&]
mov bx,ax

add cx,dx

mov ax,word ptr [&M1&]
mul word ptr [&M2&+2]
add bx,ax

adc cx,dx

mov ax,word ptr [&M1&]
mul word ptr [&M2&]

if MUL_ROUNDING_ON

add ax.SOOOh

adc bx,dx

else ;!MUL__ROUNDING_ON
add bx,dx

endlf ;MUL__ROUNDING_ON
adc cx,0

mov dx,cx

mov ax,bx

pop CX

and cx,cx

jz FixedMulDone

neg dx

neg ax

sbb dx,0

F1xedMulDone:

ENDM

;do four partial products and
; add them together, accumulating
; the result In CX:BX

;f1gure out signs, so we can use
; unsigned multiplies
;assume both operands positive

;f1rst operand negative?
;no

;yes, so negate first operand

;mark that first operand Is negative

;second operand negative?
;no

;yes, so negate second operand

;mark that second operand Is negative

;remember sign of result; 1 If result
; negative, 0 If result nonnegatlve
;h1gh word times high word

;assume no overflow Into DX

;h1gh word times low word

;low word times high word

;low word times low word

;round by adding 2'^(-17)

;don*t round

;1s the result negative?
;no, we're all set

;yes, so negate DXrAX

align ALIGNMENT

public _XforniVec
_XforniVec proc near

push bp
mov bp.sp
push si
push di

if USE386

3-D Shading ® 635

;preserve stack frame
;set up local stack frame
;preserve register variables

mov

mov

mov

si, [bp].WorkingXform
bx,[bp].SourceVec

d1,[bp].DestVec

SI points to xform matrix
BX points to source vector

DI points to dest vector

soff=0

doff=0

REPT 3

mov eax,[sl+soff]

Imul dword ptr [bx]
If MUL_ROUNDING_ON

add eax.BOOOh

adc edx,0

endlf ;MUL_ROUNDING_ON

shrd eax,edx.l6

mov ecx.eax

;do once each for dest X, Y, and Z

;column 0 entry on this row

;xform entry times source X entry

;round by adding

;whole part of result Is In DX

;sh1ft the result back to 16.16 form

;set running total

mov eax,[s1+soff+4]

Imul dword ptr [bx+4]
If MUL_ROUNDING_ON

add eax,8000h

adc edx,0

endlf ;MUL_ROUNDING_ON

shrd eax,edx,16

add ecx.eax

;column 1 entry on this row

;xform entry times source Y entry

;round by adding

;whole part of result Is In DX

;sh1ft the result back to 16.16 form

;runn1ng total for this row

mov eax,[s1+soff+8]

Imul dword ptr [bx+8]
If MUL_ROUNDING_ON

add eax,8000h

adc edx,0

endlf ;MUL_ROUNDING_ON
shrd eax,edx,16

add ecx.eax

;column 2 entry on this row

;xform entry times source Z entry

;round by adding 2'^(-17)

;whole part of result Is In DX

;sh1ft the result back to 16.16 form

;running total for this row

add ecx,[s1+soff+12]

mov [dl+doff],ecx

soff=soff+16

doff=doff+4

ENDM

;add In translation

;save the result In the dest vector

else ;!USE386

mov si, [bp].WorklngXform
mov d1,[bp].SourceVec
mov bx,[bp].DestVec
push bp

SI points to xform matrix
DI points to source vector
BX points to dest vector
preserve stack frame pointer

soff=0

doff=0

REPT 3

push bx

;do once each for dest X, Y, and Z

;remember dest vector pointer

636 ^ Chapter 39

push word ptr [si+soff+2]
push word ptr [si+soff]
push word ptr [di+2]
push word ptr [di]
call _FixedMul

add sp,8
mov ex,ax ;set running total

mov bp.dx

push ex
push word ptr [s1+soff+4+2]
push word ptr [s1+soff+4]
push word ptr [d1+4+2]
push word ptr [d1+4]
call _F1xedMul

add sp,8
pop cx

add cx,ax

adc bp.dx

push cx

push word ptr [s1+soff+8+2]
push word ptr [s1+soff+8]
push word ptr [d1+8+2]
push word ptr [d1+8]
call _F1xedMul

add sp.8
pop cx

add cx.ax

adc bp.dx

;xform entry times source X entry
;clear parameters from stack

•.preserve low word of running total

;xform entry times source Y entry

;clear parameters from stack
;restore low word of running total
;running total for this row

;preserve low word of running total

;xform entry times source Z entry
;clear parameters from stack
;restore low word of running total
;running total for this row

add

adc

pop

mov

mov

soff-soff+16

doff-doff+4

ENDM

cx.[si+soff+12]

bp.[si+soff+12+2]
bx

[bx+doff].cx

Cbx+doff+2].bp

;add in translation

;restore dest vector pointer
;save the result in the dest vector

pop bp

endif ;USE386

;restore stack frame pointer

pop di
pop si

pop bp
ret

_XformVec endp

;restore register variables

;restore stack frame

Matrix multiplies SourceXforml by SourceXform2 and stores the
result in DestXform. Multiplies a 4x4 matrix times a 4x4 matrix;
the result is a 4x4 matrix. Cheats by assuming the bottom row of
each matrix is 0 0 0 1. and doesn't bother to set the bottom row

of the destination.

C near-callable as;

void ConcatXforms(Xform SourceXforml. Xform SourceXform2.

Xform DestXform)

3-D Shading ^ 637

This assembly code is equivalent to this C code:
i nt i, j ;

for (i=0; i<3; i++) {

for (j=0; j<3; j++)
DestXformCi][j] =

FixedMul(SourceXforml[i][0], SourceXform2[0][j]) +

FixedMul(SourceXformlCi][1], SourceXform2[l][j]) +
FixedMul(SourceXformlCi][2]. SourceXform2[2][j]);

DestXform[i][3] -=

FixedMul(SourceXformlCi][0], SourceXform2[0][3]) +

FixedMul(SourceXformlCi][1], SourceXform2Cl]C3]) +
FixedMul(SourceXformlCi]C2], SourceXform2C2]C3]) +

SourceXformlCi]C3];

}

CXparms struc
dw 2 dup(?) ♦.return address & pushed BP

SourceXforml dw ? ;pointer to first source xform matrix
SourceXform2 dw ? ipointer to second source xform matrix
DestXform dw ? ;pointer to destination xform matrix
CXparms ends

align ALIGNMENT
public _ConcatXforms

_ConcatXforms proc near
push bp
mov

push
push

bp.sp
si
di

;preserve stack frame
;set up local stack frame
;preserve register variables

if USE386

mov bx,Cbp].SourceXform2
mov si ,Cbp].SourceXforml
mov di,Cbp].DestXform

BX points to xform2 matrix
SI points to xforml matrix
DI points to dest xform matrix

roff=0
REPT 3

coff=0
REPT 3

eax,Csi+roff]
dword ptr Cbx+coff]

mov

imul
if MUL_ROUNDING_ON

add eax,8000h
adc edx.O

endif ;MUL_ROUNDING_ON
shrd eax,edx,16
mov ecx.eax

;row offset
;once for each row
;column offset
;once for each of the first 3 columns,
; assuming 0 as the bottom entry (no
; translation)
;column 0 entry on this row
;times row 0 entry in column

;round by adding 2''(-17)
;whole part of result is in DX

;shift the result back to 16.16 form
;set running total

mov eax,Csi+roff+4]
imul dword ptr Cbx+coff+16]

if MUL_ROUNDING_ON
add eax,8000h
adc edx.O

endif ;MUL_ROUNDING_ON
shrd eax.edx,16
add ecx.eax

jcolumn 1 entry on this row
;times row 1 entry in col

;round by adding 2''(-17)
;whole part of result is in DX

;shift the result back to 16.16 form
;running total

638 ^ Chapter 39

mov eax,[si+roff+8]

imul dword ptr [bx+coff+32]
if MUL_ROUNDING_ON

add eax.SOOOh

adc edx.O

endlf ;MUL_ROUNDING_ON

shrd

add

eax,edx,16

ecx,eax

jcolumn 2 entry on this row
jtimes row 2 entry in col

;round by adding 2''(-17)
;whole part of result is in DX

;shift the result back to 16.16 form

;running total

mov

coff=coff+4

ENDM

mov

imul

[di+coff+roff],ecx

eax,[si+roff]

dword ptr [bx+coff]
if MUL_ROUNDING_ON

add eax.SOOOh

adc edx.O

endif ;MUL_ROUNDING_ON

shrd eax.edx.l6

mov ecx.eax

;save the result in dest matrix

jpoint to next col in xform2 & dest

;now do the fourth column, assuming
; 1 as the bottom entry, causing
; translation to be performed
;column 0 entry on this row

;times row 0 entry in column

;round by adding 2''(-17)

;whole part of result is in DX

;shift the result back to 16.16 form

;set running total

mov eax.[si+roff+4]

imul dword ptr [bx+coff+16]
if MUL_ROUNDING_ON

add eax.SOOOh

adc edx.O

endif ;MUL_ROUNDING_ON

shrd eax.edx.l6

add ecx.eax

;column 1 entry on this row

;times row 1 entry in col

;round by adding 2''(-17)

;whole part of result is in DX

;shift the result back to 16.16 form

;running total

mov eax. [si+roff+S]

imul dword ptr [bx+coff+32]
if MUL_ROUNDING_ON

add eax.SOOOh

adc edx.O

endif ;MUL_ROUNDING_ON

shrd eax.edx.l6

add ecx.eax

icolumn 2 entry on this row

;times row 2 entry in col

;round by adding 2''(-17)
;whole part of result is in DX

;shift the result back to 16.16 form

;running total

add ecx.[si+roff+12] ;add in translation

mov [di+coff+roff].ecx

coff=coff+4

roff=roff+16

ENDM

;save the result in dest matrix

;point to next col in xform2 & dest

;point to next col in xform2 & dest

else ;!USE3S6

mov

mov

mov

push

roff=0

coff=0

di. [bp].SourceXform2
si. [bp].SourceXforml
bx.[bp].DestXform
bp

REPT 3

REPT 3

DI points to xform2 matrix
SI points to xforml matrix
BX points to dest xform matrix

preserve stack frame pointer

;row offset

;once for each row

;column offset

;once for each of the first 3 columns.

3-D Shading ^ 639

push
push
push
push
push
call

add

mov

mov

push
push
push
push
push
call

add

pop

add

adc

push
push
push

push
push
call

add

pop

add

adc

pop

mov

mov

coff=coff+4

ENDM

push
push
push
push
push
call

add

mov

mov

push
push
push
push
push

bx

word ptr [si+roff+2]
word ptr [si+roff]
word ptr [di+coff+2]
word ptr [di+coff]
FixedMul

;set running total
sp,8
ex,ax

bp.dx

ox

word ptr Csi+roff+4+2]
word ptr [si+roff+4]
word ptr [d1+coff+16+2]
word ptr [di+coff+16]
_F1xedMul

sp,8

cx

ox,ax

bp,dx

word ptr [s1+roff+8+2]
word ptr [si+roff+8]
word ptr [d1+coff+32+2]
word ptr [d1+coff+32]
_F1xedMul

sp,8
cx

cx.ax

bp.dx

bx

[bx+coff+roff],cx

Cbx+coff+roff+2].bp

bx

word ptr [si+roff+2]
word ptr [si+roff]
word ptr [di+coff+2]
word ptr [di+coff]
FixedMul

sp.8
cx.ax

bp.dx
;set running total

word ptr [si+roff+4+2]
word ptr [si+roff+4]
word ptr [di+coff+16+2]
word ptr [di+coff+16]

; assuming 0 as the bottom entry (no
; translation)

;remember dest vector pointer

;column 0 entry on this row times row 0
; entry in column
;clear parameters from stack

;preserve low word of running total

;column 1 entry on this row times row 1

; entry in column

;clear parameters from stack
;restore low word of running total
;running total for this row

;preserve low word of running total

;column 1 entry on this row times row 1
; entry in column

;clear parameters from stack
;restore low word of running total

;running total for this row

;restore DestXForm pointer

;save the result in dest matrix

;point to next col in xform2 & dest

now do the fourth column, assuming

1 as the bottom entry, causing
translation to be performed
remember dest vector pointer

;column 0 entry on this row times row 0
; entry in column

;clear parameters from stack

;preserve low word of running total

640 ^ Chapter 39

call _FixedMul jcolumn 1 entry on this row times row
; entry in column

add sp,8 ;clear parameters from stack
pop cx ;restore low word of running total
add ex.ax ;running total for this row
ado bp.dx

push cx ;preserve low word of running total
push word ptr [si+roff+8+2]
push word ptr Csi+roff+8]
push word ptr [di+coff+32+2]
push word ptr [di+coff+32]
call _FixedMul ;column 1 entry on this row times row

; entry in column
add sp,8 ;clear parameters from stack
pop cx ;restore low word of running total
add cx.ax ;running total for this row
adc bp.dx

add cx.[si+roff+12] ;add in translation

add bp.[si+roff+12+2]

pop bx ;restore DestXForm pointer
mov [bx+coff+roff].cx ;save the result in dest matrix

mov [bx+coff+roff+2].bp
'Coff+4 ;point to next col in xform2 & dest

TOff+16 ;point to next col in xform2 & dest
ENDM

pop bp ;restore stack frame pointer

;USE386

pop di ;restore register variables
pop si

pop bp ;restore stack frame

ret

_ConcatXforms endp
end

Shading
So far, the polygons out of which our animated objects have been built have had colors
of fixed intensities. For example, a face of a cube might be blue, or green, or white, but
whatever color it is, that color never brightens or dims. Fixed colors are easy to implement,
but they don't make for very realistic animation. In the real world, the intensity of the color
of a surface varies depending on how brightly it is illuminated. The ability to simulate
the illumination of a surface, or shading, is the next feature we'll add to X-Sharp.
The overall shading of an object is the sum of several types of shading components.

Ambient shading is illumination by what you might think of as background light, light
that's coming from all directions; all surfaces are equally illuminated by ambient light,
regardless of their orientation. Directed lighting, producing diffuse shading, is illumi
nation from one or more specific light sources. Directed light has a specific direction,
and the angle at which it strikes a surface determines how brightly it lights that surface.

3-D Shading ® 641

Specular reflection is the tendency of a surface to reflect light in a mirrorlike fashion.
There are other sorts of shading components, including transparency and atmospheric
effects, but the ambient and diffuse-shading components are all we're going to deal
with in X-Sharp.

Ambient Shading
The basic model for both ambient and diffuse shading is a simple one. Each surface has
a reflectivity between 0 and 1, where 0 means all light is absorbed and 1 means all light
is reflected. A certain amount of light energy strikes each surface. The energy (inten
sity) of the light is expressed such that if light of intensity 1 strikes a surface with
reflectivity 1, then the brightest possible shading is displayed for that surface. Compli
cating this somewhat is the need to support color; we do this by separating reflectance
and shading into three components each—red, green, and blue—and calculating the
shading for each color component separately for each surface.

Given an ambient-light red intensity of and a surface red reflectance R^, the
displayed red ambient shading for that surface, as a fraction of the maximum red in
tensity, is simply min(IA^X 1). The green and blue color components are handled
similarly. That's really all there is to ambient shading, although of course we must
design some way to map displayed color components into the available palette of col
ors; I'll do that in the next chapter. Ambient shading isn't the whole shading picture,
though. In fact, scenes tend to look pretty bland without diffuse shading.

Diffuse Shading
Diffuse shading is more complicated than ambient shading, because the effective in
tensity of directed light falling on a surface depends on the angle at which it strikes the
surface. According to Lambert's law, the light energy from a directed light source strik
ing a surface is proportional to the cosine of the angle at which it strikes the surface,
with the angle measured relative to a vector perpendicular to the polygon (a polygon
normal), as shown in Figure 39.1. If the red intensity of directed light is ID^^j, the red

Li^ht from directed Polygon normal {perpendicular vector)
illumination eource '

D, of energy E. \

' \

\e
Polygon surface

Figure 39.1 Illumination by a Directed Light Source

642 ^ Chapter 39

reflectance of the surface is R and the angle between the incoming directed light and
the surfaces normal is theta, then the displayed red diffuse shading for that surface, as
a fraction of the largest possible red intensity, is min (ID^^jXR^^^Xcos(0), 1).

That s easy enough to calculate—but seemingly slow. Determining the cosine of an
angle can be sped up with a table lookup, but there's also the task of figuring out the
angle, and, all in all, it doesn't seem that diffuse shading is going to be speedy enough
for our purposes. Consider this, however: According to the properties of the dot prod
uct (denoted by the operator as shown in Figure 39.2), cos(0)=(y*w)/ Ivl X Iwl),
where v and w are vectors, 0 is the angle between v and w, and Ivl is the length of v.
Suppose, now, that v and w are unit vectors; that is, vectors exactly one unit long. Then
the above equation reduces to cos(0)=v*w. In other words, we can calculate the cosine
between N, the unit-normal vector (one-unit-long perpendicular vector) of a polygon,
and L', the reverse of a unit vector describing the direction of a light source, with just
three multiplies and two adds. (I'll explain why the light-direction vector must be
reversed later.) Once we have that, we can easily calculate the red diffuse shading from
a directed light source as min(ID^^jXR^^jX(L'* N), 1) and likewise for the green and
blue color components.
The overall red shading for each polygon can be calculated by summing the ambi

ent-shading red component with the diffuse-shading component from each light source,
as in min((IA^^xRJ + (ID^^,„xR^x(L; • N)) + (ID^^,xR^^x(L; • N)) 1) where
ID^^jq and L^' are the red intensity and the reversed unit-direction vector, respectively,
for spotlight 0. Listing 39.2 shows the X-Sharp module DRAWPOBJ.C, which per
forms ambient and diffuse shading. Toward the bottom, you will find the code that
performs shading exactly as described by the above equation, first calculating the am
bient red, green, and blue shadings, then summing that with the diffuse red, green,
and blue shadings generated by each directed light source.

LISTING 39.2 DRAWPOBJ.C
/* Draws all visible faces in the specified polygon-based object. The object

must have previously been transformed and projected, so that all vertex
arrays are filled in. Ambient and diffuse shading are supported. */

^include "polygon.h"

i

For two vectore v and w, ae follows: the dot product vw is:

V • w = V, w, + V2 W2+ Vj Ws

V,"
V = Vz w = w.

Figure 39.2 The Dot Product of Two Vectors

3-D Shading ® 643

void DrawPObject(PObject * ObjectTcXform)

{

int i, j, NumFaces = ObjectToXforni->NumFaces, NumVertices;
int * VertNumsPtr, Spot;
Face * FacePtr = ObjectToXforin->FaceL1st;

Point * ScreenPoints = ObjectToXform->ScreenVertexList;
PolntListHeader Polygon;

Fixedpoint Diffusion;
ModelColor ColorTemp;

Model Intensity IntensityTemp;

Points UnitNormal, *NormalStartpoint, *Nornial Endpoint;
long vl, v2, wl, w2;

Point Vertices[MAX_POLY_LENGTH];

/* Draw each visible face (polygon) of the object in turn */
for (i=0; KNumFaces; i++, FacePtr++) {

/* Remember where we can find the start and end of the polygon's
unit normal in view space, and skip over the unit normal endpoint
entry. The end and start points of the unit normal to the polygon
must be the first and second entries in the polgyon's vertex list.
Note that the second point is also an active polygon vertex */

VertNumsPtr = FacePtr->VertNums;

NormalEndpoi nt = &ObjectToXform->XformedVertexLi st[*VertNumsPtr-H-];
NormalStartpoint = &ObjectToXform->XformedVertexLi st[*VertNumsPtr];
/* Copy over the face's vertices from the vertex list */
NumVertices = FacePtr->NumVerts;

for (j=0; j<NumVertices; j++)
Vertices[j] = ScreenPoints[*VertNumsPtr++];

/* Draw only if outside face showing (if the normal to the polygon
in screen coordinates points toward the viewer; that is, has a
positive Z component) */

vl = VerticesCl].X - VerticesCO].X;

wl = VerticesCNumVertices-l].X - Vertices[0].X;

v2 = Vertices[l].Y - Vertices[0].Y;

w2 = VerticesCNumVertices-1].Y - Vertices[0].Y;

if ((vl*w2 - v2*wl) > 0) {

/* It is facing the screen, so draw */

/* Appropriately adjust the extent of the rectangle used to
erase this object later */

for (j=0; j<NumVertices; j++) {
if (VerticesCj].X >

ObjectToXform->EraseRectCNonDi splayedPage].Ri ght)

if (VerticesCj].X < SCREEN_WIDTH)
ObjectToXform->EraseRect[NonDi splayedPage].Ri ght =

VerticesCj].X;

else ObjectToXform->EraseRect[NonDisplayedPage].Right =
SCREEN_WIDTH;

if (VerticesCj].Y >
ObjectToXform->EraseRectCNonDi splayedPage].Bottom)

if (VerticesCj].Y < SCREEN_HEIGHT)
ObjectToXform->EraseRectCNonDi splayedPage].Bottom =

VerticesCj].Y;

else ObjectToXform->EraseRectCNonDisplayedPage].Bottom=
SCREEN_HEIGHT;

if (VerticesCj].X <
ObjectToXform->EraseRectCNonDi splayedPage].Left)

if (VerticesCj].X > 0)

ObjectToXform->EraseRectCNonDi splayedPage].Left =
VerticesCj].X;

else ObjectToXform->EraseRectCNonDi splayedPage].Left=0;

644 ® Chapter 39

if (Vert1ces[j].Y <

ObjectToXforin->EraseRect[NonD1 spl ayedPage] .Top)
If (Vert1ces[j].Y > 0)

ObjectToXforin->EraseRect[NonD1 spl ayedPage] .Top =
Vertices[j].Y;

else ObjectToXform->EraseRect[NonD1splayedPage].Top=0;

}

/* See if there's any shading */

if (FacePtr->ShadingType = 0) {
/* No shading in effect, so just draw */

DRAW_POLYGON(Vertices, NumVertices, FacePtr->Colorlndex, 0, 0);

} else {

/* Handle shading */

/* Do ambient shading, if enabled */

if (AmbientOn && (FacePtr->ShadingType & AMBIENT_SHADING)) {
/* Use the ambient shading component */
IntensityTemp = Ambientlntensity;

} else {

SET_INTENSITY(IntensityTemp, 0, 0, 0);

}

/* Do diffuse shading, if enabled */

if (FacePtr->ShadingType & DIFFUSE_SHADING) {
/* Calculate the unit normal for this polygon, for use in dot

products */
UnitNormal.X ■=» Normal Endpoint->X - Normal Startpoint->X;
UnitNormal.Y = NormalEndpoint->Y - NormalStartpoint->Y;
UnitNormal.Z = NormalEndpoint->Z - NormalStartpoint->Z;
/* Calculate the diffuse shading component for each active

spotlight */
for (Spot=0; Spot<MAX_SPOTS; Spot++) {

if (SpotOn[Spot] != 0) {
/* Spot is on, so sum, for each color component, the

intensity, accounting for the angle of the light rays
relative to the orientation of the polygon */

/* Calculate cosine of angle between the light and the
polygon normal; skip if spot is shining from behind
the polygon */

if ((Diffusion = DOT_PRODUCT(SpotDirectionView[Spot],
UnitNormal)) >0) {

IntensityTemp.Red +=
FixedMul(SpotIntensity[Spot].Red, Diffusion);

IntensityTemp.Green +=
FixedMul(SpotIntensity[Spot].Green, Diffusion);

IntensityTemp.Blue +=
FixedMul(SpotIntensity[Spot].B1ue, Diffusion);

}
}
/* Convert the drawing color to the desired fraction of the

brightest possible color */
IntensityAdjustColor(&ColorTemp, &FacePtr->Ful1 Col or,

SlntensityTemp);
/* Draw with the cumulative shading, converting from the general

color representation to the best-match color index */
DRAW_POLYGON(Vertices, NumVertices,

ModelColorToColorIndex(&ColorTemp), 0, 0);

3-D Shading 0 645

Shading: Implementation Details
In order to calculate the cosine of the angle between an incoming light source and a
polygons unit normal, we must first have the polygons unit normal. This could be
calculated by generating a cross-product on two polygon edges to generate a normal,
then calculating the normal s length and scaling to produce a unit normal. Unfortu
nately, that would require taking a square root, so it s not a desirable course of action.
Instead, IVe made a change to X-Sharps polygon format. Now, the first vertex in a
shaded polygons vertex list is the end-point of a unit normal that starts at the second
point in the polygons vertex list, as shown in Figure 39.3. The first point isnt one of
the polygons vertices, but is used only to generate a unit normal. The second point,
however, is a polygon vertex. Calculating the difference vector between the first and
second points yields the polygons unit normal. Adding a unit-normal endpoint to
each polygon isn't free; each of those end-points has to be transformed, along with the
rest of the vertices, and that takes time. Still, it's faster than calculating a unit normal
for each polygon from scratch.
We also need a unit vector for each directed light source. The directed light sources

I've implemented in X-Sharp are spotlights; that is, they're considered to be point light
sources that are infinitely far away. This allows the simplifying assumption that all light
rays from a spotlight are parallel and of equal intensity throughout the displayed uni
verse, so each spotlight can be represented with a single unit vector and a single inten
sity. The only trick is that in order to calculate the desired cos(theta) between the
polygon unit normal and a spotlight's unit vector, the direction of the spotlight's unit
vector must be reversed, as shown in Figure 39.4. This is necessary because the dot
product implicidy places vectors with their start points at the same location when it's
used to calculate the cosine of the angle between two vectors. The light vector is in
coming to the polygon surface, and the unit normal is outbound, so only by reversing
one vector or the other will we get the cosine of the desired angle.

Vertex 1 must be the etartpomt of
a unit normal ending at vertex 0.

This point is part of the polygon.

Vertex 0 must be the endpoint of a unit
^ starting at vertex 1. This point
/ is not part of the polygon.

Vertex 2

Polygon

Vertex 5

Figure 39.3 The Unit Normal In the Polygon Data Structure

646 @ Chapter 39

m

Li^ht from directed Illumination source D,

of energy E, with direction expressed by
the unit vector L

Reversed unit

vector L' toward

directed Polygon unit
light source a „orma\H

Polygon surface

Figure 39.4 The Reversed Light Source Vector

Given the two unit vectors, it s a piece of cake to calculate intensities, as shown in
Listing 39.2. The sample program DEMOl, in the X-Sharp archive on the listings
diskette (built by running Kl.BAT), puts the shading code to work displaying a rotat
ing ball with ambient lighting and three spot lighting sources that the user can turn on
and off. What youTl see when you run DEMOl is that the shading is very good—face
colors change very smoothly indeed—so long as only green lighting sources are on.
However, if you combine spotlight two, which is blue, with any other light source,
polygon colors will start to shift abruptly and unevenly. As configured in the demo, the
palette supports a wide range of shading intensities for a pure version of any one of the
three primary colors, but a very limited number of intensity steps (four, in this case) for
each color component when two or more primary colors are mixed. While this situa
tion can be improved, it is fundamentally a result of the restricted capabilities of the
256-color palette, and there is only so much that can be done without a larger color
set. In the next chapter. Til talk about some ways to improve the quality of 256-color
shading.

Pondering X-Sharp's Color Model In an RGB State of Mind
Once she turned six, my daughter wanted some fairly sophisticated books read to her.
Wind in the Willows. Little House on the Prairie. Pretty heady stuff for one so young,
and sometimes I wondered how much of it she really understood. As an experiment,
during one reading I stopped whenever I came to a word I thought she might not
know, and asked her what it meant. One such word was "mulling."
"Do you know what 'mulling' means?" I asked.
She thought about it for a while, then said, "Pondering."
"Very good!" I said, more than a little surprised.
She smiled and said, "But, Dad, how do you know that I know what 'pondering'

means?"

"Okay," I said, "What does 'pondering' mean?"
"Mulling," she said.
What does this anecdote tell us about the universe in which we live? Well, it cer

tainly indicates that this universe is inhabited by at least one comedian and one good
straight man. Beyond that, though, it can be construed as a parable about the difficulty
of defining things properly; for example, consider the complications inherent in the
definition of color on a 256-color display adapter such as the VGA. Coincidentally,
VGA color modeling just happens to be this chapter's topic, and the place to start is
with color modeling in general.

A Color Model

We've been developing X-Sharp for several chapters now. In the previous chapter, we
added illumination sources and shading; that addition makes it necessary for us to

648 @ Chapter 40

have a general-purpose color model, so that we can display the gradations of color
intensity necessary to render illuminated surfaces properly. In other words, when a
bright light is shining straight at a green surface, we need to be able to display bright
green, and as that light dims or tilts to strike the surface at a shallower angle, we need
to be able to display progressively dimmer shades of green.
The first thing to do is to select a color model in which to perform our shading

calculations. I'll use the dot product-based stuff I discussed in the previous chapter.
The approach we'll take is to select an ideal representation of the full color space and
do our calculations there, as if we really could display every possible color; only as a
final step will we map each desired color into the limited 256-color set of the VGA, or
the color range of whatever adapter we happen to be working with. There are a number
of color models that we might choose to work with, but I'm going to go with the one
that's both most familiar and, in my opinion, simplest: RGB (red, green, blue).

In the RGB model, a given color is modeled as the mix of specific fractions of full
intensities of each of the three color primaries. For example, the brightest possible pure
blue is 0.0*R, 0.0*G, 1.0*B. Half-bright cyan is 0.0*R, 0.5*G, 0.5*B. Quarter-bright
gray is 0.25*R, 0.25*G, 0.25*B. You can think of RGB color space as being a cube, as
shown in Figure 40.1, with any particular color lying somewhere inside or on the cube.
RGB is good for modeling colors generated by light sources, because red, green, and

blue are the additive primaries; that is, all other colors can be generated by mixing red,
green, and blue light sources. They're also the primaries for color computer displays,
and the RGB model maps beautifully onto the display capabilities of 15- and 24-bpp
display adapters, which tend to represent pixels as RGB combinations in display memory.
How, then, are RGB colors represented in X-Sharp? Each color is represented as an

RGB triplet, with eight bits each of red, green, and blue resolution, using the structure
shown in Listing 40.1.

Increasing >
blue Intensity 3\ue

Magenta

^lack

 1pit:1b"j.-'

White

Cyan

Red Green

Increasing
red Intensity

Increasing
^reen Intensity

Yellow

Figure 40.1 The RGB Color Cube

Color Modeling in 256-Color Mode ^ 649

LISTING 40.1 L4D-1.C
typedef struct _ModelColor {

unsigned char Red; /* 255 = max red, 0 = no red */
unsigned char Green; /* 255 = max green, 0 = no green */
unsigned char Blue; /* 255 = max blue, 0 = no blue */

} ModelColor;

Here, each color is described by three color components—one each for red, green,
and blue—and each primary color component is.represented by eight bits. Zero inten
sity of a color component is represented by the value 0, and full intensity is represented
by the value 255. This gives us 256 levels of each primary color component, and a total
of 16,772,216 possible colors.

Holy cow! Isn't 16,000,000-plus colors a bit of overkill?
Actually, no, it isn't. At the eighth Annual Computer Graphics Show in New York,

Sheldon Linker, of Linker Systems, related an interesting tale about color perception
research at the Jet Propulsion Lab back in the '70s. The JPL color research folks bad
the capability to print more than 50,000,000 distinct and very precise colors on paper.
As a test, they tried printing out words in various colors, with each word printed on a
bacl^round that differed by only one color index from the word's color. No one ex
pected the human eye to be able to differentiate between two colors, out of 50,000,000-
plus, that were so similar. It turned out, though, that everyone could read the words
with no trouble at all; the human eye is surprisingly sensitive to color gradations, and
also happens to be wonderful at detecting edges.
When the JPL team went to test the eye's sensitivity to color on the screen, they

found that only about 16,000,000 colors could be distinguished, because the color-
sensing mechanism of the human eye is more compatible with reflective sources such
as paper and ink than with emissive sources such as CRTs. Still, the human eye can
distinguish about 16,000,000 colors on the screen. That's not so bard to believe, if you
think about it; the eye senses each primary color separately, so we're really only talking
about detecting 256 levels of intensity per primary here. It's the brain that does the
amazing part; the 16,000,000-plus color capability actually comes not from extraordi
nary sensitivity in the eye, but rather from the brain's ability to distinguish between all
the mbces of 256 levels of each of three primaries.

So it's perfectly reasonable to maintain 24 bits of color resolution, and X-Sbarp
represents colors internally as ideal, device-independent 24-bit RGB triplets. All shad
ing calculations are performed on these triplets, with 24-bit color precision. It's only
after the final 24-bit RGB drawing color is calculated that the display adapter's color
capabilities come into play, as the X-Sbarp function ModelColorToColorIndex() is
called to map the desired RGB color to the closest match the adapter is capable of
displaying. Of course, that mapping is adapter-dependent. On a 24-bpp device, it's
pretty obvious bow the internal RGB color format maps to displayed pixel colors:
directly. On VGAs with 15-bpp Sierra Hicolor DAGS, the mapping is equally simple,
with the five upper bits of each color component mapping straight to display pixels.

650 @ Chapter 40

But how on earth do we map those 16,000,000-pIus RGB colors into the 256-color
space of a standard VGA?

This is the "color definition" problem I mentioned at the start of this chapter. The
VGA palette is arbitrarily programmable to any set of 256 colors, with each color
defined by six bits each of red, green, and blue intensity. In X-Sharp, the function
InitiaiizePaletteO can be customized to set up the palette however we wish; this gives
us nearly complete flexibility in defining the working color set. Even with infinite
flexibility, however, 256 out of 16,000,000 or so possible colors is a pretty puny selec
tion. It s easy to set up the palette to give yourself a good selection of just blue intensi
ties, or of just greens; but for general color modeling there's simply not enough palette
to go around.
One way to deal with the limited simultaneous color capabilities of the VGA is to

build an application that uses only a subset of RGB space, then bias the VGA's palette
toward that subspace. This is the approach used in the DEMOl sample program in X-
Sharp; Listings 40.2 and 40.3 show the versions of InitiaiizePaletteO and
ModelColorToColorlndexO that set up and perform the color mapping for DEMO 1.

LISTING 40.2 L40-2.C
/* Sets up the palette in mode X, to a 2-2-2 general R-G-B organization, with

64 separate levels each of pure red. green, and blue. This is very good
for pure colors, but mediocre at best for mixes.

|0 0 1 Red|1 Green| Blue

7 6 5 4 3 2 1 0

|0 1 1 Red

7 6 5 4 3 2 1 0

|1 0 1 Green

7 6 5 4 3 2 1 0

|1 1 1 Blue

7 6 5 4 3 2 1 0

Colors are gamma corrected for a gamma of 2.3 to provide approximately
even intensity steps on the screen.

*/

^include <dos.h>

//include "polygon.h"

static unsigned char Gamma4Levels[] -= { 0, 39, 53, 63 };
static unsigned char Gamma64Levels[] = {

0, 10, 14, 17, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34,

Color Modeling In 256-Color Mode ^ 651

35, 36. 37. 37. 38. 39. 40. 41. 41. 42. 43. 44. 44. 45. 46. 46.
47. 48. 48. 49. 49. 50. 51. 51. 52. 52. 53. 53. 54. 54. 55. 55.
56. 56. 57. 57. 58. 58. 59. 59. 60. 60. 61. 61. 62. 62. 63. 63.

};

static unsigned char PaletteBlock[256][3]; /* 256 RGB entries */

void InitializePalette()

{

int Red. Green. Blue. Index;

union REGS regset;

struct SREGS sregset;

for (Red=0; Red<4; Red++) {

for (Green=0; Green<4; Green++) {

for (Blue=0; Blue<4; Blue-H-) {

Index = (Red<<4)+(Green<<2)+Blue:
PaletteBlock[Index][0] = Gainina4Level s[Red];
Pal etteBl ock[Index] [1] = Ganima4Level s[Green];
PaletteBlock[Index][2] = Gamma4Levels[Blue];

}

}

}

for (Red=0; Red<64; Red++)

PaletteBlock[64+Red][0]

PaletteBlock[64+Red][l]

PaletteBlock[64+Red][2]

}

Gamma64Levels[Red];

0;

0;

for (Green=0; Green<64; Green++) {
PaletteBlock[128+Green][0] = 0:

PaletteBlock[128+Green][l] = Gamma64Levels[Green];
PaletteBlock[128+Green][2] = 0;

}

for (Blue=0; Blue<64; Blue++) {
PaletteBlock[192+Blue][0] = 0;

PaletteBlock[192+Blue][1] = 0;

PaletteBlock[192+Blue][2] = Gamma64Levels[Blue];

}

/* Now set up the palette */
regset.X.ax = 0x1012; /* set block of DAC registers function */
regset.x.bx = 0; /* first DAC location to load */
regset.x.cx = 256; /* # of DAC locations to load */
regset.x.dx = (unsigned int)PaletteBlock; /* offset of array from which

to load RGB settings */

sregset.es ■= _DS; /* segment of array from which to load settings */
int86x(0xl0. ®set. ®set. &sregset); /* load the palette block */

LISTING 40.3 L40-3.C
/* Converts a model color (a color in the RGB color cube, in the current

color model) to a color index for mode X. Pure primary colors are
spedal-cased. and everything else is handled by a 2-2-2 model. */

int Model ColorToColorlndexCModelCol or * Color)
{

652 0 Chapter 40

if (Color->Red ~ 0) {

if (Color->Green == 0) {

/* Pure blue */

return(192+(Color->Blue >> 2));
} else if (Color->Blue == 0) {

/* Pure green */

return(128+(Color->Green >> 2));

}

} else if ((Color->Green === 0) && (Color->Blue == 0)) {
/* Pure red */

return(64+(Color->Red >> 2));

}

/* Multi-color mix; look up the index with the two most significant bits
of each color component */

return(((Color->Red & OxCO) » 2) | ((Color->Green & OxCO) >> 4) |
((Color->Blue & OxCO) » 6));

In DEMOl, three-quarters of the palette is set up with 64 intensity levels of each of
the three pure primary colors (red, green, and blue), and then most drawing is done
with only pure primary colors. The resulting rendering quality is very good because
there are so many levels of each primary.
The downside is that this excellent quality is available for only three colors: red,

green, and blue. What about all the other colors that are mixes of the primaries, like
cyan or yellow, to say nothing of gray? In the DEMOl color model, any RGB color
that is not a pure primary is mapped into a 2-2-2 RGB space that the remaining quar
ter of the VGA's palette is set up to display; that is, there are exactly two bits of preci
sion for each color component, or 64 general RGB colors in all. This is genuinely lousy
color resolution, being only l/64th of the resolution we really need for each color
component. In this model, a staggering 262,144 colors from the 24-bit RGB cube
map to each color in the 2-2-2 VGA palette. The results are not impressive; the colors
of mixed-primary surfaces jump abruptly, badly damaging the illusion of real illumina
tion. To see how poor a 2-2-2 RGB selection can look, run DEMOl, and press the '2'
key to turn on spotlight 2, the blue spotlight. Because the ambient lighting is green,
turning on the blue spotlight causes mixed-primary colors to be displayed—and the
result looks terrible, because there just isn't enough color resolution. Unfortunately, 2-2-2
RGB is close to the best general color resolution the VGA can display; 3-3-2 is as good
as it gets.

Another approach would be to set up the palette with reasonably good mixes of two
primaries but no mixes of three primaries, then use only two-primary colors in your
applications (no grays or whites or other three-primary mixes). Or you could choose to
shade only selected objects, using part of the palette for a good range of the colors of
those objects, and reserving the rest of the palette for the fixed colors of the other,
nonshaded objects. Jim Kent, author of Autodesk Animator, suggests dynamically ad
justing the palette to the needs of each frame, for example by allocating the colors for
each frame on a first-come, first-served basis. That wouldn't be trivial to do in real

time, but it would make for extremely efficient use of the palette.

Color Modeling In 256-Color Mode ® 653

Another widely-used solution is to set up a 2-2-2, 3-3-2, or 2.6-2.6-2.6 (6 levels per
primary) palette, and dither colors. Dithering is an excellent solution, but outside the
scope of this book. Take a look at Chapter 13 of Foley and Van Dam (cited in Further
Readings) for an introduction to color perception and approximation.
The sad truth is that the VGA's 256-color palette is an inadequate resource for

general RGB shading. The good news is that clever workarounds can make VGA graphics
look nearly as good as 24-bpp graphics; but the burden falls on you, the programmer,
to design your applications and color mapping to compensate for the VGA's limita
tions. To experiment with a different 256-color model in X-Sharp, just change
InitializePaletteO to set up the desired palette and ModelCoiorToCoiorIndex() to
map 24-bit RGB triplets into the palette you've set up. It's that simple, and the results
can be striking indeed.

A Bonus from the BitMan

Finally, a note on fast VGA text, which came in from a correspondent who asked to be
referred to simply as the BitMan. The BitMan passed along a nifty application of the
VGA's under-appreciated write mode 3 that is, under the proper circumstances, the
fastest possible way to draw text in any l6-color VGA mode.
The task at hand is illustrated by Figure 40.2. We want to draw what's known as

solid text, in which the effect is the same as if the cell around each character was drawn
in the bacl^round color, and then each character was drawn on top of the bacl^round
box. (This is in contrast to transparent text, where each character is drawn in the
foreground color without disturbing the background.) Assume that each character fits
in an eight-wide cell (as is the case with the standard VGA fonts), and that we're draw
ing text at byte-aligned locations in display memory.

Character drawn in foreground color

t

S
Character cell (background box)

drawn in background color

Figure 40.2 Drawing Solid Text

654 ® Chapter 40

Solid text is useful for drawing menus, text areas, and the like; basically, it can be
used whenever you want to display text on a solid-color background. The obvious way
to implement solid text is to fill the rectangle representing the background box, then
draw transparent text on top of the background box. However, there are two problems
with doing solid text this way. First, there's some flicker, because for a little while the
box is there but the text hasn't yet arrived. More important is that the background-
followed-by-foreground approach accesses display memory three times for each byte of
font data: once to draw the background box, once to read display memory to load the
latches, and once to actually draw the font pattern. Display memory is incredibly slow,
so we'd like to reduce the number of accesses as much as possible. With the BitMan's
approach, we can reduce the number of accesses to just one per font byte, and elimi
nate flicker, too.

The keys to fast solid text are the latches and write mode 3. The latches, as you may recall
from earlier discussions in this book, are four internal VGA registers that hold the last
bytes read from the VGA's four planes; every read from VGA memory loads the latches
with the values stored at that display memory address across the four planes. Whenever
a write is performed to VGA memory, the latches can provide some, none, or all of the
bits written to memory, depending on the bit mask, which selects between the latched
data and the drawing data on a bit-by-bit basis. The latches solve half our problem; we
can fill the latches with the background color, then use them to draw the background
box. The trick now is drawing the text pixels in the foreground color at the same time.

This is where it gets a little complicated. In write mode 3 (which incidentally is not
available on the EGA), each byte value that the CPU writes to the VGA does not get
written to display memory. Instead, it turns into the bit mask. (Actually, it's ANDed
with the Bit Mask register, and the result becomes the bit mask, but we'll leave the Bit
Mask register set to OxFF, so the CPU value will become the bit mask.) The bit mask
selects, on a bit-by-bit basis, between the data in the latches for each plane (the previ
ously loaded background color, in this case) and the foreground color. Where does the
foreground color come from, if not from the CPU? From the Set/Reset register, as
shown in Figure 40.3. Thus, each byte written by the CPU (font data, presumably)
selects foreground or background color for each of eight pixels, all done with a single
write to display memory.

I know this sounds pretty esoteric, but think of it this way: The latches hold the
background color in a form suitable for writing eight background pixels (one full byte)
at a pop. Write mode 3 allows each CPU byte to punch holes in the background color
provided by the latches, holes through which the foreground color from the Set/Reset
register can flow. The result is that a single write draws exactly the combination of
foreground and background pixels described by each font byte written by the CPU. It
may help to look at Listing 40.4, which shows The BitMan's technique in action. And
yes, this technique is absolutely worth the trouble; it's about three times faster than the
fill-then-draw approach described above, and about twice as fast as transparent text. So
far as I know, there is no faster way to draw text on a VGA.

Color Modeling in 256-Color Mode ^ 655

3\t-maek Register 3yte written to VGA memory by CPU

1i
ANP bit-mask register and CPU data

J Set/Reset Register

J L

Selects latch

bit where

bit-mask isO;

set/reset bit

where bit-mask

bit is 1.

Selects latch

bit where

bit-mask isO;

set/reset bit

where bit-mask

bit is 1.

Turns a 1

bit into

OxFF; a 0

bit into 0

Turns a 1

bit into

OxFF; a 0

bit into 0

Turns a 1

bit into

OxFF; a 0

bit into 0

Turns a 1

bit into

OxFF; a 0

bit into 0Latch 3 Latch 2 Latch 1 1 Latch 0 1

Selects latch

bit where

bit-mask is 0;

set/reset bit

where bit-mask

bit is 1.

Selects latch

bit where

bit-mask is 0;

set/reset bit

where bit-mask

bit is 1.

(Assumes
Map Mask is
OxOF, so all

planes are
written.)

Ei^ht bits
written to

display
memory

Ei^ht bits
written to

display
memory

Ei^ht bits
written to

display
memory

Ei^ht bits
written to

display
memory

Memory

P ane o

Memory

Plane 2

Memory

Plane 1

Memory

Plane 0

Figure 40.3 The Data Path In Write Mode 3

It's important to note that the BitMan's technique only works on full bytes of dis
play memory. There's no way to clip to finer precision; the background color will
inevitably flood all of the eight destination pixels that aren't selected as foreground
pixels. This makes The BitMan's technique most suitable for monospaced fonts with
characters that are multiples of eight pixels in width, and for drawing to byte-aligned
addresses; the technique can be used in other situations, but is considerably more dif
ficult to apply.

656 0 Chapter 40

LISTING 40.4 L40-4.ASM
Demonstrates drawing solid text on the VGA, using the BitMan's write mode
3-based. one-pass technique.

CHAR_HEIGHT equ 8 ;# of scan lines per character (must be <256)
SCREEN_HEIGHT equ 480 ;# of scan lines per screen
SCREEN_SEGMENT equ GaOOOh iwhere screen memory is
FG_COLOR equ 14 ;text color

BG_COLOR equ 1 ;background box color
GC_INDEX equ 3ceh jGraphics Controller (GO Index reg I/O port
SET_RESET equ 0 ;Set/Reset register index in GO
G_MODE equ 5 ;Graphics Mode register index in GO
BIT_MASK equ 8 ;Bit Mask register index in GO

.model smal 1

.stack 200h

.data

Line dw ? ;current 1ine #
CharHeight dw ? ;# of scan lines in each character (must be <256)
MaxLines dw ? ;max # of scan lines of text that will fit on screen

LineWidthBytes dw ? ;offset from one scan line to the next
FontPtr dd ? ;pointer to font with which to draw
SampleString label byte

db 'ABCDEFGHIJKLMNOPQRSTUVWXYZ*

db 'abcdefghi j klmnopqrstuvwxyz'
db '0123456789!@#$%'^&*(),<.>/?;:' .0

start:

.code

mov ax,@data

mov ds .ax

mov ax,12h

int lOh ;select 640x480 16-color mode

mov ah.llh ;BI0S character generator function
mov al.30h ;BIOS get font pointer subfunction
mov bh.3 ;get 8x8 ROM font subsubfunction
i nt lOh ;get the pointer to the BIOS 8x8 font
mov word ptr [FontPtr],bp
mov word ptr [FontPtr+2],es

mov bx,CHAR_HEIGHT
mov [CharHeight],bx ;# of scan lines per character
mov ax,SCREEN_HEIGHT
sub dx,dx

di V bx

mul bx ;max # of full scan lines of text that
mov [MaxLines],ax ; will fit on the screen

mov ah.Ofh ;BIOS video status function
int lOh ;get # of columns (bytes) per row
mov al ,ah ;convert byte columns variable in
sub ah ,ah ; AH to word in AX
mov [LineWidthBytes],ax ;width of scan line in bytes

;now draw the text

sub bx,bx

mov [Line],bx :start at scan line 0

LineLoop;

sub

mov

mov

mov

call

ax,ax

ch,FG_COLOR

cl,BG_COLOR

si,offset SampleString
DrawTextString

Color Modeling In 256-Color Mode ^ 657

;start at column 0; must be a multiple of 8
;color in which to draw text

;color in which to draw background box
;text to draw

•,draw the sample text

mov bx,[Line]

add bx,[CharHeight] ;# of next scan line to draw on

mov [Line],bx

cmp bx,[MaxLines] ;done yet?

jb LineLoop ;not yet

mov ah,7

int 21h ;wait for a key press, without echo

mov ax,03h

i nt lOh ;back to text mode

mov ah,4ch

i nt 21h ;exit to DOS

Draws a text string.

Input: AX - X coordinate at which to draw upper left corner of first char
BX = Y coordinate at which to draw upper left corner of first char
CH = foreground (text) color
CL = background (box) color
DS:SI = pointer to string to draw, zero terminated
CharHeight must be set to the height of each character
FontPtr must be set to the font with which to draw

LineWidthBytes must be set to the scan line width in bytes
Don't count on any registers other than DS, SS, and SP being preserved.
The X coordinate is truncated to a multiple of 8. Characters are
assumed to be 8 pixels wide.

align 2

DrawTextString

eld

shr

shr

shr

mov

mov

mul

add

mov

mov

ax,

proc near

l

ax,l

ax, 1

di ,ax

ax,[LineWidthBytes]

bx

di ,ax

ax,SCREEN_SEGMENT

es ,ax

mov dx,GC_INDEX

mov ax,(Offh SHL 8) + BIT_MASK
out dx,ax

mov ax,(003h SHL 8) + G_MODE

out dx,ax

mov ah,cl

mov al,SET_RESET

out dx,ax

mov byte ptr es:[Offffh],Offh

;byte address of starting X within scan line

;start offset of initial scan line
;start offset of initial byte

ES:DI = offset of initial character's

first scan line

set up the VGA's hardware so that we can
fill the latches with the background color

;set Bit Mask register to OxFF (that's the
; default, but I'm doing this just to make sure
; you understand that Bit Mask register and
; CPU data are ANDed in write mode 3)

;select write mode 3

;background color

;set the drawing color to background color
jwrite 8 pixels of the background

; color to unused offscreen memory

658 ^ Chapter 40

DrawCharLoop:
movsb

mov cl,es:[Offffh] ;read the background color back into the
; latches; the latches are now filled with

; the background color. The value in CL
; doesn't matter, we just needed a target
; for the read, so we could load the latches

mov ah ,ch ;foreground color
out dx,ax ;set the Set/Reset (drawing) color to the

; foreground color

;we're ready to drawl
DrawTextLoop;

lodsb ;next character to draw
and al ,al ;end of string?
jz DrawTextDone ;yes

push ds ;remember string's segment
push si ;remember offset of next character in string
push di ;remember drawing offset

;load these variables before we wipe out DS
mov dx,[LineWidthBytes] ;offset from one line to next
dec dx ;compensate for STOSB
mov cx,[CharHeight] ;

mul cl ;offset of character in font table
1 ds si,[FontPtr] ;point to font table
add si ,ax ;point to start of character to draw

add di,dx

loop DrawCharLoop

;the following loop should be unrolled for
; maximum performance!
;draw all lines of the character

;get the next byte of the character and draw
; character; data is ANDed with Bit Mask

; register to become bit mask, and selects
; between latch (containing the background
; color) and Set/Reset register (containing
; foreground color)

;point to next line of destination

pop di

inc di

pop si

pop ds

jmp DrawTextLoop

;retrieve initial drawing offset
;drawing offset for next char
;retrieve offset of next character in string
;retrieve string's segment
;draw next character, if any

align 2

DrawTextDone:

mov dx,GC_INDEX

mov ax,(000h SHL 8) + G_MODE

out dx,ax

ret

DrawTextString endp
end start

;restore the Graphics Mode register to its
; default state of write mode 0

;select write mode 0

Using Fast Texture Mapping to Place Pooh on a Polygon
So, here's where Winnie the Pooh lives: in a space station orbiting Saturn. No, really; I
have it straight from my daughter, and an eight-year-old wouldn't make up something
that important, would she? One day she wondered aloud, \^here is the Hundred Acre
Wood, exactly?" and before I could give one of those boring parental responses about
how it was imaginary—but A.A. Milne probably imagined it to be somewhere near
London—my daughter announced that the Hundred Acre Wood was in a space sta
tion orbiting Saturn, and there you have it.

As it turns out, that's a very good location for the Hundred Acre Wood, leading to
many exciting adventures for Pooh and Piglet. Consider the time they went down to
the Jupiter gravity level (we're talking centrifugal force here; the station is spinning, of
course) and nearly turned into pancakes of the Pooh and Piglet varieties, respectively.
Or the time they drifted out into the free-fall area at the cote and had to be rescued by
humans with wings strapped on (a tip of the hat to Robert Heinlein here). Or the time
they were caught up by the current in the river through the Wood and drifted for
weeks around the circumference of the station, meeting many cultures and finding
many adventures along the way. (Yes, Farmer's Riverworld; no one said the stories you
tell your children need to be purely original, just interesting.)

(If you think Pooh and Piglet in a space station is a tad peculiar, then I won't even
mention Karla, the woman who invented agriculture, medicine, sanitation, reading
and writing, peace, and just about everything else while travelling the length of the
Americas with her mountain lion during the last Ice Age; or the Mars Cats and their
trip in suspended animation to the Lesser Magellenic Cloud and beyond; or most
assuredly Little Whale, the baby Universe Whale that is naughty enough to eat inhab
ited universes. But I digress.)

660 ^ Chapter 41

Anyway, I bring up Pooh and the space station because the time has come to discuss
fast texture mapping. Texture mappings the process of mapping an image (in our case,
a bitmap) onto the surface of a polygon that's been transformed in the process of 3-D
drawing. Up to this point, each polygon we've drawn in X-Sharp has been a single,
sohd color. Over the last couple of chapters we added the ability to shade polygons
according to lighting, but each polygon was still a single color. Thus, in order to pro
duce any sort of intricate design, a great many tiny polygons would have to be drawn.
That would be very slow, so we need another approach. One such approach is texture
mapping; that is, mapping the bitmap containing the desired image onto the pixels
contained within the transformed polygon. Done properly, this should make it pos
sible to change X-Sharp's output from a bland collection of monocolor facets to a
lively, detailed, and much more realistic scene.
"What sort of scene?" you may well ask. This is where Pooh and the space station

came in. When I sat down to think of a sample texture-mapping application, it oc
curred to me that the shaded ball demo we added to X-Sharp recently looked at least a
bit like a spinning, spherical space station, and that the single unshaded, yellow poly
gon looked somewhat like a window in the space station, and it might be a nice ex
ample if someone were standing in the window...
The rest is history.

Principles of Quick-and-Dirty Texture Mapping
The key to our texture-mapping approach will be to quickly determine what pixel
value to draw for each pixel in the transformed destination polygon. These polygon
pixel values will be determined by mapping each destination pixel in the transformed
polygon back to the image bitmap, via a reverse transformation, and seeing what color
resides at the corresponding location in the image bitmap, as shown in Figure 41.1. It

Source image
(texture to map)

Transformed destination polygon
(onto which texture is mapped)

Figure 41.1 Using Reverse Transformation to Find the Source Pixei Coior

Pooh and the Space Station ^ 661

might seem more intuitive to map pixels the other way, from the image bitmap to the
transformed polygon, hut in fact it's crucial that the mapping proceed backward from
the destination to avoid gaps in the final image. W^ith the approach of finding the right
value for each destination pixel in turn, via a backward mapping, there's no way we can
miss any destination pixels. On the other hand, with the forward-mapping method,
some destination pixels may he skipped or double-drawn, because this is not necessar
ily a one-to-one or one-to-many mapping. Although we're not going to take advantage
of it now, mapping back to the source makes it possible to average several neighboring
image pixels together to calculate the value for each destination pixel; that is, to antialias
the image. This can greatly improve texture quality, although it is slower.

Mapping Textures Made Easy
To understand how we're going to map textures, consider Figure 41.2, which maps a
bitmapped image directly onto an untransformed polygon. Here, we simply map the
origin of the polygon's untransformed coordinate system somewhere within the image,
then map the vertices to the corresponding image pixels. (For simplicity, I'll assume in
this discussion that the polygon's coordinate system is in units of pixels, but scaling
images to polygons is eminently doable. This will become clearer when we look at
mapping images onto transformed polygons, next.) Mapping the image to the polygon
is then a simple matter of stepping one scan line at a time in both the image and the
polygon, each time advancing the X coordinates of the edges according to the slopes of
the lines, just as is normally done when filling a polygon. Since the polygon is
untransformed, the stepping is identical in both the image and the polygon, and the
pixel mapping is one-to-one, so the appropriate part of each scan line of the image can
simply be block copied to the destination.

Vertices map directly to vertices

Scan lines map
directly to scan lines

Source image
(texture to map)

Untransformed destination polygon
(onto which texture is mapped)

Figure 41.2 Mapping a Texture onto an Untransformed Polygon

662 ^ Chapter 41

Now, matters get more complicated. What if the destination polygon is rotated in
two dimensions.' We no longer have a neat direct mapping from image scan lines to
destination polygon scan lines. We still want to draw across each destination scan line,
but the proper source pixels for each destination scan line may now track across the
source bitmap at an angle, as shown in Figure 41.3. What can we do?
The solution is remarkably simple. We'll just map each transformed vertex to the

corresponding vertex in the bitmap; this is easy, because the vertices are at the same
indices in the original and transformed vertex lists. Each time we select a new edge to
scan for the destination polygon, we'll select the corresponding edge in the source
bitmap, as well. Then—and this is crucial—each time we step a destination edge one
scan line, we'll step the corresponding source image edge an equivalent amount.

Ah, but what is an "equivalent amount?" Think of it this way. If a destination edge
is 100 scan lines high, it will be stepped 100 times. Then, we'll divide the SourceXWidth
and SourceYHeight lengths of the source edge by 100, and add those amounts to the
source edge's coordinates each time the destination is stepped one scan line. Put an
other way, we have, as usual, arranged things so that in the destination polygon we step
DestYHeight times, where DestYHeight is the height of the destination edge. The
this approach arranges to step the source image edge DestYHeight times also, to match
what the destination is doing.
Now we're able to track the coordinates of the polygon edges through the source

image in tandem with the destination edges. Stepping across each destination scan line
uses precisely the same technique, as shown in Figure 41.4. In the destination, we step
DestXWidth times across each scan line of the polygon, once for each pixel on the scan
line. (DestXWidth is the horizontal distance between the two edges being scanned on

Transformetff vertices map to
untransformed Image vertices
on a one-one basis

Scan lines do not

map to scan lines

Source image
(texture to map)

Transformed (2-D rotated) destination
polygon (onto which texture is mapped)

Figure 41.3 Mapping a Texture onto a 2-D Rotated Polygon

Pooh and the Space Station ® 663

o o o o Q O O 0

o o o ̂ o\p o o
0 O O/O ohjjxi
o o a oo^o o
o o/o o•f o\ o
o O 0 Cf-4-o-e o

Source ima^e

(texture to map)

o o o

Transformed (2-D rotated) destination
polygon (onto which texture is mapped)

Figure 41.4 Mapping a Horizontal Destination Scan Line Back to the Source image

any given scan line.) To match this, we divide SourceXWidth and SourceYHeight (the
lengths of the scan line in the source image, as determined by the source edge points
we've been tracking, as just described) by the width of the destination scan line,
DestXWidth, to produce SourceXStep and SourceYStep. Then, we just step
DestXWidth times, adding SourceXStep and SourceYStep to SourceX and SourceY
each time, and choose the nearest image pixel to (SourceX,SourceY) to copy to
(DestX,DestY). (Note that the names used above, such as "SourceXWidth," are used
for descriptive purposes, and don't necessarily correspond to the actual variable names
used in Listing 41.2.)

That's a workable approach for 2-D rotated polygons—but what about 3-D rotated
polygons, where the visible dimensions of the polygon can vary with 3-D rotation and
perspective projection? First, I'd like to make it clear that texture mapping takes place
from the source image to the destination polygon after the destination polygon is pro
jected to the screen. That is, the image will be mapped after the destination polygon is
in its final, drawable form. Given that, it should be apparent that the above approach
automatically compensates for all changes in the dimensions of a polygon. You see, this
approach divides source edges and scan lines into however many steps the destination
polygon requires. If the destination polygon is much narrower than the source poly
gon, as a result of 3-D rotation and perspective projection, we just end up taking
bigger steps through the source image and skipping a lot of source image pixels, as
shown in Figure 41.5. The upshot is that the above approach handles all transforma
tions and projections effortlessly. It could also be used to scale source images up to fit
in larger polygons; all that's needed is a list of where the polygon's vertices map into the
source image, and everything else happens automatically. In fact, mapping from any
polygonal area of a bitmap to any destination polygon will work, given only that the
two polygons have the same number of vertices.

664 ^ Chapter 41

o •\o

Transformed (narrower) destination
polygon (onto which texture is mapped)

Source image

(texture to map)

Figure 41.5 Mapping a Texture onto a Narrower Poiygon

Notes on DDA Texture l\/lapping
That's all there is to quick-and-dirty texture mapping. This technique basically uses a two-
stage digital differential analyzer (DDA) approach to step through the appropriate part of
the source image in tandem with the normal scan-line stepping through the destination
polygon, so 111 call it "DDA texture mapping." It's worth noting that there is no need
for any trigonometric functions at all, and only two divides are required per scan line.

This isnt a perfect approach, of course. For one thing, it isn't anywhere near as fast
as drawing solid polygons; the speed is more comparable to drawing each polygon as a
series of lines. Also, the DDA approach results in far from perfect image quality, since
source pixels may be skipped or selected twice. I trust, however, that you can see how
easy it would be to improve image quality by antialiasing with the DDA approach. For
example, we could simply average the four surrounding pixels as we did for simple,
unweighted antialiasing in Chapters 25 and 26. Or, we could take a Wu antialiasing
approach (see Chapter 27) and average the two bracketing pixels along each axis ac
cording to proximity. If we had cycles to waste (which, given that this is real-time
animation on a PC, we don't), we could improve image quality by putting the source
pixels through a low-pass filter sized in X and Y according to the ratio of the source and
destination dimensions (that is, how much the destination is scaled up or down from
the source).

Even more important is that the sort of texture mapping I'll do in X-Sharp doesn't
correct fot perspective. That doesnt much matter for small polygons or polygons that
are nearly parallel to the screen in 3-space, but it can produce very noticeable bowing
of textures on large polygons at an angle to the screen. Perspective texture mapping is
a complex subject that's outside the scope of this book, but you should be aware of its
existence, because perspective texture mapping is a key element of many games these days.

Pooh and the Space Station 665

Finally, I'd like to point out that this sort of DDA texture mapping is display-hardware
dependent, because the bitmap for each image must be compatible with the number of
hits per pixel in the destination. That's actually a fairly serious issue. One of the nice
things about X-Sharp's polygon orientation is that, until now, the only display depen
dent part of X-Sharp has been the transformation from RGB color space to the adapter's
color space. Compensation for aspect ratio, resolution, and the like all happens auto
matically in the course of projection. Still, we need the ability to display detailed sur
faces, and it's hard to conceive of a fast way to do so that's totally hardware independent.
(If you know of one, let me know care of the publisher.)

For now, all we need is fast texture mapping of adequate quality, which the straight
forward, non-antialiased DDA approach supplies. I'm sure there are many other fast
approaches, and, as I've said, there are more accurate approaches, but DDA texture
mapping works well, given the constraints of the PC's horsepower. Next, we'll look at
code that performs DDA texture mapping. First, though, I'd like to take a moment to
thank Jim Kent, author of Autodesk Animator and a frequent correspondent, for get
ting me started with the DDA approach.

Fast Texture Mapping: An Implementation
As you might expect, I've implemented DDA texture mapping in X-Sharp, and the
changes are reflected in the X-Sharp archive in this chapter's subdirectory on the list
ings diskette. Listing 41.1 shows the new header file entries, and Listing 41.2 shows
the actual texture-mapped polygon drawer. The set-pixel routine that Listing 41.2 calls
is a slight modification of the Mode X set-pixel routine from Chapter 32. In addition,
INITBALL.C has been modified to create three texture-mapped polygons and define
the texture bitmaps, and modifications have been made to allow the user to flip the
axis of rotation. You will of course need the complete X-Sharp library to see texture
mapping in action, hut Listings 41.1 and 41.2 are the actual texture mapping code in
its entirety.

Here's a major tip: DP A texture mapping looks hest on fast-moving
surfaces, where the eye doesn't have time to pick nits with the shear
ing and aliasing that's an inevitahle by-product of such a crude ap
proach. Compile DEMOt from the X-5harp archive in this chapter's
subdirectory of the listings diskette, and run it. The initial display
looks okay, but certainly not great, because the rotational speed is
so slow. Now press the 5 key a few times to speed up the rotation
and flip between different rotation axes. I think you'll be amazed at how
much better PDA texture mapping looks at high speed. This tech
nique would be great for mapping textures onto hurtling asteroids
orJets, but would come up short for slow, finely detailed movements.

666 @ Chapter 41

LISTING 41.1 L41-1.C
/* New header file entries related to texture-mapped polygons */

/* Draws the polygon described by the point list PolntLlst with a bitmap
texture mapped onto It */

#def1ne DRAW_TEXTURED_P0LYG0N(Po1ntL1st,NumPo1nts,TexVerts.TexMap) \
Polygon.Length - NumPolnts; Polygon.PolntPtr = PolntLlst; \
DrawTexturedPolygonC&Polygon. TexVerts, TexMap);

#def1ne FIXED_TO_INT(FIxedVal) (dnt) (FIxedVal » 16))
#def1ne ROUND_FIXED_TO_INT(FIxedVal) \

(dnt) ((FIxedVal + D0UBLE_T0_FIXED(0.5)) » 16))
/* Retrieves specified pixel from specified Image bitmap of specified width. */
#def1ne GET_IMAGE_PIXEL(TexMapB1ts, TexMapWIdth, X, Y) \

TexMapB1ts[(Y * TexMapWIdth) + X]
/* Masks to mark shading types In Face structure */
#def1ne NO_SHADING 0x0000
#def1ne AMBIENT_SHADING 0x0001
y/deflne DIFFUSE_SHADING 0x0002
//define TEXTURE_MAPPED_SHADING 0x0004
/* Describes a texture map */
typedef struct {

Int TexMapWIdth; /* texture map width In bytes */
char *TexMapB1ts; /* pointer to texture bitmap */

} TextureMap;

/* Structure describing one face of an object (one polygon) */
typedef struct {

Int * VertNums; /* pointer to list of Indexes of this polygon's vertices
In the object's vertex list. The first two Indexes
must select end and start points, respectively, of this
polygon's unit normal vector. Second point should also
be an active polygon vertex */

Int NumVerts; /* # of verts In face, not Including the Initial
vertex, which must be the end of a unit normal vector
that starts at the second Index In VertNums */

Int Colorlndex; /* direct palette Index; used only for non-shaded faces */
ModelColor FullColor; /* polygon's color */
Int Shadlnglype; /* none, ambient, diffuse, texture mapped, etc. */
TextureMap * TexMap; /* pointer to bitmap for texture mapping. If any */
Point * TexVerts; /* pointer to list of this polygon's vertices. In

TextureMap coordinates. Index n must map to Index
n + 1 In VertNums, (the + 1 Is to skip over the unit
normal endpoint In VertNums) */

} Face;

extern void DrawTexturedPolygon(PolntLIstHeader *, Point *, TextureMap *);

LISTING 41.2 L41-2.C
/* Draws a bitmap, mapped to a convex polygon (draws a texture-mapped polygon.)

"Convex" means that every horizontal line drawn through the polygon at any
point would cross exactly two active edges (neither horizontal lines nor
zero-length edges count as active edges; both are acceptable anywhere In
the polygon), and that the right & left edges never cross. Nonconvex
polygons won't be drawn properly. Can't fall. */

//Include <std1o.h>

//Include <math.h>

//Include "polygon.h"
/* Describes the current location and stepping. In both the source and

the destination, of an edge */

Pooh and the Space Station ^ 667

typedef struct {
int Direction; /* through edge list; 1 for a right edge (forward

through vertex list), -1 for a left edge (backward
through vertex list) */

int RemainingScans; /* height left to scan out in dest */
int CurrentEnd; /* vertex # of end of current edge */
Fixedpoint SourceX; /* current X location in source for this edge */
Fixedpoint SourceY; /* current Y location in source for this edge */
Fixedpoint SourceStepX; /* X step in source for Y step in dest of 1 */
Fixedpoint SourceStepY; /* Y step in source for Y step in dest of 1 */

/* variables used for all-integer Bresenham's-type

X stepping through the dest, needed for precise
pixel placement to avoid gaps */

int DestX; /* current X location in dest for this edge */
int DestXIntStep; /* whole part of dest X step per scan-line Y step */
int DestXDirection; /* -1 or 1 to indicate way X steps (left/right) */
int DestXErrTerm; /* current error term for dest X stepping */
int DestXAdjUp; /* amount to add to error term per scan line move */
int DestXAdjDown; /* amount to subtract from error term when the

error term turns over */

} EdgeScan;

int StepEdge(EdgeScan *);
int SetUpEdge(EdgeScan *, int);
void ScanOutLine(EdgeScan *, EdgeScan *);
int GetlmagePixel(char *, int, int, int);
/* Statics to save time that would otherwise pass them to subroutines. */
static int MaxVert, NumVerts, DestY;

static Point * VertexPtr;

static Point * TexVertsPtr;

static char * TexMapBits;

static int TexMapWidth;
/* Draws a texture-mapped polygon, given a list of destination polygon

vertices, a list of corresponding source texture polygon vertices, and a
pointer to the source texture's descriptor. */

void DrawTexturedPolygon(PointListHeader * Polygon, Point * TexVerts,
TextureMap * TexMap)

{

int MinY, MaxY, MinVert, i;

EdgeScan LeftEdge, RightEdge;
NumVerts = Polygon->Length;
VertexPtr = Polygon->PointPtr;

TexVertsPtr = TexVerts;

TexMapBits = TexMap->TexMapBits;
TexMapWidth = TexMap->TexMapWidth;
/* Nothing to draw if less than 3 vertices */
if (NumVerts < 3) {

return;

}

/* Scan through the destination polygon vertices and find the top of the
left and right edges, taking advantage of our knowledge that vertices run
in a clockwise direction (else this polygon wouldn't be visible due to
backface removal) */

MinY = 32767;

MaxY = -32768;

for (i=0; i<NumVerts; i++) {
if (VertexPtrCi].Y < MinY) {

MinY = VertexPtrCi].Y;

MinVert = i;

}
if (VertexPtrCi].Y > MaxY) {

MaxY = VertexPtrCi].Y;

668 ^ Chapter 41

MaxVert = i;

}

}

/* Reject flat (0-pixel-high) polygons */
if (MinY >= MaxY) {

return;

}

/* The destination Y coordinate is not edge specific; it applies to
both edges, since we always step Y by 1 */

DestY = MinY;

/* Set up to scan the initial left and right edges of the source and
destination polygons. We always step the destination polygon edges
by one in Y, so calculate the corresponding destination X step for
each edge, and then the corresponding source image X and Y steps */

LeftEdge.Direction = -1; /* set up left edge first */
SetUpEdgeC&LeftEdge, MinVert);
RightEdge.Direction =1; /* set up right edge */
SetUpEdgeC&RightEdge, MinVert);
/* Step down destination edges one scan line at a time. At each scan

line, find the corresponding edge points in the source image. Scan
between the edge points in the source, drawing the corresponding
pixels across the current scan line in the destination polygon. (We
know which way the left and right edges run through the vertex list
because visible (non-backface-cul1ed) polygons always have the vertices
in clockwise order as seen from the viewpoint) */

for (;;) {

/* Done if off bottom of clip rectangle */
if (DestY >= ClipMaxY) {

return;

}

/* Draw only if inside Y bounds of clip rectangle */
if (DestY >- ClipMinY) {

/* Draw the scan line between the two current edges */
ScanOutLine(&LeftEdge, &RightEdge);

}

/* Advance the source and destination polygon edges, ending if we've
scanned all the way to the bottom of the polygon */

if (!StepEdge(&LeftEdge)) {
break;

}

if (!StepEdge(&RightEdge)) {
break;

}

DestY++;

}

}

/* Steps an edge one scan line in the destination, and the corresponding
distance in the source. If an edge runs out, starts a new edge if there
is one. Returns 1 for success, or 0 if there are no more edges to scan. */

int StepEdge(EdgeScan * Edge)

{

/* Count off the scan line we stepped last time; if this edge is
finished, try to start another one */

if (--Edge->RemainingScans = 0) {
/* Set up the next edge; done if there is no next edge */
if (SetUpEdge(Edge, Edge->CurrentEnd) == 0) {

return(O); /* no more edges; done drawing polygon */
}

return(l); /* all set to draw the new edge */
}

Pooh and the Space Station ^ 669

/* Step the current source edge */
Edge->SourceX += Edge->SourceStepX;
Edge->SourceY += Edge->SourceStepY;
/* Step dest X with Bresenham-style variables, to get precise dest pixel

placement and avoid gaps */
Edge->DestX += Edge->DestXIntStep; /* whole pixel step */
/* Do error term stuff for fractional pixel X step handling */
if ((Edge->DestXErrTerm += Edge->DestXAdjUp) > 0) {

Edge->DestX += Edge->DestXDirection;
Edge->DestXErrTerm -= Edge->DestXAdjDown;

}
return(l);

}

/* Sets up an edge to be scanned; the edge starts at StartVert and proceeds
in direction Edge->Direction through the vertex list. Edge->Direction must
be set prior to call; -1 to scan a left edge (backward through the vertex
list), 1 to scan a right edge (forward through the vertex list).
Automatically skips over 0-height edges. Returns 1 for success, or 0 if
there are no more edges to scan. */

int SetUpEdge(EdgeScan * Edge, int StartVert)
{

int NextVert, DestXWidth;

Fixedpoint DestYHeight;
for (;;) {

/* Done if this edge starts at the bottom vertex */
if (StartVert == MaxVert) {

return(O);

}
/* Advance to the next vertex, wrapping if we run off the start or end

of the vertex list */

NextVert = StartVert + Edge->Direction;
if (NextVert >= NumVerts) {

NextVert = 0;

} else if (NextVert < 0) {
NextVert = NumVerts - 1;

}
/* Calculate the variables for this edge and done if this is not a

zero-height edge */

if ((Edge->RemainingScans =
VertexPtrCNextVert].Y - VertexPtr[StartVert].Y) 1= 0) {

DestYHeight = INT_TO_FIXED(Edge->RemainingScans);
Edge->CurrentEnd = NextVert;
Edge->SourceX = INT_TO_FIXED(TexVertsPtr[StartVert].X);
Edge->SourceY = INT_TO_FIXED(TexVertsPtr[StartVert].Y);
Edge->SourceStepX = FixedDiv(INT_TO_FIXED(TexVertsPtr[NextVert].X) -

Edge->SourceX, DestYHeight);
Edge->SourceStepY = FixedDiv(INT_TO_FIXED(TexVertsPtrCNextVert].Y) -

Edge->SourceY, DestYHeight);
/* Set up Bresenham-style variables for dest X stepping */
Edge->DestX = VertexPtr[StartVert].X;
if ((DestXWidth =

(VertexPtrCNextVert].X - VertexPtrCStartVert].X)) < 0) {
/* Set up for drawing right to left */
Edge->DestXDirection = -1;

DestXWidth = -DestXWidth;

Edge->DestXErrTerm = 1 - Edge->RemainingScans;
Edge->DestXIntStep = -(DestXWidth / Edge->RemainingScans);

} else {

/* Set up for drawing left to right */
Edge->DestXDirection = 1;

670 ^ Chapter41

Edge->DestXErrTerni =• 0;

Edge->DestXIntStep = DestXWidth / Edge->RemainingScans;
}

Edge->DestXAdjUp = DestXWidth % Edge->Rema1n1ngScans;
Edge->DestXAdjDown = Edge->Rema1ningScans;
return(l); /* success */

}

StartVert = NextVert; /* keep looking for a non-O-height edge */
}

}

/* Texture-map-draw the scan line between two edges. */
void ScanOutLineCEdgeScan * LeftEdge, EdgeScan * RightEdge)
{

Fixedpoint SourceX = LeftEdge->SourceX;
Fixedpoint SourceY = LeftEdge->Sourcey;
int DestX = LeftEdge->DestX;
int DestXMax = RightEdge->DestX;
Fixedpoint DestWidth;
Fixedpoint SourceXStep, SourceVStep;
/* Nothing to do if fully X clipped */
if ((DestXMax <= ClipMinX) || (DestX >= ClipMaxX)) {

return;

}

if ((DestXMax - DestX) <- 0) {
return; /* nothing to draw */

}

/* Width of destination scan line, for scaling. Note: because this is an
integer-based scaling, it can have a total error of as much as nearly
one pixel. For more precise scaling, also maintain a fixed-point DestX
in each edge, and use it for scaling. If this is done, it will also
be necessary to nudge the source start coordinates to the right by an
amount corresponding to the distance from the the real (fixed-point)
DestX and the first pixel (at an integer X) to be drawn) */

DestWidth =■ INT_TO_FIXED(DestXMax - DestX);
/* Calculate source steps that correspond to each dest X step (across

the scan line) */
SourceXStep = FixedDiv(RightEdge->SourceX - SourceX, DestWidth);
SourceVStep = FixedDiv(RightEdge->SourceY - SourceY, DestWidth);
/* Clip right edge if necessary */
if (DestXMax > ClipMaxX) {

DestXMax = ClipMaxX;
}
/* Clip left edge if necssary */
if (DestX < ClipMinX) {

SourceX += SourceXStep * (ClipMinX - DestX);
SourceY += SourceVStep * (ClipMinX - DestX);
DestX = ClipMinX;

}
/* Scan across the destination scan line, updating the source image

position accordingly */
for (; DestX<DestXMax; DestX-H-) {

/* Get currently mapped pixel out of image and draw it to screen */
WritePixelX(DestX, DestY,

GET_IMAGE_PIXEL(TexMapBits, TexMapWidth,
FIXED_TO_INT(SourceX), FIXED_TO_INT(SourceY)));

/* Point to the next source pixel */
SourceX += SourceXStep;
SourceY += SourceVStep;

)

Pooh and the Space Station ^ 671

No matter how you slice it, DDA texture mapping beats boring, single-color polygons
nine ways to Sunday. The big downside is that it's much slower than a normal polygon
fill; move the ball close to the screen in DEMOl, and watch things slow down when
one of those big texture maps comes around. Of course, that's partly because the code
is all in C; some well-chosen optimizations would work wonders. In the next chapter
we'll discuss texture mapping further, crank up the speed of our texture mapper, and
attend to some rough spots that remain in the DDA texture mapping implementation,
most notably in the area of exactly which texture pixels map to which destination
pixels as a polygon rotates.
And, in case you're curious, yes, there is a bear in DEMOl. I wouldn't say he looks

much like a Pooh-type bear, but he's a bear nonetheless. He does tend to look a little
startled when you flip the ball around so that he's zipping by on his head, but, heck,
yoii would too in the same situation. And remember, when you buy the next VGA
megabit. Bears in Space, you saw it here first.

The Critical Role of Experience in Implementing Fast,
Smooth Texture Mapping

I recently spent an hour or so learning how to shear a sheep. Among other things, I
learned—in great detail—about the importance of selecting the proper comb for your
shears, heard about the man who holds the world's record for sheep sheared in a day
(more than 600, if memory serves), and discovered, Lord help me, the many and var
ied ways in which the New Zealand Sheep Shearing Board improves the approved
sheep-shearing method every year. The fellow giving the presentation did his best, but
let's face it, sheep just aren't very interesting. If you have children, you'll know why I
was there; if you don't, there's no use explaining.
The chap doing the shearing did say one thing that stuck with me, although it may

not sound particularly profound. (Actually, it sounds pretty silly, but bear with me.)
He said, "You don't get really good at sheep shearing for ten years, or 10,000 sheep."
I'll buy that. In fact, to extend that morsel of wisdom to the greater, non-ovine-centric
universe, it actually takes a good chunk of experience before you get good at anything
worthwhile—especially graphics, for a couple of reasons. First, performance matters a
lot in graphics, and performance programming is largely a matter of experience. You
can't speed up PC graphics simply by looking in a book for a better algorithm; you
have to understand the code C compilers generate, assembly language optimization,
VGA hardware, and the performance implications of various graphics-programming
approaches and algorithms. Second, computer graphics is a matter of illusion, of con
vincing the eye to see what you want it to see, and that's very much a black art based on
experience.

674 ^ Chapter 42

Visual Quality: A Black Hole ... Er, Art
Pleasing the eye with real-time computer animation is something less than a science, at
least at the PC level, where there's a limited color palette and no time for antialiasing;
in fact, sometimes it can be more than a little frustrating. As you may recall, in the
previous chapter I implemented texture mapping in X-Sharp. There was plenty of
experience involved there, some of which I didn't mention. My first implementation
was disappointing; the texture maps shimmied and sheared badly, like a loosely affili
ated flock of pixels, each marching to its own drummer. Then, I added a control key to
speed up the rotation; what a difference! The aliasing problems were still there, but
with the faster rotation, the pixels moved too quickly for the eye to pick up on the
aliasing; the rotating texture maps, and the rotating ball as a whole, crossed the thresh
old into being accepted by the eye as a viewed object, rather than simply a collection of
pixels.
The obvious lesson here is that adequate speed is important to convincing anima

tion. There's another, less obvious side to this lesson, though. I'd been running the
texture-mapping demo on a 20 MHz 386 with a slow VGA when I discovered the
beneficial effects of greater animation speed. When, some time later, I ran the demo on
a 33 MHz 486 with a fast VGA, I found that the faster rotation was too fast! The ball

spun so rapidly that the eye couldn't blend successive images together into continuous
motion, much like watching a badly flickering movie.

So the eecond leeeon ie that either too little or too muoh epeed can
deetroy the illueion. Unieee you're antialiasing, you need to tune the
shifting of your images so that they're in the ''sweet spot" of appar
ent motion, in which the eye is wiliing to ignore the Jumping and
aliasing, and hiend the images together into continuous motion. Only
experience can give you a feel for that sweet spot.

Fixed-Point Arithmetic, Redux
In the previous chapter I added texture mapping to X-Sharp, but lacked space to ex
plain some of its finer points. I'll pick up the thread now and cover some of those
points here, and discuss the visual and performance enhancements that previous chapter's
code needed—and which are now present in the version of X-Sharp in this chapter's
subdirectory on the listings diskette.

Back in Chapter 21,1 spent a good bit of time explaining exactly which pixels were
inside a polygon and which were outside, and how to draw those pixels accordingly.
This was important, I said, because only with a precise, consistent way of defining
inside and outside would it be possible to draw adjacent polygons without either over
lap or gaps between them.

10,000 Freshly-Sheared Sheep on the Screen ^ 675

As a corollary, I added that only an all-integer, edge-stepping approach would do for
polygon filling. Fixed-point arithmetic, although alluring for speed and ease of use, would
be unacceptable because round-off error would result in imprecise pixel placement.

More than a year then passed between the time I wrote that statement and the time
I implemented X-Sharp s texture mapper, during which time my long-term memory
apparently suffered at least partial failure. When I went to implement texture mapping
for the previous chapter, I decided that since transformed destination vertices can fall
at fractional pixel locations, the cleanest way to do the texture mapping would be to
use fixed-point coordinates for both the source texture and the destination screen poly
gon. That way, there would be a minimum of distortion as the polygon rotated and
moved. Theoretically, that made sense; but there was one small problem: gaps between
polygons.

Yes, folks, I had ignored the voice of experience (my own voice, at that) at my own
peril. You can be assured I will not forget this particular lesson again: Fixed-point
arithmetic is not precise. That's not to say that its impossible to use fixed-point for
drawing polygons; if all adjacent edges share common start and end vertices and com
mon edges are always stepped in the same direction, all polygons should share the same
fixed-point imprecision, and edges should fit properly (although polygons may not
include exactly the right pixels). What you absolutely cannot do is mix fixed-point
and all-integer polygon-filling approaches when drawing, as shown in Figure 42.1.

Missad pixels (^aps)

Ed^e start vertex

Polygon ecamed with

all-integer approach

Polygon ecamed with

fixed-point approach

Edge as scanned by precise,' , n Edge as scanned by
all-Integer approach Edge end vertex fixed-point approach

Figure 42.1 Gaps Caused by Mixing Fixed-Point and Aii-integer Math

676 ® Chapter 42

Consequently, I ended up using an all-integer approach in X-Sharp for stepping through
the destination polygon. However, I kept the fixed-point approach, which is faster and
much simpler, for stepping through the source.
Why was it all right to mix approaches in this case? Precise pixel placement only

matters when drawing; otherwise, we can get gaps, which are very visible. When select
ing a pixel to copy from the source texture, however, the worst that happens is that we
pick the source pixel next to the one we really want, causing the mapped texture to
appear to have shifted by one pixel at the corresponding destination pixel; given all the
aliasing and shearing already going on in the texture-mapping process, a one-pixel
mapping error is insignificant.

Experience again: Its the difference between knowing which flaws (like small texture
shifts) can reasonably be ignored, and which (like those that produce gaps between
polygons) must be avoided at all costs.

Texture Mapping: Orientation independence
The double-DDA texture-mapping code presented in the previous chapter worked
adequately, but there were two things about it that left me less than satisfied. One flaw
was performance; I'll address that shortly. The other flaw was the way textures shifted
noticeably as the orientations of the polygons onto which they were mapped changed.
The previous chapter's code followed the standard polygon inside/outside rule for deter

mining which pixels in the source texture map were to be mapped: Pixels that mapped
exactly to the left and top destination edges were considered to be inside, and pixels
that mapped exactly to the right and bottom destination edges were considered to be
outside. That's fine for filling polygons, but when copying texture maps, it causes dif
ferent edges of the texture map to be omitted, depending on the destination orienta
tion, because different edges of the texture map correspond to the right and bottom
destination edges, depending on the current rotation. Also, the previous chapter's code
truncated to get integer source coordinates. This, together with the orientation prob
lem, meant that when a texture turned upside down, it slowed one new row and one
new column of pixels from the next row and column of the texture map. This asymme
try was quite visible, and not at all the desired effect.

Listing 42.1 is one solution to these problems. This code, which replaces the equivalendy
named function presented in the previous chapter (and, of course, is present in the X-
Sharp archive in this chapter's subdirectory of the listings diskette), makes no attempt
to follow the standard polygon inside/outside rules when mapping the source. Instead,
it advances a half-step into the texture map before drawing the first pixel, so pixels
along all edges are half included. Rounding rather than truncation to texture-map
coordinates is also performed. The result is that the texture map stays pretty much
centered within the destination polygon as the destination rotates, with a much-re
duced level of orientation-dependent asymmetry.

10,000 Freshly-Stteared Sheep on the Scmn ^ 677

LISTING 42.1 L42-1.C
/* Texture-map-draw the scan line between two edges. Uses approach of

pre-stepping 1/2 pixel into the source image and rounding to the nearest
source pixel at each step, so that texture maps will appear
reasonably similar at all angles. */

void ScanOutLine(EdgeScan * LeftEdge, EdgeScan * RightEdge)

{

Fixedpoint SourceX;
Fixedpoint SourceY;
int DestX = LeftEdge->DestX;

int DestXMax = RightEdge->DestX;

Fixedpoint DestWidth;
Fixedpoint SourceStepX, SourceStepY;

/* Nothing to do if fully X clipped */
if ((DestXMax <- ClipMinX) || (DestX >= ClipMaxX)) {

return;

}

if ((DestXMax - DestX) <= 0) {

return; /* nothing to draw */

}

SourceX = LeftEdge->SourceX;

SourceY =« LeftEdge->SourceY;

/* Width of destination scan line, for scaling. Note: because this is an

integer-based scaling, it can have a total error of as much as nearly
one pixel. For more precise scaling, also maintain a fixed-point DestX
in each edge, and use it for scaling. If this is done, it will also
be necessary to nudge the source start coordinates to the right by an
amount corresponding to the distance from the the real (fixed-point)
DestX and the first pixel (at an integer X) to be drawn). */

DestWidth - INT_TO_FIXED(DestXMax - DestX);

/* Calculate source steps that correspond to each dest X step (across
the scan line) */

SourceStepX = FixedDiv(RightEdge->SourceX - SourceX, DestWidth);
SourceStepY = FixedDiv(RightEdge->SourceY - SourceY, DestWidth);

/* Advance 1/2 step in the stepping direction, to space scanned pixels
evenly between the left and right edges. (There's a slight inaccuracy
in dividing negative numbers by 2 by shifting rather than dividing,
but the inaccuracy is in the least significant bit, and we'll just
1ive with it.) */

SourceX +« SourceStepX >> 1;
SourceY += SourceStepY >> 1;

/* Clip right edge if necssary */
if (DestXMax > ClipMaxX)

DestXMax = ClipMaxX;

/* Clip left edge if necssary */
if (DestX < ClipMinX) {

SourceX +- FixedMul(SourceStepX, INT_T0_FIXED(C1ipMinX - DestX));
SourceY +- FixedMul(SourceStepY, INT_T0_FIXED(C1ipMinX - DestX));
DestX = ClipMinX;

}

/* Scan across the destination scan line, updating the source image
position accordingly */

678 ^ Chapter 42

for (; DestX<DestXMax; DestX++) {

/* Get the currently mapped pixel out of the image and draw it to
the screen */

WritePixelXCDestX, DestY,

GET_IMAGE_PIXEL(TexMapBits. TexMapWidth,
ROUND_FIXED_TO_INT(SourceX), ROUND_FIXED_TO_INT(SourceY)));

/* Point to the next source pixel */
SourceX +•= SourceStepX;
SourceY += SourceStepY;

}

Mapping Textures across Multiple Polygons
One of the truly nifty things about double-DDA texture mapping is that it is not
limited to mapping a texture onto a single polygon. A single texture can be mapped
across any number of adjacent polygons simply by having polygons that share vertices
in 3-space also share vertices in the texture map. In fact, the demonstration program
DEMOl in the X-Sharp archive maps a single texture across two polygons; this is the
blue-on-green pattern that stretches across two panels of the spinning ball. This capa
bility makes it easy to produce polygon-based objects with complex surfaces (such as
banding and insignia on spaceships, or even human figures). Just map the desired
texture onto the underlying polygonal framework of an object, and let double-DDA
texture mapping do the rest.

Fast Texture Mapping
Of course, there's a problem with mapping a texture across many polygons: Texture
mapping is slow. If you run DEMOl and move the ball up close to the screen, you'll
see that the ball slows considerably whenever a texture swings around into view. To
some extent that can't be helped, because each pixel of a texture-mapped polygon has
to be calculated and drawn independently. Nonetheless, we can certainly improve the
performance of texture mapping a good deal over what I presented in the previous
chapter.

By and large, there are two keys to improving PC graphics performance. The first
—no surprise—is assembly language. The second, without which assembly language is
far less effective, is understanding exactly where the cycles go in inner loops. In our
case, that means understanding where the bottlenecks are in Listing 42.1.

Listing 42.2 is a high-performance assembly language implementation of Listing 42.1.
Apart from the conversion to assembly language, this implementation improves per
formance by focusing on reducing inner loop botdenecks. In fact, the whole of Listing 42.2
is nothing more than the inner loop for texture-mapped polygon drawing; Listing 42.2 is
only the code to draw a single scan line. Most of the work in drawing a texture-mapped
polygon comes in scanning out individual lines, though, so this is the appropriate
place to optimize.

10,000 Freshly-Sheared Sheep on the Screen 0 679

LISTING 42.2 L42-2.ASM
Draws all pixels in the specified scan line, with the pixel colors
taken from the specified texture map. Uses approach of pre-stepping
1/2 pixel into the source image and rounding to the nearest source
pixel at each step, so that texture maps will appear reasonably similar
at all angles. This routine is specific to 320-pixel-wide planar
(non-Chain4) 256-color modes, such as mode X, which is a planar
(non-chain4) 256-color mode with a resolution of 320x240.
C near-callable as:

void ScanOutLineCEdgeScan * LeftEdge, EdgeScan * RightEdge);
Tested with TASM 3.0.

;Sequence Controller Index
;index in SO of Map Mask register
;segment of display memory in mode X
;width of screen in bytes from one scan line
; to the next

SC_INDEX equ 03c4h

MAP_MASK equ 02h

SCREEN_SEG equ OaOOOh

SCREEN_WIDTH equ 80

.model

.data

extrn

extrn

extrn

smal 1

_TexMapBits:word, _TexMapWidthiword, _DestY:word
_CurrentPageBase:word, _C1ipMinXrword
_ClipMinY:word, _C1ipMaxX:word, _C1ipMaxYiword

Describes the current location and stepping, in both the source and
; the destination, of an edge. Mirrors structure in DRAWTEXP.C.
EdgeScan struc

Di recti on dw ? through edge list; 1 for a right edge (forward
through vertex list), -1 for a left edge (backward
through vertex list)

Remaini ngScans dw ? height left to scan out in dest

CurrentEnd dw ? vertex # of end of current edge

SourceX dd ? X location in source for this edge

SourceY dd ? Y location in source for this edge

SourceStepX dd ? X step in source for Y step in dest of 1
SourceStepY dd ? Y step in source for Y step in dest of 1

variables used for all-integer Bresenham's-type

X stepping through the dest, needed for precise
pixel placement to avoid gaps

DestX dw ? current X location in dest for this edge

DestXIntStep dw ? whole part of dest X step per scan-line Y step
DestXDi recti on dw ? -1 or 1 to indicate which way X steps (left/right)
DestXErrTerm dw ? current error term for dest X stepping

DestXAdjUp dw ? amount to add to error term per scan line move

DestXAdjDown dw ? amount to subtract from error term when the

error term turns over

EdgeScan ends

Parms struc

dw 2 dup(?) ;return address & pushed BP
LeftEdge dw ? ;pointer to EdgeScan structure for left edge
RightEdge dw ? ;pointer to EdgeScan structure for right edge

;Offsets from BP in stack frame of local variables.
ISourceX equ -4 ;current X coordinate in source image
ISourceY equ -8 ;current Y coordinate in source image
ISourceStepX equ -12 ;X step in source image for X dest step of 1
ISourceStepY equ -16 ;Y step in source image for X dest step of 1

680 ^ Chapter 42

1XAdvanceByOne equ -18 ;used to step source pointer 1 pixel
: incrementally in X

1XBaseAdvance equ -20 ;use to step source pointer minimum number
; pixels incrementally in X

of

1YAdvanceByOne equ -22 ,-used to step source pointer 1 pixel
; incrementally in Y

1YBaseAdvance equ -24 ;use to step source pointer minimum number
; pixels incrementally in Y

of

LOCAL_SIZE equ 24 ;total size of local variables

.code

extrn

al ign

ToScanDone:

jmp
public
align

_ScanOutLine

push
mov

sub

push
push

; Nothing to do

mov

mov

cmp

jle

mov

mov

cmp

jge

sub

jle

_FixedMul mean.

2

.FixedDi vrnear

;preserve caller's stack frame

;point to our stack frame

;allocate space for local variables
jpreserve caller's register variables

ScanDone

_ScanOutLine

2

proc near

bp

bp.sp
sp,LOCAL_SIZE
si

di

if destination is fully X clipped,
di,[bp].RightEdge
si,[di].DestX

si ,[_ClipMinX]

ToScanDone ;right edge is to left of clip rect, so done
bx,[bp].LeftEdge
dx,[bx].DestX

dx,[_C1ipMaxX]
ToScanDone ;left edge is to right of clip rect, so done
si,dx ;destination fill width

ToScanDone ;null or negative full width, so done

mov ax,word ptr [bx].SourceX
mov word ptr [bp].1SourceX,ax
mov ax,word ptr [bx].SourceX+2
mov word ptr [bp].lSourceX+2,ax

;initial source X coordinate

mov ax,word ptr [bx].SourceY ;initial source Y coordinate
mov word ptr [bp].1SourceY,ax
mov ax,word ptr [bx].SourceY+2
mov word ptr [bp].lSourceY+2,ax

Calculate source steps that correspond to each 1-pixel destination X step
(across the destination scan line).

push
sub

push
mov

sub

mov

sbb

push
push
cal 1

add

mov

mov

mov

and

jns

neg

si ;push dest X width, in fixedpoint form
ax,ax

ax ;push 0 as fractional part of dest X width
ax,word ptr [di].SourceX
ax,word ptr [bp].1SourceX ;low word of source X width

dx,word ptr [di].SourceX+2
dx,word ptr [bp].1SourceX+2 ;high word of source X width
dx ;push source X width, in fixedpoint form
ax

_FixedDiv ;scale source X width to dest X width

sp,8 ;clear parameters from stack
word ptr [bp].lSourceStepX,ax ;remember source X step for
word ptr [bp].1SourceStepX+2,dx ; 1-pixel destination X step
cx,l ;assume source X advances non-negative
dx,dx ;which way does source X advance?
SourceXNonNeg ;non-negative

cx ;negative

10,000 Freshly-Sheared Sheep on the Screen ^ 681

cmp

jz
inc

SourceXNonNeg:

mov

push
sub

push
mov

sub

mov

sbb

push
push
call

add

mov

mov

mov

and

jns

neg

cmp

jz
inc

SourceYNonNeg:

mov

mov

imul

mov

ax,0 ;is the whole step exactly an integer?
SourceXNonNeg ;yes

dx ;no, truncate to integer in the direction of
; 0, because otherwise we'll end up with a
; whole step of 1-too-large magnitude

[bp].1XAdvanceByOne.cx

[bp].IXBaseAdvance.dx

;amount to add to source pointer to
; move by one in X

;minimum amount to add to source

; pointer to advance in X each time
; the dest advances one in X

;push dest Y height, in fixedpoint formSI

ax,ax

ax ;push 0 as fractional part of dest Y height
ax,word ptr [di].SourceY
ax,word ptr [bp].1SourceY
dx,word ptr [di].SourceY+2
dx,word ptr [bp].1SourceY+2
dx ;push
ax

_FixedDiv ;scale source Y height to dest X width
sp,8 ;clear parameters from stack
word ptr [bp].1SourceStepY,ax ;remember source Y step for
word ptr [bp].lSourceStepY+2,dx ; 1-pixel destination X step

;low word of source Y height

;high word of source Y height
source Y height, in fixedpoint form

cx,[_TexMapWidth]

dx,dx

SourceYNonNeg

cx

ax,0

SourceYNonNeg

dx

[bp].1YAdvanceByOne,cx

ax,[_TexMapWidth]

dx

[bp].1YBaseAdvance,ax

assume source Y advances non-negative

which way does source Y advance?

non-negati ve

negati ve

is the whole step exactly an integer?
yes

no, truncate to integer in the direction of
0, because otherwise we'll end up with a
whole step of 1-too-large magnitude

amount to add to source pointer to
move by one in Y

minimum distance skipped in source
image bitmap when Y steps (ignoring
carry from the fractional part)

Advance 1/2 step in the stepping direction, to space scanned pixels evenly
between the left and right edges. (There's a slight inaccuracy in dividing
negative numbers by 2 by shifting rather than dividing, but the inaccuracy
is in the least significant bit, and we'll just live with it.)

mov ax,word ptr [bp].1SourceStepX
mov dx,word ptr [bp].1SourceStepX+2
sar dx,l

rcr ax,l

add word ptr [bp].lSourceX,ax
adc word ptr [bp].1SourceX+2,dx

mov ax,word ptr [bp].1SourceStepY
mov dx,word ptr [bp].1SourceStepY+2
sar dx,l

rcr ax,l

add word ptr [bp].lSourceY,ax
adc word ptr [bp].1SourceY+2,dx

Clip right edge if necessary,
mov si,[di].DestX

cmp si,[_C1ipMaxX]
jl RightEdgeClipped
mov si,[_C1ipMaxX]

682 @ Chapter 42

RightEdgeClipped:
; Clip left edge if necssary

mov bx,[bp].LeftEdge
mov di,[bx].DestX

cmp di,[_C11pM1nX]
jge LeftEdgeClipped

; Left clipping is necessary; advance the source accordingly
neg di

add di,[_C1ipMinX] ;ClipMinX - DestX
;first, advance the source in X

push di ;push ClipMinX - DestX, in fixedpoint form
sub ax,ax

push ax ;push 0 as fractional part of C1ipMinX-DestX
push word ptr [bp].1SourceStepX+2
push word ptr [bp].1SourceStepX
call _FixedMul ;total source X stepping in clipped area
add sp,8 ;clear parameters from stack
add word ptr [bp].lSourceX,ax ;step the source X past clipping
adc word ptr [bp].1SourceX+2,dx

;now advance the source in Y

push di ;push ClipMinX - DestX, in fixedpoint form
sub ax,ax

push ax ;push 0 as fractional part of C1ipMinX-DestX
push word ptr [bp].1SourceStepY+2
push word ptr [bp].ISourceStepY
call _FixedMul ;total source Y stepping in clipped area
add sp,8 ;clear parameters from stack
add word ptr [bp].1SourceY,ax ;step the source Y past clipping
adc word ptr [bp].1SourceY+2,dx
mov di,[_C1ipMinX] ;start X coordinate in dest after clipping

LeftEdgeClipped:
; Calculate actual clipped destination drawing width,

sub si,di

; Scan across the destination scan line, updating the source image position
; accordingly.
; Point to the initial source image pixel, adding 0.5 to both X and Y so that
; we can truncate to integers from now on but effectively get rounding,

add word ptr [bp].1SourceY,8000h ;add 0.5
mov ax,word ptr [bp].1SourceY+2
adc ax,0

mul [_TexMapWidth] ;initial scan line in source image
add word ptr [bp].1SourceX,8000h ;add 0.5
mov bx,word ptr [bp].1SourceX+2 ;offset into source scan line
adc bx,ax ;initial source offset in source image
add bx,[_TexMapBits] ;DS:BX points to the initial image pixel

; Point to initial destination pixel,
mov ax,SCREEN_SEG

mov es,ax

mov ax,SCREEN_WIDTH

mul [_DestY] ;offset of initial dest scan line

mov cx,di ;initial destination X

shr di ,l

shr di,l ;X/4 = offset of pixel in scan line
add di,ax ;offset of pixel in page
add di,[_CurrentPageBase] ;offset of pixel in display memory

;ES:DI now points to the first destination pixel

and cl,011b ;CL = pixel's plane
mov al,MAP_MASK

mov dx,SC_INDEX

out dx,al ;point the SC Index register to the Map Mask

10,000 Freshly-Sheared Sheep on the Screen ^ 683

mov al,llh ;one plane bit in each nibble, so we'll get carry
; automatically when going from plane 3 to plane 0

al,cl ;set the bit for the first pixel's plane to 1
step is negative, change over to working with non-negative

shl

; If source

; values.

cmp

jge

neg

not

SXStepSet:

; If source Y step is negative, change over to working with non-negative
; values.

cmp

jge

neg

not

SYStepSet:

At this point:
AL = initial pixel's plane mask
BX = pointer to initial image pixel
SI = # of pixels to fill
DI = pointer to initial destination pixel

word ptr [bp].1XAdvanceByOne,0
SXStepSet

word ptr [bp].1SourceStepX
word ptr [bp].1SourceX

word ptr [bp].1YAdvanceByOne,0
SYStepSet

word ptr [bp].1SourceStepY
word ptr [bp].1SourceY

dx,SC_INDEX+l ;point to SC Data; Index points to Map Mask

;get image pixel
;set image pixel

bx,[bp].1XBaseAdvance ;advance the minimum # of pixels in X
cx,word ptr [bp].1SourceStepX

mov

TexScanLoop:

; Set the Map Mask for this pixel's plane, then draw the pixel,
out dx,al

mov ah,[bx]

mov es:[di],ah

; Point to the next source pixel,
add

mov

add

jnc

add

NoExtraXAdvance:

add

mov

add

jnc

add

NoExtraYAdvance:

; Point to the next destination pixel , by cycling to the next plane,
; advancing to the next address if the plane wraps from 3 to 0.

word ptr [bp].lSourceX,cx
NoExtraXAdvance

bx,[bp].1XAdvanceByOne

step the source X frac

bx,[bp].1YBaseAdvance
cx,word ptr [bp].ISourceStepY
word ptr [bp].1SourceY,cx ;step the source Y frac

bx,[bp].1YAdvanceByOne ;did turn over; advance

tional part
;didn't turn over; no extra advance

;did turn over; advance X one extra

;advance the minimum of pixels in Y

tional part
NoExtraYAdvance ;didn't turn over; no extra advance

Y one extra

and

rol al .1

adc di ,0

; Continue if there are any more dest pixels to draw.

dec si

jnz TexScanLoop

ScanDone:

pop di ;restore caller's

pop si

mov sp.bp ;deallocate local

pop bp ;restore caller's

ret

_ScanOutL1ne endp

end

register variables

vari ables

stack frame

Within Listing 42.2, all the important optimization is in the loop that draws across
each destination scan line, near the end of the listing. One optimization is elimination
of the call to the set-pixel routine used to draw each pixel in Listing 42.1. Function

684 ^ Chapter 42

calls are expensive operations, to be avoided when performance matters. Also, although
Mode X (the undocumented 320x240 256-color VGA mode X-Sharp runs in) doesn't
lend itself well to pixel-oriented operations like line drawing or texture mapping, the
inner loop has been set up to minimize Mode X s overhead. A rotating plane mask is
maintained in AL, with DX pointing to the Map Mask register; thus, only a rotate and
an OUT are required to select the plane to which to write, cycling from plane 0 through
plane 3 and wrapping back to 0. Better yet, because we know that we re simply stepping
horizontally across the destination scan line, we can use a clever optimization to both
step the destination and reduce the overhead of maintaining the mask. Two copies of the
current plane mask are maintained, one in each nibble of AL. (The Map Mask register
pays attention only to the lower nibble.) Then, when one copy rotates out of the lower
nibble, the other copy rotates into the lower nibble and is ready to be used. This ap
proach eliminates the need to test for the mask wrapping from plane 3 to plane 0, all
the more so because a carry is generated when wrapping occurs, and that carry can be
added to DI to advance the screen pointer. (Check out the next chapter, however, to
see the best Map Mask optimization of all—setting it once and leaving it unchanged.)

In all, the overhead of drawing each pixel is reduced from a call to the set-pixel
routine and full calculation of the screen address and plane mask to five instructions
and no branches. This is an excellent example of converting full, from-scratch calcula
tions to incremental processing, whereby only information that has changed since the
last operation (the plane mask moving one pixel, for example) is recalculated.

Incremental processing and knowing where the cycles go are both important in the
final optimization in Listing 42.2, speeding up the retrieval of pixels from the texture
map. This operation looks very efficient in Listing 42.1, consisting of only two adds
and the macro GET_ IMAGE_PIXEL. However, those adds are fixed-point adds, so
they take four instructions apiece, and the macro hides not only conversion from fixed-
point to integer, but also a time-consuming multiplication. Incremental approaches are
excellent at avoiding multiplication, because cumulative additions can often replace
multiplication. That's the case with stepping through the source texture in Listing 42.2; ten
instructions, with a maximum of two branches, replace all the texture calculations of
Listing 42.1. Listing 42.2 simply detects when the fractional part of the source x or y
coordinate turns over and advances the source texture pointer accordingly.

As you might expect, all this optimization is pretty hard to implement, and makes
Listing 42.2 much more complicated than Listing 42.1. Is it worth the trouble? Indeed
it is. Listing 42.2 is more than twice as fast as Listing 42.1, and the difference is very
noticeable when large, texture-mapped areas are animated. Whether more than dou
bling performance is significant is a matter of opinion, I suppose, but imagine that
you're in William Gibson's Neuromancer, trying to crack a corporate database. Which
texture-mapping routine would you rather have interfacing you to Cyberspace?

I'm always interested in getting your feedback on and hearing about potential im
provements to X-Sharp. Contact me through the publisher, or else as mabrash@bix.com.
There is no truth to the rumor that I can be reached under the alias "sheep-shearer," at
least not for another 9,999 sheep.

Using the Whole-Brain Approach to Accelerate
Texture Mapping

I've had the pleasure recently of rereading several of the works of Robert A. Heinlein,
and I'm as impressed as I was as a teenager—but in a different way. The first time
around, I was wowed by the sheer romance of technology married to powerful stories;
this time, I'm struck most of all by The Master's remarkable prescience. "Blowups
Happen" is about the risks of nuclear power, and their effects on human psychology—
written before a chain reaction had ever happened on this planet. "Solution Unsatis
factory" is about the unsolvable dilemma—ultimate offense, no defense—posed by
atomic weapons; this in 1941. And in Between Planets (1951), consider this minor bit
of action:

The doctor's phone regretted politely that Dr. Jefferson was not at home and
requested him to leave a message. He was dictating it when a warm voice inter
rupted: Tm at home to you, Donald. Where are you, lad?'

Predicting the widesptead use of answering machines is perhaps not so remarkable, but
foreseeing that they would be used for call screening is-, technology is much easier to
extrapolate than are social patterns.

Even so, Heinlein was no prophet; his crystal ball was just a little less fuzzy than
ours. The aforementioned call in Between Planets was placed on a viewphone; while
that technology has indeed come to pass, its widespread use has not. The ultimate
weapon in "Solution Unsatisfactory" was radioactive dust, not nuclear bombs, and we

686 ^ Chapter 43

have somehow survived nearly 50 years of nuclear weapons without either acquiring a
world dictator or destroying ourselves. Slide rules are all over the place in Heinleins
works, and in one story (the name now lost to memory), an astronaut straps himself
into a massive integral calculator; computers are nowhere to be found.

Most telling, I think, is that in "Blowups Happen," the engineers running the nuclear
power plant—at considerable risk to both body and sanity—are the best of the best,
highly skilled in math and required to ride the nuclear reaction on a second-to-second
basis, with the risk of an explosion that might end life on Earth, and would surely kill
them, if they slip. Contrast that with our present-day reality of nuclear plants run by
generally competent technicians, with the occasional report of shoddy maintenance
and bored power-plant employees using drugs, playing games, and falling asleep while
on duty. Heinlein s universe makes for a better story, of course, but, more than that, it
shows the filters and biases through which he viewed the world. At least in print,
Heinlein was an unwavering believer in science, technology, and rationality, and in his
stories it is usually the engineers and scientists who are the heroes and push civilization
forward, often kicking and screaming. In the real world, I have rarely observed that to
be the case.

But of course Heinlein was hardly the only person to have his or her perceptions of
the universe, past, present, or future, blurred by his built-in assumptions; you and I, as
programmers, are also on that list—and probably pretty near the top, at that. Perfor
mance programming is basically a process of going from the general to the specific,
special-casing the code so that it does just what it has to, and no more. The greatest
impediment to this process is seeing the problem in terms of what the code currently
does, or what you already know, thereby ignoring many possible solutions. Put another
way, how you look at an optimization problem determines how you'll solve it; your
assumptions may speed and simplify the process, but they are also your limitations.
Consider, for example, how a seemingly intractable problem becomes eminently trac
table the instant you learn that someone else has solved it.

As Exhibit #1,1 present my experience with speeding up the texture mapper in
X-Sharp.

Texture Mapping Redux
We've spent the previous several chapters exploring the X Sharp graphics library, some
thing I built over time as a serious exercise in 3-D graphics. When X-Sharp reached the
point at which we left it at the end of the previous chapter, I was rather pleased with
it—^with one exception.
My last addition to X-Sharp was a texture mappery a routine that warped and rotated any

desired bitmap to map onto an arbitrary convex polygon. Texture mappers are critical to
good 3-D games; just a few texture-mapped polygons, backed with well-drawn bitmaps,
can represent more detail and look more realistic than dozens or even hundreds of

Heinlein's Crystal Ball, Spock's Brain, and the 9-Cycle Dare ^ 687

solid-color polygons. My X-Sharp texture mapper was in reasonable assembly—pretty
good code, by most standards!—and I felt comfortable with my implementation; but
then I got a letter from John Miles, who was at the time getting seriously into 3-D and
is now the author of a 3-D game library. (Yes, you can license it from his company,
Non-Linear Arts, if you'd like; John can be reached at 70322.2457@compuserve.com.)
John wrote me as follows: "Hmm, so that's how texture-mapping works. But 3 jumps
perpixeP. Hmph!"

It was the "Hmph" that really got to me.

Left-Brain Optimization
That was the first shot of juice for my optimizer (or at least blow to my ego, which can
be just as productive). John went on to say he had gotten texture mapping down to 9
cycles per pixel and one jump per scanline on a 486 (all cycle times will be for the 486
unless otherwise noted); given that my code took, on average, about 44 cycles and 2
taken jumps (plus 1 not taken) per pixel, I had a long way to go.
The inner loop of my original texture-mapping code is shown in Listing 43.1. All

this code does is draw a single texture-mapped scanline, as shown in Figure 43.1; an
outer loop runs through all the scanlines in whatever polygon is being drawn. 1 imme
diately saw that 1 could eliminate nearly 10% of the cycles by unrolling the loop;
obviously, John had done that, else there's no way he could branch only once per
scanline. (By the way, branching only once per scanline via a fully unrolled loop is not
generally recommended. A branch every few pixels costs relatively little, and the cache
effects of fidly unrolled code are not%ooA) 1 quickly came up with several other ways
to speed up the code, but soon realized that all the clever coding in the world wasn't

Sourca Taxtura bitmap

Deetmatlon Polygon on Screen

Figure 43.1 Texture Mapping a Singie Horizontai Scaniine

688 ^ Chapter 43

going to get me within 100% of Johns performance so long as I had to cycle from one
plane to the next for every pixel.

LISTING 43.1 L43-1.ASM
Inner loop to draw a single texture-mapped horizontal scanline In
Mode X, the VGA's page-flipped 256-color mode. Because adjacent
pixels lie in different planes in Mode X, an OUT must be performed
to select the proper plane before drawing each pixel.

At this point:
AL = initial pixel's plane mask
DS:BX = initial source texture pointer
DX = pointer to VGA's Sequencer Data register
SI = # of pixels to fill
ES:DI = pointer to initial destination pixel

TexScanLoop:

; Set the Map Mask for this pixel's plane, then draw the pixel,

out dx.al

mov ah.Cbx] ;get texture pixel
mov es:[di],ah ;set screen pixel

; Point to the next source pixel.

add bx,[bp].1XBaseAdvance ;advance the minimum # of pixels in X
mov cx,word ptr [bp].1SourceStepX
add word ptr [bp].ISourceX.cx
jnc NoExtraXAdvance

add bx,[bp].lXAdvanceByOne
NoExtraXAdvance:

step the source X fractional part
didn't turn over; no extra advance

did turn over; advance X one extra

add bx,[bp].lYBaseAdvance ;advance the minimum # of pixels in Y
mov ex.word ptr [bp].1SourceStepY
add word ptr [bp].1SourceY.cx
jnc NoExtraYAdvance

add bx,[bp].1YAdvanceByOne
NoExtraYAdvance:

step the source Y fractional part
didn't turn over; no extra advance

did turn over; advance Y one extra

; Point to the next destination pixel, by cycling to the next plane, and
; advancing to the next address if the plane wraps from 3 to 0.

rol al,l

adc di,Q

; Continue if there are any more dest pixels to draw.

dec si

jnz TexScanLoop

Figure 43.2 shows why this cycling is necessary. In Mode X, the page-flipped 256-
color mode of the VGA, each successive pixel across a scanline is stored in a different
hardware plane, and an OUT to the VGA's hardware is needed to select the plane
being drawn to. (See the three chapters of Part VIII for details.) An OUT instruction

Heinlein's Crystal Ball, Spock's Brain, and the 9-Cycle Dare ® 689

Pixels on Screen

0 255 15 1 0 0

Plane 0 \ Plane 1 \ Plane 2 \ Plane 3

i
Display Memory

Figure 43.2 Display Memory Organization in Mode X

by itselftikes 16 q^cles (and in the neighborhood of 30 cycles in virmai-86 or non-
privileged protected mode), and an ROL takes 2 more, for a total of 18 cycles, double
John's 9 cycles, just to handle plane management. Clearly, getting plane control out of
the inner loop was absolutely necessary.

I must confess, with some embarrassment, that at this point I threw myself into
designing a solution that involved executing the texture mapping code up to four times
per scanline, once for the pixels in each plane. It's hard to overstate the complexity of
this approach, which involves quadrupling the normal pixel-to-pixel increments, ad
justing the start value for each of the passes, and dealing with some nasty boundary
cases. Make no mistake, the code was perfectly doable, and would in fact have gotten
plane control out of the inner loop, but would have been very difficult to get exactly
right, and would have suffered from substantial overhead.

Fortunately, in the last sentence I was able to say "would have," not "was," because
my friend Chris Hecker (checker@bix.com) came along to toss a figurative bucket of
cold water on my right brain, which was evidently asleep. (Or possibly stolen by scant
ily-clad, attractive aliens; remember "Spock's Brain"?) Chris is the author of the WinG
Windows game graphics package, available from Microsoft via FTP, CompuServe, or
MSDN Level 2; if, like me, you were at the Game Developers Conference in April
1994, you, along with everyone else, were stunned to see Id's megabit DOOM run
ning at full speed in a window, thanks to WinG. If you write games for a living, run,
don't walk, to check WinG out!

690 ^ Chapter 43

Chris listened to my proposed design for ail of maybe thirty seconds, growing vis
ibly more horrified by the moment, before he said, "But why don't you just draw
vertical rather than horizontal scanlines?"

Why indeed?

A 90-Degree Shift In Perspective
As I said above, how you look at an optimization problem defines how you'll be able to
solve it. In order to boost performance, sometimes it's necessary to look at things from
a different angle—and for texture mapping this was literally as well as figuratively true.
Chris suggested nothing more nor less than scanning out polygons at a 90-degree angle
to normal, starting, say, at the left edge of the polygon, and texture-mapping verticdly
along each column of pixels, as shown in Figure 43.3. That way, all the pixels in each
texture-mapped column would be in the same plane, and I would need to change
planes only between columns—outside the inner loop. A trivial change, not fimdamental
in any sense—and yet just that one change, plus unrolling the loop, reduced the inner
loop to the 22-cycles-per-pixel version shown in Listing 43.2. That's exactly twice as
fast as Listing 43.1—and given how incredibly slow most VGAs are at completing
OUTs, the real-world speedup should be considerably greater still. (The fastest byte
OUT I've ever measured for a VGA is 29 cycles, the slowest more than 60 cycles; in the
latter case. Listing 43.2 would be on the order ofWartimes faster than Listing 43.1.)

LISTING 43.2 L43-2.ASIVI
; Inner loop to draw a single texture-mapped vertical column, rather
; than a horizontal scanline. This allows all pixels handled
; by this code to reside in the same plane, so the time-consuming
; plane switching can be moved out of the inner loop.

All pixels In this column are in the same plane.

A

r

y

►

\
r /v

Source Texture Ditmap
V

\1 /
1^

Destination Polygon on 6creen

Figure 43.3 Texture Mapping a Single Vertical Column

Heinlein's Crystal Ball, Spock's Brain, and the 9-Cycle Dare ^ 691

At this point:
DS:BX = initial source texture pointer
DX = offset to advance to the next pixel in the dest column

(either positive or negative scanline width)
SI = # of pixels to fill
ESrDI = pointer to initial destination pixel
VGA set up to draw to the correct plane for this column

REPT LOOP_UNROLL

; Set the Map Mask for this pixel's plane, then draw the pixel.

mov ah.Ebx] ;get texture pixel
mov es:Cdi],ah ;set screen pixel

; Point to the next source pixel.

add bx.[bp].lXBaseAdvance ;advance the minimum # of pixels in X
mov ex.word ptr [bp].1SourceStepX
add word ptr [bp]. 1 SourceX.cx ;step the source X fractional part
jnc NoExtraXAdvance ;didn't turn over; no extra advance
add bx.[bp].lXAdvanceByOne ;did turn over; advance X one extra

NoExtraXAdvance:

add bx,[bp].lYBaseAdvance -.advance the minimum # of pixels in Y
mov cx.word ptr [bp].1SourceStepY
add word ptr [bp]. 1 SourceY.cx ;step the source Y fractional part
jnc NoExtraYAdvance ;didn't turn over; no extra advance
add bx.[bp].lYAdvanceByOne ;did turn over; advance Y one extra

NoExtraYAdvance:

; Point to the next destination pixel, which is on the next scan line,

adc di.dx

ENDM

I'd like to emphasize that algorithmically and conceptually, there is no diflference
between scanning out a polygon top to bottom and scanning it out left to right, it is
only in conjunction with the hardware organization oF Mode X that the scanning
direction matters in the least.

That's what Zen programming is aii ahout, though; tying together
two pieces ofseemingiy unrelated information to good effect—and
that's what I had failed to do. Like Kohert Heinlein—like ail of us I
had viewed the world through a filter oomposed of my ingrained as
sumptions, and one of those assumptions, hased on all my past
experience, was that pixel processing proceeds left to right. Eventu
ally, I might have come up with Chris's approach; hut I would only
have come up with it when and if I relaxed and stepped haok a little,
and allowed myself—almost dared myself—to think of it. When you're
optimizing, he sure to leave quiet, nondirected time in which to con
jure up those less ohvious solutions, and periodically try to figure
out what assumptions you're making—and then question them!

692 ^ Chapter 43

There are a few cxjmplications with Chris's approach, not least that X-Sharp's polygon-
filling convention (top and left edges included, bottom and right edges excluded) is hard to
reproduce for column-oriented texture mapping. I solved this in X-Sharp version 22
by tweaking the edge-scanning code to allow column-oriented texture mapping to
match the current convention. (You'll find X-Sharp 22 on the listings diskette in the
directory for this chapter.)

Chris also illustrated another important principle of optimization: A second pair of
eyes is invaluable. Even the best of us have blind spots and get caught up in particular
implementations; if you bounce your ideas off someone, you may well find them com
ing back with an unexpected—and welcome—spin.

That's Nice—But It Sure as Heck Ain't 9 Cycles
Excellent as Chris's suggestion was, I still had work to do: Listing 43.2 is still more than
twice as slow as John Miles's code. Traditionally, I start the optimization process with
algorithmic optimization, then try to tie the algorithm and the hardware together for maxi
mum efficiency, and finish up with instruction-by-instruction, take-no-prisoners optimiza
tion. "We've already done the first two steps, so it's time to get down to the bare metal.

Listing 43.2 contains three functional parts: Drawing the pixel, advancing the des
tination pointer, and advancing the source texture pointer. Each of the three parts is
amenable to further acceleration.

Drawing the pixel is difficult to speed up, given that it consists of only two instruc
tions—diflficult, but not impossible. True, the instructions themselves are indeed irre
ducible, but if we can get rid of the ES: prefix (and, as we shall see, we can), we can
rearrange the code to make it run faster on the Pentium. Without a prefix, the instruc
tions execute as follows on the Pentium:

MOV AH.CBX] :cycle 1 U-pipe
:cycle 1 V-pIpe idle: reg contention

MOV CDI].AH ;cyc1e 2 U-pipe

The second MOV, being dependent on the value loaded into AH by the first MOV,
can't execute until the first MOV is finished, so the Pentium's second pipe, the V-pipe,
lies idle for a cycle. We can reclaim that cycle simply by shuffling another instruction
between the two MOVs.

Advancing the destination pointer is easy to speed up: Just build the offset from one
scanline to the next into each pixel-drawing instruction as a constant, as in

MOV [EDI+SCANOFFSET],AH

and advance EDI only once per unrolled loop iteration.
Advancing the source texture pointer is more complex, but correspondingly more

rewarding. Listing 43.2 uses a variant form of 32-bit fixed-point arithmetic to advance

Heinlein's Crystal Ball, Spock's Brain, and the 9-Cycle Dare ^ 693

the source pointer, with the source texture coordinates and increments stored in 16.16
(16 bits of integer, 16 bits of fraction) format. The source coordinates are stored in a
slightly unusual format, whereby the fractional X and Y coordinates are stored and
advanced separately, but a single integer value, the source pointer, is used to reflect
both the X and Y coordinates. In Listing 43.2, the integer and firactional parts are added
into the current coordinates with four separate 16-bit operations, and carries from
fractional to integer parts are detected via conditional jumps, as shown in Figure 43.4.
There's quite a lot we can do to improve this.

I
Add integer X Increment

to S'^urcej^inter^^^^

Add fractional X increment

to fractional X coordinate

I

Add integer Y increment
to oource pointer

I
Add fractional Y increment

to fractional Y coordinate

T
Carry from

fractional addition?

Yes
No

Advance eource pointer

Advance source pointer
one more pixel in X

Yes

Carry from
fractional addition?

Figure 43.4 Original Method for Advancing the Source Texture Pointer

694 ^ Chapter 43

First, we can sum the X and Y integer advance amounts outside the loop, then add
them both to the source pointer with a single instruction. Second, we can recognize
that X advances exactly one extra byte when its fractional part carries, and use ADC to
account for X carries, as shown in Figure 43.5. That single ADC can add in not only
any X carry, but both the X and Y integer advance amounts as well, thereby eliminat
ing a good chunk of the source-advance code in Listing 43.2. Furthermore, we should
somehow be able to use 32-bit registers and instructions to help with the 32-bit fixed-
point arithmetic; true, the size override prefix (because we're in a 16-bit segment) will
cost a cycle per 32-bit instruction, but that's better than the 3 cycles it takes to do 32-
bit arithmetic with 16-bit instructions. It isn't obvious, but there's a nifiy trick we can
use here, again courtesy of Chris Hecker (who, as you can tell, has done a fair amount
of thinking about the complexities of texture mapping).
We can store the current fractional parts of both the X and Y source coordinates in

a single 32-bit register, EDX, as shown in Figure 43.6. It's important to note that the Y
fraction is actually only 15 bits, with bit 15 of EDX always kept at zero; this allows bit
15 to store the carry status from each Y advance. We can similarly store the fractional
X and Y advance amounts in ECX, and can store the sum of the integer parts of the X
^itd Y advance amounts in BP. With this arrangement, the single instruction ADD
EDX,ECX advances the fractional parts of both X and Y, and the following instruction

Add fractional X increment

to fractional X coordinate

Add integer X increment, integer Y
increment, and carry from last

operation to source pointer with ADC

I

Add fractional Y increment I

to fractional Y coordinate |

I

Yes No

Adyax\ce source pointer
one more pixel in Y

Figure 43.5 Efficient Metliod for Advancing Source Texture Pointer

Heinlein's Crystal Ball, Spock's Brain, and the 9-Cycle Dare ^ 695

Fractional Y Carry

Fractional X Fractional Y i

Coordinate (16 bits) Coordmate (15 bits) |

Bit 51 Bit 16 Bit 14

Bit 15

BitO

Figure 43.6 Storing Both X and Y Fractional Coordinates In One Register

ADC SI,BP finishes advancing the source pointer in X. That's a mere 3 cycles, and all
that remains is to finish advancing the source pointer in Y.

Actually, we also advanced the source pointer by the Y integer amount back when
we added BP to SI; all that's left is to detect whether our addition to the Y fractional
current coordinate produced a carry. That's easily done by testing bit 15 of EDX; if it's
zero, there was no carry and we're done; otherwise, Y carried, so we have to reset bit 15
and advance the source pointer by one scanline. The resulting program flow is shown
in Figure 43.7. Note that unlike the X fractional addition, we can't get away with just
adding in the carry from the Y fractional addition, because when the Y fraction carries,
it indicates a move not from one pixel to the next on a scanline (a single byte), but
rather from one scanline to the next (a full scanline width).

All of the above optimizations together get us to 10 cycles—very dost to John Miles,
but not there yet. We have one more trick up our sleeve, though: Suppose we point SS
to the segment containing our textures, and point DS to the screen? (This requires
either setting up a stack in the texture segment or ensuring that interrupts and other
stack activity can't happen while SS points to that segment.) Then, we could swap the
functions of SI and BP; that would let us use BP, which accesses SS by default, to get at
the textures, and DI to access the screen—all with no segment prefixes at all. By gosh,
that would get us exactly one more cycle, and would bring us down to the same 9
cycles John Miles attained; Listing 43.3 shows that code. At long last, the Holy Grail
attained and our honor defended, we can rest.

Or can we?

LISTING 43.3 L43-3.ASIVI
Inner loop to draw a single texture-mapped vertical column,
rather than a horizontal scanline. Maxed-out 16-bit version.

At this point:
AX = source pointer increment to advance one in Y
ECX = fractional Y advance in lower 15 bits of CX,

696 ^ Chapter 43

Add both fractional X and fractional Y

increments to fractional coordinates

with a single 32-bit ADO

I

Carry from fractional Y addition?

(3it 15 of result of 32-bit ADD)

Add integer X increment, integer Y
increment, and carry from last

operation to source pointer with ADC

Yes . No

Advance source pointer
one more pixel in Y

Reset bit 15 of 32-bit fractional

coordinate accumulator

Figure 43.7 Final Method for Advancing Source Texture Pointer

fractional X advance in high word of ECX, bit
15 set to 0

EDX = fractional source texture Y coordinate in lower
15 bits of CX, fractional source texture X coord
in high word of ECX, bit 15 set to 0

SI = sum of integral X & Y source pointer advances
DSrDI = initial destination pointer
SS:BP = initial source texture pointer

SCANOFFSET-0

REPT LOOP_UNROLL

mov bl,[bp]
mov [di+SCANOFFSET],bl

add edx.ecx

adc bp,si

test dh,80h

jz @F

;get texture pixel
;set screen pixel

jadvance frac Y in DX,
; frac X in high word of EDX
;advance source pointer by integral
; X & Y amount, also accounting for
; carry from X fractional addition

;carry from Y fractional addition?

;no

Heinlein's Crystal Ball, Spock's Brain, and the B-Cycle Dare @ 697

add bp,ax ;yes, advance Y by one
and dh.not 80h ;reset the Y fractional carry bit

SCANOFFSET = SCANOFFSET + SCANWIDTH

ENDM

Don't Stop Thinldng about Those Cycles
Remember what I said at the outset, that knowing something has been done makes it
much easier to do? A corollary is that pushing past that point, once attained, is very
diflficult. It's only natural to want to relax in the satisfaction of a job well done; then,
too, the very nature of the work changes. Getting from 44 cycles down to John's 9
cycles was a huge leap, but we knew it could be done—therefore the nature of the
problem was to figure out how it was done; in cases like this, if we're sharp enough (and
of course we are!), we're guaranteed eventual gratification. Now that we've reached
John's level of performance, the problem becomes whether the code can be made faster
yet, and that's a different kettle of fish altogether, for it may well be that after thinking
about it for a while, we'll conclude that it can't. Not only will we have wasted time, but
we'll also never be sure we were right; we'll know only that couldn't find a solution.
That way lies madness.
And yet—someone has to blaze the trail to higher performance, and that someone

might as well be us. Let's look for weaknesses in Listing 43.3. None are readily appar
ent; the only cycle that looks even slightly wasted is the size preftx on ADD EDX,ECX.
As it turns out, that cycle really is wasted, for there's a way to make the size prefix
vanish without losing the benefits of 32-bit instructions: Move the code into a 32-bit
segment and make alltke instructions 32-bit. That's what Listing 43.4 does; this code
is similar to Listing 43.3, but runs in 8 cycles per pixel, a 12.5% speedup over Listing
43.3. Whether Listing 43.4 actually draws more pixels per second than Listing 43.3
depends on whether display memory is fast enough to handle pbcels as rapidly as List
ing 43.4 can deliver them. That speed, one pixel every 122 nanoseconds on a 486/66,
is one that ISA adapters can't hope to match, but fast VLB and PCI adapters can
handle with ease. Be aware, too, that cache misses when reading the source texture will
generally reduce performance below the calculated 8-cycles-per-pixel level, especially
because textures, which can be scanned across at any angle, are rarely accessed at con
secutive addresses, which is the arrangement that would make for the fewest cache
misses.

LISTING 43.4 L43-4.ASM
Inner loop to draw a single texture-mapped vertical column,
rather than a horizontal scanline. Maxed-out 32-bit version.

At this point:
EAX = sum of integral X & Y source pointer advances

698 @ Chapter 43

ECX

EDX

ESI

EDI

EBP

source pointer Increment to advance one in Y

fractional source texture Y coordinate in lower
15 bits of DX, fractional source texture X coord
in high word of EDX, bit 15 set to 0

initial source texture pointer
initial destination pointer
fractional Y advance in lower 15 bits of BP,
fractional X advance in high word of EBP, bit
15 set to 0

SCAN0FFSET=0

REPT LOOP_UNROLL

mov bl ,[esi]

add edx,ebp

adc esi,eax

mov [edi+SCANOFFSET],bl

test dh,80h

jz short @F

add esi,ecx

and dh,not 80h

;get image pixel
;advance frac Y in DX,
; frac X in high word of EDX
jadvance source pointer by integral
; X & Y amount, also accounting for
: carry from X fractional addition

:set screen pixel
; (located here to avoid 486

; AGI from previous byte op)
;carry from Y fractional addition?

;no

;yes, advance Y by one
; (produces Pentium AGI for MOV BL,[ESI])
;reset the Y fractional carry bit

SCANOFFSET = SCANOFFSET + SCANWIDTH

ENDM

And there you have it: A five to ten-times speedup of a decent assembly language
texture mapper. All it took was some help from my friends, a good, stiff jolt of right-
brain thinking, and some solid left-brain polishing—plus the knowledge that such a
speedup was possible. Treat every optimization task as if John Miles has just written to
inform you that he's made it faster than your wildest dreams, and you'll be amaT^ at
what you can do!

Texture Mapping Notes
Listing 43.3 contains no 486 pipeline stalls; it has Pentium stalls, but not much can be
done for them because of the size prefix on ADD EDX,ECX, which takes 1 cycle to go
through the U-pipe, and shuts down the V-pipe for that cycle. Listing 43.4, on the
other hand, has been rearranged to eliminate all Pentium stalls save one. When the Y
coordinate fractional part carries and ESI advances, the code executes as follows:

ADO ESI.ECX

AND DH.NOT 80H
; cycle 1 U-pipe
;cycle 1 V-pipe
;cycle 2 idle AGI on ESI

Heinlein's Crystal Ball, Spock's Brain, and the 9-Oycle Dare ^ 699

MOV BL,[ESI] ;cycle 3 U-pipe
ADD EDX.EBP ;cycle 3 V-pipe

However, I don t see any way to eliminate this last AGI, which happens about half the
time; even with it, the Pentium execution time for Listing 43.4 is 5.5 cycles. That's 61
nanoseconds—a highly respectable 16 million texture-mapped pixels per second—on
a 90 MHz Pentium.

The type of texture mapping discussed in both this and earlier chapters doesn't do
perspective correction when mapping textures. Why that is and how to handle per
spective correction is a topic for a whole separate book, but be aware that the textures
on some large polygons (not the polygon edges themselves) drawn with the code in this
chapter will appear to be unnaturally bowed, although small polygons should look fine.

Finally, we never did get rid of the last jump in the texture mapper, yet John Miles
claimed no jumps at all. How did he do it? I'm not sure, but I'd guess that he used a
two-entry look-up table, based on the Y carry, to decide how much to advance the
source pointer in Y. However, I couldn't come up with any implementation of this
approach that didn't take 0.5 to 1 cycle more than the test-and-jump approach, so
either I didn't come up with an adequately efficient implementation of the table, John
saved a cycle somewhere else, or perhaps John implemented his code in a 32-bit seg
ment, but used the less-efficient table in his fervor to get rid of the final jump. The
knowledge that I apparently came up with a different solution than John highlights
that the technical aspects of John's implementation were, in truth, totally irrelevant to
my optimization efforts; the only actual effect John's code had on me was to make me
believe a texture mapper could run that fast.

Believe it! And while you're at it, give both halves of your brain equal time—and
watch out for aliens in short skirts, 60's bouffant hairdos, and an undue interest in

either half.

What BSP Trees Are and How to Walk Them

The answer is; Wendy Tucker.
The question that goes with that answer isn't particularly interesting to anyone but

me—but the manner in which I came up with the answer is.
I spent many of my childhood summers at Camp Chingacook, on Lake George in

New York. It was a great place to have fun and do some growing up, with swimming
and sailing and hiking and lots more.
When I was fourteen, Camp Chingacook had a mixer with a nearby girls' camp. As

best I can recall, I had never had any interest in girls before, but after the older kids had
paired up, I noticed a pretty girl looking at me and, with considerable trepidation, I
crossed the room to talk to her. To my amazement, we hit it off terrifically. We talked
non-stop for the rest of the evening, and I walked back to my cabin floating on air. I
had taken a first, tentative step into adulthood, and my world would never be quite the
same.

That was the only time I ever saw her, although I would occasionally remember that
warm glow and call up an image of her smiling face. That happened less frequently as
the years passed and I had real girlfriends, and by the time I got married, that particular
memory was stashed in some back storeroom of my mind. I didn't think of her again
for more than a decade.

A few days ago, for some reason, that mixer popped into my mind as I was trying to
fall asleep. And I wondered, for the first time in 20 years, what that girl's name was.
The name was there in my mind, somewhere; I could feel the shape of it, in that same
back storeroom, if only I could figure out how to retrieve it.

I poked and worried at that memory, trying to get it to come to the surface. I
concentrated on it as hard as I could, and even started going through the alphabet one
letter at a time, trying to remember if her name started with each letter. After 15

702 ^ Chapter 44

minutes, I was wide awake and totally frustrated. I was also farther than ever from
answering the question; all the focusing on the memory was beginning to blur the
original imprint.

At this point, I consciously relaxed and made myself think about something com
pletely different. Every time my mind returned to the mystery girl, I gently shifted it to
something else. After a while, I began to drift off to sleep, and as I did a connection was
made, and a name popped, unbidden, into my mind.
Wendy Tucker.
There are many problems that are amenable to the straight-ahead, purely conscious

sort of approach that I first tried to use to retrieve Wendy s name. Writing code (once
it s designed) is often like that, as are some sorts of debugging, technical writing, and
balancing your checkbook. I personally find these left-brain activities to be very ap
pealing because they're finite and controllable; when I start one, I know I'll be able to
deal with whatever comes up and make good progress, just by plowing along. Inspira
tion and intuitive leaps are sometimes useful, but not required.
The problem is, though, that neither you nor I will ever do anything great without

inspiration and intuitive leaps, and especially not without stepping away from what's
known and venturing into, territories beyond. The way to do that is not by trying
harder but, paradoxically, by trying less hard, stepping back, and giving your right
brain room to work, then listening for and nurturing whatever comes of that. On a
small scale, that's how I remembered Wendy's name, and on a larger scale, that's how
programmers come up with products that are more than me-too, checklist-oriented
software.

Which, for a couple of reasons, brings us neatly to this chapter's topic. Binary Space
Partitioning (BSP) trees. First, games are probably the sort of software in which the
right-brain element is most important—blockbuster games are almost always break
throughs in one way or another—and some very successful games use BSP trees, most
notably id Software's megabit DOOM. Second, BSP trees aren't intuitively easy to
grasp, and considerable ingenuity and inventiveness is required to get the most from
them.

Before we begin, I'd like to thank John Carmack, the technical wizard behind
DOOM, for generously sharing his knowledge of BSP trees with me.

BSP Trees

A BSP tree is, at heart, nothing more than a tree that subdivides space in order to
isolate features of interest. Each node of a BSP tree splits an area or a volume (in 2-D or
3-D, respectively) into two parts along a line or a plane; thus the name "Binary Space
Partitioning." The subdivision is hierarchical; the root node splits the world into two
subspaces, then each of the root's two children splits one of those two subspaces into
two more parts. This continues with each subspace being further subdivided, until
each component of interest (each line segment or polygon, for example) has been as-

The Idea of BSP Trees ^ 703

signed its own unique subspace. This is, admittedly, a pretty abstract description, but
the workings of BSP trees will become clearer shortly; it may help to glance ahead to
this chapters figures.

Building a tree that subdivides space doesn't sound particularly profound, but there's
a lot that can be done with such a structure. BSP trees can be used to represent shapes,
and operating on those shapes is a simple matter of combining trees as needed; this
makes BSP trees a powerfiil way to implement Constructive Solid Geometry (CSG).
BSP trees can also be used for hit testing, line-of-sight determination, and collision
detection.

Visibility Determination
For the time being, I'm going to discuss only one of the many uses of BSP trees: The
ability of a BSP tree to allow you to traverse a set of line segments or polygons in back-
to-front or front-to-back order as seen from any arbitrary viewpoint. This sort of tra
versal can be very helpful in determining which parts of each line segment or polygon
are visible and which are occluded from the current viewpoint in a 3-D scene. Thus, a
BSP tree makes possible an efficient implementation of the painter's algorithm, whereby
polygons are drawn in back-to-front order, with closer polygons overwriting more dis
tant ones that overlap, as shown in Figure 44.1. (The line segments in Figure 1(a) and
in other figures in this chapter, represent vertical walls, viewed from directly above.)
Alternatively, visibility determination can be performed by front-to-back traversal work-

A. Walls viewed from above

After drawing far wall

E
C. After drawing next farthest wall

C

D. After drawing nearest wall

Figure 44.1 The Painter's Aigorithm

704 ^ Chapter 44

ing in conjunction with some method for remembering which pixels have already been
drawn. The latter approach is more complex, but has the potential benefit of allowing
you to early-out from traversal of the scene database when all the pixels on the screen
have been drawn.

Back-to-front or front-to-back traversal in itself wouldn't be so impressive—there
are many ways to do that—^were it not for one additional detail: The traversal can
always be performed in linear time, as we'll see later on. For instance, you can traverse,
a polygon list back-to-front from any viewpoint simply by walking through the corre
sponding BSP tree once, visiting each node one and only one time, and performing
only one relatively inexpensive test at each node.

It's hard to get cheaper sorting than linear time, and BSP-based rendering stacks up
well against alternatives such as z-buflFering, octrees, z-scan sorting, and polygon sort
ing. Better yet, a scene database represented as a BSP tree can be clipped to the view
pyramid very efficiently; huge chunks of a BSP tree can be lopped off when clipping to
the view pyramid, because if the entire area or volume of a node lies entirely outside
the view volume, then all nodes and leaves that are children of that node must likewise

be outside the view volume, for reasons that will become clear as we delve into the
workings of BSP trees.

Limitations of BSP Trees

Powerful as they are, BSP trees aren't perfect. By far the greatest limitation of BSP trees
is that they're time-consuming to build, enough so that, for all practical purposes, BSP
trees must be precalculated, and cannot be built dynamically at runtime. In fact, a
BSP-tree compiler that attempts to perform some optimization (limiting the number
of surfaces that need to be split, for example) can easily take minutes or even hours to
process large world databases.
A fixed world database is fine for walkthrough or flythrough applications (where the

viewpoint moves through a static scene), but not much use for games or virtual reality,
where objects constantly move relative to one another. Consequently, various
workarounds have been developed to allow moving objects to appear in BSP tree-
based scenes. DOOM, for example, uses 2-D sprites mixed into BSP-based 3-D scenes;
note, though, that this approach requires maintaining z information so that sprites can
be drawn and occluded properly. Alternatively, movable objects could be represented
as separate BSP trees and merged anew into the world BSP tree with each move. Dy
namic merging may or may not be fast enough, depending on the scene, but merging
BSP trees tends to be quicker than building them, because the BSP trees being merged
are already spatially sorted.

Another possibility would be to generate a per-pixel z-buffer for each frame as it's
rendered, to allow dynamically-changing objects to be drawn into the BSP-based world.
In this scheme, the BSP tree would allow fast traversal and clipping of the complex,
static world, and the z-buflFer would handle the relatively localized visibility determina
tion involving moving objects. The drawback of this is the need for a memory-hungry

The Idea of BSP Trees ® 705

z-buflfer; a typical 640x480 z-buffer requires a fairly appalling 600K, with equally ap
palling cache-miss implications for performance.

Yet another possibility would be to build the world so that each dynamic object falls
entirely within a single subspace of the static BSP tree, rather than straddling splitting
lines or planes. In this case, dynamic objects can be treated as points, which are then
just sorted into the BSP tree on the fly as they move.

The only other drawbacks of BSP trees that I know of are the memory required to
store the tree, which amounts to a few pointers per node, and the relative complexity of
debugging BSP-tree compilation and usage; debu^ng a large data set being processed
by recursive code (which BSP code tends to be) can be quite a challenge. Tools like the
BSP compiler I'll present in the next chapter, which visually depicts the process of spatial
subdivision as a BSP tree is constructed, help a great deal with BSP debugging.

Building a BSP Tree
Now that we know a good bit about what a BSP tree is, how it helps in visible surface
determination, and what its strengths and weaknesses are, let's take a look at how a
BSP tree acmally works to provide fi:ont-to-back or back-to-ffont ordering. This chapter's
discussion will be at a conceptual level, with plenty of figures; in the next chapter we'll
get into mechanisms and implementation details.

I'm going to discuss only 2-D BSP trees from here on out, because they're much
easier to draw and to grasp than their 3-D counterparts. Don't worry, though; the
principles of 2-D BSP trees using line segments generalize directly to 3-D BSP trees
using polygons. Also, 2-D BSP trees are quite powerful in their own right, as evidenced
by DOOM which is built around 2-D BSP trees.

First, let's construct a simple BSP tree. Figure 44.2 shows a set of four lines that will
constitute our sample world. I'll refer to these as walls, because that's one easily-visual
ized context in which a 2-D BSP tree would be useful in a game. Think of Figure 44.2
as depicting vertical walls viewed from directly above, so they're lines for the purpose of
the BSP tree. Note that each wall has a front side, denoted by a normal (perpendicular)
vector, and a back side. To make a BSP tree for this sample set, we need to split the
world in two, then each part into two £^ain, and so on, until each wall resides in its
own unique subspace. An obvious question, then, is how should we carve up the world
of Figure 44.2?

There are infinitely valid ways to carve up Figure 44.2, but the simplest is just to
carve along the lines of the walls themselves, with each node containing one wall. This
is not necessarily optimal, in the sense of producing the smallest tree, but it has the
virtue of generating the splitting lines without expensive analysis. It also saves on data
storage, because the data for the walls can do double duty in describing the splitting
lines as well. (Putting one wall on each splitting line doesn't actually create a unique
subspace for each wall, but it does create a imique subspace boundary for each wall; as
we'll see, that spatial organization provides for the same unambiguous visibility order
ing as a unique subspace would.)

706 ^ Chapter 44

Creating a BSP tree is a recursive process, so we'll perform the first split and go fi:om
there. Figure 44.3 shows the world carved along the line ofwall C into two parts: walls that
are in firont of wall C, and walls that are behind. (Any of the walls would have been an
equally valid choice for the initial split; we'll return to the issue of choosing splitting walls in
the next chapter.) This splitdng into firont and back is the essential dualism of BSP trees.

Figure 44.2 A sample set of walls, viewed from above.

■ >-

splitting
line

35F tree

front chWd back child

front lines back lines

0
3

Figure 44.3 initial split along the line of wall C.

The Idea of BSP Trees ® 707

B6P tree

front child back child

back lines

A

3

Figure 44.4 Split of waii C's front subspace along the line of wall D.

36F tree

splitting
lina —

front childZ\back child

D 3

front lines back lines

0 0

Figure 44.5 Split of waii C's back subspace along the line of waii B.

Next, in Figure 44.4, the front subspace of wail C is split by wall D. This is the only
wall in that subspace, so we re done with wall C s front subspace.

Figure 44.5 shows the back subspace of wall C being split by wall B. There's a
difference here, though: Wall A straddles the splitting line generated from wall B.
Does wall A belong in the front or back subspace of wall B?

Both, actually. Wall A gets split into two pieces, which I'll call wall A and wall E;
each piece is assigned to the appropriate subspace and treated as a separate wall. As

708 Chapter 44

56 P tree

Figure 44.6 The final BSP tree.

front child back child

back childfront child

shown in Figure 44.6, each of the split pieces then has a subspace to itself, and each
becomes a leaf of the tree. The BSP tree is now complete.

Visibility Ordering
Now that we've successfully built a BSP tree, you might justifiably be a little puzzled as
to how any of this helps with visibility ordering. The answer is that each BSP node can
definitively determine which of its child trees is nearer and which is farther from any
and all viewpoints; applied throughout the tree, this principle makes it possible to
establish visibility ordering for all the line segments or planes in a BSP tree, no matter
what the viewing angle.

Consider the world of Figure 44.2 viewed from an arbitrary angle, as shown in
Figure 44.7. The viewpoint is in front of wall C; this tells us that all walls belonging to
the front tree that descends from wall C are nearer along every ray from the viewpoint
than wall C is (that is, they can't be occluded by wall C). All the walls in wall C's back
tree are likewise farther away than wall C along any ray. Thus, for this viewpoint, we
know for sure that if we're using the painter's algorithm, we want to draw all the walls
in the back tree first, then wall C, and then the walls in the front tree. If the viewpoint
had been on the back side of wall C, this order would have been reversed.

Of course, we need more ordering information than wall C alone can give us, but
we get that by traversing the tree recursively, making the same far-near decision at each
node. Figure 44.8 shows the painter's algorithm (back-to-front) traversal order of the
tree for the viewpoint of Figure 44.7. At each node, we decide whether we're seeing the
front or back side of that node's wall, then visit whichever of the wall's children is on

The Idea of BSP Trees @ 709

Figure 44.7 Viewing the BSP tree from an arbitrary angie.

the far side from the viewpoint, draw the wall, and then visit the node s nearer child, in
that order. Visiting a child is recursive, involving the same far-near visiting order.
The key is that each BSP splitting line separates all the walls in the current subspace

into two groups relative to the viewpoint, and every single member of the farther
group is guaranteed not to occlude every single member of the nearer. By applying this
ordering recursively, the BSP tree can be traversed to provide back-to-front or front-to-
back ordering, with each node being visited only once.

/

Note: 'F' and 'N' indicate the far and near chiidren,

reepectiveiy, of each node from the viewpoint of
figure 44.7.

FIGURE 44.8 Back-to-front traversal of the BSP tree as viewed in Figure 44.7.

710 g} Chapter 44

The type of tree walk used to produce front-to-back or back-to-front BSP traversal
is known as an inorder walk. More on this very shortly; you're also likely to find a
discussion of inorder walking in any good data structures book. The only special aspect
of BSP walks is that a decision has to be made at each node about which way the node's
wall is facing relative to the viewpoint, so we know which child tree is nearer and which
is farther.

Listing 44.1 shows a function that draws a BSP tree back-to-front. The decision
whether a node's wall is facing forward, made by WallFacingForward() in Listing 44.1,
can, in general, be made by generating a normal to the node's wall in screenspace
(perspective-corrected space as seen from the viewpoint) and checking whether the z
component of the normal is positive or negative, or by checking the sign of the dot
product of a viewspace (non-perspective corrected space as seen from the viewpoint)
normal and a ray from the viewpoint to the wall. In 2-D, the decision can be made by
enforcing the convention that when a wall is viewed from the front, the start vertex is
leftmost; then a simple screenspace comparison of the x coordinates of the left and
right vertices indicates which way the wall is facing.

Listing 44.1. L44_1.C
void WalkBSPTreeCNODE *pNode)

{

if (WallFacingForward(pNode) {
if (pNode->BackChild) {

WalkBSPTree(pNode->BackChild);

}

Draw(pNode);
if (pNode->FrontChild) {

WalkBSPTree(pNode->FrontChiId);

}

} else {

if (pNode->FrontChiId) {
WalkBSPTree(pNode->FrontChi Id);

}

Draw(pNode);
if (pNode->BackChild) {

WalkBSPTree(pNode->BackChiId);

}

}

}

Be aware that B5B treee can often he made emaller and more effi

cient hy detecting coilinear eurfacee (like aligned wail ̂ egmento)
and generating only one B5F node for each coliinear eet, with the
coilinear eurfacee etored in, eay, a linked iiet attached to that node.

Coilinear eurfacee partition epace identically and can't occlude one
another, eo it eufficee to generate one epiitting node for each col
iinear eet.

The Idea of BSP Trees g} 711

Inorder Walks of BSP Trees

It was implementing BSP trees that got me to thinking about inorder tree traversal. In
inorder traversal, the left subtree of each node gets visited first, then the node, and then
the right subtree. You apply this sequence recursively to each node and its children
until the entire tree has been visited, as shown in Figure 44.9. Walking a BSP tree is
basically an inorder tree walk; the only difference is that with a BSP tree a decision is
made before each descent as to which subtree to visit first, rather than simply visiting
whatever's pointed to by the left-subtree pointer. Conceptually, however, an inorder
walk is what's used to traverse a BSP tree; from now on I'll discuss normal inorder
walking, with the understanding that the same principles apply to BSP trees.

As I've said again and again in my printed works over the years, you have to dig
deep below the surface to really understand something if you want to get it right, and
inorder walking turns out to be an excellent example of this. In fact, it's such a good
example that I routinely use it as an interview question for programmer candidates,
and, to my astonishment, not one interviewee has done a good job with this one yet. I
ask the question in two stages, and I get remarkably consistent results.

First, I ask for an implementation of a function WalkTreeQ that visits each node in
a passed-in tree in inorder sequence. Each candidate unhesitatingly writes something
like the perfecdy good code in Listings 44.2 and 44.3 shown below.

i
Figure 44.9 An inorder waik of a BSP tree.

712 @ Chapter 44

Listing 44.2. L44_2.C
// Function to inorder walk a tree, using code recursion.
// Tested with 32-bit Visual C++ 1.10.

^include <stdlib.h>

y/include "tree.h"

extern void Visit(NODE *pNode);
void WalkTree(NODE *pNode)

{

// Make sure the tree isn't empty
if (pNode 1= NULL)

{

// Traverse the left subtree, if there is one

if (pNode->pLeftChild != NULL)

{
WalkTree(pNode->pLeftChiId);

}

// Visit this node

Visit(pNode);
// Traverse the right subtree, if there is one

if (pNode->pRightChild != NULL)

{

WalkTree(pNode->pRightChild);
}

}

}

Listing 44.3. L44_3.H
// Header file TREE.H for tree-walking code,
typedef struct _NODE {

struct _NODE *pLeftChild;
struct _NODE *pRightChiId;

} NODE;

Then I ask if they have any idea how to make the code faster; some don't, but most
point out that function calls are pretty expensive. Either way, I then ask them to re
write the function without code recursion.

And then I sit back and squirm for a minimum of 15 minutes.
I have never had anyone a functional data-recursion inorder walk function in

less time than that, and several people have simply never gotten the code to work at all.
Even the best of them have fumbled their way through the code, sticking in a push here
or a pop there, then working through sample scenarios in their head to see what's
broken, programming by trial and error until the errors seem to be gone. No one is
ever sure they have it right; instead, when they can't find any more bugs, they look at
me hopefully to see if it's thumbs-up or thumbs-down.
And yet, a data-recursive inorder walk implementation has exactly the same flow

chart and exactly the same functionality as the code-recursive version they've already
written. They already have a fully functional model to follow, with all the problems
solved, but they can't make the connection between that model and the code they're
trying to implement. Why is this?

The Idea of BSP Trees ® 713

Know It Cold

The problem is that these people don't understand inorder walking through and through.
They understand the concepts of visiting left and right subtrees, and they have a gen
eral picture of how traversal moves about the tree, but they do not understand exacdy
what the code-recursive version does. If they really comprehended everything that hap
pens in each iteration of WalkTree()—how each call saves the state, and what that
implies for the order in which operations are performed—they would simply and without
fuss implement code like that in Listing 44.4, working with the code-recursive version
as a model.

Listing 44.4. L44_4.C
// Function to inorder walk a tree, using data recursion.
// No stack overflow testing is performed.
// Tested with 32-bit Visual C++ 1.10.

^include <stdlib.h>

^include "tree.h"

#define MAX_PUSHED_NODES 100
extern void Visit(NODE *pNode);
void WalkTreeCNODE *pNode)

{
NODE *NodeStackCMAX_PUSHED_NODES];

NODE **pNodeStack;
// Make sure the tree isn't empty
if (pNode 1= NULL)

{
NodeStackCO] = NULL; // push "stack empty" value
pNodeStack = NodeStack + 1;
for (;;)

{
// If the current node has a left child, push
// the current node and descend to the left
// child to start traversing the left subtree.
// Keep doing this until we come to a node
// with no left child; that's the next node to

// visit in inorder sequence
while (pNode->pLeftChild != NULL)
{

*pNodeStack++ = pNode;
pNode = pNode->pLeftChi1d;

}
// We're at a node that has no left child, so

// visit the node, then visit the right

// subtree if there is one, or the last-

// pushed node otherwise; repeat for each
// popped node until one with a right
// subtree is found or we run out of pushed
// nodes (note that the left subtrees of

// pushed nodes have already been visited, so
// they're equivalent at this point to nodes
// with no left children)

for (;;)

{
Vi si tCpNode);

714 ^ Chapter 44

II If the node has a right child, make
// the child the current node and start

// traversing that subtree; otherwise, pop
// back up the tree, visiting nodes we
// passed on the way down, until we find a
// node with a right subtree to traverse
// or run out of pushed nodes and are done
if (pNode->pRightChild != NULL)

{

// Current node has a right child;

// traverse the right subtree
pNode = pNode->pRightChi1d;
break;

}

// Pop the next node from the stack so
// we can visit it and see if it has a

// right subtree to be traversed

if ((pNode = *-pNodeStack) = NULL)

{

// Stack is empty and the current node
// has no right child; we're done

return;

}

Take a few minutes to look over Listing 44.4 and relate it to Listing 44.2. The structure
is different, but upon examination it becomes clear that both listings reflect the same
underlying model: For each node, visit the left subtree, visit the node, visit the right
subtree. And although Listing 44.4 is longer, that's mostly because I commented it
heavily to make sure its workings are understood; there are only 13 lines that actually
do anything in Listing 44.4.

Let's look at it another way. All the code in Listing 44.2 does is say: "Here I am at a
node. First I'll visit the left subtree if there is one, then I'll visit this node, then I'll visit
the right subtree if there is one. While I'm visiting the left subtree, I'll just push a
marker on a stack that tells me to come back here when the left subtree is done. If, after
visiting a node, there are no right children to visit and nothing left on the stack, I'm
finished. The code does this at each node—and that's allix. does. That's all Listing 44.4
does, too, but people tend to get tangled up in pushes and pops and while loops when
they use data recursion. When the implementation model changes to one with which
they are unfamiliar, they abandon the perfectly good model they used before and try to
rederive it in the new context by the seat of their pants.

Yiere'e a eecret when you're f^oed with a eitu^tion like thie: Step
back and 0et a clear picture of what your code hae to do. Omit no
etepe. You ehouid build a model that ie e>o coneietent and eoiid that
you can inetantiy anewer any queetion about how the code ehouid
behave in any eituation. For example, my intervieweee often decide.

The Idea of BSP Trees ® 715

by trial and error, that there are two diet^mct types of right chil
dren: Right children visited after popping hack to visit a node after
the left subtree has been visited, and right children visited after
descending to a node that has no left child. This makes the tra
versal code a mass of special cases, each of which has to be de
tected by the programmer by trying out scenarios. IVsrse, you can
never be sure with this approach that you've caught all the special
cases.

The alternative is to develop and apply a unifying model. There
aren't really two types of right children; the rule is that ail right
children are visited after their parents are visited, period. The pres
ence or absence of a left child Is irrelevant. The possibility that a
right child may be reached via different code paths depending on
the presence of a left child does not affect the overall model. While
this distinction may seem trivial It Is In fact crucial, because if you
have the model down cold, you can always tell If the Implementation
Is correct by comparing it with the model.

Measure and Learn

How much difference does all this fiiss make, anyway? Listing 44.5 is a sample program
that builds a tree, then calls WalkTree () to walk it 1,000 times, and times how long this
takes. Using 32-bit Visual C++ 1.10 running on Windows NT, with default optimiza
tion selected. Listing 44.5 reports that Listing 44.4 is about 20 percent faster than Listing
44.2 on a 486/33, a reasonable return for a litde code rearrangement, especially when
you consider that the speedup is diluted by calling the YisitQ function and by the cache
miss that happens on virtually every node access. (Listing 44.5 builds a rather unique
tree, one in which every node has exacdy two children. Different sorts of trees can and do
produce different performance results. Always know what you're measuring!)

Listing 44.5. L55_5.C
// Sample program to exercise and time the performance of
// implementations of WalkTreeO.
// Tested with 32-bit Visual C++ 1.10 under Windows NT.
^include <stdio.h>

#include <conio.h>

y^include <stdlib.h>

^include <time.h>

^include "tree.h"

long VisitCount = 0;
void main(void);

void BuildTree(NODE *pNode, int RemainingOepth);
extern void Wal kTree(NODE *pRootNode);
void mainO

{

716 ® Chapter 44

NODE RootNode;

int i;

long StartTime;

// Build a sample tree
BuildTree(&RootNode, 14);
// Walk the tree 1000 times and see how long It takes
StartTime = tlrae(NULL);
for (1=0; KIOOO; 1++)

{

WalklreeC&RootNode);

}

printf("Seconds elapsed: %ld\n",
tlme(NULL) - StartTime);

getch();

}

//

// Function to add right and left subtrees of the
// specified depth off the passed-ln node.
//

void BuildTree(NODE *pNode, Int RemalnlngOepth)
{

If (RemalnlngOepth = 0)
{

pNode->pLeftCh11d = NULL;
pNode->pR1ghtCh11d = NULL;

}

el se

{

pNode->pLeftCh1Id = malloc(s1zeof(N0DE));
If (pNode->pLeftCh11d = NULL)

{

printf("Out of memory\n");
exlt(l);

}

pNode->pR1ghtCh11d = malloc(s1zeof(NODE));
if (pNode->pR1ghtCh11d == NULL)

{

prIntfC'Out of memory\n");
exlt(l);

}

Bu11dTree(pNode->pLeftCh11d. RemalnlngOepth - 1);
Bu11dTree(pNode->pR1ghtCh11d, RemalnlngOepth - 1);

}

}

If

if Node-visiting function so WalkTreeO has something to
// call.

//

void V1s1t(N00E *pNode)

{

V1s1tCount++;

}

Things change when maximum optimization is selected, however: The performance
of the two implementations becomes virtually identical! How can this be? Part of the
answer is that the compiler does an amazingly good job with Listing 44.2. Most im
pressively, when compiling Listing 44.2, the compiler actually converts all right-subtree
descents from code recursion to data recursion, by simply jumping back to the left-
subtree handling code instead of recursively calling WalkTree(). This means that half

The Idea of BSP Trees ^ 717

the time Listing 44.4 has no advantage over Listing 44.2; in fact, it's at a disadvant^e
because the code that the compiler generates for handling right-subtree descent in
Listing 44.4 is somewhat inefficient, but the right-subtree code in Listing 44.2 is a
marvel of code generation, at just 3 instructions.

What's more, although left-subtree traversal is more efficient with data recursion
than with code recursion, the advantage is only four instructions, because only one
parameter is passed and because the compiler doesn't bother setting up an EBP-based
stack frame, instead it uses ESP to address the stack. (And, in fact, this cost could be
reduced still further by eliminating the check for a NULL pNode at all but the top
level.) There are other interesting aspects to what the compiler does with Listings 44.2
and 44.4 but that's enough to give you the idea. It's worth noting that the compiler
might not do as well with code recursion in a more complex function, and that a good
assembly language implementation could probably speed up Listing 44.4 enough to
make it measurably faster than Listing 44.2, but not even close to being enough faster
to be worth the effort.

The moral of this story (apart from it being a good idea to enable compiler optimi
zation) is:

1) Understand what you're doing, through and through.
2) Build a complete and consistent model in your head.
3) Design from the principles that the model provides.
4) Implement the design.
5) Measure to learn what you've wrought.
6) Go back to step 1 and apply what you've just learned.

With each iteration you'll dig deeper, learn more, and improve your ability to know
where and how to focus your design and programming efforts. For example, with the
C compilers I used five to ten years ago, back when I learned about the relative strengths
and weaknesses of code and data recursion, and with the processors then in use. Listing
44.4 would have blown away Listing 44.2. While doing this chapter, I've learned that
given current processors and compiler technology, data recursion isn't going to get me
any big wins; and yes, that was news to me. That's good, this information saves me from
wasted effort in the future and tells me what to concentrate on when I use recursion.

Assume nothing, keep digging deeper, and never stop learning and growing. The
world won't hold still for you, but fortunately you can run fast enough to keep up if
you just keep at it.

Depths within depths indeed!

Surfing Amidst the Trees
In the next chapter we'll build a BSP-tree compiler, and after that, we'll put together a
rendering system built around the BSP trees the compiler generates. If the subject of
BSP trees really grabs your fancy (as it should if you care at all about performance
graphics) there is at this writing (February 1996) a World Wide Web pa%e on BSP trees

718 ^ Chapter 44

that you must investigate at http://www.quaiia.com/bspfaq/. Its set up in the familiar
Internet Frequently Asked Questions (FAQ) style, and is very good stuff.

Related Reading
Foley, J., A. van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and
Practice (SecondEdition)^ Addison Wesley, 1990, pp. 555-557, 675-680.
Fuchs, H., Z. Kedem, and B. Naylor, "On Visible Surface Generation by A Priori Tree
Structures," Computer GraphicsNoV 17(3), June 1980, pp. 124-133.
Gordon, D., and S. Chen, "Front-to-Back Display of BSP Trees," IEEE Computer
Graphics and Applications^ September 1991, pp. 79-85.
Naylor, B., "Binary Space Partitioning Trees as an Alternative Representation of
Polytopes," Computer Aided Design^ Vol. 22(4), May 1990, pp. 250-253.

Taking BSP Trees from Concept to Reality
As long-time readers of my columns know, I tend to move my family around the
country quite a bit. Change doesn't come out of the blue, so there's some interesting
history to every move, but the roots of the latest move go back even farther than usual.
To wit:

In 1986, just after we moved from Pennsylvania to California, I started writing a
column for Programmer's Journal. I was paid peanuts for writing it, and I doubt if even
5000 people saw some of the first issues the columns appeared in, but I had a lot of fun
exploring fast graphics for the EGA and VGA.
By 1991, we were in Vermont, and I was writing the Graphics Programming column

for Dr. Dobb's Journal (and having a great time doing it, even though it took all my
spare nights and weekends to stay ahead of the deadlines). In those days I received a lot
of unsolicited evaluation software, including a PC shareware game called Commander
Keen, a side-scrolling game that was every bit as good as the hot Nintendo games of the
day. I loved the way the game looked, and actually drafted a column opening about
how for years I'd been claiming that the PC could be a great game machine in the
hands of great programmers, and here, finally, was the proof, in the form of Com
mander Keen. In the end, though, I decided that would be too close to a product
review, an area that I've observed inflames passions in nonconstructive ways, so I went
with a different opening.

In 1992, I did a series of columns about my X-Sharp 3D library, and hung out on
DDJs bulletin board. There was another guy who hung out there who knew a lot
about 3-D, a fellow named John Carmack who was surely the only game programmer
I'd ever heard of who developed under NEXTSTEP. When we moved to Redmond, I
didn't have time for BBSs anymore, though.

720 ® Chapter 45

In early 1993,1 hired Chris Hecker. Later that year, Chris showed me an alpha copy
of DOOM, and I nearly fell out of my chair. About a year later, Chris forwarded me a
newsgroup post about NEXTSTEP, and said, "Isn't this the guy you used to know on
the ZJZy'buIletin board?" Indeed it was John Carmack; what's more, it turned out that
John was the guy who had written DOOM. I sent him a congratulatory piece of mail,
and he sent back some thoughts about what he was working on, and somewhere in
there I asked if he ever came up my way. It turned out he had family in Seattle, so he
stopped in and visited, and we had a great time.

Over the next year, we exchanged some fascinating mail, and I became steadily
more impressed with John's company, id Software. Eventually, John asked if I'd be
interested in joining id, and after a good bit of consideration I couldn't think of any
thing else that would be as much fun or teach me as much. The upshot is that here we
all are in Dallas, our fourth move of 2000 miles or more since I've starting writing in
the computer field, and now I'm writing some seriously cool 3-D software.
Now that I'm here, it's an eye-opener to look back and see how events fit together

over the last decade. You see, when John started doing PC game programming he
learned fast graphics programming from those early Programmer's Journal articles of
mine. The copy of Commander Keen that validated my faith in the PC as a game
machine was the fruit of those articles, for that was an id game (although I didn't ̂ ow
that then). When John was hanging out on the DD/BBS, he had just done Castle
Wolfenstein 3-D, the first great indoor 3-D game, and was thinking about how to do
DOOM. (If only I'd known that then!) And had I not hired Chris, or had he not
somehow remembered me talking about that guy who used NEXTSTEP, I'd never
have gotten back in touch with John, and things would surely be different. (At the
very least, I wouldn't be hearing jokes about how my daughter's going to grow up
saying "y'all".)

I think there's a worthwhile lesson to be learned from all this, a lesson that I've
seen hold true for many other people, as well. If you do what you love, and do it as
well as you can, good things will eventually come of it. Not necessarily quickly or
easily, but if you stick with it, they will come. There are threads that run through
our lives, and by the time we've been adults for a while, practically everything that
happens has roots that run far back in time. The implication should be clear: If you
want good things to happen in your future, stretch yourself and put in the extra
effort now at whatever you care passionately about, so those roots will have plenty to
work with down the road.

All this is surprisingly closely related to this Chapter's topic, BSP trees, because
John is the fellow who brought BSP trees into the spotlight by building DOOM
around them. He also got me started with BSP trees by explaining how DOOM
worked and getting me interested enough to want to experiment; the BSP com
piler in this article is the direct result. Finally, John has been an invaluable help to
me as I've learned about BSP trees, as will become evident when we discuss BSP
optimization.

Onward to compiling BSP trees.

Compiling BSP Trees ^ 721

Compiling BSP Trees
As you'll recall firom the previous chapter, a BSP tree is nothing more than a series of binary
subdivisions that partion space into ever-smaller pieces. That's a simple data structure, and a
BSP compiler is a correspondingly simple tool. First, it groups all the surfaces (lines in 2-D, or
polygons in 3-D) together into a sin^e subspace that encompasses the entire world of the
fiafahacp Then, it chooses one of the surfaces as the root node, and uses its line or plane to
divide the remaining surfaces into two subspaces, splittii^ surfaces into two parts if they cross
the line or plane of the root. Each of the two resultant subspaces is then processed in the same
fashion, and so on, recursively, until the point is reached where all surfeces have been assigned
to nodes, and each leaf surfice subdivides a subspace that is empty except for that surfece. Put
another way, the root node carves space into two parts, and the roots children carve each of
thnsp parts into two more parts, and so on, with each surface carvir^ ever smaller subspaces,
until surfaces have been used. (Actually, there are many other lines or planes that a BSP tree
ran use to carve up space, but this is the approach we'll use in the current discussion.)

If you find any of the above confusing (and it would be understandable if that were
the case; BSP trees are not easy to get the hang of), you might want to refer back to the
previous chapter. It would also be a good idea to get hold of the visual BSP compiler
I'll discuss shortly; when it comes to understanding BSP trees, there's nothing quite
like seeing one being built.

So there are really only two interesting operations in building a BSP tree: choosing
a root node for the current subspace (a "splitter") and assigning surfaces to one side or
another of the current root node, splitting any that straddle the splitter. We'll get to
the issue of choosing splitters shortly, but first let's look at the process of splitting and
assigning. To do that, we need to understand parametric lines.

Parametric Lines

We're all familiar with lines described in slope-intercept form, with y as a function of x:

y = mx + b,

but there's another sort of line description that's very useful for clipping (and for a
variety of 3-D purposes, such as curved surfaces and texture mapping): parametric
lines. In parametric lines, x and y are decoupled from one another, and are instead
described as a function of the parameter t:

X = ̂star. + ' O
y = y^urc + t(ye„d - y.J-

This can be summarized as:

L = Lgjiart + ̂(Lend ' ^staxt)

where L = (x, y).

722 ^ Chapter 45

Figure 45.1 shows how a parametric line works. The t parameter describes how far
along a line segment the current x and y coordinates are. Note that this description is
valid not only for the line segment, but also for the entire infinite line; however, only
points with t values between 0 and 1 are actually on the line segment.

(160,170) /
#t=1.2

(150,150) J

(153,117)

(100,50)

(60,10)

=0.67

/ t=-0.4

Line ecjuatlons:
X = 100 +1(150-100)
y = 50 +1(150-50)

Figure 45.1 A sample parametric line.

Clipped segment #5: t=0.6 to t=1

Clipped segment #2: t=0.25 to t=0.6

Ciipped segment #1: t=0 to t=0.25

t = 0.6

t = 0.25

Original line segment:
(100,50), (150,150),
from t=0 to t=1

4-

Figure 45.2 Line segment storage in the BSP compiler.

Compiling BSP Trees ^ 723

In our 2-D BSP compiler (as you'll recall from the previous chapter, we're working
with 2-D trees for simplicity, but the principles generalize to 3-D), we'll represent our
walls (all vertical) as line segments viewed from above. The segments will be stored in
parametric form, with the endpoints of the original line segment and two t values
describing the endpoints of the current (possibly clipped) segment providing a com
plete specification for each segment, as shown in Figure 45.2.
What does that do for us? For one thing, it keeps clipping errors from creeping in,

because clipped line segments are always based on the original line segment, not de
rived from clipped versions. Also, it's potentially a more compact format, because we
need to store the endpoints only for the original line segments; for clipped line seg
ments, we can just store pairs of t values, along with a pointer to the original line
segment. The biggest win, however, is that it allows us to use parametric line clipping,
a very clean form of clipping, indeed.

Parametric Line Clipping
In order to assign a line segment to one subspace or the other of a splitter, we must
somehow figure out whether the line segment straddles the splitter or falls on one side
or the other. In order to determine that, we first plug the line segment and splitter into
the following parametric line intersection equation:

numer = N (L (Equation 1)
denom = -N (L - L ̂) (Equation 2)
t. = numer / denom (Equation 3)
intersect

where N is the normal of the splitter, is the start point of the splitting line
segment in standard (x,y) form, and and are the endpoints of the line seg
ment being split, again in (x,y) form. Figure 45.3 illustrates the intersection calcula
tion. Due to lack of space, I'm just going to present this equation and its implications
as fact, rather than deriving them; if you want to know more, there's an excellent
explanation on page 117 of (CoTYiputcY Gvuphicst PviTiciplcs und Pvucticcy by Foley and
van Dam (Addison Wesley, ISBN 0-201-12110-7), a book that you should certainly
have in your library.

If the denominator is zero, we know that the lines are parallel and don't intersect, so
we don't divide, but rather check the sign of the numerator, which tells us which side of
the splitter the line segment is on. Otherwise, we do the division, and the result is the t
value for the intersection point, as shown in Figure 45.3. We then simply compare the t
value to the t values of the endpoints of the line segment being split. If it's between them,
that's where we split the line segment, otherwise, we can tell which side of the splitter the
line segment is on by which side of the line segment's t range it's on. Simple comparisons
do all the work, and there's no need to do the work of generating actual x and y values. If
you look closely at Listing 45.1, the core of the BSP compiler, you'll see that the paramet
ric clipping code itself is exceedingly short and simple.

724 ^ Chapter 45

Clipped ee^ment #2: t=0.6 to t=1

5: Splitting line sa^ment

5 start

Clipped sa^mant #1: t=0 to t=0.6

ntarsact = 0.6

Figure 45.3 How line intersection is calcuiated.

Compiling BSP Trees 725

One interesting point about Listing 45.1 is that it generates normals to splitting
surfaces simply by exchanging the x and y lengths of the splitting line segment and
negating the resultant y value, thereby rotating the line 90 degrees. In 3-D, it s not that
simple to come by a normal; you could calculate the normal as the cross-product of
two of the polygon's edges, or precalculate it when you build the world database.

The BSP Compiler
Listing 45.1 shows the core of a BSP compiler—the code that actually builds the BSP
tree. (Note that Listing 45.1 is excerpted from a C++ .GPP file, but in fact what I show
here is very close to straight C. It may even compile as a .C file, though I haven't
checked.) The compiler begins by setting up an empty tree, then passes that tree and
the complete set of line segments from which a BSP tree is to be generated to
SelectBSPTreeQ, which chooses a root node and calls BuildBSPTree() to add that
node to the tree and generate child trees for each of the node's two subspaces.
BuildBSPTreeO calls SeIectBSPTree() recursively to select a root node for each of those
child trees, and this continues until all lines have been assigned nodes. SelectBSPQ
uses parametric clipping to decide on the splitter, as described below, and
BuildBSPTreeO uses parametric clipping to decide which subspace of the splitter each
line belongs in, and to split lines, if necessary.

Listing 45.1. L45_1.CPP
#define MAX_NUM_LINESEGS 1000
#def1ne MAX_INT 0x7FFFFFFF
#define MATCH_TOLERANCE 0.00001
// A vertex

typedef struct _VERTEX
{

double x;

double y;

} VERTEX;

// A potentially split piece of a line segment, as processed from the
// base line in the original list
typedef struct _LINESEG
{

_LINESE6 *pnextlineseg;
int startvertex;

int endvertex;

double walltop;
double wallbottom;

double tstart;

double tend;

int color;

_LINESEG *pfronttree;
_LINESEG *pbacktree;

} LINESEG, *PLINESEG;
static VERTEX *pvertexlist;
static int NumCompiledLinesegs = 0;
static LINESEG *pCompi1edLinesegs;
// Builds a BSP tree from the specified line list. List must contain

726 ^ Chapter 45

11 at least one entry. If pCurrentTree is NULL, then this Is the root
// node, otherwise pCurrentTree is the tree that's been build so far.
// Returns NULL for errors.

LINESEG * SelectBSPTreeCLINESEG * piineseghead,
LINESEG * pCurrentTree, LINESEG ** pParentsChi1dPointer)

{

LINESEG *pminsplit;
int minsplits;
int tempsplitcount;
LINESEG *prootline;
LINESEG *pcurrentline;
double nx, ny, numer, denom, t;
// Pick a line as the root, and remove it from the list of lines
// to be categorized. The line we'll select is the one of those in
// the list that splits the fewest of the other lines in the list
minsplits = MAX_INT;

prootline = piineseghead;
while (prootline != NULL) {

pcurrentline = piineseghead;
tempsplitcount = 0;
while (pcurrentline != NULL) {

// See how many other lines the current line splits
nx = pvertexlistCprootline->startvertex].y -

pvertexlist[prootline->endvertex].y;
ny = -(pvertexlist[prootline->startvertex].x -

pvertexli st[prootline->endvertex].x);
// Calculate the dot products we'll need for line
// intersection and spatial relationship
numer = (nx * (pvertexlist[pcurrentline->startvertex].x -

pvertexli stCprootli ne->startvertex].x)) +
(ny * (pvertexlist[pcurrentline->startvertex].y -
pvertexli stCprootline->startvertex].y));

denom = ((-nx) * (pvertexlistCpcurrentline->endvertex].x -
pvertexlist[pcurrentline->startvertex].x)) +
((-ny) * (pvertexlistCpcurrentline->endvertex].y -
pvertexlistCpcurrentline->startvertex].y));

// Figure out if the infinite lines of the current line
// and the root intersect; if so, figure out if the
// current line segment is actually split, split if so,
// and add front/back polygons as appropriate
if (denom ==0.0) {

// No intersection, because lines are parallel; no
// split, so nothing to do

} else {

// Infinite lines intersect; figure out whether the
// actual line segment intersects the infinite line
// of the root, and split if so
t = numer / denom;

if ((t > pcurrentline->tstart) &&
(t < pcurrentline->tend)) {

// The root splits the current line
tempsplitcount++;

} else {

// Intersection outside segment limits, so no
// split, nothing to do

}

}

pcurrentline = pcurrentline->pnextlineseg;
}

if (tempsplitcount < minsplits) {
pminsplit = prootline;

Compiling BSP Trees ^ 727

minsplits = tempsplitcount;

}
prootline = prootline->pnextlineseg;

}
// For now, make this a leaf node so we can traverse the tree
// as it is at this point. Bui 1dBSPTree() will add children as
// appropriate
pminsplit->pfronttree = NULL;
pminsplit->pbacktree = NULL;
// Point the parent's child pointer to this node, so we can
// track the currently-bui1d tree
*pParentsChildPointer = pminsplit;
return BuildBSPTree(plineseghead, pminsplit, pCurrentTree);

// Builds a BSP tree given the specified root, by creating front and
// back lists from the remaining lines, and calling itself recursively
LINESEG * BuildBSPTreeCLINESEG * piineseghead, LINESEG * prootline,

LINESEG * pCurrentTree)

{
LINESEG *pfrontlines; .
LINESEG *pbacklines;
LINESEG *pcurrentline;
LINESEG *pnextlineseg;
LINESEG *psplitline;
double nx, ny, numer, denom, t;
int Done;

// Categorize all non-root lines as either in front of the root's
// infinite line, behind the root's infinite line, or split by the
// root's infinite line, in which case we split it into two lines
pfrontlines = NULL;
pbacklines = NULL;
pcurrentline = plineseghead;
while (pcurrentline != NULL)
{

// Skip the root line when encountered
if (pcurrentline == prootline) {

pcurrentline = pcurrentline->pnextlineseg;
} else {

nx = pvertexlist[prootline->startvertex].y -
pvertexliSt[prootline->endvertex].y;

ny = -(pvertexlist[prootline->startvertex].x -
pvertexlistCprootline->endvertex].X);

// Calculate the dot products we'll need for line intersection
// and spatial relationship
numer = (nx * (pvertexlistCpcurrentline->startvertex].x -

pvertexliSt[prootline->startvertex].x)) +
(ny * (pvertexlist[pcurrentline->startvertex].y -
pvertexlist[prootline->startvertex].y));

denom = ((-nx) * (pvertexl ist[pcurrentl ine->endvertex].x -
pvertexli st[pcurrentli ne->startvertex].x)) +

(-(ny) * (pvertexlist[pcurrentline->endvertex].y -
pvertexl i st[pcurrentli ne->startvertex].y));

// Figure out if the infinite lines of the current line and
// the root intersect; if so. figure out if the current line
// segment is actually split, split if so. and add front/back
// polygons as appropriate
if (denom = 0.0) {

// No intersection, because lines are parallel; just add
// to appropriate list
pnextlineseg = pcurrentline->pnextlineseg;
if (numer < 0.0) {

728 ^ Chapter 45

// Current line is in front of root line; link into
// front list

pcurrentline->pnextlineseg = pfrontlines;
pfrontlines = pcurrentline;

} else {

// Current line behind root line; link into back list
pcurrentline->pnextlineseg = pbacklines;
pbacklines = pcurrentline;

}

pcurrentline = pnextlineseg;
} else {

// Infinite lines intersect; figure out whether the actual
// line segment intersects the infinite line of the root,
// and split if so
t = numer / denom;

if ((t > pcurrentline->tstart) &&
(t < pcurrentline->tend)) {

// The line segment must be split; add one split
// segment to each list
if (NumCompiledLinesegs > (MAX_NUM_LINESEGS - 1)) {

DisplayMessageBoxC'Out of space for line segs; "
"increase MAX_NUM_LINESEGS");

return NULL;

}

// Make a new line entry for the split part of line
psplitline = &pCompi1edLinesegs[NumCompi1edLinesegs];
NumCompi1edLi nesegs++;
*psplitline = *pcurrentline;
psplitline->tstart = t;
pcurrentline->tend = t;

pnextlineseg = pcurrentline->pnextlineseg;
if (numer < 0.0) {

// Presplit part is in front of root line; link
// into front list and put postsplit part in back
// list

pcurrentline->pnextlineseg = pfrontlines;
pfrontlines = pcurrentline;

psplitline->pnextlineseg = pbacklines;
pbacklines = psplitline;

} else {

// Presplit part is in back of root line; link
// into back list and put postsplit part in front
// list

psplitline->pnextlineseg = pfrontlines;
pfrontlines = psplitline;
pcurrentline->pnextlineseg = pbacklines;
pbacklines = pcurrentline;

}

pcurrentline = pnextlineseg;
} else {

// Intersection outside segment limits, so no need to
// split; just add to proper list
pnextlineseg = pcurrentline->pnextlineseg;
Done = 0;

while (IDone) {

if (numer < -MATCH_TOLERANCE) {
// Current line is in front of root line;
// link into front list

pcurrentline->pnextlineseg = pfrontlines;
pfrontlines = pcurrentline;
Done = 1;

Compiling BSP Trees ® 729

} else if (numer > MATCH_TOLERANCE) {
// Current line Is behind root line; link
// into back list

pcurrentline->pnextlineseg = pbacklines;
pbacklines = pcurrentline;
Done - 1;

} else {
// The point on the current line we picked to
// do front/back evaluation happens to be
// col linear with the root, so use the other
// end of the current line and try again
numer -

(nx *

(pvertexlist[pcurrentline->endvertex].x -
pvertexl i st[prootl ine->startvertex].x))+

(ny *
(pvertexlist[pcurrentline->endvertex].y -
pvertexl i st[prootli ne->startvertex].y));

}

}
pcurrentline ™ pnextlineseg;

}

}

}

}
// Make a node out of the root line, with the front and back trees
// attached

if (pfrontlines == NULL) {
prootline->pfronttree = NULL;

} else {
if (!SelectBSPTree(pfrontlines, pCurrentTree.

&prootline->pfronttree)) {
return NULL;

}

}
if (pbacklines == NULL) {

prootline->pbacktree = NULL;
} else {

if (!SelectBSPTree(pbacklines. pCurrentTree.
&prootline->pbacktree)) {

return NULL;

}

}
return(prootli ne);

}

Listing 45.1 isn't very long or complex, but it's somewhat more complicated than it
could be because it's structured to allow visual display of the ongoing compilation
process. That's because Listing 45.1 is actually just a part of a BSP compiler for Win32
that visually depicts the progressive subdivision of space as the BSP tree is built. (Note
that Listing 45.1 might not compile as printed; I may have missed copying some glo
bal variables that it uses.) The complete code is too large to print here in its entirety,
but it's on the CD-ROM in file DDJBSP.ZIP.

730 0 Chapter 45

Optimizing the BSP Tree
In the previous chapter, I promised that I'd discuss how to go about deciding which
wall to use as the splitter at each node in constructing a BSP tree. That turns out to be
a far more difficult problem than one might think, but we can't ignore it, because the
choice of splitter can make a huge difference.

Consider, for example, a BSP in which the line or plane of the splitter at the root
node splits every single other surface in the world, doubling the total number of
surfaces to be dealt with. Contrast that with a BSP built from the same surface set in
which the initial splitter doesn't split anything. Both trees provide a valid ordering,
but one tree is much larger than the other, with twice as many polygons after the
selection of just one node. Apply the same difference again to each node, and the
relative difference in size (and, correspondingly, in traversal and rendering time)
soon balloons astronomically. So we need to do something to optimize the BSP
tree—but what? Before we can try to answer that, we need to know exactly what
we'd like to optimize.

There are several possible optimization objectives in BSP compilation. We might
choose to balance the tree as evenly as possible, thereby reducing the average depth to
which the tree must be traversed. Alternatively, we might try to approximately balance
the area or volume on either side of each splitter. That way we don't end up with huge
chunks of space in some tree branches and tiny slivers in others, and the overall pro
cessing time will be more consistent. Or, we might choose to select planes aligned with
the major axes, because such planes can help speed up our BSP traversal.
The BSP metric that seems most useful to me, however, is the number of polygons

that are split into two polygons in the course of building a BSP tree. Fewer splits is
better; the tree is smaller with fewer polygons, and drawing will go faster with fewer
polygons to draw, due to per-polygon overhead. There's a problem with the fewest-
splits metric, though: There's no sure way to achieve it.
The obvious approach to minimizing polygon splits would be to try all possible

trees to find the best one. Unfortunately, the order of that particular problem is N!, as
I found to my dismay when I implemented brute-force optimization in the first ver
sion of my BSP compiler. Take a moment to calculate the number of operations for
the 20-polygon set I originally tried brute-force optimization on. I'll give you a hint:
There are 19 digits in 20!, and if each operation takes only one microsecond, that's
over 70,000 years (or, if you prefer, over 500,000 dog years.) Now consider that a
single game level might have 5000 to 10,000 polygons; there aren't anywhere near
enough dog years in the lifetime of the universe to handle that. We're going to have to
give up on optimal compilation and come up with a decent heuristic approach, no
matter what optimization objective we select.

In Listing 45.1, I've applied the popular heuristic of choosing as the splitter at each
node the surface that splits the fewest of the other surfaces that are being considered for
that node. In other words, I choose the wall that splits the fewest of the walls in the
subspace it's subdividing.

Compiling BSP Trees ® 731

BSP Optimization: an Undiscovered Country
Although BSP trees have been around for at least 15 years now, they're still only par
tially understood and are a ripe area for applied research and general ingenuity. You
might want to try your hand at inventing new BSP optimization approaches; its an
interesting problem, and you might strike paydirt. There are many things that BSP
trees cant do well, because it takes so long to build them—but what they do, they do
exceedingly well, so a better compilation approach that allowed BSP trees to be used
for more purposes would be valuable, indeed.

The Fundamentals of the Math behind 3-D Graphics
Several years ago, I opened a column in Dr. Dobb's Journalwith a story about singing
my daughter to sleep with Beatles' songs. Beatles' songs, at least the earlier ones, tend
to he bouncy and pleasant, which makes them suitable goodnight fodder—and there
ate a lot of them, a useful hedge against terminal boredom. So for many good tea-
sons, "Can't Buy Me Love "and "A Hard Day's Night" and "Help!" and the test were
evening staples for years.
No longer, though. You see, I got my wife some Beatles tapes for Christmas, and

we've all been listening to them in the cat, and now that my daughter has heard the
real thing, she can barely stand to be in the same room, much less fall asleep, when
I sing those songs.

"What's noteworthy is that the only variable involved in this change was my daughter's
frame of reference. My singing hasn't gotten any worse over the last four years. (I'm not
sure it's possible iot my singing to get worse.) All that changed was my daughter's frame
of reference for those songs. The rest of the universe stayed the same; the change was in
her mind, lock, stock, and barrel.

Often, the key to solving a problem, or to working on a problem efficiently, is
having a proper frame of reference. The model you have of a problem you're tackling
often determines how deeply you can understand the problem, and how flexible and
innovative you'll be able to be in solving it.
An excellent example of this, and one that I'll discuss toward the end of this chapter,

is that oi 3-D transformation—the process of converting coordinates from one coordi
nate space to another, for example from worldspace to viewspace. The way this is
traditionally explained is functional, but not particularly intuitive, and fairly hard to
visualize. Recently, I've come across another way of looking at transforms that seems to
me to be far easier to grasp. The two approaches are technically equivalent, so the

734 ^ Chapter 46

difference is purely a matter of how we choose to view things—but sometimes that's
the most important sort of difference.

Before we can talk about transforming between coordinate spaces, however, we need
two building blocks: dot products and cross products.

3-D Math

At this point in the book I was originally going to present a BSP-based tenderer, to
complement the BSP compiler I presented in the previous chapter. What changed my
plans was the considerable amount of mail about 3-D math that I've gotten in recent
months. In every case, the writer has bemoaned their lack of expertise with 3-D math,
and has asked what books about 3-D math I'd recommend, and how else they could
learn more.

That's a commendable attitude, but the truth is, there's not all that much to 3-D
math, at least not when it comes to the sort of polygon-based, realtime 3-D that's done
on PCs. You really need only two basic math tools beyond simple arithmetic: dot
products and cross products, and really mostly just the former. My friend Chris Hecker
points out that this is an oversimplification; he notes that lots more math-related stuff,
like BSP trees, graphs, discrete math for edge stepping, and affine and perspective
texture mappings, goes into a production-quality game. While that's surely true, dot
and cross products, together with matrix math and perspective projection, constitute
the bulk of what most people are asking about when they inquire about "3-D math,"
and, as we'll see, are key tools for a lot of useful 3-D operations.
The other thing the mail made clear was that there are a lot of people out there who

don't understand either type of product, at least insofar as they apply to 3-D. Since
much or even most advanced 3-D graphics machinery relies to a greater or lesser extent
on dot products and cross products (even the line intersection formula I discussed in
the last chapter is actually a quotient of dot products), I'm going to spend this chapter
examining these basic tools and some of their 3-D applications. If this is old hat to you,
my apologies, and I'll return to BSP-based rendering in the next chapter.

Foundation Definitions

The dot and cross products themselves are straightforward and require almost no con
text to understand, but I need to define some terms I'll use when describing applica
tions of the products, so I'll do that now, and then get started with dot products.

I'm going to have to assume you have j^m^math backgroun, or we'll never get to the
good stuff. So, I'm just going to quickly define a vector zs a direction and a magnitude,
represented as a coordinate pair (in 2-D) or triplet (in 3-D), relative to the origin.
That's a pretty sloppy definition, but it'll do for our purposes; if you want the Real
McCoy, I suggest you checkout Calculus andAnalytic Geometryy by Thomas and Finney
(Addison-Wesley: ISBN 0-201-52929-7).

Frames of Reference @ 735

So, for example, in 3-D, the vector V = [5 0 5] has a length, or magnitude, by the
Pythagorean theorem, of

\\v\\ = -yjvl +vl+vl =^5^+0^+5^ =5-42, (eq. 1)

(where vertical double bars denote vector length), and a direction in the plane of the x
and z axes, exactly halfway between those two axes.

I'll be working in a left-handed coordinate system, whereby if you wrap the fingers
of your left hand around the z axis with your thumb pointing in the positive z direc
tion, your fingers will curl from the positive x axis to the positive y axis. The positive x
axis runs left to right across the screen, the positive y axis runs bottom to top across the
screen, and the positive z axis runs into the screen.

For our purposes, projection is the process of mapping coordinates onto a line or sur
face. Perspective projection projects 3-D coordinates onto a viewplane, scaling coordinates
according to their z distance from the viewpoint in order to provide proper perspective.
Objectspace is the coordinate space in which an object is defined, independent of other
objects and the world itself. Worldspace is the absolute frame of reference for a 3-D world;
all objects' locations and orientations are with respect to worldspace, and this is the frame
of reference around which the viewpoint and view direaion move. Viewspace is worldspace
as seen from the viewpoint, looking in the view direction. Screenspace is viewspace after
perspective projection and scaling to the screen.

Finally, transformation is the process of converting points from one coordinate space
into another; in our case, that'll mean rotating and translating (moving) points from
objectspace or worldspace to viewspace.

For additional information, you might want to check out Foley & van Dam's Com
puter Graphics (ISBN 0-201-12110-7), or the chapters in Part IX of this book, dealing
with my X-Sharp 3-D graphics library.

The Dot Product

Now we're ready to move on to the dot product. Given two vectors U = [ui U2 U3] and
V = [vi V2 V3], their dot product, denoted by the symbol •, is calculated as:

U • V = MjUj -I- U2V2 + . (eq. 2)

As you can see, the result is a scalar value (a single real-valued number), woranother vector.
Now that we know how to calculate a dot product, what does that get us? Not

much. The dot product isn't of much use for graphics until you start thinking of it this
way:

U • V = cos(0) ||U|| |lv||, (eq. 3)

736 ^ Chapter 46

I

'=coe{&)

Figure 46.1 The dot product.

where 0 is the angle between the two vectors, and the other two terms are the lengths
of the vectors, as shown in Figure 46.1. Although its not immediately obvious, equa
tion 3 has a wide variety of applications in 3-D graphics.

Dot Products of Unit Vectors

The simplest case of the dot product is when both vectors are unit vectors', that is, when their
lengths are both one, as calculated as in Equation 1. In this case, equation 3 simplifies to

U# V =cos(0). (eq. 4)

In other words, the dot product of two unit vectors is the cosine of the angle between them.
One obvious use of this is to find angles between unit vectors, in conjunction with

an inverse cosine function or lookup table. A more useful application in 3-D graphics
lies in lighting surfaces, where the cosine of the angle between incident light and the
normal (perpendicular vector) of a surface determines the fraction of the light s full
intensity at which the surface is illuminated, as in:

= IiCos(0). (eq. 5)

Frames of Reference ^ 737

J

Ne / /0 /

^ ►
surface

Figure 46.2 The dot product as used in caicuiating iighting intensity.

where Ij is the intensity of illumination of the surface, Ii is the intensity of the light,
and 6 is the angle between -D] (where Di is the light direction vector) and the surface
normal. If the inverse light vector and the surface normal are both unit vectors, then
this calculation can be performed with four multiplies and three additions—and no
explicit cosine calculations—as:

where Nj is the surface unit normal and Di is the light unit direction vector, as shown
in Figure 46.2.

Cross Products and the Generation of Polygon Normals
One question Equation 6 begs is where the surface unit normal comes from. One
approach is to store the end of a surface normal as an extra data point with each poly
gon (with the start being some point that's already in the polygon), and transform it
dong with the rest of the points. This has the advantage that if the normal starts out as
a unit normal, it will end up that way too, if only rotations and translations (but not
scaling and shears) are performed.

The problem with having an explicit normal is that it will remain a normal—that is,
perpendicular to the surface- -only through viewspace. Rotation, translation, and scal
ing preserve right angles, which is why normals are still normals in viewspace, but
perspective projection does not preserve angles, so vectors that were surface normals in
viewspace are no longer normals in screenspace.

738 ^ Chapter 46

Why does this matter? It matters because, on average, half the polygons in any
scene are facing away from the viewer, and hence shouldn't be drawn. One way to
identify such polygons is to see whether they're facing toward or away from the viewer;
that is, whether their normals have negative z values (so they're visible) or positive z
values (so they should be culled). However, we're talking about screenspace normals
here, because the perspective projection can shift a polygon relative to the viewpoint so
that although its viewspace normal has a negative z, its screenspace normal has a posi
tive z, and vice-versa, as shown in Figure 46.3. So we need screenspace normals, but
those can't readily be generated by transformation from worldspace.

viewpoint in viewopace

viewplane in ecreenopace after perspective projection

Figure 46.3 A problem with determining front/back visibility.

Frames of Reference @ 739

The solution is to use the cross product of two of the polygons edges to generate a
normal. The formula for the cross product is:

u X V = [^2^3 ~ ̂3^2 ^3^1 "" ̂ ^3 ^^2 " "2^1] 7)

(Note that the cross product operation is denoted by an X.) Unlike the dot product,
the result of the cross product is a vector. Not just any vector, either; the vector gener
ated by the cross product is perpendicular to both of the original vectors. Thus, the
cross product can be used to generate a normal to any surface for which you have two
vectors that lie within the surface. This means that we can generate the screenspace
normals we need by taking the cross product of two adjacent polygon edges, as shown
in Figure 46.4.

normal = Eq X Ei

Figure 46.4 How the cross product of polygon edge vectors generates a polygon normal.

740 ^ Chapter 46

In fact, we can cull with only one-third the work needed to generate
a full croee product; becauee we're Intereeted only in the eign of the
z component of the normal, we can ekip entirely calculating the x
and y componente. The only caveat le to be careful that neither
edge you chooee le zero-length and that the edgee aren't colllnear,
becauee the dot product can't produce a normal In thoee caeee.

Perhaps the most often asked question about cross products is "Which way do normals
generated by cross products go?" In a left-handed coordinate system, curl the fingers
of your left hand so the fingers curl through an angle of less than 180 degrees from the
first vector in the cross product to the second vector. Your thumb now points in the
direction of the normal.

If you take the cross product of two orthogonal (right-angle) unit vectors, the result
will be a unit vector that's orthogonal to both of them. This means that if you're gener
ating a new coordinate space—such as a new viewing frame of reference—^you only
need to come up with unit vectors for two of the axes for the new coordinate space, and
can then use their cross product to generate the unit vector for the third axis. If you
need unit normals, and the two vectors being crossed aren't orthogonal unit vectors,
you'll have to normalize the resulting vector; that is, divide each of the vector's compo
nents by the length of the vector, to make it a unit long.

Using the Sign of the Dot Product
The dot product is the cosine of the angle between two vectors, scaled by the magnitudes
of the vectors. Magnitudes are always positive, so the sign of the cosine determines the
sign of the result. The dot product is positive if the angle between the vectors is less than
90 degrees, negative if it's greater than 90 degrees, and zero if the angle is exactly 90
degrees. This means that just the sign of the dot product suffices for tests involving
comparisons of angles to 90 degrees, and there are more of those than you'd think.

Consider, for example, the process of backface culling, which we discussed above in
the context of using screenspace normals to determine polygon orientation relative to
the viewer. The problem with that approach is that it requires each polygon to be
transformed into viewspace, then perspective projected into screenspace, before the
test can be performed, and that involves a lot of time-consuming calculation. Instead,
we can perform culling way back in worldspace (or even earlier, in objectspace, if we
transform the viewpoint into that frame of reference), given only a vertex and a normal
for each polygon and a location for the viewer.

Here's the trick: Calculate the vector from the viewpoint to any vertex in the poly
gon and take its dot product with the polygon's normal, as shown in Figure 46.5. If the
polygon is facing the viewpoint, the result is negative, because the angle between the
two vectors is greater than 90 degrees. If the polygon is facing away, the result is posi-

Frames of Reference ^ 741

polygon 0 polygon 1

^0

^o'^<o. \ / ^'>0-
so polygon 0 \ / P^'y^o" 0
faces forward & / faces backward &
is visible is not visible

viewpoint in viewspace

Figure 46.5 Backface culling with the dot product.

tive, and if the polygon is edge-on, the result is 0. That s all there is to it—and this sort
of backface culling happens before any transformation or projection at all is performed,
saving a great deal of work for the half of all polygons, on average, that are culled.

Backface culling with the dot product is just a special case of determining which side
of a plane any point (in this case, the viewpoint) is on. The same trick can be applied
whenever you want to determine whether a point is in front of or behind a plane, where
a plane is described by any point that's on the plane (which I'll call the plane origin), plus
a plane normal. One such application is in clipping a line (such as a polygon edge) to a
plane. Just do a dot product between the plane normal and the vector from one line
endpoint to the plane origin, and repeat for the other line endpoint. If the signs of the
dot products are the same, no clipping is needed; if they differ, clipping is needed. And
yes, the dot product is also the way to do the actual clipping; but before we can talk about
that, we need to understand the use of the dot product for projection.

742 @ Chapter 46

Using the Dot Product for Projection
Consider Equation 3 again, but this time make one of the vectors, say V, a unit vector.
Now the equation reduces to:

U • V = COS (e)W- (eq. 8)

In other words, the result is the cosine of the angle between the two vectors, scaled by
the magnitude of the non-unit vector. Now, consider that cosine is really just the length
of the adjacent leg of a right triangle, and think of the non-unit vector as the hypot
enuse of a right triangle, and remember that all sides of similar triangles scale equally.
What it all works out to is that the value of the dot product of any vector with a unit
vector is the length of the first vector projected onto the unit vector, as shown in Figure
46.6.

This unlocks all sorts of neat stuff. Want to know the distance from a point to a
plane? Just dot the vector from the point P to the plane origin Op with the plane unit
normal Np, to project the vector onto the normal, then take the absolute value:

distance = | (P - Op) • Np| ,

as shown in Figure 46.7.
Want to clip a line to a plane? Calculate the distance from one endpoint to the

plane, as just described, and dot the whole line segment with the plane normal, to get
the full length of the line along the plane normal. The ratio of the two dot products is
then how far along the line from the endpoint the intersection point is; just move

unit vector U

<

Figure 46.6 How the dot product with a unit vector performs a projection.

Frames of Reference ^ 743

distance to plane:

l(P-Op).Npl

Figure 46.7 Using the dot product to get the distance from a point to a piano.

along the line segment by that distance from the endpoint, and you're at the intersec
tion point, as shown in Listing 46.1.

Listing 46.1. L46_1.C
// Given two line endpoints, a point on a plane, and a unit normal
// for the plane, returns the point of intersection of the line
// and the plane in intersectpoint.
#define DOT_PRODUCT(x,y) (x[0]*y[0]+x[l]*y[l]+x[2]*y[2])
void LinelntersectPlane (float *linestart, float *lineend,

float *planeorigin, float *planenormal, float *intersectpoint)
{

float vecl[3], projectedlinelength, startdistfromplane, scale;
vecl[0] = linestart[0] - pianeorigin[0];
veclCl] = linestartCl] - pianeoriginCl];
vecl[2] = linestart[2] - pianeorigin[2];
startdistfromplane = DOT_PRODUCT(vecl, pianenormal);
if (startdistfromplane = 0)

{
// point is in plane
intersectpoint[0] = 1inestart[0];
intersectpointCl] = 1inestartCl];

744 @ Chapter 46

intersectpoint[2]
return;

1inestart[l]:

}

veclCO] = linestart[0] - lineend[0];

veclCl] = linestart[l] - 1ineend[l];

vecl[2] = linestart[2] - lineend[2];

projected!inelength = DOT_PRODUCT(vecl, pianenormal);
scale = startdistfromp!ane / projected!inelength;
intersectpointEO] = !inestart[0] - vecl[0] * scale;
intersectpoint[l] =■ !inestart[l] - vecl[l] * scale;
intersectpoint[2] = linestart[l] - vecl[2] * scale;

Rotation by Projection
We can use the dot products projection capability to look at rotation in an interesting
way. Typically, rotations are represented by matrices. This is certainly a workable repre
sentation that encapsulates all aspects of transformation in a single object, and is ideal
for concatenations of rotations and translations. One problem with matrices, though,
is that many people, myself included, have a bard time looking at a matrix of sines and
cosines and visualizing what s actually going on. So when two 3-D experts, John Carmack
and Billy Zelsnack, mentioned that they think of rotation differendy, in a way that
seemed more intuitive to me, I thought it was worth passing on.

Their approach is this: Think of rotation as projecting coordinates onto new axes.
That is, given that you have points in, say, worldspace, define the new coordinate space
(viewspace, for example) you want to rotate to by a set of three orthogonal unit vectors

y axis

y' axis ^ ^ (0,10) in x,y coorde:
^ {5,3.66) In x',y' coords:

x' axis

X axis

Figure 46.8 Rotation to a new coordinate space by projection onto new axes.

Frames of Reference ^ 745

defining the new axes, and then project each point onto each of the three axes to get
the coordinates in the new coordinate space, as shown for the 2-D case in Figure 46.8.
In 3-D, this involves three dot products per point, one to project the point onto each
axis. Translation can be done separately from rotation by simple addition.

Rotation Ipy projection is exactly the same as rotation via matrix
multiplication; in fact, the rows of a rotation matrix are the or
thogonal unit vectors pointing along the new axes. Rotation by pro
jection buys us no technical advantages, so that's not what's
important here; the key is that the concept of rotation by projec
tion, together with a separate translation step, gives us a new way
to look at transformation that I, for one, find easier to visualize and
experiment with. A new frame of reference for how we think about 3-
P frames of reference, if you will.

Three things I've learned over the years are that it never hurts to learn a new way of
looking at things, that it helps to have a clearer, more intuitive model in your head of
whatever it is you're working on, and that new tools, or new ways to use old tools, are
Good Things. My experience has been that rotation by projection, and dot product
tricks in general, offer those sorts of benefits for 3-D.

Taking a Compiled BSP Tree from Logical to Visual
Reality

As I've noted before, I'm working on Quake, id Software's follow-up to DOOM. A
month or so back, we added page flipping to Quake, and made the startling discovery
that the program ran nearly rwice as fast with page flipping as it did with the alterna
tive method of drawing rhe whole frame to system memory, then copying it to the
screen. We were delighted by this, but baffled. 1 did a few tests and came up with
several possible explanations, including slow writes through the external cache, poor
main memory performance, and cache misses when copying the frame from system
memory to video memory. vVlthough each of these can indeed affect performance,
none seemed to account for the magnitude of the speedup, so 1 assumed there was
some hidden hardware interaction at work. Anyway, "why" was secondary; what really
mattered was that we had a way to double performance, whicb meant 1 had a lot of
work to do to support page flipping as widely as possible.
A few days ago, 1 was using the Pentium's built-in performance counters to seek out

areas for improvement in Quake and, for no particular reason, checked rhe number of
writes performed while copying the frame to the screen in non-page-flipped mode.
The answer was 64,000. That seemed odd, since there were 64,000 byte-sized pixels to
copy, and 1 was calling memcpyO, whicb of course performs copies a dword at a time
whenever possible. 1 thought maybe the Pentium counters report the number of bytes
written rather than the number of writes performed, but fortunately, this time 1 tested
my assumptions by writing an ASM routine to copy the frame a dword at a time,
without the help of memcpyQ. This time the Pentium counters reported 16,000 writes.

Whoops.

748 ® Chapter 47

As it turns out, the memcpyO routine in the DOS version of our compiler (gcc)
inexplicably copies memory a byte at a time. With my new routine, the non-page-
flipped approach suddenly became slightly than page flipping.
The first relevant rule is pretty obvious: Assume nothing. Measure early and often.

Know what's really going on when your program runs, if you catch my drift. To do
otherwise is to risk looking mighty foolish.
The second rule: When you do look foolish (and trust me, it happen if you do

challenging work) have a good laugh at yourself, and use it as a reminder of Rule #1.1
hadn't done any extra page-flipping work yet, so I didn't waste any time due to my
faulty assumption that memcpyO performed a maximum-speed copy, but that was just
luck. I should have done experiments until I was sure I knew what was going on before
drawing any conclusions and acting on them.

In general, make It a point not to fall Into a tightly focueed rut; etay
looee and think of alternative poeeMltlee and new approaches, and
always, always, always keep asking questions. It'll pay off hig In the
long run. If I hadn't Indulged my curiosity by running the Fentlum
counter test on the copy to the screen, even though there was no
specific reason to do so, I would never have discovered the memcpyQ
problem—and by so doing I doubled the performance of the entire
program In five minutes, a rare accomplishment Indeed.

By the way, I have found the Pentium's performance counters to be very useful in
figuring out what my code really does and where the cycles are going. One useful
source of information on the performance counters and other aspects of the Pentium is
Mike Schmit's book, Pentium Processor Optimization Took, AP Professional, ISBN 0-
12-627230-1.

Onward to rendering from a BSP tree.

BSP-based Rendering
For the last several chapters IVe been discussing the nature of BSP (Binary Space Par
titioning) trees, and in Chapter 45 I presented a compiler for 2-D BSP trees. Now
we re ready to use those compiled BSP trees to do realtime rendering.
As you 11 recall, the BSP compiler took a list of vertical walls and built a 2-D BSP

tree from the walls, as viewed from above. The result is shown in Figure 47.1. The
world is split into two pieces by the line of the root wall, and each half of the world is
then split again by the root s children, and so on, until the world is carved into sub-
spaces along the lines of all the walls.

One Story, Two Rules, and a BSP Renderer ^ 749

splitting
line

36F tree

back childfront child

back childfront child

Figure 47.1 Vertical walls and a BSP tree to represent them.

Our objective is to draw the world so that whenever walls overlap we see the nearer
wall at each overlapped pixel. The simplest way to do that is with the painters
algorithm; that is, drawing the walls in back-to-front order, assuming no polygons
interpenetrate or form cycles. BSP trees guarantee that no polygons interpenetrate
(such polygons are automatically split), and make it easy to walk the polygons in back-
to-front (or front-to-back) order.

Given a BSP tree, in order to render a view of that tree, all we have to do is descend
the tree, deciding at each node whether we're seeing the front or back of the wall at that
node from the current viewpoint. We use that knowledge to first recursively descend
and draw the farther subtree of that node, then draw that node, and finally draw the
nearer subtree of that node. Applied recursively from the root of our BSP trees, this
approach guarantees that overlapping polygons will always be drawn in back-to-front
order. Listing 47.1 draws a BSP-based world in this fashion. (Because of the con
straints of the printed page. Listing 47.1 is only the core of the BSP renderer, without
the program framework, some math routines, and the polygon rasterizer; but, the en
tire program is on the CD-ROM as DDJBSP2.ZIP. Listing 47.1 is in a compressed
format, with relatively little whitespace; the full version on the CD-ROM is formatted
normally.)

Listing 47.1. L47_1.C
/* Core renderer for Win32 program to demonstrate drawing from a 2D

BSP tree; illustrate the use of BSP trees for surface visibility.
UpdateWorld() is the top-level function in this module.
Full source code for the BSP-based renderer, and for the

750 ^ Chapter 47

accompanying BSP compner, may be downloaded from
ftp.idsoftware.com/m1keab, in the file ddjbsp2.zip.
Tested with VC++ 2.0 running on Windows NT 3.5. */

^define FIXEDPOINT(x) ((FIXEDPOINT)(((1ong)x)*((1ong)OxlOOOO)))
^define FIXTOINT(x) ((int)(x » 16))
#define ANGLE(x) ((long)x)
//define STANDARD_SPEED (FIXEDP0INT(20))
//define STANDARD_ROTATION (ANGLE(4))
//define MAX_NUM_NODES 2000
//define MAX_NUM_EXTRA_VERTICES 2000
//define WORLD_MIN_X (FIXEDPOINTC-16000))
//define WORLD_MAX_X (FIXEDPOINTC 16000))
//define WORLD_MIN_Y (FIXEDPOINTC-16000))
//define WORLD_MAX_Y C FIXEDPOINTC 16000))
//define WORLD_MIN_Z C FIXEDPOINTC-16000))
//define WORLD_MAX_Z C FIXEDPOINTC 16000))
//define PROJECTION_RATIO C2.0/1.0) // controls field of view; the

// bigger this is, the narrower the field of view
typedef long FIXEDPOINT;

typedef struct .VERTEX {

FIXEDPOINT X, z, viewx, viewz;

} VERTEX. *PVERTEX;

typedef struct _P0INT2 { FIXEDPOINT x. z; } P0INT2, *PP0INT2;
typedef struct _P0INT2INT { int x; int y; } P0INT2INT. *PP0INT2INT;
typedef long ANGLE; // angles are stored in degrees
typedef struct .NODE {

VERTEX *pstartvertex, *pendvertex;
FIXEDPOINT walltop, wallbottom, tstart, tend;
FIXEDPOINT clippedtstart, clippedtend;
struct .NODE *fronttree, *backtree;

int color, isVisible;

FIXEDPOINT screenxstart, screenxend;

FIXEDPOINT screenytopstart, screenybottomstart;
FIXEDPOINT screenytopend, screenybottomend;

} NODE, *PNODE;

char * pDIB; // pointer to DIB section we'll draw into
HBITMAP hDIBSection; // handle of DIB section

HPALETTE hpalDIB;
int iteration = 0, WorldlsRunning = 1;
HWND hwndOutput;
int DIBWidth, DIBHeight, DIBPitch, numvertices, numnodes;
FIXEDPOINT fxHalfDIBWidth, fxHalfDIBHeight;
VERTEX *pvertexlist, *pextravertexlist;
NODE *pnodelist;
P0INT2 currentlocation, currentdirection, currentorientation;
ANGLE currentangle;
FIXEDPOINT currentspeed, fxViewerY, currentYSpeed;
FIXEDPOINT FrontClipPlane = FIXEDPOINTCIO);
FIXEDPOINT FixedMulCFIXEDPOINT x, FIXEDPOINT y);
FIXEDPOINT FixedDivCFIXEDPOINT x, FIXEDPOINT y);
FIXEDPOINT FixedSinCANGLE angle), FixedCosCANGLE angle);
extern int Fi11ConvexPolygonCP0INT2INT * VertexPtr, int Color);
// Returns nonzero if a wall is facing the viewer, 0 else,
int WallFacingViewerCNODE * pwall)
{

FIXEDPOINT viewxstart = pwal1->pstartvertex->viewx;
FIXEDPOINT viewzstart = pwal1->pstartvertex->viewz;
FIXEDPOINT viewxend = pwal1->pendvertex->viewx;
FIXEDPOINT viewzend = pwal1->pendvertex->viewz;
int Temp;

One Story, Two Rules, and a BSP Renderer ^ 751

/* // equivalent C code
if ((((pwall->pstartvertex->viewx >> 16) *

((pwall->pendvertex->viewz -
pwall->pstartvertex->viewz) >> 16)) +

((pwal1->pstartvertex->v1ewz >> 16) *
((pwal1->pstartvertex->v1ewx -

pwal 1->pendvertex->viewx) >> 16)))
< 0)

return(l);

el se

return(O);

*/

_asm {

mov eax.viewzend

sub eax.viewzstart

imul viewxstart

mov ecx.edx

mov ebx.eax

mov eax,viewxstart

sub eax.viewxend

imul viewzstart

add eax.ebx

ado edx.ecx

mov eax,0

jns short WFVDone
inc eax

WFVDone:

mov Temp,eax

}
return(Temp);

}
// Update the viewpoint position as needed,
void UpdateViewPos()

{
if (currentspeed != 0) {

currentlocation.x += FixedMul(currentdirection.x,
currentspeed);

if (currentlocation.x <= WORLD_MIN_X)
currentlocation.x = WORLD_MIN_X;

if (currentlocation.x >= WORLD_MAX_X)
currentlocation.x = WORLD_MAX_X - 1;

currentlocation.z += FixedMul(currentdirection.z,
currentspeed);

if (currentlocation.z <= WORLD_MIN_Z)
currentlocation.z = WORLD_MIN_Z;

if (currentlocation.z >= WORLD_MAX_Z)
currentlocation.z = WORLD_MAX_Z - 1;

}

if (currentYSpeed != 0) {
fxViewerV += currentYSpeed;
if (fxViewerY <= WORLD_MIN_Y)

fxViewerY = WORLD_MIN_Y;

if (fxViewerY >= WORLD_MAX_Y)
fxViewerY - WORLD_MAX_Y - 1;

}

}
// Transform all vertices into viewspace.

void TransformVertices()

{
VERTEX *pvertex;

752 0 Chapter 47

FIXEDPOINT tempx, tempz;
int vertex;

pvertex = pvertexlist;
for (vertex = 0; vertex < numvertices; vertex++) {

if Translate the vertex according to the viewpoint
tempx = pvertex->x - current]ocation.x;
tempz = pvertex->z - currentlocation.z;

// Rotate the vertex so viewpoint is looking down z axis
pvertex->viewx = FixedMuKFixedMuKtempx,

currentorientation.z) +
FixedMul(tempz, -currentorientation.x),

FIXEDPOINT(PROJECTION_RATIO));
pvertex->viewz = FixedMul(tempx, currentorientation.x) +

FixedMul(tempz, currentorientation.z);
pvertex-H-;

}

}

// 3D clip all walls. If any part of each wall is still visible,
// transform to perspective viewspace.
void ClipWallsO
{

NODE *pwall;
int wal1;

FIXEDPOINT tempstartx, tempendx, tempstartz, tempendz;
FIXEDPOINT tempstartwal1 top, tempstartwal1 bottom;
FIXEDPOINT tempendwal1 top, tempendwal1 bottom;
VERTEX *pstartvertex, *pendvertex;
VERTEX *pextravertex = pextravertexlist;
pwall = pnodelist;
for (wall = 0; wall < numnodes; wall++) {

// Assume the wall won't be visible

pwal1->i sVi sible = 0;

// Generate the wall endpoints, accounting for t values and
// clipping
// Calculate the viewspace coordinates for this wall
pstartvertex = pwal1->pstartvertex;
pendvertex ■= pwal 1->pendvertex;
// Look for z clipping first
// Calculate start and end z coordinates for this wall
if (pwall->tstart = FIXEDPOINT(O))

tempstartz = pstartvertex->viewz;
el se

tempstartz = pstartvertex->viewz +
FixedMul((pendvertex->viewz-pstartvertex->viewz),
pwal1->tstart);

if (pwall->tend — FIXEDPOINT(1))
tempendz ■= pendvertex->viewz;

el se

tempendz = pstartvertex->viewz +
FixedMul((pendvertex->viewz-pstartvertex->viewz),
pwal1->tend);

// Clip to the front plane
if (tempendz < FrontClipPlane) {

if (tempstartz < FrontClipPlane) {
// Fully front-clipped
goto NextWall;

} else {
pwal1->clippedtstart = pwal1->tstart;
// Clip the end point to the front clip plane
pwal1->clippedtend =

One Story, Two Rules, and a BSP Renderer ^ 753

FixedDiv(pstartvertex->viewz - FrontClipPIane.
pstartvertex->viewz-penclvertex->viewz);

tempendz = pstartvertex->viewz +
FixedMul ((pendvertex->viewz-pstartvertex->viewz),
pwall->clippedtend);

}

} else {
pwall->clippedtend = pwall->tend;
if (tempstartz < FrontCllpPlane) {

// Clip the start point to the front clip plane
pwal1->clippedtstart =

FixedDiv(FrontClipPlane - pstartvertex->viewz.
pendvertex->viewz-pstartvertex->viewz);

tempstartz = pstartvertex->viewz +
FixedMul((pendvertex->viewz-pstartvertex->viewz),

pwal1->clippedtstart);
} else {

pwal1->clippedtstart = pwal1->tstart;

}

}
// Calculate x coordinates

if (pwal1->clippedtstart == FIXEDPOINTCO))
tempstartx = pstartvertex->viewx;

el se

tempstartx = pstartvertex->viewx +
FixedMul((pendvertex->viewx-pstartvertex->viewx).
pwal1->cli ppedtstart);

if (pwal 1->cl ippedtend = FIXEDPOINTd))
tempendx = pendvertex->viewx;

el se

tempendx = pstartvertex->viewx +
FixedMul((pendvertex->viewx-pstartvertex->viewx),
pwal1->cli ppedtend);

// Clip in X as needed
if ((tempstartx > tempstartz) || (tempstartx < -tempstartz)) {

// The start point is outside the view triangle in x;
// perform a quick test for trivial rejection by seeing if
// the end point is outside the view triangle on the same
// side as the start point
if (((tempstartx>tempstartz) && (tempendx>tempendz)) ||

((tempstartx<-tempstartz) && (tempendx<-tempendz)))
// Fully clipped-trivially reject
goto NextWal1;

// Clip the start point
if (tempstartx > tempstartz) {

// Clip the start point on the right side
pwal1->clippedtstart =

FixedDiv(pstartvertex->viewx-pstartvertex->viewz,
pendvertex->viewz-pstartvertex->viewz -
pendvertex->viewx+pstartvertex->viewx);

tempstartx = pstartvertex->viewx +
FixedMul((pendvertex->viewx-pstartvertex->viewx),

pwal1->clippedtstart);
tempstartz = tempstartx;

} else {
// Clip the start point on the left side
pwal1->clippedtstart =

FixedDiv(-pstartvertex->viewx-pstartvertex->viewz,
pendvertex->viewx+pendvertex->viewz -
pstartvertex->viewz-pstartvertex->viewx);

754 ® Chapter 47

tempstartx = pstartvertex->viewx +
FixedMul((pendvertex->viewx-pstartvertex->viewx).

pwal1->clippedtstart);
tempstartz = -tempstartx;

}

}

// See if the end point needs clipping
if ((tempendx > tempendz) || (tempendx < -tempendz)) {

// Clip the end point
if (tempendx > tempendz) {

// Clip the end point on the right side
pwal1->cli ppedtend =

FixedDiv(pstartvertex->viewx-pstartvertex->viewz,
pendvertex->viewz-pstartvertex->viewz -
pendvertex->viewx+pstartvertex->viewx):

tempendx = pstartvertex->viewx +
FixedMul((pendvertex->viewx-pstartvertex->viewx),

pwal1->clippedtend);
tempendz = tempendx;

} else {

// Clip the end point on the left side
pwal1->cli ppedtend =

FixedDiv(-pstartvertex->viewx-pstartvertex->viewz,
pendvertex->viewx+pendvertex->viewz -
pstartvertex->viewz-pstartvertex->viewx);

tempendx = pstartvertex->viewx +

FixedMul((pendvertex->viewx-pstartvertex->viewx),
pwal1->cli ppedtend);

tempendz = -tempendx;

}

}

tempstartwal1 top = FixedMuK(pwal1->wal1 top - fxViewerY),
FIXEDPOINT(PROJECTION_RATIO));

tempendwal1 top = tempstartwal1 top;
tempstartwal1 bottom = FixedMul((pwal1->wal1bottom-fxViewerY).

FIXEDPOINT(PROJECTION_RATIO));
tempendwal1 bottom = tempstartwal1 bottom;
// Partially clip in y (the rest is done later in 2D)
// Check for trivial accept
if ((tempstartwal1 top > tempstartz) ||

(tempstartwal1 bottom < -tempstartz) ||
(tempendwal1 top > tempendz) ||
(tempendwal1 bottom < -tempendz)) {
// Not trivially undipped; check for fully clipped
if ((tempstartwal1 bottom > tempstartz) &&

(tempstartwal1 top < -tempstartz) &&
(tempendwal1 bottom > tempendz) &&
(tempendwal1 top < -tempendz)) {
// Outside view triangle, trivially clipped
goto NextWal1;

}
// Partially clipped in Y; we'll do Y clipping at
// drawing time

}

// The wall is visible; mark it as such and project it.
// +1 on scaling because of bottom/right exclusive polygon
// filling
pwal1->i sVi sible = 1;

pwal1->screenxstart =
(FixedMulDiv(tempstartx. fxHalfDIBWidth+FIXEDPOINKO.5).

One Story, Two Rules, and a BSP Renderer ^ 755

tempstartz) + fxHalfDIBWidth + FIXEDP0INT(0.5));
pwall->screenytopstart =

(FixedMulDivCtempstartwal Itop,
fxHalfDIBHeight + FIXEDP0INT(0.5), tempstartz) +
fxHalfDIBHeight + FIXEDPOINKO.5));

pwall->screenybottomstart =
(FixedMulDi vCtempstartwal1 bottom,
fxHalfDIBHeight + FIXEDPOINTCO.B). tempstartz) +
fxHalfDIBHeight + FIXEDPOINTCO.B));

pwal1->screenxend =
CFixedMulDivCtempendx, fxHalfDIBWidth+FIXEDPOINTCO.B),
tempendz) + fxHalfDIBWidth + FIXEDPOINTCO.B));

pwal1->screenytopend =
C Fi xedMulDi v C tempendwal1 top,
fxHalfDIBHeight + FIXEDPOINTCO.B), tempendz) +
fxHalfDIBHeight + FIXEDPOINTCO.B));

pwal1->screenybottomend =
CFixedMulDivCtempendwal1 bottom,
fxHalfDIBHeight + FIXEDPOINTCO.B), tempendz) +
fxHalfDIBHeight + FIXEDPOINTCO.B));

NextWal1:

pwal1++;

}

// Walk the tree back to front; backface cull whenever possible,
// and draw front-facing walls in back-to-front order,
void DrawWal1sBackToFrontC)

{
NODE *pFarChildren, *pNearChi1dren, *pwall;
NODE *pendingnodes[MAX_NUM_NODES];
NODE **pendingstackptr;
P0INT2INT apoint[4];
pwal1 = pnodeli st;
pendingnodes[0] = CNODE *)NULL;
pendingstackptr = pendingnodes + 1;
for C;;) {

for C;;) (

// Descend as far as possible toward the back,
// remembering the nodes we pass through on the way.
// Figure whether this wall is facing frontward or
// backward; do in viewspace because non-visible walls
// aren't projected into screenspace, and we need to
// traverse all walls in the BSP tree, visible or not,
// in order to find all the visible walls
if CWallFacingViewerCpwall)) {

// We're on the forward side of this wall , do the back
// children first

pFarChildren = pwal1->backtree;
} else {

// We're on the back side of this wall, do the front
// children first

pFarChildren = pwal1->fronttree;

}
if CpFarChiIdren = NULL)

break;

*pendingstackptr = pwall;
pendi ngstackptr++;
pwall = pFarChildren;

}

for C;;) {

756 ^ Chapter 47

II See if the wall is even visible
if (pwal1->isVisible) {

// See if we can backface cull this wall
if (pwal1->screenxstart < pwal1->screenxend) {

// Draw the wall

apoint[0].x = FIXTOINKpwall->screenxstart);
apoint[l].x = FIXTOINTCpwal1->screenxstart);
apoint[2].x = FIXTOINTCpwal1->screenxend);
apoint[3].x = FIXTOINTCpwal1->screenxend);
apoint[0].y = FIXTOINTCpwal1->screenytopstart);
apoint[l].y = FIXTOINTCpwal1->screenybottomstart);
apoint[2].y = FIXTOINTCpwal1->screenybottomend);
apoint[3].y = FIXTOINTCpwal1->screenytopend);
FilIConvexPolygonCapoint, pwall->color);

}

}

// If there's a near tree from this node, draw it;
// otherwise, work back up to the last-pushed parent
// node of the branch we just finished; we're done if
// there are no pending parent nodes.
// Figure whether this wall is facing frontward or
// backward; do in viewspace because non-visible walls
// aren't projected into screenspace, and we need to

// traverse all walls in the BSP tree, visible or not,
// in order to find all the visible walls

if CWal1FacingViewerCpwal1)) {
// We're on the forward side of this wall, do the
// front children now

pNearChi1dren = pwal1->fronttree;
} else {

// We're on the back side of this wall, do the back
// children now

pNearChi1dren = pwal1->backtree;
)

// Walk the near subtree of this wall
if CpNearChildren H NULL)

goto WalkNearTree;

// Pop the last-pushed wall
pendi ngstackptr-;
pwall = *pendingstackptr;
if Cpwall == NULL)

goto NodesDone;

)

WalkNearTree:

pwall = pNearChi1dren;
}

NodesDone:

}

// Render the current state of the world to the screen,
void UpdateWorldC)

{

HPALETTE holdpal;
HDC hdcScreen, hdcDIBSection;
HBITMAP holdbitmap;
// Draw the frame

UpdateVi ewPosC);

memsetCpDIB, 0, DIBPitch*DIBHeight); // clear frame
TransformVerticesC);
C1ipWal1sC);

One Story, Two Rules, and a BSP Renderer ^ 757

DrawWal1sBackToFront();

// We've drawn the frame; copy it to the screen
hdcScreen = GetDC(hwndOutput);
holdpal = SelectPalette(hdcScreen, hpalDIB, FALSE);
Real 1zePa1ette(hdcScreen);

hdcDIBSection = CreateCompatibleDC(hdcScreen);
holdbitmap = SelectObject(hdcDIBSection, hDIBSection);
B1tBlt(hdcScreen, 0. 0, DIBWidth, DIBHeight. hdcDIBSection,

0, 0. SRCCOPY);
SelectPaletteChdcScreen, holdpal, FALSE);
ReleaseDC(hwndOutput, hdcScreen);
SelectObjectChdcDIBSection, holdbitmap);
ReleaseDC(hwndOutput, hdcDIBSection);
iterati on++;

The Rendering Pipeline
Conceptually rendering from a BSP tree really is that simple, but the implementation
is a bit more complicated. The fidl rendering pipeline, as coordinated by UpdateWorldQ,
is this:

• Update the current location.

• Transform all wall endpoints into viewspace (the world as seen from the current
location with the current viewing angle).

• Clip all walls to the view pyramid.
• Project wall vertices to screen coordinates.
• Walk the walls back to front, and for each wall that lies at least partially in the view

pyramid, perform backface culling (skip walls facing away from the viewer), and
draw the wall if it's not culled.

Next, we'll look at each part of the pipeline more closely. The pipeline is too com
plex for me to be able to discuss each part in complete detail. Some sources for further
reading are Computer Graphics, by Foley and van Dam (ISBN 0-201-12110-7), and
the DDJEssential Books on Graphics Programming CD.

Moving the Viewer
The sample BSP program performs first-person rendering; that is, it renders the world
as seen from your eyes as you move about. The rate of movement is controlled by key-
handling code that's not shown in Listing 47.1; however, the variables set by the key-
handling code are used in UpdateViewPos() to bring the current location up to date.

Note that the view position can change not only in x and z (movement around the
plane upon which the walls are set), but also in y (vertically). However, the view direc
tion is always horizontal; that is, the code in Listing 47.1 supports moving to any 3-D
point, but only viewing horizontally. Although the BSP tree is only 2-D, it is quite

758 ^ Chapter 47

possible to support looking up and down to at least some extent, particularly if the
world dataset is restricted so that, for example, there are never two rooms stacked on
top of each other, or any tilted walls. For simplicity's sake, I have chosen not to imple
ment this in Listing 47.1, but you may find it educational to add it to the program
yourself.

Transformation Into VIewspace
The viewing angle (which controls direction of movement as well as view direction)
can sweep through the full 360 degrees around the viewpoint, so long as it remains
horizontal. The viewing angle is controlled by the key handler, and is used to define a
unit vector stored in currentorientation that explicitly defines the view direction (the
z axis of viewspace), and implicitly defines the x axis of viewspace, because that axis is
at right angles to the z axis, where x increases to the right of the viewer.

As I discussed in the previous chapter, rotation to a new coordinate system can be
performed by using the dot product to project points onto the axes of the new coordi
nate system, and that's what TransformVertices() does, after first translating (moving)
the coordinate system to have its origin at the viewpoint. (It's necessary to perform the
translation first so that the viewing rotation is around the viewpoint.) Note that this
operation can equivalently be viewed as a matrix math operation, and that this is in
fact the more common way to handle transformations.

At the same time, the points are scaled in x according to PROJECTION_RATIO
to provide the desired field of view. Larger scale values result in narrower fields of view.
When this is done the walls are in viewspace, ready to be clipped.

Clipping
In viewspace, the walls may be anywhere relative to the viewpoint: in front, behind,
off" to the side. We only want to draw those parts of walls that properly belong on the
screen; that is, those parts that lie in the view pyramid (view frustum), as shown in
Figure 47.2. Undipped walls—^walls that lie entirely in the frustum—should be drawn
in their entirety, fully clipped walls should not be drawn, and partially clipped walls
must be trimmed before being drawn.

In Listing 47.1, ClipWalls() does this in three steps for each wall in turn. First, the
z coordinates of the two ends of the wall are calculated. (Remember, walls are vertical
and their ends go straight up and down, so the top and bottom of each end have the
same x and z coordinates.) If both ends are on the near side of the front clip plane,
then the polygon is fully clipped, and we're done with it. If both ends are on the far
side, then the polygon isn't z-clipped, and we leave it unchanged. If the polygon straddles
the near clip plane, then the wall is trimmed to stop at the near clip plane by adjusting
the t value of the nearest endpoint appropriately; this calculation is a simple matter of
scaling by z, because the near clip plane is at a constant z distance. (The use of t values

One Story, Two Rules, and a BSP Renderer ^ 759

X == z clip plane

right

-X == z clip plane z near clip plane

Note: Solid lines are visible (undipped) parts of wails, viewed from above.

Figure 47.2 Clipping to the view pyramid.

for parametric lines was discussed in Chapter 45.) The process is further simplified
because the walls can be treated as lines viewed from above, so we can perform 2-D
clipping in z; this would not be the case if walls sloped or had sloping edges.

After clipping in z, we clip by viewspace x coordinate, to ensure that we draw only
wall portions that lie between the left and right edges of the screen. Like z-clipping, x-
clipping can be done as a 2-D clip, because the walls and the left and right sides of the
frustum are all vertical. We compare both the start and endpoint of each wall to the left
and right sides of the frustum, and reject, accept, or clip each walls t values accord
ingly. The test for x clipping is very simple, because the edges of the frustum are de
fined as the planes where x==z and -x==z.
The final clip stage is clipping by y coordinate, and this is the most complicated,

because vertical walls can be clipped at an angle in y, as shown in Figure 47.3, so true 3-
D clipping of all four wall vertices is involved. We handle this in ClipWallsf) by detect
ing trivial rejection in y, using y==z and -y==z as the y boundaries of the frustum.
However, we leave partial clipping to be handled as a 2-D clipping problem; we are
able to do this only because our earlier z-clip to the near clip plane guarantees that no
remaining polygon point can have z<=0, ensuring that when we project we'll always
pass valid, y-clippable screenspace vertices to the polygon filler.

760 ® Chapter 47

y == z clip plane

-y == z clip plane

Figure 47.3 Why Y clipping is more complex than X or Z clipping.

Projection to Soreenspace
At this point, we have viewspace vertices for each wall that's at least partially visible. All
we have to do is project these vertices according to z distance—that is, perform per
spective projection—and scale the results to the width of the screen, then we'll be
ready to draw. Although this step is logically separate from clipping, it is performed as
the last step for visible walls in CiipWailsQ.

Walking the Tree, Backface Cuiiing and Drawing
Now that we have all the walls clipped to the frustum, with vertices projected into
screen coordinates, all we have to do is draw them back to front; that's the job of
DrawWallsBackToFront(). Basically, this routine walks the BSP tree, descending re
cursively from each node to draw the farther children of each node first, then the wall
at the node, then the nearer children. In the interests of efficiency, this particular imple
mentation performs a data-recursive walk of the tree, rather than the more familiar
code recursion. Interestingly, the performance speedup from data recursion turned out
to be more modest than I had expected, based on past experience; see Chapter 44 for
further details.

As it comes to each wall, Draw\(^sBackToFront() first descends to draw the far
ther subtree. Next, if the wall is both visible and pointing toward the viewer, it is drawn

One Story, Two Rules, and a BSP Renderer 761

as a solid polygon. The polygon filler (not shown in Listing 47.1) is a modification of
the polygon filler I presented in Chapters 21 and 22.

It's worth noting how backface culling and front/back wall orientation testing are
performed. (Note that walls are always one-sided, visible only from the front.) I dis
cussed backface culling in general in the previous chapter, and mentioned two possible
approaches: generating a screenspace normal (perpendicular vector) to the polygon
and seeing which way that points, or taking the world or screenspace dot product
between the vector from the viewpoint to any polygon point and the polygons normal
and checking the sign. Listing 47.1 does both, but because our BSP tree is 2-D and the
viewer is always upright, we can save some work.

Consider this: Walls are stored so that the left end, as viewed from the front side of
the wall, is the start vertex, and the right end is the end vertex. There are only two
possible ways that a wall can be positioned in screenspace, then: viewed from the front,
in which case the start vertex is to the left of the end vertex, or viewed from the back,
in which case the start vertex is to the right of the end vertex, as shown in Figure 47.4.
So we can tell which side of a wall we're seeing, and thus backface cull, simply by
comparing the screenspace x coordinates of the start and end vertices, a simple 2-D
version of checking the direction of the screenspace normal.
The wall orientation test used for walking the BSP tree, performed in

WallFacingViewerO, takes the other approach, and checks the viewspace sign of the
dot product of the wall's normal with a vector from the viewpoint to the wall. Again,
this code takes advantage of the 2-D nature of the tree to generate the wall normal by
swapping x and z and altering signs. We can't use the quicker screenspace x test here

m

start vertex end vertex

FRONT

end vertex start vertex

3ACK

Figure 47.4 Fast backspace culling test In screenspace.

762 0 Chapter 47

that we used for backface culling, because not all walls can be projected into screenspace;
for example, trying to project a wall at z==0 would result in division by zero.

All the visible, front-facing walls are drawn into a buffer by DrawWallsBackToFront(),
then UpdateWorldQ calls Win32 to copy the new frame to the screen. The frame of
animation is complete.

Notes on the BSP Renderer

Listing 47.1 is far from complete or optimal. There is no such thing as a tiny BSP
rendering demo, because 3D rendering, even when based on a 2-D BSP tree, requires
a substantial amount of code and complexity. Listing 47.1 is reasonably close to a
minimum rendering engine, and is specifically intended to illuminate basic BSP prin
ciples, given the space limitations of one chapter in a book that's already larger than it
should be. Think of Listing 47.1 as a learning tool and a starting point.
The most obvious lack in Listing 47.1 is that there is no support for floors and

ceilings; the walls float in space, unsupported. Is it necessary to go to 3-D BSP trees to
get a normal-looking world?

No. Although 3-D BSP trees offer many advantages in that they allow arbitrary
datasets with viewing in any arbitrary direction and, in truth, aren't much more com
plicated than 2-D BSP trees for back-to-front drawing, they do tend to be larger and
more difficult to debug, and they aren't necessary for floors and ceilings. One way to
get floors and ceilings out of a 2-D BSP tree is to change the nature of the BSP tree so
that polygons are no longer stored in the splitting nodes. Instead, each leaf of the
tree—that is, each subspace carved out by the tree—^would store the polygons for the
walls, floors, and ceilings that lie on the boundaries of that space and face into that
space. The subspace would be convex, because all BSP subspaces are automatically
convex, so the polygons in that subspace can be drawn in any order. Thus, the sub-
spaces in the BSP tree would each be drawn in turn as convex sets, back to front, just as
Listing 47.1 draws polygons back to front.

This sort of BSP tree, organized around volumes rather than polygons, has some
additional interesting advantages in simulating physics, detecting collisions, doing line-
of-sight determination, and performing volume-based operations such as dynamic il
lumination and event triggering. However, that discussion will have to wait until another
day.

TT:

The Challenge of Separating All Things Seen from Aii
Things Unseen

Years ago, I was working at Video Seven, a now-vanished video adapter manufacturer,
helping to develop a VGA clone. The fellow who was designing Video Seven's VGA
chip, Tom Wilson, had worked around the clock for months to make his VGA run as
fast as possible, and was confident he had pretty much maxed out its performance. As
Tom was putting the finishing touches on his chip design, however, news came fourth-
hand that a competitor. Paradise, had juiced up the performance of the clone they were
developing by putting in a FIFO.

That was all he knew; there was no information about what sort of FIFO, or how
much it helped, or anything else. Nonetheless, Tom, normally an affable, laid-back
sort, took on the wide-awake, haunted look of a man with too much caffeine in him
and no answers to show for it, as he tried to figure out, from hopelessly thin informa
tion, what Paradise had done. Finally, he concluded that Paradise must have put a
write FIFO between the system bus and the VGA, so that when the CPU wrote to
video memory, the write immediately went into the FIFO, allowing the CPU to keep
on processing instead of stalling each time it wrote to display memory.
Tom couldn't spare the gates or the time to do a full FIFO, but he could implement a

one-deep FIFO, allowing the CPU to get one write ahead of the VGA. He wasn't sure
how well it would work, but it was all he could do, so he put it in and taped out the chip.
The one-deep FIFO turned out to work astonishingly well; for a time. Video Seven's

VGAs were the fastest around, a testament to Tom's ingenuity and creativity under
pressure. However, the truly remarkable part of this story is that Paradise's FIFO de
sign turned out to bear not the slightest resemblance to Tom's, and didn't work as well.
Paradise had stuck a read¥WO between display memory and the video output stage of

764 ^ Chapter 48

the VGA, allowing the video output to read ahead, so that when the CPU wanted to
access display memory, pixels could come from the FIFO while the CPU was serviced
immediately. That did indeed help performance—but not as much as Tom's write FIFO.

Wh^t we h^ve here ie ne^t ̂ parable about the nature of creative
deei^n ae one could hope to find. The ecrap ofnewe about Varadiee'e
chip contained aimoet no actual information, but it forced Tom to
pueh paet the iimite he had unconecioueiy eet in coming up with hie
original deeign. And, in the end, i think that the eingie moet impor
tant element of great deeign, whether it be hardware, eoftware, or
any creative endeavor, ie precieeiy what the Paradiee newe triggered
in Tom: The ability to detect the iimite you have built into the way
you think about your deeign, and then tranecend thoee Iimite.

The problem, of course, is how to go about transcending limits you dont even
know you ve imposed. There's no formula for success, but two principles can stand you
in good stead: simplify and keep on trying new things.

Generally, if you find your code getting more complex, you're fine-tuning a frozen
design, and it's likely you can get more of a speed-up, with less code, by rethinking the
design. A really good design should bring with it a moment of immense satisfaction in
which everything falls into place, and you're amazed at how little code is needed and
how all the boundary cases just work properly.

As for how to rethink the design, do it by pursuing whatever ideas occur to you, no
matter how off-the-wall they seem. Many of the truly brilliant design ideas I've heard
of over the years sounded like nonsense at first, because they didn't fit my preconceived
view of the world. Often, such ideas are in fact off-the-wall, but just as the news about
Paradise's chip sparked Tom's imagination, aggressively pursuing seemingly outlandish
ideas can open up new design possibilities for you.

Case in point: The evolution of Quake's 3-D graphics engine.

VSD: The Toughest 3-D Challenge of All
I've spent most of my waking hours for the last several months working on Quake, id
Software's successor to DOOM, and I suspect I have a few more months to go. The
very best things don't happen easily, nor quickly—but when they happen, all the sweat
becomes worthwhile.

In terms of graphics. Quake is to DOOM as DOOM was to its predecessor,
Wolfenstein 3D. Quake adds true, arbitrary 3-D (you can look up and down, lean, and
even fall on your side), detailed lighting and shadows, and 3-D monsters and players in
place of doom's sprites. Someday I hope to talk about how all that works, but for the
here and now I want to talk about what is, in my opinion, the toughest 3-D problem
of all: visible surface determination (drawing the proper surface at each pixel), and its

Quake's Visible-Surface Determination ® 765

close relative, culling (discarding non-visible polygons as quickly as possible, a way of
accelerating visible surface determination). In the interests of brevity, I'll use the abbre
viation VSD to mean both visible sutface detetmination and culling from now on.
Why do I think VSD is the toughest 3-D challenge? Although rasterization issues

such as texture mapping are fascinating and important, they are tasks of relatively
finite scope, and are being moved into hatdwate as 3-D accelerators appear; also, they
only scale with increases in screen resolution, which ate telatively modest.

In contrast, VSD is an open-ended problem, and there are dozens of approaches
currently in use. Even more significantly, the performance of VSD, done in an unso
phisticated fashion, scales directly with scene complexity, which tends to increase as a
square or cube function, so this very rapidly becomes the limiting factor in rendering
realistic wotlds. I expect VSD to be the increasingly dominant issue in tealtime PC 3-
D over the next few years, as 3-D worlds become increasingly detailed. Already, a
good-sized Quake level contains on the otder of 10,000 polygons, about three times as
many polygons as a comparable DOOM level.

The Structure of Quake Levels

Before diving into VSD, let me note that each Quake level is stored as a single huge 3-D
BSP tree. This BSP tree, like any BSP, subdivides space, in this case along the planes of the
polygons. However, unlike the BSP tree I presented in the last chaptet. Quake's BSP tree

m

= polygonal wall (from above)
= splitting surface (from above)
= node

= leaf

:= polygonal surface

o = node

□ = leaf (polye in leaf)

lesvee (eolid volumee, euch ae the ineiciee of waile.)Note: 5ha^ec:(areas are

Figure 48.1 Quake's polygons are stared as empty leaves.

766 ® Chapter 48

does not store polygons in the tree nodes, as part of the splitting planes, but rather in
the empty (non-solid) leaves, as shown in overhead view in Figure 48.1.

Correct drawing order can be obtained by drawing the leaves in front-to-back or
back-to-front BSP order, again as discussed in the previous chapter. Also, because BSP
leaves are always convex and the polygons are on the boundaries of the BSP leaves,
facing inward, the polygons in a given leaf can never obscure one another and can be
drawn in any order. (This is a general property of convex polyhedra.)

Culling and Visible Surface Determination
The process of VSD would ideally work as follows: First, you would cull all polygons that
are completely outside the view fiiistum (view pyramid), and would clip away the irrelevant
portions of any polygons that are partially outside. Then, you would draw only those pixels
of each polygon that are actually visible from the current viewpoint, as shown in overhead
view in Figure 48.2, wasting no time overdrawing pixels multiple times; note how litde of
the polygon sets in Figure 48.2 actually need to be drawn. Finally, in a perfect world, the

t

Figure 48.2 Pixels visible from the current viewpoint.

Qudke's Visible-Surface Determination ^ 767

tests to figure out what parts ofwhich polygons are visible would be free, and the processing
time woidd be the same for all possible viewpoints, giving the game a smooth visual flow.

As it happens, it is easy to determine which polygons are outside the frustum or
partially clipped, and it's quite possible to figure out precisely which pixels need to be
drawn. Alas, the world is far from perfect, and those tests are far from free, so the real
trick is how to accelerate or skip various tests and still produce the desired result.

As I discussed at length in the last chapter, given a BSP, it's easy and inexpensive to
walk the world in front-to-back or back-to-front order. The simplest VSD solution,
which I in fact demonstrated earlier, is to simply walk the tree back-to-front, clip each
polygon to the frustum, and draw it if it's facing forward and not entirely clipped (the
painter's algorithm). Is that an adequate solution?

For relatively simple worlds, it is perfectly acceptable. It doesn't scale very well,
though. One problem is that as you add more polygons in the world, more transforma
tions and tests have to be performed to cull polygons that aren't visible; at some point,
that will bog considerably performance down.

Nodes Inside and Outside the View Frustum

Happily, there's a good workaround for this particular problem. As discussed earlier,
each leaf of a BSP tree represents a convex subspace, with the nodes that bound the leaf

Figure 48.3 The substance described by node E.

768 ® Chapter 48

delimiting the space. Perhaps less obvious is that each node in a BSP tree also describes
a subspace—the subspace composed of ail the nodes children, as shown in Figure
48.3. Another way of thinking of this is that each node splits the subspace into two
pieces created by the nodes above it in the tree, and the node s children then further
carve that subspace into all the leaves that descend from the node.

Since a nodes subspace is bounded and convex, it is possible to test whether it is
entirely outside the frustum. If it is, all of the node s children are certain to be fully
clipped and can be rejected without any additional processing. Since most of the world
is typically outside the frustum, many of the polygons in the world can be culled
almost for free, in huge, node-subspace chunks. Its relatively expensive to perform a
perfect test for subspace clipping, so instead bounding spheres or boxes are often main
tained for each node, specifically for culling tests.

So culling to the frustum isn't a problem, and the BSP can be used to draw back-to-
front. What, then, is the problem?

Overdraw

The problem John Carmack, the driving technical force behind DOOM and Quake,
faced when he designed Quake was that in a complex world, many scenes have an
awful lot of polygons in the frustum. Most of those polygons are partially or entirely
obscured by other polygons, but the painter's algorithm described earlier requires that
every pixel of every polygon in the frustum be drawn, often only to be overdrawn. In a
10,000-polygon Quake level, it would be easy to get a worst-case overdraw level of 10
times or more; that is, in some frames each pixel could be drawn 10 times or more, on
average. No rasterizer is fast enough to compensate for an order of such magnitude and
more work than is actually necessary to show a scene; worse still, the painter's algo
rithm will cause a vast difference between best-case and worst-case performance, so the
frame rate can vary wildly as the viewer moves around.

So the problem John faced was how to keep overdraw down to a manageable level,
preferably drawing each pixel exactly once, but certainly no more than two or three
times in the worst case. As with frustum culling, it would be ideal if he could eliminate
all invisible polygons in the frustum with virtually no work. It would also be a plus if
he could manage to draw only the visible parts of partially-visible polygons, but that
was a balancing act in that it had to be a lower-cost operation than the overdraw that
would otherwise result.

When I arrived at id at the beginning of March 1995, John already had an engine
prototyped and a plan in mind, and I assumed that our work was a simple matter of
finishing and optimizing that engine. If I had been aware of id's history, however, I
would have known better. John had done not only DOOM, but also the engines for
Wolfenstein 3D and several earlier games, and had actually done several different ver
sions of each engine in the course of development (once doing four engines in four
weeks), for a total of perhaps 20 distinct engines over a four-year period. John's tireless

Quake's Visible-Surface Determination ^ 769

pursuit of new and better designs for Quake's engine, from every angle he could think
of, would end only when we shipped the product.

By three months after I arrived, only one element of the original VSD design was
anywhere in sight, and John had taken the dictum of "try new things" farther than I'd
ever seen it taken.

The Beam Tree

John's original Quake design was to draw front-to-back, using a second BSP tree to
keep track of what parts of the screen were already drawn and which were still empty
and therefore drawable by the remaining polygons. Logically, you can think of this
BSP tree as being a 2-D region describing solid and empty areas of the screen, as shown
in Figure 48.4, but in fact it is a 3-D tree, of the sort known as a beam tree. A beam tree
is a collection of 3-D wedges (beams), bounded by planes, projecting out from some
center point, in this case the viewpoint, as shown in Figure 48.5.

In John's design, the beam tree started out consisting of a single beam describing
the frustum; everything outside that beam was marked solid (so nothing would draw
there), and the inside of the beam was marked empty. As each new polygon was
reached while walking the world BSP tree front-to-back, that polygon was converted
to a beam by running planes from its edges through the viewpoint, and any part of

2 (empty)

3 (empty) | | 4 (solid)

Figure 48.4 Partitioning the screen into 2-D regions.

Figure 48.5 Beams as wedges projecting from the viewpoint to polygon edges.

the beam that intersected empty beams in the beam tree was considered drawable
and added to the beam tree as a solid beam. This continued until either there were

no more polygons or the beam tree became entirely solid. Once the beam tree was
completed, the visible portions of the polygons that had contributed to the beam
tree were drawn.

The advantage to working with a 3-D beam tree, rather than a 2-D region, is that
determining which side of a beam plane a polygon vertex is on involves only checking
the sign of the dot product of the ray to the vertex and the plane normal, because all
beam planes run through the origin (the viewpoint). Also, because a beam plane is
completely described by a single normal, generating a beam from a polygon edge re
quires only a cross-product of the edge and a ray from the edge to the viewpoint.
Finally, bounding spheres of BSP nodes can be used to do the aforementioned bulk
culling to the frustum.
The early-out feature of the beam tree—stopping when the beam tree becomes

solid—seems appealing, because it appears to cap worst-case performance. Unfortu
nately, there are still scenes where it's possible to see all the way to the sky or the back
wall of tbe world, so in the worst case, all polygons in the frustum will still have to be
tested against the beam tree. Similar problems can arise from tiny cracks due to nu
meric precision limitations. Beam-tree clipping is fairly time-consuming, and in scenes
with long view distances, such as views across the top of a level, the total cost of beam
processing slowed Quake's frame rate to a crawl. So, in the end, the beam-tree ap-

Quake's Visible-Surface Determination ^ 771

proach proved to suflFer from much the same malady as the painters algorithm: The
worst case was much worse than the average case, and it didn t scale well with increas
ing level complexity.

3-D Engine duJour
Once the beam tree was working, John relentlessly worked at speeding up the 3-D
engine, always trying to improve the design, rather than tweaking the implementa
tion. At least once a week, and often every day, he would walk into my office and say
"Last night I couldn't get to sleep, so I was thinking..." and I'd know that I was about
to get my mind stretched yet again. John tried many ways to improve the beam tree,
with some success, but more interesting was the profusion of wildly different ap
proaches that he generated, some of which were merely discussed, others of which
were implemented in overnight or weekend-long bursts of coding, in both cases
ultimately discarded or further evolved when they turned out not to meet the design
criteria well enough. Here are some of those approaches, presented in minimal detail
in the hopes that, like Tom Wilson with the Paradise FIFO, your imagination will be
sparked.

Subdividing Raycast
Rays are cast in an 8x8 screen-pixel grid; this is a highly efficient operation because the
first intersection with a surface can be found by simply clipping the ray into the BSP
tree, starting at the viewpoint, until a solid leaf is reached. If adjacent rays don't hit the
same surface, then a ray is cast halfway between, and so on until all adjacent rays either
hit the same surface or are on adjacent pixels; then the block around each ray is drawn
from the polygon that was hit. This scales very well, being limited by the number of
pixels, with no overdraw. The problem is dropouts; it's quite possible for small poly
gons to fall between rays and vanish.

Vertex-Free Surfaces

The world is represented by a set of surface planes. The polygons are implicit in the
plane intersections, and are extracted from the planes as a final step before drawing.
This makes for fast clipping and a very small data set (planes are far more compact than
polygons), but it's time-consuming to extract polygons from planes.

The Draw-Buffer

Like a z-buffer, but with 1 bit per pixel, indicating whether the pixel has been
drawn yet. This eliminates overdraw, but at the cost of an inner-loop buffer test,
extra writes and cache misses, and, worst of all, considerable complexity. Varia-

772 ^ Chapter 48

tions include testing the draw-buffer a byte at a time and completely skipping
fully-occluded bytes, or branching off each draw-buffer byte to one of 256 un
rolled inner loops for drawing 0-8 pixels, in the process possibly taking advantage
of the ability of the x86 to do the perspective floating-point divide in parallel
while 8 pixels are processed.

Span-Based Drawing
Polygons are rasterized into spans, which are added to a global span list and clipped
against that list so that only the nearest span at each pixel remains. Little sorting is
needed with front-to-back walking, because if there's any overlap, the span already in
the list is nearer. This eliminates overdraw, but at the cost of a lot of span arithmetic;
also, every polygon still has to be turned into spans.

Portals

The holes where polygons are missing on surfaces are tracked, because it's only through
such portals that line-of-sight can extend. Drawing goes front-to-back, and when a
portal is encountered, polygons and portals behind it are clipped to its limits, until no
polygons or portals remain visible. Applied recursively, this allows drawing only the
visible portions of visible polygons, but at the cost of a considerable amount of portal
clipping.

Breakthrough!
In the end, John decided that the beam tree was a sort of second-order structure,
reflecting information already implicitly contained in the world BSP tree, so he tack
led the problem of extracting visibility information directly from the world BSP
tree. He spent a week on this, as a byproduct devising a perfect DOOM (2-D) vis
ibility architecture, whereby a single, linear walk of a DOOM BSP tree produces
zero-overdraw 2-D visibility. Doing the same in 3-D turned out to be a much more
complex problem, though, and by the end of the week John was frustrated by the
increasing complexity and persistent glitches in the visibility code. Although the
direct-BSP approach was getting closer to working, it was taking more and more
tweaking, and a simple, clean design didn't seem to be falling out. When I left work
one Friday, John was preparing to try to get the direct-BSP approach working prop
erly over the weekend.
When I came in on Monday, John had the look of a man who had broken through

to the other side—and also the look of a man who hadn't had much sleep. He had
worked all weekend on the direct-BSP approach, and had gotten it working reasonably
well, with insights into how to finish it off. At 3:30 a.m. Monday morning, as he lay in
bed, thinking about portals, he thought of precalculating and storing in each leaf a list

Quake's Visible-Surface Determination @ 773

of all leaves visible from that leaf, and then at runtime just drawing the visible leaves
back-to-front for whatever leaf the viewpoint happens to be in, ignoring all other leaves
entirely.

Size was a concern; initially, a raw, uncompressed potentially visible set (PVS) was
several megabytes in size. However, the PVS could be stored as a bit vector, with 1
bit per leaf, a structure that shrunk a great deal with simple zero-byte compression.
Those steps, along with changing the BSP heuristic to generate fewer leaves (choos
ing as the next splitter the polygon that splits the fewest other polygons appears to be
the best heuristic) and sealing the outside of the levels so the BSPer can remove the
outside surfaces, which can never be seen, eventually brought the PVS down to about
20 Kb for a good-size level.

In exchange for that 20 Kb, culling leaves outside the frustum is speeded up (be
cause only leaves in the PVS are considered), and culling inside the frustum costs
nothing more than a little overdraw (the PVS for a leaf includes all leaves visible
from anywhere in the leaf, so some overdraw, typically on the order of 50% but
ranging up to 150%, generally occurs). Better yet, precalculating the PVS results in
a leveling of performance; worst case is no longer much worse than best case, because
there's no longer extra VSD processing—^just more polygons and perhaps some extra
overdraw—associated with complex scenes. The first time John showed me his working
prototype, I went to the most complex scene I knew of, a place where the frame rate
used to grind down into the single digits, and spun around smoothly, with no per
ceptible slowdown.

John says precalculating the PVS was a logical evolution of the approaches he had
been considering, that there was no moment when he said "Eureka!" Nonetheless, it
was clearly a breakthrough to a brand-new, superior design, a design that, together
with a still-in-development sorted-edge rasterizer that completely eliminates over
draw, comes remarkably close to meeting the "perfect-world" specifications we laid
out at the start.

Simplify, and Keep on Trying New Things
What does it all mean? Exactly what I said up front: Simplify, and keep trying
new things. The precalculated PVS is simpler than any of the other schemes that
had been considered (although precalculating the PVS is an interesting task that
I'll discuss another time). In fact, at runtime the precalculated PVS is just a con
strained version of the painter's algorithm. Does that mean it's not particularly
profound?
Not at all. All really great designs seem simple and even obvious—once they've

been designed. But the process of getting there requires incredible persistence and a
willingness to try lots of different ideas until the right one falls into place, as hap
pened here.

774 ^ Chapter 48

My friend Chrie Hecker hae a theory that all approachee work out to
the eame thing In the end, einoe they all reflect the eame underlying
etate and functionality In terme of underlying theory, Ive found that
to he true; whether you do perepectlve texture mapping with a divide
or with Incremental hyperbolic calculatlone, the numbere do exactly
the eame thing. When It comee to Implementation, however, my ex
perience le that elmply time-ehlfting an approach, or matching hard
ware capabllltlee better, or caching can make an aetonlehing
difference.

My friend Terje Mathisen likes to say that "almost all programming can be viewed as
an exercise in caching," and that's exactly what John did. No matter how fast he made
his VSD calculations, they could never be as fast as precalculating and looking up the
visibility, and his most inspired move was to yank himself out of the "faster code"
mindset and realize that it was in fact possible to precalculate (in effect, cache) and
look up the PVS.

The hardest thing in the world is to step outside a familiar, pretty good solution to
a difficult problem and look for a different, better solution. The best ways I know to do
that are to keep trying new, wacky things, and always, always, always try to simplify.
One of John's goals is to have fewer lines of code in each 3-D game than in the previous
game, on the assumption that as he learns more, he should be able to do things better
with less code.

So far, it seems to have worked out pretty well for him.

Learn Now, Pay Forward
There's one other thing I'd like to mention before I close this chapter. Much of what I've
learned, and a great deal of what I've written, has been in the pages of Dr. Dobb's JoumaL
As far back as I can remember, DD/has epitomized the attitude that sharing program
ming information is A Good Thing. I know a lot of programmers who were able to leap
ahead in their development because of Hendrix's Tiny C, or Stevens' D-Flat, or simply by
browsing through DDJs annual collections. (Me, for one.) Understandably, most com
panies understandably view sharing information in a very different way, as potential
profit lost—but that's what makes DDJso valuable to the programming community.

It is in that spirit that id Software is allowing me to describe in these pages (which
also appeared in one of the Z)Z)/special issues) how Quake works, even before Quake
has shipped. That's also why id has placed the full source code for Wolfenstein 3D on
ftp.idsoftware.com/idstuflf/source; and although you can't just recompile the code and
sell it, you can learn how a full-blown, successful game works. Check wolfsrc.txt in the
above-mentioned directory for details on how the code may be used.

So remember, when it's legally possible, sharing information benefits us all in the
long run. You can pay forward the debt for the information you gain here and else-

Quske's Visible-Surface Determination ^ 775

where by sharing what you know whenever you can, by writing an article or book or
posting on the Net. None of us learns in a vacuum; we all stand on the shoulders of
giants such as Wirth and Knuth and thousands of others. Lend your shoulders to
building the future!

References

Foley, James D., et al, Computer Graphics: Principles and Practice, Addison Wesley,
1990, ISBN 0-201-12110-7 (beams, BSP trees, VSD).

Teller, Serb, Visibility Computations in Densely Occluded Polyhedral Environments (dis
sertation), available on http://theory.lcs.mit.edu/-seth/ along with several other papers
relevant to visibility determination.

Teller, Seth, Visibility Preprocessing for Interactive Walkthroughs, SIGGRAPH 91 pro
ceedings, pp. 61-69.

Determining What's Inside Your Field of View
Our part of the world is changing, and I'm concerned. By way of explanation, three
anecdotes.

Anecdote the first: In the introduction to one of his books, Frank Herbert, author of
Dune, told how he had once been approached by a friend who claimed he (the friend)
had a killer idea for an SF story, and offered to tell it to Herbert. In return, Herbert had
to agree that if he used the idea in a story, he'd split the money from the story with this
fellow. Herbert's response was that ideas were a dime a dozen; he had more story ideas
than he could ever write in a lifetime. The hard part was the writing, not the ideas.

Anecdote the second: I've been progtamming micros for 15 years, and writing
about them for more than a decade and, until about a year ago, I had never—not
once!—had anyone offer to sell me a technical idea. In the last year, it's happened
multiple times, generally via unsolicited email along the lines of Herbert's tale.

This trend toward selling ideas is one symptom of an attitude that I've noticed more
and more among programmers over the past few years—an attitude of which software
patents are the most obvious manifestation—a desire to think something up without
breaking a sweat, then let someone else's hard work make you money. It's an attitude
that says, "I'm so smart that my ideas alone set me apart." Sorry, it doesn't work that
way in the real world. Ideas are a dime a dozen in programming, too; I have a lifetime's
worth of article and software ideas written neatly in a notebook, and I know several
truly original thinkers who have far more yet. Folks, it's not the ideas; it's design, imple
mentation, and especially hard work that make the difference.

Virtually every idea I've encountered in 3-D graphics was invented decades ago. You
think you have a clever graphics idea? Sutherland, Sproull, Schumacher, Catmull,
Smith, Blinn, Glassner, Kajiya, Heckbert or Teller probably thought of your idea years
ago. (I'm serious—spend a few weeks reading through the literature on 3-D graphics.

778 ^ Chapter 49

and you'll be amazed at what's already been invented and published.) If they thought
it was important enough, they wrote a paper about it, or tried to commercialize it, but
what they didn't do was try to charge people for the idea itself.
A closely related point is the astonishing lack of gratitude some programmers show

for the hard work and sense of community that went into building the knowledge base
with which they work. How about this? Anyone who thinks they have a unique idea
that they want to "own" and milk for money can do so—but first they have to track
down and appropriately compensate all the people who made possible the compilers,
algorithms, programming courses, books, hardware, and so forth that put them in a
position to have their brainstorm.

Put that way, it sounds like a silly idea, but the idea behind software patents is
precisely that eventually everyone will own parts of our communal knowledge base,
and that programming will become in large part a process of properly identifying and
compensating each and every owner of the techniques you use. All I can say is that if
we do go down that path, I guarantee that it will be a poorer profession for all of us—
except the patent attorneys, I guess.

Anecdote the third: A while back, I had the good fortune to have lunch down by
Seattle's waterfront with Neal Stephenson, the author of Snow Crash and The Diamond
Age (one of the best SF books I've come across in a long time). As he talked about the
nature of networked technology and what he hoped to see emerge, he mentioned that
a couple of blocks down the street was the pawn shop where Jimi Hendrix bought his
first guitar. His point was that if a cheap guitar hadn't been available, Hendrix's unique
talent would never have emerged. Similarly, he views the networking of society as a
way to get affordable creative tools to many people, so as much talent as possible can be
unearthed and developed.

Extend that to programming. The way it should work is that a steady flow of infor
mation circulates, so that everyone can do the best work they're capable of. The idea is
that I don't gain by intellectually impoverishing you, and vice-versa; as we both com
pete and (intentionally or otherwise) share ideas, both our products become better, so
the market grows larger and everyone benefits.

That's the way things have worked with programming for a long time. So far as I
can see it has worked remarkably well, and the recent signs of change make me con
cerned about the future of our profession.

Things aren't changing everywhere, though; over the past year, I've circulated a good
bit of info about 3-D graphics, and plan to keep on doing it as long as I can. Next,
we're going to take a look at 3-D clipping.

3-D Clipping Basics
Before I got deeply into 3-D, I kept hearing how difficult 3-D clipping was, so I was
pleasantly surprised when I actually got around to doing it and found that it was quite
straightforward, after all. At heart, 3-D clipping is nothing more than evaluating whether

3-D Clipping and Other Thoughts ® 779

and where a line intersects a plane; in this context, the plane is considered to have an
"inside" (a side on which points are to be kept) and an "outside" (a side on which
points are to be removed or clipped). We can easily extend this single operation to
polygon clipping, working with the line segments that form the edges of a polygon.
The most common application of 3-D clipping is as part of the process of hidden

surface removal. In this application, the four planes that make up the view volume, or
view frustum, are used to clip away parts of polygons that aren't visible. Sometimes this
process includes clipping to near and far plane, to restrict the depth of the scene. Other
applications include clipping to splitting planes while building BSP trees, and clipping
moving objects to convex sectors such as BSP leaves. The clipping principles I'll cover
apply to any sort of 3-D clipping task, but clipping to the frustum is the specific
context in which I'll discuss clipping below.

In a commercial application, you wouldn't want to clip every single polygon in the
scene database individually. As I mentioned in the last chapter, the use of bounding
volumes to cull chunks of the scene database that fall entirely outside the frustum,
without having to consider each polygon separately, is an important performance as
pect of scene rendering. Once that's done, however, you're still left with a set of poly
gons that may be entirely inside, or partially or completely outside, the frustum. In this
chapter, I'm going to talk about how to clip those remaining polygons. I'll focus on the
basics of 3-D clipping, the stuff I wish I'd known when I started doing 3-D. There are
plenty of ways to speed up clipping under various circumstances, some of which I'll
mention, but the material covered below will give you the tools you need to implement
functional 3-D clipping.

Intersecting a Line Segment with a Plane
The fundamental 3-D clipping operation is clipping a line segment to a plane. There
are two parts to this operation: determining if the line is clipped by (intersects) the
plane at all and, if it is clipped, calculating the point of intersection.

Before we can intersect a line segment with a plane, we must first define how we'll
represent the line segment and the plane. The segment will be represented in the obvi
ous way by the (x,y,z) coordinates of its two endpoints; this extends well to polygons,
where each vertex is an (x,y,z) point. Planes can be described in many ways, among
them are three points on the plane, a point on the plane and a unit normal, or a unit
normal and a distance from the origin along the normal; we'll use the latter definition.
Further, we'll define the normal to point to the inside (undipped side) of the plane.
The structures for points, polygons, and planes are shown in Listing 49.1.

Listing 49.1
typedef struct {

double v[3];

} point_t;

780 ^ Chapter 49

typedef struct {

double X, y;
} point2D_t;

typedef struct {

int color;

int numverts;

poi nt_t verts[MAX_POLY_VERTS];

} polygon_t;

typedef struct {

int color;

int numverts;

po1nt2D_t verts[MAX_POLY_VERTS];

} polygon2D_t;

typedef struct convexobject_s {
struct convexobject_s *pnext;
po1nt_t center;

double vdist;
int numpolys;
polygon_t *ppoly;

} convexobject_t;

typedef struct {

double distance;

point_t normal;
} plane_t;

Given a line segment, and a plane to which to clip the segment, the first question is
whether the segment is entirely on the inside or the outside of the plane, or intersects
the plane. If the segment is on the inside, then the segment is not clipped by the plane,
and we're done. If it's on the outside, then it's entirely clipped, and we're likewise done.
If it intersects the plane, then we have to remove the clipped portion of the line by
replacing the endpoint on the outside of the plane with the point of intersection be
tween the line and the plane.
The way to answer this question is to find out which side of the plane each endpoint

is on, and the dot product is the right tool for the job. As you may recall from Chapter
46, dotting any vector with a unit normal returns the length of the projection of that
vector onto the normal. Therefore, if we take any point and dot it with the plane
normal we'll find out how far from the origin the point is, as measured along the plane
normal. Another way to think of this is to say that the dot product of a point and the
plane normal returns how far from the origin along the normal the plane would have
to be in order to have the point lie within the plane, as if we slid the plane along the
normal until it touched the point.
Now, remember that our definition of a plane is a unit normal and a distance along

the normal. That means that we have a distance for the plane as part of the plane
sttucture, and we can get the distance at which the plane would have to be to touch the
point from the dot product of the point and the normal; a simple comparison of the
two values suffices to tell us which side of the plane the point is on. If the dot product
of the point and the plane normal is greater than the plane distance, then the point is

3-D Clipping and Other Thoughts ^ 781

in front of the plane (inside the volume being clipped to); if it's less, then the point is
outside the volume and should be clipped.

After we do this twice, once for each line endpoint, we know everything necessary
to categorize our line segment. If both endpoints are on the same side of the plane,
there's nothing more to do, because the line is either completely inside or completely
outside; otherwise, it's on to the next step, clipping the line to the plane by replacing
the outside vertex with the point of intersection of the line and the plane. Happily, it
turns out that we already have all of the information we need to do this.

From our earlier tests, we already know the length from the plane, measured along
the normal, to the inside endpoint; that's just the distance, along the normal, of the
inside endpoint from the origin (the dot product of the endpoint with the normal),
minus the plane distance, as shown in Figure 49.1. We also know the length of the
line segment, again measured as projected onto the normal; that's the difference
between the distances along the normal of the inside and outside endpoints from the
origin. The ratio of these two lengths is the fraction of the segment that remains after

point
• iinside

distanca

Metance

inside

distanca
/ outside

clip plana

/plana normal

origin

Figure 49.1 The distance from the plane to the Inside endpoint, measured along the normal.

782 ^ Chapter 49

clipping. If we scale the x, y, and z lengths of the line segment by that fraction, and
add the results to the inside endpoint, we get a new, clipped endpoint at the point of
intersection.

Polygon Clipping
Line clipping is fine for wireframe rendering, but what we really want to do is polygon
rendering of solid models, which requires polygon clipping. As with line segments, the
clipping process with polygons is to determine if they're inside, outside, or partially
inside the clip volume, lopping off any vertices that are outside the clip volume and
substituting vertices at the intersection between the polygon and the clip plane, as
shown in Figure 49.2.
An easy way to clip a polygon is to decompose it into a set of edges, and clip each edge

separately as a line segment. Let's define a polygon as a set of vertices that wind clockwise
around the outside of the polygonal area, as viewed from the front side of the polygon;
the edges are implicitly defined by the order of the vertices. Thus, an edge is the line
segment described by the two adjacent vertices that form its endpoints. We'll clip a poly
gon by clipping each edge individually, emitting vertices for the resulting polygon as
appropriate, depending on the clipping state of the edge. If the start point of the edge is
inside, that point is added to the output polygon. Then, if the start and end points are in
different states (one inside and one outside), we clip the edge to the plane, as described
above, and add the point at which the line intersects the clip plane as the next polygon
vertex, as shown in Figure 49.3. Listing 49.2 shows a polygon-clipping function.

vertex 0 vertex 0

vertex 3 vertex 4

vertex 1

clip plane
vertex 2

outside vertex 3

vertex 2

Before Clipping After Clipping

Figure 49.2 Clipping a polygon.

3-D Clipping and Other Thoughts

vertex is inside, so keep it

clip plane
outside

this vertex will be

removed while

processing the
next edge

one vertex is inside and one is

outside, so add a new vertex

where this edge intersects

the clip plane

Figure 49.3 "Clipping a polygon edge."

Listing 49.2
int ClipToPlane(polygon_t *pin. plane_t *pp1atie. polygon_t *pout)
{

int i. j. nextvert, curin, nextin;
double curdot. nextdot, scale;

point_t *pinvert, *poutvert;

pinvert = pin->verts:
poutvert - pout->verts:

curdot = DotProductlpinvert. &pplane->normal):
curin - (curdot >- pplane->distance):

for (i-0 : i<pi n->nuniverts ; i++)
{

nextvert = (i + 1) % pin->numverts;

// Keep the current vertex if it's inside the plane
if (curin)

*poutvert++ - *pinvert:

nextdot - DotProduct(&pin->verts[nextvert]. &pplane->normal);
nextin - (nextdot >- pplane->distance);

// Add a clipped vertex if one end of the current edge is
// inside the plane and the other is outside
if (curin !- nextin)

{
scale - (pplane->distance - curdot) /

(nextdot - curdot):

for (j-0 : j<3 : j++)

{

784 ^ Chapter 49

}

poutvert->v[j] = pinvert->v[j] +

((p1n->verts[nextvert].v[j] - p1nvert->v[j]) *
seale);

}

poutvert++;

}

curdot = nextdot;

curin = nextin;

pi nvert-H-;

pout->numverts = poutvert - pout->verts;
If (pout->nuniverts < 3)

return 0;

pout->color = p1n->color;
return 1;

Believe it or not, this technique, applied in turn to each edge, is all that's needed to
clip a polygon to a plane. Better yet, a polygon can be clipped to multiple planes by
repeating the above process once for each clip plane, with each interation trimming
away any part of the polygon that's clipped by that particular plane.
One particularly useful aspect of 3-D clipping is that ifyou're drawing texture mapped

polygons, texture coordinates can be clipped in exactly the same way as (x,y,z) coordi
nates. In fact, the very same fraction that's used to advance x, y, and z from the inside
point to the point of intersection with the clip plane can be used to advance the texture
coordinates as well, so only one extra multiply and one extra add are required for each
texture coordinate.

Clipping to the Frustum
Given a polygon-clipping function, it's easy to clip to the frustum: set up the four
planes for the sides of the frustum, with another one or two planes for near and far
clipping, if desired; next, clip each potentially visible polygon to each plane in turn;
then draw whatever polygons emerge from the clipping process. Listing 49.3 is the
core code for a simple 3-D clipping example that allows you to move around and look
at polygonal models from any angle. The full code for this program is available on the
CD-ROM in the file DDJCLIP.ZIP.

Listing 49.3
int DIBWidth, DIBHeight;
int DIBPitch;

double roll, pitch, yaw;
double currentspeed:
po1nt_t currentpos;
double fieldofvlew, xcenter, ycenter;
double xscreenscale, yscreenscale, maxscale;

3-D Clipping and Other Thoughts ^ 785

int numobjects;

double speedscale = 1.0;
piane_t frustumplanes[NUM_FRUSTUM_PLANES];
double nirollC3][3] = {{1. 0, 0}. {0. 1. 0). (0. 0. 1}};
double mpitch[3][3] = {{1, 0, 0), (0, 1, 0}, {0, 0, 1}};
double myaw[3][3] = {{1, 0, 0), {0, 1, 0), {0, 0, 1}};
point_t vpn, vright, vup;
point_t xaxis = {1. 0, 0);
point_t zaxis = {0, 0, 1);
convexobject_t objecthead = {NULL, {0,0,0}, -999999.0};

// Project viewspace polygon vertices into screen coordinates.
// Note that the y axis goes up in worldspace and viewspace, but
// goes down in screenspace.

void ProjectPolygon (polygon_t *ppoly, polygon2D_t *ppoly2D)
{

int i;

double zrecip;

for (i^-O ; i<ppoly->numverts ; i++)
{

zrecip = 1.0 / ppoly->verts[i].vC2];
ppoly2D->verts[i].X =

ppoly->verts[i].v[0] * zrecip * maxscale + xcenter;
ppoly2D->verts[i].y = DIBHeight -

(ppoly->verts[i].v[l] * zrecip * maxscale + ycenter);
}
ppoly2D->color = ppoly->color;
ppoly2D->numverts = ppoly->numverts;

}

// Sort the objects according to z distance from viewpoint,
void ZSortObjects(void)

{
i nt i. j;

double vdist;

convexobject_t *pobject;

point_t dist;

objecthead.pnext = &objecthead;
for (i=0 ; i<numobjects ; i++)

{

for (j=0 ; j<3 ; j++)
dist.v[j] ■= objectsCi].center.v[j] - currentpos.v[j];

objectsCi].vdiSt = sqrt(dist.vCO] * dist.v[0] +
dist.v[l] * dist.v[l] +
dist.v[2] * dist.v[2]);

pobject = &objecthead;
vdist = objectsCi].vdist;
// Viewspace-distance-sort this object into the others.
// Guaranteed to terminate because of sentinel
while (vdist < pobject->pnext->vdist)

pobject = pobject->pnext;
objectsCi].pnext = pobject->pnext;
pobject->pnext = &objectsCi];

}
}

// Move the view position and set the world->view transform,
void UpdateViewPosO
{

786 ® Chapter 49

int i;

point_t motionvec;
double s. c, mtempl[3][3], mtemp2[3][33;

// Move in the view direction, across the x-y plane, as if
// walking. This approach moves slower when looking up or
// down at more of an angle
motionvec.v[0] = DotProduct(&vpn, &xaxis):
motionvec. v[l] =■ 0.0;
motionvec.v[2] = DotProduct(&vpn, &zaxis);
for (i=0 ; i<3 ; i++)
{

currentpos.v[i] += motionvec.v[i] * currentspeed;
if (currentpos.v[i] > MAX_C00RD)

currentpos.v[i] = MAX_C00RD;
if (currentpos.v[i] < -MAX_C00RD)

currentpos.v[i] = -MAX_COORD;
}
// Set up the world-to-view rotation.
// Note; much of the work done in concatenating these matrices
// can be factored out, since it contributes nothing to the
// final result; multiply the three matrices together on paper
// to generate a minimum equation for each of the 9 final elements
s = sin(rol1);
c = cos(rol1);
mrol1[0][0] = c;
mroll[0][l] = s;
mroll[l][0] = -s;
mroll[l][l] = c;
s = sin(pitch);
c = cos(pitch);
mpitch[l][l] = c;
mpitch[l][2] = s;
mpitch[2][l] = -s;
mpitch[2][2] = c;
s = sin(yaw);
c = cos(yaw);
niyaw[0][0] = c;
niyaw[0][2] = -s;
myaw[2][0] ■= s;
niyaw[2][2] = c;
MConcat(mrol1, myaw, mtempl);
MConcat(mpitch, mtempl, mtemp2);
// Break out the rotation matrix into vright, vup, and vpn.
// We could work directly with the matrix; breaking it out
// into three vectors is just to make things clearer
for (i=0 ; i<3 ; i++)
{

vright.v[i] = mtemp2[0][i];
vup.v[i] = mtemp2[l][i];
vpn.vCi] = mtemp2[2][i];

}
// Simulate crude friction
if (currentspeed > (MOVEMENT_SPEED * speedscale / 2.0))

currentspeed -= MOVEMENT_SPEED * speedscale / 2.0;
else if (currentspeed < -(MOVEMENT_SPEED * speedscale / 2.0))

currentspeed += MOVEMENT_SPEED * speedscale / 2.0;
el se

currentspeed = 0.0;

3-D Clipping and Other Thoughts ^ 787

// Rotate a vector from viewspace to worldspace.
void BackRotateVector(po1nt_t *pin, po1nt_t *pout)
{

1 nt 1;

// Rotate into the world orientation
for (i=0 ; i<3 ; i++)

pout->v[i] = pin->v[0] * vright.v[i] +
pin->vCl] * vup.v[i] +
pin->v[2] * vpn.vCi];

}

// Transform a point from worldspace to viewspace.
void TransformPoint(point_t *pin, point_t *pout)
{

i nt i ;

point_t tvert;

// Translate into a viewpoint-relative coordinate
for (i=0 ; i<3 ; i++)

tvert.v[i] = pin->v[i] - currentpos.v[i];
// Rotate into the view orientation
pout->v[0] = DotProductC&tvert, &vright);
pout->v[l] = DotProductC&tvert. &vup);
pout->v[2] = DotProductC&tvert. &vpn);

}

// Transform a polygon from worldspace to viewspace.
void TransformPolygon(polygon_t *pinpoly. polygon_t *poutpoly)
{

int i;

for (i=0 ; i<pinpoly->numverts ; i++)
TransformPoint(&pinpoly->verts[i]. &poutpoly->verts[i]);

poutpoly->color = pinpoly->color;
poutpoly->numverts = pinpoly->numverts;

}

// Returns true if polygon faces the viewpoint, assuming a clockwise
// winding of vertices as seen from the front,
int PolyFacesViewer(polygon_t *ppoly)
{

i nt i;

point_t viewvec, edgel, edge2, normal;

for (i=0 ; i<3 ; i++)

^ viewvec.v[i] = ppoly->verts[0].v[i] - currentpos.v[i];
edgel.v[i] = ppoly->verts[0].v[i] - ppoly->verts[l].v[i];
edge2.v[i] = ppoly->verts[2].v[i] - ppoly->verts[l].v[i];

}
CrossProduct(&edgel, &edge2, &normal);
if (DotProduct(&viewvec. &normal) > 0)

return 1;

el se

return 0;

}

// Set up a clip plane with the specified normal,
void SetWorldspaceClipPlane(point_t *normal, plane_t *plane)
{

788 @ Chapter 49

}

// Rotate the plane normal into worldspace
BackRotateVector(normal, &plane->normal);
piane->d1stance = DotProductC¤tpos, &plane->normal) +

CLIP_PLANE_EPSILON;

// Set up the planes of the frustum, in worldspace coordinates,
void SetUpFrustumCvoid)
{

double angle, s, c;
point_t normal;

}

angle = atan(2.0 / fieldofview

s = sin(angle);

c = cos(angle);

// Left cli p piane
normal.v[0] = s;

normal.v[l] = 0;

normal.vC2] = c;

SetWorldspaceCli pPlane(&normal,
// Right clip plane
normal.v[0] = -s;

SetWorldspaceCli pPlane(&normal,
angle = atan(2.0 / fieldofview

s = sin(angle);

c = cos(angle);

// Bottom clip plane
normal.v[0] = 0;

normal.v[l] = s;

normal.v[2] = c;

SetWorldspaceClipPlane(&normal,
// Top clip plane
normal.v[l] = -s;

SetWorldspaceCli pPlane(&normal,

* maxscale / xscreenscale);

&frustumplanes[0]);

&frustumplanes[l]);
* maxscale / yscreenscale);

&frustumplanes[2]);

&frustumplanes[3]);

// Clip a polygon to the frustum.
int ClipToFrustum(polygon_t *pin, polygon_t *pout)

int i, curpoly;
polygon_t tpoly[2], *ppoly;

curpoly = 0;
ppoly = pin;
for (i«0 ; i<(NUM_FRUSTUM_PLANES-1); i++)
{

if (!C1ipToPlane(ppoly,
&frustumplanesCi],
&tpoly[curpoly]))

return 0;

ppoly = &tpoly[curpoly];
curpoly ''= 1;

}

return ClipToPlaneCppoly,

&f rustumpl anes[NUM_FRUSTLIM_PLANES-l],
pout);

3-D Clipping and Other Thoughts ^ 789

// Render the current state of the world to the screen,
void UpdateWorld()

{
HPALETTE holdpal;
HDC hdcScreen, hdcDIBSection;
HBITMAP holdbitmap;
polygon2D_t screenpoly;
polygon_t *ppoly, tpolyO, tpolyl. tpoly2;
convexobject_t *pobject;

int 1, j, k;

UpdateViewPos();
memset(pDIBBase. 0. DIBWidth*DIBHe1ght); // clear frame
SetUpFrustum();
ZSortObjectsC);

// Draw all visible faces in all objects
pobject = objecthead.pnext;
while (pobject != &objecthead)
{

ppoly = pobject->ppoly;
for (i=0 ; i<pobject->numpolys ; i++)
{

// Move the polygon relative to the object center
tpolyO.color = ppoly->color;
tpolyO.numverts = ppoly->numverts;
for (j^O ; j<tpoly0.numverts ; j-H-)
{

for (k=0 ; k<3 ; k++)
tpolyO.verts[j].vCk] =» ppoly->verts[j].v[k] +

pobject->center.v[k];

}

if (PolyFacesViewerC&tpolyO))
{

if (ClipToFrustumC&tpolyO, &tpolyl))
{

TransformPolygon (&tpolyl, &tpoly2);
ProjectPolygon (&tpoly2, &screenpoly);
FillPolygon2D (&screenpoly);

}

}

ppoly++;

}

pobject = pobject->pnext;

}
// We've drawn the frame; copy it to the screen
hdcScreen = GetDC(hwndOutput);
holdpal = SelectPaletteChdcScreen, hpalDIB, FALSE);
RealizePaletteChdcScreen);

hdcDIBSection = CreateCompatibleDC(hdcScreen);
holdbitmap = SelectObjectChdcDIBSection. hOIBSection);
BitBltChdcScreen, 0. 0, DIBWidth. DIBHeight. hdcDIBSection.

0, 0, SRCCOPY);
SelectPaletteChdcScreen, holdpal, FALSE);
ReleaseDCChwndOutput, hdcScreen);
SelectObjectChdcDIBSection, holdbitmap);
ReleaseDCChwndOutput, hdcDIBSection);

790 ^ Chapter 49

The Lessons of Listing 49.3
There are several interesting points to Listing 49.3. First, floating-point arithmetic is
used throughout the clipping process. While it is possible to use fixed-point, doing so
requires considerable care regarding range and precision. Floating-point is much easier—
and, with the Pentium generation of processors, is generally comparable in speed. In
fact, for some operations, such as multiplication in general and division when the
floating-point unit is in single-precision mode, floating-point is much faster. Check
out Chris Hecker's column in the February 1996 Game Developer iot an interesting
discussion along these lines.

Second, the planes that form the frustum are shifted ever so slightly inward from
their proper positions at the edge of the field of view. This guarantees that its never
possible to generate a visible vertex exactly at the eyepoint, averting the divide-by-zero
error that such a vertex would cause when projected and at no performance cost.

Third, the orientation of the viewer relative to the world is specified via yaw, pitch,
and roll angles, successively applied in that order. These angles are accumulated from
frame to frame according to user input, and for each frame are used to rotate the view up,
view right, and viewplane normal vectors, which define the world coordinate system,
into the viewspace coordinate system; those transformed vectors in turn define the rota
tion from worldspace to viewspace. (See Chapter 46 for a discussion of coordinate sys
tems and rotation, and take a look at Chapters 5 and 6 of Computer Graphics, by Foley &
van Dam, for a broader overview.) One attractive aspect of accumulating angular rota
tions that are then applied to the coordinate system vectors is that there is no deteriora
tion of the rotation matrix over time. This is in contrast to my X-Sharp package, (developed
in Part IX of this book) in which I acciunulated rotations by keeping a cumulative matrix
of all the rotations ever performed; unfortunately, that approach caused roundoff error to
accumulate, so objects began to warp visibly after many rotations.

Fourth, Listing 49.3 processes each input polygon into a clipped polygon, one line
segment at a time. It would be more efficient to process all the vertices, categorizing
whether and how they're clipped, and then perform a test such as the Cohen-Sutherland
outcode test to detect trivial acceptance (the polygon is entirely inside) and sometimes
trivial rejection (the polygon is fidly outside) without ever dealing with the edges, and
to identify which planes actually need to be clipped against, as discussed in "Line-
Segment Clipping Revisited, Dr. Dobb's Journal, January 1996. Some clipping ap
proaches also minimize the number of intersection calculations when a segment is
clipped by multiple planes. Further, Listing 49.3 clips a polygon against each plane in
turn, generating a new output polygon for each plane; it is possible and can be more
efficient to generate the final, clipped polygon without any intermediate representa
tions. For further reading on advanced clipping techniques, see the discussion starting
on page 271 of Foley & van Dam.

Finally, clipping in Listing 49.3 is performed in worldspace, rather than in viewspace.
The frustum is backtransformed from viewspace (where it is defined, since it exists

3-D Clipping and Other Thoughts ^ 791

relative to the viewer) to worldspace for this purpose. Worldspace dipping allows us to
transform only those vertices that are visible, rather than transforming all vertices into
viewspace, then clipping them. However, the decision whether to clip in worldspace or
viewspace is not clear-cut and is affected by several factors.

Advantages of Viewspace Clipping
Although viewspace clipping requires transforming vertices that may not he drawn, it has
potential performance advantages. For example, in worldspace, near and far clip planes
are just additional planes that have to be tested and clipped to, using dot products. In
viewspace, near and far clip planes are typically planes with constant z coordinates, so
tesdng whether a vertex is near or far-clipped can be performed with a single z compare,
and the fractional distance along a line segment to a near or far clip intersection can be
calculated with a couple of z subtractions and a divide; no dot products are needed.

Similarly, if the field of view is exactly 90 degrees, so the frustum planes go out at 45
degree angles relative to the viewplane, then x==z and y==z along the clip planes. This
means that the clipping status of a vertex can be determined with a simple comparison,
far more quickly than the standard dot-product test. This lends itself particularly well
to outcode-based clipping algorithms, since each compare can set one outcode bit.

For a game, 90 degrees is a pretty good field of view, but can we get the same sort of
efficient clipping if we need some other field of view? Sure. All we have to do is scale the
X and y results of the world-to-view transformation to account for the field of view, so
that the coordinates lie in a viewspace that's normalized such that the frustum planes
extend along lines of x==z and y==z. The resulting visible projected points span the range
-1 to 1 (before scaling up to get pixel coordinates), just as with a 90-degree field of view,
so the rest of the drawing pipeline remains unchanged. Better yet, there is no cost in
performance because the adjustment can be added to the transformation matrix.

I didn't implement normalized clipping in Listing 49.3 because I wanted to illus
trate the general 3-D clipping mechanism without additional complications, and be
cause for many applications the dot product (which, after all, takes only 10-20 cycles
on a Pentium) is sufficient. However, the more frustum clipping you're doing, espe
cially if most of the polygons are trivially visible, the more attractive the performance
advantages of normalized clipping become.

Further Reading
You now have the basics of 3-D clipping, but because fast clipping is central to high-
performance 3-D, there's a lot more to be learned. One good place for further reading
is Foley & van Dam; another is Procedural Elements of Computer Graphics, by David F.
Rogers. Read and understand either of these books, and you'll know everything you
need for world-class clipping.

792 ® Chapter 49

And, as you read, you might take a moment to consider how wonderful it is that
anyone who's interested can tap into so much expert knowledge for the price of a
book—or, on the Internet, for free—^with no strings attached. Our part of the world is
a pretty good place right now, isn't it?

struggling with Z-Order Solutions to the Hidden
Surface Problem

Okay, I admit it: I'm sick and tired of classic rock. Admittedly, it's been a while, about
20 years, since I was last excited to hear anything by the Cars or Boston, and I was
never particularly excited in the first place about Bob Seger or Queen, to say nothing
of Elvis, so some things haven't changed. But I knew something was up when I found
myself changing the station on the Allman Brothers and Steely Dan and Pink Floyd
and, God help me, the Beatles (just stuff like "Hello Goodbye" and "I'll Cry Instead,"
though, not "Ticket to Ride" or "A Day in the Life"; I'm not thati^x gone). It didn't
take long to figure out what the problem was; I'd been hearing the same songs for a
quarter-century, and I was bored.

I tell you this by way of explaining why it was that when my daughter and I drove
back from dinner the other night, the radio in my car was tuned, for the first time ever,
to a station whose slogan is "There is no alternative.
Now, we're talking here about a ten-year-old who worships the Beatles and has been

raised on a steady diet of oldies. She loves melodies, catchy songs, and good singers,
none of which you're likely to find on an alternative rock station. So it's no surptise
that when I turned on the radio, the first word out of her mouth was "Yuck!"
What did surprise me was that after listening for a while, she said, "You know. Dad,

it's actually kind of interesting."
Apart from giving me a clue as to what sott of music I can expect to hear blasting

through our house when she's a teenager, her quick uptake on alternative rock (versus
my decades-long devotion to the music of my youth) reminded me of something that
it's easy to forget as we become older and more set in our ways. It reminded me that it's
essential to keep an open mind, and to be willing, better yet, eager, to try new things.

794 ^ Chapter 50

Programmers tend to become attached to familiar approaches, and are inclined to stick
with whatever is currently doing the job adequately well, hut in programming there are
always alternatives, and I've found that they're often worth considering.

Not that I should have needed any reminding, considering the ever-evolving nature
of Quake.

Creative Flux and Hidden Surfaces
Back in Chapter 48,1 described the creative flux that led to John Carmack's decision to
use a precalculated potentially visible set (PVS) of polygons for each possible viewpoint
in Quake, the game we're developing here at id Software. The precalculated PVS meant
that instead of having to spend a lot of time searching through the world database to find
out which polygons were visible from the current viewpoint, we could simply draw all
the polygons in the PVS from back-to-front (getting the ordering courtesy of the world
BSP tree) and get the correct scene drawn with no searching at aH; letting the back-to-
ftont drawing perform the final stage of hidden-surface removal (HSR). This was a ter
rific idea, but it was far ftom the end of the road for Quake's design.

Drawing Moving Objects
For one thing, there was still the question of how to sort and draw moving objects
properly; in fact, this is the single technical question I've been asked most often in
recent months, so I'll take a moment to address it here. The primary problem is that a
moving model can span multiple BSP leaves, with the leaves that are touched varying
as the model moves; that, together with the possibility of multiple models in one leaf
means there's no easy way to use BSP order to draw the models in correctly sorted
order. When I wrote Chapter 48, we were drawing sprites (such as explosions), move-
able BSP models (such as doors), and polygon models (such as monsters) by clipping
each into all the leaves it touched, then drawing the appropriate parts as each BSP leaf
was reached in back-to-front traversal. However, this didn't solve the issue of sorting
multiple moving models in a single leaf gainst each other, and also left some ugly
sorting problems with complex polygon models.

John solved the sorting issue for sprites and polygon models in a stardingly low-tech
way: We now z-buffer them. (That is, before we draw each pixel, we compare its
distance, or z, value with the z value of the pixel currently on the screen, drawing only
if the new pixel is nearer than the current one.) First, we draw the basic world, walls,
ceilings, and the like. No z-buffer testing is involved at this point (the world visible
surface determination is done in a different way, as we'll see soon); however, we Ao fill
the z-buffer with the z values (actually, 1/z values, as discussed below) for all the world
pixels. Z-filling is a much faster process than z-buffering the entire world would be,
because no reads or compares are involved, just writes of z values. Once the drawing
and z-filling of the world is done, we can simply draw the sprites and polygon models
with z-buffering and get perfect sorting all around.

Quake's Hidden-Surface Removal ^ 795

Performance Impact
Whenever a z-bufFer is involved, the questions inevitably are: What's the memory foot
print and what's the performance impact? Well, the memory footprint at 320x200 is
128K, not trivial but not a big deal for a game that requires 8 MB to run. The perfor
mance impact is about 10% for z-filling the world, and roughly 20% (with lots of varia
tion) for drawing sprites and polygon models. In return, we get a perfectly sorted world,
and also the ability to do additional effects, such as particle explosions and smoke, be
cause the z-buffer lets us flawlessly sort such effects into the world. All in all, the use of
the z-buffer vastly improved the visual quality and flexibility of the Quake engine, and
also simplified the code quite a bit, at an acceptable memory and performance cost.

Leveling and Improving Performance
As I said above, in the Quake architecture, the world itself is drawn first, without z-
buflfer reads or compares, but filling the z-buffer with the world polygons' z values, and
then the moving objects are drawn atop the world, using full z-buffering. Thus far, I've
discussed how to draw moving objects. For the rest of this chapter, I'm going to talk
about the other part of the drawing equation; that is, how to draw the world itself,
where the entire world is stored as a single BSP tree and never moves.

As you may recall from Chapter 48, we're concerned with both raw performance
and level performance. That is, we want the drawing code to run as fast as possible, but
we also want the difference in drawing speed between the average scene and the slow
est-drawing scene to be as small as possible.

It doee little good to average 30 frames per second if 10% of the
scenes draw at 5 fps, because the jerkiness In those scenes will be
extremely obvious ty comparison with the average scene, and highly
objectionable. It would be better to average 15 fps 100% of the time,
even though the average drawing speed is oniy half as much.

The precalculated PVS was an important step toward both faster and more level per
formance, because it eliminated the need to identify visible polygons, a relatively slow
step that tended to be at its worst in the most complex scenes. Nonetheless, in some spots
in real game levels the precalcidated PVS contains five times more polygons than are
actually visible; together with the back-to-front HSR approach, this created hot spots in
which the frame rate bo^ed down visibly as hundreds of polygons are drawn back-to-
front, most of those immediately getting overdrawn by nearer polygons. Raw perfor
mance in general was also reduced by the typical 50% overdraw resulting from drawing
everything in the PVS. So, although drawing the PVS back-to-front as the final HSR
stage worked and was an improvement over previous designs, it was not ideal. Surely,
John thought, there's a better way to leverage the PVS than back-to-front drawing.

And indeed there is.

796 ^ Chapter 50

Sorted Spans
The ideal final HSR stage for Quake would reject all the polygons in the PVS that are
actually invisible, and draw only the visible pixels of the remaining polygons, with no
overdraw, that is, with every pixel drawn exacdy once, all at no performance cost, of course.
One way to do that (although certainly not at zero cost) would be to draw the polygons
from front-to-back, maintaining a region describing the currendy occluded portions of the
screen and clipping each polygon to that region before drawing it. That soimds promising,
but it is in faa nothing more or less than the beam tree approach I described in Chapter 48,
an approach that we found to have considerable overhead and serious leveling problems.
We can do much better if we move the final HSR stage from the polygon level to the

span level and use a sorted-spans approach. In essence, this approach consists of turn
ing each polygon into a set of spans, as shown in Figure 50.1, and then sorting and
clipping the spans against each other until only the visible portions of visible spans are
left to be drawn, as shown in Figure 50.2. This may sound a lot like z-buffering (which
is simply too slow for use in drawing the world, although it's fine for smaller moving
objects, as described earlier), but there are crucial differences.

By contrast with z-buffering, only visible portions of visible spans are scanned out
pixel by pixel (although all polygon edges must still be rasterized). Better yet, the
sorting that z-buffering does at each pixel becomes a per-span operation with sorted
spans, and because of the coherence implicit in a span list, each edge is sorted only
against some of the spans on the same line and is clipped only to the few spans that it

polygon A spans

1

X = 20, y = 0, count = 0

X = 20, y = 1, count = 1

X = 19, y = 2, count = 2

X = 19, y = 5, count = 2

X = 18>, y = 4, count = 4

X = 13, y = 5, count = 4

X = 17, y = 6, count = 5

X = 22, y = 7, count = 0

Figure 50.1 Span generation.

Quake's Hidden-Surface Removal ^ 797

polygon A

visible spans

spans

X = 22, y = 0, count = 0 \

X = 22, y = 1, count = 0

I X = 21, y = 2, count - 1

I X = 20, y = 5, count - 2

I X = 19, y = 4, count = 5

X = 19, y = 5, count = 2

X = 19, y = 6, count = 0 |

A and B composited

A: X = 20, y = 0, count = 0 3: X = 22, y = 0, count = 0

A: X = 20, y = 1, count = 1 3: X = 22, y = 1, count = 0

A: X = 19, y = 2, count = 2 3: X = 21, y = 2, count = 1

A: X = 19, y = 3, count = 1 3: X = 20, y = 3, count = 2

A: X = 13, y = 4, count = 1 3: X = 19, y = 4, count = 3

A: X = 13, y = 5, count = 1 3: X = 19, y = 5, count = 2

A: X = 17, y = 6, count = 5 3: X = 19. y = 6, count = 0

A: X = 20, y = 5, count = 1

A: X = 22, y = 7, count = 0

Figure 50.2 Two sets of spans sorted and clipped against one another.

798 ® Chapter 50

overlaps horizontally. Although complex scenes still take longer to process than simple
scenes, the worst case isn't as bad as with the beam tree or back-to-front approaches,
because there's no overdraw or scanning of hidden pixels, because complexity is limited
to pixel resolution and because span coherence tends to limit the worst-case sorting in
any one area of the screen. As a bonus, the output of sorted spans is in precisely the
form that a low-level rasterizer needs, a set of span descriptors, each consisting of a start
coordinate and a length.

In short, the sorted spans approach meets our original criteria pretty well; although
it isn't zero-cost, it's not horribly expensive, it completely eliminates both overdraw
and pixel scanning of obscured portions of polygons and it tends to level worst-case
performance. We wouldn't want to rely on sorted spans alone as our hidden-surface
mechanism, but the precalculated PVS reduces the number of polygons to a level that
sorted spans can handle quite nicely.

So we've found the approach we need; now it's just a matter of writing some code
and we're on our way, right? Well, yes and no. Conceptually, the sorted-spans ap
proach is simple, but it's surprisingly difficult to implement, with a couple of major
design choices to be made, a subtle mathematical element, and some tricky gotchas
that I'll have to defer until Chapter 51. Let's look at the design choices first.

Edges Versus Spans
The first design choice is whether to sort spans or edges (both of which fall into the
general category of "sorted spans"). Although the results are the same both ways, a list
of spans to be drawn, with no overdraw, the implementations and performance impli
cations are quite different, because the sorting and clipping are performed using very
different data structures.

With span-sorting, spans are stored in x-sorted, linked list buckets, typically with
one bucket per scan line. Each polygon in turn is rasterized into spans, as shown in
Figure 50.1, and each span is sorted and clipped into the bucket for the scan line the
span is on, as shown in Figure 50.2, so that at any time each bucket contains the
nearest spans encountered thus far, always with no overlap. This approach involves
generating all spans for each polygon in turn, with each span immediately being sorted,
clipped, and added to the appropriate bucket.

With edge-sorting, edges are stored in x-sorted, linked list buckets according to
their start scan line. Each polygon in turn is decomposed into edges, cumulatively
building a list of all the edges in the scene. Once all edges for all polygons in the view
frustum have been added to the edge list, the whole list is scanned out in a single top-
to-bottom, left-to-right pass. An active edge list (AEL) is maintained. With each step
to a new scan line, edges that end on that scan line are removed from the AEL, active
edges are stepped to their new x coordinates, edges starting on th^ew scan line are
added to the AEL, and the edges are sorted by current x coordin^.

For each scan line, a z-sorted active polygon list (APL) is mamtained. The x-sorted
AEL is stepped through in order. As each new edge is encouyitered (that is, as each

Quake's Hidden-Surface Removal ^ 799

polygon starts or ends as we move left to right), the associated polygon is activated and
sorted into the APL, as shown in Figure 50.3, or deactivated and removed from the
APL, as shown in Figure 50.4, for a leading or trailing edge, respectively. If the nearest
polygon has changed (that is, if the new polygon is nearest, or if the nearest polygon
just ended), a span is emitted for the polygon that just stopped being the nearest.

+

Active Edge List

lead edge polygon M; x =18 lead edge polygon N; x =50

Current edge; since it's a
leading edge, sort polygon
M into the active polygon.

polygon M
z at x=18 Is 50

trail edge polygon M; x =100

Active Polygon List

Polygon M has a nearer z at x=18
than any polygon In the APL, so put
polygon M at the top of the APL; it is
the nearest surface at this pixel,
hence visible. Emit a span for
polygon J, starting at x where J
became visible and ending at x=18.
x=18 is the start coordinate for the
span that will be emitted for polygon M
when it ends on this scan line or
becomes occluded.

If polygon M had not been the nearest
polygon at x=18, it would have been
Inserted into the APL at the proper z-
sorted location, and nothing more would
have been done.

head of APL

polygon J
zatx=18 is 100

polygon K
z at x=18 is 125

polygon L
z at x=18 is 500

Figure 50.3 Activating a polygon when a leading edge is encountered in the AEL.

800 ^ Chapter 50

t
Active Edge List

1

trail edge polygon M; x =100 lead edge polygon R; x =110

Current edge; since it's a
trailing edge, remove polygon
M from the active polygon list.

lead edge polygon S; x =111

Remove polygon M from the APL.
Polygon M Is on top of the APL,
meaning it's currently visible (the
nearest polygon as we reach this
pixel), so we emit a span starting at
the coordinate at which polygon M
became visible (x=18), and ending at
the current coordinate (x=100). Mark
that polygon J became visible at
x=100.

If polygon M had not been on top of
the APL, we wouldn't have done
anything except removing it from
the APL.

Active Polygon List

head of APL

polygon M became
nearest at x=18

polygon J

polygon L

Figure 50.4 Deactivating a poiygon when a trailing edge is encountered in the AEL.
i

starting at the point where the polygon first because nearest and ending at the x coor
dinate of the current edge, and the current x coordinate is recorded in the polygon that
is now the nearest. This saved coordinate later serves as the start of the span emitted
when the new nearest polygon ceases to be in front.

Don't worry if you didn't follow all of that; the above is just a quick overview of
edge-sorting to help make the rest of this chapter a little clearer. My thorough discus
sion of the topic will be in Chapter 51.

Quake's Hidden-Surface Removal ^ 801

The spans that are generated with edge-sorting are exactly the same spans that ulti
mately emerge from span-sorting; the difference lies in the intermediate data struc
tures that are used to sort the spans in the scene. With edge-sorting, the spans are kept
implicit in the edges until the final set of visible spans is generated, so the sorting,
clipping, and span emission is done as each edge adds or removes a polygon, based on
the span state implied by the edge and the set of active polygons. With span-sorting,
spans are immediately made explicit when each polygon is rasterized, and those inter
mediate spans are then sorted and clipped against other the spans on the scan line to
generate the final spans, so the states of the spans are explicit at all times, and all work
is done directly with spans.

Both span-sorting and edge-sorting work well, and both have been employed suc
cessfully in commercial projects. We've chosen to use edge-sorting in Quake partly
because it seems inherently more efficient, with excellent horizontal coherence that
makes for minimal time spent sorting, in contrast with the potentially costly sorting
into linked lists that span-sorting can involve. A more important reason, though, is
that with edge-sorting we're able to share edges between adjacent polygons, and that
cuts the work involved in sorting, clipping, and rasterizing edges nearly in half, while
also shrinking the world database quite a bit due to the sharing.
One final advantage of edge-sorting is that it makes no distinction between convex

and concave polygons. That's not an important consideration for most graphics en
gines, but in Quake, edge clipping, transformation, projection, and sorting have be
come a major bottleneck, so we're doing everything we can to get the polygon and edge
counts down, and concave polygons help a lot in that regard. While it's possible to
handle concave polygons with span-sorting, that can involve significant performance
penalties.

Nonetheless, there's no cut-and-dried answer as to which approach is better. In the
end, span-sorting and edge-sorting amount to the same functionality, and the choice
between them is a matter of whatever you feel most comfortable with. In Chapter 51,
I'll go into considerable detail about edge-sorting, complete with a full implementa
tion. I'm going the spend the rest of this chapter laying the foundation for Chapter 51
by discussing sorting keys and 1/z calculation. In the process, I'm going to have to
make a few forward references to aspects of edge-sorting that I haven't yet covered in
detail; my apologies, but it's unavoidable, and all should become clear by the end of
Chapter 51.

Edge-Sorting Keys
Now that we know we're going to sort edges, using them to emit spans for the polygons
nearest the viewer, the question becomes: How can we tell which polygons are nearest?
Ideally, we'd just store a sorting key in each polygon, and whenever a new edge came
along, we'd compare its surface's key to the keys of other currently active polygons, and
could easily tell which polygon was nearest.

802 ® Chapter 50

That sounds too good to be true, but it is possible. If, for example, your world
database is stored as a BSP tree, with all polygons clipped into the BSP leaves, then
BSP walk order is a valid drawing order. So, for example, if you walk the BSP back-to-
front, assigning each polygon an incrementally higher key as you reach it, polygons
with higher keys are guaranteed to be in front of polygons with lower keys. This is the
approach Quake used for a while, although a different approach is now being used, for
reasons I'll explain shortly.

If you don't happen to have a BSP or similar data structure handy, or if you have lots
of moving polygons (BSPs don't handle moving polygons very efficiently), another
way to accomplish your objectives would be to sort all the polygons against one an
other before drawing the scene, assigning appropriate keys based on their spatial rela
tionships in viewspace. Unfortunately, this is generally an extremely slow task, because
every polygon must be compared to every other polygon. There are techniques to
improve the performance of polygon sorts, but I don't know of anyone who's doing
general polygon sorts of complex scenes in realtime on a PC.
An alternative is to sort by z distance from the viewer in screenspace, an approach

that dovetails nicely with the excellent spatial coherence of edge-sorting. As each new
edge is encountered on a scan line, the corresponding polygon's z distance can be cal
culated and compared to the other polygons' distances, and the polygon can be sorted
into the APL accordingly.

Getting z distances can be tricky, however. Remember that we need to be able to
calculate z at any arbitrary point on a polygon, because an edge may occur and cause
its polygon to be sorted into the APL at any point on the screen. We could calculate
z directly from the screen x and y coordinates and the polygon's plane equation, but
unfortunately this can't be done very quickly, because the z for a plane doesn't vary
linearly in screenspace; however, 1/z doesvsiry linearly, so we'll use that instead. (See
Chris Hecker's 1995 series of columns on texture mapping in Game Developermsigsi'
zine for a discussion of screenspace linearity and gradients for 1/z.) Another advan
tage of using 1/z is that its resolution increases with decreasing distance, meaning
that by using 1/z, we'll have better depth resolution for nearby features, where it
matters most.

The obvious way to get a 1/z value at any arbitrary point on a polygon is to calculate
1/z at the vertices, interpolate it down both edges of the polygon, and interpolate
between the edges to get the value at the point of interest. Unfortunately, that requires
doing a lot of work along each edge, and worse, requires division to calculate the 1/z
step per pixel across each span.
A better solution is to calculate 1/z directly from the plane equation and the screen

X and y of the pixel of interest. The equation is:

1/z = (a/d)x' - (b/d)y' + c/d

where z is the viewspace z coordinate of the point on the plane that projects to screen
coordinate (x',y') (the origin for this calculation is the center of projection, the point

Quake's Hidden-Surface Removal ^ 803

on the screen straight ahead of the viewpoint), [a b c] is the plane normal in viewspace,
and d is the distance from the viewspace origin to the plane along the normal. Division
is done only once per plane, because a, b, c, and d are per-plane constants.
The fiill 1/z calculation requires two multiplies and two adds, all of which should be

floating-point to avoid range errors. That much floating-point math sounds expensive
but really isnt, especially on a Pentium, where a planes 1/z value at any point can be
calculated in as little as six cycles in assembly language.

Where That 1/Z Equation Comes From
For those who are interested, here's a quick derivation of the 1/z equation. The plane
equation for a plane is:

ax + by + cz - d = 0,

where x and y are viewspace coordinates, and a, b, c, d, and z are defined above. If we
substitute x=x z and y=-y z (from the definition of the perspective projection, with y
inverted because y increases upward in viewspace but downward in screenspace), and
do some rearrangement, we get:

z = d / (ax' - by + c).

Inverting and distributing yields:

1/z = ax'/d - by'/d + c/d.

We'll see 1/z sorting in action in Chapter 51.

Quake and Z-Sorting
I mentioned above that Quake no longer uses BSP order as the sorting key; in fact, it
uses 1/z as the key now. Elegant as the gradients are, calculating 1/z from them is
clearly slower than just doing a compare on a BSP-ordered key, so why have we switched
Quake to 1/z?
The primary reason is to reduce the number of polygons. Drawing in BSP order

means following certain rules, including the rule that polygons must be split if they
cross BSP planes. This splitting increases the numbers of polygons and edges consider
ably. By sorting on 1/z, we're able to leave polygons unsplit but still get correct drawing
order, so we have far fewer edges to process and faster drawing overall, despite the
added cost of 1/z sorting.

Another advantage of 1/z sorting is that it solves the sorting issues I mentioned at
the start involving moving models that are themselves small BSP trees. Sorting in world
BSP order wouldn't work here, because these models are separate BSPs, and there's no

804 ^ Chapter 50

easy way to work them into the world BSP s sequence order. We don't want to use z-
bufFering for these models because they're often large objects such as doors, and we
don't want to lose the overdraw-reduction benefits that closed doors provide when
drawn through the edge list. With sorted spans, the edges of moving BSP models are
simply placed in the edge list (first clipping polygons so they don't cross any solid
world surfaces, to avoid complications associated with interpenetration), along with all
the world edges, and 1/z sorting takes care of the rest.

Decisions Deferred

There is, without a doubt, an awful lot of information in the preceding pages, and it
may not all connect together yet in your mind. The code and accompanying explana
tion in the next chapter should help; if you want to peek ahead, the code is available on
the CD-ROM as DDJZSORT.ZIP in the directory for Chapter 51. You may also want
to take a look at Foley & van Dam's Computer Graphics or Rogers' Procedural Elements
for Computer Graphics,

As I write this, it's unclear whether Quake will end up sorting edges by BSP order or
1/z. Actually, there's no guarantee that sorted spans in any form will be the final design.
Sometimes it seems like we change graphics engines as often as they play Elvis on the
'50s oldies stations (but, one would hope, with more aesthetically pleasing results!) and
no doubt we'll be considering the alternatives right up until the day we ship.

Implementing Independent Span Sorting for
Rendering without Overdraw

In Chapter 50, we dove headlong into the intricacies of hidden surface removal by way
of z-sorted (actually, 1/z-sorted) spans. At the end of that chapter, I noted that we were
currently using 1/z-sorted spans in Quake, but it was unclear whether wed switch back
to BSP order. Well, some time after that writing, it's become clear: We're hack to
sorting spans by BSP order.

In Robert A. Heinlein's wonderful story "The Man Who Sold the Moon," the chief
engineer of the Moon rocket project tries to figure out how to get a payload of three
astronauts to the Moon and back. He starts out with a four-stage rocket design, but
finds that it won't do the job, so he adds a fifth stage. The fifth stage helps, but not
quite enough, "Because," he explains, "I've had to add in too much deadweight, that's
why." (The dead weight is the control and safety equipment that goes with the fifth
stage.) He then tries adding yet another stage, only to find that the sixth stage actually
results in a net slowdown. In the end, he has to give up on the three-person design and
build a one-person spacecraft instead.

1/z-sorted spans in Quake turned out pretty much the same way, as we'll see in a
moment. First, though, I'd like to note up front that this chapter is very technical and
builds heavily on material I covered earlier in this section of the book; if you haven't
already read the other chapters in Part X (Chapters 44 through 50) you really should.
Make no mistake about it, this is commercial-quality stuff; in fact, the code in this
chapter uses the same sorting technique as the test version of Quake, QTESTl.ZIP,
that id Software placed on the Internet in early March 1996. The material in Part X is
the Real McCoy, true reports from the leading edge, and I trust that you'll be patient if
careful rereading and some occasional catch-up reading of earlier chapters are required

806 ^ Chapter 51

to absorb everything contained herein. Besides, the ultimate reference for any design is
working code, which you'll find, in part, in Listing 51.1, and in its entirety in the file
DDJZSORT.ZIP on the CD-ROM.

Quake and Sorted Spans
As you 11 recall from Chapter 50, Quake uses sorted spans to get zero overdraw while
rendering the world, thereby both improving overall performance and leveling frame
rates by speeding up scenes that would otherwise experience heavy overdraw. Our original
design used spans sorted by BSP order; because we traverse the world BSP tree from
front-to-back relative to the viewpoint, the order in which BSP nodes are visited is a
guaranteed front-to-back sorting order. We simply gave each node an increasing BSP
sequence number as it was visited, set each polygons sort key to the BSP sequence
number of the node (BSP splitting plane) it lay on, and used those sort keys when
generating spans.

(In a change from earlier designs, polygons now are stored on nodes, rather than
leaves, which are the convex subspaces carved out by the BSP tree. Visits to potentially
visible leaves are used only to mark that the polygons that touch those leaves are visible
and need to be drawn, and each marked-visible polygon is then drawn after everything
in front of its node has been drawn. This results in less BSP splitting of polygons,
which is A Good Thing, as explained below.)

This worked flawlessly for the world, but had a couple of downsides. First, it didn t
address the issue of sorting small, moving BSP models such as doors; those models
could be clipped into the world BSP tree s leaves and assigned sort keys corresponding
to the leaves into which they fell, but there was still the question of how to sort mul
tiple BSP models in the same world leaf against each other. Second, strict BSP order
requires that polygons be split so that every polygon falls entirely within a single leaf.
This can be stretched by putting polygons on nodes, allowing for larger polygons on
average, but even then, polygons still need to be split so that every polygon falls within
the bounding volume for the node on which it lies. The end result, in either case, is
more and smaller polygons than if BSP order weren't used—and that, in turn, means
lower performance, because more polygons must be clipped, transformed, and pro
jected, more sorting must be done, and more spans must be drawn.
We figured that if only we could avoid those BSP splits. Quake would get a lot

faster. Accordingly, we switched from sorting on BSP order to sorting on 1/z, and left
our polygons unsplit. Things did get faster at first, but not as much as we had expected,
for two reasons.

First, as the world BSP tree is descended, we clip each node's bounding box in turn
to see if it's inside or outside each plane of the view frustum. The clipping results can be
remembered, and often allow the avoidance of some or all clipping for the node's poly
gons. For example, all polygons in a node that has a trivially accepted bounding box
are likewise guaranteed to be undipped and in the frustum, since they all lie within the

Sorted Spans in Action ^ 807

nodes volume and need no further clipping. This efficient clipping mechanism van
ished as soon as we stepped out of BSP order, because a polygon was no longer neces
sarily confined to its node's volume.

Second, sorting on 1/z isn't as cheap as sorting on BSP order, because floating-point
calculations and comparisons are involved, rather than integer compares. So Quake
got faster but, like Heinlein's fifth rocket stage, there was clear evidence of diminishing
returns.

That wasn't the bad part; after all, even a small speed increase is A Good Thing. The
real problem was that our initial 1/z sorting proved to be unreliable. We first ran into
problems when two forward-facing polygons started at a common edge, because it was
hard to tell which one was really in front (as discussed below), and we had to do
additional floating-point calculations to resolve these cases. This fixed the problems
for a while, but then odd cases started popping up where just the right combination of
polygon alignments caused new sorting errors. We tinkered with those too, adding
more code and incurring additional slowdowns in the process. Finally, we had every
thing working smoothly again, although by this point Quake was back to pretty much
the same speed it had been with BSP sorting.
And then yet another crop of sorting errors popped up.
We could have fixed those errors too; we'll take a quick look at how to deal with

such cases shordy. However, like the sixth rocket stage, the fixes would have made
Quake slower thijx it had been with BSP sorting. So we gave up and went back to BSP
order, and now the code is simpler and sorting works reliably. It's too bad our experi
ment didn't work out, but it wasn't wasted time because in trying what we did we
learned quite a bit. In particular, we learned that the information provided by a simple,
reliable world ordering mechanism, such as a BSP tree, can do more good than is
immediately apparent, in terms of both performance and solid code.

Nonetheless, sorting on 1/z can be a valuable tool, used in the right context; draw
ing a Quake world just doesn't happen to be such a case. In fact, sorting on 1/z is how
we're now handling the sorting of multiple BSP models that lie within the same world
leaf in Quake. In this case, we don't have the option of using BSP order (because we're
drawing multiple independent trees), so we've set restrictions on the BSP models to
avoid running into the types of 1/z sorting errors we encountered drawing the Quake
world. Below, we'll look at another application in which sorting on 1/z is quite usefiil,
one where objects move freely through space. As is so often the case in 3-D, there is no
one "right" technique, but rather a great many different techniques, each one handy in
the right situations. Often, a combination of techniques is beneficial; for example, the
combination in Quake of BSP sorting for the world and 1/z sorting for BSP models in
the same world leaf.

For the remainder of this chapter, I'm going to look at the three main types of 1/z
span sorting, then discuss a sample 3-D app built around 1/z span sorting.

808 ^ Chapter 51

Types of Mi Span Sorting
As a quick refresher: With 1/z span sorting, all the polygons in a scene are treated as
sets of screenspace pixel spans, and 1/z (where z is distance from the viewpoint in
viewspace, as measured along the viewplane normal) is used to sort the spans so that
the nearest span overlapping each pixel is drawn. As I discussed in Chapter 50, in the
sample program we're actually going to do all our sorting with polygon edges, which
represent spans in an implicit form.

There are three types of 1/z span sorting, each requiring a different implementation.
In order of increasing speed and decreasing complexity, they are: intersecting, abut
ting, and independent. (These are names of my own devising; I haven't come across
any standard nomenclature in the literature.)

Intersecting Span Sorting
Intersecting span sorting occurs when polygons can interpenetrate. Thus, two spans
may cross such that part of each span is visible, in which case the spans have to be split
and drawn appropriately, as shown in Figure 51.1.

Intersecting is the slowest and most complicated type of span sorting, because it is
necessary to compare 1/z values at two points in order to detect interpenetration, and
additional work must be done to split the spans as necessary. Thus, although intersect
ing span sorting certainly works, it's not the first choice for performance.

invisible portion
of polygon 3

visible portion
of polygon A

invisible portion
of polygon A

span split point

XX

visibie portion
of polygon 3

viewpoint

Note: Polygons A and 3 are viewed from above.

Figure 51.1 Intersecting span sorting.

Sorted Spans in Action ^ 809

Abutting Span Sorting
Abutting span sorting occurs when polygons that are not part of a continuous surface
can butt up against one another, but dont interpenetrate, as shown in Figure 51.2.
This is the sorting used in Quake, where objects like doors often abut walls and floors,
and turns out to be more complicated than you might think. The problem is that when
an abutting polygon starts on a given scan line, as with polygon B in Figure 51.2, it
starts at exactly the same 1/z value as the polygon it abuts, in this case, polygon A, so
additional sorting is needed when these ties happen. Of course, the two-point sorting
used for intersecting polygons would work, but we'd like to find something faster.

As it turns out, the additional sorting for abutting polygons is actually quite simple;
whichever polygon has a greater 1/z gradient with respect to screen x (that is, which
ever polygon is heading fastest toward the viewer along the scan line) is the front one.
The hard part is identifying when ties—that is, abutting polygons—occur; due to float
ing-point imprecision, as well as fixed-point edge-stepping imprecision that can move
an edge slightly on the screen, calculations of 1/z from the combination of screen
coordinates and 1/z gradients (as discussed last time) can be slightly off, so most tie
cases will show up as near matches, not exact matches. This imprecision makes it nec
essary to perform two comparisons, one with an adjust-up by a small epsilon and one
with an adjust-down, creating a range in which near-matches are considered matches.
Fine-tuning this epsilon to catch all ties, without falsely reporting close-but-not-abut-
ting edges as ties, proved to be troublesome in Quake, and the epsilon calculations and
extra comparisons slowed things down.

visible portion
of polygon A

invisible portion
of polygon A

Poly^one 3 starts here,
abutting polygon A.
At this location, both polygons
have the same 1/z value.

visible portion
of polygon 3

X/
viewpoint

Note: Polygons A and 3 are viewed from above.

Figure 51.2 Abutting span sorting.

810 ^ Chapter 51

I do think that abutting 1/z span sorting could have been made reliable enough for
production use in Quake, were it not that we share edges between adjacent polygons in
Quake, so that the world is a large polygon mesh. When a polygon ends and is followed
by an adjacent polygon that shares the edge that just ended, we simply assume that the
adjacent polygon sorts relative to other active polygons in the same place as the one
that ended (because the mesh is continuous and there's no interpenetration), rather
than doing a 1/z sort from scratch. This speeds things up by saving a lot of sorting, but
it means that if there is a sorting error, a whole string of adjacent polygons can be
sorted incorrectly, pulled in by the one missorted polygon. Missorting is a very real
hazard when a polygon is very nearly perpendicular to the screen, so that the 1/z calcu
lations push the limits of numeric precision, especially in single-precision floating point.
Many caching schemes are possible with abutting span sorting, because any given

pair of polygons, being noninterpenetrating, will sort in the same order throughout a
scene. However, in Quake at least, the benefits of caching sort results were outweighed
by the additional overhead of maintaining the caching information, and every caching
variant we tried actually slowed Quake down.

Independent Span Sorting
Finally, we come to independent span sorting, the simplest and fastest of the three, and
the type the sample code in Listing 51.1 uses. Here, polygons never intersect or touch
any other polygons except adjacent polygons with which they form a continuous mesh.
This means that when a polygon starts on a scan line, a single 1/z comparison between
that polygon and the polygons it overlaps on the screen is guaranteed to produce cor
rect sorting, with no extra calculations or tricky cases to worry about.

Independent span sorting is ideal for scenes with lots of moving objects that never
actually touch each other, such as a space battle. Next, we'll look at an implementation
of independent 1/z span sorting.

1/z Span Sorting In Action
Listing 51.1 is a portion of a program that demonstrates independent 1/z span sorting.
This program is based on the sample 3-D clipping program from Chapter 49; how
ever, the earlier program did hidden surface removal (HSR) by simply z-sorting whole
objects and drawing them back-to-front, while Listing 51.1 draws ail polygons byway
of a 1/z-sorted edge list. Consequently, where the earlier program worked only so long
as object centers correctly described sorting order. Listing 51.1 works properly for all
combinations of non-intersecting and non-abutting polygons. In particular. Listing
51.1 correctly handles concave polyhedra; a new L-shaped object (the data for which is
not included in Listing 51.1) has been added to the sample program to illustrate this
capability. The ability to handle complex shapes makes Listing 51.1 vastly more useful
for real-world applications than the 3-D clipping demo from Chapter 49.

Sorted Spans in Action @ 811

Listing 51.1 L51_1.C
// Part of Win32 program to demonstrate z-sorted spans. Whitespace
// removed for space reasons. Full source code, with whitespace,
// available from ftp.idsoftware.com/mikeab/ddjzsort.zip.

y/define MAX_SPANS 10000
#define MAX_SURFS 1000
#define MAX_EDGES 5000

typedef struct surf_s {
struct surf_s *pnext, *pprev;
int color, visxstart, state;
double zinvOO, zinvstepx, zinvstepy;

} surf_t;

typedef struct edge_s {
int X, xstep, leading;
surf_t *psurf;
struct edge_s *pnext. *pprev, *pnextremove;

} edge_t;

// Span, edge, and surface lists
span_t spans[MAX_SPANS];
edge_t edges[MAX_EDGES];
surf_t surfs[MAX_SURFS];

// Bucket list of new edges to add on each scan line
edge_t newedges[MAX_SCREEN_HEIGHT];

// Bucket list of edges to remove on each scan line
edge_t *removeedges[MAX_SCREEN_HEIGHT];

// Head and tail for the active edge list
edge_t edgehead, edgetail;

// Edge used as sentinel of new edge lists
edge_t maxedge = {0x7FFFFFFF};

// Head/tail/sentinel/background surface of active surface stack
surf_t surfstack;

// pointers to next available surface and edge
surf_t *pavailsurf;
edge_t *pavailedge;

// Returns true if polygon faces the viewpoint, assuming a clockwise
// winding of vertices as seen from the front,
int PolyFacesViewer(polygon_t *ppoly, plane_t *pplane)
{

int i;

point_t viewvec;

for (i=0 ; i<3 ; i++)
viewvec.v[i] = ppoly->verts[0].v[i] - currentpos.v[i];

// Use an epsilon here so we don't get polygons tilted so
// sharply that the gradients are unusable or invalid
if (DotProduct (&viewvec, &pplane->normal) < -0.01)

return 1;

return 0;

812 ^ Chapter 51

II Add the polygon's edges to the global edge table.
void AddPolygonEdges (plane_t *plane. polygon2D_t *screenpoly)

double distinv, deltax, deltay, slope;
int 1, nextvert, numverts, temp, topy, bottomy, height;
edge_t *pedge;

numverts = screenpoly->numverts;

// Clamp the polygon's vertices just in case some very near
// points have wandered out of range due to floating-point
// imprecision
for (i=0 ; Knumverts ; i++) {

if (screenpoly->verts[i].X < -0.5)
screenpoly->verts[i].X = -0.5;

if (screenpoly->verts[i].x > ((double)DIBWidth - 0.5))
screenpoly->verts[i].X = (double)DIBWidth - 0.5;

if (screenpoly->verts[i].y < -0.5)
screenpoly->verts[i].y = -0.5;

if (screenpoly->verts[i].y > ((double)DIBHeight - 0.5))
screenpoly->verts[i].y - (double)DIBHeight - 0.5;

}

// Add each edge in turn
for (i=0 ; Knumverts ; i++) {

nextvert = i + 1;

if (nextvert >= numverts)

nextvert = 0;

topy = (int)cei1(screenpoly->verts[i].y);
bottomy = (int)ceil(screenpoly->verts[nextvert].y);
height = bottomy - topy;
if (height == 0)

continue; // doesn't cross any scan lines
if (height < 0) {

// Leading edge
temp =" topy;
topy = bottomy;

bottomy = temp;
pavailedge->leading = 1;
deltax = screenpoly->verts[i].X -

screenpoly->vertsCnextvert].x;
deltay = screenpoly->verts[i].y -

screenpoly->verts[nextvert].y;
slope = deltax / deltay;
// Edge coordinates are in 16.16 fixed point
pavailedge->xstep = (int)(slope * (float)OxlOOOO);
pavai1edge->x = (int)((screenpoly->verts[nextvert].x +

((float)topy - screenpoly->verts[nextvert].y) *
slope) * (float)OxlOOOO);

} else {

// Trailing edge
pavai1edge->leading = 0;
deltax = screenpoly->verts[nextvert].X -

screenpoly->verts[i].x;
deltay = screenpoly->verts[nextvert].y -

screenpoly->verts[i].y;
slope = deltax / deltay;
// Edge coordinates are in 16.16 fixed point
pavailedge->xstep - (int)(slope * (f1 oat)OxlOOOO);
pavailedge->x = (int)((screenpoly->verts[i].x +

((float)topy - screenpoly->verts[i].y) * slope) *

Sorted Spans in Action ^ 813

(float)OxlOOOO):

}

11 Put the edge on the list to be added on top scan
pedge = &newedges[topy];
while (pedge->pnext->x < pavai1edge->x)

pedge = pedge->pnext;
pavai1edge->pnext - pedge->pnext;
pedge->pnext = pavailedge;

// Put the edge on the list to be removed after final scan
pavailedge->pnextremove = removeedgesCbottomy - 1];
removeedges[bottomy - 1] = pavailedge;

// Associate the edge with the surface we'll create for
// this polygon
pavai1edge->psurf = pavailsurf;

// Make sure we don't overflow the edge array
if (pavailedge < &edges[MAX_EDGES])

pavai 1 edge-H-;

}

}

// Create the surface, so we'll know how to sort and draw from
// the edges
pavai1surf->state = 0;
pavailsurf->color = currentcolor;

// Set up the 1/z gradients from the polygon, calculating the
// base value at screen coordinate 0,0 so we can use screen
// coordinates directly when calculating 1/z from the gradients
distinv = 1.0 / piane->distance;
pavai1 surf->zinvstepx == piane->normal.v[0] * distinv *

maxscreenscaleinv * (fieldofview / 2.0);
pavai1surf->zinvstepy = -piane->normal.v[l] * distinv *

maxscreenscaleinv * (fieldofview / 2.0);

pavailsurf->zinvOO - piane->normal.v[2] * distinv -
xcenter * pavai1surf->zinvstepx -
ycenter * pavailsurf->zinvstepy;

// Make sure we don't overflow the surface array
if (pavailsurf < &surfs[MAX_SURFS])

pavai1surf++;

// Scan all the edges in the global edge table into spans,
void ScanEdges (void)

{
int X, y;

double fx, fy, zinv, zinv2;
edge_t *pedge, *pedge2, *ptemp;
span_t *pspan;
surf_t *psurf, *psurf2;

pspan = spans;

// Set up the active edge list as initially empty, containing
// only the sentinels (which are also the background fill). Most
// of these fields could be set up just once at start-up
edgehead.pnext ̂ &edgetail;

814 ^ Chapter 51

edgehead.pprev = NULL;
edgehead.x = -OxFFFF; // left edge of screen
edgehead.leading = 1;
edgehead.psurf = &surfstack;
edgetail.pnext = NULL; // mark edge of list
edgetai 1 .pprev =« &edgehead;
edgetail.X = DIBWidth << 16; // right edge of screen
edgetail.leading = 0;
edgetai1.psurf = &surfstack;

// The background surface is the entire stack initially, and
// is infinitely far away, so everything sorts in front of it.
// This could be set just once at start-up
surfstack.pnext = surfstack.pprev = &surfstack;
surfstack.color =■ 0;
surfstack.zinvOO = -999999.0;
surfstack.zinvstepx = surfstack.zinvstepy = 0.0;
for (y=0 ; y<DIBHeight ; y-H-) {

fy = (double)y;
// Sort in any edges that start on this scan
pedge = newedgesLy].pnext;
pedge2 = &edgehead;
while (pedge != &maxedge) {

while (pedge->x > pedge2->pnext->x)
pedge2 = pedge2->pnext;

ptemp => pedge->pnext;
pedge->pnext = pedge2->pnext;
pedge->pprev = pedge2;
pedge2->pnext->pprev = pedge;
pedge2->pnext = pedge;
pedge2 - pedge;
pedge = ptemp;

}

// Scan out the active edges into spans
// Start out with the left background edge already inserted,
// and the surface stack containing only the background
surfstack.state = 1;
surfstack.visxstart = 0;
for (pedge=edgehead.pnext ; pedge ; pedge=pedge->pnext) {

psurf = pedge->psurf;
if (pedge->leading) {

// It's a leading edge. Figure out where it is
// relative to the current surfaces and insert in
// the surface stack; if it's on top, emit the span
// for the current top.
// First, make sure the edges don't cross
if (++psurf->state = 1) {

fx •= (double)pedge->x * (1.0 / (double)OxlOOOO);
// Calculate the surface's 1/z value at this pixel
zinv = psurf->zinvOO + psurf->zinvstepx * fx +

psurf->zinvstepy * fy;
// See if that makes it a new top surface
psurf2 = surfstack.pnext;
zinv2 = psurf2->zinv00 + psurf2->zinvstepx * fx +

psurf2->zinvstepy * fy;
if (zinv >= zinv2) {

// It's a new top surface
// emit the span for the current top
X = (pedge->x + OxFFFF) >> 16;
pspan->count = x - psurf2->visxstart;

Sorted Spans in Action ^ 815

if (pspan->count > 0) {
pspan->y = y;
pspan->x = psurf2->visxstart;
pspan->color = psurf2->color;
// Make sure we don't overflow
// the span array

if (pspan < &spans[MAX_SPANS])
pspan++;

}
psurf->visxstart = x;
// Add the edge to the stack
psurf->pnext = psurf2;
psurf2->pprev = psurf;
surfstack.pnext = psurf;
psurf->pprev = &surfstack;

} else {
// Not a new top; sort into the surface stack.
// Guaranteed to terminate due to sentinel
// background surface
do {

psurf2 = psurf2->pnext;
zinv2 = psurf2->zinv00 +

psurf2->zinvstepx * fx +
psurf2->zinvstepy * fy;

} while (zinv < zinv2);
// Insert the surface into the stack
psurf->pnext = psurf2;
psurf->pprev = psurf2->pprev;
psurf2->pprev->pnext = psurf;
psurf2->pprev = psurf;

}

}

} else {

// It's a trailing edge; if this was the top surface.
// emit the span and remove it.
// First, make sure the edges didn't cross
if (-psurf->state == 0) {

if (surfstack.pnext == psurf) {
// It's on top, emit the span
X = ((pedge->x + OxFFFF) >> 16);
pspan->count = x - psurf->visxstart;
if (pspan->count > 0) {

pspan->y = y;
pspan->x = psurf->visxstart;
pspan->color = psurf->color;
// Make sure we don't overflow
// the span array
if (pspan < &spans[MAX_SPANS])

pspan++;

}
psurf->pnext->visxstart = x;

}

// Remove the surface from the stack
psurf->pnext->pprev = psurf->pprev;
psurf->pprev->pnext = psurf->pnext;

}

}

}

// Remove edges that are done
pedge = removeedgesCy];

816 ^ Chapter 51

}

while (pedge) {

pedge->pprev->pnext = pedge->pnext;
pedge->pnext->pprev ■= pedge->pprev;
pedge = pedge->pnextremove;

}

// Step the remaining edges one scan line, and re-sort
for (pedge=edgehead.pnext ; pedge != &edgeta11 ;) {

ptemp = pedge->pnext;
// Step the edge
pedge->x += pedge->xstep;
// Move the edge back to the proper sorted location.
// If necessary
while (pedge->x < pedge->pprev->x) {

pedge2 =■ pedge->pprev;
pedge2->pnext = pedge->pnext;
pedge->pnext->pprev = pedge2;
pedge2->pprev->pnext = pedge;
pedge->pprev = pedge2->pprev;
pedge->pnext = pedge2;
pedge2->pprev = pedge;

}
pedge = ptemp;

}
}
pspan->x = -1; // mark the end of the list

// Draw all the spans that were scanned out.
void DrawSpans (void)
{

span_t *pspan;
for (pspan=spans ; pspan->x != -1 ; pspan++)

memset (pDIB + (DIBPItch * pspan->y) + pspan->x,
pspan->color,
pspan->count);

}

// Clear the lists of edges to add and remove on each scan line,
void ClearEdgeLlsts(vold)
{

Int 1 ;
for (1=0 ; KDIBHelght ; 1++) {

newedgesCI].pnext = &maxedge;
removeedgesCI] = NULL;

}
}

// Render the current state of the world to the screen,
void UpdateWorldO
{

HPALETTE holdpal;
HDC hdcScreen, hdcDIBSectlon;
HBITMAP holdbltmap;
polygon2D_t screenpoly;
polygon_t *ppoly, tpolyO, tpolyl, tpoly2;
convexobject_t *pobject;
1nt 1, j, k;

Sorted Spans in Action ^ 817

plane_t plane;
point_t tnormal;

UpdateVi ewPos();
SetUpFrustumC);
C1earEdgeLi sts();
pavailsurf = surfs;
pavailedge = edges;

// Draw all visible faces in all objects
pobject = objecthead.pnext;
while (pobject !- Sobjecthead) {

ppoly = pobject->ppoly;
for (i=0 ; i<pobject->numpolys ; i++) {

// Move the polygon relative to the object center
tpolyO.numverts = ppoly[i].numverts;
for (j=0 ; j<tpolyO.numverts ; j++) {

for (k=0 ; k<3 ; k-H-)
tpoly0.verts[j].v[k] = ppoly[i].verts[j].v[k] +

pobject->center.v[k];

if (PolyFacesViewerC&tpolyO, &ppoly[i].piane)) {
if (ClipToFrustum(&tpolyO, &tpolyl)) {

currentcolor = ppoly[i].col or;
TransformPolygon (&tpolyl, &tpoly2);
ProjectPolygon (&tpoly2. &screenpoly);

// Move the polygon's plane into viewspace
// First move it into worldspace (object relative)
tnormal = ppolyCi].piane.normal;
plane.distance = ppoly[i].piane.distance +

DotProduct (&pobject->center, Stnormal);

// Now transform it into viewspace
// Determine the distance from the viewpont
piane.distance -=

DotProduct (¤tpos, &tnormal);

// Rotate the normal into view orientation
piane.normal.v[0] =

DotProduct (&tnormal, &vright);

piane.normal.v[l] =
DotProduct (&tnormal, &vup);

plane.normal.v[2] =
DotProduct (&tnormal, &vpn);

AddPolygonEdges (&plane, &screenpoly);

}

}

}
pobject = pobject->pnext;

}
ScanEdges ();
DrawSpans ();

// We've drawn the frame; copy it to the screen
hdcScreen = GetDC(hwndOutput);
holdpal = SelectPalette(hdcScreen, hpalDIB, FALSE);
RealizePalette(hdcScreen);

hdcDIBSection = CreateCompatibleDC(hdcScreen);
holdbitmap = SelectObject(hdcDIBSection, hDIBSection);
BitBlt(hdcScreen, 0. 0. DIBWidth. DIBHeight. hdcDIBSection.

818 @ Chapter 51

0, 0, SRCCOPY):

SelectPalette(hdcScreen, holdpal, FALSE);
ReleaseDC(hwndOutput, hdcScreen);
SelectObjectChdcDIBSection, holdbitmap);
DeleteDC(hdcDIBSection);

}

By the same token, Listing 51.1 is quite a bit more complicated than the earlier code.
The earlier code's HSR consisted of a z-sort of objects, followed by the drawing of the
objects in back-to-front order, one polygon at a time. Apart from the simple object
sorter, all that was needed was backface culling and a polygon rasterizer.

Listing 51.1 replaces this simple pipeline with a three-stage HSR process. After
backface culling, the edges of each of the polygons in the scene are added to the global
edge list, byway of AddPolygonEdgesQ. After all edges have been added, the edges are
turned into spans by ScanEdgesf), with each pixel on the screen being covered by one
and only one span (that is, there's no overdraw). Once all the spans have been gener
ated, they're drawn by DrawSpansQ, and rasterization is complete.

There s nothing tricky about AddPolygonEdgesQ, and DrawSpansf), as implemented
in Listing 51.1, is very straightforward as well. In an implementation that supported
texture mapping, however, all the spans wouldn't be put on one global span list and
drawn at once, as is done in Listing 51.1, because that would result in drawing spans
from all the surfaces in no particular order. (A surface is a drawing object that's origi
nally described by a polygon, but in ScanEdgesQ there is no polygon in the classic
sense of a set of vertices bounding an area, but rather just a set of edges and a surface
that describes bow to draw the spans oudined by those edges.) That would mean
constantly skipping from one texture to another, which in turn would hurt processor
cache coherency a great deal, and would also incur considerable overhead in setting up
gradient and perspective calculations each time a surface was drawn. In Quake, we
have a linked list of spans banging off each surface, and draw all the spans for one
surface before moving on to the next surface.
The core of Listing 51.1, and the most complex aspect of 1/z-sorted spans, is

ScanEdgesQ, where the global edge list is converted into a set of spans describing the
nearest surface at each pixel. This process is actually pretty simple, though, if you think
of it as follows:

For each scan line, there is a set of active edges, which are those edges that intersect
the scan line. A good part of ScanEdgesQ is dedicated to adding any edges that first
appear on the current scan line (scan lines are processed from the top scan line on the
screen to the bottom), removing edges that reach their bottom on the current scan line,
and x-sorting the active edges so that the active edges for the next scan can be processed
from left to right. All this is per-scan-line maintenance, and is basically just linked list
insertion, deletion, and sorting.
The heart of the action is the loop in ScanEdgesQ that processes the edges on the

current scan line from left to right, generating spans as needed. The best way to think
of this loop is as a surface event processor, where each edge is an event with an associ-

Sorted Spans in Action ^ 819

ated surface. Each leading edge is an event marking the start of its surface on that scan
line; if the surface is nearer than the current nearest surface, then a span ends for the
nearest surface, and a span starts for the new surface. Each trailing edge is an event
marking the end of its surface; if its surface is currently nearest, then a span ends for
that surface, and a span starts for the next-nearest surface (the surface with the next-
largest 1/z at the coordinate where the edge intersects the scan line). One handy aspect
of this event-oriented processing is that leading and trailing edges do not need to be
explicitly paired, because they are implicitly paired by pointing to the same surface.
This saves the memory and time that would otherwise be needed to track edge pairs.
One more element is required in order for ScanEdgesQ to work efficiently. Each

time a leading or trailing edge occurs, it must be determined whether its surface is
nearest (at a larger 1/z value than any currently active surface). In addition, for leading
edges, the currently topmost surface must be known, and for trailing edges, it may be
necessary to know the currently next-to-topmost surface. The easiest way to accom
plish this is with a surface stack, that is, a linked list of all currently active surfaces,
starting with the nearest surface and progressing toward the farthest surface, which, as
described below, is always the bacl^round surface. (The operation of this sort of edge
event-based stack was described and illustrated in Chapter 50.) Each leading edge
causes its surface to be 1/z-sorted into the surface stack, with a span emitted if neces
sary. Each trailing edge causes its surface to be removed from the surface stack, again with
a span emitted if necessary. As you can see from Listing 51.1, it takes a fair bit of code to
implement this, but all that's really going on is a surface stack driven by edge events.

Implementation Notes
Finally, a few notes on Listing 51.1. First, you'll notice that although we clip all poly
gons to the view frustum in worldspace, we nonetheless later clamp them to valid
screen coordinates before adding them to the edge list. This catches any cases where
arithmetic imprecision results in clipped polygon vertices that are a bit outside the
frustum. I've only found such imprecision to be significant at very small z distances, so
clamping would probably be unnecessary if there were a near clip plane, and might not
even be needed in Listing 51.1, because of the slight nudge inward that we give the
frustum planes, as described in Chapter 49. However, my experience has consistently
been that relying on worldspace or viewspace clipping to produce valid screen coordi
nates 100 percent of the time leads to sporadic and hard-to-debug errors.

There is no separate routine to clear the background in Listing 51.1. Instead, a
special background surface at an effectively infinite distance is added, so whenever no
polygons are active the background color is drawn. If desired, it's a simple matter to
flag the bacl^round surface and draw the background specially. For example, the back
ground could be drawn as a starfield or a cloudy sky.
The edge-processing code in Listing 51.1 is frilly capable of handling concave poly

gons as easily as convex polygons, and can handle an arbitrary number of vertices per

820 ® Chapter 51

polygon, as weU. One change is needed for the latter case: Storage for the maximum
number of vertices per polygon must be allocated in the polygon structures. In a fully
polished implementation, vertices would be linked together or pointed to, and would
be dynamically allocated from a vertex pool, so each polygon wouldn't have to contain
enough space for the maximum possible number of vertices.

Each surface has a field named state, which is incremented when a leading edge for
that surface is encountered, and decremented when a trailing edge is reached. A surface
is activated by a leading edge only if state increments to 1, and is deactivated by a
trailing edge only if state decrements to 0. This is another guard against arithmetic
problems, in this case quantization during the conversion of vertex coordinates from
floating point to fbced point. Due to this conversion, it is possible, although rare, for a
polygon that is viewed nearly edge-on to have a trailing edge that occurs slighdy he/ore
the corresponding leading edge, and the span-generadon code will behave badly if it
tnes to emit a span for a surface that hasn't yet started. It would help performance if
this sort of fix-up could be eliminated by careful arithmetic, but I haven't yet found a
way to do so for 1/z-sorted spans.

Lasdy, as discussed in Chapter 50, Listing 51.1 uses the gradients for 1/z with re
spect to changes in screen x and y to calculate 1/z for active surfaces each time a leading
edge needs to be sorted into the surface stack. The natural origin for gradient calcula
tions is the center of the screen, which is (x,y) coordinate (0,0) in viewspace. However,
when the gradients are calculated in AddPolygonEdgesf), the origin value is calculated
at the upper left corner of the screen. This is done so that screen x and y coordinates
can be used directly to calculate 1/z, with no need to adjust the coordinates to be
relative to the center of the screen. Also, the screen gradients grow more extreme as a
polygon is viewed closer to edge-on. In order to keep the gradient calculations from
becoming meaningless or generating errors, a small epsUon is applied to backface cull
ing, so that polygons that are very nearly edge-on are culled. This calculation would be
more accurate if it were based directly on the viewing angle, rather than on the dot
product of a viewing ray to the polygon with the polygon normal, but that would
require a square root, and in my experience the epsilon used in Listing 51.1 works fine.

Afterword

If you've followed me this far, you might agree that we've come through some rough
country. Still, I'm of the opinion that hard-won knowledge is the best knowledge, not
only because it sticks to you better, but also because winning a hard race makes it easier
to win the next one.

This is an unusual book in that sense: In addition to being a compilation of much of
what I know about fast computer graphics, it is a journal recording some of the process
by which I discovered and refined that knowledge. I didn't just sit down one day to
write this book—I wrote it over a period of years and published its component parts in
many places. It is a journal of my successes and frustrations, with side glances of my life
as it happened along the way.
And there is yet another remarkable thing about this book: You, the reader, helped

me write it. Perhaps not you personally, but many people who have read my articles
and columns over the years sent me notes asking me questions, suggesting improve
ments (occasionally by daring me to beat them at the code performance game!) or
sometimes just dumping remarkable code into my lap. Where it seemed appropriate, I
dropped in the code and sometimes even the words of my correspondents, and the
book is much the richer for it.

Here and there, I learned things that had nothing at all to do with fast graphics.
For example: I'm not a doomsayer who thinks American education lags hopelessly

behind the rest of the Western world, but now and then something happens that makes
me wonder. Some time back, I received a letter from one Melvyn J. Lafitte requesting
that I spend some time in my columns describing fast 3-D animation techniques.
Melvyn hoped that I would be so kind as to discuss, among other things, hidden
surface removal and perspective projection, performed in real time, of course, and
preferably in Mode X. Sound familiar?

Melvyn shared with me a hidden surface approach that he had developed. His tech
nique involved defining polygon vertices in clockwise order, as viewed from the visible
side. Then, he explained, one can use the cross-product equations found in any math
book to determine which way the perpendicular to the polygon is pointing. Better yet,
he pointed out, it's necessary to calculate only the Z component of the perpendicular,
and only the sign of the Z component need actually be tested.
What Melvyn described is, of course, backface removal, a key hidden-surface tech

nique that I used heavily in X-Sharp. In general, other hidden surface techniques must
be used in conjunction with backface removal, but backface removal is nonetheless
important and highly efficient. Simply put, Melvyn had devised for himself one of the
fundamental techniques of 3-D drawing.

821

822 ^ Afterword

Melvyn lives in Moens, France. At the time he wrote me, Melvyn was 17 years old.
Try to imagine any American 17-year-old of your acquaintance inventing backface
removal. Try to imagine any teenager you know even using the phrase "the cross-prod
uct equations found in any math book. Not to mention that Melvyn was able to write
a highly technical letter in English; and if Melvyns English was something less than
flawless, it was perfectly understandable, and, in my experience, vastly better than an
average, or even well-educated, Americans French. Please understand, I believe we
Americans excel in a wide variety of ways, but I worry that when it comes to math and
foreign languages, we are becoming a nation of tetes depomme de terre.

Maybe I worry too much. If the glass is half empty, well, it's also half full. Plainly,
something I wrote inspired Melvyn to do something that is wonderfid, whether he
realizes it or not. And it has been tremendously gratifying to sense in the letters I have
received the same feeling of remarkably smart people going out there and doing amaz
ing things just for the sheer unadulterated fun of it.

I dont think Im exaggerating too much (well, maybe a little) when I say that this
sort of fun is what I live for. I'm glad to see that so many of you share that same passion.

Good luck. Thank you for your input, your code, and all your kind words. Don't be
afraid to attempt the impossible. Simply knowing what is impossible is useful knowl
edge—and you may well find, in the wake of some unexpected success, that not half of
the things we call impossible have any right at all to wear the label.

—Michael Abrash

Further Reading

Perhaps the single most important book anyone interested in graphics should have is
the second edition of Foley and van Dams classic Fundamentals of Interactive Computer
Graphics, the inspiration and primary reference for much of the nonmachine-specific
material I've presented in this book. The almost entirely rewritten new version, retitled
Computer Graphics: Principles and Practice (Addison-Wesley, 1990), nearly doubles the
size of the first tome, to a total of 1,174 pages. You'll wish it were longer, too, because
computer graphics has become such a broad field that even this massive book often
merely touches on an area, providing the fundamental concepts, equations, and algo
rithms, and moves on. Still, just about everything you could want to know (or at least
a reference to point you in the right direction) is in there somewhere. Truly a book to
lose yourself in, and highly recommended.

Also, check out The RenderMan Companion, by Steve Upstill (Addison-Wesley, 1990).
RenderMan is a comprehensive programming interface specification for 3-D graphics;
implementations of the RenderMan interface have been the basis for stunning
photorealistic imaging and special effects. (For bacl^round information on RenderMan,
see Upstill's article "Photorealism in Computer Graphics," in DDJ, November 1988.)
Companion takes you on a wide-ranging tour of the RenderMan interface, with plenty
of sample code and output; even if you never program RenderMan directly, this book
provides worthwhile insight into the nature of 3-D rendering. At the very least, read
the foreword, a brief history of computer graphics and the development of RenderMan;
it provides a sense of the dizzying pace of progress in computer graphics, and of the
people behind the wonders.

Lord knows, I'm keenly interested in 3-D graphics, and Programming in 3 Dimen
sions: 3-D Graphics, Ray Tracing, and Animation by Christopher D. Watkins and Larry
Sharp (M&T Books, 1992) is good stuff. There's a fair amount of theory, and lots of 3-
D implementation, from modeling and scenes to ray tracing and finally, animation.
The animation is the precomputed, playback kind, of the Autodesk Ariimator sort,
and while it lacks the on-the-fly flexibility of the real-time animation we've discussed
in this book, my oh my, it does look good. If you buy the book, I strongly suggest you
get the disk as well; in which case, run ANIMATE.EXE, with BOUNCE as the input
file, and marvel that you now have, in source form, all the software needed to imple
ment that animation. Ten years ago, I'll bet you couldn't have produced this level of
fully rendered, real-time playback animation for less than $50,000 in hardware and
software; now, a couple of thousand will easily do the trick. What a great time this is to
be a programmer! Recommended.

823

824 ^ Further Reading

My primary reason for beginning to write about EGA and VGA graphics so long
ago was the near-total absence back then of useful reference material on graphics adapters.
That situation was eased in 1987 by the appearance of Richard Wiltons excellent book.
Programmer's Guide to PC and PS/2 Video Systems, from Microsoft Press. The PS/2 has faded
into the shadows in the intervening years, and the second edition of Wiltons book is
now available, as Programmers Guide to PC Video Systems, again from Microsoft Press.
The chapters I have read are accurate, readable, and come with large quantities of sample

code. The book covers all current graphics standards, including CGA, EGA, VGA, and
Hercules, and does a good job of it. Simply put. Programmer's Guide to PC Video Systems,
Second Edition, is the best general PC graphics hardware reference I've seen to date.

If you want a broad understanding of the math that underlies computer graphics, I
highly recommend Mathematical Elements for Computer Graphics, Second Edition, by
David F. Rogers and J. Alan Adams (McGraw-Hill, 1990). Unlike Foley and van Dam's
Computer Graphics: Priciples and Practice, this is not an encyclopedic graphics reference, nor
does it mean to be; rather, it pulls together the mathematical theory behind several
fundamental areas of computer graphics. After the traditional and largely pointiess
first chapter on graphics hardware, the book covers two-dimensional transformations,
three-dimensional transformations, plane curves, space curves, and surface description
and generation, all in a straightforward and thorou^ fashion. This is not light reading,
although I found it easier going than Foley and van Dam; the tone is that of a textbook
(albeit without exercises for the reader), and an amazing volume of information is
dispensed, in the form of clear, concise explanations and examples, over the course of
about 500 pages. Particularly noteworthy are the 130 pages on space curves, including
Beziers and B-splines, and the 100 pages on surfaces. In short, this book is an excellent
and serious overview of the fundamental mathematics of computer graphics.

Andrew Glassner s Graphics Gems (Academic Press, 1990) is an oddly enjoyable book.
Odd, because there's no overall coherency to the book; it's a collection of more than
100 largely unrelated contributions by various authors on a hodgepodge of graphics
subjects. Enjoyable, because its that rarest sort of graphics programming book: One
that you can open at random and start reading for fun. A good example of the nature
of Graphics Gems is a chapter on mapping RGB colors into a 4-bit color space; this
chapter features somewhat arcane theory, an interesting perspective on color space,
and a fast technique for RGB mapping in l6-color modes. On balance, the chapter is
a httle uneven, but usefid, informative, and interesting—a description that would serve
well for Graphics Gems as a whole, as well.

Index

1/z equation, 802-804, 807-819

2-D BSP trees, 705-718

2-D sprites, 704

3-D animation

a nearly complete, yet general, package,
595-608

attaining awesome performance, 611-612
backface removal, 582-584

clipping, 777-784
code for clipping, 785
color modeling, 179-190
creating, 565-566
described, 563-579

engine, 771
ideas. 111

in Mode X, 563-570

increasing speed with lookup tables, 619
incremental transformation, 591

math, 733-745

negative numbers, 594
projection, 567
references listed, 564

rotation, 568-569

rounding, 622-623
sample program, 569, 571, 578-579
selecting a color model, 648-650
shading, 625-646
supporting older processors, 625-626
texture mapping, 660-663, 675-676, 678, 684
topping out performance, 609-610
toughest challenge, 764
transforms, 733

translation, 567

view space, 582
working with hidden surfaces, 619-621
X-Sharp framework, 608

A
Abutting span sorting, 809
Access times

described, 482-484

illustrated, 483

Active edge list. See AEL
Active edge table, 361
Active polygon list. See APL
Active surfaces, 819

Adapters,
general, 2
VGA, 2

AEL, 798

Aliasing, 392
ALUs

bit mask, 36-38

defined, 25-27

latches, 26-27

sample program, 27, 32-34
Ambient shading

applying, 641
defined, 640

Animation

3-D, 563-579

bit-plane, 441-459
color animation in Mode X, 513-529

dirty-rectangle, 484, 486, 500
drawing text, 474-475
faster masked copying, 550-551
internal, 510

knowing when to flip pages, 477-478
masked copying, 547-548, 550-551
page flipping, 475-476
page flipping limitations, 484-486
Serge Mathieus page-flipping approach,
496-497

shearing, 458

825

826 g} Index

within Mode X, 556-557
write mode 3, 473-475

Antialiasing
256-color, 392-393

described, 391-403
notes on implementation, 420
tracing and intensity rolled into one, 426-427
unweighted, 403, 415-420
with polygons, 391
Wus technique, 424-425

defined, 424

sample program, 430
APL, 798

"Assume nothing," 748
Attribute Controller, 3

B
Backface removal

culling and testing, 771, 818
defined, 582

discussed, 582-584

dot product, 740-741
sample program, 585

Barrel shifter, 35-36

Beam tree, 769-771

Binary Space Partitioning. See BSP
Bit mask

additional uses, 41-43
Bit Mask register, 37
described, 36-38

determining source bytes, 36-38
sample program, 38

Bit-plane animation
defined, 442

described, 441-459

limitations, 456-458

palette RAM settings, 446
sample program, 446-447
stacking the palette registers, 444-446

Bounding box, 806
Bresenham's line drawing algorithm

defined, 221-223

described, 219-242

drawing each line, 232
drawing each pixel, 233-234
EVGALine function, 229-231
line orientations displayed, 230
sample program in Assembly, 235
sample program in C, 225

strengths and weaknesses, 224
Bresenham's run-length slice line drawing algorithm

defined, 245

drawing faster lines, 245-246
implementation in Assembly, 258
implementation in C, 250
implementing, 247-250

Broken raster, 409

BSP

BSP-based rendering, 704, 748-762
compiler, 724-729
renderer notes, 761

sequence number, 806
sorting, 807
splitting plane, 806

BSP trees

back-to-front traversal, 709-710
building, 705-711
compiling, 719-731
described, 702-705

front-to-back sorting order, 806
front-to-back traversal, 710
inorder walks, 711-717

limitations, 704-705
optimizing, 729-731
Quake levels, 765-766

Carmack, John, 702, 720
Circles

creating faster circles in C, 281
described, 267-277

drawing basics, 269-271
error term variable, 273

Hardenburgh's circle algorithm,
267-277

integer threshold variable, 273
optimizing through integer arithmetic, 273
sample drawing program, 271
supporting write mode 3, 295-296

Clipped walls, 758
Clipping basics, 778-782, 790
Clipping parametric lines, 723
Code, commercial quality, 805
Code problem hints, 714, 717
Cohen-Sutherland outcode test, 790
Color

color compare operations, 98-99
controlling, 44

Index ® 827

setting ail planes to a single color, 45-46
Color compare mode, 95
Color cycling

DAC loading complications, 206-207
defined, 206

described, 205-218

loading the DAC directly, 208-209
sample program, 210

Color generation
described, 179-190

setting the DAC, 184-185
setting the palette RAM, 183-184
understanding the DAC, 180-182
understanding the palette RAM, 180

Color mapping
described, 650

dithering, 653
setting up the palette, 652-653

Color modeling
described, 179-190

intensity, 649
RGB color model advantage,
648-650

selecting a general purpose model, 648
Color paging

changing the contents of non-displayed
pages, 203
DAC locations, 193

defined, 193

described, 182-183, 193-203

enabling through the BIOS, 196-197
obtaining the color paging state, 197
sample program, 198
selecting a color, 196-197

Color planes
described, 19-20

manipulating, 19-20
Map Mask register, 19-20

Commander Keen^ 719

Compilers
described, 191

upgrading to break code, 191-193
Concave polyhedra, 811
Constructive Solid Geometry. See CSG
Creative Flux, 794

Cross products, 737-740
CRT Controller, 3

CSG, 703

Culling, 740, 766-768

DAC

described, 180-182

loading complications, 206-207
loading direcdy, 208
loading via the BIOS, 207-208
masking incoming information, 217
reading directly, 217-218
setting directly, 185-186
setting through the BIOS, 184-185

Data flow

ALUs, 25-27

barrel shifter, 35-36

bit mask, 36-38

described, 25-36

set/reset, 43-51

Data recursion inorder walk function, 712

Data rotation

barrel shifter, 35

described, 35-36

sample program, 38
DDJZSORT.ZIP, 806
Detecting collinear surfaces, 710
Diffuse shading

applying, 641-642
defined, 640

Dirty-rectangle animation
defined, 484

described, 486

down and dirty description, 500
drawing order, 511
managing rectangle overlap, 510-511
maximizing performance, 510-511
sample program, 486

Dithering, 653
DOOM, 702

Dot product
described, 735-737

of unit vectors, 736

projection, 742-745
sign, 740-741

Draw-buffer, 771

Drawing moving objects, 794

Edge-sorting, 798-804
Edges, active, 819
Edges, compared to spans, 798

828 ^ Index

Edsun Continuous Edge Graphics
defined, 389

history, 389-390
EGA

color mapping, 110-113
described, 103-104

panning a split screen, 134-135
panning a split screen demo, 135
saving 16-color screens, 103-104
splitting screens, 123-145

Ellipses
defined, 298

described, 267-277, 297-311
drawing, 299-301
drawing performance comparison, 315
fastest drawing routine (listed), 320
optimizing tips, 329
using the incremental, int^r-only algorithm, 305

EVGALine function, 229-231

F
FIFO, 763

Flipping pages
graphics to text, 82-84
text to graphics, 82-87

Floating point arithmetic, 790
Frustrum

clipping to, 784
planes, 790

Gamma correction, 391,416
Global edge table, 362-363
Gradient calculation, 820
Graphics Controller, 3

H
Hardenburghs circle algorithm

described, 267-277

optimizing the main loop code, 280
separating calculations from drawing, 281

Hecker, Chris, 702

Heinlein, Robert, 805

Hicolor DAC

defined, 390

disadvantages, 391
locating, 406-407
non-antialiased Hicolor drawing,
410-415

programming, 408-410
working with, 406

Hidden surface removal. See HSR

Hidden surfaces, 794-796

HSR, 779, 794,810,818

I
id Software, 720

"Ideas are a dime a dozen," 111

Independent span sorting, 810
Inorder walk, 710

Internal animation, 510

Internal indexing, 3-5
Interpenetration, 808
Intersecting a line segment with a plane, 779
Intersecting span sorting, 808

Latches

bit mask, 36-38

copying pixel blocks within display
memory, 539

defined, 26-27

reading VGA memory, 94
using Mode X with, 513-529

Leaves, 806

Linear planes, 5-6
Linear time, 704

Lines

antialiased, 243-255

Bresenhams run-length slice line drawing
algorithm implementation in C, 250

described, 243-255

drawing faster lines with Bresenhams run-
length slice line drawing algorithm, 243-244

optimization options, 265-266
optimizing run-length slice line drawing,
257-258

run-length slice line drawing implementation
in Assembly, 258

using Bresenhams line drawing algorithm,
219-242

Index ® 829

M
Manipulating linear planes, 6
Masked copying

defined, 547-548

making fast copies, 550-551
sample program, 548

Masked images, 509
Math in 3-D graphics, 733-745
Memory

allocating in Mode X, 537-538
copying pixel blocks within display
memory, 539

Mode 13H, 81-82

ModeX

3-D animation, 563-570

allocating memory, 537-538
defined, 514-515

described, 513-529

designing from a Mode X perspective,
521-525

benefits explained, 526
hardware-assisted versus software-assisted

masked copying, 556
masked copying, 547-548
masked copying made faster, 550-551
read pixel routine, 520-521
rectangle fill routine (fast), 527-529
rectangle fill routine (medium),
523-525

rectangle fill routine (slow), 521-523
sample animation program, 556-557
selecting, 515-518
using latches, 513-529
using the VGA's hardware-assist features,
526-527

write pixel routine, 519-520
Moving the viewer, 757

N
Negative numbers, 594
Nodes, compared to leaves, 806

Objectspace, 735
Optimization, 716, 730
Overdraw, 768

Overscan

Attribute Controller register, 117-118
defined, 117-118

Page flipping
animation demo, 462

creating smooth-flowing animation, 475-476
defined, 20

described, 20-22

high-resolution VGA, 491-495
knowing when to flip, 477-478
limitations in animation, 484-486

Serge Mathieu approach, 496-497
speed, 747
using Windows NT, 21-22
versus color paging, 203
with bit-plane animation, 458

Pagesplitting, 461
Painter's algorithm, 703
Palette RAM

described, 18, 180

setting directly, 185-186
setting through the BIOS, 183-184
settings for bit-plane animation, 446
stacking the palette registers for animation,
444-446

Panning
creating a smooth effect, 16-18
Horizontal Pel Panning register, 18
palette RAM, 18

Parallel processing with the VGA, 25-34
Parametric lines, 721-724

Per-pixel z-buffer, 704
Performance, 795

Perspective-corrected screenspace, 710
Perspective projection, 735
Pitch angles, 790
Planes, distance to inside endpoint, 781
Polygons

active edge table, 361
active edges, 360-361, 371-373
antialiasing, 391-403
clipping, 779, 782-789, 790
complex

described, 331-344

displayed, 332
implementing, 368-371

concave, 820

830 ^ Index

described, 345-360

displayed, 332
drawing fast, 347
edge processing, 820
fast edge tracing, 350
filling fast, 346-347

creating 3-D animation, 565-566
creating lightning-fast graphics with Assembly,
353-358

described, 331-343, 345-359, 375-387

DrawHorizontalLineList, 335
facing away from the viewer, 738
fill performance, 348
FillConvexPolygon, 335
filled, 332

filling finding intersecting edges, 361
filling non-convex polygons, 373-374
filling non-overlapping convex polygons,
335-342

fitting together, 334-335
global edge table, 362-363
interpenetrating, 808
maximizing REP STOS, 355
minimizing splits, 730
monotone vertical

defined, 376-377

detection, 376-377

nomenclature, 375-387

non-convex

described, 332, 360

displayed, 332
filling, 373-374

normals, 737-740

rasterization, 332-333

REP STOS, 347

scan conversion, 332-333

using floating-point calculations, 350
using standard line-drawing algorithms,
333-334

Portals, 772

Potentially visible set. See PVS
Projection, 567, 735, 760
PVS, 773, 794

Pythagorean theorem, 735

Raycast subdividing, 771
Read mode 0

defined, 89

described, 89-94

sample program, 90
selecting, 89-90

Read mode 1

defined, 95

described, 94-95

sample program, 95
Reading memory

described, 89-101

latches, 94

Registers
addressing, 3-5
Color Select register, 182
internal indexing, 3-5
linear addressing, 6
modifying VGA registers, 120-121
preserving bits, 66
reading when panning a split screen, 142-144
setting when panning a split screen, 142-144
split-screen related, 132-133

Rendering, 748-762
REP STOS, 347

Resolution

320x400 256-color mode defined, 148-149

320x400 256-color mode display memory
organization, 149-151

360x480 256-color mode, 166
accessing display memory in 360x480 256-
color mode, 176-178

attaining higher resolution on the VGA,
147-163

using two 256-color pages in 320x400 256-
color mode, 158-159

working with 360x480 256-color mode, 175
Roll angles, 790
Rotation, 568-569, 744-745

Rounding
defined, 622-623

negative numbers, 594

Quake, 747, 763-775, 803, 806-807

S
Screens

blanking, 118-120
restoring, 107-109

Index @ 831

saving l6-color graphics screens, 103-107
split, 478-479
splitting screens for the EGA and VGA, 123-145

Screenspace, 735, 760
Sequence Controller, 3
Set/reset

defined, 43-44

described, 43-51

manipulating planes individually,
48-50

setting all planes to a single color, 45-46
versus write mode 2, 81

Shading
3-D animated objects, 625-646
ambient, 640

applying ambient shading, 641
applying diffuse shading, 641-642
defined, 640

described, 625-646

diffuse shading, 640
implementation details, 645-646
in action, 642

specular reflection, 641
Shearing, 458
Simplify your approach, 773
Slope-intercept form, 721
Sorted spans, 796-801, 805-820
Sorting keys, 801
Sorting multiple moving models, 794
Span-based drawing, 772
Spans, illustrated, 796-797
Specular reflection, 641
Split screen, 478-479
Splitter, 721, 723
Splitting screens

described, 123-145

EGA problems, 133-134
panning, 134-135
procedure, 123-125
registers, 132-133
sample program, 126
working in different modes, 144

Sprites, 509
Stephenson, Neal, 778
Structures for points, polygons, and planes,
779-780

Subtrees, 713, 717

Surface stack, 819

Texture mapping
cutting cycles out, 692-695, 697
DDA approach, 664-665
defined, 660

drawing vertical scanlines, 690
how-to guide, 660-663
orienting the polygons independently, 676
perspective texture mapping, 664-665
reducing bottlenecks, 678, 684
sample program, 665-666
speeding up, 685
why fixed-point arithmetic often doesn't work,
675-676

Transformation, 735

Translation

defined, 567

projection, 567
Traversing a set of line segments or polygons, 703

U
Unit vector, 736

Vector, 734

Vertex-free surfaces, 771

VGA

320x400 256-color mode defined, 148-149
320x400 256-color mode display memory
organization, 149-151

360x480 256-color mode defined, 166

access times

described, 482-484

illustrated, 483

accessing display memory in 360x480 256-
color mode, 176-178

adapter, 2
ALUs defined, 25-27

attaining higher resolution on the VGA,
147-163

Attribute Controller, 3

BIOS, 6

Bit Mask register, 3-5
bit-plane animation, 441-459
color cycling, 205-218
color generation, 179-190

832 ^ Index

color paging, 193-203
CRT Controller, 3

Data register, 3-5
defined, 2

drawing pixels in 320x400 256-color
mode, 151

drawing text quickly in any 16-color VGA
mode, 653-655

Edsun Continuous Edge Graphics, 389-390
Graphics Controller, 3
Hicolor DAC, 390

Index register, 3-5
mode 13H, 81-82

Mode X, 513-529
page splitting, 461-462
panning a split screen, 134-135
panning a split screen (demo), 135
panning the display, 16-18
parallel processing, 25-34
programming for, 3
programming hazards with clones,
22-23

read mode 0, 89-94

read mode 1, 94-95

reading memory, 89-101
sample program, 7
saving 16-color screens, 103-104
Sequence Controller, 3
split screen, 478-479
splitting screens, 123-145
true VGA modes, 6

understanding linear planes, 5-6
using write mode 2 to copy images, 70-71
write mode 1, 20

write mode 2, 67-87

write mode 3, 53-66, 99, 473-475, 654-655
View frustrum, 767, 779, 806
Viewspace, 582, 735, 758, 791
Visibility determination, 703-704, 763-775
Visibility ordering, 708-711
VRAM, 22-23

VSD. See Visibility determination

W
Walls

BSP representation, 749
viewing examples, 706-708

Wilson, Tom, 763

WinG, 689

Wireframe rendering, 782
Worldspace, 735, 790, 819
Write mode 0 versus write mode 2, 68
Write mode 1, 20

Write mode 2

converting images from chunky to planar
format, 71-75

copying images to the VGA, 70-71
defined, 67-68

described, 67-87

drawing color-patterned lines, 75-81
tracking a byte's progress, 68-70
versus set/reset, 81

versus write mode 0, 68

Write mode 3

creating animation, 473-475
defined, 53-54

described, 53-66

drawing text fast in any 16-color VGA mode,
653-655

high-speed text drawing program, 60
sample program, 54
supporting circle drawing, 295-296
versus write mode 0, 53

working with read mode 1, 99
Wu,Xiaolin antialiasing, 424

Y
Yaw angles, 790

Zelsnack, Billy, 744
Zero overdraw, 806

Author Biography

Michael Abrash has developed performance software for microcomputers since 1980.
In that time, he has written several video games, authored columns on performance
and graphics in Dr. Dobb's Journal, Programmer's Journal, and PC TECHNIQUES,
worked on the design of graphics hardware, written the performance programming
cult classic Zen ofAssembly Language, and written graphics drivers and GUIs for a
variety of companies. Zen of Code Optimization is his sixth book about computer pro
gramming.

What's on This CD

The bound-in CD contains all the source code listings and demo programs discussed
in this book, including Michael Abrash's texture-mapped 3-D animation library, X-
Sharp, in its most recent version.
The listings have been tested immediately prior to publication. The compiler/as

sembler pair used for testing was Borland C++ 4.02, and Turbo Assembler 4.0. The C
and ASM style used is very standard and non-fancy, so the code should also compile
and assemble with Microsoft tools. We cannot guarantee that, however.
The X-Sharp library exists in several implementations of gradually increasing so

phistication. Each of these libraries is also present as a self-extracting archive. There is
an UNPAK.BAT in each directory containing an X-Sharp archive that will execute the
archive with that very important -d switch.
The most recent version, X-Sharp 22, is stored in the subdirectory XSHARP22.

Use X-Sharp 22 for all new work; the others are stored in the chapter subdirectories
where they are discussed, and should be used for explanatory purposes in conjunction
with the chapter text only.
We have also included the complete text to Michaels book, Zen of Assembly Lan

guage. The text is in RTF and Word Perfect format.

By opening this package, you are agreeing to be bound by the following agreement. This
software Is copyrighted, and all rights are resen/ed by the publisher and the author. You may
copy and/or modify the software as needed to facilitate your use of It. The Corlolls Group makes
no warranty of any kind, either expressed or Implied, with respect to this software. Its quality,
performance, merchantability, or fitness for a particular purpose. In no event will Coriolls Group
Books, Its distributors, or dealers be liable for direct. Indirect, special. Incidental, or consequential
damages arising out of the use or Inability to use the software. Since the exclusion of Implied
warranties Is not permitted In some states, the above exclusion may not apply to you.

	2020_07_21_17_52_33
	2020_07_21_18_08_01
	2020_07_21_18_24_16

