

SCIENTIFIC ANALYSIS

ON THE

POCKET CALCULATOR

SCIENTIFIC ANALYSIS

ON THE

POCKET CALCULATOR

JON M. SMITH
SOFTWARE RESEARCH CORPORATION

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS

New York . London . Sydney . Toronto

Copyright© 1975, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

No part of this book may be reproduced by any means, nor
transmitted, nor translated into a machine language with
out the written permission of the publisher.

Library of Congress Cataloging in Publication Data:

Smith, Jon M 1938-
Scientific analysis on the pocket calculator.

"A Wiley-Interscience publication."
Includes index.
1. Calculating-machines. 2. Numerical analysis.

I. Title.

QA75.S555 510'.28 74-20713
ISBN 0-471-79997--1

Printed in the United States of America

10987654

To Laurie,
Mike, and Chris

PREFACE

This book is written for all those who own or operate a modern electronic
pocket or desk calculator, and especially engineers, scientists, science
students, mathematicians, statisticians, physicists, chemists, computer ana
lysts, and science educators.

When the right numerical methods are used, the electronic pocket
calculator becomes a very powerful computing instrument.
"Micronumerical methods" that will help the reader to derive the most
computing capability for every dollar he has spent on his pocket calculator
are discussed here.

Most of the methods work on any pocket calculator. Special methods for
certain types of machines are clearly indicated where necessary. Key stroke
sequences for both algebraic and reverse-polish calculators are shown.
Virtually all pocket calculator keyboards and capabilities were considered
in preparing this book, to ensure that the numerical methods presented are
the most universally applicable for general pocket calculator analysis.

Each part of this book provides a consistent and careful treatment of the
methods and tabulated formulas that can be used with a pocket calculator.
The aim is to supply the reader with a large number of numerical
techniques, numerical approximations, tables, useful graphs, and flow
charts for performing quick and accurate calculations with pocket calcula
tors.

The numerical methods are presented from four viewpoints:

1. The numerical evaluation aspect of each numerical method.
2. The manner in which each method is used.
3. The limitations and advantages of each method.
4. The tabulation of useful formulas in forms that are most convenient

for pocket calculator analysis.

vii

viii Preface

Emphasis is also given to numerical methods used in certain types of data
processing, such as harmonic and statistical analysis. And they are pre
sented in forms that are directly useful to engineers, scientists, and pro
grammers.

The premise of this book is that the pocket calculator provides the
scientific analyst with an important new dimension in analysis. Obviously
the pocket calculator is useful both for numerically evaluating functions
and for processing data. In addition, it enables the analyst to quickly gain
detailed and quantified knowledge about any technical discipline (his own
or another's) by learning its mathematical models and tools through use
and experimentation on the pocket calculator. In short, the pocket cal
culator becomes a learning machine for the scientific analyst. A scientific
analyst no longer need first develop a mathematical model for a complex
process or system being studied and then turn it over to a computer
programmer for its numerical evaluation. Instead, he can numerically
evaluate complex functions (and thus analyze complex problems) on even
the simplest four-function calculators in his home or office.

Finally, throughout the world scientific analysts working on pocket
calculators are inventing their own numerical methods for evaluating
problems in their specific disciplines. In this sense, the pocket calculator is
a research tool which the analyst can use to develop his own numerical
methods for his own purposes.

Throughout the book I give more attention to subjects of interest to the
practitioner than to those of interest to the theorist. Though the treatment
of this material is mathematical, I have not strived for conciseness or rigor
beyond that required for pocket calculator analysis. Numerous examples
of each technique and method are given, and their implementation is
discussed in detail.

This book consists of four parts that are subdivided into 12 chapters,
each dealing with topics in numerical analysis that are useful to the
practical analyst. I have tried to avoid overgeneralization in the treatment
of these topics, since numerical analysis is an art as much as it is a science.
Part I of the book introduces the spectrum of pocket calculators (including
their capabilities and their limitations) available to engineers and scientists.
Particular attention is given to the unique computing features of interest to
the scientific analyst. Part I also presents mathematical preliminaries and
mathematical refresher material and develops certain elementary numeri
cal methods particularly suited to analysis on the pocket calculator. Topics
from arithmetic to algebra and analysis with complex variables are co
vered.

Part II presents numerical methods and formulas for numerically
evaluating advanced mathematical functions. It also deals with the nested

Preface ix

parenthetical form of the most frequently used functions in advanced
engineering mathematics. It is the nesting of a sequence of arithmetic
operations in parenthetical form that is the ba~is for performing advanced
analysis on the pocket calculator. For example, 14 multiplies, 2 divides, 2
sums, and 108 data entries, totaling 126 key strokes and 5 data storage
records, are needed for a three-digit floating-point evaluation of sin (x)
~x- x 3 /3! + x 5 /5!. But only 54 key strokes· and no data storage records
(on a scratch pad) are needed to evaluate sin (x)~x(l -(x2 /6)(1- x 2 /20))
to the same accuracy. Though we would evaluate sin (x) in this manner
only on a four-function calculator, this example does illustrate the point
that many complex formulas usually requiring calculator memory to be
numerically evaluated can be written in a "nested" form not requiring
calculator memory and thus can be evaluated conveniently on even the
simplest four-function pocket calculator.

The nested parenthetical form is considered to be a "fast" form for
numerical evaluation. That is, functions written in nested parenthetical
forms require fewer operations to numerically evaluate than do the same
functions in their "simplest algebraic form." The nested forms are there
fore evaluated more rapidly than their unnested counterparts.

In Part II the topics of recurrence formulas for evaluating advanced
functions and performing analysis are also covered. Recurrence formulas
are unique in that they are infinite memory forms of otherwise finite memory
form calculations. The formulas give the pocket calculator "virtually" an
infinite memory for storing data, which creates many numerical methods
for data processing (as in statistics) to be rewritten in recursive form for
pocket calculator analysis. Here, again, the emphasis is on making even the
simplest four-function calculator capable of doing sophisticated analysis
without memory. Such concepts as nested parenthetical forms and recur
sion formulas, when combined with those of Chebyshev economization
and rational polynomial approximation, provide tremendous flexibility and
accuracy in the numerical evaluation of even the most complex functions
on the simplest four-function pocket calculator. In fact, the serious analyst
can perform precision calculations unheard of until a few years ago-in
the comfort and convenience of his home or while traveling on the job.
Part I II examines the methods and formulas for performing advanced
"types" of analysis on the pocket calculator. Included are such topics as
numerical evaluation of definite integrals and methods for numerical
differentiation of data sets, solving differential equations, simulating linear
processes, performing statistical analysis, and performing harmonic analy
sis.

Part IV deals exclusively with analysis on the advanced programmable
pocket calculator. The chapters illustrate conclusively the leap in comput-

x Preface

ing capability produced by the pocket calculator. They are based on
personal experience in solving a very large number of problems on the
programmable pocket calculator developed by the Hewlett-Packard
Corporation. The discussion is general, however, recognizing that more
programmable pocket-style calculators are being developed.

This bor·k grew out of eight years of study on numerical methods for
analysis on the digital computer. These methods were revised over a period
of three years to make them applicable to desk calculator analysis and
eventually to pocket calculator analysis. A number of the methods have
been available to the analyst in scattered literature, such as user's guides
and manuals for desk-top and pocket calculators, journal articles, and
some textbooks. A large part of the material was developed by the author or
was provided by my associates in industry. I am particularly indebted to my
associates, at the Software Research Corporation and the McDonnell
Douglas Corporation. They generously shared with me many of their
"tricks of the trade" and suggested interesting problems for this book. I
express my sincere appreciation to one of the great numerical analysts of
our time, Dr. Richard Hamming, of Bell Laboratories, for his review and
improvements to the manuscript.

My thanks to the people at Hewlett-Packard who reviewed and critiqued
the manuscript, and in particular to the HP-65 chief engineer, Mr. Chung
Tung.

I want to thank Joseph and Sara Goldstein, who taught me the
Goldstein algorithm--"one at a time."

To my wife, Laurie, my special appreciation for putting up with the 4
a.m. Writing schedule.

Finally, my thanks go to Mrs. Florence Piaget who typed the manuscript
and helped me to prepare it for publication.

St. Louis, Missouri
August 1974

JON M. SMITH

CONTENTS

PART I INTRODUCTION TO POCKET CALCULATOR
ANALYSIS

The Pocket Calculator 3

2 Difference Tables, Data Analysis, and Function Evaluation 53

PART II NUMERICAL EVALUATION OF FUNCTIONS ON
THE POCKET CALCULATOR

3 Elementary Analysis with the Pocket Calculator

4 Numerical Evaluation of Advanced Functions

PART III ADVANCED ANALYSIS ON THE
POCKET CALCULATOR

5 Fourier Analysis

6 Numerical Integration

7 Linear Systems Simulation

8 Chebyshev and Rational Polynomial Approximations
for Analytic Substitution

9 Determining the Roots of a Function

I 0 Statistics and Probability

81

114

139

154

180

198

224

242

xi

xii Contents

PART IV THE PROGRAMMABLE POCKET CALCULATOR

11 The Programmable Pocket Calculator

12 Optimization

APPENDIX 1 SOME TRICKS OF THE POCKET
CALCULATOR TRADE

283

300

323

APPENDIX 2 MATRIX ANALYSIS ON THE POCKET CALCULATOR 333

APPENDIX 3 COMPLEX NUMBERS AND FUNCTIONS

APPENDIX 4 KEY STROKE SEQUENCES FOR COMPLEX
VARIABLE ANALYSIS AND HYPERBOLIC
INVERSE FUNCTIONS

INDEX

336

340

PART ONE

INTRODUCTION TO

POCKET CALCULATOR

ANALYSIS

CHAPTER 1

THE POCKET CALCULATOR

1.1 INTRODUCTION

This chapter discusses the mathematical differences among the various
pocket calculators and certain mathematical concepts, useful for analysis
on the pocket calculator, that appear throughout this book.

We are not so much concerned with the hardware implementation of
mathematical operands and operations as with the different ways in which
they can be assembled in a computing machine-the hardware architec
ture. Only the most obvious mathematical aspects of calculator design are
examined, such as the language used, the size and type of memory, the
instruction set, type of input/ output, and whether the calculator is pro
grammable. There are some 432 types of calculators that could be hard
ware implemented. An entire book could be written on this subject alone.
Here we limit our discussion to the more important mathematical
differences that result from the various hardware implementations in order
to:

I. Understand pocket calculators and the organization of mathematics
within them.

2. Determine, in a cursory way, the combinations of hardware imple
mentation that result in a significant jump in calculating capability.

The purpose is to narrow the types of calculator to be considered in this
book to three.

Three hypothetical calculators that are typical of the available and
anticipated pocket computing machines are discussed. Care has been taken
throughout not to limit the methods of analysis to any particular hardware
implementation. In fact, if there is bias throughout the writing it is in the
direction of anticipated developments in the pocket calculator field, though
its overall effect on the material is negligible.

3

4 The Pocket Calculator

The following mathematical aspects are covered in this chapter:

1. Arithmetic calculations.
2. Function evaluation with and without memory.
3. Computational accuracy.

The first is a thorough introduction to what appears to be a mundane
subject (arithmetic on the pocket calculator). In fact, it is found to be quite
the opposite because the different languages used by different calculators
lead to significantly different capability for handling complex problems.

Particular attention is given to nested parenthetical forms of functions
that permit function evaluation on memoryless and limited-memory cal
culators. Nested parenthetical forms are used as a means of providing
implicit memory to the memoryless calculators. They are also "fast" in the
sense that their evaluation involves fewer key strokes than the usual
algebraic form.

No chapter on mathematical preliminaries in a book on numerical
analysis would be complete without a discussion of computational ac
curacy. Here we examine:

1. The accuracy limitations of the typical pocket calculator.
2. Ways in which to accurately evaluate functions in general, and on the

pocket calculator in particular.

1.2 MATHEMATICAL DIFFERENCES IN POCKET CALCULATORS

Today's pocket calculators differ mathematically in many ways. Only the
six more commonly encountered mathematical distinctions are covered
here. In a sense, these are the major distinctions because they are the
fundamental issues addresst:~d in the conceptual design of every pocket
calculator. The important mathematical distinctions that are associated
with the subtleties of detailed design are not discussed because the hard
ware implementations vary widely. Perhaps the best known difference is
that between the use of fixed-point and floating-point numbers.

The fixed-point numbers are those whose decimal point is fixed by the
electronic circuitry. The difficulty is that when multiplying two large
numbers together, so that the most significant digit exceeds the size of the
numeric display, the number is truncated not in the least significant digits
but in the most significant digits. Most fixed-point arithmetic computers
have a symbol that is illuminated to indicate the overflow condition.

Floating-point numbers have a decimal point that moves so as to retain
the most significant digits in any calculation. When a number is computed
that is larger than the calculator's field of numbers and the decimal point

Mathematical Differences in Pocket Calculators 5

location is unknown, most calculators display the most significant digits
and illuminate a symbol indicating that the decimal point location is
unknown.

In these two number systems, it should be noted, the number fields are
dramatically different. In the floating-point number system the numbers
are "bunched" around zero. In the fixed-point number system the numbers
are uniformly distributed over the range of the number field. To see this,
consider the process of incrementing each of these types of numbers on a
pocket calculator.

The smallest possible increment between any two numbers is the least
significant digit in the numeric display. For an eight-digit display with a
decimal point fixed in the third place, the smallest increment that can be
added to any digit is 0.001. Now consider the addition of an increment to a
floating-point number. Since the decimal point "floats" in the floating
point number system, the decimal point precedes the far-left digit. For an
eight-digit display, the smallest number that can be added to zero in a
floating-point number system is 0.00000001. Now consider incrementing a
floating-point number when the decimal point is after the far-right digit. In
this case, the smallest number that can be added to 99999998 is 1. The
difference in the size of the "smallest number" when incrementing a full
and empty register in floating-point numbers is a factor of 10 8

.

Now consider the full range of the positive numbers in both number
systems. The fixed-point numbers range from 0.001 to 99999.999. The
difference between numbers, no matter where a number is over the range
of the calculator, is 0.001. Thus the-numbers over the range of fixed-point
numbers are uniformly distributed.

Again consider the range of the positive floating-point numbers, from
99999999 to 0.00000001. Clearly, the range is greater in the floating-point
number system than in the fixed-point number system, but note also that
when the numbers are very small the distance between them is 0.00000001.
When the register is full, the difference between the numbers is 1.
Obviously, over the range of floating-point numbers, the distribution is not
uniform. In fact, there are as many numbers grouped between 0 and 1 as
there are between 1 and the full register size 99999999.

It follows, then, that in fixed-point arithmetic the absolute difference
remains fixed over the entire range of the number system, while in
floating-point numbers the absolute difference varies significantly. It is
worth emphasizing that in floating-point arithmetic the percentage
difference remains fixed, while in the fixed-point arithmetic system the
constant difference remains fixed over the range of numbers. As used here,
percentage difference is the ratio of the difference between two consecutive
numbers divided by the larger of the two. For most engineering analysis,

6 The Pocket Calculator

percentage difference and percentage error are usually the measure of
accuracy of most interest.

The floating-point number system is usually extended by powers of 10,
permitting the positive floating-point numbers to range from 10- 99 to
99999999 X 1099

• In fact, calculators are usually configured to display this
extended number field in scientific notation. Interestingly, this even further
bunches the floating-point numbers in the neighborhood of zero. Because
of this grouping property of the floating-p0int numbers, the absolute errors
are smaller for calculations with numbers between 0 and 1 than for
numbers betwen 1 and the full range of the calculator.

From a hardware archik~cture viewpoint, fixed-point numbers are usu
ally displayed with greater accuracy than floating-point numbers; and
floating-point numbers are usually displayed with a greater dynamic range
than fixed-point numbers. This can be seen by considering a register with
eight display elements where we configure both fixed-and floating-point
numbers. In fixed-point arithmetic, eight mantissa digits can be displayed.
If the decimal point is allowed to be set by the decimal point key 0 ,
and a display element is us1ed to show the decimal point, then only 7 digits
remain to display the mantissa. If scientific notation is used to increase the
dynamic range of the display, m + 1 display elements are required to
display m digits in the exponent. The extra display element is used to show
the sign of the exponent.

Required
Display

Power of 10 Display Elements

10 ± x (±)(x) 2
w±xx (±)(x)(x) 3

10 ± xxx (±) (x)(x) .. · (x) m + 1
~

m digits

If 99 orders of magnitude are to be shown in the display register (the
usual case with scientific pocket calculators) three display elements are
required to display the exponent and its sign, leaving only five digits for
displaying the mantissa. In this sense, then, the effect of increasing the
display's dynamic range is to reduce the number of digits for displaying a

Instruction and Data Entry Methods 7

mantissa, thus reducing the accuracy with which a number can be dis
played.

1.3 INSTRUCTION AND DATA ENTRY METHODS

We discuss three types of data entry methods (languages) commonly used
in pocket calculators: polish, reverse-polish, and algebraic. In polish nota
tion, the operator precedes the operand. For example, to instruct the
calculator to add the numbers A and B, in the polish entry method we
would stroke the plus key, then enter the two numbers A and B. The
logical operation in the machine would then display the result without the
need for striking an additional key. In reverse-polish, the process is
reversed; that is, the operands are introduced before the operator. In
algebraic notation, the operator is sandwiched between the two operands.
If we compute the sum of A and B in algebraic notation, we first input A,
then stroke the summation key, follow that with an input of B, followed by
stroking the equal key, whereupon C would be displayed in the register. It
might seem that one entry method would result in many fewer key strokes
than another entry method when numerically evaluating a function, but it
turns out that the key strokes associated with instructing the calculator are
fairly small compared with those associated with data entry. Far more
important is the fact that certain entry methods, when combined with
memory, result in the need for fewer data inputs or "scratch-pad" storage.
The most common entry methods used in pocket calculators are the
reverse-polish and algebraic methods, the former usually being used with
machines that have a memory stack and the latter being attractive because
of its "natural" algebraic treatment of numerically evaluating algebraic
functions.

The natural way in which the algebraic method is used to numerically
evaluate algebraic functions can be seen in the following example. Con
sider the relation

AxB+C=Y

When evaluated on an algebraic notation pocket calculator (such as the
Texas Instruments SR-10), the sequence of key strokes is*

CLA X B+ C=xxxxxxxx xx

The same function evaluated on a reverse-polish notation calculator (such

*Here the symbols CL, j, x, +, and = mean, respectively, "to clear the display register," "to
store what is in the register in a temporary location," "to multiply," "to add," and "to present
the answer-Algebraic language only."

8 The Pocket Calculator

as the Hewlett-Packard-35) would involve the sequence of key strokes

CL AjB X C+xxxxxx xx

It is apparent that the former is more natural for simple functions than the
latter. Reverse-polish notation, when used in conjunction with memory
stacks, has the convenient property that it easily implements the numerical
evaluation of functions with parenthetical expressions. This is not the case
with algebraic notation. For example, the sum of products

(AxB)+(CXD)

must be rewritten in the form

(A~ B + C)n
to be evaluated using algebraic notation without using a scratch pad. The
key strokes and operation to evaluate the sum of products directly is

CL A x B = xxxx xx STORE ON SCRATCH PAD]

t CL C x D = yyyy yy +INPUT xxxx xx= zzzz zz

The key strokes to evaluate this sum of products in the rewritten form is

CL A x B + D + C x D = zzzz zz

The reverse-polish with stacks evaluates the sum of products conveniently
with key strokes

CL A j B x C j D x + zzzz zz

To avoid rewntmg expressions in somewhat unfamiliar forms, the
algebraic programming language can be designed to recognize a hierarchy
among the operators, that is, when products are computed before sums or
vice versa. The algebraic method with a "product-before-sum" hierarchy
(such as the Texas Instruments SR-50) would evaluate the sum of products
directly with the following key strokes:

CL A x B + C x D = zzzz zz

It has difficulty, however, with the expressions of the product of sums

(A+B)x(C+D)

m that the hierarchy is set up to "multiply-before-add" rather than

Memories 9

"add-before-multiply" which the product of sums requires. This problem is
resolved with an additional storage location in which to store the inter
mediate sum. The key strokes are then,

CL A + B = STO CL C + D x RCL = zzzz zz

In reverse-polish with stacks, the key strokes are

CLAjB+ CjD+ x zzzz zz

Here STO means "store in memory" and RCL means "recall from
memory."

1.4 MEMORIES

Pocket calculators are available with no memory, memory for a constant
term, a memory stack of three to four registers, and in the more sophisti
cated machines addressable memory registers as well as the stack. The
pocket calculator with a memory that simply retains a constant is
characterized by the rather inflexible storage of a constant number that
can be recalled or not recalled to the display register, as the operator
desires. The stored constant can be used as a coefficient in multiple
products or as a constant in multiple sums. The constant memory register
does not automatically interact with the display register in most pocket
calculators.

Pocket calculators with memory stacks generally involve three or four
registers that can be manually "pushed up" and automatically "pushed
down" for the purpose of retaining numbers developed in the display
register. When used in conjunction with reverse-polish notation, they
provide the first quantum level of computing capability above that present
in the simple four-function memoryless pocket calculator. Data are usually
entered into a stack with an entry operation. The three stack registers of a
Reverse-Polish machine can be filled with three different numbers and
then, as the operation on the number in the display register and the
bottommost number in the stack is called for, the result is displayed in the
display register and the stack automatically moves down, bringing the
second number in the stack now to the first 'number, and the third number
to the second. This process can be continued until the stack is empty. The
algebraic machine with hierarchy uses the stacks somewhat differently.
When a key stroke sequence is to be evaluated (upon key stroking the
equal sign), the calculator first looks for products to evaluate and put into

10 The Pocket Calculator

the memory stack and th~~n executes sums (in a "multiply-before-add"
hierarchy). The stack manipulations are automatic.

In the more sophisticated calculators with addressable registers, the
process of storing data in a register is similar to that of storing data in the
memory of a computer. The addressable stack does not interact unless
programmed to do so. This memory resembles the register for storing a
constant in the simpler calculators. Here, however, the ability to address
the register is involved.

1.5 INSTRUCTION SET

The basic "four-function" calculator has keys for instructing the calculator
to add, substract, multiply, and divide. What is amazing is that these small
four-function machines, purchased at relatively low cost, can provide
tremendous computing power. Examples of the use of the four-function
pocket calculator for evaluating some of the most sophisticated engineer
ing analysis will be seen later. Another arithmetic operation that can be
performed with the four-function machine is computing powers of a given
variable through repetitive multiply operations. While squaring a number
involves only two multiplies, the number must be double entered. Thus,
the simplest additional instruction that can be added to a pocket calculator
that reduces the number of key strokes is the squaring operation or
modifying the multiply instruction to square a number when only one data
entry has been made.

Entirely new capabilities are added when the square root and reciprocal
instructions are added to the calculator instruction set. There is no single
stroke way on a four-function calculator to numerically invert a number
without using a scratch pad and double data entry.* A similar situation
holds for the square root. Thus we find the next most sophisticated pocket
calculator to be a seven-function calculator, including square, square root,
and reciprocal functions implementable with a single key stroke. Beyond
this, additional instructions are added to aid in special-purpose computing
in a variety of ways. The underlying theme throughout the addition of
functions to a pocket calculator keyboard is to reduce the number of key
strokes associated with data inputs.

Because we will be continually ref erring to instructions found on most
scientific calculators, let us define the instruction sets that we use in this
book:

*See Appendix Al-5.

Key Symbol

c:J

0

Key Name

Clear

Digit

Decimal point

Enter exponent

Change sign

Add

Subtract

Multiply

Divide

Square

Square root

Key Instruction

Clears information in the cal
culator and display and sets
the calculator at zero

Enter numbers 0 through 9 to
a limit of an eight-digit man
tissa and a two-digit exponent

Enters a decimal point

Instructs the calculator that
the subsequent number is to
be entered as an exponent of
10

Instructs the calculator to
change the sign of the
mantissa or exponent appear
ing in the display

Instructs the calculator to add

Instructs the calculator to sub
tract

Instructs the calculator to
multiply

Instructs the calculator to di
vide

Instructs the calculator to find
the square of the number dis
played

Instructs the calculator to find
the square root of the number
displayed

11

Key Symbol Key Name

Reciprocal

Sine

Cosine

Tangent

Inverse trigonometric

Common logarithm

Natural logarithm

e to the x power

y to the x power

12

Key Instruction

Instructs the calculator to find
the reciprocal of the number
displayed

Instructs the calculator to de
termine the sine of the dis
played angle

Instructs the calculator to de
termine the cosine of the dis
played angle

Instructs the calculator to de
termine the tangent of the dis
played angle

Instructs the calculator to de
termine the angle of the se
lected trig function whose
value is the displayed quantity,
when pressed as a prefix to the
sin, cos, or tan key

Instructs the calculator to de
termine the logarithm to the
base 10 of the displayed
number

Instructs the calculator to de
termine the logarithm to the
base e of the displayed
number

Instructs the calculator to raise
the value of e to the displayed
power

Instructs the calculator to raise
y, the first entered number, to
the power of x, the second en
tered number

Key Symbol

I ENTER i I

Key Name

The xth root
of y

Store

Recall

Sum and store

Factorial

Equals

Clear entry

Pi

Enter

Key Instruction

Instructs the calculator to
process y, the first entered
number, to find the xth root.
The value of x is the second
entered number

Instructs the calculator to

store the displayed number in
the memory

Instructs the calculator to re
trieve stored data from the
memory

Instructs the calculator to al
gebraically add the displayed
number to the number in the
memory, and to store the sum
in the memory

Instructs the calculator to find
the factorial of the number
displayed

(Algebraic entry method only)
Instructs the calculator to
complete the previously en
tered operation to provide the
desired calculation result

Clears the last keyboard entry.

Enters the value of p1 (7T) m
the display register

Loads contents of x register

into y register and retains con
tents of x register in x register

13

14 The Pocket Calculator

1.6 THE PROGRAMMABLE POCKET CALCULATOR

The most sophisticated pocket calculators available at present are the
HP-55 and HP-65. They operate in Reverse-Polish notation, have memory
stacks and registers, uses flloating-point arithmetic with scientific notation,
has an extensive three-level function set, and are programmable. From the
standpoint that the programmable pocket calculator implements logical
(Boolean) equations as well as Algebraic equations, can make logical
decisions, and will iteratively execute a preprogrammed set of instructions,
it can be correctly called a pocket computer. It is called a calculator only
because it does not satisfy the U.S. Government's import/ export trade
definition of a computer. Because it is generally accepted that the defini
tion of a computer (or calculator) changes as the state of the art of
computer design changes, it is also acknowledged that in 1955 the pro
grammable pocket calculator would have been called a computer.

Programmable calculators provide a quantum jump in pocket computing
capability by making libraries of program listings and prerecorded mag
netic tape programs availa.ble to the analyst at relatively low cost. These
libraries can be compiled by the user himself or can be purchased.

1.7 THE CALCULATORS TO BE DISCUSSED IN THIS BOOK

We have seen that there are three types of entry method, three types of
memory, and three kinds of number that can be implemented in any of the
three kinds of pocket calculator with (though not described here) four
types of function set and two types of I /0-the hard copy and the manual
I /0. Hence at least 432 types of calculator could be made up from
different combinations of these electronic hardware alternatives. While the
number of reasonable combinations is somewhat smaller, about 50, the
number of possible types of pocket calculator is still too large to be
covered in one book. W1~ therefore analyze only three basic types of
hypothetical pocket calculators. One is a simple four-function calculator.
The other is an engineering machine, again a hypothetical one, but with a
function set characteristic of the SR 50 / 51 or HP-21/35 / 45 series
machines. The third is the programmable pocket calculator, which we
assume to have a four-register stack with a nine-register addressable
storage and a 100-word instruction set. This, too, is a hypothetical machine
whose properties are defined in the context of the discussion.

The Calculators to be Discussed in This Book 15

Of the three hypothetical pocket calculators, emphasis is placed on the
second-the engineering-type four-register stack machine with the usual
complement of engineering functions. Also, because the simple four
function machine is now available at very little cost, attention is given
throughout the book to performing advanced analysis on this machine.
What continues to amaze the writer is the extent to which the four
function pocket calculator can be applied to engineering analysis once the
equations to be solved are manipulated in forms that require no memory
for their evaluation.

For all these machines, we assume that we are limited at most to a
IO-digit register and we use floating-point arithmetic with scientific nota
tion.

The keyboard for the hypothetical four-function calculator to be dis-
cussed is sketched in Figure 1-1. The keyboard functions for the scientific
and programmable pocket calculator are shown in Figure 1-2. The basis
for the discussions dealing with this calculator is the HP-65, in that it is
representative of what will be available in the foreseeable future.

DDDDDD.DD
0

Figure 1-1 A hypothetical four-function pocket calculator keyboard.

16 The Pocket Calculator

[[1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

1

1'1

9

1

9

]

IARCI ~ I cos I ITANI @]

rnfil 0 ~ I NOP I I DSZ I Programmable only

!Log x] B [] 0 B
0 I v-x I ~ Iv.YI 0
I STO I !Rell l&I LJ Algebraic only

Reverse-Polish only Er:=) 0 8 ~
0 0 0 D I GTO I

GJ CD 0 0 ~ Programmable only

QJ QJ CD D I RTN I

0 D I CHS I D ~

Figure 1-2 A hypothetical scientific pocket calculator keyboard (mixed Algebraic and
Reverse-Polish and programmable functions).

The display details for all calculators discussed here are shown in Figure
1-3. The display features that we will discuss from time to time include the
following:

Decimal point Assumed to be to the right of any number
entered unless positioned in another sequence
with the 0 key.

Arithmetic Calculations and Languages 17

Minus sign

Sign Mantissa Exponent

A ~

1(-)1 x I I x I x I x I x I x I x l x I x I x I (-)I x I x I
yy y

Integer decimal point Decimal Sign

Figure 1-3 Typical pocket calculator display format.

Appears to the left of the I 0-digit mantissa for
negative numbers, and appears to the left of
the exponent for negative exponents

Overflow indication ~n most pocket calculators, the largest number
that can be entered in the calculator is ± 9.
999999999 x 1099 without an overflow when a
function is pressed. If a calculation result is
larger than this value, the display will flash or
give a numerical indication of overflow

Underflow indication If a number closer to zero than to ± 1.0 X

10- 99 is entered in the calculator, the display
will flash or indicate an underflow.

While concentrating on the hypthetical machines just mentioned, we
shall comment on machines with slightly different keyboards where
appropriate.

1.8 ARITHMETIC CALCULATIONS AND LANGUAGES

It might seem that the arithmetic functions of addition, subtraction,
multiplication, and division are so basic to the pocket calculator that very
little need be said about them. It is because they are so basic that they are
discussed in some detail here. Arithmetic performed in one language is
substantially different from that performed in another language. In one
language certain arithmetic calculations are quite convenient and easy to
remember to the infrequent user. Another language, though less con
venient to the beginner, is more powerful and flexible (hence more con
venient) to the frequent user. Finally, and perhaps most important, mixed
arithmetic calculations illuminate the need for memory-whether manual,
(using a scratch pad) or temporary data storage, (using automatic stacked
registers) or permanent data storage, (using addressable memory).

Table 1-1 Arithmetic in Algebraic and Reverse-Polish Languages

Key Stroke Sequence

Task Algebraic Reverse-Polish

SumA&B A+B= AjB+

SumA&B&C A+B+C= { AjB+C+
AjBjC+ +

l AjB+ C+D+

SumA&B&C&D A+B+C+D=
AjBjC+ +D+
AiBiC+D+ +
AiBiCf D+ + +

Multiply A&B A><.B= AjBX

Multiply A&B&C AXBXC= { Af Bx C x
AiBiC xx

l
AjBXCXDX
AjBjCXXDX

Multiply A&B&C&D AXBXCXD= AjBjCXDXX
AjBjCjD XX X

A><B+D+CxD
AjBXCjDX+

=(no memory)

Compute A><B+CxD Af BjCjD xRt XRj+*a
(Ax B)+(C x D) =(with hierarchy)

A>< BSTOC x DRCL+
=(with memory)

Compute
(A +B)X(C+D)

Ax BSTOC+D XRCL=

(AjB+ CiD+ x
1 AjBjCjD+Rt+RjX*

~
a*See page 21 for a definition of Rt and Rj.

18

Arithmetic Calculations and Languages 19

The two most popular languages used in pocket calculators are algebraic
and reverse-polish. The languages were introduced in Section 1.3. Table
1-1 illustrates the key strokes involved in performing additions, multiplica
tions, and mixed arithmetic calculations such as products-of-sums and
sums-of-products using both the algebraic language and the reverse-polish
language. A number of insights on analysis on the various pocket calcula
tors can be derived by examining the table. The most obvious is that the
algebraic language programs the calculation of simple series arithmetic
calculations in exactly the manner in which we would write them as an
algebraic expression reduced to its simplest form. It is equally obvious that
even simple series arithmetic calculations can be performed in a number of
different ways when using reverse-polish language (except for the simplest
operations of adding and multiplying two numbers). In a sense, then, for
these simple arithmetic tasks, the algebraic language has one unique
sequence of key strokes for performing the task, while the reverse-polish
does not. When viewed from the algebraic language enthusiast's
standpoint, this ambiguity in ways to solve simple series arithmetic prob
lems in reverse-polish is viewed as a possible confusion factor for the
pocket calculator user. The reverse-polish language enthusiast, however,
views the same property a-; a measure of the flexibility of the reverse-polish
notation. From his viewpoint, the user has greater flexibility in the
algebraic forms in which an arithmetic problem can be presented for
numerical evaluation. Furthermore, he could argue, the first form shown in
each of the series calculations in Table 1-1 is close to the algebraic
language key strokes, differing only in the second and last key strokes.

It is interesting that this distinction should come up at all, since the
mixed arithmetic in the last two examples in Table 1-1 shows the many
different ways in which the sum of products can be evaluated with the
algebraic and reverse-polish languages. Note that the first example of the
use of algebraic language to evaluate the sum of products illustrates the
rewriting of the algebraic form as

(AxB)+(CxD)=(A~B +c)n

We see from the sequence of key strokes that the sum of products can be
evaluated without memory. This form of evaluating the sum of products is
ideal for use on the simple four-function calculators in that it requires no
scratch pad memory and is within the set of operations available on even
the simplest pocket calculator. A similar expression can be developed for
calculating the product of sums without need of memory. Again, the
algebraic form of the equation must be rewritten to be convenient for

20 The Pocket Calculator

calculator evaluation as

(
(A+B)xc)

(A+B)x(C+D)= D +A+B D

The importance of rewriting expressions in forms that are easily
evaluated on the pocket calculator is obvious, however. The example of the
sum of products (the second from the last in Table 1-1) shows that the
most convenient form for implementation on any pocket calculator may
depend on the language that that calculator uses -0.nd the sophistication
with which it is implemented. For example, the second sequence of key
strokes to evaluate the sum of products is in the standard algebraic form.
This form works well for sums of products where the algebraic language is
implemented with a hiernrchy of operands, that is, the multiplies are
performed before the sums. Also, the third example of the employment of
algebraic language for evaluating the sum of products shows the standard
algebraic forms for evaluating the sum of products on a machine that uses
the algebraic language but has an additional register for memory.

We observe in Table 1-1 also that no memory is required for performing
simple arithmetic calculations in algebraic language until we reach the
product of sums, the last example in the table. Such is not the case for the
reverse-polish language. For example, only two registers are required for
implementing the simple: sum A+ B + C + D in algebraic language. In
reverse-polish language, only two registers are required to implement the
sum as shown by the first example in the column of possible implementa
tions of this series of sums. The other three possible implementations
require additional registers in which to store the data A, B, C, and D.
Clearly in algebraic language additional registers would not permit al
ternative ways to evaluate the sum, while in reverse-polish every additional
register leads to one additional way. In the example shown in Table 1-1 it
is assumed that there are four registers in which to store the four data A, B,
C, and D. Obviously, the use of reverse-polish language with stacks of data
registers adds flexibility to a pocket calculator. In a sense, then, polish
notation and stacks go together in a pocket calculator. It is also apparent
that algebraic language ,eliminates the need for extensive stacks of data
registers, since no additional flexibility is permitted with the addition of
register stacks. Therefore, most calculators that use algebraic language
have smaller memories than pocket calculators using reverse-polish.

Another observation that we can make from Table 1-1 is that machines
with algebraic notation which also have hierarchy and an additional
register of memory (such as the SR-50) embody the highest level of
capability available for pocket calculators using the algebraic language.

Arithmetic Calculations and Languages 21

Such algebraic machines compete effectively in conducting mixed arith
metic calculations with the reverse-polish language machine, such as the
HP35 / 45 series, with somewhat less electronic complexity. However, the
reverse-polish with stacks adds operational flexibility for the user, which
the algebraic machine does not. Moreover, the algebraic machine requires
that the form of the equation be evaluated, particularly if it is highly
complex. The reverse-polish language, on the other hand, provides the
flexibility to evaluate very complex expressions with minimum attention
being paid to the arrangement of terms. This flexibility is in part due to
additional arithmetic registers that the typical reverse-polish machines
generally have.

Because the manipulation of data among the data registers is essential to
understanding both the reverse-polish with stacks machine and the ad
vanced algebraic machines, we discuss memory manipulations next.

When we speak of a reverse-polish machine with stacks, we assume that
a stack consists of four registers for storing numbers. Following Hewlett
Packard notation, we call these registers X, Y, Z, and T. Register X is at
the bottom of the stack, T is at the top of the stack, and the display always
shows the number in the X register. We designate the number in the
register by the same letter in italic type. Thus X, Y, Z, and T are the
contents of registers X, Y, Z, and T. When a number key is stroked, the
number enters the X register which is displayed. The number is repeated in
the Y register when the "enter" key (1] is stroked.Whatever is in the Y
register is "pushed up" into the Z register. The contents of the Z register
are moved into the T register, and the contents of the T register are lost
(see Figure 1-4). As data are entered into the Y register from the X register,
the data in the other registers are "pushed up" automatically with the only
data lost being the data in the T register. Data in the Y register can be
viewed in the display by rolling the data from the Y register down to the X
register by stroking the "roll-down" key I Ri I. The data in the X register
are then worked backwards in the stack to move to the top register (T), the
data in the top register move to the Z register, the data in the Z register

~Lost

:~:
:___/ L::

Figure 1-4 Data flow associated with data entry.

22 The Pocket Calculator

move to the Y register, and, as meniioned before, the data in the Y register
move into the X register where they are displayed. Stroking the "roll
down" key again causes the data that were formerly in the Z register,
which have been moved to the Y register, to move down to the X register
where they can be seen in the display. All other data are moved to a
neighboring register in the direction in which the roll is made. It follows
that after four "roll-down" key strokes the stack will be arranged back in
the original order where X is in its original location and is displayed in the
X register, Y is in its original location, Z is in its original location, and T is
in its original location. Stroking the "roll-down" key moves the data in the
registers in the direction from the Y register to the X register. Stroking the
"roll-up" key ~ moves the data in the direction from the X register to
the Y register. The data flow associated with the data entry and "roll
down" and "roll-up" operations is seen in Figure 1-5.

t~~T
z ~ z

y ~y

x ~ x

t~T z z

y y

x x

Figure 1-5 Data flow associated with roll-down I RJ, I and roll-up I Rj I·

Another commonly used stack manipulation is the replacement of the
data in the X register with the data in the Y register and vice versa. The
data flow associated with stroking the "X-Y exchange" key [QJ is
k hd

. . x y
s etc e m Figure 1-6. "-'

The data flow associated with the stack operations, when performing

T

z

y~Y

x~x

Figure 1-6 Data flow associated with x,y

exchange [IT]
x Y.
'-'

Arithmetic Calculations and Languages 23

addition, subtraction, multiplication, and division, is sketched in Figure
1-7. We see the following:

1. For summation, the contents of the Y ancf X registers are added and
displayed in the X register.

2. For subtraction, the contents of the X register are subtracted from the
contents of the Y register and displayed in the X register;

3. For multiplication, the contents of the X register are multiplied by the
contents of the Y register and displayed in the X register; and

4. For division, the contents of the Y register are divided by the contents
of the X register and displayed in the X register.

y

x

~-~::
--~

------):.- y

y+x y-x

y xx ylx
Figure 1-7 Data flow associated with+,-, x

x and+.

For these basic four functions the contents of the T register are always
retained and never lost. This feature of the operational stack is very useful
for certain repeated calculations.

It is worth pointing out here that many of the functions evaluated by a
single key stroke on the typical Reverse-Polish with stacks pocket calcula
tors result in the loss of some data in the operational stack. For instance, in
the HP35 / 45 series calculators, the contents of the T registers are lost
when evaluating trigonometric functions. They are retained when evaluat
ing logarithmic and algebraic functions, such as taking the square root,
taking the inverse, taking the logarithms, or exponentiating.

Figures 1-8 and 1-9 illustrate the typical data flow in the stacks when the
product of two sums and the sum of two products are evaluated, using
reverse-polish with stacks. Figure l-8a shows the usual procedure for
evaluating the sum of products, which does not involve the use of the top
register. To illustrate the flexibility of the reverse-polish with stacks and
operations associated with the top register, Figure l-8b shows the same
calculations using the "roll-up" and "roll-down" features of the stack
manipulations. Figures 1-10 and 1-11 present the typical data flow

~ T
z
y

(AXB)(AXB)
AA (AX B) C C (Ax B)

X A A B (Ax B) C

Key Ai B x
Step 1 2 3 4

c
5

c

i
6

D (C x D) (Ax B)+(C x D) Display register

D
7

x
8

+
9

Figure 1-8a Data flow associated with the sum of two products (AX B)+(C X D) using key strokes
A j B x C j D x + on a Reverse-Polish Machme.

T AA A (CXD)(CXD) A A
z AABB A A A
y AA BB CC B A (A XB)

x AABBCCD(CXD) B (AX B) (C X D) (AX B) + (C X D) Display register

Key Ai Bi Ci D x Ri x Ri
Step 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1-8b Data flow associated with the sum of two products (Ax B)+(C X D) using key strokes
AjBjCjD xRtxRj+.

~

T
z (A+B)(A+B)
y AA (A +B) c c (A +B)

x AAB(A+B) c c D (C+D) (A+B)X(C+D)

Key Ai B + c i D + x
Step l 2 3 4 5 6 7 8 9

Figure 1-9 Data flow associated with (A+ B) x (C + D) using key strokes A j B + Cj D + x on a
Reverse-Polish machine.

~

Addition and subtraction

m -M

z)EJ{z
e-9

d recall Storage an RCL

_/=~o~ m~M
m~ Z

z z
z y

y y
y x

x X x~L<m

Step 1

m M

z ~Z

Y~Y or
x - x

First
multiply
or divide

Multiplication and division

m M

-----~z

y~Y xx y
x x

Equals (3 steps involved)

Step 2 Step 3

m M m M

·~m[
z

: [cL~ARI

~
y

I x x

Then

I
Then

add or clear
subtract Y and Z

Figure 1-10 Data flow associated with keyboard functions of an Algebraic machine with memory and hierarchy (.. multiply before
add").

!:j

M
z
y

A A
(A+ B) (A+ B) (A+ B) (A+ B) (A+ B) (A+ B) (A+ B)

c c
(C+D) (C+D)

(A +B)

X A A B (A+ B) (A+ B) C c D (C+D)(C+D)(A+B) (A+B)X(C+D)

Key A + B
Step 1 2 3 4

STO
5

c
6

+
7

D
8 9

x
10

RCL
11 12

Figure 1-11 Data flow associated with (A +B)x(C+D) using key strokes A +B=STOC+ D= xRCL= on an algebraic machine
with memory and hierarchy ("multiply before add").

28 The Pocket Calculator

associated with keyboard functions and a calculation of the product of two
sums using algebraic with memory. A comparison of Figures 1-8, 1-9, 1-10,
and 1-11 indicates clearly that the greater the memory storage capacity in a
pocket calculator the greater the flexibility in its use.

The question of languages in pocket calculators is akin to that in
minicomputers or large computers, or different nationalities for that matter
-the language you know the best is the language you like the most, unless
you have sufficient multilingual skills to recognize the subtle advantages of
one language over another .. What matters least is the type of language or
size of memory associated with any specific pocket calculator; what
matters most is to begin to use some pocket calculator in advanced
analysis. The solid-state revolution has enabled the engineer to perform
fairly sophisticated analysis at his desk, in his home, or on a trip, without
the need for access to a computing facility. Simply stated, those who
capitalize on this aspect of the solid-state revolution and keep current with
the development of pocket computing machines will have a tremendous
advantage over those who do not.

1.9 SCIENTIFIC KEYBOARD FUNCTION EVALUATION

In this section we use the four-function calculator to evaluate the scientific
functions normally found on the scientific calculator keyboard. The sine,
cosine, tangent, exponential, logarithmic, arc sine, arc cosine, and arc
tangent functions are presented in nested parenthetical forms in two
different ways. The first way is in the nested parenthetical form of the
truncated series approximations of these functions. The second way is in a
curve-fit polynomial form that permits precision evaluation of these func
tions over a broader range than the simple series expansions of the
functions. Also covered here are the algebraic functions of raising a
number to its nth power or evaluating its nth root.

Raising a Number to a Power

Raising a number to a power on a four-function calculator can be done
simply by repeated multiplication. A fairly high power, such as 100,
involves 100 data entries and 100 multiplies, which result in many key
strokes and many possibilities for error. An alternative is to use the
constant key available on many of the four-function calculators. The
constant key is built into these calculators to make it convenient to
multiply or divide a series of numbers by a constant number. In the case of

Scientific Keyboard Function Evaluation 29

raising a number to a power, we put the chain-constant switch to the
constant position and then input the number to the X register, depress the
constant key, and then raise the number to the power n by stroking the
equals key n times. This approach virtually eliminates the error associated
with repeated data entry in the primitive n-multiply approach. Even in this
case, however, raising a number to the power of 100 involves 100 depres
sions of the equals key (an error prone procedure). This can be circum
vented by breaking down the power into its prime factors and performing
nested parenthetical multiplies to evaluate numbers raised to high powers.
For example, suppose that we wish to raise 'TT to the lOOth power with only
a single entry of 'TT. This can be conveniently done on the simple four
function calculator by noting that the prime factors of 100 are 2, 2, 5, 5.
Then

= (8.769956822 x 109
/

= 5.187848391 x 1049

On pocket calculators that have the squaring operator, numbers can be
raised to any integer power through the 10th by entering the data only
three times. Since the prime factors of many of our exponents are made up
of 2, 3, 5, and 7, raising numbers to these powers involves only two data
entries.

Computing roots on the four-function calculator requires iterative opera
tions. Among the various approaches to evaluating roots, the simplest is
Newton's method. Though this method leaves much to be desired in most
applications, it can be used conveniently for computing the roots of
numbers. We have more to say on this topic later in the book. For now,
note that the formula for computing the roots is

where xk = kth estimate of ny N

This equation requires an initial approximation, which is used to develop a

30 The Pocket Calculator

second, more exact, approximation, which in turn is again used to develop
a third, even more exact, approximation. The process usually converges
quickly when the initial estimate of the nth root is known. Convergence
can be markedly slow, however, when the first estimate is not fairly close
to the root in question. Examples of the convergence properties of the use
of Newton's method for evaluating the third, fifth, and seventh roots of w

are shown in Table 1-2.

Table 1-2 Examples of the Convergence of Newton's Method
for nth Roots of '11'

Number of
'~ ~ 7;-;;; Iterations

0 1.0 1.0 1.0
1 1.713864218 1.428318531 1.305941808
2 1.499089493 1.293620977 1.209849586
3 1.465379670 l .259260005 l.180121812
4 1.464592311 l .257280369 1.177679333
5 1.464591888 1.257274116 l.l 77 664031
6 1.464591888 l.257274116 1.177664030
7 1.177 664030

Check by 3.141592656 3.141592658 3.141592655
computing 7T

'Tl (actual) 3.141592654 3.141592654 3.141592654

Absolute 0.000000002 0.000000004 0.00000000 l
error

Close examination of Table 1-2 shows that for an initial guess of 1, the
process converges in five iterations to the accuracy of the pocket calcula
tor. However, a determinatlon of this requires a sixth iteration, and in the
case of the seventh root also a seventh iteration. The table also shows the
check of the root by repeated multiplies and the comparison with the true
value of w, indicating an accuracy of I part in 108 after only six or seven
iterations. In general, this method cannot be expected to converge so
quickly for other functions. It happens to converge quickly for the nth root
function because of the nice properties of that function. Note that New
ton's formula for computing the nth root also works for the simple square
root. This can be seen by setting n equal to 2 in the equation. Then

Scientific Keyboard Function Evaluation 31

Newton's formula for computing the square root iteratively (which is also
due to Joseph Raphson, a contemporary of ~ewton's-hence this method
is often called the Newton-Raphson technique) gives the equation

(VN)k+i=~(N +(VN)k)
(VN)k

which can be used for iteratively computing the square root of a number
N.

Nested Parenthetical Forms

Many functions of interest to engineers can be written in a power series.
This series can be generated by using Taylor's theorem, Maclaurin's
theorem, Chebyshev polynomials, and so on. Furthermore, an empirical
data set can be fit with power series. When so written, they take the
"standard" form

J(x)=a0 +a1x+a2x 2 +a3x 3 + · · · +anxn+ · · · (1-1)

If we were to evaluate this series in the most straightforward manner on
the simple four-function calculator, we would compute each term in the
series and record it on a scratch pad. When all the terms of interest were
evaluated, the sum would be computed on the pocket calculator. The
number of key strokes involved for a IO-digit data entry is shown in Table
1-3. The total number of key strokes for data entry plus instruction are

n

Total key strokes= L 12i+ 10=6n 2 + 16n
i=I

Table 1-3 Key Strokes Required to Evaluate
Power Series in Standard Form

Operation

Record,a a0

Compute and record, a 1x

Compute and record, a2x 2

Compute and r~cord, a3x 3

Compute and record, anxn

Key Strokes

0
22
34
46

12n + 10

aNo one would input a0 in the calculator and then
recopy it on a scratch pad.

(1-2)

32 The Pocket Calculator

assuming that each data entry involved the full register. Clearly for n > 3
the number of key strokes becomes laboriously large and for n > 5 the
chances for error become enormous. Hy rewriting equation 1-1 in the form

we reduce the number of key strokes, because the formula is organized in
the natural language of the machine and requires no scratch pad storage.
In pocket computer instructions, equation 1-3 would be evaluated working
from the inside out with the following instruction set:

The number of key strokes for this evaluation of equation 1-1 is

Number
of terms

Total key
strokes

l*

0

2

33

3 n

55 10(2n-1)+2n- l

And the key strokes for data entry plus instructions total

tota:l key strokes= 11 (2n - I) (1-4)

We see, then, that in nested parenthetical form we can carry up to 10
terms before the dimensions of the problem get out of hand-that is, up to
six more terms than in the "standard" form. This business with the forms
of equations is worth remembering for series evaluation on any calculator
or computer in that the nested parenthetical forms are generally processed
faster than are standard forms when computing time is involved. This is
because the number of arithmetic operations grows as the square of the
number of terms for series written in standard form and only proportional
to the number of terms for series written in nested parenthetical forms.

Note also that it is unnecessary to use a scratch pad when evaluating
series in parenthetical forms, since the operands and operations are in the

*No one would evaluate a single-term series on the calculator.

Scientific Keyboard Function Evaluation 33

appropriate order for evaluation with algebraic, polish, or reverse-polish
entry methods.

Comparing equations 1-2 and 1-3 we see that the nested parenthetical
form substantially reduces the number of key strokes by reducing the
number of data entries required for the calculation. Even more dramatic is
the impact that rewriting the equation in nested parenthetical form has on
the time required to perform the numerical evaluation of the power series
on a pocket calculator. If we assume that, on the average, for every key
stroke and digit record the calculation takes 1 second, we would expect the
nested parenthetical form to involve 22/(6n + 32)% (for n > 5) of the time
required for a standard-form power series evaluation. In general, nested
parenthetical forms of power series or polynomials are more quickly
evaluated than the standard forms. The more common scientific keyboard
functions can be evaluated on the four-function calculator using the
following nested formulas:

ln(l+x)~x(1-~(1- 2;(1- 3;(1- 4;)))). (lxl<I)

ln(x)~y(1+~(1+ 2;(1+
3
;(1+ ~}))), r(x~ 1), (x>})

ln(x)~y(1-3:(1- 2;(1- 3
:))), y=(x-1), (Ix-II< I)

In(; ~ :) ~ ~ (I + 6~ 2 (I + 5 :, (I + 7 ~2 (I + 9 :,)))) , Ix I > I

x~1+x(1+~(1+ 2x(1+ 6x(1+ 24x(l+QQ)}))) e 2 6 24 120 720 x

. _ (x
2

(6x
2

(120x
2

(5040 2 \)))
sm (x) = x 1 - 6 1 - 120 1 - 5040 1 - 362880 x /

, (x
2

(2x
2

(24x
2

(720)})) cos (x) ~ I - 2 ·I - 24 I - 720 I - 40320 x2 J

(
x

2

(6x
2

(255))) tan(x)~x I+ 3 1+15 1 +
630

x 2

cotan x)~--- I+- l+-x (1 x (3 x
2 (90 2))

x 3 45 945

34 The Pocket Calculator

. (x
2

(18x
2

(600 2))) arcsm (x) :;;; x 1 + 6 I + LR) I + I 0008 x '

(
x

2

(3x
2

(5x
2 l)) arc tan (x) :;;; x I - 3 1 - -5 1 - -

7
- ' x 2 < I

arc tan (x) :;;; !!... - l. (1 - -
1

(1 - _ 3)) ,
2 x 3x2 Sx 2 !xi> 1

These formulas were selected on the basis of the reasonableness of their
intervals of convergence. Thie four different approximations for the natural
logarithm span the region from x = - 1 to + oo. They are all written in
convenient nested parenthetical forms and can be used for immediate
evaluation on the pocket calculator. This table, if copied and reduced, can
be conveniently taped to the back of your pocket calculator for handy
reference.

Another approach to evaluating these scientific functions is to use a
curve-fit polynomial over a broad range of the argument. Such poly
nomials are tabulated in Table 1-4 for the functions on the keyboard of
the scientific pocket calculator. These polynomials will permit precise
evaluation of the logarithmic, exponential, and trigonometric functions on
the four-function calculator and thus make it capable of performing any
analysis that can be performed on the scientific pocket calculator.

To put functions into forms that are easily computed on the pocket
calculator, use the following procedures:

Procedure 1

(a) Either find or generate a table of values for the function of interest
to the accuracy of interest.

(b) Prepare an interpolating polynomial (see Chapter 2) that passes
through selected points of interest in the table but spans the range
of interest in the argument.

(c) Identify the maximum error of the polynomial approximation on
the interval of interest.

(d) If the accuracy is satisfactory, write the polynomial in nested
parenthetical form, and then use it for approximate evaluation of
the function on the pocket calculator.

Table 1~4 Polynomial Approximations of Many Functions Found on the Keyboard
of the Scientific Pocket Calculators

(1) Log10(x) = t(a 1 + t2(a3 + t 2(a5 + t 2(a7+ al))))+ E(x)
Here

t=(x- l)(x+ 1)
-I

and

JE(x)J < 10- 7 where 10- 1
/

2 < x < 10+ 112

for

a 1 =0.868591718 a7 =0.094376476

a3 = 0.289335524 a9 = 0.191337714

a5 = 0.177522071

(2) Log10(x) = t(a 1 + a3t2
) + E(x)

where t=(x- l)(x+ 1)- 1, a1 =0.86304, and a 3 =0.36415.
Then

JE(x)I < 6 X 10-4 where 10- 1
/

2 < x < 10+ 112

(3) Ln(l + x) = x(a 1 + x(a2 + x(a3 + x(a4 + a5x)))) = E(x)
Here

a 1 = 0.99949556 a4 = -0.13606275

a2 = - 0.49190896 a5 = 0.03215845

a3 = 0.28947478
Then

jE(x)I < 10- 5 where 0 < x < 1

(4) Ln(l + x) = x(a 1 + x(a2 + x(a3 + x(a4 + x(a5 + x(a6 + x(a7+ a 8x))))))) + E(x)

Here

and

a I = 0.9999964239

a2 = -0.4998741238

a3 = 0.3317990258

a4 = 0.2407338084

a5 = 0.1676540711

a6 = - 0.0953293897

a7 = 0.0360884937

a8 = 0.0064535442

!E(x)I < 3 x 10- 8 where 0 < x < 1

(5) e-x = 1 + x(a1 + a2x) + E(x)

where

a 1 = - 0.9664 and a2 = 0.3536

35

Table 1-4 (Continued)

Then

IE(x)l<3xl0- 3 where 0<x<ln2

(6) e-x = 1 + x(a1 + x(a2 + x(a3 + a4x)))

where

a 1 = -0.9998684 a3 = -0.1595332

a2 = 0.4982926 a4 = 0.0293641
Then

IE(x)I < 3X10- 5 where 0 < x < ln2

(7) Sin(x) = x(l + x 2(a2 + a4x 2)) + xE(x)

where

Then

IE(x)I < 2 X 10- 4 where 0 < x < f
(8) Sin(x) = x(l + x 2(a2 + x 2(a4 + x 2(a6 + x 2(a8 + a 10x 2))))) + XE(x)

where

a2 = -0.1666666664 a8 = 0.0000027526

a4 = 0.0083333315 a 10 = - 0.0000000239

a6 = - 0.0001984090
Then

IE(x)I< 2 x 10- 9 where

(9) Cos(x) = 1 + x 2(a2 + a4x 2) + E(x)
where

Then

a2 = - 0.49670

a4 = 0.03705

'TT
where 0< x <T

(10) Cos(x) = 1 + x 2(a2 + x 2(a4 + x 2(a6 + x 2(a8 + a 10x
2
)))) + E(x)

where

a2 = -0.4999999963 a 8 = 0.0000247609

a 4 = 0.0416666418 a10= -0.000002605

a6 = -0.0013888397

36

Table 1-4 (Continued)

Then
1£(x)I <2X 10- 9 where

(11) Tan(x)=x(l +x2(a2+a4x 2))+x£(x)
where

Then

a2 =0.31755

a4 =0.20330

(12) Tan(x) = x(l + x 2(a2 + x 2(a4 + x 2(a6 + x2(as + x 2(a 10 + a 12x 2
)))))) + X€(x)

where

Then

where

Then

a2 = 0.3333314036 as= 0.0245650893

a4 = 0.1333923995 a 10 = 0.0029005250

a6 = 0.0533740603 a 12 = 0.0095168091

1€(x)I < 2 x 10- 3 where

a2 = - 0.332867

a4 = - 0.024369

j£(x)I< 3 X 10- 5 where 0 < x < -i-
1 €(x)

(14) Cotan(x)= -(1 +x2(a2+x2(a4+x2(a6+x2(as+a 10x 2)))))+ --
x x

where

a2 = -0.3333333410 as= -0.0002078504

a4= -0.0222220287 a 10 = -0.0000262619

a6 = 0.0021177168
Then

j£(x)I< 4 X 10- 10 where

37

38 The Pocket Calculator

Table 1-4 (Continued)

(15) Arcsin(x) = -I-(1- x) 112(a0 + x(a 1 + x(a2 + a3x))) + E:(x)

where

a0 = 1.5707288 a2 = 0.0742610

a1 = -0.2121144 a3 = -0.0187293

Then

lt:(x)I < 5X10- 5 where 0 < x < 1

(16) Arctan(x) = x(a 1 + x 2(a3 + x 2(a5 + x2(a7 + anx 2
)))) + E:(x)

where

Then

a 1 = 0.9998660

a3 = - 0.3302995

as= 0.1801410

a7 = - 0.0851330

a9 = 0.0208351

IE:(x)J < 10- 5 where - 1<x<1

If the tables are not available and there is not sufficient time to prepare
them, use Procedure 2.

Procedure 2

(a) Prepare a series approximation of the function centered on the
interval of interest.

(b) Using a Chebyshev polynomial economization scheme (see Chapter
8) reduce the order of the polynomial.

(c) Test the polynomial for accuracy over the argument's interval of
interest.

(d) If the polynomial is not sufficiently accurate, include more terms in
the original approximating polynomial before Chebyshev
economization, then use the Chebyshev procedure and test the
polynomial again.

(e) When the polynomial is sufficiently accurate, write it m nested
parenthetical form and use it to evaluate the function on the pocket
calculator.

The numerical methods associated with generating interpolating
polynomials are discussed in Chapter 2. The Chebyshev economization

Accuracy in Function Evaluation 39

procedure and approximation with rational polynomials are discussed in
Chapter 8.

An interesting aside is that the logarithmic, exponential, and transcen
dental functions and their inverses and hyperbolic counterparts are typi
cally generated in pocket calculators with pre-programmed, recursion
algorithms. These algorithms generate the numerical values of these func
tions using CORDIC techniques*. A CORDIC technique does not im
plement series expansion approximating polynomials. They are hardware
algorithms that generate the numerical values of the mathematical func
tions in which we are interested. In a word, function evaluation on the
pocket calculator is done to high precision using computing techniques and
algorithms that are convenient and efficient from a circuit implementation
viewpoint more than an analytical viewpoint.

1-10 ACCURACY IN FUNCTION EVALUATION

Books on numerical analysis or computer calculations usually present the
equations for propagating relative or absolute error through an analysis. In
this book we take a slightly different approach. Our concerns here are
working within the limitations of the pocket calculator's computing capa
bility and understanding the calculator's impact on the generation of error
that gets introduced into the problem. We wish to identify methods and
techniques for getting around these problems.

The floating-point number system affects the calculations on the pocket
calculator through its treatment of overflow and underflow. When a
number exceeds the largest number in the calculator, the calculator is
usually set to its largest number and the calculation is set to overflow the
contents of the calculator. Similarly, when the calculation calls for a
number that is smaller than the smallest number in the calculator, the
number usually is set equal to zero and the calculation is set to underflow
the machine's capability. Intuitively, replacing an underflow by zero seems
more reasonable than replacing an overflow by the maximum number
available in the calculator. However, one must be careful in such generali
zations. Computing e

228 using the inverse of e-
228 is not the same as

evaluating e228 directly. The reason is that e- 228 is set equal to zero and
thus the inverse is undefined, while e228 is within the number system of the
pocket calculator.

e-228 0
~undefined

underflow

e
228 = 1.045061560 x 1099

*The Cordie trigonometric computing technique-IRE Transactions on Electronic Computer,
September 1959.

40 The Pocket Calculator

What is surprising is that these number system "end effects" can lead to
some practical limitations on the range of variables for which the function
can be evaluated. Table 1-5 shows the effect of overflow and underflow on
the range of the function x 5ex /(ex -1).

Table 1-5 The Effect of Overflow and Underflow on the
Range of Function Evaluation

x x:oex I ex -1 x 5/l-e-x

1.581976707 1.581976707
10 1.000045407 x 105 1.000045407 x 105

100 1.0 x 1010 1x1010

200 3.200000023x10 11 3.200000023 x 1011

202 3.363232171x1011 3.363232170 x 1011

203 3.447308829 x 1011 3.447308829 x 1011

204 Overflow 2.533058573 x 1011

220 Overflow 5.153631990 x 1011

225 Overflow 5.766503900X 1011

226 Overflow 5.895792594 x 1011

227 Overflow 6.027389914 x 1011

228 Overflow Underflow

The function is written in two ways in the table: favoring underflow and
favoring overflow. That is, the function in the first column will eventually
overflow the calculator's field of numbers because of the evaluation of
x 5eX, while the function in the second column will eventually underflow
the calculator's field of numbers because of the evaluation of e-x. The
table shows that the range of the variable x for which the function can be
evaluated is limited sooner by the overflow effect than the underflow
effect. In fact, the function written in the form that will eventually result in
underflow can explore the range of the argument which is 12% greater than
the same function that will eventually result in overflow. In general, pocket
calculator analysis favors functions written in the form that will eventually
underflow.

Roundoff Error

Roundoff error is similar to the end effects associated with underflow and
overflow. While many understand roundoff, its practical impact on en
gineering-type calculations is often ignored with occasionally surprising

Accuracy in Function Evaluation 41

results. Because some of the modern pocket calculators display mantissas
to 13 places, it is easy to overlook the roundoff effect in a calculation,
thinking that the calculator's large mantissa will certainly maintain ac
curacy through a sequence of calculations. The question here, then, is not
how to round off a calculation but, rather, how does the roundoff intro
duce error in a practical manner in a calculation? Roundoff is an end
effect. It is similar to underflow and overflow in that the last digit in the
mantissa is arbitrarily changed to another number on the basis of some
rationale. It is different from underflow and overflow effects: end effects
associated with the number system in the calculator impact the range of
the argument that can be examined; roundoff does not. Roundoff can
actually propagate error into the most significant digits of the calculation.
One might ask, "How does the roundoff of a three or four significant digit
number propagate into the most significant digit?" This is precisely what
we shall discuss here; an example of how roundoff in the third significant
digit propagates to the first significant digit resulting in a 100% error is
used to illustrate the problem.

Table 1-6 shows the calculation of the difference between products of
numbers known accurately to three significant digits.

Table 1-6 Error from the Least Significant Digits to the most Significant Digits

Rounded Calculator
Desired Calculator Calculator Results
Calculation Results Results Rounded

0.234 x 0.567 0.132 678 0.133 0.132 678
- 0.232 x 0.567 - 0.131 312 -0.131 -0.131 312

O.xxx 1.366 x 10- 3 2 x 10- 3 Ix 10- 3

Column 1 shows the desired calculation. Column 2 shows the results
achieved on a pocket calculator, and column 3 shows the results achieved
by first rounding each of the numbers generated in the product and then
taking the difference. Column 4 shows first taking the difference between
the unrounded numbers and then performing the rounding operation.
Precisely what we mean here by rounding is the following. When the two
three-digit numbers are multiplied, their product has either five or six
places. Because the original numbers are only known to three places, we
must drop two or three digits from the product. The rounding operation is
adding I in the third place if the fourth-place digit is five or greater, or

42 The Pocket Calculator

adding zero to the third digit if the fourth digit is less than five.
Now let us examine Table 1-6 closely. The desired calculation involves

roundoff because the numbers in the products are only known to three
places. The calculator results that are displayed to five or six places are
really only known to three places and thus the number must be rounded.
The result of taking the difference of the unrounded numbers is 1.366 X

10- 3 which is only accurate to the first digit. If the second, third, and
fourth digits are retained in additional calculations, they introduce a
multiplication error into the problem that is propagated forward in any
calculations. Clearly, the propagation of this type of error in an extended
calculation can provide mi~aningless results. This roundoff error is well
known and is not commonly made by most analysts.

It is the errors associated with the third-column calculations that are
occasionally introduced into calculations. They arise from what seem to be
reasonable calculations but are in fact mathematically incorrect and thus
introduce substantial errors. The results in the first row of calculations are
rounded to the third significant digit before the subtraction is performed,
giving 2 x 10- 3

. Column 4 shows the subtraction being performed before
the roundoff is performed. It is apparent that the difference in the two
calculations is a factor of 2 (100% difference in the two numbers). The
rationale for the calculation of column 3 is that we really only know the
number to three significant digits, and thus should round each product
before subtracting. The rationale for the calculation in column 4 is that
rounding arbitrarily changes one of the numbers in the calculation, which
introduces an end-effect error. In column 3 there are two end-effect errors
which can combine into a sizable resultant error, while in column 4 only
one end-effect error occurs when the products and subtractions are com
pleted and the result is rounded. In this sense, then, if a column of n
products are taken follow1~d by n subtractions, where roundoff is per
formed after the multiplication, there are n opportunities for propagating
the roundoff effect from the third significant digit to the first significant
digit. However, if the roundoff is performed after the subtractions are
made, there is only one opportunity for propagating this roundoff error
forward into the most significant digits. Thus the rule of thumb for
accurate calculations is to roundoff on the last step. The example chosen
here carries the roundoff error immediately from the last significant digit
to the first significant digit, which usually is not the situation. It is worth
pointing out, however, that calculations to one part in 10,000 involving
differences can move roundoff error as much as three significant digits
forward, thus modifying sensitivity analysis (evaluation of derivatives with
finite differences) results in the third and even second places.

In summary, roundoff bi~comes a problem in calculations mainly when

Accuracy in Function Evaluation 43

two numbers of the same size are subtracted. The roundoff propagates
forward as a result of the cancellation of the leading digit in a subtraction
process. This brings the roundoff errors from the least significant digit into
the most significant digits. Because the display in the calculator's display
window shows a mantissa to 13 places, the inexperienced analyst can be
"spoofed" into assuming incorrectly that he has an accurate number.

Unfortunately, there is no systematic approach to analyzing the effect of
roundofr in extensive calculations. All that can be said is that care must be
taken not to write equations in forms leading to differences of equal-size
numbers. Even this is difficult, because the values of the parameters of the
problem that result in the difference of equal-size numbers often are not
apparent, so that significant roundoff error cannot easily be predicted. The
only practical resolution is to strive to write equations in forms that
minimize the use of subtraction.

Relative Error

As already mentioned, the absolute error in the fixed-point number system
is fixed, while the relative error in a floating-point number system is fixed.
That is, the difference between two numbers in the fixed-point number
system is always the same; in the floating-point number system it is not.
The difference between two floating-point numbers, when the numbers are
close to zero, is smaller than the difference between two floating-point
numbers when the numbers are close to the maximum size in the calcula
tor. The difference between two numbers divided by either of the numbers
is approximately fixed in the floating-point number system, while it varies
in the fixed -point number system. Thus the floating-point number system
tends to emphasize relative rather than absolute error, as do most engineer
ing and scientific analyses. Hence it is the natural number system for
scientific calculations.

A similar situation occurs in evaluating functions. Scientific pocket
calculator analysis favors functions written in a form that minimizes
relative error rather than absolute error. Although this is well known to the
experienced analyst, and seems quite rational to the practical analyst, we
still find it prevalent to use "absolute error" as an accuracy criterion in
numerical analysis. For example, calculating e-x over the range 0 to 3, to 1
part in 103 using a Taylor series expansion, requires on the order of 12
terms in the series. That is, the contribution made by the thirteenth term in
the Taylor series expansion of e - x, when x = 3, is something less than
10- 3. However, if, more reasonably, we require that the relative error be 1
part in 103

, only nine terms are needed in the series. The absolute error

44 The Pocket Calculator

criterion requires 30% more terms than what is usually required for
engineering analysis. In general, when deriving approximation formulas, it
is important to decide what type of error is important to the problem being
solved and use approximation methods that provide the appropriate ac
curacy. Too often the approximation is laboriously long and too accurate
for the purpose.

In Chapter 4 we evaluate power series forms of advanced mathematical
functions such as Bessel's functions and Legendre polynomials. Our
emphasis then in these casi~s, is on both relative error and absolute error.
The formulas based on relative error criteria have fewer terms than those
based on absolute error. In scientific work (where relative error is of
concern) this results in a significant reduction in the work required to
evaluate these functions on the pocket calculator because the number of
key strokes involved in raising the argument to high powers is eliminated.

Rearranging Expressions to Minimize Error in Function Evaluation

The pocket calculator's sole function is the numerical evaluation of
mathematical functions. Hence it does not have alpha-numeric displays or
the ability to display words, except by coincidence.* Its purpose is to
evaluate functions. We have already examined the effects of underflow
and overflow, roundoff, and the error criterion itself on the accuracy of
numerical evaluation. Now we briefly look at the functions to be evaluated
and how they may be written in forms where loss of accuracy due to the
subtraction of two almost equal-sized numbers does not occur.

There are a number of '"tricks" to handling the difference between two
numbers that are close together. However, one general technique exists
that can resolve many problem situations where the difference of two
numbers are of approximately the same size. Consider the function

h(x)= J(x+t:)-j(x)

As already discussed, the numerical evaluation of h(x) can propagate
roundoff error forward into the leading significant digits. This function can
be modified as

* See Appendix A.

h(x) = {J(x + t:)- J(x)} { J(x + t:) + j(x) }
J(x + t:) + j(x)

J2(x + t:)- J2(x)
h(x)=

j(x + t:) + J(x)

Accuracy in Function Evaluation 45

This is a general equation that can, for algebraic and certain transcen
dental functions, transform the difference of two neighboring numbers into
the ratio of sums of the numbers capable of being evaluated accurately on
the pocket calculator (or on any calculator or computer). For example, if

J(x)=x 2

then

For another example, consider the function

f(x)=sin(x+t:)
Then

h (x) =sin (x + t:)- sin (x) = 2 cos (x + I) sin (f)
which for small t: (but not necessarily small x) is

h ~ 2 {cos (x + f) } { f } ~ {cos (x + f)
An example suggested by Hamming is

[
1/2 1/2] [1/2 1/2]

I /2 I /2 (X + €) - (X) (X + {) + (X)
(x+t:) -(x) = 1;2 1;2

(x+t:) +(x)

{

With regard to other techniques, Hamming makes the interesting obser
vation that what appear to be a large number of tricks to reformulate a
function to handle its finite difference are really not new to the analyst.
They are exactly the same methods used in calculus to derive the func
tion's derivative. We can see this from the definition of the derivative

hm - = hm . \ uy } . { f (x + ux) - J(x) }
t1x-->0 UX C.x-->0 UX

As a final resort to avoiding subtraction of nearly equal-sized numbers,
most functions can be series expanded or approximated with different
types of series for the interval of interest. Then h(x) can be formed and

46 The Pocket Calculator

modified as before to get around the subtraction problem.
An approach that works surprisingly well for certain functions (see

Example 1-4) is to use th1;! mean value theorem of differential calculus,
where

j(b)-J(a)=(b-a)j'(fJ), (a<fJ<b)

As an example of the application of the mean value theorem, let us
compute

h (x) = sin (x + t:) - sin (x)

where x + E: is not necessarily small. Using the mean value theorem, we
then find

h (x) = [(x + () - (x)] cos (f)) = (cos f)
for

The difficulty is in selecting the value of fJ that will accurately compute
J(x); that is, in selecting fJ that produces less error than would be produced
by the propagation of the roundoff error into the most significant digits.
The author knows of no method for effectively estimating fJ to ensure
accuracy greater than is given by taking the difference itself. However, the
midvalue interval is an obvious possibility. In this case, we find

h c x) ~ (cos (x + I)

Clearly this method is of questionable value (for precision evaluation) ex
cept when fJ can be determined. The equation is useful, however, for com
puting the extreme values of the difference by using the expressions

E: cos (x + t:)

E: cos (x)

on the interval of the cakulation.
A few commonly used difference equations for circumventing large

errors in taking the difference between nearly equal values of popular
transcendental functions are tabulated in Table 1-7.

References

Table 1-7 Commonly Used Difference Equations
in Functional Evaluation

~ex= ex(e~x - I)

~In (x) = In (1 + ~x)

dsin (2,,x) = 2sin (?Tdx)cos [z,,(x + dlx)]

dcos(Z,,x)= -2sin(,,dx)sin [217(x+ d;)]

~tan (27Tx) =sin (27T~x) sec (27Tx) sec (27Tx + 27T~X)

1-11 REFERENCES

47

One comprehensive, readable volume was selected to use as a reference
throughout this book: Richard Hamming's Numerical Methods for Scien
tists and Engineers. This book, published by McGraw-Hill, is in its second
printing (1973). Dr. Hamming has also published a superb textbook
entitled Introduction to Applied Numerical Analysis (McGraw-Hill, 1971).
For this chapter refer to Hamming's Numerical Methods for Scientist and
Engineers, Chapters 2 and 3.

Example 1-1 Evaluate ln(0.9) using the fifth-order truncated Taylor series
expansion of ln(l + x) in the neighborhood of x = 1.

ln(l+x)~x(1-f(1- 2
3x(I-

3;(1- ~x)))). lxJ < 1

Now

I+x=0.9

.".x = -0.1
Then

ln(0.9)"'-0.1(1- 0:/ (1- 2x30.I (1- 3~0.1(1-4X50.I))))

A typical algebraic key stroke sequence for evaluating this polynomial is

4XO.l CHS+ 5 +IX 3 XO.I CHS +4+ 1x2 XO.I CHS+ 3

+ l XO.I CHS+2+ I XO.I CHS=

48 The Pocket Calculator

A typical reverse polish key stroke sequence is

4j0.l x 5+CHS1+3 XO.I X4+CHS1 +2 XO.I X3+CHS1

+0.1 x2+CHS I +0.1 xCHS

Accuracy considerations over a broader range of x are given in Table
1-8.

Table 1-8 Accuracy of the Filfth-Order Taylor Series Expansion of ln (1 + x)

Absolute Relative
(1 + x) x ln(l + x) x[l-x/2(1- · · ·)] Error Error(%)

0.9 -0.1 - 0.10536052 - 0.10536033 - 0.00000018 00.000173
0.8 -0.2 -0.22314355 - 0.22313067 -0.00001288 00.005774
0.7 -0.3 - 0.35669494 - 0.35651100 -0.00016394 00.04596194
0.6 -0.4 - 0.51082562 - 0.50978133 - 0.00104429 00.20443190
0.5 -0.5 -0.69314718 - 0.68854167 - 0.00460551 00.80241261
0.4 -0.6 -0.91629073 - 0.89995200 -0.01633873 01.78313839
0.3 -0.7 - 1.20397280 - 1.15297233 -0.05100047 04.23601512
0.2 -0.8 - 1.60943791 - 1.45860264 -0.15083525 09.37192077
0.1 -0.9 - 2.30258509 - 1.83012300 -0.47246209 20.51876799

Example 1-2 Evaluate ln(l + x) using the fifth-order Chebyshev
approximating polynomial

ln(l + x) ~ x(a 1 + x(a2 + x(a3 + x(a4 + a5x)))), O<x<l

over the range 0 < x < 1 using the coefficients (from page 55)

a 1 =0.999949556

a2 = - 0.49190896

a3 = 0.28947478

a4 = -0.13606275

a5 =0.03215845

The accuracy of this approximation is shown in Tables 1-9 and 1-10.
Note that even outside the region where the approximating polynomial

was designed to best approximate ln(l + x) it is more accurate than the
"unconditioned" Taylor s1~ries expansion of ln(l + x). Evaluation of ln(l +
x) using the approximating polynomial requires approximately 60 key
strokes (20 more keystrokes than are used in the Taylor series approxima
tion) whether using the reverse-polish or algebraic languages. The addi-

References 49

Table 1-9 Accuracy of the Fifth-Order Chebyshev Polynomial Approximation
of ln(l + x)

Absolute Relative
(1 + x) x ln(l + x) x[a 1 + x(a2 + · · ·)] Error Error(%)

1.1 +0.1 0.09531018 0.9530666 0.00000352 0.003697
1.2 +0.2 0.18232156 0.18233114 0.00000959 0.005257
1.3 +0.3 0.26236426 0.26236872 - 0 .00000445 -0.001697
1.4 +0.4 0.35647224 0.33646527 0.00000696 0.002070
1.5 +0.5 0.40546511 0.40545592 0.00000919 0.002267
2.0 + 1.0 0.69314718 0.69315708 0.00000990 -0.001428

Tablel.10 Accuracy of the Fifth-Order Chebyshev of ln(l + x) Outside the
Design Range of the Chebyshev Approximation

Absolute Relative
1 +x x ln(l + x) x[a 1 + x(a2 + · · ·)] Error Error(%)

0.9 -0.l - 0.10536052 - 0.10517205 - 0.00018847 0.178879
0.8 -0.2 -0.22314355 - 0.22211926 - 0.00102429 0.459028
0.7 -0.3 - 0.35667494 -0.35311655 - 0.00355840 0.997658
0.6 -0.4 - 0.5 I 082562 - 0.50084255 - 0.00998309 1.954301
0.5 -0.5 -0.69314718 -0.66841824 - 0.02472894 3.567632
2.1 1.1 0.74193734 0.74210824 - 0.00017089 0.023034
2.2 1.2 0.78845736 0.78913899 -0.00068162 0.086450
2. 3 1.3 0.83290912 0.83478743 -0.00187831 -0.225512
2.4 1.4 0.87546874 0.87972822 - 0.00425948 -0.486537
2.5 1.5 0.91629073 0.92£i81l12 - 0.00852039 -0.929878

tional key strokes are associated mainly with entering the coefficients a1,

az,·· .,a5.

Example 1-3 Rewrite the difference

h(x)= _l_ - _!_
x+ I x

in a form that will minimize roundoff error using a series expansion
technique. The objective is to eliminate the differencing of two numbers of
approximately equal size. Expanding the first term, we see that

x+l lxl >I

50 The Pocket Calculator

Then

h(x)= 1(1-l + J_ _ J_ + ...)-l_
x x x 2 x 3 x

h(x)=l[(1-l+J___J_+···)-1] x x x2 x3

h(x)= - _L(1- l + _!_ _ ...)
x 2 x x 2

-ll(1) -1
h(x)= ~- 1 + l/x = x(x+ 1)

This form of h(x) does not involve computing the difference of two
numbers of nearly equal size. The range of x over which this derivation
applies is Ix I > 1.

Example 1-4 Rewrite the difference

I 1 h(x)=---
x+ 1 x

in a form that will minimize roundoff error using algebra.
Cross-multiplying, we find

x-(x+ 1) -1
h(x)= =--

x(x+l) x(x+l)

This result is the same as that developed with the series expansion method
except that it holds for all x, not just lxl > 1. This is an important point to
remember. Derivations using series expansion techniques often lead to
results that hold over a greater range of the independent variable than their
derivation strictly allows. With a pocket calculator it is easy to check the
dynamic range over which a derived formula will work.

Example 1-5 Estimate sin(3 l 0
)- sin(30°) using the mean value theorem.

By the mean value theorem, we obtain

h (x) = sin(30° + 1°)- sin(30°)~0.0l 7453293 cos(30.5°)

References 51

Here O.Dl 7453293 is the value of 1° in radians. Then:

0.017453293 cos(30.5°) = 0.015038266

sin(31°)- sin(30°) = 0.015038075

relative error(%)= -0.0012700

absolute error= -0.000000191

Table 1-11 indicates that the mean value theorem can be useful for
engineering evaluations, since the relative error is very small. Care must be
taken, however, in using the mean value theorem. Had we used cos(30°)
instead of cos(30.5°) we would find

0.017453293 cos(30°) = O.Dl5114995

where actually

sin(31°)- sin(30°) = 0.015038075

absolute error= - 0.000076920

relative error (%) = - 0.5115024

Table 1-11 Accuracy of Mean Value Theorem Approximation of
sin (8 + 1 °) - sin 8

(} Sin Mean Value Absolute Relative
(degrees) (0 + 1 °) - sin 0 Theorem Error Error(%)

0 0.017452406 O.Dl 7452628 - 0.000060222 -0.0012693
10 0.017160818 0.017161036 - 0.000000218 -0.0012693
20 0.016347806 0.016348014 - 0.000000208 -0.0012604
30 0.015038075 0.015038266 - 0.000000191 -0.0012700
40 0.013271419 0.013271588 -0.000000169 -0.0012708
50 O.Dl 1101518 O.Dl 1101659 -0.000000141 -0.0012723
60 0.008594304 0.008594412 - 0.000000109 -0.0012629
70 0.005825955 0.005824029 -0.000000074 -0.0012695
80 0.002880587 0.002880624 - 0.000000037 -0.0012756
90 0.000152305 0.000152307 - 0.000000002 -0.0013714

52 The Pocket Calculator

Had we used cos(31 °) instead of cos(30.5 °), we would find

0.017453293 cos(31°) = 0.014960392

sin(31°)- sin(30°) = 0.015038075

absolute error= 0.000077683

relative error (%)=0.5165751

Here we see that the relative error at the boundaries of the (} interval has
jumped from ,._, 1ok % when (} is taken at the midvalue of the interval to

--!% when(} is taken at the end value of the interval.

CHAPTER 2

DIFFERENCE TABLES,

DATA ANALYSIS, AND

FUNCTION EVALUATION

2-1 INTRODUCTION

This chapter deals with interpolation, extrapolation, and smoothing of
tabulated data. Many books on numerical analysis discuss these topics as
related to the use of mathematical tables. Though we are interested in the
use of these methods for precision table lookup, this chapter aims mainly
to develop functions that are simple in form that can be used to replace
complex functions. This technique, called analytic substitution, is com
monplace in advanced analysis. For example, cost data developed on
computer programs with as many as 500 cost-estimating relationships
(CERs) can be used to generate a table of costs as a single design
parameter is changed. It is often convenient to develop an interpolation
formula based on the table of discrete costs which will compute system
cost as a function of the single design parameter. The simpler formula can
be analytically substituted for the entire complex system of CERs in the
large-scale cost model. This reduces the cost of "cost estimating" and
makes the simplified models convenient to analyze on the pocket calcula
tor (see Chapter 11). We will also investigate the smoothing of tabulated
data on the basis of estimates of the error propagated in a difference table.
Finally, we will study what is perhaps the most important but seemingly
least developed use of data tables, extrapolation or prediction. Here
projections, predictions, and identification of trends and predicted values
of function are discussed both from the viewpoints of mathematical
limitations and the practical necessity to predict the behavior of dynamic
processes from their data tables.

53

Difference Tables, Data Analysis, and Function Evaluation

2-2 DIFFERENCE TABLES OF EQUALLY SPACED DATA

Before the age of pocket calculators, the preparation of extensive
difference tables of data with mechanical calculators was laborious and
noisy at best, and frustrating at worst. In practical analysis they require
carrying numbers to at least as many as five significant digits. A table of
finite differences of n numbers and m differences requires

m(2n-m-l)

2

differences to be calculated and recorded in the difference table. For a
table of 50 entries and 5 differences, this involves 235 differences to be
computed. Thus 470 data entries must be made, which took about an hour
on the old mechanical calculators. On the electronic pocket calculator
these calculations are done quickly and quietly, with the time-limiting
element being the analyst's preparation of the difference table. Tables of
fifth-order differences of 50 numbers can be conveniently prepared in
approximately 15 minutes with any pocket calculator.

The difference tables that we are concerned with here are usually
generated in two ways. Either a function is evaluated for certain values of
its independent variable or data are determined by measurement of an
experiment. In both cases the tables of equally spaced data can usually be
prepared, especially of data determined from experiments, since much of
experimental electronics and data sampling is done digitally and can be
time-referenced to a digital clock. We discuss arbitrarily spaced data later
in this chapter.

Our notation is based exclusively on the definition of the forward
difference:

i = 0, I, 2, ... ,n

Figure 2-1 illustrates the definitions of the differences involved in the
difference table. Occasionally we use the term h to represent the spacing of
the data, that is, /::ix= h = xn+ 1 - xn. We do not use backward differences
or central differences in this book. Backward and central differences are
only useful for changing the form of equations used in the derivation of
numerical approximation methods. Since our interest here is not in
manipulating equations but in their numerical evaluation, we use only the
forward difference notation. Repeated application of the definition of the
forward difference generates higher-order differences. For example, the

Difference Tables of Equally Spaced Data

y = f(x)

Ax Ax AX x

Figure 2-1 Definition of differences of equally spaced data.

second-order difference is derived as

~Yi= ~Yi+ I - ~Yi

The third-order difference is developed as

= ~Y;+2 - ~Yi+ I - (~Yi+ I - ~Y;)

= Y;+3-3Y;+2 + 3yi+ I -yi

55

The differences can be numerically evaluated using the equations just
developed, or they can be computed directly from the tabulated values of
the dependent variable, as shown in Figure 2-2.

The nth difference operator is given by the formula

56 Difference Tables, Data Analysis, and Function Evaluation

x y

(a)

x y L\y L\y L\3y L\y L\5y

0 0

14

15 36

2 16 50 24 (b)

65 60 0

3 81 110 24

175 84

4 256 194

369

5 625
Figure 2-2 Finite difference tables. (a) Difference table definition. (b) Numerical example
y=x4.

where z is the shifting operator defined by the relation

z [y (z)] = y (x + ~x)

Furthermore, by repeated application of the shifting operator we see that

zn[y(x)] = y(x + n~x)

Equation 2-1 is derived by noting that the forward difference and shifting

Data Interpolation 57

operators are related as follows:

• n

(z -1) Y;

Note also that equation 2-1 can be written in the form

where

n' C(n,m) = ·
m!(n-m)!

which is the mth binomial coefficient of order n.

2-3 DATA INTERPOLATION

Armed with these definitions, we are now prepared to examine a number
of formulas for analytic substitution or for interpolation. The method that
we use here involves a Lozenge diagram of differences and binomial
coefficients which can be combined into interpolation formulas. The
diagram is shown in Figure 2-3. Certain rules applied along paths across
the diagram proceeding from left to right define interpolation formulas.
This diagram is so general that it encompasses both Newton's forward and
backward difference formulas, Stirhng's interpolation formula, Bessel's
interpolation formula, and an interesting and unusual formula due to
Gauss which zigzags across the diagram. The rules to be followed that
generate these and many more interpolation formulas are the following:

I. When moving from left to right across the diagram, sum at each step.
2. When moving from right to left across the diagram, subtract at each

step.
3. If the slope of the step is positive, the term in the interpolation

formula for that step is the product of the difference crossed times the
factor immediately below it.

4. If the slope of the step is negative, the term is the product of the
difference crossed times the factor immediately above it.

5. If the step is horizontal and passes through a difference, the term is
the product of the difference times the average of the factors above and
below it.

58 Difference Tables, Data Analysis, and Function Evaluation

6. If the step is horizontal and passes through a factor, the term is the
product of the factor times the average of the differences above and below
it.

-3

-2

-1

0

2

3

1 Ay(-4) C(n+4,2) 6 3y(-5) C(n+5,4)

y(-3\/ C(n+3, l)"" AJ(-4) / C(n+4,3)"'-.. 6;(-5)

1 '-.... Ay(-3) /c(n+3,2)"'-.. 63y(-4) / C(n+4,4)

y(-2'1/ C(n+2, 1), 6J(-3) / C(n+3,3)'-.... 6;(-4)

1 '-.... Ay(-2) /c(n+3,2)"'-.. A3y(-3) / C(n +3,4)

y(-1 /C(n+l,l)"-AJ(-2) /C(n+2,3)"'-.. 6;(-3)

1 '-..._ Ay(-1) /C(n+l,2)"'-.. 6.3y(-2) / C(n+2,4)

y(O~ C(n, 1) "AJ(-1)/ C(n+ 1,3)"'-.. 6;(-2)

l t.y(O) /c(n,2) '-.._ t.3y(- l) (C(n+ l,4)

y(11(c(n-l,~LIJ(O) <C(n+3) / t.'y(-1)

1 . Ay(l) ~C(n-1,~ A3y(O) >-._ C(n,4)
y(2(,/C(n-2,1) /AJ(l) C(n-1,3) Ay(O)

l '-..._ Ay(2) / C(n-2,~ 6 3y(l) / C(n-1,4)

y(W/ C(n-3,D::::: Ll;(2) / C(n-2,3')'- Ay(l)

"-.. ~y(3) / C(n-3,~ ~3y(2) / C(n-2,4)

Figure 2-3 The Lozenge Diagram.

Following these rules, starting at y(O) and going down and to the right,
we generate the interpolation formula

y(n)=y(O)+ C(n, l)~y(O)+ C(n,2)~y(O)+ · · ·

which becomes

n(n - 1)
y(n)=y(O)+n~y(O)+

2
~y(O)+···

This is Newton's forward difference interpolation formula. To generate
Newton's backward difference formula, the procedure is reversed. Starting
at y (0) and moving up and to the right, we generate the formula

y(n)=y(O)+ C(n, l)~y(-1)+ C(n+ 1,2)~y(-2)+ · · ·

Data Interpolation 59

which becomes

n(n+ 1)
y(n)=y(O)+nLiy(-1)+ Liy(-2)+ · · ·

2

This is Newton's backward difference formula.
To develop Stirling's formula, we start at y (0) and move horizontally to

the right. In this case, we generate the interpolation formula

{
Liy(O)+Liy(-1)}

y(n)=y(O)+C(n,I)
2

+ Liy - I + · · · (
C(n+ 1,2)+ C(n,2)} 2..()

2

{
Liy(O)+Liy(-1)] nz

y(n)=y(O)+n
2

+26y(-1)+···

Bessel's formula can be generated by starting midway between y(O) and
y(l).

{
y(O)+y(l)} { C(n,l)+C(n-1,1)}

y(n)=I
2

+
2

Liy(O)+···

{
y(O)+y(l)}

y(n)=
2

+(n-i)Liy(O)

+ n (n
2
- I) { il 'y (- I)

2
+ il 'y (0) } + ...

Clearly, a great number of other formulas can be generated and used for
interpolation of data.

Interpolation is often employed in computing intermediate values of
tabulated functions. While the scientific pocket calculator gives sine,
cosine, tangent, arc sine, arc cosine, and arc tangent (and, for some of the
more advanced scientific machines, hyperbolic sine, hyperbolic cosine, and
hyperbolic tangent), they usually do not have the capability of generating
Bessel's functions, Legendre polynomials, error functions, and the like.
Those are often more easily evaluated with standard reference tables. In
these cases, it is occasionally necessary to interpolate between two values
in the table.

Before discussing the interpolation process, however, it is worth pointing
out that most well-made tables are often generated with auxiliary functions

60 Difference Tables, Data Analysis, and Function Evaluation

as opposed to the actual functions themselves. For example, the exponen
tial integral with positive argument is given by

Ei(x) = !!_du f
x u

-oo u

which takes the series form

. x x 2 x 3
E1(x)= y+ln(x)+ ~ + 2 .2 ! + 3 ~3 ! + · · ·

can be approximated with ilhe series

Ei(x) ~- 1 + _:_ + ____:_ + ____:_ + · · · ex [11 21 31 l
x x x2 x3

(X-H)())

The logarithmic singularity in the first series does not permit easy interpo
lation near x = 0. The function Ei(x)- lnx is better behaved and more
readily interpolated when xis near zero. In fact, x- 1 [Ei(x)-ln(x)-y]
(where y is Euler's constant 0.577 · · ·) is an auxiliary function that results
in a slightly higher interpolation accuracy than when Ei(x) is computed
from interpolated values of the table of Ei(x) directly.

Generally tables are constructed and presented so that reasonable-order
interpolating polynomials (i.e., first-, second-, or third-order) can be used
to compute intermediate values while retaining the precision of the table.

For example, in the Handbook of Mathematical Functions (U.S. Depart
ment of Commerce, Bureau of Standards, Applied Mathematics Series 55)
most tables are accompanied by a statement of the maximum error in a
linear interpolation between any two numbers in the table, and the number
of function values neededl in Laplace's formula or Atkins' method to
interpolate to nearly full tabular accuracy.

An example from the Handbook of Mathematical Functions appears in
Table 2-1. The accuracy statement is given in brackets. The numbers in
brackets mean that the maximum error in a linear interpolate is 3 X 10- 6

and that to interpolate to the full tabular accuracy, five points must be
used in Lagrange's method or Atkins' method of interpolation. The linear
interpolation formula is

i;i = (1 - P)fo +Pf 1

Data Interpolation 61

Table 2-1 Exponential Integral Auxiliary Function

x xexE1(x) x xexE1(x)

7.5 0.89268 7854 8.0 0.898237113
7.6 0.893846312 8.1 0.899277888
7.7 0.894979666 8.2 0.900297306
7.8 0.896088737 8.3 0.901296023
7.9 0.897174302 8.4 0.902274695

[(-56)3 l
where f 0,f1 are consecutive tabular values of the function corresponding to
arguments x 0,x1 respectively; p is the given fraction of the argument
interval

and fp is the required interpolate. For example, if we interpolate between
the values of Table 2-1 for x = 7.9527, we find that

We then obtain

j 0 = 0.897174302

11=0.898237113

p=0.527

f 0 _527 = (1-0.527)(0.897174302) + 0.527(0.898237113)

f 0 _527 = 0.897734403.

The terms in the brackets indicated that the accuracy for linear interpo
lation was 3 X 10- 6

. Thus we round this result to 0.89773. The maximum
possible error in this answer is composed of the error committed by the last
rounding, that is, 0.4403 x 10- 5 + 3 x 10- 6

, and thus certainly cannot ex
ceed 0.8 x 10- 5.

To get greater precision, we can interpolate this example of the table
using Lagrange's formula. In this example, the interpolation formula is the

62 Difference Tables, Data Analysis, and Function Evaluation

five-point formula:

. = f (p 2
--- l)(p-2)p} -((p- l)(p

2
-4)p_}

f(Xo + p6.x) l 24 f-2 6 f - 1

(
(p 2-l)(p-2)p} ((p+ l)(p

2
-4)p l

+ 4 fo - l 6 f:

r (p2-1)(p+2)p}
+ l 24 - f2, IPI < l

Another approach is to use a five-term Newton forward or backward
difference formula, a Bessel's formula, Stirling's formula, or any of the
formulas that come out of the Lozenge diagram. The details associated
with such interpolations a:re conveniently found in Chapter 25 of the
Handbook of Mathematical Functions.

Since there are occasions for using inverse interpolation, we discuss it
briefly here. If we are given a table of values of the dependent variable Yn

as a function of values of the independent variable xn,

(tabulated function)

then intermediate values of y can be computed by interpolating between
the values Yn with an interpolating polynomial g(x) as

y=g(x)~f(x) (continuous function)

Inverse interpolation is a matter of viewpoint. Here we would view the
interpolation from the standpoint of the dependent variable,

(tabulated function)

Then intermediate values of x can be computed by interpolating between
the values of xn with an interpolating polynomial h(y) as

(continuous function)

With linear interpolation there is no difference in principle between
direct and inverse interpolation. In cases where the linear formula is not
sufficiently accurate, two methods are available for accuracy improvement.
The first is to interpolate more accurately by using, for example, a
higher-order Lagrange's formula or an equivalent higher-order polynomial
method. The second is to prepare a new table with a smaller interval in the
neighborhood of interest, and then apply accurate inverse linear interpola
tion to the subtabulated values.

Data Extrapolation 63

It is important to realize that the accuracy of inverse interpolation may
be very different from that of a direct interpolation. This is particularly
true in regions where the function is slowly varying, such as near flat
maximum or minimum. The maximum absolute error resulting from in
verse interpolation can be estimated with the aid of the formula

(
of)-

1

ox= ox oy, (
M -I

ox~ ~x) oy

where oy is the maximum possible error in the tabulation of y values
and ~f and ~x are the first differences generated from the table in the
neighborhood of the region of interest.

Let us now return our attention to the generation of difference tables. In
the generation of interpolating polynomials of reasonable size, the finite
differences in the difference table must be small for high-order differences.
If they are not small the questions is, "What can we do to reduce the size
of the finite differences?"

There are only three considerations associated with any difference table.
The first is the number of differences to which the table is taken the
second is the spacing between different values of the tabulated function,
and the third is the number of figures tabulated. The effect of halving
(factor of -!-) spacing in the independent variable x is to divide the first
differences by 2, the second differences by 4, the third differences by 8,
and so on. Examples of the effect that different spacings of x have on the
function y = x 3 appear in Table 2-2. In answer to the question above then:
to reduce the nth-order difference by a factor k we must reduce the data

interval (independent variable) by a factor of approximately nv'k_.

2-4 DATA EXTRAPOLATION

Extrapolation outside the range of data that makes up a difference table is
a controversial procedure. It is, however, a procedure of great practical
interest. Given the behavior of a dynamic process, sampled at intervals, it
is only natural to ask to what extent the table can be extended beyond the
range of the data used to make up the table to predict the future behavior
of the process being considered. This is a very practical, important, and
real matter. It is the problem of science to be interested in predicting the
behavior of systems based on observations of their past behavior. While
there are a number of stock market "chartsmen" who use finite difference
techniques, it is generally accepted that extrapolation outside the range of
the difference table is as much an art as a science. Because of its practical

64 Difference Tables, Data Analysis, and Function Evaluation

Table 2-2 The Effect of Interval Halving on The Finite
Differences in a Difference Tablea

Full interval Ax= 2 Half-interval Ax= 1

x y=x3 Ay Ay A3y x y=x3 Ay fly Sy

0 0 0 0
8

2 8 48 6
56 48 7 6

4 64 96 2 8 12
152 48 19 6

6 216 144 3 27 18
296 48 37 6

8 512 192 4 64 24
488 61

10 1000 5 125

0 Third-order difference is reduced by a factor of 8 when
interval between values of x is halved.

value and practical interest, it will be covered here but with the proviso
that the reader recognize that extrapolation is a questionable procedure.
That is, the same difference table using only slightly different extrapolation
techniques can, and usually does, lead to significantly different predictions.
Because of this lack of robustness of extrapolated data, the procedure has
questionable value.

We illustrate the problem of prediction with the following practical
example. Consider an aircraft executing a fully automatic landing.
Sampled values of the altitude are shown in Table 2-3. What will be the
conditions at touchdown? This particular example is a nontrivial one, in
that the heart of present-day flight-control performance monitors hinges
on the ability to predict the dynamic behavior of high-energy devices, such
as aircraft, when terminal operations are under automatic control. The
obvious first step is to form the difference table, as shown in Table 2-3. We
note that this table can be carried to the third difference without the
lower-order differences becoming constant. The obvious next step to
extrapolation is to assume that the third difference holds constant up to
touchdown, and to predict the behavior shown in Table 2-4. Clearly the
predicted results are fairly grim. We have low confidence in extrapolations
of this type because the dilff erence table did not indicate the influence of
any control law through arriving at constant differences between any of
the finite differences. Had we found, for example, that all of the second
differences held constant and the third differences were zero, we might be

Data Extrapolation 65

Table 2-3 Difference Table of Altitude of an
Aircraft Executing an Automatic Landing

h(t) !ih t/h ~.3h

0 60
-13

47 +3
-10 -2

2 37 +I
-9 0

3 28 +I
-8

4 20

entitled to higher confidence in the extrapolation to touchdown by assum
ing that the guidance law objective was to hold the third-order differences
to zero. It follows, then, that a procedure for increasing the confidence in
extrapolation from finite difference tables is to find a transformation of the
variable of interest which would expose the guidance law and its effect on
the difference table.

Table 2-4 Extrapolated Touchdown Conditions of Automatically Landed Aircraft

Range of
actual data

Range of l
extrapolation

a fps= feet per second.

0

2

3

4

5

6

7

Touchdown
sink rate
_,, 11 fpsa
(hard)

h(t) Ah t,.2h t,.3h

60
-13

47 +3
-10

-2 !
~o:=J -8 -1
20 0

-8 -1
12 -1

-9 -1

L:
-2

-11

Difference Tables, Data Analysis, and Function Evaluation

After a little thought, it might be expected that the guidance law to
automatically land an aircraft would be an exponential law of the form

dh = - k(h + h)
dt B

which results in a flared landing path of the form

which is sketched in Figure 2-4. This suggests the formation of the
difference Table 2-5. Note that the second difference is near zero so that
for short-term prediction (next 7 seconds) a reasonable assumption is that
~In (h) is approximately constant and equal to -0.3062. The differences
between the two approaches are tabulated in Table 2-6. It is apparent that
the logarithmic extrapolation does better short-term prediction than does
the"third-order" extrapolation.

Altitude
(-feet)

40

20 -1 . 717 fps at

0 '-----'-~~--_.____._~-"-~-'------'~---'--~~"'-J~-'
0 2 4 6 8 10 (seconds)

0 600 1200 1800 2400 3000 (feet)

Figure 2-4 Typical jet transport landing trajectory (fps= feet per second).

In summary, we might expect to extrapolate with greater confidence
from Table 2-5 than Table 2-4 because of the observed characteristics of
the guidance law. From a strictly mathematical viewpoint, the issue is not
all that clear. The number of actual samples of the second difference is
small and thus the true mathematical confidence in the fact that the
guidance law is in some way holding the second difference to zero is low.
In the end, extrapolation using difference tables involves careful judgment.

Table 2-5 Logarithmic Extrapolation of Touchdown Conditions of
Automatically LandedAircraf t

h(t) ln(h(t)) t::.h

0 60 4.0943
-0.4054

47 3.8501
Actual -0.2442
data 2 37 3.6109

(
Average~ 0.3062

'
range -0.2392

3 28 3.3322
-0.3365 /

4 20 2.9957
--0.3062

5 14.7 2.6895
-0.3062

6 10.84 2.3833
-0.3062

Range 7 7.98 2.0771

of ex- --0.3062

trapo- 8 5.876 1.7709

la ti on -0.3062
9 (Sink 4.326 1.4647

~rate -0.3062
10 ,.._,l.14lfpsa 3.185 1.1585

-0.3062
11 2.345 0.8523

a fps= feet per second.

Table 2-6 Comparison of Extrapolation Methods for Predicting
Touchdown Conditions

Actual "Third-Order" Extrapolation

Absolute
h h Error

5 16 12 -4
6 11 3 -8
7 7 -8 -15
8 4
9 1.6

IO 0
11 0

0 fps= feet per second.

First-Order Logarithmic
Extrapolation

Absolute
h Error

15 -1
11 0
8 +I
6 +2
4 +2.6
3 +3
2 +2

67

68 Difference Tables, Data Analysis, and Function Evaluation

2-5 DATA ERROR LOCATION AND CORRECTION

Errors due to observations,, calculation, measurement, or recording often
occur in a table of numbers. These errors introduced into the calculation
process are significantly magnified in the generation of ascending
differences in the difference table. This can be seen in Table 2-7. It is
apparent that the errors propagate and are distributed binomially (in any
given difference the errors are weighted by binomial coefficients). It is also
apparent that the error grows rapidly as it propagates into ascending
orders of difference. For example, the error in Table 2-8 might be antici
pated by noting the form of the third difference. We see the pattern of
signs (+), (-), (+), (-) indicative of error propagation. Also, note that
the pattern of fourth difference is centered on y = 17. Furthermore, note

Table 2-7 EITor Propagation in Diff ere nee
Tables

y ~y

0
0

0 0
0 0

0 0 +E:
0 +E:

0 +E: -4E:
+E: -3E:

-2E: +6E:
-E: +3E:

0 +E: -4E:
0 -E:

0 0 +E:
0 0

0 0
0

0

Data Error Location and Correction

Table 2-8 Unit Error Propagation in the Difference
Table for the Function y = x 2

x y .1y

0 0

2
3 0

2 4 2 --1
5 -1---- -4 3 9 --3-
8-- -3

4 17---- 0 +6
--.....--..... 8 +3

5 25 3...._ __ -4
11

......... _
-1

6 36 2 ----+I

13 0
7 49 2

15
8 64

that 6E in Table 2-7 corresponds to 6 in Table 2-8; that is,

E=l

Moreover, if the error in the values of y were of the form

y=x2 +5

69

we can expect in the fourth difference column to show an error of 6k.
Thus one-sixth of the fourth difference which is centered on the number in
error is a measure of the error-which can then be subtracted from the
column of y values. We might modify Table 2-8 by replacing 17 with
(17-1)= 16, thus obtaining the difference table shown in Table 2-9. In
general, then, data smoothing is done by:

1. Keeping an eye open for the (+), (-), (+), (-), · · · pattern m
high-order differences that indicates error propagation.

2. Identifying the tabulated value on which the pattern is centered.

70 Difference Tables, Data Analysis, and Function Evaluation

Table 2-9 Smoothed Data Table for the Function
y=x2

x y ~y ~y ~3y ~y

0 0

2
3 0

2 4 2 0
5 0

3 9 2 0
7 0

4 16 2
9

5 25

3. Equating observed error with its binomial error counterpart.
4. Solving for the error and appropriately modifying the data table.
5. Testing the table for elimination of the (+), (-), (+), (-), ... pattern.

2-6 MISSING ENTRIES

Occasionally a difference table has a few missing entries in the dependent
variable. Missing entries in the difference table can be estimated in several
ways.

The simplest method is to examine the table and decide whether the
points could be reasonably fit with a polynomial. For example, a data
table with four points, one of which is unknown, might be fit with a
second-degree polynomial. It is characteristic of difference tables that
nth-order differences of polynomials of degree n - 1 equal zero. For
example, the equation

y=2x2 +x+3

has the difference equation shown in Table 2-10, where it is apparent that
the third-order differences equal zero. This characteristic is present in
general in nth-order polynomials; that is, their (n + l)st-order (and all
higher) differences equal zero. Using this property, we would expect that
the fourth-order difference would equal zero; that is

~4(y)=O

Missing Entries

Table 2-10 Difference Table for y = 2x2 + x + 3

Subscript
in Missing
Entry Formula x y Liy Li2y

0 3
3

6 4
7

0 2 13 4
11

3 24 4
15

2 4 39 4
19

3 5 58 4
23

4 6 81 4
27

7 108

This can be rewritten in the shifting-operator notation as

(z - I) y = (z 4
- 4z 3 + 6 z 2

- 4 z + I)y = 0
This gives us

71

Li3y

0

0

0

0

0

Here we use an even-order difference because all even-order difference
equations do the following:

1. Give one middle term, which can be centered in the missing number
in the table.

2. Result in missing entry determination with a minimum of roundoff
error.

3. Are numerically more stable than their odd-order counterparts.

Let us assume, for the sake of the discussion, that the y = 39 entry is
missing in Table 2-10. We can substitute directly from the table with the
missing data point to obtain

y 2 = i [4(24 + 5 8) - (81 + 13)]

72 Difference Tables, Data Analysis, and Function Evaluation

from which we can solve for the missing data point:

Yi= i-[4(82)-94]= i(328-94=234)= 2~4 =39

The method just described for filling in missing values in the data table
is particularly suited to analysis on the pocket calculator in that it does not
involve the determination of unknown coefficients in a polynomial (the
usual methods for missing data determination). For tables with large
numbers, the arithmetic coUlld be tedious, but with the pocket calculator it
is a simple matter to perform the sums and products for tables of large
values requiring high precision. Another point worth making regarding
identification of missing entries in data tables is that for tables with large
numbers of values, say on the order of 20 to 100, it is not necessary to. look
for twentieth-order differences to develop the formula for computing the
missing data. One need only determine the polynomial that can be rea
sonably expected to fit locally through two, four, or six data points
symmetrically placed about the missing value to find the missing point.

We have been stressing the determination of interpolating polynomials
by way of finite difference: tables because the pocket calculator enables
one to find finite differences quickly and conveniently, thus leading
immediately to interpolation formulas of high order and high accuracy,
which themselves can be evaluated on the pocket calculator conveniently
and to high precision. This, in fact, is the reason for using the pocket
calculator with difference tables: high-order difference tables lead to
high-order approximating polynomials, which, when written in nested
parenthetical form, are easily evaluated on the pocket calculator to high
precision.

The difficulty in using low-order polynomials for manual analysis in the
precalculator era was that they generally were not sufficiently accurate to
permit the precision numerical evaluation necessary for most engineering,
economic, chemical,and other types of precision analysis. On the pocket
calculator we can conduct precision analysis relatively quickly and
efficiently by using high-order polynomials generated simply with
difference tables of high order.

2-7 LAGRANGE'S INTERPOLATION FORMULA

So far we have studied the interpolation of equally spaced data through the
use of difference tables and the Lozenge diagram as a convenient means
for remembering a large number of different interpolation formulas. These
interpolation formulas, however, do not apply to nonequally spaced values

Lagrange's Interpolation Fonnula 73

of the independent variable nor when the nth differences of the dependent
variable are not small or zero. In these cases we can then use Lagrange's
interpolation formula to develop a polynomial that can be used for
analytic substitution. Though there are other interpolation formulas for
unequally spaced data, the advantage to using Lagrange's interpolation
formula is that the coefficients are particularly easy to remember, and to
determine, with the pocket calculator. The method works for both nonequ
ally and equally spaced data and regardless of whether the nth differences
are small. Lagrange's interpolation formula is

(x- x 1)(x- x 2) • • • (x- xp) (x- x 0)(x- x 2) • • • (x- xP)
Y =Yo + Y1 __________ _

(x0 - x 1)(x0 - x 2) • • • (x0 - xp) (x 1 - x 0)(x1 - x 2) • • · (x 1 - xp)

(x- x 0)(x - x 1) · · · (x - xP_ 1)
+ ... +yp

(xP - x 0)(xp - x 1) · · · (xP - xP_ 1)

An interesting and important feature of Lagrange's interpolation for
mula is that, if the data table has n entries, the formula appears to have n
terms. It turns out, however, that if the table amounts to four or five
samples of, say, a second-order polynomial, the terms will cancel, giving
only the pieces due to the quadratic function. As an example of this,
consider the data table shown in Table 2-11. Using Lagrange's interpola
tion formula, we have

(x-5)(x-7)(x-9)(x- ll) (x-3)(x-7)(x-9)(x-ll)
y=6 +24---------

(3 - 5)(3 - 7)(3 - 9)(3 - 11) (5 - 3)(5 - 7)(5 - 9)(5 - 11)

(x-3)(x-5)(x-9)(x-11) (x-3)(x-5)(x-7)(x-11)
+58 +108----------

(7-3)(7-5)(7-9)(7-11) (9-3)(9-5)(9-7)(9-11)

(x - 3)(x - 5)(x - 7)(x9)
+174---------~

(11-3)(11-5)(11-7)(11-9)

The reader can now simplify the equation. It will be found that

y=2x2 -7x+9

which is a polynomial of degree two, rather than of the fourth degree, as
might be expected from the fourth-order polynomials in the numerators of
all the terms in Lagrange's interpolation formula. Because of roundoff the
exact cancelation of the coefficients for the higher powers of x will not
occur, but they will be very small, indicating that they should be made
zero.

74 Difference Tables, Data Analysis, and Function Evaluation

Table 2-11 Five Evaluations of a Quadratic
Equation

x
y

3
6

5
24

2-8 DIVIDED DIFFERENCE TABLES

7
58

9
108

11
174

Another approach to the generation of interpolation formulas for tables of
data of unequally spaced values of the independent variable is to prepare a
table of divided differences. Assuming that the values of the independent
variable x are x 0,x 1,x2,x3 • • • and that the value of the dependent variable
is y = f(x), we can prepare a table of successive divided differences of the
form

These terms are commonly called divided differences of orders 1, 2, 3,
and so on. We can now prepare a table of divided differences, as shown in
Table 2-12,

Table 2-12 Divided Difference Table

x(O)
f(xo,x1)

x(l) f(xo,X1,x2)
f(X1,X2) f(xo,X1,X2,X3)

x(2) f(x1>x2,X3)
j(x2,X3) j(X1,X2,X3,X4)

x(3) j(X 2• X3, X4)
f(X3,X4)

x(4)

Thirteen-Place Precision from Two-Digit Tables 75

In the same way that the (n + l)st difference of an nth-order
was zero, it is found that the nth-order divided difference of an nth-order
polynomial is zero. Newton's interpolation formula, based on divided
differences, is of the form

where

y = J(x0) + (x - x 0)j(x0,x1) + (x - x 0)(x - x 1)f(x0,x px2) + · · ·

+ (x- x 0)(x- x;) · · · (x- xn_ 1)J(x0,x1, ... ,xn) + E(x)

p>(o) n
E(x)= --1 - II (x-xd,

n. k=O

() is between the largest and smallest ofx,x0,x1, ••• ,xn

2-9 INVERSE INTERPOLATION

We have been concerned with the interpolation to determine values of the
dependent variable, given either equally spaced or unequally spaced values
of the independent variable. Inverse interpolation involves finding values
of the independent variable, given a table of values of the dependent
variable. In particular, the method is useful for finding missing values of
the independent variable in a tabulated set of data. A nice feature of
numerical analyses using finite or divided difference tables is that inverse
interpolation is performed in identically the same way in which
tion is conducted. That is, the procedure is an interpolation process where
the dependent and independent variables are switched. The values of x are
to be determined and thus are "dependent" on the values of y. Hence the
interpolation problem is one of developing an interpolating polynomial
through the sequence of values of the independent variables in the prob
lem. The procedure is then identical to regular interpolation.

2-10 THIRTEEN-PLACE PRECISION FROM TWO-DIGIT TABLES

An interesting aspect of the use of difference tables that is consistent with
the high precision of pocket calculators is that specially prepared
difference tables permit precision interpolation to the accuracy of the
calculator's capability, but with table entries of apparently only two or
three significant digits. In fact, the accuracy is known to an infinite number
of digits but only two significant digits are nonzero. For example, a table
of y = x 2 can take either the form shown in Table 2-13 or that shown in
Table 2-14.

76 Difference Tables, Data Analysis, and Function Evaluation

Table 2-13 Difference Table for y = x2 where ax= 1,
x0 = '1T(Two-Pla<:e Accuracy)"

x y Ay A.2y A.y

3.14 9.87
7.27

2.01
4.14 17.14 -0.Ql

9.28
5.14 26.42 2.00

11.28 0
6.14 37.70 2.00

13.28 0
7.14 50.98 2.00

15.28
8.14 66.26

a Interpolation formulas based on this difference table
can only be accurate to two places after the decimal
point at best, no matter how high the order of the
interpolation formula, because the differences are only
known to two places.

Both difference tables are developed with integer differences in the
dependent variable and precisely known values of the independent vari
able in Table 2-14 and two-place accuracy in Table 2-13. The difference
between these two tables is that the first permits interpolation to an
accuracy of only two places, while the second interpolation permits an
accuracy to 10 places, even though both are based on entries in the table
that are only known to a few significant figures. It is precisely in this
manner that the scientific pocket calculator, and even the simple four
function pocket calculator, can be used to boot-strap itself to generate
advanced mathematical functions to an extremely high precision. All that
is required is that certain values of both the dependent and independent
variables of the advanced mathematical function be known precisely
where only a small number of nonzero digits make up the number. These
values can then be used in a high-order difference table to generate an
interpolation formula that will be very accurate over the range of the data
table.

Thirteen-Place Precision from Two-Digit Tables

Table 2-14 Difference Table for y = x 2 where
lix = 1, x0 = 3 (oo Place Accuracy)"

x y ~y

3 9
7

4 16 2
9 0

5 25 2
11 0

6 36 2
13 0

7 49 2
15 0

8 64 2
17

9 81

a Interpolation formulas based on this
difference table can be as accurate as the
order of the interpolation formula will allow
because the differences are known precisely.

Example 2-1 Using the definition

ti=z-1

77

write an expression that will interpolate between data points and
differences in a data table. Since

z=(l +ti)

then

n(n- I)
zn[y(x)]=y(x+ntix)=y(x)+ntiy(x)+ ti=:y(x)+ · · · tij;(x)

z

Note that this is Newton's forward difference interpolation formula.

Example 2-2 Use a difference table to check an interpolating polynomial.

We can check Newton's or any other interpolation formula by substitut
ing data points from a known polynomial such as y = x 2 (see Table 2-15)

78 Difference Tables, Data Analysis, and Function Evaluation

into the formula. Then y(x + nLlx) becomes

y (0 + n) = y (n) = 0 + n + n (n - 1) = n + n2
- n = y (n) = n2

We see that the interpolation formula gives the original polynomial y(x)
= x 2 again: a result to be expected, since the interpolation formula is itself
a polynomial.

Table 2-llS Numerical Example for
y=x2

x y Liy Li2y f13y

0 0

2
3 0

2 4 3
5

3 9

2-11 REFERENCES

For this chapter consult Richard Hamming's Numerical Methods for Scien
tists and Engineers (McGraw-Hill, 1973), Chapters 9 and 10.

PART TWO

NUMERICAL EVALUATION

OF FUNCTIONS

ON THE POCKET CALCULATOR

CHAPTER 3

ELEMENTARY ANALYSIS

WITH THE POCKET CALCULATOR

3-1 INTRODUCTION

A number of analytical topics used in elementary analysis are discussed
here. Among them commonly used progressions including arithmetic,
geometric, harmonic, and concepts of generalized means; the detailed
definitions of absolute and relative error; nested parenthetical forms of
commonly used infinite series including Taylor's series; certain often
encountered forms of the binomial series; the reversion of series; and
methods for transforming series that converge slowly into series that
converge more quickly. Also discussed are methods for evaluating the
roots of polynomials including quadratics, cubics, quartics, and quintics;
methods for the numerical evaluation of transcendental functions and for
solving plane and spherical triangles; and methods for numerically evaluat
ing commonly encountered functions of complex variables. The formulas
and equations used for pocket calculator analysis are written in forms most
convenient for evaluation on the pocket calculator.

3-2 NUMERICAL EVALUATION OF PROGRESSIONS

An arithmetic progression is defined by a sequence of numbers

(nan integer >0)

81

82 Elementary Analysis with the Pocket Calculator

where a and dare real numbers. For a1=3e and d= - 'TT

n an

8.154845484

2 5.013252830

3 1.871660176

4 - 1.269932478

5 -4.411525132

A common problem is to compute the sum of the arithmetic progression to
n terms:

Sn(d)=a+(a+d)+(a+2d)+ · · · +[a+(n- l)d]

There are two formulas for computing the sum of an arithmetic progres
sion. The first. is

Sn (d) = na + ! n (n - 1) d

which can be rewritten in nested parenthetical form for easy evaluation on
the pocket calculator as

Sn (d) = n (a+ ~ (n - 1))

Another formula for computin·g the· sum of the arithmetic progression ton
terms is

Here the last term in the series I is

I= a+ (n- l)d

We note that this equation is already in a form that can be easily evaluated
on the pocket calculator.

The geometric progression is defined by a sequence of terms of the form

(n an integer > 0)

Numerical Evaluation of Progressions

where a and rare real numbers. For a1 =3e and r= -'TT

n an

8.154845484

2 - 2.561920267 x 101

3 + 8.048509891x101

4 - 2.528513955 x 102

5 + 7 .943560867 x 102

The sum of the geometric progression to n terms is

S _ + + 2+ 3+ 4+ + n-1 n - al air a,r air air . . . air

It can be computed with the formula

a1(1-rn) a 1-rl
Sn= 1-r =~

where l is the last term. If r< 1 in size, then as n~oo

a1
lim (S)=-

n--.oo n 1 - r

83

since the last term t~O.The sum of the geometric progression to n terms
requires scratch-pad or memory storage. Table 3-1 shows a typical key
stroke sequence needed for its evaluation and the required storage.

Three types of means are encountered in advanced analysis-the arith-
metic mean, the geometric mean, and the harmonic mean. Though they are
all special cases of the generalized mean

1/t

M (t) = (_!_ ± a£)
n k= I

we are explicit here and write them out. The arithmetic mean of n
quantities is defined by the equation

a1+a2+a3+ ... +an
A=-------

n n

which can be computed conveniently (though not so easily as summing
and dividing by the total number of samples) on the pocket calculator

84 Elementary Analysis with the Pocket Calculator

Table 3-1 Typical Key Stroke Sequences for Evaluating
the Sum of Terms in a Geometric Progression

Algebraic Reverse-Polish

(r) + (r) (1.0)
Yx (l.O) i +
(n) l/x (n)

x Yx ~ CHS RCL CHS
+ (1.0) Note: Recall is

(1.0) ~ + automatic in

(a1) x Reverse-Polish

STO (r) for stack memory

(r) CHS (HP-35&21) but not

CHS i for register
memory (HP-45,55&65)

()~data entry.
o~output.

using a recursion formula

1
An+ I= --1 (nAn +an+ 1)

n+

which can be developed from the equation for A as follows:

1
An= - Lai

n

"'~

(
n + I); ai an+ I an+ I
-- A =--+--=A+--n n+l n n n n

n 1 1]
.An+l=--A +--lan+l=--l[nAn+an+l n+l n n+ n+

An advantage to using a recursive "averager" is that the analyst can
observe the convergence of the mean as he adds more terms to the
calculation. He can thus often reduce the workload in computing an
average by using only the numbers that are necessary to estimate the mean
to the accuracy he desires.

The recursive form is directly implementable, using the key strokes
shown in Table 3-2.

Numerical Evaluation of Progressions

Table 3-2 Typical Key Stroke Sequences for Recursive Arithmatic
Averaging

Algebraic

An
x
(n)
+
(an+ 1)

(n + 1)

B
()~ data entry.
o~ output
O ~ mental step done by analyst.

Reverse-Polish

A* n
(n)
x
(an+ 1)
+
(n -tl)

B

*Initial conditions can be An= 0 when n = 0.

1

The geometric mean of n quantities is defined by the relationship

()
l/n

G= a a ···a I 2 n ' (ai > 0, i = 1, 2, ... , n)

85

which is easily calculated using the recursion formula for the geometric
mean of n quantities as given by

(
n)l/n+I

Gn+I= an+IGn

and is developed as follows:

n

Gn=ITa. n I

n 1/n

G n+l/n_()l/n(II) _ 1/nc n+ I - an+ I ai - an+ I n

G =al/n+lcn/n+l=(a Gn)l/n+I
n+I n+I n n n

86 Elementary Analysis with the Pocket Calculator

A typical sequence of key strokes for evaluating this equation appears in
Table 3-3.

Table 3-3 Typical! Key Stroke Sequence for Recursive
Evaluation of the Geometric Mean

Algebraic

Gn
Yx

4
(n)
x
(an+ 1)
Yx

(n + 1)
l/x

J I Gn+l I

()~ data input.
o~ output.

Reverse-Polish

Gn
i
(n)
Yx

(an)
x
i (n+l)_J
I/x

Yx

I Gn+l I

b ~ mental step by analyst.

The harmonic mean of n quantities is defined by

(a; > 0, i = 1, 2,. . ., n)

It, too, can be evaluated by using a recursion formula:

Hn+1'={n!1(L + ;J}
-1

The harmonic mean is evaluated using the typical key stroke sequence
given in Table 3-4.

Finally, the generalized mean is related to the geometric, arithmetic, and

The Definition of Absolute and Relative Error

Table 3-4 T1'pical Key Stroke Sequence for Recursive
Evaluation of the Harmonic Mean

Algebraic

Hn
1/x----
x
(n)

STO
(an+ 1)
1/x
+
RCL
STO
(n + 1)
x
RCL
l/x

'Hn+il----"

()~ data input.
o~ output.

Reverse-Polish

Hn
1/x •------.
(n)
x
(an+ 1)
1/ x

+
(n+ 1)

1/x
x
1/ x

'Hn+1)----

O ~ mental step by analyst.

harmonic means according to the relations

IimM(t) = G
1~0

M(I)=A

M(-l)=H

3-3 THE DEFINITION OF ABSOLUTE AND RELATIVE ERROR

87

We discussed absolute and relative errors previously in the context of other
matters. In the next chapter a number of errors are quoted; hence it is
important to define precisely what is meant by absolute and relative errors.
When x 0 is an approximation to the true value of x, we say the following:

1. The absolute error of x 0 is ~x = x 0 - x = (calculated - true).

88 Elementary Analysis with the Pocket Calculator

2. The relative error of Xo is ox=lix/x, (calculated-true)/true, which is
approximately equal to !ix/ x 0 .

3. The percentage error is l 00 times the relative error.

If in (2) we use the approximation of the true. value of x to estimate
percentage error then in a sense there is a small error in estimating the
relative error.

The absolute error of the sum or difference of several numbers is at most
equal to the sum of the absolute errors of the individual numbers. If it can
be assumed that the errors occur in a random independent fashion, a more
reasonable estimate of the error in computing the sum or difference of
several numbers is root-sum-square error defined as

The relative error of the product or quotient of several factors is at most
equal to the sum of the relative errors of the individual factors. Finally, if
y = j(x), the relative error

If we have

6.y j'(x)
oy=-~--6.x

y j(x)

and the absolute error in xi is 6.xi for all n, then the absolute error inf is

af af af
!if~ -6.x + -6.x + · · · + -6.x

ax I I ax2 2 axn n

Simple rules, similar to those for the relative error of a product or the
quotient, can easily be derived for relative errors of powers and roots. It
turns out that the relative error of an nth power is almost exactly n times
the relative error of the base power, while the relative error of an nth root
is 1 /nth of the relative error of the radicand.

Calculations with Approximate Values

Where they are developed from test experiments or from tables of
characteristics of physical systems, data are usually inaccurate to some
degree. In general, calculations made with data based on measurements

The Definition of Absolute and Relative Error 89

involve errors of some magnitude. Another type of error in calculating
with approximate values is due to the use of numerical values of numbers
that are truncated, producing roundoff errors. The maximum errors
associated with these effects can be estimated. When the rounding is done
correctly, the roundoff is at most one-half of the unit in the last place
retained in the number.

When the numbers are rounded, the addition of zeros after the last digit
of the decimal fraction makes a difference. The number 0.98700 is stated
with 100 times greater accuracy than 0.987. In the first case the number
implies that at most its error is 5 x 10-6

. In the second case, the error can
be as large as 5 x 10-4

. The implications of accuracy should be stated
precisely when tabulating results computed on the pocket calculator.

The error due to a calculation that results from an inaccuracy of the
data is known historically as "error of data." The error introduced into the
calculation by way of approximation associated with the limitations of the
machine or field of numbers being used in the calculation is historically
called "error of calculation." It is the objective of any calculation to make
the error of calculation significantly less than the error of data. For
tunately, for most pocket calculators the size of the numbers that can be
contained is so large that the error of engineering calculation is almost
always substantially smaller than the error of engineering data.

When good computing practice is followed, care must be taken when
computing the difference between nearby numbers. Since occasionally the
magnitude of the error of calculation is found to determine the method of
the calculations to be done, we are interested in estimating from the error
of data the maximum error to be expected in the result of the calculation
due to this error in the data. It is for these reasons that we give the rules
for computing the absolute errors of the sums, differences, products, and
quotients of numerical calculations. These formulas can be used to answer
the questions about the size of the error-of-data from which can be
determined whether the error-of-calculation will be on the same order of
magnitude or smaller. Furthermore, if the error-of-calculation is less, it can
be used to guide the analyst in how much the error-of-data will limit the
accuracy of a calculation. This will indicate the accuracy remaining after a
complex or involved calculation.

The results of a calculation are the most inaccurate when the difference
of two nearly equal and only approximately known numbers are involved.
To determine the relative error in these cases, the sum of the absolute
errors, taken without regard to sign, is divided by the difference of the two
numbers involved (a small nu,mber that can turn even a small absolute
error into a large relative error).

90 Elementary Analysis with the Pocket Calculator

3-4 INFINITE SERIES

We will have many occasions to use Taylor's formula for a single variable
as given by the expression

h2 hn-1
J(x + h) = j(x) + hj'(x) + -

2
j"(x) + · · · + () r- 1 +Rn

n- I !

This equation has an error formula that can be written in three typical
forms:

hn j'l n-1
Rn = ((1 - t) r (x + th) dt

n-1)! o

The truncated version of the series can be expanded in nested parenthe
tical forms for convenient numerical evaluations when the numerical
values of the derivative either are given or can be quickly computed.

f1 = f(x)

f2 = f(x) + hj'(x)

(
' hf") !1 = f (x) +: h f + 2

J. = J(x) + h(!' + ~(r + h~"))

fs = J(x)+ h(f' + ~(!" + ~ (r +hf~'")))

J, = J(x)+h(!' + ~(r +Hr+~(!""+···
+ n ~ l (r-1 + h~")) ...)))

Infinite Series 91

Taylor series expans10ns of f(x) on the point a are given by the
expression

2 n-1
(x-a) (x-a)

f(x)=J(a)+(x-a)j'(a)+
2

j"(a)+ · · · + () r- 1(a)+Rn
n-1 !

where the remainder formula is given by

(a<~<x)

This expression, too, can be written in nested parenthetical form as

(
(x-a)((x-a)(fn=f(a)+(x-a) f'(a)+

2
f"(a)+-

3
-- f'"(a)+···

Binomial Series

The binomial series is encountered many times in combinatorial analysis
as well as in the formulation of difference equations for numerical analysis.
The binomial series can be written in the general form

(I+xf = ~ (a)xk,
k=O k

(-l<x<l)

where

(a) a!
k = (a-k)!k!

Particular series of interest are

a a(a-1) a(a-I)(a-2)
(I + x) = 1 + ax+ x 2 + x 3 + · · ·

2! 3!

which can be written in nested parenthetical form for easy pocket calcula-

92 Elementary Analysis with the Pocket Calculator

tor evaluation as

a (x(a--1)(x(a-2)(x(a-3)
(1 + x) = I + ax 1 + --

2
- 1 +

3
1 +

4
+ · · ·

+ 1 + ... x(a-n+l)(x(a-n)))))
n-1 n

Other frequently encountered binomial series are the following:

(a)

()
-1 2 3 4 5 I+x =1-x+x-x+x-x+ .. ·, (ixl < 1)

... (1 + x) - I = 1 - x (1 -- x (1 - x (1 - x (1 - x (... '))))) (ix\<1)
(b)

1;2 x x 2 x 3 5x 4 7x5 2lx6

(1 + x) = 1 + 2 - 8 + 16 - 128 + 256 - 1024 ' (ixl < 1)

... (l + x)
112 ~ l + 1 (l - ~ (l -1 (l - ~ x (l · .. ,)))) (\x\<1)

(c)

-1;2 x (3x (5x (7 x)))) (I+x) =1- 2 1- 4 1-6 1-g-(1 .. ·, (\x\ < 1)

(d)

(e)

1/3 x(x(5x(2x))) (l+x) =1+
3

1-3 1-9 1-6(1···,) (\x\<1)

-1/3 x(2x(7x(Sx)))) (I+x) =1-
3

1- 3 1-9 1-6(1 .. ·, (ixl < 1)

Operations with Truncated Forms of Infinite Series

An integral part of advanced analysis on the pocket calculator is the
numerical evaluation of truncated series. Generally, the approach is to
truncate the series at something on the order of four terms and use the
series to evaluate the function over the region that has a good fit with the

Infinite Series 93

function being considered. Once a series is generated, whether with Che
byshev polynomials, Taylor series, the binomial series, Legendre
polynomials, or some other means, such operations can be performed on
the series as inverting the series, taking the square root of it, squaring it,
multiplying or dividing it, taking the exponential of it, or taking the
logarithm of it. This is conveniently done by manipulating the coefficients
in the series. These operations are tabulated in Table 3-5 for the three
sen es

Among convenient series manipulations is the reversion of series, where
the dependent variable is solved in terms of the independent variable.
Given the series

y =ax+ bx 2 + cx 3 + dx 4 + ex 5 + fx 6

we can write x as a function of y as

where

A=_!_
a

b B=-
a3

D= 5abc-a 2d-5b 3

a7

':f.

Table 3-5 Series Operations

Operation CJ Cz C3 C4

S3= SI t(n - l)c1a 1 + na2
c1ar

na4 + c1aJ(n -1) + na1 c1az(n-1)+-
6
-(n- l)(n-2)+

na3 f n(n- l)ai+
f (n- l)(n -2)c1a1a2 +
-k(n - l)(n -2)(n -3)c 1ai

S3 = S1S2 a1+b1 b2+ a1b1 + a2 b3 + a1b2 + a2b1 + a3 b4 + a1b3 + a2b2 +
a3bl + a4

s3=s1/s2 a1-b1 a2-(b1c1 + b2) a3 -(b1c2 + b2c1 + b3) a4 -(b1C2 + b2C2 +

af ai
b3C1 + b4)

a1af S3 = e<si-1)
a2 at a, az+y a3+a1a2+ 6 a4+a1a3+ 2
T + -2- + 24

s3 = 1 + ln(s 1) a1
a1C1 (a2c1 +2a 1c2) (a3c1 +2a2c2+3a1c3)

a1- -2- a3-
2

a4-
4

Infinite Series 95

Transformation of Series

Occasionally, slow-converging series are encountered in numerical analysis
where the object is to compute the sum of the series to high accuracy.
Usually we would use some form of economization to improve the ac
curacy of such a series (see Chapter 8). We may, however, also know
another series that can be used to improve the convergence (accuracy) of
the original series. This is convenient when numerically evaluating the sum
of a slowly converging series of the form

00

s= 2: ak
k=O

where it is known that the series does in fact converge and where we have
another series

00

c = 2: ck
k=O

which is also convergent and which we know to have the sum c and the
limit of ak/ ck as k approaches infinity to equal A (where A is not equal to
zero); then

This technique is known as Kummer's transformation. It transforms one
series into another that is more convenient for numerical evaluation. While
not developed originally for this purpose, it turns out to be quite useful in
numerical evaluation of slowly converging series.

Another approach to numerically evaluating a truncated series is to use
the Euler-Maclaurin summation formula. This is another technique for
numerically evaluating series using another series that converges more
quickly. Provided that the difference of derivatives at the end points of the
interval over which the series is being evaluated is small, the Euler
Maclaurin summation formula is

n-1

S = L fk ~ iJ(k)dk- Hfo- fn) + rz(Jn(I)_ J~D)
k= I 0

(J,
(V) ;(V))

_ _L(J,(111)_ ;(III))+ n - JO
no n JO 30240

96 Elementary Analysis with the Pocket Calculator

3-5 THE SOLUTION OF POLYNOMIALS

The numerical solution of a polynomial on the pocket,calculator involves a
clear understanding of the possible location of the polynomial's roots in
the complex plane. For this reason, we take a few moments to refresh our
understanding of algebraic equations. It should be remembered that an
nth-order algebraic equation has n roots. If the coefficients in the poly
nomial are real, the roots of the equation are either all real, some being
equal and some not, or have pairs of roots that are complex conjugates of
each other and other roots that are real with various locations on the real
axis. The occurrence of complex roots in complex conjugate pairs arises
from our assumption that the coefficients in the polynomials are real, not
complex. If the coefficients are complex, of course, the roots can occur
anywhere in the complex plane. In this book we concern ourselves only
with polynomials that have real coefficients, since they are the most
frequently encountered algebraic equations in engineering analysis.

The Solution of Quadratic Equations

If we are given a quadratic equation of the form

az 2 +bz+c=O

its roots can be numerically evaluated with the formula

z =-(_jz__)+ Vq 1 2a 2a

(b) Vq z=-----
2 2a 2a

where

q= b2 -4ac

From time to time we will make use of the following easily verified
properties of the roots:

b z +z = - -
I 2 a

It is apparent from the equations for the two roots that

1. If q > 0, the two roots will be real and unequal.
2. If q = 0, the two roots are both real and equal.

The Solution of Polynomials 97

3. If q < 0, the roots occur in complex conjugate pairs.

The numerical evaluation on the pocket calculator should involve first
the calculation to determine q and then the use of equations for the roots
for their evaluation once the situation of the roots is determined.

Solution of Cubic Equations

If we are given a cubic equation of the form

the first step in computing its roots is to calculate q and r:

Then:

a1 ai
q=---

3 9

a1a2 -3a0 a~
r= 6 27

1. If q3 + r 2 > 0, the cubic equation has one real root and a pair of
complex conjugate roots.

2. If q 3 + r 2 = 0, all the roots are real and at least two are equal.
3. If q3 + r 2 < 0, all roots are real and unequal (the irreducible case).

Once the nature of the roots is known, it is a simple matter to use the
following equations to evaluate the roots on the pocket calculator. First,
compute

Then the roots can be calculated from an understanding of their nature
and the following three equations:

a1
z1 =(s1 +s2)- 3

98 Elementary Analysis with the Pocket Calculator

Note that if q3 + r2 = 0, s1 will equal s2 and the imaginary component of the
roots will drop out, leaving the two z roots, z2 and z3, equal, while z 1 may
not necessarily be equal, depending on the value of s2•

Once the roots of the cubic equation are evaluated, they satisfy the
following relations:

These relations can be used as a check on the calculation of the roots.
The process of numerically evaluating the roots of the quartic equation

is somewhat involved, even for pocket calculator evaluation. Under some
conditions, however, simplle evaluations can be made. For example, con
sider the quartic equation

One approach to evaluating the roots of this quartic equation is to find the
real root of the cubic equation

and then determine the four roots. of the quartic equation as solutions to
the two quadratic equations

Once the roots of the quartic are evaluated and can be written in the form

Successive Approximation Methods 99

the following conditions hold:

Finally, if z 1, z2, z3, z4 are the roots of the quartic equation, the following
conditions hold among the roots:

Again, these conditions can be used to check on the calculation of the
roots.

The evaluation of the roots of a polynomial up to quartics is tedious and
usually inaccurate (at best) on a slide rule, by hand analysis, or even on the
old mechanical calculators (though accurate); it is a relatively fast and
accurate process on the pocket calculator, however. ·

3-6 SUCCESSIVE APPROXIMATION METHODS

Again, we are concerned with the problem of determining the roots of an
equation, but the equation is of a more general form. We are looking for
the condition

j(x) =0

That is, we are looking for the values of x such thatf(x) will equal zero. In
this case f(x) need not be a polynomial in x. If we let x = xn, the
approximation of the root, then when fn is not equal to 0 it is equal to E:

(the error). If we now use E: to update our estimate of the root,

100 Elementary Analysis with the Pocket Calculator

we can write

(n = 1, 2, 3 · · ·) (3-1)

When it is found that f'(x) is greater than or equal to zero and the
constants en are negative and bounded, the sequence of xn converges
monotonically to the root x = r. If e is a constant less than zero and j' is
greater than zero, the process converges but not necessarily monotonically.
A number of approaches have been developed to compute en. Among these
are the regula falsi method, the method of successive iterations, Newton's
method, and the N ewton-Raphson method. The regula f alsi method begins
with the assumption that we are giveny = f(x); the objective is to find x = r
such that f(r) = 0. We choose a pair of values of x, x 0, and x 1 such that
f(x 0) and j(x 1) have opposite signs. Then equation 3-1 can take the form

(3-2)

The third- and higher-order estimates of the root xn are computed using x 2

and either x 0 or x 1 for which f(x 0) or f(x 1) is of opposite sign to f(x 2).

This method is equivalent to an inverse interpolation. This is apparent
from the form of equation 3-2.

In the method of successive iterations, the approach is to write the
equation in an implicit form and use successive iterations to solve the
equation x = F(x). The iteration scheme is to compute

Xn+ I= J(xn)

The sequence of solutions to this implicit equation will converge to a zero
of x = F(x) if there exists a q such that

lf'(x)I < q < 1 for a< x < b
and

This is an attractive method for use on the pocket calculator because it
does not involve remembering special formulas such as those associated
with the regula falsi or the Newton (Newton-Raphson) methods. The
problem encountered in applying the method of successive iterations on
the implicit form of the equation whose roots are to be determined is that
the implicit equation may not converge as quickly as other methods based
on additional information (such as the derivatives of f(x)) whose function
it is to ensure rapid convergence of the method.

Successive Approximation Methods 101

Newton's method is to compute recursively estimates of the roots of the
function f(x) using the formula

(3-3)

where x = xn is an approximation to the solution, x + r, of f(x) = 0. The
sequence of solutions generated with Newton's rule will converge quadrati
cally to x = r. The condition for monotonic convergence is that the product
f(x 0)f''(x0) is greater than zero, and f'(x) and f"(x) do not change sign in
the interval (x0, r). The conditions for oscillatory convergence are also
straightforward. When the product x(x0)j"(x0) is less than zero and f'(x)
and f"(x) do not change sign in the interval (x0,x 1), equation 3-3 will
converge, though it will oscillate. These conditions only hold, of course,
when

When Newton's method is applied to the evaluation of nth roots, we find
that given xn = N, if xk is an approximation of x = N l/n then a sequence of
improved xk can be generated:

This method will converge quadratically to x for all n, and is particularly
useful for computing the nth roots iteratively on the four-function pocket
calculator as covered in Chapter I. It is derived here to show the proce
dure:

1. We wish to compute x=(N) 11n.
2. Formf(x)=(xn-N)=O from (I).
3. For Newton's rule, xk+ 1 = xk - f(xk)/ f'(xk), we need f(xk) and f'(xk).

"4. f(xk) = (xkn - N) and j'(xk) = (xnkn- 1
- 0).

5. Substituting the results of (4) into (3) we find (6).
6.

= _!_[~ +(n- l)xk] = _!_ (xk(N + n-1))
n xk n x;

Details on finding the zeros of functions-an important subject in numeri
cal analysis are given in Chapter 9.

102 Elementary Analysis with the Pocket Calculator

3-7 ELEMENTARY TRANSCENDENTAL FUNCTIONS

In Chapter 1 we presented polynomial approximations for most of the
transcendental functions found on the keyboard of the scientific calculator
so that they could be evaluated on the simple four-function calculator. Not
presented there, however, were approximations in terms of Chebyshev
polynomials. Because the approximation in terms of Chebyshev poly
nomials is a mini-max approximation (minimizes the maximum error on
the interval - 1 to + 1), the:y are accurate and useful, and for the sake of
completeness they are presented here. The discussion of the reduction of
order of series approximations to function in terms of Chebyshev
polynomials is covered in Chapter 8 and their numerical evaluation is
covered more fully in Chapter 4. For now we concern ourselves with the
numerical evaluation of the elementary transcendental functions using
Chebyshev polynomials.

Evaluating the natural log of y for y near zero can be difficult, at best. If
y is near zero it is convenie:nt to write

ln(y)
in the form

ln(l + x), y = 1 + x
Then we can write ln(l + x) as

00

ln(l+x)== 2: AnTn(x), (0-<x-<1)
n=O

where the coefficients An are

n An

0 0.376452813

1 0.343145750

2 - 0.029437252

3 0.003367089

4 -0.000433276

5 0.000059471

6 - 0.000008503

7 0.000001250

8 - 0.000000188

9 0.000000029

10 - 0.000000004

11 0.000000001

Elementary Transcendental Functions 103

and where

T1=X

In a similar way, we can use Chebyshev polynomials to evaluate both

00

The coefficients for evaluating e-x = L An Tn(x) are
n=O

n An

0 0.64535270

1 -0.312841606

2 0.038704116

3 - 0.003208683

4 0.000199919

5 -0.000009975

6 0.000000415

7 -0.000000015

The coefficients for evaluating ex are

n An

0 1.753387654

0.850391654

2 0.105208694

3 0.008722105

4 0.000543437

5 0.000027115

6 0.000001128

7 0.00000040

8 0.000000001

Again the restriction x is that

O<x<l

104 Elementary Analysis with the Pocket Calculator

Now that we have a few example functions to work with, consider the
procedure for using the Chebyshev polynomials to numerically evaluate
these functions:

Step 1 Let the objective bi~ to evaluate ex near x = x0,, where x0 is not on
the interval 0 < x <; 1. Rewrite ex so that the exponent is on the
interval [O, 1). For the sake of this discussion, we use

Then for x on the interval

y is on the interval

Step 2 Select x and compute y.

Step 3 Compute T1 = y.

Step 4 Compute T2 = 2y1\ -1.
Compute T3 =2y1~- T 1•

Compute Tn=2y1~_ 1 - Tn_ 2•

n

Step 5 Compute eY ~ 2:Am Tm using the appropriate An.
0

Step 6 Compute ex= ex0eY.

Usually x 0 is chosen to be a convenient number for precise evaluation of
e xo using the prime factors method (presented in Chapter 1). For example,
if x = 100, then e 100 becomes

which is easily evaluated with a table lookup of e and 13 (at most) data
entry key strokes plus 16 multiply key strokes on the four-function cal
culator.

Elementary Transcendental Functions 105

The Chebyshev approximations for sine and cosme are given by the
relation

and

using the coefficients for An:

Sine Cosine

n An n An

0 1.276278962 0 0.472001216

1 - 0.285261569 1 - 0.499403258

2 0.009118016 2 0.027992080

3 - 0.000136587 3 - 0.000596695

4 0.000001185 4 0 .000006704

5 - 0.000000007 5 - 0.00000004 7

Here x must reside in the interval

lxl < 1

Formulas for the Solution of Plane and Spherical Triangles

Many elementary analysis problems involve the solution of triangles. These
include plane right triangles, plane triangles, and spherical triangles. Con
sider the plane right triangle shown in Figure 3-1. Here A, B, and Care the
vertices of the triangle and a, b and c are their opposite sides. Then

sinA = !!_ = - 1-
c cscA

b 1
cosA = - = --

c sec A

a 1 tanA = - = --
b cotA

106 Elementary Analysis with the Pocket Calculator

B

a

c b A

Figure 3-1 Right triangle.

Now consider Figure 3-2. This plane triangle has angles A, B, C and
sides opposite a, b, c. The law of sines states that

and the law of cosines is

a b c
°!;inA = sinB = sin C

c2 +b2- a2
cosA = 2bc

Also, the following four rellationships hold for plane triangles:

a = b cos C + c cos B

a+ b = tan HA + B)
a- b tan HA - B)

be sin A
area=

2

I

area = [s (s - a) (s - b) (s - c)] 2

where s = Ha + b + c).
Figure 3-3 shows a spherical triangle with angles A, B, C and sides

opposite a, b, c. The four commonly used formulas in spherical tri-

Elementary Transcendental Functions

B

A b c

Figure 3-2 Plane triangle.

gonometry are

sin A sinB sine

cos a= cos bcos c +sin b sin c cos A

cosb cos(c ± 0)
cos a=

cos(0)
where tan 0 =tan b cos A

cos A = - cos B cos C + sin B sin C cos a

107

In solving spherical triangle problems we can use either the scientific
keyboard function evaluation or, on the four-function calculators, the

B

A

b

Figure 3-3 Spherical triangle.

c

108 Elementary Analysis with the Pocket Calculator

polynomial or Chebyshev approximation to the transcendental functions
involved. These developments for the right triangles are shown here not so
much because of their unique form for pocket calculating, but because
they are very frequently encountered in almost all forms of engineering
analysis and, again, are provided here for the sake of completeness.

3-8 COMPLEX VARIABLES AND FUNCTIONS*

In the remctinder of the book, and in Chapter 4 in particular, the equations
and formulas used for analysis on the pocket calculator hold both for real
and complex variables. In this section, we touch briefly on analysis with
complex variables.

Complex variable analysis on the pocket calculator results in nothing
more than keeping track of the real and imaginary coordinates either in
polar or in Cartesian form. Pocket calculators with conversion from
rectangular to polar make the analysis with complex variables particularly
easy. Since virtually all advanced scientific calculators have this feature,
we assume here that it is present. The formulas given here for analysis with
complex variables and for the evaluation of functions of complex variables
can be quickly and easily developed on the four-function calculator using
the trigonometric functions developed earlier in this chapter or in Chapter 1.

The addition and subtraction of two complex variables are simply
defined by

(x1 + iy1) + (x2+ 1Y2) = (x1 + X2) + i(y1 +Yi)

(x 1 + iy 1)-- (x 2 + iJi) = (x1 - x2) + i(y 1 - Yi)

Multiplication is more conveniently done in polar coordinates; that is,

(x1 + iy1)(x2 + iYi) = r1r2ei<B, +82)

where

X1 + iy1 = r1eiB,

X2+ iy2= r1eiB2

Here r is the positive root sum square of the imaginary and real com
ponents of the complex number v = (x2 + y 2

)
112 and

*See Appendix 3 and Appendix 4

()
. y

=inverse tan -
x

Complex Variables and Functions

The division of two complex numbers is given by

Or, in rectangular form,

(x 1 + iy 1)(x2 - iY2)

xi+Yi

X1X2 + Y1Y2 + i(X2Y1 - x, Y2)

xi+Yi

109

where the denominator is developed by multiplying the numerator and
denominator by the complex conjugate of the denominator.

We will frequently encounter certain commonly used functions of com
plex variables (complex functions). The most often occurring one is the
modulus (absolute value) of a complex number, which is defined by

Another commonly encountered complex function is that of the square
of a complex number, which is simply given by

Not so easily remembered but occasionally encountered is the square root
of a complex number, which is given by

, 1-~. =+ (x+(x
2
+y

2
)) iy(x+x(x

2
+y

2
))

[

.1/2 1/2 1/2 -1/2]

v x+ zy - 2 + 2 2

Clearly, the powers and roots of a complex function can be more easily
evaluated in polar coordinates. Thus, in general,

and

(+ .)1/n l/n[((}+2'TTk)+·· ((}+2'TTk)] x zy = r cos z sm
n n

These formulas are written for angles in degrees, not radians, and for
angles where n is an integer greater than zero and k takes on any integer
values from zero n - I. The only restriction on these two complex
functions is that the complex variable cannot equal zero.

110 Elementary Analysis with the Pocket Calculator

Exponential and logarithmic functions of complex variables are also
easily developed when the complex variable is written in polar form:

x+ iy = rei9

Then it is straightforward to develop

Similarly, the natural log of a complex variable is given by

ln(x + iy) = lnr+ iO ± 2'rrik, (k =0 I 2 · · ·)
' ' '

(3-4)

These relationships can be generalized to any base according to the
relation

a (x + iy) = e (x + iy) In a

ln(x + iy)
loga(x + iy) = l

na

Even more generally, the complex powers, complex roots, and complex
logarithms of a complex variable can be developed, again using polar
coordinates. If we are given

z= x+ iy and w= v+ iv

then the complex powers and roots of a complex number are given by

Finally,

zw = ewlnz

z 1/w = e(lnz)(l/w)

ln(w)
log (w)= --

z ln (z)

(3-5)

(3-6)

(3-7)

In equations 3-5, 3-6, and 3-7 we can use equation 3-4 for taking the
natural log of a complex number.

Complex trigonometric functions are often presented in complex vari
able theory books more from the standpoint of derivation and develop
ment than from the standpoint of numerical evaluation. Hence the numeri
cal evaluation formulas sometimes get buried in the derivation. Here we
present the formulas for complex trigonometric functions in a form that is
easily evaluated on the pocket calculator. No attempt is made to derive

Complex Variables and Functions 111

these formulas, interesting though they are, because again the emphasis
here is on numerical evaluation of the functions.

The most straight(orward expressions are the sine, cosine, and tangent
functions of the complex variable

Then
z=x+ry

sinz = sinx coshy + i cosx sinhy

cosz = cosx coshy - u sinx sinhy

sin 2x + i sinh 2y
tanz = -----

cos2x + cosh2y

Less straightforward are the complex inverse trigonometric functions.
Again, when

z=x+iy

the inverse sine of z is given by the relation

In this formula

and the function sgn(y) is given by the relation

sgn(y) = { 1

-1

if y > 0

if y <0

(3-8)

(3-9)

(3-10)

Finally, k in this formula is an integer. A convenient simplification for
pocket calculator analysis is to take into account the fact that the inverse
trigonometric functions are multiple valued and thus the k = 0 case (the
easiest to evaluate numerically) can be used to evaluate the inverse sine of
z when care is taken to account for the "quadrant" in which z is being
determined. Then sin - 1 z simplifies to the form

sin - I z = sin- 1 f3 + i sgn(y) ln [a+ (a2
- I)

112 J

112 Elementary Analysis with the Pocket Calculator

Similarly the inverse cosine can be numerically evaluated from the
equation

cos- 1 z = cos- 1 {3- i sgn(y) ln [a+ (a 2 -1) 112
] (3-11)

where a and f3 are given by equations 3-8 and 3-9 and sgn(y) is given by
equation 3-10. Here, as before, k is assumed to be ze~o. However, were k
not equal to zero the more general form of equation 3-11 is given by

Finally, the inverse tangent in its most general form is given by

tan- 1z=![(2k+i)'IT-tan- 1
(l:y)-tan- 1

(l:y)]

+-ln i [(1 + y)i + x2 l
4 (1-y)2 + x2

which when k = 0 simplifies to the form

[(
1 + y) (1-y) l i [(1 + y)2

+ x
2

] tan - 1 z = - i tan - 1 -:- + tan - 1 -- + -
4

In
2 ~c x (I - y) + x2

With these relationships it is a simple matter to define the complex
hyperbolic and complex inverse hyperbolic functions in terms of the
trigonometric functions and their inverses:

sinhz = - i sin iz

coshz =cos iz

sinh 2x + i sin 2y
tanhz = ------

cosh 2x + cos2y

Similarly, the inverse hyperbolic functions are defined as

cosh - 1 z = i cos - 1 z

tanh - 1 z = - i tan - 1 iz

References 113

Other complex trigonometric relationships useful in evaluation of complex
functions are

3-9 REFERENCES

-1
csc z = (sin z)

-1
sec z = (cos z)

sin 2x - i sinh 2y
cotonz = ------

cosh 2y - cos 2x

csc - 1 z = sin - 1 (z - 1)

sec - 1 z = cos - 1 (z - 1)

csch z = i csc iz

sech z = sec iz

sinh 2x - i sin 2y
cothz= ------

cosh2x- cos2y

csch - 1 z = icsc- 1 iz

sech - 1 z = i sec - 1 z

coth - 1 z = i coC 1 iz

For this chapter refer to the Handbook of Mathematical Functions, U.S.
Department of Commerce, National Bureau of Standards, Applied
Mathematics Series 55, 1900.

CHAPTER 4

NUMERICAL EVALUATION
OF ADVANCED FUNCTIONS

4.1 INTRODUCTION

Even the simplest pocket calculator can evaluate advanced mathematical
functions to accuracies required in engineering use and certainly carrying
as many significant digits as do the typical tables in mathematical
handbooks. In part, then, this chapter deals with freeing the analyst from
having to carry or have access to extensive tables to numerically evaluate
the advanced mathematical function. Among the advanced functions con
sidered in this chapter are the exponential integral, the gamma function,
the error function and Presnal integrals, Legendre's polynomials, Bessel
functions of integer and fractional orders, Confluent hypergeometric func
tions, Chebyshev polynomials, hypergeometric functions, Hermite
polynomials, and Laguerre polynomials. Again, we stress not so much the
analysis with these functions and their analytical properties as their
numerical evaluation on the pocket calculator.

There are three methods for numerically evaluating advanced mathema
tical functions:

1. The function is approximated by a polynomial approximation or
curve fit that permits accurate evaluation of the function directly through
analytic substitution.

2. If the function is one of a sequence of generated polynomials, the
low-order polynomials can be determined for the argument of the function
and the higher-order polynomials then numerically evaluated by means of
the recursion formulas.

3. Successive partial sums of the series that describes the advanced
function are computed.

114

Introduction 115

The first method has the greatest body of mathematical literature. It also is
the simplest to apply in numerically evaluating advanced functions in that
it involves the simple procedure of evaluating a polynomial. The third
alternative is the least attractive, since rapidly converging series are often
difficult to develop over all intervals of interest. An example of this is the
Bessel function where a number of series can be written that converge
quickly in certain intervals, but there is no one series that converges
quickly over the entire range of the independent variable in the Bessel
function. In fact, the Bessel function requires the same consideration in
developing polynomial approximations. To get precision, polynomial
approximation with a reasonable number of terms requires more than one
polynomial approximation to span the interval of the independent variable
from minus infinity to plus infinity.

Finally, the second approach (the use of low-order polynomials to
determine the argument of the advanced function and then employing
recursion formulas to numerically evaluate higher-order polynomials) is
used extensively in the generation of accurate mathematical tables and
thus is handy for pocket calculator analysis, though somewhat tedious at
times.

In this chapter, all three approaches are used, each where appropriate
for evaluating the advanced mathematical functions covered here. Care
has been taken to select, from the number of available numerical methods
for evaluating these functions, those methods that can be implemented
with a minimum amount of work on pocket calculators, and particularly
the four-function variety.

Where tradeoffs are difficult the method that leads to the quickest
evaluation has been selected. A specific example would be the Chebyshev
polynomials which are evaluated here using recursion formulas, rather
than sine and cosine functions, which are available on most scientific
calculators. The reason for this and a similar situation in the half-integer
Bessel functions is that the approach presented here can be numerically
calculated on the four-function calculator which does not have the sine
and cosine functions.

Those who have done the evaluated certain mathematical functions on
large-scale digital computers should recognize that the methods chosen
here are not necessarily the same as those commonly used on large digital
computers. Partly the numerical methods are chosen for the pocket cal
culator and partly because the methods are to be instructive to students
and working engineers who may have been away from the application of
these functions. For these cases, familiar numerical methods are often
chosen, though they require slightly more work than the numerical
methods used for large computer numerical evaluation. It is important to

116 Numerical Evaluation of Advanced Functions

remember that in pocket calculator analysis a mathematical function is
usually evaluated only a few times, while on a large digital computing
machine it might be evaluated a great many times. For large machines, the
emphasis is on maximizing the accuracy with the minimum number of
steps involved in the subroutine. In pocket calculator analysis, the empha
sis is more on understanding the method and providing accuracy consis
tent with the display in the pocket calculator, on a one-time basis. Thus the
requirements for a numerical method for pocket calculator evaluation are
significantly different than those for large computer evaluations.

4.2 EXPONENTIAL, SINE, AND COSINE INTEGRALS

Four commonly encountered integrals are two forms of the exponential
integrals and the sine and cosine integrals. The exponential integrals that
we discuss here are of the form

Ei(z)= f 00 ~ dt,
z t

(I arg z I < 7T)

J·OO -t JX t

Ei(x)= - ~ dt= 7 dt,
-- x - 00

(x>O)

More generally we are also interested in the exponential integral

E (z)= ~-dt J
oo -zt

n I ln '
(n = 0, 1, 2, ... , Re (z) > 0)

and in methods for numerically evaluating both

(n =0, 1, 2, ... , Re(z) > 0)

(n = 0, 1, 2, ...)

Though each of these integrals is defined for complex arguments, our
interest here is primarily with their evaluation for real arguments. How
ever, it is usually assumed that the path of complex integration does not
include the origin, nor does it cross the negative real axis.

The approach to numerically evaluating the exponential integrals is first
to have a means to numerically evaluate them for n = 1, and then use

Exponential, Sine, and Cosine Integrals 117

recursion formulas for numerically evaluating the higher-order exponential
integrals. There are two approaches to evaluating the integrals: the use of
either an infinite series or rational polynomial approximations (see Chapter
8). The series expansions for these functions are

~ xn
Ei(x)= y+lnx + L..J -

1
,

nn.
n=I

(x >0)

(I argzl < 1T)

00 (- zf- 1

En(z)= () [-lnz+i/;(n)]-
n-l ! L

m=O
m=t=n-1

(-zf
(m- n+ I)m!'

Here

if(I)=-y

n-1

i/;(n)=-y+L~
m=I

and

y = 0.5772156649 (Euler's constant)

These functions can be evaluated more conveniently, usmg rational
polynomial approximations.

For the dependent variable x on the interval zero to I, the exponential
integral can be evaluated with the polynomial

E 1 (x) + ln x = a0 + x (a 1 + x (a2 + x (a3 + x (a4 + a5x)))) + c (x)

118 Numerical Evaluation of Advanced Functions

with an accuracy of two parts in 107
, using the coefficients

a0 = - 0.57721566

a 1 =0.99999193

a2 = - 0.2499105 5

a3 = 0.05519968

a4 = - 0.00976004

a5 =0.00107857

when x is on the interval

l<x<oo

Over the range where x 1s greater than or equal to 1 the rational
polynomial approximation

using the coefficients

a 1 = 2.334733 b 1 = 3.330657

a2 = 0.250621 b2 = 1.681534

can evaluate the auxiliary 4~Xponential integral to an error of

ldx)I< 5 X 10- 5

For even greater precision, the- exponential integral can be evaluated over
the interval x greater than or equal to 10, using the same rational
polynomial but with the coefficients

a 1 =4.03640 b 1 = 5.03637

a2 = 1.15198 b2 =4.19160

Here the error is given by the relation

For x greater than 1, the rational polynomial approximation

Exponential, Sine, and Cosine Integrals 119

using the coefficients

a 1 = 8.5733287401 b1 = 9.573322454

a2 = 18.0590169730 b2 = 25.6329561486

a3 = 8.6347608925 b3 = 21.0996530827

a4 = 0.2677737343 b4 = 3.9584969228

can be used to evaluate the exponential integral to an accuracy of

Once the exponential integral is numerically evaluated, the following
recursion formula can be used to compute the higher-order exponential
integrals for the same arguments:

The sine and cosine integrals are defined as

Si(z) = (z sint dt
Jo t

Jz cos(t)-1
Ci (z) = (J + ln z +

0

t dt,

Furthermore, we make note of the definition

si(z) = Si(z)- I

(n=l,2,3, ...)

(n=l,2,3, ...)

(n=l,2,3, ...)

(I argzl < ?T)

Then two auxiliary functions can be developed that have the form

J(z) = Ci(z) sinz - si(z) cosz

g(z)= - Ci(z)cosz-si(z)sinz

120 Numerical Evaluation of Advanced Functions

Then the sine and cosine integrals can be written in terms of the auxiliary
function as

Si(z) :=I -j(z) cosz - g(z) sinz

Ci(z) = j(z) sinz - g(z) cosz

where the auxiliary integrals are defined according to the relations

or

and

or

f (z) = r~ sin t dt
)

0
t+z

j(z)= loo ~-zt dt
0 t + 1

(z) = (oo cost dt
g) 0 t + z

i
oo te-tz

g(z)= --dt
0 t2+ 1

subject to the condition for convergence of these integrals

Re(z) >0

The reason for doing this is that rational approximations to the auxiliary
functions are easily developed with high precision.

For four-place precision, the auxiliary function can be determined using
the rational approximation

J(x)= - - +€(x) 1 (a2+x
2
(a 1 + x

2
))

x b2 + x 2(b 1 + x 2)

1€(x)i <2x 10- 4

for x greater than 1 using the coefficients

a I = 7 .241163

a2 = 2.463936

bl= 9.068580

b2 = 7.157433

a 1 =7.547478

a2 = 1.564072

bl= 12.723684

b2 = 15.723606

Exponential, Sine, and Cosine Integrals 121

For precision to five parts in 107
, the auxiliary functions can be approxi

mated with the rational approximations

for I < x. The coefficients for f(x) are given by

a 1 = 38.027264 b1 = 40.021433

a1 = 265.187033 b1 =322.624911

a3 = 335.677320 b3 = 570.236280

a4 = 38.102495 b4 =157.105423

and for equation g(x)

a 1 = 42.242855 b 1 = 48.196927

a1 =302.757865 b1 = 482.485984

a3 = 352.018498 b3 = 1114.978885

a4 = 21.821899 b4 = 449.690326

The infinite series for numerically evaluating these functions are *

. oo (_ 1) n z ln + I
Sz(z)- 2: ---

n=O (2n + 1)(2n + l)!

00

Si(z) = 112:J~+ 111 (~)
n=O

and for the cosine integral

oo (- 1)n z1n
Ci(z)=y+lnz+ 2: --

n= 1 2n(2n)!

*We shall see that fractional Bessel functions can be conveniently evaluated on the scientific
pocket calculator.

122 Numerical Evaluation of Advanced Functions

4.3 NUMERICAL EVALUATION OF THE GAMMA FUNCTION AND ITS
RELATED FUNCTIONS

The gamma function is defined by Euler's integral

f(z)= (
00

tz-Ie- 1 dt,
.lo

(Rez > 0)

or

(Rez > 0, Rek > 0)

Euler's formula for evaluating the gamma function is of the form

' z f(z) = lim n.n
n----+oo z(z+ l)(z+2)· · · (z+n)'

(z =I= 0, - 1, - 2 ...)

He also gave an infinite product expression for evaluating the gamma
function:

- 1
=zeYz IT [(1+!.-)e-z/n]

f(z) n=l n

where

y= hm 1 + - + - + - + · · · + - -lnm =0.5772156649· · · . [1 1 1 1 l
m----'>oo 2 3 4 m

This number is known as Euler's constant. Only a little analysis is involved
to show that the gamma function is analytic and single valued over the
entire complex plane except at the points z = - n (n = 0, 1, 2, ... ,) where its
poles occur. The residues of these poles can be evaluated and are found to
be

n!

The reciprocal of the gamma function has zeros at the points z = - n
(n = 0, 1, 2, ... ,). The recursion formula for computing the gamma function
is given by the expression

f(z+ l)=zf(z)

which is related to the factorial of z according to the relation

f(z+ l)=z!

Numerical Evaluation of the Gamma Function 123

It follows that the gamma function propagates from gamma at (I+ z) to
gamma at (n + z) according to the relation

f(n + z) = (n - I+ z) ! = (n - l + z)(n - 2 + z) · · · (l + z)z !

Another nice property of the gamma function, which is easily evaluated
on the pocket calculator, is Gauss' multiplication formula

(~) n-1 (k) f(nz) = (27T) 2 nnz- 112 IT f z + -
k=O n

This formula contains the duplication and triplication formulas given as a
part of the gamma function characteristics as special cases of this more
general multiplication formula.

The gamma function, being related to the factorial of a number, is
related to the binomial coefficient according to the relationship

(z) z! f(z+l)
w = w!(z-w)! = f(w+l)f(z-w+l)

It is apparent that the gamma function's relationship to the factorial
makes it convenient to evaluating the gamma function on scientific pocket
calculators that have the factorial key.

The gamma function can be evaluated in several ways. One is by a series
expansion for expansion of 1 /f according to the relationship

1 oo

f (z) = k~I ckzk, (/z/<oo)

where the coefficients to give an accuracy up to 10 places (the nominal
register size we would expect in current and even some future pocket
calculators) are tabulated in Table 4-1. The advantage to using this type of
series expansion technique is that the interval over which the series
converges is the entire real axis. Polynomial approximations can be used
over more restricted intervals. Two such approximations are

f(x+ l)=x!

= 1 + x (a I+ x (Gz + x (G3 + x (G4 + G5X)))) + ((x)

f(x+ l)=x!

= 1 + x(b1 + x(b2 + x(b3 + x (b4 + x (b5 + x(b6 + x (b7 + b8x)))))))

+ €(X)

124 Numerical Evaluation of Advanced Functions

Table 4-1 Coefficients in the Expansions l/f(z)=~k=Jckzk

k ck k ck

1 l .00000 00000 11 0.00012 80502
2 0.57721 56649 12 -0.0000201348
3 - 0.65587 80715 13 - 0.00000 12504
4 - 0.04200 26350 14 0.00000 11330
5 0.1665386113 15 -0.0000002056
6 - 0.04219 77345 16 0.000000006 l
7 - 0.00962 19715 17 0.00000 00050
8 0.00721 89432 18 -0.0000000011
9 -0.0011651675 19 0.000000000 l

10 -0.0002152416

where the coefficients in the polynomials are

a 1 = -0.5748646

a2 = 0.9512363

a3 = _- 0.6998588

a4 = 0.4245549

a5 = - 0.1010678

bl= -0.577191652

b2 = 0.988205891

b3 = -0.897056937

b4 = 0.918206857

b5 = -0.756704078

b6 = 0.482199394

b7= -0.193527818

b8 = 0.035868343

On both of these polynomial approximations the range of the variable x is
greater than or equal to zero but less than or equal to 1. The former has an
accuracy of five parts in 105 and the latter polynomial approximation is
accurate to three parts in 107

. Also, because of Stirling's formula for
approximating x!, the gamma function can be related to Stirling's
approximation according to the equation

r(b) ,/-2 -az()az+b-1/2 az + ~ v 7T e az (I argzl < 7T, a > 0)

Again, Stirling's approximation is easy to evaluate on most scientific
pocket calculators.

The Error Function and Fresnel Integrals 125

4-4 THE ERROR FUNCTION AND FRESNEL INTEGRALS

The error function and its complements are defined as

2 (z 2

erf z = -=- J, e - 1 dt
\I'll 0

and

2 ioo 2 erf c z = -=- e - 1 dt = 1 - erf z
\I'll z

The error function can be conveniently computed using the series expan
s10n

00

2 2""" 2n erf z= --e-z ~ z2n+I
v- 1.3 · · · (2n + 1)

'TT n=O

In fact, it is common in computing the error function on large computers
to compute successive partial sums of the series and terminate the evalua
tion when two consecutive partial sums are equal. The same approach can
be taken on the pocket calculator, although the calculations are tedious.
Here again we can use rational approximations to the error function such
as

where

and the coefficients are

t=-1-
1 +pz

p =0.47047

a I = 0.3480242

a2 = - 0.0958798

a3 = 0.7478556

(0 < z)

This approximation is good to about 2.5 parts in 10- 5
. Accuracy to

1.5 X 10- 5 error can be achieved with a slightly longer series, with the
addition of two terms as

erf z = 1 - [t (a 1 + t (a2 + t (a3 + t (a4 + a 5t)))) e - z
2

] + E (z)

126

where

Numerical Evaluation of Advanced Functions

t=-1-
1 +pz

and the coefficients are

p = 0.3275911

a 1 =0.254829592

a2 = - 0.284496736

a3=1.421413741

a4 = - 1.453152027

a5 = 1.061405429

The Fresnel integrals are defined by the relationships

C(z)= [cos(''ndt

The Fresnel integrals can be computed using the series expansion

oo (l)n(/ 2)2n
C(z)= L - 'TT z4n+I

n=O (2n)!(4n+l)

oo (_ l) n ('TT j 2) 2n + I
S(z)- ""' z4n+3

~o (2n+l)!(4n+3)

Fortunately, these series tend to converge quickly and can be evaluated
effectively on the pocket calculator.

Finally, as might be exp<;:cted, the Fresnel integrals can be computed in
terms of sines and cosines directly, but modulated by the auxiliary func-

Legendre Functions 127

tions f(z) and g(z):

1 ('llz
2

) ('llZ2) C(z) =
2

+ j(z)sin T - g(z)cos T

1 ('llZ
2

) ('llZ2) S(z)= 2-f(z)cos 2 -g(z)sin T

The auxiliary functions are approximated to low accuracy according to

J() I + 0.926z + ()
z = 2+ I.792z +3.104z2 € z

where

and

I g(z)= +€(z)
2 + 4.142z + 3.492z 2 + 6.670z 3

where

4-5 LEGENDRE FUNCTIONS

Legendre functions are defined in terms of the hypergeometric functions as

µ. _ I z +.I _ . _ . 1- z [l
µ./2

Pv(z)-r(l-µ) z-I F(v,v+I,I µ, 2)

where F is defined by the relationship

F(a,b;c;z)= ~ (a)n(b)n(Z~)
n=O (c)n n.

= f(c) ~ I'(a+n)f(b+n) (~)
f(a)f(b) n=O f(c+n) n!

128 Numerical Evaluation of Advanced Functions

This Legendre function is one of two that satisfy the differential equation

(1-z)~ --2z- + v(v+ 1)- -- w=O 2 d2w dw [µ
1

]

dz 2 dz 1- z 2

The Legendre function of the second kind is defined by the equation

(jzj>l)

where F is again the hypiergeometric function. These formidable-looking
expressions are easily evaluated on the pocket calculator using the recur
rence relationships of varying order and degree:

(v-µ+ l)Pt+iCz)=(2v+ l)zPt(z)-(v+ µ)Pt_i(z)

l 2 -1/2
Pt+ (z)=(z -1) {(v-µ)zPt(z)-(v+µ)P

11
n_ 1(z)}

The Legendre functions of both the first and second kind satisfy these
same recurrence relations. The starting values for these recurrence rela
tions are P0(x) = 1 and P 1{x) = x and

Here n is nonnegative and an integer.
Another approach to evaluating Legendre functions of integral order is

to use Rodrigues' formula to generate the Legendre polynomials and then
to write them in nested parenthetical form and evaluate them like any
polynomial. Though plausible, this approach is not developed here because
the numerical evaluation of the Legendre polynomials is quickly done
using the recurrence formulas. For the sake of completeness, however, the

Bessel Functions

other approach can be developed using the relationship

and

where

2n - 1 2n - 5 2n - 9
W (x)- --P (x)+ P (x)+ P (x)+ · · ·

n-1 - n n-1 J(n-l) n-3 S(n-l) n-5

n

Wn_ 1(x)= 2: _!_pm-l(x)Pn-m(x)
m

m=I

and

129

The derivative of Legendre polynomials of the first kind can be numeri
cally evaluated using the recurrence relations

4-6 BESSEL FUNCTIONS

Bessel functions are solutions to the differential equation

2 d2w dw 2 2 z -+z-+(z -v)w=O
dz 2 dz

Of the three kinds of Bessel functions, the first is:

(
z2)k

p 00 - 4
J±v(z)=(!...) 2: --

2 k=Ok!f(v+k+l)

The second is written as

130 Numerical Evaluation of Advanced Functions

and the third as

H~0, H~2)(z)

Bessel functions of the first type can also be expressed as hypergeometric
functions and as an integral:

(z/2)v (32
)

J (z) = F v + I· - -
v f(v+I) 0 1

' 4

-I

J,(z) = (H'[w 1i 2r(v+ ~)] f cos(zcosO)sin"OdO

Here 0F 1 is the generalized hypergeometric function. Bessel's functions
of the second and third types are written in terms of Bessel function of the
first type to simplify their numerical evaluation according to the re
lationships

The numerical evaluation of these Bessel functions is somewhat involved if
done analytically. All can be computed, however, using the recurrence
relation

where the numerical valm~s for the Bessel functions that go into this
recurrence formula are given by polynomial approximations. Unfor
tunately, the startup behavior of the Bessel function for x from - 3 to + 3
is significantly different from the Bessel function evaluated for x greater
than 3. Two levels of polynomial approximation are therefore involved.

The polynomial approximations for the Bessel functions of the first and
second kinds that can be used in combination with recurrence formulas for
v equal to zero and 1 are shown in Tables 4-2 and 4-3.

Bessel Functions

Table 4-2 Polynomial Approximation of J0(x)

•On the interval - 3 < x < + 3

2 4 6

J0(x) = 1 - 2.2499997(}-) + 1.2656208(}-) - 0.3163866(}-)

8 IO 12

+ 0.0444479(}-) - o.0039444(}-) + 0.00021 oo(}-) + {

Here 1£1<5 x 10- 8

•On the interval 3 < x

J0(x) = x- '12focos00

where

10 = o.79788456- 0.00000011(3 / x) -0.00552740(3 / x)
1
-0.00009512(3 / x)

3

+ 0.00137237(3 / xt-0.00072805(3 / x)
5
+ 0.00014476(3/ x)

6
+ £

Here j£1<1.6 X 10- 8

and

131

00 = x -0.78539816-0.04166397(3 / x)-0.00003954(3 / x)
2
+0.00262573(3/ x)

3

-0.00054125(3 I x)
4
-0.00029333(3 I x)

5
+ 0.00013558(3 Ix)

6
+ {

Here 1£1<7 X 10-s

Spherical Bessel functions, of ten called Bessel functions of fractional
order, satisfy the modified Bessel differential equation

z2w" + 2zw' + [z 2
- n(n + l)]w = 0, (n = 0, ± l, ± 2, · · ·)

Spherical Bessel functions of the first kind are of the form

132 Numerical Evaluation of Advanced Functions

Table 4-3 Polynomial Approxiimatioc of J 1(x)

•In the interval - 3 < x < + 3

x- 1Ji(x) = t-0.56249985(x /3)
2
+ 0.21093573(x /3)

4
-0.03954289(x/3)6

+ 0.00443319(x /3)
8
-0.0003176 l(x /3)

10
+ 0.00001109(x /3)

12
+ E

Here IEI < 1.3 x 10- 8

•In the interval 3 < x

J 1(x) = x 1l2j1 cos01

where

f 1 =0.79788456 + 0.00000156(3 / x) + 0.01659667(3 / x)
2
+ 0.00017105(3/ x)

3

-0.00249511(3/ x)
4

+0.00113653(3/ x)
5
-0.00020033(3/ x)

6
+ E

Here IEI < 4 X 10- 8

and

01 =x-2.35619449+0.12499612(3 / x) + 0.00005650(3 / x)
2
-0.00637879(3 / x)

3

+ 0.00074348(3 / x)
4
+ 0.00079824(3/ x) 5 -0.00029166(3 / x)

6 + E

Here IEI < 9 x 10- 8

and those of the second kind take the form

Y.(z)=-vt Y.+1;iz)

The spherical Bessel functions of the third kind are given by

Bessel Functions 133

They can be numerically evaluated using the series

. zn { z
2
/2 (3

2
/2)

2

}

Jn(z)= 1.3.5· · · (2n+ 1) l- 1!(2n+3) + 2!(2n+3)(2n+5) - ...

1.3.5· · · (2n- l) { 32/2 (32/2)
2

}

Yn(z)=- zn+I l- 1!(1-2n) + 2!(1-2n)(3-2n) _,,,

where n=O, 1,2, ···.Or they can be written out and numerically evaluated
from the expansion of the spherical Bessel functions, using Rayleigh's
generating formulas

· () _ n (1 d)n (sin z) J z-z --- --
n z dz z

) n (1 d)n (COS Z) y (z =-z --- --
n z dz z

A simplification for numerically evaluating spherical Bessel functions of
high order is to evaluate them at low order, say zero and 1, and compute
the high-order spherical Bessel functions for the same argument, using the
recurrence relations

(2n+ 1). .
in+I= Jn-Jn-I z

This recursion formula applies to all four spherical Bessel functions.
An even simpler approach for calculators with sine and cosine functions

using recurrence formulas is to evaluate in(z) as

where In is generated with

(2n + 1)
In+ I= --Z-In - In- I

using the starting values

134 Numerical Evaluation of Advanced Functions

4-7 THE CONFLUENT HYF'ERGEOMETRIC FUNCTION

The confluent hypergeometric function, usually written in the form

where

and

(b)n= b(b+ l)(b+2)(b+3)· · · (b+ n-1)

(a)n=a(a+ I)(a+2)(a+3)· · · (a+n-1)

(a)0 = I = (b)0

is the solution to Kummers' differential equation

d 2w dw
z dz2 +(b-z) dz -aw=O

The confluent hypergeometric function is evaluated on the pocket calcula
tor directly as written by computing successive partial sums of this series.

Similarly, the hypergeometric functions defined by the relation

must be evaluated directly by computing successive partial sums of the
series. In general, when the terms in the series do not change, enough terms
have been taken for the numerical evaluation to be complete. It is apparent
that the series is not defined if c = - m(m = 0, 1, 2, · · ·), except when

b=-n(n=012···)
' ' '

where n must be less than m. It is worth mentioning here that the
hypergeometric function can be used to initialize certain recursion formu
las for other advanced functions in that the hypergeometric function is
related to many of the orthogonal polynomials.

4-8 CHEBYSHEV, HERMITE, AND LAGUERRE POLYNOMIALS

Chebyshev polynomials can be easily evaluated numerically using the
recurrence equations

Tn + 1 (X) = 2 X Tn l X) - Tn _ 1 (X)

where the starting values for the Chebyshev polynomials are T0(x) = 1 and
T 1(x)= x.

References 135

Hermite polynomials and Laguerre polynomials can also be evaluated
using recurrence equations and initial values of the polynomials. For
example, the Hermite polynomial can be numerically evaluated using the
recurrence formula

Hn+ 1(x) =2xHn(x)-2nHn_ 1(x)

where the starting values are computed from the first two Hermite
polynomials H 0 = 1 and H 1 =2x. Again, n is a nonnegative integer.

The numerical evaluation of the Laguerre polynomial is found using the
recurrence equation

Here the starting Laguerre polynomials are L 0 = 1 and L 1=1- x. As
before, n is a nonnegative integer.

It is worth repeating that to numerically evaluate advanced mathemati
cal functions one of three approaches is usually employed:

1. The function is approximated by a polynomial approximation or
curve fits that permit accurate evaluation of the function directly through
analytic substitution.

2. If the function is one of a sequence of generated polynomials, the
low-order polynomials can be determined for the argument of the function,
and then recursion formulas used to numeri~ally evaluate the higher-order
polynomials.

3. The third alternative is simply to compute successive partial sums of
the series that describes the advanced function.

Of the three, (I) is the most straightforward approach to evaluating the
advanced functions. The least attractive approach is that presented in
(3)-direct evaluation of the series approximation to the function. And,
finally, a reasonable tradeoff between analytic substitution as described in
(1) and direct series evaluation presented in (3) is the use of recurrence
formulas to numerically evaluate high-order functions where the function
is one of a set of sequences of functions developed with a generating
formula.

4-9 REFERENCES

For this chapter consult the Handbook of Mathematical Functions, U.S.
Department of Commerce, National Bureau of Standards, Applied
Mathematics Series 55, 1900.

PART THREE

ADVANCED ANALYSIS

ON THE POCKET CALCULATOR

CHAPTER 5

FOURIER ANALYSIS

5-1 INTRODUCTION

We now turn to the Fourier analysis of discrete and continuous functions.
Unlike in Chapter 4, where we talked about the numerical evaluation of
advanced mathematical functions rather than their interpretation, here we
also try to understand the results that can be obtained from pocket
calculator evaluation of the discrete Fourier transform. Such issues as the
relationships between the discrete spectrum of discrete functions and the
discrete spectrum of continuous functions are discussed. The aliasing
concept is examined to aid those not familiar with it in understanding the
spectrum of sampled-data functions. In a very real sense, the pocket
calculator can be a valuable teaching aid in frequency-domain analysis in
that it permits the quick evaluation of the spectra associated with discrete
functions which (when sampled at sufficiently high frequency) approxi
mate continuous functions. For this reason, and to permit a quick evalua
tion of spectra in practical analysis, the formulas for 12-point and 24-point
discrete Fourier spectra are given and the procedures for their quick
evaluation on the pocket calculator are presented. Those using a simple
four-function calculator will find the 12-point formula of particular inter
est, since no evaluation of sines or cosines is required for a determination
of the discrete spectrum of a sequence of sampled values.

Finally, we discuss function reconstruction, using pocket calculators
with scientific keyboards, and procedures for Fourier series evaluation.

5-2 THE FOURIER SERIES OF CONTINUOUS FUNCTIONS

The Fourier series of a continuous periodic function whose period is L is

139

140 Fourier Analysis

given by

() Go [(27TX) (47TX) (67TX) l F x =1+ G1cos L +G2cos L +G3cos L +···

[b · (27TX) b · (47TX) b · (67TX) l + 1sm L- + 2sm L + 3sm L + · · · (5-1)

where the coefficients Gk and bk are given by

L

21 ((2k7TX) Gk= L
0

F x)cos ~ dx, (k =0 1 2 · · ·)
' ' '

(5-2)

L

21 (. (2k7TX) bk= L
0

F x)sm ~ dx, (k = 1,2, ...) (5-3)

This series has an infinite number of terms. There are an infinite number
of coefficients defined by equations 5-2 and 5-3. Physically, the funda
mental and an infinity of its harmonics can determine an infinite sequence
of coefficients for the sines and cosines in the series expansion of equation
5-1.

There are problems with the convergence of Fourier series, which are
usually associated with special functions not frequently encountered in
engineering analysis. Since: the sines and cosines that make up the Fourier
series are orthogonal functions, the coefficients of its components can be
written in polar form. In this case the modulus of the radius vector can be
plotted as a function of frequency, as well as the phase angle of the
resultant. These form the amplitude and phase shift curves used by control
systems analysts to examine the stability of feedback control processes.

Finally, the power spectrum of a function approximated with a Fourier
series can be prepared by plotting the square of the modulus of the Fourier
coefficients in polar form. Since this is equivalent to summing the squares
of the coefficients for the sine and cosine functions at the same frequency,
it is apparent that the phase information is lost when the power spectrum is
presented.

Inspection of the Fourier series reveals that if the function F(x) is
moved vertically along the ordinate, only the value of G0 is changed. This
can readily be seen by noting in equation 5-2 that when k = 0 the
coefficient becomes the average value of F(x) on the interval zero to L.
Note that if we were to set F1(x)= F(x)+ G0 /2 in equation 5-1, the Fourier
series of F 1(x) would have no average component (DC component). It is

The Fourier Series of Discrete Functions 141

also apparent that if F(x) is translated horizontally along the abscissa, the
distribution of weight among the coefficients in the Fourier series changes.
In particular, for any given frequency component, the distribution among
the sine and cosine terms is different. However, the sum of their squares
remains invariant. From this we see that the power spectrum of a Fourier
series is invariant with respect to translation of the function f(x) along the
abscissa (assuming that f(x) is periodic).

What should be kept in mind about the Fourier series approximation of
a function is that the function being approximated with the Fourier series
is assumed to be periodic. Though it can have discontinuities over the
period, the function must be periodic. For the student, what might seem
counterintuitive at first is that this function defined over a finite interval in
the domain of the real numbers has an infinite number of lines in its
discrete spectrum defined over the infinite domain of the discrete frequen
cies. The reason for this lies in the nature of the Fourier series. The
fundamental frequency component for the finite length record is set by the
length of the record itself. Then the harmonics that make up the rest of the
series are determined by pairs of sines and cosines that fit with multiple
oscillations over the period of the periodic function, and there are an
infinity of these sines and cosines.

5-3 THE FOURIER SERIES OF DISCRETE FUNCTIONS

Now let us consider a discrete function defined by a set of equally spaced
discrete values of the function Y defined at equally spaced values of the
domain of the independent variable. Following Hamming, we consider
only an even number of points, 2N.- In what follows, the 2N sample points
are

L 2L 3L (2N-l)L
O, 2N '2N '2N , ... , 2N

which can be written as

nL
xn= 2N, (n = 0, 1, ... ,2 N - 1)

(5-4)

(5-5)

The Fourier series expansion of an arbitrary function F(x) defined on the
set of points xn can be written as

A N- I [l A
F(x) = -J- + ~1 Akcos(

27x) +Bk sin(27x) + f cos(2:wx)
(5-6)

142 Fourier Analysis

where

I
2

~
1

, (2kwxn)
Ak = N ~o F(xn)cos -L- , (k=O, l, ... ,N) (5-7)

1
2

~ I . (2k'llXn)
Bk= N ~o F(xn)sm -L- ' (k=O, 1, ... ,N-1) (5-8)

An interesting aspect of Fourier series is that the sine and cosine
functions are not only defined and orthogonal over a continuous interval
of the dependent variable but are also orthogonal on any set of equally
spaced discrete points on the same interval. This is important for the
numerical evaluation of the frequency components of the discrete func
tions in that we are usually only given samples of the function on the set of
equally spaced points. One might expect that the coefficients for the
continuous Fourier series could then be approximated using numerical
integration. Although this, in fact, can be done, equations 5-7 and 5-8 show
that the coefficients for the Fourier spectrum of a discrete function can be
computed exactly without i.nvolving numerical integration approximation.

It is apparent from equations 5-7 and 5-8 that this expansion will have
only 2N terms, rather than an infinity of terms, as is characteristic of the
Fourier series approximation of continuous functions. Also, the frequency
spectrum for the discrete Fourier transform will have only half as many
lines as sampled values. Thus, if there are 10 sampled values, the power
spectrum will have only five discrete lines. Clearly, a question that needs to
be answered is, 'what happened to the rest of the infinity of components of
the spectrum of the continuous function F(x)? Another relevant and
equally important question is, how can the discrete spectrum be con
structed if we know the continuous spectrum and the number of sampled
values? Conversely, given the discrete spectrum of the discrete function
f(nl:lx), what can we tell about the discrete spectrum of the continuous
function f(x)?

5-4 THE RELATIONS BET1tVEEN THE FOURIER SERIES EXPANSION OF
DISCRETE AND CONTINUOUS FUNCTIONS

Only a little analysis will show that the spectral components of a discrete
function are related to the spectral components of its continuous function

The Relations Between the Discrete and Continuous Functions

counterpart according to the relationship

00

Ak = ak + L (a2Nm-k + a2Nm+k)
m=I

00

Bk= bk+ 2: (b2Nm+k - b2Nm-k)
m=I

The constant term A 0 is given by

00

Ao= ao + 2 2: a2Nm
m=I

143

(5-9)

(5-10)

(5-11)

Let us examine equation 5-9. The first six terms of an even function
discrete spectrum (say, for 2N = IO seconds) when written out take the
following form:

Spectrum

Component

O'.w=2Hz=

2aw=5Hz =

Discrete Function Spectrum from Continuous Function

Spectrum

A2= a2+ (as+ a12) + (a1s+ a22) + (a2s+ 32) + · · ·

A J = a3 + (a7+a13) + (a 17 + a23) + (a27 + a33) + · · ·

Note: Bk= 0 =bk for even functions.

The factors of 2 at end points of the spectrum are due to the form of
equation 5-6. Each of the discrete system coefficients when written out
includes the effect of an infinite number of terms associated with the
continuous spectrum. This somewhat stunning finding shows that any
sizable power in the high-frequency components of the continuous
function spectrum will have the effect of those components appearing at

144 Fourier Analysis

low frequencies in the discrete-function spectrum. In the example chosen
where the 2N is equal to l 0 seconds, the lowest-frequency component in
the discrete spectrum (besides the zero-frequency component) includes the
amplitude of the 9 and 11 Hz frequency component in the Fourier series
expansion of F(x), as well as the 19th and 21st, the 29th and 3 lst, 39th and
4lst, 49th and 51st, and so on.

Another physical way to think of this is that, had we been sampling an
11 Hz sine wave at 10 samples per second, the discrete function would
have had spectral components at l Hz whose amplitude would be the same
as that of the 11 Hz sine wave in the continuous spectrum. In general the
frequencies present in the original continuous function F(x) are summed
together as a result of the sampling operation. In other words, the mere
operation of sampling a continuous function (i.e., a discrete function
defined only at integer multiples of the sampling period) results in the
folding of the frequency spectrum around the information frequency
(sampling frequency w

5
divided by 2), resulting in the folding of the

high-frequency components of the continuous-function spectrum into the
low-frequency components of the discrete-function spectrum. This effect is
called "aliasing" (i.e., l Hz is the alias of 9 Hz when sampled at 10 Hz).
Note that once the sampling process has taken place, its effect on the
continuous-function spectrum cannot be undone. In our example, only
when ak = 0 for k > 5 will Ak = ak. If ak *O for k > 5, ak cannot be
determined by examining Ak! Finally, note that the highest-frequency
component is w

5
/2.

These formulas provide the means for computing the discrete-function
spectrum directly from the continuous-function spectrum if it is known.
The CRC Standard Mathematical Tables has a sizable table of Fourier
series representations of commonly encountered functions and can be used
to c_?mpute the discrete-function spectrum according to equations 5-9,
5-10, and 5-11 using a pocket calculator.

5-5 THE NUMERICAL EVA.LUA TION OF THE FOURIER COEFFICIENTS

The coefficients of the discrete-function Fourier series expansion, pre
viously given by equations 5-7, and 5-8, are recopied here for convenience.

1
2

~
1

(2brxn)
Ak = N ~ F(xn)cos -L- , (k=O, l,. .. ,N) (5-7)

1
2

~
1

. (2krrrxn)
Bk= N ~ F(xn)sm -L- , (k=O, l,. . .,N-1) (5-8)

The Numerical Evaluation of the Fourier Coefficients 145

These coefficients may be numerically evaluated, using recursion formulas.
The procedure is as follows:

Step 1 Prepare a table of values Um using the recursion relations

for m =2,3,4, .. .,2N- l

(5-17)
where U0 =0 and U1 = F(2N-1)

Step 2 Evaluate the coefficients of the cosine terms in the series, using the
equation

Ak= ~{(cos~)u2N-1-U2N-2+F(O)) (5-18)

Step 3 Compute the coefficients for the sine terms in the series expan
sion, using the recursion formula

(5-19)

While evaluation according to these formulas takes longer than does the
Cooley-Tukey fast Fourier transform algorithm, for the low-order Fourier
series analysis that can be conveniently done on the pocket calculator this
recursion formula method involves only slightly fewer operations than the
Cooley-Tukey algorithm. Moreover, the use of recursion formulas in the
numerical evaluation of functions is efficiently done on the pocket cal
culator.

Hamming presents a convenient 12-point formula for Fourier analysis in
his book Numerical Methods for Scientists and Engineers. First, the table of
discrete values of the function Fis written in an array (A 1):

F(O) F(l)

F(I I)

F(2)

F(IO)

F(3)

F(9)

F(4)

F(8)

F(5)

F(7)

F(6)

From this array we can compute a sequence of S's and T's by adding and
subtracting, respectively, the two lines in the array A I to form an array
(A2) of S's and T's:

Sums~ S(O)

Differences~

S(I)

T(I)

S(2)

T(2)

S(3)

T(3)

S(4)

T(4)

S(5)

T(5)
S{6) } A2

146

Then, rewriting array (A2) as

S(O) S(l) S(2) S(3)

S(6) S(5) S(4)

T(l) T(2)

T(5)

Fourier Analysis

T(3) } A3
T(4)

we form array (A4) of V's, V's, P's, and Q's by adding and subtracting,
respectively, the second line from the first line in array A 3:

Sums~ U(O)

Differences~ V(O)

U(l) U(2) U(3) P(l) P(2)

V(l) V(2) Q(l)
P(3) } A4
Q(2)

The coefficients associated with the six discrete frequencies that make
up the Fourier series representation of the 12-point discrete function can
now be developed. First compute

V(2)
a 1 = V(O) + --

2
-

P(l)
/31 = -2- + P(3)

a 2 = U(O) + U(3) /32= P(l)-P(3)

a 3 = U(l) + U(2) /33 = v; (Q(l) + Q(2))

V3
a4 = -2- V(ll) /34= v; (Q(l)- Q(2))

as= U(O)- U(3) /3s= VJ P(2)
2

a 6= U(l)- U(2)

a7 = V(O)- V(2)
Then

Ao= H l\'.2 + a3)

A1 = i(o'.1 + a4) B1 = H /31 + f3s)

A 2 = i (ixs + ~6
) B2 = i/33

A3 = ia7 B3=if32

A4 = i (iX2 - ~3) B4 = if34

As= Ha1- a4) Bs=Hf31-f3s)

A 6 = H O'.s - a6)

References 147

These coefficients are associated with the Fourier series

5-6 SUMMARY

A number of important observations have been made on the Fourier
expansion of discrete functions. Take, for example, the 12-point Fourier
coefficient formulas. The 12 values of the discrete function result in a
discrete spectrum with only six frequency components. In general, 2N
values of a discrete function will result in a spectrum with only N spectral
components. This generally holds true, reflecting the rule of thumb that
data must be sampled at at least twice the highest frequency of interest for
the coefficients of the spectral components to be determined at the
frequency of interest.

The second observation deals with the physical characteristics of
sampled data. Note that once a function is sampled the spectrum of the
sequence of sampled functions has no frequency components greater than
half the sampling frequency. What, then, happens to the high frequency
components of a sampled continuous function? They are folded down into
the low-frequency components of the discrete spectrum. They are summed
with the low-frequency components. In this sense the high-frequency
components are not actually rejected by the sampling process, but they are
folded into the low-frequency components of the discrete function
spectrum, resulting in distortion of the low-frequency components that
made up the original continuous-function frequency spectrum. Thus,
although the sampling operation does not result in high-frequency com
ponents in the sampled-functions spectrum, the true continuous-function
spectrum can be much distorted by the sampling process in the low
frequencies.

5-7 REFERENCES

For this chapter refer to Richard Hamming's Numerical Methods for
Scientists and Engineers (McGraw-Hill, 1973), Chapter 1 and Chapters 31
through 34.

Example 5-1 Compute the coefficients in the Fourier series expansions of
a continuous periodic triangular wave function. Then use these coefficients
to compute the discrete function spectrum by way of equations 5-9 through
5-11.

148 Fourier Analysis

The continuous periodic triangular wave form is shown in Figure 5-1. It
is apparent that

J(t)= -J(- t)
and

The first equation shows thatf(t) is an odd function and thus only the sine
components are involved in the Fourier series approximation of f(t). The
second equation shows that only the odd harmonics are involved in the
series. Furthermore, when ilwo symmetry conditions exist, it is necessary to
integrate only over one-quarter of the period of the function to determine
the Fourier coefficients (an interesting property for the reader to dem
onstrate to himself). It follows, that

Since

81T/4 (2) bn= T
0

J(t)sinn ; tdt,

j(t) = 4:t' T
0< t<-

4

SA . (n'lT)
bn= n2'1T2sm 2' (n,odd)

(n,odd)

Figure 5-1 Continuous periodic triangular waveform.

References 149

Thus

n= 1,5,9,· · ·

n=3,7, 11,· · ·

The first 15 continuous function spectrum components are tabulated
below.

b _SA b6=0
-SA b =--

1- 'TT2 11 J2 l 'TT2

b2=0
-SA

b12=0 b =--
7 49'TT2

-SA b8 =0 b =~ b3=--
9'TT2 13 169'TT2

b4=0 b-~
9 - S l 'TT2 b14=0

b=~ b10 =0
-SA b =--

5 25'TT2 15 225'TT2

The discrete spectrum components are developed by using equation 5-10
for the case 2N = 10:

B1 = b1 + (b11 - b9) + (b21 - h19) + (b31 - h29) + · · ·

B2 = b2 + (b12- hs) + (b22- h1s) + (b32- h2s) + · · ·

B3 = b3 + (b13- b7) + (b23- b17) + (b33 - b27) + .. ,·

B4 = b4 + (b14- b6) + (b24- b16) + (b34- b26) + ...

From the table of continuous function spectrum components we see that

s,"' !~ [(1- -dJ)-(8\)] ~0_9793900(:~)

SA
B2~-2 [(0+0)-0]=0

'TT

SA
B4 ~-[(0+0)-(0)] = 0

'TT2

150 Fourier Analysis

The following table shows the discrete function spectrum elements and the
continuous function spectrum elements side by side for easy comparison.
The difference is the result of the aliasing phenomenon.

Continuous Function

Spectrum Elements

b1 = i.o(:~)
b2=0

b3 = - 0.111 111 I (~~)
b4=0

Discrete Function

Spectrum Elements

B1 =0.9773900(~~)
B2 =0

B3 = - 0.0847659(~~)
B4 =0

Example 5-2 Compute the Fourier coefficients for the Fourier
approximation of the discrete function

Yn =sin (nwT)

where w = 1 Hz. This 12-point discrete function is tabulated below.

nT nwT

n (seconds) (degrees) Sin(n~T)= F(n)

0 0 0 0.00

1 0.1 36 0.59

2 0.2 72 0.95

3 0.3 108 0.95

4 0.4 144 0.59

5 0.5 180 0.00

6 0.6 216 -0.59

7 0.7 252 -0.95

8 0.8 288 -0.95

9 0.9 324 -0.59

10 1.0 360 0.00

11 1.1 396 +0.59

sen es

A closer examination of the table reveals that the sine function is
tabulated over the interval to 1.2 seconds, while the function is periodic on
the interval I second. Clearly, the coefficients that we generate using the

References 151

12-point formulas apply to Fourier series approximations of the tabulated
functions exactly as shown (with a period of 1.2 seconds, not 1 second),
and not the coefficients for the Fourier series approximation of a pure 1
Hz sine wave. The purpose for selecting this unusual problem is that it
illustrates not only the use of the 12-point formula, but also the effect of
one of the practical problems associated with sampling periodic functions.
The reality of sampling functions from experiments is that the functions
are often not exactly periodic or, if they are, the period is not known
precisely and some approximation of the period must be made. This
example might be considered the result of an experiment where an estimate
of the period of the function being sampled is made to be 1.2 seconds,
where in reality the periodic function repeats on the interval 1 second.
Following the 12-point Fourier analysis procedure, the discrete function
12-point Fourier coefficients are generated from the arrays as tabulated in
Table 5-1. The array numbers in the table correspond to the array numbers
in the text and are shown here for the sake of convenience. The numerical
evaluation of the 12-point Fourier series coefficients are summarized in

fable 5-1 Discrete Function 12-point Fourier Series Coefficient Generation Arrays

~O)~F(6) 0.00 0.59 0.95 0.95 0.59 0.00 -0.59

~(12)~ F(7) 0.59 0.00 -0.59 -0.95 -0.95

l.dd 0.00 1.18 0.95 0.36 -0.36 -0.95 -0.59

ubtract 0.00 0.95 1.54 1.54 0.95

S(O) S(l) S(2) S(3) S(4) S(5) S(6)

T(l) T(2) T(3) T(4) T(5)

'(O)~S(3) 0.00 1.18 0.95 0.36 0.00 0.95 1.54 T(l)~ T(3)

'(6)~S(4) -0.59 -0.95 -0.36 0.95 1.54 T(5)~ T(4)

'"dd -0.59 0.23 0.59 0.36 0.95 2.49 1.54

ubtract 0.59 2.13 1.31 -0.95 -0.59

(U(O) U(l) U(2) U(3) P(l) P(2) P(3)

V(O) V(l) V(2) Q(l) Q(2)

(A 1)

(A2)

(A2)

(A3)

(A4)

(A4)

152 Fourier Analysis

Table 5-2. The A-coefficients are associated with the cosine components
and the B-coefficients are associated with the sine components. Also, the
table shows a check of the initial conditions. At t = 0, the discrete function
starts at 0. ·Therefore, the sum of the cosine amplitude coefficients should
equal 0, as they do.

Though we could discuss the tail effects by examining the individual
elements of the series expansion, it is more convenient to use the power
spectrum or amplitude spectrum as a means of discussing this
phenomenon. The 12-point spectrum calculations are tabulated in Table
5-3. First note that the DC component of the spectrum is given by P0 • This
indicates that the averag1~ effect of the "tail" of our irregular periodic
coefficient is to bias the otherwise 0-DC coefficient to the level 0.049.
Second, the lowest-frequency component (the fundamental frequency
equal to 1/1.2 equal to 0.83333 ...) contains the greatest amount of power
of all of the harmonics. Clearly, this is so because it is the closest frequency
to the 1 Hz periodic function that we have sampled. The power in the
next-highest harmonic is approximately one-tenth that of the fundamental.

Table 5-2 12-Point Fourier Series Coefficient Calculations

Cosine
components

Sine
components

2Ao= i(-0.59+0.36+0.23+0.59)=0.098

A I= i (0.59 + 0.655 + 0.866 x 2.13) = 0.5149

A 2 = i(-0.59-0.36-.18)= -0.188

A3= i(-.72)= -0.12

A 4 = i(0.59+0.36- .41) = -0.107

A 5 = i(0.59+.655-0.866x2.13) = -0.0999

1
2A6 =

6
(-0.59-0.36-0.23+0.59) = -0.098

B 1 = i (0.475 + 1.54 + 0.866 X 2.489) = 0.695

B 2 = 0.:~66 (- 0.95 -0.59) = - 0.2223

1
B3 = 6 (0.95 - 1.54) = 0.098

B4 = 0.~66 (-0.95+0.59)= -0.05196

1
B5 = 6(0.475+ 1.54-0.866x2.49)= -0.0436

Note that

at t =0,

LAi=O,

as it should

References 153

Table 5-3 12-Point Spectrum Calculations

Power Spectrum Amplitude
wHz (rounded) Spectrum

0 P0 =AJ/4 =0.00 \)p~ =0.049

0.833 P1 =Af+ B? =0.75 Vfli =0.865

1.666 P2=Ai+ B} =0.08 YP2 =0.291

2.499 P3=Aj+ Bf =0.02 YP3 =0.155

3.333 P4 =AJ+ B) =0.01 YP4 =0.119

4.166 Ps=A~+ Bff =0.01 YP5 =0.109

5.499 P6=AV4 =0.00 \)p6 =0.049

Had we taken the 12 sample points equally distributed over the periodic
sine wave function, we would have found a single harmonic component at
1 Hz and the rest of the components would have been zero or very small,
depending only on truncation error as related to the number of terms
carried in the pocket calculator analysis. Here we see the effect of the
"tail" is to affect the DC level and spread the power in the 1 Hz sine
function over higher-frequency harmonics. The reason for this is that the
high-frequency components are required to take care of the discontinuous
end effects associated with the "tail" in our sampled periodic discrete
function. Specifically, this "tail" is associated with the jump discontinuity
in going from + 0.59 at n = 11 to 0 at n = 12 for the example function that
we have chosen to analyze. Hopefully this example will interest the
students who read this book in further readings in practical Fourier
analysis, on which there is an extensive literature.

CHAPTER 6

NUMERICAL INTEGRATION

6-1 INTRODUCTION

There are basically two types of integral with which we are concerned in
this chapter: the definite integral and the indefinite integral. The definite
integral is given by the formula

y(b) = y(a) + J bj(x)dx
a

(6-1)

and the indefinite integral is defined by

y(x) = y(a) + fxf(t) dt
a

(6-2)

The definite integral is characterized by computing the area under the
curve of a bounded function; the indefinite integral can be thought of as
computing the antiderivative of the integrand and thus generating the
sequence of values of a function. We study definite integrals from the
standpoint of quadrature--that is, for computing the area under a curve.
We study indefinite integrals from the standpoint of integrating differential
equations. Our first concern here is the definite integral.

6-2 DEFINITE INTEGRATION

Computing the area under an arbitrary curve is usually based on the
concept of analytic substiltution. The idea is to use a known function
whose definite integral is easily evaluated to substitute for the arbitrary
function to be integrated. The integration is actually performed on the

154

Definite Integration 155

substitute function and attributed to the integral of the arbitrary function
to the degree to which it approximates the latter. In classical mathematics
the substitute functions to be integrated are usually polynomials. The
polynomial is then analytically integrated and, insofar as the polynomial
approximates the continuous function, the integral is attributed to the
integral of the arbitrary function. When the integrand is a polynomial of
degree n and the approximating function is also a polynomial of degree n,
the formula can be made exact by appropriately selecting the coefficients
in the integration formula.

The process of analytic substitution or of other means of approximating
definite and indefinite integrals is so fascinating that virtually every
numerical analyst finds new ways to rederive many of the classical formu
las and a few others as well. Though one is tempted to present the most
sophisticated integration methods, the focus here remains on classical
developments, which are straightforward and easy to apply on the pocket
calculator. The reader should be aware, however, of the tremendous
quantity of good mathematics in numerical integration developed in the
last 20 years. This is due to numerical calculations being done on the
digital computer and to the use of numerical analysis in sophisticated
technology problems in varied areas. Structures, communications systems,
control systems, design of aircraft, and the design of chemical plants are
areas where the simulation of systems with widely separated eigenvalues
and the numerical integration of functions that are almost neutrally stable
(at large integration step size), have produced new integration concepts
based on the technology to which they were being applied. Structural
dynamicists have developed special numerical integration formulas for
integrating their "stiff differential equations." Controls analysts have pro
duced such formulas based solely on frequency-domain considerations.
And special single-step real-time numerical integration formulas have
been developed by simulation scientists.

These problems can be encountered on the pocket calculator, especially
the programmable pocket calculator. Here, however, we focus on the more
classical formulas, which have fairly general and broad applications to the
more analytically tractable functions. Furthermore, there is a vast body of
literature on these classical methods for further reference, should it be
required.

Trapezoidal Integration

If we approximate the functionf(x) on a bounded interval a< x < b by a
line through the end points, we can write the equation for the approximat-

156 Numerical Integration

ing function over the interval as

[
j(b) - j(a) l

y (x) == J(a)+ b _a (x - a)

(b - x)J(a) + (x - a)j(b)
y(x) == ------

b- a

Integrating equation 6-3, we find

(6-3)

(6-4)

Equation 6-4 computes the area under the straight-line interpolation be
tween the two end points. This is called trapezoidal integration because
this area is enclosed by a trapezoid formed by lines connecting the end
points, the abscissa, and the vertical lines connecting the end points to the
abscissa. If the interval is large, the trapezoidal approximation can lead to
large numerical integration error. This is resolved by a repeated applica
tion of the trapezoidal rule on smaller intervals of the dependent variable.
When this is done for equally spaced intervals, ~x, trapezoidal integration
takes the form

f b (f(a) j(b))
a j(x)dx=~x 2- + J(a+~x)+ J(a+2~k)+ ... + -2- (6-5)

Trapezoidal integration, though not the simplest one to derive or com
pute (Euler, modified Euler, or rectangular integration are simpler con
cepts) and its error formula does not give the least error for the fewest
computations, is straightforward to apply on the pocket calculator and is
easily remembered. As we move to integration formulas involving mid
values and their derivatives, estimates of a roundoff and truncation error,
and adjustments of phase shift and amplitude, we retreat further from
simple visualizations of the integration process and must increasingly rely
on the rationale for their development to be assured of their applicability
to a problem. Ultimately, analytical integration is compared with the
approximate numerical integration to evaluate the difference between
several methods of integration for a particular problem. Clearly, this is an
overkill for back-of-the-envelope engineering analysis or analysis on the
pocket calculator intended simply to compute the area under the curve of a
given function. If trapezoidal integration is sufficiently accurate, and the
number of intervals needed to obtain the desired accuracy is not prohibi
tive, it is very useful for pocket calculator analysis.

Error in Trapezoidal Integration 157

6-3 ERROR IN TRAPEZOIDAL INTEGRATION

We do not here aim to explore the derivation of integration or error
formulas-merely to tabulate the commonly used ones and put them in a
form that is immediately useful for the pocket calculator. Nevertheless, it is
instructive to examine the error of a simple integration formula as a means
for understanding the error equations given for the more sophisticated
integration formulas. Following Hamming, then, we examine the trunca
tion error in the trapezoidal integration algorithm by substituting a Taylor
series expansion into the integration formula. By comparing both sides of
the results, we can then determine the error associated with the analytic
substitution process in the numerical integration. Specifically, if we write
the integrand in its Taylor series expanded form as

2
(x- a)

f(x)=j(a)+(x-a)j'(a)+
2

! j"(a)+··· (6-6)

and substitute this into both sides of the trapezoidal integration formula,
we find that, on integration, the left side becomes

(b-a) (b-a)
2

(b-a)
3

-
1
-! -f(a) +

2
! f'(a) +

3
! j"(a) + · · · (6-7)

The right side becomes

!;
2
x [f (a) + { h - a)f' {a) + (b ~ a)

2

f" (a) + · · · + f (a)] + < (6-8)

where D.x = (b - a). After canceling like terms on both sides we can derive
the truncation error formula:

(b-a)
3

(b-a)
3

t: + 4 f"(a) + ... = 3! f"(a) (6-9)

4

<=(;! -±)(b-a)
3
j"(a)- (b~a) j"'(a)-·· (6-10)

If we assume the largest part of the error term to be given by the first term
in its series expansion, we can write

{:::::::; - ___ 1_2 __ (6-1 l)

158 Numerical Integration

or, more generally,

{;.:;::;:- (a<B<b) (6-12)

If, however, the function has contributions to the error formula that are
large in the higher-order terms, this error formula does not apply. It is
applicable for many of the practical engineering problems, and thus is
generally quoted as the error associated with trapezoidal integration.

The specific error formula for trapezoidal integration is less important
here than is the method by which it is derived. We used the Taylor series
expansion for the integrand in order to derive a Taylor series truncation
term for "the area." Another alternative would have been to use a Fourier
series representation of the function to determine the truncation in the
frequency domain. Another approximating polynomial could have been
the Chebyshev polynomial approximation of f(x), which would have given
another type of truncated polynomial approximation error formula. While
the interpretation of the results of each error formula is different, the
magnitude of the error is not. The error is a characteristic of the integra
tion formula, rather than the approximating polynomial used in the error
formula evaluation.

Figure 6-1 shows that for concave-up type of functions trapezoidal
integration is always slightly more than the curve it is trying to approxi
mate; for concave-down type of functions it is slightly less. Thus it seems

y

a b x

Figure 6-1 Truncation error in trapezoidal integration.

Midpoint Integration 159

reasonable to expect, when integrating "wavy" functions, the intervals to
be set up so that, at a minimum, the eyeball approximation of the errors on
one interval may have a chance to cancel the errors on the other interval.
We can extend the error formula for simple trapezoidal integration to the
composite formula by similar reasoning:

(b-a)1h 2

{~ - 12 f"(IJ), (a<IJ<b) (6-13)

Writing error formulas such as equations 6-12 and 6-13 is, of course,
easier than evaluating them meaningfully. One approach is to find the
second derivative of the function being considered, compute the minimum
error and the maximum error, and divide by 2 to obtain the average error
of the integration over the interval. Another approach is to take the
worst-case error. A great number of other alternatives also exist. The
question is, what is the criterion for numerically evaluating the error?
Unfortunately, there is no easy answer to this question. From an engineer
ing viewpoint, the error defined by equation 6-9 perhaps has more meaning
than those most often quoted in numerical analysis books. In this sense the
process of deriving the error formula is the more fundamental issue in that
the engineer or scientist can compute his own error formula suited to his
specific problem.

Another aspect of the numerical error formulas associated with integra
tion formulas is that they are absolute errors, whereas the error of interest
is usually relative error. Again, the author has no easy solution of the
problem of deriving relative error formulas for numerical analysis. The
difficulty is pointed out here to warn the student or first-time numerical
analyst about error formulas in general. Preferably he should derive his
own formula for a particular problem being numerically analyzed. An
estimate of the error in a numerical approximation over an analytical
calculation must be made, but its interpretation is not straightforward and
the result cannot be casually given from questionable error formulas.

6-4 MIDPOINT INTEGRATION

Midpoint integration uses the midvalue of an interval and the derivative of
the integrand evaluated at the midvalue to define the slope at the midpoint
of the interval, again forming a trapezoid whose area under the curve
approximates that of a function to be considered.

The midpoint integration formula as developed by Hamming is easy to
follow and nicely introduces the concept of a general approach to deriving

160 Numerical Integration

polynomial approximations for analytic substitution. We are to derive an
integration formula of the form

f b (a+ b) '(a+ b) a J(x)dx=w1f -2- +w2f -2- (6-14)

Hamming's weighting coefficients can be easily derived by noting that we
first require this formula to be exact for f(x) = 1. This gives

(6-15)

We also require that this formula be exact for f(x) = x, which leads to

b2
- a

2
_ (a+ b) --2- - WI -2- + W2 (6-16)

We can determine the two Hamming's coefficients by solving these equa
tions simultaneously:

(6-17)

We therefore find the midvalue integration formula to be

f b (a+b) a f(x) dx = (b - a)J -
2

- (6-18)

We see that midpoint integration developed in this manner results in
rectangular integration. That is, the area formed by the rectangle sampled
at the midvalue is identically equal to the area under the tangent line at the
midvalue of the interval. At first it might seem paradoxical that the
low-order rectangular integration could be as good as trapezoidal in
tegration~that formulas based on a single point off could be as accurate
as a two-point trapezoidal formula. In fact, rectangular integration can be
made as precise as desired if the sample point on a bounded interval can
be varied until the mean value theorem of calculus is satisfied. Once again,
rectangular integration can be made as precise as the true integral pro
vided that the point at which the function is sampled on the interval can be
determined, so that the rectangle formed by the sampled value and the
lines connecting the end points of the function on the interval and the
abscissa itself have the same area as that under the function bounded on
the interval. This fact is reflected by equation 6-18.

Midpoint Integration 161

Again, to find the truncation error term, we use the Taylor series:

2
(x-a) (x-a)

f(x)= f(a)+ l! f'(a)+
2

! f"(a)+ · · · (6-19)

where, upon substituting in both sides of equation 6-18. we find

(b-a) 3 (b-a)
3

E+ +···=---
8 6

(6-20)

This is usually simplified to

(6-21)

or, more generally, for a<(}< b

Comparing equations 6-21 and 6-12, we see that midpoint rectangular
integration is more accurate than endpoint trapezoidal integration even
though the rectangular integration is based on knowing the function at
only one point while the trapezoidal rule -'of integration requires the
knowledge of the function at two end points.

Extending the midpoint integration formula, we find, as in the
trapezoidal formula, the composite midpoint integration formula to be of
the form

b J j(x)dx
a

[(~x) (3~x) (S~x) (~x) l = ~x J a + T + J a + -
2

- + J a + -
2

- + · · · + J b - T + E

where its error formula is given by

(b- a)~x2

E ~ 24 f" ((}) ' (a<B<b) (6-22)

Note also that extended trapezoidal integration can be modified to
include end points outside the interval [a. b]. The modified trapezoidal rule

162 Numerical Integration

is given by

f b [f (a) f (b) l
a J(x)dx=6.x -2- + J(a+6.x)+ J(a+26.x)+ ... + -2-

+ ~: [-f(a-.:h)+ J(a+6.x)+ J(b-6.x)-j(b+6.x)] (6-23)

where the error associated with modified trapezoidal integration is given
by

11 (b - a)6.x 4

E= 720 J""(O), (a + 6.x) < (} < (b + 6.x) (6-24)

which is usually much more accurate than extended midpoint integration
with only slightly more work.

Other Popular Definite Integration Formulas

Simpson's rule, perhaps the most commonly used integration formula, is
given by

(6-25)

Its associated error formula is given by

{ = - ~~ 5 f" I! ((}) ' (0<0<26.x)

Simpson's rule has the nice property that it integrates cubics exactly even
though it samples only three points of the integrand and in addition has
very small error terms when 6.x is less than 1 and on the order of one-half.

Simpson's rule can also be extended (on an even number of intervals)
according to the formula

(6-26)

Its error formula is given by

€ = n~;s f'il'((}), (6-27)

Midpoint Integration 163

Perhaps the simplest extended integration formula is the Euler-Maclaurin
formula:

-(B2ki3.x2k)(J,<2k- O_ r<2k-1)) + E ,
2k ! n JO 2k (6-28)

It has the error formula

(-1<0<1) (6-29)

Here B2k is a Bernoulli number.
The three-eights rule for definite integration is given by

(X3 313.X
Jx

0

f(x)dx= -
8
-(fo+3f1 +3f2+ f3) (6-30)

Its associated error formula is

{= - 3~;5 j""(B), (6-31)

Two types of formulas are used for quadrature when many sample
points of the integrand are known: Bode's definite integral formulas and
the Newton-Cotes formulas of the open type. Bode's rules for quadrature
are shown in Table 6-1, and the Newton-Cotes formulas are tabulated in
Table 6-2.

The high-order formulas, such as the Newton-Cotes and Bode's formu
las, can have some very undesirable properties for large n. For some
analytic and discrete functions the sequence of the integrals of the in
terpolating polynomials does not converge toward the integral of the
function. Also, the coefficients in these integration formulas are large and
of alternating sign, which is undesirable from the standpoint of propagat
ing roundoff error. It is primarily for these reasons that the Newton-Cotes
formulas are rarely used for high values of n. For lower values of n they
can be simplified to some other well-known formula, such as the previously
discussed trapezoidal formula and Simpson's rule. Although Bode's rule
gets around the alternating signs associated with the Newton-Cotes formu
las, it too has convergence problems for certain occasionally encountered
functions. Suffice it to say that the extended trapezoidal integration with

164 Numerical Integration

Table 6-1 Bode's Definite Intergration Formulas for Integrating Functions Whose
End Points Are Known

Integration Formulas

L:J(x)dx = 1;~;0 (75110+ 357711 +132312 + 298913 + 298914

+ 132315 + 357716 + 75 lf7)

rxs 4/J.x Jxo f(x)dx = 14175 (98910+588811 -92812 +1049613 -454014

+ 1049615 -92816 + 588817 + 989f8)

Error Formulas

275/J.x 71V1((})

12096

9/J.x~VIII({J)

1400

8183 !J.x9/'(ifi''
518400

2368/J.x']~l

467775

end effect modification has high accuracy, does not propagate roundoff,
requires only a reasonable amount of work in computing the integral of
any function, and is thus recommended for analysis on the pocket calcula
tor.

6-5 INDEFINITE NUMERICAL INTEGRATION

Indefinite numerical integration is the numerical method for solving
differential equations. Given the equation

dv dx = J(x,y) (6-32)

we would usually solve it by indefinite integration as follows:

(6-33)

Indefinite Numerical Integration 165

Table 6-2 Newton-Cotes' Definite Integration Formulas for Integrating Functions
Whose End Points Are Undefined or Unknown or Are Singular Points

Integration Formulas

rx6 6ilx
Jxo f(x)dx= W(llj1-14j2+26j3

- 14]4 + 11]5)

rx7 7 ilx
Jxo J(x)dx= 1440 (611]1 -453]2 +562]3

+ 562]4 - 453]5 + 611]6)

rxJ(x)dx= Silx (460f1-954f2+2196f3-2459J4
J'(

0
945

+ 2196]5 - 954]6 + 460]7)

Error Formulas

ilx3J"(B)
4

5257 ilx 7 jVI
8640 (O)

3956 ilx 9 jVII
14175 (O)

It is apparent that the solution of the differential equation depends on its
own evaluation of the integral. This is precisely the chief problem in
indefinite integration; that is, indefinite integrals are in an implicit form.

Note that an explicit indefinite integral takes the form

(6-34)

which is a special case of the differential equation

dy
dx = j(x) (6-35)

166 Numerical Integration

Clearly, this type of numerical integration can be performed analytically,
hence is not of concern here.

The simplest indefinite numerical integration algorithm is Euler's in
tegration formula:

(6-36)

Here we see that a new estimate (Yn+ 1) of y is based on the old estimate
(Yn) and its derivative [(dy / dx)nl· The derivative is usually calculated
directly from the differential equation once y is estimated. Since the new
estimate Yn+ 1 is based on the old estimate y~ and the old value Yn it is
clearly an "open-loop" process where the new value Yn is based on an
extrapolation from previously known data and thus is subject to extrapola
tion errors. The process of determining new values of y is really a simple
extension of determining the direction field associated with a solution of a
differential equation. In general, the approach is to start at some initial
condition (x0,y0) and calculate the slope, using the differential equation:

One then moves an interval 6.x in the direction of the slope to a second
point, which we now regard as the new initial point, and repeat the process
iteratively. If small enough steps are taken we can reasonably hope that the
sequence of solution values given by this procedure will lie close to the
solution of the differential equation. In general, all of the elements of
solving differential equations using numerical indefinite integration are
present here. A table of the values of x,y,y', and 6.y must be computed at
each step in the numerical integration process. Also, the problem must be
defined by specifying not only the differential equation and its initial
conditions, but also the interval over which it is desired to solve the
equation. It is then possible to select a convenient integration interval, and
an integration formula that is accurate for that interval. For example,

dy
-=e-Y-x2
dx

with initial conditions y = 0, x = 0. When integrated with Euler's integration
formula

Yn = Yn-1+6.xy~-1

requires a specification of the interval 6.x. The simplest approach is to
experimentally determine the 6.x that will accurately (as judged by the

The Modified Euler Indefinite Integration Method 167

analyst) integrate the differential equation. Consider solutions of this
differential equation with Llx = 0.05, 0.1, 0.2, and 0.3. The results are tabu
lated in Table 6-3. A comparison of the numerically integrated solutions
with the exact solution shows that the sensitivity of the solutions accuracy
depends strongly on the integration step size. This is true, in general, for all
numerical integrators when the integration step size is even a reasonable
fraction of the "response time" of the differential equation.*

Table 6-3 Solution of dy / dx = e - Y - x 2

Exact Euler Integrated Solution

Solution
x y ~x=0.05 ~x=0.10 ~x=0.2 ~x=0.3

0.0 0.0
0.1 0.09498 0.09694 0.09900
0.2 0.17977 0.18261 0.18557 0.19200
0.3 0.25389 0.25672 0.25964 0.27300
0.4 0.31667 0.31872 0.32077 0.32506
0.5 0.36731 0.36786 0.36833
0.6 0.40488 0.40329 0.40152 0.39756 0.39333
0.7 0.42839 0.42407 0.41942
0.8 0.43686 0.42923 0.42119 0.40395
0.9 0.42929 0.41782 0.40582 0.35277
1.0 0.40477 0.38895 0.37264 0.33749

A disadvantage of the Euler method is that it introduces systematic
phase shift or lag (extrapolation) errors at each step. The procedure can be
modified (modified Euler integration) to give better results-that is, greater
accuracy for essentially the same method and the same amount of work.

6-6 THE MODIFIED EULER INDEFINITE INTEGRATION METHOD

An alternative to introducing lag into the calculation is to arrange the
sampling so that the integrand is sampled not at the end point of the
interval over which the integration is taking place but at the midpoint. This
is similar to the development of the midpoint trapezoidal formula devel
oped in Section 6-4. The task is to perform the integral

(6-37)

*approximately the time required to move from one equilibrium condition to another

168 Numerical Integration

using the midpoint formula (see Section 6-4). We wish to predict the next
value of y based on present and past values of the independent variable.
The midvalue -prediction leads to

(6-38)

Using this predicted value, we can now compute the slope at the predicted
solution point, by way of the differential equation,

(6-39)

and then apply the trapezoidal rule developed previously to update the
estimate of the predicted solution point:

~x (I ') Yn+l=yn+T Pn+1+Yn (6-40)

The correction is called the corrected value of Yn+ 1• It is apparent that we
are using the average of the slopes at the two end points of the interval of
integration as the average slope in the interval.

In summary, this method has three steps:

Step 1 Predict the value of Yn+ 1, given the formula

Pn+ l = Yn-1+26.xy~ (6-41)

Step 2 Compute the derivative at the predicted value. using the differen
tial equation that describes the system:

(6-42)

Step 3 Make a second estimate of the value of Yn+ 1, usmg trapezoidal
integration:

~x (I I)

Y n + I = Y n + l Yn + Y n + I (6-43)

This process of prediction and correction has led to the naming of this
type of integration as the predict-correct concept of numerical integration.
A number of predict-correct algorithms are tabulated at the end of this
chapter; they can be used for indefinite integration of differential equa
tions on the pocket calculator.

Starting Values 169

6-7 STARTING VALUES

In our previous analysis we assumed that we had values for the dependent
and independent variables at the starting or initial point. However, the
algorithm requires not only starting values, but also earlier .values. Th~,
previous values can be obtained in two ways. They can be computed on
the pocket calculator, or they can be analytically hand calculated. Both
methods will be presented here. · ,

The hand calculation method is based on the use of the Taylor series
expansion of the function:

y (x + Lix) = y (x) + Lixy ' (x) + Li; 2

y" (x) + · · · (6-44)

The derivatives to be evaluated in the Taylor series expansion can be
found from the differential equation by repeated differentiation. The
number of terms of course depends on the step size and the accuracy
desired. But, again, these are matters that can all be easily evaluated on the
pocket calculator and the number of terms required can be empirically
determined by continuing to take them until the desired accuracy is
achieved.

The method for machine calculation is based on repeated use of the
corrector formula. Again, if we are given the initial point (x0,y0), we can
estimate the earlier point (x _ 1,y 1) by way of the "unmodified" Euler
integration, working backwards as follow;;:

X_I = Xo-Lix

Y-1 = Yo-Lixy~ (first estimate of y _ 1) (6-45)

We can use the estimate of the,~previous value of y combined with the
differential equation to evaluate the derivative at the previous value of y.
The trapezoidal corrector formula can then be repeated to iteratively
correct the previous estimate until it achieves the accuracy desired for the
calculation. The system of equations for the correction process become

(first estimate of y'_ 1)

(second estimate of y _ 1) (6-46)

y'_ 1=j(x-1,y -1) (second estimate of y'_ 1)

170 Numerical Integration

If, after a few iterations, the previous value of y does not stabilize, the
integration step size can be halved, the previous value of Yn- l/2 computed,
and the process repeated to computeyn-i· Another alternative is to use the
value of Yn- i;2 to estimate the value of Yn+ 112, the process repeated to take
a half step forward to Yn+ 1, and then these values used as the starting
values for the predict-correct integration algorithm.

6-8 ERROR ESTIMATES AND MODIFYING THE PREDICT-CORRECT
PROCESS

The predictor formula just discussed is a midpoint integration formula that
has the error equation

= 6.x3 m(e)
Ep 3 y

The corrector formula given in Section 6-3 has the error formula

6.x3
EC= -12ym(e)

(6-47)

(6-48)

Since these error formulas are of opposite sign, the difference between the
predicted value and the corrected value gives

Yp = Y c ;:::::::; (Y exact - Ep) - (Y exact - Ec) (6-49)

Thus at any given step the difference between the predicted value and the
corrected value is

(6-50)

Furthermore, we see from equation 6-49 that approximately four-fifths
of the difference results from the predictor component and one-fifth from
the corrector component. It is a natural extension of the predict-correct
technique, then, to modify the integration process slightly as we proceed.
When we predict with the equation

Pn+ I= Yn-1+26.xyn (6-51)

we might immediately modify the value of this prediction, using the
previous value of the predict-correct difference and the formula

(6-52)

Other Useful Indefinite Integration Formulas 171

Then we use the differential equation to compute the modified derivative:

(6-53)

which is then corrected by way of

~x (I ') Cn+1=yn+2 mn+1+Yn (6-54)

leading to the final value of Yn+ 1:

(6-55)

Clearly, this procedure of predicting, modifying, correcting, and modify
ing again is about the extent to which we can go in solving differential
equations on the pocket calculator. More advanced methods become too
cumbersome.

6-9 OTHER USEFUL INDEFINITE NUMERICAL INTEGRATION
FORMULAS

A number of commonly used predict-correct algorithms are convenient for
pocket calculator solution of ordinary differential equations. The proce
dure, of course, is always the same. A data table for numerically evaluating
the solution of the differential equation is prepared and then the integra
tion formulas are used directly as written. Writing them in alternate forms
does not buy much in the way of reduced number of key strokes or of data
entries in the actual integration process.

The two most popular point slope formulas are the Euler predictor or
midvalue predictor formulas:

Yn+ I= Yn-1+2~xy~,

They are usually used in conjunction with the trapezoidal corrector for
mula:

~x (I ') Yn+l=yn+T Yn+1+Yn'

Another popular and extensively used predict-correct method is the

172 Numerical Integration

Adams method. Adams' predictor and corrector formulas are given by

Yn+ I= Yn + ~: (9y~+ I+ 19y~ -Sy~- I+ Y~-2),

These four-point formulas obviously require a substantial number of
operations on the pocket calculator if done manually. In fact, each step
involves at least 22 key strokes not including the derivative evaluation
(which is problem dependent). The author has integrated a number of
differential equations using Adams' formulas, but they have all been
first-order differential equations (though of a complex nonlinear nature);
their evaluation (though time consuming) can be done conveniently be
cause of the fairly large step size that can be taken for equivalent accuracy
with the point slope formulas. The numerical stability of these methods
and the roundoff error associated with the alternating sign of the
coefficients lead to difficulties, however; hence the lower-order integrators
are recommended for manual numerical integration on the pocket calcula
tor. The programmable calculator, on the other hand, can conveniently use
the higher-order integration formulas and take advantage of their higher
order accuracy. The higher-·order functions are therefore discussed here.

Runge-Kutta Methods

The Runge-Kutta methods are based on implicitly developing increasingly
higher orders of Taylor series expansions of a function through combina
tions of the derivatives of a function numerically evaluated on certain
intervals of the independent variable. The Runge-Kutta methods are yet
another variant using the Taylor series expansion method and thus are
limited in the sense that, if the integrand is not Taylor series expandable or
is to be evaluated across a discontinuity, the location of the discontinuity
must be determined and the solution is computed up to the discontinuity
and then restarted at the discontinuity. The advantage of the Runge-Kutta
methods is that they require no starting values.

The second-order Runge·-Kutta method is given by

Yn+ I= Yn +!(kl+ k1), (6-56)

Other Useful Indefinite Integration Formulas 173

where,

The Runge-Kutta methods use Euler integration at each step. Thus, to
evaluate equation 6-56, it is necessary to compute both k 1 and k 2 . To
compute k 2 , the predicted value of y (Yn + k 1) must be evaluated. It is
apparent that this is equivalent to Euler's method. Thus the procedure
consi~ts of first using Euler's method to compute the first estimate of Yn+ 1,

which is then used along with xn + ~x to compute the value of the
derivative at x(n + ~x) to get k 2 . Then equation 6-56 is formed, using k 1
and k2 .

Another form of Runge-Kutta's second-order equation is

Yn+1=Yn+k2, (E,__,~x3)

In this form of the Runge-Kutta equation, k 1 is employed to make a half

step from xn to xn + t:..{, where y n is evaluated as y n + 15,;. Then the derivative
at this midvalue, defined by xn + t:..{ is computed and used to estimate the
midvalue rate from which k 2 is calculated. Then equation 6-57 is numeri
cally evaluated using only k 2• Aga~n, first Euler integration must be used to
make the first half step, and the first full step is taken by means of the
midvalue estimates of the rate on the interval.

Another Runge-Kutta method is also given in two forms. One is

k
- I 2k

Y n + I - Y n + 6 + .3 2'

k 3 =~xj(xn + ~x,yn + 2k2 - k 1)

This is the most popular and convenient form of third-order Runge-Kutta

174 Numerical Integration

integration, and is used by Hewlett-Packard in its Math Pack l-36A
solution to the first-order differential equation for its programmable poc
ket calculator.

Another form of third-order Runge-Kutta is

(
2~x 2k2)

k3=~xf xn+ -3- ,yn+ -3-

Though these equations look formidable, their solution involves only
three steps of Euler integration at the most. Again, the advantage is that
they require no starting values.

The two most popular forms of the Runge-Kutta fourth-order numerical
integration are the following:

and

Other Useful Indefinite Integration Formulas 175

In all of the methods presented in this section the differential equation is
assumed to be of the first order and generally written in the form
y' = f(x,y,). Since an nth-order differential equation can be written in terms
of n first-order differential equations, these methods are applicable to
systems of equations or to higher-order equations.

A number of specific methods are available for higher-order differential
equations, and in those cases special predict-correct algorithms can be
developed. Although, for general-purpose computing, they are not very
useful for numerical evaluation of the solution of the differential equation,
they simplify the number of calculations on the pocket calculator. For
example, Milne's predictor-corrector algorithms for first-order differential
equations take the forms

p } { Yn+ I= Yn-3 +
4~X (2y~ -y~- l + 2y~-2)

c ~X (I 4 I I) Yn+l = Yn-l +) Yn-l + Yn + Yn+l

p } { Yn+ 1 =yn-s +
3~0x (1 Iy~ -14y~_ 1+26y~_ 2 -14y~_ 3 + l ly~_ 4)

C Yn+ I= Yn-3 +
2
:

5
x (7y~+ I+ 23y~ + 12y~-l + 32y~-2 + 7y~_3)

(t:---Llx 7)

The equivalent accuracy Milne predictor-corrector formulas, for second-,
and third-order differential equations, are written as follows:

} {
- + 3() + ~x3 ("' "') p Yn+l-Yn-2 Yn-Yn-l -2- Yn -y n-l

C _ + ~x (, + ') ~x2
(,, ") Yn+l-Yn T Yn+l Yn -W Yn+l-yn

+ ~x3 ('" "') 120 Y n+ l + Yn

176 Numerical Integration

For systems of differential equations of the form

y' = f(x,y,z), z' = g(x,y, z)

second-order Runge-Kutta can be written as

Fourth-order Runge-Kutta for this system of equations takes the form

k1+2k2+2k3+k4
Yn+l=yn+ 6

Other Useful Indefinite Integration Formulas 177

Another special form of second-order differential equation is

y" = J(x,y,y')

Milne's predictor-corrector method for these types of second-order equa
tions is as follows:

I 1 4~x (2 If If 2 ") Yn+ I= Yn-3 + -3- Yn-2- Yn-1 + Yn

/ I + ~x (II + 4 II + If) Yn+1=Yn-1 J Yn-1 Yn Yn+I

The single-step self-starting Runge-Kutta method takes the form

Yn+l=yn+~xy~+ ~t (k1+k2+k3)

Y~+1=y~= i(k1+2k2+2k3+k4)

k3 =~xj x +- y +--+-- y'+-(
L\x L\xy~ L\k I k1)

n 2'n 2 8'n 2

For second-order differential equations,

Y11 = j(x,y)

Milne's method takes the forms

178 Numerical Integration

The Runge-Kutta method appears as

[

I (kJ + 2k2) l Yn+1=Yn+,~x Yn+ 6

I I kJ 2k2 k3 4
Yn+I =yn+ -(; + -3- + 6, (E--~X)

In the second-order forms, the Runge-Kutta algorithms involve the
numerical evaluation of rates by Euler integration of the second-order
differential equation. For thj~ programmable pocket calculator with limited
memory, these alternate forms of numerically evaluating indefinite in
tegrals are particularly useful because they dispense with computing the
two first-order differential equations that would be required to make up
the second-order equation in the more general first-order indefinite in
tegration formulas.

6-10 T-INTEGRATION

T-Integration (tunable integration) is a new flexible integration concept
that permits the integration formula to be tuned to the system of equations
it is solving. In its simplest form it is written:

Yn = Yn-1 +AT[YYn + (l -y)Yn-1]

This equation is based on adjusting the phasing of the integration so as
to satisfy the mean value theorem (as opposed to numerical integration
algorithms based on analytical substitution techniques). The parameter y
controls the amount of transport lead (or lag) imposed on the integrand of
the integral. For example, y = - -! means that the integrand has been time
delayed one sample period, while y = + ! implies that the integrand is time
advanced one sample period. Since in the numerical integration of
differential equations the solution point is not known before it is com
puted, and thus cannot be made part of the integral, it is estimated using
an extrapolation formula. It is apparent from the equation for this integra
tor that the weight of the two coefficients in the integrand is performing
the interpolation/ extrapolation operation. Therefore, an approximate

References 179

equivalent form of the T-integration equation is

Yn= Yn-1 +\T[(y+ l)Yn-1-YYn-21

In its application, T-integration is usually used in the following manner:

1. The differential equation and the interval over which its solution is to
be computed are defined together with its initial condition.

2. The integration step size is set equal to one-tenth of the interval size or
one-tenth of the shortest period in the oscillations of the solution expected
for the differential equation, whichever is smaller. If the solution of the
differential equation is expected to be exponential, or smooth, or of
monotonic nature, the step size is set at one-tenth the interval over which
the solution is to be evaluated.

3. If the integration is an open-loop process, that is, the integrand is not
a function of the integral, then y is set equal to 1- and the differential
equation is numerically integrated. If, however, the integrand is a function
of the integral, y is set equal to ~. When closed-loop integration is
performed, the sequence of solutions can be plotted and the points con
nected with straight lines.

4. The solution can then be compared with check cases that may be run
at smaller integration step sizes or with empirically prepared check cases. It
is generally found that the solutions generated from the use of the
T-integrator "lead" the check case by approximately one integrating in
terval or slightly less.
Note, however, that the dynamics of the solution prepared with the T
integrator match the dynamics of any check case. That is, although the
T-integrator, which is a low-order integrator, permits accurate simulation
of the dynamics of a discrete process, it does so at the sacrifice of a slight
phase error. Nevertheless, in many engineering applications it is sufficient
for determining, for example, peak overshoot, natural frequency, damping,
resonant frequencies, and conditions of dynamic instability, which are the
purpose of the analysis. In general, it must be remembered that all of the
integration formulas presented here are usually not for generating of
numbers to six places, but rather for solving problems and understanding
the dynamics of processes for the purposes of design, test, and evaluation,
or all of them.

6-11 REFERENCES

For this chapter use Richard Hamming's Numerical Methods for Scientists
and Engineers (McGraw-Hill, 1973), Chapters 21 through 24, and J. M.
Smith's, "Recent Developments in Numerical Integration," ASME Journal
of Dynamic Systems, Measurement, and Control, March 1974, pages 61-70.

CHAPTER 7

LINEAR SYSTEMS
SIMULATlON

7-1 INTRODUCTION

The analysis of linear constant coefficient systems is important because
they are frequently encountered in the design of continuous processes. The
dynamic characteristics of a linear systems response to known types of
forcing functions are usually studied when setting the parameters for a
system design. In this chapter we discuss the synthesis of recursion formu
las by which the response of a linear dynamic process to sampled values of
its forcing function can be conveniently computed. We tailor numerical
integration and other discrete approximation methods for computing the
dynamics of continuous processes to pocket calculator analysis. On a
pocket calculator it is much easier to iterate a recursion formula to
compute the dynamics of a process than it is to actually conduct the
numerical integration of the process. Under some circumstances (when
there are no hard nonlinearities, such as limits, hysteresis, and dead zones),
it is quite easy to develop the recursion formulas from the integration
formulas, thus eliminating many steps in the computing of the solution to
high-order differential equations. In fact, the number of key strokes can be
reduced 80% with recursion formulas (difference equations) as compared
to that needed in direct numerical integration of a differential equation.

7-2 DERIVATION OF DIFFERENCE EQUATIONS BY NUMERICAL
INTEGRATION SUBSTITUTION

Examples of many numerical integration formulas have already been
discussed, such as Euler's integration formula, rectangular integration,

180

Derivation of Difference Equations 181

trapezoidal integration, T-integration, and a number of predict-correct
formulas. We used the differential equation to numerically evaluate the
derivatives at the initial condition and then from the starting values in the
integration formulas we predicted the solution to the differential equation
in the neighborhood of the initial conditions.

Another use of a numerical integration formula is to form a difference
equation. Consider the first-order constant coefficient differential equation

where
Tx+x= Q

x=x(t)

Q=Q(t)

T =a constant

Now consider the Euler integration formula

(7-1)

(7-2)

We can solve for the rate in the integration formula, using the differential
equation, as follows:

. 1 (Q) x =- -x n-1 n-1 n-1
T

(7-3)

This can be substituted back into the numerical integration formula

(7-4)

which, when simplified, gives the difference equation

(7-5)

This recursion formula computes, for example, the lOOth step in the
solution of the differential equation on the basis of data generation on the
99th step. The indices in the recursion formula keep track of the iteration
that is being computed when solving the differential equation. They also
indicate the approximate time at which the solution value will compare
with x(t), that is, t = nT if the solution begins at T~ 0. We shall see later
that ti= nT, but it is sufficiently close to approximately label the time in the
sequence of solution values of the difference equation.

182 Linear Systems Simulation

The use of recursion formulas in solving differential equations has two
advantages. They reduce the number of key strokes needed to evaluate the
solution of the differential equation on the pocket calculator. And in linear
constant coefficient processes they permit the use of implicit integration
formulas. It is these formulas in which the rates of a state variable are a
function of the state itself. The trapezoidal integration formula is an
example:

T (. .) (7 6)
Xn + I = Xn + 2 Xn + I + Xn -

Trapezoidal integration computes the n + 1 value of x based on the n + 1
value of x. However, evaluating x in the differential equation requires
xn + 1• This results in an implicit equation, whose solution is a function of
itself. When implicit integration formulas are used to derive difference
equations, the implicit equation can be solved algebraically. For example,
consider the implicit Euler integration (rectangular integration), which
takes the form

(7-7)

By way of our first-order differential equation, we obtain

x =_!_(Q -x)
n 'T n n (7-8)

which, when substituted back into the implicit rectangular integration
formula, gives the difference equation

(7-9)

Note that this equation is still in implicit form; that is, xn is a function of
itself. However, it can be solved algebraically as follows:

(7-10)

Let us now compare the implicit and explicit Euler difference equations
from the standpoints of numerical stability, numerical error, the manner in

Derivation of Difference Equations 183

which the differential equation seeks its final value, and their implementa
tion on the pocket calculator.

The stability of these first-order difference equations is completely
determined by the magnitude of the first coefficient in the difference
equation. That is, if the term

l+ T
7' I+T/T

Implicit Integration Explicit integration

exceeds ± 1, the difference equation becomes unstable. For example, if
a=2 in the difference equationyn=ayn_ 1, the difference equation takes on
the solution values shown in Table 7-1. Note, however, that at a=0.9 the
difference equation is stable, as shown in Table 7-2. The stability criterion
in first-order difference equations generally is that the magnitude of a be
less than or equal to 1. Now, notice the first-order difference equation that
is generated with the explicit Euler integration.

Our aim here is to determine the conditions under which the integration
step size and the system's time constant allows a stable difference equa
tion, rather than leading to numerical instability. We, therefore, first
determine the conditions under which the magnitude of a is less than or
equal to 1. That is

T
11--1~1

T

Solving the inequality for T / T, we see that the region of stability for the

Table 7-1 Unstable Response of the
Difference Equation y n = ay n - I where a = 2

n Yn

I I
2 2
3 4
4 8
5 16

184 Linear Systems Simulation

Table 7-2 Stable Response of the Difference
Equation y n = a Yn _ 1 where a= 0.9

n Yn

1 1
2 0.9
3 0.81
4 0.729
5 0.6561

difference equation derived with explicit Euler integration is

T
0<-<2

r

On examining the difference equation derived with rectangular integra
tion (implicit Euler integration), we see that the condition under which

IS

T 0<-
r

Clearly, the difference equation developed with rectangular integration is
much more stable than that generated by Euler explicit integration. This is
a specific example of the more general result that implicit integration of
constant coefficient linear differential equations leads to intrinsically more
stable difference equations than do those developed with explicit integra
tion formulas. We therefore concentrate on the use of implicit integration
formulas in developing difference equations for simulating continuous
processes.

Now, let us look at the accuracy of these simulating difference equations.
Table 7-3 shows the sequence of solution values for the explicit and
implicit difference equation's response to a unit step. The greatest precision
is clearly achieved with the implicit formula. These difference equations
were tested for an integration step size divided by the time constant equal

Derivation of Difference Equations

Table 7-3 Comparison of Implicit and Explicit Integration-Derived

Diff ere nee Equations when T / r = 1.5

Normalized Exact Implicit Explicit
Time x(nT) x(nT) Error x(nT) Error

I_ =0 0 0 0 (J 0
'r

I_= 1.5 0.776 0.600 -0.176 1.50 +0.90
'r

T
- =3.0 0.950 0.840 -0.110 0.75 -0.20
'r

I_ =4.5 0.990 0.936 -0.054 1.125 +0.135
'r

185

to f, which challenges the stability of the Euler-derived difference equa
tion. Both equations appear to be stable. However, the implicit difference
equation is obviously more accurate than is the explicit equation. This is
another special case of a general property of difference equations derived
with implicit integration to simulate linear constant coefficient systems.
The implicitly derived difference equations are generally more accurate
than those derived explicitly.

Finally, let us examine the steady state that all these difference equa
tions achieve. To do so, we must examine the nonhomogeneous equation
(since in a homogeneous equation _all the end conditions of the steady
states approach zero, thus making comparison impossible). For the con
tinuous and discrete equations, the step response has the forms shown
below:

Y = Q (1 - e -
1 I,.) ' Y n = (1 - ~)Y n - I + ~ Qn - I

Exact
Explicit

In the steady state

186 Linear Systems Simulation

Thus we can write the final value as follows:

lim y(t) = Q
1-+00

Exact
Yn= Qn= Qn-1

Explicit
Yn=Qn
Implicit

In summary: both the explicitly and implicitly derived difference equa
tions achieve the same final value for the unit step forcing functions which
is the final value for the true continuous process. But an implicitly derived
recursion formula is more stable and µJ.ore accurate than its explicitly
derived counterpart.

Now let us compare the numerical integration of the differential equa
tion with that achieved by using the recursion formula. The sequence of
key strokes required to perform the numerical integration of this first-order
differential equation

Tx+x= Q

using Euler's integration formula is shown in Table 7-4. Table 7-5 shows
the key strokes involved in the use of the difference equation.

Table 7-4 Typical Key Stroke Sequences for Numerically
Integrating d + x = Q

Reverse-Polish Algebraic

(Qn-1)
RCL 1 ~x(O) prestored

RCL ~x(O) prestored
RCL 2 ~T prestored X

+

RCL3 ~rprestored

x
RCLI
+

G
STOI

()~data entry.

o~output.

(~)
x
(T)

+
RCL

STO

Derivation of Difference Equations

Table 7-5 Typical Key Stroke Sequence for Difference
Equation Evaluation of rx + x = Q

Reverse-Polish

(Qn-1)

RCL1 ~(~) prestored

x
RCL2 ~x(O) prestored

RCL3
T

~(1- -) prestored
T

x
+

EJ
ST02

()~data entry.

o~output.

Algebraic

(Qn-J)

x

(~)
+

RCL ~x(O) prestored

x

(1-~)
=

EJ
STO

187

And Table 7-6 summarizes the key strokes involved in the precalculation
and iteration through the first step, the first 10 steps, and then 20 steps.

We see that even for these simple integrators in this simple differential
equation the reduction in key strokes using the recursion formulas (8.4%
and 4.2%) is important enough to warrant the use of recursion formulas. A
greater number of keystrokes is saved when recursion formulas are used to
simulate high-order linear systems.

These recursion formulas are particularly useful in evaluating a system's
response to an arbitrary forcing function. Provided that the integration
step size is small compared with the largest period of interest in the
oscillations of the forcing function, the recursion formulas can efficiently
evaluate the system's response to an arbitrary forcing function on the
pocket calculator and in particular on the programmable calculator, where
the implicit difference equations take up much less memory than do the
numerical integration formulas and direct numerical integration.

A possible difficulty associated with the implicit integration formula for
evaluating the response of a system to an arbitrary forcing function is its
assumption that the forcing function is known at time nT, in order to

188 Linear Systems Simulation

Table 7-6 Number of Key Strokes (Worst-Case)*a Required to Simulate the Con
tinuous Process y + ky = j

Numerical Euler-Derived
Integration R~cursion Formula

Reverse-Polish Algebraic Reverse-Polish Algebraic

Number of
precalculation
key strokes 39 13 39 13

Number of
key strokes
for the first
iteration 22 47 20 45

Subtotal (61) (60) (59) (58)
Number of

key strokes
for the tenth
iteration 220 470 200 450

Subtotal (281) (530) (259) (508)
Total number of

key strokes
for the twentieth
iteration 501 1000 459 958

a Assumes 13-digit Data Entries.

compute the response of the system at time n. If the forcing function is of
the form

f = J(y,t)
the evaluation of fn requires

but since the difference equation is still to compute Yn' it is not yet in our
table of solution values; instead we have only a tabulated value for y n- 1•

In this case we can use an extrapolation formula to estimate Yn by way of
the two past values, or we can use Yn- I merely as an approximation of Yn·
This can be done when ithe forcing function's components are (from a
Fourier analysis viewpoint) of lower frequency than is the natural
frequency of the system described by the differential equation. To achieve
this, we calculate a few values of the difference equation, assuming in
evaluating the forcing function that Yn~Yn- I and generating the first few

Stable Difference Equations 189

terms of the forcing function f, and use a difference table to evaluate
whether f is changing rapidly. If the change is rapid, we simply use an
interpolation formula to make a first estimate of Yn based on Yn- I and
yn_ 2. The author rarely finds it necessary to use the extrapolation scheme
in the practical evaluation of the solution to differential equations.

This technique of deriving difference equations to simulate continuous
dynamic processes is extremely useful for simulating the dynamics of
nonlinear processes. One problem is that most implicit difference equations
cannot be solved for nonlinear differential equations. That is, the implicit
equation is a nonlinear equation, and usually only iterative techniques can
be used to solve it. However, the explicit difference equation is easily
derived and easily put in a form that can be quickly evaluated on the
pocket calculator, as opposed to numerically integrating the nonlinear
equation.

7-3 STABLE DIFFERENCE EQUATIONS

Recursion formulas for simulating continuous dynamic processes can also
be derived by assuming a difference equation of the same order as the
differential equation to be simulated. Then match the roots of the
difference equation with the roots of the differential equation and include
an "adjustment factor" so as to match the final value of the difference
equation with the final value of the differential equation. All that remains,
then, is to add another "adjustment factor" to match the phasing of the
difference equation to the phasing of the solution to the differential
equation. For example, consider again the simple first-order constant
coefficient continuous process

Tx+x= Q

Assume that this equation has a solution of the homogeneous equation

x=ets (7-11)

On substitution, we can derive the indicial equation as

(7-12)

which has the characteristic root

1 s= --
T

(7-13)

190 Linear Systems Simulation

Clearly, then, the solution to the homogeneous differential equation takes
the form

(7-14)

The solution to the nonhomogeneous equation can be derived with the
convolution integral where the solution of the homogeneous equation is
convolved with the forcing function:

(7-15)

The complete solution to the differential equation then takes the form

x = e - 1 I 'T { fa 1

Q (k) e k I 'T dk + c 1 } (7-16)

Similar procedures can bt:~ followed for higher-order differential equa
tions, using either time-domain analysis, Laplace transform theory, or even
Z-transform theory.

Let us assume that we are going to simulate this continuous process with
a difference equation whos4~ roots and final value match those of the
continuous process. We assume a difference equation:

(7-17)

A solution to the homogeneous difference equation is of the form

(7-18)

Upon substitution, it leads to the indicial equation for the difference
equation:

(7 ... 19)

Thus for the roots of the difference equation to match the roots of the
differential equation, we require that

(7-20)

This determines the coefficient in the difference equation that accomp
lishes the pole matching between the difference and differential equations.
It is clear that the solution to the homogeneous difference equation is

(7-21)

Stable Diff ere nee Equations 191

This procedure has now guaranteed that the dynamics of the difference
equation will match the dynamics of the differential equation because their
roots are equivalent and they will generate equivalent solution values as
seen by the exponential decay of both. What remains is to compute the
final value of the difference equation and match it with that of the
differential equation. The procedure here is more straightforward in that
the nonhomogeneous difference equation takes the form

(7-22)

where the steady state of the root-matched difference equation is achieved
when

Then

b
x= Q

n 1-e-Tf'r n

By including the final value adjustment factor

b=l-e-T/r

(7-23)

(7-24)

we can make the difference equation achieve the same final value as the
differential equation. Thus the simulating difference equation takes the
form

(7-25)

Notice that the homogeneous solution of this difference equation matches
the homogeneous solution of the differential equation exactly. Also, it
generates a sequence of solutions that are exact for the step response
(Q(t) = U(t)) and will generate solutions that are a good approximation of
the differential equation's response to an arbitrary forcing function. Also
notice that this difference equation is incapable of going unstable, regard
less of the integration step size (because the term e- T /r is always less than
1 no matter how big T gets provided that r > 0).

From the tabulated values it may appear that there is significant error in
the solutions generated with the dynamics-matched difference equation
and that generated with the continuous differential equation. However,
equation 7-25 makes it clear that the difference equation solutions are
lagging the continuous solutions. The dynamics are usually identical to the
differential equation except for this effect of phase shift. Of course, we

192 Linear Systems Simulation

could reduce the step size to bring the two curves closer, but, this is not an
efficient or correct approach to reducing this kind of error. Or we can
compensate for this phasing error (transport delay) by determining with
interpolation at what time the sequence of solutions generated by the
difference equation matches the differential equation and then including
that transport time in the tabulation of the sequence of solutions generated
in the difference equation. Suppose that we know that for the fourth entry
in a table of solution values the true continuous solution lies somewhere
between t = 3 T and 4 T. Using inverse interpolation, we can determine the
time at which the discrete solution matches the continuous solution and
then arbitrarily select that time as the reference time from which we count
nT intervals.

It is important to remember that the solution values generated with
difference equations and even with numerical integration formulas are
operating at a problem time which is different from the sequence of times
nT. That is, problem time in a discrete approximation of a continuous time
process is different from the sequence of values nT. Hence the indices in
the recursion formulas represent the number of iterations, not time nT.
The analyst must determine the actual timing of the sequence of solution
values in order to compare them with a true continuous-time check case. It
is the author's experience that many engineers and programmers, on large
digital computers as well as on pocket calculators, overlook this problem of
timing and try to compare continuous and discrete computing processes at
times nT instead of recognizing that numerical integration is an approxi
mating process. There is a timing problem also in the synthesis of simulat
ing difference equations by dynamics matching. In fact, discrete systems
are different in their operation on the flow of information in feedback
loops, whether in numerical integrators or in difference equations. Thus
the phasing of the two sequences of values between continuous and
discrete dynamic processes must be taken into account by the analyst. The
problem really arises only with large integration step sizes, but it is
precisely then that efficiency is at a premium and, especially on the pocket
calculator workload is substantially reduced from that for an integration
step size only half as long.

Once again we find that pocket calculator may be the analytical tool for
teaching the difference between discrete and continuous systems dynamics
and the simulation of one with the other.

A few of the commonly encountered linear processes and their simulat
ing difference equations using dynamics matching methods are tabulated
in Table 7-7.

It is imperative that when the simulating difference equations are used
the table of solution values be referenced to the number of iterations

Stable Difference Equations 193

Table 7-7 Difference Equations for Commonly Encountered Linear Constant
Coefficient Systems

G(s)

y

x x+a
y w2

n

f(t)

I= f f(t)dt

I= f ff(t)dt2

Difference Equations for Simulation

Yn=Ayn_,-BYn-2+(1-A +B)xn

A= 2e- fwnT cos{ wn T(l - 52)1;2}

B = e-2fwnT

when 0< s< 1

through the difference equations, not to time nT. The companson of
discrete solution values with a continuous check case involves timing
considerations, and it is the analyst's responsibility to determine the proper
comparison in a manner similar to that mentioned above.

The difference equations just developed by dynamics matching methods
have some very important general properties. These difference equations
are intrinsically stable if the process under consideration is stable. That is,
there is no sample period T to cause these equations to become unstable if
the continuous process that they are simulating is stable. This is because
the roots of the differential equation are matched with the roots of the
difference equation; hence if the continuous process is stable, the discrete
process is stable independent of sample period. Showing that the magni
tude of the roots of the discrete system are less than or equal to 1 will
prove this; the very way in which they are formulated shows this to be so.
For example, in the first-order case that we just developed, when the roots
of the discrete system are matched to the roots of the continuous system,
the discrete system root is given by

which will be always less than or equal to 1 for all T > 0 and for T > 0. The
only condition on using the difference equation is that the forcing function

194 Linear Systems Simulation

be sampled at a rate equal to twice the highest frequencies of interest in the
forcing function. More detail is given in Chapter 5 where sampling rate is
discussed.

Also, the final value of the discrete difference equation will always
match that of the continuous difference equation, independent of sampling
period and without the final value adjustment factor. That this is so can be
established by the fact that in the steady state the present and past values
of the response of the system are the same. When substituted into the
difference equation, the final value of the response can be computed in
terms of the input forcing function, which .is found to match the final value
of the continuous dynamic process being simulated.

There is a limitation in the use of these simulating difference equations.
Clearly, a second-order continuous system can have three different
dynamic characteristics: when the two roots cf the system are real and
equal; when they are real and unequal; and when both are complex. The
dynamics of the second-order continuous system with complex roots is
damped oscillatory in nature, and the response of the system with real
roots is nonoscillatory, being damped only. Each case requires different
types of difference equations. It is important, then, to know where the
roots are in the complex plane to determine which difference equation is to
be used. This is particularly true if the coefficients in the differential
equation are changing with time and are not fixed, as in the case of linear
constant coefficient systems. When the coefficients are time varying, these
difference equations can be used for piecewise linear constant coefficient
approximation, with the results matching closely the numerically in
tegrated solution of the tim<:~-varying differential equation. However, if the
time-varying roots jump on and off the real axis, switching from one
difference equation to another is necessary. That is, one difference equa
tion simulates the dynamics of the process when the roots are real but not
equal; another difference equation simulates the dynamics when the roots
are real and equal; and yet another difference equation serves when the
roots are complex. The choice of the appropriate set of difference equa
tions is fairly straightforward, but note that the implicit difference equation
generated in Section 7-2 does not require this changing of difference
equations and thus might be more applicable from the standpoint of
quickly simulating continuous processes on the pocket calculator.

7-4 VARIANCE PROPAGATlON

Computing the propagation of noise through discrete linear constant
coefficient processes is very easy when the noise is "almost white" and

Variance Propagation 195

stationary. The approach is to rewrite the difference equation into a finite
memory form where the response is only a function of present and past
values of the forcing function. This can be easily developed in the follow
ing manner. Given

We wish to find

m p

xn= 2": aixn-i+ 2": b1Qn-1
i= I j=I

q

xn = 2": ckQn-k
k=I

The usual approach is to rewrite xn = f(xn_ 1, Q) in the sequence

Xn = f(xn-1' Q)

Xn = J[J(xn-2' Q)]

Xn = J[J{J(xn-3' Q)}]

Induction is then used to form the rest of the series. For example,

(7-26)

(7-27)

xn= e-T/T[e-Tf'rxn-2+(I-e-T/T)Qn-2] +(1-e-TIT)Qn-I (7-29)

xn = e-2T/Txn-2 + (1 - e-T/T)[Qn-1 + e- T/TQn-2] (7-30)

We can expect the next substitution to give

As the sequence of substitutions is continued, we have in the limit

x = (1 _ e - T / T) (Q + e - r / TQ + e - 2 T / TQ + ...) n n-1 n-2 n-3 (7-32)

If this series is truncated, we call it the finite memory form of the original
recursion formula (infinite memory form) for xn.

Now, to approximately compute the response of a continuous process to
a random variable input, the mean squared value of the output is calcu
lated as a function of the mean square value of the input in the following

196 Linear Systems Simulation

manner. Assume

Then

x;>~ L L aiaJQn-iQn-J
i j

x2 = a2 ~"" a2 Q.2 = (2:a2)a2
n X L..i1 I IQ

(7-33)

(7-34)

(7-35)

provided that Q(t) is stationary and "almost white." In our example we
can write

x = (1 _ e - T / ,.) (Q + e - T / ,.Q + ...) n n-1 n-2 (7-36)

x2= (1- e-T/T)2(Q2 + e-2T/TQ2 + ...) n n-1 n-2 (7-37)

- 2-- --
x2=(1-e-T/T)(Q2 +e-2T/TQ2 +···) n n-1 n-2 (7-38)

(7-39)

(7-40)

In general, then, the variance transfer function from input to output for
almost-white and stationary noise inputs is given by

(7-41)

It is clear from these equations that if the process being simulated is
unstable, the propagation of roundoff and truncation error is also unstable.
If the process being simulated is stable, however, the roundoff and trunca
tion error will eventually reach the equilibrium condition set by the
variance transfer function. All that remains is to compute the variance of
the roundoff or truncation error, which can be done by other means
covered extensively in others books on numerical analysis. Suffice it to say
that if part of the task is to analyze the continuous system's response to
noise, these variance propagation transfer functions can be used to
approximately predict the continuous system's response to noise input.

References 197

7-5 REFERENCES

For this chapter refer to J. M. Smith, "Recent Developments in Numerical
Integration," ASME Journal of Dynamics, Measurement, and Control,
March 1974, pages 61-67, and M. E. Fowler, "A New Numerical Method
for Simulation," Simulation, Vol. 4, May 1965, pages 324-330.

CHAPTER 8

CHEBYSHEV AND RATIONAL

POLYNOlVIIAL APPROXIMATIONS

FOR ANALYTIC SUBSTITUTION

8-1 INTRODUCTION

In this chapter we are concerned not so much with the numerical evalua
tion of functions or analyzing data as with deriving polynomials that can
be used for analytic substitution. Existing handbooks often give the series
expansion of many advanced functions that, though useful for analytical
work, converge too slowly to serve in numerical analysis with the pocket
calculator. These series calll be modified to converge more quickly using
Chebyshev polynomials or rational polynomial approximations. Poly
nomial approximations for truncated series expansions of functions for
pocket calculator analysis have the advantage that they can be written in
nested parenthetical form and efficiently evaluated on the pocket calcula
tor with high precision. The objective here, then, is to improve the
convergence of series approximations of given functions.

The Chebyshev polynomials can be used in a unique process. commonly
called economization, to transform a truncated power series expansion of a
function into a more quickly converging polynomial. They can, therefore,
transform tables of infinite series of questionable value for numerical
analysis into fast convergilllg series (of which the error is well known) by
the Chebyshev approximallion theorem. Again, these polynomials can be
written in nested parenthe:tical form for pocket calculator evaluation. In
short, Chebyshev polynomials make tables of infinite series representation
of advanced mathematical functions (of which there are a great many)
eminently practical for pocket calculator evaluation. Because economiza
tion is so easy to perform and makes large tables of infinite series
198

Chebysbev Polynomials Defined 199

immediately available, this chapter is dedicated to instructing the analyst
on the marvelous properties of Chebyshev polynomials and their applica
tion to conditioning series for improved convergence.

Chebyshev polynomials have five important mathematical properties:

I. They are orthogonal polynomials, with a suitable weighting function,
whether defined on a continuous interval or a discrete set of points.

2. They are equal-ripple functions; that is, they alternate between
maxima and minima of the same size.

3. The zeros of successive Chebyshev polynomials interlace each other.
4. All Chebyshev polynomials satisfy a three-term recurrence relation.
5. They are easy to compute and to convert to and from a power series

form.

These properties together generate an approximating polynomial which
minimizes the maximum error in its application. This is quite different
from, for example, least squares approximation where the sum of the
squares of the errors is minimized. In least squares approximations the
average square error is minimized; the maximum error itself can be quite
large. In the Chebyshev approximation, the average error can be large but
the maximum error is minimized. Chebyshev approximations of a function
are sometimes said to be mini-max approximations of the function.

8-2 CHEBYSHEV POLYNOMIALS DEFINED

The Chebyshev polynomials are simply defined by the relations

T0(x) =I

Tn(x)=cos(nO)

cosO= x

(8-1)

(8-2)

(8-3)

Equation 8-2 shows that the Chebyshev polynomials are orthogonal (with a
suitable weighting factor), since cosine is an orthogonal function and cos
(nO) is a polynomial of degree n in cosO.

Noting the trigonometric identity

cos(n + I)0 +cos(n - I)0 = 2 cos 0 cos nO

we can write immediately that

Tn + I + Tn - I = 2 X Tn

(8-4)

(8-5)

(8-6)

200 Chebyshev and Rational Polynomial Approximations

Using this recurrence relation for the Chebyshev polynomials we can easily
generate the successive polynomials as follows: Since

and

in equation 8-6 we find

Then starting with

and

and again using the recurrence formula 8-6, we find

Continuing in a similar manner we can form the table of Chebyshev
polynomials:

T4 = 8x 4 -8x2 + 1

T5 = 16x 5 -20x 3 +5x

T6 =32x6 -48x4 + 18x2
- l

T7 =64x7
- l 12x5 + 56x 3 -7x

Note that we can also form a table for powers of x m terms of

Chebyshev Polynomials Defined 201

Chebyshev polynomials by simply solving for the powers of x from this
table:

IOTI +5T3+ Ts
xs=------

16

IOT0 + 15 T2 +6T4 + T6 x6= ---------
32

7
35 T1 + 21 T3 + 7 T5 + T7

x = 64

8
35 T0 + 56 T2 + 28 T4 + 8 T6 + T8

x = 128

What is important about the Chebyshev polynomials is that Chebyshev
proved that of all polynomials of degree n having a leading coefficient of 1,
these polynomials (when divided by 2n- 1

) have the least extreme value in
the interval

-l<x<+l

No other polynomials of degree n, whose leading coefficient is 1, have a
smaller extreme value than

I
Tn(x) I I max -- =--
2n-1 2n- I

in the interval - I< x < +I since max(! Tn(x)j =I cosnB i) =I. This is an
extremely important finding because it says that if we approximate a

202 Chebyshev and Rational Polynomial Approximations

function in the interval !xi< 1 with Chebyshev polynomials that are
truncated at n terms, the maximum error in the approximation is

The objective, then, is to find an expansion for function j(x) in terms of
Chebyshev polynomials:

n

f(x)= L anTn(x) (8-7)
n=O

The error properties associated with the Chebyshev polynomials are so
significant that we take a few moments to show heuristically that there are
no other polynomials with these properties.

First note that the leading coefficient in the Chebyshev polynomials
generated with the recurrence formulas for an nth-order polynomial is
2n- 1• Thus

is a polynomial with leading coefficient 1. Also, since Tn(x) is a cosine
function (x =cos 0), in the interval

there are n + 1 maxima alternating from + 1 to - 1. Clearly our normalized
Chebyshev polynomial also has n + 1 extreme values on the interval.

To prove that there is no other nth-order polynomial with leading
coefficient 1 which has smaller extreme values in the interval, we assume
that there is such a polynomial and prove that it must be a Chebyshev
polynomial.

Assume that there is a polynomial c(x) of degree n with leading
coefficient 1 which has a smaller extreme value in the interval than the
extremes of our normalized Chebyshev polynomial. Then

Tn(x)
2n-1 - c(x) =J(x)

is a polynomial that has n + 1 maxima alternating in sign n times in the
interval !xi< 1; thus J(x) has n roots. But the polynomial formed by the
difference between the normalized Chebyshev polynomial and the poly-

Chebyshev Polynomials Defined 203

nomial c(x) is of degree (n - I). Thus a polynomial of degree (n - I) can
have n zeros only if the polynomial is zero. If

then

Tn(x)
J(x)=O= y;-=I-c(x)

Tn(x)
c(x)=--

2n-I

Because of the power of the Chebyshev polynomial approximation, its
orthogonality properties are worth examining to make sure that the Che
byshev polynomials are orthogonal and that a formula can be developed
for deriving the coefficients in the series expansion of equation 8-7. We can
determine the orthogonality properties or characteristics for the Chebyshev
polynomials from what we know of the orthogonality of the cosine
functions: that is,

[cos(mlJ) cos(nlJ) dlJ I 7T ~ 2

Then, substituting

Tn (x) = cos(nB)

cos()= x

(m=t=n)

(m=n=t=O)

(m=n=O)

to obtain the orthogonality properties of the Chebyshev polynomials, we
find

(m=t=n)

(m=n=t=O)

(m=n=O)

(8-8)

We see, then, that the Chebyshev polynomials form an orthogonal set on
the interval

-l<x<+l
with the weighting function

I
w(x)= I/2

(I - x 2)

204 Chebyshev and Rational Polynomial Approximations

The Chebyshev polynomials can also be shown to be orthogonal over a
discrete set of xn. These orthogonality conditions can then be used to
evaluate the coefficients an in equation 8-7:

_ 2f+ 1
J(x)Tn(x)

an - - 1/2 dx,
'TT - I (1- x2)

(n > 1) (8-9)

ao = ~ r I _(_ l __ f(_:-li-1 /-2 dx, (n=O) (8-10)

Similarly, if the function j(x) is only defined on

xP = cos ~ (p + i)

then the coefficients in the expansion

N-1

J(x) = ~ an Tn(x)
n=O

are given by

for the discrete (which is easier to use) or the continuous method for
preparing a Chebyshev approximation of a function f(x).

There is another approach to approximating f(x) with Chebyshev
polynomials that is due primarily to Lanczos. It is powerful and simple to
use, having the nice prop1;!rty that it will usually improve the convergence
of any truncated series expansion of a function f(x). We do the following:

1. Write a truncated series or polynomial approximation of f(x) in
nested form.

2. Rewrite the polynomial in terms of Chebyshev polynomials.
3. Truncate the Chebyshev approximation by an additional one or two

terms.
4. Rewrite the Chebyshev polynomials in terms of polynomials in x.
5. Rewrite this polynomial in nested parenthetical form for convenient

numerical evaluation on the pocket calculator.

Chebyshev Polynomials Defined 205

For example, if we write a truncated power senes representation of a
function in the form

m

J(x) = L anxn (8-11)
n=O

by rewriting equation 8-11 in the nested parenthetical form

we can convert this to a series of Chebyshev polynomials by starting at the
inner parentheses and rewriting it in the form

(8-12)

Assuming that at the nth parenthetical nest

(8-13)

we can multiply this by x and add to it the next coefficient in the power
series aM-n- 1 to get the (n + l)st nest. Then, by using the relationships

xT0 = T 1

(8-14)

the power series in the nth parentheses is transformed in the (n + I)st
power series in Chebyshev polynomials as

(8-15)

The process for generating the coefficients at any given stage in the
development of the Chebyshev polynomial expansion of F(x) can be
visualized as shown in Figure 8-11. Here the coefficients at a given stage
are used to generate the coefficients in the next stage according to the
diagram.

In this approach, the coefficient associated with the Mth term of the
original series

206

Coefficients at
nth nested
parentheses

Chebyshev and Rational Polynomial Approximations

Coefficients at
(n + 1)st nested
parentheses an-2 an_3+an-1 an_,+an-2 an-1 an

2 2 2 2 2

Figure 8-1 Process for generating coefficients for the Chebyshev expansion of f(x).

becomes, in the Chebyshev polynomial expansion,

Thus if we truncated the Chebyshev polynomial expansion of f(x) begin
ning with the mth term, the error would be on the order of [am/(2m- 1)]

instead of am as in the original polynomial approximation (see Table 8-1).

N

Table 8-1 Expansions of fN(x)= :~ anxn in Chebyshev Polynomials

Expansion in powers of x

fo=ao

f1=a0+a1x

f2= a0 + a1x + a2x
2

fs= ao+ a1x + a2x2 + a3x
3+ a4x4

+asxs

n=O

Chebyshev expansion

aoTo

a0 T0 +a1T1

(ao+ ~)T0 +a 1 T1 +(~2)T2

(ao+ i)To+(a1+
3
:

3
)T1+(';2)T2+(i)T3

(ao+ i- ~) To+(a1+ 3:3)T1+Ha2+a4)T2+

(i) T3 + (~4) T4

(
a2 a4) (3a3 lOas)

ao + T - T, To+ a1 + 4 + ---r6 T1 +

i (a2; a4) T2 + (i + 51i) T3 + (a84) T4 + (~~) Ts

Chebyshev Polynomials Defined 207

In this sense, then, we say that the Chebyshev expansion converges more
quickly than does the original expansion.

Another way of looking at it is as follows. If the original polynomial
approximation of the function was accurate to some error, the Chebyshev
polynomial approximation will usually be almost as accurate to the same
error with fewer terms. Additional terms can therefore be dropped from
the reexpressed polynomial. This is the process called economization.

The procedure followed in equations 8-12 through 8-15 shows the
approach to generating Chebyshev polynomial approximations of f(x) in
general for n terms. However, polynomials of a degree higher than 5 are
generally cumbersome for pocket calculator analysis. The table of powers
of x in term~ of the Chebyshev polynomials, presented earlier in the
chapter and partly repeated here for convenience, is useful for direct
substitution of powers of x for its Chebyshev polynomial equivalent.

3 3T1 + T3
x =--4--

4
3 T0+4T2 + T4

x =---8---

10T1 +5T3 + T5 xs=------
16

In this way a power series such as

can be converted into an expansion in Chebyshev polynomials:

For this process to be workable the series must be written in a form
where the evaluation of f(x) takes place for x on the interval (- I< x < +
I). Once the expansion is written in terms of Chebyshev polynomials, they

208 Chebyshev and Rational Polynomial Approximations

can be replaced by polynomials in x from our earlier table, repeated here
for convenience:

T3 =4x 3 -3x

T4 =8x4 -8x2 + 1

T5 = 16x5 -20x 3 + 5x

They can then be algebraicaUy simplified and written in nested parentheti
cal form for quick evaluation on the pocket calcuJator.

Hamming works the easy-to-follow example

x2 x3
y=ln(l +x)~x- - +-*

2 3
(8-16)

to illustrate the method of economization. By direct substitution for
powers of x we can rewrite this power series expansion in terms of the
Chebyshev polynomials as

T0 15T1 T2 T3
y~--+----+-

4 12 4 12

(8-17)

Dropping the last term in the power series (equation 8-16) results in
dropping 0.25 from the numerical evaluation of y (when x = l); a roughly
equivalent error is produced in the power series (equation 8-17) when
dropping the last two terms. This can be seen by noting that at most the
error will be

t:= -b- * = -0.1766· ..

*Hamming carries five terms-more than we need to illustrate the principle for pocket
calculator polynomials of convenient size.

Chebyshev Polynomials Defined 209

We know this because the magnitude of the value of the Chebyshev
polynomials is less than or equal to I for all x on the interval. Thus we can
write

T0 15T1 T2 y=ln(I +x)~ - - +-- - -
4 12 4

(8-18)

with somewhat better accuracy than is given by equation 8-16. This, then,
is the process of economization. Using the definitions of the Chebyshev
polynomials we can rewrite equation 8-18 in the form

()
1 15x 2x2 I

y=In I +x ~ - 4 + 12 - 4 + 4 =x(l.25-0.5x)

The numerical comparison of the economized second-order and the non
economized third-order polynomials is given below. The economized
quadratic equation has smaller average error (- 0.0676) than the non
economized cubic equation (0.1993); it also has the smallest maximum
error (0.1 at x = 0.5) on the interval

O<x<I

Exact Economized Non economized

x y=ln(l +x) y~x(l .25-0.5x) y ~ x -0.5x2 + 0.333x 3

y Error y Error

0.1 0.09531018 0.12000000 -0.0246 0.0948333 0.0052
0.3 0.26236426 0.33000000 -0.0676 0.25050000 0.0495
0.6 0.47000363 0.57000000 -0.0999 0.38400000 0.2160
0.9 0.64185389 0.72000000 -0.0781 0.37350000 0.5262

Let us recap Chebyshev polynomials in the context of pocket calculator
analysis. We saw in Chapter I that the evaluation of polynomials greater
than third or fourth-order involved a sizable number of key strokes on the
pocket calculator. We found that by writing these polynomials in nested
parenthetical form we could go to fifth and sixth-order polynomials with
the same number of key strokes as required for the third-order polynomial
evaluation. This gave us additional accuracy with the same number of key
strokes. Now we have found that the economization process due to
Chebyshev polynomials can occasionally provide high-order polynomial
accuracy with low-order polynomials, even further reducing the number of

210 Chebyshev and Rational Polynomial Approximations

key strokes for, say, equivalent fifth-order polynomial evaluation accuracy.
That is, retaining fifth-order polynomial accuracy with Chebyshev
polynomials can provide equivalent accuracy of seventh- or eighth-order
noneconomized polynomial expansions. Then when it is written in nested
parenthetical form, the Chebyshev polynomial provides this accuracy with
many fewer key strokes than would normally be required for up to eighth
or ninth-order polynomial expansions. Thus the nested parenthetical
evaluation of Chebyshev polynomial approximations reduces the workload
on the pocket calculator from that associated with a ninth-order poly
nomial approximation of f(x) to that of a second- or third-order poly
nomial approximation of j(x). This results in an order-of-magnitude
reduction in key strokes.

In general, the approach to evaluating advanced mathematical functions
is (1) to write the function in a truncated polynomial form, (2) rewrite that
expression so that the interval on which f(x) is to be evaluated is between
-1 < x < + l, (3) economiz1e the series using Chebyshev polynomials, (4)
rewrite the Chebyshev approximation to the function in nested parentheti
cal form, and (5) use it for numerical evaluation on the pocket calculator.

Numerical Evaluation of Chebyshev Polynomials

It is useful to know that the recurrence formula (recopied here for
convenience) for the Chebyshev polynomial can be used to numerically
evaluate Chebyshev polynomials:

Tn(x)=2xT n- 1(x)- Tn_ 2 (x)

The starting values for the recurrence formula can be computed with:

Thus the Chebyshev polynomial expansion of a function, once written,
need not necessarily be gilven in powers of x but can be numerically
evaluated directly. For example, the equation

To 15 T1 T3
y =In(I + x) ~ - 4 + IT T1 - 4 + IT (8-17)

is the Chebyshev approximation to In (1 + x), which was developed earlier.
Using the recursion formulla and the fact that T0 = 1 and T 1 = x, we can
now numerically evaluate t~quation 8-17 by first evaluating the numerical

Approximation for Substitution with Rational Polynomials

values for the five Chebyshev polynomials; for example, when x = 0.3,

T0 = 1

T 1=0.3

T2 =(2)(0.3)T1 - T0 =2X0.3X0.3- l = -0.82

T3 =(2)(0.3)T2 -T1 = -2X0.3X0.82-0.3= -0.792

211

These can be substituted in the power series expansion to numerically
evaluate the series:

1 15 1 1
y=ln(l.3)~ - 4 +l2x0.3- 4 (-0.82)+ 12 (-0.792)=0.2640

y =In(1.3) = 0.26236426

This procedure allows convenient numerical evaluation of high-order
Chebyshev polynomials (e.g., 20). Although writing the nested parentheti
cal form of the Chebyshev polynomial expansion of a function is possible,
it is cumbersome and can trip-up the user if he forgets which parentheses
he is at in the numerical evaluation process. A better alternative is to
compute first the numerical values of the Chebyshev polynomials and then
substitute them into the polynomial expansion equation, since this does not
directly involve the evaluation of high-order polynomials.

8-3 APPROXIMATION FOR ANALYTIC SUBSTITUTION WITH
RATIONAL POLYNOMIALS

We have seen so far that the expans10n of a function in terms of
Chebyshev polynomials can be used to series expand a function that
minimizes the maximum error in the approximation on the interval - I< x
< + 1. As noted in Chapter 3, the economized Chebyshev approximations
were not extensively employed in precision evaluation of functions. The
reason is that they are not necessarily the best approximation for pocket
calculators-from the standpoint of the time required to evaluate the
function and the storage needed to store the coefficients. A better
approach is to use the ratio of two polynomials as a means for approximat
ing functions. Again, this is so because nested polynomials are con
veniently numerically evaluated on any digital computer including the
pocket calculator.

Consider the case where we wish to represent a function as the quotient

212 Chebyshev and Rational Polynomial Approximations

of two polynomials:

a0+ a1x + a2x 2 + · · · + anxn
f(x)= = R (x)

- 1 + b X + b x 2 -t · · · + b X 111 N '
(N=n+m)

I 2 rn

The rational polynomial approximations used here are those whose nu
merator is equal to or greater by 1 than the degree of the denominator. The
constant term in the denominator can be taken to be 1 without loss of
generality. Since our concern here is the interval - 1 ~ x ~ + 1, we can use
the Maclaurin series expansion for f(x) as a means of determining the
coefficients in the rational polynomial approximation. The number of
terms that we would use in the Maclaurin series is equal to the sum of the
order in the numerator and denominator, because this is the number of
coefficients that must be determined. If we write

for the Maclaurin series expansion of f(x), the difference between the
Maclaurin series and the rational polynomial approximation can be for
med as follows:

(
2 N) ao+a1x+ ... +anxn

f(x)-RN(x)= c0+c1x+c2x +··· +cNx -
1

b b rn + 1X+ ... + rnX

(c0 +c1x+c2x2 + · · · +cNxN)(1+b1x+ · · · +b
111

x 111
)

-(a0+a1x+··· +anx 111
)

J(x)- RN(x) = -----------------
1 + b 1x + · · · + b111 x 111

Now, if
(8-19)

f(x)= RN(x) at x=O
then

Similarly, for the first N derivatives of f(x) and RN(x) to be equal at
x = 0 the coefficients of the: powers of x in the numerator must all be zero.
This gives the system of equations shown below:

b1c0 + c1 - a1 =0

Approximation for Substitution with Rational Polynomials 213

When combined with equation 8-19, this can be solved for all coefficients
of the rational polynomial.

The process just described is that of forming the Pade approximation.
We illustrate Pade approximations with a simple example.

Example. Consider approximating sin(x) with a rational polynomial
where N = 9. We use a fifth-degree polynomial in the numerator. The
Maclaurin series expansion through x 9 for arctan (x) is

x3 xs x1 x9
arctan(x)~x- - + - - - + - = M 9(x)

3 5 7 9

Following the procedure outlined above, we form the equation

j(x)- R9(x) = ----------------
1 + b 1x + b2x

2 + · · · + b4x4

from which we can evaluate the coefficients for the rational polynomial:

a1=h1

a3= - t + h2

a4= -tb1 + b3

as=!- th2 + b4

bl= tb3
5 5

b2= 7 + 3b4

b3 = th1

b4= - ~ + tb2

214 Chebyshev and Rational Polynomial Approximations

Solving for the a's and b's, we find

a0 =0

Thus the rational polynomial for approximating arctan (x) is given by

The table below compares the rational polynomial approximation (Pade
approximation) and the Maclaurin series expansion for arctan (x).

x

0.2
0.6
1.0

Arctan (x)

0.19740
0.54042
0.78540

0.19740
0.54042
0.78558

Error

0.00000
0.00000

-0.00018

0.19740
0.54067
0.83492

Error

0.00000
-0.00025
-0.04952

Errors in Pade approximations can be estimated by computing the next
nonzero term in the numerator of the rational polynomial. The procedure,
though somewhat tedious, gives an error formula in terms of the next term

Approximation for Substitution with Rational Polynomials 215

with a nonzero coefficient. ~urthermore, the error formula can be
evaluated over the interval in which the function is being evaluated. The
alternative is to work out a simple error curve as shown in our examples
here; this can be conveniently done on the pocket calculator.

The rational polynomial app'rbximation is significantly more accurate
than the Maclaurin approximation. When x = 1, the Maclaurin series
ceases to converge while the Pade' approximation is still fairly accurate.

In the pocket calculator evaluation of the rational polynomial approxi
mation we write the numerator and denominator in nested parenthetical
form, numerically evaluate each separate polynomial, and then perform
the division numerically.

Similarly we could have started with the Chebyshev series for arctan (x)
on the interval + I to - I, formed a rational polynomial in Chebyshev
polynomials, and then proceeded to evaluate the coefficients in the
approximation. The procedure differs from that above in that the product
of the two Chebyshev polynomials results in squares and products of the
polynomials themselves. In turns out, however, that the product of two
Chebyshev polynomials can be given by

Tn (X) Tm (X) = f (Tn + m (X) + Tn _ m (X))

here we have again a useful form for evaluating the coefficients in the
numerator of the rational Chebyshev polynomial approximation formula.
Once the approximation in Chebyshev polynomials is determined, it can be
reduced to approximations in the independent variable on the interval + I
to -1.

As a simple example, consider the Chebyshev polynomial expansion of
ex given by (see Example 8-2 on page 220)

Using the principles of rational polynomial approximation, we find the
approximation R 3 in the form

ao+ a1 T1 + a2T2
R3=------

1 +b1T 1

Next we form the function f(x)- R 3. Setting the powers of x in the
numerator equal to zero, we then find

(1.2661+1.1303 T1 +0.0444T3)(I+ b1 T)-(a0 + a1 T 1 + a 2 T2)
f- R = --------------------

! +b1T1

216 Chebyshev and Rational Polynomial Approximations

of which the numerator becomes

Remembering that

Tn(x)Tm{x) = ![Tn+m(x) + Tn-m(x)]

we can write (equatingf(x) to R 3 and equating their first three derivatives,
respectively):

Thus

with the result that

Then substituting

we find

a0 = 1.2661 + l.l~03 b1

a1=1.303+(
0

·
2
;

15
+l.2661)b1

a2=0.2:715+(1.1~03 + o.o;44)b1

0 =0 0444+ 0·2715 b . . 2 l

ex;;;;;_

bl= -0.3266

a0 = 1.0815

a 1 =0.6724

a2 =0.07966

1.0815 + 0.6724 T 1 + 0.07966 T2

l -0.3266T1

l.0018 + 0.6724x + O. l593x2

l-0.3266x

Approximation for Substitution with Rational Polynomials 217

A comparison of the two types of approximations is shown in Figure
8-2. It is apparent that the approximation found by

(where C3 is the Chebyshev approximation of j(x) developed in example 8-2
on page 220) has the error curve shown as a dashed line in the figure and is
somewhat more accurate than either approximation alone.

4 x 10-3

2 x 10-3

0

-2 x 10-3

-4 x 10-3

0.2 0.4 0.6 0.8

approximation

/
? (3)

Chebyshev + rational
Chebyshev polynomial

1.0

Rational
Chebyshev
polynomial
approximation
error

1.2 1.4

Figure 8-2 Approximations of ex. (1) Chebyshev alone, (2) rational Chebyshev polynomials,
and (3) a combination of both.

Example 8-1. Prepare the rational polynomial approximation sin(x)
= R 5(x) in the neighborhood of x=O. Then

218 Chebyshev and Rational Polynomial Approximations

and

From R5 and sin(x) we see that

c0 =0 ao=ao b0 = 1

c1 = l a1=a1 h1=h1

c2=0 a1=a2 h2= h2

C3= -i a3=a3 b3=0

c4 =0 a4=0 b4=0

C5 = 1!0 a5=0 b5=0

We know (see text) that the six equations for determining the six
coefficients a0, a1, a2, a3, b1, and b2 are

On substituting directly from the preceding table of a's, h's, and e's, we
find

Approximation for Substitution with Rational Polynomials

Substituting for b2 in a3 and b 1 in a2, we find

Thus

a _ (I I) - (6 20) _ 14
3 - 20 - 6 - 120 - TIO - - 120

x- --1£x3
. () 120 sm x ~

1 2 I+ 20 x

219

We can tabulate values of this approximation and compare them with
the Maclaurin series approximation of sin(x) and the actual value of
sin(x). This is done in Table 8-2.

Table 8-2

x sin(x) Rs Error Ms Error

0.25 0.24740396 0.24740395 1x10-s 0.24740397 -1x10-s

0.50 0.47942554 0.47942387 1.67 x 10- 6 0.47942708 - 15.4 x 10- 6

0.75 0.68163876 0.68161094 27.82X 10- 6 0.68166504 -26.28 x 10- 6

1.00 0.84147098 0.84126984 201.14X 10- 6 0.84166667 -195.68 x 10- 6

1.25 0.74898462 0.94806763 916.99X 10- 6 0.94991048 -925.86 x 10- 6

1.50 0.99749499 0.99438202 3112.96X 10- 6 1.00078125 -3286.26 x 10- 6

7T/2 1.00000000 0.99577290 4227.IOX 10- 6 1.00452486 -4524.86 x 10- 6

2.00 0.90929743 0.88888888 2.040854X 10- 2 0.93333333 -2.403591x10- 2

In the interval between 0 and I the Maclaurin expansion is more accurate
(as we might expect), while the rational polynomial tends to be somewhat
more accurate outside the (0, 1) interval.

This example makes the important point that rational polynomial ex
pansions, though involving polynomials of lower powers than do the

220 Chebyshev and Rational Polynomial Approximations

polynomial from which they were derived, are not necessarily equally
accurate over all intervals. The procedure of generating rational poly
nomial approximations of functions is, however, also illustrated in the
example.

Example 8-2. Economize the Maclaurin series expansion of ex:

x x2 x3 x4 xs x6
e =l+x+--+-+-+-+-+···

2 6 24 120 720
Since

we can rewrite ex as

ex= 1.2661T0 +1.1303 T1 +0.2715 T2 +0.0444T3 + · · ·

ex= 1.2661 + l.1303x+0.2715(2x 2 - l)+0.0444(4x3 -3x)+ ...

ex~ 0.9946 + 0.9971x+0.5430x2 + O. l 776x 3 + ...

Note that the terms involving T0, T 1, T2 and T3 were carried from
substitutions of polynomials for up to six terms in the Maclaurin series.
Thus we also continue the effect of the sixth term on the first and
succeeding terms-the effe:ct that makes the economization work.

Approximation for Substitution with Rational Polynomials 221

Comparison of the Chebyshev and Maclaurin approximations is shown
in Table 8-3.

Table 8-3

Error Error
x ex Maclaurin Chebyshev M c

1.0 2.7183 2.6667 2.7123 0.0516 0.0060
0.8 2.2255 2.2053 2.2307 0.0202 -0.0052
0.6 1.8221 1.8160 1.8267 0.0061 -0.0057
0.4 1.4918 1.4907 1.4917 0.0011 0.0001
0.2 1.2214 1.2213 1.2172 0.0001 0.0042
0.0 1.0000 1.0000 0.9946 0.0000 0.0054

Notice that the Chebyshev error is a maximum at x = 0 and the Maclaurin
error is a minimum. This is because of the osculating nature of Maclaurin
approximation at the origin as compared with the mini-max nature of the
Chebyshev approximation on the interval (0, I). This is illustrated in Figure
8-3.

-0.01 ---~--~--~---~--~--~
0.2 0.4 0.6 0.8 1.0

Figure 8-3 Error in Chebyshev economization of a Maclaurin series expansion of ex.

222 Chebyshev and Rational Polynomial Approximations

Example 8-3. Approximate sin(x) with Chebyshev polynomials by the
method of economization.

In this simple example, we use the Maclaurin approximation of sin(x),
again because it is an approximation centered on the interval - 1 ~ x ~ +
1. We see that

. X3 XS
sm(x)~x- 6 +

120
Then

The higher powers of x from the Maclaurin series would make further
contributions to the T 1, T3, and T5 coefficients. The contributions are
small, however, especially for the early Tx terms. The x 5 term, in particu-

Error M

Error C

-1 x 10-3 _______ ..._ _____ ____ ________ _,

0.:2 0.4 0.6 0.8 1.0 x

Figure 8-4 A comparison between the error that results from a Maclaurin approximation
and an economized Chebyshev approximation of sin(x).

References 223

lar, changes the T1 coefficient by less than 1% and the x 7 term alters it by
less than 0.01 %.

Economizing the Chebyshev approximation (dropping the T5 term), we
find

On substituting

we find

T3 =4x3 -3x

sin(x) ~o.9974x -0.1562x3

sin(x) ~x(0.9974-0.I562x2)

The errors for the Maclaurin approximation of sin(x) and the
economized Chebyshev approximation are compared in Figure 8-4.

8-4 REFERENCES

For this chapter consult Richard Hamming's Numerical Methods for Scien
tists and Engineers (McGraw-Hill, 1973), Chapters 28, 29, and 30. For
further reading on some of the examples given in this chapter read Curtis
F. Gerald's Applied Numerical Analysis (Addison-Wesley, 1970). The
author has used Gerald's textbook in courses on numerical analysis and
has found it to be detailed and easy to read.

CHAPTER 9

DETERMINING THE ROOTS

OF A FUNCTION

9-1 INTRODUCTION

In this chapter we examine in more detail the problem of finding the roots
of a function, which we encountered briefly in Chapter 3. First we discuss
the real zeros of continuous functions and then touch on the problem of
complex zeros. The need to find roots of a continuous function arises
frequently in engineering, usually when solving implicit equations, deter
mining maxima and minima, or finding solutions of simultaneous equa
tions. The methods particularly suited to pocket calculator analysis are
considered here. They differ from the standard methods for evaluating
roots on large-scale digital computers in that the analyst must understand
the function whose roots he is trying to find so as to select the proper
approach to the problem.

Three methods for finding the real roots of a function are discussed.
Perhaps the most straightforward approach is that of bisecting the interval
over which the root is expected to be identified. The bisection method is
slowly converging, but is virtually foolproof in its application (i.e., it is
almost impossible to misusie the method).

Another approach is a modified form of the "false-position" method
developed by Hamming. It is a fast-converging method, but involves
slightly more functional 1evaluations than does the bisection method.
Furthermore, for certain functions the false-position method can converge
more slowly than does the bisection method, but these functions are not
frequently encountered in practical engineering analysis.

Finally, there is Newton''s method and its application to finding powers
or nth roots of a number N (used in Chapter 2). Though it can be used

224

The Real Roots of Continuous Functions 225

effectively for other numerical evaluations, Newton's method does involve
evaluating a derivation and can be a slow-converging process. Once it
begins to close in on a root, however, it does so essentially doubling the
number of decimal places to which we know the value of the root at each
step. In this sense, it is a fast-converging method, once it gets close to the
root.

In evaluating the complex roots of a function, we restrict ourselves to a
method whose search pattern determines the roots only crudely. Their
accurate evaluation is possible, but the necessary procedures and tracking
methods are too complex for pocket calculator analysis. The approxima
tion is usually sufficiently accurate for engineering analysis however.

The chapter closes with a discussion of the zeros of nth-order po
lynomials (we covered only first-, second-, third-, and fourth-order
polynomials in Chapter 2). The search for the zeros of a polynomial is
treated as a special case in this chapter because much is known about the
roots of polynomials. Specifically, we know the following:

I. Polynomials of nth order have exactly n roots; thus we know precisely
when all roots have been found.

2. When a zero is found, we can divide it out of the original polynomial
to obtain a lower-degree polynomial for an easier evaluation of the
remaining roots.

3. Most polynomials can be scaled to facilitate root evaluation.
4. The polynomial can occasionally be factored into its real linear and

real quadratic factors-an important simplification in evaluating the roots
of polynomials.

9-2 THE REAL ROOTS OF CONTINUOUS FUNCTIONS

To find the real roots of continuous functions mathematically, we must
find a number x that, on substitution into a functionf(x), results in exactly
zero. On a pocket calculator it is enough to find neighboring values of x
that, when substituted into j(x), provide nearly zero results of opposite
signs. In this case we can approximate the zero of the function by using the
midvalue of the interval.

In evaluating the zeros of mixed algebraic and transcendental functions
the number of zeros is commonly found to be infinite. We must therefore
identify the region in which the zero that we are interested in occurs. This
can usually be done quickly by sketching the two functions or analytically
determining by trial and error the neighborhood of our zero, from which

226 Determining the Roots of a Function

we then begin the search for the root. For example, the function

j(x)== -.-
1
- - l(~ +3)sinx

smx 2 'TT
(9-1)

has an infinite number of roots, as seen in Figure 9-1. The determination
of which root to evaluate must be left to the analyst.

6

4

2

0
1T 271' 411' 57T

2 I i 2
I I
I I

-2 I I
I I
I I
I I

-4 I I
I I
I I
I I
I I

-6 I I

Figure 9-1 A function that has an infinite number of roots.

The simplest method of finding the real zeros of f(x) is bisection. First,
we identify an interval

such that the product

(9-2)

That is, on one boundary of the interval j(x) is positive and on the other
boundary it is negative. Clearly, for the root to exist between the end
values, this condition must hold true. This is seen in Figure 9-2. Once the
interval is identified, another interval that satisfies the same property
(equation 9-2) and is smaller is developed by way of the bisection method.
That is, we evaluate the function at the midpoint of the interval and test it

The Real Roots of Continuous Functions 227

f(x)

Figure 9-2 Searching for zeros using the bisection method.

to verify that the function is zero. If it is not (the usual case), the midpoint
can be used as one end of a new interval, which will be smaller than the
previous one. In particular, if the functions evaluated at both the midpoint
and the original left end point of the initial interval are of the same sign,
the zero lies to the right of the midpoint and the new interval is the
previous right boundary and the midpoint. If, however, the function
evaluated at the midpoint is of opposite sign to that evaluated at the left
end point, the zero is to the left of the midpoint and the new interval is the
midpoint and the previous left end point. All of this can be summarized as
follows:

((X1+X2)) f -2- (f(x1))

0
X1 +x2
--

2
- is a zero off (x)

>0 (
X1 + X2) the zero is on the new interval --

2
- , x 2 (9-3)

<0 (
X1+X2) the zero is on the new interval x 1, --

2
-

Each iteration halves the length of the interval. Ideally, the initial
interval should be identified so as to limit the required number of itera
tions. For example, an interval that is an integer will be reduced one-eighth
by three iterations, one-sixteenth by four iterations, and one-thirty-second
by five iterations. Interval reduction of one part in a thousand can be
achieved with I 0 iterations. The general formula is that the interval size
can be reduced by a factor of 1 /2n, where n is the number of iterations.

228 Determining the Roots of a Function

The bisection method raises the issue of how to end the iterative
evaluation of the root. There are five common techniques. The first and
most attractive approach is to specify the number of evaluations and then
decide whether the bisection method is converging slowly enough to
warrant finding another method. The second method is to test the absolute
accuracy in x, that is, to determine whether the modulus of the differences
between solutions of the midvalue is less than or equal to a small number.
Another approach differs in relative accuracy; we test to see if a modulus
of the difference in the successive values of xn divided by xn _ 1 is less than
or equal tot. Still other tests are intended to determine (1) whether j(xn) is
less than or equal to some acceptable value and (2) whether the difference
between successive values of f(x) is less than or equal to some acceptable
value.

These methods have all been used on digital computers to stop the
iterative solutions of f(x) = 0. In evaluating roots on the pocket calculator,
however, tabulated values of xn and f(xn) can be quickly computed, so that
the convergence process becomes apparent to the analyst. In fact, the
analyst generally stops iterating when the law of diminishing returns takes
over and he sees little improvement in his evaluation of the roots for each
iteration of the method.

About the only restriction on the bisection method is that in finding the
zeros of functions with poles the bisection method locates the pole in a
manner similar to that used to locate the zero (i.e., for functions where the
approach to the pole from the right is positive and that from the left is
negative).This problem will probably not be encountered, since the pocket
calculator analyst will have at least sketched the function whose root he is
trying to evaluate, thus knowing the characteristics of the function near the
root.

9-3 FALSE-POSITION METHOD

The false-position method, sometimes called regula f alsi, is based on the
concept that, (a) when decreasing the interval in which the root is expected
to be found and, (b) when the value of the function at one end of the
interval is large compared with that at the other end, then the zero can be
expected to be closer to the end where the function is small than to the end
where the function is large. Interpolating between the values of the
function at the end points of the interval, we can thus solve for the point at
which this straight line passes through zero, using the equation

(9-4)

Newton's Method 229

The line described by equation 9-4 has the zero at

x 1j(x2)- x2j(x 1) x=-------
J(x2)- j(x1)

(9-5)

Having found the new estimate of the location of the roots, we evaluate
the function at this point and use it to replace the previous end point
whose function value has the same sign as f(x). At the same time we divide
the function value of the other end point by 2.

Figure 9-3 shows the selection of the new estimate of the root, and
Figure 9-4 illustrates the process by which the interval is halved and the
approximating line is shaped to permit rapid convergence of the estimation
of the zero.

x,

t
Old interval

boundary

Figure 9-3 Searching for roots using the modified false position method.

9-4 NEWTON'S METHOD

In Newton's method the root is estimated and the tangent line of the
function is computed at that point. Then the tangent line is projected until
it intercepts the X axis to determine a second estimate of the root. Again,
the derivative is evaluated and a tangent line formed to proceed to the
third estimate of x. This process is sketched in Figure 9-5. The procedure is
straightforward, but does involve the evaluation of derivatives. The tangent

230 Determining the Roots of a Function

Figure 9-4 Interval halving to ensure rapid convergence of the false position method.

line generated in this manner is given by

(9-6)

which, when y(x) = 0, gives the recursion formula for iterative estimates of
the root:

(9-7)

f(x)

x

Figure 9-5 Searching for zeros using Newton's method.

f(x)

f(x)

f(x)

f(x) "buckets" above f(x) = 0

f(x) asymptotic to abscissa

Zero at inflection
point

Figure 9-6 Problems that can be encountered using Newton's method.

231

232 Determining the Roots of a Function

Sketches of the well-known cases where Newton's method encounters
difficulties appear in Figure 9-6, which emphasizes the analyst's need to
sketch the function that he is trying to evaluate. Unless the local structure
of the function is well understood, Newton's method should be avoided.
The advantage to Newton's method is that, unlike the bisection method or
the modified false-position method, once it begins to converge on the root,
it tends to do so very quickly. In fact, at each step it almost doubles the
number of accurate decimal places in the estimate of the root. Thus with
;:'_n accuracy to 3 places at one step we can expect 6 places at the next step
and 12 places thereafter. When it works, Newton's method is excellent.

9-5 COMPLEX ZEROS

To find complex zeros of analytic functions, we use the conventional
complex variable notation--the independent variable is z = x + iy and the
dependent variable is w=f(z)= f(x+ (v), which is equal to u(x,y)+
iv(x,y). The condition

j(x+iy)=O

is then equivalent to the two conditions

u(x,y) = 0

v(x,y) =0

(9-8)

(9-9)

(9-10)

Since the equation u(x,y) = 0 defi~es curves in the complex plane and the
equation v(x,y) = 0 defines another set of curves, it is only at the intersec
tion of these two sets of curves that w(z) = 0. In this sense, the problem of
finding the complex roots of w = f(z) is equivalent to finding the intersec
tion of the two curves u == 0 = v. Obviously, this is the problem of the
simultaneous solution of two equations. Provided that the zero is not on
the real axis and that z = x + iy is zero, the conjugate zc = x - iv is also
zero.

The bisection method can be extended from the problem of finding real
zeros to that of finding complex zeros. Again, we first find the interval in
which we can expect to find a zero and then refine the estimate of the zero
by reducing the interval in which the zero is expected. In the bisection
method, we first searched the region of the real axis where we expected
roots to occur, not by evaluating the function numerically, but by deter
mining the interval during which f(x) changes sign. Then we narrowed that
interval until we found the location of the root (as close as we wished). In a

Complex Zeros 233

similar manner we break up the complex plane into regions where we can
test, not the value of the complex function, but only its sign at suitably
chosen points in the region and where we can determine the "quadrant
number" in which w=j(z) falls. In general, if w=f(z) is not zero (other
wise we would tabulate a zero at the grid point where it does equal zero),
the quadrant numbers are defined as shown in Figure 9-7 and as they
would be located in the complex plane in Figure 9-8. It is apparent that
where the four quadrants meet we have a zero of w = f(z). Once the grid is
prepared and the quandrant numbers are written on the grid, the curves
u = 0 and v = 0 can usually be quickly sketched by keeping in mind that the
curves u(x,y) = 0 divide quadrants 1 and 2 and quadrants 3 and 4, whereas
v(x,y) = 0 divide quadrants 1 and 4 and 2 and 3. Although this method is
not very sophisticated, it is a convenient way of approximating roots in the
complex plane on the pocket calculator. We therefore leave the more
accurate evaluation of the complex roots to methods presented in other
books. It is worth pointing out, however, that when a complex root is
identified in this manner the region in the neighborhood of the root can be
further subdivided to form a refined grid for more accurate root de
termination.

An example of the use of this method is finding the complex zeros of the
function

w=az+b

The zeros of this complex function are easy to derive; the example is
chosen for its pedantic value in illustrating the process of sketching the
u = 0 = v curves to find the region in which the complex zero will occur
(which can then be used to make the next more refined search for the

jv

Q = O if 11 or v = 0

Q = 1 when sign of L +
+

Q = 2 when sign of c +

Q = 3 when sign of (~ -

Q = 4 when sign of c +

2

3 4

Figure 9-7 Quadrant number definitions.

234 Determining the Roots of a Function

Figure 9-8 Quadrant numbers in the complex
plane.

complex zero of w, etc.). First it is instructive to analytically find the zero
of w. Substituting (x + iy) for z we find

w = (ax + b) + i (ay) = u (x ,y) + v (x ,y)

Now

u=O=ax+ b

. b . . x=--
a

defines the u = 0 curve in the complex plane. Similarly

v =0= iay
or

iy=O

defines the v = 0 curve in the complex plane. The intersection of these two
curves is the zero of the function w = 0. This occurs at

b x=--
a

ry=O

Now let us examine the use of the modified bisection method to sketch the
u = 0 = v curves for this function.

Complex Zeros 235

Table 9-1 shows the details of generating the quadrant numbers for 25
test locations in the complex plane. These locations are the grid points in a
five-by-five test space:

x = - 2, - I, 0, + I, + 2

y = - 1, 0, + 1, + 2, + 3

The calculation of u and v and the analytical determination of the
quadrant number using ±tan (u / v) are straightfo.rward on the scientific
pocket calculator, particularly those with rectangular-to-polar conversion.
The procedure for computing the quadrant numbers is shown in Table 9-2.

Table 9-1 Quadrant Numbers for the Function w = az + b = (ax + b) + (iby) = u (x,
y) + b (x, y) When a = l and b = l

Quadrant
Number

Quadrant Number by
by Inspection of

Calculation Signs of u and v

Quadrant
x y u v ± tan - 1

(v / u) Number (sign u, sign v)

-2 -1 -1 -1 -135° 3 (-, -)~3
-1 -1 0 -1 -90° 0 (O, -)~o

0 -1 1 -1 -45° 4 (+, -)~4

+l -1 2 -1 -27° 4 (+, -)~4
+2 -1 3 -1 -18° 4 (+, -)~4

-2 0 -1 0 180° 0 (-,o)~o

-1 0 0 0 Undefined 0 (0,0)~0

0 0 l 0 oo 0 (+,o)~o

+l 0 2 0 oo 0 (+,o)~o

+2 0 3 0 oo 0 c + ,o)~o

-2 +l -1 +l 135° 2 (-, +)~2
-1 +l 0 +l 90° 0 (O, +)~o

0 +l 1 +l 45° 1 (+, +)~l
+l +l 2 +l 270 1 (+, +)~l
+2 +l 3 +l 18° 1 (+, +)~l

Table 9-2 Procedure for Computing Quadrant Numbers

Evaluate u]
Evaluate v

Algebraic Reverse-Polish

(v) (t;)

Enter

(u) (u)

J 1-1
arc tan

tan 0
0 r_J I

t

)~data input.

o~output.

Identify QuaE)drant

Number

Q= H(61)

O ~mental step done

by operator.

236

Reverse-Polish with

Rectangular-to-Polar

Conversion

(v)

Enter

(u)

J
R~P

r"
x y

'-"
0

Complex Zeros

Here H(B) is given by

Q= 1

Q=2

Q=3

Q=4

Q=O

if 0° < () <90°

if 90° < () < 180°

180° < () < 270°

-90° > () > -180°

270° < () < 360°

0° > () > -90°

if () = 0, 90, 180, 270, or 0

237

Though computing the quadrant number requires only a few key strokes
on the scientific calculator, and is a systematic analytical procedure,
quadrant numbers are more quickly determined by inspecting the signs of
u and v. Quadrant number determination by calculation is shown here
more for the sake of completeness than utility.

Figure 9-9 shows the array of quadrant numbers located at their respec
tive test points. Note that the line separating the quadrants 1 and 4, and 2
and 3, is the v = 0 line, while the line separating the quadrants 1 and 2, and

2 0

2 0

2 0

-0---0---0---0---0-x

3 0 4 4 4

I
Figure 9-9 Quadrant numbers and root location for complex function w = az + b where a= 1
and b= I.

238 Determining the Roots of a Function

iy

3

u = 0
2

v = 0
~-"-~---+-~~-+-~~-'-~~-'-~~---

-2 x

-1

Figure 9-10 The lines u = 0 and v == 0 sketched from the matrix of quadrant numbers shown
in Figure 9-9 for the complex function w = az + b (a= l, b = 1).

3 and 4, is the u = 0 line. These lines are sketched in Figure 9-10. While
w = az + b is a simple function whose zero is easy to determine, the
procedure is identical for complex functions of more complicated forms.
Hamming has worked a transcendental equation that illustrates this
method very well. Figure 9-11 shows the array of quadrant numbers for the

4

4 4 4 3 3

iyt
4 4 4 4 4 4 3 3 3 3 3

I
4 4 4 4 4 3 3 3 3 3 3

~ 4 4 4 3 3 3 3 3 3 3

I
2 2 1 4 4 3 3 3 3 2 2 2 2

I
2 2 1 4 3 3 2 2 2 2 2 2

I
2 2 0 1 4 4 2 2 2 2 2 2 2

I
2 2 2 1

I
2 2 2 2 1

I
-0~0~0~0~0~1--0~0~0~0--o~o~o~o~o~o~

Figure 9-11 Quadrant number array associated with w = ez - z 2.

An Improved Search Method 239

function

in the neighborhood of x = iy = 0. By inspection of the quadrant number
field it is possible to sketch the u = 0 = v curves, as seen in Figure 9-12.

iy

u= 0

u=O

-------- u = 0

v = 0 -----"'---+--------------___,... x

Figure 9-12 The curves u=O= v sketched from the matrix of quadrant numbers shown in
Figure 9-11 for the complex function w = ez - z2•

9-6. AN IMPROVED SEARCH METHOD

This unsophisticated approach to identifying the complex roots of a
function has one major fault. The evaluation of the quadrants for each grid
point requires a number of calculations to determine points that do not lie
near the zeros of the complex function and thus give relatively little
information about the location of the zeros. An alternative is to track the
u = 0 curve and to identify, by marking the spot where this curve crosses
the v = 0 curve, the region where the root will exist. The approach is to
search a u = 0 curve in a counterclockwise direction in the area we are
examining. The u = 0 curve will be indicated by a change from quadrant 1
to 2 (or 2 to 1) or from 3 to 4 (or 4 to 3). When we find the curve, we track
it until we meet the v = 0 curve. The v = 0 curve will be indicated by the
appearance of a new quadrant other than the two that we were using to
track the u = 0 curve.

The procedure is straightforward and requires little practice to learn to
conveniently track the u = 0 curve. In fact, the analyst learning to develop

240 Determining the Roots of a Function

this method should take known u and v functions and practice tracking
them until facility is developed in tracking unknown u = 0 curves.

9-7 PROBLEMS IN DETERMINING THE ZEROS OF POLYNOMIALS

In Chapter 2 we discussed methods for computing the roots of algebraic
equations of up to the fourth order. The methods presented in this chapter
permit the evaluation of the roots of higher-order polynomials. Poly
nomials are treated as special functions in determinining the zeros of
functions because much is known about their zeros. The fundamental
theorem of algebra guarantees that an nth-order polynomial will have
exactly n roots. Once a zero is found, it can be "divided" out of the
polynomial, thus reducing the order of the polynomial to a simpler form:

Also, all polynomials with real coefficients (those studied here) can be
made up of linear and quadratic factors. If a polynomial is of odd order, at
least one factor is linear and one root (at least) is real. Thus we must find
the real root and divide it out of the polynomial. When the polynomial has
been reduced to an even-order polynomial whose roots are either pairs of
complex conjugate roots, pairs of real and equal roots, or pairs of real but
unequal roots, we "scale" the polynomial so that the roots lie in a region
that can be conveniently tested for the presence of additional real roots
(they occur in pairs). When all real roots are identified, we merely need to
find the complex roots for the remaining quadratic factors of the even
order polynomials.

Even when numerical methods are available for determining the roots of
polynomials, we still encounter significant difficulty in the computing
aspect of this task. To solve linear differential equations with constant
coefficients, commonly the indicial equation is developed and solved for
the characteristic roots of the system. These roots are then used in the
assumed solution function to determine the solution of the differential
equation. If the characteristic roots of a second-order differential equation
are both real and equal, the solution should take the form

If, however, any nume:rical error enters into the pocket calculator
evaluation of the roots, two real and slightly unequal roots of the form

References 241

result

root1 = - k+ E

root2 = -k-t:

then the solution of the equation becomes

which is unlike the dynamics of a process with two real and equal roots. In
this example, the purpose was to evaluate the characteristic roots of the
differential equation, and even the smallest error affects the dynamics of
the resultant solution to the differential equation. In another case we may
be interested in the values of x and y that satisfy a system of simultaneous
equations where small errors in the zeros result only in small errors in the
evaluation of the simultaneous solution to the simultaneous equations.

All this serves to illustrate the following important point: the problem of
finding the zeros of a function means different things to different people. It
is necessary to define precisely what is required of the analyst when trying
to evaluate the roots of an equation (to find the zeros of a function).

Hamming further brings out this important point by noting that
theorems in mathematics do not necessarily apply to computing. In

. mathematics the notion of zeros of a function is a simple one, but not so in
computing. Hence the answers to the question, "What is wanted of the
zeros of a polynomial P(x)?" are usually as follows:

I. Those values of xi that make jP(xJI small should be as accurate as
required.

2. At the values xi the polynomial P(xJ should be as small as required.
3. The polynomial may be constructed as accurately as required from

the zeros.
4. The zeros satisfy the auxiliary conditions for roots of polynomials (see

Chapter 2).

What is required for one problem may not be required for another.
Generally, it is thought that (I) is the answer, but actually (3) or (4) is
really what is usually sought in applied analysis (as shown here in the
differential equation example).

9-8 REFERENCES

For this chapter refer to Richard Hamming's Numerical Methods for
Scientists and Engineers (McGraw-Hill, 1973), Chapters 4, 5, and 6.

CHAPTER 10

ST A TISTICS AND

PROBABILITY

10-1 INTRODUCTION

The determination of the statistics of finite data populations is the topic of
this chapter. For very large data populations probability is emphasized.
Since the formulas used in statistical analysis are uncomplicated and for
the most part directly implemented on the pocket calculator, we focus on
statistical analysis more than on analysis on the pocket calculator. The
objective is to provide the pocket calculator owner with a classical basis of
scientific statistical analysils. However, "tricks" of the pocket calculator
trade will be mentioned whenever applicable. Also, when there are a
number of alternative ways to compute a statistic, emphasis is placed on
the formulas that are most easily evaluated on the pocket calculator.

First we discuss the numerical evaluation of the statistics that
characterize data populations. Emphasis is on measures of central
tendency, measures of dispersion, data distributions, shapes of data distri
butions, and the elements of probability. Then we proceed to the concepts
of sampling and testing.

Throughout the chapter the focus is on the statistical analysis of groups
of data and their functional interpretation in engineering and scientific

242

Frequency Distributions 243

analysis. As in Chapter 6, we emphasize the following:

1. Understanding statistical analysis on the pocket calculator.
2. Providing useful formulas and tables of data for statistical analysis.

10-2 FREQUENCY DISTRIBUTIONS

A number of definitions and concepts are prerequisite to a discussion of
the formulas for computing the statistics of data populations. The defini
tions presented here are working definitions and are not presented in
abstract mathematical notation. We wish to impart a working knowledge
of statistical analysis on the pocket calculator, rather than a theoretical
knowledge of the field of statistics and probability.

A basic data population is simply a collection of statistics called the raw
data. Raw data are data that lack organization. Arrays and frequency
distribution are ways of organizing the data, so that the statistics of a
collection of data can be determined.

Arrays are arrangements of raw data in ascending or descending order;
that is, the data are tabulated starting with the largest number and
proceeding to the smallest, and vice versa. We say that the range of an
array is the difference between the largest and smallest numbers in the
array.

When large sets of data are stratified into categories and the number of
elements in the data set belong to each category or class, we form a data
distribution. This is done by generating a table of data by category or
class, together with the class frequencies, that is, the number of elements of
the set of all data belonging to each class. Such a tabular array is called a
frequency distribution or frequency table. An example appears in Table
I 0-1. Here the classes or categories are the intervals of height. Data
arranged in a frequency distribution are often also called grouped data.
The term "class mark" refers to the midpoint of a class interval.

In general, frequency distributions are developed by first determining
the range of the raw data, dividing the range into a convenient number of
class samples of the same size, and then determining the number of
observations that fall into each class interval (this, by definition, is called
the class frequency). Once the frequency distribution is known, histograms
can be developed to visualize the frequency distribution. Histograms are
simply a plot of the frequency against the range of raw data. An example
of a histogram for the frequency distribution in Table I 0-1 is shown in
Figure 10-1.

244 Statistics and Probability

Table 10-1 Heights of 100 Male Students in a
University

Cumulative
Height Number of Number

(in.) Students of Students

60-63 4 4
63-66 18 22
66-69 41 63
69-72 28 91
72-75 9 100

The relative frequency of a class is its frequency divided by the total
frequency of all classes. It is multiplied by 100 to obtain a percentage.
Plots of relative frequency over the range of the data are called a percen
tage distribution or relative frequency distribution.

The cumulative frequency distribution is simply defined as the total
frequency of all data less the upper class or category boundary of a given
class interval. The third column of Table 10-1 shows the cumulative
frequency distribution of the height of the 100 students. A cumulative
frequency distribution can be plotted over the range of data as shown in
Figure 10-2.

Relative cumulative frequency distributions are defined like the
frequency distributions, and so is their percentage.

50

40

30

20

10

60 65 70 75

Height (h) (-in.)

Figure 10-1 Frequency distribution (number of students in height interval lih).

Measures of Central Tendency . 245

100

75

50

25

60 65 70 75

Height (h) (-in.)

Figure 10-2 Cumulative frequency distribution (cumulative number of students with heights
less than or equal tc h).

Were the data to increase without bound, the histogram's frequency
distribution and cumulative frequency distribution would be expected to
be developed with increasingly finer quantitization until smooth curves are
obtained. The analysis of probability using continuous functions is the
field of probability analysis. Here we concentrate on the statistics
associated with finite sized data sets. We examine probability as well, but
our emphasis is on the statistical analysis of small sized data sets that can
be reasonably analyzed on the pocket calculator.

10-3 MEASURES OF CENTRAL TENDENCY

The mean, median, mode, and other measures of central tendency are the
statistics of data distributions. Numbers that inform us about the centroid
of the distributions are called measures of central tendency. There are not
a few such measures, all called averages. The most common of them have
already been discussed, but we mention them again in the context of this
chapter. They are the arithmetic mean, the geometric mean, and the
harmonic mean. Two other measures of central tendency that are impor
tant in statistics are the median and the mode. The arithmetic mean is
defined by the relationship

(10-1)

246 Statistics and Probability

The arithmetic mean can be quickly evaluated, as mentioned in Chapter 3,
either recursively or by simply summing all of the samples and dividing by
the total number of samples summed. For calculators with the I L I
function (shown as I M + I on many calculators) the inclination is to
perform the arithmetic mean with the key stroke sequence

ALGEBRAIC KEY STROKE SEQUENCE

for a total of (2N + 6) function key strokes and (SN+ 5) data entry key
strokes (assuming 5 digits for every data entry), totaling (7 N + 8) key
strokes. With the straight arithmetic sum, however, the key stroke sequence
lS

and involves only (6N + 6) key strokes, thus saving 15 to 20% in key
strokes. The benefits of the:~ or M + functions are only accrued when the
sum

N

Lf(X) == L j(Xi),
)=I

is computed. Then the intermediate calculation for evaluating the f(XJ can
be conducted without disturbing their accumulation.

If certain numbers occur more than once, in particular with frequencies
f 1,J2, ... Jn, then the arithmetic mean is defined by

K K LfX LfX
x = ""' r,.x. I ""' J,. = - = -~-1; ~1 "°' N

j=I j=I ~j
(10-2)

When the weighting factors are associated with certain numbers to
emphasize or change their importance in the distribution, the weighted

Measures of Central Tendency

arithmetic mean is defined as

~wx
X=-

~w

This is called the weighted arithmetic mean.

247

(10-3)

The median of an array of numbers (i.e., numbers arranged in order of
increasing or decreasing size) is defined to be the middle value of the array.
If the array has an odd number of elements, there is a single middle value.
If the array has an even number of elements, there are two middle values,
in which case the median is defined as the average of the two middle
values.

From a histogram viewpoint, the median is that value of the data range
which exactly divides the histogram into two equal parts. The mode of a
distribution is that value which occurs most frequently.

In general, distributions can have more than one mode, but only one
mean and one median.

For unimodal distributions that are only slightly asymmetrical (skewed)
the mean, median, and mode are approximately related by the relation

mean - mode= 3(mean - median) (10-4)

The distinction between the mean, median, and mode is shown in Figure
10-3.

Mean Mode

Median

Figure 10-3 Mean, median, and mode of a typical symmetric distribution.

248 Statistics and Probability

Another frequent measure of central tendency is the harmonic mean
defined by the relation

H=:--1 __

~ L l/X

N
(10-5)

L I/X

From time to time the mt::an of the logarithm of a set of numbers x is to
be computed; then the geometric mean of the numbers is given by

(10-6)

The recursion formulas for computing the geometric and harmonic
mean are presented in Chapter 3. Computing the harmonic mean using the
L (or M +) function on the scientific pocket calculator is an excellent
example of how this function saves key strokes. The key stroke sequence is

ALGEBRAIC KEY STROKE SEQUENCE

as opposed to

The number of key strokes with the I M + I operator is (6N + 11) and

(8N + 16) without. As much as 33% fewer key strokes are required when

the I M + I function is available on the keyboard.

Measures of Dispersion 249

In reverse-polish the sequence of key strokes is

REVERSE-POLISH KEY STROKE SEQUENCE

for a total of (7 N + 7) key strokes.
As mentioned in Chapter 3, the relation between the harmonic, arith

metic, and geometric means is

H<G<X (10-7)

when all of the numbers used for calculating these means are identical.
Another mean, used extensively in this chapter, is the root mean square.

It is a set of numbers defined by the relation

~ 2 1/2

RMS=(:) (10-8)

The evaluation of the root mean square on many scientific calculators is
simplified somewhat by the use of the M + x 2 function where the contents
of the display register (X) are squared and added to whatever is in the
memory register.

10-4 MEASURES OF DISPERSION

Dispersion is defined to be the distribution or spread of the data about the
average value. It is also frequently called the variation of the data. The
number of measures of dispersion or variation of data about the mean is
almost as large as the numbers of great statisticians. Here, we are con
cerned with those that can be used in practical analysis, such as the range,
mean deviation, and standard deviation of the data.

250 Statistics and Probability

The range of the data was defined earlier. The mean deviation or average
deviation of a set of numbers is defined by the relations

N

j~llX;-XI LIX-XI - -
mean deviation= MD=-----= =IX-XI =avg(IX-XI)

N N
(10-9)

The standard deviation is denoted by s and is defined by the relations

N - 2

S
--(j~I (x;-x))1/2 --(-2: (X-X)2)1/2 yr; -2

= = .. f(X-X)
N -1 N -1 1 V~

(10-10)

Occasionally the standard deviation is written m the "biased-estimate"
form:

(10-11)

for N > 30.
Finally the variance of a set of data is defined as the square of the

standard deviation. A better form for computing the standard deviation
from the pocket calculator viewpoint is

s=
[

LX 2 (Lx)2

]

112

_ 2 _21;2
-N- -- ---,:/ = (X - X]

[L~x' -(L:x)r
(10-12)

The standard deviation has a number of useful properties for computa
tional analysis. Thus for normal distributions (we discuss them later in this
chapter) 68.27% of all the cases are included between the mean ± s, that is,
68.27% of all cases reside within one standard deviation of the mean.

Similarly, 95.45% of all the cases lie within 2s of the mean and 99.73% of
all the cases lie within 3s of the mean.

Measures of Distribution Shape 251

If two distributions have total frequencies N 1, N2, their variations sf and
si can be combined according to the relation

2 N1sf+ Nisi
s =

N1+N2
(10-13)

when both distributions have the same mean (not an infrequent case). The
generalization of this formula to n distributions is straightforward when it
is noted that the variance of n distributions with the same mean is simply
the weighted arithmetic mean of the individual variances, where the
weighting factor is the frequency of each distribution.

As with absolute and relative error, we can quote absolute and relative
dispersions. A measure of relative dispersion is given by

absolute dispersion
relative dispersion= -------

average
(10-14)

If we use che measure of absolute dispersion to be the standard deviation
and the average to be the mean, we can define the coefficient of variation to
be

V=~ x (10-15)

Clearly, the coefficient of variation is useless for zero-centered symmetric
distributions.

10-5 MEASURES OF DISTRIBUTION SHAPE

Before going into measures of skewness and kurtosis, we must define the
moments of a distribution. The rth moment of a distribution consisting of
n values is given by

N

.L .4/ ""' x r
- j=l """' xr=---=--

N N (10-16)

The first moment where r = 1 is the arithmetic mean. For a nonzero mean
we can further define the rth moment about the mean as

L(x-x{
--N--= (X-X) (10-17)

252 Statistics and Probability

Similarly, the rth moment about any origin A is defined by

(10-18)

The moments for group data can be defined in a similar manner as

N

Lf;X/
-)=I xr=---

N
(10-19)

(10-20)

m;---N--- (10-21)

Again note that these formulas are in forms immediately useful for
evaluation on the pocket callculator without the need to rewrite them.

The degree to which a distribution is asymmetric is specified by the
skewness of the distribution .. That is, if the distribution has a longer tail to
the right of the distribution centroid, the distribution is said to be skewed
to the right and to have a positive skewness. Conversely, if the distribution
has a longer tail to the left of its centroid, the distribution is said to be
skewed to the left and to have a negative skewness. The mean tends to lie
on the same side of the mode as the longer tail for skewed distributions. A
measure of symmetry due to Pearson is therefore given by the difference
between the mean and the mode. This difference is then divided by the
standard deviation (to make the measure dimensionless) to form a measure
of the skewness. Thus Pearson's measure of skewness is

mean - mode X - mode
skewness= . .

standard devrnt10n s
(10-22)

Kurtosis is a measure of the degree to which the distribution is peaked.
A common measure of kurtosis is

(10-23)

Probability 253

That is, the fourth moment is divided by the fourth power of the standard
deviation. For Gaussian distributions, the measure of kurtosis is 3. Kurto
sis is then sometimes defined by the relationship

a4 - 3 =kurtosis

The moment of kurtosis is also referred to as the coefficient of excess.

10-6 PROBABILITY

Now that we have developed the basic definitions in statistics, we can
examine the elements of probability, which we later relate to statistics
through concepts in sampling. We will then be ready to discuss informa
tion theory, decision theory, the elements of nonparametric statistics, and
concepts of correlation. For our work here we define probability as
follows. If an event can happen in h ways out of n equally likely ways, the
probability of occurrence of this event is given by

h
p =Pr{ E} = -

n
(10-24)

we also say that this is the probability of success of the event; similarly
q = I - p is equal to the probability of failure of the event. Clearly, p + q
must equal I.

If E 1 and E 2 are dependent events, that is, the probability that E2 occurs
given that E 1 has occurred is nonzero, we say that the probability E 2 will
occur given E 1 is the conditional probability of E2 given E 1 and is written

(10-25)

Now, the multiplication law or the law of compound probabilities (i.e., the
probability that both E 1 and £ 2 occur simultaneously) is given by

Pr { E 1E 2 } = Pr { E 1 } Pr { E 2 IE 1 } (10-26)

and the addition law of probability (i.e., the probability that either E 1 or E 2
occurs) is given by

(10-27)

254 Statistics and Probability

If the events are mutually 1;!xclusive, then

(10-28)

since Pr(E1E2)=0. If the events are statistically independent, then

Pr{ £ 1£ 2 } =Pr{ £ 1} Pr{ £ 2 } (10-29)

since Pr(£ 21E1) =Pr(£ 2).

Clearly, for events that occur discretely, such as rolling dice and flipping
coins, we can form a discrete probability distribution by tabulating the
event and the probability that it will occur. An example appears in Table
10-2.

Table 10-2 Sum of Points on a Single
Throw of Two Dice

Sum of
Points
=X Pr(X) Cum Pr(X)

2 1/36 1/36
3 2/36 3/36
4 3/36 6/36
5 4/36 10/36
6 5/36 15/36
7 6/36 21/36
8 5/36 26/36
9 4/36 30/36

IO 3/36 33/36
11 2/36 35/36
12 1/36 l

Also, discrete probability distributions can be plotted like histograms.
Cumulative probability distributions can be developed in the same way as
our cumulative relative frequency distributions. Then, as the number of
probable events approaches infinity, the probability disiribution functions
become increasingly dense until we can form continuous probability distri
bution as the limit to which the discrete probability distribution
approaches as the quantitization in the process goes to zero.

Probability Distributions 255

A concept commonly used in probability is that of expectation. Expecta
tion is defined as follows. If X denotes a discrete random variable that can
take on values X 1,X2, ••• ,Xk with associated probabilities p 1,p2, ... •Pk•
where p 1 +Pi+ · · · +Pk= 1, the expectation of X is defined as

k

E(X)= L P1XJ= LPX (10-30)
)=I

The extension of equation 10-30 to continuous distribution is obvious. In
this case, we would define E(x) =µ(mu), the mean of the population; m
(the mean of the sample) is an estimate of the true E(x).

It should be clear from this discussion a very large random sample of
size N from a population would result in a sample mean that is very near
the population mean, whereas a sample mean based on a small sample
would not be likely to be very near the population mean.

10-7 PROBABILITY DISTRIBUTIONS

Of the many distributions used in probability and statistical analysis three
are frequently encountered in engineering and scientific work: the
binomial, the Gaussian, and the Poisson.

The binomial distribution is defined by

p(X)= NCxpxqN-x = X!(:~ X)!pxqN-x (10-31)

where p is the probability of success, that is, the probability that an event
will happen in any single trial; q is the probability that it will fail to
happen in any single trial, usually called the probability of failure and
equal to 1-p; and p(X) is the probability that the event will happen
exactly X times in N trials. Here X is defined only on the integers, that is,
X = 0, 1, 2, ... ,N. By definition this is a discrete probability distribution. Its
name reflects the fact that as X takes on integer values from 1 through N,
the corresponding probabilities are given by the terms in the binomial
expansion

(10-32)

256 Statistics and Probability

The statistics associated with the binomial distribution are developed in
many books and will not be repeated here. Four are usually used in
practical analysis, the mean, defined by

µ=Np (10-33)

the variance defined by

(10-34)

the coefficient of skewness defined by

q-p
a=

3 (Npq)1;2
(10-35)

and the measure of kurtosis (or coefficient of excess) given by

(10-36)

As an example of the application of the binomial distribution and its
statistics, let us consider 100 flips of an unbiased coin. The probability is
one-half that the coin will be heads and one-half that it will be tails. The
mean thus is

µ=Np

µ = 100 x -! = 50

The standard deviation is given by the square root of the variance:

a=YNpq

a = Y 100 X -! X -! = V 25 = 5

Probability Distributions 257

Skewness is zero, since p = q, and the measure of kurtosis equals

I-6pq
a4=3+ N pq

We see that the expected number of heads in 100 flips of a coin is 50.
The standard deviation for 100 trials is 5. We would not expect the
distribution of heads and tails to be skewed (if the coin is unbiased), but
would expect it to be approximately Gaussian (the kurtosis of a Gaussian
distribution equals 3).

The Gaussian distribution is defined by the equation

1 (x-µ)2
Y=---e-~

aV21T
(10-37)

where

µ=the mean

a= the standard deviation

The Gaussian distribution has the following characteristics:

1. The area bounded by the distribution and the X axis is identically
equal to 1.

2. The area bounded by the distribution and the X axis in the interval
between x =a and x = b where a< b is identically equal to the probability
that X lies between a and b. The Gaussian distribution is shown in Figure
10-4.

The parameters of the Gaussian distribution are the mean and variance,
defined by

mean=µ

variance = a 2

258 Statistics and Probability

y

0.4

.;;.l--_.._~_._---l"---~~~2 ~~--(x;u) -3 -2 -1 3

..... ,_ 68.27% --
-----95.45%----

99.73%------

----~~~·----y~~~~-----

Percent of area enclosed

by y (~' a µ.) and the abscissa

for (z ~ ~) = 1, 2, and 3

Figure 10-4 Gaussian distribution.

The skewness of the Gaussian distribution by inspection is zero. The
measure of kurtosis for the Gaussian distribution is given by

a4 =3

As mentioned before, the binomial and normal distributions are related.
If for a binomial random variable X,N, and P are not zero nor near zero
and N is large, the binomial distribution can be approximated with the

Gaussian distribution, since (X -Np)/\fNiq is approximately normal
with 0 mean and unit (1) variance. It turns out that the Gaussian distribu
tion is the limiting form of the binomial distribution as N approaches
infinity. In practical work the Gaussian distribution is a reasonable
approximation of the binomial distribution if both Np and Nq are greater
than 5.

Another probability distribution encountered in practical probability
work is the Poisson distribution, defined by

'Axe-'A
p(X)=X! (10-38)

Here A is a constant of the distribution.
The statistics of the Poisson distribution are all given in terms of the

single parameter A. The mean is given by

µ='A (10-39)

Probability Distributions 259

The variance is given by

(J2=A. (10-40)

which is identically equal to the mean (an interesting curiosity of the
Poisson distribution, which we discuss later). The coefficient of skewness
of the Poisson distribution is

1
a=--

3 V'};_
(10-41)

and the measure of kurtosis is

(10-42)

A number of things become apparent by examining the Poisson distribu
tion. First, it is discrete and its basic properties are not a function of the
number of trials being considered. Second, the larger the mean (A.), the less
the skewness and the more the distribution tends toward the Gaussian
distribution; accordingly the coefficient of excess approaches 3. From our
observations of skewness and kurtosis we might expect that the Gaussian
distribution is the limit to which the Poisson distribution approaches as A.
approaches infinity; this, in fact, turns out to be the case.

As might be expected, the binomial and Poisson distributions are re
lated, both being discrete and both approaching the Gaussian distribution
as a limit for large numbers samples (in the case of the binomial distribu
tion) or a large value of the mean (in the case of the Poisson distribution).
Note that in the binomial distribution if N is large and the probability p of
occurrence of an event is close to zero, q = (1 - p) is close to 1 and we say
that the event is a rare event. In these situations the binomial distribution
can be closely approximated by the Poisson distribution by letting .A.= Np.
Comparison of the mean, variance, skewness, and coefficient of excess
when A.= Np, p = 0, and q ~ 1 shows that the binomial distribution proper
ties (e.g., mean, variance) are approximately equal to those of the Poisson
distribution. Extension of the Poisson distribution to its association with
the Gaussian distribution follows through its association with the binomial
distribution. After a little algebra, it can be shown that the Poisson
distribution can be approximated by the Gaussian distribution, since

(X-A.)

\IX

is approximately normally distributed with zero mean and unit (!)variance.
It is common in statistical analysis to use these distribution functions to

260 Statistics and Probability

model the distribution of populations being studied. The approach is to
determine the mean and standard deviation of the sample of the popula
tion to estimate the mean and standard deviation of the population. The
modeling process is then tested for goodness of fit, using a number of
approaches. One that we discuss later in this chapter is the chi-square test.
Clearly, modeling a sample of a population with the binomial or Poisson
distribution solely amounts to determining the mean value (X) of the
sample distribution. For modeling the binomial distribution we compute

x
p=-

N
Then

q=l-p
A crude test is to determine if

where s is the standard deviation of the sampled population. If the
calculation shows that

then the Poisson distribution may better fit the data.

10-8 SAMPLING

The study of sampling deals with the determination of statistics (estimates
of distribution parameters) associated with a sample drawn from a popula
tion and the population parameters themselves. We are concerned with
sampling insofar as it is related to estimation, testing, and statistical
inference. First we wish to define a sample, in particular a random sample.
Generally it is not sufficient to sample a population in a systematic way.
Since the objective is to develop the statistics of the sample and inf er
something about the paramj~ters of the distribution, the sample that is
representative of the population must be chosen. There are a number of
methods for sampling a population, including stratified and random sampl
ing. One universally accepted way of sampling a population so that the
characteristics of the population are represented in the sample is random
sampling. Random sampling is a process in which each member of the
population has an equal chance of being included in the sample. Typically
a number is assigned to each member of the population, and the numbers

Sampling 261

are then scrambled, so that each sample of the population has the same
chance of being selected as any other sample.

There are two concepts of sampling: with and without replacement. The
concepts are straightforward. Sampling with replacement allows each
member of the population to be chosen more than once, while sampling
without replacement does not. The analysis is useful because a finite
sample with replacement can theoretically be considered infinite. Sampling
without replacement will result in a statistic that takes into account the size
of the sample compared with the total size of the population.

For any given sample of size N a value of a given statistic can be
computed for that group and, if another sample of the same size is
selected, in general a different value of the statistic is computed. This
process can continue (with or without replacement) until all statistic values
are in a population different. Clearly, if a population is of finite size and is
sampled with replacement, an infinite number of values can be determined
for each statistic. By organizing these values of the statistic, we obtain a
distribution of the statistic itself, which is called its sample distribution.
Clearly, then, there are sampling distributions of the mean, sampling
distributions of the standard deviation, sampling distributions of the
variance, sampling distributions of the measure of kurtosis, and sampling
distributions of the coefficient of skewness. Of all these possible statistics
we focus on those that help us in testing, estimating, and statistical
inference only.

Suppose that we have a population of finite size, say NP. Also suppose
that a sample of size N is drawn without replacement. Then if we denote
the mean of the sample distribution of the mean by

and the standard deviation of the sample distribution of the mean as

and, further, if we define the population mean and standard deviation byµ
and a, respectively, we can write

(10-43)

If the population is infinite or if it is finite but sampled with replacement,

262 Statistics and Probability

the population mean and standard deviations are related to the sample
mean and standard deviations according to

(J
(]-= --

x YN

(10-44)

For N greater than 30, the sample distribution of the mean is approxi
mately Gaussian with mean

µGaussian~ µX
and standard deviation

It is noted that the distribution of the mean of a population sample is
independent of the distribution population.

Suppose now that we draw a sample from each of two populations. The
number of samples drawn from the first population is N 1 and that from the
second population is N2. Now let us compute a statistic s1• We find that
each statistic has a sampling distribution, whose mean and standard
deviation we denote by µ

51
and a

51
• A similar situation holds true for the

second population; that is, it has a mean and standard deviation given by
µ

52
and a

52
• If we now consider all possible combinations of these samples

from the two populations, we can obtain a distribution of differences, that
is, S 1 - S2, which is called the sampling distribution of the differences of
the statistics. The mean and standard deviation of this distribution are
defined by equation I 0-45:

(10-45)

If S 1 and S2 are the sample means from two populations, the sampling
distribution of the differences of the means is given for infinite populations
with mean and standard deviation µ 1,a1 and µ2,a2 :

(I 0-46)

Statistical Estimation 263

These results hold for finite populations if sampling is with replacement.
The standard deviation of a population can also be computed from a

sample of the population. It, too, has a distribution with mean and
standard deviations

(
N)112

µs= O'~S N -1

(10-47)

For populations that are normally distributed this reduces to (µ2 = a2 and
µ4 = 3a4):

O' a=--
s Y2N

10-9 STATISTICAL ESTIMATION

(10-48)

We have just seen how statistical information can be computed from the
data of the sampled population. One of the key problems in statistical
inference is that of estimation of the population parameters (mean,
variance, kurtosis, etc.) from the corresponding sample statistics. Before
proceeding to the concept of confidence interval estimates for population
parameters, the key issue in this section, we must clear up the issue of
biased versus unbiased estimation. In computing a mean value one merely
sums the numbers of the sampled values and divides by the total number.
In computing the standard deviation, however, it is important to recognize
that it takes at least two points to compute a variance; hence the mean of
the variance of a distribution must be divided by N - l, not N. In this
sense, then, we have an unbiased estimator. As N becomes large, the effect
of biased estimation is clearly not significant. For small sample sizes,
however, it does matter.

We now estimate the confidence interval of population parameters. The
idea here is to sample the population, then compute a mean and standard
deviation for it, and try to infer what this tells us about the mean and
standard deviation of the population. If we define µs and as as the mean
and standard deviation of the sampling distribution of a statistic S, then
we can expect the sampling distribution of S to be approximately Gaussian

264 Statistics and Probability

(assume that N > 30) and the actual sampled statistic S lying somewhere in
the interval µS - <JS to µS +<JS, Or ~ts - 2<JS to µS + 2<JS, Or µS - 3<JS to µS + 3<JS
about 68.3%, 95.5%, and 99.7% of the time, respectively.

In other words, we can be confident of finding µs in the interval S - <Js to
S +as about 68.3% of the time; or in the interval S- 2as to S + 2as about
95.5% of the time; or in the interval between S - 3as to S + 3as about 99.7%
of the time. We can say that we are 68.3% confident that the mean lies
somewhere in the interval S ±as, that we have 95.5% confidence that the
mean lies somewhere in the interval S ± 2as; and that we have 99.7%
confidence that the mean µs lies somewhere in the interval S ± 3as. The
relationship between confidence levels and a levels is tabulated in Table
10-3.

Table 10-3 Confidence Levels
Associated with u Levels

Confidence Level a Level
(%) zc

50 0.6745
68.27 1.0000
80 1.28
90 1.645
95 1.96
95.45 2.00
96 2.05
98 2.33
99 2.58
99.73 3.00

The formula for computing the confidence interval associated with the
mean is given by

If the sampling is from an infinite population or from a finite population
but with replacement, the confidence limits in the estimate of the mean are
specified by

- <J
X+z--- CVN (I 0-49)

Sampling in the Small 265

if sampling is without replacement from a population of finite size NP:

- a (NP - N) i;2

X±zc YN NP-1
(10-50)

The equations for confidence intervals for differences and sums of two
statistics S 1 and S2 are given by

(10-51)

(10-52)

provided that the distribution of S 1 and S2 is approximately Gaussian.
By way of example, note that the confidence limits foi the difference of

two populations means in a case where the populations are infinite or are
finite but with replacement are given by

(10-53)

The confidence interval for standard deviations of a normally distributed
population is given by

(10-54)

Occasionally we need to reference probable error; we define it here but
retain the concept for reference. The 50% confidence limits of the popula
tion parameters corresponding to a statistic S are given by S ± 0.6745as.
This quantity is known as the probable error of the estimate and may be
worth memorizing.

10-10 SAMPLING IN THE SMALL

Earlier in the book we made use of the fact that there are simplifications in
the formulas for computing a statistic when N > 30. Here we are concerned

266 Statistics and Probability

with cases when N is substantially less than 30, and the emphasis is on the
determination of the statistics associated with small samples and on the
distribution of those statistics. Specifically, we consider here the students
I-distribution and the chi-square distribution.

The students I-distribution is defined by

;f-µ X-µ
t=--VN=l =--

s s/\/N
(10-55)

If we consider samples of size N selected from a Gaussian distribution with
mean µ and if we compute t given the sample mean and sample standard
deviation s, the sampling d:lstribution for I can be obtained. This distribu
tion is given by

Yo Yo
Y= -------

(! + 12 /(N- l))N/2 (I+ t: t+ll/2
(10-56)

Here Y0 is a constant depending on N and is such that the area under the
I-distribution is 1. The constant v = (N - 1) is called the number of degrees
of freedom. This distribution is called "students" t-distribution. Note that
for large values of v or N(N > 30) the curves closely approximate the
Gaussian distribution:

Y - 1 _,2;2 ---e
\If;

(10-57)

We can define the 95 and 99% confidence intervals by either computing
the confidence intervals on the pocket calculator or using a table of
t-distributions. Specifically, if - t0.975 n + t0.975 are the values of t for which
2.5% of the area lies in each tail of the t-distribution, then a 95%
confidence level for t is

X-µ --
- lo.975 <-

5
-\/ N-1 < to.975 (10-58)

Clearly, then, µ is expected to lie in the interval

X - 1o.975(- s) < µ < X + to.975(s)
v'N-1 YN-1

(10-59)

with 95% confidence.

Chi-Square 267

In general, we can represent the confidence limits for population means
by

x+t s
- CYN-1

(10-60)

10-11 CHI-SQUARE

We now proceed to the chi-square random variable, which is defined by

(10-61)

The chi-square distribution is defined by

Y - Y (2)1/2(v-2) -(x2/2)_ Y v-2 -x2/2
- oX e - oX e (10-62)

Here P = N - I is the number of degrees of freedom and Y0 is a constant
depending on P such that the total area under the curve is 1. The
chi-square distribution corresponding to various values of P are shown in
Figure I 0-5. As was done with the normal and t-distributions, we can

y

0 5 10 15 20 25
x2

Figure 10-5 Chi-square distribution for various degrees of freedom.

268 Statistics and Probability

define 95 and 99% or other confidence limits and intervals for chi-square
by using a table of the chi-square distribution. In this manner we can
estimate, within specified confidence limits, the population standard devia
tion a in terms of the sample standard deviations. If x5_025 and x5_095 have
the values of x2 for which 2.5% of the area lies in each tail of the
distribution, the 95% confidence interval is

2 Ns2 2

Xo.025 < - 2 < Xo.975
a

We can see that a is estimated to be in the interval

sYN <a< sVN

Vx5.975 Vx5.025

with 95% confidence.

10-12 CHI-SQUARE TESTING

(I 0-63)

(10-64)

The chi-square test is probably the most accepted test for determining
whether there is significance between the observed and the expected in
sampling a population. There are better tests. Once familiar with the
chi-square test-the only one discussed in this book-the student and
infrequent statistical analyst may wish to go on and examine the other tests
as well.

It is only reasonable to expect that the results of a sampling of the
population will not agrne exactly with expected values. In fact, it is
possible to partition a sample into a set of possible events £ 1, £ 2, £ 3,

£ 4, ..• ,En, and then tabulate the observed frequency with which these
events occur and the expected frequency from expectation analysis. For
example, the distribution function for a particular experiment might be
.expected to be a Poisson distribution. After some hand analysis the
expected value of the parameter A in the distribution function is identified
and the distribution itself is drawn. Then the interval of the random
variable can be partitioned into subintervals and the probability that the
random variable will occur in these intervals is computed on the basis of
the expected distribution. These expected frequencies can then be tabu
lated for each event, as shown in Table 10-4. After completing the table by
filling in the probabilities or frequencies of the observed events we are
ready to perform the chi··square test. Specifically, we are ready to deter
mine whether the observed frequencies differ significantly from the ex
pected frequencies.

Chi-Square Testing 269

Table 10-4 One-Way Classification Table

Event E, E2 E3 Ek

Observed
Frequency o, 02 03 Ok

Expected
Frequency e, e2 e3 ek

A definition of the difference between the observed and expected
frequencies is given by the statistic x2

:

(10-65)

Here the total frequency is N:

(10-66)

An alternate form of equation 10-65 commonly found in the literature is

(10-67)

Note that when the observed and expected frequencies agree, x2 = 0.
Obviously, the greater the difference between the two, the greater x2

. The
sample distribution of x2 can be closely approximated by the x2 distribu
tion

(10-68)

when the expected frequencies get larger than 7. In fact, as the expected
frequencies increase, the distribution more and more closely approaches

the x1 distribution. Here the number of degrees of freedom is given by

v=k-1 (10-69)

when the expected frequencies can be computed without having to deter
mine the x2 distribution parameters from the sample statistics themselves,
and the number of degrees of freedom Y/ is given by

v=k-1-m (10-70)

if m population parameters are determined from the sample statistics.

270 Statistics and Probability

The table of observed and expected frequencies can be extended to a
table of k columns and h rows in which the observed frequencies occupy h
rows and k columns. These are commonly called contingency tables.
Corresponding to each observed frequency there is an expected or theoreti
cal frequency. The x2 is then computed for the entire matrix, using the
formula

2

L
(o.-e.)

2 J J x =
el

(10-71)
j

where the sum is taken over all the elements of the matrix made up by the
contingency table. The sum of all observed frequencies is noted by N and
is equal to the sum of all expected frequencies. As with the one-way
classification table (Table 10-5) the distribution of the statistic for the h x k
table is given very closely by the x2 distribution provided that the
frequencies are not too small.

The number of degrees of freedom of this x2 distribution for k > 1 and
h > 1 is given by

v=(h-l)(k-1) (10-72)

if the expected frequencies are not computed from the population sample.
If they are, the degrees of freedom are given by

v=(h-I)(k-1)-m (10-73)

when m population parameters are determined from the sample statistics.
Usually expected frequencies are computed on the basis of a hypothesis

we are trying to test. If the computed values of x2 are greater than some
critical significance levels,. we can conclude that the observed frequencies
differ significantly from the expected frequencies. In this case we would
reject the hypothesis being tested at the test level of significance. For
example, if the value of x2 were to exceed the x5_95 , we would say the
hypothesis is rejected at a 95% level, that is, there is a 5% chance that the
rejection of the test could be wrong. Conversely, there then is a 95%
chance that we are correct in rejecting the hypothesis.

In a similar manner, we would expect that, when x2 is approximately
zero, the observed frequencies are in too close agreement with the expected
frequencies. Obviously, the approach here is to also reject those cases that
we consider to be in too close agreement, that is, when x2 is less than the
expected value of x2 95% of the time, such as x5.os·

The procedure we have just described assumes that we are going to
compare results from frequencies determined with continuous distributions

Chi-Square Testing 271

but applied to the discrete data associated with the finite samples. Yates
has developed a correction factor to account for this difference. The
corrected value of x2 is given by

(10-74)

This correction is made only when 1J =I. For large samples, the corrected
x2 approaches the uncorrected x2

• The reason for the correction is that the
uncorrected x2 can lead to significant errors near the critical values, that is,
the low probability values of the x2 distribution. For small samples where
the expected frequency is on the order of 7, it is better to use the corrected
value of x2

• In fact, some authors suggest the use of testing with both the
corrected and uncorrected values of x2

; if both lead to the same conclu
sion, the conclusion then is said to be unambiguously redefined.

There are a number of simple formulas for pocket calculator determina
tion of x2 that use only the observed frequencies. For the x2 testing table
shown in Table 10-5, x2 can be computed as follows:

2 N(IAI - N /2)
2

Xcorrected = N N N N
I 2 A B

Table 10-5 A 2 X 2 Table of Observed
Frequencies

Event
Event
Group II Total

A a1 a2 NA
B bl b2 NB

Total NI Ni N

(10-75)

(10-76)

272 Statistics and Probability

Similarly, for a 2 x 3 table, x2 is given by

(10-77)

Example 10-1 If 20% of the transistors produced by a process are defec
tive, using the binomial distribution determine the probability that out of
four transistors chosen at random, one, none, and at most two will be
defective. Since the probability of a defective transistor is

P=.2

and of a nondefective transistor it is

then

Thus

q= 1-p=.8

probability (1 defective transistor out of 4)

= c (.2)
1
(.8)

3
= 4! (.2)

1
(.8)

3
= .4096 4

l 1!(4-1)!

probability (0 defective transistors)= 4 C0(.2)
0
(.8)

4
= .4096

probability (2 defective transistors)= 4Ci(.2)\8)
2

= .1536

probability (at most 2 defective transistors)

=probability (0 defective transistors)

+probability (1 defective transistor)

+probability (2 defective transistors)

= .4096 + .4096 + 1536 = .9728

Example 10-2 The mean weight of 500 engineers is 170 lb, and the
standard deviation is 15 lb. Assuming the weights to be normally distri
buted, find how many engineers weigh between 139 and 175 lb and how
many weigh more than 185 lb. Weights recorded as being between 139 and
174 lb can actually have any value from 138.5 to 174.5 lb, assuming that

Chi-Square Testing

they are recorded to the nearest pound.

138.5 lb in standard units=
138 ·~~ 151

- -2.10

174.5 lb in standard units=
174·~~ 151

-0.30

Then the number of engineers between 139 and 174 lb is (Figure 10-6)

(area between z = - 2.10 and z = 0.30) = (area between z = - 2.10 and z

273

= 0) +(area between a= 0 and z = 0.30) = 0.4821+0.1179 = 0.6000

The number of engineers weighing between 139 and 174 lb is 500(0.6000)
=300.

~' -2.10 0.30

Figure 10-6 Percent of engineers weighing between 139 and 174 lb.

Example 10-3 Find the probability of obtaining between 3 and 6 heads
inclusive in IO tosses of a coin by using the binomial distribution and the
normal approximation of the binomial distribution.

Probability

0.3 -

0.2 1--

0.1 ,__

I

I: for probability between 3 and 6
heads inclusive

;---A-----..

I I I

0 2 3 4 5 6 7 8 9 10

Figure 10-7 Discrete binomial distribution.

274

The binomial distribution gives (Figure 10-7)

probability (3 heads)= 10Cit)\ t)
7

=. -M
probability (4heads)= 10Cit)

4
(t)

6
= Wt

probability (5 heads)= 10C5(t)
5

(t)
5
= &

probability (6 heads)= 10 C6(t)
6
(t)

4
= m

Thus

Statistics and Probability

probability (of getting between 3 and 6 heads inclusive)

= 15/128+ 105/512+63/256+ 105/512=99/128=0.7734

The probability distributi1on for the number of heads in 10 tosses of the
coin is shown graphically in Figure 10-8. The required probability is the
sum of the areas of the cross-hatched rectangles and can be approximated
by the area under the corresponding normal curve shown dashed.

Probability

0.3

0.2

0.1

0 2 3 4 5 6 7 8 9 10

Number of heads

Figure 10-8 Data treated as continuous normal distribution.

Using the normal distribution, 3 to 6 heads can be considered as 2.5 to
6.5 heads. The mean and variance for the binomial distribution are given
by

µ = Np = 10(t) = 5

and

a= \INpq =V(lO)(!)(!) = 1.58

2.5 in standard units= \~; 5
= - 1.58

Chi-Square Testing 275

and

6.5 in standard units=
6 ·1~; 5

= 0.95

The probability of getting between 3 and 6 heads inclµsivf! in the area
between z = - 1.58 and z = 0.95 under the normal distributipn curve is

(area between z = - 1.58 and z = 0) + (area between z = O and z = 0~95)

= 0.4429 + 0.3289 = 0. 7718

which compares very well with the true value 0.7734 obtained using the
binomial distribution.

Example 10-4 Measurements of the diameters of a random sample of 200
bearings made by a certain machine showed a mean diameter of 0.824 in.
and a standard deviation of 0.042 in. Find (a) 95% and (b) 99% confidence
limits for the mean diameter of all the bearings that will be made by this
machine.

The 95% confidence limits are given by

which is approximately

X± 1.96a
VN

X± 1.96.S
YN

In this example, X = 0.824 in. and s = 0.042 in. Thus

0.824 ± 1.96(
0

·
042

)
V200

0.824 ± 0.0058 in.= (0.8182, 0.8240)

with a 95% confidence interval.
The 99% confidence limits are given by

which is numerically equal to

X± 2.58.S

YN

o.824 ± 2.58(
0

·
042

)
V200

276 Statistics and Probability

Thus

0.824 :±: 0.0077 in.= (0.8163, 0.8317)

with a 99% confidence interval. Note that we have assumed the reported
standard deviation to be the unbiased standard deviations. If the standard

deviation had beens, we would have used s=sVN/(N-1)

= V 200/199s , which can be taken as s for all practical purposes.

Example 10-5 A small sample of 10 measurements of the length of a bolt
give a mean of X = 4.38 in. and a standard deviation of s = 0.06 in. Find
the 95% and 99% confidence limits for the actual length.

The 95% confidence limits are given by

Since

we can find

X ± to.915(_s_)
YN-1

v=9

t0 _975 = 2.26

from Table 10-6 or directlly using the definition of the t distribution.
Using X=4.39 and s=0.06,_we can be 95% confident that the actual mean
will be included in the interval

4.38 ± 2.26(~) = 4.38 = 0.0452 in.
VI0-1

The 99% confidence limits are given by

X ± to.995(_s_)
YN-1

Where v = 9 and t0.995 = 3.25. Then with 99% confidence we can expect the
actual mean to be included in the interval

4.38 ± 3.25(~) = 4.38 ± 0.0650 in.
VI0-1

Now we work this problem, assuming that large sampling methods are

Chi-Square Testing 277

Table 10-6 Percentile Values (tP) for the Single-Sided
t-Distribution with v Degrees of Freedom

v to.995 to.99 lo.975 0.95 lo.9o

63.66 31.82 12.71 6.31 3.08
2 9.92 6.96 4.30 2.92 1.89
3 5.84 4.54 3.18 2.35 1.64
4 4.60 3.75 2.78 2.13 1.53

5 4.03 3.36 2.57 2.02 1.48
6 3.71 3.14 2.45 1.94 1.44
7 3.50 3.00 2.36 1.90 1.42
8 3.36 2.90 2.31 1.86 1.40
9 3.25 2.82 2.26 1.83 1.38

10 3.17 2.76 2.23 1.81 1.37
11 3.11 2.72 2.20 1.80 1.36
12 3.06 2.68 2.18 1.78 1.36
13 3.01 2.65 2.16 1.77 1.35
14 2.98 2.62 2.14 1.76 1.34

valid, and compare the results of the two methods. Using large sampling
methods, we obtain the 95% confidence limits

X ± 1
·
96

a = 4.38 ± 1.96(
0

·
06

) = 4.38 ± 0.037 in.
\IN · VIO

where we have used the sample standard deviation 0.06 as an estimate of a.
This is to be compared with 4.83 ± 0.0452 using small sample statistics.

Similarly, the 99% confidence limits are

X ± 2
·58

a = 4.38 ± 2.58(
0

·
06

) = 4.38 ± 0.049 in.
YN VW

as compared with 4.83 ± 0.0650.
In each case the confidence intervals obtained by using the small or

exact sampling methods are greater than those obtained by using large
sampling methods. The reason is that less precision is available with small
samples than with large samples.

278 Statistics and Probability

Example 10-6 Test scores of 16 students from one city showed a mean of
107 with a standard deviation of 10, while the same test scores of 14
students from another city showed a mean of 112 with a standard devia
tion of 8. Is there a statistically significant difference between the mean
scores of the two groups at a 0.01 and a 0.05 level of significance?

If µ 1 and µ2 denote population mean scores of students from the two
cities, we will see if we can reject the hypothesis

That is, there is no statistically significant difference between the groups.
The reader can easily show for himself that in the case of comparing two

sample sets

where

a=

Then

X1-X2
t=-------

aYl/N1+l/N2

N 1st+ N2s?
N 1+N2 -2

16(10)
2

+ 14(8)
2

16+ 14-2

t = 112 - 107 = 1.45

9 .44 V 1 / 16 + 1 / 14

=9.44

On the basis of a two-tailed test at a 0.01 level of significance, we would
reject H 0 if t were outside the range - t0 _995 to t0 _995 . For (N 1 + N2 -2)
degrees of freedom=(16+ 14-2)=28, this range is -2.76 to 2.76. It
follows that we cannot reject H 0 at a 0.01 level of significance.

We would reject H 0 on the basis of a two-tailed test at a 0.05 level of
significance if t were outside the range - t0_975 to t0_975 . For 28 degrees of
freedom this range is -2.05 to 2.05. Again we cannot reject H 0 at a 0.05
level of significance.

We conclude, therefore, that there is no significant difference between
the scores of the two groups.

Example 10-7 The standard deviation of the heights of 16 male students
chosen at random in a school of 1000 male students is 2.40 in. Find 95%
and 99% confidence limits of the standard deviation for all male students
at the school.

Chi-Square Testing 279

The 95% confidence limits are given bys\/ N /x0.975 and sYN /x0.025 .

For

or

and

or

v = 16 - 1 = 15 degrees of freedom

x6.915 = 27.5

Xo.975 = 5.24

x6.025 = 6.26

Xo.025 = 2.50

Then the 95% confidence limits are 2.40Vi6 /5.24 and 2.40\/16 /2.50,
that is, 1.83 and 3.84 in. Thus we can be 95% confident that the population
standard deviation lies between 1.83 and 3.84 in.

The 99% confidence limits are given by

sV N !xo.995 and s VN / Xo.005·

For

v = 16 - 1 = 15 degrees of freedom

2
Xo.995 = 32.8

or

Xo.995 = 5.73
and

x6.oo5 = 4.60
or

Xo.005 = 2.14

Then the 99% confidence limits are 2.40Vi6 /5.73 and 2.40Vi6 /2.14,
that is, 1.68 and 4.49 in.

Thus we can be 99% confident that the population standard deviation
lies between 1.68 and 4.49 in.

The number of degrees of freedom of a statistic are denoted by 17, which
is defined to be the number of independent observation samples minus the
number of population parameters that must be estimated from the sample
observations.

PART FOUR

THE PROGRAMMABLE

POCKET CALCULATOR

CHAPTER 11

THE PROGRAMMABLE

POCKET CALCULATOR

11-1 INTRODUCTION

As mentioned in the preface, the premise of this book is that the pocket
calculator provides the analyst with a new dimension capability. The
programmable pocket calculator, in the author's opinion, is yet another
advance in pocket computing capability for the scientific analyst.

From the analyst's viewpoint, the most significant use of the pocket
calculator may turn out to be as a teaching machine. The usual approach
to learning a new discipline or a new technology involves four steps:

1. Studying the discipline in the textbook fashion.
2. Identifying or developing the mathematical tools that have been

useful for solving the discipline's problems.
3. Working the "textbook" problems to learn the details and subtleties of

the discipline through quantifying the problems with numbers, tables,
graphs, and drawings.

4. At least two to three years of application of the mathematical models
by working in the discipline itself.

The last step in this process takes one from the textbook-type knowledge to
actual knowledge of the discipline itself. Here, the mathematical models
are usually more complex, requiring many subtle considerations. For
example, Fourier analysis as studied in the textbooks is often confined to
Fourier series and Fourier integral representations of continuous functions
defined on the entire domain of the reals. In practical harmonics analysis,
the functions are usually finite in length and the data are usually

283

284 The Programmable Pocket Calculator

sampled, requmng "window carpentry" filtering of the data prior to
conducting the harmonic analysis. These "practical problems," while dis
cussed in textbooks, are rarely given the consideration that they require in
actual data handling problems.

With the advent of the programmable pocket calculator, the analyst now
has libraries available for many disciplines other than his own. These
libraries have been developed by persons highly experienced in their
disciplines. By merely securing the standard library for a specific disci
pline, the analyst who has a programmable pocket calculator can, in a
matter of weeks, become familiar with the programs and mathematical
tools used in the discipline. Having acquired experience with practical
programs, he can then focus his attention on the problems in his discipline
and how to use the programs to solve them. In a sense the learning process
is reversed. The analyst begins with the ability to numerically evaluate
problems with which he is only vaguely familiar. These are practical
problems, however, and involve mathematical models that have passed the
test of time in practical analysis. Under the guidance of a person ex
perienced in this new discipline, the learning process is fast.

The programmable pocket calculator is a good teaching machine also in
that it is portable and the learning can be conducted in the comfort of
one's own home. In the past, the numerical evaluation of most pra...:1ical
engineering problems was usually done on either a digital computer or a
programmable desk-top calculator at work (provided that the analyst could
justify his request for a budlget to run the computers). Now the analyst can
study even the more complex aspects of any given problem or discipline at
home, where most of us do our homework anyway. Furthermore, the
analyst learns more quickly now because he spends most of his time
thinking and deriving, with a minimum of effort (stroking the key strokes)
on numerical evaluation.

The next most important capability that the pocket calculator brings to
the scientific analyst is the iterative computation of numbers and the
preparation of extensive tables and graphs (involving many point pairs) for
a more extensive set of problems than could be handled on the nonpro
grammable pocket calculator. For the many consultants and small en
gineering organizations that do not have a computer facility, the pro
grammable pocket calculator can bring to each member of the staff
tremendous computing power.

Scientists and engineers usually do not compute, but develop the formu
las that are used to compute the numbers and thus provide the insight to
solve problems. The pocket calculator allows the analyst to begin with a
top-level mathematical model of his process and refine it very quickly by
testing the model numerically. Here he develops a system of equations that
he thinks will describe a process or solve a problem and uses the pocket

Hardware Considerations 285

calculator to numerically evaluate the equations so that the results can be
compared with what is observed about the system. The analyst judges the
degree to which the model can satisfactorily predict the behavior of the
process. Any major discrepancies lead to revisions and improvement in the
model. Thus, while Newton's laws and Lagrange's equations generate the
equations of motion of a process that, when solved, will predict its
behavior, the numerical comparison between the actual observed behavior
and the predicted behavior may indicate that certain elements are left out
of the models. In the Newtonian formulation of mechanics this would lead
to more comprehensive free body diagrams to better understand the
system and thus to derive better mathematical models. In the Lagrangian
formulation of mechanics it would lead to the development of a more
refined Lagrangian which would have more energy terms to account for
the additional elements in the system.

We see, then, that the pocket calculator does not improve the "method"
for generating the equations of motion but helps to improve the mathema
tical model to which the methods are applied. This development of
mathematical models using numerical testing is a convenient and fast
operation with the programmable pocket calculator. There is no waiting
for a batch-processed computer run to be made to get the data for
improving the model. There are no "charge numbers" or budget required
to permit the analyst to use the computer. On the programmable pocket
calculator the cost of the run is in the "noise" of the electric bill. Finally,
when an acceptable mathematical model is developed, the analyst can
transfer the model to a magnetic tape strip and store the model for future
use-a convenient means for conserving the energy spent preparing the
mathematical model. Furthermore, the key data used in the analysis of a
problem can also be stored on the magnetic tape for future reference.

Thus the programmable pocket calculator also provides an effective
means of documenting an analysis. The analyst can collect a magnetic tape
library at relatively small expense, requiring minimal storage space at
relatively low cost.

Finally, the programmable pocket calculator provides the engineer with
portable low-cost computing power for use in the field, in his car, at his
customer's location, or in the convenience of his home.

11-2 HARDWARE CONSIDERATIONS

The programmable pocket calculator has the following parts:

I. The arithmetic unit, that is, the combination of registers that perform
the arithmetic.

286 The Programmable Pocket Calculator

2. The memory, which stores numbers and instructions as programmed
from the keyboard or from stored programs on magnetic tape.

3. The firmware associat 1ed with the calculator, that is, its "hard wired"
programs and instruction siet that are already built into the calculator.

Calculators perform numerical calculations only, as opposed to compu
ters, which are alpha-numeric data processors. Today's programmable
calculator, and any that might be expected in the near future, will only be
limited in the fact that they perform numerical calculations and not
alpha-numeric operations. Apart from this, the pocket calculators are
similar to digital computers. Specifically data 'can be stored in memory,
recalled to the arithmetic registers or arithmetic unit, and processed and
restored in memory following the sequence of preprogrammed operations.
An essential and interesting difference between the typical calculator and
its digital computer counterpart is that many calculators operate in dec
imal rather than binary arilthmetic. The reason is that decimal arithmetic
involves less electronics for the special-purpose calculators than would
conversion from decimal to binary and back again, as on general-purpose
digital computing machines. Memories therefore are often set up in integer
multiples of 10, as is the number of registers in the computing machine.
For example, certain pockt:~t calculators have one constant storage register
and four arithmetic registers, in which the register arithmetic is performed.
Ten additional storage registers are available in an advanced model of the
basic calculator. The HP-65, has 100 programmable steps that can be put
into memory.

The memory in most programmable calculators can be expected to be a
set of registers in conjunction with the operating stack for performing
register arithmetic and for scratch-pad storage during the execution of a
program. From the standpoint of memory for storing numbers, there are
only the registers in the stack plus the scratch-pad registers for number
storage and manipulation. For example, if there are 9 scratch-pad registers
and 4 stack registers, there are 13 total storage locations for storing
numbers generated by a program. There is, however, memory for integer
multiples of 10 keyboard instructions. For example, in the HP-65, 100
instructions can be stored in the calculator for sequential operations. That
is, a program of 100 key strokes on the keyboard of the machine can be
stored and executed automatically. Though numbers can be programmed
into the calculator, using the 100 storable key strokes is relatively in
efficient. Instead, the numbers can be input into the scratch-pad memory
directly as opposed to inputting a 13-digit number into memory with 13
key strokes. This is perhaJPs the only important distinction between pro
grammable pocket calculators and the standard digital computer. The
programmable pocket calculator can be expected to store about 100 to

Firmware 287

100,000 key strokes, not 13-digit numbers. Thus when we say that a digital
computer has 32k 16-bit words or that a desk-top calculator has 4k 12-bit
words, for the pocket calculator we say that it can store 100 or so key
strokes. This might seem somewhat limiting, but actually most pocket
calculator problems involve fewer than 100 key strokes. With a 100-stroke
memory capability we can evakate rather advanced mathematical func
tions and program fairly sophisticated iterative procedures for solving
difficult problems.

The speed with which the pocket calculator processes the 100 instruc
tions varies from calculator to calculator. From 10 to 1000 instructions per
second can be expected from present-day pocket calculator electronic
circuitry.

11-3 FIRMWARE

The firmware consists of the instruction set built into the pocket calculator
and "called" from its keyboard. The basic instruction set usually contains
all of the functions on the keyboard of the scientific calculator and a set of
special functions associated with the programming aspect of the pro
grammable pocket calculator. These include the following:

1. The GO-TO instruction. This instructs the calculator to perform the
instruction at the nth step in the stored program. Thus GO-TO 50 would
tell the computer to perform the instruction at the fiftieth step in the
program.

2. The JUMP instruction. This instructs the calculator to jump the next
two steps. It is expected that this instruction will be a natural part of all
programmable calculators, and the two steps that are skipped are usually
GO-TO type instructions. Thus the JUMP instruction with the GO-TO
instruction permits the calculations to be looped iteratively in the com
puter program.

3. The DECREMENT AND JUMP ON ZERO instruction. This in
struction, which can reasonably be expected in programmable calculators,
examines the contents of one of the scratch-pad storage registers. If the
register is not zero, it decrements the register by 1 and continues. When the
register is zero, it will perform the JUMP operation.

4. The LOGICAL or TEST FLAG instruction. The flag can be set equal
to 1 or zero, thus controlling the data flow in a calculator program, based
on whether the flag is 1 or zero. Usually, the test flags or Booleans can be
set manually on the keyboard or, since it is a keyboard instruction, with
the program.

288 The Programmable Pocket Calculator

5. The STOP instruction. This is an instruction to stop the program.
6. The TEMPORARY STOP or RUN/STOP instruction. The calculator

is told temporarily to stop, usually for the purpose of data input or data
output.

Other keyboard instructions that can be expected to be found on the
typical programmable pocket calculators are the DELETE function, the
NO-OP function, and the SINGLE-STEP function. The SINGLE-STEP
function permits the program to be processed or reviewed a single step at a
time. This is for the purpose of debugging the program and examining or
modifying the program by stepping up to the location in the instruction
sequence that is to be modified or changed and the DELETE function
instruction used to delete the previously programmed instruction, leaving it
available for reprogramming. Finally, the NO-OP function can be used to
fill memory with an instruction not to perform an operation. In this way,
the remaining steps of a program can be safeguarded against accidental
programming of the instruction sequence with undesirable program steps.

The firmware in a programmable pocket calculator can also include a
keyboard for performing user-defined functions-functions that are pro
grammed in a normal manner by a sequence of key strokes telling the
calculator how to execute the function. Of the firmware just discussed,
only the latter uses part of the programmable memory; the former func
tions are part of the keyboard sequence and thus are designed into the
electronics of the calculator.

11-4 SOFTWARE

The software in programmable calculators is usually a magnetic tape strip,
a magnetic card strip, or a tape cassette that is used to both read in and
read out data and instructions from- or -to the memory of the calculator. It
can be expected that manufacturers will provide preprogrammed software
for performing analysis for many disciplines. In fact, it is precisely this
software that permits a single pocket calculator to be programmed to
perform special-purpose calculations in many disciplines. In a discussion
with the Chief Engineer on the HP-65 Program, Chung Tung, the author
was informed that it was precisely this motivation that led Hewlett
Packard to develop the HP-65, the first of the programmable pocket
calculators.

The software associated with any pocket calculator would usually be
developed so that problems involving more than 100 instruction sets and
requiring more than the scratch-pad storage provided by the stacks plus
scratch-pad memory can be programmed on a series of mag tapes or mag

Programmable Pocket Calculator Techniques 289

card strips. In attempting to see how far this process could be carried, the
author programmed an I I-card sequence on the HP-65 for executing the
lateral and vertical channels of an automatic landing system simulation
which involves the numerical integration of a 14th-order continuous
dynamic process, including saturation limits and other hard-stop non
linearities. While somewhat impractical to use, it does point out the
flexibility of this method when general-purpose computing machines are
not available-when the calculation is required in the field or when
research is being conducted away from the computer center.

A similar procedure can be used for storing data in excess of the 100 key
strokes plus the limited scratch-pad storage available in the pocket cal
culator.

11-5 PROGRAMMABLE POCKET CALCULATOR TECHNIQUES

The basic procedure for solving a problem on the programmable pocket
calculator is as follows:

1. Definition of the problem. The generic types of problem that are
conveniently solved on the pocket calculator are data processing (which
includes interpolation, extrapolation, and filtering), the numerical evalua
tion of functions, the solution to systems of equations (whether algebraic
or differential), the simulation of continuous processes, the frequency
domain analysis of data, and the statistical analysis of data. All these
topics are covered in this book.

2. Preparation of a math flow of the sequence of key strokes required. For
this the equations for solving the problem must be determined and the
sequence of key strokes to numerically evaluate the equation must be
worked out in a form that can be solved explicitly, implicitly, or by a
combination of both. The preparation of the math flow will, by definition,
identify the control operations for automatic execution of the key strokes.

3. Programming of the calculator by keying in the key stroke sequence,
including control operations. Once the program is stored in memory, it is
useful to load it onto a mag-tape strip so as not to inadvertently destroy
the program. It is reasonable to expect that programmable calculators will
have an ERASE BEFORE WRITE tape load function. Thus reprogram
ming or redefining the program or modifying the program can be restored
on the same mag-tape strip or cassette by simply reloading the program on
the mag-tape strip.

4. Verification and checking of the program by tests with all numerical
values set equal to zeros, 1, or a single sequence of numbers that permit
testing the program and its loops.

290 The Programmable Pocket Calculator

5. Running the sequence automatically with the actual problem data.

As an example, consider the problem of analyzing a low-pass filter.
Figure 11-1 shows the three steps in the mathematical modeling process.
First, the physical block diagram model of the process is drawn, including
all of the hardware elements, the system inputs, and the system outputs. In
this particular case we have a high-gain amplifier with impedance networks
on the forward and feedback loops, which result in the passage of the
low-frequency components of the input signal to the output while attenuat
ing the high-frequency components. The mathematical block diagram of
this filter in Laplace transform notation is the second step in the modeling
process shown in the figure. The frequency response of this filter can easily
be determined by replacing S withjw and computing the transfer function
of the filter algebraically. For the more difficult problem of determining
the time-domain response of the filter to arbitrary forcing functions, it is
necessary to prepare the differential equation that models this physical
program. This is the third step in the modeling process shown at the
bottom of Figure 11-1. The next step is to prepare a math flow for the
low-pass filter mathematical model.

The math flow visualizes the way in which the problem is intended to be
solved on the programmable pocket calculator. As shown in Figure 11-2,

Rt

Let ein = X and eout = Y

Ri Cd'+ Y = !ii X
Rt

Step 1

Physical
Block diagram
model

Step 2

Mathematical
Block diagram
model

Step 3

Differential equation
model

Figure 11-1 Low-pass filter mathematical model. S =Laplace transformation operator.

Programmable Pocket Calculator Techniques

Initialize {
path

Compute
the rate
of motion

Compute
the change
in state

{

{
Test to
determine {
whether problem
is solved

If problem
solved display
result {

y
0

=xx . xx
x

0
=xx . xx

R i =XX . xx
Rf= xx . xx

CI: XX , XX

T =xx . xx
11 =xx

--------1 Xn = f(Yn, n, T)

11 = /1 - 1

No

Display Y

Figure 11-2 Math flow of low-pass filter mathematical model.

If
problem
not
solved
solve
equations
of motion
again

291

the first task is to initialize the problem with the state variables and
parameters in the problem, together. with the coefficients involved in the
numerical integration process for solving the differential equations of
motion of the low-pass filter and the control variable that is used to
determine the computing path within the math flow. In this case the initial
state vectors are the initial values of the filter input and output, the
parameters are the resistance and capacitance of the filter, the parameter
associated with the numerical integration process is the integration step
size, and the control variable is the number of steps that we will take
through the system of differential equations to compute the filter's re
sponse at a time nT.

After traversing the initialization path, the calculator is programmed to
compute the rate of change of motion of the filter output. On computing
the rate, the next step in the math flow is to compute the new value of the
filter output, which is then followed by a test to determine if the calcula
tions are to be stopped. In this example we ask if 100 passes through the
system of equations have been taken. When the answer is yes, results are

292 The Programmable Pocket Calculator

displayed in the display register. If the answer is no, another pass through
the system of equations of motion is made (after renaming the variables
and computing the forcing function for the next step, of course). In this
example we simplify the situation by examining only the step response of
the filter. The calculation of the forcing function in the closed-loop
feedback process then is not necessary. This has no effect on the general
nature of this discussion, since computing the forcing function is a
straightforward process when it is necessary.

Table 11-1 illustrates the third step in the problem-solving procedure
preparing a key stroke sequence that can be programmed on the pocket
calculator. In this example, the HP-65 calculator was used and some
attention must be given to the details of its implementation on the HP-65

Table 11-1 Preparation of a Key Stroke Sequence

Math Flow
Key

Math Flow Stroke Function

Initialization Path LBL-A Label the initialization path A

R/S Stop then input and store Yo
ST0-1
R/S Stop then input and store x 0

ST0-2
R/S Stop then input and store R;
ST0-3
R/S Stop then input and store R1
ST0-4
R/S Stop then input and store C;
ST0-5
R/S Stop then input and store T
ST0-6
R/S Stop then input and store n
ST0-8

Identify loop closure points LBL-1 Label this step "l"

Compute rate RCL-2 Recall x
RCL-3 Recall R;
RCL-4 Recall R1

R;/F1
x (R;/ R1)x

Programmable Pocket Calculator Techniques 293

to understand this step of the procedure for solving problems on the
programmable calculators. Though this key stroke sequence was pro
grammed on the HP-65, it is typical of the key stroke sequences one would
expect to encounter on most programmable pocket calculators.

The first 15 steps shown in Table 11-1 are the steps taken along the
initialization path. The sequence begins by labeling the initialization path
A to distinguish it from the normal feedback path which begins at step 16
and is labeled 1 (it identifies the point at which the feedback path loop
closure occurs). The steps 2 through 15 involve automatically stopping to
input a number on the keyboard and then manually starting the program
again to store the keyboard number in memory. For example, step 2 stops
the automatic program sequence so that the variable Y0 can be input on

Table 11-1 (Continued)

Math Flow

Compute rate

Compute state

Test for problem
being solved

Go through
equations of

Key
Stroke

RCL-1
CHS
+
RCL-3
RCL-5
x

RCL-6
x
RCL-1

+
ST0-1

DSZ

Math Flow

Function

Recally
-y
(Rj R1)x-y
Recall Ri
Recall Ci
RiCi
(Rj R1)x-y

=y
RiCi

Recall T
~y=Ty

x=y+~y

Yn=Yn+l

Test register 8 for zero. If zero,
skip next step and proceed

motion again if not solved GT0-1 If R-8 not zero then go to step "l" and decrement
R-8 by one and go to 1

Display results R/S Display y

294 The Programmable Pocket Calculator

the keyboard and then stored in location 1 (step 3) when the RUN-STOP
key is again stroked (step 2). When operating, the computer will automati
cally progress to the first RUN-STOP (which is step 2), will stop, the
variable Y0 is manually input through the keyboard into the display
register, and when the RUN-STOP key is stroked, the variable Y0 will be
stored in memory register 1 (step 3). The computer will then automatically
proceed to step 4 where it will stop to await keyboard input of X0 and the
associated RUN-STOP key stroke to allow the program to proceed to step
5 which is to store the contents of the display register in memory register 2.
This procedure of initializing the program continues until step 15 where
the loop closure point is identified by labeling that particular step as step 1.

The next 12 steps compute the filter output rate according to the
differential equation shown in Figure 11-2. Updating the filter output is
done in the next five steps of the program. Then a test is made to see if 100
passes through the equations of motion have been completed. This is the
step beginning with the key stroke DSZ, which means "decrement and skip
on zero." The function of the DSZ is to test register 8 for zero. If register 8
is zero, the next step in the program wi11 be skipped. In this example if
register 8 is zero, the calculator will jump over the GO-TO instruction and
go immediately to the RUN-STOP instruction where the program will stop
and the latest value of Y will be displayed in the display register. If,
however, the contents of register 8 are not zero, then the program will not
skip the GO-TO instruction-it will go to the step labeled 1 and simul
taneously the contents of register 8 will be decremented by 1. In Hewlett
Packard's implementation of the DSZ function, register 8 is used for the
contents of the number of steps to be made in an iterative procedure. For
other pocket calculators, it can be expected that other implementations of
this DSZ function can be made. They all have one thing in common,
however: the decrementing of some register and skipping the next step if
the register's contents are zero. If it is not zero, the next step will not be
skipped; however, the contents of the test register will be decremented by
1.

The careful reader will remember that the author recommends terminat
ing an iterative procedure based on a test of the number of iterations if at
all possible. Again, the reason is that for many iterative procedures an
estimate of the number of steps to solve the problem can usually be made.
This solution often gives insight into the convergence properties of the
problem, which is helpful in establishing confidence in any result. For
these problems where estimates of steps that should give the solution are
known, the DSZ function is a "natural" test procedure and thus is
particularly important in pocket calculator analysis.

Table 11-2 shows three static check cases used to check this program.
Simple static tests of a program can often be made with numbers that are

Programmable Pocket Calculator Techniques 295

Table 11-2 Preparation of a Check Case

Check Case 1 Check Case 2 Check Case 3

Let Y0 =0 Y0 = 1 Y0 = 1
X 0 = 1 X 0 = 1 X 0 =0
Ri= 1 Ri=l Ri= 1
R1= 1 JY= 1 R1=2
C1 = 1 C1= 1 C1=3
T=l T=l T=2
n=l n=l n=l

Then Y= 1 Y=O Y= -t
AY=l AY=O AY=-t
Yn= 1 Yn= 1 y =l n 3

I Display Yn = 1 I I Display Yn = 1 I I Display Yn = t I

quite unlike the physical characteristics of the process being studied. In
this particular set of check cases, only zeros and I were used in the first
two cases and zero through 3 for the third. It is important to develop
dynamic check cases by either using an alternate means to solve the
problem or a predetermined analysis of a simplified version of the prob
lem. This is not shown as our straightforward example. The material
covered in Chapter 7 is an example of the numerical methods that can be
used to generate an independent check case on the dynamics of the
solution of problems involving this type of differential equation. The idea
would be to compare the results of a solution generated with a recursion
formula with those of the solution generated here by using Euler numerical
integration.

Table 11-3 illustrates the fifth step in the problem-solving procedure
where the computer makes 100 passes through the equations to compute
the filter's response at I second, with the filter design parameters being
varied. The reader may be interested to know that the material for this
example was developed and programmed and the sequence of solutions
was run in approximately 17 minutes. The static check cases were run in 20
seconds, and the three 100-step solutions were run in approximately 3
minutes.

Further illustrations of the power of the programmable pocket calculator
to solve problems are given in Chapter 12, where optimization problems
with the penalty function method for handling equality constraints are
programmed and example solutions are run to exemplify the calculator's
use for this type of analysis.

296 The Programmable Pocket Calculator

Table 11-3 Running of the Automatic Sequence to Study the Unit Step Response
of the Filter

Time

1 second

Examples of I 00-Step Solution Cases at T= 0.01

Ri= l MfJ
R1= I MfJ

Ci=l µf

y = 0.63396766

Ri=2 MQ
R1=2 MQ

Ci= 1 µJ

y = 0.39422956

Ri=2 MQ
R1= 1 MfJ

Ci= i µJ

y = 1.26793532

It is worth pointing out that as the calculator is programmed, the key
strokes are displayed according to their row-column location on the
keyboard. For example, if the key that is at the intersection of the third
column of keys and the second row of keys is depressed, a "32" is
displayed in the register window. In this way, the programmer can monitor
the programming of the process to ensure that the desired program is being
stored in memory. This is also used in conjunction with the single-step key
to review a program that is already in memory and, when necessary, to
single-step up to the point where a change is to be made.

Relational tests that are not used in this example, but which can be
expected in programmable pocket calculators, include those of whether a
register is greater than, equal to, or less than the contents of another
register. In the Hewlett-Packard 65 implementation, the relational tests are
conducted in conjunction with the ninth memory register. As mentioned
before, with the DSZ func1:ion it can be expected that other implementa
tions will be available in other programmable pocket calculators.

Finally, a point well worth making is that in the preparation of any
computer program on any programmable calculator (where there is more
than enough memory for the problem), it is advisable to include additional
RUN-STOP operations in long programs to display intermediate results
while writing and checking the problem. When the program is finally
checked out, the unwanted stops can be deleted. The deletion procedure is
simply to single-step to the RUN-STOP and then use the DEL instruction
to eliminate the RUN-STOP instructions used for checkout purposes.

11-6 METHODS OF ANALYSIS ON THE PROGRAMMABLE POCKET
CALCULATOR

There are three basic types of numerical methods for solving problems on
the programmable pocket calculator. In the explicit method the equations

Methods of Analysis 297

to be numerically evaluated are simply programmed on the calculator, thus
eliminating the need for manually working out the sequence of key strokes
to solve the problem. A manual optimization problem is a good example.
Assume that the top-level cost model for some satellite programs takes the
form*

C ~ 11 [30 + (~ ~ I) 30 l + 4 [30 + (~ ~ I) 30 l
procurement research

developme'nt,

refurbishment launch costs

+o.4[3o+(Ml-.51)3o]MT+ 2T + 2M2T
ground support

tests, and
engineering

which involves 69 key strokes for their numerical evaluation and the use of
four scratch-pad storage locations. The program is tabulated in Table 11-4.

It is clear from the cost model that the mean mission duration of the
satellite plays a dominant role in the cost equation. If the mean mission
duration is small, the number of launches (T / M) is large, and the cost
associated with each launch results in high total program cost. If the mean
mission duration is large, the cost associated with the design and devel
opment of the satellite is large, which also leads to a high total program
cost. Clearly, somewhere in between is a minimum total program cost. To
determine it, we use a sequence of solution values for the cost equation, as
shown in Table 11-4. It is apparent that a satellite mean mission duration
of --- 1.25 years minimizes the total program cost.

The preparation of Table 11-4 on the programmable pocket calculator
involved 61 key strokes to program the calculator and I 00 key strokes for
data entry and manual program iteration. The entire procedure took 14
minutes, including checkout. When the table was manually prepared
without using the programming feature of the calculator, the table took
approximately 45 minutes to prepare. While the time saving shown here is
typical of pocket calculator analysis, what is not shown (but what is
equally important) is that had the total program cost model given unex
pected or unexplained results that would have required its modification,
only 3 minutes would have been required to incorporate the cost model

* n =number of satellites;
M=satellite mean mission duration;
T= total program lifetime; and
C =total program cost-millions of dollars.

298 The Programmable Pocket Calculator

Table 11-4 Total Program Cost for the XYZ Satellite Program

lProgram Mean Mission Total Pro-
Number of Duration Duration gram Cost
Satellites (years) (years) (millions)

2 5 0.25 650
2 5 0.50 453
2 5 0.75 401
2 5 1.00 385
2 5 1.25 383
2 5 1.50 389
2 5 1.75 399
2 5 2.00 411
2 5 2.25 425
2 5 2.50 440
2 5 2.75 456
2 5 3.00 473
2 5 3.25 490
2 5 3.50 508
2 5 3.75 525
2 5 4.00 544
2 5 4.25 562
2 5 4.50 580
2 5 4.75 599
2 5 5.00 618

modifications and to prepare a new Table 11-4. With the programmable
calculator, the modification would have been reprogrammed only for that
part of the program when~ it was required .. The entire program need not
necessarily be rewritten. Then only an additional 100 key strokes would
have been needed to prepare another version of Table 11-4.

The second method of problem solving is the implicit method. An
implicit equation is prepared and solved as discussed in Chapter 9 on
determining zeros of a function. The procedure there would be to program
the iterative procedure so that the solution to the implicit equation satisfies
an error criteria establisht~d by the analyst.

The final procedure is neither implicit nor explicit. It is simply a
brute-force search for the solution to an equation or system of equations
by systematically testing regions where the solution is expected to exist and
retaining only the value (or values) in the region that best satisfies the

Methods of Analysis 299

equation to be solved. Of the three methods, the latter is the most
systematic, involving the least number of calculations and taking maxi
mum advantage of the programmability feature of the pocket calculator.
The only test that needs to be done is to determine whether the equation,
when a solution is computed at a test point, is better satisfied with the test
solution currently being used than with any previous test solutions. If it is,
the new test point is stored in memory and the old one erased (or retained
if it is desirable to monitor the convergence of the process). If it is not, the
systematic search algorithm proceeds to the next test point, retaining the
best previous test point. Of the iterative implicit and systematic search
methods, the latter is the least efficient but involves the fewest program
ming steps, while the former method is more sophisticated, requiring
logical tests and search algorithms, such as Newton's method.

From the analyst's viewpoint, the explicit mode of computer solution,
where the analyst is involved in selecting the conditions to substitute into
the computer program (manual iteration), is at best a gross procedure but
requires only a few quick iterations, since the manual interaction will lead
to a closing in on the gross solution fairly rapidly. The implicit method
results in solutions that are difficult to develop with man-machine interac
tion because the precision with which the solution is to be determined is
beyond the level at which the manual interaction can easily guess a better
solution than a preprogrammed solution search algorithm (see Chapter 12).

Finally, the third method, while systematic and simple to program,
results in the least efficient and least accurate solution to the problem. The
accuracy can be refined through refined grids of possible solution values.
The technique can be used for finding zeros of complex functions, such as
those described in Chapter 9 on finding zeros of a function. It is a very
practical and useful method when 'only a rough answer is required for a
problem that takes a lot of key strokes to evaluate. Also, it is mentioned
here as an example of the simplest form of problem solving available on
the pocket calculator at a low programming overhead penalty.

CHAPTER 12

OPTIMIZATION

12-1 INTRODUCTION

No discussion of the programmable pocket calculator is complete without
consideration of its optimization capabilities. The optimization problem
has gained significance in engineering in the last few decades because it
identifies the limit that practical design could approach if resources were
unlimited. Practical engineering design usually is suboptimum design; the
optimum is of vital importance nevertheless, since it identifies the ultimate
design limit and optimum system capability.

Here we do not cover what is perhaps the key issue in any optimization
work-the determination of what is to be optimized. Specifying precisely
the payoff function in any systems analysis is a practical matter. It is
perhaps the most difficult aspect of all systems analysis in that the
computational analysis, once the payoff function has been identified, is
almost a trivial matter in comparison to selecting the payoff function itself.
In fact, commonly a number of payoff functions are identified and a
system is optimized from a number of different viewpoints. The result is a
group of optimized systems, which are studied to identify the most practi
cal system.

Whatever the way in which optimization is applied in systems analysis, it
is the analyst who must quantify the optimum system, from the
standpoints of both its characteristics and its payoff. We therefore proceed
to reexamine the fundamentals of optimization-for only the three simpl
est optimization problems: the parameter optimization without constraints,
the parameter optimization with equality constraints, and the parameter
optimization with inequality constraints. Though the simplest of the op
timization problems, they are among the most frequently encountered.
Also, they involve smaller programs than do the more sophisticated op-

300

Maxima and Minima 301

timization problems and thus can often be handled on the pocket calcula
tor. For these reasons, then, we reexamine the fundamental concepts of
optimization to illustrate the optimization process by means of math flow
and specific problems that can be programmed on the pocket calculator.

The approach used here is to first develop the mathematical concepts of
these simple optimization problems and then discuss their numerical
evaluation. The intention is to reacquaint the reader with the concepts of
constraints, Lagrange multipliers, and the optimization terminology.

12-2 MAXIMA AND MINIMA

In most systems analysis the optimization problem amounts to maximizing
the payoff function. This function is usually of the form "benefit divided
by cost." As a system is developed and increasingly more money is spent
on it, the benefits usually follow the law of diminishing returns. This is
seen in Figure 12-1. It is also true that the benefits are usually accrued on a
discrete basis as fixed amounts of money are spent on the system, rather
than being continually accrued. It is apparent from Figure 12-1 that the
benefit-to-cost ratio takes the shape shown in Figure 12-2. It is to the
analyst's advantage, therefore, to maximize the cost-benefit curve or the
payoff function in terms of the benefit-cost ratio.

From a more mathematical viewpoint, optimization involves either
maximizing or minimizing a function f(x). Specifically the objective is to
identify those values of xi that cause f(x;) to be a minimum or a maximum.
Strictly speaking, we need only consider either the minimization or the

System
benefit

System cost

Figure 12-1 System benefit as a function of system cost.

302 Optimization

System cost

Figure 12-2 Cost benefit as a function of system cost.

maximization problem, but not both. The reason for this is that the values
of xi which maximize f(x) also minimize - f(xJ The maximum of f(x)
occurs at the same place as does the minimum of - f(x). We therefore
discuss the optimization problem from the viewpoint of either extremum,
but never both.

Perhaps the most familiar case in optimization is when the extremum of
a single dependent variable is a function of a single independent variable.
For a function of one variable, this means finding the point at which the
derivative is zero and evaluating the function at that point. The value of
the independent variable where the derivative is zero is only a necessary
condition that the function be at an extremum; it is not sufficient. For
example, a function can have a derivative equal to zero at a stationary
point and not at a maximum or minimum. Thus it is necessary to check the
second derivative to determine whether it too is at zero (a point of
inflection). If it is not, th1~ second derivative can be used to determine
whether the extremum is: a maximum or minimum depending on whether
the second derivative is negative or positive. Thus the condition for the
extremum of a single variable is

d -J(t)=O
dt

2'
If !!____~!(t) > 0, it is a minimum.

dt"

If _d~;f(t) < 0, it is a maximum.
dt·

(12-1)

(12-2)

(12-3)

Maxima and Minima

And if (d 2
/ dt 2)f(t)=O, it is a point of inflection.

For a two-variable function what is required is

d
dxj(x,y)=O

d
dyj(x,y) =0

303

(12-4)

(12-5)

Single variable optimization on the programmable pocket calculator was
discussed in Chapter 11. It is worth mentioning again, however, that f(x)
can be conveniently programmed on the calculator and a search (manual
or automatic) for the x that minimizes f(x) can be quickly done. For
complicated f(x), the numerical value of the minimum f(x) may be found
more quickly on the calculator in this manner than by the analytical steps
just outlined.

Optimization of functions of more than one variable force us to change
notation at this point. In what follows, we use the notation of Bryson and
Ho*:

x=[X1 l x
2

=parameter vector

Xm

(12-6)

We concern ourselves with the parameter optimization problems that
involve finding the values of the m parameter x 1, x 2 , ••• ,xm minimizing a
payoff function that is a function of these parameters. We write the payoff
function in the Lagrangian notation

L(x1,x2, ••• ,xm) = L(x) (12-7)

The use of the programmable pocket calculator in solving optimization
problems is presently limited to two or three dimensions, but it is quite
useful for higher-dimension problems in computing "parts" of the problem
as subroutines. In any case the pocket calculator permits optimization
analysis of some complexity.

*See reference.

304 Optimization

12-3 PARAMETER OPTIMIZATION WITHOUT CONSTRAINTS

If there are no constraints on x and if the function L(x) has first and
second partial derivatives., the necessary conditions for a minimum are

(12-8)

and

(12-9)

Here we mean that the matrix whose components are a 2L/ axiax1 must
have eigenvalues that are zero or positive. All x that satisfy aL I ax= 0 are
called stationary points. When

(12-10)

at the stationary points XS, L(xs) is at a local minimum. If a 2L I ax 2 = 0 at
x = xs, it is not possible to establish whether the point is a minimum. Such
a point is called a singular point.

12-4 PARAMETER OPTIMIZATION WITH EQUALITY CONSTRAINTS

A more general optimization problem is to find the values of the "control
parameters" u1, ••• , Um that minimize a payoff function

(12-13)

where the n parameters x 1, •.. ,xn are determined by

(12-14)

(12-15)

Optimization with Equality Constraints 305

Now, let

x = [u =parameter vector (12-16)

u = [i~] =control vector (12-17)

f = [;~] =constraint vector (12-18)

Then the optimization problem is to find the vector u that minimizes

L(x,u) (12-19)

where the vector x is related to u according to the constraint equation

J(x,u)=O (12-20)

For a given optimization problem, the choice of which parameters to use
as control parameters is not unique. The choice must be such that u
determines x through the constraint equation.

A stationary point is one where dL =0 for arbitrary du, while holding
dj = 0 (letting dx change as it will). Then we have

(12-21)

and

df =fxdx+ F,du=O (12-22)

Equation 12-12 may be solved for dx:

dx = - fx-1fudu (12-23)

306

By substitution, then, we have

dL = (Lu - Lxfx - yu) du

At the stationary point we see that for dL = 0 for any du

Lu - LJx-1fu = 0

Optimization

(12-24)

(12-25)

These equations together with the constraint equations determine the u
and x at stationary points.

Another technique is to adjoin the constraints to the payoff function by
a set of n "undetermined Lagrangian multipliers," A. 1, ••• ,An, as

n

H(x,u,A.)=L(x,.u)+ 2: A.J;(x,u)=L(x,u)+A.Tf(x,u) (12-26)
i= I

If we choose u (and thereby x through the constraint equations) so that
L = H, and if we choose A according to

then

and

aHd dL=dH=- u
au

(12-27)

Thus aH/au is the gradient of L with respect to u while holdingj(x,u)=O.
At a stationary point, dL vanishes for arbitrary du; which can happen only
if

aH = aL +"- r af =O
au - au au

(12-28)

Hence a stationary value of L(x, u) must satisfy the equations

j(x,u)=O (12-29)

aH =O
ax

(12-30)

aH =O
au

(12-31)

where

H= L(x,u)+A. TJ(x,u) (12-32)

The Gradient Method 307

12-5 THE GRADIENT METHOD

When L(x,u) andf(x,u) are complex, numerical methods must be used to
determine the values of u that minimize H. Perhaps the most commonly
used numerical method is that of steepest descent for finding minima.

Gradient methods are iterative algorithms for estimating u, so as to
satisfy the stationary conditions aH I au= 0 (see Figure 12-3).

H,
Contours of

H (u 1u 2)

Starting
values of
(u2 , u1)

u,
Figure 12-3 Gradient method. (Llu) 1 = - k(aH1/ au), (Llu)2 = - k(aH2/ au). Note: search
can overshoot when - k(aH / au)~O.

One procedure for using the gradient method is:

1. Estimate the values for u.
2. Compute x fromf(x,u)=O.
3. Compute Afrom 'AT= -(aL/ax)(af ;ax)- 1

•

4. Compute an;au=(aL/au)+'A. T(af ;au).
5. Revise the estimates of u by amounts t:..u = - K(aH / au)T (K is a

positive scalar constant). ·
6. Iterate, using the revised estimates of u, until (aH / au)(aH / auf is

very small.

308 Optimization

The gradient method for :finding a minimum is a hill-descending technique.
Starting with an initial guess of u, a sequence of changes 6.u is made. At
each step 6.u is in the direction of the gradient aH I au whose magnitude
gives the steepest slope at that point on the hill. The choice of K involves
judgment to ensure that the linearized prediction will be accurate and the
process will be efficient (i.e., will not require many iterations). K will
usually be varied in the sequence of iteration when it is thought that the
mimmum 1s near.

12-6 COURANT'S PENALTI1 FUNCTION METHOD

Another numerical method for optimizing with either equality constraints
or inequality constraints is the Courant penalty function method. Suppose
that we wish to minimize L (u) subject to

j(u) =0 (12-33)

For the penalty function method, we minimize

L= L(u)+ Kl\f(u)\\ 2 (12-34)

subj~ct to no constraints! Here K is large. If [attains a minimum at y 0, it
is reasonable to expect that

(12-35)

and

(12-36)

Computationally, the penalty function method is easy to use and under
stand and has been used with great success in certain parameter optimiza
tion problems. The Courant penalty function method does not always
work, however, because large values of K tend to make a long, narrow and
deep depression in the field of L(u) with the stationary point at the bottom
of the depression. The problem with this is that the gradient is more likely
to be evaluated on the sides of the depression than the end of the
depression. This will resulll in estimates of the stationary point that jump
back and forth across the narrow depression instead of running down the
length of the depression. For example, minimizing

(12-37)

Courant's Penalty Function Method 309

subject to y 1 =0 has y 1=Y2=0. The penalty function method minimizes

(12-38)

Contours of constant Lare ellipses with centers at y 1 =(2/1 + K), Yi=O.
Figure 12-4 shows contours of constant L.

Inequality constraints can be conveniently handled by the penalty
function method as well. The approach is straightforward and illustrated
by the following example: Minimize L(y) subject to the constraint f(y)

3

-3

[= (y, - 2)2 + Y22 + Ky1 2

K = 35,

Figure 12-4 L contours created by large penalty function coefficients.

310 Optimization

< 0. This problem is solved using the penalty function method by minimiz
mg

where P is defined as

f = L(y) + KPJ(y 2
)

P= { 1,
0,

(J>O)

(J<O)

(12-39)

(12-40)

Examples of pocket calculator optimization with the penalty function
and gradient methods for programmable pocket calculators follow.

Example 12-1 Find the stationary value of

subject to the linear constraint

f(x,u)= x+ mu- c=O

(x is a scalar parameter and a, b, m, and c are constants).
The curves of constant L are ellipses, with L increasing with the size of

the ellipse. The line x +mu - c = 0 is a fixed straight line. The minimum

value of L satisfying the constraint is obtained when the ellipse is tangent
to the straight line (Figure 12-5). Now

H = - - + - +A(x + mu - c) 1 (x
2

u
2

)
2 a2 b2

Thus the necessary conditions for a stationary value are

x+ mu- c=O, aH=~+A=O
ax a2 '

a H = _!!_ + Am = 0
au b2

These three equations for the three unknowns, x, u, A., have the solutions

b2mc u=----
a2+ m1b2

Courant's Penalty Function Method 311

x

(x, u) for minimum L

L = constant

Figure 12-5 Example of minimization subject to constraint.

and the minimum value of L is given by

Note that

Example 12-2 The gradient optimization method (steepest descent) Con
sider the problem of minimizing the function

L=(y1-2)2+y~

This problem, as mentioned in the last section of this chapter, is trivial
from a practical viewpoint but instructive from a pocket calculator op
timization viewpoint. By inspection we see that L is a minimum at y 1 =2
and Yi= 0. The gradient method is to seek the condition

aL
-=0=\/L ay

We iteratively solve the implicit equation

until \l L;::::::O. Then Yn+ 1 ~ Yn =value of y that minimizes L. For this
problem

312 Optimization

Then

Yi =Yi + LiYi
n+ 1 n n

The key stroke sequence for implementing the gradient optimization
method on the HP-65 programmable pocket calculator (which is typical of
the program for any pocket calculator) is shown in Table 12-1.

This sequence of key strokes was programmed in less than 1 minute.
Now let us examine the types of numerical analyses that can be made with
the pocket calculator. First consider the effect of k2 on the first I 0 steps of
the process of finding the y 1 and Yi that minimize L. In Table 12-2
y 1 =1 =Yi at the start (L0 =2). It is apparent that for the case of y 1 =1 =Yi'
k2 = 0.5 leads to the best 10-step estimate of the optimum solution. The
data for each step can be easily developed once the calculator is pro-

Table 12-1 Typical keystroke sequence for gradient optimization

Key Strokes

LBL-A
R/S
ST0-1
R/S
ST0-2
R/S
ST0-3
R/S
ST0-8
LBL-1
RCL-1
2

ST0-5
rl
v
RCL-2
f-1
v
+
ST0-6

Input data

Compute L

Comment

lnputy 1

Storey 1 in register 1 (R-1)
Inpu1Yz
Store Yz in R-2
Input K 2

K2~R-3
Input N-the number of iterations
N~R-8

Label this step "I"
Recally 1

(Y1 -2)
(y 1 -2)~R-5

Yi
Yi+(Y1 -2)2 = L
L~R-6

Courant's Penalty Function Method 313

grammed. Thus for y 1 =I= Y2 and k 2 = 0.05 the sequence of solutions is as
shown in Table 12-3. It appears that when k2 = 0.5 the first step accidently
puts the estimates of y 1 and Y2 right on the stationary points. This is seen
by noting thaty 1 andY2 are exactly - I for k 2 = ! andy 1 =1 =Yi·

Now let us examine the effect of k2 on the IO-step estimate of the
stationary points when y 1=3=h (Table 12-4). Again k 2 =0.50 results in
the besi 10-step estimate of the stationary points. The reason for this
phenomenon might be thought to be that the initial conditions are an
integer multiple of the step size 0.5 and the gradient is permitting the
solution to fall precisely on the stationary points by accident. However, a

Table 12-1 (Continued)

Key Strokes

RCL-5
RCL-3
x Compute
2 -aL
x ~Y1 = -a-k2

~I
CHS
RCL-1 } + Compute new y 1

ST0-1
RCL-2
RCL-3
x Compute
2 -aL
x ~Y2=-a-k2

~2
CHS
RCL-2 } + Compute new Y2
ST0-2
DSZ
GT0-1
RCL-6
R/S Display
RCL-1 L,y1,Y2
R/S
RCL-2
R/S
RTN

Comment

ki(yl -2)

2ki(yl -2)
-2ki(yl -2)=~yl

Y1
Y1+~Y1
Y1 +~Y1~R-l

Y2
k1
k2Y2

2k2Y2
-2k2Y2=~Y2

Y2
Y2+~Y2
Y2+~Yi~R-2
Number of steps= N?
If no, go to 1
If yes, recall L
Display L
Recally 1

Display y 1

Recall Yi
Display Y2
Return to the top of the program

314

Table 12-2

k1

0.01
0.10
0.25
0.50
0.75
1.0
2.0

Tenth-Step Results for Various k2

L10 Y1 10

1.39027066 1.18292719
0.03602880 1.89262582
0.00000763 1.99902344
0.00000000 2.00000000
0.00000763 1.99902344
2.00000000 1.00000000
7 .748409780 x 108 - 5.9047 x 104

Table 12-3 Iterative Gradient Optimization

with k2 =0.5

Number of
Iterations L Y1 Y2

0 2 1 1
0 2 0

2 0 2 0

Y2 10

0.81707281
0.10737418
0.00097656
0.00000000
0.00097656
1.00000000
5.9049 x 104

Table 12-4 Tenth-Step Results for Various k2 and y 1 =Y2=3

k1 (L)io (Y)10 (Y2)10

0.10 0.18014399 2.10737418 0.32212255
0.20 0.00101560 2.00604662 0.01813985
0.40 0.00000000 2.00000010 0.00000031
0.50 0.00000000 2.00000000 0.00000000
0.75 0.00003815 2.00097656 0.00292969
1.00 10. 00000000 3.00000000 3.00000000

Courant's Penalty Function Method 315

test of this hypothesis is but a few key strokes away, in that we can try the
initial conditions y 1 = 7T and Yi= 27T with keyboard entry. Then for k2 = 0.5
we find

(L) 10 = 0.00000000

(y 1) 10 = 2.00000000

(Yi)10 = 0.00000000

where the sequence of estimates is as shown in Table 12-5. At this point it
should be clear that k 2 = 0.5 is a unique value that causes the system of
optimization equations to exhibit the peculiar property that the singular
points are exactly determined on the first step of the iterative solution. This
is precisely the case and it serves to illustrate the following key points:

I. Almost every system of equations has unique numerical properties.
The analyst must keep ever alert for their discovery. Often it is possible to
capitalize on them. The pocket calculator is an ideal means for this kind of
research and exploration.

2. An understanding of the unique properties leads the analyst to a
better understanding of the equations he is using. (It is left to the reader to
determine why this simple system of equations has the property that the

stationary points are exactly determined numerically when k 2 = !, no
matter what the values of y 1 and h·)

In what follows we do not use the unique ·value of K 2 that exactly
determines the singular points. To further illustrate t~e gradient method,
let us use k = 0.2 and now consider the questions: How do we know we
have reached the minimum L in a JO-iteration optimization? How can the
analyst quickly gain confidence that the stationary point is not a local
minimum of which there is a "deeper" minimum nearby? Mathematically

Table 12-5 Iterative Gradient Optimization with
k 2 = 0.5 and Irrational Initial Conditions

Number of
Iterations L Y1 Y2

0 40.74165139 'TT 2'TT

0 2 0
2 0 2 0
3 0 2 0
4 0 2 0
5 0 2 0

316 Optimization

there is no guarantee that the gradient method will find THE global minimum
of his function. Some practical things can be done, however, that give
confidence in the end result of an optimization analysis, tieing all of these
questions together and giving some plausible answers. Among them are the
following:

1. Stopping the process for a fixed number of steps. This is the simplest
criterion for terminating the iterative stationary point search process.

2. Selecting a new set of initial conditions and searching for the
stationary point using the same number of steps.

3. Continuing (1) and (2) until convergence from all quadrants around
the stationary point (initial one found) has been established.

4. Using the stationary point as the initial conditions and demonstrating
stability of solution at the stationary point.

This procedure is quick, and will usually uncover the areas of concern if
the results are different from initial conditions. Also, because more
"samples" are available from the stationary point selection process, we
tend to have more statistical confidence that we have indeed found the
stationary point.

Returning to our optimization problem, we find the stationary point to
be somewhat different when approached from different directions. Table
12-6 illustrates this point. It is apparent that L is a minimum in the near
neighborhood of

Y1 =2

Yi=O

Table 12-6 Ten-Step Gradient Optimization Results when

Stationary Point Approached from Different Directions

Y1 0 Y20
Lw (Y1)10 (Y2)10

5 4 0.002539 2.01813985 0.02418647
5 5 0.00345304 2.01813985 0.03023309
4 5 0.00294524 2.01209324 0.03023309

-4 4 0.00528112 1.96372029 0.02418647
-5 5 0.00751544 1.95767368 0.03023309
-5 4 0.00660140 1.95767368 0.02418647
-5 -4 0.00660140 1.95767368 - 0.02418647
-5 -5 0.00751544 1.95767368 - 0.03023309
-4 -5 0.00619516 1.96372029 - 0.03023309

4 -4 0.0060203120 2.01209324 -0.02418647
5 -5 0.00345304 2.01813985 - 0.03023309
4 -5 0.00294524 2.01209324 - 0.03023309

Courant's Penalty Function Method

The 100-step iteration bears this out, resulting in

L;:::;;;O

y 1 = 1.98790677

y 2 = 0 .00000000

317

Example 12-3. The penalty function method Let us consider the problem
of minimizing the function

subject to the constraint

This problem, as mentioned before, is trivial from a practical viewpoint but
is instructive in regard to pocket calculator optimization. Using the
Courant penalty function method, we form the auxiliary function

Our objective is to minimize this new function, using the programmable
pocket calculator. For this example we employ the gradient method of
optimization to merge the learning of both methods. Here

Then

and

y=y+tiy= { Y1+ily1

Yi+ ilYi

Programming the pocket calculator typically involves the sequence of
key strokes shown in Table 12-7.

Table 12-7 Gradient Optimization with Equality Constraint

Key Stroke
Sequence Comment

LBL-A Set program step counter and
pointer to begin at the first
place in memory

R/S Stop for data input
SR0-1 Storey 1 in register 1 (R-1)
R/S
ST0-2 Store Y2 in R-2
R/S Input
ST0-3 data Store k 1 in R-3
R/S
ST0-4 Store k 2 in R-4
R/S
ST0-8 Store Nin R-8
LBL-1 Label this step "1"
RCL-3 Recall R-3 (k 1)

+ Add one to k 1
RCL-1 Recally 1
1-1

y Square y 1
x yf x(I + k1)
RCL-1 Recally 1

4 Compute

x L
4yl

(1- k1)yf-4Y1
RCL-2 Recally2
1-1

y Yi
+ (1 + k1)yf-4Y1 +Yi
4
+ (1 + k1)yf-4Y1 + Yi+4= L
R/S Display (L)
ST0-6

)
Store Lin R-6

RCL-3 Recall k 1
2
x 2k1
1

318

Table 12-7 (Continued)

Key Stroke
Sequence Comment

+ (1+2k,)
RCL-1 Compute Y1
x -aL Y10 +2k1)
2 Ay1=--k2

ay1
(I+ 2k1)Y1 -2

RCL-4 k1
x k2[(1 +2k1)y1 -2]
2
x 2[(1+2k1)y1 -2]k2
CHS -2[(1 +2k1)y 1 -2]k2 =A Y1
R/S

}
Display A Y 1

RCL-1 Y1
+ Compute Y1 +Ay1 =y
R/S newy1 Display y 1

ST0-1 Store y 1 in R-1
RCL-2 Recall Yi
RCL-4 Recall k2
x Compute k1Yi
2 -aL
x AYi=-a-k2

~2
CHS -2k2Yi=AYi
R/S

(
Display AYi

RCL-2
Compute

Recally2

+ Yi+LlYi= Yi
R/S

newy2 Display (Yi+ AYi)
ST0-2 Store Yi in R-2
DSZ Return to top of
GT0-1 program for iteration
RCL-6

Display L
R/S
RCL-1

Display y 1
R/S
RCL-2

R/S
Display Yi

RTN

319

320 Optimization

Let us take the example from Section 12-6 (k1=35). Our first task is to
find a value of k 2 that will ensure stability in the gradient search process.
We see from Table 12-8 that k 2 =0.01 can provide stable iterations at
k1=35 and is reasonably large to permit quick convergence (Table 12-8).

Table 12-8 Gradient Optimiization Results for Various k 1

k1 k1 (L)w (Y1)10 (Y2)10

Stable 0.0001 35 29.:51091749 0.87049244 0.99800180
0.001 35 6.:55662021 0.23828719 0.98017904
0.01 35 4.61180996 0.028335500 0.81707281

Unstable 0.05 35 4.649658075 x 1015 6.932487456 x 107 0.34867844
0.10 35 5.032858806 x 1021 1.560738178 x 1011 0.10737418

Using k2=0.0l, k 1=35, andy 1=l=Yi, we find after 100 steps that

and after 200 steps that

([)100 = 3.93420285

(y 1)100 = 0.02816901

(y2)100 = 0.13261956

(L)i00 =3.916211so

(y 1)200 = 0.02816907

(Yi)200 = 0.01758795

An approach that involves 200 steps but gives more confidence that the
stationary point is in th1~ neighborhood of the estimate made with the
program is to make five 40-step searches for the stationary point and, as
before, begin the searches from different quadrants as well as the
"average" solution point. The value of k 1 is then selected so that in 40
steps the search will cover the region of the expected solution. In our case,
we expect a solution in the neighborhood of (0, 0), so that 40 steps of 0.05
will cover the region from - 1 to + 1. Then the task is to find a reasonably

Courant's Penalty Function Method 321

high value of k 2 that will permit stable iterations. We see from Table 12-9
that a k 2 = 7.5 results in stable searches for the singular point. Then four

40-step searches provide the results given in Table 12-IO: This approach
results in more confidence that the stationary point for

subject to the constraint y 1=0 is located at

y 1 = 0 (by the constraint)

Yi= 0 (by analysis)

Table 12-9 Gradient Optimization Results for Various k 2

Number of
Iterations kz k1 (L)10 (Y1)10 (Yz)10

{
10 0.05 2.35474379 0.67608251 0.34867844

Stable 10 2.5 0.05 3.20535903 0.33340324 0.34867844
10 5.0 0.05 3.62116902 0.18181818 0.34867844
IO 7.5 0.05 3.800I0179 0.13029079 0.34867844

10 IO.O 0.05 57.99696974 2.44195747 0.34867844 Unstable
IO 12.5 0.05 54447.09556 101.5703041 0.34867844

Table 12-10 Gradient Optimization using Penalty Function Method
for Satisfying Equality Constraint-Average Result Technique

Initial Values

Y1 Y2 (L)40 (Y1)40 (Yz)40

1 3.63308223 0.12500000 0.01478088
-1 3.63308222 0.12500000 0.01478088
-1 -1 3.63308222 0.12500000 -0.01478088
+l -1 3.63308223 0.12500000 -0.01478088

Average of all estimates of y 1 and Yz 0.12500000 0.00000000

322 Optimization

or

(both by the analysis above)

We can make a test of the expected answer to complete the 200-step
process as follows:

Then

y 1 =0.125

([)40 = 3.63281250

(y 1) 40 = 0.12500000

(Yi)40 = 0.00000000

It is apparent that the stationary point of L(y 1,Yi) is in the neigh
borhood of

l y 1 =0.125,

Stationary point for [_

.Yi-0.0,

Y 1 =0.0 l
Stationary point for L

.Yi=O.O

Of the two approaches to penalty function searches on the pocket
calculator, the latter is recommended because more information on the
local topology of [is used to generate the estimate of the values of y 1 and
Yi at the point where [(and thereby L) is a minimum.

12-7 REFERENCES

For this chapter consult A. E. Bryson and Y. C. Ho's excellent book,
Applied Optimal Control (Blaisdell Publishing Company, 1969), Chapter l.
The examples used in this chapter were first presented by Bryson and Ho
at their outstanding seminar on Applied Optimal Control.

APPENDIX 1

SOME TRICKS

OF THE POCKET

CALCULATOR TRADE

In the course of wntmg this book, a number of interesting "special
methods" were offered by many colleagues. Unfortunately, the list is far
longer than might be conveniently included in a single chapter. This
appendix presents some of these methods, selected on the basis of their
usefulness in pocket calculator analysis or because they are novel and
interesting.

Al-1 7T AND e ON THE FOUR-FUNCTION CALCULATOR

An easy-to-remember sequence of numbers, which will generate 'TT with an
error of only 4X 10- 7

, is

11 33 55

We see that this set of numbers is made up of double entries of the first
three odd digits of the positive numbers. Then

" 355
'TT=m='TT+E

where

323

324 Some Tricks of the Pocket Calculator Trade

The key stroke sequence for generating 'TT on the four-function calculator
IS

(355)

(I I 3)

13.14159291

A similar ratio generating an approximation of the number e that was
published by Texas Instruments Corporation in their applications guide is

193 = 2 7183098 71 .

This ratio is not easily remembered, except perhaps by noticing that each
digit is an odd number and that the digits appear in the sequence

Sequence

of occurence

3 5 7 9 3 5

with the first three in the numerator and the last two in the denominator.
The result of the ratio is accurate only to the fourth digit (i.e., 2.718), which
is one digit fewer than must be remembered in the ratio (i.e., 1, 9, 3, 7, and
1). One might as well memorize e to five places:

e = 2. 71828(1828 · · ·)

The author devised a simpler, more accurate, and more easily remem
bered sequence of zeros and odd numbers (as used in the 'TT sequence):

00 11 33 55 77 99

The procedure is as follows:

1. Cancel the 77 and 11 pairs (symmetric operation).
2. Put a decimal place after the first zero and a parentheses before the

'" and f on the Four-Function Calculator

last 9 (symmetric operation) to obtain

(0.0 33 55 9)9

This product is e /9 to six digits when rounded at the sixth digit. Thus

e=(O.O 33 55 9)9X9lrounded

In evaluating e in this manner, the key stroke sequence is

(0.0 33 55 9)

x

(9)

, 2.7182791~2.71828 when rounded

The relative error in this evaluation of e is less than 7 x 10- 53_

325

To discover such sequences, the calculator becomes a research tool.
When trying to find interesting ways to generate approximations to often
used numbers, one can begin by repeated calculator operations on a
number and look for an interesting pattern. For example, four divisions of
7T by 6 on an eight-digit calculator will result in the number

0.002424
which is, curiously enough,

Thus

for a relative error of

6x4x 10- 4 +6x4x 10- 6

0.0000886
03.1415926x100=0.00282%

Note that only the two even numbers, 4 and 6, are used in this evaluation
of 7T. This particular approximation was worked out at the time of this
writing as an illustration of the interesting properties of number approxi
mations that can be found with the aid of a simple eight-digit calculator.

326 Some Tricks of the Pocket Calculator Trade

Al-2 TRUNCATING A NUMBER ON A CALCULATOR THAT DOES NOT
HAVE EXPONENTIAL NOTATION

Truncating a number is the process of reducing a number made up of an
integer and fractional parts to an integer. For example, when the numbers

1.21743

247.41715

5764.88177

are truncated, they result in the numbers

1.0

247.0

5764.0

Notice that there is no rounding. An interesting approach to truncating
any number in the registers of a pocket calculator that does not have
scientific notation is the following:

1. Divide the number by 1000 · · · , where the number of zeros fills the
rest of the display register.

2. Multiply the result of step (1) by the divisor in step (1)-1000· · ·.

The result is the truncated number being sought. The key stroke sequence
IS

(number in display register)

(100000· ..)

x

(10000 ...)

truncated number in

display register

Al-3 LUKASIEWIC'S ALGORITHM FOR EVALUATING ANY FUNCTION
ON A MACHINE WITH REVERSE-POLISH NOTATION PLUS AN
OPERATIONAL STACK

Step 1 Write function in serial form.

Step 2 Key in first number.

Lukasiewic's Algorithm 327

Step 3 Compute all functions of the single number and enter them in the
stack (keyboard operations such as ln(x), 10\ and sin(x).

Step 4 Compute all 2 number functions and enter them in the stack
(keyboard operations such as +, - , X, + , xY, and x y ,).

Step 5 Key in next number, then repeat steps 3 through 5 until the
function is evaluated.

This algorithm is flow-charted as shown in Figure A-1. Clearly, this
algorithm requires an infinite number of registers in the stack to evaluat~
any function. The lower limit is two registers and a reasonable size is th1 ee
for most commonly encountered scientific functions. Hewlett-Packard's
HP-35, HP-45, and HP-65 calculators (the most popular Reverse-Polish
plus stacks machines) all have four registers in their operational stack.

Key in next number

Read numerical
evaluation of
function in display
register

Do it

Figure Al-I An algorithm for function evaluation on the Reverse-Polish plus stacks
machines.

328 Some Tricks of the Pocket Calculator Trade

Example. Consider the expression

(A+ B) [ln(C + D)
112 + E]

This complex expression can be evaluated according to the algorithm with
the following key strokes on the HP-35 (circled number correlates evalua
tion to the algorithm flow chart operation):

key stroke sequence

(A) CD
t @

(B) CD
+ G)
t @

(C) CD
t ©

(D) Q)
+ Q)
v G)
ln Q)

(E) CD
+ G)
x G)

[Result in

Display Register

Al-4 QUICK POLYNOMIAL APPROXIMATIONS FOR ANALYTIC
SUBSTITUTION

A simple, not too accurate, but fast, procedure for developing polynomials
that can be used to approximate functions is the following:

1. Identify a number of rational number conditions, x 1, x 2, .•• ,x3, under
which the function takes on rational number values, c1, c2, ..• , en.

2. Prepare a polynomial with coefficients a1, a2, ••• ,an) which is evaluated
using simultaneous equations.

Quick Polynomial Approximations 329

Example. Approximate sin() with a second-order polynomial on the in
terval 0 < () < 90°.

()

Degrees SinB

0 0
30 I

2

90

We use a quadratic equation sinB~a 1 +a2B+a3B 2 to approximate sinB
on the interval 0-90°. The coefficients are determined using the simul
taneous equations

By inspection we see that

a1 =0

This system of equations reduces to

Summing we find:

f = a2(30) + a 3(30/

1 = ai(90) + ai90)
2

I= ai(90) + ai90)
2

(I - t) = - t = a 3 [(90)
2

- 3 (30)
2

]

-t -t -1
a= = = 3 81 x 102

- 27 x 102 54 x 102 I 08 x 102

330 Some Tricks of the Pocket Calculator Trade

We can now use a3 to compute a2 by way of one of the simultaneous
equations:

I_ .. 900x
2 - ai(30) - 10800

1 (1 900) 5400 + 900 6300 63
a2 = 30 2 + 10800 = 324000 = 324000 = 3240

The approximating polynomial then is

. 63(} (} 2

smB = 3240 - 10800 + E ((} in degrees)

for 0 < (} < 90°, where

100(E/sin0) < 11.14%

The characteristics of this approximation are seen given in Table A 1-1.

Table Al-1

Maclaurin

Relative Expansion

(} (630 ()
2

)
Error (0-063)

(degrees) sinO 3 240 -- 10800 Percent

0 .0 .0 lim (est. sinO) = _ l l.41
o----'>o smO

5 0.08715574 0.09490741 -8.89 0.08715570
10 0.17364818 0.18518519 -6.64 0.17364683
15 0.25881905 0.27083333 -4.64 0.25880881
20 0.34202015 0.35185185 -2.87 0.34197708
25 0.42261826 0.42824074 -1.33 0.42248706
30 0.5 0.5 0.00 0.49967418

35 0.57357644 0.56712963 + 1.24 0.57287387
40 0.64278761 0.62962963 +2.05 0.64142155
45 0.70710678 0.68750000 +2.77 0.70465265
55 0.76604444 0.74074074 +3.30 0.81250684
60 0.86602540 0.83333337 +3.77 0.85580078
65 0.90630779 0.87268519 +3.71 0.89111986
70 0.93969262 0.90740741 +3.44 0.91779950
75 0.96592583 0.93750000 +2.94 0.93517512
80 0.98480775 0.96396296 +2.22 0.94258217
85 0.99619470 0.98379630 + 1.24 0.93935606
90 1.0 1.0 0.0 0.92483223

Alpha-Numerics on the Pocket Calculator 331

The table showing a relative error as large as 11.41 % should be enough to
point up the inaccuracy associated with this method. It is worth mention
ing, however, because the method can be useful for quick curve getting
through experimental data or measurements that are known only to a few
percent.

Al-5 A METHOD FOR COMPUTING RECIPROCALS ON THE FOUR
FUNCTION CALCULATOR

A straightforward, but of ten overlooked (even by manufacturers in tt.eir
applications manuals) technique for evaluating the reciprocal of a number
is to enter the number into the display and constant registers (usually done
automatically for the constant register), divide the number by itself to
enter 1 in the display register, and then divide again to find the reciprocal.
The key stroke sequence is shown in Table Al-2.

Table Al-2

Automatic
Constant

Register Entry
Manual Constant
Switch Activation

....._ _______ ~ (~)-.•----(Constant key~

I/ A in display register

Al-6 ALPHA-NUMERICS ON THE POCKET CALCULATOR

Calculators are, by definition, capable solely of numerical manipulations
and displays. An interesting aspect of our arabic-based alphabet and
number system is that they have many common symbol shapes. Because of
this there are words that can be spelled out using numbers. For example, in
most calculator displays

BOS 5 =soss

Even more interesting is the fact that some letters are made up of
upside-down numbers. A typical example is

3 upside down= E

332 Some Tricks of the Pocket Calculator Trade

The numbers displayed in the calculator display window that correspond
to letters are shown in Table A 1-3.

Table Al-3

Numeric
Display
Window

I
I

n
i:1
Cl
-'

Total

Corresponding
Right-side up

Letters

0

I or I

y

s
G

B

7

Corresponding
Upsidedown

Letters

0

I or I

E

h

s

L

B

G

9

Note that there are three vowels among the upside-down letters but only
two among the right-side-up letters. Also, there is one more consonant
among the upside-down letters than among the right-side up letters. The
author conjectures that it is for this reason that the upside-down set is
more popular with pocket calculator innovators.

Examples of the better known pocket calculator "scrabble" words are
the following (all to be viewed upside down):

Greeting

Object

Proper name

Adjective

Expletive

07734

38079

318808

35007

57738.57734 x I 040

APPENDIX 2

MA TRIX ANALYSIS

ON THE POCKET CALCULATOR

Matrix manipulations on the pocket calculator are fairly straightforward
compared with matrix calculations for general-purpose computing. The
matrices that the pocket calculator, and everr the programmable pocket
calculator, can operate on are small, hence can be easily manipulated
manually if problems of ill-conditioned matrices are encountered. Here we
concern ourselves with basic matrix operations for 2 x 2 and 3 x 3 matrices.

The most fundamental matrix operations are those of addition, subtrac
tion, and multiplication of two matrices. Consider the two matrices

The sum of these two matrices is then given by

and the difference by

333

334

and the product by

a1b1 + a2b3

a3b1 + a4b3

Matrix Analysis on the Pocket Calculator

The inverse of the 2 X 2 matrix A is given by

where

The determinate can be numerically evaluated as

In a similar fashion, the 3 X 3 matrix operations can be defined for the
sum, difference, and product. However, the inverse of a 3 x 3 matrix is
defined somewhat differently. Consider now the matrix A defined by

which has the inverse

Matrix Analysis on the Pocket Calculator

where the alphas can be numerically evaluated with the equations

a3 = (a2b3 - a3b2) / det

l\'.4 = (b3c1 - b1c3) / dt?t

a6 = (a3b1 - a1b3)/ det

a7 = (b1c2- h2c1) / det

Here the determinate can be numerically evaluated with the equation

335

Clearly the matrix inversion will work only if the determinate is nonzero.
Another important matrix manipulation that is frequently encountered

and can be easily evaluated on the pocket calculator is the determination
of the characteristic equation for the matrix A. That is,

A-Al= -A.3 +d1/...2+d2A.+d3 =0

Here d1 through d3 can be given by the equation

Using these equations, the matrix manipulations associated with many
vector-matrix operations can be determined for second- and third-order
matrices. Beyond the second- and third-order matrix analysis, the evalua
tion on the pocket calculator, though possible, becomes somewhat tedious.

APPENDIX 3

COMPLEX NUMBERS
AND FUNCTIONS

While it. is not the purpose of this book to teach, complex variable theory,
it will be discussed to review the concepts in complex numbers and
functions that are pertinent to the evaluation of advanced mathematical
functions. Complex numbers written in Cartesian form are as follows:

z=x+(v

Complex numbers in Cartesian form can be written in polar form:

z = re if} = r (cos 0 + i sin 0)

It is apparent that the modulus of the complex number is

Similarly, the argument of a complex number is given by

arg(z) =tan - 1
(~) = 0

It is common to refer to the real and imaginary parts of a complex
number:

Re(z) = R (z) = x = r cos 0 =real part

Im(z)= I(z)= y = rsinO =imaginary part

The complex conjugate of a. complex variable c is given by

z=x-iy =zc

336

Complex Numbers and Functions 337

It is clear from the definition of the modulus of a complex number that

Similarly the equation for the argument of a complex number allows

arg(zJ = - arg(z)

It is worth remembering that the complex conjugate is used in clearing the
complex form of the denominator of a complex number.

The multiplication and division of two complex numbers

are given by

and

Z1 Z1Z2c X1X2+Y1Yi+i(X2Y1-X1Yi)

Z2 lz2J2 x~ + y~

It is apparent that

Similarly we see that

arg(::) = arg(z ,)- arg(z2)

Powers of complex numbers can be written in polar form:

zn=rneinO

which is equivalent to

(n=O, ± 1, ±2,. ..)

338 Complex Numbers and Functions

In particular,

z 2 = x 2 -y2 + i(2xy)

z 3 = x 3 -3xy 2 + i(3xy-y 3
)

z 4 = x 4 -6xy2 + y 4 + i(4x3y-4xy 3
)

z 5 = x 5 -10x3y2 + 5xy4 + i(5xy-10xy 3 + y 5
)

In general, we can write

z"= [x"-(~)x•-Y'+(:)x•-y•- ...]

+ ; [(~) x n -y -(;) x n - 3y' + .. · l (n = I, 2, ...)

Furthermore, if the nth power of z is written in the form

then

where

For negative powers of a complex number,

and more generally

1 Zen - I n

~;ii= -I 12n =(z) •. z

The roots of a complex number are easily interpreted in polar form:

Complex Numbers and Functions 339

If data are greater than - 'TT but smaller than or equal to +'TT, equation
computes the principal root. The other root has the opposite sign, of
course. The principal root is always given by

I 1/2 1/2
z 1 2 = [Hr + x)] ± i [Hr - x)] = u ± iv

where 2uv = y and the ambiguous sign is taken to be the same as the sign
of y.

In general, then, the nth root of the complex number z is given in polar
form by

Again, this equation computes the principal root if 0 is greater than - 'TT,
but smaller than or equal to +'TT. The other roots are computed from the
expression

(k = 1, 2, 3, ... ,n - 1)

APPENDIX 4

KEY STROKE SEQUENCES FOR

COMPLEX VARIABLE ANALYSIS
AND HYPERBOLIC, INVERSE

HYPERBOLIC FUNCTIONS

The Hewlett-Packard Company has graciously given permission to publish
certain pages from their HP-35 MA TH PAC that will help the reader
perfqrm complex variable analysis on the pocket calculator. Key stroke
sequences for commonly encountered complex variable analysis and
certain hyperbolic functions are given. They are useful for analysis on
the HP-35. They are also useful for showing the details of the
mathematics required to do the analysis on any calculator. The
Hewlett-Packard corporation has a superb pocket calculator product
support organization that publishes handbooks of keystroke sequences for
solving problems in many fields (business, real-estate, science, etc.). The
HP-35 MATH PAC handbook of keystroke sequences can be obtained
from any Hewlett-Packard representative or from the Hewlett-Packard
Company, Advanced Products Division, 10900 Wolfe Road, Cupertino,
California 95014.

340

Complex Number Operations

Complex add

Formula:

= u +iv

Example:

(3 + 4i) + (7.4 - 5.6i) = 10.4 - l.6i

LINE DATA OPERATIONS DISPLAY REMARKS

1 a, D:JDDDD
2 a2 00000 u

3 b, CD DODD
4 b2 100000 v

Complex subtract

Formula:

= u +iv

Example:

(3 + 4i) - (7.4 - 5.6i) = -4.4 + 9.6i

LINE DATA OPERATIONS DISPLAY REMARKS

1 a, ITJDDDD
2 a2 DDDDD u

3 b, QJDDDD
4 b2 1DDDDD v I

Complex multiply

(Use for short data input)

Formula:

= u +iv

341

Example:

(3 + 4i) (7 - 2i) = 29 + 22i

LINE DATA OPERATIONS DISPLAY REMARKS

1 b, DJDCJDD
2 a, ITJC!JCJDD
3 a, GJDCJDD
4 b2 ~~~JlsrolGJ
5 DDCJDD u

6 ai JRcLIG]~J~~
7 bi GJGJCJDD v

Complex multiply, alternate method

(Data are entered only once, use for long data input)

Method:

If a1 , a2 , b1 , b2 are all non-zero, and if 8=8 1 + 82 -:/=- 90° or -90°, then
b ·b

(a 1 + ib 1)(a2 + ib2) = . 1 ~ (cos 8 + i sin 8) = u + iv.
sm 8 1 • sm 82

Note: a1 + ib 1 = r1 eiB1,

Example:

(3 + 4i) (5 - 12i) = 63 - 16i

LINE DATA OPERAlrlONS DISPLAY REMARKS

1 a, ITJDCJDD
2 I

b, ism I lxzv I~]~~
3 ai ITJDCJDD
4 bi DJ [ill~~ LJ ~
5 ~ jRCL I ~J [ill~
6 Qjsroj~JITJ~
7 GJDC:::JDD D If D = 90 or -90, stop.

DDC:::JDD Use other method.

8 jRcLI ~§:§][§TI GGJ
9 lxzv I G;J [2] D IRcL I
10 ~ G"J DJ ITJ I RCL I
11 gGJ~iJDD u

12 ~DCJDD v

342

Complex divide

(Use for short data input)

Formula:

= u +iv

Example:

3 + 4i = .245 + .64i
7- 2i

LINE DATA OPERATIONS DISPLAY

1 b, ITJDDDD
2 81 ITJCODDD
3 82 GJDDDD
4 b2 ~@]~lsrnlGJ
5 GJDDDD
6 82 IRcLI GJ@]@] ~
7 b2 GJOlsTOIDD
8 82 OJGJDDD
9 b2 OJGJGJIRcLllx~I
10 lsTOI LJ lxzvl IRcLI LJ u

11 ~DODD v

Complex divide, alternate method

(Data are entered only once; use for long data input)

Formula:

REMARKS

If ai, a2, b1, b2 are all non-zero, and if 0=0 1 - 02 * 90° or -90°, then

(a1 + ib 1) + (a2 + ib2) = (~/s~n °1
) (cos 0 + i sin 0) = u +iv

b2 sm 02

Note: a1 +ib 1 =r1ei9 t,

a2 + ib2 = r 2 ei9 2.

Example:

(63 - l 6i) + (5 - l 2i) = 3 + 4i

343

LINE DATA OPERATIONS DISPLAY

1 •• QJDCJDD
2 b1 lsrnl(i~Q]~~
3 •1 ITJDCJDD
4 b1 ITJ@J§Ju~
5 ~lRcLl~J~lli:)
6 LJ I srol ~]OJ [ill
7 DDCJDD D

DDCJDD
8 I RCLI [ill §0 [§I]~
9 I x-Zy I~~] LJ I RCL I
10 ~ GJ ITJ OJ I RCL I
11 ~GJ~JDD u

12 ~0[]00 v

Complex reciprocal

Formula:

Example:

LINE DATA

1 b

2 a

3

4

5

6

344

1 a - ib .
--=-- =u+1v
a+ ib a2 + b2

-
1
- = .15 - .23i

2 + 3i

OPERJmONS DISPLAY

DJDC:JDD
DJ [JJ [;:] I STO 11 CLX I
8 IT±J [;:]I RcLI 8
lsrol u@~ I x-zvl IRCL I

uDC~DD u

§]0[~00 v

REMARKS

If D = 90 or -90, stop.

Use other method.

REMARKS

Complex absolute value

Formula:

la + ibl = Va2 + b2

Example:

13 + 4il = 5

LINE DATA OPERATIONS DISPLAY REMARKS

1 a OJQDDD
2 b OJQGJ~D

Complex square

Formula:

(a+ ib)2 = (a2
- b2

) + i(2ab) = u +iv

Example:
(7 - 2i)2 = 45 - 28i

LINE DATA OPERATIONS DISPLAY REMARKS

1 a QJQJ0DD
2 b lsrn!QJGJDCJ u

3 lx~vl!AcLl0QJ0 v

Complex square root

Formula:

Ya+ ib = ± + i = ±(u +iv) .~ [!a+&+b' b]

2 2)•+?
Example:

v7 + 6i = ±(2.85 + l .05i)
345

LINE DATA OPERA'rlONS DISPLAY REMARKS

1 b QJDCJDD
2 a lsrollx~vlC:JDD If b = Oand a<O, go to 7;

DDC:JDD if b ,. 0 and a ;;. 0, go to 9.

3 [!] ITJ ~]I ricLI OJ
4 (2] 0 ~EJl:icLI GJ
5 IT]c:J~OlsTolO u

6 ITJIRcLIGJc:JD v Stop

DDCJDD
7 IRcLI I :Hsi ~~lx~vl D u

8 §JDCJDD v Stop

DDCJDD
9 ~Q[ICJDD u

10 §JDCJDD v

Complex natural logarithm (base e)

Formula:

Example:

LINE DATA

1 b

2 a

3
- ,.___

4

5

6

7
- -----

- ~--·--- - --- -

8
--~---

9
---·--·-

10

346

In (a+ ib) = ln (Va2 + b2
) + i(arc tan E.) ...!!._

a 180

= u +iv

In i = 1.57i

OPERA1TIONS DISPLAY REMARKS

C!JDCJDD
DDCJDD If a* 0, go to 4

DDCJDD
l::Lxlleexl@~ITJQJ

l>Tol lx~vl [J:JDJGJ
lRcLIOJGQ01.rx l
~DCJDD u

lx~Yl.IRcLlL:J~~ lfa;;iaO,goto9

DDCJD°' ~

tTimOOGJD
r~- IGJ[Q[UITJ
uDCJDD v

Complex exponential

Formula:

where

Example:

LINE DATA

1 b

2 a

3

4

5

e(a+ib) = e3 (cos()+ i sin 0) = u +iv

() = 180b
11'

et.s?0796327i = i

OPERATIONS DISPLAY

QJDDDD
0 lsrn 11 x-Zy I [i] CD
m00u0
81RcLl000 u

I x-Zy I GG:J !Rel 10 D v

Complex exponential (t8+ib)

Formula:

ta+ib = e(a+ib)lnt = u +iv

Restriction:
(t > O)

Example:

23 +4 i = -7.46 + 2.89i

LINE DATA OPERATIONS DISPLAY

1 b QJDDDD
2 a ~DODD
3 t ~Ism I [2] lxzv j jRcL I
4 0 0 lsTO I lxzv I QJ
5 0000[£]
6 DJ~IRcLl00 u

7 lx-zvl~IRcLl00 v

REMARKS

REMARKS

347

Complex number to integral power

Formula:

(a+ ib)0 = r0 (cos n8 + i sin n8) = u +iv

where: r = Va2 + b2
,

b
8 =arc tan-, and

a

n is a positive integer.

Example:

(3 + 4.5i)5 = 926.44 - 4533.47i

LINE DATA OPERATl,ONS DISPLAY REMARKS

1 b C!JDCJDD
2 a DDCJD-D If a =I= 0, go to 4

-~~-----

DDC1DD
-~

3 jcLxl jEEXI ~]CTI m
4 l STO 11 xzv I [[] [!] [2J
5 IRcLj [!] G::] ~ ~
6 lxzvllRcLICJ~~ If a;;;. 0, go to 8

DDCJDD
7 CIJCTI~J0D
8 lsrnlDCJDD
9 n [!]DJ@]@]~
10 0 IRcLI §] lsrnl lcLxl
11 GJGJ[IJ~IRcLl
12 GJDCJDD u

13 lxzvl~~JGJD v

348

Integral roots of complex number

Formula:

! ! (() + 360k . . () + 360k)
(a+ ib)" = r" cos n +ism n

where: n is a positive integer, and

k = 0, I, ... , n - I.

Example:

LINE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

5 + 3i has three cube roots:

u0 + iv0 = 1.77 + .32i

U1 + iV1 = -1.16 + l.37i

U2 + iV2 = -.61 - l.69i

DATA OPERATIONS

b QJDDDD
a DDDDD

DDDDD
lcLxj jEEX I lcHs I[!] QJ
jsrnllxzvlQJQJ0
IRcLI Q] 0 QJ I vx I
jx<!-vl jRcLj LJ 8 ~
DDDDD
QJC!J~~D
§JDDDD

n [!] C'.EJ BJ BJ I xZy I
~01srnll:Lxl0

DQJQJ~IRcLI

GJDDDD
lxzvl~IRcLIGJD

~~ODD
DDDDD
ITJCTI~QJD

n u~QJQJEJ
IRcLl0DDD
lxzy_j~jRcLj00

DISPLAY REMARKS

If a* 0, go to 4

If a ;;at 0, go to 8

Uo

Vo

Perform lines 14-18 fork= 1,

2 •... , n-1

Uk

Yk

349

Complex number to a complex power

Formula:

If a1 + ib 1 if= 0,

(a1 + ib1)<a2+ib2) = e<a2+ib2)ln(a1+ib1) = u +iv,

Example:

(1 + i)(l-i) = 1.49 + 4.13i

LINE DATA OPERA"flONS DISPLAY REMARKS

1 b, QJDC:JDD
~ ~·---

DD CJ DD
----~

2 a, lfa 1 *0,goto4
I------

DDCJDLJ
--·--------~- ----------------~

~~·- --------------------- ------------

3 ICLX I IEEX I ~~ [!] [!]
~-...------~

lsTO 1 l~~vT[!] I t 11 x I
~--------

4
~-~--

IRcLIQJ~J~lvx I
--

5
---~--·-

r,-;llxi~--1 ~I] LJ ~ 6
~------ -·------

~DCJDtJ 7 If a 1 ;;;. 0, go to 9
~-- o t::lcJ tJ LJ

r---·----------~-------

8 tiJITJ~J0D

~-- .._.____ ___ --

1 7f -rr~·-nJJ m m 9
~--- --

8~DJITJD
--

10

11 a1 0DCJDD
12 b1 @J~~QlsTOl0
~- ~·

13 DDCJDD
14 a1 IRcLl0~0~~ --
15 b1 0~@~01sTol
16 lx~v I QJ Q~ IT] 0 --
17 0c::JQJ~IRc_LI

--
18 0DCJDD u

19 lx~vl~~IJ00 v

350

Complex root of a complex number

Formula:
If a1 + ib 1 =/::- 0

1
(a1 + ibi)a2 +ib2 = el ln(a1 +ib1)] /(a2 +ib2)

= u +iv

Example:

Find the (2 - i)th root of 1.49 + 4. I 26i.

Answer: I+ i

LINE DATA OPERATIONS DISPLAY

1 b1 QJDDDD
2 81 DDDDD

DDDDD
3 jcLX I lEEX I lcHS I m [!]
4 lsro I lxzv I OJ OJ GJ
5 I RCL I [!] 0 c;-J @]
6 ~lxzvllRcLILJ8
7 ~DODD

DDDDD
8 DJL!JQiJ~D
9 00000
10 u §J ITJ ITJ D
11 82 0DDDD
12 b1 ~~~jsrojGJ
13 ~DODD
14 82 IRcLIQ~~~
15 b1 001.sTolDD
16 82 [!]0000
17 b1 OJ001RCLjj1<Zvj
18 lsrn I c:J lxzv I IRcL I LJ
19 C!:J lsro 1 lxzv I QJ QJ
20 ITJ00QJQJ
21 ~IRcLICZJDD u

2i lxzvlBIRcLl00 y

REMARKS

If a1 * 0, go to 4

lfa 1 :> 0, go to 9

Logarithm of a complex number to a complex base

Formula:

351

Example: lo~ 1 +i) (1.49 -~ 4.126i) = 2 - i

(a3 = .34657359, b3 = .7853981633)

LINE DATA OPERA:T'IONS DISPLAY REMARKS

1 b1 QJDCJDD
2 81 DDCJDD lfa 1 *0, go to 4

DDC:JDD
3 lcLxlleexl~~~QJ
4 lsro 1 lx~v I O::J QJ 0
5 IRcLIITJG~00
6 fBDC::JDD 83

7 lx~y I IRCL l ['.] ~ ~ lf8 1 ;;;i.o,goto9

DOC::JOD
8 mmoo00
9 ~GJ[:::JDD
10 ITJ~GGDD b3

11 ~DC:JDD
12 b1 ITJDC=1DD
13 82 ooc=ioo If 8 2 * 0, go to 15

DDC:JDD
14 lcLx I IEEX I@~~[!]
15 Ism 1 lx~v I [!J QJ 0
16 IRcLIITJ[~0~
17 ~lx~vl~~LJ~
18 ~DC=:JDD If 8 2 > 0, go to 20

DDC=:JDD
19 C!J[J][LJ0D
20 GJ GJ [CJ [TI IT]
21 D lx~v I [!J ITJ D
22 83 0DC:=JDD
23 b3 ~[ill0~1srol[2]
24 00[~00
25 83 IRcLl8~~@]~
26 b3 0D~§JDD
27 83 QJ0[:::JDD
28 b3 [!] 0 [~ IRCL I lx~y I
29 lsro I LJ ~§] IRcL I LJ u

30 §JOC:=JOD v

352

Complex Trigonometric and Hyperbolic
Functions

In this section all angles in the equations are in radians.

Complex sine

Formula:

sin (a + ib) = sin a cosh b + i cos a sinh b

= u +iv

Example:

sin (2 + 3i) = 9.154-4.1689i

LINE DATA OPERATIONS DISPLAY REMARKS

1 b QJDDDD
2 a QJQJITJ00
3 0LJlsrnl81xzvl
4 Q]Q]@]@J~
5 QJCEJ8CIJLJ
6 0 IRcL I lxzv I Ism I D u

7 jcLxl 0 ~ lxzv I [TI
8 o:J~DITJQJ
9 G:JDDDD v

Complex cosine

Formula:

cos (a + ib) = cos a cosh b - i sin a sinh b

= u +iv

Example:

cos (2 + ei) = -4.189 - 9.109i

353

LINE DATA OPERA'TIONS DISPLAY

1 b CIJDCJDD
2 a OJCIJ~Jwe2J
3 GJ u §:~ ~ I xotv I
4 OJOJ~0~0
5 m~GJmu
6 QIRcLl@i]lsrolD u

7 lcLxl G] G!!!J lxzv 10
8 ITJ~~Jmu
9 QlcHslCJDD v

Complex tangent

Formula:

Example:

LINE DATA

1 b

2 a

3

4

5

6

7

8

9

10

11

12

354

t (+ "b) sin 2a + i sinh 2b an a i =~~~~~
cos 2a + cosh 2b

= u +iv

tan {2 + 3i) = -.00376 +1.003i

OPER,mONS DISPLAY

OJDC=:JDD
[J]OJ[~lsrol[!]

ITJCTICOC!:JGJ
DBG:~ITJ0
mm o~ Cill 0
mmc~mo
[!] IRcLI G~ lsrol lcLxl
GJ ~~;:][TI w
DLJJ[QIRcLIQ
~ LJJ cu w GJ
GJQG~IRcLIQ u

Gb:JDC=:JDD v

REMARKS

REMARKS

Complex cotangent

Formula:

Example:

LINE DATA

1 b

2 a

3

4

5

6
I

7

8

9 I

10

11

12

13

t (+ "b) sin 2a - i sinh 2b co a 1 = -----
cosh 2a - cos 2b

= u +iv

cot (2 + 3i) = -.0037 -.9968i

OPERATIONS DISPLA'V

OJDDDD
[JJ CTI [;] I STO I [!]
[i][!]0Q~

LJ~lxzvl[JJQ
[JJ OJ [ill Cill 0
[J]u:J00QJ
lxzvl LJ jRcLl lxzvl §OJ
icLxl GJ [av] 0 OJ
~Dm[~]IRcLI
LJ lcHsi lxzvl [iJ [I]
ITJQGJDGGJ
~DODD u

~DODD v

Complex cosecant

Formula:

Example:

csc (a + i b) = . (
1

. b) sm a+ 1

= u +iv

csc (2 + 3i) = .09 +.0412i

REMARKS

355

LINE DATA OPERA.TIONS DISPLAY - REMARKS

1 b C!JDCJDD
2 a C!J C!J Gu w GJ
3 GJ LJ [§IQ) GJ I xzv !
4 [tJ [!] [i!J ~ 0
5 mwGJruu
6 Q JRcLI ~~ isrol icLxl
7 8~~~0[!]
8 GJDC'.JQGJ
9 JRcLI OJ GJ Jxzv I[!]
10 [!JGJ~~~Jxzvl
11 ~8~QJDD u

12 lx~vl IRcLI [;] lcHsl D v

Complex secant

Formula:

(+ "b)- 1 sec a 1 - ("b) cos a+ 1

= u +iv

Example:

sec (2 + 3i) = -.04 +.09i

LINE DATA OPERATIONS DISPLAY REMARKS

1 b ITJDC=:JDD
2 a OJDJ[!JITJGJ
3 GJ LJ ~!Q] ~ l xzv!
4 CTICOOill~0
5 OJ w [:!:J m D
6 Q iRcLI [.;~ lsrol JcLxl
7 GJ G;J G~ 0 ITJ
8 GJDCDDGJ
9 lcHsl IRcLI [IJ QI xzvl
10 CTI [!] [:;:] I RCLI [fil
11 l xzv I [ill [:!] l STO I LJ u

12 lxzvl IRcLI [~ lcHsl D v

356

Complex arc sine

Formula:

arc sin (a+ ib) =arc sin f3 + i sgn(b) In (a+~)

= u +iv

where: a=_!_ V(a + 1)2 + b2 + _!_ V(a - 1)2 + b2

2 2

f3 = _!_ V(a + 1)2 + b2 - _!_ V(a - 1)2 + b2

2 2

sgn (b) = { 1 if b ~ 0
-1ifb<0.

Example:

arc sin (5 + 8i) = .556 + 2.9387i

Note: Inverse trigonometric and inverse hyperbolic functions are multiple
valued functions, but only one answer will be given for each of them.

LINE DATA OPERATIONS DISPLAY REMARKS

1 a OJDDDD
2 b OJ Q Ism I lxzv I [TI
3 OJITJ8ITJ0
4 lxzvlOJDOJQ
5 IRcL10Q[JITJu
6 lsrnl~81..rxl[JJ
7 LJ0JOJIRcL18
8 lxzvllRcLID~~
9 GJ Q DJ OJ IT]
10 uDDDD u

11 ~OJ ITJ GJ [!]
12 DCEJGJGJD If b > 0, go to 14

DDDDD
13 lcHslODDD
14 DDDDD v

357

Complex arc cosine

Formula:

arc cos (a + ib) = arc cos /3 - i sgn (b) In (a + ~)

= u +iv

where: a=_!_ Y(a + 1)2 + lb2 + _!_ Y(a - 1)2 + b2

2 2

13 = _!_ Y(a + 1)2 + lb2 - !_ V(a - 1)2 + b2

2 2

1
1 if b ~= 0

sgn (b) = -1 if b < 0

Example:

arc cos (S + 8i) = 1.0147 - 2.9387i

LINE DATA OPER.G1TIONS DISPLAY

1 a DJDCJDD
2 b DJ GJ [i!:9:] I xzy I [!]
3 DJITJGJDJGJ
4 §J OJ CJ OJ GJ
5 IRcLl[!JQ~DJD
6 lsrol~GJ~ITJ
7 LJ DJ [D IRcLI GJ
8 I xzvl IRcLI CJ G;J G!J
9 GJ [;] [::iJ [TI [QJ
10 DDCJDD u

11 [ilJ [LJ [i] GJ L!J
12 D~[;JGJD

DDCJDD
13 ~DCJDD
14 DDCJDD v

358

REMARKS

lfb<O,goto14

--

Complex arc tangent

Formula:

1 [1 + b 1 - b] i [(I + b)
2

+ a
2j arc tan (a + ib) = - 11' - arc tan -- - arc tan -- + - ln

2 2 2 a a 4 (1 - b) +a

= u +iv

where: (a+ ib)2 ::;!=-1.

Example:

arc tan (5 +Si)= 1.5142 + .0898i

LINE DATA OPERATIONS DISPLAY REMARKS

1 b OJ DJ DJ GJ D
2 a isrolGJ~~lxzvl
3 [!] [JJ I xzy ID [!]
4 DJIRcLILJ~~
5 I xzy I ~ [!] I xzy 11 CLX I
6 [!J[D[UlxzvlD
7 DJ D GJ GJ CiJ
8 ITJITJDDD u

9 [ii] w I xzy I D IT]
10 GJ lRcLI [!] GJ lsro I
11 GJ lxzy I[!] GJ IRcLI
12 GJQGJ[i]GJ v

359

Complex arc cotangent

Formula:

Example:

LINE DATA

1 b

2 a

3

4

5

6

7

8

9

10

11

12

360

arc cot (a + ib) = !!_ - arc tan (a + ib) = u + iv
2

arc cot (5 + 8i) = .0566 - .0898i

OPERATIONS DISPLAY

OJDJ[IJGJD
lsrol D G~~lxzvl
ITJITJ~~DOJ
ITJIRcLl[::J~~
I l(zy I lli!J [:!:] I xzy 11 CLX I
GJ ITJ [::J GJ 0
OJITJ[DuD u

ITU ITJ ~~ D OJ
Q IRcLI [IJ GJ lsro I
GJ I xzy I [IJ GJ I RCL I
GJDC~CIJD
lcHsl D [:=JD D v

REMARKS

Complex arc cosecant

Fonnula:

Example:

LINE DATA

1 b

2 a

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

arc csc (a+ ib) =arc sin (-
1
-.)

a+ 1b

= u +iv

arc csc (5 + 8i) = .05598 - .0899i

(D<O)

OPERATIONS DISPLAY REMARKS

OJDDDD
m [!] [2J lsro I lcLX I
GJ~(2]1RcLIG]

lsTO I LJ lcHs I lxzy 11 RcLI
D§JDDD D

[!] GJ lsTO I lxzy I[!]
[!] [!] GJ [!] GJ
lxzvl[IJDOJGJ
IRcLIG]~ITJD

lsrol~GJ~w
D [!][!]I RCL I G:J
lxzvllRcLIL]~G;J

00QJCD0
DDDDD u

~QJ[!]G]Ci]

D~0~D lfD>O,goto18

DDDDD
lcHslDDDD
DDDDD v

361

Complex arc secant

Formula:

arc sec (a+ ib) =arc cos{a} ib)

= u +iv

Example:

arc sec: (5 + 8i) = 1. 5148 + .0899i

(D<O)

LINE DATA OPERATIONS DISPLAY REMARKS

1 b ITJDCJDD
2 a [!] [!] ~] jsTO I lcLx I
3 ~~~]IRcLIQJ
4 lsTO I c:::J ~~ lxzv I IRcL I
5 c:J§JCJDD D

6 QJ 0 ~~ lxzv I[!]
7 QJ[IJ~JQJ0
8 §]ITJ~JQJ0
9 IRCL I~ ~CJ ITJ c:J
10 jsTO I@]~] I vx I IT]
11 D OJ[!] IRCL I[£]
12 lxzv I IRcL I CJ~~
13 0GJQ:J[!]ITJ
14 C£JDCJDD u

15 [illQJO:J0CIJ
16 D~~J~D If D < 0, go to 18

DDCJDD
17 @BIIDCJDD
18 DDCJDD v

362

Complex hyperbolic sine

Formula:

sinh (a+ ib) = -i sin i (a+ ib)

= u +iv

Example:

sinh (3 - 2i) = -4.1689 - 9.154i

LINE DATA OPERATIONS DISPLAY REMARKS

1 a ITJDDDD ---

2 b lcHs I[!] ITJ [I] CD
3 00QJlsrol~

-
4 I xzv I QJ QJ@] [!I]

-
5 00JC80ITJ
6 LJ (2] IRcLI lxzv I lsro I
7 jcLxl~~lxzvle!:]

8 DJ CT;J D OJ u --
9 0 IRcLI lcHsl lxzvl D u

10 ~DODD y

Complex hyperbolic cosine

Formula:

cosh (a+ ib)= cos i (a+ ib)

= u +iv

Example:

cosh (1 + 2i) = -.6421 + 1.0686i

363

LINE DATA OPERATIONS DISPLAY REMARKS

1 a CQDCJDD
~ -------

·1 cHs 11 t 1 r-11 L~::J , -o--T -· 2 b
e--

0 L~J c==J ~oJ 1 cos T
- ---

3
~·-- ------------

4 lx~IQJQ]~~
~-- -----

I e• 11t-1[£JQJITJ

5
--··------

j+ 10[§] lxzv I Ism I
--

6 u
~-

Tcucl QJ ~] lxzv 10 7
~ -· --

8 QJ 00 CJ ITJ D

9 01cHslCJDD v

Complex hyperbolic tangent

Formula:

tanh {a + ib) = - i tan i (a + ib)

= u +iv

Example:

tanh (1 + 2i) = 1.1667 - .243i

LINE DATA OPERATIONS DISPLAY REMARKS

1 a CODCJDD
2 b jcHs I QJ Q] 0 lsrn I

t-----

~QJ[~]~I x le-
--

3
t----

4 0~EJ1xzvl[2]
~ --

5 0[!][!]~~
6 ~ QJ ['.?:] 0 0 --

. 7 LJ QJ ~~ lxzv I Ism I
--

8 ICLXI QJ §~ 0 QJ
--~-

9 [80Q]LJIRcLI
10 Olxzvl[IJ[D0

-
11 0GJ[:::J~fRcLI

- ----- ----- -

u§]§~DD 12 u

13 §JDCJDD v

364

Complex hyperbolic cotanaent

Formula:

coth (a+ ib) = i cot i (a+ ib)

= u +iv

Example:

coth (1+2i) = .8213 + .17138i

LINE DATA OPERATIONS DISPLAY

1 I QJDDDD
2 b lcHS I[!] ITJ [!] lsTo I
3 QJ [!] [!] [!] 0
4 ~~EJ§JQJ
5 0[!]QJ~~
8 ~[!]~c:JQJ
7 ~ lx~y I LJ IRCL 1 lx+tv I
8 lsrojjcLxl~lx~I~

9 QJCT:JDQJ~
10 IAcLj ~ lCHS I Ix~ I QJ
11 mm00QJ
12 ~ lACL I QJ lx+tv I lcHS I u

13 §JDDDD y

Complex hyperbolic cosecant

Formula:

csch (a+ ib) = i csc i (a+ ib)

= u +iv

Example:

csch (1 + 2i) = -.2215 - .63549i

REMARKS

365

LINE DATA OPERATIONS DISPLAY REMARKS
1 a QJDCJDD
2 b lcHsl OJ [J] ITJ [I]
3 GJ[!JQ]~~
4 lxzvlQJ[J]~~
5 0ITJ~J~ITJ
6 L:J0gglxzvllsTol
7 lcLxl~~Qlxzvl0
8 mm c::J mu
9 [2]1RcLl[J]01xzvl
10 OJ OJ [2] I RCL I@]
11 lx-.t-vl [ill~] [srnJ LJ
12 I lx~liRcL!~JDD u

13 §JDCJDD v

Complex hyperbolic secant

Formula:

sech (a+ ib) =sec i (a+ ib)

= u +iv

Example:

sech (1 t 2i) = -.4131 - .687Si

LINE DATA OPER,iTIONS DISPLAY REMARKS

H a ~DC::~DD
b lcHS I [IJ o~ CD m

---- -·-·--- -- ------·~-----

3 00Q~lsrnlB
~- --~-~--

lxzvlQJQJ@J~ 4
._______

e- - rm~~:m- .. 5

6

LJQ~§J~~ 1 ~----- @[8J I -;-I G!~ Giil F; I
e------ I t 11 11· I [:J I 2 11 + I ----

8

~----------r~ I ICHSJl~~ I t 11 x 1- ----~------~----------
9

10 ----~- -ta;] OJ O:J 01 RCL I
11 >----~-------- I Ri n~;~T~D I ~ I Ism I
12

------------ Uu CJD D
u

lx~vl l~cLI [~lcHsl D --
13 v

366

Complex inverse hyperbolic sine

Formula:

sinh- 1 (a+ ib) = -i arc sin i (a+ ib)

= u +iv

Example:

sinh- 1 (8 - Si)= 2.9387 - .556i

LINE DATA OPERATIONS DISPLAY REMARKS

Complex inverse hyperbolic cosine

Formula:

cosh- 1 (a+ ib) = i arc cos (a+ ib)

= u +iv

Example:

cosh- 1 (5 + 8i) = 2.9387 + l.0147i

367

LINE DATA OPERATIONS

OJDDDD
-2- -----;------filGJ lsTo 11 lxzv I [jj --

DISPLAY

-;-- c- - ITJ ITJ G:r0T ~-T ----- ----- --- - -

REMARKS

~~------- I xzy I DJ Cl OJ I -~ T ---------- --- ------ ----
-~-- ----------TRc~Tt!J~ff2 11 + r ---

6 ---------15r011 ;~-TG:~m -- --
,-~ lft- I [J] IRCL I GJ

--;-- ------- f~~~ I IRCL I CJ I arc TG:;-fr------- --------- -
-;- ---------- r-lr 10CE1crrm --------------- ------------
~- ------ ---r~ I lsTO I~][!][!]
~- ------- r~- ff-~-1 L--~----1 1-Yi-x 1-1 -+ --+I ------+-----

~ ---------- G;:JtJCJDD lfb>O,goto14

DD Cl 0 D -----.----
13 ~ DCl DD
14 DDClDD u

15
~-------+-------+----------------

~DClDD

Complex inverse hyperbolic tangent

Formula:

tanh- 1 (a+ ib) = -i arc tan i (a+ ib)

= u +iv
Example:

tanh- 1 1(8- Si)= .0898- 1.5142i

LINE DATA OPERATllONS DISPLAY REMARKS

OJOJITJ0D
2- ---;----- §Jls~aT~r1 •r~ff~nl

3
I xzy I ft_ I ITTix;~rr-=---1 -- - ------- ---- ----- H

4 ---- ----- ,--ti I t I §JI + I r;;~T ------ -------
s I ;~~-HxzvT~J I~-· n~zv I --- ------- -- -

s I c-~~lf1-- I ITJTo-1]~;~ f -
----- ----------- DIT~H:!fl2=l0 -----

a ITlf a I (tJl_~J lc~sl -- -----------

9 CillCIJ§JDOJ
10 GJ rRCL I ctJr~-nsTO I
11 [!:] lxzv I [[JI x- ll;c~I -------
12 GJ O~J[TIGJ u

368

Complex inverse hyperbolic cotangent

Formula:

co th - • (a + ib) = i arc cot i (a + ib)

= u +iv

Example:

coth- 1 (8 - Si)= .0898 + .0566i

LINE DATA OPERATIONS DISPLAY REMARKS

1 • QJQJQJ8D
2 b @B!JlsTolu~~
3 l ic<!v I OJ OJ I x<!v I 0
4 [!] ITJ jRcLI LJ ~
5 ~ lx<!y I~ G] I x4!y I
6 lcLxlGJOJDGJ
7 GJLi.JIIJQJD v

8 [ill[Tilx4!vlQOJ
9 GJjRcLIOJGJjsTOI
10 L:J L9J [!] 0 ~
11 GJQJGJOJD u

369

Complex inverse hyperbollic cosecant

Formula:

Example:

LINE DATA

1 a

2 b

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

370

csch- 1 (a+ ib) = i arc csc i (a+ ib)

= u +iv

csch- 1 (8 - Si)= .0899 + .05598i

(D<O)

OPERATIONS DISPLAY

QJDCJDD
lcHs I [!] Q] 0 lsro I
(cLxl8~)01RcLI

~ jsro I[:] jcHs I lx<tv I
IRcLl~§JDD D

QJ0~)lx<tvl[!J

QJITJ~][!JGJ
§JITJCJQJGJ
IRcLl8~JOJu
lsro I [ill ~J I -rx I CD
c:J[O[_}]IRCLl0
lx~vllAcLILJ~~

0 G:J ITJ ITJ CTI
L]lsrol~J[!JITJ

GJITJCJ~GJ
CEJDCJDD
DDCJDD
§JDCJDD
DDCJDD u

~0[]00 v

REMARKS

If D <O, go to 18.

Complex inverse hyperbolic cosecant

Formula:

Example:

LINE DATA

1 a

2 b

3

4
>----

5

6

7

8
,________ -----

9

10
--

11
>--- --·-----

12

13

14

15

16
~----

~-

17
~

18

19

csch- 1 (a+ ib) = i arc csc i (a+ ib)

= u +iv

csch- 1 (8- Si)= .0899 + .05598i

(D<O)

OPERATIONS DISPLAY REMARKS

CIJDDDD
lcHs I ITJ QJ GJ [sroT

-- -~--·---

jcLx 10 BJ cQ IRClT

--- ------------

[:] jsTo I LJ jcHs 11 xzy I
------ ---------

IRcLlc:]lxzvlDD D
--

[!] GJ lsrn 1 lxzv I[!]
[!JITJ0QJ0

~- --
I xzy I ITJ D ITJ I x I
IRcilT~--1lvx11 2 11 + I

------~-

Ism I~ 0 [£XJ [TI

DITJQJl@0
lxzvllR~Ll0~~
GJ GJ ITJ IT] 0
D Ism I@] ITJ ctJ
QITJD~0
~DODD

f--

DDDDD-
icHslDDDD

--

DDDDD u

IRcLIDDDCJi v

Compound Interest
See page 96

--

--
If D < 0, go to 18.

~-------

- --

371

Hyperbolic and Inverse Hyperbo1ic Functions

Register usage for the following functions:

(Same as for keyboard trigonometric functions.)

~lost

!-"L:~
y y
x~X

f(x)../"....lost
8 s

Gudermannian function

Formula:

Example:

Note: ~ = 90°
2

LINE DATA

1 x

2

gd x = 2 arc tan ex - .!!:.
2

gd 0.345 = 19:386

~TIONS I
DISPLAY

08EJOJ0
mmc:Joo

Hyperbolic sine

Formula:

. ex - e·x
smhx=

2

Example:

sinh 3.2 = 12.25

UNE DATA

~-I DISPLAY

1 x 0 m m c:::i m
2 QJDC:JDD

372

I
REMARKS

I
REMARKS

I

I

Hyperbolic cosine

Formula:

Example:

LINE DATA

1 x
~·

2

ex+ e-x
coshx=---

2

cosh 3.2 = 12.29

OPERATIONS DISPLAY

0mm0m
uDDDD

Hyperbolic tangent

Formula:

Example:

LINE DATA

1 x

2

sinh x .
tanh x = -- = sm gd x

coshx

tanh 3.2 = .99668

OPERATIONS DISPLAY

0~~00
ITJITJD~D

Hyperbolic cotangent

Formula:

Example:

LINE DATA

1 x

2

I
cothx=-

tanh x

coth 3.2 = 1.003

OPERATIONS DISPLAY

C!:J~ltanlITJG]

mmo~m

REMARKS

REMARKS

REMARKS

373

Hyperbolic cosecant

Formula:

Example:

LINE DATA

1 x

2

1
cschx=-

'sinh x

csch 3.2 = .08166

-~I DISPLAY

0QJ[J!JDOJ
QJwCJDD

Hyperbolic secant

Formula:

Example:

LINE DATA

1 x

2

I
sechx=-

cosh x

sech 3.2 = .081

OPERA"flONS DISPLAY

0m~~~m
uefilCJDD

Inverse Gudermannian function

Formula:

Example:

Note: .!!. = 45°
4

LINE DATA

2

374

-1 (fr 8) gd 8 = ln tan 4 + 2

gd- 1 30° = .549

DISPLAY

I

REMARKS

~

REMARKS

·-

REMARKS

Inverse hyperbolic sine

Formula:

Example:

LINE DATA

1 x

2

sinh- 1 x =In [x + (x2 + !)}]
= gd- 1 (tan- 1 x) ·

sinh - 1 51. 777 = 4.64

OPERATIONS DISPLAY

BBITJD~
QJ8~~D

Inverse hyperbolic tangent

Formula:

Example:

LINE DATA

1 x
---- -

2

tanh- 1 x = .!.1n 1 + x = gd-1 (sin- 1 x)
2 1- x

tanh- 1 0.777 = 1.038

OPERATIONS DISPLAY

B~ITJD~
CD~~~D

Inverse hyperbolic secant

Formula:

Example:

sech- 1 0.777 = .74

LINE DATA OPERATIONS DISPLAY

1 x ~80LJQJ
~-- - "----------~- I s -rFlTt~~-TI 1~-10 2

REMARKS

REMARKS

REMARKS

--

375

Inverse hyperbolic cosine

Formula:

Example:

LINE DATA

1 x

2

cosh- 1 x = sech- 1 _!_
x

cosh- 1 51.777 = 4.64

OPERATl()NS DISPLAY

~aa0u
QJQ.]~8~

Inverse hyperbolic cotang1~nt

Formula:

coth- 1 x = tanh- 1

x

Example:

coth- 1 51.777 = .0193.

LINE DATA OPERATIONS DISPLAY

1 x ~~ElQJCJ
2 ~Ci]~]~~

Inverse hyperbolic cosecant

Formula:

Example:

LINE DATA

1 x

2

376

csch - l x = sinh - 1 _!_
x

csch- 1 0. 777 = 1.0705

OPERATIONS DISPLAY

~8EJQJCJ
QJQJ~J~~

REMARKS

REMARKS

REMARKS

INDEX

Absolute difference, 5
error, 87

Adams' formulas, corrector,
172

predictor, 172
Algebraic data entry methods,

7
language, 7, 19

Aliasing, 144, 150
Alpha-numerics, 331
Analytic substitution, 211
Approximate values, 88
Automatic landing, 64

Bessel functions, 129
interpolation formula, 57, 59
spherical functions, 131

Biased estimate, 250
Binomial series, 91
Bisection method, 226
Bode's definite integral for

mulas, 163
Boolean equations, 14

Calculator definition, 14
mechanical, 54

Central tendency, measure of,
245

Chebyshev polynomials, 134, 199
numerical evaluation of, 210

Chi-square testing, 268
Coefficient of excess, 253
of variation, 251

Corner functions, 39
Complex functions, 108, 336
variables, 108
zeros, 232

Computing reciprocals, 331
Confluent hypergeornetric func

tion, 134
Cosine integrals, 116
Courant's penaly function meth

od, 308
Curve-fit polynomial, 34

Data entry methods, 7
error location and correction,

67
extrapolation, 63, 67
interpolation, 57
tables, missing entries, 70

Decrement and jump on zero in
struction, 287

Definite integral formula, 154
integration, 154

Delete instruction, 288
Difference, absolute, 5

forward, 54
percentage, 5
tables, divided, 74

Dispersion, measures of, 249
relative, 251

Distribution mode, 247
shape, measures of, 251

Divided difference tables, 74

Equally spaced data, 54
Error, absolute, 87
correction, 67
of data, 89
of calculation, 89

estimate, 170
location, 67
relative, 43
roundoff, 40
trapezoidal integration, 157

Euler constant, 122
integral, 122
integration formulas, 181
-Maclaurin summation formula,

95
predictor formula, 171

Exponential integrals, 116

False-position method, 228
Firmware, 287
Fixed-point numbers, 4
Floating-point numbers, 4, 39
Forward difference, 54

377

378 Index

Four-function calculator, 10
Fourier analysis, 139
coefficients, 144
series of continuous func

tions, 139, 142
discrete functions, ~41, 142

Frequency distributions, 243
Fresnel integrals, 125
Function evaluation, 53

accuracy in, 38
Bessel, 129
Comer, 39
confluent hypergeometric, 134
curve-fit, 34
error, 126
Fourier coefficients, 144

continuous, 142
discrete, 141, 142

gamma, 122
nested parenthetical, 31
polynomials, 134
roots, 224

Gamma function evaluation, 122
Gauss interpolation formula,

57
multiplication formula, 123

Go-to instruction, 287
Gradient method, 307

Hamming midpoint integration
formula, 159

12-point formula for Fourier
analysis, 145

Hermite polynomials, 134
Hierarchy, operands, 20
operators, 8

Indefinite integral formula,
154

numerical integration, 164
Infinite series, 90
truncated forms, 92

Instruction methods, 7
set, 10

Instructions, 153, 154
Integrals, exponential, sine

and cosine, 116
Integration, Bode's definite

integral formulas, 163, 164

de.finite, 154
Euler formula, 166
-Maclaurin formula, 163
modified, 167
predictor~ 171

indefinite, 154, 169
midpoint, 159
Newton-Cotes' definite, 165
open, 163

predict-correct, 168
modifying, 170

Simpson's rule, 162
Runge-Kutta, 172
T-, 178
trapezoidal, 155, 182
error, 157

Interpolation formulas, Bessel,
57, 59

data, 57
Gauss, 57
inverse, 62, 75
Lagrange, 62, 72
linear, 60
Newton, 75
Stirling, 57

Inverse interpolation, 62, 75

Jump instruction, 287

Kummer's transformation, 95
Kurtosis formula, 252

Lagrange 5-point interpolation
formula, 62

interpolation formula, 72
Laguerre polynomials, 134
Lanczos method, 204
Languages, algebraic, 7, 19
polish, 7
reverse-polish, 7, 19

Linear interpolation formulas,
60

systems simulation, 180
Logical flag instruction, 287
Lozenge diagram, Kukasiewic's

algorithm, 58, 326

Matrix analysis, 233
Maxima and minima, 301
Mean, arithmetic, 83, 245

2

deviation, ~so
generalized 83
geometric, 33, 248

harm'.mic, ~' 248 ;l
value theo~m, 46 . ss,

Memories, 9 ~

Memory s tad; 7, 9 .. \
Midpoint in~gration, 159 ;;l..
Milne' s prec'.ct-corre.ct a:· _

gori thms, 175 _ ,' ,abl

Mis;~ng entr:es in data t,. .. _,.. es'

diSlibution, 24" ·
""t'~"lll.lllli~k indefinil .e in

O~thod, 16/ 7

·- ~
Nested pare~t,j.cal f~ prms, 31,

90 ; .:= :;;;;:;::----
Newton bac~·d differ fence

formula, ., 59 -
forward difi:ence :crf .;>rmula,

57, 59
interpolati formul a based

on dividejifferE: ~nces, 75
method of d"!rminirt/lg roots,

29, 229

-Rap~~~n; ~oµa,

11.r• ... ,.Jffflttlri 288 nu ·· .. ~
Optimization,so

Courant' s PE:l ty
method, 3(

_31

function

Pade'.$ approximati.on 213
Pea_rson's skewness f 0 rmula,
1· 252

Percentage difference, 5
Pocket calcu~ator, l

four-function, 10
~rogranunable, 283 .

Polish data entry methnd, 7
Probabilil:y, 242, 253
distribution, 255
binomial, 255
Gaussian, 242, 255, 258

Index 379

Poisson, 258
Programmable pocket calculator,

283
Progressions, Bl

Rayleigh's generating formula,
133

Reciprocals, computing, 331
Relative dispersion, 251
error, 43, 87

Recurrence formula, 199, 210
Reverse-polish data entry meth

od, 7
language, 7, 19

Root evaluation, mean square,
249

Newton's method, 29, 229
Roots of a function, 224
Roundoff error, 40
Runge-Kutta methods, 172
Run/stop instruction, 288

Sampling, 260
in the small, 265

Sine integrals, 116
Single-step function, 288
Skewness·, 252
Software, 288
Solutions of cubic equations,

97
plane triangles, 105
polynomials, 96
quadratic equations, 96
spherical triangles, 105

Stable difference equations,
189

Starting values, 169
Statistical estimation, 263
Statistics, 242
Stirling's interpolation for

mula, 57
Stop instruction, 288
Successive approximation meth

ods, 100

Tail effects, 152
Taylor's single variable for

mulas, 90
Temporary stop instruction,

288

380 Index

Test flag instruction, 287
T-integration, 178
13-place precision, 75
Transcendental functions, 102
Transformation of series, 95
Trapezoidal error, 157

formula, 182
integration, 155

Triangles, solutions of plane
105

spherical, 105

I

1 f
l \ ,,

TricJ cs, 323
Trun< :::a ting a numbe~, 326

Un de r fl ow, 3 9

Vari aG~e propagat~n, 194

Zero~ s, cOi'~plex, 2 3 ,
of l ;olynomials, 2>

