

AppleWriter Cookbook

AppleWriter
™

Cookbook
Don Lancaster

Howard W. Sams & Co., Inc.
A Subsidiary of Macmillan, Inc.

4300 West 62nd Street, Indianapolis, Indiana 46268 U.S.A.

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks are
listed below. In addition, terms suspected of being trademarks or service marks have
been appropriately capitalized. Howard W. Sams & Co., Inc., cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Apple, Applesoft. ProDOS. and ImageWriter are registered trademarks and Appleworks,
Apple Writer, and Laserwriter are trademarks of Apple Computer, Inc.
Copy II Plus is a trademark of Central Point Software Inc.
Diablo is a trademark of XEROX Corporation.
Epson is a registered trademark of Epson America, Inc.
Grappler is a registered trademark of Orange Micro Inc.
Hayes is a registered trademark of Hayes Microcomputer Products Inc.
NEC is a registered trademark of NEC Information Systems.
Qume and Sprint are registered trademarks of Qume Corporation.
Radio Shack is a registered trademark of the Thndy Corporation.
Spinwriter is a registered trademark of Nippon Electric Company.
Visicalc is a registered trademark of VisiCorp, Inc.
Zork is a registered trademark of Infocom Inc.

The opinions and editorial conventions embodied in the text reflect the preferences of the author.
No endorsement by Howard W. Sams & Co. is implied.

Copyright© 1986 by Don Lancaster

FIRST EDITION
FIRST PRlNTING-1986

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, neither the author nor the publisher assumes any
responsibility for errors or omissions. Neither is any liability assumed for damages resulting
from the use of the information contained herein.

International Standard Book Number: 0-672-22460-7
Library of Congress Catalog Card Number: 85-72103

Printed in the United States of America

Contents

Introduction • • • • • •

1 Applewriter Answers from the Gila
Helpline

• • • •

• • • •

How Can I See Exactly What Will Be Printed?, 3 D Tell Me
More About .pd8, 4 D How Do I Print One Middle Page of a
Long File?, 4 D How Do I Imbed NULLs?, 4 0 How Do I
Produce Underlining and Superscripting on an Epson?, 5

D How Do I Produce Superscripting on an Apple DMP?, 6
D How Do I Solve the Shortline Problem?, 6 D What About
Multicharacter Imbedded Escape Commands?, 6 0 How Do I
Improve Underlining?, 7 D How Do I Make Backup Copies?, 7
D What Is the Grappler Problem?, 7 D Can I Link an
Assembler to Applewriter?, 7 D Can I Process Pictures Rather
Than Words?, 8 D How Can I Make My Own Patches?, 8
0 Show Me a PATCHIFIER Example, 8 D What Trashes
the Ile Status Display?, 9 D How Can I Print a Line of Dots?, 9

D How Do I Make 64 Identical Labels?, 9 D What Copy
Options Do I Have?, 10 D What Trashes My 'Iext Files?, 10

D What if the Text File Really Is Sick?, 11 D How Can I Put a
Catalog in My 'Iext File?, 11 D How Can I Improve the Catalog
Display?, 11 D Can I Run a WPL Program While in Mid
Print?, 12 D How Can I Search or Replace Backspace Com
mands?, 12 D Why Can't I Print I<?, 12 D How Can
I Improve Daisywheel Underlining?, 13 D How Can I
Improve My Daisywheel Print Quality?, 13 0 How Do I Do
Kerning?, 13 0 How Can I Put Comments in the Glos
sary?, 13 D Why Do Some Glossary Strings Execute Immedi
ately?, 14 D How Do I Imbed a {V)in a File?, 14 D How Can
I Fake Superscripting or Subscripting?, 14 0 How Do 1 Print
Several Columns?, 15 0 How Do I Improve Daisywheel
Registration?, 15 D How Do I Load a WPL String from
Text?, 15

V

•
• VI

1

vi Contents

2 More Applewriter Answers from the
Gila Helpline . 17

3

How Do You Make a Glossary Self Prompting?, 19 0 How Do I
Solve the ProDOS 2.0 Prefix Hassle?, 20 0 Why Do Often
Used Glossaries Get Longer?, 20 0 How Can I Print All of My
Daisywheel Spokes?, 20 0 Why Does the BOLD PS
Printwheel Foul Up Punctuation?, 21 0 What Causes the
Diablo 630 Secondline Problem?, 22 0 What Is Meant by the
Words Diablo Compatible?, 22 0 How Can I Proportionally
Space and Microjustify?, 22 0 What Difference Does
Extended Memory Make?, 23 0 What Programs Must I Keep
on the Boot Disk?, 23 0 What Is Special About Applewriter Ile
DOS?, 23 0 How Can I V iew the Program?, 24 0 How Do I
Convert My Binary Files to Text Files?, 24 0 What Makes the
[Closed Apple) Key "Stick"?, 24 0 How Do I Convert My
Applewriter III Files?, 25 0 How Do I Read or Edit a Very Long
Text File?, 25 0 What's the Fastest Way to Clear to End of
Document?, 25 0 How Can I Imbed Hidden Lines in a Mailing
List?, 26 0 So How Do I Print the Hidden Lines on a Mailing
List?, 26 0 How Do I Add a Common Header to a Mailing
List?, 26 0 How Do I Get the Page Numbers to Print?, 27
0 How Can I Print Double Headers or Footers?, 27 0 How
Can I Print a Glossary or a WPL File?, 27 0 How Do I Do a
HIRES Dump?, 28 0 How Do I Center a Title?, 28 0 Why
Won't My IIC Print Past Line 80?, 28 0 Is WPL Really That
Great?, 29 0 What Good Is Right Justification?, 29 0 How
Do I Run Old Applewriter 2.0 on a Ile?, 29 0 How Do I Use
Old Applewriter 2.0 to ... , 29 0 How Do I Ring the
Ding-Dong from WPL?, 30 0 What Causes Page Creep?, 30
O How Can I Stop a Hyper (delete] Key?, 31 0 How Do I
Imbed a Carriage Return in the Glossary?, 31 0 What Good
Are the Apple Keys?, 31 0 Can I Preboot ProDOS Applewriter
2.0?, 32 0 Is Source Code Available?, 32 0 What Causes
Missed Characters?, 32 0 What Causes Painfully Slow AWIIe
Entry?, 33 0 Why Can't I Do a Decent Underline?, 33
0 How Can I Print a Solid Bullet?, 34 0 ls There an Easy
Way to Do Form Letters?, 34 0 How Do I lmbed Escape
Sequences?, 35 O Why Do Some AWIIE Patches Disable the
Help Screen?, 35 0 Why Does [Y] Sometimes Destroy
Everything?, 35

Secrets of Top Quality Printing . • • • • • •

Four Print Quality Rules, 39 0 For Still More Print Quality, 48
0 That Old WD40 Ploy, 52 0 Imbedding Print Commands, 53
0 Verbatim Method, 56 0 Imbedding with the Glossary, 60
0 A Glossary Example, 61 0 lmbedding with WPL, 64
0 Camera-Ready Print Quality, 64

37

Contents
vii

4 Microjustification and
Proportional Spacing. 67

WPL Custom Formatting, 69

5 Self Prompting a Glossary 79

What Is in a Glossary?, 81 D Immediate WPL Execution from
the Glossary, 82 0 Glossary Restrictions, 84 D Self Titling
and Self Prompting, 86 D Four Examples, 88

6 Some Patches . 91

AWIIe Patches, 93 0 ProDOS 2.0 Patches, 102 0 Wrap·
Up, 108

7 Tearing into ProDOS Applewriter
Version 2.0. 109

Analyzing ProDOS Applewriter 2.0, 113 0 ProDOS MLI
Links, 136 0 Monitor Access, 138 D Memory Manage
ment, 140 0 Character Entry, 141 0 Screen Display, 143

0 Individual Control Commands, 145 0 Printing, 149 ,,
0 WPL, 152

8 Capturing ProDOS Applewriter
Version 2.0 Source Code 159

Customizing ProDOS Applewriter 2.0, 161 D Why Modify?,
162 0 A Final Plum, 167 0 A Wish List, 168

Appendixes

A WPL Programs and Applesoft Patches 171

B Machine Language Patches ... ,, 201

C Internal ProDOS Applewriter 2.0
Program Details. 223

Index . 329

Introduction

I have been assisting the Gila Valley Apple Growers Association people
in maintaining an Applewriter® voice helpline at {602) 428-4073. After
working with this free service for a while, I found out what people really
want and what they really need in the way of Applewriter program support
and improvements.

This volume and its companion disks form a compendium of
everything that has been asked for, ranging from bare beginner questions
through full source code capturing and full expansion for gonzo hackers.

Thorough and extensive coverage is included for five different versions
of Applewriter. 1\vo of these versions involve older Applewriter Ile. They
are called OBJ.APWRT[E j64K Ile) and OBJ.APWRTJ[F j128K Ile and Ile).
Three of the versions involve new ProDOS® Applewriter 2.0. They are
called AWB.SYS 140 column Ile only). AWC.SYS (64K Ile only), and
AWD.SYS j 128K Ile and 80 column Ile). Both "new" and "old" Ile monitor
versions are also supported. If you are into Applewriter at all, you are
bound to find something here for you, such as:

• Answers to the most-asked Applewriter questions
• Patches for null, shortline, Grappler® and others
• Self prompting glossaries for major printers
• Microjustification and proportional spacing routines
• Camera-ready print quality secrets
• Complete and thorough disassembly script
• Source-code capturing instructions
• WPL routines for columns, space-on-disk, etc.
• Information concerning continuing support, helpline, and upgrades

The first two chapters handle answers to just about everything that
anyone has asked for on the helpline. Here you will find the most needed
NULL, shortline, expansion, and Ile detrashing patches, details on the
magic of .pd8, WPL routines to "rearrange" daisywheel spokes, ways to

lX

X lrttroduction

simplify mailing list management, ways to list the unlistable, and even
ways to print bullets.

The third chapter describes the secrets of top print quality. Included are
a WPL.CAMERA READY routine that will give you outstanding hard copy,
sane sources of supplies, techniques of aligning proportional columns, and
even that old W D40 ribbon ploy

Next, in Chapter 4, come microjustification tips and proportional
spacing secrets. Believe it or not, you can actually do these things invisibly
and automatically, even on your already existing text files. Special spacing
does, however, require a printer with a fair amount of smarts. We use a
Diablorn 630 because its print quality is unsurpassed, and it has its own
internal microjustification routines.

Few people realize that making a glossary self prompting is very easy.
Chapter 5 tells all, including how to make glossaries with instant, built in
help screens and examples of complete self prompting glossaries for four of
the most popular printer families. No more forgotten commands, lost lists,
or sloppy stuff taped on your Apple.

Machine language hackers will appreciate the patches in Chapter 6 that
give hackers ways of improving, linking, and expanding the Applewriter
code. Included are two sets of patches-one set of eight for Applewriter Ile
and a separate set of eleven for new Pro DOS Applewriter 2.0, the Grappler
printer card fix, and a prefix "dehassler:'

Chapter 7 follows with a most thorough and complete disassem bly
script. The exact details of each and every internal ProDOS 2.0 module and
entry point are covered, so you can find out exactly how Applewriter
works and how to modify the program.

Chapter 8 contains full details on capturing your own ProDOS 2.0
source code and a neat WPL routine that lets you format justified text into
two or more columns.

Complementing the book are a helpline service and a pair of
companion disks. The companion helpline will try and answer any and all
Applewriter problems you may have.

The companion disks are ready to run and hold everything you need.
Included are some bonus programs that will do an author's automatic
keyword indexing, a WPL program-length extender, plus a few other
goodies.

I also have work in progress involving HIRES dumps, speech
synthesizer links for the handicapped, code extensions, AppleworksTM

compatibility, microjustification for both the Imagewriter and especially
the laser printer, and several other neat goodies. Again, call us on the
helpline for information.

Disclaimer time: Apple®, Applewriter, and Applesoft® are registered
trademarks of some obscure outfit out in California, and you know how
those Californians are. Neither Apple Computer, Inc. nor the original
program author has in any way endorsed or approved of the stuff you read
here. What you find inside is mostly mine, and every bit of it is fully
independent.

Introduction.

Much of this book will apply to most Applewriter versions. I tried to
make any exceptions fairly obvious. Although every attempt has been
made to be useful and accurate, the only guarantee I will make is
"approximate quantity one". I will attempt to correct and improve things
as best I can. Be sure to make any patches or improvements only on your
third or higher backup copies.

This book is dedicated to the philosophy
that no matter where you go-there you are.

Don Lancaster

xi

1

Applewriter
Answers from the

Gila Helpline
Solid and useful solutions

to the most asked about Applewriter problems.
Here you will find

cures for the NULL,
shortline,

the Ile trashing hassles,
details on custom mods,

and loads more . .

1

The Gila Valley Apple Growers Association has been maintaining a
voice helpline for Applewriter users at 1602} 428-4073. The service is free
except for the usual phone charges. Preferred calling times are 8 to 5
(weekdays) Mountain Standard Time. As you might expect, after a few
months of operation, the same questions were asked again and again.
Gathered together here are the most asked about and most needed
solutions to Applewriter related problems.

One confusing point: Tw'o wildly different Applewriter versions have
nearly identical names! Old Applewriter 2.0 is intended only for the II and
II+. This program is hopelessly klutzy, crippled, and obsolete. U nfor
tunately, it is the only stock program (except for some really old junk) that
runs on a II+, a Franklin, or a Hong Kong knockoff. We will always use the
prefix "old" when and if we describe this code.

The next newer version is called Applewriter Ile and is intended only
for the Ile. We will abbreviate this one to AWIIe. Stock Applewriter Ile will
not display attractively on a Ile or a "new" ROM Ile unless a simple patch
is made to the program.

The latest, and by far the best, version is ProDOS Applewriter 2.0. We
will always use the word ProDOS when talking about this version, which
runs on a Ile or an "old" or "new" Ile. It does not run on a II+ or a clone.

In this book, we use the "WPL method" of showing control commands.
Thus, [S] means hold down the control key, press and release the S key, then
release the control key.

Ready? Here goes . . .

How Can I See Exactly What Will Be
Printed?

That depends on the version. Let's start with Applewriter Ile. By
changing your print destination to .pd0, you will enter a preview mode
where what you see is exactly what you get when the computer prints. An
[S] will temporarily stop or resume scrolling, but an [esc) will abort the
print-to-screen mode.

3

4 Applewriter Cookbook

As an alternative, you can change your print destination to .pd8, which
will print a fully formatted text to your disk. By loading this formatted
document, you can stay in a what-you-see-is-what-you-get mode. A
formatted file can then be printed using wide open print constants, such as
.lm0, .rm200, .tm0, .bm0, .pm0, .tl, .bl, .ut, .pl66, .pi66, etc. You can also
force your own left margins with {tab] and your own right margins with
[return).

The intended way of using Applewriter with imbedded printing
commands is far more powerful, far more flexible, far more compact, and
far more useful for everything but the simplest or the most oddball of tasks.

With ProDOS Applewriter 2.0, you can independently set your left and
right screen margins up to 240 characters wide. You can get an almost
perfect what-you-see-is what-you-get by temporarily setting your right
margin to the difference between your normal printed right and left
margins and by using [tab) rather than paragraph margins.

Tell Me More About .pd8
The command .pd8 instructs Applewriter to print to your disk rather

than to a printer or screen. The document, exactly the way it will appear on
paper and stripped of all imbedded commands, goes on a file on disk. A
formatted text file on disk is particularly useful for typesetting,
telecommunications, or passing some text file on to another computer.
This formatted file is also handy for advanced tricks like multiple columns,
multiple headers or footers, custom post processing, or camera-ready print
tricks.

When you use .pd8, be sure to add a new filename or a .formatted or ./mt
trailer. Also note that formatted files are longer than normal ones because
all the left margin and paragraph margins are padded with spaces.

How Do I Print One Middle Page of a
Long File?

An imbedded print command called .ep (short for enable printer} is
available to print single pages in mid-file. An .ep0 suppresses printing. An
.epl enables printing. To print page 13 of a 22-page document, put an .ep0
at the beginning of the text file, an .epl at the end of page 12, an .ep0 at the
end of page 13, then print.

How Do I Imbed NULLs?
It depends on your version of Applewriter.
On old Applewriter 2.0, a NULL was imbedded with a {VJ{@]{VJ

command. On stock Applewriter Ile, NULLs are disallowed. NULLs are

Applewriter Answers from the Gila Helpline

particularly important for providing underlining and superscripting on
older Epson TM and other dot matrix printers. The simplest and cleanest
Applewriter Ile solution is to make a two byte correction to your word
processing program.

Program A. l is an Applesoft routine called the AWIIe NULLIFIER.
Note that programs described in this book are listed in Appendix A. You
make a third backup copy of AWIIe under DOS 3.3e, run this repair
program, and your third or higher AWIIe backups will automatically let
you imbed NULLs anywhere you want them. NULLs are imbedded with a
[VJ[@][VJ or the easier to type [V]{2}[VJ. Obviously, you can include NULLs
in your printer glossary for one key access.

Do not make this modification on either of your original disks. Change
only your third or higher backup copies.

Several minor gotchas: You lose any ability to run cardless 40 column
text, and you must not imbed a NULL into a WPL label. You also lose an
obscure use of [delete], but this key is deadly and should never be used
anyhow.

The NULLIFIER adds a minor bug to the case changer. If you exit the
case changer by hitting a space, you may add a NULL to your text file. The
cure is to always exit the case changer by pressing [t] followed by the { 1] .

Note that this mod is intended for Applewriter Ile only. The
ready-to-run program is available on the DOS 3.3e companion disk.

On new ProDOS Applewriter 2.0, NULLs are not allowed in the text
file.

Period.
Instead, the stock code will automatically substitute a NULL for each

US user separator found. A user separator is keyed as [_).
Although [_] substitution solves the NULL problem, it causes troubles

for users needing user separators to, ferinstance, control a modem or
handle the HMI daisywheel horizontal motion commands.

See Chapter 6 for a patch to redefine the ProDOS 2.0 NULL character
any way you like.

How Do I Produce Underlining and
Superscripting on an Epson?

You imbed the escape commands and NULL characters as needed by
your printer.

On AWIIe, you make the above code modifications. On ProDOS 2.0,
you substitute a user separator (-1 any time you need a NULL. A fully
automatic and self-prompting Epson glossary named EGLOSS appears in
Chapter 5. EGLOSS is easily adapted to most Epson-like printers.

An AGLOSS for the Apple Letter Quality Printer, a DGLOSS for the
Diablo and an !GLOSS for the Imagewriter are also shown in Chapter 5.
These self-prompting glossaries are provided on both companion disks,

5

6 Applewriter Cookbook

ready for your immediate use. The LGLOSS and PGLOSS for the
Laserwriter™ is also available. Contact the helpline for more information.

How Do I Produce Superscripting on an
Apple DMP?

The Apple dot matrix printer needs a special character set loaded
before the printer will superscript.

This loading is easily done with a preboot disk. Although the Gila
helpline does not currently support this preboot disk, it is in the public
domain and is available, among other places, from Minuteware, Box 2392,
Columbia MD, 21045, (301) 995-1166.

How Do I Solve the Shortline Problem?

The shortline problem is caused by Applewriter counting imbedded
printer commands as legal characters.

If you imbed printer commands while in the fill justify mode, each line
with an imbedded command will get shorter. For instance, an imbedded
underline command will typically shorten that line by four characters.

Program A.2 is another Applesoft program named the AWIIe
STRETCHIFIER that will automatically test and then modify your third or
higher backup copy of AWIIe. For every (esc] found in any line, that line is
temporarily lengthened by two characters. Should word wraparound be
needed, any escapes beyond the last whole word are automatically
ignored.

(A patch that accomplishes the same thing as STRETCHIFIER for
ProDOS Applewriter 2.0 is described in Chapter 6 and is listed in Appendix
B.) The result of STRETCHIFIER is an exact AWIIe fix for imbedded escape
commands followed by a single letter. This program is available ready to
run on both companion disks.

What About Multicharacter lmbedded
Escape Commands?

The trick here is to use one of th·e above STRETCHIFIER programs and
''bank" as many characters as you think you will need for the imbeddings.

For instance, an /escj/esc) should bank two characters for you, whereas
an /escj[@J will be ignored by most printers but will bank a single character
for you.

Applewriter Answers from the Gila Helpline

This approach makes more sense than trying to filter each
multicharacter Escape command for each and every printer. The process
can be automated by putting the banking ahead of the needed
multicharacter command in your printer glossary.

How Do I Improve Underlining?
Let your printer do the underlining for you. Imbed underline

commands when and where needed. Depending on your printer, the
NULLIFIER and STRETCHIFIER may be needed to imbed commands. A
glossary for your printer is also most helpful. All of the problems involved
in underlining up to punctuation magically disappear when the printer
does its own underlining. In addition, your underlining most likely will
end up more uniform and darker.

How Do I Make Backup Copies?
On Applewriter Ile, all the usual advanced bit copier methods work.

Copy II + w with a parameter change of 10:96 does the job nicely.
ProDOS Applewriter 2.0 is fully copyable and unlocked. Easily copied

with the Filer or any other ProDOS based copy utility, ProDOS is also
easily installed on any hard disk system of your choice without any access
hassles.

What ls the Grappler Problem?
ProDOS Applewriter 2.0 is intended primarily for the stock Ile Apple

serial interface. Many combinations of parallel printer cards and printers
behave erratically and thus require custom and individualized patches.

The typical Grappler card symptom is a random burst of 22 spaces
inserted every 240 characters, which is easily patched. Details appear in
Chapter 6.

The usual card problem is that so-called "intelligent" printer cards
assume something is happening to page zero location $24 and that video
echo does in fact reach the screen routines. Neither is the case with
ProDOS Applewriter 2.0.

Can I Link an Assembler to Applewriter?
You bet.
Apple's own newly upgraded and overhauled EDASM lends itself

beautifully to editing under AWIIe. Full details appear in my book,
Assembler Cookbook (SAMS #22331). WPL routines can automatically
handle numbering, renumbering, and tabbing.

7

8 Applewriter Cookbook

Can I Process Pictures Rather Than
Words?

Absolutely.
In fact, AW IIe is even better at processing pictures than it is at

processing words. You see, plotter commands are nothing but long strings
of text characters, and WPL is among the most powerful ways known to
manipulate long strings of text characters under programmable control.
The Hewlett Packard 7470 plotter is particularly well suited for picture
processing under Applewriter Ile.

With Applewriter linked to the Laserwriter, it is now possible to do
mixed text and graphics that totally outperform anything done on the Mac.
Write or call the helpline for a free demo pack that gives conclusive proof
of this.

How Can I Make My Own Patches?

Program A.3 is yet another Applesoft program called the AWIIe
PATCHIFIER. This program will automatically modify your third or higher
backup copy of AW IIe. The program works by converting the [O)-C option
from "Verify File" to "Bload Patch".

Among its many other uses, PATCHIFIER gives you a roundabout but
highly useful PEEK and POKE capability. This capability either can be
used directly or under WPL. 'Iwo possible uses include linking the code for
a HIRES screen dump or scanning a plotter that has had its pen replaced
with a photocell for automated image-to-text conversions. The AW IIe
PATCHIFIER is available ready-to-run on the companion disk.

A very important gotcha: POKE can kill!
Any changes that you make to the code with your own patches can

destroy the integrity of the entire program! Never save a patch to your
original AWIIe disks! Always use your third or higher backup copy.

Patching ProDOS Applewriter 2.0 is much trickier because of the
ProDOS operating system and the need to use machine language interface
MLI links. The best route here is by way of a general expansion module.
Call the helpline for more details.

Show Me a PATCHIFIER Example

The [Q]·K quit command is useless in AWIIe because you always have
to reboot anyhow.

You can easily divert this command to your own needs. The
CURSIFIER patch in Chapter 6 will divert {Q]·K so that it will

App/ewriter Answers from the Gila Helpline

automatically put the cursed character into the WPL SD string. If you are at
all into WPL, you will find this sorely needed and most useful. The
CURSIFIER eliminates a long song and dance involved in testing the
character presently being looked at.

An improved ProDOS Applewriter 2.0 CURSIFIER patch, among many
others, is described in Chapter 6. The CURSIFIER and other patches are
printed in Appendix B.

What Trashes the lie Starns Display?
If you try running AWIIe on a ''new" Ile or a Ile, you will see symbol

and filename errors on the status line, along with an occasional and
temporary change of the flashing cursor to a new symbol.

These errors are caused by a mouse nest in the Ile character generator.
On the lie, inverse uppercase characters can be in either of two code
ranges, hex $00-IF or $40-SF. On the Ile, the $40-SF range is reserved for
the mouse text characters. Older AWIIe programs use the $40-SF range for
inverse uppercase display and thus get trashed on a Ile.

Program A.4 is the AWile CLARIFIER that improves the Ile status
display. CLARIFIER works by remapping the inverse uppercase status line
characters into a range that is compatible both with the old and new Ile as
well as the Ile.

That rare and temporary change in the new Ile or Ile cursor to a new
symbol is caused by parking the cursor on an uppercase character. The
regular cursor should come back when you move anywhere else. This bug
is minor, sort of cute, and not worth fixing.

A new ROM pair is now available for the Ile that is similar to the Ile
ROMs. The CLARIFIER will be needed here also.

ProDOS Applewriter 2.0 is fully lie and new Ile compatible without
any need for detrashing programs.

How Can I Print a Line of Dots?

AWIIe ignores any line that starts with a carriage return followed by a
period.

If your first character on a line is a period, that line will not be printed.
To print a line of dots, start your line with one or more spaces.

How Do I Make 64 Identical Labels?
The solution to this is fun. Do one label. Then do a {L)# six times. The

[L)# command will copy all of memory to memory! Your single label
becomes two, then four, then eight, then 16, then 32, and finally 64. If you
get carried away, you will eventually overflow the computer's memory.

9

10 Applewriter Cookbook.

What Copy Options Do I Have?

The options you have depend on the length of copy that you want to
move.

If the copy is less than 1024 characters, set {DJ to < , hold down [t] and
press [W) or (X) as often as needed. This process will put copies of each
word or paragraph in a saving buffer.

To complete the copy, move the cursor to your new place, reverse the
[D) data direction, then dump your copy with repeated {W] or (X]
commands. Note that a [WJ or an [X) by itself moves text. Press the same
keys while holding down (closed apple] and the program copies text
instead of moving it.

Another method is to do a memory to memory load while using
delimiters. Note the starting and ending strings to be moved. These strings
must be long enough so that they are unique. Enter [LJ#/startstringl
endstringl where you want the text to appear. This process works on any
length text. Should you not want the text markers, enter [LJ#lstartstringl
endstring!N.

With ProDOS Applewriter, be sure to use exclamation points, rather
than slashes, as delimiters.

Another way to copy is to save a module to disk, then reload the module
in the intended place. This method is best for boilerplate that you may
want to reuse elsewhere in another text file.

On ProDOS Applewriter 2.0, partial disk saves are much easier. To save
a part of memory to disk, park the cursor at the beginning of the piece to be
saved or moved, then add an ending delimiter to your filename.

What Trashes My Text Files?

Under DOS 3.3e, you are not allowed to use any punctuation in any
AWIIe filename, except for spaces and periods. All other punctuation is
reserved for use by the powerful AWIIe search and replace commands.
Ferinstance, if the filename being loaded contains three dashes, AWile will
read the real filename as everything up to the first dash. The computer
then will search for the starting string between the first and second dashes
and for the ending string between the second and third dashes. As a result,
the computer will display a FILE NOT FOUND or may give you a partial
load.

Renaming your files can create this problem, so be careful. Keep all
punctuation out of your filenames at all times.

On ProDOS Applewriter 2.0, the filenames are even more restrictive.
You are only allowed a maximum of sixteen letters, numbers, or periods.
Punctuation of any kind, including spaces, is a no-no.

Applewriter Answers from the Gila Helpline

What if the Text File Really Is Sick?
Your solution depends on exactly what the problem is. If the text file

will catalog but not load, first check to be sure you did not spell the
filename wrong. Be very careful not to mix up "eyes," "ells," and "ones" or
"ohs" and "zeros."

If the filename is spelled correctly, find out the exact filename in the
DOS directory. Hidden control characters or other surprises may be
lurking in the filename. Use the fancy catalog options in Copy II + or read
the directory tracks with a suitable disk-snoop program, starting with DOS
3.3e 1rack $ 1 1 , Sector $OF. The books Beneath Apple DOS and Beneath
Apple ProDOS are absolutely essential for this sort of thing.

If you find errors in the directory, you can often zap them into a useful
filename. If all else fails, make a bit copy of your disk, then try to fix the
initialization and the directory by using a repair program such as Quality
Software's Bag of 1ricks. Make the repairs only on your new bit copy.

Both Applewriter versions are extremely robust and will rarely, if ever,
damage a disk by themselves. The usual causes of blowups are dirty or
loose card and cable contacts, improper filenames, power line problems, or
a Ile that has been overstuffed with flaky cards.

Be careful when using CONVERT to update older Applewriter files.
You can end up with several files with identical names if the files are longer
than 16 characters.

How Can I Put a Catalog in My Text
File?

You are not reading your manuals! A simple [OJA# does the job. The #
trailer says to load to memory rather than directly to the screen.

How Can I Improve the Catalog Display?
The "user" solution is to create a WPL program to do your catalog for

you, including the II catalog to work file option. Then eliminate two out of
three carriage returns in the catalog area to give you a triple column catalog
that shows everything on one screen. Other catalog bells and whistles can
be added any way you like. Be sure to include an erase option to remove
the catalog from the work file when you are finished.

The "hacker" solution is to rearrange the code to suit yourself.

1 1

1 2 Applewriter Cookbook

Can I Run a WPL Program While in
Mid-Print?

You can imbed the following dot commands in your document. The
commands .Im, .pm, .rm, .tm, .bm, .pn, .pl, .pi, .Ii, .sp, .pd, .sx, .sy, .sz, .er,
.ut, .fj, .lj, .rj , and .cj will immediately put a new value into the print
constants file.

The commands .go, .do, .qt, .np, .cp, .tl, .bl, .ff, .in, .pr, .as, .yd, .nd, .sr,
.rt, .sc, .sl, and .ep will immediately execute their respective code modules.

Printing stops when a carriage return is received followed by a dot
followed by a legal two letter command. The two letter command is then
executed. Everything on the line following the dot up to the next carriage
return is treated as a passing parameter and will not be printed.

Unfortunately, the .do command only loads a WPL program and then
sets some flags. If you imbed a .do command into your text file, the entire
text file prints, then the WPL program executes. If you imbed several .do
commands in your file, the entire file prints, then only the last WPL
program executes.

Thus, in stock Applewriter, you can print while running WPL, but you
cannot run WPL while printing. Hackers can trap the code on the way to
the dot interpreter. This is one heavyweight solution to easy HIRES
dumping in mid-document.

How Can I Search or Replace Backspace
Commands?

The backspace and frontspace commands cannot be included in a stock
search or search and replace string.

Instead, you can get these commands out of a glossary or by using
modified WPL to individually test each cursed character with the
CURSIFIER. The simplest route is to manually hand correct, using
[VJ[HJ{V] when and as needed.

Why Can 't I Print a (< ?
Because a I < is reserved to start footnote strings.
You will get a footnote overflow if this combination ever crops up. One

solution is to imbed a space and backspace if you ever have to print this
oddball combination. Another is to use a BOLD PS daisywheel and spoke
rearrangement.

Applewriter Answers from the Gila Helpline

How Can I Improve Daisywheel
Underlining?

If you use the Applewriter underliner on a proportionally spaced
daisywheel printer. the spacing values get messed up on each of the
backspaces used to precede an underline. This will crowd some characters
and stretch others. The solution is to imbed print commands that use the
printer's underliner instead of Applewriter's.

In Chapters 3 and 4, we will see several good ways to dramatically
improve underlining quality.

How Can I Improve My Daisywheel
Print Quality?

First, use a proportionally spaced metal daisywheel element and a film
ribbon. Secondly, we will see in Chapter 4 how to microjustify, pro
portionally space, and dramatically upgrade your print quality to
camera-ready status.

Given enough sneakiness, just about anything can be converted into a
text file, including Applesoft programs, hex dumps, disassembly listings,
assembler printouts, disk catalogs, WPL code, source code, glossaries.
modem downloads, or virtually anything you look at or see on paper. Once
in a text file, you can use the techniques of Chapter 4 to upgrade or
improve the appearance any way you like.

How Do I Do Kerning?
Kerning is the proportional spacing of characters so that they look more

natural together. How you kern depends on .the printer that you are using.
On a Diablo 630 daisywheel printer, a command of fescj[H] will back you
up by 11120th of an inch, and fesc)[Q][AJ will stretch characters out by the
ASCII value of the last imbedded command. Thus [A] gets you 11120th of
an inch, (BJ gives you 2/120ths, and so on. Kerning is reset with an
[esc][Q]@. Note that the at sign (@) is an ordinary character and not a
control command.

A kerning feature is included in the self-prompting DGLOSS glossary of
Chapter 5.

How Can I Put Comments in the
Glossary?

Start your comment line with a question mark (?) a slash II), or an
asterisk (•) .

13

14 Applewriter Cookbook

These are the three disallowed glossary cue characters. To enter your
comment, use the main editor rather than the (G]-? glossary option. See
Chapter 5 for more on glossaries.

Why Do Some Glossary Strings Execute
Immediately?

Unlike old Applewriter 2.0, both the Applewriter Ile and ProDOS
Applewriter 2.0 will execute any imbedded string control character exactly
as WPL does.

If you want your glossary to imbed a control character into your text,
precede and follow that control character with a [V). Thus, to imbed an
[esc], you should put a {V]{esc][VJ into the glossary string. Only the [esc)
goes into the actual text file.

Many of the other Applewriter books miss this key point: The glossary
action of older Applewriter 2.0 is wildly and totally different from the
glossary action of AWIIe or ProDOS 2.0. Thus, most very old glossaries
may not be compatible with modern code.

How Do I Imbed a [VJ in a File?
With AWIIe or ProDOS 2.0, the Verbatim command [V] can be entered

directly into the glossary or put directly into a find string. To imbed a (V] in
a text file, use either a search and replace under (F] or a replacement under
{G]. Note that using search and replace is much simpler than the
roundabout method once needed to imbed [VJ under old Applewriter 2.0.

How Can I Fake Superscripting or

Subscripting?
If your printer does not have specific commands for superscripting or

subscripting, see whether you can do a negative halfline feed or a positive
halfline feed. To superscript, first imbed a negative halfline feed, type the
characters to be superscripted, then follow with a positive half linefeed.
Reverse the process for subscripting. Either method will print fullsize
characters that are offset half a line above or below normal.

Note that the Diablo people use an [esc]-U to move down. the page and
an [esc]-D to move up the page. You also might be able to use a graphics
mode to move the paper, return to text and enter the characters to be
superscripted or subscripted, go back to graphics to move the paper back to
its original line, and return to typing normal text.

Applewriter Answers from the Gila Helpline

How Do I Print Several Columns?

Listing C. 15 shows you a two column routine that easily extended to
three or nine columns. See Chapter 8 for more details.

How Do I Improve Daisywheel
Regi.stration?

Registration can be a problem in graphics, in multicolumn printing,
and any time you want to back up on the paper.

First, use a bidirectional tractor instead of a unidirectional one. Second,
see if the paper-feed stepper has a backlash adjustment. On the Diablo 630,
the screwdriver backlash adjustment is in the center of a three-inch black
gear just under the right-hand platen knob. Watch your adjustment range:
Too tight binds and causes excessive wear. Too loose misregisters. Most
newer daisywheels include automatic antibacklash gearing.

As a sledgehammer solution to fix misregistration of the top line of a
new column, try this: Back the printer up even farther than you really
wanted, print a single period, then go forward a line or two and start
printing. This technique should align the top printed line with previous
printing. When this is all done, either erase or ignore the period.

How Do I Load a WPL String from Text?

All of the usual load commands work with pls. To load a string from
memory that starts with aardvark and ends with zebra, just enter
pls#laardvarklzebral = $A .

Several gotchas here: The loaded string may be no longer than 64
characters, and the delimiters must be unique. If you do not want the
delimiters to appear, an N trailer is allowed. If you do not know the string
you want to load, use a search and replace to identify its start with a unique
character. Such use is common with mailing lists.

If you are within 64 characters of memory overflow, you may not be
able to load a WPL string.

A sledgehammer solution is to use either CURSIFIER patch !Patch B.3
for AWile or Patch B. 18 for ProDOS) described in Chapter 6. These patches
let you scan the document one character at a time.

15

2

More
Applewriter

Answers from the
Gila Helpline
Solving the page creep problem,

rearranging the spokes
on a daisywheel printer,

mailing list and form letter hints,
easing ProDOS prefix hassles,

plus some truly wondrous
new WPL routines . . .

17

How Do You Make a Glossary Self
Prompting?

Any control commands that are imbedded in a glossary will execute
immediately as if they were WPL instructions.

So you could put your tutorial or prompting message into the glossary,
using] fake carriage returns as needed to separate lines. On cue, the
tutorial or message that you specified would appear on the screen.

This tutorial method for glossaries has two disadvantages. First, full
screens will take too long to display. Secondly, your message gets tacked to
your work file and has to be removed later.

A sneakier tutorial method exists and solves both problems.
On cue, load your glossary tutorial or prompt directly from the disk and

to the screen, a process that takes no longer than three seconds and leaves
your work files undisturbed. Ferinstance, after all your regular glossary
entries are completed, enter a full help screen. Suppose this screen starts
with Once upon a time and ends with happily ever after. Suppose also that
your glossary is called MY GLOSS. The glossary entry z [L] MYGLOSS!Once
upon/ever after! will automatically load your glossary-based tutorial to
screen only, keyed on an [(3]-z.

One very important gotcha: Be absolutely certain that the tutorial
appears in the glossary before the z entry! Otherwise the tutorial Find
command will find itself rather than the message that this command is
supposed to put on the screen.

Here's a real heavy: The glossary entry of Z [QJ FMYFLOSSJ [L]
MYGLOSS!Once upon/ever after/ will key on an [open apple]·Z to both save
your glossary to a new disk and give you the tutorial screen. Thus you
would use [open apple]·Z for just the tutorial and [open applej-Z for both a
tutorial and a disk save.

We will be seeing much more on glossary entries in Chapter 5.

19

20 Applewriter Cookbook

How Do I Solve the ProDOS 2. 0
Prefix Hassle?

Any time that you boot or change disks, you must change the ProDOS
prefix or you will get an error message.

The hard way to handle prefixes is to memorize the prefix name on
every disk and use [O]·H to reset each disk on every change. Several easier
ways to handle prefixes exist. One way is to use ,dl or ,d2 as prefix names.
These names automatically set the prefix to the name of whatever happens
to be in the drive at the time the prefix is set. Setting the prefix to what is in
the drive is far simpler and easier than memorizing names.

Better yet, here are some sledgehammer solutions that completely
eliminate most prefix hassles.

First, create a STARTUP program that includes a WPL line of [space}
OH,D2 [return} and save this program to your booting disk. During a cold
boot, STARTUP will automatically set the prefix to whatever you have in
the second drive. Secondly, create two entries on your favorite glossary of
l{OJH,Dl[OJAJ and 2[0JH,D2,l[OJA}. Note that pairs of brackets here
enclose a Control command and that single closing brackets substitute for
carriage returns.

Any time that you have to change disks or drives, use [closed apple] 1 to
automatically set the new disk's prefix to drive one. Pressing [open apple} 2
will set the prefix for drive two.

See Chapter 6 for more details on setting prefixes.

Why Do Often Used Glossaries Get
Longer?

Every time you resave a glossary to disk, one additional carriage return
may be inadvertently tacked on the end.

If you have a very long glossary and repeatedly pass it from disk to disk,
eventually you could overflow the glossary memory limit of 2048
characters. One solution to this problem is to use [FJ < > > > < > <A
before you resave.

How Can I Print All of My Daisywheel
Spokes?

The ASCII code has only 96 printable characters.
On most 96 spoke daisywheel printers, the space ($20) and delete ($7F)

codes are reserved. Thus, you can directly print only 94 of the spokes on a
96 spoke daisywheel. You have to be sneaky to use the other two spokes.

More Applewriter Answers from the Gila Helpline

On the TITAN 10 element, the two hidden spokes are the cents and the
closing single quote symbols. On the BOLD PS element, the two hidden
characters are the at sign and the right bracket. Diablo codes their spokes
as [esc]-Y and [esc]-Z, respectively. To print a cents symbol on the TITAN 10
wheel. imbed an [esc]-Y in your work file.

Why Does the BOLD PS Printwheel
Foul Up Punctuation?

Not all daisywheel elements have exactly the symbols needed in
exactly the order coded by the Apple Ile. Some spokes may have different
characters. Other wheels may have the correct character but in a position
different than that specified by the normal ASCII code.

On the TITAN 10 wheel, all of the spokes print normally and exactly
match the Apple code. As Figure 2 .1 shows, the BOLD PS wheel has 15
"problem" spokes. Seven of these spokes are coded incorrectly. The
WPL.SPOKE REARRANGER of Program A.5 will cure these. The
remaining eight spokes hold unusual symbols, such as a copyright, two
trademarks, a double underline, a degree symbol, and a paragraph sign.

RPPLE TITfln 1 0 BOLD PS

[[©
]] 0

{ { �r

} } §

< < [
> >

-

A A t
I I I
' ' <
\ \

>

I I ®
,.,,, ,.,,, t

@ @) Tf'I

(esc] Y ¢ @

[esc] Z I]

Fig. 2 .1 . Not all daisywheel petals are the same, nor are they always in the same
spoke position.. Here are the key differences between two popular daisywheels.

21

22 Applewriter Cook.book

What Causes the Diablo 630 Secondline
Problem?

The Diablo 630 daisywheel contains an obscure bug that will louse up
underlining, hidden-spoke access, or other imbedded commands on the
first right-to-left pass following a switch to full microjustification.

This bug apparently is caused by certain parameters not being
initialized properly in the enhanced 630 firmware.

The usual symptom is missed or garbled underlining. This nearly
always happens on the second line of each paragraph. An extra character
also may appear at the extreme left margin. The line may be longer or
staggered from its intended position as well. One sledgehammer cure is to
print those paragraphs that contain any underlining or funny spoke access
left-to-right only.

See Chapter 3 for more details on second line problems.

What Is Meant by the Words
Diablo Compatible?

A Diablo compatible printer has the prongs on its power cord the same
size and spacing as that on a Diablo 630. It will thus fit in the same AC wall
outlet with a minimum of excessive force.

The bare minimum requirements for Diablo compatibility are a full
firmware microjustification, full HyPlot vector graphics, the full and total
imbedded command capability including all word processing and all
diagnostic options, ability to use plastic or metal printwheels of various
number of spokes interchangeably, non-volatile print parameter saves, and
the ability to run forever 24 hours a day without any degradation of
outstanding print quality.

How Can I Proportionally Space and
Micro justify?

You proportionally space and microjustify by imbedding commands in
your work files that "instruct" your printer to handle these tasks for you.

To do so, a printer must have a fair amount of smarts. It's best when the
printer has its own internal microjustification firmware. Chapter 3
includes an automatic and invisible proportional spacing and micro
justification package.

More Applewriter Answers from the Gila Helpline

What Diff ere nee Does Extended
Memory Make?

Two separate Applewriter Ile programs exist on the boot diskette. If
you do not have extended memory. OBJ.APWRT){E is booted. which gives
you a workspace of 27,645 characters. If you have a Ile or Ile with extended
memory, OBJ.APWRT]{F is booted, which gives you a much larger
workspace of 48,845 characters. If you make any patches or changes to the
code, remember to patch only the version that you are using. Patches to the
E code version will clobber F code and vice versa.

ProDOS Applewriter 2.0 has three separate programs. AWB.SYS gives
you a 48K text file on a Ile in its 40 column mode. AWC.SYS on a short 64K
Ile cripples your computer's potential with a meager 22K text file.
AWD.SYS gives you a 48K text file on a Ile in its 80 column mode or on
either "old" or "new" Ile with extended 128K memory.

What Programs Must I Keep on the
Boot Disk?

You should never erase any program from either your Applewriter
master disk or its factory-supplied backup. Make changes only to your
third or higher backup copy.

On Applewriter Ile, you must keep the booting code OBJ.BOOT. If you
do not have extended memory, you must keep OBJ.APWRT){E. If you have
and use extended memory, keep OBJ.APWRT][F. You probably will want
to keep the help screens, so keep all files that begin with an HE prefix.

Although you can safely delete PRT.SYS and TAB.SYS, doing so will
give you an error message on bootup and will enter useless print and tab
values in your files. It makes more sense to replace PRT.SYS and TAB.SYS
with values that you often use. All remaining files can be deleted from your
third or higher backup copy.

On ProDOS Applewriter 2.0, you must keep AW.SYSTEM and your
choice of AWB.SYS, AWC.SYS, or AWD.SYS.

What Is Special About Applewriter Ile
DOS?

The DOS 3.3e used in AWile is special, but the combination generates
standard text files totally compatible with stock DOS 3.3e.

Specifically, the DOS is installed in high main RAM rather than its
usual $9600 BFFF location. The DOS is sometimes accessed by a custom

23

24 Applewriter Cookbook

RWTS routine that allows easy scanning of text files for delimiters. Only
two DOS files may be open at one time. The Open command is modified so
that it sometimes does not create a new and nonexistent text file when
reading. This saves having to delete files caused by fumble fingered typing.

The init is only an init and does not put a DOS image onto the new disk,
nor does init save a HELLO program. Instead of HELLO, the boot program
is named OBJ.BOOT.

The AWIIe program also attempts to write a DOS clone to auxiliary
high RAM. The program fails at this because the program incorrectly
"assumes" that auxiliary high RAM switches with auxiliary main RAM.
Many more details appear in my Enhancing Your Apple II, Volume II !SAMS
#21425), that really tears into the AWIIe program. The similar treatment
for ProDOS Applewriter 2.0 is described in Chapter 7.

How Can I View the Program?
To analyze or modify either version of Applewriter lie, boot Dos 3.3e,

then do a BLOAD OB].APWRTJ[F,A$2300 for the extended memory
version. Note that a stock BLOAD will put the F program in the wrong
place in memory. Both E and F programs are intended to be loaded and run
starting at $2300.

To analyze or modify any of the three versions of ProDOS Applewriter
2.0, do a BLOAD AWDSYS, A$2000, TSYS. Note that the Type command
TSYS says to load a system file as if it were a binary image.

How Do I Convert My Binary Files to
Text Files?

Huh?
You must still be using old, old Applewriter 1.0 or 1. 1. These dudes

used oddball binary files instead of stock text files. All newer Applewriter
versions use standard ASCII text files. Applewriter Ile has a provision to
convert old binary files for you, but ProDOS Applewriter does not. Should
you need your standard text files completely stripped of all Applewriter
commands, use a .pd8 print to disk with either new version.

What Makes the [Closed Apple] Key
"Stick"?

The apple keys are really the game paddle buttons. [open apple] is
equivalent to button two and [closed apple] is equivalent to button one.

More Applewriter Answers from the Gila Helpline

Some things plugged in the game paddle socket can make either apple
key appear stuck. If you have problems with sticking keys, remove
everything plugged into the game connector before you boot any version of
Applewriter.

How Do I Convert My Applewriter Ill
Files?

There are at least two methods.
If you have both an Apple III and a second Apple III disk drive, you can

use the supplied conversion program on the disk. Otherwise, you can read
your Apple III SOS text files under Apple Ile ProDOS, then use the
CONVERT feature of ProDOS to get to DOS 3.3e for AWile. On the
ProDOS 2.0 Applewriter, you can directly access Apple III files.

How Do I Read or Edit a Very Long Text
File?

You may get very long text files if you create one on a lie or an extended
memory Ile and then try to use or edit that file on a short Ile.

The same problem can occur if something comes in over a modem from
the outside world. The solution is to load the text file until the machine
overflows. Then go to the end of the document in memory and chop some
text off.

If you just want to look at the file's contents, cut back to a logical
stopping point. If you want to edit, cut back far enough to get lots of
working room. Next, carefully note an exact and unique text string near
the very end of the remaining machine resident text. After you are finished
with what is in the machine, do a {L] filename/exact and unique text string!.
This load from string to end of text should pick up what you missed on the
first loading. If the text file is ridiculously long or if you are chopping it up
in very small pieces, you might have to repeat the process a time or two.

If you just want to scan a very long text file to see what is in it, do a load
to screen and use [SJ to start and stop scrolling.

What� the Fastest Way to Clear to End
of Document?

Go to the beginning of what you want chopped off, set [D] to > , then do
a {FJ < ????????????????????????????????? < <A.

25

26 Applewriter Cookbook

This strange looking command finds lots of "any" characters, then
replaces them with nothing. This command is one that is easily put in your
favorite glossary.

How Can I Imbed Hidden Lines in a
Mailing List?

Hidden lines are useful to hold order records, expiration dates, and
stuff like that.

Simply start all your hidden lines with two periods. You can then code
your hidden lines any way you want. A line starting with one period will
not be printed. A line starting with two periods will neither be printed nor
mistaken for an imbedded command.

So How Do I Print the Hidden Lines on a
Mailing List?

Any line starting with one or more periods will not show up on your
mailing labels. For a directory or other printed record, use the {FJ < > .. < >
.. < command to replace every carriage return that is followed by a double
period with a carriage return, a following space, and a double period. To
hide the lines again, do a {FJ < > . . < > .. <A.

To avoid mixups, it pays to reveal hidden lines only on screen and never
on disk.

How Do I Add a Common Header to a
Mailing List?

Suppose that you want to address the Editorial Department of each
magazine on a list. Suppose further that each address on the list is
separated by three carriage returns. If you do a { FJ < > > > < > > Editorial
Department> <A, you will replace the blank line before each address with
the needed header.

More Applewriter Answers from the Gila Helpline

How Do I Get the Page Numbers to
Print?

Read your manuals.
Any place in a header or a footer that a # appears, the page number will

appear. Thus [PJ TL!lpage #II will give you a "page" and page number
centered on the top, and [PJ BL/#/// will give you only the actual page
number at bottom left.

How Can I Print Double Headers or
Footers?

There are several ways to double headers or footers.
One is to use a .pd8 to format the document and then hand patch any

custom headers.
The second and best way is to use WPL to create custom headers or

footers on a page by page basis. This is best done by subtracting the
number of excess header or footer lines from the 66 line page length and
setting .pl for the new number, then using .pd8. Key the WPL on some
unique marker.

You can also use WPL to do multinumbered headers, such as Chapter
VI, page 19. Just use one or more separate text files per chapter and let WPL
change the top or bottom line as each new segment is loaded. The .pep
command then links the pieces together.

How Can I Print a Glossary or a
WPL File?

Glossaries or WPL programs are tricky to print because they usually
will contain control characters. These control characters will be ignored or
will make your printer do wildly wrong things.

Program A.6 is a WPL program called WPL.FILE LISTER intended to
print WPL programs or glossaries that contain imbedded control
commands. Each imbedded control command is replaced with a letter and
a pair of brackets, such as the screen clearing [L]. The result is an easy to
view but nonworking listing.

This simple program will not find {H] backspaces, [UJ frontspaces, or
the start the footnote machine I < commands, all of which are rare. You
will have to hand patch these. Note that the [F] command will not accept a
backspace or a frontspace.

Ironically, WPL.FILE LISTER is not so great at listing itself. So, we have

27

28 Applewriter Cookbook

souped up the listing by making all of the real control characters bolder
than the viewable bracket pairs.

All the WPL routines in this chapter are available ready-to-run on the
companion diskettes.

How Do I Do a HIRES Dump?

Very carefully.
The working AWIIe or ProDOS 2.0 code straddles both HIRES pages, so

putting a HIRES picture where it belongs in the machine and actually
viewing the picture is extremely tricky.

One solution is to precode the HIRES picture in a text file containing
strings that your printer will interpret as graphics commands. Then use
WPL to load and dump these strings as part of a multifile print. The
precoder can be done directly in machine language or can be an Applesoft
routine that links to machine language modules.

You also can use .pd8, followed by a post processing trip through
Applesoft or some custom machine language rebooting.

The best solution is to modify AWile so that a HIRES picture can be
loaded from, say, $7000 to $8FF8 along with a HIRES dumper that sits
above or below the image. With custom mods, a simple .hdlpixname/ will
insert the desired picture right in your text, preserving page numbers and
picking up the main text file undisturbed.

Note that HIRES dumps are highly printer and format dependent.

How Do I Center a Title?

The answer is once again in the fine user manuals.
You center a title by imbedding a .cj on the line before the centering is

to take place.

Why Won't My Ile Print Past Line 80?

On a cold boot, the serial ports in the Ile are initialized to automatically
produce a carriage return on column 80. They are also set to not echo print
characters to the screen. ProDOS Applewriter automatically resets the
baud rate, line width, port configuration, and video nonecho for you. This
resetting is handled by entering a [O)-J.

Under AWile, you can set the line length of your Ile port several ways.
One is to configure the port with the Utilities program before you boot
Applewriter. Another is to POKE 1401, 255 for slot one or POKE 1402, 255
for slot two.

More Applewriter Answers from the Gila Helpline

'Iwo other routes are to imbed a flj255N as the first printed line in your
text file or use the sledgehammer [I]-Z. See the Ile Technical Reference
Manual for full details. Once set, the line length and video nonecho is
remembered only as long as power is applied.

Is WPL Really That Great?

Owning Applewriter and not thoroughly understanding and using
WPL is almost as stupid as buying a Porsche just to listen to its radio.

What Good Is Right Justification?

Not much, unless you are a poet.
Right justification can be used for flush right page numbers or dates,

but the stock .tl and .bl commands do a quicker and neater job. Some
business letter writers might pref er having the date and signature flush
right.

How Do I Run Old Applewriter 2. 0 on a
Ile?

The usual problem is that the stock boot of old Applewriter 2.0 on a Ile
will give you an 80 column display only with a Sup-R Term card in slot
three.

One way around this is to remove the Ile 80 column card from the
expansion slot !which is really a fancified slot three) and plug the
Sup-R-Term card in its usual place.

A second solution is to tear apart the boot code and change the 80
column identification check to match the 80 column card you are going to
use. To use the stock slot zero Ile card, replace the identification check
with NOP or SEA commands. But the best solution of all is . . .

How Do I Use Old Applewriter 2.0 to . . .

Dumpy old Applewriter 2.0 absolutely does not compare with either
Applewriter Ile or ProDOS 2.0.

Among the more blatantly obvious differences are the full 80 column
uppercase and lowercase display; the always there and always live cursor;

29

30 Applewriter Cookbook

the improved tabbing, loading, and copying; the catalog-to-file feature;
express cursor motions; lack of escape-itis; doing away with the "open
cell" ; turnstiling; much longer text files; the new print-to-disk and
keyboard-to-printer options; the special apple-key services; and the many
improvements and upgrades in WPL.

To these benefits, the latest ProDOS version adds 240 column wide
editing, horizontally scrollable screens, a what-you-see-is-what-you-get
capability, page/position display, and a built in modem.

The probable bottom line is that nobody, but nobody, has tried one of
the new Applewriter versions and then gone back to the old 2.0 code.

Anytime. Ever.
No, the new versions will not run on a II or a II+ , which, in itself,

should tell you something. The longer you wait to make your inevitable
and unavoidable Applewriter upgrade (1) the higher the cost in frustration
and wasted time, (2) the more your competition will gobble you gone, and
(3} the sillier you will feel.

How Do I Ring the Ding-Dong from
WPL?

Just enter a ppr[G] for a ding-dong or a ppr[GJ[GJ[GJ for a tweedle. Use
the ding-dong for errors and the tweedle to call the operator back to the
machine after a long WPL routine finishes. As a reminder, a ppr[LJ
following a pnd will clear the WPL screen for you.

What Causes Page Creep?

Several causes exist and several cures are available.
One cause is a seemingly benign bug in both AWIIe and ProDOS

Applewriter 2.0 that adds an invisible and unwanted space to the end of all
top and bottom lines. If you set both the printer card and Applewriter to a
right margin of 80, this bug will add one or two lines to the pages where the
top or bottom lines are in use.

The cures are obvious: Use a 78-character right margin inside Apple
writer or set your card and printer margin to 255. A patch to fix this bug is
described in Chapter 6 and Patch B.14.

A second cause is not understanding .pl and .pi print constants.
The page interval, which is the physical page length, is almost always

set to 66. The .pl is the total number of printed lines, including top and
bottom margins, top line, bottom line, and the body. The .pl is usually set in
the 58 to 62 range. Exceptions occur when running a .pd8 in which .pl is
usually set to 66 or when printing labels, filing cards, legal paper, or other
forms involving oddball vertical lengths.

More Applewriter Answers from the Gila Helpline

A third cause of page creep is a printer that has its skip-over perforation
activated. Either deactivate this printer feature or change the .pi page
interval to something shorter so that everything comes out even.

A fourth possibility is that your interface card is forcing its own form
feeds at page bottom. Once again, reprogram the card or shorten the .pi as
needed.

Other causes of page creep involve imbedded printer commands.
The line counter inside Applewriter loses track of where you are on the

printed page if you feed a positive or a negative line feed, use a positive or
negative halfline feed, switch to graphics, or pick something other than six
lines per vertical inch. The rule is to undo what you do, such as throwing in
a positive line feed for each two negative halfline feeds elsewhere on the
page.

How Can I Stop a Hyper [delete] Key?

The automatic repeat is deadly when used with (delete].
Once [delete J gobbles up a character, it is gone forever. Do not ever use

(delete) for anything. Instead, use {open apple]-- to delete, so any lost
characters can be retrieved later from the swallow buffer by using {open
apple]--.

How Do I Imbed a Carriage Return in

the Glossary?
The) symbol imbedded in the glossary will be interpreted as a fake

carriage return. A poor choice of type font makes the closing bracket in the
example on page 56 of the AWIIe manual look almost like a vertical line.

What Good Are the Apple Keys?

{Open apple]-? or an {open apple]-/ accesses a tutorial. [Open apple)-
deletes one character and saves it to the swallow buffer. [Closed apple)-
retrieves a single character from the swallow buffer. {Closed apple] used
with any other character will read the glossary and enter the glossary
string in the text.

[Closed apple]-- gives you a by-word express backspace. [Closed
apple]·- gives you a by-word express frontspace. [Closed apple]-t gives you
an express jump 12 lines back toward the beginning of your file. [Closed
apple)-! gives you an express jump 12 lines forward toward the end of your
file.

3 1

32 Applewriter Cookbook

The /closed apple]-/tab] combination moves you forward on a line by
skipping over text and without inserting spaces. This method compares to
a stock tab that inserts spaces to get to the tabbed position, shoving any text
in front of the cursor forward.

/Closed apple]-W or /closed apple]-X will non·destructively copy a word
or a paragraph for relocation elsewhere. This compares to a stock [W] or
[X) that removes the word or paragraph for relocation elsewhere. Use plain
old [W] or [X] to move. Use (closed apple) to make a duplicate copy.

Can I Preboot ProDOS Applewriter 2.0?
Whether you can preboot depends on what you want your preboot to

do.
If you are setting printer card parameters; downloading custom

typefonts; activating fancier modem functions, using a plotter; etc.; a
pre boot program will work just fine.

To use a preboot program, assign it as a ProDOS .SYS file type. Then put
your preboot file on your third backup disk as the first system file type in
the directory. A cold ProDOS boot will then run your preboot program.
Your preboot program, in turn, should boot AW.SYSTEM.

On the other hand, note that the ProDOS Applewriter cold boot
firmware very meticulously unplugs and sets aside anything that was
connected to slot three. Preboots that do anything to a slot three card are
thus doomed to failure. Thus, it is very difficult to link stock ProDOS
Applewriter 2.0 to third-party video or screen cards of any type. Note that
this program makes no use whatsoever of any monitor routines.

Is Source Code Available?
Capturing your own source code is a simple and straightforward

process. Full details for AWIIe appeared in Enhancing Your Apple II,
Volume II (SAMS #21425). Details for ProDOS Applewriter 2.0 appear in
Chapter 8.

What Causes Missed Characters?
Using the keys for karate practice. The splintered table should have

given you a clue.
Seriously, missing characters happen only to one in thirty typists. That

one typist is invariably brutal in his or her key pounding.

More Applewriter Answers from the Gila Helpline

A 64 key type-ahead buffer in Applewriter Ile makes overtyping
theoretically impossible. Unfortunately, the keyscanner in the Ile is
slightly flaky. You can prove this by rapidly typing on the arrow keys,
rolling back and forth. Those single quotes you get illustrate the problem.

To never miss a keystroke: (1 1 Be gentle in your typing; 12) stay in the
replace mode rather than in the insert mode as much as possible; (3) be
extra crisp in your release of all keystrokes; and {4) touch the home keys as
lightly as you possibly can. Another tip: If you must insert bunches of text
in the middle of a long file, add enough carriage returns so that the text
beyond the insertion stays temporarily off screen.

What Causes Painfully Slow AWlle
Entry?

That's a very good question.
Under certain extremely rare conditions, Applewriter Ile can get in a

super-slow and virtually useless entry mode. This has happened to me
only once or twice, and only one helpline call in a hundred ever mentions
this problem.

Obviously, the problem is either in the hardware or the software.
If slow entry happens to you, try rebooting. If that doesn't help, try the

other factory copy of the program. Next, turn the power off, remove the
line cord, and carefully clean the contacts of all of your plug in cards,
particularly the 80 column card, the DOS card, and your printer card.
Radio Shack® cleaner-degreaser spray can be used. Then carefully lift all of
your memory chips very slightly and reseat them. Raise each chip just
enough to slightly scuff all of its pins.

Be sure to run your Ile memory diagnostic, using the control[closed
apple][reset] that is built in the Ile monitor. If none of the preceding solves
the problem, try a different Apple or change from a "short" 80 column
card to an "extended" 80-column card or vice versa. Let us know what you
find.

Why Can't I Do a Decent Underline?
That depends on your printer.
If your printer will accept a standard backspace as a backspace, the

AWIIe underliner should work. If it does not, see whether your printer
accepts only low ASCII backspaces and adjust your printer card and
printer interface accordingly. The usual symptom is a character, an
underline, a character, an underline, and so on. If this happens to you, your
printer is not accepting high ASCII backspaces.

33

34 Applewriter Cookbook

You can test your printer from Applesoft. Try printing a CHRS/08), then
a CH R Sf 136 I. lf the program buys the 8 but not the 136, you are
transmitting high ASCII, and the printer is only accepting low ASCII.
Often a single software word or a flipped DIP switch will solve the
problem.

If the underlining looks lousy, see whether the printer has an underline
command that you can imbed in your text to turn the printer's underlining
on and off. See Chapters 3 and 5 for more information.

Some printers will insist on underlining the right margin or on
dropping a continuing underline on the next line. Individually underlining
each word is one cure. A second solution is to break the underline into a
pair of underlines at the appropriate point, which can be done either by
hand or with some help from . pd8.

How Can I Print a Solid Bullet?
The simplest way is to use a lowercase o and hand ink it black. Neatness

counts.
Some printers will let you download custom characters. If so, just divert

some character you never use and replace it with a solid black disk. The
same idea works for math symbols, pi or other greek letters, trademarks, or
whatever.

On other printers, you can optionally switch to graphics, draw your
bullet or whatever, then return to normal text. I like to use my Diablo 630's
BOLD PS degree symbol. Even if you have to fill it in by hand, this symbol
is just the right size and shape. Unfortunately, the degree symbol is a tad
high of center, so I use the WPL.BULLET SHOOTER routine of Program
A. 7. You enter a single opening quote everywhere you want a bullet. Just
before printing, run WPL.BULLET SHOOTER.

Is There an Easy Way to Do Form
Letters?

The factory disk includes automatic WPL form letter routines. Their
use is fully detailed in the WPL manual. Beginners seem to have an
inordinate amount of trouble with A UTOLETTER.

If you are willing to print only 20 letters at a time, you can do form
letters a much easier way. What you do is put the form letter in your
mailing list rather than vice versa.

To put the form letter in your list by hand, just enter 20 or so addresses
into your machine. Then load your letter after each address. Note that your
letter should start with the body and end with the date. The first date will
have to be loaded by hand.

More Applewriter Answers from the Gila Helpline

The length of the letter determines how many you can fit in the
machine without an overflow. Having the 128K extended memory card
makes a big difference. WPL.FLINSERT of Program A.8 is an automatic
WPL form letter inserter that keys on an II### insertion marker to load a file
called MYLETTER.

If you need anything fancier than this easy, quick, fast, no frills routine,
use the stock AWile routines instead.

How Do I lmbed Escape Sequences?
This helpline call was from someone who tried using his old

Applewriter 2.0 glossary on AWile.
To imbed a printer command of, ferinstance, (esc)-P to your printer, you

had to use a [VJ(esc][esc}P [VJ with old Applewriter 2.0. The first esc is not
imbedded. All it does is get you in the cursor control mode. On Applewriter
Ile or ProDOS Applewriter 2.0, you are always in the cursor control mode,
so you need only a single escape command of [V][esc]P [VJ.

What happened to our caller was that two escapes were sent to his
printer by his newer Applewriter version. The printer ignored an [esc][esc]
as meaningless, then merrily went on to print the P as a real character.

Why Do Some AWlle Patches Disable
the Help Screen?

One of the side effects of the otherwise useless AWile Volume Verify
code module is that it enables the help screens. If you overwrite this
module with your own code, you lose the help screens. This problem is
unique to AWile.

The Applesoft fix for the OBJ.APWRT](E version is IF PEEK /19988/ =
1 76 THEN POKE 19988, 182. The similar repair for OBJ.APWRTJ{F is IF
PEEK /20365/ = 1 76 THEN POKE 20365, 182. Note that this patch is built in
to the AWIIe STRETCHIFIER and AWIIe CLARIFIER, Programs A.2 and
A.4. Study these programs for details.

Why Does {Y} Sometimes Destroy
Everything?

If you ever mix up the turn-off-the-split-screen command of [Y)N with
the flush·everything command of [N]Y, you will end up in deep trouble.
Very few users make this mistake more than once.

35

3

Secrets
of Top Quality

Printing
How to get "camera ready" print quality,

the old WD40 ribbon ploy,
sanely priced supplies,

optimizing your printer interface,
methods of custom imbedd.ing

printer commands,
justifying columns,

plus a few other goodies . .

37

Most hard copy from most personal computers looks just plain awful. If
I had my way, I would use a phototypesetter for all my computer rough
drafts and quick and dirty internal printouts.

For final drafts, gravure would be nice-which says that the first person
to come up with a $400 phototypesetting or laser printing plug in for an
Apple will run away with a very large bag of marbles, particularly if the
font library is available for less than a dollar a whack. At this writing, the
laser engines aren't quite here yet. When they do arrive, they are certain to
become popular and heavily used. They are fast, silent, bit mapped for text
and graphics in any mix, and can use an infinite variety of real type fonts in
any size you like. Like most anyone else, I can hardly wait.

Back to reality. You are probably stuck with a dot matrix or a
daisywheel printer. What can you do to be sure you have the best possible
print quality on everything you send out your door? You can use some of
the ideas here now no matter which printer you are using. Others are
aimed at users of daisywheels, for daisywheels is where you will end up at
this writing if print quality is super important to you.

We will look first at four print quality rules that apply no matter what
printer you are now using. After that, I'll describe choices that can save you
money and help you upgrade beyond your present print quality.

Let's do it . . .

Four Print Quality Rules

Matching Final Image

Far and away the single most important rule is . . .

39

40

Print Quality Rule Number One

Have the original image created by the original
author match the final image seen by the final
reader as exactly as possible.

Applewriter Cookbook

The words are not all that counts in the communication process.
How those words are arranged by the writer and how they are viewed

by the reader is everything. The closer your rough draft looks like your
final result, the better your print quality will be; the better you will be able
to balance the content and the appearance of what you are trying to create;
and, most importantly, the fewer ways people between you and the final
result can foul up the works.

Now, the latter is no big deal on a business letter. But, on anything like
an article, a paper, or a book, this final rule becomes crucial. Did you know
that, in the traditional book publishing setup, the author never sees what
his readers see until after the book is actually printed?

Believe it or not, neither does the review referee, the editor, the
typesetter, or even the proofreader!

All of these people traditionally work with images that are totally
different from what the reader will see. Some work with doublespaced
copy, some see typeset galleys, some concentrate on elaborate commands
and comments buried in the text, yet others deal with artwork proofs.

And the words and pictures are strictly and absolutely segregated
throughout nearly all of the publishing process. Even during final pasteup,
most of the pages are not beside one another.

What I am saying is that traditional doublespacing positively has got to
go. If your editor insists on doublespacing things, show him where the
vertical size control is located on the back of his video monitor. Otherwise,
make what you first type look exactly like what you want your final reader
to see. Anything else in this day and age is not even absurd. Remember that
ProDOS Applewriter can work in a what-you-see-is-what-you-get mode by
setting your screen right margin to the difference between your printed
right and left margins and by using the tab key instead of paragraph margin
.pm adjustments. Both ProDOS Applewriter 2.0 and AWIIe also give you
W YSIWYG through your choice of (1) forcing your own carriage returns,
(2) using .pd0 to print to screen, or the heavy solution of (3) which is the
"heavy" solution of using .pd8 to print to disk.

Getting All the Parts for the Printer

Our second rule is . . .

Secrets o{Tbp Quality Printi.ng

Print Quality Rule Number Two

Be sure you get all the parts needed for your printer.

Question: A Diablo 630 printer lists for $1800 on dealer special. How
much does this printer cost you?

Answer: With lots of luck and some compromises, you might squeak by
for less than $3000.

All of the essential and good parts needed for top print quality are
purposely left out of most of the printer packages sold by most computer
dealers. First, you need the real manuals for your printer, which include
the service, maintenance, configuration, interface, and repair manuals
rather than just the vapid and cutsey whatever that got stuffed in the
shipping box. Cost of these special manuals is typically $25 to $45 each.

Normally, a dealer goes out of his way to prevent you from ever getting
your hands on any of these manuals, for each distributed copy cuts dearly
into his service work. You usually have to order copies directly from the
factory. These complete manuals are absolutely essential for (1) finding out
how to exploit the true capabilities of your machine, (2) maintaining long
term print quality, and (3) resolving compatibility hassles.

Secondly, you need some decent way of feeding paper. For
daisywheels, this means a print tractor. No tractor at all is a cruel joke at
best. One-way tractors simply do not hack it. A bidirectional tractor is
needed for graphics and for top text quality.

Tractors are best bought used or surplus because they are far cheaper
this way.

Thirdly, you need the special toolkit required to keep the printer alive.
Diablo gladly lets you steal its little box that contains two funny
screwdrivers, a tiny steel rod, some sticky glop, and two pieces of stamped
metal for a mere $75 plus shipping. Unfortunately, you must have these
tools and parts to make any sane use of the printer at all.

Fourthly, you need to find out about the extra cost bells and whistles.
Like an engine and wheels. On dot matrix printers, bells and whistles
include graphics ROMs, screen dumpers, and font downloaders. On
daisywheel printers, look for enhanced or expanded firmware that let you
do microjustification, full word processing, vector graphics, PS table and
font downloading, or other features that add intelligence.

As we'll find out later, the secret to superb print quality is to let the
Applewriter software do what it does best, let the printer firmware do
what it does best, and then link the two as intelligently as possible.

Finally, you probably want to build a silencer. Most any impact printer
will drive you up the wall if you work anywhere nearby. Although dot

41

42 Applewriter Cookbook

matrix printers seem somewhat quieter than daisywheels, the noise of dot
matrix printers is more highly pitched and much more stressful. If you
think toolkits and manuals are priced out of sight, wait till you see the
pricing on silencers.

Hoo boy!
The best idea is to build your own. Be sure to include a fan.
The bottom line is to find out what you really need to get your printer

doing useful things and then pick up as much of that material as· quickly
and cheaply as you possibly can.

Obtaining Supplies at Good Prices

Next on our rule list is . . .

Print Quality Rule Number Three

Find sanely priced sources of word processing
supplies.

All the munchables that get gobbled up by your word processing
system will eat you out of house and home if you let them. The prices can
force you to use second rate materials and supplies, so be sure to find
reasonable and sane sources of paper, ribbons, disks, mailers, forrnfed
checks, stationery, labels, and whatever. Making the effort to find such
sources saves you bunches of money and gives you a far better product out
the door.

On the facing page is a list of some of the supply sources that I use . . .
These sources are the ones that I happen to be using at this writing.

Naturally, the instant I find some place that is better or cheaper, it will get
my business.

'Iwo comments: Quill has far and away the best pricing on paper,
ribbons, and metal daisywheels anywhere, but be sure to wait for Quill's
monthly loss leader sales. What you need will usually come back around
again in a few months. Secondly, Calumet calls its reuseable disk mailers a
Ill Stay.Flat Mailer. Pricing is-are you ready for this?-under a dime each
in quantity.

Secrets of Top Quality Printing

Word Processor Supply Sources
That I Use

New ribbons
and paper:

QUILL
100 S. Schleter Road
Lincolnshire IL 60069
(312) 634-4800

Ribbon rewinding: TORRES RIBBONS
416 East State St.
Redlands CA 92373
(714) 792-0831

Diablo parts: THE PRINTER WORKS
1961 Alpine Way
Hayward CA 94545
(415) 887-6116

Printer bargains: COMPUTER SHOPPER
Box F
Titusville FL 32796
(305) 269-321 1

Bulk 3M disks: ALF PRODUCTS
1315F Nelson Street
Denver CO, 80215
1303) 234-0871

Disk mailers: CALUMET CARTON
16920 State Street
S. Holland IL, 60643
(3121 333-6521

Checks and labels: NEBS
12 South Street
Townsend MA O 1469
(8001 225-9550

Always ask around for the best pricing and delivery on your word
processing needs. As guidelines, medium quality disks should cost you no
more than $ 1.50, Diablo film ribbons no more than $2. 75, disk mailers not
more than a dime, and metal daisywheels should not exceed $30. Some of
the large, no-frills discount ''club" stores (Price Club, ferinstance) are
starting to offer some limited word-processing supplies at incredibly low
prices. Be sure to check out any in your area.

43

44

Communicating

And for our final heavy rule . . .

Print Quality Rule Number Four

Let the word processing program and the printer
communicate with each other as intelligently as
possible.

Applewriter Cookbook

If you do not tell your word processor what printer is hung on its
output, your software will assume the printer is something worse than a
Model 28 Teletype, and you will get print quality that is both atrocious and
slow.

On the other hand, if you let your word processor and printer talk to
each other at the highest possible level, you are going to get the best
printing quality your system is capable of. The trick is to let the printer do
what it does best and let Applewriter do what it does best. Ferinstance, if
you have a printer with full microjustification firmware, have your printer,
rather than Applewriter, do the justification for you.

'Iwo levels of communication are involved in high-quality printing . . .

1. Low Level Communication
Letting Applewriter send stuff to the printer as
quickly and as free of errors as possible.

2. High Level Communication
Imbedding in the text those commands that
activate special printer features when and as
they are needed.

Low level communication is nothing more than making sure your
interface works. These days most newer printers will simply plug and go
with most newer serial or parallel interface setups.

If things do not work well the first time, an imbedded command or the
flip of a switch should cure things. The comments that follow mostly apply
to attempts at using older printers with oddball parallel or serial cards on a
Ile. My rule is "lffen it ain't broke, don't fix it:·

Many, if not most, of the better quality printers communicate serially
under standard RS232. The trend is to make everything serial because it

Secrets of 1bp Quality Printing

eases the FCC interference hassles on new hardware designs. Both the
Apple Ile and the Macintosh off er only serial printing. Third party add-ons
are available to go parallel if you have to.

Should you need extra RS232 cables to extend a printer, you can build
them by buying press on connectors and flat cables out of most any
electronic hardware catalog. Cost is far less than ready made cables, and
the result is compact and flexible. Suitable cables may show up also as
surplus bargains.

Requirements for a Good Serial Interface

Needless to say, both ends must use the same baud rate. Hidden
switches can be flipped or software commands can be sent to adjust the
baud rates. You should always try to set up your computer and printer to
communicate at the fastest possible baud rate, preferably at 9600 bits per
second. Otherwise, ti.me is wasted passing characters back and forth, and
your printer will have to wait every now and then for new characters. That
waiting period becomes crucial on daisywheel graphic dumps.

You also should defeat any Apple video display echo. Besides putting
unreadable garbage on the screen, the screen scrolling times will further
slow down any exchange of characters between your word processor and
printer. The old ROM version of the Ile has an especially slow screen
scroll.

Most importantly, you should be sure you have handshaking between
your printer and your word processor. If the printer ever gets behind , it
must have some way of telling the computer to stop sending characters for
a while. The usual microcomputer way of hand.ling this is with a busy
signal line that goes from printer to computer. The busy signal holds up
any characters being sent until they can be used. The object is to have the
printer limit its own maximum speed rather than slowing printing just to
avoid handshaking.

Summing up . . .

For a Good Serial Interface

1 . Run at the fastest baud rate.
2. Def eat the Apple screen echo.
3. Provide busy handshaking.

45

46 Applewriter Cookbook

The RS232 Interface

As you have probably discovered by now, RS232 Compatible means
only that you do not have to call the fire department before you plug two
RS232 interface connectors into each other. The compatibility in no way
guarantees that the two devices will actually talk to each other or do what
you expect of them. The number and use of each wire in an RS232
interface differs somewhat with each printer application. Figure 3 . 1
summarizes the important RS232 signal lines.

5 OIC. 1'0 SEftO

STOPS INT[IUACC fAOM
SENOI HC CH AQACHAS.
PAIHHR "8USV" OfHN
GO(S H(Af.

(HIGH • OK TO S[HD)

:, OATA *"
PRINT[R INPUT MUST 8(
CAOSS(D OY£R TO PIH
Z Of TH(IHT[AfAC[.

(LOW = OIGITAl ONE OA "SPACE")
(HIC H " OIGI TAl l(IIO OR "MA RIC")

1 OIIIHI OUT

PAINT[A OUTPUT MUST 8[

CROSSED OVCA TO PIN
3 Of TH[INtElfACt:. THIS
"BACK CHANNH" IS SHOOM
USfO.

6 1/0 A£,-OV

TEllS THC PAINTER WH[H
HIE INT£AfAC£ CAAO IS
A

°

CTIVL

(HIC.N � IHTEAfACC AC ADV)

7 $10Nfll OflOUNO

Q£TUAH PATH fOA
OATA AHO HAHOSHAICING
SIGHAlS. AHV OTH(A
CUAA(NTS THROUGH THIS
PIN W Ill CAVS C CRROAS.

e CIIUllllt£i. OE:Tf:Cl'

THIS PIN HUS TN[
IHT(RfACC TO STOP
SCHOIHG WH[H NO
M00(M CARAl(A IS
PA{SfHT.

(NIGH " OK TO SENO)

.-----t t 1 9Uf"F'Elll F'Ull

THIS PIH IS UHl)(flH[O

8V AS232C, BUT IS
AAAH V USfO AS A
'"PRIHHA eusv· SICHAl.

(HICH • HOT BUSY)

20 ,-'""ff: Ill At ROV

TELLS TH[SCAIAL
IHT(AfACE THAT TNE
PAINTER IS CONNECTED
ANO POWtA(O.

<SNOWII RS "Al["'"S. CR9lE E"D)

Fig. 3.1. RS232C pin connections normally used by a serial printer interface.

Figure 3.2 shows the custom interface that I use between an Apple Ile
with a Mountain Hardware AIO card in slot one. This older interface
lashup is more or less typical, but details may change with your needs.

Secrets of Top Quality Printing

8
CARRIER DETECT

1/0 REAOY
6

PRINTER REAO'I

DIA8l0 630
20

OK TO SEND s
OAISVWHEEL SIGNAL GROUND

1
PRINTER OAT A TO PRINTER

l

2
DATA FRON PRINTER

SAHTV GROUND

N O H : JUMPER 8l0CK REOUUHO

AT Q60•, TO A60•6 ON

TH[MPlt0•5 BOARO.

2.nc

e + t 2V

6

20 � "AIO"

s IMTERFACE

1
CARO

,
2

l!S232C Pl•
•unecas

Fig. 3 . .2. Some customuin.g is needed to get an older RS232C printer interface to work
pro-,,erly. This example links a SSM "PlO" interface card to a Diablo 630 printer.

As noted before, if you use a popular printer with a popular interface,
you can just plug and go without many problems. If you try an oddball
printer or a obscure Ile printer card, some playing around will be needed to
get everything flying right side up. Such customizing usually involves
setting some DIP switches, crossing a pair of wires, and jumpering some
other wires or lines together. Some intelligent printer cards, such as the
Grappler, can really foul up the ProDOS Applewriter 2.0 output. See
Chapter 6 and Appendix B for the needed patches.

Returning to RS232, note that the data out and data in lines, pins two
and three, must be crossed once and only once. The reason is that what is
output from the Apple is input to the printer and vice versa. Commercial
"modem eliminators" are available that will cross these two wires for you.

Pricing is unreal.
In many RS232 interfaces, you can simply tie pins 6, 8, and 20 together.

Pin 20 is usually the busy signal line from printer to computer.
Unfortunately, this introduces a bug in the extended Diablo 630 that
swallows two characters out of each buff er loading, so pins six and eight
are separately held active as shown in Figure 3.2, which is done by using a
pullup resistor.

Incidentally, the circuit of Figure 3.2 only works on a Diablo 630 that
has the little blue jumper placed between pins A60-5 and A60-6 on the
HPROS board. Of course, the fun starts when nobody bothers to tell you
about little blue jumpers. Details like this explain why the special printer
manuals are so important.

If you are having interface problems, first make sure your baud rates
are the same on both ends, as are such things as the word length, number of
stop bits, forced carriage returns, and the type of parity in use. Then make
sure your interface has pins two and three crossed in both directions. As an

47

48 Applewriter Cookbook

RS232 baseline, cross three to two, two to three and separately jumper pins
six, eight, and 20 together. Next, try printing at the lowest possible baud
rate, preferably 110 baud. This will separate any fundamental gotchas
from handshaking problems.

Finally, go up to full speed to resolve any handshaking problems.
Handshaking problems usually do not show up until after a few hundred
characters have been properly printed. If all the preceding fails, use an
oscilloscope or a voltmeter to check out which lines are doing what to
whom.

The Apple Ile greatly eases most interface hassles. See the Ile Technical
Reference Manual for full details on how the serial ports work.

You also can get configuration software that will adjust the ports for
you. You can use imbedded {I] commands to set line width, baud rate, etc.
This Ile firmware even has an [1)-Z that stops most card interference with
commands passed to your printer.

Some of the "toy" daisywheels will accept only low ASCII control
commands. If your underlining will not work and gives you a character, an
underline, a character, an underline, etc. check this detail. Sometimes you
can get underlining by sending seven bit words out your interface. Other
times, you can flip a couple of hidden switches or do some minor surgery.

Much more information on interface fundamentals appear in my TV
Typewriter Cookbook, Micro Cookbook, Volwne I, and Micro Cookbook,
Volume II, (SAMS #21313, 21828, and 21829).

All of which summarizes the four most important print quality rules
and gets you some interface guidelines. These ought to work for you, no
matter where you are or what you have now in the way of hard copy.

For Still More Print Quality
If you are willing to spend more to get more, the following are some

more ways to upgrade print quality.

For Best Print Quality

1 . Use a daisywheel rather than a dot matrix
printer.

2. Use a real rather than a toy daisywheel printer.
3. Use metal rather than plastic daisywheel

elements.
4. Use proportionally spaced rather than fixed

pitch wheels.
5. Use a printwheel font with a typestyle that

matches the image that you want to project.

Secrets of Top Quality Printing

6. Use film rather than fabric ribbons.
7. Use fresh ribbons from a quality source.
8. Use a bidirectional rather than a unidirectional

print tractor.
9. Use the slowest possible printing speed with

maximum settling time.
10. Use the highest quality paper that suits the job

to be done.
11 . Use a ribbon and paper combination that work

well together.
12. Use microjustification rather than full space

justification.
13. Use your maintenance manual to keep the

printer fine tuned.
14. Use a new platen rather than one that is two

years old.
15. Use every feature you can, as long as that

feature improves your final product.

Daisywheel versus Dot Matrix Printers

Daisywheel print quality is vastly better than dot matrix print quality.
Period.
Although even the toy daisywheels will do a reasonable printing job,

only the real daisywheels give you top drawer quality.
At this writing, only three mainstream real daisywheels exist. These

are the Qume® Sprint® series, the Diablo 630, and the heavier NEC®

Spinwriters®. Technically, the NEC is really a thimble printer rather than a
daisywheel, but you end up with essentially the same results and
essentially the same print quality.

As much difference in print quality exists between a metal daisywheel
element and a plastic one as between daisywheel and dot matrix print
quality. Admittedly the metal wheels have a much higher first cost and are
very easily damaged, but for superb results, there is no contest. Note that
the print elements are thicker on a metal daisywheel than those on plastic
daisywheels. Thus the optimum printer hammer setting for metal is
unsuitable for plastic and vice versa. Stick with all metal daisywheels
rather than continually readjusting your machine. Otherwise, you whap
the metal too hard and the plastic too light.

The best daisywheel elements will offer proportional spacing rather
than fixed spacing, which means that thin characters are printed close
together and fat characters are printed far apart. With proportional
spacing, a capital W takes up more room than a lowercase i. This spacing is
just like real printing but unlike your usual typewriter.

49

50 Applewriter Cookbook

Proportionally spaced printing is far more readable. You can often
cram more message in less space as well.

You will find hundreds of different daisywheels available. The type
font you pick determines the overall effect of your message and the tone
with which it is to be received. Experiment to get the best results. I
personally like the BOLD PS wheel for people style communications and
the TITAN 10 for machine language dumps and other computer listings. As
a reminder, we found out how to automatically handle oddball spokes on
offbeat wheels in the previous chapter by using the WPL.SPOKE
REARRANGER.

Film versus Cloth Ribbons

There's absolutely no comparison between film and cloth ribbons.
Film is sharper, blacker, and far better looking. High quality fresh

ribbons from a source you trust will give you better and more uniform
results. Often though, the house brands will be just as good and far cheaper
than genuine name-brand stock. Checking pays. Never nurse a sick ribbon.
Flush it as soon as it even threatens trouble.

Color ribbons often end up as bad news. They forever seem to be
jamming and needing repairs. Besides color ribbons just don't produce
copy that looks that great. Hopefully, these will improve.

Remember that dot matrix printers must use cloth ribbons. Film is a
no-no.

Print Tractors

For best quality, you will need a two-way, or bidirectional print tractor.
The bidirectional tractor positions the paper far more precisely. It is
essential for clean graphics or for printing pages that contain several text
columns. A bidirectional tractor can fairly simply back up as much as a full
page. Any reverse motion at all gets sticky quickly with one-way tractors.

Just as some dot matrix printers will give you higher quality by slowing
down and printing more dots per character, some daisywheels will let you
slow down your printing by increasing the carriage settling time. Increased
settling time gives you more accurate character hits, which are essential
for shadow printing and may improve other results. It is often a good idea
to run your final out-the-door copy as slowly as possible.

Camera·Ready Printing

Some of the newest daisywheels offer a camera-ready print mode.
Usually, these printers just shift the ribbon into high gear so that each
character gets a fresh chunk of ribbon for its own private use. Normally,

Secrets of Top Quality Printing

each hit causes only a 1/5-character ribbon advance, so the price for
camera-ready quality is higher ribbon cost. You may find this a good
tradeoff but worthwhile only for your final copy.

You'll find a WPL camera-ready printing program in Program A.9. This
program gives superb quality automatically on most any daisywheel
printer and at only a double cost ribbon penalty.

Microjusti(ication

Microjusti{ication means that you fill out a line by uniformly expanding
each space and, if needed, the space between letters. The adjustment can
be as small as 11120th of an inch, which is a tiny fraction of the width of a
full character. The fill justify option on Applewriter only lets you do whole
space justification, which creates an awkward shading across the text and
is visually jarring. Microjustification also can be used to adjust side-by-side
characters individually so that they look as natural together as possible. We
will look at some fully automatic microjustification and proportional
spacing programs in Chapter 4.

Printer Adjustment

Keeping your printer properly adjusted is very important. The quality
of the printing produced by just about any machine will deteriorate with
time. Important things to do every few months on a daisywheel printer
include washing the printwheels and platen with suitable solvents,
adjusting the print hammer mechanism, freeing up the tractor, correcting
any linefeed stepper backlash, and doing a general cleaning and
lubrication. Once again, you'll find the maintenance manuals essential to
help you do the job right. Special tools and gauges may also be needed.

Printer Paper

Your choice of printer paper should be obvious. At the very least, use
20-pound, extra-white, microperf paper for anything except rough drafts.
This stuff runs less on sale than a penny a sheet.

Where customer acceptance is critical, step up to classic laid papers or
bond papers with a high rag content.

If you are going to have your final copy offset printed, use a super
white, slick surface, hard coated stock for your camera-ready copy. The
litho camera used to make printing plates will give you much sharper
characters from this type of stock. Your local printer can recommend
sources. You'll find Hewlett-Packard plotter paper makes a fairly cheap but
workable substitute. Some ribbons work well with certain papers and
poorly with others, so test carefully, then match your paper and ribbon to
each other.

51

52 Applewriter Cookbook

Printer Platens

Replacing the platen at least every two years is a good idea. Replace it
whether it needs to be replaced or not. Naturally, if the platen looks bad at
any time, replace it promptly. Platens on personal computer printers tend
to wear unevenly because much of the copy consists of narrow listings or
machine dumps. Sometimes a mildly worn platen can be flipped
end-for-end to extend its life.

Bells and Whistles

Finally, nothing is worse than failing to use an existing printer feature
that genuinely will help your hard copy. Be sure to learn each bell and
whistle on both your printer and word processor. Then figure out how to
combine them in new, original, and useful ways.

That Old WD40 Ploy

If you are using a dot matrix printer, you are stuck with cloth ribbons
because film ribbons cannot withstand the impact of the printhead pins.
What can you do to get the best cloth ribbon life and the best possible
impressions? First, keep one almost new ribbon and one reasonably legible
ribbon on hand. Use the newer ribbon only when you are doing a final
draft of something.

Secondly is the old WD40 ploy. That it works at all is what's as
tounding. The amazing property of WD40 is that a small amount of it will
cause the remaining ink on the ribbon to move laterally by capillary action
from the unused portion of the cloth into the empty tracks. You can recycle
a ribbon a dozen times or more, as long as the cloth is not physically
damaged. How much blacker an old ribbon will become is utterly amazing.
Getting just enough WD40 is tricky. Too much is worse than none at all.
Here's how you go about . . .

Recycling a Dot Matrix Cloth Ribbon

1. Take the ribbon far away from your computer
area, then pry the lid off with a pocketknife.

2. Lightly spray the ribbon with WD40. Thumb the
maze and lightly spray again.

3. Crank the ribbon once around and lightly spray
again.

Secrets of Top Quality Printing

4. Wipe all the WD40 off everything except the
cloth itself. Let the ribbon sit overnight before
snapping the cover back on.

5. Test the quality of the ribbon before using it for
anything fancy.

If you use too much WD40, the ink will run on the page and look awful.
You can also get some bleedthrough and grease spots on the back of your
printout. With just the right amount of WD40, you will find this ploy saves
you bunches on ribbon costs, and you can use these recycled ribbons over
and over again for all but your final draft needs.

A related stunt is called the mobius trick. If your ribbon only has one
worn and off-center track, open the case, give the ribbon a half turn, then
crank it through. You may have to manually help the half-turn get by
internal ribbon guides. After cranking all the way through, your ribbon is
now inside out, and you should have a fresh track ready for use.

Naturally, this technique will not work on a ribbon with a centered
worn track. Some newer ribbon manufacturers already wind their ribbons
as mobius bands, giving each ribbon twice the life to start with. You can tell
these ribbons by their double worn track after they have been used.

Imbedding Print Commands
There's several ways to pass high-level commands back and forth

between a word processing computer and a printer. Some of these "older"
methods involve hardware switch flipping, some involve configuration
jumpers, and others involve direct pokes or stores to certain memory
locations.

Today, most printer intelligence is passed back and forth with easily
used . . .

Imbedded printer commands

are messages inside messages that tell the printer
to start doing something special or different.

Remember that we are using the WPL method of showing control keys
here: {escJ means press the escape key. (L] means press the control hey, press
and release the L hey, then release the control key.

53

54 Applewriter Cookbook

Let's look at three examples of imbedded commands. The Epson
command fesc]·4 tells the printer to begin printing in italics, and [esc]-5
turns italics back off. Similar commands will set the boldness of the
printing, italicize or underline, or specify the number of characters per
inch vertically or horizontally.

Turning to daisywheels, the enhanced Diablo command of [escj-M will
turn on the microjustify feature. Use [escj-X to turn microjustify back off
again. Similar imbedded commands alter margins, spacing, graphics
selections, proportional printing, shadow printing, and the like.

Some interface circuits also will need imbedded commands. More
correctly, these commands are communications commands rather than
printer commands. One familiar example is the / I] 80N command used by
parallel interface cards to set the line width to 80 characters and cancel the
Apple video echo. The ports on the Apple Ile also accept [I) commands to
set their line width and video echo features.

See the Ile Technical Reference Manual for more details.
Because you normally want Applewriter to set your actual right

margin, you should set the interface card's right margin as high as possible.
Better yet, defeat any forced carriage returns entirely. Subtle page-creep
problems can result from an interface card that is forcing its own carriage
returns. If you are going to use all of the really neat features of your
particular printer and interface, you have to be able to understand and use
imbedded print commands. More importantly, you have to figure out how
to let Applewriter handle these commands for you.

Summarizing . . .

To Understand Imbedded Commands

1. Find a list of imbedded commands.
2. Play with them one on one.
3. Add them to Applewriter.

I like to do things by hand and by myself when exploring something
new. Apply this idea to imbedding your own commands. Get a list of
special commands for your printer, then hand list them. Rearrange things
in order of likely interest to you.

After that, spend some time "exercising" each new feature until you
thoroughly understand what each command can do for you. Be sure to
check each of these commands well ahead of time as a separate study
instead of trying to figure out something in the middle of some real
printing. Be sure to explore both what the imbedded command is intended
to do as well as what it really can do for you if you use it in new and
unexplored ways.

Secrets of Thp Quality Printing

How do you imbed commands? With Applewriter, you can imbed print
commands at three different levels.

Im bedding Commands in Applewriter

1. Verbatim Method
Use the [V] command to plant control characters
in your text when and as they are needed.

2. Glossary Method
Use the glossary to give single keystroke entries
of long imbedded commands.

3. WPL Method
Use the WPL word-processing language to enter
or strip whole documents of needed commands.

The verbatim method is the simplest. Use it to immediately put an
occasional control character directly into your text. Use this method for
practice and for seldom used or oddball commands.

The glossary method lets you shorten each often used series of
imbedded commands into a single keystroke. This saves looking up
complicated commands that you repeatedly use. The glossary selections
are put into your text file in the first place by using the verbatim method.
The glossary is then saved to disk for later use. You can self prompt a
glossary or even run a WPL module off disk with a single keystroke. We
will see how to do this in Chapter 5.

The WPL method is a super heavy.
Under automatic program control, WPL can access a document spread

over as many drives as you have in your system. WPL will then scan the
document and automatically insert or remove any and all imbedded
commands of your choice, anyway you want. One big plus of the WPL
method is that you never have to look at imbedded commands or work
directly with text that has commands imbedded in it.

You take a plain old text file, done the way you already know, then use
WPL to automatically imbed the commands immediately before each
printing. Changes or corrections are always made to the original,
pre-imbedded document.

The WPL method is particularly handy if you have to send your files to,
say, both a daisywheel printer and a phototypesetter. Each will have its
own set of wildly different imbedded commands. Your text files are better
with a minimum of imbedding. Customize the files as needed for each
output.

We will be using WPL later for invisible and automatic micro
justification and proportional spacing. Here's a quick look at each
imbedding method . . .

55

56 Applewriter Cookbook

Verbatim Method
The {V] key tends to drive new Applewriter users up the wall.
If you accidentally hit [VJ, you seem to lose control, and all sorts of

ungood things start happening to your text. An inverse H is added every
time you try to backspace, and every attempted deletion adds a new
character. What's going on here? Remember that we use the [V) symbol to
mean hold down the control key, press and release the capital V key, then
release the control key.

When you press [VJ, you tell Applewriter until further notice, I want you
to ignore all the control commands that I give you except for {VJ and [M].
Instead, you are to directly imbed any other control commands in your text file.
Applewriter then ignores all control commands except for [VJ and (M].
Thus, after an accidental [VJ press, the left arrow is ignored. Instead, a
backspace is imbedded in your text as an [HJ, tabs become [I), and so on.
The more you stir this mess, the worse it gets. The only commands the
program will recognize are [VJ and the carriage return [M).

Unfortunately there are several different ways to show control
commands. Figure 3.3 lists the 33 ASCII control commands, their
traditional names, and how they are keyed from your Apple. For instance,
we see that ASCII code hex $ 1 1 or decimal 17 is called DCl , short for device
control one and is entered from your Apple keyboard by a {Q].
Note that any and all ASCII control commands can be entered directly
from the Ile keyboard. Some, such as [Q], require that you hold down the
control key. Others, such as [esc] or [tab) will directly generate the needed
code, without needing the control key pressed.

While we are looking at charts, Figure 3.4 shows some N and N-1
values. Many intelligent printers "expect" to receive certain numeric
values in the form of an equivalent ASCII character. This expected
character is roughly akin to the BASIC language CHR$ command that
sends out a return, CR, for a CHR$(13) and so on.

The reason for this oddball turn of events is that a numeric value can be
sent as a single ASCII byte rather than as two or three. No guessing is
needed to determine whether a received 1 is really a 1, the start of a 12, or
the beginning of a 123 sequence. Thus, instead of a 101, you send a
lowercase {instead. One fixed byte instead of three variable ones.

Sometimes, the actual or N value is used. Other times, an N-1 value is
sent. Whether N or N-1 is used depends on the command and the printer.
Line and tab values are often sent with N commands, and VMI and HMI
vertical and horizontal motions are often handled by the N-1 values. See
the advanced manuals on your particular printer for full details.

We are not going to study the individual commands of individual
printers in depth. First, because you must do this on your own if you are to
get the most bang for the buck from your printer. Secondly, because so
many different printers are out there. And lastly, because you don't have to
worry about such things if you use the invisible and automatic methods
that I am about to describe.

Secrets of Tbp Quality Printing

ASCII H•• Cod• Oac Cod• II• JIC•y• Original Os•
. " . " . " � " " . " . . . � �

lfOt.. $00 00 [(!] • Oo nothing or null
SOB $01 01 {A] Start ot heading
STX $02 02 [8] Start ot text
&'l'X $03 03 {C] &nd of text

£OT so, 04 (O] End ot transmisson
&MQ $OS OS (.EJ Enquiry
ACJC $06 06 [F) Acknowledg•
Bl:L $07 07 [G] Bell or alarm.

BS $08 08 (BJ Backspace
B'1' $09 09 [I] Roria:ontal tab
Lr $0A 10 [J] 1.inefaad
V"l $08 11 (!IC] Vertical ta:t>

Fl' $0C 12 {1.] Fomteed
CR $00 13 {M] Carriage return
so $0& u [N] Shift out
SI $01' 15 [OJ Shift in

Dt.E $10 16 {PJ Data link escape
DCl $11 17 {Q) D•vica control ll
DC2 $12 18 {R] D•vice control 12
DC3 $13 u [$] De�ice control 13

DC4 $U 20 [T] Device control 1,
MAit $15 21 [OJ Na9ativ• acknowledge
Snf $16 22 (V) Synchronous idle
£TB $17 23 (WJ End block transmit

CM $18 24 [X] Cancel
Dt $19 2.5 (Y] End of medium
SOB $lA 26 [Z] Substitute
ltSC $18 27 [(] £scape

I'S $1C 28 [I) Form. seperator
GS $1D 29 [}) Group seperator
llS U& 30 (.. l IYln9e seperator
09 $11' 31 {_] Oser separator

D&L $71' 127 OEt.Eft * Delete

Equivalent key1 : UF'l' AAROW :a (II) "' as

TAB .. (I) :; B'l'
DOWN' AltltOW :It [J] = I.I'
UP AltltOW "' (It] :; V"l

�'l'OJUI '"' [M] "' 0.
llIGBT AJUlO'lf "" [l'.7] = NAX
£SCJU'C "" { (] ... ESC

Gotchas : Many Apple use1 set tbe ASCII most aignificant bit. To
set th• MSB, add hex $80 or decimal 128 to above values.

• - NUt. ($00 or $80) and DEL ($71' or $IT) ar• reserved
for internal us• by Applewriter II•. A patch is
available to restore NOL. see modul• si•.

Fig. 3.3. ASCII control codes are needed for most intelligent printer interfaces and can
appear in many different forms.

57

58 Applewriter Cookbook

.. M•l" ••lf" SEND "M-1'' "N" SlKt> "M-1" "H" Sll:Kt>
. . - '

0 l (AJ 44 ., - 88 89
1 2 (81 45 46 89 90
2 l (Cl 4' 41 I 90 91 (
3 4 [D) 47 48 0 91 92 \

4 5 (1:J 48 49 l 92 93 l
5 6 [1'1 0 50 2 93 94 ..
6 7 [GJ 50 51) 94 95
7 6 [BJ 51 52 4 95 96 -:-

8 9 [l) 52 SJ 5 96 97
9 10 (J) SJ 54 6 97 98 b

10 1 1 [Kl 54 55 7 98 gg C
1 1 12 {I.} 55 56 8 99 100 d

12 13 (HJ 56 57 9 100 101
lJ 14 (N] 51 58 : 101 102 �
14 15 (O] 58 59 ; 102 103 q
15 16 (fl 59 60 < 103 104 b

16 17 (Q] 60 61 - 104 105 i
17 18 [R.] 61 62 > 105 106 j
l8 u (SJ 62 ,J ? 106 107 k
19 20 (TJ ,3 64 G 107 108 l

20 21 [U] u 65 A 108 109 m.
21 22 (VJ 65 66 8 109 110 n
22 23 (W) 66 n C 110 111 0

23 24 (Xl n 68 0 111 112 p

24 25 (Y] 68 69 z 112 113 q
25 26 (Z] 69 70 r 113 114 r
26 27 ({] 70 7 1 G 114 115 s
27 28 [I l 71. 72 R lU 116 t

28 29 [} l 72 73 I 116 117 I.I

29 30 [.... l 73 74 J 117 118 V

30 31 [_) 74 75 JC 118 lU
31 32 (space) 75 76 :r. 119 120 X

32 33 ! 76 7 7 M 120 121 y
33 34 .. 77 78 N 121 122 a
34 35 f 78 79 0 122 123 {
35 36 $ 79 80 , 123 124 I

36 37 ' 80 81 Q 124 125 }
37 38 " 81 82 Jl 125 126 -
38 39 ' 82 83 s
39 40 (83 84 T

40 41) 84 85 u
41 42 • 85 86 V
42 43 + 86 87 w
43 " ' 87 88 X

. � � � " .
"M-1" value• are oft•n ua•d by RMI and VMI motion commands .

"N" values ar• often ueed tor lin••fpage and tab val�es .

ASCII values of $00, $7', $80 and $ff ar• r•s•rvad for internal
use by Applewritar II• �nd ehould not be i.ml:l•dded into t•xttile1 .

Fig. 3.4. Many intelligent printers require that command values be passed to them. b)I
the m.imeric Nor N-1 value of an ASCII character.

Secrets of Top Quality Printing

How do you use [V]? Suppose that you want to switch your Epson to
print italics, so you want to imbed an fesc)-4 in your text. To do this using
[V], first go to the place in the text where you want to imbed the command.
Then type [VJ{esc)[VJ4. The first [V] says verbatim enter the esc key in the text.
The second [V] says quit imbedding funny commands and switch back to
normal word processor use of the control commands. Note in this example that
we need a plain old 4 and not a {4}.

Watch this detail very carefully. Provide control characters only when
they are called for.

As an enhanced Diablo example, the command fesc} M turns on
microjustification. To imbed this command in your document, go to the
right place, then type {VJ[esc)[VJM, and you are home free.

Obviously . . .

Do not forget to press the second [V] when you
finish imbedding a command!

Let's look at another simple example of the verbatim method.
One of the weaknesses of Applewriter's underline mode is that it gives

you no direct way to underline up to a period, comma, or question mark.
At least not without also underlining the punctuation or adding at least one
unwanted space.

This problem has both "micrometer" and "sledgehammer" solutions.
The micrometer way is to imbed a backspace a�er the trailing underline
token but before the comma or period. For instance, you type \ zorch \
{VJ{HJ{VJ to underline the zorch but not the period. The backspace
swallows the space forced by the underline processor. The imbedded
backspace does work on any printer bright enough to recognize a
backspace when the printer sees one. The imbedded backspace is a simple
fix to the one problem that seems to bother beginning Applewriter users
the most.

The sledgehammer solution is to imbed commands that turn on and off
the printer's own internal underlining firmware. This is far more flexible.
The usual result is a cleaner underline because the printer will properly
step up the ribbon advance. Im bedded backspaces are also not needed
with this solution.

Better yet, do you really want to underline? How about a doublestrike,
a font change, a switch to italics, or a shadow print instead?

Some solutions . . .

59

60

Three Ways To Let Applewriter Ile Underline
Up to a Comma or Period

1. Imbed a backspace before the punctuation.
2. Use the underline feature of the printer instead.
3. Substitute shadow printing, bold, or italic fonts.

Apple-writer Cookbook

A subtle gotcha is involved with [VJ. If you really want to imbed a [V] in a
text file, you have to get sneaky. The single line glossary entry mode will let
you directly generate a [V), but the full editing, normal operating mode will
not. One simple answer is to put a {VJ manually into your glossary and then
call [VJ into your text over and over as needed. You can also enter a [V] by
using [F)ind in its replacement mode.

1\.vo other imbeddings may give you fits.
If you imbed a reverse slash { \ I and you are using the same symbol for

your internal underlining, you may end up with serious problems. For
instance, the Diablo command to disable backward printing uses the
reverse slash. Be sure to go out of your way to avoid using reverse slashes
for anything but underline commands. Among other reasons, this symbol
is not available on all printers. The magic sequence of (< also must be
avoided because this sequence turns on the footnote "machine."

So how did I just print it?

Imbedding with the Glossary

The intermediate way to imbed print commands with Applewriter Ile
is to use the glossary. This way a single and meaningful keystroke imbeds
the whole command.

No muss, no fuss, no bother.
Ferinstance, you can use {open apple}-! to start italics and {open apple]-i

to turn them back off. Big I turns on italics. Little i turns off the italics.
Or, on an enhanced Diablo, an {open apple]-] starts microjustification

and {open applej-j stops microjustification. Big] turns on microjustification.
Little j turns off microjustification. We will see some self-prompting
glossaries for the Apple DMP, Diablo, Epson, and Imagewriter printers in
Chapter 5.

Few people realize that glossary entries can be used to directly execute
WPL and other machine commands in Applewriter, besides the usual
entering of text in your main text file. In Applewriter, any control
characters imbedded in a glossary perform their usual editing functions.
Any control characters preceded and followed by a [V) and imbedded in a

Secrets of Top Quality Printing

glossary are actually imbedded in your text. Remember that a carriage
return is substituted automatically for each] in the glossary.

Note that the NULLIFIER program of Program A. l may be needed for
AW IIe if certain features are to be made available on certain printers. In
particular, the Epson underline and superscript need NULLs in your text
files. On ProDOS Applewriter 2.0, the user separator [_) is used as a
substitute NULL. Note also that the STRETCHIFIER program of Program
A.2 is needed if you are using imbedded control commands. Otherwise,
you get the shortline problem in which imbedded commands are counted
as real characters.

A Glossary Example
We will see several self-prompting glossaries in Chapter 5. For now,

let's look at a quick and simple glossary use. Sometimes, you may want to
combine several commands at once into a macro for your glossary.

One of the stickiest problems involving proportional spacing is that
columns of figures get messed up, as do alignments of addresses or
anything else that is supposed to be lined up in the middle of a long string
of characters. This includes menus, price lists, and anywhere else you need
both proportional printing and letterspaced alignment. The usual way out
of this bind is to set tabs that align any needed columns. Most
proportionally spaced fonts have constant values for all the numbers, so
numbers will align on proportional spacing if they start at the same
position. Note that the tabs must be set inside the printer and not inside
your word processor, for only the printer knows where it happens to be on
a proportionally spaced line at any instant.

Figure 3.5 shows a worst-case example of exiting proportional spacing
at a random point on a line, putting down an aligned row of dots at fixed
pitch, then resuming proportional spacing with an aligned column.

T H B D O M L A M C A S T E R LIB R A R Y
Apple II &: lie Assembly Cookbook SAMS 122331
Micro Cockbook I (Fundamentals) . • • . . . • • • • SAMS '21828
Micro Cookbook n (Machine Language) . • • . • • SAMS 121829
Enhancing your Apple II vol J (2nd ed.) • • • • • • SAMS '21846
Enhancing your Apple II vol II • • • • • • • • • • • • • • SAMS '22425
Hexadecimal Chronicles • SAMS '21802
CMOS Cookbook • SAMS '21398
TTL Cockbook • • . • • . SAMS 121035
TV Typewriter Cockbook . , • . . • . • • . • . • • . • . . . SAMS '21313
Cheap Video Cookbook. • . • . SAMS 121524
Son ot Cheap Video • SAMS 121723
Active Filter Cockbook • • SAMS 121168
Incredible Secret Money Machine • • • • • • • • • • • SAMS 121S62

Fig. 3.5. Proper column align.men.I is one of the trickiest kinds of proportional
spacing.

61

62 Applewriter Cookbook

If you try column alignment without getting sneaky, you will find the
dots microstaggered all over the lot, for each exit of a proportionally spaced
line can end anywhere with respect to fixed pitch. Thus, on exiting to 12
pitch, you can end in any of 10 possible dot positions, only one of which is
properly aligned.

The Diablo 630 solution is two glossary entries, keyed as a comma and a
period. You do the comma command first, then your row of dots, then the
period glossary command. If you want spaces instead, you use the same
idea-put a glossary comma before the string of spaces and a glossary
command period after the string.

Like so . . .

Three Macro Glossary Tricks
for the Diablo 630

l . [esc] Q [escj 1 [HJ [tab]
Exits proportional spacing and enters fixed
spacing in mid-line.

2. [esc] P
Restarts proportional spacing in mid-line.

3. [esc} X [esc] U [esc] D fescj M
Puts proportionally spaced text inside a box
formed by asterisks and keeps a fixed left
margin inside the box.

What happens is shown in Figure 3.5.
After a book title is printed, you cancel proportional spacing. Then you

set a tab. The tab sets to a constant value in 12 pitch rather than the
microjustified position you ended up in. Don't sweat exactly where this tab
sits. This newly set tab takes the end slop out of the line. Next, you back up
one character, then tab to your newly set tab location. This eliminates any
microstaggering and gets you back in line with plain old 12 pitch spacing.
Next, you put down your dots at 12 pitch, fixed spacing. Then you switch
back to proportional spacing for the rest of the line.

One minor gotcha: When you do this, some of the columns still may not
be aligned. This can be caused by lots of wide characters in one name and a
few thin ones in another. But, the column alignment will now be off by
whole 12 pitch character spaces one way or the other. Simply do a printout
and use page highlighters to paint green all the lines that are shy and paint
pink all the lines that are long. Then add or remove a fixed pitch dot or
space or two as needed so that the lines all come out even.

Let's review.

Secrets of1bp Quality Prinring

The first part of the line is put down in full proportional spacing. A tab
is set to take out any microstaggering. Move your cursor to that tab. Put
down fixed pitch dots. Finally, go back to full proportional spacing. To do
this, put down your first character string, a comma glossary entry, a string
of dots, a period glossary entry, and your final proportional text. Dump to a
printer and add or remove any whole dots as needed.

It's that quick and that easy.
The glossary comma command combines moving forward one space,

switching off proportional spacing, setting a tab, backspacing, going to the
tab you just set and then doing another space. Not all bad for one
keystroke. If you like, you can follow with spaces rather than dots.

All that the {open apple]-. glossary entry does is get you back to
proportional spacing. The [open apple)-P command does the same thing.

Oh yes, I almost forgot: If you try doing really weird things to your
printer, internal printer bugs are nearly certain to come out of the
woodwork. We have already seen that the Diablo 630 has a secondline
problem which causes problems with any underlining or funny spoke
access on the second line of each paragraph. We saw how the secondline
problem is cured by printing of any problem paragraph left-to-right only.

Sometimes, really off-the-wall print commands can be used to get you
out of some sticky problem. The third glossary example is typical. To fool
the printer into starting a microjustification in mid-line , you shift one
halfline up and then one halfline down, which convinces the printer that it
is on a new line, and justification starts where you need it to.

What I am leading up to is . . .

Strange bugs are likely to crop up if you try using
your printer firmware in obscure or oddball ways.
Expect this and be willing to experiment your way
to a solution.

Like the 2 x 4 and the mule: Whack it once to get its attention, then whack
it a second time to get the job done.

An important reminder . . .

In Applewriter, [open apple) does the same thing as
{G).

So much for the glossary method of imbedding printer commands.
The real heavyweight involves . . .

63

64 Applewriter Cookbook

Imbedding with WPL
WPL is a supervisory language that runs an executive controlling

program. This does almost everything a person can do, given a long and
detailed enough list of which keys to press in what order. A WPL program
is activated by a [P), followed by the do command and the program name.
We have already seen several short WPL routines in the previous chapter.
We will see more WPL use when we get to microjustification in the next
chapter.

You write WPL programs the same way that you would any text file.
You test and debug text files the same way that you would any computer
program. Full details on what WPL is and how it works appear in the WPL
Programming Manual.

Owning Applewriter and not using WPL is almost as stupid as buying a
Porsche to listen to its AM radio. You automatically exclude yourself from
more than 95 percent of the potential of Applewriter if you do not make
yourself thoroughly WPL literate.

Please note that WPL is intimately linked to Applewriter. To
understate, WPL is not easily moved to another word processor. I know of
no other word processor at any price that has available anything which is
remotely as flexible or powerful as WPL.

Let's look at a mind-blowing use of WPL . . .

Camera-Ready Print Quality
We'll wrap up this chapter with a WPL routine that will dramatically

improve your hard copy, nearly to typeset quality.
Program A.9 is called WPL.CAMERA READY and is intended for

Diablo daisywheels. It is easily modified for many different printers. This
program scans the document and begins each line with the Bold Print and
the Slow Down commands so that each and every character gets whapped
twice. This gives you far blacker (or browner or bluer or whatevert images
that are much more intense and more uniform. The difference is especially
noticeable on classic laid papers or where the text is to be photographed for
camera ready printing.

The program then goes back through the document and removes the
double whapping imbeddings from each Applewriter command line that
starts with a period. If the double whapping before these imbedded
commands was not removed, the commands would be printed rather than
executed.

Finally, the program finds each /escj.X in your text file and resumes
double whapping and slow printing afterwards. This is important if you are
doing fancy things in mid-line, such as shadow printing or switching in or
out of microjustification. If the program did not do this, the remainder of
the line would not get double whapped.

Secrets of 1bp Quality Printing

The improvement in print quality comes about several ways. First, the
extra settling time gives you more accurate hits, particularly on shadow
printed titles. Secondly, you get two ribbon hits rather than one, which is
important because the multistrike ribbon only advances one-fifth of a
character each hit. Thirdly, the first whap, just like the mule's 2 x 4, primes
fancy papers so that they can accept ink. The second whap actually puts
the ink down.

You'll get best results on a printer that is hitting a tad on the lean side. If
you adjust for a light hit, WPL.CAMERA READY will actually lengthen
your printer and printwheel life, while at the same time improving your
hard copy images.

Several gotchas are connected with this program. You should normally
use WPL.CAMERA READY only on your out-the-door final copy because
your film ribbon will last only half as long and the printing is slower than
usual.

Another more subtle gotcha is that any carriage returns forced by
Applewriter at print time will cause the next line to be printed normally
rather than double whapped. Typically, the first line in a paragraph ends
up double whapped, and all the rest of the lines are hit only once, which
really looks bad.

Awful, even.
One way around this is to force all carriage returns in your document.

This is no big deal for a mailing list or a simple business letter but
otherwise gets old fast. Even if you force carriage returns, any top or
bottom lines or page numbers will not get double whapped.

The secret cure is to use the magic of Applewriter's .pd8 command.
First format your document, print it to disk using .pd8 exactly as you want
the document to appear, correct for everything but double whapping. Call
this file TRANSFER or something similar. Then clear your workspace, load
TRANSFER, and run WPL.CAMERA READY. Finally, print TRANSFER
with "wide open" print constants of .lm = 0, .rm= 200, .tm = 0, .bm = 0,
.pm = 0 , .pi=66, .ut, .tl, and .bl. The result will be a printout with
everything camera ready, including every line of all paragraphs and top
and bottom headers.

Copies of WPL.CAMERA READY and a bonus program called
PRT. WIDE OPEN are included on both companion disks to this volume. A
fully automatic print quality improver for the Diablo 630 is named
AUTO.PD8.WPL and is included as yet another bonus program on the
ProDOS 2.0 companion disk.

A final hassle involves very detailed daisy spokes, particularly the
trademark and the copyright symbol. It is best to turn off the double
whapping immediately before such characters and turn it back on after
them.

You can run WPL.CAMERA READY with a single keystroke out of your
glossary. For instance, a glossary definition of l(P]do WPL.CAMERA
READY will upgrade your print quality automatically on an {open apple] 1 .

65

4

Micro justification
and

Proportional
Spacing

A unique run time WPL utility
that will, with the right printer,

give you full proportional spacing,
microjustification,

improved titles,
spoke repairs,

better nnderlining,
and do it all invisibly and automatically . .

67

Print quality from either your Applewriter Ile or ProDOS Applewriter
2.0 word processor can be upgraded dramatically by using a fairly simple
WPL run time utility. You run the module immediately before printing, so
you do not need to imbed strange or conflicting commands in your disk
based text files. This invisibility is particularly important when you are
using several different printers, are passing text files over a modem, or are
doing phototypesetting. With some care, your print quality upgrading can
be fully invisible and fully automatic, even when you use already existing
text files.

One such utility is called WPL.FORMAT NO FRILLS D630 and appears
as Program A.10. It scans the document, converting everything that was
fill justified to full letter-by-letter microjustification in increments of 1/120
of an inch. This program sets up full proportional spacing and corrects the
Applewriter underliner by replacing all underlines with a solid underline.
Yes, the new underline will neatly underline up to a period or comma and
uniformly underlines proportionally spaced text. This cures a pair of nasty
Applewriter bugs.

The program fixes other printer bugs, including optionally
"rearranging" daisywheel spokes as needed for printwheel compatibility.
It also converts all double vertical spaces to a space and a half. The
program automatically shadow prints and centers titles, expanding them
slightly for the best possible appearance.

Although written and intended for the Diablo 630 printer with WP
enhanced firmware, the program is easily customized or modified to do
most anything you might ask of it. For all of the bells and whistles to work,
you will need a printer that has lots of built in smarts. Particularly, the
printer must have its own proportional spacing and microjustification
available as internal firmware routines.

WPL Custom Formatting
Deciding what to include in any "automatic" program is a real hassle.

In this case, I decided to take half and leave half, including only those

69

70 Applewriter Cook.book

things that just about anyone would like to see. I left out some of the fancier
and more specialized things I personally use. This program is designed to
run only on the Diablo 630 daisywheel and some of the newer so-called
Diablo compatible imitations. You can easily rework this formatter for
almost any printer.

The secret to fully automatic microjustification and proportional
spacing is to let the printer handle these tasks for you. You let Applewriter
do what it does best, and let your printer do what it does best, passing
commands from one to the other. At the same time, you are free to repair
any bugs or other problems in either Applewriter or the printer firmware.

The code also provides for a follow-up detail program. You can use a
detail program to do specific things to a specific document. For instance, I
sometimes use a detail file to print the title page of a manuscript and to
handle justification inside thought boxes.

It sure would be nice to be able to custom format any document you
already have written. Unfortunately, we have to have some rules, which
must be followed if the formatter is to work properly. These rules appear in
Fig. 4.1.

1 . The �•chine must be leas than 15\ full since your
t••tfile will get longer.

2 . No footnotes are allowed, unless you split the Wl>L
toi-matting program into smaller chunks .

3 . An imbedded " . dbl" t11ust pr&c•ed the body of what you
want automatically formatted.

4 . Imbedded " . dl:>2", " . dl:>3", etc . coim:n.and• may be added
a31 needed for custom or "detail" work.

S . Each and every c•nter justified line �ust inlmediately
be preceeded by a " . cj " . A seperate " . cj" is needed
for each line of a multi-line centered title.

6 . Only a sin9l• right m&rgin setting is permitted tor
the entire docwnent. This limitation can be overcome
with follow-up detail work or a fancier fo1:111atter.

1 . The reverse slaah i• the only sy,iibol allowed for
underline on/off calls. No backspaces are to be
imbedded at the end of an underline call .

8 . MY paragraph that follows a centered title must be
preceeded by a blanlr. line followed by & • • . fj" .

9 . All imbadded coftllllands must b• done in lower case.

Fig. 4.1. These ru.les must be followed if the automatic formatter is to work properly.
Most existing text files can be quickly made to comply.

You can easily bring older documents up to specification by following
the preceding rules. On new text files, follow the rules to begin with. The
rules are very easy to live with, and only a few characters need be added to
already existing text files. Those characters are added in such places and

Microju.stification and Proportional Spacing

such ways that they do not normally interfere with any other use of the text
file.

You must not cram the machine to the gills. The text file gets somewhat
longer as it is formatted. It is always a good idea to have some daylight left
in your machine anyway. This is especially important if you are to tap
Applewriter's powerful .pd8 print-to-disk option. More on .pd8 later.

It pays to keep at least 6K of free text file space on a short Ile and at least
lOK of free text file space on a Ile or a Ile with extended memory. The way
to tell the difference is with the Mem prompt at bootup. The short Ile
allows only 27K. The extended memory Ile and the Ile allow 48K.
Obviously, if the file is too long, you separate it into a pair of shorter files.

Our next rule says that footnotes are not allowed. The formatter we are
about to look at is much longer than WPL's program length limit of 1024
characters when using footnotes. If you must use footnotes, you can
rewrite the formatter as a pair of WPL programs. The last line on the first
half then runs the second half of the program.

In fact, you can make your formatter program arbitrarily long, running
as many pieces as you need to do the job. There's no limit to how fancy an
automatic formatter can get. The automatic formatter is activated on a .dbl
key. Thus the part of your document where you want formatting to begin
must start with a .dbl. I like to handle a title page separately, so my first
.dbl will go at the start of the body of the text. Should you want to do
additional fancy things with your formatting, .db2, .db3, etc. entries can be
put where you want them.

A detail program might be needed to handle custom work. Such custom
work is not a part of the formatter that we will look at. Instead, the last
thing the formatter does is ask for the name of a detail file. If a detail file
exists, it is executed. If not, a single carriage return exits you from all
formatting.

Another restriction to this formatter is that each center justified line
which you want shadow printed and spaced out slightly must be im

mediately preceded by a .cj. The .cj must be on the line immediately before
the actual text line. Multiple centered lines must have a .cj immediately
before each and every line.

The formatter has one underlining restriction. You must use the default
reverse slash symbol. No other underlining symbol is allowed, and no
reverse slashes can be used anywhere in your original document except for
underlining start or stop. Even if the text file has no underlining at all, you
may not use the reverse slash.

The present rules limit you to a single right margin setting. You are
asked for this setting when the formatter is run. To keep the formatter fast
and simple, you are asked for this setting in a most user-vicious, ASCII
character form. You are given six hints as to the right character. For
instance, you are told that a right margin of 70 is a F and 80 is a P. Thus, you
can calculate that a right-margin setting of 76 must be coded as a L.

Sorry about that.

71

72 Applewriter Cookbook

This clumsy way is the standard dino way of passing print parameters
to a daisywheel printer. A numeric value is passed as the position of the
ASCII character in the ASCII code, which is a reverse CHRS(J sort of
thing. See the N values of Figure 3.4 for a complete listing.

If you need more than one right margin setting, you can handle each
and every change in a separate detail file, keying on .db2, .db3, and so on.
Finally, all of your imbedded commands must be typed in lowercase. This
restriction greatly simplifies and shortens the formatting program.

If you don't care for any of this, rearrange the scenery to suit yourself.
What I am showing you is what I like for me. The beauty and power of
WPL is that it can do nearly anything for anybody.

Program A.10 is a fully invisible and automatic formatter that links
Applewriter to a Diablo 630 printer. This program adjusts the squashticity,
improves the underlining, fixes underlining bugs, rearranges spokes for
the BOLD PS printwheel, tightens the vertical spacing, microjustifies the
body text, selects proportional spacing with the proper printwheel,
shadow prints and spreads out centered titles, adjusts paragraph ends, then
calls for a separate detail work file if needed.

Wow.
WPL programs look like a cross between assembler and Pascal. Longer

programs such as this one are best shown in compressed form without any
extra spaces used for the usual pretty printing. We will see more on WPL in
Chapter 7.

A W PL program is an ordinary text file, written as you would write any
normal text document. The program is activated on a do command. In this
case, immediately before printing, you call for a [P] do WPL.FORMAT
NOFRILLS D630 if you are using AWIIe or a / PJ do FMT.D630. WPL if you
are using ProDOS Applewriter 2.0. The program asks for the right margin
setting and does all its neat stuff. At the end, you are asked for your custom
detail file, which is then executed. Finally you print as you normally
would.

The program is invisible in that you seldom have to look at all the
special imbedded commands. Nor do they have to be saved to your disk
based text files, so these commands aren't likely to haunt you later. The
program is automatic in that it does everything by itself with minimum
assistance.

A WPL program executes one line at a time. Each line must begin with
a space or a label. The first character following the first space or string of
spaces is treated as a control command. Thus a command of [space] ppr [L]
tells W PL to select the print-program option, then print an [L] formfeed,
which clears the screen. A command of d2 b tells WPL to go to the
beginning of the text. A command off space}pgod2 tells WPL to go to the line
that starts with the label d2.

WPL is a fascinating language with many powerful secret techniques.
For more info on WPL, check into its excellent manuals. You can also
analyze and modify the many WPL routines on the companion disk. As
with practically everything in the computer world, the best way to learn
WPL is with hours and hours of hands-on practice.

Microjustification and Proportional Spacing

The auto formatting program is modular. Each module starts with a ppr
line that identifies what the module does. Every module ends one line
before the next module identifier. The modules are performed one at a
time in sequential order. Although modules contain loops and logical
decisions, none of these are between modules.

Two warnings: If you rearrange or alter this code, the underline
routines must be done first. Otherwise, imbedded commands or margin
settings involving a reverse slash can royally foul up the works. Also, if you
rearrange spokes, any modules following the spoke module must use the
new value of the character rather than the "original" value. Watch these
two details very carefully. Let's look at each module in turn . . .

Setting Up

The program begins by turning off the display, which speeds things up
greatly and allows full screen prompting and status messages. The screen
is cleared, and a title and row of dots is displayed. You are then prompted
for a right margin setting and are given hints as to suitable characters. This
margin setting must be entered as a single ASCII character. That character
is saved as WPL's $A string variable. If you always have the same right
margin setting, $A may be defined in program, eliminating any user entry.

Adjusting Squashticity

The formatter is best used on a copy of Applewriter to which a
STRETCHIFIER program has been added. The AWIIe STRETCHIFIER
program of Program A.2 eliminates the shortline problem that was
described in Chapter 1 . See Chapter 6 and Patch B.16 for the ProDOS 2.0
version. The squashticity module is needed only if this shortline
modification is not made. It is far better to install a STRETCHIFIER and
bypass the squashticity module. If you set Applewriter for left justification,
practically all the text lines will end up shorter than the right margin
setting, which is caused by word wraparound. If you ask your printer to do
a full microjustification based on the Applewriter right margin, most lines
will be stretched also. Because some printers can both stretch and
compress lines during microjustification, it might be better to set an
average line so that it gets neither stretched nor shortened.

The squashticity module works by picking a squashticity factor. Four
characters worth of squashticity is often a good choice. This number is the
difference between the margin settings of Applewriter and the printer. The
module finds the .db 1 key, then shortens the Applewriter right margin by
using a .rm-4 or whatever squashticity factor. The margin is corrected at
the end of the document. For squashticity to work properly, all internal
right margin changes must be relative.

73

74 Applewriter Cookbook.

To repeat, squashticity eases the shortline problem by expanding
imbedded commands. A much better method is to run directly the
STRETCHIFIER program and delete this module entirely. We have left it in
so that you can experiment with it. You also can manually adjust the
squashticity by assigning different values to Applewriter's right margin
and your formatter's right margin. A paragraph's last line should be
adjusted so that it is neither lengthened nor shortened. All the rest of the
paragraph lines should be as "unstretched" or "unsquashed" as possible.

Improving Applewriter's Underline

It is no secret that Applewriter's underliner is not one of its better
features. The worst problem is that underlining by backspacing single
characters and printing an underline simply is not compatible with
proportional spacing. The spacing tables get messed up by each backspace
and will give you an irregular and ratty line. The underline will also have
gaps and doublestrikes. A second Applewriter underlining problem is its
awkwardness in underlining up to a comma or period without throwing an
extra space into the works.

The formatter's underline improving module cures both problems. The
module starts by scanning the document beyond the .db 1 marker. The first
reverse slash that the formatter finds begins underlining. The second
reverse slash ends underlining. This continues "by twos" through the
document. The underline improving module works by underlining the
entire phrase at once, giving you correct proportional spacing and a solid
and uniform underline line.

Because the underline module alternates on and off commands, all
needed reverse slashes must be present, and no extra or unwanted reverse
slashes may be included. Failure to eliminate unnecessary reverse slashes
will underline the wrong phrases.

The module continues by scanning the document for each space before
a period and each space before a comma. Then the module scans for each
underline end after a period and each underline end after a comma. Finally, the
module scans for any spaces following a period at the end of a paragraph.
These spaces are removed. All of which adjusts underlining so that no
periods or commas are underlined. No extra spaces precede a period or
comma.

You might want to extend this module so that it also handles rare
punctuation, such as question marks or exclamation points. You seldom
underline up to these, and hand repair is fast and simple.

Fixing Underline Bu.gs

The previous module corrects all underline bugs caused by Apple
writer. Unfortunately, the Diablo 630 also has a bug of its own.

Microjustification and Proportional Spacing

The first 630 right-to-left pass after a mode change to fill justification
can garble a printed line. This is called the secondline problem and it is even.
This bug will mess up any underlines or hidden spoke printing on the
second line of each printed paragraph. Both the line spacing and content
will get fouled up. This bug is infuriatingly subtle and hard to pin down. It
is apparently caused by reuse of some variables or improper initialization
in the 630 firmware. This module uses a sledgehammer cure.

A paragraph that contains any underlining is printed left to right only.
This is done by scanning each paragraph backwards from end to beginning
while making any needed adjustments. Hidden spoke printing on the
second line {such as an @ or a J on the BOLD PS wheel) is handled sneakily
by underlining something elsewhere in the problem paragraph. Such use is
rare enough that it is normally not worth repairing.

Rea"anging Daisywheel Spokes

As we have seen, not all spokes of all daisywheel elements are directly
Applewriter compatible.

The TITAN l0 and MAJESTIC PS wheels are, but the popular BOLD PS
wheel is not. The BOLD PS wheel has 15 problem spokes. Of these, seven
can be repaired by remapping the characters. The others require special
treatment. This module scans the entire document and remaps ! , (, }, > , < , I ,
and @ so that these characters will print properly.

My version of this formatter also substitutes the trademark symbol for
a tilde and a copyright symbol for an opening single quote. I have not
included these symbols in this listing because you might like to do
something else with them. For instance, you might like to approximate the
up arrow with a dagger.

Note that machine listings look awful when done with any pro·
portionally spaced font. Thus you are better off using fixed pitch TITAN 10
for listings and printouts and reserving BOLD PS for people oriented
letters, messages, and manuscripts.

It is important that any modules following the spoke remapper must
respond to the remapped characters, but anything before the spoke
remapper uses the origi.nal characters. Thus, if you delete this remapping
module, certain others that follow may also have to be changed. The spoke
remapper is similar to the WPL.SPOKE REARRANGER program
described in Chapter 2 and shown in Program A.5. The remappings that
are done were shown in Figure 2 . 1 .

Tightening Vertical Spacing

This module scans the document and changes each vertical double
space to a space and a half, which tightens titles and improves the
document's appearance.

75

76 Applewriter Cookbook

Messing with the number of lines gets tricky fast, for Applewriter is
busy counting its .pl page length with an internal counter that knows
nothing about any special printer commands such as spacing changes,
vertical or horizontal line feeds, or vertical or horizontal halfline feeds. You
have to be very careful when you change vertical spacing, or you will get
page creep that will misalign any pages that follow.

The rule is to "undo what you do," so the printer line counter and the
Applewriter line counter end up agreeing at the bottom of each page. To
change vertical spacing, the spacing module replaces the first two
successive carriage returns with one carriage return and one downward
halfline feed. The second pair of two successive carriage returns is replaced
with two carriage returns and one upward halfline feed. Applewriter
will space one, then two, for a total of three. The printer will space
one-and-one-half twice, again for a total of three. You could conceivably
end up with the next page text positioned half a line above or below where
the text really belongs, but the text on the page after that will correct itself
automatically. If your page alignment is critical, this section of the module
can be hand patched. Chances are that even if this misalignment happened
you would not notice it anyhow.

Setting Body Microjustification

This module searches for the .dbl marker and sets up a full micro·
justification to the right margin you previously have selected. The left
margin is set by the Applewriter .Im setting. Microjustification takes place
between the first non-space character on the line and your selected right
margin.

Proportional spacing is produced, simply by inserting a proportional
printwheel or downloading a proportional font and then switching the
printer firmware to handle variable-width characters.

The Diablo 630 isn't too bright at times, so this microjustification
module uses the 2-x-4 method to set the right margin twice. The first time
gets the firmware's attention. The second time makes sure the margin is
reset. The result is a full and true microjustification with each character
individually spaced in increments of 11120th of an inch, which justifies a
line to nearly typeset quality.

Note that microjustification can be included only if your printer's
firmware has the internal capability of doing a full microjustification.
Proportional spacing also requires smarts from your printer.

Fixing Paragraph Ends

The Diablo microjustification firmware can stretch and compact text
rubber band style over an enormous range. Such aggressiveness is needed
for very narrow columns, like those used in a newspaper or in certain
magazines.

Microjustification and Proportional Spacing

But too much is too much.
One place you do not want aggressive justification is in the last line of a

paragraph. If this line only goes halfway across the page, you do not want
to stretch this line clear to the right margin because the line will then look
awful. You will want to turn completely off any justification on the last
paragraph line.

This module kills justification on the last paragraph line by searching
for a period, an exclamation point, or a question mark, followed by a
carriage return. Any of these characters can mark the end of a paragraph.
Each line that ends with these marks and a hard return has its justification
canceled immediately before the punctuation.

The 2-x-4 method is used once again to get the Diablo to pay attention.
Those replacements may seem weird and roundabout, but they work.
Note that the /\ or caret in this module is really a BOLD PS exclamation
point. Be sure to substitute if you do not rearrange spokes.

I also kill justification on a greater than sign (> I followed by a carriage
return. This lets you insert comments to an editor or similar notes without
stretching them out. Delete this feature if you do not want it.

One big gotcha: Paragraphs that end in spaces will not be unjustified!
It is very easy to accidentally insert a space or two following the period

ending a paragraph, particularly if you are doing lots of editing and
rewriting. These end-of-paragraph spaces must be eliminated if this
module is to work. To handle this hassle, the earlier underline module
eliminates a single space at the end of a paragraph. Which should stomp
most of the culprits. For multiple spaces, I l l don't put them in in the first
place, (2) eliminate them with repeated [F] < > < > <a commands, or {3}
add a new custom module to automate the process.

Shadowing Titles

This module improves titles by switching to shadow printing, slowing
the printer down for best registration and then stretching the characters
apart slightly for best appearance. Shadowing is done by finding each .cj,
then fixing the line immediately beyond with the proper commands.
Additional stretching can be added by changing the [BJ in the kerning
command to [CJ, [D], or whatever you feel looks best.

I choose to use the Applewriter centering routine rather than the
centering firmware in the printer. Both choices have advantages and
limitations. With Applewriter centering, the code is simple and short, yet
the lines may not be exactly centered, owing to the proportional spacing.
Centering should be pretty good if you have made the shortline
modification and your titles do not have lots of uppercase letters. It can be
further improved by preceding each .cj with a . pm-5 or whatever you feel
is appropriate. Creative use of paragraph margin commands or extra
spaces can adjust problem titles.

77

78 Applewriter Cookbook

Cleaning Up

The formatting program ends by asking you for the name of a detail
work file. If you need one, it is run at this time. Once again, you use a detail
file to make custom alterations on one specific text file. If you have no
detail file, a carriage return exits you back to Applewriter.

Several sample WPL.DET AIL bonus programs have been added to the
companion disk as examples. The ProDOS version even includes a
formatter that does its thing, automatically makes a .pd8 transfer copy, sets
up camera-ready copy, and prints. All of which is fully unattended. This
AUTO.PD8. WPL module also shows you how to beat the apparent 2K limit
on a WPL file. In reality, WPL programs can be as long as you need them.

Execution speed depends on how many bells and whistles you put into
your formatter and on the length of your text files. Allow a half minute to
format a business letter and as much as four to five minutes for a very long
and involved text file.

Note that you can upgrade to camera-ready printing after you format.
Just run WPL.FORMAT D630 NOFRILLS first and follow with the
WPL.CAMERA READY program described in Chapter 3 and shown in
Program A. 9.

Because W PL.CAMERA READY cannot recognize Applewriter-forced
carriage returns, you usually will want to do a .pd8 print to disk first,
providing a what-you-see-is-what-you-get hard copy image on the disk.
Then you can run a fancier version of WPL.FORMAT D630 NOFRILLS.
Finally, run WPL.CAMERA READY. As we saw a few paragraphs back,
this print-file sequence is automated under AUTO.PD8.WPL on the
ProDOS companion disk.

I have also added as bonus programs two fancier and specialized
formatters to the companion disk: WPL.FORMAT BOLD PS and
WPL.FORMAT MAJESTIC, which also are for the Diablo 630. Besides
doing what WPL.FORMAT D630 NOFRILLS does, these formatters also
handle titles, stretch blurbs, and do internal justification of thought boxes.

As a reminder, these WPL routines are what I did for me.
Anything you do not like about them can be fixed, provided, of course,

that your printer has some reasonable intelligence. Some printers may
demand a way to imbed NULLs in your Applewriter text files and will need
the NULLIFIER patch. The STRETCHIFIER can also be used for the best
possible appearance.

5

SeH Prompting
a Glossary

Glossaries can be made much more powerful
and much easier to use when you title them,

self prompt them, or use them
to execute control or WPL commands.

Here's full details,
along with use glossaries for

four popular printer families . . .

79

Few people realize how simple it is to make an Applewriter glossary
self titling, self prompting, and directly able to run WPL routines or handle
hundreds of other complex control commands using single keystrokes. Yet
these easy techniques can dramatically improve your word processing
abilities.

Self prompting glossaries may be used either with Applewriter Ile or
ProDOS Applewriter 2.0. Titling glossaries is handy when you have
several of them on a disk and want to tell which is which. A self prompting
glossary will quickly display a tutorial help screen after the user presses a
single key. This sure beats memorizing obscure keystrokes or hunting for
lost documentation. Single key macro execution of a WPL routine or
loading a print constant, tab file, or whatever makes for convenient and
error free Applewriter use.

What Is in a Glossary?
The intended use of the Applewriter glossary is to let single keystrokes

insert frequently used phrases into your text files. Ferinstance, the usual
Sincerely you.rs plus your name, firm name, and so on, can all be entered in
your text file with a single keystroke. To enter the phrase, you simply hold
down [open apple] , press the selected key, and the phrase magically inserts
itself. We've already seen how a glossary also can be used to pass
individual imbedded commands to an intelligent printer or a printer
interface.

Very conveniently, the glossary will treat a] as a substitute for a
carriage return. By substituting] as needed for each carriage return, you
can have multiline glossary entries.

The only disallowed glossary keys are the /, ?, and • . You can have a
separate glossary entry for each uppercase character, each lowercase
character, each number, each key used with the control key, and all
punctuation except the three disallowed symbols. A glossary could provide
you with more than a hundred different user-defined keys at any one time.
The limit on any one glossary is 2048 characters, which is more than is
normally needed.

81

82 Applewriter Cookbook

One mind blowing feature of the Applewriter glossary code is that it
can call itself up to eight times over. Thus, if you have several alike
but-different-somehow phrases, they often can be compacted by
sharing common words. Glossary nesting is done in much the same way
that a subroutine shortens code when a program accesses the subroutine
several different times.

Glossaries can be created one phrase at a time using [G] or may be
written all at once as an ordinary text file. A [F]ind and replace operation
may be used to insert glossary {VJ verbatim characters when and as
needed, and] may be used as substitute carriage returns. Glossaries are
loaded into or stored from a special glossary buffer, using the Applewriter
[Q]-E and [Q]-F auxiliary function commands.

Immediate WPL Execution from the
Glossary

When you study the Applewriter code in detail, you find out that WPL
and the glossary share many common routines. Few people realize that you
can execute word processing commands out of the glossary in exactly the
same way that you would use a glossary to put a phrase into your text file.
Repeating that: With Applewriter, you can run WPL in immediate mode
from the glossary!

Figure 5 . 1 shows some simple and fairly obvious uses of this newfound
power. You enter a glossary command by starting with a key letter,
followed by what you want to have happen. For instance, a glossary
assigned to {open apple] z and containing an entry of zzorch will enter the
word zorch in your text file every time you press {open apple] and
lowercase z.

The c [OJ as6, dlj glossary entry says on a lowercase c, catalog the disk that
is in drive 1 . Similarly, the C [OJ as6, d2] glossary entry says on an uppercase
C, catalog the disk that is in drive 2. The {OJ in either example selects the
DOS commands menu.

As you have seen, using bracket pairs to show control commands is
more or less standard in both Applewriter and WPL.

In all the listings in this book, a pair of brackets means a control
command. A single right bracket by itself means itself, usually used as a
substitute glossary carriage return. Note that final) in each command,
which adds the ending carriage return needed to carry out the actual
catalog operation.

The reason you use these fake carriage returns instead of real ones is
that glossary entry terminates on a real carriage return. Thus fake carriage
returns are needed to force multiline glossary entries or to separate
multiple control commands. You can execute a single WPL program with
one keystroke. The glossary entry of 1 [PJ do WPL. CAMERA READY] says

Self Prompting a Glossary

on a numeric one glossary selection, execute the WPL program named
WPL.CAMERA READY After selection, the WPL routine will do its thing.

To Catalog driv• 11 on a lowell:"case "c" and drive 12 on
an upp•re••• "C" :

c(O}H6,dl]

C(O]u6,d2]

To execute a WPL progr.u, nU'led "'Mt'L.CJI.MERA Rl:JU)Y" on
a nwiteric " l " :

l [P] dowpl . camer& ready)

To ins•rt boilerplate module si• on a nW!leric "6 .. :

6 [L]boilerplate 6 . 0 , d2]

To inaert tile modules 1, 2 , and. 8, on a n1.1.111eric . . , . . :

7 {L) tmodl) [L] tmod2) (L]!mod8]

To m.all:e 64 copiea ot your tile on a " I " :

I (L) I) (L] I] (L] I] [L] I] [L) I] (L) I]

To change to "wid• open" print constant, on an "�" :

@ (P] ?] tAO]blllllO]lmO]rm255]pmO]pi66Jpl66]tl}bl)]

To return to some "stock" print constants on a .. , .. :

l [P] ?Jt.m4Jbm4]lm7]m70]pm6Jpi66]pl62]tl]bl]]

To do a fast clear-to-end.-ot-tile on a " ! " :

! (F]<??????????????????????????????????????<<.A]

.
Notei, : [Pl means ··<control>-P .. , etc. Brackets not in

pair, are real . The glossary will substitute
a carriage return !or a "] " .

Fig. 5. I . Many commands may be executed from the AW Ile glossary in an "immediate"
mode. This can be done by typing the [open apple/ key along with a single other chosen
key.

Unfortunately, you cannot execute a series of WPL programs on a single
glossary command. The reason is that the WPL [PJ do command only loads
a WPL program and sets a flag. The command does not actually run the
WPL routine. The WPL program will not begin until after the glossary
activity is completely finished. If you mistakenly try something like a [PJ
doWPL.1} [PJ do WPL.2], the program WPL.l will be loaded and the WPL
activity flag will be set. Then the program WPL.2 will be loaded,

83

84 Applewriter Cookbook

overwntmg WPL. l . Finally when the glossary is finished, control is
transferred to WPL.2. Because WPL cannot start until the glossary is done,
only the second program gets run.

One of my favorite Applewriter tricks also appears in the preceding list.
In only a few keystrokes, you can change a single file to 64 identical files,
which is most handy for printing disk labels, return addresses, and such.
What happens is that the [L)# load from file command is used six times over.
Each use copies the file to itself, doubling its length. Watch out for memory
overflow on this one.

The preceding listing also shows how to insert lengthy boilerplate into
text files. In contrast to WPL programs, with glossaries you can use a single
glossary keystroke to load as many individual files as you care to. The list
also shows you how to change all the print constants with a single
keystroke. Resetting your print constants becomes important fast if the
printer fouls the works in mid-document.

Many sneaky tricks can be done by using Applewriter's .pd8 print to
disk option. Once you have printed to disk, you no longer want to add any
additional margin padding because now you are in a true what-you
see-is-what-you-get mode. To print a fully formatted file from disk, you
should use a set of wide open print constants. The exact disk image then
goes to your printer, modem, or phototypesetter. Single key setting of print
constants becomes most handy.

The final example in the preceding list shows how to erase to the end of
document with a single exclamation point, ! . This strange looking glossary
entry says from here to the end, find lots of somethings and replace them with
nothing.

One gotcha: Be sure your data direction is set to > before using this
command. By the way, the glossary code in old Applewriter 2.0 works
differently from either of the newer Applewriter Ile or ProDOS 2.0
versions we are dealing with here. Old Applewriter 2.0 is horribly
obsolete. Its continued use is inexcusable.

Glossary Restrictions

How do we tell whether a glossary entry will go directly in your text
file, will execute immediately, or will imbed a command for your printer?
What restrictions are there on your glossary use? Figure 5.2 gives four
simple glossary rules.

Self Prompting a Glossary

l . A control character il!l.bedded in a glossary Coll\l'lland
will try to do its thing i111mediately when called.

A control cbaracter imbedd•d in a glossary coll\l'lland
that is preceeded and followed by a [VJ will be
verbatiwri entered into your textfile.

2 . The glossary will substitute a carriage return for
a " l " . The glossary will treat (x) , (y) , (1:) , $A,
$8, $C, and $0 as ordinary printable characters.

3 . WPL will substitut• ita numeric variables on (x) ,
(y) , or (1:) . WPL will substitute its string

variables on $A, $B, SC, or $D. WPL will treat
a "] " as an ordinary printable character .

4 . A single glossary entry can Nn only a single WPL
progru. If a glossary entry tries to r-un multiple
WPL programs, only the last WPL program will run.

Glossary activity is always completed before a WPL
program begins . All tbe " [P]do" com111and does is
load a WPL routin• and aet a flag.

Fig. 5.2. Rules for WPL and glossary compatibility.

If your glossary entry has no control commands, the phrase goes
directly into your text file. If your entry has control commands by
themselves, the glossary entry carries out an immediate action, such as
loading, storing, printing, running a WPL routine, or doing anything else
you can do with the control commands. If each control command in the
glossary is preceded by and followed by the verbatim [VJ, the control
commands will be imbedded directly into your text file.

Repeating, an L glossary entry goes in your text file as an uppercase
letter. A [L] entry will try to do an immediate load. A [VJ[LJ [VJ will imbed a
control-L in your text file. Use the first for phrases, the second for
immediate commands, and the third to imbed print time commands.

The glossary will substitute a carriage return for each) the glossary
finds in its entries. Sadly, the glossary will not recognize WPL variables.
Thus an jx) in a glossary entry prints as you see it instead of substituting the
numeric value for the WPL x variable. The same is true for strings $A·$D.

Interestingly enough, the glossary can change, set, or define WPL
variables. It just cannot substitute them into your text file.

WPL behaves just the opposite. WPL will, of course, substitute
numerics on its own {xi, jy), and jz) variables and will substitute strings on
its $A, $B, $C, and $D strings. But WPLdoes not recognize] as anything but
a closing bracket.

Reviewing, the [Pjdo command does not execute a WPL program. All
this command does is load the program and set the WPL activity flag. If
you try running several WPL programs with a single glossary key, only the
last WPL routine will execute, after all the earlier routines have been
overwritten.

85

86 Applewriter Cookbook

Our glossary restrictions boil down to this: Use letters for phrases. Use
control commands for immediate instructions. Use control commands
bracketed by (V)s for imbedding control characters into a text file. Multiple
commands on a single keystroke can usually be performed, except for
WPL routines. Direct substitution of WPL variables cannot be done. Other
multiple commands should be separated by fake) carriage returns.

Self Titling and Self Prompting

We can use these immediate execution tricks to build any number of
glossaries that are self titled and self prompting. All you have to do is
carefully organize your glossary. Figure 5.3 shows details.

YOUR&lOSS 1 .O

Title or Header .L.....1111
---�

Mein Glossary

Help Screen

Help Screen Loader .L.....1111
---�

THE HEADER IS PURE REMARK OR COMMENT.
SEEH OHL Y 8Y THE PROGIIAMMU. EACH LI HE
NUSl 8EGIH WITH A "/", OR"?",

THIS IS THE USUAL GLOSSARY, DOHE IH THE
USUAL WAY, EXCEPT THAT YOU CAH ALSO
INIED MAHY IMMEOIA TE WPL COMMAHOS

THIS IS A COMPLETE HELP SCREEN, DONE
EXACTl Y THE WAY YOU WANT YOUR
MESSAGE TO APPEAR TO THE USER.

THE LOAOER INST ALLS THE HELP MESSAGE
OHLY TO SCREEH OH A

0

0z: IT OPTIOHALLY
COPIES ITSELF TO OISIC OH A "OZ". THIS
LOADER MUST fOLlOW THE HELP SCREEH.

Fig. 5.3. Organizing a self titling and self prompting glossary.

Four parts make up a self titled and self prompting glossary: the title,
the main glossary, the help screen, and the help screen loader. The title part is
trivial. A glossary key of ? or * gets pre-filtered as a glossary Define or
Purge command. Entering [open apple]-! will get you the main help menu
rather than a glossary entry of/. Any glossary line that starts with?,/, or *
will never be accessed and thus may be used as a title or comment line.
Comment lines in a glossary. are seen only by the programmer, and they
are very useful to avoid mixups and version hassles.

Figure 5.4 shows how to add comment lines to an AWIIe glossary.
I pref er to use the ? .
The main glossary is the one you do as though you were not going to

make it self titling or self prompting. However, we now know we can add
all sorts of powerful new features to our glossaries by using immediate
commands. You can mix phrases and commands any way you like.

Self Prompting a Glossary

To add co-ent lines to an AWIIe glossary:

Begin each and every comment line with
a 11 /", a "?", or a "*"

Fig. 5.4. Comment lines in a glossary are seen only by the programmer. They are most
useful to avoid mixups and version hassles.

How do you make a glossary self prompting? How do you put up a help
screen that, on a single keystroke, summarizes exactly what each glossary
key will do? One obvious route is to use glossary commands to load a long
help screen directly to your text file.

This has several severe disadvantages. First, a full screen entered from
the glossary may take as long as 30 seconds to display. Secondly, you will
have altered your text file in the process of putting the help screen in place.
Thirdly, when you are finished with the help screen, you somehow have to
undo it to get your text files back to the way they were.

Suppose that we get sneaky instead. A glossary is a text file, right?
Glossaries also are likely to be on the disk in the active drive. So why not
load the entire glossary directly to screen only, putting a help message at the
end and letting the rest scroll on by?

Better yet, why not just tack a help screen on the end of your glossary?
Then load the help screen directly out of the glossary text file, keying on
delimiters at the beginning and end of the actual help screen. This method
is much faster. In fact it takes all of three seconds. It does not disturb your
working text file and exits instantly on a carriage return. No separate help
file or filename is needed.

So the third part of your glossary is a help screen that appears exactly as
you want your user to see it on the screen. This module may gobble up a
thousand characters or so out of your glossary. More often than not, the
space is available. If not, you can shorten your help screen as needed.

The fourth and final part of our upgraded glossary is the help screen
loader. Note that glossary entries must follow the screen image. Figure 5.5
shows details.

'Iwo loaders are shown, keying on lowercase and uppercase Z.
The lowercase z loader tries to load your glossary text file directly to

screen, beginning with a startstring at the beginning of the screen image
and ending with an endstring at the end of the screen image. This lowercase
z loader is the one you use most often and is the faster of the two.

Unfortunately, this loader works only if you have a copy of the current
glossary in your active drive. If you just switched disks or drives, you may
not have a copy of your glossary in the active drive. This is where the
uppercase Z loader comes in. On a Z, a copy of the current glossary is saved
to the currently active drive, and this new glossary image is then loaded to
screen only. Use Z for a new disk. Use z all other times. Loader z takes
around three seconds and Z takes nearly 10.

87

88

To provide the tutorial to acreen only on a lowercaae "z":

a(LJGLOSSNAM&<atartatring<endatring<\J

Applewriter Cookbook

To provide the tutorial to screen and alao copy th• glossary to
the currently active dialt on an uppercaae "Z":

Z(Q]n:GLOSSNAM&J (LJEGLOSSNAME<atartstring<endatring<\J

Not.es: [Pl means "<control>-P", etc. All single brackets are
real braclteta.

use uppercase "Z" the first time you accesa any new
diskette. Ose lowercase "z" otherwise.

Fig. 5.5. Self loader commands will quickly load a help tutorial directly to screen. Note
that these glossary entries must follow the screen image.

One nasty gotcha: The help screen loader must follow the actual help
screen. If not, the help screen loader will find the delimiters in itself rather
than those in the help screen.

Your tutorial help screen also has some minor restrictions. All glossary
entries except the loaders must precede the help screen. The help screen
itself must be 23 lines or less in length. No screen line is allowed to start
with a z or Z as its first character. Any first character on a screen line not
previously defined as a real glossary entry could conceivably be entered
into your text file through some fumble fingered typing. With most longer
glossaries, this screen-line-as-glossary-entry problem never shows up. If
the possibility bothers you, put a box of stars around your help screen or
start each help screen line with a space. Then predefine space as a
frequently used glossary entry or as an immediate return.

We can tie things together with these . .

Four Examples

What good is all this? Titling a glossary makes it easier on you as a
programmer. You now have a sure way to identify each and every version
of all your glossaries. Mixups and changes made to the wrong glossary are
easily avoided with good titles.

Self prompting a glossary makes it easier on you or your user because a
full tutorial help screen can be produced by pressing one key. No more
having to look up the keystrokes on a lost sheet of paper. No more having to
memorize rarely used glossary commands. No more using dozens of
keystrokes when one will do.

Four examples of self titled and self prompting glossaries are shown in
Programs A.11 through A.14, all true self prompting glossaries that let you

Self Prompting a Glossary

tap the fancy commands of an intelligent printer, using the smarts of the
printer where they can do the most good.

A GLOSS is intended for the Apple letter quality printer. DGLOSS is for
the Diablo 630. EGLOSS is for Epson printers. IGLOSS is for the
Imagewriter. Yes, an LGLOSS and PGLOSS is in the works for the laser
printer. You can write or call for a free copy.

As you probably have guessed by now, I am a Diablo person at this
writing, so DGLOSS has been thoroughly tested, wrung out, during a
year's heavy use. The only guarantee I offer on AGLOSS, EGLOSS, and
IGLOSS is that I tried them and they seem to work. Chances are you will
want to modify or improve these glossaries on your own.

If you don't like things the way they are, rearrange them to suit
yourself. If a glossary entry does not work on your printer, drag out your
manuals and find out why. Changing an entry or two should be a simple
matter.

Note how each control character to be imbedded in your text file is
bracketed by a pair of [V]s. Note also how the loader follows the help
screen. For instance, in EGLOSS, the startstring is a carriage return
followed by five spaces. The endstring is an ls.) followed by a carriage
return. The reverse slash says to load to screen only.

These glossaries work best on a third backup copy of Applewriter that
has been patched to allow imbedding NULL commands and to prevent
justified shortlines. Details on NULLIFIER and STRETCHIFIER appear
elsewhere in this text. The AWIIe NULLIFIER is only needed if your
printer requires imbedded NULL commands for certain actions. The
ProDOS 2.0 NULLIFIER is needed only if you require both NULLs and the
stock substitute US user separator [_]. Note that older Epson printers
needed NULL commands for underline and superscript.

Each glossary action is keyed to an easy-to-remember letter. An
uppercase letter is on, up, more, above, or right. For instance, a DGLOSS S
turns on shadow printing and an s turns it off. A J starts micro
justification andj stops it. Once again, a z from the glossary gives you a full
help screen, and Z gives you a tutorial help screen and saves a new glossary
copy to the currently active drive.

The Yand y selections are yours to customize any way you like. In my
personal version of DGLOSS, I also use the numeric keys to do things, such
as formatting for microjustification and proportional spacing, handling the
camera ready double whapping trick, selecting print constants, and much
more. I've left these modules out because they are specific to my needs.
Details on these modules appear elsewhere in this book and on the
companion disk.

Once again, if you don't like the scenery, rearrange it to suit yourself.
Just as with WPL, almost anything goes in a self prompting glossary. All

four glossaries are available on both versions of the companion disks. The
ProDOS version of DGLOSS also includes automatic prefix setting,
automatic formatting, and a few other neat routines.

89

90 Applewriter Cookbook

Other printers will need their own custom glossaries. EGLOSS is a
good starting point for most dot matrix printers. DG LOSS is the best
baseline for most daisywheels. Note how AGLOSS and DGLOSS are
alike-but-different-somehow, as are EGLOSS and IGLOSS. Individual
commands and features will, of course, have to be changed after careful
study of your printer's manuals and your needs.

6

Some Patches

Simple machine language mods
that imbed NULLs, fix short lines,

improve Ile status displays,
open the code for customizing,

speed up WPL, link new code modules,
find space on disk,
restore help menus,

simplify ProDOS prefixing,
cure Grappler hassles,

more ...

91

Have you wondered how those magic Applesoft repair routines that we
showed you back in Chapter 1 work? In Chapter 7, we will tear ProDOS
Applewriter 2.0 from stem to stern with a thorough and complete
disassembly script and reveal the secrets of capturing your own source
code. Before we do though, let's look at those same Applesoft patches done
in machine language. This will give you an intermediate level look at the
patching process and some insights into what is really happening.

We will look at two groups of machine language patches here.
The first group is only for Applewriter Ile, and the second group is only

for ProDOS Applewriter 2.0.
Note several things. First, make patches only to your third or higher

backup copy of Applewriter. Do not, under any circumstances, try to patch
either of your stock factory disks! Secondly, a patch will only work on one
exact version. Should any changes be made in any program code, these
patches will not work as intended.

AWIIe Patches

Seven Applewriter Ile features or repairs seem to be those most asked
about on the helpline. As you will see, the patches are much simpler in
machine language. On the other hand, they aren't nearly as automatic and
there's lots of room for user errors.

First, we will show a way to imbed NULL commands in your text files,
so you can handle superscripts and improve underlining on older Epson
printers. This patch is similar to the NULLIFIER program described in
Chapter 1.

Secondly, a cure is required for the shortline problem that results when
imbedded printing commands are counted as real characters in the fill
justify mode. This patch is similar to the STRETCHIFIER of Chapter 1.

Thirdly, a way is needed to speed up WPL. Stock WPL can only
view the cursed character by way of a very long and elaborate routine. A
patch here can put the cursed character directly into a WPL character
string. This is most handy for such things as doing automatic tabbing on

93

94 Applewriter Cookbook

assembly listings and other places where decisions need to be made
on a character-by-character scanning basis. This patch is called the
CURSIFIER. As an example, we will see how to use the CURSIFIER as a
numeric scanner to provide a sorely needed AWIIe space-on-disk utility.

Fourthly, a route to open AWIIe for your own custom modifications
seems to be much in demand, including the ability to add a PEEK and
POKE capability to WPL. This patch is the PATCHIFIER.

Fifthly, a link that °lets you or WPL run your own custom machine
language module would be most handy for such things as HIRES graphics
dumps, plotter commands, and similar exotic extensions. The name for
this patch is the LINKIFIER.

Sixthly, a cosmetic glitch trashes the Ile status display if you try using
older Ile only versions of the code on a Ile. This patch was described in
Chapter 1 as the CLARIFIER Applesoft program.

Our seventh module restores the AWIIe help screens that disappear
when you overwrite the otherwise useless Volume Verify module with
new and good stuff. This patch is the RESTORIFIER. In fact, the
RESTORIFIER is built into the STRETCHIFIER and CLARIFIER code. We
have separated this code to be used if you are doing different things on your
own.

All these hassles can be cured by making some relatively simple
changes to your working code.

Before we begin, though, let's repeat the warning: These patches are in
no way approved of or supported by Apple Computer or the original
program author. They are simply some useful changes that seem to work
for me. Use of these patches is totally at your own risk.

Making an AWIIe Patch

Listing B. l shows how to patch an Applewriter Ile program. The
versions we will work with here are only for the DOS 3.3e Applewriter He
program.

Two totally different word processor modules exist on the DOS 3.3
Applewriter Ile disk. At the time you boot the disk, a loader program called
OBJ.BOOT is run that tests your machine configuration. If you have a 64K
Apple Ile without extended memory, the E code version OBJ.APWRT][E is
run for you. If you have extended memory in your expansion slot, which
gives you a full 128K of RAM, then the F code version OBJ.APWRT][F is
run instead.

The F version of the code is usually the best choice because F code gives
you a much larger 48K text file, besides leaving lots of extra room in the
machine for your own custom mods.

Once again, you get the E code on booting a 64K machine, and you get
the F code on a 128K machine startup. More on Applewriter Ile memory
maps appeared in Enhancing Your Apple II, Volume II (SAMS #22425).
ProDOS Applewriter 2.0 memory maps and a complete disassembly script
appear in the next chapter.

Some Patches

The important thing to note about AWIIe is that the E code and
the F code are significantly different. The differences are caused by
the F version needing extensive memory management of the two 64K
memory banks. Although many E and F individual routines are
alike-but-different-somehow, the length and the entry points of the E and F
code modules all differ. Thus, an E patch will bomb F code and vice versa.
Avoiding version mixups is extremely important.

To repeat, work only with your third or higher backup copy of these
programs. Do not ever make any patch to either your stock AWIIe disk or
its factory supplied backup. Extra backup copies are easily made by any of
the usual methods.

I personally use Copy II + with a parameter change of 10:96.
The program modules OBJ.AP WRT][E and OBJ.AP WRT](F are

standard binary files viewable and modifiable under stock DOS 3.3e. The
only little gotcha is that these files are intended to be run starting at
location hex $2300 and must be relocated when they are first loaded in the
machine.

To patch either of these program modules, first boot stock DOS 3.3e,
then load either module in your Apple Ile, being sure to use an , A$2300
trailer. Next, you verify the code area where you intend the patch to go. If
you do not have an exact match, you must not attempt to complete the
patch. If you cannot verify, you have the wrong version, the wrong position
in the machine, or have made some other serious error.

For instance, to verify code starting at $26El, you would first get to the
monitor by doing the usual CALL-151, then you type a 26El and a carriage
return. Successive carriage returns will get you up to eight additional
values per hit. You then compare the hex dump you have just done against
the bytes to be verified.

If you do not have an exact match, you must not continue.
Once a code area has been verified, you can make the needed patch. To

change the code starting at $26El, you would type $26El, a colon, a space
and then as many hex pairs as you need to complete the patch. After your
entry is complete, you should once again verify. This verification makes
sure that what went in the machine is what you thought you put there.

Typically, a patch will need several areas verified and changed. Some
individual mods will be single bytes, but others may need a dozen or more
sequential bytes.

When you complete your mods, save the patch to disk under the
original filename.

Note particularly that the length of the E code and the F code differ. Be
sure to use an E trailer of , A$2300, L$2F58 and an F trailer of , A$2300,
L$30D2. Remember that you can type DOS 3.3e commands directly. You
do not have to get back into Applesoft to do so.

You should, of course, test your patches to be sure they are well
behaved. Do this testing initially without using any valuable text files. All
of the individual pieces of each patch are separately available on the AWIIe
companion disk for this volume, and those patches are ready to install.

Let's first look at the individual patches . . .

95

96 Applewriter Cookbook

The NULLIFIER (AWIIe)

Patch B. l is called the NULLIFIER and imbeds NULL control
commands into your AWIIe text files. Older Applewriter 2.0 imbeds NULL
commands by using [VJ[@] [VJ keystrokes. This feature was dropped when
AWIIe was made. Reserved file marker characters in AWIIe are $00 and
$FF marking the open and closed ends of both the HIFILE and LOFILE
internal work areas. (delete] is internally recoded as hex $80 to prevent
mixups with $FF file markers yet still be placeable in the type-ahead key
buffer.

To further cloud the issue, end of screen line markers are temporarily
placed in machine resident text files as low ASCII, and the rest of the text
file pair is coded as high ASCII.

Thus, values of $00, $7F, $80, and $FF would seem to be disallowed and
prevented from ever entering a text file. In reality, it is apparently safe to
patch AWIIe so that you can imbed $80 NULL commands in your text file.
You lose an obscure use of (delete] if you try this imbedding. But you
should never be using (delete] anyway because [delete] is forever, but [open
apple J [-J can be undone. You also lose the ability to run in a card less 40
column mode, which nobody ever does anyway. Finally, you must not
imbed a NULL into a WPL label.

The patch works by deactivating the two NULL filters already present
in the AWIIe code. One filter is involved with the keyboard input routines.
The second filter prevents NULLs from being placed in your working text
files. The filters are deactivated by branching to continuing code so that
NULLs can remain.

After your patch is completed, you can imbed a NULL in your text file
by entering a[V][@J [VJ or by using the easier-to-key [V]{2}[V]. Again, we are
using WPL notation here, where [V] means press and hold the CONTROL
key, then press and release the V key. Finally, release the CONTROL key.

Like the classic story of a none-too-bright user who looked and looked
but never found a key marked ANY and was thus unable to continue.

The single most important use of NULLs involves superscripting and
underlining on older Epson printers. Extra NULLs might also be needed to
complete the setup of a special printer card or to activate a modem. The use
of NULLs can be made fully automatic by including them in the glossary
for the modem or printer in use. Details vary with your choice of
hardware.

One gotcha: ProDOS Applewriter 2.0 absolutely and totally forbids any
NULLs in its text file, anytime, ever. If you are going to convert any AWIIe
files that contain NULLs, be sure to change each NULL to a US user
separator (_) first. More on this shortly.

Some Patches

The STRETCHIFIER /AWlle/

Probably the single most serious legitimate complaint against AWile is
that special imbedded printer commands are counted as real characters
when fill justifying a line. Thus, if you try to do anything intelligent with
your printer, you end up with short lines mixed in with fill justified text.

Patch B.2 is called the STRETCHIFIER and greatly eases the shortline
problem. Most imbedded commands to most printers begin with an escape
command. The STRETCHIFIER scans characters as they are being
formatted into a line. Should any escape command be found, the line
containing this command is lengthened by two counts. Thus, a two byte
escape command fed to an intelligent printer is exactly compensated. Any
number of two byte commands in the same line can be fixed similarly.

What if a three byte or higher escape sequence is needed? We have to
resort to some skullduggery if our code is to work on any printer or any
sequence. W hat you can do is bank characters ahead of time. Most printers
will ignore an [esc][escj sequence, which lengthens the line by four
characters but uses two of them for itself. The net result is you have banked
two characters, which can be spent by a pair of three byte commands that
follow.

To bank a single character, you usually can use an [esc][esc]-@ if you also
have done the NULLIFIER patch. The @ is output as a NULL or ASCII $00.
The NULL burns up a character but normally will be ignored by
everything.

Banking of characters sounds awful, but you can include the banking
code in with the actual imbedded commands in the glossary for your
printer or modem. You can even make the banking fully automatic by
using either the glossary or WPL.

Note that nonescape control sequences can also be fixed by
pre-banking escape commands. Thus, with enough skullduggery, you
should be able to repair exactly almost any imbedded printer command,
escape or otherwise. Once such repairs are discovered they can be handled
with a single glossary keystroke or done automatically by WPL.

Buried inside the STRETCHIFIER patch is one obscure detail. Word
wraparound is always in use during fill justify formatting. What if a word
at the end of the line is too long to fit but includes an imbedded escape
sequence? To handle this rare possibility, after a line is completed, another
short routine eliminates any extra character counts in words that are not to
be printed on this particular line. Thus, you first add two counts for each
escape sequence on the line. Then you knock off two counts for each
escape sequence imbedded in the final word only if that word will not fit.
This final word and its imbedded commands will be picked up
automatically as the first word on the next line.

The STRETCHIFIER borrows space from an essentially useless
Volume Verify routine in AWIIe. By defaulting this routine to an immediate
subroutine return, room is made for both the STRETCHIFIER and the
upcoming CLARIFIER with one byte to spare.

97

98 Applewriter Cookbook

The STRETCHIFIER also includes the upcoming RESTORIFIER patch,
so the help menus still work.

Operation of the STRETCHIFIER is essentially invisible and fully
automatic on two byte imbedded commands. As we have seen, character
banking tricks can be used for three byte escape sequences. Details vary
with your choice of intelligent printer, typesetter, or modem. Although you
will see the most improvement in the fill justification mode, left
justification will also be significantly improved.

The CURSIFIER {AWlle)

One of the serious limitations of WPL is that it has no way to perform
negative or multiresult tests on one cursed character at a time. Although
characters can be found and replaced, an IF THEN-ELSE capability would
be much more powerful, much faster, and also solves the "where am I?"
dilemma that is caused by not being able to tell any one carriage return
from another.

One specific example: In an assembler listing to be edited, you might
want to tab portions of lines that do not begin with an * or a : symbol. The
number of fields to be tabbed varies from line to line, and the tabbing must
end on the next carriage return. The tab character can be either an (I] or the
first space in a string of spaces. Trying to do all this with stock WPL will
drive you up the wall and will be excruciatingly slow. Untabbing before a
disk save is even more fun.

There are several roundabout ways to read the cursed character in
WPL. Reading this character involves finding the character, bracketing it
with a unique set of markers and then doing a .pls string load from
memory. The brackets then have to be erased.

This route not only takes forever but takes "forever squared" as your
document gets progressively longer. The process gets out of hand totally
for anything more than a few hundred characters. Using a disk transfer file
instead is equally discouraging on long text files.

Patch B.3 is called the CURSIFIER. It very rapidly puts the cursed
character into the WPL $D string on a [Q]-K command. The old and
patently useless Quit routine was diverted for this new feature. Once in the
$D string, you can rapidly test the character in many different ways.

What good is the CURSIFIER? For openers, assembly language editing
is done much more easily by AWile and WPL than by the rather primitive
line editors in most assemblers. Although WPL is great for numbering and
renumbering listings, we have seen that tabbing and untabbing of
assembly listings cannot be done easily without the CURSIFIER. My Apple
II/Ile Assembly Cookbook jSAMS #22331) has many more details on this sort
of thing.

Few people realize that Applewriter Ile is even better at processing
pictures than words. Most plotter commands consist of long text strings,
and long text strings are what WPL knows and loves best. Another use of

Some Patches

the CURSIFIER involves hooking up a plotter with a pen that has been
replaced by a scanning photocell for automated conversions of input
artwork to numeric data bases. A more typical use of the CURSIFIER: It
simply scans a document, then makes character by character decisions
based on where in the file the module is and what it must accomplish.

An Example

Look at a sneaky use of the CURSIFIER. One of the most needed AWIIe
features is a space-on-disk routine. Program A.9 is called WPL.SPACE ON
DISK. It finds the available space remaining on any disk in either drive and
does so without hurting the text file sitting in the machine. This module is
fairly compact and reasonably fast. Around six seconds are needed to
calculate the space remaining on a disk containing a dozen files.

The CURSIFIER is used as a numeric scanner in this routine. WPL
enthusiasts will find lots of sneakiness in this module, including a
mind-boggling, instant multiply-by-ten code line and creative use of wild
cards. Naturally, I will save the details on this one as an exercise for the
serious student.

Or maybe I'll hold it for the final exam.
You can actually watch this module in operation by changing the .pnd

to a .pyd. Some slop is left in the program for you to play with. It can be
sped up and shortened. The formatting possibly can be simplified, and
extra code can be added to preserve your exact place in your work file.
Have fun.

Although several other space-on-disk routines are kicking around the
user groups, note that this one is extremely fast, does not disturb your
resident text file, and does not mess with DOS. Note that space on disk is
automatically provided on new ProDOS Applewriter 2.0 as a normal part
of the [OJ-A catalog.

The PATCHIFIER {AWlle)

AWIIe's real power is not unleashed until you are able to extend and
modify it to suit your own needs. Such things as HIRES graphics dumps,
picture processing plotter routines, co-resident assemblers, or integrated
file management demand the capability of customizing your code well
beyond what you can do with fixed and simple patches.

The PATCHIFIER of Patch B.4 gives you or WPL the ability to modify
machine resident AWIIe code at any time for any reason. This patch is both
very simple and very elegant. The Verify File command is very rarely used,
so it is simply renamed as a Bload Patch. AWIIe handles most of its disk
access commands by taking the first word in the DOS menu selection,
forcing uppercase and then sending that word to a somewhat modified
DOS 3.3e.

99

100 Applewriter Cookbook

When this patch is completed, you or WPL can easily BLOAD anything
anywhere in your machine. This is essential for mid document HIRES
graphics dumps or for other heavy extensions to the stock AWlle code.

To make your patch, create a binary file on disk. Your patch can range
from a single byte for a POKE by WPL, or a single command sent to an
oddball printer card, through a complete overwrite of the entire program
that you are patching. Inserting a trailer directly into the filename will
relocate the code as it comes off disk.

This patch is deadly. If you gain the ability to modify code, you also gain
the ability to destroy code. Improper or unknowing use of patches can
completely destroy the integrity of Applewriter Ile, not to mention
irrecoverably wiping out valuable text files. Use this powerful tool only at
your own risk. Do not use it at all unless you have completely documented
the source code you have on hand and are an accomplished machine
language programmer.

The LINKIFIER {AWIIe)

Lots of times you would rather do things your own way.
It sure would be nice to be able to link any custom machine language

modules of your own to AWIIe so that they could be called as a subroutine.
Such modules would be most handy for HIRES dumps, plotter firmw�re,
speeding up fancy WPL routines, sorts, and much more.

The LINKIFIER of Patch 8.5 gives you a way to call your own machine
language code as a subroutine when either you or WPL call for a [Q]-H. The
original use of [Q]-H was to toggle the data line display. This feature was
most needed in older versions of Applewriter, but [esc] does exactly the
same thing in AWile. Thus, [Q]-H is a leftover that is no longer needed.

All you have to do to link to [Q]-H is put the destination address of the
custom code module where the original toggle address used to be. It is also
a good idea to change the auxiliary functions menu to spell out exactly
what your module is to do.

Note that you can use many different custom modules by combining
the PATCHIFIER and the LINKIFIER. Use the PATCHIFIER to put the
starting address in the [Q]-H slot, then use the LINKIFIER to call that
module when and as needed. As with the PATCHIFIER, the LINKIFIER
can be deadly, particularly if you go hooping off to a module that does not
exist. The integrity of AWIIe and all of your work files depends entirely on
how carefully and precisely you make use of this powerful new tool.

The CLARIFIER

If you try running an older version of AWIIe on a Ile, you will find the
status display line getting trashed and hard to read. In addition, random
and usually bizarre changes in the cursor symbol may temporarily occur.

Some Patches

Why does all this happen?
A mouse nest in the Ile character generator causes these compatibility

hassles. In a Ile with the old ROMs (before January of 1985), codes of
$40-$5F appear on the screen as inverse uppercase characters. In a Ile, or a
mousified Ile, codes of $40-$5F normally appear as mouse text symbols.

Although the new Ile or Ile ROMs offer a way to turn off the mouse
text, older Applewriter Ile uses its own internal routines to put characters
on the screen and neither knows about nor expects the mouse nest or its
controlling firmware.

Applewriter Ile simply guessed wrong in its choice of code for inverse
uppercase letters. Any inverse uppercase letter in older AWIIe routines
will appear on the screen as a mouse text symbol.

The mouse nest causes severe Ile compatibility problems that show up
in far more programs than Apple would care to admit. Apple's
sledgehammer repair for this problem is new ProDOS Applewriter 2.0,
which is fully compatible with the "old" Ile, the "new" Ile, and the Ile.
This solution does not help those of you with older AWIIe code on hand
that you wish to use glitch free on a Ile or new Ile or for those of you who
prefer to retain DOS 3.3 compatibility.

Patch B.6 is called the CLARIFIER. The CLARIFIER will change any
inverse uppercase characters in the status line display so that this
character will appear correctly on either an older Ile or a new Ile or new
Ile.

The CLARIFIER works by branching to some room cleared away from
the Volume Verify code area. It then checks for inverse uppercase in the
$40-$5F range. These characters are then forced into the alternate inverse
uppercase range of $00 $ lF. The status line should now be clean on either a
Ile, an old Ile, or a new Ile. Be sure to make the CLARIFIER patch when
you make your Ile chip upgrade.

No attempt was made to fix the occasional and temporary symbol
change of the Ile flashing cursor. The patches that I have looked at which
are supposed to fix this introduce more problems than the patches solve.
Especially sticky is the display of embedded control commands. The
temporary change of cursor to a mouse text character happens only when
the cursor sits on an uppercase character.

The check mark or whatever that shows up every now and then is kind
of cute and not all that distracting. You could eliminate the flashing of the
cursor but doing so would introduce serious problems during split screen,
embedded character, and search operations.

You could also burn your own "old" character generator to eliminate
the problem, but then you no longer could use a mouse on your Ile.

The CURSIFIER must and does include the upcoming RESTORIFIER
patch because CURSIFIER overwrites a module that enables the help
screens. Although we have shown both E and F version patches, only the F
version normally would be run or used in a Ile unless you are up to
something very strange. A "new" Ile conceivably could use either patch,
although failing to include extra memory with your upgrade would be kind
of shortsighted.

101

102 Applewriter Cookbook

The RESTORIFIER {AWIIeJ

Usually, it is nice to keep the patched code the same length as the
original, so the normal trick is to find modules that you can eliminate
inside the code. You then replace these modules with your patches. The
Volume V erify and Quit modules are totally useless, so they are the ones
that were overwritten with the various patches.

Unfortunately, the Volume Verify routine initializes the slot number for
the help screens. Fail to initialize the slot number and your help screen
requests give you a nasty 1/0 ERROR. And no help screens are bad news,
especially if beginners or part time users are involved.

Patch B. 7 is our RESTORIFIER patch. It is all of one byte long. All this
patch does is force feed a slot six ASCII data value into the help screen
code. Note that this patch will only work if you are using slot six for your
disk drive. Just about everyone uses that slot anyway, so this restriction is
no biggie.

That completes our collection of AWIIe patches. Onward and upward
to ProDOS 2.0 patches.

ProDOS 2.0 Patches

As you might expect, the upcoming ProDOS Applewriter 2.0 patches
do different things in different ways than the AWIIe patches. An AWIIe
patch installed on ProDOS Applewriter 2.0 will work almost as well as it
would if you installed it in the middle of Zork® or V isicalc®.

Don't try this. Don't even think about it.
Let's review briefly the advantages of ProDOS Applewriter 2.0 over

AWIIe: First, the new version is faster and easier to use. Thankfully, the
program is totally unlocked and completely unprotected. You can make as
many backup copies as you need. You can also transfer all of your files to
the hard disk of your choice. You can easily link your own custom machine
language modules, any way you care to. Even the source code is cap
turable. Compatibility with other ProDOS programs, notably Appleworks,
is greatly improved.

Secondly, you can now set your right and left screen margins any way
you like, moving very close to what-you-see-is-what-you-get processing yet
retaining all the power of embedded formatting commands that
sophisticated and serious users need. You can now edit spreadsheets up to
240 columns wide.

Thirdly, there's a built in modem that you can use to send and receive
text files directly from within the Applewriter environment.

Fourthly, you'll find a "bunch" of minor improvements, including trace
over pre-prompted finds and saves, a page/position status option, a
space-on-disk display, full Ile or new Ile compatibility, and a few other
odds and ends.

Some Patches

Fifthly, the program retains all of the powerful features of the earlier
Applewriter programs. The thing that makes Applewriter totally unique is
its WPL word processing language, a simple yet devastatingly powerful
way to automate practically all word processing operations.

As we have seen, WPL eliminates the need for any separate form letter
or mailing list modules. WPL provides a way for you to print all sections of
all chapters of an entire book without any intervention. This language lets
you pull tricks like printing with true microjustification and proportional
spacing (on certain printers only), using a camera-ready print quality
improvement technique, producing self prompting glossaries, providing
global search and replace across file and disk boundaries, and even
handling multiple columns.

Finally, Apple has made upgrading a real bargain. The program lists for
$ 150 new from your local Apple dealer. However, if you own any older
copy of Applewriter, you can upgrade for only $50. To upgrade, you send
$50, the cover from your manual, and the first factory disk of your older
Applewriter version to Applewriter Upgrade, Box 306, Half Moon Bay, CA,
94019.

The bottom line is that ProDOS Applewriter 2.0 is a great improvement
on an already great word processor. As with any new or revised product, a
few loose ends and a few ratty edges can stand some touching up. That is
what we will do here. We will show the patch installation process
internally to each upcoming patch.

Here are the most requested patches for ProDOS Applewriter 2.0.

PREFIXIFIER (ProDOS 2.0)

Patch B.8 is the PREFIXIFIER and uniquely solves the prefix hassle.
ProDOS demands a prefix volume name for any and all ProDOS disks.
Volume names are hard to remember and a pain to look up. Instead,
Applewriter provides for a Set Prefix option under [O]-H. You can set this
prefix to the name of the volume in the desired drive, or you can take a
much simpler route and directly set this prefix to ,dl or ,d2.

To eliminate having to set the prefix on a cold boot, just let a STARTUP
program do the job for you.

If you do not already have a STARTUP program, you can use the
PREFIXIFIER directly. Normally, you use a WPL STARTUP routine to do
all sorts of good things, such as loading your favorite self prompting
glossary and then loading your stock print constants and tab values. If you
already have a STARTUP program, all you have to do is add the single line
of Patch B.8 to your existing routine.

Although PREFIXIFIER is not a true code patch, solving the prefix
hassle is so important that its solution rightly belongs here.

103

104 Applewriter Cookbook

AIOIFIER (ProDOS 2.0)

Patch B.9 is our AIOIFIER. When Apple made the upgrade, they very
carefully avoided any use of machine language location $0024 because the
program author knew that certain parallel printer cards had a nasty habit
of messing with this location. Because the internal workings of ProDOS
Applewriter 2.0 use their own screen updating code, such tampering with
a screen cursor by an external card is intolerable. Thus, nothing is
connected to $0024 when Applewriter is active. This opens a can of worms
for many non-Apple parallel or serial printer cards. Bear in mind that
Apple designed this new version to be Ile compatible and thus assumed
that slot one and slot two firmware used standard Apple serial design rules.
Apple didn't intend for the program to support older third party cards,
serial or parallel.

You have to add your own patch if you want to use an older non Apple
printer card in a Ile. At first, having to add your own patch sounds mean
and nasty.

But think about it for a while.
No matter how many brand-x parallel printer cards the program

supported, some company would come up with one more far-out product
that would not work.

Applewriter is easily patched, and if you feel strongly about a brand- x
card, you have to fix its interface. In general, what you have to do is I 1)
defeat all video echo, 12) don't assume anything about location $24 on page
zero, 13) make sure the card's cursor is always between the card's internal
right and left margins, and 14) don't force carriage returns with the card.

I'll show two specific fixes here, one serial and one parallel.
The AIOIFIER handles the fix for the older AIO serial interface. The

AIO symptoms are striping out or ignoring any embedded printer
commands while printing the letter part of the embedded command as a
real character. The cause is the automatic addition of a space after any
control command. That addition happens when both locaJion $24 and the
internal cursor are set to $00.

The AIOIFIER patch works by jumping to a short custom link. The
short custom link turns off the video echo, then sets the AIO right margin
to $FF. Needless to say, each and every brand-x card will need its own
custom link, even though all the links will be alike-but-different-somehow.
The patch most asked for is discussed . . .

GRAPPLIFIER {ProDOS 2.0)

Patch B.10 is our GRAPPLIFIER patch. It is intended to cure the
Grappler card problems. The usual symptoms are random bursts of 23
spaces inserted every 240 characters or so. The patch is somewhat similar
to the AIOIFIER. What the patch does is cancel all Grappler operating
modes, including video echo. Then the Grappler internal line length is set

Some Patches

to $00. Location $24 on page zero is set to $01; and the internal cursor is set
to $02. These settings trick the card so that it never outputs extra spaces at
random. These commands are repeated immediately before each character
is sent to the card.

If you have some card other than a Grappler, you can try the AIOIFIER
or GRAPPLIFIER to see whether either one will help. Chances are that you
will have to disassemble the card's firmware before you can make an
·intelligent patch.

Note that the GRAPPLIFIER makes the program slightly longer than it
used to be. If you assume that your program always ends at $6020, you
should be safe for most any patch needed for most any card.

The dealer-supplied upgrade to ProDOS 2.1 can eliminate certain card
problems.

BOOTIFIER (ProDOS 2.0J

Patch B.11 is the BOOTIFIER. Some people have complained that the
help screen and the return prompt which appears on cold boot serves no
useful purpose.

If you have only one drive, these bootup features give you the chance to
change to your application program before the PRT.SYS and TAB.SYS
constants are loaded. This screen and prompt also give beginners a clue to
what program they are running and how to access the many help screens.

The BOOTIFIER patch eliminates the first screen and the key prompt.
Use this patch only if (1) you have two drives, (21 a novice will never access
your copy, and (3) you get impatient very easily.

NULLIFIER {ProDOS 2.0/

Patch B.12 is the ProDOS NULLIFIER. This patch is drastically
different from the NULLIFIER program and patch for Applewriter lie and
is only needed under very unusual circumstances. A NULL is disallowed
in a ProDOS Applewriter 2.0 text file.

Period.
No patches. No fixes. $00 is reserved as an open-end text file marker.
Certain printers, particularly older Epson models, demand NULLs for

such things as stopping underlining or doing superscripts. A compromise is
used in ProDOS Applewriter 2.0 that will delight the Epson people and
infuriate the Diablo people. In the stock program, a US user separator [_]
is substituted any time you need a NULL in your text file. As the program is
printed, a NULL is substituted automatically and irrevocably for every US.
US is a HMI motion command for daisywheels. People who use
daisywheels generally need this command and so do people who use
certain modems, particularly Hayes products.

105

106 Applewriter Cookbook

Patch B.12 lets you change the NULL substitute character to something
else. If you do not need US user separator commands, leave things the way
they are. If you need a US and do not need NULLs, substitute a $00 for
itself. If you must have both a US and a NULL, find some character you do
not need and use it as a substitute.

GLOSSIFIER /ProDOS 2.0}

Patch B.13 is the GLOSSIFIER. After a very careful and exhaustive
search of the thousands upon thousands of bytes in the Applewriter code, I
have found only one that was just plain wrong.

This is it.
If you enter glossary strings by hand in the unmodified code, you can

eventually overfill the glossary. No error message is displayed, and the
overfill destroys the whole program. This one byte patch carefully checks
a glossary entry to make sure it will not overflow the glossary. When a user
attempts to make an entry that will overflow the glossary, an alarm is
sounded and the overflow is aborted.

CREEPIFIER {ProDOS 2.0J

Patch B.14 is called the CREEPIFIER. A very minor and innocuous bug
tacks an extra space at the end of top line and bottom line entries as they
are printed.

So what? Big deal.
You would not believe how much grief this extra space has caused how

many people making helpline calls. If you set Applewriter' s right margin to
80 and if you set your printer card right margin to 80 and if you suppress the
top and bottom lines on the first page, you get page creep. With page creep,
the paper perforations seem to walk up or down the page on successive
pages.

A related symptom is that the .tm top margin and the .bm bottom
margin always seem one line more than they should be. An obvious cure is
to use .rm78 in Applewriter, but nobody ever does. Apparently, using
.rm78 never occurs to anyone. So Patch B.14 corrects what should be a
totally negligible bug. The patch works by entering a subroutine in its
middle so that the sub prints only a single carriage return rather than a
space followed by a carriage return.

SCRUNCHIFIER {ProDOS 2.0J

Patch B.15 is the SCRUNCHIFIER. Applewriter has an early heritage of
40 column displays. This results in the prompting menus taking up most of

Some Patches

the vertical screen. This is attractive and no big deal on the [P] and [Q]
prompts. However, on the [O] ProDOS options prompt, not only does the
menu take more than half the screen, but the menu also scrolls a previous
catalog or whatever else you just did off the screen.

The SCRUNCHIFIER will give you a two line ProDOS option menu
that leaves much more of a previous catalog or a previous task on the
screen. As a side benefit, the SCRUNCHIFIER frees some 100 bytes of
code to make room for the upcoming STRETCHIFIER and CURSIFIER
patches.

The patch does make this menu look different than the others and
purposely misspells Subdirectory so that it will fit compactly where it
belongs.

STRETCHIFIER (ProDOS 2.0J

Patch B.16 is the STRETCHIFIER. This patch is alike-but-different
somehow from the similar STRETCHIFIER patch for AWIIe. The stock
Applewriter printer routines will count any embedded printer commands
as real printing characters. Thus, if you use the underliner once on your
printer, your line will end up four characters short. If you use the
underliner several times, the line ends up ludicrously short.

This STRETCHIFIER, as the earlier version, works by adding two
counts for every escape character that the patch finds and actually uses
when formatting a printed line. This will compensate exactly for any
embedded printer command that consists of an escape followed by a single
letter.

Banking can be used to handle embedded multiple letter escape
commands. For instance, you can use an [esc][escj to bank two characters or
an [esc] [null substitute] to bank one character. Both of these strings usually
will be ignored by most printers. You can easily add these banking
commands to your self prompting printer glossary so that they will be
handled invisibly and automatically.

PROMPTIFIER {ProDOS 2.0J

Patch B.17 is called a PROMPTIFIER. As we've seen, it's very simple to
have a glossary self prompt so that you get an instant on screen help menu
when you need it. Self prompting sure beats memorizing commands or
taping notes to your Apple.

Older self prompting glossaries assumed that the Load to Screen
command was a backslash. The new version of the program loads to screen
only on a variable UT valve. Thus, if you have no UT underline token, you
will end up putting into the middle of your text file what should have gone
only onto the screen. Older WPL programs will be similarly affected. The
PROMPTIFIER puts things back the way they were. Once patched, the
backslash becomes the unconditional Load to Screen command.

107

108 Applewriter Cookbook

CURSIFIER (ProDOS 2.0}

Patch B.18 is called the CURSIFIER. This one shows you how you can
easily add a single custom code module of your own. CURSIFIER will put a
copy of whatever the cursor is pointing at in the $D string, which lets you
scan a file for certain characters or groupings. It also can greatly increase
the speed of certain WPL routines. The CURSIFIER also forces the cursed
character into low ASCII, eliminating a subtle start-of-line marker hassle.

This module also substitutes $0A line feeds for $OD carriage returns.
This last stunt lets you search for or find carriage returns, a process that is
extremely tricky otherwise. What happens is this: Option [Q]-H to toggle
the status line is left over from three generations back. (esc] does the same
thing, so you are free to grab [Q]-H and do anything you want to with it.

Your patch has three steps. First, you have to put the correct starting
address of your custom routine into the program where the link for
toggling the display was. Secondly, you have to relabel the screen message
for [Q]-H. Finally, you have to install your patch somewhere.

Wrap-Up

And that just about wraps up this chapter. You will find the AWIIe
patches ready to go on the AWIIe companion diskette. You will also find
the ProDOS 2.0 patches ready to go on, of all places, the ProDOS 2.0
companion diskette.

I purposely have shown only ProDOS Applewriter 2.0 patches for the
AWD.SYS program, which is intended for a Ile in 80 columns or else an old
or new Ile with extended memory. You can work up similar patches for
AWC.SYS for a short 64K Ile or AWB.SYS (for a Ile in its 40 column mode).

Contact the helpline directly for patches for the Version 2.1 upgrade. In
general these patches lie a few bytes beyond the corresponding 2.0 patch.

Have fun exploring these patches and be sure to let us know about
others you want to see. Yes, we are working on HIRES dumps, laser printer
interfaces, and Appleworks transfers.

You users can go away now. Us hackers are now going to get into the
fun stuff as soon as we start the next chapter . . .

7

Tearing into
ProDOS

Applewriter
Version 2.0

This complete, thorough, and detailed
disassembly script

will show you exactly
how ProDOS Applewriter 2.0 works

and how and where it can be modified . . .

109

A new ProDOS-based version of Applewriter was introduced by Apple
Computer in November of 1984. Its many advantages include full Ile and
Ile compatibility, easier hard disk interfacing, better compatibility with
Appleworks, and significantly faster disk access.

Important new features include arbitrary setting of your screen
margins instead of using a fixed 80 character screen. This feature means
you have much more of what-you-see-is-what-you-get and can easily edit
spreadsheets or data bases up to 240 columns wide.

You can use the limited telecommunications capability to send or
receive text files via a modem from directly within Applewriter 2.0. An
optional page/position display tells you exactly where you are in a
multipage document. You can optionally suppress headers and footers on
your first page. Remaining space on disk is included in your catalog
options.

Best of all, the program is completely unlocked, unprotected, copyable,
and fully open.

The program has lots of bugs. Some are new and some are left over
from before. Although patching is simple, the 2.0 patches are very much
card dependent. One major bug involves initializing a disk. You cannot do
so without trashing both your glossary and WPL. Support and use of
parallel printer cards and parallel printers can be extremely tricky. We
have already seen fixes in the preceding chapter's AIOIFIER and
GRAPPLIFIER patches. The shortline problem remains, although the
STRETCHIFIER patch described in Chapter 6 gives a quick and easy fix.

An attempt to fix the NULL problem opened a real can of worms. A
user separator [-1 is irrevocably used as a substitute NULL character,
which gives you a way to subscript and superscript on an old Epson.
Unfortunately, this substitution deprives you of any HMI commands on
most daisywheels and royally fouls up certain modem cards. The
NULLIFIER patch described in Chapter 6 cures this hassle.

If you use ProDOS Applewriter version 2.0 on a Ile with an intelligent
third-party card, you can almost be certain to expect strange and wondrous
things happening to your printout, such as random bursts of spaces
distributed helter-skelter in the printout or total suppression of imbedded
printer control commands.

1 1 1

1 12 Applewriter Cookbook

A ProDOS Applewriter 2.1 upgrade is available for Apple. This upgrade
cures some third party card problems.

ProDOS Applewriter also has several minor bugs, one of which gives
you the ability to destructively overload a glossary. This last bug is cured by
the GLOSSIFIER patch in Chapter 6.

All support of Applewriter 1 .0 and 1.1 has been dropped. Text files
written under more recent DOS 3.3 or 3.3e versions of Applewriter are
fully compatible except that you must use the CONVERT feature of
ProDOS to transfer the files between operating systems. A switch from
DOS 3.3e's high ASCII to ProDOS's low ASCII is also taken care of by
CONVERT. Glossaries written under Applewriter Ile are compatible,
although those written under earlier code may not be owing to a different
treatment of [VJ in pre-Ile code.

Several warnings on CONVERT. This finder routine sometimes gets
sick on longer text files, particularly those that exceed 3 1 ,000 characters. If
you have problems, try splitting the file in half and then convert both
halves. Watch your filenames carefully. Only numbers, periods, and
uppercase letters are allowed in a ProDOS filename. The maximum length
of a filename is only 16 characters.

Be extremely wary of long filenames. If you convert MY REALLY
NEAT STUFF 1.0 and then convert MY REALLY NEAT STUFF 2.0,
both files will be converted to an identical ProDOS filename of
MY.REALLY.NEAT.S. Needless to say, several files with identical names
cause all sorts of ungood nasties to occur.

Print constants and tab files are not compatible from earlier disks
because the tab now goes out to 240 characters and new modem goodies
are now saved as print constants. You have to reenter these files by hand.

Note that the name sequence of these files has also been reversed.
What used to be PRT.MY STUFF is now MYSTUFF.PRT. To help you avoid
mixups, the .PRT part still is automatically tacked on by the program free
of charge.

The bottom line: major improvements to an already exceptional word
processor. The new program lists for $ 150 from your local Apple dealer. A
bargain priced upgrade is also available. To upgrade, send your first
factory disk from your older Applewriter, the cover off your manual, and
$50 to . . .

APPLEWRITER
UPGRADE
Box 306
Half Moon Bay CA, 94019

Tearing into ProDos Applewriter Version 2.0

As to what bad thing happened to your manual cover in that (flood)
(fire) (tornado) (termite) (goat) (butterscotch) (KGB) (laundry) (whatever)
incident and the sob story you are planning to tell, forget it. The Apple
people have heard all the excuses.

No tickee, no washee.
Be sure to back up your old copy before you send it in. On Applewriter

Ile, Copy II + works fine after a parameter change of 10:96.
I have already done a complete disassembly of the older Applewriter

Ile, which you will find in my Enhancing Your Apple Ile, Volume II (SAMS
#22425) and in my disk-based AWIIe Toolkit (sides 1-8) from Synergetics.
What I'll do in the rest of this chapter is give the same disassembly
treatment to ProDOS Applewriter 2.0.

Applewriter actually comes in three new versions, called AWE.SYS,
AWC.SY S, and AWD.SYS. These files are all present on your Applewriter
2.0 master disk. The B version is for a Ile switched to 40 columns; the C
version is for the 64K Ile; and the D version is for the 128K Ile, for the Ile
switched to 80 columns, and for all future Apple products having 128K and
a 40/80 switch in the 80 position. Should you want 40 columns on a Ile, you
are asked to fake it by manually setting your screen margins. Thus the D
version is the heavy, used by most of the people most of the time.

We will limit our analysis here to the D version of ProDOS Applewriter
2.0. If you are going to interface anything else to your word processor, the
D version is the best choice at this writing because it has a reasonable
amount of uncommitted RAM left and supports the open slots of the Ile.

If you are using a version other than D, apply the following ideas to
analyzing any word processor or machine language program on any
system you choose. You will find both the older Applewriter 2.0 and
Applewriter Ile programs to be alike-but-different-somehow.

When compared to Applewriter Ile, the new code is longer. This is
partially because of the new features but mostly because of the
memory-hogging ProDOS links. As newer versions of Applewriter become
available, we will keep you informed of the latest information as best we
can.

Analyzing ProDOS Applewriter 2. 0

1\vo warnings before we begin. First, everything here is unofficial and
unsanctioned. What you see here is just a use of my tearing method on my
copy of the program's AWD.SY S version.

In some cases, I've had to make a guess or two in understanding fuzzy
parts of the code. In other places I may have missed something obvious. In
yet other places I could easily be just plain wrong. Second, the tearing
applies only to the D version of ProDOS Applewriter 2.0, circa Fall, 1984.
Any changes at all to the program or any use of a different version will alter
many of the program locations.

1 1 3

1 1 4 Applewriter Cookbook

One thing that becomes obvious when you tear into this code is the
delicate balance involved in designing a major word processor. People
want a word processor that is cheap, very fast, powerful, easy to learn, and
has a large work space and many different features. People also want a
program that produces an exact screen image and still supports all known
features of all known printers and all typesetting machines in all known
fonts, present or future, in as many languages as possible.

All of these demands fight each other six ways from Sunday.
Much of the following analysis is based on my tearing method, which

first appeared in Enhancing Your Apple II/Ile, Volume I, jSAMS #21822).
The tearing method is an astonishingly fast and easy way to disassemble
and analyze someone else's machine language code.

Let's review how . . .

To Analyze a Heavy Program

0. Use the program till you know it cold and have
completely mastered its operation.

1. Tear the program apart.
2. Study the memory map.
3. Find out how each file works.
4. Find the ProDOS MLI hooks.
5. Learn all uses of page zero.
6. Master the low level subs.
7. Attack high level entry points.
8. Try simple mods.
9. Capture the source code.

Step zero is far and away the most important. You cannot possibly
understand any program if you do not use it daily and continuously until
you completely understand what the program does and how it does it. Omit
step zero and nothing that follows will make any sense. The best way to
understand the other steps is to do them in order, by yourself and by hand.

As a reminder, we are assuming you have either an Apple Ile with 128K
split as a main 64K RAM bank and an auxiliary 64K RAM bank plugged in
slot zero or a Ile switched to 80 columns. We also assume you are under
stock ProDOS.

We will only briefly touch on the booting process here. On a boot, a
totally standard version of ProDOS is installed in high main RAM. Text
files created by Applewriter under ProDOS are completely compatible
with any other ProDOS text file. Text files also may be transferred to and
from DOS 3.3e by using the CONVERT feature of ProDOS. This is done
much as MUFFIN and DEMUFFIN were once used to get between

Tharing into ProDos Applewriter Version 2.0

running old 15 sector DOS 3.2 and 16 sector DOS 3.3.
Long ago and far away.
The DOS boot process loads and runs a machine language program

called AW.SY STEM, which will be booted automatically if this program is
listed as the first .SY S file on the disk. AW.SY STEM, in turn, analyzes the
Apple to see what it is and what is connected where.

If you do not have an Apple Ile or Ile, an error message appears that
tells you the bad news, hangs the machine, and then kicks sand in your
face.

No, there is no sane way to run any newer version of Applewriter on a II
or II+ or any valid reason even to want to. If you have no 64K extended
memory card in slot zero of a Ile, a machine language program called
AWC.SY S is loaded and run. This C version gives you only 22K of main
text, besides cramming the Ile to the gills.

If you have a Ile switched to 40 columns, AWB.SY S is installed and run.
If you have a Ile switched to 80 columns or a 64K extended memory card in
slot zero of a Ile, AWD.SYS is booted and run, starting at location hex
$2000. The D version, which we will study here, gives you 48K worth of
main text file and has lots of space left for your own customizing.

The boot code operation and disassembly script is summarized in
Listing C. l .

All of these modules are easily loaded, analyzed, modified, or saved
through ordinary ProDOS. Everything is up front. No sneakiness or black
magic is involved.

As an example, to view AWD.SYS, boot your ProDOS master disk, then
do a BLOAD AWD.SYS, A$2000, E$6020, TSYS, D2. To save an altered
version (to a well labeled new disk!) do a BSAVE AWD.SYS, A$2000, E$6020,
TSYS, D2.

Let's briefly review the command features new to ProDOS: the TSY S
command BLOADs or BSAVEs any .SY STEM, or $FF i.d. file. You can
similarly use TTXT or TBAS for other sneaky uses. This Type command
binarily loads or saves in binary any part of any type of file anywhere in
memory. The E command specifies the end of a binary image rather than its
L length.

In the above example, we assume you have not significantly lengthened
the code before saving it. Longer code will, of course, have a larger L or E
trailer. The original end of AWD.SY S is at $5FFF. I have stretched the end to
$6020 to make room for a printer patch or other short code block. See the
previous chapter for more details.

Another way to capture the program is to use an absolute reset
modified Ile or Ile. Packages to return total reset control of a Ile or a new or
old Ile back to you are available directly from Synergetics.

Note that the AW.SYSTEM code is easily customized.
This lets you do things like turn modems on, download custom

character sets or proportional tables to your printer, initialize custom 1/0
cards, and so on. But note also that the main code in ProDOS Applewriter
2.0 very carefully disconnects and sets aside anything that was plugged in

1 15

1 16 Applewriter Cookbook

slot three. Only on a [Q]-J quit does anything plugged into slot 3 get
reconnected. Thus, linking a third party, slot three video or extended text
card to ProDOS Applewriter 2.0 would be extremely difficult unless
something other than a preboot is used.

The Memory Maps

The biggest step towards understanding heavy code is to find what sits
where in the machine. One or more memory maps does the trick.

Memory Map

A picture or graph that shows you what portions of
the Apple Ile or Ile address spaces are used for what
purposes.

If you do not know where everything sits in the machine or do not
thoroughly understand how the various parts are intended to work
together, you have no hope of going any further.

Getting a memory map with exactly the right amount of detail is often a
real hassle. I like to use simplified memory maps that show only the big
picture and separate detailed memory maps or lists that give you all the
gory details down to every use of every last bit. Figure 7. 1 shows the
simplified memory map for the D version of ProDOS Applewriter 2.0.

As a reminder, I am assuming that you have a 128K machine split into a
main RAM bank of 64K and an auxiliary RAM bank of 64K, an 80 column
display, and a fully stock ProDOS operating environment.

No use is made of any monitor ROM in the machine by the actual word
processing program. All key entry, screen display, sound effects, 1/0, time
delays, etc. are handled internally with custom routines. This allows such
features as horizontal and vertical scrolling or 64 character type-ahead
buffering for both the keyboard and modem.

ProDOS is loaded into high main RAM during booting. This is the
standard ProDOS location from $D000 FFFF. Only high main RAM is
normally used. High ROM (the monitor and Applesoft routines) and
auxiliary high RAM !usually empty) are neither used nor accessed. The
actual word processing program code is also loaded into main RAM. The
working code sits between $2000 and $554C. Some reference files that
consist mainly of screen messages and address pointer tables are towed
along and follow the working code between $554D and $5FFF.

'!earing into ProDos Applewriter Version 2.0

RUXILIRRY N R I "

60: RRM 60: RRM

SFFFF- -SFFFF

- $1'800

PROOOS
KERNEl

- $0500

soooo- - $0000

I/0 I/0
scooo- - scooo

PROOOS LI 000S Lt
t8FOO- - $BFOO

Hl"EN

l,IQRK FILES
"HIFILE" - SB600

TEXHILE
AREA

-S5FFF
REFERENCE

FILES
- $5548

AM2,0 MAIN
PROGRAM

"LOFILE"
- $2000 TEXTFILE

RREA LO"E"
MORK FILES

$0800- - $0800
I p

$0400-
V

- $0400

$0000 $0000

Fig. 7 . 1 . Simplified memory map of an Apple lie or 128K Apple lie that is running the
AWD.SYS version of ProDOS Applewriter 2.0.

Many work files are needed by this program. The necessary work files
include the glossary buffer, two deletion buffers, the WPL program storage
area, and many others, as we will see.

The work files are stashed in two areas in main RAM. The low work
files are stashed from $0800-$ lFFF. The high work files are stashed from
$B700-$BEFF. The ProDOS interface, or MLI, sits between $BF00 and
$BFFF. The main RAM area from $0000 through $0400 is also used as a
work file area. This area includes the important pointers, counters,
stashes, and flags on page zero; some memory management and a stack on
page one; and some additional work files and links on pages two and three.

Most of the work files are not loaded in the machine. They are
initialized and then used as the program is run. As usual, the even 80
column characters are stashed in main RAM from $0400 through $07FF,
and the odd 80 column characters are stashed in auxiliary RAM in the same
address range. Also as usual, $C000 through $CFFF is reserved for 1/0
space uses.

1 17

118 Applewriter Cookbook

A big chunk of unused RAM sits between $6000 and $B6FF in main
RAM. This chunk is very lonely and is crying for your attention and use.
What can you cram into 21 ,984 bytes these days?

Turning to the 64K auxiliary RAM, the auxiliary page zero and stack
area are not used. Because high auxiliary RAM is switched simultaneously
with page zero, all 16K of the high auxiliary RAM is also unused.

Messing with the alternate page zero and alternate high RAM gets
tricky fast and should not be attempted by any but the most gonzo hacker.

The text file area that holds the words you want to process takes up the
bulk of auxiliary RAM. Your text file area goes from $0800 through $BEFF
and gives you room for some 46,845 characters at once. As with main
RAM, auxiliary RAM locations $BF00 through BFFF are reserved for a
ProDOS interface MLI.

Although Applewriter 2.0 does not directly use this alternate memory
MLI, it is preserved and allows Applewriter to transfer control to and from
another ProDOS system program in an integrated environment.

Generally what happens is this: The main program puts characters into
or removes them from the text file area and provides all the usual word
processing functions. The program gets these characters from you at the
keyboard; from DOS as text files; from the text file itself for clones and
copies; or from special files such as the glossary, the WPL program, your
telecommunicating modem, or the deletion buffers. When finished, the
main program saves the contents of the text file area to disk or dumps those
contents to a printer or modem.

We will be giving you two levels of additional detail on most of these
program areas. In the text that follows, we will show you generally what
each area is up to. In the various listings, you will find the extreme detail
needed for a complete analysis.

Time now to look at . . .

How Each File Works

Dozens of different files are used in this program. Once you find where
the files sit and what they do, you are well on your way to understanding
just how ProDOS Applewriter 2.0 handles its various tasks.

We can break those files into five areas: the text fi.le area, the low work
file area, the high work file area, the internal file area, and finally, the
reference file area.

Text files hold the words to be processed. As we will see, the program
uses a pair of text files in order to dramatically speed up character insertion
and deletion.

Work files hold things outside of the program code that are fairly likely
to be changed. These things includes all the page zero stuff, the glossary,
the WPL file, print programming commands, the tab image file, the top
and bottom line buffers, and much more.

'!earing into ProDos Applewriter Version 2. 0

Internal files are stuffed inside the working code. Most often, these
files are involved with ProDOS interfacing MLI modules or for uses as
local "working registers" in absolute memory. You have to pay very close
attention to these internal files because you will want to bypass them when
you capture your own source code. Otherwise, you will get aliasing and
starting off on the wrong foot problems, not to mention illegal op codes.

Reference files hold things that are unlikely to change, which includes
screen prompts, address pointers, error messages, DOS commands, and so
on.

ProDOS Applewriter 2.0 File Areas

1. Text File Area
Holds the words to be processed

2. Work File Areas
Hold things often changed

3. Internal File Area
Holds local stashes and ProDOS links

4. Reference File Area
Holds things seldom changed

Let's check into these file areas one at a time . . .

Text File Area

The text file area is the single largest and most important. It holds the
words to be processed. This area lies in auxiliary RAM from $0800 through
$BEFF, a total of 46,847 locations. Allowing for the two $FF end markers,
you have a remainder of 46,844 characters. This is the number you see as
the MEM prompt on program bootup.

Figure 7.2 shows us how this text file area is managed.
One very sticky problem in word processing involves making your

code run so fast that it never gets very far behind your typing. For example,
suppose that your cursor is sitting in the middle of a single long text file. On
each key entry, you would have to move everything from where your
cursor is sitting up or down a character in memory, which could involve
tens of thousands of characters.

All of which is bound to be ridiculously slow.

1 19

120

PERMAN/INT
S TIIRT •OF•LOFILE
MIIRl<ER

Once upon a time, - -

--- widtllcl wUch - --

-- f\QppLLy ever a.fr.er .

CURSED
CHRRIICTER
POSITION

Applewriter Cookbook

PERMIINIINT

TEXT 11eovE CURSOR ON S C REEN • ENO•OF•HIFILE
MARKER

•
•

•

• T E X T BELOW CURSOR ON SCREEN

•
• •

TEMPORRRV
STRRT• OF•HIFILE
HICURS MAAKER

W I t C h

FIRST
CHIIRRCTER
AFTER CURSOR

lRST TEXT
CHRRRCTER

Fig. 7.2. Th avoid moving anything on an insertion or deletion, the Applewriter 2.0
screen often displays two files: The RAM LOFILE holds characters above the cursor,
and the RAM HIFILE holds characters below the cursor.

So here is . . .

The Secret to a Fast Word Processing Program

During any fast typing mode, never move any
character that is already sitting in memory.

Sounds obvious enough, but ignoring this rule is what makes so many
competing programs so pitifully slow.

Now for the secret to ProDOS Applewriter 2.0 and a brilliant way to
avoid moving things around all the time: Use two separate text file areas,
keeping the available free space remaining between the two files!

Returning to Figure 7.2, we see a file that I call LOFILE, which holds
everything above the cursor on the screen back to the beginning of the text.

'Iearing into ProDos Applewriter Version 2. 0

A file that I call HIFILE holds everything below the cursor on the screen
forward to the end of the text.

During normal character entry or insertion, you simply add things to
the end of LO FILE. Because HIFILE is usually far above LO FILE in RAM,
no difference exists between insertion and entry.

To delete, you simple knock characters off the top of LOFILE, again
without disturbing HIFILE. Nothing but a single character need be entered
or removed from the file for most fast typing needs.

The files do get back together every now and then. For instance, on an
[E] command to go to the end of the text, everything is moved back into
LO FILE. Your entire file now starts at the beginning of the file, and you are
free to add to the open end of LO FILE with new characters.

To move everything in a long text file from HIFILE to LOFILE takes
the better part of a second, but you make such moves only rarely. You
probably would not want to continuously type [E] commands �t a 100
word-per-minute rate. In fact, you are usually ready for a brief psychic
break when you do an [E].

Similarly, if you do a [B] to get to the beginning of a file, everything is
moved to HIFILE. If you add characters from the file's beginning, they go
into LOFILE. Once again, nothing in memory needs to be moved during
fast entry modes, even on an insertion or deletion.

Meanwhile, fancy things are going on back on the screen. The screen
shows copies of pieces of HIFILE and LOFILE. The program magically
splices them together as needed to con you into thinking you are looking at
one continuous file, showing only the characters between the margins you
have selected. Only whole words are shown in the wraparound mode.

Should you be using a right margin wider than 80, a special offset value
is added to determine the screen's left margin as compared to the text left
margin. If the difference between your right and left margins exceeds 78
characters, special trip points are set separately to provide horizontal
scrolling. These trip points are 12 characters in from the left and right sides
of the screen.

The screen is usually updated on each character entry, but note that far
fewer characters are on the screen than are usually stashed in the text file
area. Thus, this screen updating can be done fairly quickly. Updating an
insertion does take somewhat longer than updating an addition.

Applewriter puts special marks near the start of each screen line to
speed up the update process. These marks are calculated only when they
change instead of during each and every screen update.

The bottom of LOFILE at $0800 and the top of HIFILE at $BEFF are
always identified by $FF markers. They tell various service routines, such
as the searches and finds, when these routines get to the beginning or the
end of either LOFILE or HIFILE. The open end of each file is marked with
a $00 marker, which is the top of LO FILE and the bottom of HIFILE. These
$00 markers are why NULLs are forbidden in your text files. See the
NULLIFIER patch back in Chapter 6 for more details.

121

122 Applewriter Cookbook

The open character on the screen sits at the LOFILE $00 marker.
Should a character be entered, it replaces the $00. Then a new $00 marker
is added one byte beyond the replacement character for the $00 marker.
The LOFILE pointer is also incremented.

Note that the flashing cursor points one character beyond the open $00
marker. Thus, the cursor actually points to the first character in HIFILE.
The $FF limit markers and $00 present end markers are reserved
characters. You are not allowed (and are prevented from) entering these
characters into your text file. Characters of $7F and $80 also are not
allowed.

Note that extra zeros are permitted in the unused memory space
between LOFILE and HIFILE. Only the first $00 on the way up through
LOFILE or the first $00 on the way down through HIFILE matter. If you
want to eliminate a string of text you simply put a $00 at one end, which
saves having to ever erase bunches of memory.

A cursor is produced by taking the first character in HIFILE and
alternating its screen display between normal and inverse, following a
software loop that causes apparent flashing. By the way, the alternate
dual-case character set used does not have a hardware flasher available.

Most of the characters in the file are standard low ASCII. To simplify
screen updates and word wraparound, the character before the start of
each screen line is set to a high ASCII character. This unique approach does
screen formatting calculations only once instead of applying special
treatment on every screen update. The high ASCII marker usually is the
last character or carriage return on any screen line. Note that the last
character on any one line is always one character preceding the start of the
next line. Remember that low ASCII characters have their most significant
bit, or MSB, cleared to zero. High ASCII characters have their MSB set to
one.

Although high ASCII is traditionally used for Apple screen characters
and for older DOS 3.3e text files, low ASCII is used inside ProDOS based
text files. Low ASCII is more standard outside the Apple world as well.

As a reminder, characters of $00, $7F, $80, and $FF are normally
reserved and must not be placed in a text file.

In certain ways, then, ProDOS Applewriter 2.0 behaves as a line
oriented word processor because the program remembers exactly what
each display screen line should look like at all times. When text files are
saved to disk, all the saved characters are forced to low ASCII. Thus,
ProDOS Applewriter 2.0 files are easily exchanged with any program on
any computer that can recognize a standard text file full of standard low
ASCII characters. This is crucial for typesetting, fancy print formatting,
transfers to other computers, and for modem communications.

To review, the 4 7K text file area usually holds two files called LO FILE
and HIFILE. LO FILE holds everything above the screen cursor and HIFILE
holds everything below the screen cursor. These dual files prevent having

Tharing into ProDos Applewriter Version 2.0

to move things around during insertions and deletions and are the keys to
acceptable word processing speed.

The beginning of your text at the bottom of LO FILE is marked with an
SFF marker. The end of your text at the top of HIFILE is also marked with
an $FF marker. The open ends of LOFILE and HIFILE are identified with
$00 markers. These two open ends face each other with all of the
remaining memory space between them.

The cursed character is the first one at the bottom of HIFILE. Text is
added to the top of LOFILE during entry and insertion. During deletion,
text at the top of LOFILE is replaced with $00 markers.

Every now and then, LOFILE and HIFILE are merged together, such as
with a [B] that puts everything in HIFILE or an [E] which puts everything
back down in LOFILE.

As one fills the other empties.
More often than not, during normal text entry, everything is in LO FILE

and you are adding to the open end of LO FILE. Text is entered as low ASCII.
All characters are allowed except for ASCII codes $00, $7F, $80, and $FF. A
possible conflict with [delete] is handled by temporarily recoding delete as
$80 or as a high ASCII NULL command. This $80 never reaches the text
file because this recoding is filtered by the file entry routines.

The end of each screen line is held as a high ASCII character. This
marker provides automatic word wraparound and needs a single
calculation rather than special processing on each and every screen
update.

Incidentally, defeating word wraparound jno whole word breaks) is
only allowed on a fixed screen of 78 or fewer columns. You lose this feature
when you custom set your own wider left and right screen margins. Put
another way, continuous character display is permitted only when RM-LM
is 78 or less. Otherwise, whole word breaks are required.

Be sure you thoroughly understand how LOFILE and HIFILE operate,
for they are the keys to understanding the entire program and everything
that follows.

The Low Work File Area

ProDOS Applewriter 2.0 splits its work files into two areas. The first or
low work file area runs from $0800 to $ lFFF. The second or high work file
area runs from $B600 to $BEFF. Stuff that is common to the older programs
tends to stay in the low work files. ProDOS buffers, the wider tab displays,
and similar items have been added to the high work file area.

A memory map of the low work file area is shown in Figure 7.3A.
A detailed low work file breakdown appears as Listing C.2.
Let's look briefly at what these files are and what they do. Starting at

the bottom, much of page zero is reserved to hold pointers, counters,
stashes, and flags. Page zero is so important that we will reserve the next
section for it.

123

124 Applewriter Cookbook

Ile M A I N A A '1
ALSO T l & B l BUF

LINE roRNRl WPl KEV
BUFFER STK BUF

TAB
UST SA

f1COO $1000 $1[00 t1FOO $2000

WORD ANO PAAAGAAPH DELETION BUFF EA

.,.oo

FOOTNOTE BUFFEA QB WPL PAOGAA" FILE OA DISK FOA"ATTER

fl400

WPL PROGAAN FILE � DISK FOR"ATTEA

$1000

GLOSSARY QB DISK FOANATTER

socoo

I GlOSSAAV QB DISK FOR"RTTER

soaoo

I VIDEO SCREEN EVEN CHARACTERS

$0400

POINTERS, FLAGS "E" STACK KEV BUFFER ANO STASHES "GT
CHAR

BUFHR

$0000 $0100 $0200 $0300

f1COO

•••oo

$1400

I
$1000

socoo

I
$08D0

$0400

Fig. 7.3A. Simplified memory map of Applewriter 2.0 low memory work files.

The area from $0100 through $013E holds the memory management
code. Note that main RAM page zero and page one are always used in this
program. These memory pages do not change on a switch between main
and auxiliary RAM. Only RAM memory locations from $0200 BFFF switch
on a change between main and auxiliary RAM.

The memory management code lets you read the text file from a screen
update pointer, a low cursor pointer that I call LOCURS, a high cursor
pointer that I call HICURS, a printer pointer, an auxiliary pointer, and
finally, access a special routine that backs a screen pointer to the beginning
of a screen line. By placing the memory management code on page one,
either main or auxiliary memory can be accessed as needed.

Remember that your program and the work files sit in main memory
and the text files sit in auxiliary memory. The high end of page one holds
the stack. As usual, the stack starts at $01FF and builds down. The stack is
short enough that it never crashes down into the memory management
code. The stack holds subroutine return addresses. It also sees uses as a
temporary value stash. The stack is also temporarily used to hold

Tearing into ProDos Applewriter Version 2.0

addresses for indirect jumps using the forced subroutine return method of
option picking.

The keybuffer extends from $0200 through $02FF and holds string
values and key commands that are entered from the keyboard. The
keybuffer is sometimes also used as a temporary work area, as a formatting
buffer, or to hold an old character string for later reuse.

Continuing upward through the work files in main RAM, the bottom
half of page three is used for the single character swallow buffer. This
buffer is controlled by the right or left arrow key in combination with
[open apple]. Note that the swallow buffer is separate from the combined
word and paragraph deletion buff er higher in the memory.

The usual hooks appear on the top of page three, starting at $03D0.
Most hooks vector to a warm restart of the program at $20B4.

Let's breeze on by pages four through seven because they are the even
characters of the text screen. The companion odd characters of the text
screen are stashed on pages four through seven of the auxiliary memory.

The area from $0800 up through $0FFF is normally used as a glossary
buffer. Glossary strings build up in memory and end with a carriage
return. The last carriage return of the last entry is followed by one or more
$00 end markers. This same memory area is also borrowed by the ProDOS
formatting code any time you init a new disk. Note that the glossary is
destructively overwritten by this init process.

Moving right along, the work file from $ 1000 through $ 17FF is a 2K
area that can have three possible uses. This entire area normally holds a 2K
WPL program file. Should footnotes be needed, a lK footnote file from
$ 1400-17FF is usurped from the top of the WPL program area. If you use
footnotes, you are only allowed to have a maximum WPL program length
of lK, sitting from $1000 13FF. As with the glossary, both the WPL
program area and the footnote area are destructively overwritten any time
you format a disk.

Next are 1024 locations ranging from $1800 through $1BFF. These are
set aside for the word and paragraph deletion buffers, activated by [W] or
[X].

On a deletion, the stuff to be saved is tacked onto the end of anything
previously saved. On restoration, the restored stuff is read until a space or
a carriage return is found.

The pointers to this deletion buffer go round and round. A separate
counter on page zero keeps track of overflow. All of the single page from
$1600 through $16FF is set up as a line justification buffer. This page is
used separately to format the top and bottom lines as well as being useful
during search and replace activities.

All of the preceding brings us to $ 1D00. Here you'll find the WPL stack
that resides from $ 1D00-1D3F. This stack holds return addresses for any
WPL subroutines in use. A total of 32 subroutine calls are allowed. The
type-ahead buff er follows. This area saves up to 64 keystrokes should the
typist get ahead of processing. Two pointers access this file on a round and
round basis.

125

126 Applewriter Cookbook

One fills and the other empties.
Any [open apple] or (closed apple] commands are separately saved in a

second 64 character buffer higher in the work file area. Note that you must
save both the pressed key and the state of the [open apple] and [closed
apple] keys for a later recovery. Otherwise, certain key combinations will
end up doing the wrong things.

Note also that the modem has its own type-ahead buffer which is
internal to the main code. This buffer is useful when characters are being
received during busy times, such as screen scrolls.

A tab list follows, running from $1D80-lDFF. This list allows 64
different tabs to be set at any one time. Because tabs well into a paragraph
are allowed, two full bytes are reserved for each tab value.

The four WPL $A through $D strings are stashed next in our low
memory work file area. Each can be up to 64 characters long.

The area from $ lF00-lFFF has several uses. Sharing is possible because
each use is temporary. The entire buffer formats the top or bottom line in
its expanded form with real page numbers and full space padding. Other
uses split this page in four temporary work files, starting with a short
multiple use buffer at $ lF00 $1F3F. This buffer is used to assemble PRT
and TAB filenames, to hold slot and drive values, and to substitute for the
normal WPL work buffer.

An = filename buffer follows from $1F40-1F7F. Hold here is the old
text filename used while ProDOS is being temporarily diverted for
something else. Ferinstance, the name of a glossary or a WPL file to be
loaded may need the active filename buffer at $B700. During such special
use, the old filename is briefly saved here. Immediately after special use,
the old filename is returned to the active buffer at $B700, then is followed
by an = buffer at $1F80-1FBF, used for repeat searches and replaces.

Next comes an [open apple] or [closed apple] stash at $ 1FC0-1FFF, used
as the second half of the type-ahead buffer.

Let's next skip way up in memory to . . .

The High Work File Area

When the upgrade to ProDOS Applewriter 2.0 was made, another work
area was needed. Because any ProDOS application or .SYS program must
always start at $2000, the most sensible thing to do was put the main code
at $2000 and then cram the rest of the work files as high in main RAM as
possible.

The high work file area runs from $B600-BFFF, as shown in the
memory map of Figure 7.3B and detailed Listing C3. The tab status image
runs from $B600-B6F0. You need all that room because you have a possible
screen width of 240 columns. The tab image is simply an ASCII snapshot of
the tab status line. Unset tabs are shown in normal text. Set tabs are shown
in inverse. The higher "fives'' markers get progressively longer. This way,
you can tell where you are on a very wide screen line. An apostrophe l ' I is

'learing into ProDos Applewriter Version 2.0

thus used for 5-95, an exclamation mark (!) for 105-195, and a bar (I) for 205
235. The tab status line doubles as a display column counter.

Ile NRIN RRl'I

PROOOS BUFFER PROOOS "L I PROOOS "LI
SVSTE" PRGE GLOBRL PRGE

IBCOO SBEOD IBFOO scooo

TOP BOTTO" PRT PRTHNR"E MOLD �
LINE LINE flLE SECTOR l"RGE FOR LORD/STORE

PRODOS BUFFER

SBBOO SB900

$8500

$BADO

TAB STATUS
'"AGE

$8600

$8800 S8coo

SB700 S8800

Fig. 7.3B. Simplified memory map of Applewriter 2.0 high memory work files.

A composite path name for ProDOS is usually accessed from $B700
B73F. Although a ProDOS filename is only allowed to be 16 characters
long, the combined prefix, subdirectory, sub-subdirectory, and filename
can go to a maximum of 64 characters.

The print/program file values are next in line and take up the area from
$B7C0 through $B8FF. Provided first are two 128 character buffers for the
top line and the bottom line. The top and bottom line, with delimiters and a
for possible page numbers, are held here in their compact form. When
formatted, the top line or the bottom line is expanded as needed to a
multiple use buffer way down at $ lF00 into its stretched or open form.

These compact line buffers are followed by individual stashes of all the
print values, such as the page number, the justification mode, and so on.
Locations of the individual print/program values are detailed in Listing
C.3. Our intent here is to get a look at the big picture. More detailed listings
will follow shortly.

A 512 byte ProDOS user buffer at $B900-BAFF follows the print value
stashes. The user buffer can hold one sector for loads or stores that involve
fancy delimiters or can be used simply as a pathname hold.

A second buffer follows from $BB00-BDFF. These 768 bytes are needed
for internal ProDOS uses and are specified by various ProDOS links
throughout the program. The area from $BE00 BEFF is reserved as a
ProDOS systems page, as might be needed by BASICS.SY S or whatever.
Although this area is not used, it is carefully preserved in this program so
that applications can be transferred in an orderly manner.

Finally, the $BF00-BFFF page is the ProDOS globals page, and holds
information needed to access ProDOS. In particular, a JSR $BF00 will start

127

128 Applewriter Cookbook

some ProDOS action, which is set by a short file following the calling code.
More on this shortly. Other important locations on the globals page also are
shown in Listing C.3.

As you can see, bunches of work files are needed by Pro DOS
Applewriter 2.0. These work files hold things likely to change during your
use of the program. Much of the power and uniqueness of Applewriter
comes about through extensive and creative use of these work files.

Our survey of the work files is complete. Next, let's briefly look at . . .

Internal File Area

The internal file area holds stashes, commands, and file values that are
stuffed into the working code. The majority of these provide the data files
needed for ProDOS access by way of the MLI machine language interface.
Others hold local variables or provide convenient stashes. Listing C.4
shows all of the internal work files.

We'll save details on the ProDOS internal files for just a bit. Other
internal files include local stashes, a filler and emptier for the modem
type-ahead buff er, a BASH table of screen base addresses, a glossary nest
pointer that you use to call glossary entries eight deep, path name
parameters, local X and Y register stashes, a serial transmission delay
table, a list of baud rates, and a stash for catalog attributes.

The use of each internal work file will become fairly obvious when you
study the related code module. The important thing about internal work
files is that you must exactly bypass them if you are capturing source code.
Otherwise, you will get aliasing and starting off on the wrong foot
problems, and your capture attempt may fail outright.

The final file area we are interested in is . . .

Ref ere nee File Area

The reference files hold things that are more or less permanent and that
do not normally change much during program use. The reference files are
stashed in main RAM from $5475-SFFF. Listing C.5 provides details on
these reference files.

The first reference file is both a menu and a prompting list of available
functions. There are 32 possible control command functions. The 27 that
are actually used range from [@], which is really [delete], up through (_),
the page/position display toggle.

Some of the control commands are missing and some are hidden as
dedicated keys.

Here is a summary of the . . .

Tharing into ProDos Applewriter Version 2. 0

"Funny" Control Commands

I. Dedicated use
[@] - [delete]
[H] - -
[I] - [tab]
[J] - 1
[K] - t
[U] - -
[_] - [page/position]

2. Not available for use
[M] - [carriage return]
[[] - [esc]

3. Not used
[I] - $1C (FS form separator)
[]] - $1D (GS group separator)
[!] - $ lE (RS range separator)

[delete) is temporarily recoded as an $80 because its $FF value is
reserved as an internal text file marker. It is stripped before it is allowed to
enter the text file. As a reminder, $00, $7F, $80, and $FF markers are
reserved exclusively for internal Applewriter use and must never be
allowed in a text file.

The NULL command may be needed by many older printers as part of
an imbedded command. To allow NULLs, you use a [_) in your text file.
This is really a user separator. The print routine then automatically
changes all user separators to NULLs, like it or not. We saw ways around
this earlier.

The arrow keys are really the control functions [HJ, UJ, [K), and (U). [I)
is the tab key that moves the cursor to the tab settings. If you want an
escape without pressing {esc), you could alternately use [{) instead.

The function list is used two ways. It is first scanned for a match to a
control key command. If a match is found, that specified action is done. If a
match is not found, nothing happens.

Secondly, the function list is scanned for those activities that need a
user prompt. For example, on a save, The {S)ave gets copies to screen.

A list of function addresses follows the function list. These routines are
detailed in Listing C.4. When a match is found between a control key and
the function list, a jump is made to that function address. This carries out
the requested action.

Note that these addresses are one less than the start of each function.
This is because these addresses are accessed by way of the "forced
subroutine return" method of option picking. This method always goes on
the address pair shoved onto the stack plus one.

129

130 Applewriter Cookbook

Next in the reference file area is a pair of back-to-back matching files.
The first of these files holds two letter pairs of print constants, and the
second holds two letter WPL commands.

On a print constants match, the value is gotten, converted to
hexadecimal, and stored as needed in the print constants work file. On a
WPL command, the needed action is carried out. A list of WPL addresses
follows the WPL command list. As before, on a two letter match, that
action is done. A peek ahead to Listing C.7 will show you which action goes
where.

The reference file continues with some ASCII coded prompts. These
prompts handle such things as page and line displays, modem prompts,
filename prompts, and the .PRT and .TAB trailers. By the way, these
trailers are used as postfixes in ProDOS Applewriter 2.0. In Applewriter
Ile, they were used as prefixes. Note that neither the print constants nor
the tab files are interchangeable between the two program versions.

Next is a list of ProDOS error messages. Each message begins with a
ProDOS error number followed by the actual error message in low ASCII.
Following this list are three more ASCII error prompting stashes for
ProDOS, [F]ind, and WPL.

At $5897, you will find a list of WPL error messages, presented in
conventional low ASCII. The error message needed is found by counting
the number of $OD carriage returns required to reach it.

Following this location is a three-byte "SCP" stash used for tab set,
clear, or purge. The ProDOS command menu follows the three byte stash.
This menu is produced by [OJ and lists the ProDOS options onscreen. We
already found out how you can shorten this menu to make room for other
patches and leave more catalog information onscreen.

As before, the addresses follow the prompts, with the ProDOS access
addresses being listed from $5A14-5A27. Once again, these are the entry
points minus one as needed by the forced subroutine jump method of
option picking.

Some random stashes follow the command menu. This includes
[A]djust prompts, [OJ catalog space on disk messages, and the return
prompt. This location is followed by a list of ProDOS file types, shortened
to six letter mnemonics.

After this list come some more low ASCII messages for the catalog
display, a help pathname, and the Y, N, and A needed during [F]ind and
replace.

All of which brings us to $5C43 and the startup screen, which holds the
first screen image you see on bootup. Following this location are the
additional functions menu and the additional functions addresses. These
addresses are also one less than the routine they point to, as needed by the
forced subroutine return option picking method.

A four byte print value stash follows. This dude is used to hold the [WJ
and [XJ stop characters, followed by the left and right margins for the top
and bottom lines.

Tearing into ProDos Applewriter Version 2. 0

Wrapping up our reference files is the fixed portion of the
print/program screen display.

The bytes from $5FF0-5FFF are unused in the original program but are
loaded with the program. Several of our earlier patches need both this area
and then some. This patched version continues on to $6020. With your
own patches, you are free to go on up to $ BSFF, a total of 21983 extra bytes.
Lots of room is available for improved goodies of your own.

As we've just seen, the reference files hold things that seldom if ever
change during program use. The reference files are loaded into the
machine, following the main word processing code. Remember that the
reference files and internal files are loaded off disk. Most of the work files
are created, initialized, and then used by the running program.

The next big question is . . .

How Do You Crack Page Zero?

Many of the great mysteries to be solved by the tearing method involve
strange and wondrous uses of page zero. Page zero addresses on any 6502
system are very handy because they are easy to access. More importantly,
certain address pairs that let you do 1 6 bit "anywhere in memory" access
positively must sit on page zero. If you do not thoroughly understand what
is on page zero, how that information gets there, and how the information
is used, you cannot possibly understand any Apple program.

Important uses of page zero include pointers, counters, stashes, and flags.

Important Uses of Page Zero

1. Pointers
A pointer holds an address or an address pair that
finds some other memory location.

2. Counters
A counter remembers positions or trips needed,
which often start at some value and are
decremented to zero.

3. Stashes
A stash temporarily holds some value that is
likely to be changed.

4. Flags
Flags remember conditions and operating
modes. A flag often has only two or three
possible values.

131

132 Applewriter Cookbook

The big advantage of using page zero for pointers, counters, stashes,
and flags is that you can reach page zero locations faster and with fewer
bytes of code.

Pointers hold addresses. A single pointer can address only 256 different
places in memory. A dual pointer can address 65,536 places in memory.
Dual pointers are most often used with the 6502's very powerful indirect
indexed addressing mode. Indirect indexed addressing lets the computer
reach anywhere in memory without worrying about page breaks or 256
byte limits. Ferinstance, in Applewriter, a LOCURS pointer points to the
current cursor position in the LOFILE half of the text file.

By the way, if you are rusty on addressing modes and machine code in
general, check Don Lancaster's Micro Cookbooks jSAMS #21829-21830).
Volume II on machine language programming should be of special interest
to you.

Counters hold something that is being incremented or decremented
until some magic value occurs. Most often, a counter is initialized to its
maximum value and then decremented to zero. This initialization is done
because zero is testable free with the BNE command. In Applewriter,
there's a deletion counter that makes sure that you do not delete words or
paragraphs which are longer than 1024 characters.

Stashes hold values that may or may not change. In Applewriter, a stash
is available that remembers the length of filenames.

Flags remember conditions for you. Usually, a flag will only have a few
possible va]ues, with a "don't" value of $00 and a "do" value of $FF being
common. In Applewriter, an R flag remembers whether you are in the
replace mode.

The big question now is "How do you find out what the flags do?"
Answering this question is one route to . . .

Cracking Page Zero Locations

1. Create a notebook of all used locations as listed
on the cross reference for the study program.

2. Tear the program apart, putting into the
notebook all known information about flag uses.

3. Go back to the cross reference area and color
code each page zero use-red for writes and
green for reads. Correct any errors or omissions
in the notebook.

4. Write a complete script of page zero use. Use
both a summary list and a detailed script.

Tharing into ProDos Applewriter Version 2.0

As with most other things in the tearing method, a few passes are
required to get it right. On the first pass, you find out whether a particular
location is used. During the second pass, you find out roughly who uses
that location for what. In the final pass, you nail down the exact use details.
I like to take a small notebook and put two or three page zero addresses on
each page. You get these addresses from your page zero cross reference
listings.

As you go through the tearing method, some page zero uses will leap
out at you. For instance, in Applewriter, the [V] command vectors to
$35B6, which changes the state of the $72 flag from $00 to $FF or vice
versa. Obviously $72 is our [V]erbatim flag, and we are home free on this
one.

Record everything of interest you find in the notebook. Even if you
don't have the foggiest what the location is up to, knowing that [L]oad and
[S]ave need that location and that it gets inited to some value will help later.

The notebook should completely crack about one-third of the page zero
locations. Another third should be pretty nigh but not plumb. And the final
third of these locations will still have some mystery surrounding them.
Regardless of how far you get, complete the main tearing process as far as
you possibly can.

Pay particular attention to whether a page zero location is global or
local . . .

1. Global Value
Something that has only one possible meaning or
use during the entire program.

2. Local Value
Something that can have many different
meanings at different times and at different
points in the program.

Global values obviously are simpler to handle. If you find the same
location first being used by two or more wildly different portions of the
code, assume that location is used locally. Then prove yourself right or
wrong.

As contrasting Applewriter examples, the [R] flag at $F5 is used
everywhere in the program to pick inserting versus replacing. The
Y-register stash at $CS is used many different places in the program for
many independent things.

Note that the second page zero location in a pointer pair often goes
along free for the ride. Thus, you might initialize both $80 low and $81 high
as a pointer pair, but you would only refer to the $80 in a LDA {80/, Y
command. The use of $81 as a "page" or "high address" is inferred in the

133

134 Applewriter Cookbook

LDA (80/, Y command. This inference is true for most double wide
pointers.

At this point, your page zero should be around half cracked. Less than a
third white margin should remain in your main tearing attack.

Next, go back to your cross reference listing and start color coding each
page zero use. Color one location at a time with red for writes and green for
reads. As you color each location, update the notebook with who uses what
how. Pay particular attention to what sets up that location, who changes that
location, and which code tests that location. This should make the use of
each flag obvious.

Correct and expand your notebook comments as you crack each
location. Remember that any booting or cold start code can initialize
certain locations to certain values. The booting code in AW.SYSTEM sets a
ProDOS file buffer to $BB00 in main RAM. The cold start code in AWD.SYS
sets at zero all page zero locations from $60 to $FF.

If you have an all green read-only location, always go back to the cold
start code to see what got stashed where. If some location seems always to
be stuck in a certain value, make sure no branching, indexing, or indirect
storing changes this location in a subtle way. Find out also whether
different or older versions of the program might have needed this location
for obsolete uses.

At any rate, the way you crack page zero is to first record the obvious
and make some guesses. Then go back and study each page zero location
one on one.

Applewriter Page Zero Uses

Listing C.5 gives you a summary of the page zero uses of Applewriter,
broken down into counters, flags, pointers, and stashes. Each listing is
shown in order of increasing address. More detail appears in Listing C.6,
which gives you a complete script of all the page zero uses.

I guess a program counter really is a pointer, so some overlap occurs
between the pointers and the counters. And the line between a multivalue
flag and a few-valued stash also gets a tad thin at times.

Probably the single most important page zero locations are $84 and
$85, the LOCURS pointer pair. This pointer pair points to the address in the
text file in auxiliary memory where the next character is to be entered or
removed.

As is customary in the 6502 world, the "low", or "position" address
appears first in $80 and the "high" or "page" address is stashed last in $81.
For example, if $80 holds a $46, $81 holds a $35, and the Y register holds a
$00, the command LDA (80), Y goes to address $3546. Then the command
copies what it finds in the accumulator to that address. Should the Y
register have been holding an $02 instead, the same command would go to
address $3548. Note that this command can reach any location in the entire
address space just by changing the values in $80, $81, and the Y register.

Tharing into ProDos Applewriter Version 2.0

Other double wide pointers access HIFILE to print characters in order,
to display to the screen, and for various other uses that need to access
bunches of characters in sequence.

Be sure you understand exactly how indirect indexing works.
Understanding LOCURS is first and foremost in this quest.

At this point, you should now be halfway through understanding this
program.

We now know how the text file area works. We have studied uses of the
work file area, the internal file area, the reference file area, and page zero.

Next on the agenda are the . . .

Entry Points

Entry points are those locations m the code where you go to do
something . . .

Entry Point

Some location in a block of code that you go to start
something happening.

You can use several possible entry levels, depending on what you need
to get done . . .

Entry Levels

1. High Level
Points entered in the whole code by another
system to run, rerun, or process errors.

2. Command Level
Points entered in response to a main menu
selection.

3. Module Level
Points entered to handle specific tasks or
submenu selections.

4. Service Level
Important subroutines that do all major
housekeeping and handle any often needed
utility functions.

135

136 Applewriter Cookbook

Listing C. 7 summarizes the important entry points. A complete and
detailed disassembly script appears in Listing C.8. This one will tell you
more than you could possibly want to know about every module in the
working code.

There's no single answer to the obvious question of "How does
Applewriter work?" How you answer depends on what you think is
important and where your interests lie. And any attempt to go through the
code in numeric order is pretty much fruitless because you lose track of
who is doing what to whom.

Instead, let's see whether we can't thread together some of the
important working concepts of this program. Our first concern should be
the . . .

ProDOS MLI Links

The ProDOS used in ProDOS Applewriter 2.0 is totally stock in every
way. The program is also installed in its normal space in high main RAM.
All ProDOS access is by way of its MLI, short for machine language
interface, because klutzy and RAM gobbling BASICS.SY S is not used.

To understand ProDOS, you will need Apple's ProDOS Technical
Reference Manual and Quality Software's Beneath A pple ProDOS.

Let's see whether we can't give you a few hints. The usual LOAD,
STORE, OPEN, etc. commands do not exist when using the MLI. Each
time you want to access ProDOS, you do a machine language JSR $BF00,
immediately followed by a three byte data file. The first byte gives you the
command, and the second two bytes point to a second data file needed to
complete the command. The complexity of the file pointed to varies with
the command. This second file typically involves less than a dozen bytes.
Everything-repeat, everything-goes to or comes from ProDOS by way of
the JSR $BF00 MLI interface.

On the facing page is a ProDOS command summary . . .
More details appear in the various listings and in your tearing of the

code itself.
The ProDOS interface is far more uniform and far more flexible than

was DOS 3.3e. For instance, the exact same command saves a text file, a
BASIC program, or a binary file. The only difference lies in the attributes
of the file at the time it is written.

The tab and print constant files are loaded and saved as binary images,
putting each in its respective slot in the work files.

Glossary and WPL program files are treated similarly, except that they
are text files and as before, are loaded into specific places in memory. In
fact, the WPL loader does double duty as a glossary loader. The loader is
simply tricked into putting what it reads in the wrong place when loading a
glossary. These files are all read to or from main memory.

Tearing into ProDos Applewriter Version 2. 0

ProDOS MLI Access Commands

• $40 - Allocate interrupt
• $41 - Deallocate interrupt

$65 - Quit
• $80 - Read block
• $81 - Write block
• $B2 - Get time

$CO - Create
$C 1 - Destroy
$C2 - Rename
$C3 - Set file info
$C4 - Get file info
$CS - Volumes on line
$C6 - Set prefix
$C7 - Get prefix
$CS - Open

• $C9 - Newline
$CA - Read
$CB - Write
$CC - Close

• $CD - Flush
$CE - Set mark$
$CF - Get mark
$DO - Set end of file
$D1 - Get end of file

• $D2 - Set buffer
• $03 - Get buffer
* - Not used by AWD.SYS

These are also total reads or saves, in which the entire file is loaded or
saved at once. Your text files may or may not want to use a total load or a
total save.

Applewriter text files often get moved one 512 byte sector at a time onto
or off of the disk. This gives an orderly way to search for the delimiters that
allow partial loads and saves. Moving one sector at a time also solves a
memory management hassle because ProDOS will normally load or store
into a buffer in main RAM. After searching or processing, the needed
pieces of the loaded or stored text are transferred to auxiliary RAM by the
memory management code.

Random access a sector at a time is done with the SET.MARK and
READ.MARK commands. Appending is done similarly with the SET.EOF
and READ.EOF commands. Generally, a file must be created, opened, read
or written to, and finally closed.

137

138 Applewriter Cookbook

A catalog display is done using GET.FILE.INFO. This ·is handled by
routines internal to Applewriter. Files are locked or unlocked by changing
file attributes and then using SET.FILE.INFO. Files are deleted with
DESTROY.

Several [OJ options are unique to ProDOS. Each ProDOS disk must have
a prefix. Unlike the volume name everyone ignored in DOS 3.3, this prefix
must be remembered and available at all times. You also cannot change a
disk in a drive without also changing the prefix. A SET.PREFIX command
exists. As we saw in Chapter 6, a one key glossary entry can greatly ease
prefix setting hassles.

The [O)-F option is used to list the prefixes of the volumes on line.
Because ProDOS has no init code, the volume formatter gets a separate
program called FORMATTER and installs it from $0800-17FF in main
RAM. This code module is then run, doing an init for you. The same
module also completely and destructively overwrites the glossary, your
WPL file, and any footnotes in use.

You use the final [O]-J option to set Ile modem or printer parameters.
What happens is that the baud rate, start and stop bits, parity, etc., are
coded in a proper form to set the 6551 serial interface chip in the Ile. The
Ile Techn ical Manual gives full details.

Unlike earlier versions of this code, you should have no problems when
installing ProDOS Applewriter 2.0 onto virtually any hard disk. This
happens because the operating system used is totally standard and the
program is completely unlocked and movable.

'Nuff said on ProDOS. Let's go on to . . .

Monitor Access

ProDOS Applewriter 2.0 monitor use is nonexistent.

Applewriter Ile Monitor Use

There ain't any.

ProDOS Applewriter 2.0 uses zero-repeat, zero-monitor routines.
The ROM is never switched into the high memory area. All of the key
getting, disk accessing, and character outputting is done internally to
Applewriter. The good news here is the total control you get with a built in,

Tharing into ProDos Applewriter Version 2.0

type-ahead buffer, screen lines up to 240 characters, controllable scrolling
both vertically and horizontally, ease of output routing, and so on.

The bad news is that some parallel cards on the Ile expect normal use of
normal monitor routines. In particular, the Ile does not use location $24, in
which many parallel printer cards demand to find some horizontal cursor
position information. As we have seen, custom patches are needed to
handle these problem cards with version 2.0. A partial fix is available with
the 2.1 update.

Add-on video cards usually will not properly access Applewriter
because all screen output characters are handled internally. In fact, these
cards are all carefully disconnected by Applewriter as part of the cold
startup process in AWD.SYS.

Actually, with horizontal scrolling to 240 characters, nothing special is
needed in the way of character display. To further prevent tampering with
the internal Applewriter routines, the usual keyboard input hook KSWH
and KSWL ($38 and $39) are set to point to a "brick wall" RTS and then are
studiously ignored.

The CSWH and CSWL character output hooks ($36 and $37) are not
forgotten. Instead, their primary and only use is to let a serial or parallel
interface card adjust them slightly for proper printing. Ferinstance, if you
set this printer hook to $C100 and send a $00 NULL to the interface, the
interface will usually reset the hook to $C105 or something similar.
ProDOS Applewriter 2.0 uses this hook only to get the interface card
started and set to the right 1/0 address. The card then grabs the corrected
address for its own internal use.

Characters are output by an internal and protected version of the usual
$FDF0 (Fideyfoo) COUT hook. This output is handled by a pointer pair at
$9E and $9F on page zero that handles the internal COUT destination
setting.

Applewriter's internal COUT can point several possible places . . .

Applewriter Internal COUT ($9E,9F)

1. On a . pd0 print to screen
Points to $4415 screen code.

2. On a .pdl or .pd2
Points to 1/0 space as adjusted by the interface
card or circuit.

3. On a .pd8 print to disk
Points to $4397 disk write code.

139

140 Applewriter Cookbook

Memory Management

As we have seen, the text files are in auxiliary memory, and everything
else is in main memory. Text files are accessed by some code down on page
one that does not change as the memory is switched between main RAM
and auxiliary RAM. Routines in main RAM that need to read the text file do
so via these page one access links.

Remember that the auxiliary RAM text file is really two files. LOFILE
starts at $0801 and builds up, and HIFILE starts at $BDFE and builds
down. $FF markers define the beginning of LOFILE and the end of
HIFILE. The open ends of both files face each other across all the
remaining empty space. These open ends are identified with $00 markers.
LO FILE holds everything from the start of the message up to one less than
the current cursor position. HIFILE holds everything from cursed
character to the last character in the file. Characters are normally entered
into the top of LOFILE. All of the characters are entered as low ASCII, but
another routine carefully re-marks each end of each screen line with a high
ASCII character instead.

Most of the usual routines enter things to the top of LOFILE. Others
will pass a character from LOFILE to HIFILE to back up the cursor. Yet
others will pass a character from HIFILE to LOFILE to move the cursor
forward. [B] and [E] are extreme examples.

Several pointers access the text file. These pointers include LOCURS
and HICURS, which point to the open ends of LOFILE and HIFILE. You
will also find a screen pointer that starts at a point in LOFILE equal to the
top screen line, advances through LOFILE to the cursor, then
automatically switches to HIFILE to continue. The screen pointer keys on
high ASCII characters to count screen lines.

A printer pointer is used to scan through LOFILE to get characters.
Because everything is moved to LOFILE before printing, no switch to
HIFILE is needed by this pointer. A general use pointer pair accesses either
LOFILE or HIFILE as needed.

Another specialized pointer ($AE,AF) will back up automatically to the
first high ASCII character that this pointer finds. This character locates the
start of any screen line and is useful for both screen formatting and
tabbing.

These pointers all work by switching to read auxiliary RAM, getting a
value, then immediately switching back to read main RAM. Certain other
routines will write to auxiliary RAM by switching to it, doing a store, then
switching back to main RAM.

Note that the writing routines can be in main RAM without a conflict.
Only the reading routines must be in a portion of the memory that is not
switched between main and auxiliary RAM. Otherwise, as soon as the
main-auxiliary switch is flipped, the op codes being read vanish.

As we have seen, no switching into the monitor ROM even takes place.
Nor is auxiliary page zero or auxiliary high RAM ever activated.

Tearing into ProDos Applewriter Version 2.0

Character Entry

No use is made of the monitor KEYIN routine. If you tried using KEYIN
with a word processor, you probably would drop keystrokes during hectic
typing times. Instead, ProDOS Applewriter 2.0 uses its own internal
routine to get keystrokes. This routine includes a 64 key, type-ahead buffer.
If your typing gets ahead of the processing, up to 64 keystrokes are saved in
a pair_ of storage buffers.

The main keystrokes are saved to the character buffer at $1D40, and
(open apple] and [closed apple] keystrokes are separately saved to the apple
buffer at $ lFC0 lFFF. Remember that the apple keys as well as the main
keystroke must be saved, or the computer would not handle certain
functions correctly. 'Iwo round-and-round pointers keep track of where
you are in the key buffer. A filling pointer $F3 and an emptying pointer $F2
take care of this task.

During non-hectic times, the filler and the emptier stay together, and
the keystrokes are immediately used. At other times, the filler gets ahead,
and characters are saved to the buffer. Routines that take lots of time
automatically check the keyboard every now and then to make sure
nothing gets missed.

A busy signal I*) prompt appears on the normal status display during
busy times.

As we saw a while back, characters can still get missed every now and
then if a sloppy typist, a bug in the keyboard encoder, and the slower
insertion mode all gang up on the key buffer. The buff er seems to be
working perfectly when characters are lost. The buffer access is what fouls
up the works.

Reviewing, characters can be gotten directly from the keyboard during
non-hectic times and otherwise gotten out of the type ahead buffers when
things happen too fast.

Several other character sources exist, in addition to the user. Down on
page zero is a special WPL and glossary activity flag $OF. Bit #7 or the MSB
N slot of this flag controls WPL activity, and Bit #6 or the V slot controls
glossary activity. If the glossary is active, the character is gotten from the
glossary file. Similarly, if WPL is active, the character is gotten from the
WPL program file. Sometimes the WPL file will involve itself with its
$A-$D strings. If WPL and these strings are active, the $A-$D string
becomes the source for the next character to be used. You'll find a separate
string activity flag at $F6 to handle $A-$D activity.

Sometimes you want to use a string already in the machine, such as the
= filename or something else that has been previously formatted or put
together. A special controlling string flag $AD exists for such cases. If this

141

142 Applewriter Cookbook

string is set, the old string, which is usually in the key buffer at $0200, is
used one character at a time. If the string flag is cleared, new characters are
gotten as needed from the user, the type-ahead buffer, the glossary, WPL,
or the $A-D flags.

Yet another source for strings of characters exists. When doing a (Q]·I,
you can receive characters directly from a modem or by way of a modem
buffer that saves incoming characters during hectic times. This access
bypasses the usual key-getting routines.

ProDOS activities, such as loads and stores, completely bypass any
key-getting routines and usually put their values directly where they
belong. If searching for delimiters is needed, it is done one 512 byte sector
at a time by way of a user buffer at $8900.

The majority of the word processor's time consists of patiently waiting
for the user to input a new keystroke. Regardless of a keystroke's source,
after that keystroke is received, it is filtered for control and cursor motion
commands. If a valid command is found, it is carried out. If not, the
character is entered to the top of LOFILE.

Summarizing . . .

Sources of Keystrokes

1. Directly from the user during non-hectic times.
2. Indirectly from the user via a type-ahead buffer

when the processor gets busy.
3. From the glossary during glossary activity.
4. From the WPL program during active use of

WPL.
5. From the SA-$D strings if these WPL strings are

active.
6. From an old string already in the keybuff er if

that string is still needed.

We have seen that several sources of keystrokes are available, all of
which are handled internally by the code. User input is accepted directly
or is stashed in a pair of buffers if the processor is busy.

Characters can also come from the glossary, from WPL, or from a WPL
$A-$D string if the controlling flags are set properly. Sometimes, an old
string will be reused instead of getting new input. And finally, characters
can come directly from the modem or by way of the modem's type-ahead
buff er, bypassing the usual key getting routines.

Now for some details on the . . .

Tharing into ProDos Applewriter Version 2.0

Screen Display

The screen display has some very sneaky and complicated code
associated with it. First note that you can turn the screen off and on with
flag $F7. Leaving the screen off speeds up WPI:s operation considerably.

Naturally, seeing what you are doing when the screen is off is tricky. A
screen that is turned off is useful, though, to display WPL menus, prompts,
and whatever.

Before a screen display is updated, any routine that messes with the
text files will automatically reformat the screen lines in that file.
Reformatting is done by backing up two lines from the cursed position and
then counting how many whole words will fit on a line. Each line stops
either on a carriage return or when the line does not have enough room for
the next word. At that point, a marker character, usually an $OD carriage
return or an $20 space, is changed to a high ASCII $8D or $AO and restored
to the text file. All old low ASCII characters are erased from the text file.
The process continues forward through the text file until a carriage return
is found that is already correctly formatted.

Note that anything two lines before the current activity had to be
correct already, thanks to previous reformatting. Everything beyond the
next carriage return is also correct. Only the mess in the middle needs
straightening out. The entire text file is reformatted after a margin altering
[A], after loading, after printing, and any other time that something really
major happens.

Completely reformatting a long text file may take several seconds. The
upshot is that, before a screen update, all of LO FILE and all of HIFILE have
end of screen line markers properly placed to end each line on a whole
word.

The cursor usually stays on the middle line of the active screen. Should
the screen overflow, everything scrolls up one line. Should it underflow,
everything backs down one line. During insertions, characters get
turnstiled as far as they have to in order to reach the next carriage return.

To update the full screen, the screen pointer pair $88,89 backs up 12
lines, which is usually 12 inverse-ASCII characters from the top of
LO FILE. Characters are removed from LO FILE and put on the screen up to
the cursed location. Immediately beyond LOCURS, the pointer is moved to
HI CURS, and the code continues filling in characters from HIFILE until 12
more lines are completed.

The flashing you see on the cursed character is purely your imagination
at work. The service routine that awaits a keystroke patiently flips the
cursed character on the screen between low and high ASCII. Sometimes
that character is left as an inverse low-ASCII marker. An example is the
cursor on the nonactive side of the split screen.

Note that the large and empty no man's land between LOCURS and
HICURS is bypassed. The lowest character in HIFILE ends up at the
cursed location. Note also that the alternate character set is used, which

143

144 Applewriter Cookbook

has no flashing characters available. Low ASCII characters appear as
inverse text.

Only the active half of the screen is updated on a split screen. The
inactive half of the screen reviews static, remembering things the way they
were.

If the wraparound flag $El is not active, characters are put on the
screen wall to wall without regard for word breaks. Only a 79 character
line is used because room must be left for the optional carriage return
display to appear in column 80.

A user prompt is sometimes needed at the bottom of the active screen.
To print a prompt on the screen, three lines are erased, and the prompt is
placed on the middle line. Prompts are normally read as needed out of the
reference file area. Service subs are built into the screen code for the live
cursor screen motions, line clearing, scrolling, and so on.

Another summary . . .

Screen Updates

1 . Before any screen update, low ASCII markers
are placed at the end of each screen line in the
text file.

2. Everything before the cursor on the screen
comes from LOFILE.

3. The cursed character and everything beyond
comes from HIFILE.

Things get more complicated if you are using a right margin wider than
78 columns.

In this case, not all of the screen line can be displayed. A special stash is
used to calculate the offset needed between the previous end of screen line
marker and the actual screen starting text character. This offset is
automatically added when finding text file characters to go on the screen.

As long as the cursor stays near the middle of the screen, no change is
made in this offset value. If the cursor gets left of the twelfth character, the
offset is decremented, giving an apparent horizontal scrolling of one
character to the left. Should the cursor get right of the sixty-eighth
character, the offset is incremented, giving you an apparent horizontal
scrolling of one character to the right.

The display will start with its left margin LM value in column zero,
which produces an apparent what-you-see-is-what-you-get display, as long
as the screen width is less than 78 characters total. For the most exact
display, use [tab) rather than PM values for your paragraphs. Note that all

Tharing into ProDos Applewriter Version 2. 0

screen lines will be justified flush left even if a wide left margin is used.
Note also that breaks on whole words only are required on lines wider than
78 characters.

We now kn.ow something about how ProDOS works, how the monitor
is used, where the characters come from, how they are managed, and how
the screen update works.

Next are two . . .

Individual Control Commands

Let's run down the control command list, seeing roughly what each
command does. For more detail, check Listing C.8 or your own torn
disassembly listing and cross reference list.

[@] is really [delete], recoded to $80 from its default value of $FF. This
command unconditionally knocks out LOFILE's uppermost character and
replaces it with a $00 marker. The command then backs LOCURS up one
character.

[A] is the command to alter the screen margins. If the characters per
line are less than 78, the left screen margin is set to appear in column zero.
If the characters per line are more than 78, the left screen line is first set to
center the cursor if possible. As the cursor gets moved within 12 characters
of either the left or right margin, horizontal scrolling is activated. Screen
lines are marked by setting the last character in each screen line to high
ASCII.

[B] moves all the characters from LOFILE to HIFILE, placing the cursor
at the beginning of the text. When finished, LOFILE will be completely
empty, and HIFILE will hold the text being processed.

[C] changes the case flag, initially from none to U or later from U to L or
from L to U. When characters are entered, this flag is checked. If active,
uppercase or lowercase is forced as chosen. The flag is reset on all cursor
motions except the left and right arrows. These arrows let you capitalize or
lowercase as many characters in a row as you want. Only real letters are
changed.

[D] toggles the data direction flag between < and > . If a [W] or [X] is
specified with a data direction of > , words or paragraphs are restored. If <
is the data direction when [W] or [X] are specified, words or paragraphs are
deleted. The data direction flag also sets the direction of a search or search
and replace.

[E] moves all the characters from HIFILE to LOFILE, placing the cursor
at the end of the text. When completed, HIFILE is completely empty, and
LO FILE holds all of the text being processed.

[F] does either a search or a search and replace. Delimiters are
interpreted, substituting special ones if used. Then the text is searched
using the $98,99 pointer pair. If you want to make a replacement, text is
moved from HIFILE to a work buffer and the replacement is made. Various

145

146 Applewriter Cookbook

options substitute for fake carriage returns, allow repeats for all
occurrences, let you use wild cards, and provide any length capabilities.

[G] either sets up or reads the glossary. If a valid read, the glossary flag
is set. If set, characters are gotten from the glossary work file until the next
carriage return. At that time, the glossary flag is cleared. If the flag is a • ,
the glossary is emptied by placing a zero at the glossary start location
$ 1 BOO. If the flag is a ? , the end of the glossary is found and the new
definition is entered that ends with a carriage return and a $00. The
glossary has a nest that works like a subroutine and remembers up to eight
return pointers. This nesting picks back up on the caller when the callee is
finished.

[HJ is the left arrow. When it is the only key pressed, it backs up one
location by moving one character from LOFILE to HIFILE. When used
with [closed apple]-, the left arrow ([HJ) does an express by-word
backspace, continually backing up until the first space is found. With
(open apple], the left arrow saves a character to the swallow buffer instead
of HIFILE and increments the round and round swallow buffer pointer
$AC.

(I] moves the cursor to a tab. The present position since the last carriage
return is calculated. A test is then made to see whether any valid tabs exist
beyond the present position. If so, spaces are added to the top of LO FILE to
move to the next tab position. If [closed apple] happens to be down, the
cursor is moved without space padding so that the characters are tabbed
over without being moved. Tabs are permitted anywhere within a
paragraph.

OJ is the down arrow. When it is the only key pressed, it moves
characters from HIFILE to LO FILE, repeatedly frontspacing until one line
is moved. Each succeeding line ends with a high ASCII marker. With
[closed apple) and if enough text is left, the down arrow goes forward 12
whole lines.

[K] is the up arrow. It moves characters from LOFILE to HIFILE,
repeatedly backspacing until one line is moved. Each preceding line ends
with a high ASCII marker. With [closed apple], the up arrow tries to go
backward 12 whole lines if enough text is available.

[L] is the load command. Loading can be from the text file, which is
really a copy command, or from ProDOS. Loading from ProDOS is first
done via a one sector, 512 byte buffer at $B900 in main RAM. After
scanning for any needed delimiters, the characters are transferred to the
top of the LOFILE text file area in auxiliary RAM. Text is entered just
beyond the present screen position. Alternate delimiters provide for all
occurrences, wild cards, and fake carriage returns. An option exists to load
only to screen.

[M) is the carriage return that ends each command. This command is
not available for other uses, although you can fake a glossary carriage
return with a) and a search for a carriage return with a special delimiter,
such as > .

Tharing into ProDos Applewriter Version 2.0

[NJ is the new command. Because this command can be deadly, you are
given a prompt that needs a Y answer. If you are serious about destroying
your text file, this command adjusts the HIFILE and LOFILE pointers so
that nothing is in either HIFILE or LO FILE and your cursor is sitting at the
beginning of LOFILE. The old material is not erased, except for the first
character. All that happens is that the first character gets replaced with an
open-end-of-file $00 marker.

[O] is the DOS access menu. The menu is displayed and a selection is
gotten. On a catalog command, a GET. FILE. INFO is done for the directory.
The catalog formatting is internal to Applewriter. Locking and unlocking
are done by reading, then changing the attributes of a file. Renaming,
deleting, setting prefixes, finding volumes on line, or creating a
subdirectory are done directly with their respective ProDOS commands.
Initing a new disk is done by loading a separate formatting program, then
jumping to that program. The formatter destructively overwrites the
glossary, WPL, and any footnotes.

Finally, the printer commands are a set of internal routines that let you
set the baud rate, word length, stop bits, and parity on a Ile. This routine
also defeats video echo and suppresses any carriage returns that may be
generated by the interface hardware.

[P] updates the print/program file or carries out a WPL command. A
valid two-character, print/program value is converted to hex and entered
in the correct slot in the print/program file. Absolute values are entered as
such. Relative values are added to or subtracted from the old value. Two's
complementing is used for subtraction. On TL and BL entries, the string is
placed in the correct file. On UT, the underline token is saved. On NP, CP,
and WPL commands, the selected command is completed.

[Q] accesses the additional functions menu. Binary tab and
print/program values are loaded or saved as called for, using the ProDOS
MLI. All of these values go in their respective stashes in main memory.
Glossary or WPL text loads and saves are done similarly. The carriage
return toggle sets or clears a display flag. The status toggle is identical to
[esc] and may be replaced with something useful. Connecting printer to
modem gives you a limited way to type directly to your printer. More
importantly and more usefully, this selection also lets you send or receive
text files over a modem.

A submenu on the [Q]-I selection lets you activate these modem
features, such as recording incoming modem data or filtering control
commands. The Quit option is surprisingly sophisticated and provides for
an orderly exit to some other ProDOS system application program.
Quitting includes reconnecting all disconnected video cards, and closing
out current ProDOS activity in an orderly way.

[R] toggles the replace mode flag $F5. When in the replace mode, a
character is deleted from HIFILE before each character entry, then the
new character is entered into the top of LO FILE as usual. The combination
of deleting the cursed character and entering another character at the

147

148 Applewriter Cookbook

cursed position gives the illusion of replacing the old character. Replace
mode is aborted on practically all cursor motions.

(S] is the save command. On any save, the entire text is first moved to
LOFILE. Then all or delimited portions of the text are moved to a sector
buffer in main RAM at $B700. Full sectors are transferred to disk as they
are filled. Should appending be needed, ProDOS markers are set to allow
adding to the end of an existing file rather than overwriting the previous
bytes.

(T) sets or clears tabs. On a purge, the entire tab file is cleared to all
zeros. On a Clear, only one pair of tab entries is set to zero. On a Set, the
present position since the last carriage return is placed in the tab file. Up to
64 tabs are allowed. A separate tab status display is updated, causing all set
tabs to appear in inverse and all cleared tabs to appear as normal. Although
the status display only goes to 240 columns, tabs themselves can well
exceed this number if the current paragraph is long enough.

[U] is the right arrow or frontspace. When it is the only key pressed, it
moves the cursor forward one location by moving one character from
HIFILE to LOFILE. With [closed apple}, the right arrow does an express
by-word frontspace, continually going forward until the first space is
found. With (open apple], the right arrow retrieves a character from the
swallow buffer instead of from HIFILE, placing the character in the top of
LOFILE, and decrements the round and round swallow buffer pointer
$AC.

(VJ toggles the verbatim flag $ 72. With this flag set, all control
characters except [M] or [V] are entered directly into the text file. This
allows imbedded control characters for such things as special printing or
typesetting commands. With the V flag cleared, control characters are
used in their normal manner.

[W] inserts or deletes a whole word, depending on the data direction.
On < , a word is saved to the word and paragraph deletion buffer starting at
the first open spot available. Characters are removed from the top of
LOFILE and placed into this buffer until either a space or an empty file is
found. On > , a word is recovered from the word and paragraph deletion
buffer, putting the characters in the top of LO FILE and stopping on a space.
A round and round pointer pair $94,95 keeps track of positions in the
deletion buffer. A separate deletion overload counter makes sure the
buff er does not overflow.

[X] is similar to [W] but [X) inserts or deletes an entire paragraph,
keying on a carriage return rather than a space. On both (W) and [X], if
[closed apple} is also used, the word or paragraph is saved to file but is not
deleted from the text. This is most useful for copying short blocks of text.

[Y] is the screen splitting switch. On a [Y)-Y, the split screen is set up,
using only 12 lines per display rather than the usual 24. One side of the
split screen is active at a time. The other side is a static display of the way
things were. Pointer $F8 decides which side is active. On a [Y] with a split
screen, control flips over to the other screen side by toggling $F8. On a
[Y}-N, the pointer is cleared, allowing the normal full screen display.

Tharing into ProDos Applewriter Version 2. 0

(ZJ toggles the wraparound flag at $El. Wraparound is always present
in the text file because each screen line ends with a high ASCII marker. If
this flag is active, the screen update code ends each line on these markers.
If wraparound is not necessary, characters are put on screen as they occur,
stopping at 79 screen characters. The character slot to the extreme right is
always reserved for a possible carriage return symbol, whether or not it is
used. Note that full word breaks must be used if more than 80 columns are
active.

(-1 calculates the page/position display. This routine is cumbersome
and slow but also is most useful. Because operation is too slow for real
time, you must toggle [_] on only when you want specific page/position
information. The routine works by counting carriage returns and
comparing them to the printable lines per page. The total carriage returns
are divided by the printable lines per page. The result gives you the page,
and the remainder gives you the position on the final page. The need for
numeric division causes the slowness.

We aren't quite through with control commands because I have saved
two of the heavies for last. As a reminder, we are scanning through the
various features of this program to see roughly what they do. Much more
detail is found in Listing C.8 and in your own torn disassembly and cross
reference.

Our first heavy is . .

Printing

Unlike some word processors, the ProDOS Applewriter 2.0 printing
routines are part of the machine-resident editing code rather than a
module separately loaded off the disk. In Applewriter, you have a choice of
four possible print destinations. You can print to a real printer to get a hard
copy. You can print to a modem or a special Ile plug-in card. You can print
to the screen to see exactly what your printed text will look like, or you can
print directly to a disk text file.

The last option gives you a document in final form, without any
imbedded commands, that looks exactly like the document to be sent to the
printer. Printing to pd8 is particularly useful when you are typesetting,
need camera-ready copy, require multiple columns, want multiline
headers or footers, or are transmitting between two different brands of
computers. In fact, if anything seems like it cannot be done with
Applewriter, chances are that a trip through pd8 land will bail you out one
way or another. Once you decide what you want, WPL can make the whole
thing invisible and automatic.

One gotcha: Be sure to have a unique filename for your pd8 images!
Otherwise pd8 files will get mixed up with your files that contain

embedded commands and will royally foul the works. I often use a
generic ZZZ for any temporary use of a pd8 file. The print destination is

149

150 Applewriter Cookbook

specified with the pd command. A pd0 outputs to the screen for
what-you-see-is-what-you-get previews. A pdl dumps to a printer card in
the selected slot. Rarely a pd2 or pd4 could be used to dump to a modem or
some other special card. A pd8 dumps directly to the disk.

Printing begins by moving everything to LOFILE with a (E] command.
The printing pointer pair $90,91 then moves up through the text file by
starting at $0801 and grabbing one character at a time.

Pages are formatted using the print/program values, such as top
margin, left margin, right margin, bottom margin, page numbers, etc. At
the beginning of the first page, the pn page number is saved to the running
page counter pair at $BE,BF. The default left and right margins are saved as
well. This way, the top and bottom line formats will stay the same
throughout the document. The top line, if used, is formatted and printed
first. This is done by reading the three possible delimited pieces out of the
top line file and then moving them into a work area where the page
number can be substituted for the # symbol.

Each left, center, or right piece is moved to a line buffer that has been
previously filled to all spaces. The left piece starts at the left. The center
piece starts half way across minus half the length of the center text. The
right piece begins shy of the right margin by its length. After the top line,
the top margin padding is put down, followed by the body of the page. The
body is formatted and printed one line at a time, allowing for paragraph
margins or outdents on the first line in each paragraph. Each line begins by
getting enough characters out of the text file to fill the line.

As the characters come in, they are filtered for imbedded commands
and for footnotes.

lmbedded commands start with a carriage return followed by a period
followed by two or more letters. If these commands are found, the printing
stops long enough to let the imbedded command do its thing. For
instance, on an .lm + 5 command, printing halts momentarily. The left
margin is retrieved, decimal five is added to it and then the left margin is
replaced. The new left margin value will be picked up on the next line.

As you most likely have found out by now, any command that
Applewriter does not recognize is treated as printable characters. This
leads to the shortline problem. We have seen a STRETCHIFIER patch
described in Chapter 6 that cures this hassle.

Characters are also filtered for footnotes, which begin with the I <
command. If footnotes are found, they are stored in the footnote buffer at
$ 1400, and the footnote flag $FE is set. This flag is incremented once for
each footnote.

The very first footnote knocks two counts off the available number of
printed lines. Any additional footnotes knock off one extra line. This gives
a space between the bottom body line and the first footnote line.

At print time, any user separators (_) are automatically converted to
NULL commands. That conversion works fine if you need NULLs for an
old Epson. It is terrible if you need a user separator for a daisywheel HMI

'!earing into ProDos Applewriter Version 2. 0

command, a modem activity command, or for expanded printing on some
newer dot matrix printers. A fix for this is described in Chapter 6.

At any rate, characters are gotten and filtered until enough whole
words are entered to fit between the left and right margins. These
characters are placed into the line formatting buffer at $ lC00. That line is
then justified. Should left justification be in use, nothing more is done. All
of the words remain flush left.

If center justification is in use, the length of the entered characters is
subtracted from the line width. This new length is halved and then that
number of spaces is used to off set the characters in the line buff er.

If right justification is in use, the length of the character string is
subtracted from the line width, and that number offsets the characters in
the line buffer.

In any of these three modes, you end up with the buff er holding the line
justified in the correct position. Spaces are added as needed before the
center justified and right justified text. Spaces are not needed beyond any
text because the carriage return completes the entry. A row of printed
spaces looks the same as the unprinted page, so trailing spaces are neither
needed nor used.

On the fill justification of a long line, the needed number of padding
spaces is calculated. Text is then moved one space to the right, beginning
with the first space and repeating as often as needed to force the fill
justification.

Microjustification is not available inside stock Applewriter.
Instead you use imbedded commands to tell an intelligent printer to

microjustify for you. Naturally, if your printer has full microjustification
available internally, your text will look much better than text justified by
whole spaces. As we've seen, the enhanced Diablo 630 microjustifies
beautifully.

Regardless of the justification mode, all of the characters end in the
correct place in the line justification buffer. When the justified line is
output for printing, it is preceded by enough spaces to make the left
margm.

On first paragraph lines, the pm value is used to adjust the needed
number of leading spaces.

As the line is printed, the characters are filtered for the underline
token. Should this token appear, it is replaced with a space, and the
underline mode flag $E0 is toggled. Underlining is done by printing the
underline character and then backing up one space and printing the
character to be underlined. Underlining will not work on some very old or
otherwise primitive dot matrix printers. The printer must be able to
recognize the $88 ASCII backspace command for this type of underlining.

As we have seen, underline is best left to the printer. This is done by
imbedding suitable commands to turn the printer's underliner on and off
when needed.

As many lines as are asked for are put in the body of the text. When
finished, any footnotes are recovered from the footnote buffer and printed.

151

152 Applewriter Cookbook

They are followed by the bottom line padding, and, if used, the bottom
line.

Note that the stock program allows only a single top or bottom line.
However, with repeated trips through pd8 land, you can have any number
of top and bottom lines. You can also single space the headers and footers
while double spacing your main text, as well as using even-odd headers.
Good old pd8 will also let you do space-and-a-half and similar tricks.

Printing continues until all of LO FILE has been printed. At that point, a
new file can be loaded and a cp continue printing command can be given,
picking up exactly where you left off. The same running page number and
current margin settings are kept. On the single sheet option, printing halts
at the bottom of the page long enough for you to change paper.

By the way, if your Ile printer card does not defeat video echo, it will
trash the screen and may slow things down, particularly at higher serial
baud rates. The Ile serial interface automatically defeats any screen echo
when you set the printer interface with [O]-J. As a reminder, special
patches may be needed for intelligent Ile printing cards.

You will, of course, get the best printing with an intelligent printer or
typesetter that accepts imbedded commands and can do its own pro
portional spacing, boldface, italics, shadow printing, and microjusti
fication.

So much for printing. The real biggie is . . .

WPL

WPL is a supervisory language that looks like a cross between PASCAL
and assembler. Its intended use is as an executive controller that will
handle long and involved tasks for you. Obvious uses are printing a
multiple file book chapter with the correct headings and footings,
customizing a mailing to a separate address list, counting words, putting
down menus, prompting operators, building an index, etc.

But it's the non-obvious uses of WPL that boggle the mind.
The amazing thing about WPL is how much is done with how little. The

additional code needed is rather short and compact. I have used WPL to
insert or remove the line numbers from assembly code and to picture
process strings sent to a plotter. I have used WPL to trick a printer into
doing camera-ready copy and to handle automatic formatting. I have also
used WPL to create high level graphic images. In fact, I am convinced that
WPL is far more powerful at processing pictures than it is at words. Others
have even written adventures in WPL.

WPL interfaces beautifully with Postscript, the typesetting language
used on the Laserwriter.

We already saw how to use WPL to completely format a document for
full bells and whistles superior quality printing. The message is over-

Tharing into ProDos Applewriter Version 2.0

whelming. WPL is super powerful and super important. Without this
language, Applewriter may have some second rate competition.

With WPL, that's all she wrote . . .

If you do not thoroughly know and aggressively
use WPL, you are passing up at least 98 percent of
the good stuff you can do with Applewriter.

So get with it. Now.

Figure 7.4 summarizes a WPL instruction. Each WPL instruction is one
line long and ends with a carriage return. Lines are done normally in the
order they are found in a WPL program although several important
exceptions exist.

THE I UIHl i I F USED
COMES FIRST AHO
IOEHTIFIES THIS llHE
FOR A WPl JUMP OR
SUBAOUT I HE ACCESS.

�
GETFILE

THE jorcoD£ j ALWAYS FOLLOWS
THE FIRST SPACE AHO IS ALWAYS
TREATED AS IF IT WERE A COHTAOL
CHARACTER. THE "l" HERE ACTS AS
A (l) lOAOIHG COHHAHO.

THE j Ol'ERIIND I IF USED
PROVIDES AHY EXTRA
IHFORHA TIOH THE OPCODE
HAY HEED, SUCH AS A
FILENAME.

�
ZORCH .D 1 <er>

i
L I HES ALWAYS EHD WITH A
I CIUUIIIIGE IIETUllft ,. IF AH
OPERAND IS HOT USED, YOU
CAH ALSO AOOlCOl'll'IEftTS I
TO MAHY WPL COHHAHD LIHES.

Fig. 7.4. A WPL command line is very similar to a line of assembly source code.

Each WPL line may begin with a label. The label must not have any
spaces. If a label is used, it lets WPL find a certain line for possible jump or
subroutine access.

If a label is not used, a space must be the first character on a WPL line.
Either way, the first character after the first space in a WPL line is treated as

153

154 Applewriter Cookbook

if that character were a control character. WPL then behaves just like you
typed that control character from the keyboard. For instance, the WPL
interpreter would see a line that consists of a space followed by a B as a (B]
and would move the cursor to the beginning of the screen.

Although WPL lets you use lots of spaces for pretty printing, you can
run out of program room fast if you try this. Thus, most non-trivial WPL
programs are usually done in a compact and hard to read form.

Nearly anything you can do at the keyboard, WPL can do for you,
automatically, potently, and without errors. Think of WPL as a high level
language that is extremely good at editing long strings of characters and
acting on them plus being a competent disk and printer supervisor.

So what is WPL and how does it work?
To answer, we first need a way to write a WPL program. Because a WPL

program is nothing but some processed words, you write your WPL
program on Applewriter, just like any old text file, and save it to disk.

One WPL command is called do. To run your WPL program ZORCH,
you simply enter [PJ do ZORCH. That is all there is to it. The do code first
clears all the various WPL flags and work areas. This code then loads the
named program into a WPL program file starting at $ 1000. The program
can be 1024 characters long if footnotes are in use or 2048 characters if not.

Note that you can beat the lK or 2K character limit so that a WPL
program can be arbitrarily long. Chain any number of WPL programs
together end-to-end with do commands. You can also use one main WPL
supervisory program to control several others. The others go back to the
supervisor after carefully setting a variable or two to tell the supervisor
where the program left off.

Variables are preserved when WPL programs are chained or otherwise
linked together.

The do command also sets the WPL activity flag $DF so that keystrokes
will be read from the WPL file rather than from the keyboard. If the WPL
flag is set, the first line of the WPL program is read. If a label is present, it is
passed over, and WPL finds the first character beyond the first space or
string of spaces. This character is converted into a control command and is
processed just the way any control characters entered from the keyboard
would be. Any remaining characters on the line are used as needed by the
control command. Ferinstance, a filename might follow an L for [L]oad,
but a search and replace string might follow a F for (F]ind.

The WPL lines are read one at a time, usually in sequential order. Each
line terminates with a carriage return. The final WPL line ends with a $00
marker, which stops WPL and returns control to the keyboard.

WPL has jumps and subroutines. The WPL command go will start at
the beginning of the WPL file and sea'rch for a label. On the jump
command, that label is found and the program unconditionally jumps to
that line and then continues from there. The WPL command sr does almost
the same thing for subroutine access. The only difference is that a return
address is remembered on a WPL stack at $ 1D00, along with a stack

'!earing into ProDos Applewriter Version 2.0

pointer $92 that remembers where to return to. Returning is done when a
RS command is found.

Subroutines can be nested to a depth of 32.
WPL has three numeric variables named (x), (y), and (z). Each can range

from O to 65535. Any time an (x) is found, the value assigned to (x) will be
substituted, and the same goes for (y) or (z). You can set these numerics to
any value, either absolute or relative.

You can easily test a numeric for zero. With some hassle, you can also
test a numeric for most any nonzero value. For instance, psx45 puts a
decimal 45 into (x). psx7 sets (x) unconditionally to decimal seven. A
command of psx + 7 adds seven to whatever was already in (x). Most
importantly, the command psx-1 decrements a counter loop involving (x)
by a single count. The numerics are really nothing but print/program
values and are stashed in the print/program file, such as Im or ut. See
Listing C.3 for the exact locations.

Substitutions are done at the time the WPL line is interpreted.
WPL has string variables. Four of them are named $A through $D.

These are stashed in the work files, starting at $ 1E00. Just like the
numerics, the strings are substituted for their symbols at the time the WPL
is interpreted. Strings may be loaded from memory or disk with the ls
command assigned to an immediate value with the as command and
compared with the cs command. Check Listings C.3 and C.8 for more
details.

During disk access, the pis load string command borrows an unused
portion of the text file immediately above LOCURS out in no man's land.
Because the $A-D strings are allowed to be only 64 characters long, there is
little danger of crashing into HICURS, except on a nearly full text file.
String loader is done in the text file run to give all of the powerful loading
options to WPL strings that the usual text loads receive. After use, the
string above LOCURS is zeroed out so that this string does not become an
unintentional part of the text file.

WPL has conditional execution. This is an absolutely essential feature
of any computer language. The next WPL statement is skipped if a numeric
reaches zero, if [F]ind cannot, if [L]oad will not, or if sc does not compare.
The skipped statement is usually a jump, a subroutine call, or a program
quit. Thus you can make a test and cause WPL to pick two different routes,
depending on the result of that test.

WPL interacts with the user. You can clear the screen or print fixed
screen messages with the ppr command. You can get a string from the user
with a pin command. The display can be turned on with the pyd command
and off with the pnd command. An off display computes much faster,
besides holding the last prompt or message for you.

A pep command in WPL enables the printer if its value is not zero. You
use this command to print only the page you want in the middle of a
document. To accomplish this, put an .ep0 at the beginning of your
document and an .epl where you want the actual printing to start.

155

156 Applewriter Cookbook

Note that the command dot in your text file is the same as a [P) on the P
in a WPL command. Thus [P)epl lets you turn the printer on. An .epl will
turn the printer on when imbedded in the text. Finally, a pepl from inside a
WPL program will do exactly the same thing.

Many beginners do not pick up on the power of the STARTUP feature.
On a cold boot, Applewriter looks for a WPL program named STARTUP. If
Applewriter cannot find this file, things continue normally, without any
error messages and without any retries.

If Applewriter STARTUP is present, anything in that file gets done in
the intended order. Important things a startup program can do are set the
prefix to drive two and give you a catalog of your work files. Startup
programs can also load your glossaries, tab, or print files as needed.
Fancier STARTUP programs can give you a help screen and menu selector
that automates printing of multicopy, multisection documents, load and
save boilerplate, control help screens, and do lots of other really neat
things.

Here are a few . .

WPL Tricks That Beginners Miss

Clear screen
Beep
Tweedle

Catalog to file

Set prefix
Turn printer off
Turn printer on

ppr[L]
ppr[G]
ppr[G][G]

[G]
oa#
pxxxxx
oh,d2
.epO
.epl

Clear screen works only after a .pnd command. Use the beep when an
error occurs. Use the tweedle to get the user's attention when a long
routine is finished.

WPL, of course, can have errors.
Lots of different things can go wrong with a WPL program. You might

have a label missing or spelled wrong. You might be calling subroutines
without returning. The program might get too long. Just as DOS has an
orderly exit method and prompting for DOS errors, a separate WPL error
processor shuts down WPL in an orderly manner and prompts the user.
This error processor starts at $40F6 in the AWD.SYS version of ProDOS
Applewriter 2.0. [esc) shuts down a wayward WPL program. This same
key also serves as a printer panic button.

Tharing into ProDos Applewriter Version 2.0

WPL is great for what it is and what it does. But it is a specialized
language and, as such, has some serious shortcomings. Its arithmetic
capabilities are limited. A floating point multiply takes more than 46
seconds-that's seconds, not milliseconds or microseconds. Some other
tasks can also be excruciatingly slow, particularly sort routines.

And that just about gets us one pass through Applewriter. Should you
want all of this chapter in machine readable form, it is available as an eight
disk ProDOS Applewriter Cookbook package, separate from the
companion disk to this book. More details on the last few pages.

157

8

Capturing ProDOS
Applewriter
Version 2.0

Source Code
Customizing ProDOS Applewriter 2.0,

capturing source code,
adding multiple columns with WPL,

and a final wish list
to wrap things up . . .

159

Customizing ProDOS Applewriter 2. 0

Obviously, you want to modify either all of ProDOS Applewriter 2.0 or
part of WPL, or you wouldn't have gotten this far.

Okay.
First, you'll want to completely tear apart the program and thoroughly

understand it.
Secondly, be sure that what you want done cannot be easily handled by

a WPL routine of some kind that works on the stock code. Don't forget that
amazing things can be handled with a WPL routine that autoboots on
power up.

Listing C.9 shows two different ways to customize ProDOS Apple
writer 2.0. In the personal method, you make any changes you like
and permanently install them onto a third or higher backup copy of the
original code. We saw lots of examples of how to use the personal method
in Chapter 6. This personal method is simple and quick, but the result
cannot be commercially sold or otherwise passed on. At least not legally.
Also bad is the fact that a program has been changed without any
renaming.

The preferred commercial method uses a booting .SYS program of your
own . . SY S first calls for and loads the user's legal copy of the stock factory
program. Then your .SYS program installs your patches and expansions in
the machine resident code and runs the patched version. This method
seems fully legal and has no duplicate filename problems. You are, of
course, required to have a ProDOS license if you sell or pass on any code of
any type that works under ProDOS. Apple's fees on this sort of thing start at
$ 50 annually.

Your custom booting code has three subtle gotchas: First, although the
program can be in any language, the code must be a .SYS file and must be
the very first .SYS file on the disk. Note that you can get between a .SYS file
and any other by using the Type command, such as BLOAD AWD.SYS,
A$2000, E$6020, TSYS, D2. In this example we grabbed a system file and
installed it as a binary image.

161

162 Applewriter Cookbook

Second, the MLI access part of your code that installs AWD.SY S must
specify and set aside a ProDOS buffer at $BB00 in main memory. Note that
this is the only funny thing that the stock booting code does.

Third, be sure to verify that the correct version of the proper code is
installed before you overwrite it. Very strange and wonderous things will
happen if you install an Applewriter patch in the middle of Zork or
Visicalc.

By the way, you can boot AW.SY STEM from BASICS.SY STEM by doing
a PREFIX.D 1, followed by a AW.SY STEM.

Just about any attempt at modification should preserve the position and
length of the stock code . . .

If you modify Applewriter, try to keep the position
and the length of each code module exactly the
same as it is in the original program.

If you do not match each original module, you will introduce all sorts of
sticky complications. As you might gather from this rule, you should hold
off trying to use the HIRES screens in their int�nded locations for anything
unless you are ready to change things in a very big way.

The usual way to handle a module that gets longer is to put a jump in
the module, then do your patch in the free part of main RAM from $6020 to
$BF55. Lots of room is available.

When finished with your module, you either jump back to the stock
code or RTS to it as a subroutine return. It is also best to provide
compatibility with only one version per patch. At the present time, the best
choice of a program is AWD.SY S, intended for the 80 column Ile or the
expanded 128K Ile.

To repeat, leave everything exactly where it is in memory, making
changes that overwrite, rather than relocate, code modules.

We saw a good way to add PEEK and POKE to older Applewriter Ile in
Enhancing Your Apple II, Volume II (SAMS #22425). Unfortunately, ProDOS
has no simple or easy way to add PEEK and POKE. Should you really need
something BLOADed off disk, you need to set up a ProDOS MLI interface.
Cloning or diverting the tab loading routine [Q]-A must be one feasible
route.

Why Modify?

Disclaimer time: All computer programmers face a dilemma.
If they do not provide ways to extend and change the language, their

Capturing ProDos Applewriter Version 2. 0 Source Code

language is forever theirs and its integrity is never compromised by things
that others try to do to it.

If they do provide ways to extend or change the language, the limits can
be pushed and fantastic and unexpected things can be done as many
different people put their skills and thought processes to work improving
and upgrading.

The same is true of a word processing program. If you change it, it may
get better or it may get worse. If you do not change the program casually, it
does exactly what is expected of it, reliably and certainly. If you do change
the program, it may do great and wonderful things.

Then again, it might blow up in your face.
So, you are given both a powerful and a deadly ability when you

attempt to modify a major program. Almost certainly, poorly thought out
changes by a careless or inexperienced programmer will blow up the code
outright, or else create subtle and infuriating bugs.

Needless to say, neither Sams nor I will clean up any of the mess you
make. But have at it. Nothing ventured, nothing lost. Be sure to let us know
what successes, if any, you may come up with.

Thoughts on HIRES Dumps

HIRES graphics dumps are reasonably easy to add to ProDOS
Applewriter 2.0. The most serious problem is that a separate machine
language printer driver is needed for virtually every make and model
printer. Worse still, firmware routines in standard printer graphics dumper
cards or modules cannot be used, unless such modules know how to do a
"page three" dump. Even then, some customizing will be needed.

If you have studied Chapter 7 in detail, you found that the normal
HIRES picture areas in main RAM from $2000-SFFF hold all of the
program itself. The similar area in auxiliary RAM sits smack in the middle
of your text file. Thus, any attempt to put a HIRES picture in the machine
where it belongs and actually could be viewed would be a real hassle. One
solution is to use HIRES "page three", BLOADing your picture to be
dumped in $6000 7FFF in main RAM. A better solution is to use page
"three-and one-half," starting at $7000-7FFF, which leaves room at the end
of the stock AWD.SY S code for expansions and add-ons without any
memory conflict.

Three ways are available to handle graphics images. The first is by way
of string precoding. The second is with a full screen dump. The third is by
post processing.

With the string precoding method, you use some other program,
written in machine language or even Applesoft, to take a HIRES image and
convert it to a text string of characters that will fire the dot matrix pins or
move the daisywheel in the right direction at the right time. You get the
best results on a dot matrix printer, and then when you fire only the middle

163

164 Applewriter Cookbook

six pins. Your pre-converted HIRES image is loaded as a text file, exactly as
any other text file would be.

The advantage of this method is that it can work on stock ProDOS
Applewriter 2.0, even on the short AWC.SYS version. Disadvantages
include the need for highly custom code for each and every printer and a
fearsome gobbling up of available text file space. If you try this method,
pick something simple like a logo or a letterhead and see what you can
come up with.

With the full-screen dump method, you expand the print/program
commands to include an hdlpixnamel command. When this command is
found, the word processor stops, loads a HIRES image into, say $ 7000 8FFF
and then dumps the image to the printer. Word processing resumes after
the dump as if nothing happened. Similarly, hd/paramname/ could set
HIRES parameters, such as normal or inverse, standard or double
resolution, portrait or landscape, lX versus 2X, left margin, vertical space
reserved, or whatever. Yet another imbedded command would let you load
the dumper code needed for your particular printer.

Note that just about every printer will need its own custom code. Yes,
you can do graphics on a daisywheel printer. In fact, if you use a "square
period" as your printing element, you can end up with graphics quality
that is much better than dot matrix.

Another myth bites the dust.
With post processing, you first do a pd8 and then use some other

program to read and print the text file. Printing can stop at any time to
allow a HIRES dump or anything else you want. Important advantages of
post processing are that only limited programming skills are needed and
that virtually anything can be done with an oddball printer. Post
processing, however, can be very slow.

Similar techniques could also be used to do a wall-to-wall microjustify
on the Imagewriter or some daisywheels. Instead of loading a HIRES
picture, you download a table of proportional space values. Note that this is
not needed for the full microjustification we did earlier on the enhanced
Diablo 630.

The biggie in this module involves . . .

Capturing Your Own Source Code

Needless to say, it is far easier to make heavy changes in any program
by working directly with source code than by puzzling over mysterious
object code. Captured source code is almost essential for such heavy
reworking as repositioning the program or extending modules. Source
code also may be necessary if you are to integrate your word processor
with other program modules, such as a spreadsheet, data base manager, or
telecommunications package.

A good many reasons exist to not try and capture source code.

Capturing ProDos Applewriter Version 2. 0 Source Code

For one thing, a lot of time, patience, and effort are involved if you are
to do the job correctly. More importantly, things get sticky fast if you try to
make any commercial use of your captured and modified source code. You
are, of course, free to make any changes you want any way you want to any
program you personally own, as long as you do so for your own use only.
The problems begin if you try to sell or otherwise pass on "your" work,
which is really a mix of the value added by what you have done and the
value produced by the original author.

Play fair or don't play at all.
I'll show you a fully automatic source code capturer for version 2.0 of

AWD.SYS. All you do is push the button and sit back and watch. Because
this capturer is fully automatic, though, any change whatsoever in
AWD.SY S will foul up the works, and you will end up back on square one.

You will need an intelligent disassembler program for source code
capture. The one I use is . . .

An Intelligent Disassembler

DISASM 2.2e from
RAK-WARE
41 Ralph Road
West Orange NJ 07052
(201) 325-1885

Note that this particular version of this specific disassembler must be
used for these instructions to work. The capture process works best under
DOS 3.3e rather than ProDOS. Done this way, less sand gets kicked in your
face, and you will get better results faster.

Because the minimally labeled and totally undocumented source code
is more than 10,000 lines long, it will not all fit on one disk. We will use a
pair of disks to capture the source code for you, creating four sequential
source code text files. Listing C. 10 shows the capturing process. In addition
to DISASM Ile and converted AWD.SY S, four special programs are needed.
These programs are named HELLO, GRABBER.D.12, GRABBER.D.34,
and SNEAKY.D.

HELLO is shown in Listing C. 1 1. This program is a stock Applesof t
program that prompts you to create a pair of disks. It then picks which
grabber to execute.

GRABBER.D. 1 2 is a text file that is run as an EXEC by HELLO. This
dude sits on the first disk and grabs the first two parts of the source code,
naming them AWD.SOURCEl and AWD.SOURCE2. GRABBER.D. 12
appears in Listing C.12.

165

166 Applewriter Cookbook

GRABBER.D.34 is a similar text file that sits on the second disk and
grabs the remaining two parts of the source code, which are then named
AWD.SOURCE3 and AWD.SOURCE4. Listing C.13 shows details.

Like every good magic trick, source code capture has to have a gimmick
somewhere. Called SNEAKY.D, this listing is disgustingly elegant and
makes the whole capture process possible without fatal errors. See Listing
C.14 for info.

Naturally, I will save details on this one as an exercise for the student.
Neat, huh?
Anyway, once you create the needed disks, you simply press a key or

two and sit back and watch a very long and very confusing screen display.
When completed, out pops the source code, ready for your further rework.
The relation between the four captured source code modules are shown in
Figure 8.1.

8SFFF

A WO.SOURCE•

8S41S

8S414

AWD.SOURC£3

S40F6

S40FS

AWO.SOURCE2

S300S

83004

AWD.SOURCE 1

e2000

Fig. 8.1. The captured AWD.SYS source code ends up in four pieces.

A most important capture rule . . .

Captured source code is totally and utterly useless if
it does not exactly reassemble into code that is a
perfect match to the original object code.

So be sure to reassemble your captured source code back into object code
and compare it byte for byte against the original. Full details on working
with source and object code appear in my Assembly Cookbook for the Apple
II and Ile (SAMS #22331).

The usual way to verify assembled source code is with the monitor or
verify [VJ c ommand. F or instance, to verify AWD.SOURCEl , BLOAD

Capturing ProDos Applewriter Version 2.0 Source Code

AWD.SOURCEl at $2000, BLOAD AWD.SYS at $4000, then do a
lFFF < 3FFF.5005V. You should get two errors, one beyond each end of the
code being verified.

A Final Plum

A routine called WPL.TWO COLUMNS appears as Listing C.15 and
can be used to format your printed hard copy into two or more vertical
columns, as might be needed for a newsletter or a technical article. Yes,
you can individually justify each column or even microjustify it. The code
is intended as a core module that does the tedious and messy stuff only on a
single page at a time. You can include this module in fancier routines of
your own.

What you do is create your left column and your right column ahead of
time, using pd8 to precisely format each column in the exact way you want
that column sent to your printer. Be sure any and all imbedded commands
are removed.

Important: Use a zero left margin for both columns.
When you run this module, it sets a single tab at the intended position

of your right column. Note that the distance between columns is measured
from the left edge of the left column to the left edge of the right column. A
separation value of 39 is sometimes a good starting point. After the tab is
set, the two columns are loaded and the end of each line of the left column
has a special marker appended. The beginning of the entire right column
file has a separate special marker added.

The code then grabs the first line of the second column using [X]. The
module then goes back to the beginning and finds the marker at the end of
the first line of the first column. That marker is erased and a tab is inserted
to move the text to the starting position of the second column. The first line
of the second column is then returned from the [X] stash and is inserted
into its proper place.

This puts two text strings onto one line, with enough spaces between
the strings to align the right column. The process continues for each line.

Formatting takes around one second per line or somewhat under one
minute per page. When you are finished with WPL.TWO COLUMNS,
treat the result as a solid block of text and add your own headers,
footers, and left margin. Two sample columns, which are named
SAMPLE.LEFT.COLUMN and SAMPLE.RIGHT.COLUMN appear on the
companion disk to this volume. Use these samples to get started.

For Applewriter's internal by-spaces justification, simply use fj on your
original columns before you do your pd8 print to disk. A full micro
justification of both columns is hairy and very much depends on your
printer, but text can be fully microjustified if your printer is bright enough.

167

168 Applewriter Cookbook

For three or more columns, repeat WPL.TWO COLUMNS as often as
you have to, treating everything done on the previous pass as your left
column. The only limits are the width of your printer and Applewriter's
255 character line length.

A Wish List

I personally feel that this latest version of Applewriter is the greatest
ever.

Generally though, the better things are, the more that can be done to
improve them. As a final wrap up, here is a wish list from all the people on
all the helpline calls so far. The items on this list are things that can be done
right now with lots of custom or detail work, but they would best be
included in Version 3.0 or whatever.

We will continue to chip away at the list. We will also continue to
support newer versions of this great word processor. Let us know what you
need or want to see.

Here's the list . . .

1 . Optional use of prefixes, much less memory hogging, long free form
filenames, and some decent speed.

2. An init feature that does not trash the glossary or WPL.
3. Built-in STRETCHIFIER and user-definable NULL substitution.
4. Larger WPL and glossary storage areas.
5. Much bigger text file area.
6. More WPL variables.
7. A reasonably fast WPL sorting ability.
8 . Built in multicolumn text abilities.
9. Soft hyphens and hard spaces.

10. Multicolumn catalog display options.
1 1 . HIRES dumpers for most major printers.
12. Better Appleworks compatibility.
13. Microjustification for more printers.
14. Real time page/position display.
15. Internal speech links for the handicapped.
16. More and improved cursor motions.
17. Capability of rerunning WPL without going to disk.
18. Load to screen under WPL.
19. Full compatibility with most Ile printer cards.
20. Improved modem abilities, particularly dialup.
21. Co-resident EDASM and/or limited Applesloth access.
22. Simple PEEK and POKE ability.
23. Improved WPL scanning from the cursed character.
24. Improved not, and, and or WPL logic.
25. Logo, letterhead, and icon graphics ability.

Capturing ProDos Applewriter Version 2. 0 Source Code 169

26. Erase-to-end and erase-to-beginning on one keystroke.
27. Multiline headers built in.
28. Space and a half.
29. More powerful footnotes and footnooting at end of document.
30. Author's keyword indexing.
31 . Even-odd pagination.
32. Better compatibility with third-party video cards.
33. A limited capability of running on the II+ and clones.
34. Laser printer interface, including POSTSCRIPT.
35. Internal clock-calender interface.
36. Formal link for user-defined modules.

That's all, folks . . .

A

WPL Programs and
Applesoft Patches

171

1 72 Applewriter Cookbook

Program A. I . Running this AWIIe NULLIFIER Applesoft program will automatically
modify your AW/le diskettes, so you can imbed NULL characters into
your text files.

100 REM

110 REM ***********••••••••••••
120 REM • *

130 REM * "NULLIFIER" FOR *
140 REM • *
150 REM * APPLEWRITER IIe *
160 REM * *
170 REM • VERSION 1 . 0 *
180 REM * . *
190 REM * *
100 REM • COPYRIGHT 1984 BY •
210 REM • DON LANCASTER AND •
220 REM • SYNERGETICS, BOX *
230 REM • 809 THATCHER AZ . •
240 REM • 85552 . 602-428-4073 •
250 REM • •
260 REM * ALL COMMERCIAL *
270 REM * RIGHTS RESERVED *
280 REM • •
290 REM •••••••••••••••••••••••

300
310
320
330
340

350
360
370
380

390

REM
REM
REM
REM
REM

REM
REM
REM
REM

REM

This program modifies a
backup copy of AWIIe
so that NULL commands
can be imbedded as [@J
control characters .

Two uses of NULLS are
to provide superscript
and underl-ine for an
Epson printer.

400 TEXT : ROME ; CLE.AR
410 HIMEM: 8000
420 VTAB l : HTAB 8 :

A$ = "Applewriter IIe NULLifier'' :
GOSUB 830

430 PRINT : GOSUB 880
440 PRINT
450 FOR N = l TO 3 9 : PRINT CHR$ (127) ; :

GOSUB 870 : NEXT N
460 GOSUB 880
470 VTAB 5 : HTAB l :

A$ = "This program will patch Applewriter IIe" :
GOSUB 830 : PRINT

480 VTAB 6 : RTAB l :
A$ = "so that NULL characters can be imbedded" :
GOSUB 830 :

490 VTAB 7 : RTAB l :
A$ = "by using a [VJ [2J [VJ command . " :
GOSUB 830

500 GOSUB 880
510 VTAB 1 0 : BTAB 4 :

A$ = "Patch ONLY your THIRD BACKUP copy ! " :
GOSUB 830

520 GOSUB 880 : GOSUB 880

WPL Programs and Applesoft Patches

Program A.1-cont.

530 VTAB 14 : BTAB 4 :
A$ = "Please put your THIRD BACKUP copy":
GOSUB 830

540 VTAB 15 : RTAB 4 :
A$ = "of ANIIe into Drive #1 . Then push" : GOSUB 830

550 GOSUB 880
560 VTAB 17 : BTAB 12 :

A$ = "<SPACE> to CONTINUE" : GOSUB 830
570 VTAB 1 9 : HTAB 19 :A$ = "-or- " : GOSUB 830
580 VTAB 2 1 : RTAB 13 :

A$::: "<ESCAPE> to ABORT" : GOSUB 830
590 VTAB 2 3 : HTAB 1 9 : PRINT "-< >-"
600 VTAB 2 3 : HTAB 2 1 : GET Z$
610 IF Z$ < > " " THEN 820
620 REM

Check Validity

630 PRINT
640 PRINT " [O] BLOAD OBJ .APWRT] [E,A$2300
650 IF PEEK (9956) < > 15 THEN 800
660 IF PEEK (18621) < > 214 THEN 800
670 PRINT " (D] BLOAD OBJ.AfWRT] [F,A$2300
680 IF PEEK (10116) < > 21 THEN 800
690 IF PEEK (18998) < > 214 THEN 800
700 POKE 10116, 0 : POKE 18998 , 0
710 PRINT " [D] UNLOCK OBJ .APWRT] (F"
720 PRINT " [OJ BSAVE OBJ.APWRT] [F,A$2300, L$30D3"
730 PRINT " [D]LOCK OBJ.APWRT] [F"
740 PRINT " [O] BLOAD OBJ .APWRT] [E, A$2300"
750 POKE 9956, 00 : POKE 18621,00
760 PRINT " (O]UNLOCK OBJ.APWRT] [E"
770 PRINT " [OJBSAVE OBJ.APWRT] (E, A$2300, L$2F5A"
780 PRINT " [O]LOCK OBJ .APWRT] [E"
790 TEXT : ROME :A$ = "IT WORKED ! " : GOSUB 830 :

PRINT : PRINT : PRINT : PRINT : PRINT : END
800 TEXT : HOME ·:

A$ = "Will not verify as AWIIe; patch ABORTED" :
GOSUB 830 : PRINT : PRINT : PRINT
PRINT : PRINT : END

810 REM
820 REM
830 REM

Noisy screen machine

840 FOR N = 1 TO LEN (A$) : PRINT MID$ (A$, N, l) ;
850 GOSUB 870 : REM Clickety clack
860 NEXT N : RETURN
870 ZZ = PEEK (49200) + PEEK (49200) :

FOR M = 1 TO 17 : NEXT M: RETURN
880 FOR N = 0 TO 700 : NEXT N : RETURN

Gotchas : Do NOT use this program on either "factory" diskette!
Use only on your THIRD or higher backup copies !

In the above listing, (DJ stands for "control-D"; all
other brackets are real .

This program is avaiable ready-to-run on the companion
diskette .

173

1 74 Applewriter Cook.book

Program A.2. This AWlle STRETCHIFIER Applesoft program modifi.es your
Applewriter lie backup diskettes to eliminate the shortlines that result
from imbedded printing commands involving escape sequences.

100 REM

110 REM •••••••••••••••••••••••
120 REM • •
130 REM • "STRJ:TCHil'IER" l'OR •
140 REM • •
150 REM • APPLEWRITER Ile •
160 REM * •
170 REM • VERSION 1 . 0 •
180 REM • . *
190 REM * *
200 REM • COPYRIGHT 1984 BY •
210 REM * DON LANCASTER AND •
220 REM * SYNERGETICS, BOX *
230 REM * 809 THATCHER AZ. •
240 REM • 85552 . 602-428-4073 *
250 REM • *
260 REM • ALL COMMERCIAL •
270 REM * RIGHTS RESERVED *
280 REM • *
290 REM •••••••••••••••••••••••

300
310
320
330
340

350
360
370
380

REM
REM
REM
REM
REM

REM
REM
REM
REM

This mod changes a
backup copy of AWIIe
so i.mbedded escape
commands pass through
the justify routines .

This eliminates the
"shortline" problem
and lets you fully
use a fancy printer .

390 REM

400 TEXT : HOME : CLEAR
410 HIMEM: 8000
420 VTAB 1 : HTAB 7 :

A$ = "Applewriter IIe STRETCRifier " :
GOSOB 980

430 PRINT : GOSUB 1030
440 PRINT
450 FOR N = 1 TO 39 : PRINT CHR$ (127) ; :

GOSOB 1020: NEXT N
460 GOSUB 1030
470 VTAB 5 : HTAB 1 :

A$ = "This program will patch Applewriter Ile" :
GOSUB 980 : PRINT

480 VTAB 6 : RTAB 1 :
A$ = "to eliminate the short lines created by" :
GOSOB 980

490 VTAB 7 : HTAB 1 :
A$ = "i.mbedded printer escape sequences . " :
GOSOB 980

500 : GOSOB 1030
510 VTAB 10 : HTAB 4 :

A$ = "Patch ONLY your THIRD BACKUP copy! " :
GOSOB 980

520 GOSOB 103 0 : GOSOB 1030

WPL Programs and Applesoft Patches

Program A.2-cont.

530 VTAB 1 4 : nTAB 4 :
A$ = "Please put your THIRD BACKUP copy" :
GOSUB 980

540 VTAB 1 5 : HTAB 4 :
A$ = "of AWIIe into Drive # 1 . Then push" :
GOSUB 980

550 GOSUB 1030
560 VTAB 1 7 : HTAB 12 :

A$ = "<SPACE> to CONTINUE" : GOSUB 980
570 VTAB 1 9 : HTAB 19 :A$ = "-or- " : GOSUB 980
580 VTAB 2 1 : HTAB 1 3 : A$ = "<ESCAPE> to ABORT " :

GOSUB 980
590 VTAB 23 : HTAB 1 9 : PRINT "-< >-"
600 VTAB 2 3 : HTAB 2 1 : GET Z$
610 IF Z$ < > " " THEN 970
620 REM

Check Validity

630 PRINT
640 PRINT " [DJBLOAD OBJ.APWRT] [E,A$2300
650 IF PEEK (14720) < > 235 THEN 950
660 IF PEEK (17396) < > 153 THEN 950
670 IF PEEK (17436) < > 252 THEN 950
680 PRINT " [OJBLOAD OBJ.APWRTJ [F,A$2300
690 IF PEEK (15063) < > 100 THEN 950
700 IF PEEK (17771) < > 153 THEN 950
710 IF PEEK (17811) < > 117 THEN 950
720 POKE 15062 , 9 6 : POKE 15063,153
730 POKE 15064, 0 0 : POKE 15065 , 2 2 : POKE 15066, 2 0 1 :

POKE 15067 , 155 : POKE 15068 , 2 0 8 : POKE 15069 , 0 4 :
POKE 15070 , 23 0 : POKE 15071,211

740 POKE 15072 , 230 : POKE 15073 , 21 1 : POKE 15074 , 9 6 :
POKE 15075, 196 : POKE 15076 ,220 : POKE 15077, 2 4 0 :
POKE 15078 , 14 : POKE 15079,185

750 POKE 15080 , 0 0 : POKE 1508 1 , 2 2 : POKE 15082 , 20 1 :
POKE 15083 , 15 5 : POKE 15084 , 208 : POKE 15085, 04 :
POKE 15086, 198 : POKE 15087 , 211

760 POKE 15088, 19 8 : POKE 15089, 211 : POKE 15090, 13 6 :
POKE 15091, 208: POKE 15092 , 238: POKE 15093 , 7 6 :
POKE 15094 , 11 7 : POKE 15095,71

770 POKE 1777 1 , 3 2 : POKE 17772, 215 : POKE 17773,58
780 POKE 17810 , 76 : POKE 17811, 227: POKE 17812,58
785 IF PEEK (20365) = 176 THEN POKE 20365, 182 :

REM RECONNECT HELP SCREENS
790 PRINT " [D] UNLOCK OBJ.APWRT] [F"
800 PRINT " [D] BSAVE OBJ.APWRT] (F,A$2300, L$3003"
810 PRINT " [D] LOCK OBJ.APWRT] (F"
820 PRINT " [D]BLOAD OBJ .APWRT] [E,A$2300"
830 POKE 14719, 96
840 POKE 14720, 153 : POKE 14721 , 0 0 : POKE 14722 , 2 2 :

POKE 14723, 201: POKE 1472 4 , 155: POKE 14725 , 20 8 :
POKE 1472 6 , 04 : POKE 14727,230

850 POKE 14728, 211 : POKE 14729, 230: POKE 14730, 2 1 1 :
POKE 14731, 9 6 : POKE 14732, 196 : POKE 14733 , 220:
POKE 1473 4 , 2 4 0 : POKE 1473 5 , 1 4

860 POKE 14736, 185 : POKE 14737 , 00 : POKE 14738 , 22 :
POKE 14739, 201 : POKE 14740, 155 : POKE 14741, 208:
POKE 14742, 04 : POKE 14743, 198

870 POKE 14744, 2 1 1 : POKE 14745, 198 : POKE 1474 6 , 2 1 1 :
POKE 14747, 136 : POKE 14748, 208: POKE 14749, 2 3 8 :
POKE 14750 , 7 6 : POKE 14751,252

880 POKE 14752 , 69
885 IF PEEK (19988) = 176 THEN POKE 19988, 182 :

REM RECONNECT HELP SCREENS
890 POKE 17396 , 3 2 : POKE 17397 , 12 8 : POKE 17398,57

175

176

Program A.2-cont.

900 POICI: 1743S , 7 6 : POJCJ: 17436, 140 : POICI: 17437 , 57
910 PRINT " [D] tTNLOCK OBJ .APWRT] [E"
920 PRINT " [D] BSAVI! OBJ.APWRT] [E,A$2300, L$2F5A"
930 PRINT " [D]LOCK OBJ.APWRT] [E"
940 TEXT : HOME :A$ • "IT WORXED ! " : GOSOB 980 :

PRINT : PRINT : PRINT : PRINT : END
950 TEXT : ROME

A$:a "Will not verify as AWIIe; patch ABORTED" :
GOSUB 980 : PRINT : PRINT : PRINT :
PRINT : PRINT : END

960 GOTO 960
970 TEXT : ROME : CLEAR : END
980 REM

Noisy screen machine

990 FOR N = 1 TO LEN (A$) : PRINT MID$ (A$, N , l) ;
1000 GOSUB 102 0 : REM Clickety clack
1010 NEXT N: RETURN
1020 ZZ = PEEK (49200) + PEEK (49200) :

FOR M = 1 TO 1 7 : NEXT M: RETURN
1030 FOR N = 0 TO 700 : NEXT N : RETURN

Applewriter Cookbook

Gotchas : Do NOT use this program on either "factory" diskette!
Use only on your THIRD or higher backup copies !

This patch gives an exact repair for two-character
escape sequences . For three-character imbedded
sequences , "bank" characters by using [esc] [esc] to
bank two characters, or [esc] [esc] [@] to bank one
character.

In the above listing, [D] stands for "control-D" . All
other brackets are real.

This program is avaiable ready-to-run on the companion
diskette .

WPL Programs and Applesoft Patches

Program A.3. This AWIIe PATCHIFIER Appleso� program modifies your Applewriter
Ile backup diskettes to let you install custom run time modifications by
using the [O]- C command.

REM 100

110
120
130
140
150
160
170
180
190
200
210
220

230
240
250
260
270
280
290

REM ***********************
REM * *
REM * "PATCHIFIER" FOR *
REM * *
REM * APPLEWRITER IIe *
REM * *
REM * VERSION 1 . 0 *
REM * . *
REM * *
REM * COPYRIGHT 1984 BY *
REM * DON LANCASTER AND *
REM * SYNERGETICS, BOX *
REM * 809 THATCHER AZ. *
REM * 85552. 602-428-4073 *
REM * *
REM * ALL COMMERCIAL •
REM * RIGHTS RESERVED •
REM * *
REM ***********************

300
310
320
330
340

350
360
370
380
390

REM
REM
REM
REM
REM

REM
REM
REM
REM
REM

This mod changes a
backup copy of AWIIe
so run-time patches
can be made with the
[OJ-C command.

BEWARE ! Careless use
of patches can destroy
both the program and
your textfiles.

400 TEXT : HOME : CLEAR
410 RIMEM: 8000
420 VTAB l : HTAB 8 :

A$ = "Applewriter Ile PATCHifier" :
GOSUB 870

430 PRINT : GOSUB 920
440 PRINT
450 FOR N = l TO 39: PRINT CHR$ (127) ; :

GOSUB 910 : NEXT N
460 GOSUB 920
470 VTAB 5 : HTAB 1 :

A$ = "This program will patch Applewriter Ile" :
GOSUB 870 : PRINT

480 VTAB 6 : HTAB 1 :
A$ = "so run-time custom modifications may be" :
GOSOB 870

490 VTAB 7 : HTAB 1 :
A$ = "made using the [OJ-C command . " :
GOSUB 870

500 GOSOB 920
510 VTAB 10 : HTAB 4 :

A$ = "Patch ONLY your THIRD BACKUP copy ! " :
GOSOB 870

520 GOSOB 920: GOSUB 920
530 VTAB 14 : HTAB 4 :

A$ = "Please put your THIRD BACKUP copy" :
GOSOB 870

540 VTAB 15 : HTAB 4 :
A$ = "of AWIIe into Drive # 1 . Then push" :
GOSOB 870

177

178

Program A.3-cont.

550 GOSUB 920
560 VTAB 17 : HTAB 12 :

A$ = "<SPACE> to CONTINUE" : GOSUB 870
570 VTAB 1 9 : HTAB 19 :A$ = "-or- " : GOSUB 870
580 VTAB 2 1 : HTAB 1 3 :

A$ = "<ESCAPE> to ABORT" : GOSUB 870
590 VTAB 23 : HT.AB 1 9 : PRINT "-< >-"
600 VTAB 23 : HT.AB 2 1 : GET Z$
610 IF Z$ < > " " THEN 860
620 REM (J] CHECK VALIDITY[J)
630 PRINT
640 PRINT " [D)BLOAD OBJ. APWRT] [E,A$2300
650 IF PEEK (19840) < > 214 THEN 840
660 IF PEEK (19841) < > 229 THEN 840
670 IF PEEK (19842) < > 242 THEN 840
680 PRINT " [D] BLOAD OBJ .APWRT] (F,A$2300
690 IF PEEK (20217) < > 214 THEN 840
700 IF PEEK (20218) < > 229 THEN 840
710 IF PEEK (20219) < > 242 THEN 840
720 POKE 20217 , 194 : POKE 20218 , 23 6 : POKE 20219 , 2 3 9 :

POKE 20220,225 : POKE 20221, 228 : POKE 20222, 160 :
POKE 20223,208

730 POKE 20224 , 22 5 : POKE 20225, 244 : POKE 20226, 227 :
POKE 20227,232

740 PRINT " [DJ UNLOCK OBJ .APWRT) [F"
750 PRINT " [D] BSAVE OBJ.APWRT) [F ,A$2300, L$30D3"
760 PR.INT " [DJLOCK OBJ.APWRTJ [F"
770 PRINT " [D} BLOAD OBJ .APWRT} [E, A$2300"
780 POKE 19840, 194 : POKE 1984 1 , 2 3 6 : POKE 19842, 239 :

POKE 19843,225: POKE 19844 , 22 8 : POKE 19845, 160 :
POKE 19846, 208: POKE 19847,225

790 POKE 19848 , 244 : POKE 19849, 227 : POKE 19850,232
800 PRINT " [D]UNLOCl< OBJ.APWRT] [E"
810 PRINT " [D] BSAVE OBJ.APWRT] [E , A$2300, L$2F5A"
820 PRINT " [D]LOCK OBJ .APWRTJ [E"
830 TEXT : HOME :A$ = "IT WORKED ! " :

GOSUB 870: PRINT : PRINT :
PRINT : PRINT : PRINT : END

840 TEXT : HOME :
A$ = "Will not verify as AWIIe; patch ABORTED" :
GOSOB 870: PRINT : PRINT : PRINT :
PRINT : PRINT : END

850 GOTO 850
860 TEXT : HOME : CLEAR : END
870 REM [JJ Noisy screen machine
880 FOR N = 1 TO LEN (A$) : PRINT MID$ (A$,N, l) ;
890 GOSUB 910 : REM Clickety clack
900 NEXT N : RETURN
910 ZZ = PEEK (49200) + PEEK (49200) :

FOR M = l TO 17 : NEXT M: RETURN
920 FOR N = 0 TO 700 : NEXT N : RETURN

Applewriter Cookbook

Gotcha s : Do NOT use this program on either " factory" diskette!
Use only on your THIRD or higher backup copies !

Incorrectly used patches can damage both the program
and your work files beyond recovery, so BE CAREFUL!

"E" patches must be used only on OBJ . APWRT} [E code .
"F" patches must be used only on OBJ.APWRTJ [F code .

In the above listing, [DJ stands for "control-D" . All
other brackets are real .

This program is avaiable ready-to-run on the companion
diskette .

WPL Programs and Applesoft Patches

Program A.4. This AW Ile CLARIFIER Applesoft program modifies your Applewriter Ile
backup diskettes to eliminate trashing of the lie status display line.

100 REM

110 REM ***********************
120 REM * *
130 REM * "CLARIFIER FOR" *
140 REM * *
150 REM * APPLEWRITER IIe *
160 REM * *
170 REM * VERSION 1 . 0 *
180 REM * . *
190 REM * *
200 REM * COPYRIGHT 1984 BY *
210 REM * DON LANCASTER AND *
220 REM * SYNERGETICS, BOX *
230 REM * 809 THATCHER AZ. *
240 REM * 85552. 602-428-4073 *
250 REM * *
260 REM * ALL COMMERCIAL *
270 REM * RIGHTS RESERVED *
280 REM * *
290 REM ***********************

300
310
320
330

340
350
360
370

REM
REM
REM
REM

REM
REM
REM
REM

This mod changes a
backup copy of AWIIe
to eliminate trashing
of the IIc status line.

This lets you use an
older version of AWIIe
on either a IIc or IIe.

380 TEXT : HOME : CLEAR
390 BIMEM: 8000
400 VTAB l: BTAB 8 :

A$ = "Applewriter IIe CLARifier" :
GOSUB 910

410 PRINT : GOSUB 960
420 PRINT
430 FOR N = l TO 39 : PRINT CSR$ (127) ; :

GOSU'B 950: NEXT N
440 GOSU'B 960
450 VTAB 5 : HTAB 1 :

A$ = "This program will patch Applewriter IIe" :
GOSUB 910 : PRINT

460 VTAB 6 : HTAB l :
A$ = "to eliminate trashing of the IIc status" :
GOSUB 910

470 VTAB 7 : HTAB l:A$ = "line . " : GOSUB 910
480 : GOSUB 960
490 VTAB 1 0 : HTAB 4 :

A$ = "Patch ONLY your THIRD BACKUP copy ! " :
GOSUB 910

500 GOSUB 960 : GOSUB 960
510 VTAB 14 : HTAB 4 :

A$ = "Please put your THIRD BACKUP copy" :
GOSU'B 910

520 VTAB 15 : HTAB 4 :
A$ = "of AWIIe into Drive # 1 . Then push" :
GOSOB 910

530 GOSU'B 960

179

180

Program A.4-cont.

540 VTAB 1 7 : HTAB 12 :
A$ = "<SPACE> to CONTINUE" : GOSOB 910

550 VTAB 1 9 : HTAB 19 :A$ "' "-or-" : GOSUB 910
560 VTAB 2 1 : HTAB 1 3 :

A$:: "<ESCAPE> t o ABORT " : GOSUB 910 ·
570 VTAB 2 3 : HTAB 1 9 : PRINT "-< >-"
580 VTAB 2 3 : HTAB 2 1 : GET Z$
590 IF Z$ < > " " THEN 900
600 REM

610
620
630
640
650
660
670
680
690
700

710
720
725

730

740

750
760
770
780
790

800
810
815

820

830

840
850
860
870

880

890
900
910

Check Validity

PRINT
PRINT " [D) BLOAD OBJ.APWRT) [E,A$2300
IF PEEK (14472) < > 188 THEN 880
IF PEEK (14709) < > 41 THEN 880
IF PEEK (14753) < > S7 THEN 880
PRINT " [D} BLOAD OBJ.APWRT} [F, A$2300
IF PEEK (1481S) < > 188 THEN 880
IF PEEK (15052) < > 41 THEN 880
IF PEEK (15096) < > 59 THEN 880
POICE 14815 , 6 0 : POKE 14816 , 3 6 : POKE 14817, 207 :

POKE 14818 , 1 6 : POKE 14819, 2 : POKE 14820, 169 :
POICE 14821, 62

POKE 150S2, 208 : POKE 15053 , 42
POKE 15062 , 96
IF PEEK (20365) = 176 THEN POKE 20365, 182 :
REM RECONNECT HELP SCREENS

POKE 15096 , 4 1 : POKE 15097 , 127 : POKE 15098 , 20 1 :
POKE 15099, 96: POKE 15100 , 17 6 : POKE 15101, 208:
POKE 15102 , 20 1 : POKE 15103,64

POKE 15104 , 14 4 : POKE 15105 , 204 : POKE 15106, 4 1 :
POKE 15107 , 63 : POKE 15108 , 17 6 : POKE 15109,200

PR.INT " [O) UNLOCK OBJ . APW'RT] [F"

PRINT " [D} BSAVE OBJ.APWRT) [F,A$2300, L$30D3"
PRINT " [O)LOCK OBJ.APWRT) [F"
PRINT " [O] BLOAD OBJ .APWRT) [E,A$2300"
POKE 14472 , 6 0 : POKE 14473 , 3 6 : POKE 14474, 207 :

POKE 14475 , 1 6 : POKE 14476 , 0 2 : POKE 14477 , 169:
POKE 14478, 62

POKE 14709, 208 : POKE 14710 , 4 2
POKE 14719 , 96
IF PEEK (19988) = 176 THEN POKE 19988, 182 :

REM RECONNECT HELP SCREENS
POKE 14753 , 4 1 : POKE 14754 , 127 : POKE 147S5, 201 :

POKE 14756, 96 : POKE 14757 , 1 7 6 : POKE 14758 , 208 :
POKE 14759,201

POKE 14760 , 6 4 : POKE 14761, 144 : POKE 14762 , 204 :
POKE 14763 , 4 1 : POKE 14764 , 63 : POKE 14765, 176 :
POKE 14766, 200

PRINT " [D] ONLOCK OBJ.APWRT) [E"
PRINT " [D) BSAVE OBJ.APWRT) (E, A$2300, L$2F5A"
PRINT " [D)LOCK OBJ .APWRT) [E"
TEXT : HOME :A$ = "IT WORKED ! " : GOSUB 910:

PRINT : PRINT : PRINT : PRINT : PRINT : END
TEXT : ROME : ,

A$ = "Will not verify as AWIIe; patch ABORTED" :
GOSOB 910 : PRINT : PRINT : PRINT :
PRINT : PRINT : END

GOTO 890
TEXT : HOME : CLEAR : END
REM

Noisy screen machine

920 FOR N = l TO LEN (A$) : PRINT MID$ (A$, N, l) ;
930 GOSOB 950 : REM Clickety clack
940 NEXT N : RETURN

Applewriter Cookbook

WPL Programs and Applesoft Patches

Program A.4-cont.

950 ZZ a PEEK (49200) + PEEK (49200) :
FOR M = 1 TO 17 : NEXT M: RETURN

960 FOR N = 0 TO 700: NEXT N: RETURN

Gotchas : Fixes only the status line . Rare and brief changes
in the flashing cursor symbol will remain.

In the above listing, [D] stands for "control-D" . All
other brackets are real.

Only the "F" version patch would normally be used by
the IIc . We have also included an "E" patch for
possible use by a 64K short "new" IIe .

This program is avaiable ready-to-run on the companion
diskette

181

182 Applewriter Cookbook

Program A.5. WPL.SPOKE REARRANGER "repairs" many of the oddball codings on
the 96 spolte BOLD PS printwheel. Similar routines can be written for
other printwheels.

p WPL. SPOD: RE.ARRANGER
pnd
ppr [L]
ppr
ppr

fixing bold PS wheel

ppr ****
b
f<"<-<a
p
p
b
f< ! <"<a
p
p

busy - please wait ****

b
f<]< [esc) Z<a
p
p
b
f/</\/a
p watch ut!
p
b
f/ [/</a
p
p
b
r/ 1 / ! /a
p
p
b
f/>/ '/a
p
p
b
f/@/ [asc]Y/a
p
p
pyd
pqt

Gotchas : With these corrections, most punctuation gets fixed.
The up carat is approximated by a dagger. Lost are
both braces , opening and closing single quotes, the
tilde and a cents symbol . Gained are two trademarks,
a copyright, a degree symbol, a paragraph symbol, a
clause symbol , double underline and a dagger. See
Tabla I for proper coding of these new symbols .

While practically all computer listings can be done
after conversion, the proportional spacing may cause
alignment problems , particularly on hex coda dumps .
Thus, PS wheels are excellent for people messages but
lousy for machine listings. Use TITAN 10 instead.

Note that any WPL modules that preceed this routine
must respond to the ORIGINAL symbols . WPL modules
that follow this one must respond to the REMAPPED
symbols . Watch this detail carefully, especially
on the underline token and margin settings !

WPL Proframs and Applesoft Patches

Program A.5-cont.

Pairs of [brackets) denote control characters . Single
brackets really are brackets .

There are no labels in this particular WPL program, so
each and every colllllland must be preceeded by a space.

Thia program is available ready-to-run on the
companion disette.

183

184 Applewriter Cookbook

Program A.6. WPL.FILE LISTER file dumper can let you print listings that have
buried control commands in them. Most buried commands are
replaced with braclteted ASCII characters for "people" viewing.

pnd
ppr(LJ
ppr WPL file lister
ppr
pin WPL source filename ? ---------> =$c
pin Listable object filename ------> =$d
ppr
ppr **** busy - please wait ****
b

ny
1$c
b
f/ (�/ [Al /a
p
b
f/ [BJ/ [Bl /a
p
b
f/ (CJ/ [Cl /a.
p
b

f/ lDJ/ [Dl /a.
p
b
f/ (SJ/ [E) /a
p
b
f/ (rJ/ [F) /a
p
b
f/ (GJ/ [G) /a
p
b
f/ (tab]/ [tab) /a
p
b
f/ (J]/ [J) /a
p
b
f/ (K)/ [K) /a
p
b
f/ [L]/ [L) /a
p
b

f/ [IIJ/ (Nl /a
p
b

f/ [0)/ (0) /a
p
b
f/[•J/ [P) /a
p
b
f/ IQ]/ [Q) /a
p
b
f/ [ll]/ [R] /a
p
b

WPL Programs and Applesoft Patches

Program A.6-cont.

f/[S)/ [S]/a
p
b
f/ (T)/ [TJ /a
p
b

f/ [V]/ [VJ /a
p
b
f/ [If]/ [W] /a
p
b
f/ [Z]/ [X] /a
p
b
f/ [Y]/ [Y] /a
p
b
f/(:1] / [Z) /a
p
b
f/ [eac)/ [esc)/a
p
b
f/ (1] / [l] /a
p
b
f/ [))/ [}] /a
p
b

f/ ['"'] / [") /a
p
b
f/ [_)/ [_]/a
p
p
b
s$d
p
b
p
pyd
pqt

Gotchas : Pairs of [eba+ ad �] substitute for control
commands, while all other brackets are real brackets.

There are no labels in this particular WPL program, so
each and every command must be preceeded by a space.

Thia program does not repair buried backspace (R] or
frontapace [U] control commands . These are quickly
fixed by hand, when and if they occur.

Note that the listed program will be easily viewable,
printable, or "modemable", but that it will no longer
work in its intended manner. To get the listing to
actually run, you have to replace the brackets with
the control characters they are "standing in" for.

This program is available ready-to-run on the
companion diskette .

185

186 Applewriter Cookbook

Program A. 7. WPL.BULLET SHOOTER inserts line-centered bullets into your text. It
automatically substitutes a vertical shifted BOLD PS degree symbol for
each tilde found in the text.

ppr bullet shooter
p
p replaces " " with a centered bullet
p on a diablo 630 BOLD PS wheel.
b
ti I [esc)U)[esc)O /a
p
p
pqt

Gotchas: This particular version is intended only tor Diablo
compatible printers using the BOLD PS wheel.

The hard-to-read line says "find each occurance of a
space followed by a tilde followed by a space; and
replace with a space, an escape, an uppercase 0, a
closing bracket, an escape, an uppercase 0, and a
space."

For solid bullets, hand fill the bullet with ink.

There are no labels in this particular WPL program, so
each and every command must be pracaedad by a space.

This program is available ready-to-run on the
companion disetta.

WPL Programs and Applesoft Patches

Program A.8. WPL.FLINSERT inserts form letter bodies into an address list. Doing
things "backwards" is fast and simple but is limited to 20 letters �r run.

p WPL.FLINSERT form letter inserter
b
pasMYLETTER=$a
pas%%%%=$b

(name of formletter)
(insertion marker)

p
a f/$b/

p
pgob
pgobb

b h
f/$b//
y?
1$a
pgoa

bb pqt
.

Gotchas: The version shown finds each%%%% line in the address
list and inserts a formletter called MYLETTER.

Note that MYLETTER must\start\witb the body and\end\
with the date. The first date needs band loading.

This is a simple inserter that does not provide a
salutation or in-body personalizing. For fancier
needs, use the stock formletter routines.

This program is available ready-to-run on the
companion disette.

187

188 Applewriter Cookbook

Program A.9. WPL.CAMERA READY will slowly doublestrike all of the printed
characters for superb final draft print quality. This version is for the
Diablo630.

p WPL.CAMERA READY
pnd
ppr[L]
ppr Formating for Diablo 630 "Camera Ready" bold copy
ppr
ppr
ppr *** busy - please wait ***
ppr
b

f<><>[esc]O[esc]% <A
p
p
b
f/[esc]O[esc]% ././a
p
p
f/[esc]X/[esc]X[esc]O[esc]% /a
p
p
pyd
pqt

.

Gotchas: This code only works on the Diablo 630 printer or on
on similar "Diablo Compatible" daisywheel printers.

This module must be run after all carriage returns
have been put into the document. Thus, while address
labels and charts can be immediately run, longer
paragraphs and most text must first be formatted by
doing a ".pd8" print to disk. If you fail to do this,
only the first line of each paragraph will be double
struck; following lines will be hit only once and will
look awful.

Best results are gotten with a film ribbon, a metal
printwheel, and a machine adjusted to hit a tad on the
light side.

Very fine symbols, particularly the BOLD PS trademark,
should be hand-bypassed so they are not hit twice.

It is best to use this module immediately before
printing. Otherwise, your text files won't be fully
compatible with other printers, besides being very
hard to read.

Pairs of [brackets] denote control characters.

There are no labels in this particular WPL program, so
each and every command must be preceeded by a space.

This program is available ready to run on the
companion diskette to this volume.

WPL Programs and Applesoft Patches

Program A.10. This WPL program is a fully automatic "no-frills" formatter for the
Diablo 630.

pnd
ppr[L]
pprDiablo 630 "no frills" Formatter:
ppr
ppr
pprPlease enter right margin setting as one SINGLE CHARACTER.
ppr
ppr[.rmSO = 2 .rm60 = < .rm70 = F .rm80 = P .rm90 = Z, etc.]
ppr
pin Your right margin SINGLE CHARACTER -----> =$A
ppr
ppr
ppradjusting squashticity
b
psx4 squashticity factor
f<>.dbl<>.dbl>.rm+(x)<
y?
p
e
f<<>.rm-(x)><
y?
p
pprimproving underline
b
f<<.ut><
y?

d f<\< [esc]E<
y?
pgodl
pgod2

dl f<\<[esc]R <
y?
pgod

d2 b
pprfix (.,)
f<[esc]R .<[esc]R.<a
p
p
f<[esc]R , <[esc]R,<a
p
p
f<. [esc]R<[esc]R.<a
p
p
f<, [esc]R<[esc]R,<a
p
p
f<. ><.><a
p
p
pprfixing underline bug
a

e u
f<[esc]E<
p
pgoal
pgoa2

el f<><>[asc]\<
y?
f<[esc]E<
p
pgoe

189

190

Program A.10-cont.

e2 p
pprtix bold PS wheel
b
f<!<"<a
p
p
b
f<J<[eac]Z<a
p
p
b
t/</\la
p watch ut!
p
b
t/ [/</a
p
p
b
t/1/!/a
p
p
b
f/>/'/a
p
p
b
f/@/[esc]Y/a
p
p
pprtightening spacing
b
f<>.dbl<
p
pgob
pgob3

b h
h
f<>>X>[esc]UX
y?
pgobl
pgob3

bl f<>>X>>[esc]OX
y?
pgob2
pgob3

b2 t<>>X
p
pgob

b3 p
ppraetting body microjuatify
b
t<>.dbl<
p

Applewriter Cookbook

£<>.tjx[esc]X(eac]N[esc] [tab]z[esc] [tab]$A[esc]O[esc]
[tab]z [esc] [tab] [A] [esc]/>.lj >[esc]M<A

p

pprshadowing titles
b
f<>.dbl<

p
pgoc
pgocl

C h
h

WPL Programs and Applesoft Patches

Program A. IO-cont.

f<>.cj><>.cj>[esc]\[esc] X[esc]W[esc] (Q] (B][esc)\ <
y?
p
f<><[esc]N[esc]P><
y?
h
f<>.cj<
p
pgoc

cl p
pprfixing paragraph ends
b
f<>.dbl<
p

f<.><[esc] X.[esc]7[esc]/>[esc]M<a
p
b
f<>.dbl<
p
f<A><[esc]XA[esc]7[esc] />[esc] M<a
p !=A bold ps
b
f#?% #[esc]X?(esc]7[esc]/% [esc]M#a
p
b
f<'><[esc]X' [esc]7[esc]/>[esc]M<a
p >=' bold ps
pin[G] [G] [G]--- detail work filename? ---> =$d
psz+l for wpl supervisor
pas$d =$d
pcs/ /$d/
pgog
pdo$d

g pqt

.

Gotchas: Pairs of brackets mean control commands. [esc] =
escape key, [L] means "<ctrl>L", etc. Note that any
isolated brackets really are isoated brackets.

The indented line in the "body justify" section is
a continuation of the previous line and must be
entered without intervening spaces or returns.
Note that each and every line must begin with either
a label or a space.

This WPL program assumes a Diablo 630 printer with an
enhanced HPROS board having full word processing
features. The program MOST be customized if any
other printer is to be used. Certain features may
not be available on other printers.

This program is available ready to run on the
companion diskette.

191

192 Applewriter Cookbook

Program A.11. Apple DMP formatting glossary with tutorial.

?

? Applewritar IIa/Appla DMP formatting glossary "AGLOSS"
?
A [V) (esc) [K] [V]
a[V] [esc] [tab] [V]
B [V] [esc] K [VJ
b[V) [esc]M[V]
C [V] (L] [V]
c [VJ [esc] 2 [VJ
D[V] [esc]N[V]
d[V] [esc]G[V]
E [V] [esc] 0 [VJ
e[V][esc]9[V]
F[V] [esc]F[V]
f[VJ [esc]F66[V]
G[V] [esc]3[V]
g[V] [esc]4[V]
H [VJ "' [V]
h [V] [V]
I [V](esc] [Z] [E] [V]
i[V] [esc]: [VJ
J [VJ [E] [VJ
j [V] [F] [VJ
K [VJ [esc] [EJ [VJ
k [VJ [esc] [Fl [V]
L [VJ [escJ l [VJ
l [VJ [esc] [HJ [VJ
M[VJ [esc]B[V]
m[V] [escJV[V]
N[V) [esc)+{V)
n[V] [escJ-[V]
O[VJ [esc]O[V]
o (VJ [esc]U [VJ
P[V] [esc]$[V]
p[V] [esc]\[V]
Q[V] [esc]S(V]
q[V] [esc]T(V]
R [VJ [esc] < (VJ
r[V] [esc]>[V]
s [VJ [esc]Q(VJ
s[VJ [esc]R(V]
T[VJ [esc]l[VJ
t [VJ [escJ 8 [VJ
U[V) [esc]I[V]
u[V] [esc]J[V]
V[VJ [escJ [JJ [V]
v[V]'[J] [VJ
W[VJ [escJ [V]
w[V) [esc]/[V]
X[V] [escJ [Z] I [V]
X [V] [esc]]P [V]
Y [V] [VJ
y [V] [VJ

Apple OMP Open-Apple Formatting Commands:

(A) absolute Vmove• (H) vert VMI set*
(0) offset hl up (V) vertical up
(a) absolute &move• (h) horiz HMI set*
(o) offset hl down (v) vertical down

WPL Programs and Applesoft Patches

Program A. I I-cont.

(B) bold print on• (I) inquire request
(P) prop. space on (W) wheel spoke 004
(b) bold print off (i) inquire reply*
(p) prop. space off (w) wheel spoke 002
(C) cause formfeed (J) jump ext ASCII
(Q) quit printing (X) reset hard
(c) clear all tabs (j) jump std ASCII
(q) resume printing (X) reset soft
(D) doublestrike on (IC) kustom prog on•
(R) reverse <- on (Y) yourstuff on
(d) double graphics (k) kustom prog off
(r) reverse <- off (y) yourstuff off
(E) west margin set (L) language pick*
(S) shadowprint on (Z) tutorial+ save
(e) east margin set (1) little backspce
(s) shadowprint off (z) tutorial only
(F) formlength set• (M) move Vrelative•
(T) tab horiz set
(f) formlength 66 (m) move Hrelative•
(t) tab horiz clear
(G) graphics on (N) north margin
(0) underline on
(g) graphics off (n) south margin
(u) underline off

Capital letter is "on", "above", "vertical", or "right".

"' - follow with data values (See printer manual or help card)

Z(PJndJ [QJFAGLOSSJ (L]AGLOSS<>
z[LJAGLOSS<> <ard) >X\]

<ard)>X\J (P]yd]

Gotchas: Pairs of brackets mean control commands. [esc] =
escape key, (Q] means "<ctrl>Q", etc. Note that any
isolated brackets really are isoated brackets.

The line preceeding the tutorial screen must have
four spaces on it. "Z" and "z" selections must NOT
preceed the tutorial or they will find themselves.

Eighty column tutorial text lines have been split.
Entries (A) , (R) , (0) , and (V) all go on one line.
The dot row is also one continuous line.

This program is available ready to run on the
companion diskette.

193

194 Applewriter Cookbook

Program A.12. Diablo 630 formatting glossary with tutorial.

? Applewriter IIe/Diablo 630 Formatting Glouary "DGLOSS"
?
A[V] [eac] [JC] (VJ
a (V] [HC] [0] (V]
B(V} (eseJO[V]
b [VJ [escJ, (VJ
C (VJ [esc] -[V]
c[V] [Hc]X[V]
0 [VJ [He]$ (V]
d[V] [He]X[V]
E [V] [He] 0 [VJ
e [VJ [esc] 9 [VJ
F [VJ [ese]A[V)
! [VJ [eac] B (V]
G[V] [eac]3[V]
g (V] [esc] 4 [V]
H (VJ (JC] [V]
b [V] [tab] [VJ
I (V] [esc] \ [V]
i [V] [ese]N[V]
J (V] [esc]M[V]
j [V] (esc] X [V]
K(V] [esc] [QJ (V]
k(V] (esc]X[V]
L(V] [esc] (L] [VJ
l (VJ [esc) [BJ (VJ
M (VJ (eac],. [VJ
m{VJ [esc] [V]
N [VJ (ese)T[V]
n [VJ [ese] S (VJ
O(VJ [ese]D[VJ
o[V] (escJO(VJ
p (V] (eseJP [VJ
p[V] [ese]Q(V]
Q[V] [ese]7 [VJ
q[V] [eaeJX[VJ
R[V] [eaeJ/[VJ
r [V] [ese] \ (VJ
s [V] [ese]W(V]
s [VJ [ese], [VJ
T [VJ [ese]-[V]
t(V)[ese)l[V)
U[V] [ese]E[VJ
u (V] (ese] R[V]
V(V) [eseJ [J] [V]
v[V] (J] [V]
W[V][ese]Z(V)
w[V] [eae]Y(V]
X[V] (ese]2[VJ
X (VJ [ese] s [V)
Y [VJ (VJ
y [V) [VJ
"[V] [L) [VJ
< [VJ [BJ [V)
, [VJ (eac)Q(eseJ 1 (BJ [tab) [VJ
. (VJ [escJP(VJ

Diablo 630 Open-Apple rorm&ttinq Commands:

(A) absolute VTAB* (R) vertical tab

WPL Programs and Applesoft Patches

Program A.12-cont.

(0) offset hl up
(a) absolute HTAB*
(o) offset hl down
(B) bold print on
(P) proportional on
(b) bold print off
(p) prop. space off
(C) centering on
(Q) quit printing
(c) centering off
(q) quit wp modes
(0) dash hyphen on
(R) reverse <- on
(d) dash hyphen off
(r) reverse <- off
(E) west margin set
(S) shadow on
(e) east margin set
(s) shadow off
(F) funny ribbon on
(T) tab vert. set
(f) black ribbon on
(t) tab horiz. set
(G) graphics on
(0) underline on
(g) graphics off
(u) underline off

(V) vertical up
(h) horizontal tab
(v) vertical down
(I) improve quality
(W) wheel spoke $7F
(i) normal quality
(w) wheel spoke $20
(J) justify on
(X) clear tabs
(j) justify off
(x) clear BMI
(K) kerning set *
(Y) yourstuff on
(k) kill v margin
(y) yourstuff off
(L) lines/page set*
(Z) tutorial + copy
(l) little backspce
(z) tutorial only
(M) motion VMI **
(") formfeed
(m) motion BMI **
(<) backspace
(N) north margin
(,) dots start
(n) south margin
(.) dots end

Capital letter is "on", "more", "above", "vertical", or "right".

* - follow with ASCII value
** - follow with ASCII value-1

Z[P]nd] [Q]FDGLOSS] [L]OGLOSS<>
z[L]DGLOSS<> <-1)>><\]

<-1)»<\][P]yd]

.

Gotchas: Pairs of brackets mean control commands. [esc] =
escape key, [Q] means "<ctrl>Q", etc. Note that any
isolated brackets really are isoated brackets.

The line preceeding the tutorial screen must have
four spaces on it. "Z" and "z" selections must NOT
preceed the tutorial or they will find themselves.

Eighty column tutorial text lines have been split.
Entries (A), (B), (0), and (V) all go on one line.
The dot row is also one continuous line.

This program is available ready to run on the
companion diskette.

195

196 Applewriter Cookbook

Program A.13. Epson MX80 formatting glossary with tutorial.

? Applewriter Ile/Epson MXB0 �ormatting glossary "EGLOSS"
?
A[V] (esc}# (VJ
a (V] [asc] > [V]
B [V] [esc] G [VJ
b(V] [esc]H[VJ
C [V] [escJ [OJ [VJ
C (V] [esc] [S] [V]
D[V] [asc] (N] [V]
d (V] (asc] [T] [V]
E(V] [esc]E[V]
e[V] [esc]F[VJ
F(VJ (esc]C[VJ
f[V] [esc]C(@J [VJ
G[V] [esc]L[VJ
g[V] (esc]K[V]
H(V) [ascJJ[VJ
h(V] [esc]2[V]
I [V) [ascJ 4 (VJ
i (VJ [ascJ 5 [V]
J[VJ [esc]N[VJ
j[V] [esc]O[V]
K [VJ [V]
It [V] [V]
L[V] [esc]=[esc][J][V]
l[V] [escJ>[esc] [J] [VJ
M [V] [V]
m [V] [V]
N [V] [G] [V]

n [VJ [GJ [VJ
O[VJ [escJO[@] [V]
o[V] [ascJOl[VJ
P[VJ [escJ9[VJ
p [V] [ascJ 8 [VJ
Q[VJ (VJ
q [VJ [VJ
R[VJ [asc]=[VJ
r[VJ[escJ>{VJ
S[VJ [escJS{@J [V]
s [VJ [ascJ Sl [VJ
T[VJO[V)
t(VJ O[V]
O[V][asc)-l[VJ
u[VJ[escJ -[@J (VJ
V[VJ [escJl[VJ
v(V] [esc]O[V)
W[V] [ascJQ[V)
w[V] [esc]Q[VJ
X[V] [esc]@[V]
X [VJ [escJ T [VJ
Y[V] [V]
y (V] (VJ
A [VJ [LJ (VJ
< [V] [BJ [V]

Epson MX-80 Open-Apple Formatting Commands:

(A) ascii bB as is (B) height custom •
(0) two way print (V) VERY tight 7/72

WPL Programs and Appleso{t Patches

Program A.13-cont.

(a) ascii b8 one
(o) one way print
(8) bold print on
(P) paperout sense
(b) bold print off
(p) paperout ignore
(C) compressed on
(Q) (spare)
(c) compressed off
(q) (spare)
(D) doublewide on
(R) reset B8 = 1
(d) doublewide off
(r) reset B8 = 0
(E) emphasized on
(S) superscript on
(e) emphasized off
(s) subscript on
(F) fmlngth lines *
(T) tab set *
(f) fmlngth inchs *
(t) tab set *
(G) graphics 960 *
(O) underline on
(g) graphics 480 *
(u) underline off

(h) height normal
(v) very tight 1/8
(I) italics on
(W) width column*
(i) italics off
(w) width column *
(J) jump perf on *
(X) off all modes
(j) jump perf off
(x) off sub/super
(K) (spare)
(Y) yourstuff on
(k) (spare)
(y) yourstuff off
(L) linefeed w/rst
(Z) tutorial + save
(l) linefeed only
(z) tutorial only
(M) (spare)
(") formfeed
(m) (spare)
(<) backspace
(N) noisy bell

(n) noisy bell

Capital letter is "on", "yes", "above", or "more".
For full features, the AWIIe NULL patch is needed.

* - follow with data value (s). (See Epson us
er manual for details.)

Z[Q]FEGLOSS] [L]EGLOSS<> <ls.)>><\]
z[L]EGLOSS<> <ls.)>><\]

Gotchas: Pairs of brackets mean control commands. [esc] =
escape key, [Q] means "<ctrl>Q", etc. Note that any
isolated brackets really are isoated brackets.

The line preceeding the tutorial screen must have
four spaces on it. "Z" and "z" selections must NOT
preceed the tutorial or they will find themselves.

The NULLIFIER patch of chapter one is needed for
underlining and superscripts on older printers.

Eighty column tutorial text lines have been split.
Entries (A) , (B) , (O) , and (V) all go on one line.
The dot row is also one continuous line, as is the
line starting with "* - Follow"

This program is available ready to run on the
companion diskette.

197

198 Applewriter Cookbook

Program A.14. lmagewriter formatting glossary with tutorial.

?
? Applewriter IIe/Imagewriter formatting glossary "IGL0SS"
?
A[V] [esc]0[V]
a[V] [esc]o[V]
B[V] [esc] ! [V]
b(V] [escJ" [V]
C [V] [L] + [V]
C [V] [esc]-[V]
D (V] (escJ [H] [V]
d [V] [esc] R. [VJ
E (V] (escJ0 [V]
e [V] [escJL[VJ
F [V] [}] A@ [VJ
f [V] [L] [V]
G[V] [esc]V[V]
g[V] [esc]G[V]
H [V] (N] [V]
h [V] [O] [V]
I[V] [esc]G[V]
i [V] [] [V]
J[V] [esc]Z@[@] [V]
j [V] [esc]0@ [@] [V]
K[V](esc]s [VJ
k [V] [esc] [V]
L [V] [esc]O[V]
l [V] (esc] z [V]
M[V] [esc]Q(V]
m[V] [esc]q(VJ
N[VJ [esc]e[VJ
n[V] [esc]E(V]
0(V] [esc]N[VJ
o[V] [esc]n[VJ
P[V][esc]p(VJ
p(V] (escJP(VJ
Q[VJ [esc]' [VJ
q [VJ (escJ $ (VJ
R[VJ(esc]<(VJ
r[V] (esc)>(VJ
S[V](escJB(V)
s[VJ (escJA[VJ
T[V) [esc] ([V]
t [VJ [esc]) [V]
0[V] [esc]X[VJ
u[V] [esc] Y[V]
V(V] [escJ r(VJ
v[V] [esc)f[V]
W[V] [esc]Z[@] [VJ
w(V](esc]D(@] [VJ
X[V]c[V]
x [VJ (XJ [V]
Y [V] [VJ
y[V] [VJ

Imagewriter Open-Apple Formatting Commands:

(A) alarm on
(0) ordinary 10
(a) alarm off
(o) obese wide 9

(B) headline on
(V) vertical up
(h) headline off
(v) vertical down

WPL Programs and Applesoft Patches

Program A.14-cont.

(B) bold print on
(P) prop space pica
(b) bold print off
(p) prop spce elite
(C) custom 16 wide
(Q) quit normal
(c) custom 8 wide
(q) quit custo111
(D) doublewhap*
(R) reverse <- on
(d) duplicate char*
(r) reverse <- off
(E) erase all tabs
(S) space 8 LPI
(e) east mrgin set*
(s) space 6 LPI
(F) form TOF set
(T) tab set
(f) formfeed
(t) tab clear
(G) graphics XS on
(U) underline on
(g) graphics Xl on
(u) underline off

(I) insert columns*
(W) will use b8
(i) insert bla.nks*
(w) will not use b8
(J) jump on CR only
(X) cancel all
(j) jump on all
(x) cancel text
(K) kern spaces*
(Y) yourstuff on
(k) kern charcters*
(y) yourstuff off
(L) linefeed enable
(Z) tutorial + save
(1) linefeed dsable
(z) tutorial only
(M) 111ighty tight 17

(m) midi tight 15

(N) near tight 13

(n) nor111al 10

Capital letter is "on", "above", "vertical", or "right".

* - follow with data values (See printer manual or help card)

Z[P]nd] [Q]FIGLOSS] [L]IGLOSS<>
z[L]IGLOSS<> <ard)>><\]

<ard) >><\] [P]yd]

Gotchas: Pairs of brackets mean control commands. [esc] =
escape key, [Q] means "<ctrl>Q", etc. Note that any
isolated b�ackets really are isoated brackets.

The line preceeding the tutorial screen must have
four spaces on it. "Z" and "z" selections must NOT
preceed the tutorial or they will find themselves.

The NULLIFIER patch is needed for certain seldom
used commands. See chapter one.

Eighty column tutorial text lines have been split.
Entries (A), (B), (0), and (V) all go on one line.
The dot row is also one continuous line.

This program is available ready to run on the
companion diskette.

199

B

Machine Language
Patches

201

202 Applewriter Cookbook

How to patch Applewriter lie.

1 . The patches that follow are totally unofficial and are in no
way supported by nor approved of by either Apple Computer or
the original program author.

2 . Patches 6.1 - 6.7 are intended only for the DOS 3.3 versions
of Applewriter IIa. There are two versions of the program,
the "I:" version, or OBJ.APWRT] [E for use in a 64K Apple Ile
without extended memory, and the "F" version which is named
OBJ.APWRT] (F for use in a 128K Apple Ile that has extended
memory. The booting coda OBJ.BOOT automatically picks the
correct program after testing for auxiliary IIe memory.

Use "J:" patches ONLY on OBJ.APWRT] [E coda. Use "F" patches
ONLY on OBJ.APWRT] [F code.

3. Patch only your third or higher backup copy. Do NOT patch
either the stock diskette or its factory backup.

4. Cold boot stock DOS 3.3e from your system master diskette.

5. To make an "E'' patch:

(a) BLOAD OBJ.APWRT} [E, A$2300
(b) CALL -151 to get into the system monitor
(c) Verify the patch area. DO NOT CONTINUE

UNLESS YOUR CODE EXACTLY AGREES !
(d) Enter the patch coda.
(e) Check the patch code for correct entry.
(f) UNLOCK OBJ .APWRT} [E
(g) BSAVE OBJ.APWRT][E, A$2300, L$2F58
(h) LOCK OBJ.APWRT] [E
(i) Test your patch using non-valuable text files.

6. To make an "F" patch:

(a) BLOAD OBJ.APWRT] [F, A$2300
(b) CALL -151 to get into the system monitor
(c) Verify the patch area. DO NOT CONTINUE

UNLESS YOUR CODE EXACTLY AGREES !
(d) Enter the patch code.
(e) Check the patch code for correct entry.
(f) UNLOCK OBJ.APWRT] [!'
(g) BSAVE OBJ.APWRT][!', A$2300, L$30D2
(h) LOCK OBJ.APWRTJ [!'
(i) Test your patch using non-valuable text files.

Machine Language Patches

Patch B. 1. The NULLIFIER (AWIIeJ.

What it does: Allows imbedded NULL commands for such things as
superscript and underline on older Epson printers.

After this mod, NULLs may be imbedded into your
textfiles by using a [V] [@] [V] command.

How it works: Branches that eliminate entry of $80 NULLS are
shortened so they go nowhere.

Side effects: Obscure use of DELETE key is lost, but you should
never be using this key anyway. Do not use in
40 column (no-card) mode. Do not use a NOLL as
a character in a WPL label.

The "E" patch:
l . Verify 26El- C9 80 FO OF

Patch 26E4: 00

2. Verify 48BA- C9 80 FO 06

Patch 48B0: 00

The "F" patch:
l . verify 2781- C9 80 FO 15

Patch 2784: 00

2. Verify 4A33- C9 80 FO 06

Patch 4A36: 00

203

204 Applewriter Cookbook.

Patch B.2. The STRETCHIFIER {AWJJeJ.

What it does: Elilllinatea the "short line" bug when imbedded
printer commands are counted as part ot a till
justified line. Each imbedded [esc] command in
a line lengthens only that line by TWO counts.

How it works: Intercepts line length counter routine and then
lengthens line by two counts for each imbedded
[esc] command. Then knocks off any "unused"
counts bypassed by word wraparound.

Side effects: Exact fix results only for two-character imbedded
sequences. For three-character sequences, extra
counts can be "banked", by using [esc) [esc) to
bank a pair of counts, or [esc) [esc] (2) to bank

The "E" patch:

The "F" patch:

a single count. Such banking can be built into
the glossary that holds the imbedding commands.
To make room for this code, the unneeded AWIIe
"volume verify" routine is shortened to a default
return command.

1. Verify 397F- 20 EB 46 A9 01

Patch 397!':
3980:
3988:
3990:
3998:
39AO:

60
99 00 1 6 C9 98 00 04 E6
03 E6 03 60 C4 OC FO OE
89 00 16 C9 98 00 04 C6
03 C6 03 88 DO EE 4C FC
45

2. verify 43F4- 99 oo 16

Patch 43F4: 2 0 80 39

3. Verify 4418- 4C FC 45

Patch 4418: 4C SC 39

4 . Verify 4El2- AC D3 BO

Patch 4El4: 86

1. Verify 3AD6- 20 64 48 A9 01

Patch 3AD6:
3AD8:
3AEO:
3AE8:
3AFO:

60 99
00 16 C9 9B DO 04 E6 D3
E6 D3 60 C4 DC FO OE B9
00 16 C9 9B DO 04 C6 D3
C6 D3 88 DO EE 4C 75 47

2. Verify 456B- 99 00 1 6

Patch 4568: 20 D 7 3A

3. Verify 4592- 4C 75 47

Patch 4592: 4C E3 3A

4. Verify 4F8B- AC D3 BO

Patch 4F8D: 86

Machine Language Patches

Patch B.3. The CURSIFIER {AWIIeJ.

What it does : Puts the cursed character into the WPL $0 string
on a [Q]-K command. This greatly speeds up WPL
programs that need character- by-character logic .

How it works : Pointer to flashing cursor is decremented. Pointed
value is then put into the $0 string as its first
character. The second $0 string character is
forced to $00. The cursor pointer is then
incremented back to its original position.

Side effects : The normally unused "Quit" command is no longer
available. The $0 string must have nothing useful
in it before doing a [Q]-K.

The "E" patch :

The "i'" patch:

1 . Verify 2B01-

Patch 2B0 1 :
2B08 :
2BEO :

2 . Verify 5047-

Patch 504 7 :
504 8 :
5050 :

1 . Verify

Pateh

2 . Verify

Patch

2CA4-

2CA4 :
2CA8 :
2CBO :

51C0-

51CO:
51C8:
5100 :

AO 00 B9 1 9

20 D 6 28 B l 84 8 0 4 0
18 A9 00 8 0 41 1 8 4C BC
28

01 F5 E9 F4

C3
F5 F2 F3 EF F2 AO AD AD
BE AO A4 C4 AO AO AO AO

AO 00 B9 92

20 9E 29 20
32 01 80 40 18 A9 00 80
41 18 4C 54 29

01 F5 E9 F4

C3 F5 F2 F3 EF F2 AO AD
AD BE AO A4 C4 AO AO AO
AO

205

206 Applewriter Cookbook

Patch B.4. The PATCHIFIER /AWlle}.

What it does: Allows you to modify or extend any part of
Applewriter at any time tor any reason, by
using a "Bload Patch" command under [OJ-C.
Also adds a rudimentary PEEX and POKE to WPL.

How it works: The seldom used "Verity File" command is changed
so it will load any binary tile ot your choice.
Only the actual DOS 3.3e command is altered.

Side effects: Verifying DOS files becomes much harder.

The "E" patch :

The "F" patch:

Matching patch to version is absolutely essential.
Careless use of this powerful command can destroy
everything within a one mile radius of your IIe,
so BE CAREFUL!

1 . Verify 4080- 06 ES 1'2 E9

Patch 4080: C2 EC EF El E4 AO DO El
4D88: 1'4 E3 EB

1 . Verify 4EF9- 06 ES F2 E9

Patch 4 El'9: C2 EC EF El E4 AO DO
41'00: El F4 E3 EB

Machine Language Patches

Patch B.5. The LINKIFIER {AWlleJ.

What it does: Executes your own custom machine language module
when you or WPL do a [Q]-B.

How it works: Diverts the unneeded [Q]-R function to jump to
your code as a subroutine.

Side effects : Integrety and safety of entire program depends on
your custom modules. Safe areas for custom code
are main mamory $5258-52FF for the "E" version
or $53Dl-$BEFF for the "F" version.

The ''E" patch:
1 . Verify 508F: 36 31

Patch 508F: Module start low address
5090: Module start high address

2. Verify 4FEA: 04 EF E7 E7 EC ES AO C4

Patch 4FEA: Module name using exactly
24 ASCII characters

The "F" patch:
1 . Verify 5208: 5B 32

Patch 5208: Module start low address
5209: Module start high address

2. Verify 5163: D4 EF E7 E7 EC ES AO C4

Patch 5163: Module name using exactly
24 ASCII characters

207

208 Applewriter Cookbook

Patch 8.6. The CLARIFIER {AWlleJ.

What it does: Eliminates trashing of the 2C status line display.

How it works: Inverse upper case status characters are remapped
so they do not conflict with the mousetext area
in the 2c character generator.

Side effects: Remaining portion of unused " volume verify" code
is used by this patch. Repairs only the status
line. Rare and brief changes in the flashing
cursor symbol will remain.

The " E" patch:
1. Verify 3888- BC 24 CF 10 02 A9 BE

Patch 3888: 3C 24 CF 10 02 A9 3E

2. Verify 3975- 29 7F 84

Patch 3975: DO 2A

3. Verify 397F- 20 -or- 60

Patch 397F : 60

4. Verify 39Al- 39 cs 82 DO

Patch 39Al : 29 7F C9 60 BO DO C9
39A8: 40 90 cc 29 3F BO ca

5. Verify 4El2- AC D3 BO

Patch 4El4: B6

The "F" patch:
1 . Verify 39DF- BC 24 CF 10 02 A9 BE

Patch 39DF : 3C 24 CF 10 02 A9 3E

2. Verify 3ACC- 29 7F 84

Patch 3ACC: DO 2A

3. Verify 3AD6- 20 -or- 60

Patch 3AD6: 60

4. Verify 3AF8- 3B CS 82 DO

Patch 3AF8: 29 7F C9 60 BO DO C9 4 0
3BOO: 90 cc 29 3F BO ca

5. Verify 41'8B- AC D3 BO

Patch 4F8D: B6

Machine Language Patches

Patch B. 7. The RESTORJFIER {AW/le/.

What it does: Restores the help screens should the "volume
verify" routine be diverted for other patches.

How it works: The generic slot number in the help screen code
is overwritten to force slot six.

Side effects : The disk drives must now be in slot six for the
help screens to work.

The "E" patch:

The "F" patch:

l. Verify 4El2- AC 03 BO

Patch 4El4: B6

l. Varity 4F8B- AC 03 BO

Patch 4F80: B6

209

210 Applewriter Cook.book

Patch B.8. The PREFIXIFIER (ProDOS 2.0/.

For: ProDOS Applewriter 2.0, versions AWB. SYS (for
40 column IIc), AWC.SYS (tor 64K IIe, or
AWD.SYS (80 column IIc or 128K IIe) .

What it does: Automatically sets the prefix to whatever is in
drive two on bootup.

How it works:

Gotchas:

The patch:

Doe• a "set pretix, d2" •• part ot STARTUP
program.

Has to sit in drive one during bootup. A non
fatal error message results if you have nothing
in drive two.

1. Make a third or higher backup copy of ProDOS
Applewriter 2.0, using the filer.

2. Open a new Applewriter text file.

3. Type "<space> oh, d2] <return>"

4. Sava file under name STARTUP to your new backup copy.

NOTE: If you are using another STARTUP program, just add
the line in step #3 to your existing WPL routine.

Machine Language Patches

Patch B.9. The AIOIFIER (ProDOS 2.0J.

For: ProDOS Applewriter 2.0, version AWD.SYS only.
AWD.SYS runs only on the 80 column IIc or the
128K IIe.

What it does: Eliminates swallowed imbedded print commands if
an attempt is made to use the AIO card as a
serial printer interface.

How it works: Convinces the card that it is not to echo screen
video, nor output an extra space when at the
left margin.

Gotchas: Uses memory locations from $5FF0 through $5FFB,
May do very bizarre things to other printer
cards. Conflicts with GRAPPLIFIER patch. Works
only in slot one.

The patch:

1. Make a third or higher backup copy of ProDOS
Applewriter 2 . 0, using the filer.

2. Get into /BASIC.SYS. CALL -151 to get into monitor.

3 . BLOAD AWD. SYS, A$2000, E$6020, TSYS, O2

4. [A] Verify: $4CA0- 6C 9E 00

[B] Change: $4CA0: 4C F0 SF

5. [A] Verify: $5FFO- lA lA lA lA lA

[B] Change: $5FF0: AO FF SC F9 01 ca ac 79
$5FF8: 07 6C 9E 00

6. [A] Verify: $4CA0-4CA2 per above

[B] Verify: $5FF0-6001 per above

7. BSAVE AWD. SYS, A$2000, E$6020, TSYS.

211

212 _ Applewriter Cookbook

Patch 8. 10. The GRAPPLIFIER {ProDOS 2.0/.

For: ProDOS Applewriter 2.0, version AWD .SYS only.
AWD.SYS runs only on the 80 column IIc or the
128K IIe.

What it does: Eliminates random bursts of spaces whenever an
attempt is made to use the Grappler card as a
parallel printer interface.

How it works:

Gotchas:

The patch:

Performs a frontal lobotomy on the card just
before each character is printed. Does this by
defeating screen echo, stopping all modes,
setting length to $00, left margin and unused
memory location $24 to $01, and internal cursor
to $02 .

Uses memory locations from $5FF0 through $6002,
thus lengthening the program by two bytes. May
do very bizarre things to other parallel cards.
Conflicts with AIOIFIER patch. Works only in
slot one.

l. Make a third or higher backup copy of ProDOS
Applewriter 2.0, using the filer.

2. Get into /BASIC.SYS. CALL -151 to get into monitor.

3. BLOAD AWD.SYS, A$2000, E$6020, TSYS, D2

4 . [A] Verify:

[B] Change:

5. [A] Verify:

[B] Change:

6. [A] Verify:

[B] Verify:

$4CA0- 6C 9E

$4CA0: 4C F0

$5FF0- lA lA

$5FF0: AO 00
$5FF8: ce 84
$6000: 9E 00

$4CA0-4CA2 per

$5FF0-600l per

00

SF

lA lA lA

ec 79 04
24 ce sc

above

above

7. BSAVE AWD. SYS, A$2000, E$6020, TSYS.

SC
F9

F9 07
04 6C

Machine La.nguage Patches

Patch B.11. The BOOTIFIER (ProDOS 2.0J.

For : ProDOS Applewriter 2 . 0 , version AWD . SYS only .
AWD . SYS runs only on the 80 column Ile or the
128J< Ile .

What it does : Gives a slightly faster bootup by eliminating
the first screen display and the key prompt .

How it works :

Gotchas :

The patch :

Bypasses the first display screen and key prompt
by replacing a subroutine call with NOP ' s .

Monumentally uninformative to beginning or
casual users . Best used with a controlling
STARTUP program in drive one .

1 . Make a third or higher backup copy of ProDOS
Applewriter 2 . 0 , using the filer.

2 . Get into /BASIC . SYS. CALL -151 to get into monitor.

3 . BLOAD AWD .SYS, A$2000, E$6020, TSYS,D2

4 . [A] Verify: $20AB- 20 ES 21

[B] Change: $20AB: EA EA EA

5 . [A] Verify: $20AB-20AD per above .

6 . BSAVE AWD .SYS, A$2000, E$6020, TSYS.

213

214 Applewriter Cookbook

Patch 8.12. The NULLIFIER /ProDOS 2.0).

For: ProOOS Applawritar 2.0, version AWD.SYS only.
AWD.SYS runs only on the 80 column Ile or the
128K Ila.

What it does: Lats you redefine a substitute character for
NULL. The current US user separator [_] may
conflict with certain modems and some daisywheel
HMI commands.

How it works: Substitutes the desired character by changing
the operand of an immediate compare instruction.

Gotchas: Patch is needed only if you need the OS user
separator [] for itself, rather than a NOLL
substitution sit-in.

The patch:

1. Make a third or higher backup copy of ProOOS
Applewriter 2 . 0, using the filer.

2. Get into /BASIC.SYS. CALL -151 to get into monitor.

3. BLOAO AWD.SYS, A$2000, E$6020, TSYS,D2

4. Verify $4C36 as a $C9 and $4C37 as the current
NOLL substitution character.

S . Change $4C37 to the new NOLL substition character.
Use (] user seperator OS as default, or $00 for no
NULLS-at all.

6. [A] Verify: $4C36-4C37 per above.

7. BSAVE AWD.SYS, A$2000, E$6020, TSYS.

Machine La.nguage Patches

Patch B.13. The GLOSS/PIER {ProDOS2.0J.

For: ProDOS Applewriter 2 . 0 , version AWD . SYS only .
AWD . SYS runs only on the 80 column IIc or the
128K IIe.

What it does : Eliminates the potential ability to overwrite
the glossary and destroy the program . Corrects
a code byte that is just plain wrong.

How it work s :

Gotchas:

The patch:

Before entering a character from the keyboard
into the glossary, a check is made to make sure
there is at least enough room for an ending
carriage return and $00 marker. If not enough
room , an error message result s . The correct
maximum address is $0FFD, not $67FD.

None known.

l . Make a third or higher backup copy of ProDOS
Applewriter 2 . 0 , using the filer.

2 . Get into /BASIC . SYS. CALL -151 to get into monitor.

3 . BLOAD AWD .SYS, A$2000, E$6020, TSYS, D2

4 . [A] Verify: $2B56- 67

[BJ Change : $2B56: OF

5 . [A] Verify: $2B56 per above .

6 . BSAVE AWD .SYS, A$2000, E$6020, TSYS.

215

216 Applewriter Cookbook

Patch 8.14. The CREEPIFIER /ProDOS 2.0).

For: ProDOS Applewriter 2 . 0, version AWD. SYS only.
AWD. SYS runs only on the 80 column Ile or the
128JC Ile.

What it does: Eliminates an extra space at the end of all top
and bottom lines, thus eliminating a potential
page creep problem if user sets both program and
printer right margins to 80 characters, and
suppresses first page headers or footers.

How it works:

Gotchas:

The patch:

Enters a "print space and carriage return" sub
in the middle, so it only prints a return.

None known. It is utterly amazing how many
calls have been made on this. The alternate and
obvious cure is to use RM78 as a print constant.

l. Make a third or higher backup copy of ProDOS
Applewriter 2.0, using the tiler.

2. Get into /BASIC.SYS. CALL -151 to get into monitor.

3. BLOAD AWD.SYS, A$2000, E$6020, TSYS,02

4 . [A] Verify: $47ED- 20 53 46

[B] Change: $47ED: 20 58 46

5. [A] Verify: $47ED-47EF per above

6. BSAVE AWD.SYS, A$2000, E$6020, TSYS.

Machine La.nguage Patches 217

Patch B.15. The SCRUNCHIFIER {ProDOS 2.0/.

For: ProDOS Applewriter 2.0, version AWD. SYS only .
AWD. SYS runs only on the 80 column IIc or the
128K IIe.

What it does: Shortens the DOS options menu to four lines,
leaving more of a previous catalog on screen.
Also frees up room in code for other patches.

How it works : Rewrites the ASCII image of the DOS screen menu
so it is much shorter.

Gotchas: Style inconsistent with other menus. Spelling
of "Subdirectory" uses a convention only seen
in the upper reaches of Marijilda Canyon in the
Pinaleno Mountains. This patch must be made if
the STRETCHIFIER and the CURSIFIER patches are
to be used.

The patch:

1 . Make a third or higher backup copy of ProOOS
Applewriter 2.0, using the filer.

2. Get into /BASIC. SYS. CALL -151 to get into monitor.

3. BLOAD AWD. SYS, A$2090, E$6020, TSYS, D2

4 . (A] Verify: $591C- 20 20 20 50 72

[B] Change: $591C: 50 72 6F 44
$5920: 6F 73 3A 20 28 41 29 20
$5928: 43 61 74 61 6C 6F 67 20

$5930: 20 28 43 29 20 4C 6F 63
$5938: 6B 20 20 20 20 28 45 29
$5940: 20 44 65 6C 65 74 65 20
$5948: 20 20 28 47 29 20 53 75

$5950: 62 64 72 63 74 79 20 28
$5958: 49 29 20 46 6F 72 6D 61
$5960: 74 20 20 20 OD 20 20 20
$5968: 20 20 20 20 20 28 42 29

$5970: 20 52 65 6E 61 6D 65 20
$5978: 20 20 28 44 29 20 55 6E
$5980: 6C 6F 63 6B 20 20 28 46
$5988: 29 20 4F 6E 2D 4C 69 6E

$5990: 65 20 20 28 48 29 20 50
$5998: 72 65 66 69 78 20 20 20
$59A0: 28 4A 29 20 50 72 69 6E
$59A8 : 78 65 72 20 2D 3E 00 11

$59B0: 11 11 11 11 11 11 11 11
$59B8: 11 11 11 11 11 11 11 11
$59C0: 11 11 11 11 11 11 11 11
$59C8: 11 11 11 11 11 11 11 11

$5900: 11 11 11 11 11 11 11 11
$59D8: 11 11 11 11 11 11 11 11
$59E0: 11 11 11 11 11 11 11 11
$59E8: 11 11 11 11 11 11 11 11

218 Applewriter Cook.'book.

Patch B.15-cont.

$59!'0: 1 1 1 1 1 1 1 1 11 11 11 11
$591'8 : 11 11 11 11 11 11 11 ll
$5A00: 11 11 11 11 11 ll ll 11
$5A08: 11 ll 11 11 ll ll ll 11

$5Al0: ll ll 1 1 1 1 (atop at $5Al3 !)

5 . [A] Verify: $59lC-5Al3 per above.

[BJ Verify: $5Al4- 23 Sl 65

6 . BSAW AWO.SYS, A$2000, 1!$6020, TSYS.

Machine Language Patches

Patch B. 16. The STREI'CHIFIER {ProDOS 2.0J.

For: ProDOS Applewriter 2.0, version AWD.SYS only.
AWD.SYS runs only on the 80 column Ile or the
128K Ile.

What it does: Eliminates "shortlines" caused by counting any
imbedded printing commands as real characters.

How it works: For every escape character found and actually
used in the line, two extra counts are added
to the line length. This exactly compensates
an imbedded escape command followed by a single
character.

Gotchas: Uses memory locations from $59AF-59CF. The
SCRUNCHIFIER patch MUST be previously installed.
To handle imbedded commands that are longer than
an escape and a single character, or non-escape
commands, "bank" as many characters as needed.
Note that an "[escl [escl " banks two characters,
while an "[escl [null]" banks just one.

The patch:

l. Make a third or higher backup copy of Prooos
Applewriter 2.0, using the filer.

2. Get into /BASIC.SYS. CALL -151 to get

3. BLOAD AWD.SYS, A$2000, E$6020, TSYS, D2

4 . [A] Verify: $49C7- 99 00 lC

[Bl Change: $49C7: 20 AF 59

5. [Al Verify: $49EE- 4C 04 4B

(Bl Change: $49EE: 4C BB 59

6. [A] Verify: $59AF- 11 11 11 11 11

(BJ Change: $59AF: 99
$59BO: 00 lC C9 lB DO
$59B8: E6 75 60 C4 7E
$59CO: 00 lC C9 1B DO
$59C8: C6 75 88 DO EE

7. [Al Verify: $49C7-49C9 per above.

[BJ Verify: $49EE-49FO per above.

[C] Verify: $59AF-59CF per above.

8. BSAVE AWD.SYS, A$2000, E$6020, TSYS.

04
FO
04
4C

into monitor.

E6 75
OE B9
C6 75
04 4B

219

220 Applewriter Cookbook

Patch B.17. The PROMPT/PIER {ProDOS 2.0/.

For: ProDOS Applewriter 2.0, version AWD.SYS only.
AWD . SYS runs only on the 80 column IIc or the
128K IIe.

What it does : Loads to screen on an unconditional "\" instead
of the variable UT. Allows self-prompting
glossaries to work all the time.

How it works:

Gotchas:

The patch:

Compares an immediate "\", rather than to an
absolute UT. NOP used to absorb extra byte.

Without this patch, self-prompting glossaries
will prompt to file, rather than screen unless
UT is a "\". The program author must have had
a good reason for purposely malting the change
from "\" to UT on this release. I don' t know
what that reason is.

1. Make a third or higher backup copy of ProOOS
Applewriter 2.0, using the filer.

2. Get into /BASIC.SYS. CALL -151 to get into monitor.

3. BLOAD AWD.SYS, A$2000, E$6020, TSYS,D2

4. [A] Verify: $396E- CD DE 88

[B] Change: $396E: C9 SC EA

5. [A] Verify: $396£-3970 per above

6. BSAVE AWD.SYS, A$2000, E$6020, TSYS.

Machine Language Patches

Patch B.18. The CURSIFIER /ProDOS 2.0/.

For : ProDOS Applewriter 2 . 0, version AWD .SYS only.
AWD . SYS runs only on the 80 column IIc or the
128K IIe .

What it does: Puts the cursed character into the $0 string_.
Can greatly speed up WPL routines that have to
scan characters in sequence . Substitutes a LF
for a CR so that carriage returns can be handled
as legal $0 characters . Diverts (Q]-H.

How it works : Relabels (Q]-H as cursifier. Links (Q]-H with
space freed up by SCRUNCHIFIER patch. When
activated, reads the cursed character, forces it
to low ASCII . If a carriage return, substitutes
$0A or [J] linefeed. Puts character into $D
string and shortens string to one character.

Gotchas : [Q]-H does the same thing as the [esc] key, so
it may be diverted without any loss. The
SCRUNCHIFIER patch MUST be previously installed.
Uses memory locations from $5900 through $59E8
freed up by the SCRUNCHIFIER .

NOTE: This same technique can be used to link
[Q]-H to any custom machine language
module of your choosing.

The patch:

1 . Make a third or higher backup copy of ProDOS
Applewriter 2 . 0 , using the filer.

2 . Get into /BASIC.SYS

3 . BLOAD AWD .SYS, A$2000, E$6020, TSYS , D2

4 . [A] Verify: $5900- 11 11 11 11

[B] Change: $59D0: 20 75 28 20 12 01 29 7F
$59D8: C9 OD DO 02 A9 OA 8D co
$59EO: lE A9 00 8D Cl lE 4C C7
$59El: 28

5 . [A] Verify: $5DAO : 54 6F 67 67

[B] Change: $5DAO : 43 75 72 73 6F 72 20 2D
$5DA8 : 2D 3E 20 24 44 20 20 20
$5080 : 20 20 20 20 20 20 20 20

6 . [A] Verify: $5E29- 93 35

[BJ Change: $5E2 9 : CF 59 (Address MINUS one !)

7 . [AJ Verify: $59D0-59E6 per above .

[BJ Verify: $5DA0-5DB7 per above .

[CJ Verify: $50B8- OD

[DJ Verify: $5E29-5E2A per above .

7 . BSAVE AWD. SYS, A$2000, E$6020, TSYS.

221

C

Internal ProDOS
Applewriter 2.0
Program Details

223

224 Applewriter Cookbook

Listing C. l . Detailed script of AW.SYSTEM booting loader.

AW. SYS is automatically booted if it is the first .SYS
file on a ProDOS diskette. The program tests the machine,
picks a version of Applewriter, installs that version,
and then runs the Applewriter code.

There are three possible Applewriter versions:

AWB.SYS - 40 columns, 128K
AWC . SYS - 80 columns, 64K
AWD.SYS - 80 columns, 128K

This booting code is easily changed to include such things
as modem turn-on, parallel card setup, downloading of
custom character fonts, etc.

Note that all slot three cards are disconnected by the
main program. Thus, prebooting col'Dlllands to a third-party
video or screen card in slot #3 is futile.

The AW.SYS code is installed and run at $2000 and is a
total of 461 bytes long.

$2000-2007 STEERING CODE

On a cold boot, fall through to version checker
code. If a version load fails, jump to the
error processor.

$2008-2037 VERSION CHECKER

Set steering flag to jump to error processor
Read the ProDOS machine i.d. byte at $BF98.
If a future machine, use AWD.SYS if 40/80
switch is set to 80. If not, use AWB.SYS.
If a present machine, check for machine type.
If a II or II+, print wrong version message.
If a IIe, check memory size. If 128K, use
AWD.SYS. If 64K, use AWC.SYS. If a IIc and
40/80 switch is set to 80, use AWD.SYS. If
set to 40, use AWB.SYS. Version is selected
by poking B,C, or D into pathname.

Note: for a 4 0 coulmn, 128K IIe, the 80 column
code is used, and screen margins are manually
set by the user.

$2038-204B INSTALL MAIN APPLEWRITER PROGRAM

Set the case flag to upper case only. Open
the file named in the pathname. Move an
image of the following code to $0300-0340 so
it does not get plowed as the new code loads.
Jump to $0300, reading the program off disk.
Then jump to $2000. If a good load, the newly
booted word processing code runs. If not,
jump to error processor .

$204C-205C ProDOS READ MLI

Read the opened file into $2000. Data �ila
begins at $0309.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.1-cont.

$205D STEERING FLAG

If $00, check machine and load version. If $FF,
process errors.

$205E-2072 ProDOS OPEN MLI

Open the file whose pathname starts at $201D.
Use $BB00-BEFF as a ProDOS work buffer. Move
file number to READ code. Data file starts at
$206E.

$2075-207D ProDOS CLOSE MLI

$207E

Close all open files. Data file starts at $207C.

CASE FLAG

If $00, print messages in mixed lower and
upper case. If $FF, print upper case only.

$207F-208C WRONG MACHINE EXIT

Trying to boot on a II or II+ gets you here.
Close all files. Clear screen. Put down
wrong machine message. Jump to error exit.

$208C-20A4 ERROR PROCESSOR

Test for no error; if none return to calling
code. If an error, clear screen and print
error message. Print PRESS RETURN message
and wait for user response. Fall through to
Prooos QUIT.

$20AS-20B2 ProDOS MLI QUIT

Routine used to transfer control to a new
ProDOS SYSTEM program. There is a seven byte
buffer needed here and used internally by QUIT.

$2083-20D0 MESSAGE PRINTER

Print the message whose starting address is
A (low) and X (high) to screen, in normal text,
ending on a $00 marker. Check case flag. If
$00, print as mixed case. If $FF, change to
all upper case.

$20D1-20D8 PATHNAME

Holds the name of the Applewriter file to be
booted. Length is seven characters. Can be
AWB . SYS, AWC.SYS, or AWD.SYS, depending on
poked results of the version checker code.

$20D9-2llA ERROR MESSAGE

Low ASCII text stating that an error has
occured, ending on a $00 marker.

$211D-21A8 WRONG MACHINE MESSAGE

Low ASCII text stating that the wrong machine
is in use, ending on a $00 marker.

225

226 Applewriter Cookbook

Listing C. I -cont.

$2 1AB-21CO RETURN PROMPT

Low ASCII text giving a return prompt, ending
on a $00 marker.

Here' s aome extra detail on that ProOOS ayatem i . d. byte at
$8FOO

I D BYTE

000 , 1 1
0 0 1 l FUTURE
0 1 0 1 1 +
0 1 1 l FUTURE
1 00 l i e
1 0 1 l i e
1 1 0 I I I El'IULATI0N
I I I I FUTURE

00 1 UNUSEO
0 I 4 81t
10 1 641(
1 1 1281(

! ! l ! ! ! ! ! I $BF9B

�t::J- ...J l=: O
:

NO CLOCK
THUNOERCLOCIC

I 80 COLUl'INS

l 40 COLUl'INS

0 t PRESENT SVSTEl'I
1 FUTURE SVSTEl'I

Additional info on ProOOS appear in Beneath Apple ProOOS
(Quality Software #61383) or in the ProDOS Technical Manual
(Apple Computer #A2W0010) .

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.2. ProDOS Applewriter 2.0 low work files.

The low workfiles for ProDOS Applewriter 2.0 sit in main R1'M
from $0000 through $1FFF. These are storage areas that are
likely to change as the program is used.

Here are details on the low work files:

$0000-00FF -- PAGE ZERO WORK AREA

Page zero holds pointers, counters, stashes,
and flags for program use. This area is so
important that we have set aside listing 7.5
and listing 7. 6 for full details.

$0100-0156 -- MEMORY MANAGEMENT CODE

Routines to manage auxiliary memory are put
here since main pages zero and one are never
switched or made inactive in this program.

There are six management routines. These
get installed during a cold start and are
affirmed on each warm restart:

$0100-0108

$0109-0111

$0112-0llA

$011B-0123

$0124-0l2C

$0120-013D

$01??-0lFF -- 6502 STACK

Read screen character from
auxiliary memory.
Read cursed character from
top of LOFILE.
Read character from bottom
of HIFILE.
Read character to be printed
from LOFILE.
Read character pointed to by
general use pointer.
Back screen pointer to start
of present screen line .

The 6502 stack inits to $01FF and builds
down. The stack is used to save the return
address on subroutines and seperately to
temporarily save and restore register values.
Since the stack builds down, the area below
the stack is risky to use, although values
between $013E and 0180 are probably safe.

$0200-02FF -- KEYBUFFER

Keystrokes are read into this keybuffer,
either directly from the keyboard or else
from the type-ahead buffer during hectic
times, or by the LS load string code module.
This is a major work area in which such
things as delimiters are processed. Low ASCII
characters start at $0200 and build up in
memory, ending with an $OD carriage return.

$0300-037F -- CHARACTER SWALLOW BUFFER

Single characters being deleted get saved
here by the open-apple, left arrow command.
They are restored by the open-apple, right

227

228

Listing C'.2-cont.

App/ewriter Cookbook

arrow command. The buffer is 128 characters
long and works on a round-and-round basis.
A pointer at $AC decides where to put or get
the next character. Each ASCII character is
put one address higher than the previous one.

$0380-0385 -- DECIMAL VALUE STASH

$0386-03CF

$03D0-03FF

Decimal value held here, in left justified
ASCII format. Used to input a value for
decimal/hex conversion, or to hold the result
of a hex/decimal converson.

APPARENTLY UNUSED LOCATIONS

SYSTEM VECTORS

Addresses of key interrupt, control, soft
reset, and reset normally sit here.

Of interest are:

$03F0 - 03Fl
$03F2 - 03F3
$03F4 -
$03FE - 03FF

BR!< processor address
RESET processor address
POWRUP byte (funny EXOR)
IRQ processor address

These are all preset on a cold start so they
all vector to the warm restart routine at
$2084 .

$0400-07FF -- TEXT SCREEN

$0579 - PORT
$057A - PORT
$06F9 - PORT
$06FA - PORT

$0779 - PORT
$077A - PORT
$07F9 - PORT
$07FA - PORT

Characters to appear on the screen are mapped
into this memory area. The even characters
go in main memory and the odd characters go
in auxiliarly me.mory for the 80 column screen .

Note that all screen code is done inside
Applewriter 2.0. The usual monitor routines
are not used since they are slow, have memory
conflicts, do not save keystrokes, cannot do
a horizontal scroll, and do not handle screen
motions in the way needed.

l LINE WIDTH (IIC)
2 LINE WIDTH (IIc)
l VIDEO ECHO DEFEAT (Ile)

2 VIDEO ECHO DEFEAT (IIc)

l LINE WIDTH (future machine)
2
2
2

LINE WIDTH (future machine)
VIDEO ECHO DEFEAT (future machine)
VIDEO ECHO DEFEAT (future machine)

These "screen holes" hold values needed by
the built-in ports on the IIc and on a future
mystery Apple. The line width is set to $FF,
for 256 characters before forcing a carriage
return. The video echo is set to $00 to
defeat video echo during printing. Note that
video echo would garble the screen because
of custom ProDOS Applewriter 2.0 code.

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.2-cont.

$0800-1000 -- GLOSSARY FILE -or- DISK FORMATTER

All of the glossary entries go into this
file area. Low ASCII characters build from
the bottom up and each entry ends with a
carriage return . Fake carriage returns are
stashed with a "] " character if they are
needed inside a string. A $00 marks the end
of the last string. Both the cold start
and the purge command "empty" this file by
putting a $00 at $1BOO. The glossary is
accessed via general use pointer 80 , 8 1 .

The glossary is completely and destructively
overwritten by the FORMAT code used to
initialize a new diskette .

$1000-1800 -- WPL PROGRAM FILE -or- DISK FORMATTER

A WPL program to be run goes here . Each WPL
command consists of a group of low ASCII
characters ending with a carriage return.
A $00 value marks the end of the program in
case the QT command is missed . The WPL
program counter $AO-Al reads this file,
controlled by the WPL continue flag at $E7
and the WPL activity flag at $OF. In use,
each WPL statement is read, interpreted, and
then carried out. The WPL program file can
be 2048 characters long if no footnotes are
in use. With footnotes, the file can only
be 1024 characters long.

The WPL program file is completely and
destructively overwritten by the FORMAT code
that is used to initialize a new diskette.

$1400-17FF -- FOOTNOTE BUFFER -or- WPL PROGRAM FILE -or
DISI< FORMATTER

$0800-17FF

If footnotes are in use, they are held here
from the time the footnote occurs in the
text until the bottom of the current page
being printed. The ASCII characters build up
from $1400 with each seperate footnote ending
in a carriage return. A $00 marks the end of
the last footnote . Flag $FE keeps track of
footnote use, with pointer pair $00 , 01
locally used to load and then read this file.
If footnotes are not in use, then these 1024
locations can be used as additional WPL work
file memory.

This file area is completely and
destructively overwritten by the FORMAT code
used to initialize a new diskette.

DISK FORMATTING CODE

On a [OJ-I, a slightly modified ProDOS
FORMATTER is loaded into this memory space .
The formatting module is then run, starting
at $0800 to format a new diskette . Note
that the formatting is for a "file" diskette

229

230

Listing C.2-cont.

$1800-lBFF

Applewriter Cookbook

and does NOT include the ProDOS operating
system.

Note also that any use of the [O]-I format
command trashes your glossary, WPL files,
and footnote files.

WORD AND PARAGRAPH DELETION BUFFER

Whole words and entire paragraphs are saved
and restored to this area with the [W] and
(X] commands. A pointer pair at $94 and $95
continuously points to the next available
location. This is done on a round-and-round
basis, with the character after $1BFF going
into $1800. A seperate counter pair of $EF
and $F0 keeps track of >1024 overflows.
A space ends [W], while a carriage return
ends an [X] access.

$1C00-1CFF -- LINE FORMATTING BUFFER

These 256 locations are used to format a
line being justified, as well as to hold the
searching delimiters during [L]oad, and to
handle word wraparound during screen line
formatting.

$1D00-1D3F -- WPL STACK

These 64 locations hold the 32 possible
subroutine return addresses for SR commands
in WPL. Pointer $92 accesses these locations
a pair at a time, entering a new address
pair on each SR and reading a pair on each
RT return.

$1D40-1D7F -- TYPE-AHEAD CHARACTER BUFFER

$1E00-1E3F

$1E40-lE7F

$1E80-1EBF

$1EC0-1EFF

The 64 locations here hold characters from
the time they are typed until the time they
can be used, allowing the user to get as
many as 64 keys ahead of the program without
any errors. A filling pointer $F3 enters
the characters as they are typed. An
emptying pointer $F2 gets the characters as
they can be used. During non-hectic times,
$F2 = $F3 and the buffer is empty. The
buffer goes round-and-round, with the next
key after $177F going into $1740 . Should an
open-apple or a closed-apple key be used with
a normal key, these are separately saved in
the apple key buffer at $1FC0-1FFF.

WPL CHARACTER STRING $A

WPL CHARACTER STRING $B

WPL CHARACTER STRING $C

WPL CHARACTER STRING $D

These four work files hold the WPL character
strings $A-$D. Each string consists of low

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.2-cont.

ASCII characters building up from the
starting address and ending with a $00 marker.
A $00 at the starting address means this
string is not yet in use. All four strings
are inited to $00 during a cold start.
Pointer $SE acts as a locator to read these
strings.

$1F00-1FFF -- TL, BL FORMATTING BUl'FER

Temporarily used in one piece to format the
top line and bottom line to their "open"
form during printing. Other uses of this
buffer area are also temporary, so there is
no conflict .

$1F00-1F3F -- MULTIPLE USE BUFFER

There are two local uses for this buffer.
Aa a pathname hold, it holds the length of
the pathname in $1F00, followed by the path
name in low ASCII and ending with a $00
marker. It is also used to substitute
(X) - (Z) WPL numerics into their "open"
form.

$1F40-1F7F -- MULTIPLE USE BUFFER

There are three local uses for this buffer.
As a pathname hold, it holds the main or "="
pathname, while other temporary use is made
of ProDOS . During RENAME, the old pathname
is held here. This same memory space is used
as a modem "type ahead" buffer, allowing the
modem to not overwrite during such things as
screen scrolling at higher baud rates . A
filling pointer at $245D and an emptying
pointer at $245E go round-and-round, similar
to the type-ahead character buffer at $1D40.

$1F80-1FBF -- FIND STRING SAVE

The "=" search and replace string gets
saved here for possible reuse . Using
[F] = will repeat the previous search.

$1FC0-1FFF -- APPLE KEY BUFFER

An auxiliary to the main type-ahead buffer
at $1740-17FF. This area remembers whether
an open-apple or a closed-apple key was
also pressed at the same time another key
was pressed. Flag $FB holds this status on
reading the type-ahead buffer pair.

231

232 Applewriter Cookbook

Listing C.3. ProDOS Applewriter 2.0 high work files.

The high workfiles for ProDOS Applewriter 2.0 sit in main RAM
from $B600 through $BFFF. These also are storage and buffer
areas that are likely to change as the program is used.

Here are details on the high work files :

$B600-B6FF TAB STATUS IMAGE

The image of the tab status line is held here.
Unset tabs are held as high ASCII characters
which appear on-screen as normal text. Set
tabs are held as low ASCII characters which
appear on-screen as inverse text. The length
of the "fives" tab marker gets longer at 100,
and longer still at 200.

$B700-B77F PATHNAME HOLD

The ProDOS pathname currently being used is
held here. The old, or "main" pathname is
saved to the "=" pathname save at $1FCO during
glossary, WPL, TAB or PRT disk access.

$B780-B7BF APPARENTLY UNUSED LOCATIONS

$B7C0-B8FF PRT FILE

A ".PRT" file, as saved or read from disk gets
held here. There are three parts of this file,
the top line, the bottom line, and the print
constants, detailed below.

$B7C0-B83F TOP LINE

The top line is held here in its "compact"
form, with delimiters and "#" as a page number.

$B840-B8BF BOTTOM LINE

The bottom line is held here in its "compact"
form, with delimiters and "#" as a page number.

$B8CO-B8FF PRINT ANO MODEM CONSTANTS

The print and modem constants are held here,
as set by the operator or as read from a .PRT
file. Most constants are assumed to have a
range of O to 65535. One exception is the PM
or paragraph margin, whose negative values are
held as 2 ' s complement signed binary.

These print and modem constants are stashed in
hex in the usual 6502 "low-high" format. Thus
a print constant of decimal 255 or less will
use only the first byte of each pair; while
the second byte will remain at $00.

Here are the specific location pairs:

$B8CO - LM Left Margin
$B8C2 - PM Paragraph Margin
$B8C4 - RM Right Margin
$B8C6 - TM Top Margin
$B8C8 - BM Bottom Margin
$B8CA - PN Page Nu.ml:>er

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.3-cont.

$B8CC - PL Printed Lines
$B8CE - PI Page Interval
$B8D0 - LI Line Interval
$B8D2 - SP Space Interval
$B8D4 - PD Print Destination

$B8D6 - WPL (x) numeric value
$B8D8 - WPL (y) numeric value
$B8DA - WPL (z) numeric value

$B8DC - Modem Carriage Return delay
$B8DE - Underline token (ASCII)

$B8EO - Justify flag:

00 - Fill Justify
01 - Left Justify
02 - Right Justify
03 - Center Justify

$B8E2 - Serial Slot 1 Baud Rate, etc.
$B8E3 - Serial Slot 1 Parity Set
$B8E4 - Serial Slot 2 Baud Rate, etc.
$B8ES - Serial Slot 2 Parity Set

$B8E6-B900 APPARENTLY UNDEFINED PRINT VALUES

These apparently unused locations get loaded
and saved as if they were print values .
Start at the high end of you divert them.

$B900-BAFF SECTOR IMAGE FOR LOAD/STORE

A 512 byte image of a ProDOS disk sector
goes here so it can be scanned for starting
and ending delimiters during a load or store.
This area is seperately used as a pathname hold.

$BBOO-BDFF ProDOS WORK BUFFER

A lK work buffer, used internally by the ProDOS
operating system, sits here . This buffer area
is first set aside by the AW. SYSTEM boot code.

$BE00-BEFF ProDOS MLI SYSTEM PAGE

Usually used by ProDOS for BASIC interfacing.
While not used by Applewriter, this page is
preserved so that other . SYS programs can
hold values here during Applewriter activity.

$BFOO-BFFF ProDOS MLI GLOBAL PAGE

All access to ProDOS is done by linking
through this page. Important values include:

$BFOO - A subroutine call here links to various
ProDOS routines, by reading a data
block of parameters that follow the
subroutine call.

$BF16 - Slot 3, 01 driver address
$BF26 - Slot 3, D2 driver address
$BF30 - Slot and drive of last used device
$BF31 - Count of active devices
$BF32 - Start of active device list
$BF98 - Machine ID byte (see Table 7 . 1)

233

234 Applewriter Cookbook

Llstlng C.4. ProDOS Applewriter 2. 0 internal files.

The internal fil•• of ProDOS Applewriter 2. 0 are two main
types. Some are local value stashes used as auxiliary
working registers. Others are tables of parameters used to
access various ProDOS interface MLI routines.

The internal file• are i.Jllportant, first because they are
essential to understanding Frooos access. Secondly, if you
attempt to capture your own source code, these file areas
must be carefully bypassed, or else aliasing, "starting on
the wrong foot", or illegal op-codas will result.

Here are details on the internal files:

$20DE-20DF LOW MEMORY BOUNDARY

The beginning of the LOFILE area is held here.
This is a read only location, set to auxiliary
memory $0800 in this version. Low-high.

$214F-2151 SLOT 3 BOLD

$23A9-

$254D
$254E-

These three bytes hold the address of any
slot 3 drivers during Applewriter access.
This allows another SYS program to transfer
to and use Applewriter, and then return,
keeping its own slot 3 setup intact.

GET LINE SOURCE FLAG

If $00, 9ets line from user via type-ahead
buffer $1040. If $FF gets line from modem via
receive-ahead buffer $1F40.

Rl:CEIVE-AB.EAD BUFFER FILLER
RECEIVE-AHEAD BUFFER EMPTIER

Th••• tvo pointers control the modem' s receive
ahead buffer, allowing characters to be input
vithO'lt loss during screen scrolls. If the
t»o pointers are equal, the character is
directly used. If not, $245D fills and $245E
empties. These pointers are restricted to a
6-4 character range of $00-3F and are added to
buffer baae address $1740.

$2590-25BF BASH TABLE

$2626-

The leftmost base address of each vertical
screeo line is held in this tabla. Lina zero
has a base address of $0400, line one $0480,
and line twenty-three $07D0. Looking up base
addresses is much faster than calculation.

LOCAL Y SAVE

Local and temporary stash of Y ragster during
character-to-file entry.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.4-cont.

$2AEC- GLOSSARY NEST POINTER

An eight-level pointer, $00, $02, $04 . . . that
points to an address in the glossary nest
below.

$2AED-2AFC GLOSSARY NEST STACK

Holds up to eight pointers to the glossary at
$0800. Used to let one glossary entry call
another. The pointer at $2AEC remembers which
level of glossary access is currently active .

$2C86-2C88 ProDOS MLI GET PREFIX LINK

Used by catalog. Command $C7 . Buffer $2C8C

$2C8C-2C8E ProDOS MLI GET PREFIX FILE

One parameter; use pathname at $1FOO.

$2D08-2D0A ProDOS MLI QUIT LINK

Used by quit . Command $65 . Buffer $2D0C.

$2D0C-2D12 ProDOS MLI QUIT FILE

Four parameters; six reserved $00 locations .

$2E70-2E73 MODEM ACTIVITY STASH

Four values held here control modem actions :

$2E70 - $00=none $40=active $80=slave
$2E71 - RESQ in-process flag.
$2E72 - RESQ ASCII stash
$2E73 - [R] ecord flag

$2EB2-2EB4 Prooos MLI WRITE LINK

Used by glossary . Command $CB. Buffer $2EBF.

$2EBF-2EC6 ProDOS MLI WRITE FILE

Four paramteres; reference #$01; data buffer
$0800; request length poked by $2E95; actual
length poked by Prooos.

$2F73-2F75 ProDOS MLI WRITE LINK

Used to save tabs . Command $CB. Buffer $2F7C.

$2F7C-2F83 ProDOS MLI WRITE FILE

Four parameters; reference #$01; data buffer
$1080; request length $0080; actual length
poked by ProDOS .

$2F9D-2F9F ProDOS MLI READ LINK

Used to load tabs . Command $CA. Buffer $2FA9 .

235

236 Applewriter Cookbook

Listing C.4-cont.

$2FA9-2FBO ProDOS MLI READ FILE

Four parameters; reference #$01; data buffer
$1D80; request length $0080; actual length
poked by ProDOS.

$2FCA-2FCC ProDOS MLI WRITE LINK

Used to save PRT. Command $CB. Buffer $2FD3.

$2FD3-2FDA ProDOS MLI WRITE FILE

Four paramteres; reference #$01; data buffer
$B780; request length $0170; actual length
poked by ProDOS.

$2FF4-2FF6 ProDOS MLI READ LINK

Used to load PRT. Command $CA. Buffer $2FFD.

$2FFD-3003 ProDOS MLI READ FILE

Four parameters; reference #$01; data buffer
$B780; request length $0170; actual length
poked by ProDOS.

$3048-304A ProDOS MLI READ LINK

Used to load formatter . Command $CA.
Buffer $305B. Note: destructive overwrite of
glossary, WPL, and footnotes.

$305B-3062 ProDOS MLI READ FILE

Four parameters; reference #$01; data buffer
$0800; request length $1200; actual length
poked by ProDOS.

$30EB-30ED ProDOS MLI OPEN LINK

Used by file setup. Command $CS. Buffer $30EF.

$30EF-30F4 ProOOS MLI OPEN FILE

$30FS-

Three parameters; pathname at $1F00; data
buffer at $BB00; reference number.

REFERENCE NUMBER STASH

Internal Applewriter hold of reference number
of last opened file.

$30FC-30FF ProOOS CREATE MLI LINK

Used to create directory. Command $CO.
Buffer $3102.

$3102-3100 ProDOS CREATE MLI FILE

Seven parameters; pathname $1FOO; may be
destroyed, renamed, written, or read; file
type is a directory; $00 auxiliary type;
linked subdirectory possible.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.4-cont.

$3114-3116 ProDOS CREATE MLI LINK

Used to create text file. Command $CO.
Buffer $311A.

$311A -3125 ProDOS CREATE MLI FILE

Seven parameters; pathname $1FOO; may be
destroyed, renamed, written, or read; file
type is a textfile; $00 auxiliary type;
standard seedling possible.

$3252-3254 ProDOS MLI READ LINK

Used to read one sector of a text file.
Command $CA. Buffer $325D.

$325D-3264 ProDOS MLI READ FILE

$3647-

Four parameters; reference #$01; data buffer
$B900; request length $0200; actual length
poked by ProDOS.

ADJUST FORMAT FLAG

Use (S] ave code as [S]ave if $00. Reformat
screen margins only if set to $FF.

$37C0-37CF ProOOS MLI WRITE LINK

Used to save textfiles, one segment at a time .
Command $CB. Buffer $3703.

$37D3-37DA Prooos MLI WRITE FILE

Four parameters; reference #$01; data buffer
$B900; request length $0200; actual length
poked by ProOOS .

$370B-370C FILE POSITION HOLD

Holds the position in the textfile at which
another sector is to be transferred to disk.

$37EE-37F0 ProOOS CLOSE MLI LINK

Used to close all files. Command $CC.
Buffer $37F7 .

$37F7-37F8 ProOOS CLOSE MLI FILE

One parameter. Close all files on $00
reference number.

$37FC-37FE ProOOS MLI GET EOF LINK

Used by append. Command 0 1 . Buffer $380C.

$380C-3811 ProDOS GET EOF MLI FILE

Two parameters . File reference number, followed
by three byte result . Third byte usually $00 .

$3826-3828 ProOOS SET EOF MLI LINK

Used by Append. Command $CE. Buffer $382C.

237

238 Applewriter Cookbook

Listing C.4-cont.

$382C-3830 ProDOS SET EOF MLI FILE

Two parameters. File reftirence number, followed
by three byte ending address. Third byte is
usually $00.

$38D3-38D5 PATHNAME PARAMETERS

Holds parameters used by pathname routines:

$38D3 - Slot and drive as DSSS 0000
$38D4 - Filename length �o "/" delimiter
$38DS - Slot number *16

$38DC-38DE ProDOS MLI ON-LINE LINlC

Used by on-line routine. Command $CS.
Buffer $38E2.

$38E2-38ES ProDOS MLI ON LINE FILE

Two par�eters. Slot and drive as DSSS 0000;
Result to buffer $B900.

$38F9-38FB ProDOS MLI OPEN LINK

Used by file setup. Command $CS. Buffer $30EF.
Buffer shared with earlier OPEN routine.

$391E-3920 ProDOS SET EOF MLI LINK

Used during setup Command $CE. Buffer $3924.

$3924-3928 ProDOS SET EOF MLI FILE

$3C4F
$3C50-

Two parameters. File reference number, followed
by three byte ending address. Third byte is
usually $00.

LOCAL Y SAVE
LOCAL X SAVE

Used as temporary register stash by [FJind.

$439D-439F ProDOS MLI WRITE LINK

Used to write one byte to a disk text file at
a time under PD8 print to disk. Command $CB.
Buffer $43A3.

$43A3-43AA ProDOS MLI WRITE FILE

$43AB-

Four parameters; reference number; data buffer
$43AB; request length $0001; actual length
poked by ProDOS.

PRINT TO DISK DATA BUFFER

Holds single character being written to disk
under PD8 print-to-disk option.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.4-cont.

$4CA4-4CA7 TIME DELAY TABLE

$3C4F
$3C50-

Holds time delay values needed Eor low modem
baud rates. Delay values approximately equal
to 7 , 10 , 20, 40, and 80 milliseconds . When
combined with overhead, these translate to
maximum baud rates under 2400, 1200, 600, 300,
and 150 baud respectively.

LOCAL Y SAVE
LOCAL X SAVE

Used as temporary register stash by screen
printing routine.

$4EF5-4F14 BAUD RATE LIST

$504C-

Hexadecimal list of baud rates 0, 50, 75, 135,
150, 300, 600, 1200, 1800, 2400, 3600, 4800,
9600, and 19, 200 . In usual 6502 low-high
order.

ON-LINE STASH

Numeric stash holds number of volumes on line .

$509F-50Al ProDOS MLI RENAME LINK

Used by rename . Command $C2. Buffer $50AS .

$50A5-50A9 ProDOS MLI RENAME FILE

Two parameters . Old filename at $1F40. New
filename at $1FOO.

$50CB-50CD ProDOS MLI GET ATTRIBUTES LINK

Used by lock and unlock . Command $C4 .
Buffer at $50E2, and shared with the
Set Attributes ProDOS link.

$50DC-50DE ProDOS MLI SET ATTRIBUTES LINK

Used by lock and unlock . Command $C3
Buffer at $50E2, and shared with the
Get Attributes ProDOS link .

$50E2-50FC ProDOS ATTRIBUTES FILE

Seven parameters . Filename at $1FOO; Access
$C3 can write, read, destroy, or rename; $01
can read only (locked) ; File type; Aux file
type; Null field; Modified date; Modified time .

$5106-5108 ProDOS DESTROY MLI LINK

Used by delete . Command $Cl. Buffer $510C.

$510C-510E ProDOS DESTROY MLI FILE

One Parameter. Pathname at $1FOO.

$5117-5119 ProDOS SET PREFIX LINK

Used to set prefix. Command $C6. Buffer $5120.

239

240 Applewriter Cookbook

Listing C.4-cont.

$5120-5122 ProOOS SET PREFIX FILE

$5123-

Ona parameter. Prefix name at $1FOO.

CATALOG TO MEMORY FLAG

If $00, do catalog to screen. If $Fr, do a
catalog to t8xt file.

$5157-515B ATTRIBUTE BUFFER

$5318-

$5398-

$53AA-

Used during catalog calculations :

$5157-5158
$5159-
$515A-515B

Auxiliary Data
Type of File
Blocks in Use

LOCAL X6 STASH

Used to multiply a pointer by six for ProOOS
file type access . Pointer*2 is held here and
then added to Pointer*4 to get Pointer*6.

LOCAL TIME FLAG

If $00, catalog is handling year and month.
If $02, catalog is handling hours and minutes.

PATHNAME LENGTH STASH

Used locally in printing file names or volume
names to the screen.

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.5. AWD.SYS reference files.

The reference file area holds values that are seldom, if
ever, changed. This file area sits above the main program
from $5475 through $5FFF . See listing 7 . 7 for specific
address location vectors .

Here are details:

$5475-554D -- FUNCTION LIST

An ASCII list of all available control
commands, along with any bottom line
prompts needed for those commands . Note
that [@] is the delete key and that [Ml is
a carriage return . [HJ is a backspace and
[U] is a frontspace. [I] is an actual tab.
[Kl is a linefeed up, while [J] is a line
feed down . This table is scanned in sequence
for a match character between the " [" and
"] " . If a match is found, a bottom line
prompt is included on certain commands .

$554E-5582 -- FUNCTION ADDRESS LIST

Holds the module addresses MINUS ONE for the
control commands [@] through [] . Thus, the
[@] or delete module starts at-$2ADO, [A] for
adjust margins starts at $4F70, and so on.

$5583-55AB -- PRINT CONSTANTS MATCH FILE

A file of pairs of ASCII characters from
LM, PM, . . . through RJ, and finally CJ.
On a match to a character pair, the entered
value is saved to the proper PP slot .

$55AC-55CE -- WPL COMMAND MATCH FILE

A file of pairs of ASCII characters from
GO, DO, . . . through LS, and finally EP.
On a match to a character pair, a jump is
done to the module that handles that WPL
command.

$4C92-4CB5 -- WPL COMMAND ADDRESS FILE

These address pairs hold the starting point
MINUS ONE of the WPL modules DO through EP.
For instance, the GO module starts at $465D,
DO begins at $44DC, and EP starts at $480E.

$55F4-5732 -- ASCII PROMPTS

These ASCII messages range from "Insert
sheet, press return" through "Delete old $
(Yes/No) ? " .Proceed / Y They are selected as
needed to prompt or inform the user.

$5733-5858 -- ProDOS ERROR MESSAGE FILE

A list of all ProDOS error messages from #26
" Invalid Operation" through #57 "Duplicate
Volume" . Text is high ASCII, while error
numbers are low ASCII .

241

242 Applewriter Cookbook

Listing C.5-cont.

$5859-5889 -- MORE ASCII PROMPTS

Two additional messages are here, one to
announce a ProDOS error, the second the
prompt used by [F]ind.

$588A-5916 -- WPL ERROR MESSAGE FILE

This stash holds all the WPL error messages,
starting with a prompt of "WPL Error: " and
anding with "Glossary nesting". When an
error happens, the prompt is put down, and is
then followed by one of the error messages.

$5917-591A -- TAB SCP STASH

Three characters kept here for tab set,
clear, or purge command matching.

$591B-5Al3 -- ProDOS FUNCTIONS MENU

This stash holds all the ASCII characters
needed for the [O] DOS access command menu.

$554E-5582 -- ProDOS COMMAND ADDRESS LIST

Holds the module addresses MINUS ONE for the
ProDOS commands [OJ-A through [O] -J. Thus,
the [O]-A catalog routine starts at $5124,
etc. through the address list.

$5A2A-5A80 -- CONFIGURATION ASCII PROMPTS

Messages used by [O]-J, prompting for slot
set and format changes.

$5A83-5A88 -- PARITY KEY STASH

Eight match characters for Space, Mark, Even,
Odd, or None. None is repeated four times
to simplify scanning code.

$5A8B-5B59 -- STILL MORE ASCII PROMPTS

ASCII mesages to adjust display margins,
exit prompt, busy adjusting prompt, ProDOS
prompt, blocks report, and return prompt.

$5B5A-5BDD -- ProDOS FILE TYPES LIST

A list of sixteen ProDOS file types, ranging
from #0 Unknown to #F System. Used by
catalog routines.

$58DE-5C2B -- CATALOG SCREEN HEADER

An image of the top line of the screen
catalog.

$5C25-5C2B -- HELP PATHNAME

Holds a HELP 80 image used to get the main
help menu off disk.

Internal Pro DOS Applewriter 2. 0 Program Details

Listing C.5-cont.

$5C2C-5C2E MATCH CHARACTERS

Holds Y for yes, N for no, A for all match
characters needed to evaluate user commands .

$5C43-5CC8 -- STARTUP SCREEN

Contains an ASCII image of the first screen
displayed on a cold start . The three high
ASCII imbedded values are the horizontal
tab moves used to format the title box .

$5CC9-5ElA -- ADDITIONAL FUNCTIONS MENU

Contains an ASCII image of the additional
functions menu and selection prompt .

$5ElB-SE2C -- ADDITIONAL FUNCTION ADDRESSES

Holds the address MINUS ONE needed to enter
each additional function routine, ranging
from $2F84 to load the tab file through
$2C97 to quit .

$5E2F-5E32 -- EXPRESS CURSOR MOTION WORI<FILE

This misplaced workfile holds two stashes
used by the express cursor motions . $5210
is a line counter, usually set to 12 lines.
$5211 is an abort file, holding an $AO for
stop on space, or $00 for stop on file end .

$5E33-5E34 -- PRINTING WORI<FILE

This misplaced workfile holds two stashes
used by the [P] rint routines. $5212 holds
a copy of the left margin LM value, while
$5213 keeps the right margin RM value.
These two are subtracted to find the default
line length for the top and bottom margins.

$5E33-5FEF -- PRINT/PROGRAM FUNCTIONS MENU

Contains the ASCII image of the print/program
functions screen . Values are added to this
background display during the PP " ? " command.

$5FF0-5FFF -- APPARENTLY UNUSED LOCATIONS .

Original program load ends at $5FFF .
Patches shown in the previous module extend
code as far as $6020.

243

244 Applewriter Cookbook

Listing C.6. Summary of AWD.SYS page zero use.

A summary of page zero use follows, with much more detail on
each location provided in Listing 7.6.

Locations marked with an " * " have more than one use and must
be approached with caution.

Note that location $24 is neither used nor accessed by ProDOS
Applewriter 2.0. This can cause problems with certain
"intelligent" printer cards . See Module six for more on this.

$06
$7C
$8A
$96, 9 7
$AO-Al -

$BC
$BO
$BE,BF -
$EF,FO -

$FE

-- counters --

Top line and bottom line counter
Vertical lin� counter
Screen horizontal position counter
Tab counter
WPL program counter

Tab over counter
M8111ory page counter
Running page counter
[W] [X] overflow counter

Footnote line counter

flags

$32 Inverse flag
$71 Main/Auxiliary flag
$72 Verbatium flag
$74 Carriage return display flag
$76 End of Print file flag

$77
$78
$79
$7A

* $7F

$AS
$AD
$BO
$B4
$B8

$B9
$C4
$C9
$CD
$CE

$CF
$OF
$EO
$El
$E2

$ES
$E7
$ES
$ED
$EE

Copy from memory flag
Page/Position flag
String source flag
Reprompt flag
Multi-use local flag

Arithmetic mode flag
String source flag
Filename source flag
Startup flag
Printer enable flag

HIFILE/LOFILE flag
Case flag
Any length flag
Reformatting flag
Screen source flag

Data direction flag
WPL/GLossary flag
Underline flag
Wraparound flag
case flag

Data line toggle flag
WPL continue flag (?)
Case change flag
Mystery flag
[W] [X] overflow flag

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.6-cont.

$F5 Replace flag
$F6 String $A-$D flag
$F7 Screen display flag
$F8 Split screen flag

$FD Screen load flag
$FF Bottom of page flag

* $00,01 -
$05
$26, 27 -
$28,29 -
$36, 37 -

$38,39 -
$42 , 4 3 -
$44 , 4 5 -

* $80,81 -
$84,85 -

$86 , 87 -
$88,89 -
$8E
$90,91 -
$92

$94,95 -
$98, 99 -
$9E,9F -
$A4
$AA,AB -

$AC
* $AE,AF -

$BA, BB -
$F2
$F3

* $F9,FA -

* $00
* $02
* $03

$20
$22

$23
* $34
* $35
* $75

$70

* $7E
* $80
* $81
* $82
* $83

-- pointers -

Multi-use local pointer
WPL label pointer
Screen vertical scrolling pointer
Screen base address BASH pointer
COOT destination pointer

KEYIN pointer (never used)
ProDOS BRK default pointer
ProDOS buffer pointer
Main utility pointer
LOCURS pointer

HICURS pointer
Screen textfile pointer
String $A-$D pointer
Printer textfile pointer
WPL subroutine stack pointer

[W] [X] deletion pointer
Static cursor pointer
Print destination pointer
End delimiter pointer
Prompt pointer

Swallow buffer pointer
Auxiliary utility pointer
Reformatting pointer
Type-ahead emptying pointer
Type-ahead filling pointer

Deletion or split screen pointer

-- stashes --

Multi-use local stash
Multi-use local stash
Multi-use local stash
WNOLFT left window margin
WNDTOP top window margin

WNDBOT bottom window margin
Global Y register save
Global X register save
Multi use local stash
Last printable line

Multi-use local stash
Multi-use local stash
Multi-use local stash
Multi-use local stash
Multi-use local stash

$8B Bash needed stash

245

246

Listing C.6-cont.

$8C
$9A, 9B -

* $A2
$A.3

WPL current character stash
Memory left stash
Multi-use local stash
Multi-use local stash

$A6 Vertical screen position
$A7 Horizontal screen position
$Bl Screen right margin
$B2 Screen left margin
$BS Cursor symbol stash

$B7
* $CO

$Cl
* $C2
* $CO-C2 -

* $CS
* $C6
* $C7

$C8
$CA

$CB
$DE
$E6
$E9
$EA

$EB
$EC
$!'4
$FB
$FC

Space left on line stash
Multi-use local stash
Hexadecimal intermediate byte
Multi-use local stash
Hexadecimal stash

Local Y register save
Local X register save
Local accumuator save
Screen centering stash
Horizontal scrolling trigger

Right screen margin
Slot number stash
Delimiter character stash
Filename length count
Wildcard special delimiter

Carriage return special delimiter
Any length special delimiter
Busy prompt
Apple key stash
Machine i.d. stash

Applewriter Cookbook

Internal ProDOS Applewriter 2.0 Program Details

Listing C. 7. Detailed script of AWD.SYS page zero use.

Page zero is used for pointers that hold address values,
counters that keep track of positions, stashes that hold
constants or characters, and flags that remember conditions
or modes . Single page zero locations are used for eight or
fewer bits of information . Double page zero location pairs
are used to hold nine to sixteen bits of informaticn.

On a cold boot, all page zero locations above $60 are set
to $00 value s . A $00 flag value usually means "don't" .

Here is a rundown

$00 MULTI USE LOCAL STASH

Local stash when used by itself. On cold boot,
a pointer to clear page zero . Error number hold
for error processor. Delimiter hold for [S]ave
and [L]oad. Working variable in direction check
when moving characters . Horizontal tab value
for status line . Numeric stash during relative
value calculations . Delimiter hold for string
comparisons. String identifier for [p]in and
length limit for [P]as.

$01 MULTI-USE LOCAL STASH

Local stash when used by itself. A width counter
when drawing first screen boxes . Other versions
use this as a 40 column offset calculator.

$00, 0 1 -- MULTI-USE LOCAL POINTER

A 16-bit wide pointer when used as a pair. Used
on cold start to fill glossary with carriage
return s . Used as glossary pointer on [G] ? .
Pointer to auxiliary functions . Running hold of
lowest possible tab value. With $02, a filename
pointer under [O] a .

$02 MULTI-USE LOCAL STASH

End character hold for [W] and [X] . Volume and
filename steering prompt . Tab possible stash.
Local stash on [F) ind reprompting. $A-D string
offset and pointer. With $03, a pointer to the
error message file.

$03 MULTI-USE LOCAL STASH

$05

String substitution flag ($00 = ok) under [Pl .
High byte of error message file pointer. Tab
possible flag if $FF . No string needed flag with
WPL error processor. Valid string stash for
(P]in. Single page string flag.

WPL LABEL POINTER

used as pointer to find a WPL label in [P]go and
for LABEL NOT FOUND error message .

247

248 Applewriter Cookbook

Listing C. 7-cont.

$06 TL/BL CHll.ACTER COUNTER

Used when formatting the left, center, and right
portions of the top and bottom lines.

$20 LEFT WINDOW MARGIN

Inits to $00. Never changes. Full screen width
used.

$22 TOP WINDOW MARGIN

Inits to $00. Resets to $00 on screen prompt.
Set to $01 for [Q]I to make room for modem
prompts. Calculated value used for split screen
and status line options.

$23 BOTTOM WINDOW MARGIN

Inits to $18, equal to full 24 screen lines.
High split screen sets to 12 screen lines.

$24 NOT USED (!)

Some parallel cards will expect to find a value
here that equals the horizontal cursor position
on screen . NO USE OF THIS LOCATION IS MADE BY
AWD. SYS! This causes the "problem" cards to
insert random strings of spaces or ignore most
imbedded commands. The cure to these hassles is
card dependent.

$26, 27 -- SCREEN VERTICAL SCROLL POINTER

Holds the destination address during vertical
screen scrolling. Inits to present line position.
Line below is mapped up one, repeating as needed
to complete scrolling.

$28, 29 -- SCREEN BASE ADDRESS POINTER

$32

$34

Holds the memory addreess of the leftmost
position on the current screen line. Found by
table lookup from the BASH table at $2590-25BF.
Used to enter characters, read from screen, flash
cursor, and in screen scrolling.

IMPORTANT NOTE: All screen routines are done
internally by AWD.SYS. No use is made of any
monitor routines.

INVERSE FLAG

An $FF here puts normal text on screen. A $7F
puts inverse text on screen. Used to print
spaces as white boxes during first screen.

GLOBAL Y SAVE STASH

Used to save the contents of the Y register in
high level routines.

$35 GLOBAL X SAVE STASH

Used to save the contents of the X register in
high level routines.

Internal ProDOS Applewriter 2. 0 Program Details

Listing C. 7-cont.

$36, 37 -- COOT DESTINATION POINTER

Inits to "brick wall" RTS. Sets to $Cl00, $C200
etc. for printer or modem . Interface modifies for
exact address . Sets to $4397 for print to disk
or $4415 for print to screen. Note that no use
is made of monitor routines $FDED or $FDFO by
this program.

$38, 39 -- KEYIN POINTER

Inits to a "brick wall" RTS . Stays that way
throughout program. Monitor KSWL, H routines are
not used by this program .

$42 , 43 -- ProDOS DEFAULT BRK POINTER

Reset to $03FO upon exit of program . In unusual
high-low form.

$44 , 45 -- ProDOS DEFAULT BUFFER POINTER

Reset to $B900 upon exit of program. In standard
low-high form.

$71 MAIN/AUXILIARY FLAG

If $00, load into or save from main memory for
TAB, PRT, glossary, WPL, or textfile loads and
saves involving delimiters . If $FF load into or
save from auxiliary memory for non-delimited
text material or for (P] l s .

$72 VERBATIUM FLAG

$74

If $FF, insert control commands directly in
textfile. If $00, process control commands in
the normal way.

RETURN DISPLAY FLAG

If $00 do not display carriage returns. If $FF,
display carriage returns as inverse "M"
characters .

$75 MULTI-USE STASH

$76

$77

$78

End of word marker for (F] ind when using all
occurance. Line width for TL and BL. RM-LM
for justify routines .

ENO OF PRINT FILE FLAG

If $00, more characters remain in the text file
during printing. If $FF, the text file has all
been printed.

COPY FROM MEMORY FLAG

If $00 read from disk. If $00, copy from memory.

PAGE/POSITION FLAG

If $FF, display page/position on screen bottom .
If $00, do not display page/position.

249

250

Listing C. 7-cont.

$79 STRING SOURCE FLAG

If $00, get new string from keyboard. If $FF,
use existing string in $0200 keybuffer.

$7A REPROMPT FLAG

Applewriter Cookbook

If $FF, reprompt screen bottom for [F]ind. If
$00, do not reprompt.

$7C VERTICAL LINE COUNTER

Keeps track of lines already printed. Advances
one count on each printed line.

$70 LAST PRINTED LINE NUMBER

Used to set lower page limit of body printing.
Includes body but not footnotes. Decremented
twice for the first footnote line, and once for
each additional footnote line.

$7E MULTI-USE LOCAL STASH

Holds the first character offset for center or
right justification. Separately holds the line
length already printed during wraparound check.

$7F MULTI-USE LOCAL FLAG

First line in paragraph flag if $FF; otherwise
$00. Don' t fill justify last line in paragraph
line if $FF; otherwise $00. Stop underlining
flag for UT if $FF; otherwise $00 . Suprisingly,
these uses do not conflict with each other.
Setting the flag on the last paragraph line both
cancels justification and sets up the PM use on
the next line. As the same time, underlining is
not allowed to carry over from paragraph to
paragraph. Neat.

$80 MULTI-USE LOCAL STASH

When used by itself, a local slot number * 2 in
[O]-J printer setting. A local Y register save
during [QJ -B rename. A local stash of the number
of digits to print under [OJ-A catalog.

$81 MULTI-USE LOCAL STASH

When used by itself, holds the compressed modem
port data during formatting. Seperately used
locally to hold a space character for comparision
during [O]-A catalog.

$80-81 -- MAIN UTILITY POINTER

When not seperately used as local stashes. The
glossary access pointer, starting at $0800.
The line totalizer for the page/position display.
Pointer to control prompts such as [F]ind, etc.
Transferred and held by $AA-AB. The [N)ew
prompting pointer. Background pointer for
[P] rint/Program menu.

Internal ProDOS Applewriter 2.0 Program Details

Listing C. 7 -cont.

$82 MULTI-USE LOCAL STASH

Used with $83 as copy from memory pointer pair.
Holds modem parametters PPP- ---- during [OJ-J
formatting and setup. Volume name pointer in
[OJ-F On-line. Screen line counter for [OJ-A
catalog. Puts down 15 catalog lines for full
screen or 7 catalog lines for split screen.

$83 MULTI-USE LOCAL STASH

Used with $82 as copy from memory pointer pair.
Holds modem parameters SDDl BBBB during (OJ-J
formatting and setup. File type hold for (OJ-A
catalog.

$84-85 -- LOCORS TEXTFILE POINTER

Points to the high and open end of the LOFILE
text area. Used for every major access to LOFILE
all textfile entries, and all cursor motions.

$86-87 -- HICURS TEXTFILE POINTER

Points to the low and open end of the HIFILE text
Used for insertions, deletions, moves, and any
other time the cursor is not at the end of the
text file.

$88-89 -- SCREEN TEXTFILE POINTER

Points to the location in the textfile about to
be put on the screen. Inits to six or twelve
1ines shy of LOCURS, depending on screen sp1it.
Keys on high ASCII markers at the end of each
screen line in the LOCURS and HICURS textfiles.
Maps LOFILE up to center of screen and cursed
location. Then switches to HIFILE and maps the
rest of the screen.

$SA SCREEN HORIZONTAL POSITION COUNTER.

Counts characters on line during screen update.
Used to switch from LOFILE to HIFILE at cursed
position.

$8B BASH NEEDED STASH

Compares against vertical position A6. If
different, calculates a new screen base address
via the BASH routine.

$SC WPL CURRENT CHARACTER STASH

Remembers the current WPL character being
evaluated. Used to search for a "=$" string
assignment and to end on a carriage return.

$SE STRING $A-$D POINTER

Inits to $A =$00, $B=$40, $C=$80, $D=$C0 to point
to correct string start in $1E00 buffer.
Incremented after each string character access.

251

252 Applewriter Cookbook

Listing C. 7 -cont.

$90, 91 -- PRINTER POINTER TO TEXT FILE

Inits to $0801, the start of the textfile. Used
to get one character at a time from LOFILE for
printing. On an aborting [esc] , saves final
position to $98,99.

$92 WPL SUBROUTINE STACK POINTER

Points to address pairs in the WPL stack work
file at $1000-1040. Inits to zero. A six bit
pointer, limited to 64 values, and pointing to
one of 32 possible pairs of WPL return addresses.

$94 , 95 -- WORD DELETION POINTER

Used by (W] and [X] to access deletion buffer at
$1800-lBFF. Goes round and round. Advances each
time a character is added to buffer and retards
each time a character is removed.

$96, 97 -- TAB COUNTER

Holds the POSition from the last carriage return.
Used by tab routines and the status line.

$98, 99 -- STATIC CURSOR POINTER

Holds the static cursor for [Y] split screen.
Rolda the return display cursor for [S] . Holda
initial search pointer for [FJ. Remembers the
start of file for [PJ. Used to calculate the
relative direction of character movement when
doing a HICORS->LOCORS or LOCORS->HICORS move.

$9A-9B -- MEMORY LEFT STASH

Subtracts HICORS-LOCURS to find out how much
memory is left. Used by status line.

$9E-9F -- PRINT DESTINATION POINTER

Holds the starting address of a printer routine.
Normally an interface card "adjusted" $Cl00 for
slot one, $C200 for slot two etc. Set to $4397
for print to disk, or to $4415 if print to screen.

$AO-Al -- WPL PROGRAM COUNTER

Points to the next character in the WPL program
starting at $1000-17FF. Inits to $1000 and is
saved to the WPL stack on a subroutine call.
restored from the stack on a subroutine return.
Set to new value on [P] -GO command.

$A2 MULTI-USE LOCAL STASH

The search pointer for (F]ind.
character in a PP command save.
delimiter in [L]oad.

the first
The searching

Internal ProDOS Applewriter 2.0 Program Details

Listing C. 7 -cont.

$A3 MULTI-USE LOCAL STASH

$A4

A replacement flag for [F] ind, with $00 being
no replacement, and $FF allowing replacament .
The second character save hold ·in a PP command
save . The second delimiter in (F] ind and [L]oad.

END DELIMITER

Pointer to the third delimiter during [L]oad.

$A6 VERTICAL SCREEN POSITION

$A7

Holds the current vertical screen position.

HORIZONTAL SCREEN POSITION

Holds the curent horizontal screen position.
Note that location $24 is not used for this
purpose.

$AB ARITHMETIC MODE FLAG

If $FF, absolute arithmetic during [P] values .
If $20, relative negative arithmetic (ASCII "-")
If $28, relative positive arithmetic (ASCII "+")
Negative values are 2 ' s complemented during entry
so that a simple add-only routine can handle both
"+" and "-" relative calculations.

$AA-AB -- PROMPT POINTER

Points to the text prompts needed by the bottom
screen window on certain [] commands .

$AC SWALLOW BUFFER POINTER

$AD

Points to the last uded location in the single
character swallow buffer at $0300-037F. MSB
is ignored, forcing pointer round and round on
128 values. Pointer gets incremented on single
character insertions and decremented on single
character deletions.

STRING SOURCE FLAG

A $00 here gets new strings from keyboard . An
$FF uses the existing string source .

$AE-AF -- AUXILIARY UTILITY POINTER

$BO

Used by copy from memory to scan text file.
Finds start of present screen line in line start
routine. Scanning pointer when using delimiters
with (S]ave. A filling pointer for the sector
buffer when using delimiters . An access pointer
when clearing old high ASCII start-of-line marks .
A pointer to set new start-of-line marks .

FILENAME SOURCE FLAG

I f $00, get a new filename. IF $FF, use the
old "=" filename .

253

254 Applewriter Cookbook

Listing C. 7 -cont.

$Bl SCREEN RIGHT MARGIN

$82

$84

Inits to 79, but is settable from 0-240. [Z]
mode with whole word breaks must be used if >79.

SCREEN LEFT MARGIN

Inits to left margin print value on [A].
Horizontal scrolling activated if RM-LM > 78.

STARTUP FLAG

Sets on cold boot to $FF, allowing an attempt
at running a STARTUP program with no error
message if not found. Resets to $40 after first
startup attempt.

$85 CURSOR SYMBOL STASH

$B7

A $20 value here means to use a white box cursor
that is software flashible. A $00 value means
an "off" cursor.

SPACE LEFT ON LINE STASH

Inits to LM. PM gets adjusted if the first
line in paragraph. The actual length of the
printable line, always rounded off to whole
words.

$B8 PRINTER ENABLE FLAG

An $00 means that the printer is off or that the
screen is to be the print destination. A value
of $FF means an active printer.

$B9 BIFILE/LOFILE FLAG

Set by the screen pointer switch and used by
vertical cursor routines. $00 = LOFILE.
$FF = HIFILE.

$BA,BB -- REFORMATTING POINTER

Used when reformatting the textfile to mark start
of screen lines. The final character in any
screen line is set to high ASCII, while all other
characters are cleared to low ASCII.

$BC TAB-OVER COUNTER

Adds needed number of spaces to screen when using
the tab-over feature.

$BO MEMORY PAGE COUNTER

Used when transferring textfile image to a 512
byte ProDOS sector buffer so that delimiters can
be searched.

$BE,BF -- RONNING PAGE NUMBER COUNTER

!nits to PN and is incremented on each new page
as it is printed.

Internal ProDOS Applewriter 2.0 Program Details

Listing C. 7-cont.

$CO MULTI USE STASH

By itself, a print enable stash used with EP0
and EPl. Holds the conditional value for a
conditional formfeed. Holds baud rate and modem
values during modem setup. Hex stash when used
with $C2 and $C3.

$Cl HEXADECIMAL INTERMEDIATE BYTE

See below.

$C2 MULTI-USE LOCAL STASH

Accumulator save for type-ahead buffer. Local
character hold in several routines . Screen start
pointer variable. Glossary match character hold.
Error number stash for WPL error processor . Hex
stash when used with $CO and $C2.

$C0-C2 -- HEXADECIMAL STASH

$C4

$CS

$C6

$C7

$CB

Bolds the hex source for conversion from hex
to decimal and the hex result for decimal to
hex. LSB is in $CO, intermediate byte in $Cl
and high byte is in $C2. If less than a 24 bit
conversion, then $C2 is zero. If less than a
16 bit conversion, then $Cl is zero . 2 4 bit
range is needed for ProDOS catalog and append
calculations.

CASE FLAG

If $00, normal mixed upper and lower case .
If $80, all upper case.
If $CO, all lower case

LOCAL Y-REGISTER SAVE

Used by many routines for low level hold of the
Y register. Also a local variable in the screen
line reformatting .

LOCAL X-REGISTER SAVE

Used by many routines for low level hold of the
X register. Also a local variable in the screen
line reformatting.

LOCAL ACCUMULATOR SAVE

Used by many routines for low level hold of the
accumulator. Cursor motion direction flag with
$00 = to LOFILE and $FF = to HIFILE . Match
character hold for [F]ind and [L]oad. Right
margin hold for screen line formatter. Character
hold for screen update . Padding counter for
fill justify. One busy mother.

SCREEN CENTERING STASH

Used to find the
screen display.
and twelve for a
if page/position

line with the cursor on the
Inits to six for a split screen
full screen. Adjusted -3
display is active .

255

256

Listing C. 7 -cont.

$C9 ANY LENGTH FLAG

It srr, then continue an any length search,
ignoring intermediate characters. If $00,
do not use any length feature.

$CA HORIZONTAL SCROLLING TRIGGER

Applewriter Cooklx>ok

Inits to 68, the point on the 80 character screen
where right horizontal scrolling is needed. Used
to calculate screen start pointer.

$CB SCREEN RIGHT MARGIN

Inits to screen left margin plus 79, the maximum
width normally displayable on screen. Horizontal
scrolling will trip if you get near the left or
right margin, adjusting this value in the process.

$CD REFORMATTING FLAG

It $00, the high ASCII start of line markers in
the textfile are all correct. If $FF, then a
screen reformatting is needed.

$CE SCREEN SOURCE FLAG

An $00 value uses LOFILE to get characters for
the screen up to and including the cursed
character position. a $FF value uses HIFILE as
a source for all characters from just past the
cursor to the end of the screen.

$CF DATA DIRECTION FLAG

If $00, the data direction is "<".
If $FF, the data direction is ">".

$DE SLOT NUMBER STASH

Holds the print destination *16. Thus slot 2
becomes the "2" in $C200, etc.

$OF WPL ANO GLOSSARY ACTIVITY FLAG

If $00, neither WPL nor the glossary are active.
If the N bit (MSB) is set, then WPL is active.
If the V bit (MSB-1) is set, then the glossary
is active. If both flags are set, then WPL is
making use of the glossary.

SEO UNDERLINE FLAG

If $00, then no underlining. If $FF then
underline. Underlining is done by individually
backspacing and underlining each character.
Th• UT character toggles this flag. Status is
held during TL, BL, or a footnote. NOTE: It
is far better to underline with imbedded print
constants.

Internal ProDOS Applewriter 2. 0 Program Details

Listing C. 7-cont.

$El WRAPAROUND FLAG

$E2

$ES

$E6

A $00 value gives you a normal display of whole
words only, while $FF breaks the words as needed
at the right margin. You must break whole words
if the screen is wider than 79 characters.

THE "A" FLAG

Two uses . Do nothing if $00 . APPEND on (S] ave
if $FF. Continue for ALL occurrance on [L] oad
or (S]ave if $FF.

DATA LINE TOGGLE FLAG

If $00, then no status display at all .
If $80, then the usual Hem: Len : , etc. display.
If $CO then the tab display .

DELIMITER CHARACTER STASH

Holds the delimited character in use for
matching . Used by (S]ave, TL, BL, and special
delimiter calculations.

$E7 WPL CONTINUE FLAG (?)

$ES

Set to $00 by [PJ -GO and [P]-DO. Read by main
word processor loop and apparently used as a
branch always . No obvious use; possibly a
debugging hook or future WPL extension.

CASE CHANGE FLAG

If $00, use mixed upper and lower case. If $FF,
use the case held in the $C4 case flag. This
seems to be a leftover from two versions back,
as it is never referenced.

$E9 FILENAME LENGTH COUNT

Holds the nu.ml)er of characters in the filename.
Used by ProDOS access, and to find "\" for screen
only load, or "+" to append during [S]ave.

$EA WILDCARD SPECIAL DELIMITER

Used to hold the match character for an "any
character" search . Holds an $03 when using the
default "/" delimiter which does not allow
wildcards . The wildcard character is the
ASCII value of the special delimiter plus
three.

$EB CARRIAGE RETURN SPECIAL DELIMITER

Used to hold the match character sitting in for
a carriage return during a search . Holds an $02
when using the default "/" delimiter which does
not allow carriage returns . The carriage return
charactrer is the ASCII value of the special
delimiter plus two.

257

258 Applewriter Cookbook

Listing C. 7-cont.

$EC ANY LENGTH SPECIAL DELIMITER

Used to hold the match character for an "any
length" string during a search. Holds an $01
when using the default "/" delimiter which does
not allow any length matches. The any length
character is the ASCII value of the special
delimiter plus one.

EXAMPLE: "<", "=", ">", and " ? " are four ASCII
characters in sequence. If "<" is
the special delimiter, then "=" will
be the any length symbol, ">" will be
the carriage return symbol, and "?"
will be the wildcard.

$ED MYSTERY FLAG

$EE

Its still with us, kiddies. Zeroed at entrance
to word processing code. Not otherwise
referenced . Apparently another leftover.

[W] AND [X] OVERFLOW FLAG

If $00, all is well. If $FF, an attempt has been
made to save more than 2048 characters to the
deletion buffer.

$EF,FO -- [W] AND [X] OVERFLOW COUNTER

$F2

Counts the characters going into the deletion
buffer and sets $EE flag if an attempt i s made
to save more than 2048 characters at once.

TYPE-AHEAD BUFFER EMPTIER

Points to the last used character in the type
ahead buffer at $1D40-1D7F. Limited to six
bits for 64 possible round-and-round locations.
Gets "behind" $F3 when busy. Increments on each
character use.

$F3 TYPE-AHEAD BUFFER FILLER

Points to the next available character location
in the type-ahead buffer at $1D40-$1D7F. Limited
to six bits for 64 possible round-and-round
locations. Increments on each keystroke that
cannot be immediately used.

$F4 BUSY PROMPT

A $20 or a white square on the status line when
not busy. A $2A or an inverse "*" on the status
line when busy.

$FS REPLACE MODE FLAG

If $00, use normal entry mode. If $FF, overwrite
cursed character. Toggled by [R] and reset by
just about all cursor commands.

Internal ProDOS Applewriter 2. 0 Program Details

Listing C. 7 -cont.

$F6 STRING $A-$D ACTIVITY FLAG

Inhibits WPL interpreter when $A-SD etring•
are being processed. A $00 means normal WPL use;
use; a $FF means a string is being processed.

$F7 SCREEN DISPLAY FLAG

A $00 value means to display to the screen. An
$IT value means to not display to the screen.
Controlled by (P]-ND and [P)-YD.

$F8 SPLIT SCREEN FLAG

If the N bit (HSB) is clear, then the screen is
unsplit. If the N flag is set, then the screen
is aplit. If the V bit (HSB-1) is clear, then
the upper half screen is active. If the V bit
is set, then the lower half screen is active.

$F9,FA -- DELETION OR SPLIT SCREEN POINTER

Osed in several different and local ways. A
pointer to the static half of a split screen
display. A deletion pointer for word, character,
or paragraph removal.

$FB APPLE IG:Y STASH

Bolds the open-apple and solid-apple keystrokes
when the type ahead buffer is in use. A $00
means neither key is down. A $40 means the open
apple key is the only one down. A $80 means
the solid-apple key is down, while a $CO means
both the open- and solid-apple keys are down.

$FC MACHINE ID

Inits to $00 for "old" monitor IIe or Ile. Inits
to $FF for "new" monitor IIe. Altera the stash
addresses the modem parameters are passed to.

$FD SCREEN LOAD FLAG

If $00, load to file in the normal way.
If $FF, load to screen only.

$FE FOOTNOTE LINE COONTER

If $00, no footnotes are in use. If $FF, one
footnote line remains. If $FE, two footnote
lines remain, $FD three, etc.

$FF BOTTOM OF PAGE FLAG

This flag inits to $00 and goes to $FF whenever
the body is completly printed, or on a formfeed
taken. Footnotes and bottom line can then be
entered.

259

260 Applewriter Cookbook

Listing C'.8. AWD.SYS important entry points.

Important "F" version entry points include system level
entry that accesses the entire program; command level entry
that does control commands; WPL module entry that handles
individual WPL commands; the auxiliary function access; the
ProDOS command routines, the ProDOS machine language MLI
links, and finally the often-used service subroutines .

Here they are:

system level entry -

$2000 - Cold start entry
$2003 - Print to screen (used by formatter)
$2006 - Get user response (used by formatter)
$2009 - ProDOS error processor
$20B4 - Warm restart entry

command level entry -

$2A26 - [@l Unconditional delete
$4F70 - [Al Adjust margins
$27DF - (Bl Cursor to start
$3D0D - (Cl Case changer
$3D1E - [Dl Data direction changer

$2808 - [El Cursor to end
$3A.CB - [F] Find, search and replace
$2A.36 - [G] Glossary
$26EB - [R] Backspace left arrow
$32E8 - [I] Do actual tab

$270D - (Jl Down arrow
$2715 - [X] Op arrow
$394A - [L] Load
$3CCD - [N] New
$4D6E - (OJ DOS access

$417A - (Pl Print/Program main entry
$2B7F - (Q] Auxiliary functions entry
$3D2S - [R] Replace mode toggle
$3648 - [SJ Save
$326S - [Tl Tab set, clear, or purge

$26FC - [U} Frontspace, right arrow
$35B6 - [VJ Verbatim mode toggle
$2961 - [WJ Delete Word
$2961 - [X] Delete Paragraph
$34F9 - (Yl Split screen

$3S9E - [Z} Wraparound toggle
$2BC9 - [_] Position toggle

WPL modules -

$4714 - AS Assign String
$4603 - BL Bottom line
$4861 - CP Continue printing
$44DC - DO Run WPL program
$480E - EP Enable printer

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.8-cont.

$4636 - FF Formfeed
$465D GO WPL unconditional jW'llp
$46D6 - IN User keyboard response
$42BA - LS String Load
$431D - ND Screen display off

$4844 - NP Begin Printing
$46AD - PR Prompt to screen
$45F0 - QT End WPL program
$4305 - RT WPL subroutine return
$4321 - SC String Compare

$42E7 SR WPL subroutine jump
$4608 - TL Top display line
$431E - YD Screen display on

-- auxiliary functions

$2F84 - "A" Load Tab File
$2F5A "B" Save Tab File
$2FDB - "C" Load Print File
$2FB1 - "D" Save Print File
$2EC6 - "E" Load Glossary

$2E74 - "F" Save Glossary
$35AF - "G" Toggle CR display
$3594 - "H" Toggle Data display
$2Dl6 - "I" Keyboard direct to printer
$2C97 - "J" Quit everything

-- ProDOS menu options

$5124 - "A" Catalog
$5066 - "B" Rename
$50AE - "C" Lock
SS0AA - "D" Unlock
$50FD - "E" Delete

$4FD7 - "F" List volumes On-line
$2C8F - "G" Create subdirectory
$510F - "H" Set prefix
$301D - "I" Initialize diskette
$4DAF - "J" Set modem interface

ProDOS interface links -

$2C83 - Get Prefix (used by catalog)
$2005 - Quit (used by quit)
$2EAF - Write (used to save glossary)
$2F70 - Write (used to save tab file)
$2F9A - Read (used to load tab file)

$2FC7 - Write (used to save print file)
$2FFl - Read (used to load print file)
$3045 - Read (used to init a volume)
$30E8 - Open (used by file creator)
$30F9 - Create (used by directory crea.tor)

$3111 - Create (used by text file creator)
$324F - Read (used by text file loader)
$37CA - Write (used by text file saver)
$37EB - Close (used by text file loader)
$37F9 - Get EOF (used by append)

261

262

Listing C.8-cont.

$3823 - Set EOF (used by append)
$3809 - On Lina (used by on-line)
$38F6 - Open (used by text file loader)
$3918 - Set EOF (used by text file loader)
$439A - Write (single byte for PD8)

$509C - Rename (used by rename)
$SOCS - Get Attributes (used by lock/unlock)
$5009 - Set Attributes (used by lock/unlock)
$5103 - Destroy (used by delete)
$5117 - Set Prefix (used by set prefix)

-- often used service subroutines --

$219D - Print character to screen link
$225F - Ring the ding dong
$2273 - Message link
$227E - Pick string source

$22B7 - Get key from type-ahead buffer
$2302 - KSWL entry (Get key immediate)
$2338 - Unflash screen character
$23AA - Flash screen character
$23FF - Print hex pair as ASCII

$24B7 - Scroll screen
$22F8 - BASH from HPOS
$24FA - BASH immediate
$2507 - Read modem
$2571 - Rome cursor

$257C - Clear EOL from HPOS
$257E - Clear EOL immediate
$25CO - Init LOFILE
$25CF - Mark LOFILE end
$25E8 - Init HIFILE

$25F7 - Mark HIFILE end
$2647 - Enter character to LOFILE
$269C - Move character LOFILE --> HIFILE
$26B8 - Mark open and of LOFILE
$26C9 - Mova character LOFILE <-- HIFILE

$27AS - Update LOCORS pointer
$27Cl - Update HICORS pointer
$283r - Increment [WJ [X] pointer
$2848 - Increment WPL program counter
$284r - Test direction

$285B - Increment auxiliary utility pointer
$2862 - Increment LOCORS pointer
$2869 - Increment split pointer if < LOCURS
$2875 - Increment HICURS pointer
$287C - Increment screen pointer

$2883 - Increment main utility pointer
$288A - Increment printer pointer
$2891 - Decrement [W) [X) pointer
$289B - Decrement {W) [X] overflow counter
$28AC - Decrement LOCORS pointer

Applewriter Cookbook

Internal Pro DOS Applewriter 2. 0 Program Details

Listing C.8-cont.

$28B7 - Oecrament split pointer if > HICURS
$28C7 - Decrement HICURS
$28DD - Decrement main utility pointer
$28E8 - Set screen start pointer
$29F5 - Backspace routine

$2A26 - Unconditional delete character
$2AEO - Reset glossary
$2ED7 - Get and hold filename (ref #0)
$2ED9 - Get and hold filename (ref #A)
$2EDF - Get filename or volume name

$2FOB - Set text file reference nwnber
$2Fl3 - Set binary file reference nwnber
$2F1B - Create and set binary file ref number
$2F36 - Hold filename
$3068 - Create and open text file

$30EO - Open second file
$3126 - ProDOS error processor
$31EA - Set up disk or memory read
$3201 - Set up disk read
$324F - Read one disk sector to buffer

$33C6 - Main WP entry
$33Fl - Main WP service loop
$3491 - Process as command
$3543 - Onsplit screen
$35B0 - Clear screen bottom and get string

$35C3 - Print filename
$360B - Clear and prompt screen bottom
$3638 - Clear screen bottom
$3727 - Add pre�ix to pathname
$3748 - Disk write setup

$377D - Save one sector to disk
$370D - Close all files
$37E5 - Close one file
$37F9 - Append setup
$3811 - Append cleanup

$3831 - Process slot and drive
$38CD - Read slot, forcing 0-7
$38E6 - Read one sector from disk
$3929 - Process special delimiters
$3CAC - Move LOFILE <---> HIFILE

$3CF7 - Force upper case
$3D2C - Calculate POS
$3E58 - Print as inverse decimal
$3E69 - Fix mouse nest
$3E7D - Read character from LOFILE

$3EB2 - Reformat screen markers
$3EOB - Reformat screen line
$3F7A - Set auxiliary pointer to HICORS
$3F83 - Case changer routine
$3FA5 - Update screen

$40F6
$4144
$43AC
$44Al
$44BB

- WPL error processor
- Return prompt routine
- Grab printer hooks
- PRT values to screen

Save old filename as =

263

264

Listing C.8-cont.

$44C8 - Restore old filename from =
$453C - Keybuffer to pathname buffer move
$4580 - WPL $A-$0 string interpreter
$45F0 - Quit WPL cleanup
$4628 - Pad bottom lines

$4653 - Print space and carriage return
$49C7 - Save characters to line buffer
$4B1C - Pad left margin
$4BE2 - Print filter
$4C36 - Substitute NULL character

$4C41 - Print and delay
$4C76 - Pop subroutine
$4C78 - Stall for modem serial time
$4COE - Character to printer link
$4CF6 - Clear screen via formfeed print

$4CF8 - Character to screen
$4EE5 - Print X and A as decimal ASCII
$4FAO - Adjust margins setup
$4FBA - Adjust margins
$504D - Message to screen

$5124 - Catalog disk
$52A8 - Print hex as decimal
$52E0 - Print blanks to tab screen
$534B - Date and time to screen
$538D - Slash to screen

$5399 - Pathname to screen
$53B9 - Hex to decimal conversion
$53FD - Hex division, page/position
$540C - Decimal to hex conversion
$5470 - Hex Xl0 multiplier

Applewriter Cookbook

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9. Detailed script of AWD.SYS main program.

The AWO .SYS version of ProOOS Applewriter sits between
$2000 and $5472 in main memory. The script that follows
assumes an Apple IIc in 80 column mode, or else a 128K IIe
having an extended 80 column card installed.

Note that a script of the internal file portions of this
program appeared in Listing 7 . 3 . Here is a module-by
module breakdown of the rest of the code:

$2000-2002 -- COLD START ENTRY POINT

Jumps to actual cold start code at $200C.

$2003-2005 -- PRINT TO SCREEN ACCESS

Used by the formatter to print to screen .
Vectors to $24 1 3 .

$2006-2008 - - GET USER LINE ACCESS

Used by the formatter to get user response.
Vectors to $227E.

$2009-200B -- ProDOS ERROR PROCESSOR LINK

Vectors to error processinq code at $312 6 .

$200C-20B1 -- COLD START MODULE

Init stack pointer to $01FF. Set bottom
of LOFILE to auxiliary memory $0800. Clear
all page zero locations above $60 . Save
last slot and drive used. Zero the TL and
BL buffers, the filename hold, the glossary,
and WPL strings $A-$D . Fill the glossary
with carriage return s . Zero the entire
character swallow buffer . Route BRK, IRQ,
and warm RST to $20B4, the warm restart
module. Set the power up byte. Read the
machine id byte and test for an "old" or
a "new" machine, saving the result in version
flag $FC. Disconnect 80 column hooks. NOTE :
removes any third party card from slot three.

Install memory management code to page zero
of main memory. Open to full screen window
with normal text . Init LOFILE and RIFILE
unless "zN" marker is set. If set, update
LOCORS and HICURS pointers only, and mark
with "zN" marker. Apparently lets another
SYS program transfer control to Applewriter
for processing. Set split screen pointer
to LOCURS . Set cursor symbol to white
box. Set right screen margin to 79 and
right scroll trigger to 68. Put down main
boot screen . Get PRT.SYS and TAB .SYS. Set
screen margins . Fall through to warm restart
module .

265

266 Applewriter Cookbook

Listing C.9-cont.

$20B4-200B -- WllM RESTART MODULE

Zero modem activity flag. Set CSWL and KSWL
to a "briclc wall" RTS. KSWL stays there
during entire program; CSWL gets diverted as
needed to screen, printer, modem, or disk.
Reset the stack pointer. Close all files.
Re-install memory management code. Open
to full screen and normal text. Use white
block as cursor. Reset WPL via PQT. Reset
the glossary stack. Jump to the main WPL
service routine.

$20E0-2103 -- PICK INIT OR UPDATE

Used only by the cold start routine. If
you enter this module without a high ASCII
"ZN" at $B77E and $877!', then LOFILE and
BIFILE get inited. If there is a "zN", then
only the LOFILE and BIFILE pointers get
updated. Apparently used for integrated
program access or error recovery; normally
inits BIFILE and LOFILE.

$2104-214E -- DISCONNECT SLOT 3 HOOKS

Used to save old SO-column connections used
by a previously-run .SYS program. Old 80
column hooks are saved to $214F-2151, and
the hooks are removed from the ProDOS driver
list. Later restored during quit. Not
internally used by the word processor.
Required of any ProDOS " . SYS" program.
NOTE: makes any use of any third-party
video or screen card very difficult.

$2152-215!' -- INSTALL MEMORY MANAGEMENT CODE

Move the image of the memory management code
to $0100-013D. Memory management code is
needed to access LOFILE and HIFILE in aux
memory. All else is in main memory.

$21SF-219C -- MEMORY MANAGEMENT CODE IMAGE

Gets moved and accessed on main memory page
one. Here are the relocated addresses:

$0100 - Read LOFILE by screen pointer.
$0109 - Read LOFILE by LOCURS pointer.
$0112 - Read HIFILE by HICURS pointer.
$011B - Read LOFILE by printer pointer.
$0124 - Read LOFILE by format pointer.
$012D - Back format pointer up to start

of screen line.

$219D-21AD -- GET AND PRINT CHARACTER TO SCREEN

Get the next character from the type-ahead
buffer if in use, or directly if not. Reject
if a $00 NOLL and get the next character.
If WPL is off, save the character and print
it to the screen.

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.9-cont.

$21AE-21BF -- SET STARTUP PATHNAME

Put ttte command DO STARTUP into the key
buffer. Used to run a startup program
on cold start or warm restart.

$21C0-21E4 -- TUTORIAL HELP TESTER

If open apple and '"?" but no glossary
activity, then load HELP 80 into key
buffer, then DO HELP 80 via WPL.

$21ES-223B -- POT DOWN FIRST BOOT SCREEN

Draw a hollow box on the screen . Home the
cursor . Put down the boot screen image,
using high ASCII values in the file as
horizontal tab values to center the text in
the box. Hollow box is printed by printing
a line of inverse spaces, columns of inverse
spaces at screen left and right, and then
a final line of inverse spaces .

$2241-225E -- OPEN SCREEN WINDOW

Close all files. Set top of window to $00.
Set left of window to $00. Set window bottom
to $18 = 24 lines . Access display page.
Pick alternate character set . Use normal
text . Clear screen if not WPL. Turn 80
column display on.

$225F-2272 -- DING DONG

Sound the two-tone alarm. Plays two plain
old squarewave bursts back to back, the
second lower in pitch . Calls itself for the
first note.

$2273-227C -- PROMPT AND GET USER RESPONSE

Save the present HPOS, print the message
pointed to by the X register high and the
Accumulator low, then fall through to next
module.

$227£-228C -- GET OSER RESPONSE

If the string source flag is set, get the
response from auxiliary memory where LS
previously put it. If clear, get the
response from the user. If WPL is active,
substitute variables (x) through (z) .

$228D-22B1 -- FILL TYPE-AHEAD BUFFER

Save the old cursor symbol . Use no
current cursor. Put a busy signal " * "
into busy flag. Get the key from user.
Advance the filler pointer $F3. Save key
to type-ahead buffer at $1D40. I f an
Apple key was pressed, save it to the Apple
buffer starting at $1FC0. Restore the old
cursor symbol .

267

268

Listing C.9-cont.

$22B2-22B5

Applewriter Cookbook

TYPE-AHEAD CHECK

Compare the type-ahead filler $F3 against
the emptier $F2. If equal, set the carry
flag. Equal means that the type-ahead
buffer is not currently needed.

$22B7-22D2 -- EMPTY TYPE-AHEAD BUFFER

Save registers. Do type-ahead check. If
not busy, fall through to next module. If in
use, Increment the F2 emptier, forcing it to
one of 64 values. Get stored Apple key and
save to $FB. Get the keystroke and hold in
the accumulator. Restore registers.

$22D3-2301 -- NO LONGER BUSY

Save registers. If no status lines,
fall through to next module. If a status
line is needed, turn busy flag $F4 off.
Find active status line. Bash address.
Poke unbusy signal to status line. Rebash
current HPOS. Then fall through.

$2302-2323 -- GETKEY IMMEDIATE LINK

Save registers if not already saved. Get
key. If glosary is not yet active and open
apple is pressed, activate the glossary and
read first giossary character. Restore
registers. Access page one of main memory.

$2324-2334 -- PICK KEYSTROKE SOURCE

Clear modem activity flag $23A9. If the
glossary is active, get key from glossary.
If WPL is active, get key from the WPL
interpreter. If the modem is active, get
key from modem buffer. If all else fails,
fall through to keyscanner and get the key
from the user.

$234 8-237B -- J<EY SCANNER

If modem is not active, set up medium
time delay keyboard interrogation loop.
Read the keyboard, falling through on a
pressed key. If modem activity, abort
immediately. Time out for half cursor flash
period, then curse screen . Repeat until
key is pressed or until modem is active.
Note that the cursed character is flashed by
delaying, switching to inverse, delaying,
switching to normal, and so on.

$237B-2395 -- GOT KEY FROM OSER CLEANUP

Clear modem activity flag. Clear cursed
character back to normal. Save apple keys
to $FB. Read keyboard to accumulator.
reset keyboard strobe.

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.9-cont.

$2396-23A8 -- GOT KEY FROM MODEM CLEANUP

Set modem activity flag. Clear cursed
character back to normal. Clear apple key
hold $FB. Read modem to accumulator.

$23AA-23D7 -- FLASH SCREEN CHARACTER

Abort if invisible cursor or WPL is active.
Get HPOS and divide by two to pick even or
odd screen. Turn on even or odd screen.
Get character. Change from low to high
ASCII or vice versa. I€ a hit on the mouse
nest, pick true inverse character. Save
cursed character. Reset to main memory.

$23D7-23EC -- WRITE CHARACTER TO SCREEN IMMEDIATE

Use HPOS or Y register. Divide position by
two and pick even or odd screen. Turn on
even or odd screen . Store character to
screen.

$23ED-23FE -- READ CHARACTER FROM SCREEN

Use HPOS . Divide by two and pick even or
odd screen . Turn on even or odd screen .
Load accumulator from screen.

$23FF-2412 -- PRINT HEX PAIR AS ASCII

Save the character. Shift high byte into
low byte . Force numeric. If 10-16, then
change to letter by adding $06. Change to
ASCII by adding $30 . Fall through to print
as subroutine. Get character back. Mask
the low byte, change to ASCII and fall
through again .

$2413-243A -- PRINT TO SCREEN SETUP

Increment tab-over counter. If a carriage
return, reset tab over counter . Test
catalog-to-file flag $BC. If set, jump to
print to file routine . If clear, save
registers, put character on screen, check
modem, affirm main memory, and restore
registers .

$243B-249F -- FILTER SCREEN CHARACTERS

Force high ASCII (normal text) . Test modem
flag . If slave, force low ASCII and print
to modem instead of screen. If a form feed
$SC or a form separator $9C, then clear the
screen. If a bell $87, ring the ding dong .
If a carriage return, check the keyboard for
a (S] scrolling stop. If stopped, read the
keyboard until any new key is pressed, then
reset the key strobe. Continuing the filter
action, if a delete or a backspace, decrement
HPOS. If the horizontal position underflows ,
decrement the vertical position, BASH the new
base address, and set HPOS to decimal 79 .
This backs you up to the rightmost slot on
the previous line. If a $1E range seperator,

269

270

Listing C.9-cont.

substitute an inverse "A" to simulate the
open apple key.

Applewriter Cookbook

$24D3-24F7 -- PUT CHARACTER ON SCREEN

Enter character to screen immediate. Add
one to HPOS, checking for line overflow. If
an overflow, reset HPOS to zero and add one
to VPOS. If no overflow, BASH new VPOS and
exit. If an overflow, fall through to screen
scrolling routine.

$24B7-24F7 -- VERTICAL SCROLL

Calculate screen position and save to screen
scroll pointer. Bash screen line address.
Move present screen line to screen scroll
pointer one line higher, repeating for the
needed number of lines to scroll the window.
Move 40 even characters first in main memory,
followed by 4 0 odd characters in aux memory.
Check the modem after each half-line move.
When finished, clear the bottom screen line
and fall through to BASH its address.

$24F8-2506 -- BASH BASE ADDRESS

Double VPOS pointer and use it to get the
screen base address low for $28 and the
screen base address high for $29 from the
BASH Table. Note that the table lookup
method is faster than direct calculation.

$2507-254C -- READ MODEM TO MODEM BUFFER

Abort if slot zero, modem set in process,
not slave mode, or if slot does not contain
modem firmware. Get character from modem,
and save to modem buffer $1F40. Advance
filler pointer $2540.

$253l-254C -- READ MODEM BUFFER

Abort if slot zero, modem set in process,
not slave mode, if slot does not contain
modem firmware, or if buffer is empty.
Set the modem flag, increment the emptier
pointer, and fill accumulator with character
from modem buffer.

$254F-2552 -- CSWL LINK

Jump to the character hooks, usually a
"brick wall" RT$, the screen, a printer,
a modem, or a disk driver under pd8.

$2552-2559 -- CLEAR SCREEN

Set HPOS to zero and VPOS to top of window
being cleared. Fall through to clear window
routine.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9-cont.

$255A-256E -- CLEAR WINDOW

Load Y with HPOS and A with VPOS . Bash
the screen base address . Clear to end of
line from Y . Repeat until window bottom .

$2571-257B -- HOME CURSOR

Set RPOS to zero and VPOS to top of active
screen window. Bash VPOS .

$257C-258E -- CLEAR TO END OF SCREEN LINE

Entry point picks RPOS or Y as starting
character. Hold Y register. Print space
to screen. Restore Y register. Continue
until 80th column.

$25C0-25CE -- INIT LOFILE

Mark start of LOFILE with $FF. Mark next
location with $00 .

$25CF-25E7 -- MARI< LOFILE START

Set LOFILE pointer to $0800 . Write $FF to
auxiliary memory. Increment LOCURS .

$25E8-25F6 -- INIT RIFILE

Mark end of RIFILE with $FF. Mark previous
location with $00 .

$25F7-260A -- MARI< HIFILE END

Set BIFILE pointer to $BEFF . Write $FF to
auxiliary memory . Decrement HICURS .

$260E-2619 -- CHARACTER TO FILE LINK

Save registers . Do character to file via
subroutine. Restore registers .

$261A-2622 -- CHARACTER TO SCREEN LINK

Save registers . Do character to screen via
subroutine. Restore registers .

$2627-2646 -- CHARACTER TO SCREEN AND FILE

Bypass screen display if WPL or slave modem .
Ignore if character is beyond right screen
margin . Set to normal text, high ASCII.
Put character on screen if not a carriage
return. Increment HPOS . Reset case change
flag $C4 . Fall through to next module.

$2647-2663 -- CHARACTER TO FILE SETUP

Save character in character hold $C2. Test
screen only flag $FD. If screen only, print
to screen and exit . If to file, calculate
amount of remaining memory by subtracting
LOCURS from HICURS. If no memory left, exit
via out of memory error and cleanup. If
enough memory, fall through to next module.

271

272 Applewriter Cookbook

Listing C.9-cont.

$2663-269B -- CHARACTER TO LOFILE IMMEDIATE

Force low ASCII. Bypass if $00 or $7F,
disallowing NULL or DELETE. Set write to
auxiliary RAM flag. If in the replace mode
under (R], get the cursed character to be
overwritten. If the character is not a
carriage return or a file limit, then
increment HICURS, and zero the old RICO'RS
character, thus setting up an overwrite.
For either normal or replace, next save the
new character to the top of LOFILE, increment
the (Y] pointer and the LOCURS pointer,
mark the open end of LOCURS with an $00, and
restore the character to the accumulator.

$269C-26BA -- MOVE CHARACTER LOFILE ---> HIFILE

Used to backspace. Decrement LOCURS and
get character from LOFILE, testing for start
of file. If no characters left, init LOFILE
and exit. Read LOFILE character. Test case
change flag $C4 and change case if needed.
Store character to bottom end of HIFILE in
auxiliary memory. Decrement the RICURS
pointer. Write $00 to the open ends of both
LOFILE and HIFILE. Exit with moved character
in the accumulator.

$26BB-26C8 -- ZERO OPEN LOFILE AND HIFILE ENOS

Mark the high "open" end of LOFILE and the
Low "open" end of HIFILE with $00 markers.
Preserve the accumulator while doing this.

$26C9-26E8 -- MOVE CHARACTER LOFILE <--- HIFILE

Increment HICURS and get the character there.
If at high end of HIFILE, then init HICURS
and exit. Otherwise, check the case flag at
$C4 and change the case if needed. Store
the character to the top end of LOFILE.
Increment LOCURS. Mark the open ends of
LOFILE and HIFILE with $00 markers. Used
to frontspace.

$26EB-26FB -- BACKSPACE SETUP

Check for an open apple key down. If down
exit via save to swallow buffer routine.
Fill Y with a space to mark stop of express
cursor motions. If the open apple key
is up, set up common cursor motion routine
to move LOFILE <--- HIFILE, then do it.

$26FC-270C -- FRONTSPACE SETUP

Check for an open apple key down. If down
exit via restore from swallow buffer routine.
Fill Y with a space to mark stop of express
cursor motions. If the open apple key
is up, set up common cursor motion routine
to move LOFILE ---> HIFILE, then do it.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9-cont.

$2700-2714 -- CURSOR DOWN SETUP

Set up common cursor motion routine to do
cursor down routine, then do it .

$2715-271A -- CURSOR UP SETUP

Set up common cursor motion routine to do
cursor up routine, then do it.

$271B-2743 -- COMMON CURSOR MOTION ROUTINE

Force feed the selected routine into the jump
starting at $2743:

Backspace - $269C
Frontspace - $26C9
Cursor Down - $2769
Cursor Up - $2746

(LOFILE <--- HIFILE)
(LOFILE ---> HIFILE)
(Cursor Down code)
(Cursor Up code)

Save the express motion match character to
$5E30, using space for by-words horizontally
and'l00 for end-of-file vertical motions .
Then check the solid apple key. If up, then
do the motion once via the forced jump. If
down, set vertical motions to 22 lines if
full screen and 10 lines if split. Do one
needed motion . Repeat until a space or end
of file horizontally, or until the number of
lines or end of file vertically. Note this
is self- modifying code .

$2746-2767 -- CURSOR UP IMMEDIATE

Reset the case change flag $C4 to $00 . Test
the wraparound flag and bypass on wraparound .
Move line of characters LOFILE to HIFILE,
stopping on the high ASCII start-of-line
marker, and quitting if beginning of file.
Move first character in line from LOFILE to
HIFILE .

$2769-2788 -- CURSOR DOWN IMMEDIATE

Reset the case change flag $C4 to $00 . Test
the wraparound flag and bypass on wraparound .
Move line of characters HIFILE to LOFILE,
stopping on the high ASCII start-of-line
marker, and quitting if end of file. Move
first character in line form HIFILE to LOFILE.

$278A-27A4 -- WRAPAROUND CURSOR UP/DOWN

If in wraparound mode, whole screen lines are
m�ved without regard to start-of-line high
ASCII markers . Reset the case flaq $C4.
Pick direction, LOFILE ---> HIFILE if �ursor
up and LOFILE <--- HIFILE if cursor down .
Move up to 80 characters, aborting on a
carriage return . Note that wraparound is
only allowed when the right screen margin is
less than 7 9 .

273

274 Applewriter Cookbook

Listing C. 9-cont.

$271B-2743 -- COMMON CURSOR MOTION ROUTINE

Force feed the selected routine into the jump
starting at $2743 :

Backspace
Front space
Cursor Down
Cursor Up

- $269C
- $26C9
- $2769
- $2746

(LOFILE <--- HIFILE)
(LOFILE ---> HIFILE)
(Cursor Down code)
(Cursor Up code)

Save the express motion match character to
$5E30, using space for by-words horizontally
and $00 for end-of-file vertical motions.
Then check the solid apple key. If up, then
do the motion once via the forced jump. If
down, set vertical motions to 22 lines if
full screen and 10 lines if split. Do one
needed motion. Repeat until a space or end
of file horizontally, or until the number of
lines or end of file vertically. Note this
is self-modifying code.

$2746-2767 -- CURSOR UP IMMEDIATE

Reset the case change flag $C4 to $00. Test
the wraparound flag and bypass on wraparound.
Move line of characters LOFILE to BIFILE,
stopping on the high ASCII start-of-line
marker, and quitting if beginning of file.
Move first character in line from LOFILE to
BIFILE.

$276g-21ee -- CORSOR DOWN IMMEDIATE

Reset the case change flag $C4 to $00. Test
the wraparound flag and bypass on wraparound.
Move line of characters HIFILE to LOFILE,
stopping on the high ASCII start-of-line
marker, and quitting if end of file. Move
first character in line form HIFILE to LOFILE.

$278A-27A4 -- WRAPAROUND CURSOR UP/DOWN

If in wraparound mode, whole screen lines are
moved without regard to start-of-line high
ASCII markers. Reset the case flag $C4.
Pick direction, LOFILE ---> HIFILE if cursor
up and LOFILE <--- HIFILE if cursor down.
Move up to 80 characters, aborting on a
carriage return. Note that wraparound is
only allowed when the right screen margin is
less than 79.

$27AS-27C0 -- UPDATE LOCURS POINTER

Affirm a $FF at start of LOFILE. Set LOCURS
pointer to $0800 start of LOFILE and scan
upwards until a top-of-LOFILE $00 marker
is found. Hold address in LOCORS $84, 85.

$27Cl-27DE -- UPDATE HICURS POINTER

Affirm a $FF and end of HIFILE. Set HICURS
pointer to $BEFF end of RIFILE and scan
downwards until � bottom-of-HIFILE $00 marker
is found. Hold address in HICURS $86, 87.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9-cont.

$27DF-2807 -- CURSOR TO BEGINNING

Set data direction flag $CF to ">" . Begin
moving characters from LOFILE to HIFILE,
until the $FF start-of-LOFILE $FF marker is
found. Update both LOCORS and HICURS .

$2808-283C -- CURSOR TO END

Set data direction flag $CF to "<" . Begin
moving characters from HIFILE to LOFILE,
unitl the $FF end-of-HIFILE $FF marker is
found. Update both LOCURS and HICURS .

$283F-2847 -- INCREMENT [W] [X] POINTER

Increment the word and paragraph deletion
pointer $94 , 9 5 . Then decrement the word
and paragraph overflow counter $EE, EF. Set
overflow flag $EE if > 2048 characters .
Then range check the [W] [X] pointer to keep
it on memory pages $1800-SlBFF.

$284F-285A -- TEST [Y] POINTER

Compare the split screen [Y] pointer against
LOCURS, clearing the carry flag if [Y] is
less than LOCURS .

$285B-2861 -- INCREMENT AUXILIARY UTILITY POINTER

Add one to auxiliary pointer pair $AE, AF.

$2862-2868 - ·- INCREMENT LOCURS

Increment LOFILE cursor pointer pair $84 , 85 .

$2869-2874 -- INCREMENT (Y] POINTER IF < LOCURS

Test the split screen (Y] pointer. Then
increment it only if it is less than LOCURS .

$2875-287B -- INCREMENT HICURS

Increment HIFILE cursor pointer pair $86 , 8 7 .

$287C-2882 -- INCREMENT SCREEN POINTER

Increment screen pointer pair $88, 8 9 .

$2883-2889 - - INCREMENT MAIN UTILITY POINTER

Increment general use pointer pair $80 , 8 1 .

$288A-2890 -- INCREMENT PRINTER POINTER

Increment printer pointer pair $90, 91 .

$2891-28AB -- DECREMENT [W] [X] POINTER

Decrement word and paragraph deletion pointer
pair $94 , 9 5 . Then decrement the deletion
overflow counter $EF, F0 . Set overflow flag
$EE if > decimal 2048 characters . Then range
check the [W] [X] pointer to keep it on
memory pages $1800-lBFF.

275

276 Applewriter Cookbook

Listing C. 9-cont.

$28AC-28C6 -- DECREMENT LOCURS

Decrement LOFILE cursor pointer pair $84,85.

$28B7-28C6 -- DECREMENT [Y] POINTER IF < LOCURS

Test the split screen [Y] pointer. Then
increment it only if it is less than LOCURS.

$28C7-28Dl -- DECREMENT HICORS

Increment HIFILE cursor pointer pair $86, 87 .

$28D2-28DC -- DECREMENT SCREEN POINTER

Decrement screen pointer pair $88, 89.
Apparently never used in this version.

$2800-28£7 -- DECREMENT MAIN UTILITY POINTER

Decrement general use pointer pair $80,81.

$28E8-2953 -- SET SCREEN START POINTER

Calculates the start of the screen line
twelve lines above screen center for full
screen and six lines above center for
split screen. Aborts if it gets to the
beginning of the file. Works by starting
with the auxiliary utility pointer equal
to LOCURS, and backing up to the start of
each screen line, as set by a high ASCII
marker. On the first trip through, the
horizontal scrolling module below is used
to find a suitable on-screen left margin.
The keyboard is Salt\pled once each on-screen
line, and any pressed keys are held in the
type ahead buffer. When the calculation is
complete, the screen start pointer at $88, 89
is updated a�d then incremented by one.

$2903-2935 -- HORIZONTAL SCROLL SET

Calculates a suitable left screen display
margin on the first trip through the screen
start set module. If the right margin is
78 or less, the left screen start margin $82
is set to zero. On a right margin above
79 characters, if the cursor is left of 11
characters to the right of the old left
margin, then the left screen margin is set to
the present cursor position minus eleven,
thus doing a horizontal scroll left. If the
cursor is between 11 and 68 characters to the
right of the old screen left margin, then no
scrolling is needed, and the old left margin
is reused. If the cursor is more than 68
characters to the right of the old left
margin, then a horizontal scroll right is
done, setting the left margin to 68
characters left of the cursor position.
The final calculated left margin is then
saved to $B2 .

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9-cont.

$2954-2960 -- RANGE CHECK (�] [X] POINTER

The high byte of the word and paragraph
is logically screwed around with to keep
it pointing to pages $1800-$1BFF, inside
the deletion buffer.

$2961-2987 -- WORD AND PARAGRAPH DELETION SETUP

Reset the (W] [X] overflow flag $EE. Init
the overflow counter $EE,EF for a 2048
character count . Store a $20 space if [W]
or an $00 charage return if (X] to the
stop-on-match stash at $02. Test the data
direction register, and pick insertion or
deletion. Begin loop inserting or removing
characters from file to or from the deletion
buffer, and aborting on a match character,
the start of LOFILE, the end of HIFILE, a
carriage return, or overload. Test overflow
flag, sounding alarm on overflow. Exit by
reformatting the screen.

$29B1-29B8 -- [W] [X] SINGLE INSERTION

Read a character from the word and paragraph
deletion counter. Increment the [W] [X]
counter and decrement the overload counter.
Output the character to the textfile .

$29B9-29E4 -- [W] [X] SINGLE DELETION

Decrement the split screen pointer.
Test the solid apple key for copy rather
than grab . If copy, get character, then
move character from LOFILE to HIFILE . If
at start of LOFILE, then re-init LOFILE .
Decrement [W] [X] counter, and decrement
the overflow counter, setting $EE on an
overflow. Save the character to the deletion
buffer . If grab, decrement LOCURS, then read
LOFILE. If at start of LOFILE, then re-init
LOFILE. Decrement [W] [X] counter, and then
decrement the overflow counter, setting $EE
on an overflow. Save the character to the
deletion buffer. Mark the open end of LOFILE
with an $00 marker.

$29ES-29F4 -- BARF SINGLE CHARACTER

Decrement the swallow buffer pointer, while
restricting it to 128 characters maximum,
round and round. Read the character from
the swallow buffer $0300. Save the character
to the textfile at LOCURS . Reformat screen
markers .

$29FS-2Al9 -- SWALLOW SINGLE CHARACTER

Decrement the split (Y] pointer . Decrement
LOCURS . Force swallow buffer pointer to
128 possible values. Get character from
LOFILE at LOCURS . If at bottom of LOFILE,
restore LOFILE start . Save the character
to the swallow buffer. Increment the
swallow pointer $AC. Mark over the character

277

278

Listing C.9-cont.

at LOCURS with an $00 open-end-of-file
mark. Reformat the screen markers.

Applewriter Cookbook

$2AlA-2A25 -- RESTORE LOFILE START

Increment split screen pointer. Init LOFILE.
Save accumulator. Reformat screen markers.
Restore accumulator from stack.

$2A26-2A35 -- DELETE CHARACTER UNCONDITIONALLY

Decrement LOCURS. Read character at LOCURS.
if at LOFILE start, init LOFILE and reformat
screen margins. If not, mark over the
character at LOCURS with an $00 open-end-of
file mark. Reformat the screen markers.

$2A36-2A53 -- GLOSSARY SETUP

Clear and prompt screen bottom. Get glossary
command. Ignore if NULL. If a carriage
return, then exit. If define "?", then
do define module. If purge, then mark start
of glossary at $0800 in main memory with $00
and exit. If any other character, then do
glossary entry module.

$2A54-2AA9 -- READ GLOSSARY SETUP

Abort if carriage return. Set main utility
pointer to glossary start at main memory
$0800. Read the glossary character, aborting
if an $00 end-of-glossary marker. Scan
each character beyond a carriage return for
a match with the glossary character. Abort
if no match is found. If a match is found,
increment the glossary nest pointer by two.
Sound alarm if nest depth exceeds eight
levels, and reset to level zero. Set the
glossary activity flag. Save the starting
address of the glossary string to the
glossary nest at the current level.

$2AAA-2AEB -- READ CHARACTER FROM GLOSSARY

zero the apple key stash. Get the glossary
nest pointer and use it to get the current
glossary character to be output. Force
feed a self-modifying read to actually get
the glossary character. If a carriage return
or a $00 end, then pop the glossary stack and
decrement the glossary nest pointer by two,
resetting to zero on underflow. If a fake
carriage return "]", substitute a real one.
Exit with read character or substitution in
the accumulator .

$2AFD-2B28 -- FILL GLOSSARY SETUP

Clear the screen if not WPL. Set the main
utility pointer to $0800, the glossary start.
Read the glossary and print it to screen,
showing sixteen lines at a time if full
screen and eight lines at a time if split.
A pressed key gets another 8 or 16 entries,
aborting on the $00 end-of-glossary marker.

Internal Pro DOS Applewriter 2. 0 Program Details

Listing C.9-cont.

$2B29-2B6C FILL GLOSSARY

Put down a new definition prompt . Get user
response, aborting on a carriage return.
Replace the final $00 marker in the glossary
with a carriage return. Enter up to 128
characters from the keybuffer into the
glossary. On a glossary overflow, ring the
ding dong. POSSIBLE ERROR: $2B55 should be
$10. As is, the glossary overflow will not
trip until the entire program is overwritten!
Continuously mark the open end of the
glossary with $00 markers after each and
every character entry.

$2B6D-2B7E -- RETURN EXIT PROMPT

Save the Y register. Print return-to-exit
prompt if not WPL. Restore the Y register.

$2B7F-2BAD -- AUXILIARY FUNCTION SELECT

Bypass menu if WPL is active. Unsplit and
clear screen if not WPL . Set main utility
pointer to the auxiliary functions menu.
Print menu to screen, aborting on $3F end
marker. Then print return exit prompt .
Get user response, forcing upper case.
Convert ASCII A-J into 0-9 numeric, aborting
i f out of range. Double the pointer and
get the selected function address pair.
Force the address pair on the stack, and then
do an indirect jump using the forced sub
return method. NOTE : RTS goes to address
PLUS one.

$2BCA-2BDO -- TOGGLE PAGE/POSITION FLAG

Switch the page/position flag $78 between
$00 (no display) and $80 (display) , or
vice versa.

$2BDl-2C33 -- SHOW PAGE/POSITION SETUP

Clear bottom of screen. Clear the hex buffer
at $CO-C2 . Put LOCURS into the auxiliary
utility buffer $AE-AF, and into the screen
start pointer $88, 8 9 . Count the number of
printable lines, working back from LOCURS to
the beginning of the file. Ignore lines with
dot commands in them. Put the total into the
hex accumulator at $C0-C2 .

$2C34-2C5l -- CALCULATE PAGE/POSITION LINK

Find the number of printed lines per page and
then subtract the top margin, the bottom
margin, and knock one off for either the top
or the bottom line if used. This leaves
the number of printable text lines per page.
Use the hex division subroutine at $53FS to
divide the total number of printable lines
by the printable lines per page . This sub
returns with the page count in $CO and the
line count in the accumulator.

279

280 Applewriter Cookbook

Listing C.9-cont.

$2C52-2C82 -- REPORT PAGE/POSITION TO SCREEN

Print {/] Page prompt to screen. Add one to
page count, convert to decimal and print to
screen. Print Line prompt to screen. Move
line count to hex accumulator, add one, and
print to screen. Adding one is needed since
people count the first line and the first
page as one, rather than zero.

$2C83-2C8E -- ProDOS GET PREFIX MLI

Get the ProDOS prefix and put it in $1FOO.
Exit via ProDOS error processor.

$28CF-2C96 -- CREATE PRODOS SUBDIRECTORY

Get and hold new pathname. Then jump to
ProDOS create routine at $30F6.

$2C97-2015 -- QUIT APPLEWRITER

Code needed to return control to another
ProDOS application or ". SYS" file. Unsplit
the screen. Clear the screen if not WPL.
Prompt user. Get user response. Force upper
case. If not "Y", then abort. If there was
no slot 3 connection before booting, trash
the autostart byte and exit immediately. If
there was a slot 3 connection before booting,
get the connection and put it back in the
ProDOS drivers list. Reset ProDOS default
values. Init slot 3 connection. Trash
autostart byte and exit via ProDOS Quit MLI.

$201C-2044 -- KEYBOARD TO PRINTER/MODEM SETUP

Clear the screen if not WPL. Set the modem
activity flag at $2E71 to $40 for modem
active. Clear the REFQ flag at $2E70. Reset
the REFQ prompt to all normal text. Put
an escape into the active command hold at
$2E72. Prompt the modem setup screen.
Grab the printer or modem hooks.

$2045-2095 -- KEYBOARD TO PRINTER/MODEM PROCESSOR

Get character and save to X register. If
a $00 NULL, ignore and get another. If modem
is not receiving, process character for
possible modem mode change if {esc] or REFQ.
If a change, reprompt REFQ and get another
character. If not, test (E)cho flag. If in
echo mode, print to screen. Test (R) ecord
flag and print to file if needed. Then
print the character to printer or modem.
Finally, get another character, exiting on
an {esc]-Q quit. If the modem is already
receiving, test (F] ilter flag. If filter is
active, ignore all control commands except
carriage return, backspace, and delete.
Print character to screen. If (RJ ecord is
active, print character to file as well.
Finally, get another character, exiting on
an [escJ-Q quit.

Internal ProDOS Applewriter 2.0 Program Details

Listing C. 9-cont.

$2D96-2D9E -- RECORD MODEM TO FILE

If the [R]ecord flag is set, enter the
character to the text file. Abort if not .

$2D9F-2DB0 -- MODEM PROMPT SETUP

Save the current HPOS and VPOS to the stack .
Print the modem prompt to screen in the
upper left hand corner. Restore HPOS and
VPOS. Bash the vertical position.

$2DB1-2DE4 -- MODEM SCREEN PROMPT

Set VPOS and HPOS to the upper left . Bash
new VPOS. If modem command hold is an [esc]
then print entire prompt to top of screen .
I f modem command hold is a R, E,F, or Q then
print the command in brackets, followed by
the (R) ecord string. Decrement the
window top to prevent scrolling.

$2DES-2E36 -- PROCESS MODEM MODES

If the previous key was not an [esc] then
reset the REFQ flag and exit with a cleared
carry. If an "R" then change the "R" in
the modem prompt string to or from inverse.
If an "E" or a "F", likewise change the "E"
or "F" to or from inverse. Exit with a
set carry if R,F, or Q . Note that the
text string serves both as a stash and a
hold for the "R" , "E" , and "F" mode flags .
Fall through to next module if not REF .

$2E37-2E6F -- QUIT MODEM CLEANUP

If not a "Q" for quit, then abort with a
cleared carry. Pop stack twice to cancel
subroutine . Reset window to top of screen.
If in record mode, reformat screen margins .
Prompt for slave mode, saving $00 to modem
activity flag if inactive, and $CO if slave .

$2E74-2EC6 -- SAVE GLOSSARY TO DISK

Get the pathname, aborting on a carriage
return. Set the main utility pointer to
$0800 main memory, the glossary start .
Count the active characters in the glossary,
terminating on the first $00 end marker.
Calculate the length and force feed the
length into the ProDOS Write MLI file for
this module. Save the old pathname to the =
hold. Move the new path name into the
pathname buffer. Set prefix . Set MLI
reference number as a text file. Set EOF .
Fall through to ProDOS Write MLI, saving
from $0800 to the force fed length in main
memory. Go through ProDOS error processor
as a subroutine, then restore the = path
name and close the glossary file.

281

282

Listing C.9-cont.

$2EC7-2ED6 LOAD GLOSSARY FROM DISK

Get the pathname, aborting on a carriage
return . Jump to the WPL program loader

Applewriter Cookbook

and uae it to load the gloaaary by diverting
the load buffer to main memory $0800.

$2ED7-2EDE -- GET AND BOLD PATHNAME LINl(

Get pathname via aubroutine, aborting on a
carriage return . Sava the pathname to the
pathname buffer at $1F00.

$2EDF-2F0A -- GET FILENAME OR VOLUME NAME

Reaet old filename flag $BO. If not WPL,
prompt user for filename. If local $02
flag is set, prompt user for volume name
instead, overwriting the previous prompt.
get user string. if a "?", then do a
catalog and try again. otherwise, quit with
filename or volume name in the keybuffer.

$2F0B-2F35 -- SET MLI REFERENCE FILE NUMBER

Enter at $2F0B for a t extfile, at $2Fl3 for
a binary file, or at $2!'1B for a binary file
that needs created first. Open the file.
Get the reference nwnber and move it to the
tab write, tab read, prt write, prt read,
main read, and main write MLI buffers.

$2F36-2FS9 -- MOVE PATHNAME TO PATHNAME BUFFER

On a carriage return, exit subroutine if
old filename flag not set. If set, exit both
subroutine and calling code by popping the
stack. Otherwise, move the keybuffer to
the pathname buffer, shoving everything one
to the right to make room for a length count .
Quit on a carriage return, and then stuff the
length count into $1F00 .

$2FSA-2F83 -- SAVE TAB FILE

Get and hold the filename. Add a ".TAB"
trailer to the filename. Create and open
binary file . Save via ProDOS Write MLI,
saving the 128 bytes starting at $1D80.
Exit via ProDOS error processor.

$2F84-2FB1 -- LOAD TAB FILE

Get and hold the filename. Add a ".TAB"
trailer to the filename . Open binary
file. Load via ProDOS Read MLI, placing
128 bytes into $1D80-lDFF . Exit via ProDOS
error processor.

$2FB1-2FDA -- SAVE PRINT FILE

Get and hold the filename. Add a " .PRT"
trailer to the filename. Create and open
binary file. Save via ProDOS Write MLI,
saving the $0170 bytes starting at $B780.
Exit via ProDOS error processor.

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.9-cont.

$2FDB-3004 -- LOAD PRINT FILE

Get and hold the filename. Add a " . PRT"
trailer to the filename. Open binary file.
Load via ProDOS Read MLI, loading $0170 bytes
into $8780-BSFO . Exit via ProDOS error
processor.

$3005-JOlC -- GET "SYS.PRT" AND "SYS.TAB" FILES

Enters the initial print and tab values on
bootup . Set SYS filename. Load as tab
file. Then load as print file. Then adjust
screen margins to new margin values .

$301D-3062 -- INITIALIZE A VOLUME

Abort if WPL or glossary is active. Load the
formatter code, destructively overwriting
the glossary and Wk'L files. Execute the
formatter code starting at $0800 as a sub.
Empty the destroyed glossary and WPL files
by zeroing their first bytes .

$3063-30C3 -- CREATE AND OPEN A FILE

Add prefix to pathname . Create a text file
with reference # 2 . If file does not exist,
open it, and then process any errors . Move
the reference number to the MLI routines for
close, get EOF, set EOR, and single byte
PD8 write. If file does axist and matches
"=" filename, then proceed as above . If
no match existing file, prompt for destroy
of existing filename. Get user response.
Force upper case . If "Y", then proceed as
above . If not, then close all files and
re-enter main word processing loop.

$30C4-30DF -- PRINT FILENAME TO SCREEN

Save registers . Print filename to screen if
not WPL, bypassing the length count, forcing
upper case, and quitting on a length count
match. Restore registers .

$30E0-30FS -- OPEN FILE TWO

Place an $02 into the reference number hold.
Process slot and drive if needed. Open
the file via a ProDOS Open MLI, using $1FOO
as the pathname, and $BB00 as the file buffer.

$30F6-310D -- CREATE SUBDIRECTORY

Process slot and drive if needed. Create
a directory using a ProDOS Create MLI,
using the pathname at $1FOO, allowing
reading, writing, rename, or destroy, and
forming a linked subdirectory. Exit via
ProDOS error processor.

283

284 Applewriter Cookbook

Listing C. 9-cont.

$310E-3125 -- CREATE TEXT FILE

Process slot and drive if needed.
a text file using a ProOOS Create
the pathname at $1FOO that may be
and is a standard seedling file.
ProDOS error processor.

$3126-3140 -- ProOOS ERROR PROCESSOR SETUP

Create
MLI, using
modified
Exit via

Abort if no error. Hold the error number to
local stash $00. Save the WPL and glossary
activity status to the stack. Process error
message as live screen entry. Restore WPL
and glossary status. Return to main word
processing service loop.

$314E-31AE -- ProDOS ERROR PROCESSOR

Clear the old pathname . Print to screen only.
If this was an attempt at running a STARTUP
program, then reset the startup flag and
abort. If not, set the string activity flag
$AD, close the present file, close all files,
clear the screen bottom, and ring the ding
dong. Set local pointer $02 , 03 to errror
message file. Print error message leader.
Scan the error message file for the error
number in low ASCI�. If found, print the
high ASCII (normal text) error message up to
the next error number. If the error number
is not on the list, then print the error
number directly to the screen.

$31A9-31AE -- INCREMENT ERROR MESSAGE POINTER

Advance the local error message pointer
$02 , 03 by one count.

$31AF-31O4 -- READ ONE CHARACTER FROM MEMORY

Increment the auxilary utility pointer. Test
to see if a switch from LOFILE to HIFILE is
needed. If so, make the switch. Read the
next character from the text file and force
low ASCII. If not a delete, return with the
read character intact. If a delete, return
with a $00 in the accumulator instead.

$31D5-31E9 -- READ FROM MEMORY SETUP

Update LOCURS pointer. Hold initial cursor
position in the main utility pointer. Set
the auxiliary utility pointer to the start
of LOFILE.

$31EA-3200 -- READ FROM MEMORY OR DISK SETUP

Test the copy from memory flag $77. Go to
previous module if a read from memory. If
a read from disk, set up one sector read of
disk. Force feed buffer of $B900-$8AFF.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9-cont.

$320B-324E -- READ ONE CHARACTER FROM SECTOR BUFFER

If the disk sector buffer $8900-BAFF is
empty or has been completely read, read
a new 512 character sector to this buffer.
Read the character pointed to by $BO and
put it into the accumulator. A force fed
dynamic address change is used in $3242
to allow access of 512 bytes without needing
double wide pointers . Close file if final
character read is a $00 end marker.

$324F-3264 -- ProDOS READ MLI

Read 512 characters from disk into the
$8900 buffer . If end of file, exit without
processing error. If any other error, exit
via ProDOS error processor.

$3265-328C -- TAB SETUP

Calculate the present POS from the last
carriage return . Clear and prompt screen
bottom if not WPL. Get user response . Force
upper case. Process tab Set, Clear, or
Purge. Update the tab status display .

$328D-32A9 -- CLEAR ONE TAB

Scan the 64 pairs of tab addresses in the
tab file, searching for a match to POS. If
a match is found, then zero that address .

$32AA -32B4 -- CLEAR ALL TABS

Set all of the tab addresses in the tab file
$1080-lDFF to $00 .

$32B5-32E7 -- SET ONE TAB

Scan through the tab address file to see if
the tab is already set. If so, abort . If
not, scan through tab address file $1D80-lDFF
to see if there are any available $00 tabs .
If none are available, sound the ding dong
and exit. If a $00 pair is available place
the POS ·tab address value into it.

$32E8-3355 -- DO ACTUAL [I] TAB

Calculate present POS cursor position.
Scan through tab list, finding out if a
tab to the right is possible. If a possible
tab is found, continue scanning, replacing
each possible tab with the lowest possible
tab to the right . If not possible, exit by
reformatting screen margins . If tab is
possible, test open apple key for skip-over .
If not skip over, add spaces until LOCORS
equals the tab value. If skip over, move
characters from RICURS to LOCURS until LOCURS
equals the tab value . Abort on end of RICURS
$FF marker. Exit by reformatting the screen
margins .

285

286 Applewriter Cookbook

Listing C. 9-cont.

$3358-33A9 -- UPDATE TAB STATUS IMAGE

Fill the tab image $B600-B6FF with all dots.
Write a 1, 2, 3 ... etc to each tenth
position, using the 6502 in DECIMAL(!)
mode. Write a suitable "fives" marker to
each five slot, using the single quote for
5-95, the exclamation point for 105-195,
and the vertical bar for 205-235.
Mark the set tabs by scanning through the
tab address file, and complementing the
character in the tab image for each set tab.

$33AA-3382 -- INIT POINTERS AND FLAGS

Init LOFILE. Init HIFILE. Adjust screen
margins. Fall through to next module.

$33B3-33C5 -- INIT FLAGS

Set for normal data line. Use wraparound.
Update entire screen; no bottom prompt. Do
not display page/position. Set data
direction to "<". Reset case flag. Reset
verbatium flag.

$33C6-344E -- MAIN WORD PROCESSING ENTRY

Reset stack. Init flags. Reset busy flag.
Turn screen on. Update HICURS pointer.
Update LOCURS pointer. Reformat screen
margins. Unsplit screen. If startup flag
is set, then get and run startup WPL
routine, and update print values. Either
way, fall through to next module.

$33Fl-344E -- MAIN WORD PROCESSING SERVICE LOOP

Set $FD flag to load to memory. Set $77 flag
to not copy from memory. Clear load string
flag $79 to allow user input. Clear $71 to
use main memory as disk source. If type
ahead buffer is not empty, and if not the
slave modem mode, then update the screen.
If WPL is not active, and if the string
flag $AD is not set, then reset the string
flag, get user response, and redo the loop.
Read the keyboard. If an [esc] and if WPL is
active and if not in a WPL subroutine, then
quit WPL and repeat the main service loop.
Get user character. Get help if open-apple
? or /. Reject all NULL $00 characters. If
a delete key, do the deletion. Otherwise,
process character and repeat loop.

$344F-348D -- FILTER CHARACTER

If WPL but not glossary, process character
as if it were a control command. Bypass
control testing if [V]. Force low ASCII
and process as control command if control
command. Reset case flag. Process carriage
return as control command. Reset the
page/position display flag $78. Send the
character to both file and screen. Reformat
screen markers.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9-cont.

$348E-34C3 -- FILTER CONTROL COMMAND

Force control code and hold locally to $C2.
Test reformat flag $CD and reformat screen if
set. If an [esc] key, toggle the data
display and exit. Turn replace flag $F5 off
unless [R]. Zero mystery flag $ED. Set
main utility pointer to start of control
command prompt file. Scan the control
prompt file, going one past each "[" seeking
a match to the current control character.
If a match is found, remember twice its
position in the list to the X register. If no
match if found, quit on end $00 marker.
Use the X register position pointer to pick
an address pair. Shove this pair on the
stack, and do an RTS, using the forced sub
return method to do an indirect jump to the
intended control function. Note that the
jump goes to the forced address PLUS ONE.

$34F9-3528 -- SPLIT SCREEN SETUP

If WPL is not active, clear the bottom of the
screen and put down the (Y] user prompt.
Get user response and clear prompt. Force
upper case. If a "Y", turn split screens on.
If a "N", turn split screens off. If a
carriage return, swap screens only if [Y] is
already active.

$3529-3533 -- SWITCH TO OTHER SPLIT SCREEN

Abort if [Y] is not active. Switch screens
by changing the "V" slot of $F8 from one to
zero, or vice versa. Jump to screen pointer
fixer.

$3534-353F -- TURN SPLIT SCREEN ON

Force [Y) flag to split screen on, lower
screen active. Set the split screen pointer
$F9,FA to the present LOCURS position. Jump
to screen pointer fixer.

$3543-354E -- TURN SPLIT SCREEN OFF

Abort if WPL is active. Reset split screen
flag to $00 for one full screen. Jump to
recalculate the vertical screen position.

$354F-357D -- FIX SPLIT SCREEN POINTERS

Update the screen. Exit if split screen is
off. Check which split screen is active, and
calculate VPOS position, using $00 for the
top screen and $QC for the bottom screen,
twelve lines down. Save the static cursor
position to $98,99. Save the present LOCURS
cursor position to $F9,FA. Move characters
from HIFILE to LOFILE or vice versa as needed
to get to the desired point in the file.
Init LOFILE on underflow.

287

288 Applewriter Cookbook

Listing C. 9-cont.

$357E-3593 -- CALCULATE SCREEN WINDOW

If upper split screen, set window top at $00
and window bottom at $0C. If lower split
screen, use $0C and $18. If full screen use
$00 and $18. Set horizontal cursor to left.
BASH tha vertical screen address.

$3594-359£ -- TOGGLE DATA LINE DISPLAY

Advance the $ES data display flag to its
next of three possible values, with $00
being no display, $80 being the usual
HEM-LEN-POS display, and $CO being the tab
display.

$359F-35AD -- TOGGLE WRAPAROUND MOOE

Abort with ding dong if the screen right
margin is not set to 80 characters, since
broken words are only allowed on a full
screen display. If a full screen display,
change the $El wr�paround flag either from or
to its $00 whole words, or its $FF broken
words setting.

$3SAl'-35BS -- TOGGLE CARRIAGE RETURN DISPLAY

Change the $74 carriage return flag either
from or to its $00 normal display or $FF
show returns as an inverse ''M" character.

$35B6-35BC -- TOGGLE VERBATIUM FLAG

Change the $72 [V]erbatium flag either from
or to its $00 normal use of characters or its
$FF imbed control characters directly into
text state.

$35B0-35C2 -- PROMPT SCREEN BOTTOM ANO GET RESPONSE

Short code link to first prompt the screen
bottom and then get the user response.

$35C3-3508 -- FORMAT FILENAME ANO PRINT TO SCREEN

Clear and prompt screen bottom. Print the
old filename to the screen. Get any user
changes to the filename. Abort on a
"'?" for catalog or a carriage return. If
the "=" filename is to be used, scan the
old filename to the first comma, and then
copy the keybuffar beyond the comma. If a
new filename, transfer the entire filename.
Zero out the rest of the filename buffer.
Bold the filename length to $E9.

$360B-3623 -- CLEAR ANO PROMPT SCREEN BOTTOM

Abort if WPL is active. Clear bottom of
screen. Print the selected control command
prompt to screen, stopping on the first
space. Then print a "·" to screen.

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.9-cont.

$3624-3637 -- SET CURSOR FOR BOTTOM WINDOW

Set HPOS to zero. Set VPOS to 9 lines from
window top if split screen, or 21 lines from
window top if full screen. Makes room for
three lines, usually a blank line, a prompt,
and a second blank line. BASH VPOS.

$3638-3646 -- CLEAR BOTTOM OF SCREEN

Set cursor for window bottom. Clear window
if not WPL. Increment and BASH VPOS.

$3648-366B -- SAVE TEXTFILE SETUP

Zero save/adjust flag $3647. Use auxiliary
memory as file source by setting $71. Save
the old filename to the "=" buffer. Print
old filename to user prompt. Get any user
changes to the filename. If a "?", then
catalog disk, restore old filename, and try
again. Abort on a carriage return. On any
other filename, fall through to next module.

$366C-36C9 -- SAVE ENTIRE TEXTFILE TO DISK

Set $AD flag to use old filename. Read the
last character in the filename. If "+" then
set the Append flag $E2 and zero the "+" out
of the filename. If not, clear $E2. Copy
LOCURS to $98,99, remembering present cursor
location when finished saving. If adjust
bypass processing that follows. If save,
filter filename for special delimiters. If
any are found, process via next module. Move
cursor to end, putting everything in LOFILE.
Save file to disk. Update screen markers.
Reset old string flag and adjust flag. Move
enough characters from LOFILE to RIFILE to
restore old cursor position.

$36CA-3726 -- SAVE PART OF TEXTFILE TO DISK.

Process special delimiters. Zero last
delimiter. Save present cursor position to
auxiliary utility pointer. This transfers
to the actual disk write routines as a
starting address. Begin moving characters
from RIFILE to LOFILE, one at a time.
Compare each character against the first
character in the delimiter string. If no
match, keep scanning characters. If a match
try to match next character in the delimiter
string. Substitute carriage returns and
bypass wildcards as needed. If no perfect
match, abort by moving all the characters
back to the original LOCORS position, and
then restoring the old filename. If a match
is found, write to disk, using $AE,AF to mark
the start of stuff to be saved, and $84,85
LOCURS to mark the end. Then update the
screen markers, reset the string flag $AD,
move everything back to the original LOCURS
position, and restore the old filename.

289

290 Applewriter Cookbook

Listing C. 9-cont.

$3727-3747 -- SET FILENAME COUNT

Move the filename at $8700 into the filename
hold at $1F00, carefully shifting everything
one to the right to make room for the length
count. Count only numerals, letters, commas,
and periods, stopping on any control command
or any other punctuation. Save the length
count fo $1FO0.

$3784-377C -- WRITE TEXTFILE TO DISK SETUP

Force entire file to low ASCII. Abort if
only an adjust, rather than a save. Find
length by subtracting LOCURS from the aux
utility pointer $AE, AF. Open filename. If
append, set mark via MLI. If not append,
set end of file via MLI. Save as many
sectors as needed to disk using next module.
Close file when finished.

$377D-37DC -- WRITE ONE SECTOR TO DISK

Read first character of the portion of the
text file to be saved into $B900. Continue
copying until no more characters needed or
until buffer fills at 512 characters. On
each buffer filling, write a new sector
to the disk. Read aux or main memory per
flag $71, using aux memory for a normal
textfile save. Save length to data buffer.
Exit via ProDOS error processor.

$37DD-37F8 -- CLOSE FILES

Enter at $37DD to close all files. Enter
at $37E5 to close any one file. Poke
file reference number to MLI buffer, using
$00 for all files, and the number on any one
file. Close the files with a ProDOS Close
MLI. Reset buffer to close all.

$37F9-380B -- ProDOS GET EOF MLI

Find the length of the currently open file,
reporting to the buffer at $380C. Load
the registers with the possible 24 bit
length result, with X = MSB (normally zero)
Y = middle 8 bits, and A= LSB.

$3811-3830 -- ProDOS SET MARK MLI

Copy the reference number from set mark to
get EOF. Save new end-of-file marker from
X register MSB (usually zero), Y register
middle eight bits, and Accumulator LSB.
Do set mark MLI, setting the new endpoint to
the file. Used during Append.

$3831-387C -- POSTFIX SLOT AND DRIVE SETUP

Abort if the first character in the filename
is not a comma or period. Zero the slot and
.drive stashes at $38D3, 38D4. Read the
filename. Force upper case. If a slash is
found, hold distance to slash in $38D4, and

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9-cont.

fall through to next module. If nothing
beyond comma or period, also fall through to
next module. If a D for drive, insert O for
drive 1 or 1 for drive 2 into MSB of $38D3.
If a .s for slot, force range to 0-7 and shift
to put $38D3 into ProDOS DSSS 0000 format.

$387D-38D5 -- POSTFIX SLOT AND DRIVE

Check the DSSS 0000 stash. If slot zero,
force slot six instead. Get volume name from
Prooos on-line MLI using this slot and drive.
Truncate to sixteen characters maximum,
loading into $B900 path name buffer. If a
postfix exists, append it onto the path name.
Add a slash to the start of the pathname, and
Then move the pathename to the $1FOO buffer.
Count the characters in the pathname and save
the character count to $1FOO.

$38D6-38ES -- FIND PATHNAME OF INTENDED SLOT AND DRIVE

Store the DSSS 0000 in the accumulator into
the MLI buffer. Do ProDOS On-line MLI to
load name of disk in target drive into path
name buffer at $B900. Exit via ProDOS error
processor.

$38E6-38FD -- OPEN TEXT FILE

Calculate filename length and save to $1FOO.
Use $04 text file and reference number $01.
Open file via ProDOS Open MLI. Transfer
reference number other MLI links . Get EOF
of current file and save to EOF stash at
$3918 (low), $3919 (med), and $391A (high).

$391B-3928 -- ProDOS SET EOF MLI

Reads the current open file and appends the
current end position. Position must have
been pre-poked into $3926 (low), $3927 (med),
and $3928 (high). Exit via ProDOS error
processor.

$3929-3949 -- PROCESS SPECIAL DELIMITERS

If the usual "/" delimiter that does not
allow any fancy stuff, put an $01 into $EC,
the any length stash, an $02 into $EB the
fake carriage return stash, and an $03 into
the $EA wildcard stash. If a special
delimiter is used, put the next higher ASCII
character into $EC, the next one after that
into $EB, and the next one after that into
$EA. For instance, a "<" delimiter will
have an any length "=", a fake carriage
return ">", and a wildcard "?". Note that
these four ASCII characters follow each other
in sequential numeric order.

$394A-398D -- LOAD SETUP

Hold the current LOCURS position in $BA, BB
formatting pointer. Set the old string flag
$AD to $FF. Set the memory load flag $71 to

291

292

Listing C.9-cont.

Applewriter Cookbook

$FF for a load into auxiliary memory. Save
the old filename to the "=" file. Force
normal case, load rather than append, and
included delimiters. Print filename to
user prompt and get any changes, saving new
filename length to $E9 stash. Read the
last filename character and compare it to
UT, usually a "\" for screen-only load. If
a screen only load, zero the symbol and set
the screen-only flag $FD. If a question
mark as the first character, do a catalog and
try again. If a carriage return, fall thru
to cleanup. If a legal filename, fall thru
to next module.

$398E-3A0E -- LOAD PROCESSING

Zero out the three delimiter stashes at
$A2-A4. If the first character is a "#" for
copy from memory, then set the copy from
memory flag $77. Scan the filename for
delimiters. If delimiters found, then
process special delimiters, and zero the
final delimiter out of the filename. If
delimiters exist, scan the filename and save
the delimiter positions to $A2-A4. If
delimiters exist, check the final character
for "A" or "N". If "A", set all-occurance
flag $D2. If "N", set exclude delimiters
flag. Set up disk or memory read. If no
delimiters, read directly to textfile from
textfile or disk. If delimiters, fall thru
to next module.

$3A0F-3AAB -- LOAD WITH DELIMITERS

Get first character from $B900 buffer and
hold to line justify buffer. Read load
string. If a wildcard, get next character.
If a fake carriage return, substitute a
real carriage return. Compare for a match.
If no match, get next character. If a match
and if delimiters to be included, then
continue matching and put first delimiter
into memory. Continue reading characters,
watching for the second delimiter if present.
If third delimiter is present and delimiters
are to be omitted, swallow end delimiter
string from textfile to swallow buffer.
If no third delimiter, read characters till
end of file. If all occurance flag is
set, repeat search for new first delimiter
string as often as needed. Fall through
to load cleanup module below.

$3AAB-3ACA -- LOAD CLEANUP

Close file. If load was to screen only, put
down return prompt. Restore old filename if
it exists in the "=" file. Reformat screen
margins.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9-cont.

$3ACB-3B52 -- FIND SETUP

Clear the case flag $C4, the all occurance
flag $E2, and the page/position flag $78.
Set the continue search flag $AD. Clear and
prompt the screen bottom. Print the old
search string to the prompt, and get any user
changes. Abort on carriage return. If "="
then use old find string by moving it to the
keybuffer. Save the new find string to the
"=" buffer, thus updating to the latest find.
Get the first delimiter and process special
delimiters. Zero out the search pointer $A2
and the replace pointer $A3. Scan the string
for delimiters, saving them to pointers $A2
and $A3. Check for an "A" at the end and
set the all occurance flag $E2 if found.
Fall through to next module.

$3B53-3BF9 -- SEARCH TEXT FOR FIND MATCH

Put LOCURS into the search pointer $98-99.
Read the keyboard and exit on [esc]. Scan
for match, setting the any length flag $C9
if needed. If a wildcard, skip the match
for that character. If a fake carriage
return, substitute a real $0D carriage
return. Compare the match character against
the cursed character in the textfile. If
a match, then continue trying for a match on
successive characters. If no match, continue
the search, going in the direction set by
the data direction flag $CF.

$3BFA-3C21 -- FIND FOUND PROCESSOR

Reprompt screen bottom and get user response.
If a "Y", do the replacement. Reprompt for
continue after replacement. Force upper
case and abort if not a carriage return.

$3C22-3C4E -- REPROMPT FIND SCREEN

Update the screen. If not WPL, clear screen
bottom and reprompt. If replace, add the
replace trailer as well. Get user response.
Force equivalent control command, and return.

$3C51-3C74 -- DO REPLACEMENT

Move the "found" string from HIFILE into
a work buffer at $1C00, aborting on the $FF
high end of HIFILE, and repeating if all
occurance. Then move the replacement
string into LOFILE, using real carriage
returns, and substituting characters as
needed from the $1C00 file for wildcards and
any length strings. If the data direction is
">" then move characters from HIFILE to
LOFILE to get to the start of the string
for a resumed search. For either data
direction, reformat the screen markers and
exit, preserving accumulator to stack.

293

294 Applewriter Cookbook

Listing C.9-cont.

$3CAC-3CCA -- MOVE CHARACTER BETWEEN LOFILE AND HIFILE

Subtract the $99 search pointer from
LOCURS. If less than LOCURS, then move
characters from LOCURS to HICURS. If equal
to LOCURS, then abort. If greater than
LOCORS, then move characters from HICORS to
LOCURS. Abort if you get to the start of
LOFILE or the end of HIFILE.

$3CCD-3CF6 -- NEW PROMPTER

If WPL is not active, then clear the bottom
of the screen and put down the erase verify
message. Get user response and force upper
case. Abort if not "Y". Init pointers and
flags. Erase old filename.

$3CF7-3CFD -- FORCE UPPER CASE

If a lower case character, subtract $20 to
force upper case. NOTE: This is a sloppy
case forcer as certain punctuation will also
get changed.

$3CFE-3D0C -- OUT OF MEMORY CLEANUP

If WPL is active, then quit WPL. Set the
old string flag $AD. Ring the ding dong.
return with a $FF in the accumulator.

$3D0D-3DlD -- UPDATE CASE CHANGE FLAG

Check the case flag $ES. If the first entry
then force upper case to $CO flag. If a
repeat entry, then change from upper to lower
or vice versa.

$3DlE-3D24 -- TOGGLE DATA DIRECTION FLAG

Change the data direction flag $CF from or to
$00 "<" or $FF ">".

$3D25-3D2B -- TOGGLE REPLACE FLAG

Toggle the replace mode flag $F5 from or to
$00 (no replacement) or $FF (replacement) .

$3D2C-3054 -- CALCULATE POSITION IN PARAGRAPH

Save LOCURS position to $AE auxiliary utility
pointer. Back $AE up to the first character
in the present paragraph. Subtract this
position from LOCURS, holding the difference
in TAB position pointer pair $96, 97.

$3055-3E57 -- UPDATE STATUS LINE

Check display flag $ES. If normal display,
calculate POS, and then put down header in
inverse, using high ASCII tab values, and
fixing the mouse nest when needed. Rome the
cursor. Display "<", ">", "U", or "L" in
inverse to the first character of either the
normal or tab status display. If a tab

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.9-cont.

display, show the image of the tab file at
$8609 to the top screen line in inverse.
Then advance the top of the display window
one count downscreen, and BASH this address
while exiting. If a normal display, test
and display "V" or "R" mode flags. If the
type ahead buffer is busy, show a "*" to the
next slot. If wraparound (whole word breaks)
is in use, put an inverse "Z" in the next
slot at the top of the window. Calculate the
remaining memory by subtracting HIMEM-LOMEM,
converting the result to decimal and printing
it in inverse. Calculate position by
subtracting the starting address $0800 from
LOFILE. Display position in inverse decimal.
Verify 80 column screen. Display TAB value
in inverse decimal. Get filename from $8700
stash and display in inverse, aborting on
28 characters maximum. Print inverse spaces
to end of line.

$3E58-3E68 -- PRINT INVERSE DECIMAL TO SCREEN

For up to five digits, get the decimal digit
from the decimal accumulator. If a zero,
substitute an inverse space for all leading
zeros. Fix mouse nest and print to screen
in inverse.

$3E69-3E7C -- FIX MOUSE NEST

If an inverse ASCII character is coded from
$60-7F, subtract $40 from it so it will
display as an inverse upper case character,
rather than as a mouse nest character.

$3E7D-3E84 -- GET CHARACTER FOR PRINTING

Read the character in LOFILE that the printer
pointer is pointing to. Force low ASCII.
Return with character in accumulator.

$3E85-3EAA -- FORCE FILE TO LOW ASCII

The text file holds characters in low ASCII
except for the LAST character in each screen
line, which is set to high ASCII. Save
the aux utility pointer $AE. Read LOFILE,
forcing all characters to low ASCII and
erasing any old end-of-screen-line high ASCII
markers.

$3EB2-3EDA -- UPDATE SCREEN MARKERS

Enter at $3EB2 if from LOCURS, or 3EBA if
from aux utility pointer $AE,AF. Pass OT
to screen line formatter. This allows breaks
on an underline token, as well as on a whole
word space. If present, the UT appears as
the last line character. Clear reformat
needed flag $CD. Back up two screen marks
and reformat two lines if not to beginning
of file. Only the last two screen lines
normally need reformatting.

295

296 Applewriter Cookbook

Listing C.9-cont.

$3EDB-3F79 -- MARK ONE SCREEN LINE

Start at the beginning of the screen line and
begin scanning characters, looking for a
carriage return, an end of HIFILE marker,
or a match to the right screen margin.
Allow for a switch to HIFILE, handle the
possible end-of-line underline token, and
resolve left screen margin offset as you do
the scanning. When an end is found, remove
all high ASCII characters from the present
screen line, and then mark the end of the
present screen line in high ASCII.

$3F7A-3F82 -- SET POINTER TO HICURS

Move a copy of HICURS into the auxiliary
utility pointer $AE,AF.

$3F83-3FA4 -- CASE CHANGER

Save the most significant bit of the
character since this is a screen marker flag.
If the case flag is set to "U", then subtract
$20 only from legitimate lower case letters,
forcing them to upper case. If the case flag
is set to "L", then add $20 only to
legitimate upper case letters, forcing them
to lower case. Restore MSB screen marker.

$3FA5-3FE5 -- UPDATE SCREEN SETUP

If format needed flag $CD is set, then
reformat screen markers. Abort if screen
display flag $F7 is cleared for no display.
Calculate left screen margin. Add $50 or
eighty characters to set the right screen
margin. Set Bash needed flag $8B. Set
screen VPOS to top of screen window. Test
split screen flag and prompt flag, using
a 24 line screen if not split, a 12 line if
split, and three lines less either way if the
page/position display is active. Save this
bottom updateable line to $CS. Bash VPOS.
If the status line flag is set, update either
the main or tab status line. Fall through
to next module.

$3FE6-4044 -- FORMAT SCREEN LINE TO BUFFER

Read the keyboard, saving any keystrokes
to type-ahead buffer. Back pointer up to
the end mark on the last screen line. If
$00, switch to HIFILE. Get and hold
screen character, moving it to the screen
formatting buffer at $1COO. Check wraparound
flag $El. If words may be broken, fill
buffer with 79 characters. If a carriage
return and if er flag $74 is set, then
save an inverse "M" to the buffer. If words
may not be broken, fill to 79 characters, and
then back up to previous space. "Erase" the
old word fragment by overwriting it with
spaces. Upon fallthrough, line is formatted
and pointer points to start of first needed
whole word for the next line.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9-cont.

$4045-4081 -- PRINT LINE TO SCREEN

Take the 80 characters in the screen line
buffer and route all even characters to the
main memory screen store, working from
high to low. Then route all odd characters
to the auxiliary memory screen store, again
working from high to low. Fall through to
next module.

$4082-40B8 -- CONTINUE SCREEN UPDATE

Increment VPOS and Bash it. If additional
screen lines are needed, format and print
them one at a time. If page/position flag
is set, add page/position display to window
bottom. Set cursor to LOCURS-HICURS change
in middle of window and Bash VPOS. Set
cursed character to inverse ASCII.

$40B9-40C4 -- GETl<EY LINK

If WPL is not active, get user response while
preserving the Y register contents.

$40C5-40DC -- SWITCH SCREEN POINTER TO HICURS

Abort if X register is $00. Remember the
HPOS at which the switch takes place to $SA,
so cursor can later be correctly positioned.
Set the screen pointer $88-89 to HICURS.

$40DD-40FS -- PUT CHARACTER ON SCREEN IMMEDIATE

If a printable character, force high ASCII
for normal text. If a control character,
force low ASCII for inverse text. Divide
the Y-register horizontal position by two
and place an even character to the even
screen page or an odd character to the odd
screen page, using the Bashed value of VPOS
held in screen pointer pair $28,29.

$40F6-4158 -- WPL ERROR PROCESSOR

Save error number to $C2. Clear bottom of
screen and quit WPL. Print WPL error prompt
Scan through the WPL error message file and
count carriage returns. When the number of
carriage returns matches the error number,
then print that error message to screen. If
error zero for "Label not Found", then
print the unfound label to the screen. Put
down return prompt and await user response.

$415A-4179 -- PRINT/PROGRAM REPROMPTER

Re-entrant code is used to allow continuous
refresh of P/P values until a carriage return
rather than a P/P value is entered. Show
the P/P values. Clear the screen bottom.
Save prompt pointer and get new response,
then restore prompt pointer.

297

298 Applewriter Cookbook

Listing C. 9-cont.

$417A-4lA5 -- PRINT/PROGRAM PROMPTER

Clear and prompt screen bottom. If a "?"
display P/P values and reprompt via above
module. Save the P/P command first letter
to $A2 and the second letter to $A3. Try to
process the P/P command, putting a value into
the P/P stash, or doing the WPL command. If
a carriage return, exit the reprompter by
double-popping the stack.

$41A6-41B3 -- STRIP P/P COMMAND FROM KEYBUFFER

Remove and destroy the first two characters
from the keybuffer by backing everything up
by two characters, aborting on a carriage
return. Removes the P/P command but saves
the "argument", such as a filename or a
numeric value.

$4184-4215 -- SUBSTITUTE (X)-(Z)

Scan the characters in the $1FOO workl:>uffer,
looking for a " (" . See if there is a ") "
two spaces further on. If so, check inside
and force upper case. Range check on "X",
"Y", or "Z". If a WPL numeric is found,
change it to decimal and put it in the
keybuffer. If no WPL numeric, then transfer
from $1FOO back into the keybuffer. Repeat
until a carriage return, making as many
substitutions as are needed.

$4216-4236 -- SCAN FOR [P] MATCH

If WPL is active, substitute (X) -(Z) .
Convert to hex. Scan the P/P functions list
seeking a match to both $A2 and $A3. Abort
if no match found.

44237-4287 -- ENTER NUMERIC P/P VALUES

Hold twice the match value to $C6. If a WPL
command, fall through to next module. Test
the sign bit, unless PM, which is always
relative. If absolute, add the new P/P value
to zero and store it. If relative, add the
new P/P value to the old one and store it.
Note that subtraction is done by two's
complement addition for negative values.
If the PN command, move new PN to running
page counter $BE-BF. If any margin command,
adjust the screen margins.

$4288-42B9 -- PROCESS NON-NUMERIC P/P COMMANDS

If UT, save character to $B80E, replacing
UT with $00 if a space or a carriage return.
If a justify command, convert command to
$00 = LJ, $01 = FJ, $02 = CJ, or $03 = RJ
and save to justify stash $B8EO. If a WPL
command, get address out of WPL command
address file, shove on stack, and do an
indirect jump by way of the forced subroutine
return method. Note: jumps to listed address
PLUS ONE.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9-cont.

$42BA-42E6 -- WPL COMPARE STRING CS

Ignore any leading spaces in the keybuffer.
Hold the leading delimiter to local stash
$00 and scan for second delimiter, aborting
on a carriage return. Hold first delimited
posit.ion in Y register, second in the X
register. Scan the length of the first
string. If all characters match, exit with
$AD cleared. If no match, set $AD to $FF.

$42E7-4304 -- WPL SUBROUTINE SR

If WPL subroutine stack is more than 32 deep,
exit and ring the ding dong, putting down an
error message. Save the WPL program counter
to the WPL subroutine stack and increment
the WPL stack pointer by two. Then do a
WPL GO as an unconditional jump.

$4305-43lA -- WPL SUBROUTINE RETURN RT

If nothing is on the WPL subroutine stack,
exit and ring the ding dong, putting down
an error message. Get the current address
pair out of the WPL stack and force it on
the WPL program counter $A0,Al. Decrement
the WPL stack pointer by two. Program
reesumes where it left off, before the sub.

$4310-4320 -- WPL DISPLAY ON/OFF

Enter at $4310 for ND and $431E for $YD.
Store a $00 to the display flag to turn the
display off. Store a $FF to the display flag
$F7 to turn it on.

$4321-4354 -- WPL STRING LOAD LS

Identify which WPL string. Saving LOCURS,
load the WPL string from disk or from memory
immediately below HICURS in HIFILE. Then
move the loaded string into the keybuffer and
zero RICORS. Force carriage return onto end
of string in keybuffer. Note: string space is
"borrowed" from unused area below HICURS.
This routine will not work properly if memory
is within 64 characters of being full.

$4357-4385 -- WPL STRING IDENTIFIER

Scan the keybuffer, looking for an "=" that
is followed by a "$". If found, get next
character, force upper case and range check
for "A" through "D". Convert string letter
into offset in $02 such that "A" = $00,
"B" = $40, "C" = $80, and "D" = $CO. These
will then point to the respective string
start in the WPL string file.

$4386-4397 -- SET UP PRINT TO DISK PD8

Clear the screen if not WPL. Prompt and
get the PD8 filename. Handle source and
drive if changed. Create and open textfile.

299

300 Applewriter Cookbook

Listing C'. 9-cont.

$439A-4 3AB -- WRITE ONE CHARACTER TO DISK

Used by PDS. Enter with character in the
accumulator and save to MLI buffer. Do a
ProDOS Write MLI of a single byte, using
the saved character as a data value.

$4397-43C0 -- SET PRINTER, THEN STALL

Set the printer destination with the next
module. Then delay for half a second.

$43Cl-4414 -- SET PRINTER DESTINATION

Reset modem activity flag. Get the print
destination. Multiply by 16 and save to
$DE stash. If a PDS, set up print to disk,
then force continuous paging. Then set
print destination pointer to $4397. If PD1-
PD7, save the old character output hooks.
Load the character output hooks with $Cl00 if
slot one, $C200 if two, etc. Output a NULL
to activate the printer or modem card Save
new printer hook to $9E, 9F. Note that this
gives the printer card a way to modify its
$C100 warm link to $Cl03 or whatever.
Restore old printer hooks. Then send baud
rate and other commands to printer or modem
card. If PD0, set print to screen hooks
by setting printer destination to $4415.

$4415-441C -- PRINT TO SCREEN LINK

Abort on a linefeed. Otherwise print to
screen via main routine at $2413.

$441D-44A0 -- SHOW PRINT/PROGRAM VALUES TO SCREEN

Unsplit the screen. Clear the screen if
not WPL. Set the main utility pointer to
point at the print/program background copy.
Print one numeric entry at a time, down
through CR. After each prompt, get the
needed print/program value from the $B8C0
stash, convert it to decimal, and place it
in the right slot. Follow with a carriage
return. Print the underline token directly
to the screen. Bypass the (X) - (Z) values
in the print/program stash when getting
numeric values. Print justify prompt and
convert the j ustify mode to ASCII LJ, FJ,
CJ, or RJ, and print to screen. Print the
top line prompt, then the top line. Ditto
for the bottom line. Print a return prompt
if not WPL.

$44Al-44BA -- PRINT SINGLE PRINT/PROGRAM PROMPT

Enter at $44Al to start with a carriage
return, $44A6 otherwise. Print the selected
prompt from the prompt file up to its ending
$3D marker, aborting on the $00 end of file.
Print a single space after the prompt.

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.9-cont.

$44BB-44C7 -- SAVE OLD FILENAME TO = BUFFER

Move the current filename in the $B700
buffer to the filename hold "=" buffer
at $1F40. Hold the most recent character
in the X register. Abort on a $00 ending
marker.

$44C8-44D4 -- RESTORE OLD FILENAME FROM = BUFFER

Move the held old filename in the $1F40 "="
buffer to the current filename buffer $B700,
aborting on a $00 end marker.

$44D5-44ES -- LOAD GLOSSARY VIA WPL DO ROUTINE

Turn glossary off. Set accumulator to $08,
the starting page of the glossary load. Go
to the next module, tricking the module to
load a textfile into the glossary, rather
than into the WPL file.

$44E6-453B -- WPL DO MODULE

Set the WPL activity flag $OF to MSB on.
Bypass initing DO routine if a glossary load
instead. If really WPL, set the WPL program
counter to $1000, the start of the WPL file.
Reset the subroutine flag $E7, and the old
string flag $AO. Save the old filename to
the "=" file. Move the filename of the WPL
routine into the current filename buffer.
Do a disk read, loading either into the
glossary or WPL file as requested. rf
an overflow, sound the ding dong and put
down an error message . If no overflow,
when finished, mark the end of the glossary
or the WPL file with a carriage return and
an ending $00 marker.

$453C-456A -- TRANSFER KEYBUFF --> FILE NAME BUFFER

If the old filename is to be reused because
of an "=" command, set the $BO filename flag
and exit. If a new filename, clear the $BO
filename flag. Bypass all leading spaces
in the filename. Move the filename from the
keybuffer $0200 to the filename buffer $B700
starting with $B701 and ending on a carriage
return. Save the length count to $B701.
Fill the rest of the filename buffer with
all zeros.

$456B-4580 -- NOT REFERENCED

This code module also moves a copy of the
keybuffer into the filename buffer, except
there is no length count and no zeroing of
the rest of the filename. Upper case is
also forced. Apparently no longer used.

$4581-45AF -- WPL INTERPRETER

Check keyboard for [esc] hit and quit WPL if
present. If string flag $AD is active, get

301

302

Listing C.9-cont.

Applewriter Cookbook

string character from $A-$D file. Clear
apple key stash. Test for end of command
line carriage return. If not, read next
WPL character per the next module. If a
carriage return, check next character and
exit if end of WPL. If a label is present,
skip over all non-space characters in the
label. This leaves the WPL program counter
pointing to the command control character
in the next WPL line.

$45B0-4502 -- TEST WPL FOR STRING

Get the character from the WPL program file.
Quit WPL if $00. Increment the WPL program
counter and hold the character to $SC. If
the previous character was an "=" (held in
X Register from last trip), and this one is
a "$", then initialize a string read with
the next module.

$45D3-45EF -- SET UP WPL STRING

Convert the A-0 into an index $00, 40, 80,
or $CO. Increment the WPL program counter.
Read the first character. If $00, then
no string is present, so zero the $F6 string
flag and go get another character. If a
real character, advance the string pointer
by one and exit with the first character in
the accumulator.

$45F0-4603 -- QUIT WPL

Reset the WPL activity flag $OF, preserving
the glossary activity status. Reset the
key strobe. Turn the display on. Equalize
the keybuffer pointers. Exit with $FF in
the accumulator, which cancels the final
WPL interpreter loop.

$4604-4607 -- ENTER BOTTOM LINE BL

Trick the next module into handling the
bottom line by giving it a 128 character
offset so it points to the bottom line file
rather than the top line file.

$4608-4627 -- ENTER TOP LINE TL

Move the keybuffer into the $B7CO top line
buffer or the $B840 bottom line buffer,
ending on a carriage return. Ring the ding
dong if more than 128 characters in string.
Mark the end of TL or BL with a $00 marker.

$4628-4635 -- PAD BOTTOM LINES

Add space and carriage return to each bottom
line until the last printable line $7C
matches the page interval $B8CE.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9-cont.

$4636-4643 -- PROCESS CONDITIONAL FORMFEED

Test conditional formfeed $CO. If not, do
unconditional formfeed with next module.
Subtract the line counter from the last line
hold to find the remaining room on the page.
Compare room on page against conditional
feed $CO. If formfeed is needed, fall thru
to next module.

$4644-4652 -- DO UNCONTIDIONAL FORMFEED

Print a space and carriage return to each
line until the running line counter matches
the last line stash. Set the end of page
$FF flag and exit.

$4653-465C -- PRINT SPACE AND CARRIAGE RETURN

Print a space and a carriage return as needed
to pad blank lines on printout. WARNING:
introduces a possible "page creep" bug to
top and bottom lines. TL and BL printing
routines should enter this at $4658 instead
so that these lines are no longer than the
rest of the printed lines. Creep problem
usually shows up when both printer and
Applewriter are set to RM80, and the TL or
BL is .suppressed on the first page.

$465D-46AC -- WPL UNCONDITIONAL JUMP

Set WPL flag $OF without hurting glossary
status. Read the keybuffer, advancing
beyond any spaces to get to the start of
the label. Hold label pointer to local
stash $05. Reset subroutine flag $E7.
Reset WPL program counter to start of WPL
file at $1000. Scan through the WPL program
with the WPL program counter, stoping one
beyond each carriage return. Search label
for an exact match, exiting on a space or
a control command. If no match, go on to
one beyond the next carriage return.
do this until a match is found or the entire
WPL program is scanned. If no match, exit
with LABEL NOT FOUND error message and print
the label not found. Hold the first label
character to $SC and exit with the WPL
program counter pointing just - beyond the
label on the found line.

$46AD-46D5 -- WPL PRINT TO SCREEN

Scan the keybuffer, printing one character
at a time to the screen. Abort on either a
carriage return or on the "=$" needed by the
PIN command.

$4606-4713 -- WPL GET USER INPUT

Print the PIN line up to "=$", using the
previous module. Find the string A-D
character and range check. Set string
pointer offset so that A = $00, B = $40,
C = $80, or o = $CO. Hold offset to local

303

304

Listing C. 9-cont.

Applewriter Cookbook

stash $02. Save the WPL and glossary flag
status $OF. Get string from user. Restore
$OF status. Test for string assignment
needed. Fall through to next module if the
string needs assigned.

$4714-474C -- WPL ASSIGN STRING

If a new string assignment, use the
WPL string identifier to calculate the
string offset and verify legality. Move
the string from the $0200 keybuffer into the
string file $1EOO, using an offset of A = $00,
B = $40, C = $80, and D = $CO. Continue
until a carriage return, and end with a
forced $00 marker.

$4740-4778 -- SETUP TL OR BL PRINTING

For bottom line BL use an offset of $80 and
the $B840 file. For top line TL use an
offset of $00 and the $B7CO file. Calculate
the RM-LM printable line length. Save the
old underline mode, and start without any
underline. Zero local left, center, right
routing flag $00. Fill the line formatting
buffer $1FOO with all spaces. Mark the
end of the formatted line with a $00. Save
the first TL or BL delimiter to $E6. I f
$00, then bypass next module and do not print
a TL or BL.

$4779-47C8 -- FORMAT TOP OR BOTTOM LINE

The top or bottom line is read from its
compact form (delimiters and " # ") buffer at
$B7CO or $B840 and is then expanded (spaces
and full page number) into the formatting
buffer at $1FOO. The $0200 keybuffer is
used as a temporary work area, to simplify
entry of page numbers and the center- and
right-j ustification process. This keybuffer
works in a "batch" mode, in which it first
formats the left justified portion and moves
it to the line buffer, followed by center,
and finally right. Should a "#" crop up,
the running page number is substituted into
the keybuffer. Pointer $00 keeps track of
the three trips needed, with $00 = left, $01
= centered, and $02 = right. The left string
enters at the left margin. The center
string starts half the number of center
characters shy of center. The right string
starts the number of right characters shy
of extreme right.

$47C9-47F3 -- PRINT FORMATTED TOP OR BOTTOM LINE

If a "\" is used as a delimiter and if the
running page number equals the first page
number, then restore old underline mode and
exit. This suppresses TL and BL on the first
page. If a following page or a different
delimiter, then pad the left margin, followed
by the TL or BL, followed by a space and a
carriage return. Note that the extra space

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9-cont.

can cause page creep if both printer and
word processor are set to 80 columns.

$47F4-480D -- GET DECIMAL PAGE COUNT

Used to substitute for "#". Save registers.
Get running page number $BE,BF and convert
to left justified decimal ASCII. Move
result to keybuffer where the "#" would have
been. Restore registers.

$480E-4817 -- ENABLE OR DISABLE PRINTING

If EP0, Store a $00 to printing flag $BS,
disabling printing. If EPl or any other
non-zero value, store a $FF to printing
flag and allow printing.

$4818-4822 -- INIT PAGE NUMBER

Move the starting page number in $B8CA,B8CB
into the running page counter $Be,BF.

$4823-4831 -- PAD TOP MARGIN

If top margin value in $B8C6 is zero, abort.
If not print space and carriage return for
each line needed for the top margin.

$4832-4843 -- PAD BOTTOM MARGIN

If a short page or a conditional formfeed
left a shy bottom margin, add one space and
one carriage return per printed line, done
as often as needed to make the running
line counter $7C match the last printed line
$7D. Then get the bottom margin value from
$B8C0, and fall "up" to the previous module
to pad the remaining lines on the page.

$4844-4860 -- NEW PRINTING SETUP

Move the PN page number into the running
page counter. Set printing pointers. Hold
LM and RM to temporary stashes $5E3l and
$5E32 . Turn underline off. Enable printing.
Jump to page printing routine.

$461F-4864 -- CONTINUE PRINTING SETUP

Jump to appropriate point in the page
printing routine . This allows printing to
pick up where it left off, preserving
position on the page.

$4867-488B -- SET PRINTING POINTERS

Set the first line in paragraph flag $7F.
Reset the key strobe. Grab printer hooks,
then stall. Hold LOCURS into the $98,99
pointer so cursor can be returned to present
position after printing. Do a [E], moving
everything into LOFILE. Set printer pointer
$90,91 to start of LOFILE at $0801. Clear
end-of-printing flag $76.

305

306 Applewriter Cookbook

Listing C.9-cont.

$488C-48EO -- PRINT ONE PAGE

Add one to running page counter. If single
page, prompt for return. Zero the running
line counter $7C, the footnote line counter
$FE, and the done with page text flag $FF.
Get the number of printed lines and subtract
the bottom margin, saving to the last printed
line hold $70. Decrement by one if there is
to be a bottom line. Print the top line,
followed by the top margin padding. Print
text body. When enough text lines are
printed, handle footnotes. Print the bottom
margin padding. Print the bottom line if
used. Print enough spaces and carriage
returns to bring PL up to PI. If not done,
repeat for another page. If to the end of
the print file, or if the end-of-printed
lines flag $FF is set, fall through to next
module.

$48El-4901 -- DONE PRINTING CLEANUP

If PDO and WPL is not active, then prompt
user for carriage return. If PD8, print a
final NULL $00. Restore screen cursor to
original position. Close all files.

$4902-4912 -- PRINT TEXT BODY

Abort if the running line counter $7C equals
the final printer line stash $7D. If not,
print one line. Keep repeating until out of
text, a conditional formfeed, or out of room
on the page.

$4913-4920 -- ADJUST PARAGRAPH MARGIN

If the first line in the paragraph, add the
relative PM to the absolute LM and hold to
adjusted left margin flag $B7.

$4921-4948 -- SETUP ONE LINE PRINT

Read keyboard. If [esc], then set the end
of printing flag $76, and quit WPL if WPL
is active. Save the point at which the
printing ceased, and move the cursor to this
location by moving HIFILE to LOFILE or vice
versa as often as needed. If no escape,
adjust the line start for the paragraph
margin. Format one line, aborting if $FF
flag is set. Justify the line. Print the
formatted line.

$4949-4952 -- END OF PRINT FILE CHECK

Read next character in LOFILE. If end $00,
set the end flag $76 and exit with a carriage
return in the accumulator.

$4953-4987 -- UNDERLINE DETECTOR

Calculate remaining space on line. Get next
character from file. If the UT underline
token, then toggle flag $EO. If at end of

Internal ProDOS Applewriter 2.0 Program Details

Listing C. �-cont.

line, swallow all spaces until the next
printing character.

$4988-49AC -- FOOTNOTE DETECTOR

Save the present horizontal line position .
Read the next file character, setting end
of file flag $76 if the $00 at the high end
of LOFILE, and forcing a carriage return.
Test for a " (", followed by a "<". If the
start of a valid footnote, save footnote and
continue beyond the footnote. Resume with
the first character beyond the footnote next
to the last character before the footnote.

$49AD-49C6 -- IMBEDDED COMMAND DETECTOR

Ignore if not a period or if the last file
character. If a period and the very first
character on the line, then process the
.XX selected print command. Note that all
characters following the .XX go to the key
buffer for print/program use, and are not
normally printed.

$49C7-49F0 -- SAVE FILTERED CHARACTER TO LINE BUFFER

At this point, any remaining characters are
real and not part of an underline command,
a footnote, or an imbedded comand. Save the
character to the line formatting buffer
$1C00. If a carriage return, hold the
short line count to $7E, and set the first
line in paragraph flag $7F. If an underline
token, adjust line length. If a space and
the first character on the line, swallow
space. Advance the printer counter $90, 91.
Note that the first line flag is also the
"don't justify" flag. See Listing C. 7.

$49Fl-4124 -- PRINT FOOTNOTES

Save old underline status . Begin footnote
with no underline. Bypass if no footnotes.
Set local footnote buffer pointer $00, 01
to $1400, the start of the footnote file.
Print space and carriage return. Pad left
margin with spaces. Get the current footnote
character, exiting on a $00. Print the
character. Advance the footnote pointer
and continue printing until all footnote
lines are printed. Restore underline mode.

$4A25-4AAB -- SAVE FOOTNOTE LINE

If the first footnote for this page, zero
the footnote buffer and set the footnote line
counter. Then, knock two counts off the
number of printable body lines. If a second
or higher footnote for ths page, decrement
the footnote count and knock only one count
off the number of printable body lines.
Begin moving characters from the text file
into the keybuffer $0200, watching for the
ending " (<" delimiter. Sound the ding dong
and exit with an error message if more than

307

308

Listing C.9-cont.

Applewriter Cookbook

128 characters per footnote line. Terminate
keybuffer entry with a carriage return and
a $00 end marker. Advance printer pointer
by three to bypass footnote atop marker.
Scan the footnote buffer $1400 to find the
open $00 end marker, sounding ding dong on
a main footnote buffer overflow. Move the
footnote line in the keybuffer into the open
end of the footnote file, sounding ding dong
on overflow. On any line or buffer overflow,
quit WPL. Move cursor to beginning. Grab
screen hooks, close file and exit with error
#4 FOOTNOTE OV ERFLOW in the accumulator.

$4AAC-4AD7 -- PROCESS IMBEDDED PRINT COMMAND

Get the first character of the printing
command. If end of file, set the stop
printing flag $76. Otherwise, move the
entire line starting with the imbedded
command into the keybuffer at $0200. Save
registers. Do imbedded command. Restore
registers.

$4AD8-4AE0 -- CALCULATE SPACE LEFT ON LINE

Subtract the current l ine position $B7 from
the right margin stash $B8C4 and save as
room remaining stash $75.

$4AE1-4AEA -- CALCULATE AVAILABLE LINE LENGTH

Subtract the right margin hold $SE32 from
the left margin hold $5E31 and save as room
remaining stash $75. Note that these saved
values cause all top and bottom lines to
have constant widths, regardless of margin
changes imbedded in the text.

$4AEB-4B1B -- PRINT FORMATTED LINE

Pad the left margin. Print the line in the
$1F00 line formatting buffer one character
at a time, until an $00 end marker or a
carriage return or until line width $7E is
matched. Print one carriage return. If
more spaces between lines are needed, . print
more carriage returns :

$4B1C-4B2F -- PAD LEFT MARGIN

Enter at $4B1C to use original left margin,
or at $4B22 to use current left margin.
Print as many spaces as needed to get from
extreme left to the desired margin setting.

$4B30-4B39 -- PICK JUSTIFY MODE

If left justify, do nothing. If a fill
justify, branch to the fill justify module.
If center or right, fall through to the next
module.

Internal ProDOS Applewriter 2.0 Program Details

Listing C.9-cont.

$483A-486F -- CENTER OR RIGHT JUSTIFY

Save justify mode to the y register with $02
for right and $03 for center. Subtract the
number of characters in the line from the
line width. If center justify, divide by
two to split the difference. Move the
characters to the line formatting buffer
$1FOO either at extreme right or center,
starting at the highest character and working
backwards. Then, add spaces to every
location before the formatted string. Note
that spaces are not needed beyond the string,
since a carriage return stops the printing.

$4B70-4B03 -- FILL JUSTIFY

The fill justify mode works by adding extra
spaces as needed to each existing space, and
always starting at the left, thus "expanding"
the line to fit the available space. Reset
the padding counter $C7. Abort if the flag
$FF is set. Note: the "first paragraph line"
flag doubles as a "don ' t justify the last
short paragraph line" flag, since $FF gets
reset earlier on a carriage return. Count
the number of non-space characters in the
line. Abort if no padding needed, or if last
line in paragraph . Add one space per space,
starting at the right by moving the text
one slot to the right in the $1FOO line
buffer. If an underline, then adjust for
the underline mode. Repeat adding a space
per space until line is fullyn justified.
Stop when the line is stretched wall to wall.

$4BD4-4BE1 -- ADVANCE PRINTER POINTER TO NEXT LINE

Add the length of the characters actually
used during the last printed line to the
printer pointer $90,91. This sets the
pointer to the start of the next line,
bypassing everything printed or used as
footnotes, wrapped words, or imbedded
commands.

$4BE1-4C34 -- PREPARE ONE CHARACTER FOR PRINTING

Save registers. If an underline token,
toggle the underline flag $EO and substitute
a space for the token. If a carriage return,
increment the line counter $7C. Substitute
the NULL character via subroutine. If in
underline mode, and if the character is not
a space, print an underline, a backspace, and
the character. Otherwise, print the
character. Restore registers.

$4C36-4C40 -- SUBSTITUTE NULL CHARACTER

I f a $1F ASCII user seperator (I is found,
substitute a $00 NULL character . Note:
to change to a substitute NULL sit-in other
than $1F, poke the character to $4C37. A
$00 value will prevent all NULLS. The $1F

309

310

Listing C.9-cont.

Applewriter Cookbook

character causes problems with HMI commands
on daisywheels, and creates hassles on some
modems and interface cards.

$4C41-4C5F -- PRINT ONE CHARACTER SETUP

Set up slow serial print. It a carriage
return, get the required carriage return
delay. It modem is active, delay for needed
carriage return time coded into $88OC.

$4C60-4C77 -- SERIAL PRINTING SETUP

Print the character. If a carriage return,
add a linefeed if the printer delay value
in $B8OC is an odd number.

$4C78-4CA3 -- PRINT ONE CHARACTER

If modem is not active, send the character
to the printing hooks and return. If modem
is active, send character to printing hooks
and then get the serial baud rate from $C09B
(slot 1) or $C0AB (slot 2) . Stall as long
as needed to time out baud rate.

$4CA8-4CB8 -- STALL FOR CARRIAGE RETURN DELAY

Enter with the carriage return delay value
divided by two in accumulator, except if
zero, use one. Delay that many milliseconds
such that 0 or 1 = 40 milliseconds, 2 = 80
milliseconds, 3 = 120 milliseconds, Gtc.

$4CB9-4CF5 -- SHOW HEX PRINT VALUE TO SCREEN AS DECIMAL

Treat PM always as relative number. Test
sign bit for relative or absolute. If both
relative and minus, Print a minus to the
screen and do a 2' s complement by first
complementing and then adding one. Convert
to decimal. Print left justified value to
screen if WPL is not active.

$4COE-4CF3 -- PRINT TO SCREEN LINK SAVING REGISTERS

Abort if WPL flag $OF is set. Save
registers. Print to screen. Restore all
registers.

$4CF6-4CFF -- PRINT TO SCREEN LINK DESTROYING REGISTERS

Abort if WPL flag $OF is set. Enter at
$4CF6 to clear the screen, at $4CF8 to
print a character. Print the character to
the screen.

$4000-4060 -- GET STRING

Affirm flashing cursor symbol. Get key.
If a NULL, ignore and get the next character.
if a backspace, backspace if not already at
extreme left. If a right arrow, get the
character already on the screen as it is
copied over. If screen character is in the

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.9-cont.

mouse next, fix it. If a delete, backspace.
Store the character to the $0200 keybuffer,
aborting on a carriage return. If more than
128 characters, sound ding dong and force
character 128. Replace the end carriage
return with a space so screen does not scroll.
Print to screen. Mark the end of the
keybuffer with a carriage return. This
routine normally used at the screen bottom
for processing filenames, find strings, etc.

$4D6E-4DA4 -- ProDOS ACCESS SETUP

Unsplit the screen. Clear the screen if not
WPL. Print the [OJ menu to screen. Get
user response. Force upper case. Change
ASCII A-J to numeric 0-9 and range check.
If a valid selection, get address of ProDOS
routine selected, and bounce off the stack,
using the forced subroutine return method of
doing an indirect jump. Note: goes to the
pushed address PLUS ONE.

$4DB0-4DCD -- SET PRINTER/MODEM INTERFACE SETUP

Fill the keybuffer with 128 spaces. Put
Down drive prompt. Get user response.
Change ASCII 1 drive number to numeric 0,
or ASCII 2 to numeric 1, and range check.
Abort if out of range. If valid drive, fall
through to next module.

$4DCE-4E8A -- SET PRINTER/MODEM INTERFACE

Move the encoded interface values from the
proper drive into work stashes $82 and 83,
such that $82 is coded as $PPPO 0000 and $83
is coded $SOOD BBBB, where S = stop bits,
D = data bits, B = baud rate, and P = parity.
Note : this is the standard command form as
needed by the 6551 serial interface chips.
Put down format prompt and print current
parameters to screen. Get user response.
Scan the input baud rate against the baud
rate list for a match. If no match, exit
with a ding dong and an INVALID PARAMETER
error message. If a valid $0-F baud rate,
store to low half of $83. Affirm a one in
the fifth slot. Read the user response and
get the data bits needed. Range check for
5 through 8 bits. Encode the data bits so
that 5 = 11. 6 = 01, 7 = 10, and 8 = 00.
Save the data bits to $83, while preserving
the other bits. Get the parity character
and compare against S for space, M for mark,
E for even, O for odd, or N for none.
Encode so that S = 111, M = 101, E = 011,
O = 001 or N = 110. Save as high three bits
in $82 local stash. Get the stop bits and
range check on 1 or 2, and convert to a 0
or 1 numeric. Save as MSB in $82. Update
interface values in :

$B8E2 - $PPPO 0000, slot 1
$B8E3 - $SDD1 BBBB, slot 1
$B8E4 - $PPPO 0000, slot 2
$B8E5 - $SDD1 BBBB, slot 2

311

312 Applewriter Cookbook

Listing C.9-cont.

$4E8B-4EE4 -- PRINT INTERFACE DATA TO SCREEN

Abort if WPL is active. Get startup bit
info from $82, coded PPP0 101 1 . See the
Ile Reference Manual for more info. If the
first attempt to set interface, change to
default 0, 8, N, l prompt. Mask out the baud
rate bits from $83, coded $SDD1 BBBB. Get
equivalent baud rate from table as 16 bit
hex value and convert to decimal. Print to
screen as left justified decimal ASCII. Get
the data bits and decode into 5, 6, 7, or 8 .
Display as ASCII numeric. Get the parity
bits from $82 and use a table to convert to
ASCII E, M, N, o, or s, then display to
prompt. Print a comma. Get stop bits and
display to screen.

$4EE5-4EF2 -- PRINT HEX PAIR AS DECIMAL

Enter with the low byte in the accumulator
and the high byte in the X register. Save
to hex buffer. Force a 16 bit conversion.
Print as left justified decimal ASCII.
Print an ending comma.

$4Fl5-4F56 -- SEND INTERFACE VALUES TO SERIAL INTERFACE

Verify Apple serial interface in legal slot.
Abort if some other brand card is present.
Get the print destination and verify slot
one or two. If a baud rate of zero, bypass
and use default values. Store $PPP0 0000
to $C09A for slot one or $C0AA for slot two.
Store $SDD1 BBBB to $C09B for slot one or
$C0AB for slot two. Check for an "old" or
"new" machine. Make the following pokes to
the I/O ram slots:

$0579: FF if slot 1 and "new" (er = 255)
$057A: FF if slot 2 and " new" (er = 255)
$06F9: FF if slot 1 and " old" (er = 255)
$06FA: FF if slot 2 and " old" (er = 255)

$06F9: 00 if slot 1 and "new" (no video)
$06FA: 00 if slot 2 and "new" (no video)
$07F9 : 00 if slot 1 and " old" (no video)
$07FA: 00 if slot 2 and " old" (no video)

The $FF values set any port-forced carriage
returns to the highest possible value, while
the $00 commands defeat any video echo. More
on this in the IIc Technical Reference Manual.

$4F58-4F6F -- VERIFY APPLE SERIAL INTERFACE CARO

Get the print destination and force feed
an address read. Verify $Cl0B as $01 and
$C10C as $31 if slot one. Verify $C20B as
$01 and $C20C as $31 if slot two. Exit
with z flag set if a legal Apple interface
exists. Matches either the internal IIc
ports or a Super Serial card in a IIe.

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.9-cont.

$4F70-4F9F -- ADJUST MARGIN SETUP

Clear bottom of screen. Bypass prompt if
WPL is active. If not, prompt screen bottom
with adjust prompt and get user response.
Force upper case. Abort if not "Y". If "Y",
set adjust flag $3647, which changes the
[S]ave routine so it adjusts only. Clear
bottom of screen . Put down one moment
prompt. Adjust margins using [S] ave.

$4FA0-4FD6 -- SET SCREEN FORMAT

Enter at $4FBA for unconditional set, or at
$4FA0 to set only if both LOFILE and HIFILE
are empty . Find the difference between the
left and right margin. If this difference
exceeds 240 characters, substitute 240 as
maximum value to screen right margin hold
$Bl. Force the whole word break mode by
setting [Z] flag $El.

$4FD7-5024 -- LIST ProDOS VOLUMES ON LINE

Clear the screen if no WPL activity. Print
volumes on line header. Get entire list of
volumes on line via ProDOS On-line MLI,
loading into $B900. Get the coded slot and
drive from the buffer and print slot and
drive to screen . Then print a space and a
"/" slash. Print the volume name from the
$8900 file. Add a 16 character offset to
the pathname and repeat for each volume on
line. The $B900 buffer has sixteen slots
for each volume name. These all start with
a byte encoded $DSSS 0000 encoding the slot
and drive, followed by a slashless volume
name, and ending with a $00 marker. A $00
first byte signifies the end of the list.

$5027-504C -- DECODE AND SHOW SLOT AND DRIVE TO SCREEN

Enter with $DSSS 000 in the accumulator
Print the word "slot" followed by a space
to the screen. Downshift to $0000 DSSSS
and then mask 0-7 for $0000 OSSS. Change
to ASCII and print the slot number 0-7.
Move the drive bit in the carry and add one,
so that $01 = drive 1 and $02 = drive 2 .
Convert to ASCII and print on the screen.
Note sneaky use of re-entrant code.

$5040-5065 -- PRINT STRING TO SCREEN

Enter with the string starting address high
in the accumulator and low in the X Register.
Force feed address into load command. Get
the first character of the string and print
to screen if not WPL. Increment the force
fed address. Repeat printing characters
until a $00 ending marker.

313

314 Applewriter Cookbook

Listing C.9-cont.

$5066-SOAB -- RENAME ProDOS DISK FILE

Prompt for present name and get response.
Handle slot and drive and save present name
to $1F40 buffer. Prompt for new name aro.d
get response, holding in $1FOO buffer.
If a '"?", then do catalog and try again.
If valid new name, then do ProDOS Rename MLI
using $1FOO as the new name buffer and $1F40
as the old name buffer.

$SOAA-SOFD -- LOCK OR UNLOCK ProDOS DISK FILE

Enter at $50AA to unlock or at $SOU: to
lock. Get filename from user. Get file
attributes from ProDOS, loading into $50E2
buffer. If file is to be locked, put a $01
into $50ES forcing the file to read only.
If file is to be unlocked, put a $C3 into
$50ES, allowing the file to be read, written,
renamed, or destroyed. Return the file
attributes to disk by doing a ProDOS Set
Attributes MLI. Exit via error processor.

$50FD-510F -- DELETE A ProDOS DISK FILE

Get and hold filename. Adjust for slot and
drive. Delete file via a ProDOS Delete MLI,
using filename buffer $1FO O . Exit via the
ProDOS error processor module.

$5124-5174 -- CATALOG SETUP

Reset catalog flag $5123 to screen only.
Get and hold volume name to $1FOO. If a
"#" as the first character, set catalog flag
$5123 to text file. Then knock one count off
of file length. If a carriage return as
the only character, use old volume name. If
a new name, get the prefix and hold to $1FOO.
Handle slot and drive if needed. Get the
attributes for the selected volume using a
ProDOS Get Attributes MLI. Move attributes
to work buffer at $5157 so that $5157-58 is
the auxiliary data, $5159 is the type of
file, and $515A-5B are the blocks in use.
Open the volume directory using a ProDOS
open MLI, holding the catalog at $B900.

$5175-51AE -- PRINT CATALOG HEADER

If a catalog to screen, clear screen if not
WPL. Print the volume name to the screen.
Print an opening parenthesis followed by
the date and time, followed by a closing
parenthesis. Print a "V" for version. Get
and print version number. Print column names
to screen using "Type . . . Blocks . . . " , etc.

$51AF-523l -- PRINT CATALOG BODY

Print up to 15 catalog entries if full screen
or only 7 entries if split screen . Print a
carriage return. Get the file descriptive
entry for the next file in the list. Fall
through to cleanup if first character in file

Internal ProDOS Applewriter 2.0 Program Details

Li�ting C.9-cont.

is not a " / " . Check the file descriptive
entry to see if file has been deleted. If
deleted, get next entry. Check to see if
file is locked. If so, display a "*" in the
first screen slot. If not, print a space.
Get the file type and print to screen. Add
spaces to tab to eighth column. Read number
of blocks and print to screen as decimal
ASCII. Add spaces to tab to fifteenth screen
column. Print the file name. Add spaces to
tab to thirty-first screen column. Print
the created time and date. Add spaces to tab
to forty-seventh column. Print the modified
time and date. Add spaces to tab to sixty
second column. Get file length as 24 bit
word, �onvert to decimal, and print. Repeat
until screen is full or out of files.

$5232-52A7 -- PRINT CATALOG FOOTER

If more files remain, and if catalog to
screen, wait for user to hit a key. If {esc)
then print footer and clean up. If any other
key, and print a new screen of file entries.
When finished, Close the directory and print
a carriage return. If file is a directory,
calculate blocks used and print availaibility
message. If catalog to screen, put down
return prompt and get user response. If
catalog to file, clear the catalog to file
flag and update the screen markers.

$52A8-52DF -- PRINT DECIMAL VALUE TO SCREEN

Enter at $52AC for one hex digit, at $52A8
for two digits, at $52C5 for four, or at
$52B9 for five digits. Convert to decimal.
Print to screen, supressing leading zeros and
replacing them with spaces.

$52E0-52EE -- TAB SPACES

Enter with horizontal tab value in the
Print spaces from the present screen position
to the tab position, "erasing" anything that
was on the screen.

$52EF-5317 -- PRINT PROOOS FILE TYPE

If a filetype above $10, substitute $0C
for a SYSTEM file. Multiply the $0-F file
type by six to point to a six letter file
tipe in the $5B5A file. Print six characters
to screen as a file type.

$5319-534A -- GET FILENAME FOR CATALOG

Filenames in the directory are separated
by $27 characters. Add $27 to the present
filename pointer to get the start of the
next one. If not an overflow, read directory
from $B900 buffer. If an overflow, get
another directory pagg and put it in the
$B900 buffer. Set pointer to $B904, the
first descriptive entry in the buffer.

315

316

Listing C.9-cont.

$534B-538C

Applewriter Cookbook

GET DATE AND TIME FOR CATALOG

Clear access flag $5398 for year and month,
rather than hours and .minutes. Read the
data from byte pair \YYYY YYYM MMMD DODO
and print the month, followed by a slash,
followed by the day, followed by a slash,
followed by the year. Switch access flag
to hours and minutes. Read the time from
byte pair \OOOH HHHH OOMM MMMM., and print
the hour, followed by a colon, followed by
the minutes.

$5380-5397 -- PRINT SLASH AND DECIMAL VALUE

Print a slash, followed by a two digit hex
value converted to decimal ASXCII.

$5399-53A9 -- PRINT VOLUME NAME OR FILENAME

Hold name lenght to $53AA. Read filename,
printing that many characters to screen or
to textfile.

$53AB-53B8 -- PRINT CATALOG FILENAME HEADING

Get the " Type Blocks " etc from
the $5BDE stash and print it to screen or
textfile, aborting on a $00 end marker.

$53B9-53DD -- HEX TO ASCII DECIMAL CONVERTER

Enter at $53C2 if hex value is already in
hex buffer CO-C2; at $53BC for a full 24
bit conversion holding MSB in the Y register,
middle 8 bits in the X register, and LSB in
the accumulato=; or at $53AB for a 16 bit
conversion holding the LSB in the accumulator
and the MSB in the X register. Zero the
decimal result buffer $0380-0385. Do
a single digit conversion, change to decimal
low ASCII and hold to decimal result buffer.
repeat until nothing remains in the hex
buffer. LEAST significant decade always
ends up in $0380, regardless of length. The
X register holds the number of digits in
the result on exit.

$53DE-53F4 -- SINGLE DIGIT ijEX CONVERSION

Set maximum bits to be converted to 24.
Multiply the remainder in the hex buffer by
two, and transfer any overflow to the
accumulator. Keep repeating until you get a
result of ten or more in the accumulator.
When this happens, subtract ten from the
accumulator and increment the low hex byte
$CO. Exit with decimal value in the
accumulator and the residue corrected to
the correct remainder. Sounds strange and
not at all obvious, but it works. Fast and
short.

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.9-cont.

$53F5-540B DIVIDE LINES BY LINES PER PAGE

Enter with the total number of lines in the
hex buffer $CO-CJ, and the lines per page
in $80. Zero accumulator. For 24 trips,
multiply hex buffer by two and accumulate
the overflow. Every time the accumulator
exceeds the lines per page, subtract the
lines per page and increment the hex buffer.
Exit with the page count in $CO and the
line count of the last page in accumulator.
If you liked the previous module, you will
love this one. A very fast and neat divide
routine.

$540C-546F -- ASCII DECIMAL TO HEX CONVERTER

Clear 16 bits worth of hex buffer $CO, Cl.
Set arithmetic mode flag to absolute $FF
if no sign preceeds the decimal number
in the $0200 keybuffer. Set arithmetic mode
flag to relative $2B or $2D on a "+" or a
"-" Swallow any spaces and get first
decimal ASCII numeral. Range check for
0-9. If valid, convert the ASCII numeral
to a one digit BCD $0-9 value. Take whatever
is already in the hex buffer and multiply it
by ten. Do this by doubling the value and
holding it to X and Y; then double twice
again. Finally add eight times the hex
buffer to two times the hex buffer and save
the result back to itself. After the
lOX multiplication, add the BCD digit to
the hex buffer. Repeat the process as long
as legal numerals are found in the keybuffer.
When finished, check the mode flag. If a
negative number, do a 2' s complement on the
hex buffer by subtracting the buffer from
zero. Exit with the signed binary value in
$CO low and $Cl high, and the mode flag
with its N bit set for absolute or cleared
for relative.

$5470-5474 -- MULTIPLY HEX BUFFER BY TWO

Multiply contents of hex buffer by two by
shifting all the bits one to the right.

317

318

Listing C.10. How to customize Applewriter AWD.SYS.

A. For Personal use only:

Applewriter Cookbook

Use the methods of module six, installing your own
custom patch and then saving to a new backup diskette.

Note that selling or otherwise passing on copies is
an absolute no-no when done this way.

B. Preferred Commercial method:

Create a booting program and store it to a ProDOS
diskette as the first system file. This program should
prompt the user to insert his Applewriter disk and then
use the ProDOS MLI interface to load AWD.SYS to $2000.
It should then install the needed patches in the needed
locations. Finally, it should do a $2 000G or a CALL
8192 to run the customized program.

This method can be safely sold or given away, so long
as the end user provides his own legal copy of AWD.SYS.

IMPORTANT: When AWD.SYS is opened with the ProDOS MLI,
the file buffer MUST be set to $BBOO.

Note that a ProDOS license is needed to sell or give away
any software using the ProDOS operating system. The annual
costs start at $50. Contact Apple directly for more details .

Internal ProDOS Applewriter 2.0 Program Details

Listing C.11. How to capture AWD.SYS source code.

Note: The capture process is done under DOS 3.3e as much
less sand gets kicked in your face this way.

This capture process works ONLY on AWD. SYS and ONLY
by using DISASM IIe. Any changes at all to either
program will cause one or more problems.

(1) Initialize two diskettes under DOS 3.3e using the
system master disk. Call these disks one and two.
Use the HELLO program of listing 8.3.

(2) Put a copy of DISASM IIe onto both diskettes. Then
add a CONVERTed copy of AWD.SYS to both disks.

(3) Add GRA.BBER.0.12 (Listing 8. 4), GRA.BBER.0.34
(Listing 8.5) and SNEAKY. D (Listing 8.6) to both of
the diskettes. These programs are also available,
ready to CONVERT, on the companion diskette.

(4) Cold boot the first diskette. Answer "Y" and "l".
Wait a long time while strange and wondrous things
flash by on the screen and while other things go beep
in the night. Two source code textfiles, named
AWD. SOURCEl and AWD. SOURCE2 will eventually get
generated and placed on-disk. Be patient !

(5) Repeat step (4) for the second disk, answering "Y"
and "2". Two source code textfiles, named
AWD. SOURCE3 and AWD. SOURCE4 will appear on-disk.
Figure 8.1 shows how these four textfiles are related
to AWD. SYS.

(6) Verify the
them under
original.
AWD. SYS.

four source code modules by assembling
EOASM and comparing them against the
All object code must EXACTLY agree with

319

320 Applewriter Cookbook

Listing C. 12. Applesoft HELLO program used to capture AWD.SYS.

1000 0$ = CHR$ (4) : PRINT D$; "PR#3" : TEXT : HOME : CLEAR

1020
1030
1040
1050
1060
1062
1070
1080
1090
1100
1110
1120
1130
1150
2000

PRINT "
PRINT
PRINT "
PRINT II

PRINT "
PRINT "
PRINT
PRINT "
PRINT "
PRINT "
PRINT "
PRINT "
PRINT "
PRINT
PRINT "

* * * * * AWD. SYS Sourcecoda Grabber *****

To capture the AWD. SYS sourcecode, you
first must create TWO new disks, under
DOS 3. 3e. Both disks must contain ALL
of these files and NO others:

HELLO (this program)
AWD. SYS (converted)
DISASM IIE
GRABBER. D.12
GRABBER.D.34
SNEAI<Y.D

OK to continue (Y/N) ? ------> tt • •

2010
2020
2030
2040

PRINT PRINT
IF ZZ$ = "Y" OR ZZ$ = "y" THEN 2040
END
PRINT " Which disk is this (1/2) ?

2050 PRINT
2060 IF ZZ$ = "l" THEN 3000
2070 IF ZZ$ = "2" THEN 3010
2080 GOTO 1000

--> ft • •

GET ZZ$

GET ZZ$

3000 PRINT CRR$ (4) ; : PRINT "EXEC GRABBER.D. 12": END
3010 PRINT CHR$ (4) ; : PRINT "EXEC GRABBER . D. 34": END
9999 END

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.13. Details of EXEC file GRABBER.D.12.

REM
REM AWD.SYS Source code grabber
REM
REM To use, EXEC GRABBER.0.12
REM

REM

TEXT : HOME: CLEAR
PRINT CHR$(27) ; CHR$(17)
BLOAD OISASM IIE
BLOAD SNEAKY.D,A$2000
POKE 2091,22
POKE 2761,51
POKE 3162, 32 : POKE 3163,24
POKE 3164,253 : POKE 3165,09
POKE 3166,128
POKE 2473,96
BLOAD AWD. SYS,A$4000
CALL2048
l
4000
5003
2000
400E
400F
11
454D
454E
11
458F
45BF
11
4AED
4AFC
11
4C86
4C88
11
4C8C
4C8E
11
4D08
400A
11
400C
4D12
11
4E70
4E73
11
4EB2
4EB4
11
4EBF
4EC6
11
4F73
4F75
11
4F7C
4F83
11
41'90

321

322

Listing C.1 3-cont.

4F91'
1 1
4FA9
41'B0
11
4FCA
4FCC
11
41'03
41'0A
11
4FF4
4Fl'6
11
4FFO
5003
11

2000
1

NYAWD.SOURCEl

CALL2048
1

5004
601'5
3004
5048
504A
11
505B
5062
11
S0EB
S0EO
11

SOEF
S0F4
11
S0FS
S0FS
11
sore
S0FF
11
5102
5100
11

5114
5116
11

511A

5125
11

5252
5254
1 1

5250
5264
11
5647
5647

Applewriter Cookbook

Internal ProDOS Applewriter 2.0 Program Details

Listing C.13-cont.

11
57CO
57CF
11
5703
570A
11
570B
570C
11
57EE
57FO
11
57F7
57F8
11
57FC
57FE
11
580C
5811
11
5826
5828
11
582C
5830
11
5803
5805
11
58DC
58DE
11
58E2
58ES
11
58F9
58FB
11
591E
5920
11
5924
5928
11
SC4F
5C50
11

2000
1

NYAWD. SOORCE2

This program will only work with OISASM IIe and the ProDOS
2. 0 AWD. SYS version of Applewriter.

This program is available ready-to-run on the companion
diskette for this volume.

323

324

Listing C. 14. Details of EXEC file GRABBER.D. 34.

REM
REM AWD.SYS Source code grabber
REM
REM To use, EXEC GRABBER. D . 34
REM

REM

TEXT : HOME: CLEAR
PRINT CHR$ (27) ; CHR$(17)
BLOAD DISASM IIE
BLOAD SNE.Al(Y. D, A$2000
POICI: 2091, 22
POKE 2761,51
POKE 3162, 32: POKE 3163, 24
POKE 3164, 253 : POKE 3165, 09
POKE 3166, 128
POKE 2473, 96
BLOAD AWD.SYS, A$4000
CALL 2048
1
60F6
7474
40F6
6390
639F
11
63A3
63AA
11
63AB
63AB
11
6CA4
6CA8
11
6CF4
6CF5
11
6EFS
6Fl4
1 1
704C
704C
11
709F
70Al
11
70A5
70A9
11
70CB
70CO
11
700C
70DE
11
70E2
70FC
11
7106

7108

11
710C

Applewriter Cookbook

Internal ProDOS Applewriter 2. 0 Program Details

Listing C.14-cont.

710E
11
7117
7119
11
7120
7122
11
7123
7123
11
7157
715B
11
7318
7318
11
7398
7398
11
73AA
73AA
11

2000
1

NYAWD. SOORCE3

CALL2048
1
7475
7FFF
5475
7475
7FFF
11

2000
1

NYAWD. SOURCE4

This program will only work with DISASM IIe and the ProDOS
2 . 0 AWD.SYS version of Applewriter.

This program is available ready-to-run on the companion
diskette for this volume.

325

326 Applewriter Cookbook

Listing C.15. SNEAKY.D code needed for AWDSYS capture.

2000- 27 43 Cl Cl 00 00 00 00
2008- 27 44 Cl Cl AB Bl 00 00
2010- 27 4 5 Cl Cl AB 82 00 00
2018- 2A 89 C2 C2 00 00 00 00

2020- 2A C6 C2 C2 AB A4 C4 00
2028- 2A C7 C2 C2 AB A4 cs 00
2030- 32 42 C3 C3 00 00 00 00
2038- 32 43 C3 C3 AB Bl 00 00

2040- 32 33 C3 C3 AB Bl 00 00
2048- 37 Al C4 C4 00 00 00 00
2050- 37 A2 C4 C4 AB Bl 00 00
2058- 37 A3 C4 C4 AB 82 00 00

2060- 3E FD cs cs 00 00 00 00
2068- 3F 05 cs cs AB 88 00 00
2070- 32 45 C6 C6 00 00 00 00
2078- 32 46 C6 C6 AB Bl 00 00

2080- 32 47 C6 C6 AB B2 00 00
2088- 4F 58 C7 C7 00 00 00 00
2090- 4F 65 C7 C7 AB Bl B3 00
2098- 4 F 6C C7 C7 AB B2 BO 00

20AO- 50 53 ca ca 00 00 00 00
20A8- 50 54 ca ca AB Bl 00 00
20BO- so 55 ca ca AB B2 00 00
20B8- FF FF FF FF FF FF FF FF

Internal ProDOS Applewriter 2.0 Program Details

Listing C.16. WPL. TWO COLUMNS will automatically format your final hard copy
into two or more columns. If desired, each column can be separately fill
justified or even microjustified.

p
p
p
pnd

*** WPL. TWO COLUMNS

ppr [L]
ppr Two Column Formatter:

ppr . .
ppr
pin
pin
ppr
pin
ppr

Filename of pd8 formatted left column ---> =$A
Filename of pd8 formatted right column --> =$B

Character distance between columns ------> =$C

ppr
ppr
p
p set tabs
b
psx$C
ny

al f//*/
y?
u
psx-1
pgoal
e
tp
ts
ny
p load files
1$A
b
f<><} { }><a
e
f<<>%$#><
y?
e
1$B

*** busy - please wait ***

p move right column
b
psyl

bl ppr formatting line (y)
f<>%$#><
[esc]
psy+l
u

u
u
u
u
f<><
[esc]
d
X

b
f/ } { } /
[

pgo cl
pgo dl

cl f/ } { } / /

327

328

Listing C.16-cont.

y?
p
i
X

d

h
f<><<

y?
d
pgobl

dl p cleanup
b
f/%$#//
y?
pqt

Applewriter Cookbook

Gotchas: Both columns must be previously printed to disk as
seperate and fully formatted " . pd8" files. These
files must hold an exact copy of the final printed
image. The right column should have a left margin
value of zero.

Paired brackets mean im.bedded control characters.

To demo this code, use the SAMPLE LEFT COLUMN and
SAMPLE RIGHT COLUMN off the companion diskette,
along with a column seperation of 39.

This program is available ready-to-run on the
companion diskette.

A

[A] command, 145
Accessories for printers

platens, 52
silencers, 41-42
tractor feeds, 41, 50

AG LOSS command, 5, 89
AIOIFIER patch, 104, 2 1 1
Apple keys

how to use, 31-32
sticking of, 24-25

Applewriter 2.0 !old)
executing of string

control characters, 14
NULLsand, 4
running on a Applewriter

Ile, 29
Applewriter 2.0 (ProDOSI.

See ProDOS
Applewriter 2.0

Applewriter Ile
extended memory and,

23
printing problems of,

28-29
trashing of, 9

Applewriter Ile IAWile)
!stock)

DOS program of, 23-24
erasing programs on

boot/master disk, 23

Index

Applewriter Ile (AWile)
(stock)-cont.

executing of string
control characters, 14

extended memory and,
23

loss of help screens, 35
NULLs and, 4-5
patches and, 93-102
slow entry and, 33
underlining and

superscripting on, 5
upgrading of, 112-113

Applewriter Ile patches
CLARIFIER, 208
CURSIFlER, 205
LINKIFIER, 207
NULLFIER, 203
PATCHIFIER, 206
RESTORIFIER, 209
STRETCHIFIER, 204

Applewriter Ile programs
CLARIFIER, 9, 100-101,

179-181
CURSIFIER, 8-9, 12, 15,

98-99
LINKIFIER, 100
NULLIFIER, 5, 61, 96,

172-173
PATCHIFIER, 8-9, 99-

100, 177-178
RESTORIFIER, 102

329

Applewriter Ile programs
cont.

STRETCHIFIER, 6, 61,
73-74, 97-98, 174-176

Applewriter III
converting files of, 25

ASCII control commands, 56
ASCII high and low, 122
Assembler, 7
[@] command, 145
AUTOLETTER, 34
AUTO.PD8.WPL program,

78
AWE.SYS, 1 15
AWC.SYS, 1 15
AWD.SYS, 1 15, 165

how to capture source
code, 319

how to customize, 318
detailed script of main

program, 205-317
important entry points,

260-264
AW.SYSTEM, 1 1 5

B

[B] command, 145
Backspace commands

[closed apple] key and, 31
searching for, 12

Backup copies
how to make, 7

330

Banking of characters, 97
Baud rate, 45
Beep, 156
Binary files

converting to text files,
24

BLOAD command, 24, 1 15
Bload Patch, 99
BOLD PS

WPL.FORMAT, 78
BOLD PS printwheel

punctuation and, 21
rearranging, 75

BOOTIFIER patch, 105, 213
Booting code

custom, 161-162
Boot/master disk

erasing programs on, 23
Brackets in glossaries, 82
BSAVE command, 1 1 5
Buffers

deletion, 125
glossary, 125
key, 125, 141
modem, 142
swallow buffer, 125
type-ahead, 141

Bullets
printing solid, 34

BULLET SHOOTER
program, 34, 186

C

[CJ command, 145
Cables for extending printers,

45
CAMERA READY program,

50-51 , 64-65, 78, 188
Carriage return

command, 146
imbedding of

in the glossary, 3 1
Case changer and NULL, 5
Case flags

changing of, 145

Catalog
how to set, 138
improving catalog

display, 1 1
placing in text file, 1 1

Centering text, 28, 77
Character entry, 141-142
.cj command, 71, 77
CLARIFIER jAWIIe) patch,

208
CLARIFIER jAWIIe)

program, 9, 100-101,
179-181

Clear screen, 156
[Closed apple) keys

function of, 31-32
Columns

printing of, 15
Comment lines in glossaries,

86
Comments

adding, 13-14
Conditional execution and

WPL, 155
Control commands, 145-149
CONVERT program, 11 , 112
Copying text, 10, 32
COUNT

internal, 139
Counters

defined, 131 , 132
CREEPIFIER patch, 106, 216
CURSIFIER jAWile), 8-9,

205, 221
how to use, 98-99
loading strings and, 15
searching or replacing

backspace
commands, 12

CURSIFIER jProDOS 2.0)
program, 108

D

[DJ command, 145
Daisywheeljs)

BOLD PS, 21, 75

Applewriter Cookbook

Daisywheeljs)-cont.
differences among, 21,

49
MAJESTIC PS, 75
printing of spokes, 20-21
print quality, 13
rearranging spokes, 75
registration, 15
TITAN 10, 75
underlining, 13
versus dot matrix

printers, 49-50
Data file, 136
Delete commands, 145, 148
Delete key

alternatives for the, 31
Deletion buffer, 125
Delimiters

loading string and, 15
searching for,

142, 145-146
used in copying text, 10

DGLOSS command, 5, 89, 90
Diablo compatible printer, 22

Diablo 630 daisywheel, 49
glossary tricks for, 62
imbedded commands in,

54, 59
secondline problem of,

22, 75

Diablo 630 formatting
glossary with
tutorial, 194-195

Ding-dong
how to obtain, 30

DISASM Ile, 165
Disassembler program, 165
Disk labels, 43
Disk mailers, 43
Disks, 43
Do command, 154
DOS access menu, 147
DOS program of Applewriter

Ile, 23-24
Dot matrix printers IDMPl

daisywheel versus, 49-50

Index 331

Dot matrix printers (DMP)- FLINSERT program, 35, 187 G
cont. Footers

formatting glossary with printing of, 27
[G] command, 146

tutorial, 193-194 Footnotes, 71, 125
GET.FILE.INFO., 138

superscripting on, 6
FORMAT BOLD PS, 78

Global value of page zero,
133

E FORMAT MAJESTIC, 78 Glossaries
[E] command, 145 FORMAT NOFRILLS D630 adding comments to,
EDASM, 7 program, 69-78, 13-14
Editing a long file, 25 189-191 [closed apple] keys and,
EGLOSS command, 5, 89, 90 Formatting 31
Entry automatic, 69-78 comment lines in, 86

how to deal with slow, 33 Diablo 630 glossary Diablo 630 and, 62,
Entry points, 135-136 with tutorial, 194-195 195-196
.ep (enable printer) DMP glossary with disallowed keys in, 81

command, 4 tutorial, 192-193 DMP and, 193-194
Epson MX80 formatting Epson MX80 glossary Epson MX80 and,

glossary with with tutorial, 196-197 197-198
tutorial, 196-197 footnotes and, 71 help screens and, 87-88

Epson printers Imagewriter glossary how to use, 81-82
imbedded commands in, with tutorial, 198-199 Imagewriter and,

54, 59 memory needed for, 199-200
underlining and 71 imbedding commands

superscripting on, restrictions with, 71 using, 55, 60-63
5-6 paragraph ends and, imbedding of a carriage

Error messages, 130 76-77 return in, 31
Escape sequences rearranging daisywheel imbedding of string

imbedding of, 35 spokes, 75 control characters, 14
Extended memory reformatting, 143 length of, 20

importance of, 23 right margins and, 71-72 printing of, 27-28

F
setting body reading of, 146

microjustification, 76 restrictions of, 84-86
[F] command, 145-146 shadowing titles, 77 self prompting/self
File(s) startup of, 73 titling, 19, 86-88

clearing to end of, 25-26 squashticity and, 73-74 use of brackets in, 82
converting binary to text, STRETCHIFIER program WPL commands in,

24 and, 73-74, 174-176 82-83
printing of WPL, 27-28 tightening vertical Glossary buff er, 125
print part of a, 4 spacing, 75-76 GLOSSIFIER patch, 106, 215

FILE LISTER program, 27-28, underlining and, 71, GRABBER.D.12, 165,
184-185 74.75 321-323

Filenames Form letters GRABBER.D.34, 165, 166,
problems with loading, how to create, 34-35 324-325

1 1 Frontspacing Grappler problem defined, 7
punctuation and, 10 [closed apple] key and, 31 GRAPPLIFIER patch, 104·

Flags, defined, 131 , 132 [U] command and, 148 105, 212

332

H

[HJ command, 146
Headers

adding to mailing lists, 26
printing double, 27

HELLO, 165
program, 320

Help screens
glossaries and, 87-88
how they are lost, 35

HICURS, 140
HIFILE, 121- 123, 140
High work files

definition of, 1 18
globals page, 127
listing of, 232-233
print/program file values,

127
systems page, 127
tabs and, 126-127

HIRES dumps, 28, 99, 100,
162-164

Hooks, 139
Hyper [delete] key

how to stop, 3 1

I

[I] command, 146
!GLOSS command, 5, 89
Imagewriter formatting

glossary with
tutorial. 198-199

Imbedded escape commands
multicharacter, 6-7
single letters and, 6

Imbedding
a carriage return in the

glossary, 3 1
dot commands, 12
escape sequences, 35
hidden lines in a mailing

list, 26
how to imbed

commands, 55
print commands, 53-55

Im bedding-cont.
string control characters,

14
using the glossary, 55,

60-63
using verbatim method

[VJ, 14, 55, 56, 59-60
using WPL, 55, 64

Insert paragraphs, 148
Insert words

command for, 148
Interface

ProDOS (MLI), 1 17,
136-138

Interface
RS232, 44-45, 46-48

Interface circuits
imbedded commands for,

54
Internal files, 1 18-119, 128,

234-240

J

U] command, 146
Jumps and WPL, 154-155
Justification

how to set right, 29

K

[K] command, 146
Kerning

how to do, 13
Key buffer, 125, 141
KEYIN, 141
Keystrokes

how they are entered,
141-142

L

[L] command, 9, 146
Labels

for disks, 43
making identical, 9
and WPL, 153-154

LG LOSS command, 6, 89

Applewriter Cookbook

LINKIFIER IAWile) patch, 207
LINKIFIER IAWlle) program,

100

Load command, 146
Loading a string from text, 15
Local value of page zero, 133
LOCURS, 134, 140
LOFILE, 120-123, 140
Low work files

M

definition of, 1 18
deletion buffer, 125
footnotes and, 125
glossary buff er, 125
key buff er, 125
listing of, 227-231
memory management

code and, 124
swallow buffer, 125
tabs and, 126

[M] command, 146
Machine language interface

IMLI), 1 17, 136-138
Mailing list

adding common headers
to a, 26

imbedding hidden lines
in a, 26

printing of hidden lines
on a, 26

MAJESTIC PS, 75
Margins

setting of, 4, 71-72, 145
Master/boot disk

erasing programs on, 23
Memory and ProDOS, 115,

140
Memory management code,

124
Memory maps, 1 16-1 18
Microjustification

definition of, 51
fooling a printer to do,

63, 151
how to set, 22, 76

Index

MLI access commands,
136-137

Modem buffer, 142
Modems

setting of, 138
Monitor access, 138-139
Mouse nest

problems caused by, 101
Moving characters, 145, 146,

148
Moving copy, 10

N

[NJ command, 147
NEC Spinwriters, 49
NULLIFIER jAWIIe) patch,

203
NULLIFIER (AWile)

program, 5, 61, 96,
172-173

NULLIFIER (ProDOS 2.0)
patch, 105-106, 214

NULLs

0

case changer and, 5
how to imbed, 4-5

[OJ command, 147
[Open apple J keys

function of, 31 , 63
Overtyping

how to deal with, 32-33

p

[PJ command, 147
Page creep, 30-31 , 76
Page numbers

printing of, 27
Page/position command, 149
Page zero

detailed script of use,
247-259

how to use, 131-132,
134-135

locating, 132-134
summary of use, 244-246

Paper, 42, 51
Patches for Applewriter Ile

IAWile), 93-102
CLARIFIER, 208
CURSIFIER, 205
how to patch, 94-95, 202
LINKIFIER, 207
NULLIFIER, 203
PATCHIFIER, 206
RESTORIFIER, 209
STRETCHIFIER, 204

Patches for ProDOS 2.0,
102-108

AIOIFIER, 211
BOOTIFIER, 213
CREEPIFIER, 216
CURSIFIER, 221
GLOSSIFIER, 215
GRAPPLIFIER, 212
NULLIFIER, 214
PREFIXIFIER, 210
PROMPTIFIER, 220
SCRUNCHIFIER,

217-218
STRETCHIFIER, 219

PATCHIFIER (AWile) patch,
206

PATCHIFIER jAWile)
program, 8-9, 99-100,
178-179

.pd8 command, 4, 24, 27, 28,
34, 65, 83, 149-150

PEEK command, 8
PG LOSS command, 6, 89
Pictures

processing of, 8
.pi (page interval), 30, 31
.pl (page length), 30
Platens for printers, 52
POKE command, 8
Pointers, 131, 132, 140
Post processing, 163, 164
Prebooting of ProDOS

Applewriter 2.0, 32
Prefixes

changing, 20, 138
PREFIXIFIER patch, 103,210

Print commands
imbedding, 53-55

Printer(s)

333

accessories for, 41-42
buffers and, 45
daisywheel versus dot

matrix, 49-50
Diablo compatible

printer, 22
Diablo 630 daisywheel,

49, 54, 59, 75
Dot matrix printers

(DMP), 6
Epson printers, 5-6, 54,

59
getting the computer to

communicate with a,
44-45

laser, 39
making adjustments on,

51
NEC Spinwriters, 49
proportional spacing and,

49-50
Qume Sprint

daisywheels, 49
underlining and

superscripting on,
5-7

Printing
of a I < , 12
camera-ready print

mode, 50-51
of columns, 15
of daisywheel spokes,

20-21
onto a disk, 4
double headers or

footers, 27
of glossaries, 27-28
of hidden lines on a

mailing list, 26
imbedding dot

commands and, 12
improving daisywheel

print quality, 13
a line of dots, 9

334

Printing-cont.

microjustification and,
151

of page numbers, 27
part of a file, 4, 155-156
preview mode, 3-4
problems of Applewriter

Ile, 28-29
ProDOS and, 149-152
running WPL and, 12
shadow, 77
a solid bullet, 34
underlining and, 33-34,

151
of WPL files, 27-28

Print quality
accessories and, 41-42
CAMER..c\-READY

program, 50-51, 64-
65, 189

how to improve, 48-49
how to improve

daisywheel, 13
importance of, 39-40

Print tractors, 41 , 50
ProDOS Applewriter 2.0

backup copies of, 7
booting of, 1 14-1 15
character entry and,

141-142
control commands and,

145-149
detrashing of programs

and, 9
entry points and, 135-136
erasing programs on

boot/master disk, 23
executing of string

control characters, 14
extended memory and,

23
filenames and, 10
grappler problem and, 7
high work files and, 126-

128, 232-233
HIRES graphics dumps

and, 163-164

ProDOS Applewriter 2.0-
cont.

how to view versions of,
24

internal files and, 1 18-
1 19, 128, 234-240

low work files and, 123-
126, 227-231

memory and, 1 15, 140
memory maps and,

1 16-1 18
MLI and, 136-138
modifying, 161-163
monitor access and,

138-139
NULLs and, 5, 96
patches for, 8, 102-108
prebooting of, 32
prefixes and, 20, 103, 138
printing routines of,

149-152
reference files and, 128-

131 , 241-243
screen display and,

143-145
storage of work files and,

1 17
text files and, 1 18,

1 19-123
underlining and

superscripting on, 5-6

ProDOS Applewriter 2.0
programs

AIOIFIER, 104
BOOTIFIER, 105
CONVERT, 1 1 , 112
CREEPIFIER, 106
CURSIFIER, 108
GLOSSIFIER, 106
GRAPPLIFIER, 104-105
NULLIFIER, 105-106
PREFIXIFIER, 103
PROMPTIFIER, 107
SCRUNCHIFIER,

106-107
STRETCHIFIER, 107

ProDOS Applewriter 2 . 1 , 1 12

Applewriter Cookbook

PROMPTIFIER patch, 107,
220

Prompts
user, 144

Proportional spacing
how to set, 22, 61-62
microjustification and, 76
printers and, 49-50

Punctuation

Q

BOLD PS printwheel
and, 21

filenames and, 10
underlining and, 59-60

[Q] command, 147
Qume Sprint daisywheels, 49

R

[R) command, 147-148
RAM, 1 16-118, 140
Random access, 137
READ.EOF commands, 137
Reading a long file, 25
READ.MARK commands,

137
Reference files

control commands and,
128-129

definition of, 1 19
error messages, 130
listing of, 241-243
function list, 129
print constants match,

130
Reformatting, 143
Registration

improving daisywheel,
15

RESTORIFIER IAWile)
patch, 102, 209

Ribbons
film versus cloth, 50
how to get more out of,

52-53
suppliers of, 42-43
using WD40 on, 52-53

Index

ROM, 140
RS232 interface, 44-45, 46-48

s

[SJ command, 148
Saving copy, 10, 148
Scanning a long file, 25
Screen display, 143-145
Screen dump method

full, 163, 164
SCRUNCHIFIER patch, 106-

107, 217-218
Secondline problems of

Diablo 630, 22, 75
Serial interface, 45
SET.EOF commands, 137
SET.FILE.INFO., 138
SET.MARK commands, 137
SET.PREFIX command, 138
Shadow printing of titles, 77
Shortline problem

how to solve, 6, 97
Silencers for printers, 41-42
SNEAKY.D, 165, 166, 326
Source code, 32, 164-167

SPACE ON DISK program, 99
Spacing

in paragraph ends, 76-77
tightening vertical, 75-76
See also

Microjustification ;
Proportional spacing

Split screen command, 148
SPOKE REARRANGER

program, 21, 75,
182-183

Squashticity module, 73-74
STARTUP, 156
Stashes

defined, 131 , 132
STRETCHIFIER jAWlle)

patch, 204
STRETCHIFIER jAWIIe)

program, 6, 61, 73-
74, 97-98, 174-176

STRETCHIFIER jProDOS
2.0) patch, 107, 219

String precoding, 163-164
String variables and WPL,

155
Subroutines and WPL,

154-155
Subscripting

faking, 14
Superscripting

on Apple DMP, 6
on Epson printers, 5-6
faking, 14

Supplies
disk labels, 43
disk mailers, 43
disks, 43
paper, 42, 51
ribbons, 42-43, 50

Suppliers
list of, 42-43

Swallow buffer, 31 , 125
.SYS program, 161

T

[Tl command, 148
Tabs

[closed apple] key and, 32
glossaries and, 61-63
high work files and,

126-127
how to set, 146, 148
low work files and, 126

TBAS command, 1 15
Text files

definition of, 1 18
fast typing and, 1 19-120
how to access, 140
how to use, 120-123

TITAN 10, 75
Titles

centering of, 77
Tractor feeds, 41, 50
Trashing of programs

how to fix, 9
punctuation and, 10

TTXTcommand, 115
Tutorials

creating, 19

335

Tutorials-cont.
Diablo 630 formatting

glossary with,
195-196

DMP formatting glossary
with, 193-194

Epson MX80 formatting
glossary with,
197-198

how to access, 31
Imagewriter formatting

glossary with,
199-200

Tweedle, 156
TWO COLUMNS, 167-168,

327-328
Type-ahead buffer, 141

u

[U] command, 148
Underlining

on Epson printers, 5-6
formatting and, 71, 7 4-75
how to improve, 7, 33-34,

74-75

how to improve
daisywheel, 13

printing and, 33-34, 151
of punctuation, 59-60

[-1 junderscore) command,
149

US juser separator), 5, 61 ,
150-151

V

[V] Verbatim command, 14,
55, 56, 59-60, 148,
166-167

Video cards, 139
Viewing of a program, 24

w

[W) command, 148
WD40 for ribbons, 52-53
Word wraparound

command, 149

336

Word wraparound-cont.
defeating, 123
STRETCHIFIER patch

and, 97
WPL

commands and
glossaries, 82-83

conditional execution
and, 155

disadvantages of, 157
files

printing of, 27-28
how to write, 154
imbedded commands

and, 55, 64
jumps and subroutines

and, 154-155
labels and, 153-154
numeric variables of, 155
printing and, 155-156
programs

.AUTO.PD8, 78

WPL-cont.
. BULLET SHOOTER,

34, 186
.CAMERA READY, 50-

51, 64-65, 78, 188
.DETAIL, 78
.FILE LISTER, 27-28,

184-185
.FLINSERT, 35, 187
.FORMAT BOLD PS,
78

.FORMAT MAJESTIC,
78

.FORMAT NOFRILLS
D630, 69-78, 189-191

.SPACE ON DISK, 99

.SPOKE
REARRANGER, 21,
75, 182-183

Applewriter Cookbook

WPL-cont

X

.TWO COLUMNS,
167-168, 327-328

string variables of, 155
tips on using, 156
uses for, 152

[X] command, 148

y

(Y) command, 35, 148

z

(Z] command, 149

MORE

FROM

SAMS

D Apple® lie Programmer's Reference
Guide
Describes the four principal programming
languages and operating systems: Applesoft
BASIC, the monitor, Pro-DOS, and 65C02 machine
language coding. Key topics such as text screen,
keyboard input, low- and high-resolution graphics
are covered in separate chapters. A complete
memory map is included, with procedures for
managing all 128K of memory. Valuable for
beginners as well as seasoned programmers.
David L. Heiserman.
ISBN 0-672-22422-4 . $24.95

D Apple® II Plus/lie Troubleshooting &
Repair Guide
Repair your Apple II or lie yourself, simply and
inexpensively. Troubleshooting flowcharts let you
diagnose the probable cause of failure and remedy
it. A chapter on advanced troubleshooting shows
the more adventuresome how to perform complex
repairs. Some knowledge of electronics required.
Robert Brenner.
ISBN 0-672-22353-8 . $19.95

D Managing with AppleWorks™

This book makes AppleWorks understandable even
for the reader who has no experience with
computers or integrated software. Author Ruth K.
Witkin provides step-by-step instructions and
illustrated examples showing how to use this
popular software for effective, efficient business
management. Ruth K. Witkin.
ISBN 0-672-22441-0 . $17.95

D Applesoft for the lie
This book is a detailed Applesoft programmer's
reference manual written specifically for the
Apple® lie, covering all aspects of lie syntax and
programming techniques. Contains many usable
routines and programs, and offers instant relief
from high-priced factory manuals.
Blackwood and Blackwood.
ISBN 0·672-22259-0 . $19.95

D Apple® lie Programmer's Reference
Guide
Here's a book that encourages you to explore new
programming ideas and take advantage of powerful
programming procedures on the Apple lie by
placing needed facts, applications, and other
technical information at your fingertips. Also
contains many short application and demonstration
programs in BASIC and assembly language.
David L. Heiserman.
ISBN 0-672-22299-X . $21.95

D Assembly Cookbook for the
Apple® II/lie
Read one of the strongest, most convincing
sermons you'll ever hear in favor of assembly
language programming on the Apple. Several
chapters of equally strong instruction tell you what
assemblers are and how to use them. Step by step,
the author leads you through practical modules of
working assembly language code. Excellent
Lancaster stuff! Don Lancaster.
ISBN 0-672-22331-7 . $21 .95

Look for these Sams Books at your local bookstore.

To order direct, call 800-428-SAMS or fill out the form below.
· ------------·----.. .. .

Please send me the books whose titles and numbers I have listed below.

Enclosed is a check or money order for$ ____ _
(plus $2.00 postage and handling).

Charge my: D VISA D MasterCard

Account No. Expiration Date _
_
__ -

�
_
_ -

�
_
_

_ -r-_ -.-

Name (please print), _ _ ______ __ _ _ _

Address ________ __ _ _ _ __ _

City _ _ _ _ _ _ __ ________ _

State/Zip _ _______ __ _ _ ___ _

Signature _____ __ _ _______ _
(required for credit card purchestts)

Mail to: Howard W. Sams & Co., Inc.

DC028

Dept. OM
4300 West 62nd Street
Indianapolis, IN 46268

The DON LANCASTER Library

Apple II & Ile Assembly Cookbook . 22332
Active Filter Cookbook . 21168
Cheap Video Cookbook . 21524
CMOS Cookbook . 21398
Enhancing Your Apple II, Vol I. 21846
Enhancing Your Apple II, Vol II . 21943
Hexadecimal Chronicles . 21802
Incredible Secret Money Machine . 21562
Micro Cookbook I (Fundamentals) . 21828
Micro Cookbook II (Machine Language) . 21829
RTL Cookbook . 21168
TTL Cookbook . 21035
Son of Cheap Video . 21723
TV Typewriter Cookbook . 21313

Applewriter User Support
Don Lancaster and Synergetics off er many different support services for

Applewriter and Apple users wishing to push the limits of their Apple.
Included in these services are feedback cards, companion support disks, free
user patches, the Gila Valley Apple Growers Association, and a no-charge voice
hotline. An electronic bulletin board and a Compuserve link are also planned.

Feedback Response Cards
The feedback response cards are your way of letting us know about any

problems you may have or telling us what you want to see in the way of future
Applewriter enhancements. We also like to hear about your progress in
exploring the enhancements. Simply tear out the response card, fill it out, and
drop it in the mail.

Companion Disks
Also available are a pair of companion disks that hold all of the code in this

book, along with a few bonus programs.
The 54+ program DOS Version 3.3e disk or the 58+ program ProDOS

version costs only $24.50 or $44. 50 for the pair. Both are unprotected and fully
copyable but only for your personal use. You can order these support disks
with the order card that is bound in the back of the book. VISA and MasterCard
are accepted, as are telephone orders via the helpline.

A number of other books and disk packages are also available, including
the support disks for Enhancing Your Apple II, Volume I; Enhancing Your Apple
II, Volume II; Apple II & Ile Assembly Cookbook, and The Incredible Secret Money
Machine, which is Don Lancaster's underground classic book on forming your
own winning technical ventures. Also available are some exciting new graphics
animation packages. See the order card for full details.

The Gila Valley Apple Growers Association
Please: Pronounce the G in Gila as if it were an H, as in Hee luh.

The Gila Valley Apple Growers Association is a most unusual consortium
of Apple owners and users. Each meeting is a test ground for the members'
software product development. New ways of pushing the limits of Apples and
other hardware and software are the usual activity focus. A special interest
group on tinaja questing also exists.

Membership is more or less free but is limited strictly and exclusively to
those attending the meetings. There are not and never will be any printed
notices, newsletters, or outside library exchange services available.

The association meets from 6 to 10 p.m. usually every Wednesday night
during the school year. Meetings are held in Thatcher, usually at Eastern
Arizona College room TB or T9.

Stop in sometime.

The Applewriter Helpline
A voice helpline service is available as a joint service of Don Lancaster,

Synergetics, and the Gila Valley Apple Growers Association . . .

Applewriter Users Helpline

1602) 428-4073
(voice only)

The service is free, except for your usual phone charges. Best times to call are
weekdays 8 a.m.-5 p.m. (Mountain Standard Time). The two main areas of
expertise are Applewriter and assembly language programming.

Cards Missing?
If the cards are missing, call or write . . .

SYNERGETICS
7 46 First Street
Box 809
Thatcher, AZ 85552
(602) 428-4073

DISKETTE
Please send me:

D Applewriter Ile Cookbook Disk . $24.50
D ProDOS Applewriter 2.0 Cookbook Disk $24.50
D Both Applewriter Cookbook Disks $44.50
D Assembly Cookbook Disk . $ 19.50
D Enhance Volume I Disk . $ 19.50
D Enhance Volume II Disk . $ 19.50
D Absolute Reset Mod package . $ 19.50
D Vaporlock Instant Sync package . $19.50
D Applewriter Laserwriter Utilities . $39.50
D MacPaint Schematics Toolkit . $24.50
D Old Fangled Animation package . $ 19.50
D Incredible Secret Money Machine $ 7.50
D Don Lancaster Book and Software List !free)

D Check enclosed for $ _ _ _

D Charge my VISA/MasterCard account __ _ ___ _ _

signature _ _ _ _ __ ____ _ _ _ exp __ -__

Name _ _ _ _ _ __ ____ __ _ ________ _ _

Address _ _ __ __ ______ _ _ __ _______ _

City ____ _ _ _ _ _ _______ State _ _ Zip ___ _

Please: NO purchase orders, COD, cash, Canadian, or foreign.

RESPONSE CARD

D Keep me informed of any updates and revisions to the Applewriter
Cookbook.

D Please send me a free Don Lancaster software and book list.

D The next enhancements I want to see are

D What I need right now is _____ ___ __ _ _ _ __ _

NAME _ ________________ _ _ _ _
ADDRESS _ __ _ _ __ _ _________ _ _

CITY ______________ STATE __ ZIP __

voice phone _ __ _____ _ data phone _ _ _ _ _ __ _ _

SYNERGETICS
7 46 First Street
Box 809
Thatcher, AZ, 85552

SYNERGETICS
7 46 First Street
Box 809
Thatcher, AZ, 85552

place
postage

here

place
postage

here

AppleWriter
™

Cookbook

AppleWriter Cookbook gives workable and working answers to real-life
questions asked by callers to the Gila Volley Apple Growers Association
helpline.

Another in the popular series of Don Lancaster cookbooks, this volume
includes the latest ProDOS Version 2.0 details for both the Apple lie and lie.
It covers a wide range of topics, including:

• Answers to the most-asked AppleWriter qu�stions
• Patches for null, shortline, Grappler®, and other codes
• Self-prompting glossaries for major printers
• Microjustificotion and proportional spacing routines
• Camero-ready print qual ity secrets
• Complete and thorough disassembly script
• Source-code capturing instructions
• WPL routines for columns, space-on-disk, etc.
• Information concerning continuing support, helpline, and upgrades

Personalize your copy of AppleWriter so that it does exactly what you wont it
to do! Anyone who uses AppleWriter needs the AppleWriter Cookbook.

Don Lancaster heads Synergetics, a prototyping and consulting firm that specializes
in microcomputer applications and electronic design. Mr. Lancaster is a prolific
author. Two of his best-known books ore the classics, CMOS Cookbook and TTL
Cookbook. A microcomputer pioneer, he hos a unique writing style that blends
information with entertainment so that his readers con smile while they learn.

Howard W. Sams & Co., Inc.
A Subsidiary of Macmillan, Inc.
4300 West 62nd Street, Indianapolis, IN 46268 USA

$19. 95/22460

0

ISBN: 0-672-22460-7

	awcb2ps++
	aw-cb_100-199viaps+++
	aw-cb_200-299viaps+++
	aw-cb_300-via ps++

