

305-490 Issue 2

# **AT&T 3B2** Computer Technical Reference Manual

# NOTICE

The information in this document is subject to change without notice. AT&T assumes no responsibility for any errors that may appear in this document.

Copyright<sup>©</sup> 1990 AT&T All Rights Reserved Printed in U.S.A.

# TRADEMARKS

The following is a listing of the trademarks that are used in this manual:

- CENTRONICS Registered trademark of Centronics Data Computer Corp.
- Datakit Registered trademark of AT&T
- FUJITSU Registered trademark of FUJITSU Limited, Nakahara-Ku, Kawasaki, Japan
- INTEL Registered trademark of Intel Corp.
- MS-DOS Registered trademark of Microsoft Corp.
- Teletype Registered trademark of AT&T
- UNIX Registered trademark of AT&T
- WE Registered trademark of AT&T
- WREN Trademark of Control Data Corp.

# **ORDERING INFORMATION**

Additional copies of this document can be ordered by calling

| Toll free: | 1-800-432-6600 | In the U.S.A. |
|------------|----------------|---------------|
|            | 1-800-255-1242 | In Canada     |
| Toll:      | 1-317-352-8557 | Worldwide     |

OR by writing to:

AT&T Customer Information Center Attn: Customer Service Representative P.O. Box 19901 Indianapolis, IN 46219

# TRAINING INFORMATION

The *AT&T Education and Training Catalogue of Courses* and course schedules are free and can be ordered by contacting your account executive or by calling toll free:

1-800-554-6400 (extension 7150)

Training information can also be accessed electronically through our computerized catalogue:

DIAL: 1-800-662-0662 or 1-614-764-5566 LOGIN: comcats PASSWORD: 88cat

# **Table of Contents**

C

\_

| 1. | INTRODUCTION                                |
|----|---------------------------------------------|
|    | INTRODUCTION                                |
|    | PURPOSE OF TECHNICAL REFERENCE MANUAL 1-1   |
|    | MANUAL ORGANIZATION                         |
|    | RELATED DOCUMENTATION                       |
|    |                                             |
| 2. | EQUIPMENT DESCRIPTION                       |
|    | EQUIPMENT DESCRIPTION                       |
|    | SYSTEM (EQUIPMENT) CONFIGURATIONS           |
|    | HARDWARE OVERVIEW                           |
|    | SYSTEM BOARDS                               |
|    | RANDOM ACCESS MEMORY CARDS                  |
|    | BACKPLANE BOARDS                            |
|    | AUXILIARY DISK INTERFACE (ED-4C632-30)      |
|    | DUART CONNECTOR-2 INTERFACE (ED-4C492-35,G5 |
|    | and ED-4C631-35,G2)                         |
|    | CM195A NETWORK INTERFACE CARD               |
|    | CM195AA ALARM INTERFACE CIRCUIT CARD 2-143  |
|    | CM195AC/CM195AD "DATAKIT" VCS INTERFACE     |
|    | CARD                                        |
|    | CM195AE GPSC CARD PACKAGE                   |
|    | CM195AY EPORTS CARD                         |
|    | CM195B PORTS CARD                           |
|    | CM195BA PORTS CARD                          |
|    | CM195H CARTRIDGE TAPE CONTROLLER CARD 2-157 |
|    | CM195K EXPANSION DISK CONTROLLER CARD 2-159 |
|    | CM195T INTELLIGENT SERIAL CONTROLLER        |
|    | CARD                                        |
|    | CM195U STARLAN INTERFACE CARD               |
|    | CM195W SCSI HOST ADAPTER CARD               |
|    | CM195Y EPORTS CARD                          |
|    | CM521A DIFFERENTIAL SCSI HOST ADAPTER       |
|    | CARD                                        |
|    | CM522A VCACHE CARD                          |
|    | CM524A PROCESSING ELEMENT CARD              |
|    | CM525B VMEbus CARD                          |

|    | CM527A MULTIPROCESSOR ENHANCEMENT                                                | 0.455 |
|----|----------------------------------------------------------------------------------|-------|
|    | CARD                                                                             |       |
|    | 23-MEGABYTE CARTRIDGE TAPE DRIVE                                                 | 2-179 |
|    | $(KS-23165,L1)  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $ | 2-183 |
|    | 60-MEGABYTE CARTRIDGE TAPE DRIVE                                                 | 2-105 |
|    | (KS-23417,L2)                                                                    | 2-187 |
|    | 120-MEGABYTE CARTRIDGE TAPE DRIVE                                                | 2-107 |
|    | (KS-23465,L1A)                                                                   | 2-189 |
|    | HARD DISK DRIVES                                                                 | 2-191 |
|    | POWER-EQUIPMENT DESCRIPTION                                                      |       |
|    | MISCELLANEOUS EQUIPMENT AND APPARATUS                                            |       |
|    | ~                                                                                |       |
| 3. | FUNCTIONAL DESCRIPTION                                                           | 3-1   |
|    |                                                                                  |       |
|    | FUNCTIONAL DESCRIPTION                                                           |       |
|    | SYSTEM OVERVIEW                                                                  |       |
|    | SYSTEM BOARDS                                                                    | 3-31  |
|    | RANDOM ACCESS MEMORY CARDS                                                       |       |
|    | BACKPLANES                                                                       | 3-153 |
|    | CM195A NETWORK INTERFACE CARD                                                    |       |
|    | CM195AA ALARM INTERACE CIRCUIT CARD                                              | 3-175 |
|    | CM195AC/CM195AD "DATAKIT" VCS INTERFACE                                          |       |
|    | CARD                                                                             | 3-183 |
|    | CM195AE GPSC CARD                                                                | 3-189 |
|    | CM195AY EPORTS CARD                                                              |       |
|    | CM195B/CM195BA PORTS CARD                                                        |       |
|    | CM195H CARTRIDGE TAPE CONTROLLER CARD                                            |       |
|    | CM195K EXPANSION DISK CONTROLLER CARD                                            | 3-215 |
|    | CM195T INTELLIGENT SERIAL CONTROLLER                                             |       |
|    | CARD                                                                             |       |
|    | CM195U STARLAN INTERFACE CARD                                                    |       |
|    | CM195W SCSI HOST ADAPTER CARD                                                    |       |
|    | CM195Y EPORTS CARD                                                               |       |
|    | CM521A DIFFERENTIAL SCSI HOST ADAPTER CARD                                       |       |
|    | CM522A VCACHE CARD                                                               |       |
|    | CM524A PROCESSING ELEMENT CARD                                                   |       |
|    | CM525B VMEbus CARD                                                               | 3-271 |

| CM527A MULTIPROCESSOR ENHANCEMENT                |       |
|--------------------------------------------------|-------|
| CARD                                             | 3-277 |
| FLOPPY DISK DRIVE                                | 3-283 |
| 23-MEGABYTE CARTRIDGE TAPE DRIVE                 | 3-287 |
| 60-MEGABYTE SCSI CARTRIDGE TAPE DRIVE            | 3-291 |
| 120-MEGABYTE SCSI CARTRIDGE TAPE DRIVE           | 3-295 |
| AT&T SCSI REWRITABLE OPTICAL DISK DRIVE          | 3-299 |
| HARD DISK DRIVES                                 | 3-301 |
| POWER—FUNCTIONAL DESCRIPTION                     | 3-303 |
| Appendix A: VIRTUAL ADDRESS SPACE                | A-1   |
| Appendix B: CONNECTOR AND CABLING<br>INFORMATION | B-1   |
| Index                                            | IN-1  |

C

 $\bigcirc$ 

# **List of Figures**

| Figure 2-1:                  | Domestic 3B2/300 Computer Cabinet Assembly Drawing (ED-4C492-30)                                                                  | 2-15         |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------|
| Figure 2-2:                  | International 3B2/300 Computer Cabinet Assembly Drawing                                                                           |              |
|                              | (ED-4C560-30)                                                                                                                     | 2-19         |
| Figure 2-3:                  | Domestic 3B2/310 Computer Cabinet Assembly Drawing (ED-4C645-30)                                                                  | 2-23         |
| Figure 2-4:                  | International 3B2/310 Computer Cabinet Assembly Drawing                                                                           |              |
| Figure 0 Fr                  | $(ED-4C646-30) \dots \dots$ | 2-27         |
| Figure 2-5:                  | Domestic 3B2/400 Computer Cabinet Assembly Drawing (ED-4C631-30)                                                                  | 2-31         |
| Figure 2-6:                  | International 3B2/400 Computer Cabinet Assembly Drawing                                                                           | 0.05         |
| Figure 2-7:                  | (ED-4C638-30)                                                                                                                     | 2-35<br>2-39 |
| Figure 2-7:                  | 3B2/600 Computer Cabinet Assembly Drawing (ED-3T043-30)                                                                           | 2-39         |
| Figure 2-9:                  | 3B2/700 Computer Cabinet Assembly Drawing (ED-3T047-30)                                                                           | 2-43<br>2-47 |
| Figure 2-10:                 | 3B2/1000 Computer Cabinet Assembly Drawing (ED-3T057-30)                                                                          | 2-47         |
| Figure 2-11:                 | Domestic AT&T/XM Cabinet Assembly Drawing (ED-4C580-30)                                                                           | 2-51         |
| Figure 2-12:                 | International AT&T/XM Cabinet Assembly Drawing (ED-4C635-30)                                                                      | 2-59         |
| Figure 2-13:                 | Domestic AT&T XM/405S/900S Cabinet Assembly Drawing                                                                               | 2 07         |
|                              | (ED-3T010-30)                                                                                                                     | 2-63         |
| Figure 2-14:                 | International AT&T XM/405S/900S Cabinet Assembly Drawing                                                                          | - 00         |
| 0                            | (ED-3T027-30)                                                                                                                     | 2-67         |
| Figure 2-15:                 | AT&T DCM/4E Cabinet Assembly Drawing (ED-3T011-30,G1)                                                                             | 2-71         |
| Figure 2-16:                 | AT&T DM Cabinet Assembly Drawing (ED-3T011-30,G2, G3, G5, G6)                                                                     | 2-75         |
| Figure 2-17:                 | AT&T DM/S or DM/DS Cabinet Assembly Drawing (ED-3T011-30,G8, G9,                                                                  |              |
| 0                            | G11)                                                                                                                              | 2-79         |
| Figure 2-18:                 | AT&T SCSI Rewritable Optical Disk Cabinet Assembly Drawing                                                                        | 2-83         |
| Figure 2-19:                 | SCSI Manual-Loading 9-Track Tape Cabinet                                                                                          | 2-87         |
| Figure 2-20:                 | SCSI Autoloading 9-Track Tape Cabinet                                                                                             | 2-88         |
| Figure 2-21:                 | AT&T SCSI TM Cabinet Assembly Drawing (ED-3T011-30,G4, G7)                                                                        | 2-91         |
| Figure 2-22:                 | AT&T PPCU Cabinet Assembly Drawing (ED-3T011-30,G10)                                                                              | 2-97         |
| Figure 2-23:                 | CM190A System Board Layout (Discontinued Availability)                                                                            | 2-101        |
| Figure 2-24:                 | System Board, ED-4C637-30 Layout                                                                                                  | 2-105        |
| Figure 2-25:                 | CM518A System Board Layout                                                                                                        | 2-109        |
| Figure 2-26:                 | CM518B System Board Layout                                                                                                        | 2-113        |
| Figure 2-27:                 | CM518C System Board Layout                                                                                                        | 2-117        |
| Figure 2-28:                 | CM191A 0.25-Megabyte RAM Card Layout                                                                                              |              |
| Figure 2-29:                 | CM191B 1-Megabyte RAM Card Layout                                                                                                 | 2-122        |
| Figure 2-30:                 | CM191C 1-Megabyte, Surface Mounted, RAM Card Layout                                                                               | 2-123        |
| Figure 2-31:                 | CM191D 2-Megabyte, Surface Mounted, RAM Card Layout                                                                               | 2-124        |
| Figure 2-32:                 | CM192B 2-Megabyte RAM Card Layout                                                                                                 | 2-125        |
| Figure 2-33:                 | CM523A 4-Megabyte, Surface Mounted, RAM Card Layout                                                                               | 2-126        |
| Figure 2-34:                 | CM523AA 4-Megabyte, Surface Mounted, RAM Card Layout                                                                              | 2-127        |
| Figure 2-35:                 | CM523B 2-Megabyte, Surface Mounted, RAM Card Layout                                                                               | 2-128        |
| Figure 2-36:                 | CM523D 16-Megabyte, Surface Mounted, RAM Card Layout                                                                              | 2-129        |
| Figure 2-37:                 | CM193A/B Backplane Board Layout                                                                                                   | 2-131        |
| Figure 2-38:<br>Figure 2-39: | CM194B Backplane Board Layout                                                                                                     | 2-132        |
| Figure 2-39:                 | CM519A Backplane Board Layout                                                                                                     | 2-133        |
| Figure 2-40:<br>Figure 2-41: | CM519B Backplane Board Layout                                                                                                     | 2-134        |
| Figure 2-41:<br>Figure 2-42: | CM520A Backplane Board Layout                                                                                                     | 2-135        |
| Figure 2-42:<br>Figure 2-43: | Auxiliary Disk Interface, ED-4C632-30, Layout                                                                                     | 2-138        |
| inguie 2-45.                 | DUART Connector-2 Interface, ED-4C492-30,G5 (3B2/300/310) and ED-4C631-35 C2 (3B2/400) Lawout                                     | 0 1 4 0      |
| Figure 2-44:                 | ED-4C631-35,G2 (3B2/400) Layout                                                                                                   | 2-140        |
| Figure 2-44:                 | CM195AA AIC Layout                                                                                                                | 2-142        |
| 11guit 2-40.                 | Chiroffi MC Layout                                                                                                                | 2-144        |

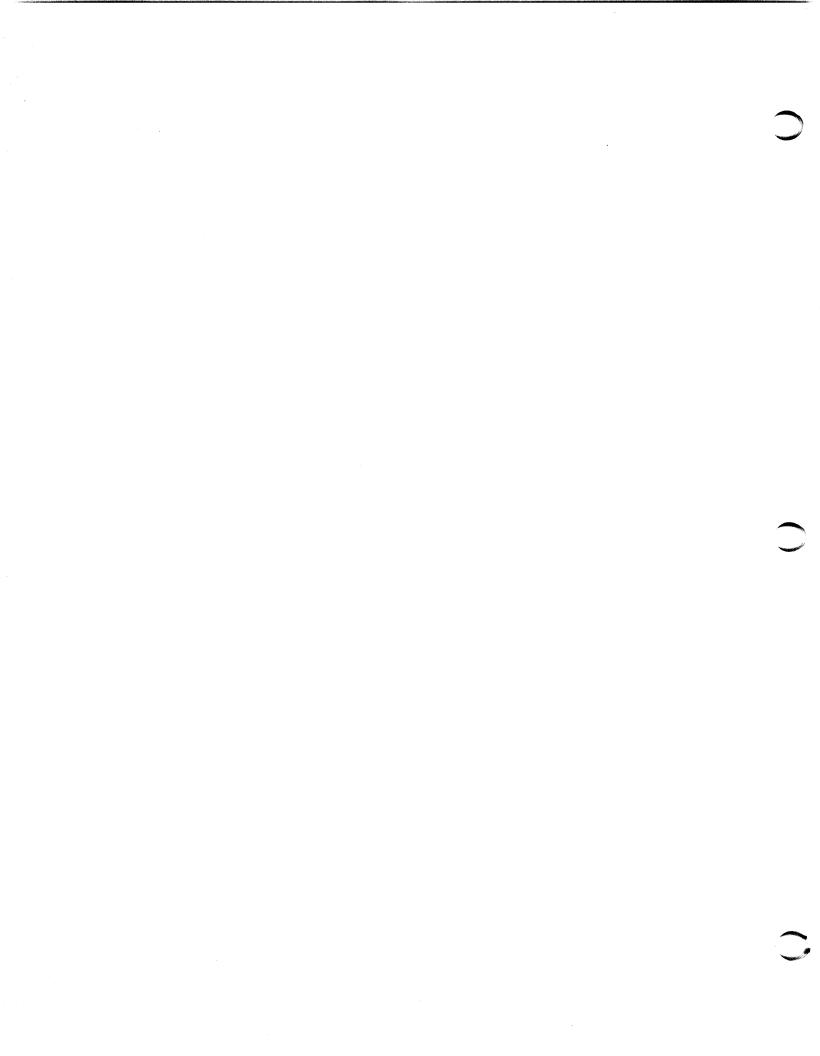
| Figure           |                           | CM195AC/CM195AD Datakit VCS Interface Card Layout                       | 2-146 |
|------------------|---------------------------|-------------------------------------------------------------------------|-------|
| Figure           | 2-47:                     | CM195AE GPSC Card Layout                                                |       |
| Figure           | 2-48:                     | CM195AY EPORTS Card Layout                                              |       |
| Figure           | 2-49:                     | CM195B PORTS Card Layout (Early Production)                             | 2-152 |
| Figure           | 2-50:                     | CM195B-7 PORTS Card Layout                                              | 2-153 |
| Figure           | 2-51:                     | CM195BA PORTS Card Layout                                               | 2-156 |
| Figure           | 2-52:                     | CM195H CTC Card Layout                                                  | 2-158 |
| Figure           | 2-53:                     | CM195K XDC Card Layout                                                  | 2-160 |
| Figure           | 2-54:                     | CM195T ISC Card Layout                                                  | 2-162 |
| Figure           | 2-55:                     | CM195U STARLAN Interface Card Layout                                    | 2-164 |
| Figure           |                           | CM195W SCSI Host Adapter Card Layout                                    | 2-166 |
| Figure           | 2-57:                     | CM195Y EPORTS Card Layout                                               | 2-168 |
| Figure           |                           | CM521A Differential SCSI Host Adapter Card Layout                       | 2-170 |
| Figure           |                           | CM522A VCACHE Card Layout                                               | 2-172 |
| Figure           |                           | CM524A PE Card Layout                                                   | 2-174 |
| Figure           |                           | CM525B VMEbus Card Layout                                               | 2-176 |
| Figure           |                           | CM527A MPE Card Layout                                                  |       |
| Figure           |                           | Version 2 Computer Backup Battery Supply Layout                         |       |
| Figure           |                           | 3B2/500 Computer Backup Battery Supply Position                         |       |
| Figure           |                           | 3B2/600, 700, and 1000 Computer Backup Battery Supply Position          | 2-220 |
| Figure           |                           |                                                                         | 3-3   |
| Figure           |                           | Version 3 Computer—High-Level Functional Block Diagram                  | 3-7   |
| Figure           |                           | Version 2 Computer Address Spectrum                                     | 3-10  |
| Figure           |                           | Version 3 Computer Address Spectrum                                     | 3-11  |
| Figure           | 3- <del>1</del> .<br>3-5: | Input/Output Bus Signals                                                | 3-14  |
| Figure           | 3-6:                      | System Board Peripheral Controller Read Operation                       | 3-14  |
| Figure           |                           | System Board Peripheral Controller Write Operation                      | 3-20  |
| Figure           |                           | Peripheral Controller Main Memory Read Operation                        | 3-22  |
| Figure           |                           | Peripheral Controller Main Memory Write Operation                       | 3-24  |
| Figure           |                           | Self-Configuration — Powerup Sequence                                   | 3-27  |
| Figure           |                           | Self-Configuration — Manual Boot Sequence                               | 3-28  |
| Figure           |                           | Self-Configuration Process                                              | 3-30  |
| Figure           |                           | Version 2 3B2 Computer System Board—Functional Block Diagram            | 3-33  |
| 0                |                           | System Board CPU—Functional Block Diagram                               | 3-36  |
| Figure<br>Figure |                           | WE 32101 MMU Interconnection Diagram                                    | 3-44  |
| Figure           |                           | WE 32101 MMU Block Diagram                                              | 3-45  |
| Figure           |                           | MMU Internal Address Spectrum                                           | 3-45  |
| Figure           |                           | Virtual Address to Physical Address Translation for Contiguous Segments | 3-53  |
| Figure           |                           | Virtual Address to Physical Address Translation for Paged Segments      | 3-54  |
| Figure           |                           | WE 32106 Math Acceleration Unit—Functional Block Diagram                | 3-54  |
| Figure           |                           | Chip Select and Control Signals Address Decode                          | 3-64  |
| •                |                           | Version 2 System Board CSR Bit Assignments                              | 3-68  |
| Figure           |                           | System Board Interrupt Assignments                                      | 3-70  |
| Figure           |                           | Dual Port Dynamic Random Access Memory Controller—Functional Block      | 3-70  |
| Figure           | 3-24:                     |                                                                         | 2 74  |
| <b>T</b> .       | 0.05                      | Diagram                                                                 | 3-74  |
| Figure           |                           | Data Byte Selection Summary                                             | 3-77  |
| Figure           |                           | Direct Memory Access Subsystem—Functional Block Diagram                 | 3-79  |
| Figure           |                           | Version 3 3B2 Computer System Board—Functional Block Diagram            | 3-87  |
| Figure           |                           | CM518B/C System Board CPU—Functional Block Diagram                      | 3-90  |
| Figure           |                           | WE 32201 MMU Interconnection Diagram                                    | 3-98  |
| Figure           |                           | MMU Internal Address Spectrum                                           | 3-104 |
| Figure           |                           | Virtual Address to Physical Address Translation for Paged Segments      | 3-106 |
| Figure           | 3-32:                     | WE 32206 Math Acceleration Unit—Functional Block Diagram                | 3-108 |

|                                                                                                                                                                                                      | 3-33:                                                                                                                                                                                                                | Chip Select and Control Signals Address Decode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-118                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure                                                                                                                                                                                               | 3-34:                                                                                                                                                                                                                | Version 3 System Board CSER Bit Assignments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-122                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               | 3-35:                                                                                                                                                                                                                | Version 3 System Board Interrupt Assignments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-124                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               | 3-36:                                                                                                                                                                                                                | Dynamic Random Access Memory Controller—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                               |
| Figure                                                                                                                                                                                               | 3-37:                                                                                                                                                                                                                | Data Byte Selection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | Direct Memory Access Subsystem—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-133                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | CM191A 0.25-Megabyte RAM Card—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | CM191B 1-Megabyte RAM Card—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | CM191C 1-Megabyte, Surface Mounted, RAM Card—Functional Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 111                                                                                                                                                                                                                         |
| - igure                                                                                                                                                                                              | 0 11.                                                                                                                                                                                                                | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-142                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               | 3-42.                                                                                                                                                                                                                | CM191D 2-Megabyte, Surface Mounted, Full Height, RAM Card—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5-142                                                                                                                                                                                                                         |
| riguie                                                                                                                                                                                               | J- <b>4</b> 2.                                                                                                                                                                                                       | Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 1 4 2                                                                                                                                                                                                                       |
| Figuro                                                                                                                                                                                               | 2 12.                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-145                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               | 5-45.                                                                                                                                                                                                                | CM192B 2-Megabyte, Surface Mounted, Half Height, RAM Card—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 1 4 4                                                                                                                                                                                                                       |
| <b>F</b> !                                                                                                                                                                                           | 2 44.                                                                                                                                                                                                                | Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-144                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | CM523A 4-Megabyte RAM Card—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | CM523AA 4-Megabyte RAM Card—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-148                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | CM523B 2-Megabyte RAM Card—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | CM523D 16-Megabyte RAM Card—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |
| Figure                                                                                                                                                                                               | 3-48:                                                                                                                                                                                                                | CM193A/B (3B2/300 and 310) Backplane—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3-155                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               | 3-49:                                                                                                                                                                                                                | CM194B (3B2/400) Backplane—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-157                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               | 3-50:                                                                                                                                                                                                                | CM519A (3B2/600 and 700) Backplane—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-159                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               | 3-51:                                                                                                                                                                                                                | CM519B (3B2/1000) Backplane—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-161                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               | 3-52:                                                                                                                                                                                                                | CM520A (3B2/500) Backplane—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | CM195A NI Card—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | CM195A NI Card Address Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | CM195AA AIC Card—Functional Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-176                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | CM195AA AIC Card Address Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-177                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | CM195AC/CM195AD Datakit VCS Interface Card—Functional Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 177                                                                                                                                                                                                                         |
| inguie                                                                                                                                                                                               | 0 07.                                                                                                                                                                                                                | entrone during butant veb interface card Tunctional block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                               |
|                                                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-18/                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               | 3-58.                                                                                                                                                                                                                | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-184                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               |                                                                                                                                                                                                                      | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185                                                                                                                                                                                                                         |
| Figure                                                                                                                                                                                               | 3-59:                                                                                                                                                                                                                | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190                                                                                                                                                                                                                |
| Figure<br>Figure                                                                                                                                                                                     | 3-59:<br>3-60:                                                                                                                                                                                                       | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192                                                                                                                                                                                                       |
| Figure<br>Figure<br>Figure                                                                                                                                                                           | 3-59:<br>3-60:<br>3-61:                                                                                                                                                                                              | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198                                                                                                                                                                                              |
| Figure<br>Figure<br>Figure<br>Figure                                                                                                                                                                 | 3-59:<br>3-60:<br>3-61:<br>3-62:                                                                                                                                                                                     | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200                                                                                                                                                                                     |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                                                                                                       | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:                                                                                                                                                                            | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204                                                                                                                                                                            |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                                                                                             | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:                                                                                                                                                                   | DiagramCM195AC Processing Unit Card Address MapCM195AC Processing Unit Card Address MapCM195AE GPSC Card—Functional Block DiagramCM195AE GPSC Card Address MapCM195AY EPORTS Card—Functional Block DiagramCM195AY EPORTS Card Address MapCM195B/CM195BA PORTS Card—Functional Block DiagramCM195B/CM195BA PORTS Card Address MapCM195B/CM195BA PORTS Card Address MapCM195B/CM195BA PORTS Card Address Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206                                                                                                                                                                   |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                                                                                   | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:                                                                                                                                                          | DiagramCM195AC Processing Unit Card Address MapCM195AC Processing Unit Card Address MapCM195AE GPSC Card—Functional Block DiagramCM195AE GPSC Card Address MapCM195AY EPORTS Card—Functional Block DiagramCM195AY EPORTS Card Address MapCM195B/CM195BA PORTS Card—Functional Block DiagramCM195B/CM195BA PORTS Card Address MapCM195B/CM195BA PORTS Card Address Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210                                                                                                                                                          |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                                                                         | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-66:                                                                                                                                                 | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212                                                                                                                                                 |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                                                               | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-66:<br>3-66:<br>3-67:                                                                                                                               | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216                                                                                                                                        |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                                                     | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-66:<br>3-67:<br>3-68:                                                                                                                               | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218                                                                                                                               |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                                           | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-63:<br>3-64:<br>3-65:<br>3-66:<br>3-67:<br>3-68:<br>3-68:<br>3-69:                                                                                                    | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218<br>3-224                                                                                                                      |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                                 | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-66:<br>3-67:<br>3-68:<br>3-69:<br>3-70:                                                                                                             | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218<br>3-224<br>3-226                                                                                                             |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                                           | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-66:<br>3-67:<br>3-68:<br>3-69:<br>3-70:                                                                                                             | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218<br>3-224<br>3-226<br>3-232                                                                                                    |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                                                 | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-66:<br>3-67:<br>3-68:<br>3-69:<br>3-70:<br>3-71:                                                                                                    | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218<br>3-224<br>3-226<br>3-232                                                                                                    |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                             | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-66:<br>3-67:<br>3-68:<br>3-69:<br>3-70:<br>3-71:<br>3-72:                                                                                           | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218<br>3-224<br>3-226<br>3-232<br>3-234                                                                                           |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                                   | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-65:<br>3-66:<br>3-67:<br>3-68:<br>3-69:<br>3-70:<br>3-71:<br>3-72:<br>3-73:                                                                         | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218<br>3-224<br>3-226<br>3-232<br>3-234<br>3-240                                                                                  |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                                         | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-66:<br>3-67:<br>3-68:<br>3-69:<br>3-70:<br>3-71:<br>3-72:<br>3-73:<br>3-74:                                                                         | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218<br>3-224<br>3-226<br>3-232<br>3-232<br>3-234<br>3-240<br>3-242                                                                |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                               | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-66:<br>3-67:<br>3-68:<br>3-69:<br>3-70:<br>3-70:<br>3-71:<br>3-72:<br>3-73:<br>3-74:<br>3-75:                                                       | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218<br>3-224<br>3-226<br>3-232<br>3-234<br>3-240<br>3-242<br>3-248                                                                |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                               | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-66:<br>3-67:<br>3-68:<br>3-69:<br>3-70:<br>3-71:<br>3-72:<br>3-73:<br>3-74:<br>3-75:<br>3-76:                                                       | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218<br>3-224<br>3-226<br>3-232<br>3-234<br>3-240<br>3-240<br>3-242<br>3-248<br>3-250                                              |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure                     | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-66:<br>3-67:<br>3-68:<br>3-69:<br>3-70:<br>3-70:<br>3-71:<br>3-72:<br>3-73:<br>3-74:<br>3-75:<br>3-76:<br>3-77:                                     | DiagramCM195AC Processing Unit Card Address MapCM195AE GPSC Card—Functional Block DiagramCM195AE GPSC Card Address MapCM195AY EPORTS Card—Functional Block DiagramCM195AY EPORTS Card—Functional Block DiagramCM195B/CM195BA PORTS Card—Functional Block DiagramCM195B/CM195BA PORTS Card—Functional Block DiagramCM195H CTC Card—Functional Block DiagramCM195H CTC Card—Functional Block DiagramCM195K XDC Card—Functional Block DiagramCM195K XDC Card—Functional Block DiagramCM195T ISC Card—Functional Block DiagramCM195T ISC Card Address MapCM195T STARLAN Interface Card—Functional Block DiagramCM195W SCSI Host Adapter Card—Functional Block DiagramCM195W SCSI Host Adapter Card Address MapCM195Y EPORTS Card Address MapCM195Y EPORTS Card—Functional Block DiagramCM195Y EPORTS Card—Functional Block DiagramCM195Y EPORTS Card—Functional Block DiagramCM195Y EPORTS Card—Functional Block DiagramCM195Y EPORTS Card Address MapCM195Y EPORT | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218<br>3-218<br>3-224<br>3-226<br>3-232<br>3-234<br>3-240<br>3-240<br>3-242<br>3-248<br>3-250<br>3-254                            |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure           | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-65:<br>3-66:<br>3-67:<br>3-68:<br>3-69:<br>3-70:<br>3-71:<br>3-72:<br>3-73:<br>3-74:<br>3-75:<br>3-76:<br>3-77:<br>3-78:                            | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218<br>3-224<br>3-226<br>3-232<br>3-234<br>3-240<br>3-242<br>3-248<br>3-250<br>3-254<br>3-256                                     |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-63:<br>3-64:<br>3-65:<br>3-66:<br>3-67:<br>3-68:<br>3-69:<br>3-70:<br>3-70:<br>3-71:<br>3-72:<br>3-72:<br>3-73:<br>3-74:<br>3-75:<br>3-76:<br>3-77:<br>3-78:<br>3-79: | DiagramCM195AC Processing Unit Card Address MapCM195AE GPSC Card—Functional Block DiagramCM195AE GPSC Card Address MapCM195AF GPSC Card Address MapCM195AY EPORTS Card—Functional Block DiagramCM195AY EPORTS Card Address MapCM195B/CM195BA PORTS Card—Functional Block DiagramCM195B/CM195BA PORTS Card Address MapCM195B/CM195BA PORTS Card Address MapCM195H CTC Card—Functional Block DiagramCM195H CTC Card—Functional Block DiagramCM195K XDC Card—Functional Block DiagramCM195K XDC Card Address MapCM195T ISC Card Address MapCM195T ISC Card Address MapCM195U STARLAN Interface Card—Functional Block DiagramCM195W SCSI Host Adapter Card Address MapCM195Y EPORTS Card Address MapCM195Y EPORTS Card Address MapCM195Y EPORTS Card Address MapCM195U STARLAN Interface Card Address MapCM195U STARLAN Interface Card Address MapCM195W SCSI Host Adapter Card Address MapCM195Y EPORTS Card Address MapCM21A Differential SCSI Host Ada                   | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218<br>3-216<br>3-218<br>3-224<br>3-226<br>3-232<br>3-234<br>3-240<br>3-242<br>3-248<br>3-250<br>3-254<br>3-256<br>3-262          |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure           | 3-59:<br>3-60:<br>3-61:<br>3-62:<br>3-63:<br>3-64:<br>3-65:<br>3-66:<br>3-67:<br>3-68:<br>3-67:<br>3-70:<br>3-70:<br>3-71:<br>3-72:<br>3-73:<br>3-74:<br>3-75:<br>3-76:<br>3-77:<br>3-78:<br>3-79:<br>3-80:          | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-185<br>3-190<br>3-192<br>3-198<br>3-200<br>3-204<br>3-206<br>3-210<br>3-212<br>3-216<br>3-218<br>3-216<br>3-218<br>3-224<br>3-226<br>3-232<br>3-234<br>3-240<br>3-242<br>3-248<br>3-250<br>3-254<br>3-256<br>3-262<br>3-263 |

Ĵ

C

| Figure | 3-82:          | CM524A PE Card Address Map                                     | 3-267        |
|--------|----------------|----------------------------------------------------------------|--------------|
| Figure | 3-83:          | CM525B VMEbus Card—Functional Block Diagram                    |              |
| Figure | 3-84:          | CM525B VMEbus Card Address Map                                 |              |
| Figure | 3-85:          | CM527A MPE Card—Functional Block Diagram                       |              |
| Figure | 3-86:          | CM527A MPE Card Address Map                                    | 3-279        |
| Figure | 3-87:          | Floppy Disk Physical Layout                                    | 3-283        |
| Figure | 3-88:          | Floppy Disk Drive—Functional Block Diagram                     | 3-285        |
| 0      |                |                                                                |              |
| Figure | 3-89:          | Cartridge Tape Physical Layout                                 | 3-287        |
| Figure | 3-90:          | 23-Megabyte Cartridge Tape Drive—Functional Block Diagram      | 3-289        |
| Figure | 3-91:          | 60-Megabyte Cartridge Tape Physical Layout                     |              |
| Figure | 3-92:          | 60-Megabyte Cartridge Tape Drive—Functional Block Diagram      |              |
| Figure | 3-93:          | 120-Megabyte Cartridge Tape Physical Layout                    |              |
| Figure | 3-94:          | 120-Megabyte Cartridge Tape Drive—Functional Block Diagram     |              |
| Figure | 3-95:          | SCSI Rewritable Optical Disk Drive—Functional Block Diagram    | 3-300        |
| Figure | 3-96:          | 3B2/300 or 310 Computer and AT&T/XM Power—Functional Block     |              |
|        |                | Diagram                                                        |              |
| Figure |                | 3B2/400 Computer and AT&T/XM Power—Functional Block Diagram    |              |
| Figure | 3-98:          | 3B2/300 and 310 Computer Power Supply—Functional Block Diagram |              |
| Figure | 3-99:          | 3B2/400 Computer Power Supply—Functional Block Diagram         | 3-309        |
| Figure | 3-100:         | 3B2/500 Computer Power Supply—Functional Block Diagram         | 3-311        |
| Figure | 3-101:         | 3B2/600 and 700 Computer Power Supply—Functional Block Diagram | 3-312        |
| Figure | 3-102:         | 3B2 Power Supply for Embedded SCSI— Functional Block Diagram   | 3-313        |
| Figure | 3-103:         | 3B2 Computer Backup Battery Supply—Functional Block Diagram    | 3-316        |
| Figure | 3-104:         | AT&T/XM Power Supply—Functional Block Diagram                  | 3-318        |
| Figure |                | AT&T XM/405S/900S Power Supply—Functional Block Diagram        | 3-319        |
| Figure | A-1:           | Virtual Address Space Sections                                 | A-1          |
| Figure |                | Virtual Address Space — Section 0                              | A-2          |
| Figure | A-3:           | Virtual Address Space — Section 1                              | A-3          |
| Figure | A-4:           | Virtual Address Space — Section 2                              | A-3          |
| Figure | A-5:           | Virtual Address Space — Section 3                              | A-4          |
| Figure | A-6:           | Paging Virtual Address Map (Minimum Configuration)             | A-4          |
| Figure | B-1:           | CM190A System Board Layout                                     | B-5          |
| Figure | B-2:           | System Board, ED-4C637-30 Layout                               | B-7          |
| Figure | B-3:           | CM518A System Board Layout                                     | B-25         |
| Figure | B-4:           | CM518B System Board Layout                                     | B-25<br>B-27 |
| Figure | B-5:           | CM518C System Board Layout                                     | B-29         |
| Figure | B-6:           | CM191A 0.25-Megabyte Memory Card Layout                        | B-43         |
| Figure | B-7:           | CM191B 1-Megabyte Memory Card Layout                           | B-45         |
| Figure | B-8:           | CM191C 1-Megabyte, Surface Mounted, Memory Card Layout         | B-45<br>B-47 |
| Figure | B-9:           | CM191D 2-Megabyte, Surface Mounted, Memory Card Layout         | B-49         |
| Figure | B-10:          | CM192B 2-Megabyte, Surface Mounted, Memory Card Layout         | B-51         |
| Figure | B-10.<br>B-11: | CM523A 4-Megabyte Memory Card Layout                           | B-57         |
| -      | B-11:<br>B-12: |                                                                | B-59         |
| Figure |                |                                                                | B-61         |
| Figure | B-13:          | CM523B 2-Megabyte Memory Card Layout                           |              |
| Figure | B-14:          | CM523D 16-Megabyte Memory Card Layout                          | B-63         |
| Figure | B-15:          | CM193A/B Backplane Layout                                      | B-69         |
| Figure | B-16:          | CM194B Backplane Layout                                        | B-71         |
| Figure | B-17:          | CM519A Backplane Layout                                        | B-81         |
| Figure | B-18:          | CM519B Backplane Layout                                        | B-83         |
| Figure | B-19:          | CM520A Backplane Layout                                        | B-85         |
| Figure | B-20:          | CM195A NI Card Layout                                          | B-111        |
| Figure | B-21:          | CM195AA AIC Card Layout                                        | B-119        |
| Figure | B-22:          | CM195AC/CM195AD Datakit VCS Interface Card Layout              | B-127        |


1

¥.

| Figure | B-23: | CM195AE GPSC Card Layout                                               |  | B-137 |
|--------|-------|------------------------------------------------------------------------|--|-------|
| Figure | B-24: | CM195AY/CM195Y EPORTS Card Layout                                      |  | B-145 |
| Figure | B-25: | CM195B/CM195BA PORTS Card Layout                                       |  | B-153 |
| Figure | B-26: | CM195H CTC Card Layout                                                 |  | B-161 |
| Figure | B-27: | CM195K XDC Card Layout                                                 |  | B-169 |
| Figure | B-28: | CM195T ISC Card Layout                                                 |  | B-179 |
| Figure | B-29: | CM195U STARLAN Interface Card Layout                                   |  | B-187 |
| Figure | B-30: | CM195W SCSI Host Adapter Card Layout                                   |  | B-195 |
| Figure | B-31: | CM521A Differential SCSI Host Adapter Card Layout                      |  | B-203 |
| Figure | B-32: | CM522A VCACHE Card Layout                                              |  | B-211 |
| Figure | B-33: | CM524A PE Card Layout                                                  |  | B-217 |
| Figure | B-34: | CM525B VMEbus Card Layout                                              |  | B-223 |
| Figure | B-35: | CM527A MPE Card Layout                                                 |  | B-235 |
| Figure | B-36: | CONSOLE, CONTTY, and PORTS 8-Pin Modular Jacks Pin Identification      |  | B-239 |
| Figure | B-37: | ACU/MODEM Connector (232-21-25-005) Pin Identification                 |  | B-240 |
| Figure | B-38: | Terminal/Printer Female Connector (232-22-25-006) Pin Identification . |  | B-241 |
| Figure | B-39: | Terminal/Printer Male Connector (232-21-25-010) Pin Identification     |  | B-242 |
| Figure | B-40: | Remote Console Male Connector (232-21-25-008) Pin Identification       |  | B-243 |
| Figure | B-41: | PORTS Loop Around Connections                                          |  | B-244 |
| Figure | B-42: | 8-Conductor Modular Cable Connector Pin Identification                 |  | B-246 |
| Figure | B-43: | CENTRONICS Connectorized Cable Pin Identification                      |  | B-247 |

\_

~



# **Chapter 1: INTRODUCTION**

| INTRODUCTION                          |  |  |   | <br>• |  |  | • |    | 1-1 |
|---------------------------------------|--|--|---|-------|--|--|---|----|-----|
| PURPOSE OF TECHNICAL REFERENCE MANUAL |  |  | • | <br>• |  |  |   |    | 1-1 |
| MANUAL ORGANIZATION                   |  |  | • | <br>• |  |  |   | ۰. | 1-1 |
| RELATED DOCUMENTATION                 |  |  | • | <br>• |  |  |   |    | 1-1 |

TABLE OF CONTENTS i

# INTRODUCTION

# PURPOSE OF TECHNICAL REFERENCE MANUAL

This manual is intended for use by a sophisticated user, an Original Equipment Manufacturer (OEM), or a Value Added Retailer (VAR) who need physical and functional information on the AT&T 3B2 computer series (300, 310, 400, 500, 600, 700, and 1000) and associated peripheral add-ons.

# MANUAL ORGANIZATION

This manual is structured so you can easily find information without having to read the entire text. The remainder of this manual is organized as follows.

- Chapter 2, "EQUIPMENT DESCRIPTION," is a hardware-oriented physical description of the 3B2 computers and peripherals.
- Chapter 3, "FUNCTIONAL DESCRIPTION," describes how the 3B2 computer operates. The peripherals operation and important information is also given.
- Appendix A, "VIRTUAL ADDRESS SPACE," gives the virtual memory address spectrum for the 3B2 computer.
- Appendix B, "CONNECTOR AND CABLING INFORMATION," provides card signal and connector information.

# **RELATED DOCUMENTATION**

Other documents for OEM/VAR use are the following:

Crash Analysis Guide

This guide describes the use of the **crash** command to examine the UNIX<sup>®</sup> system memory images following a system panic.

Feature Card Interface Design Manual

This manual provides the information necessary to design a feature card for the 3B2 computer. Detailed information is provided on the Input/Output (I/O) bus.

Error Message Manual

This manual contains error message descriptions and recommended actions for the various 3B2 computer error messages.

### **Off-Line Diagnostics Manual**

This manual describes the diagnostic phases and gives test descriptions for all 3B2 computer and feature card diagnostics.

Driver Design Guide

This guide provides information for creating device drivers. Descriptions include firmware interfaces, how to write a block and character device driver, and how to install a driver.

Application Software Packaging Guide

This guide identifies the requirements, guidelines, and templates for developers to use when creating software applications for inexperienced end users.

# **Chapter 2: EQUIPMENT DESCRIPTION**

| EQUIPMENT DESCRIPTION                                | 2-1          |
|------------------------------------------------------|--------------|
| SYSTEM (EQUIPMENT) CONFIGURATIONS                    | 2-3          |
| Computer Models                                      | 2-3          |
| Minimum 3B2 Computer Equipment Configuration         | 2-6          |
| Maximum 3B2 Computer Equipment Configuration         | 2-7          |
| Add-On Features                                      | 2-8          |
| HARDWARE OVERVIEW                                    | 2-13         |
| Domestic 3B2/300 Computer Cabinet (ED-4C492-30)      | 2-13         |
| International 3B2/300 Computer Cabinet (ED-4C560-30) | 2-17         |
| Domestic 3B2/310 Computer Cabinet (ED-4C645-30)      | 2-21         |
| International 3B2/310 Computer Cabinet (ED-4C646-30) | 2-21         |
| Domestic $3B2/400$ Computer Cabinet (ED-4C631-30)    | 2-29         |
| International 3B2/400 Computer Cabinet (ED-4C638-30) | 2-29         |
| 3B2/500 Computer Cabinet (ED-3T043-30)               | 2-35         |
| 3B2/600 Computer Cabinet (ED-31043-30)               | 2-37<br>2-41 |
| 3B2/700 Computer Cabinet (ED-31023-30)               |              |
| 3B2/100 Computer Cabinet (ED-3T056-30)               | 2-45         |
|                                                      | 2-49         |
| Domestic AT&T/XM (ED-4C580-30)                       | 2-53         |
| International AT&T/XM (ED-4C635-30)                  | 2-57         |
| Domestic AT&T XM/405S/900S (ED-3T010-30)             | 2-61         |
| International AT&T XM/405S/900S (ED-3T027-30)        | 2-65         |
| AT&T Disk Controller Module/4E (ED-3T011-30,G1)      | 2-69         |
| AT&T Disk Module (ED-3T011-30,G2, G3, G5, G6)        | 2-73         |
| AT&T Embedded Disk Modules (ED-3T011-30,G8, G9, G11) | 2-77         |
| AT&T SCSI Rewritable Optical Disk Module             | 2-81         |
| AT&T SCSI 9-Track Tape                               | 2-85         |
| AT&T SCSI Tape Module (ED-3T011-30,G4, G7)           | 2-89         |
| AT&T Cartridge Tape Module                           | 2-93         |
| AT&T Peripheral Power Control Unit (ED-3T011-30,G10) | 2-95         |
| SYSTEM BOARDS                                        | 2-99         |
| CM190A System Board                                  | 2-99         |
| ED-4C637-30 System Board                             | 2-103        |
| CM518A System Board                                  | 2-107        |
| CM518B System Board                                  | 2-111        |
| CM518C System Board                                  |              |
| RANDOM ACCESS MEMORY CARDS                           | 2-119        |
| Memory Card Types                                    | 2-119        |
| RAM Equipage Considerations                          | 2-120        |
| CM191A 0.25-Megabyte RAM Card                        | 2-121        |
| CM191B 1-Megabyte RAM Card                           | 2-122        |
| CM191C 1-Megabyte RAM Card                           | 2-123        |
| CM191D 2-Megabyte RAM Card                           | 2-124        |
| CM192B 2-Megabyte RAM Card                           | 2-125        |
| CM523A 4-Megabyte RAM Card                           | 2-126        |
| CM523AA 4-Megabyte RAM Card                          | 2-127        |
| CM523B 2-Megabyte RAM Card                           | 2-128        |
| CM523D 16-Megabyte RAM Card                          | 2-129        |
| BACKPLANE BOARDS                                     | 2-131        |
| Backplane Types                                      | 2-131        |
| CM193A/B, 3B2/300/310 Computer Backplane Board       | 2-131        |
| CM194B, 3B2/400 Computer Backplane Board             | 2-132        |
| · · ·                                                |              |

TABLE OF CONTENTS i

| CM519A Backplane Board Layout                                            |   |   |   |   |   | 2-133      |
|--------------------------------------------------------------------------|---|---|---|---|---|------------|
| CM519B Backplane Board Layout                                            |   |   |   |   |   | 2-134      |
| CM520A Backplane Board Layout                                            |   |   |   |   |   | 2-135      |
| AUXILIARY DISK INTERFACE (ED-4C632-30)                                   |   |   |   |   |   | 2-137      |
| DUART CONNECTOR-2 INTERFACE (ED-4C492-35,G5 and ED-4C631-35,G2)          |   |   |   |   |   | 2-139      |
| CM195A NETWORK INTERFACE CARD                                            |   |   |   |   |   | 2-141      |
| CM195A NETWORK INTERFACE CARD                                            |   |   |   |   |   | 2-143      |
| CM195AC/CM195AD "DATAKIT" VCS INTERFACE CARD                             |   |   |   |   |   | 2-145      |
| CM195AE GPSC CARD PACKAGE                                                |   |   |   |   |   |            |
| CM195AY EPORTS CARD                                                      |   |   |   |   |   |            |
| CM195B PORTS CARD                                                        |   |   |   |   |   |            |
| CM195BA PORTS CARD                                                       |   |   |   |   |   |            |
| CM195H CARTRIDGE TAPE CONTROLLER CARD                                    |   |   |   |   |   | 2-157      |
| CM195K EXPANSION DISK CONTROLLER CARD                                    | • | • | · | • | · | 2-159      |
| CM195T INTELLIGENT SERIAL CONTROLLER CARD                                |   | • | • | • | • | 2-161      |
| CM195U STARLAN INTERFACE CARD                                            |   |   |   |   |   |            |
| CM195W SCSI HOST ADAPTER CARD                                            |   |   |   |   |   |            |
| CM195Y EPORTS CARD                                                       | • | • | • | • | • | 2-167      |
| CM521A DIFFERENTIAL SCSI HOST ADAPTER CARD                               | • | • | • | • | · | 2-169      |
| CM521A DITTERENTIAL SCST HOST ADAT TER CARD                              |   |   |   |   |   |            |
| CM522A VCACHE CARD                                                       | • | • | • | • | • | $2^{-171}$ |
| CM525B VMEbus CARD                                                       |   |   |   |   |   |            |
| CM5255 VMEDUS CARD                                                       | • | • | • | • | • | 2-175      |
| FLOPPY DISK DRIVE (KS-23114,L4)                                          |   |   |   |   |   |            |
| Floppy Disk Drive Use                                                    | • | • | • | • | • | 2-179      |
| Floppy Disk Partitions                                                   | • | • | • | • | • | 2-177      |
| Floppy Disk Drive Equipment Characteristics                              | • | • | • | • | • | 2-181      |
| 23-MEGABYTE CARTRIDGE TAPE DRIVE (KS-23165,L1)                           | • | • | • | • | · | 2-183      |
|                                                                          |   |   |   |   |   |            |
| Cartridge Tape Partitioning                                              |   |   |   |   | • | 2-184      |
| Cartridge Tape Drive Equipment Characteristics                           |   |   |   |   |   | 2-185      |
| 60-MEGABYTE CARTRIDGE TAPE DRIVE (KS-23417,L2)                           |   |   |   |   |   | 2-187      |
| 60-Megabyte Cartridge Tape Drive Equipment Characteristics               |   |   |   |   |   | 2-187      |
| 60-Megabyte Cartridge Tape Drive Equipment Characteristics               |   |   |   |   |   | 2-189      |
| 120-Megabyte Cartridge Tape Drive Equipment Characteristics              |   |   |   |   |   | 2-189      |
| HARD DISK DRIVES                                                         |   |   |   |   |   | 2-191      |
| Seagate 10-Megabyte Hard Disk (KS-23034,L1)                              |   |   |   |   |   | 2-191      |
| WREN 30-Megabyte Hard Disk (KS-23054,L1)                                 |   |   |   |   |   | 2-193      |
| FUJITSU 72-Megabyte Hard Disk (KS-23054,L2)                              |   |   |   |   |   | 2-195      |
| WREN II 72-Megabyte Hard Disk (KS-23054,L2)                              |   |   |   |   |   | 2-197      |
| 94-Megabyte Hard Disk (KS-23371,L7)                                      |   |   |   |   |   | 2-199      |
| 147-Megabyte Hard Disk (KS-23371,L17)                                    |   |   |   |   |   | 2-200      |
| 155-Megabyte Hard Disk (KS-23483,L25)                                    |   |   |   |   |   | 2-201      |
| 300-Megabyte Hard Disk (KS-23483,L1B or L11B)                            |   |   |   |   |   | 2-202      |
| 300-Megabyte Hard Disk (KS-23483,L3)                                     |   |   |   |   |   | 2-203      |
| 300-Megabyte Hard Disk (KS-23371,L31)                                    |   |   |   |   |   | 2-204      |
| 600-Megabyte Hard Disk (KS-23483,L5 or L15)                              |   |   |   |   |   | 2-205      |
| 600-Megabyte Hard Disk (KS-23483,L7 or L17)                              |   |   |   |   |   | 2-206      |
| POWER—EQUIPMENT DESCRIPTION                                              |   |   |   |   |   | 2-207      |
| Domestic 3B2/300 and 310 Computers Power Supply, #095-10011-XX1 and      |   |   |   |   |   |            |
| #095-10060-00                                                            |   |   |   |   |   | 2-207      |
| 3B2/300 and 310 Computers International Power Supply, #095-10011-XX2 and |   |   |   |   |   |            |
| #095-10061-00                                                            |   |   |   |   |   | 2-208      |

|     | 3B2/400 Computer Domestic Power Supply, #095-10035-XX1                 |  |   | 2-209 |
|-----|------------------------------------------------------------------------|--|---|-------|
|     | 3B2/400 Computer International Power Supply, #095-10035-XX2            |  |   | 2-210 |
|     | 3B2/500 Computer Power Supply, ACS752A or CS752A                       |  |   | 2-211 |
|     | 3B2/600, 700, and 1000 Computers Power Supply, ACS782A or CS782A       |  |   | 2-212 |
|     | Domestic AT&T Expansion Module Power Supply, #095-10040-XX1            |  |   | 2-213 |
|     | International AT&T Expansion Module Power Supply, #095-10040-XX2       |  |   | 2-214 |
|     | Domestic AT&T XM/405S/900S Power Supply, #095-10064-00                 |  | • | 2-215 |
|     | International AT&T XM/405S/900S Power Supply, #095-10073               |  | • | 2-216 |
|     | AT&T SCSI Peripherals (DCM, DM, TM, and PPCU) Power Supply, #095-10065 |  |   | 2-217 |
|     | 3B2 Computer Backup Battery Supply                                     |  |   | 2-218 |
| MIS | SCELLANEOUS EQUIPMENT AND APPARATUS                                    |  |   | 2-221 |
|     | Vertical Stands                                                        |  |   | 2-221 |
|     | 3B2 Expansion Cabinet                                                  |  |   | 2-221 |
|     |                                                                        |  |   |       |

C

 $\Box$ 

C

# LIST OF FIGURES

| Figure | 2-1:  | Domestic 3B2/300 Computer Cabinet Assembly Drawing<br>(ED-4C492-30)      | 2-15 |
|--------|-------|--------------------------------------------------------------------------|------|
| Figure | 2-2:  | International 3B2/300 Computer Cabinet Assembly Drawing<br>(ED-4C560-30) | 2-19 |
| Figure | 2-3:  | Domestic 3B2/310 Computer Cabinet Assembly Drawing<br>(ED-4C645-30)      | -23  |
| Figure | 2-4:  | International 3B2/310 Computer Cabinet Assembly Drawing<br>(ED-4C646-30) | -27  |
| Figure | 2-5:  | Domestic 3B2/400 Computer Cabinet Assembly Drawing<br>(ED-4C631-30)      | -31  |
| Figure | 2-6:  | International 3B2/400 Computer Cabinet Assembly Drawing<br>(ED-4C638-30) | -35  |
| Figure | 2-7:  | 3B2/500 Computer Cabinet Assembly Drawing (ED-3T043-30) 2                | -39  |
| Figure | 2-8:  | 3B2/600 Computer Cabinet Assembly Drawing (ED-3T023-30) 2                | -43  |
| Figure | 2-9:  | 3B2/700 Computer Cabinet Assembly Drawing (ED-3T047-30) 2                | -47  |
| Figure | 2-10: | 3B2/1000 Computer Cabinet Assembly Drawing<br>(ED-3T056-30)              | -51  |
| Figure | 2-11: | Domestic AT&T/XM Cabinet Assembly Drawing<br>(ED-4C580-30)               | -55  |
| Figure | 2-12: | International AT&T/XM Cabinet Assembly Drawing                           | -59  |
| Figure | 2-13: | Domestic AT&T XM/405S/900S Cabinet Assembly Drawing                      | -63  |
| Figure | 2-14: | International AT&T XM/405S/900S Cabinet Assembly                         | -67  |
|        |       |                                                                          |      |

# Chapter 2: EQUIPMENT DESCRIPTION

| Figure | 2-15:         | AT&T DCM/4E Cabinet Assembly Drawing<br>(ED-3T011-30,G1)                                            |
|--------|---------------|-----------------------------------------------------------------------------------------------------|
| Figure | 2-16:         | AT&T DM Cabinet Assembly Drawing (ED-3T011-30,G2, G3, G5, G6)                                       |
| Figure | 2-17:         | AT&T DM/S or DM/DS Cabinet Assembly Drawing<br>(ED-3T011-30,G8, G9, G11)                            |
| Figure | 2-18:         | AT&T SCSI Rewritable Optical Disk Cabinet Assembly<br>Drawing                                       |
| Figure | 2-19:         | SCSI Manual-Loading 9-Track Tape Cabinet                                                            |
| Figure | 2-20:         | SCSI Autoloading 9-Track Tape Cabinet                                                               |
| Figure | 2-21:         | AT&T SCSI TM Cabinet Assembly Drawing (ED-3T011-30,G4,<br>G7)                                       |
| Figure | 2-22:         | AT&T PPCU Cabinet Assembly Drawing (ED-3T011-30,G10) 2-97                                           |
| Figure | 2-23:         | CM190A System Board Layout (Discontinued Availability) 2-101                                        |
| Figure | 2-24:         | System Board, ED-4C637-30 Layout                                                                    |
| Figure | 2-25:         | CM518A System Board Layout                                                                          |
| Figure | 2-26:         | CM518B System Board Layout                                                                          |
| Figure | 2-27:         | CM518C System Board Layout                                                                          |
| Figure | 2-28:         | CM191A 0.25-Megabyte RAM Card Layout                                                                |
| Figure | 2-29:         | CM191B 1-Megabyte RAM Card Layout                                                                   |
| Figure | 2-30:         | CM191C 1-Megabyte, Surface Mounted, RAM Card Layout 2-123                                           |
| Figure | 2-31:         | CM191D 2-Megabyte, Surface Mounted, RAM Card Layout 2-124                                           |
| Figure | 2-32:         | CM192B 2-Megabyte RAM Card Layout                                                                   |
| Figure | 2-33:         | CM523A 4-Megabyte, Surface Mounted, RAM Card Layout 2-126                                           |
| Figure | 2-34:         | CM523AA 4-Megabyte, Surface Mounted, RAM Card Layout 2-127                                          |
| Figure | 2-35:         | CM523B 2-Megabyte, Surface Mounted, RAM Card Layout 2-128                                           |
| Figure | 2-36:         | CM523D 16-Megabyte, Surface Mounted, RAM Card Layout 2-129                                          |
| Figure | 2-37:         | CM193A/B Backplane Board Layout                                                                     |
| Figure | 2-38:         | CM194B Backplane Board Layout                                                                       |
| Figure | 2-39:         | CM519A Backplane Board Layout                                                                       |
| Figure | 2-40:         | CM519B Backplane Board Layout                                                                       |
| Figure | 2-41:         | CM520A Backplane Board Layout                                                                       |
| Figure | 2-42:         | Auxiliary Disk Interface, ED-4C632-30, Layout 2-138                                                 |
| Figure | 2-43:         | DUART Connector-2 Interface, ED-4C492-30,G5<br>(3B2/300/310) and ED-4C631-35,G2 (3B2/400)<br>Layout |
| Figure | 2-44.         | CM195A NI Card Layout                                                                               |
| inguie | <b>Z 11</b> . |                                                                                                     |

# ------ Chapter 2: EQUIPMENT DESCRIPTION

| Figure 2-45: | CM195AA AIC Layout                                      |
|--------------|---------------------------------------------------------|
| Figure 2-46: | CM195AC/CM195AD Datakit VCS Interface Card Layout 2-146 |
| Figure 2-47: | CM195AE GPSC Card Layout                                |
| Figure 2-48: | CM195AY EPORTS Card Layout                              |
| Figure 2-49: | CM195B PORTS Card Layout (Early Production) 2-152       |
| Figure 2-50: | CM195B-7 PORTS Card Layout                              |
| Figure 2-51: | CM195BA PORTS Card Layout                               |
| Figure 2-52: | CM195H CTC Card Layout                                  |
| Figure 2-53: | CM195K XDC Card Layout                                  |
| Figure 2-54: | CM195T ISC Card Layout                                  |
| Figure 2-55: | CM195U STARLAN Interface Card Layout                    |
| Figure 2-56: | CM195W SCSI Host Adapter Card Layout                    |
| Figure 2-57: | CM195Y EPORTS Card Layout                               |
| Figure 2-58: | CM521A Differential SCSI Host Adapter Card Layout 2-170 |
| Figure 2-59: | CM522A VCACHE Card Layout                               |
| Figure 2-60: | CM524A PE Card Layout                                   |
| Figure 2-61: | CM525B VMEbus Card Layout                               |
| Figure 2-62: | CM527A MPE Card Layout                                  |
| Figure 2-63: | Version 2 Computer Backup Battery Supply Layout 2-218   |
| Figure 2-64: | 3B2/500 Computer Backup Battery Supply Position 2-219   |
| Figure 2-65: | 3B2/600, 700, and 1000 Computer Backup Battery Supply   |
|              | Position                                                |

C



# **EQUIPMENT DESCRIPTION**

This chapter provides a **physical** description of the 3B2 computer system to a circuit card (board) level and defines the 3B2 computer hardware architecture.

The common system equipment configurations are defined by solution packages. The various solution packages for the 3B2 computer and AT&T Expansion Module (AT&T/XM) are detailed in the AT&T marketing information.

# SYSTEM (EQUIPMENT) CONFIGURATIONS

### **Computer Models**

The 3B2 computer is designed to support a wide range of processing needs. Features and capabilities are easily added to a basic configuration to create a system supporting a particular application (solution package).

The 3B2 computer family consists of seven models:

3B2/300 computer

(Manufacturer discontinued.)

Entry level model providing:

- One integral floppy disk drive
- One integral hard disk drive
- Four feature card slots
- System Board, ED-4C637-30,G1 equipped with a WE<sup>®</sup> 32100 Microprocessor, WE 32101 Memory Management Unit, and a 8.2-MHz system clock. Early models use a CM190A System Board equipped with a WE 32002 Processor Module and a 7.2-MHz system clock (28.8-MHz oscillator divide by four).

#### 3B2/310 computer

Current entry level model providing:

- One integral floppy disk drive
- One integral hard disk drive
- Four feature card slots
- System Board, ED-4C637-30,G3 or G4 equipped with a WE 32100 Microprocessor, WE 32101 Memory Management Unit, 10-MHz oscillator (system clock), and a WE 32106 Math Acceleration Unit (optional, G4).

| 3B2/400 computer | <ul> <li>Beginning midrange model providing:</li> <li>One integral floppy disk drive</li> <li>One or two integral hard disk drives</li> <li>One cartridge tape drive</li> <li>Twelve feature card slots</li> <li>System Board, ED-4C637-30,G2 or G5 equipped with a WE 32100 Microprocessor, WE 32101 Memory Management Unit, 10-MHz oscillator (system clock), and a WE 32106 Math Acceleration Unit (optional, G5).</li> </ul>                                          |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3B2/500 computer | <ul> <li>Expanded midrange model providing:</li> <li>One integral floppy disk drive</li> <li>One Small Computer System Interface (SCSI) hard disk drive</li> <li>One cartridge tape drive</li> <li>Seven feature card slots</li> <li>Five performance card slots</li> <li>System Board (CM518A) equipped with a WE 32100<br/>Microprocessor, WE 32101 Memory Management Unit, 18-MHz<br/>oscillator (system clock), and a WE 32106 Math Acceleration<br/>Unit.</li> </ul> |
| 3B2/600 computer | <ul> <li>Larger midrange model providing:</li> <li>One integral floppy disk drive</li> <li>Two SCSI hard disk drives</li> <li>One cartridge tape drive</li> <li>Twelve feature card slots</li> <li>Twelve performance card slots</li> <li>System board equipped with a WE 32100 Microprocessor,<br/>WE 32101 Memory Management Unit, 18-MHz oscillator<br/>(system clock), and a WE 32106 Math Acceleration Unit.</li> </ul>                                              |

# 3B2/700 computer

Enhanced larger model providing:

- One integral floppy disk drive
- Two SCSI hard disk drives
- One cartridge tape drive
- Twelve feature card slots
- Twelve performance card slots
- System board equipped with a WE 32200 Microprocessor, WE 32201 Memory Management Unit, 22-MHz oscillator (system clock), and a WE 32206 Math Acceleration Unit.

#### 3B2/1000 computer

Top of the line model providing:

- One integral floppy disk drive
- Up to three SCSI hard disk drives
- One cartridge tape drive
- Twelve feature card slots
- Twelve performance card slots
- System board equipped with a WE 32200 Microprocessor, two WE 32201 Memory Management Units, 24-MHz oscillator (system clock), and a WE 32206 Math Acceleration Unit.

## Minimum 3B2 Computer Equipment Configuration

The minimum 3B2 computer equipment configuration consists of a 3B2/300 computer equipped with the following:

- System Board, ED-4C637-30,G1 equipped with a WE 32100 Microprocessor, WE 32101 Memory Management Unit, 8.2-MHz system clock. Early models use a CM190A System Board equipped with a WE 32002 Processor Module and a 7.2-MHz system clock (28.8-MHz oscillator divide by four).
- One 5.25 inch, 720-kilobyte (formatted), double-sided, 96 tracks-per-inch floppy disk drive.
- One 10-megabyte (formatted) hard disk drive.
- A 0.5-megabyte Random Access Memory (RAM). Four expansion slots are provided for the equipage of feature cards.
- A data terminal connected to the CONSOLE port.

To this minimum 3B2/300 computer configuration, additional hard disk drives, floppy disk drives, and cartridge tape drives can be added via the equipage of one or more AT&T/XM cabinets. The integral hard disk drive configuration can also be expanded by changing the hard disk to a large capacity drive. A maximum of 432 megabytes of ST-506 hard disk memory (six 72-megabyte hard disk drives) can be equipped with a 3B2/300 or 3B2/310 computer and AT&T/XM cabinets. The size of the RAM can be expanded to a maximum of 4 megabytes. (Computers equipped with a red ON/STANDBY switch require a power supply upgrade to expand RAM above 2 megabytes.) A SCSI Host Adapter card (CM195W) can be used to interface a wide range of mass storage peripheral devices. Refer to the *AT&T SCSI (Small Computer System Interface) Definition*, (Select Code 305-013), for additional information on this capability.

### Maximum 3B2 Computer Equipment Configuration

The maximum 3B2 computer equipment configuration consists of a 3B2/1000-80 computer fully equipped with the following:

- A system board equipped with WE 32200 Microprocessor, two WE 32201 Memory Management Units, 24-MHz oscillator (system clock), and a WE 32206 Math Acceleration Unit.
- One 5.25-inch, 720-kilobyte (formatted), double-sided, 96 tracks-per-inch floppy disk drive.
- Three 300-megabyte (formatted) SCSI hard disk drives.
- A 64-megabyte RAM.
- One 120-megabyte SCSI Cartridge Tape Drive.
- Twelve expansion slots. One expansion slot is used for the SCSI Host Adapter card. The other eleven expansion slots can be used for additional Host Adapter cards or other feature cards.

To the 3B2/1000-80 computer configuration, additional hard disk drives, 9-track tape drives, and cartridge tape drives can be added via the SCSI Host Adapter card (CM195W or CM521A). This card can be used to interface a wide range of mass storage peripheral devices. Over 14 gigabytes of external hard disk memory can be equipped with a 3B2/1000-80 computer and SCSI expansion cabinets. Refer to the *AT&T SCSI (Small Computer System Interface) Definition*, (Select Code 305-013), for additional information on this capability.

# **Add-On Features**

The following equipment and features can be added to a 3B2 computer configuration.

#### **Data Terminal/Communications Equipment**

Various terminals, printers, and other peripheral devices can be connected to a 3B2 computer. Some of these devices are briefly described in the following paragraphs.

**AT&T Automatic Dial Modem.** The AT&T Automatic Dial Modem is an intelligent, asynchronous, autodial/autoanswer modem operating at user selectable speeds of 300/1200 baud. The modem can be connected to either a data terminal or to the host computer.

**TELETYPE®** Model 5410/AT&T Model 4410 Terminal. The TELETYPE Model 5410/AT&T Model 4410 terminal is an asynchronous, serial, video display terminal. It features a selectable 80- or 132-column screen. The low-profile keyboard has a standard typewriter layout with eight programmable function keys.

TELETYPE Model 5420/AT&T Model 4415 Terminal. The Model 5420/4415 terminal has been replaced by the 5425/4425 terminal.

TELETYPE Model 5425/AT&T Model 4425 Terminal. The Model 5425/4425 terminal has all the features of the 5410/4410 terminal plus features such as full screen windowing, five different character sets, a fully buffered auxiliary printer port, and up to 38 downloadable function keys. An optional feature available with this terminal is an integral 300/1200 baud modem/dialer with five autodial strings. This terminal has replaced the TELETYPE 5420/AT&T Model 4415 buffered terminal.

**TELETYPE Model 5620 Dot-Mapped Display Terminal.** The Model 5620 terminal is a Dot-Mapped Display terminal featuring the WE 32000 Microprocessor System. This terminal features 256-kilobyte or 1-megabyte Dual Port Random Access Memory (DPRAM) with transparent refresh and 1000 dots-per-square-inch resolution on a 15-inch diagonal, nonglare screen. A dot addressable screen gives the user the capability to create full graphics, define character fonts, and make line drawings. The electronic mouse on this terminal can be used to create and control up to six window displays when used with supporting software on the host computer system.

**AT&T 605 Terminals.** The AT&T 605 Business Communications Terminal (BCT) offers the features of basic terminals. It is PC compatible, has 80- or 132- column operation, and a 102-key keyboard with 36 programmable function keys. There are two RS32-C ports, one for host communications and one for a printer.

**AT&T 615 Terminals.** The AT&T 615 Multitasking Terminal (MT) is an interactive, character-at-a-time keyboard/display terminal optimized for windowing capabilities. Multitasking feature allows simultaneous access for up to three applications. There is also a slot for optional input/output cards. The AT&T 615 MT also supports an autodialer card.

**AT&T 620 Terminals.** The AT&T 620 Multitasking Terminal with Graphics (MTG) is a full featured terminal with a bit-mapped screen. It offers the same features as the AT&T 615 MT plus 256 kilobytes of RAM (512 kilobytes optional), up to six active layers, a three-button mouse, and built-in emulation.

**AT&T 630 Terminals.** The AT&T 630 MTG has the same capability of the TELETYPE Model 5620. The user interface offers more advanced features like cut and paste between windows, scrolling of lines in a window, and resident fonts. The 630 MTG has a three-button mouse, 640 kilobytes of RAM, 384 kilobytes of Erasable Programmable Read Only Memory (EPROM), a 68000 microprocessor, and cartridge Read Only Memory (ROM) expansion capabilities. The 16-inch diagonal monitor has 1024 dots-per-inch resolution on a coated, nonglare screen.

**Model DQP-10 Printer.** The Model DQP-10 printer is a dot-matrix, serial, impact printer capable of bidirectional printing at 120 characters per second. At six or eight vertical lines per inch, the DQP-10 printer will print up to 80 characters per line with 10 characters per inch. Single sheet (8.5 x 11 inches) or continuous fanfold paper, up to 10 inches wide, can be used.

**Model 470 and 475 Printers.** The Model 470 and 475 printers are compact, desktop, dot-matrix, impact printers. They are capable of bidirectional printing at speeds up to 120 characters per second. They can print up to 132 characters per line, in a compressed font mode, at 16.8 characters per inch. The friction paper feed and integral tractor/pin feed mechanism can handle paper up to 10 inches wide. The only difference between the two printers is the type of interface. The Model 470 printer is equipped with a 36-pin parallel interface; the Model 475 printer is equipped with a serial RS-232C interface.

**Model 5310 and 5320 Printers.** The Model 5310 and 5320 printers are dot-matrix, bidirectional, logic-seeking printers offering sophisticated graphics capabilities. They can print up to 200 characters per second. These printers offer a wide range of form and paper handling options. Carriage size and maximum characters per line are the differences between the two printers. The Model 5310 has a 80-column carriage; the Model 5320 has a 132-column carriage. The Model 5310 can print up to 132 characters per line; the Model 5320 can print up to 220 characters per line.

**Model LQP-40 Printer.** The Model LQP-40 printer is a daisy-wheel, letter-quality, serial/parallel printer with a 48,000-byte data buffer. At six or eight vertical lines per inch, the LQP-40 printer uses proportional fonts with speeds up to 18 characters per second. Single sheet (8.5 x 11 inches) or continuous fanfold paper, up to 16.5 inches wide, can be used.

**Model 455 Printer.** The Model 455 printer is a daisy-wheel, letter-quality printer capable of speeds up to 55 characters per second. The printer is compatible with both serial and parallel interfaces. Friction and tractor feeds will handle paper up to 15 inches wide. As many as 197 characters can be printed on a single line, and a variety of font styles can be obtained by changing the daisy wheel.

#### **RAM Expansion**

The 3B2/300, 310, and 400 computers can be equipped with a maximum of two memory cards to form the RAM. RAM is expandable in 1-megabyte increments to the maximum size of 4 megabytes. A power supply upgrade is required for 3B2/300 computers with a red ON/STANDBY switch to expand RAM to 3 or 4 megabytes.

A 3B2/500 computer can be equipped with a maximum of two memory cards. These memory cards can be 2 megabytes or 4 megabytes, up to the maximum capacity of 8 megabytes.

The 3B2/600, 700, and 1000 computers can be equipped with a maximum of four memory cards. RAM is expandable in 2-megabyte increments to the maximum size of 16 megabytes for the 3B2/600 computer or 64 megabytes for the 3B2/700 and 1000 computers.

#### **Hard Disk Expansion**

Additional hard disk drives can be added to an existing 3B2 computer. The hard disks are either ST-506 type hard disks or SCSI hard disks, according to the associated computer. Two sizes of ST-506 hard disk drives are available: 30 megabytes and 72 megabytes (formatted). The 3B2/300 and 310 computers can support a maximum of six hard disk drives (one in the computer cabinet and five in two AT&T/XM cabinets) for a maximum of 432 megabytes of ST-506 hard disk memory. The 3B2/400 computer can support a maximum of ten hard disk drives (two in the computer cabinet and eight in AT&T/XM cabinets) for a maximum of 720 megabytes of ST-506 hard disk memory. Each AT&T/XM cabinet can house a maximum of three hard disk drives.

Additional hard disk drives can be added to an existing 3B2 computer using a SCSI. A SCSI Host Adapter card provides the interface between the computer and the SCSI bus. The SCSI hard disks are either 147 megabytes (formatted), 300 megabytes (formatted), or 600 megabytes (formatted). Many combinations of the different sizes of hard disks can be produced for over 14 gigabytes of external

#### EQUIPMENT DESCRIPTION

storage. Refer to the AT&T SCSI (Small Computer System Interface) Definition, (Select Code 305-013), for additional information on this capability.

#### **Removable Media Expansion**

There are various forms of removable media available with 3B2 computers. Some are standard equipment while others are optional.

**Floppy Disk.** A second 720-kilobyte, double-sided, 96 tracks-per-inch, floppy disk drive can be equipped in an AT&T/XM. Connection to the host 3B2 computer is via a CM195H Cartridge Tape Controller (CTC) Card. While it is possible to equip more than two floppy disk drives on a system, equipage of more than two floppy disk drives is not practical. Two floppy disk drives provide drive-to-drive operational capabilities that are considered to be the optimum floppy disk drive equipage.

**23-Megabyte Cartridge Tape.** One or more 23-megabyte cartridge tape drives can be added to a 3B2 computer. The drive can be mounted in an AT&T/XM cabinet or by itself in a Tape Module cabinet. Each cartridge tape drive connects to the host 3B2 computer via a CM195H Cartridge Tape Controller Card that is installed in a 3B2 computer feature card slot. For a 3B2/400, the first cartridge tape controller is equipped in slot 2. Each CM195H CTC Card can interface two peripheral devices (one floppy disk and one cartridge tape drive). Simultaneous access of the two devices connected to the same CM195H CTC Card is not possible.

60- and 120-Megabyte Cartridge Tape. Additional 60- and 120-megabyte cartridge tape drives can be added to an existing 3B2 computer using a SCSI. A CM195W SCSI Host Adapter Card provides the interface between the computer and the SCSI bus. Refer to the *AT&T SCSI (Small Computer System Interface) Definition*, (Select Code 305-013), for additional information on this capability.

**Rewritable Optical Disk.** The SCSI Rewritable Optical Disk Module can be added to an existing 3B2 computer. The optical disk removable media provides approximately 584 megabytes (292 megabytes per side) of formatted storage capacity. A CM195W SCSI Host Adapter Card provides the interface between the computer and the SCSI bus. Refer to the *AT&T SCSI (Small Computer System Interface) Definition*, (Select Code 305-013), for additional information on this capability.

#### **AT&T 3BNET Local Area Network**

The AT&T 3B2 computers can serve as nodes on the AT&T 3BNET Local Area Network (3BNET LAN). The 3BNET LAN is an Ethernet compatible network operating at 10 megabits per second using the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) algorithm. The lowest level protocols conform to the Institute of Electrical and Electronics Engineers (IEEE) 802.3 standards for Carrier Sense Multiple Access with Collision Detection (CSMA/CD) local area networking. The connection of a 3B2 computer to the 3BNET is via a CM195A Network Interface Card that is installed in a 3B2 computer feature card slot.

# **AT&T STARLAN Network**

The AT&T STARLAN network is a low-cost, local area network for linking MS-DOS\* and UNIX system-based computers. The STARLAN network runs at 1 megabit per second on twisted pair wiring. The wiring is based on AT&T's Premises Distribution System (PDS). The high-level protocols support applications written for Microsoft Networks.

Connection to STARLAN from a 3B2 computer is provided by a CM195U Network Access Unit (NAU) Card that plugs into a 3B2 computer feature card slot.


<sup>\*</sup> Registered trademark of Microsoft Corp.

The AT&T STARLAN 3B2 Computer Network Program provides file transfer and electronic mail services for AT&T 3B2 computers and UNIX Personal Computer (PC) workstations. The STARLAN network PC interface supports the following capabilities:

- Enables MS-DOS machines to do file sharing and print sharing with other MS-DOS machines.
- Enables MS-DOS machines to store files on UNIX system machines.
- Enables MS-DOS machines to use peripheral devices associated with UNIX system machines.
- Enables UNIX system machines to do file transfers and exchange mail.
- Enables UNIX system machines to share remote printers associated with other UNIX system machines.
- Provides print queue query and other administrative services.
- Provides security features to restrict access to network resources.

#### **Debug Monitor (DEMON)**

The DEbug MONitor (DEMON) is a firmware resident option for Version 2 3B2 computers. The DEMON is a development aid in verifying hardware operation and debugging software or firmware. Refer to the *AT&T* 3B2 Computer Debug Monitor Guide, (Select Code 305-442), for more information.



# HARDWARE OVERVIEW

#### Domestic 3B2/300 Computer Cabinet (ED-4C492-30)

#### **Major Assemblies**

Figure 2-1 shows a typical domestic 3B2/300 computer. The major assemblies include the following:

- Power Supply Unit (TRW #095-10011-XX1 or TRW #095-10060-00) set for 115 volt AC operation
- One Floppy Disk Drive, KS-23114,L4
- One Hard Disk Drive:
  - □ 10-megabyte, KS-23023,L1
  - □ 30-megabyte, KS-23054,L1
  - □ 72-megabyte, KS-23054,L2.
- CM190A System Board (Discontinued Availability)

System Board, ED-4C637-30,G1

- CM193A/B Backplane and card cage
- Memory card(s)

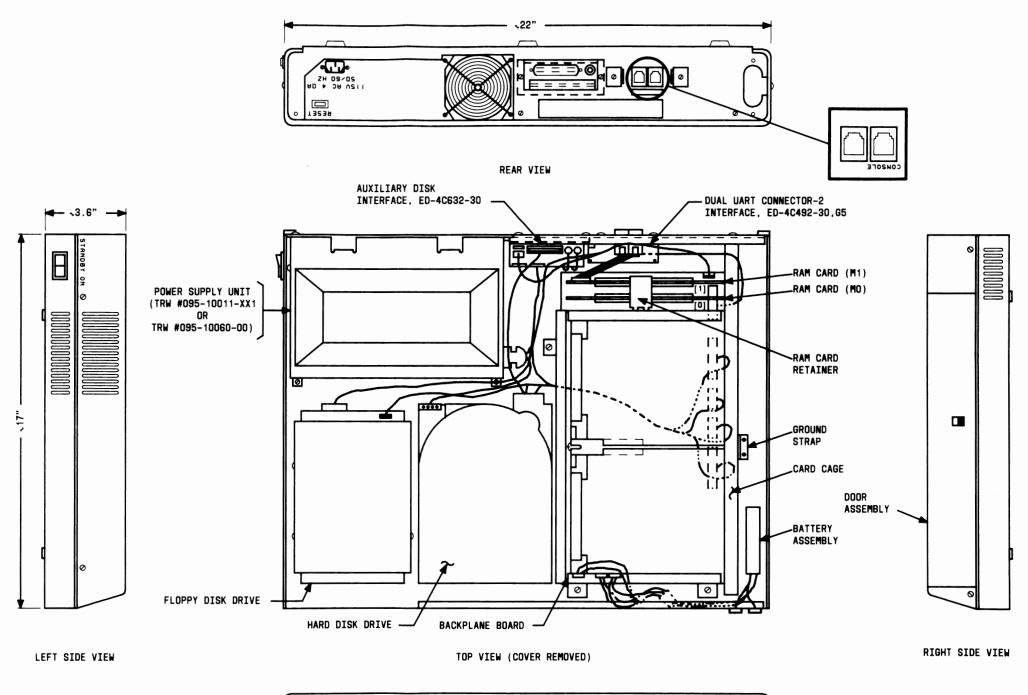
or

- Auxiliary Disk Interface, ED-4C632-30
- Dual Universal Asynchronous Receiver/Transmitter (DUART) Connector-2 Interface, ED-4C492-35,G5 and G5A
- Backup battery.

## EQUIPMENT DESCRIPTION

# **Domestic 3B2/300 Computer Equipment Characteristics**

Physical.


| Height       | 3.6 inches                           |
|--------------|--------------------------------------|
| Width        | 22 inches                            |
| Depth        | 17 inches                            |
| Weight       | Approximately 30 pounds              |
| Cabinet Load | Supports external loads to 60 pounds |

#### Electrical.

CPU Benchmark

| Voltage                                    | 115 V AC, 4 Amperes                                                              |
|--------------------------------------------|----------------------------------------------------------------------------------|
| Frequency                                  | 50/60 Hz                                                                         |
| Total Power Consumption (Heat Dissipation) | Less than 200 watts (maximum)                                                    |
| Environmental.                             |                                                                                  |
| Temperature                                | 40°F to 100°F<br>5°C to 38°C                                                     |
| Humidity                                   | 20% to 80%, noncondensing                                                        |
| System Power Consumption                   | 640 Btu/hour (maximum)<br>188 watts                                              |
| Noise Level                                | Approximately 40 dB(A) Sound Pressure Level (ANSI S12.10—<br>Bystander Position) |
| Performance.                               |                                                                                  |
| Concurrent Users                           | 6 to 10                                                                          |

0.61 Million Instructions Per Second (MIPS)



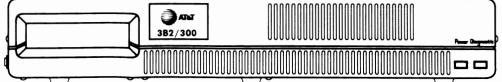
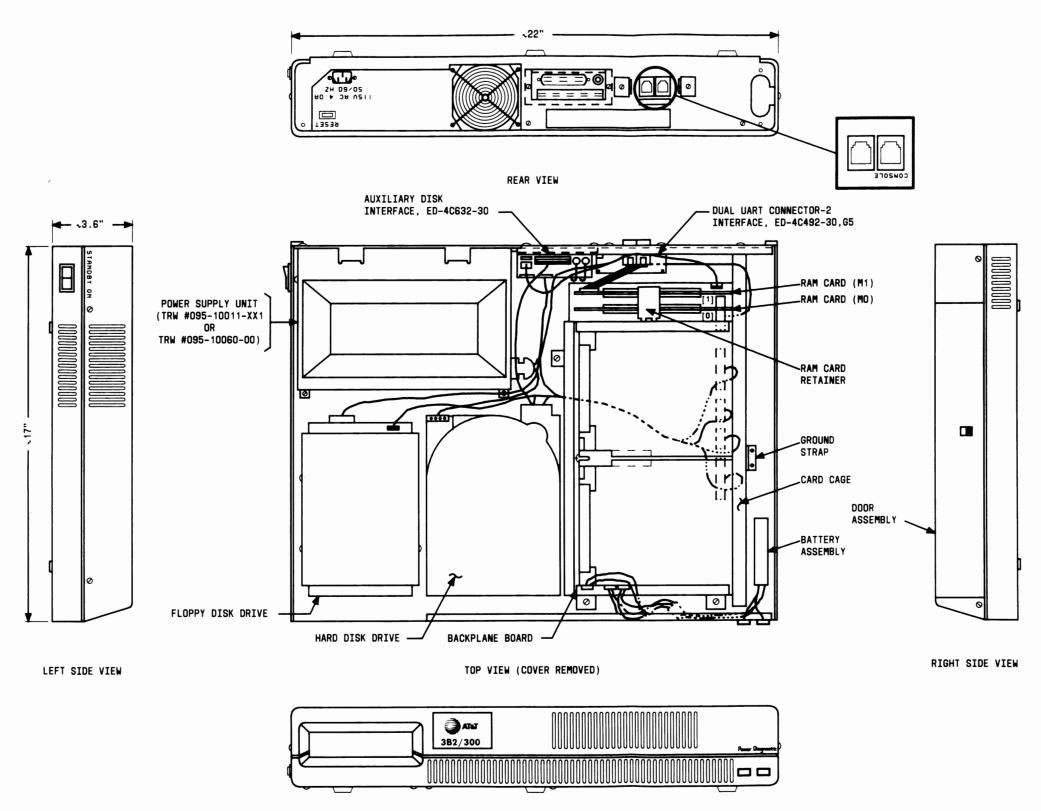




Figure 2-1: Domestic 3B2/300 Computer Cabinet Assembly Drawing (ED-4C492-30)



FRONT VIEW

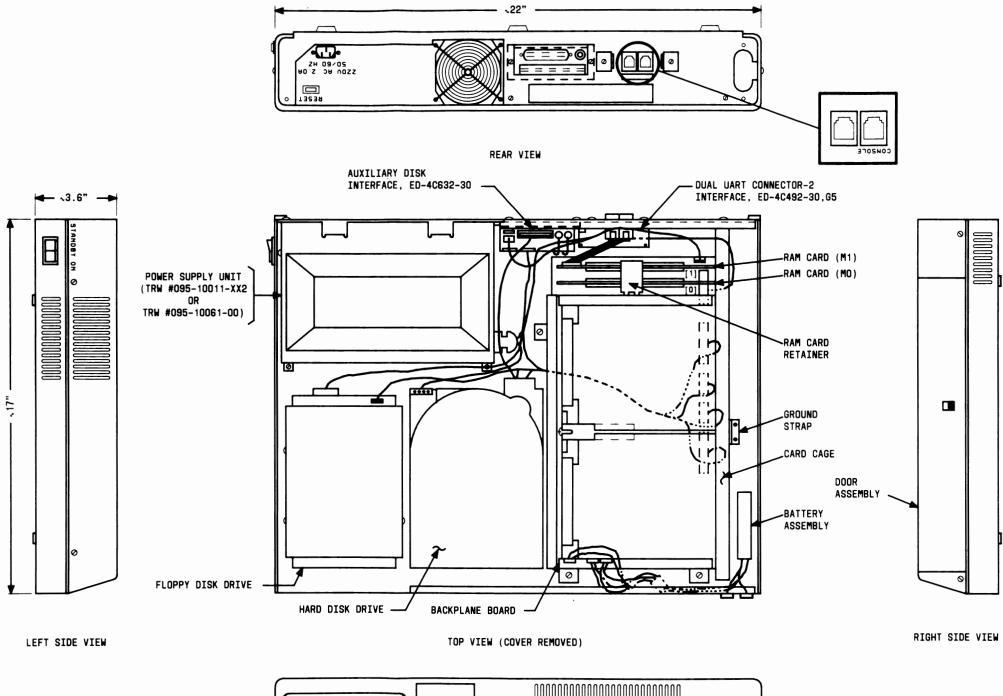
Figure 2-1: Domestic 3B2/300 Computer Cabinet Assembly Drawing (ED-4C492-30)

#### International 3B2/300 Computer Cabinet (ED-4C560-30)

#### **Major Assemblies**

Figure 2-2 shows a typical international 3B2/300 computer. The major assemblies include the following:

- Power Supply Unit (TRW #095-10011-XX2 or TRW #095-10061-00) set for 220 to 240 volt AC operation
- One Floppy Disk Drive, KS-23114,L4
- One Hard Disk Drive:
  - □ 10-megabyte, KS-23023,L1
  - □ 30-megabyte, KS-23054,L1
  - □ 72-megabyte, KS-23054,L2.
- CM190A System Board (Discontinued Availability) or


System Board, ED-4C637-30,G1

- CM193A/B Backplane and card cage
- Memory card(s)
- Auxiliary Disk Interface, ED-4C632-30
- DUART Connector-2 Interface, ED-4C492-35,G5 and G5A
- Backup battery.

## International 3B2/300 Computer Equipment Characteristics

Physical.

|     | Height                                        | 3.6 inches                                                                       |
|-----|-----------------------------------------------|----------------------------------------------------------------------------------|
|     | Width                                         | 22 inches                                                                        |
|     | Depth                                         | 17 inches                                                                        |
|     | Weight                                        | Approximately 30 pounds                                                          |
|     | Cabinet Load                                  | Supports external loads to 60 pounds                                             |
| Ele | ectrical.                                     |                                                                                  |
|     | Voltage                                       | 220 to 240 V AC, 2 Amperes                                                       |
|     | Frequency                                     | 50/60 Hz                                                                         |
|     | Total Power Consumption<br>(Heat Dissipation) | Less than 200 watts (maximum)                                                    |
| En  | vironmental.                                  |                                                                                  |
|     | Temperature                                   | 40°F to 100°F<br>5°C to 38°C                                                     |
|     | Humidity                                      | 20% to 80%, noncondensing                                                        |
|     | System Power Consumption                      | 640 Btu/hour (maximum)<br>188 watts                                              |
|     | Noise Level                                   | Approximately 40 dB(A) Sound Pressure Level (ANSI S12.10—<br>Bystander Position) |
| Pe  | rformance.                                    |                                                                                  |
|     | Concurrent Users                              | 6 to 10                                                                          |
|     | CPU Benchmark                                 | 0.61 Million Instructions Per Second (MIPS)                                      |



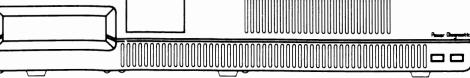



Figure 2-2: International 3B2/300 Computer Cabinet Assembly Drawing (ED-4C560-30)

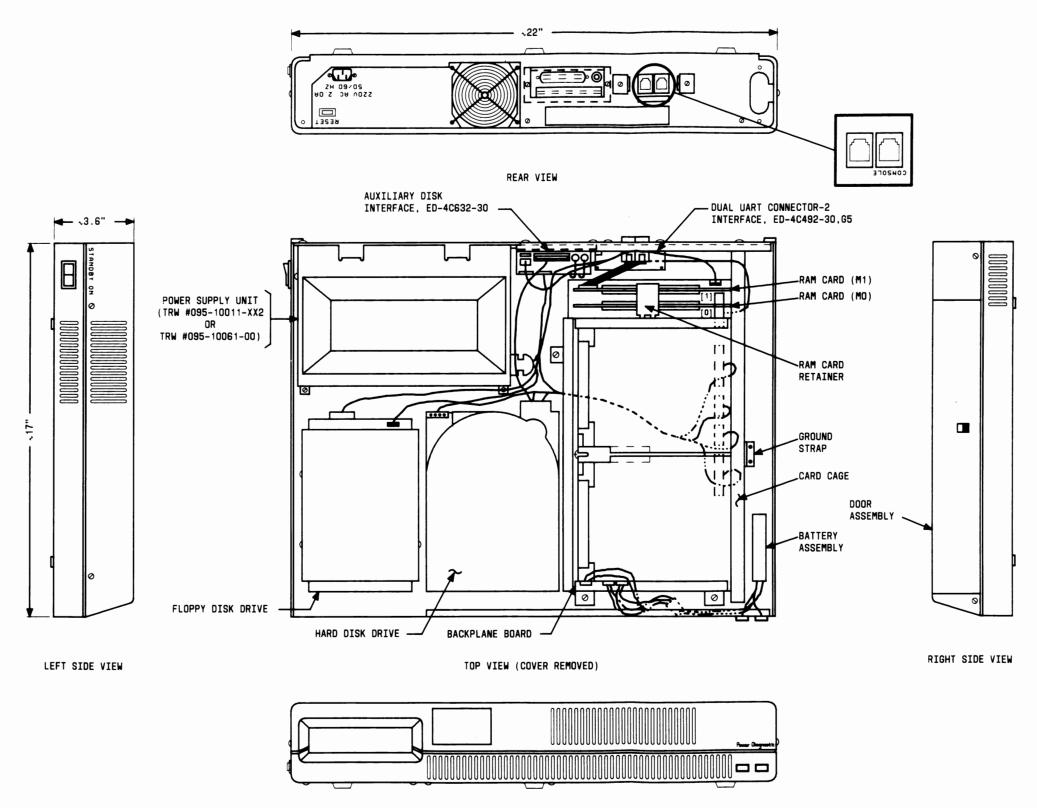
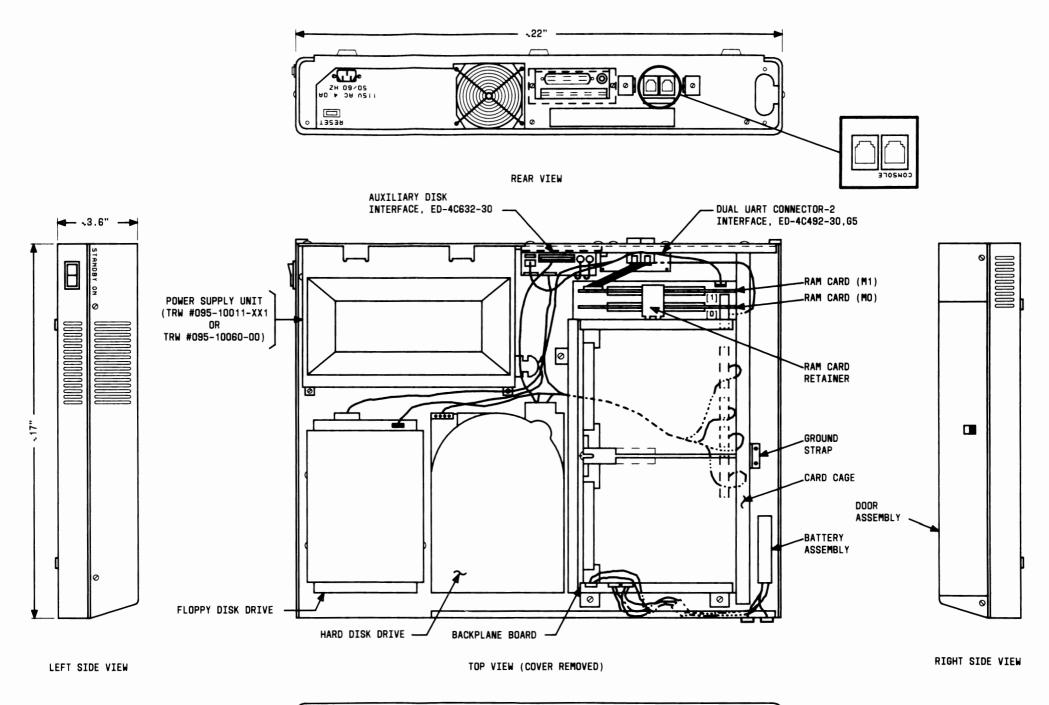



Figure 2-2: International 3B2/300 Computer Cabinet Assembly Drawing (ED-4C560-30)

### Domestic 3B2/310 Computer Cabinet (ED-4C645-30)

#### **Major Assemblies**

Figure 2-3 shows a typical domestic 3B2/310 computer. The major assemblies include the following:


- Power Supply Unit (TRW #095-10011-XX1 or TRW #095-10060-00) set for 115 volt AC operation
- One Floppy Disk Drive, KS-23114,L4
- One Hard Disk Drive:
  - □ 30-megabyte, KS-23054,L1
  - □ 72-megabyte, KS-23054,L2.
- System Board ED-4C637-30,G3 [without Math Acceleration Unit (MAU)] or ED-4C637-30,G4 (with MAU)
- CM193A/B Backplane and card cage
- Memory card(s)
- Auxiliary Disk Interface, ED-4C632-30
- DUART Connector-2 Interface, ED-4C492-35,G5 and G5A
- Backup battery.

### **EQUIPMENT DESCRIPTION -**

# Domestic 3B2/310 Computer Equipment Characteristics

## Physical.

| Height                                                             | 3.6 inches                                                                                                                                   |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Width                                                              | 22 inches                                                                                                                                    |
| Depth                                                              | 17 inches                                                                                                                                    |
| Weight                                                             | Approximately 30 pounds                                                                                                                      |
| Cabinet Load                                                       | Supports external loads to 60 pounds                                                                                                         |
| Electrical.                                                        |                                                                                                                                              |
| Voltage                                                            | 115 V AC, 4 Amperes                                                                                                                          |
| Frequency                                                          | 50/60 Hz                                                                                                                                     |
| Total Power Consumption (Heat Dissipation)                         | Less than 200 watts (maximum)                                                                                                                |
|                                                                    |                                                                                                                                              |
| Environmental.                                                     |                                                                                                                                              |
| Environmental.<br>Temperature                                      | 40°F to 100°F<br>5°C to 38°C                                                                                                                 |
|                                                                    |                                                                                                                                              |
| Temperature                                                        | 5°C to 38°C<br>20% to 80%, noncondensing                                                                                                     |
| Temperature<br>Humidity                                            | 5°C to 38°C<br>20% to 80%, noncondensing<br>640 Btu/hour (maximum)                                                                           |
| Temperature<br>Humidity<br>System Power Consumption                | 5°C to 38°C<br>20% to 80%, noncondensing<br>640 Btu/hour (maximum)<br>188 watts<br>Approximately 40 dB(A) Sound Pressure Level (ANSI S12.10— |
| Temperature<br>Humidity<br>System Power Consumption<br>Noise Level | 5°C to 38°C<br>20% to 80%, noncondensing<br>640 Btu/hour (maximum)<br>188 watts<br>Approximately 40 dB(A) Sound Pressure Level (ANSI S12.10— |



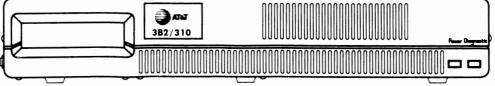



Figure 2-3: Domestic 3B2/310 Computer Cabinet Assembly Drawing (ED-4C645-30)

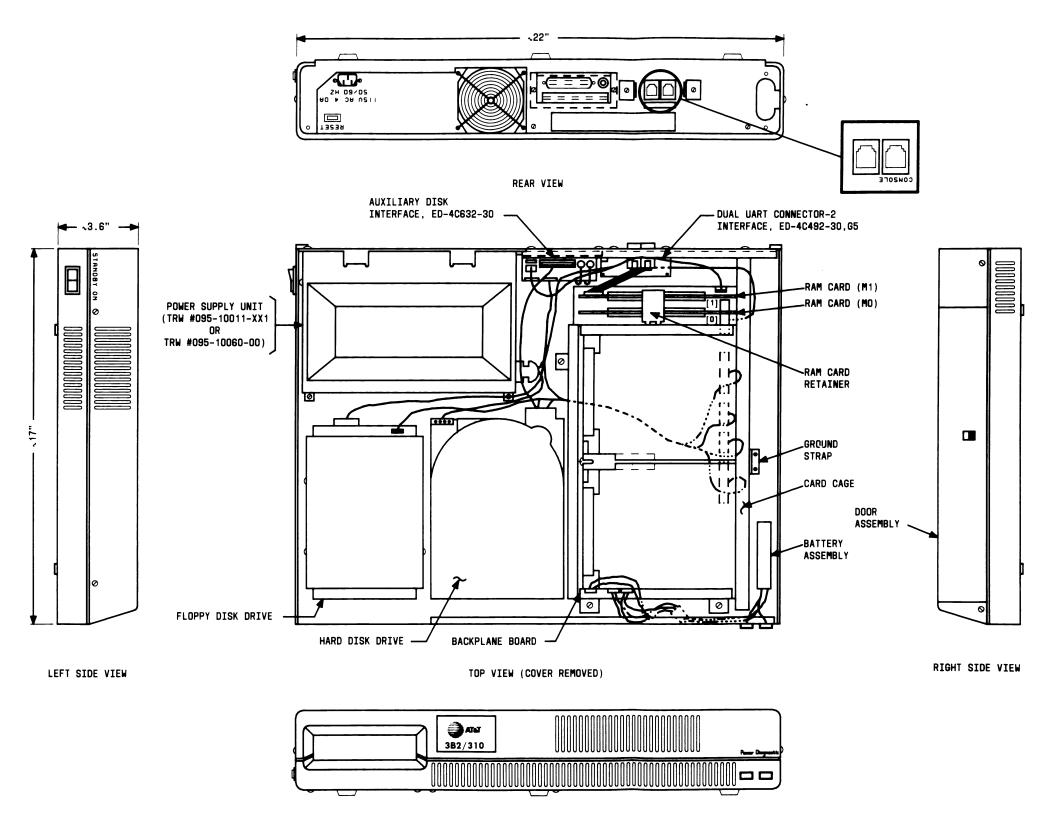
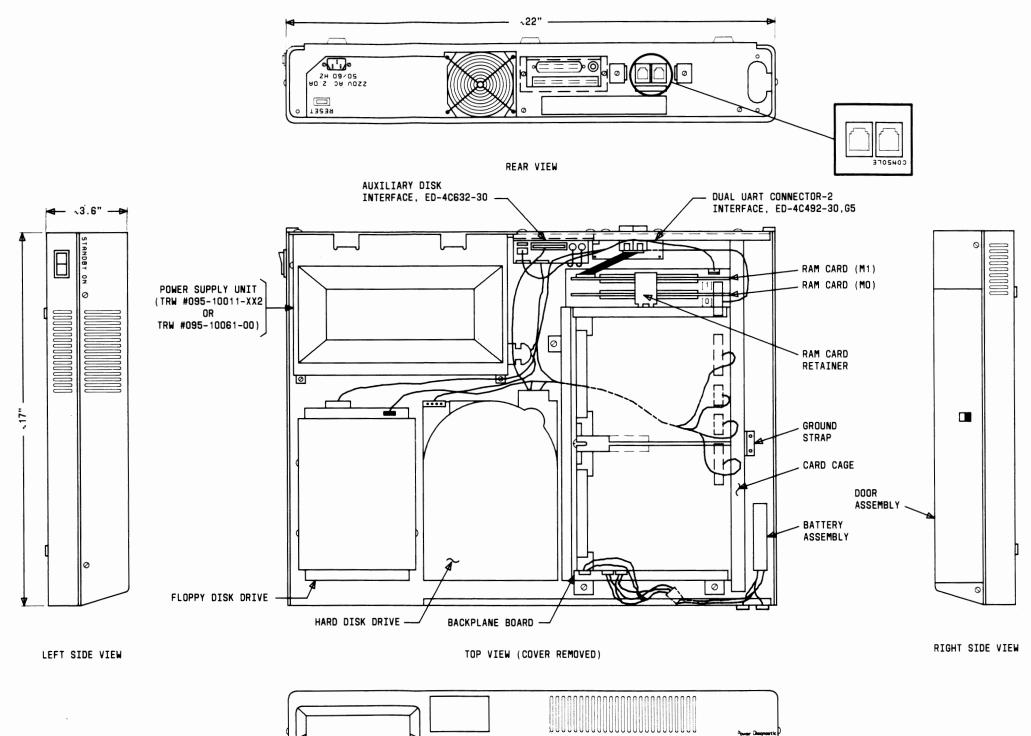



Figure 2-3: Domestic 3B2/310 Computer Cabinet Assembly Drawing (ED-4C645-30)

## International 3B2/310 Computer Cabinet (ED-4C646-30)

#### **Major Assemblies**

Figure 2-4 shows a typical international 3B2/310 computer. The major assemblies include the following:


- Power Supply Unit (TRW #095-10011-XX2 or TRW #095-10061-00) set for 220 to 240 volt AC operation
- One Floppy Disk Drive, KS-23114,L4
- One Hard Disk Drive:
  - □ 30-megabyte, KS-23054,L1
  - □ 72-megabyte, KS-23054,L2.
- System Board ED-4C637-30,G3 (without MAU) or ED-4C637-30,G4 (with MAU)
- CM193A/B Backplane and card cage
- Memory card(s)
- Auxiliary Disk Interface, ED-4C632-30
- DUART Connector-2 Interface, ED-4C492-35,G5 and G5A
- Backup battery.

### **EQUIPMENT DESCRIPTION** -

# International 3B2/310 Computer Equipment Characteristics

## Physical.

| Height                                                             | 3.6 inches                                                                                                                                   |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Width                                                              | 22 inches                                                                                                                                    |
| Depth                                                              | 17 inches                                                                                                                                    |
| Weight                                                             | Approximately 30 pounds                                                                                                                      |
| Cabinet Load                                                       | Supports external loads to 60 pounds                                                                                                         |
| Electrical.                                                        |                                                                                                                                              |
| Voltage                                                            | 220 to 240 V AC, 2 Amperes                                                                                                                   |
| Frequency                                                          | 50/60 Hz                                                                                                                                     |
| Total Power Consumption (Heat Dissipation)                         | Less than 200 watts (maximum)                                                                                                                |
|                                                                    |                                                                                                                                              |
| Environmental.                                                     |                                                                                                                                              |
| Environmental.<br>Temperature                                      | 40°F to 100°F<br>5°C to 38°C                                                                                                                 |
|                                                                    |                                                                                                                                              |
| Temperature                                                        | 5°C to 38°C<br>20% to 80%, noncondensing                                                                                                     |
| Temperature<br>Humidity                                            | 5°C to 38°C<br>20% to 80%, noncondensing<br>640 Btu/hour (maximum)                                                                           |
| Temperature<br>Humidity<br>System Power Consumption                | 5°C to 38°C<br>20% to 80%, noncondensing<br>640 Btu/hour (maximum)<br>188 watts<br>Approximately 40 dB(A) Sound Pressure Level (ANSI S12.10— |
| Temperature<br>Humidity<br>System Power Consumption<br>Noise Level | 5°C to 38°C<br>20% to 80%, noncondensing<br>640 Btu/hour (maximum)<br>188 watts<br>Approximately 40 dB(A) Sound Pressure Level (ANSI S12.10— |





FRONT VIEW

Figure 2-4: International 3B2/310 Computer Cabinet Assembly Drawing (ED-4C646-30)

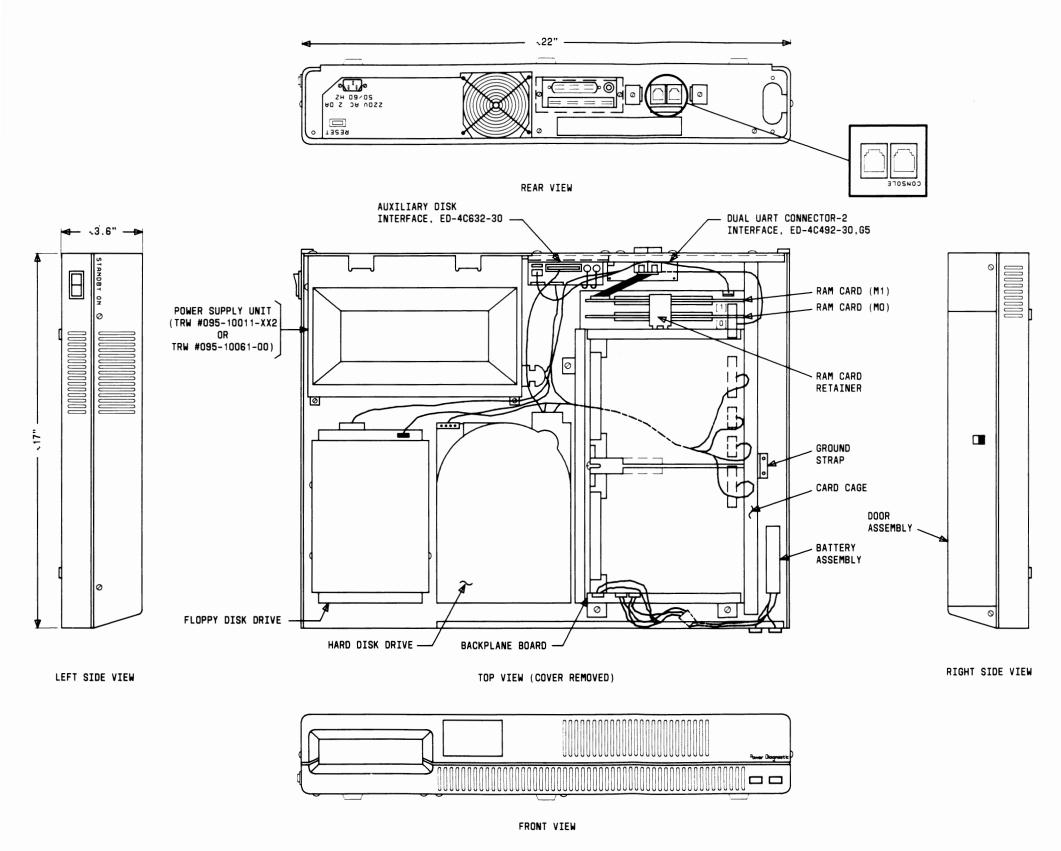



Figure 2-4: International 3B2/310 Computer Cabinet Assembly Drawing (ED-4C646-30)

### Domestic 3B2/400 Computer Cabinet (ED-4C631-30)

#### **Major Assemblies**

Figure 2-5 shows a typical domestic 3B2/400 computer. The major assemblies include the following:

- Power Supply Unit (TRW #095-10035-XX1) set for 115 volt AC operation
- One Floppy Disk Drive, KS-23114,L4
- One or two Hard Disk Drives:
  - □ 30-megabyte, KS-23054,L1
  - □ 72-megabyte, KS-23054,L2.
- One 23-megabyte Cartridge Tape Drive, KS-23165,L1
- System Board ED-4C637-30,G2 (without MAU) or ED-4C637-30,G5 (with MAU)
- CM194B Backplane and card cage
- Memory card(s)
- DUART Connector-2 Interface, ED-4C631-35,G2
- **Backup battery**.

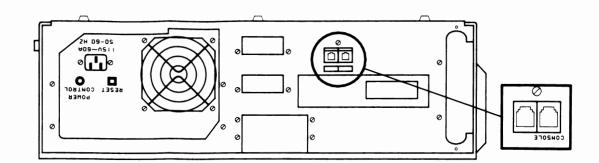
### **EQUIPMENT DESCRIPTION -**

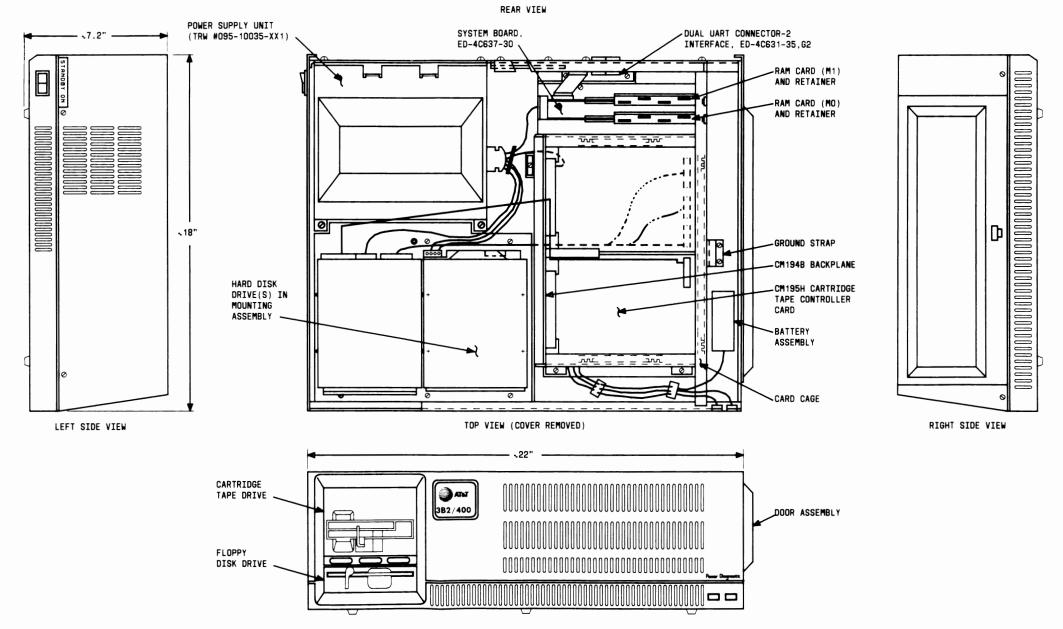
# Domestic 3B2/400 Computer Equipment Characteristics

## Physical.

| S                           |
|-----------------------------|
|                             |
|                             |
| nately 60 pounds            |
| external loads to 60 pounds |
|                             |

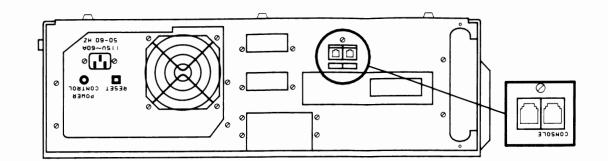
### Electrical.


| Voltage                                       | 115 V AC, 6 Amperes           |
|-----------------------------------------------|-------------------------------|
| Frequency                                     | 50/60 Hz                      |
| Total Power Consumption<br>(Heat Dissipation) | Less than 350 watts (maximum) |


### Environmental.

| Temperature              | 40°F to 100°F<br>5°C to 38°C                                                     |
|--------------------------|----------------------------------------------------------------------------------|
| Humidity                 | 20% to 80%, noncondensing                                                        |
| System Power Consumption | 1200 Btu/hour (maximum)<br>352 watts                                             |
| Noise Level              | Approximately 45 dB(A) Sound Pressure Level (ANSI S12.10—<br>Bystander Position) |
|                          |                                                                                  |

### Performance.


| Concurrent Users | 10 to 25                                    |
|------------------|---------------------------------------------|
| CPU Benchmark    | 1.12 Million Instructions Per Second (MIPS) |





FRONT VIEW

Figure 2-5: Domestic 3B2/400 Computer Cabinet Assembly Drawing (ED-4C631-30)



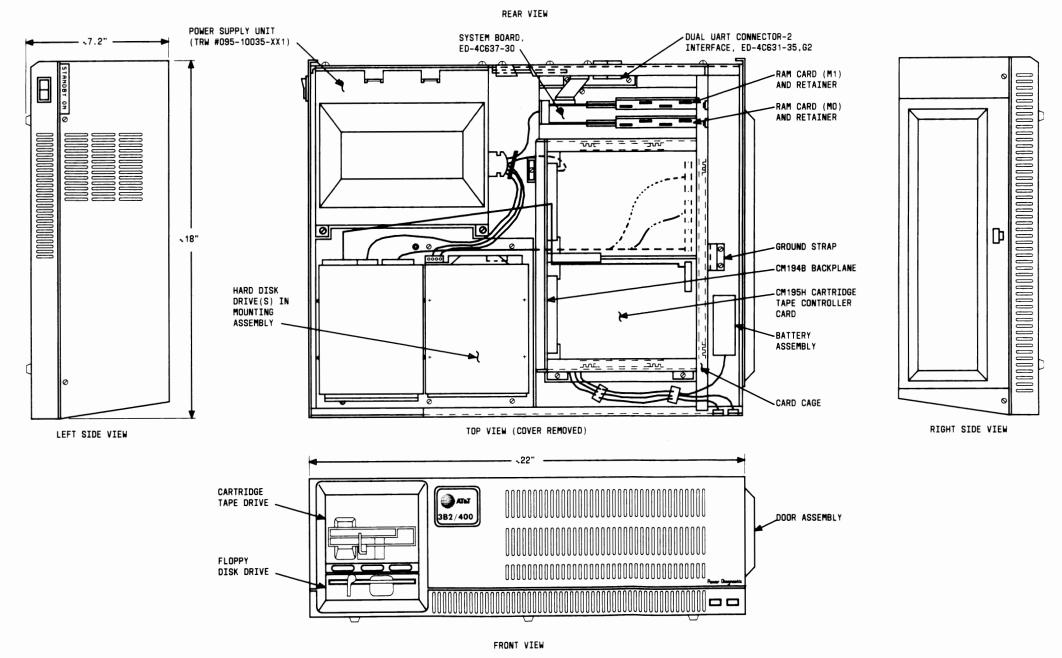



Figure 2-5: Domestic 3B2/400 Computer Cabinet Assembly Drawing (ED-4C631-30)

## International 3B2/400 Computer Cabinet (ED-4C638-30)

### **Major Assemblies**

Figure 2-6 shows a typical international 3B2/400 computer. The major assemblies include the following:

- Power Supply Unit (TRW #095-10035-XX2) set for 220 to 240 volt AC operation
- One Floppy Disk Drive, KS-23114,L4
- One or two Hard Disk Drives:
  - □ 30-megabyte, KS-23054,L1
  - □ 72-megabyte, KS-23054,L2.
- One 23-megabyte Cartridge Tape Drive, KS-23165,L1
- System Board ED-4C637-30,G2 (without MAU) or ED-4C637-30,G5 (with MAU)
- CM194B Backplane and card cage
- Memory card(s)
- DUART Connector-2 Interface, ED-4C631-35,G2
- Backup battery.

#### EQUIPMENT DESCRIPTION

## International 3B2/400 Computer Equipment Characteristics

## Physical.

| Height                                        | 7.2 inches                                                                       |
|-----------------------------------------------|----------------------------------------------------------------------------------|
| Width                                         | 22 inches                                                                        |
| Depth                                         | 18 inches                                                                        |
| Weight                                        | Approximately 60 pounds                                                          |
| Cabinet Load                                  | Supports external loads to 60 pounds                                             |
| Electrical.                                   |                                                                                  |
| Voltage                                       | 220 to 240 V AC, 3 Amperes                                                       |
| Frequency                                     | 50/60 Hz                                                                         |
| Total Power Consumption<br>(Heat Dissipation) | Less than 350 watts (maximum)                                                    |
| Environmental.                                |                                                                                  |
| Temperature                                   | 40°F to 100°F<br>5°C to 38°C                                                     |
| Humidity                                      | 20% to 80%, noncondensing                                                        |
| System Power Consumption                      | 1200 Btu/hour (maximum)<br>352 watts                                             |
| Noise Level                                   | Approximately 45 dB(A) Sound Pressure Level (ANSI S12.10—<br>Bystander Position) |
|                                               | ,<br>,                                                                           |
| Performance.                                  |                                                                                  |
| Performance.<br>Concurrent Users              | 10 to 25                                                                         |

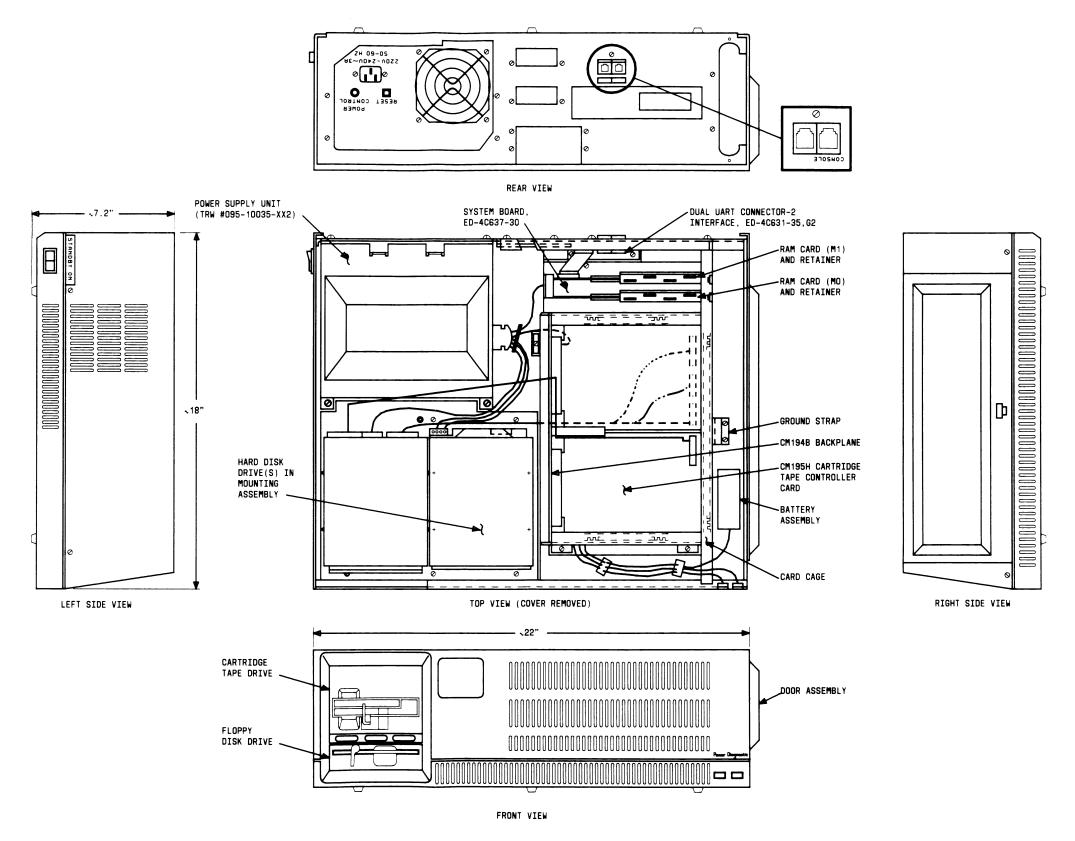
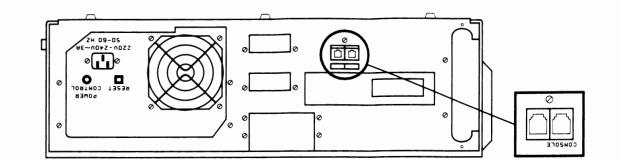




Figure 2-6: International 3B2/400 Computer Cabinet Assembly Drawing (ED-4C638-30)



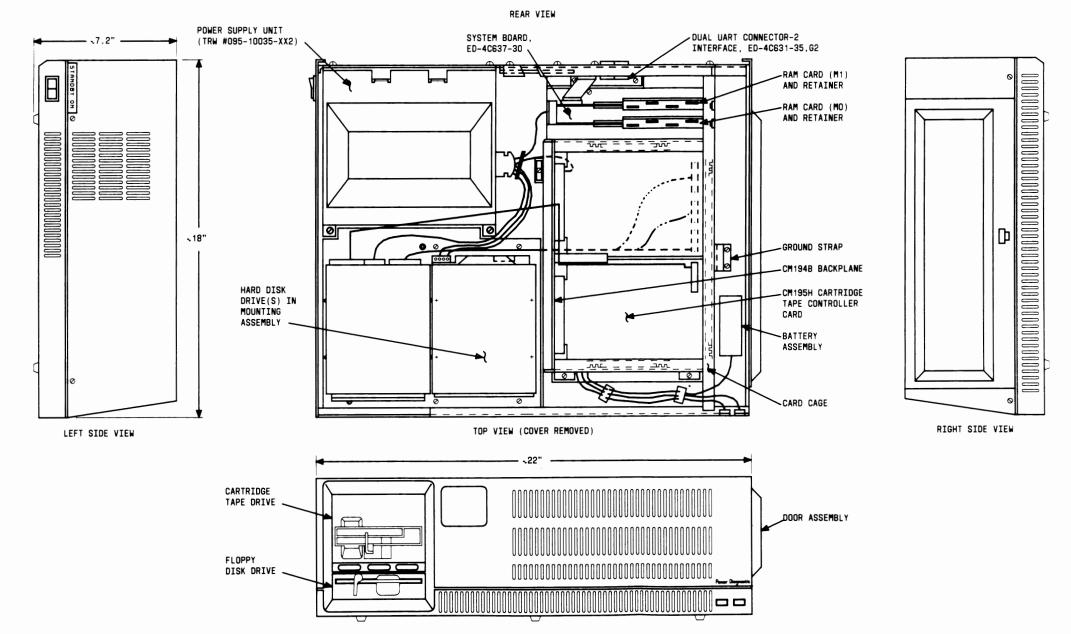
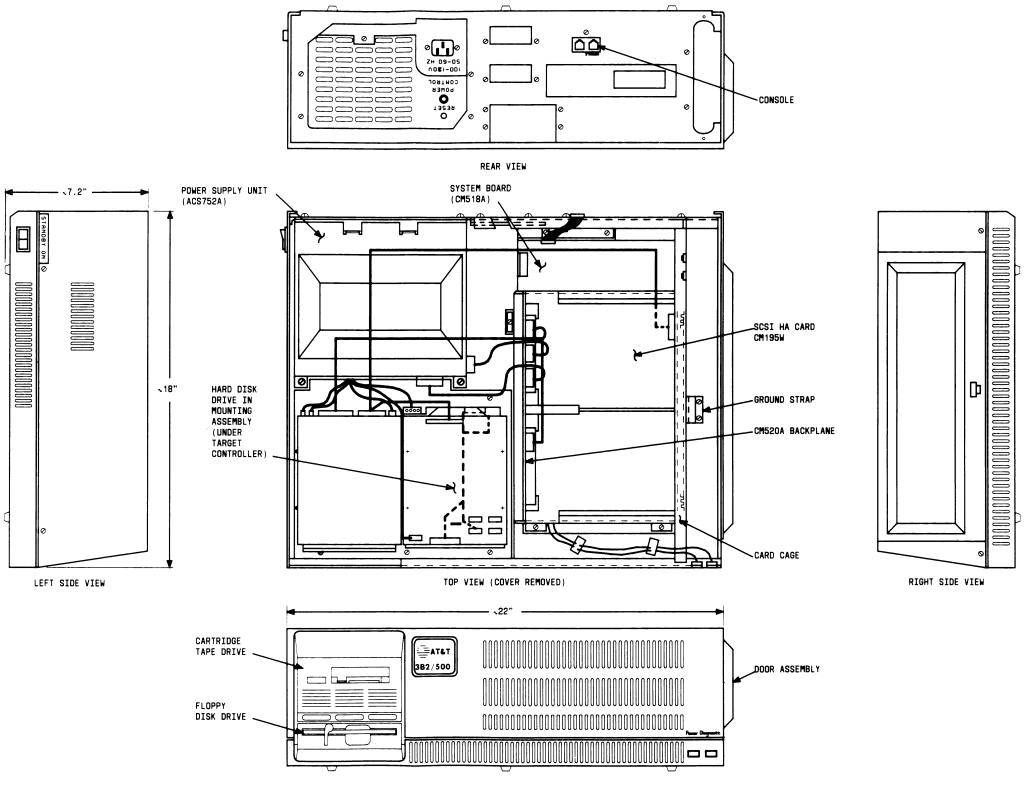



Figure 2-6: International 3B2/400 Computer Cabinet Assembly Drawing (ED-4C638-30)

### 3B2/500 Computer Cabinet (ED-3T043-30)

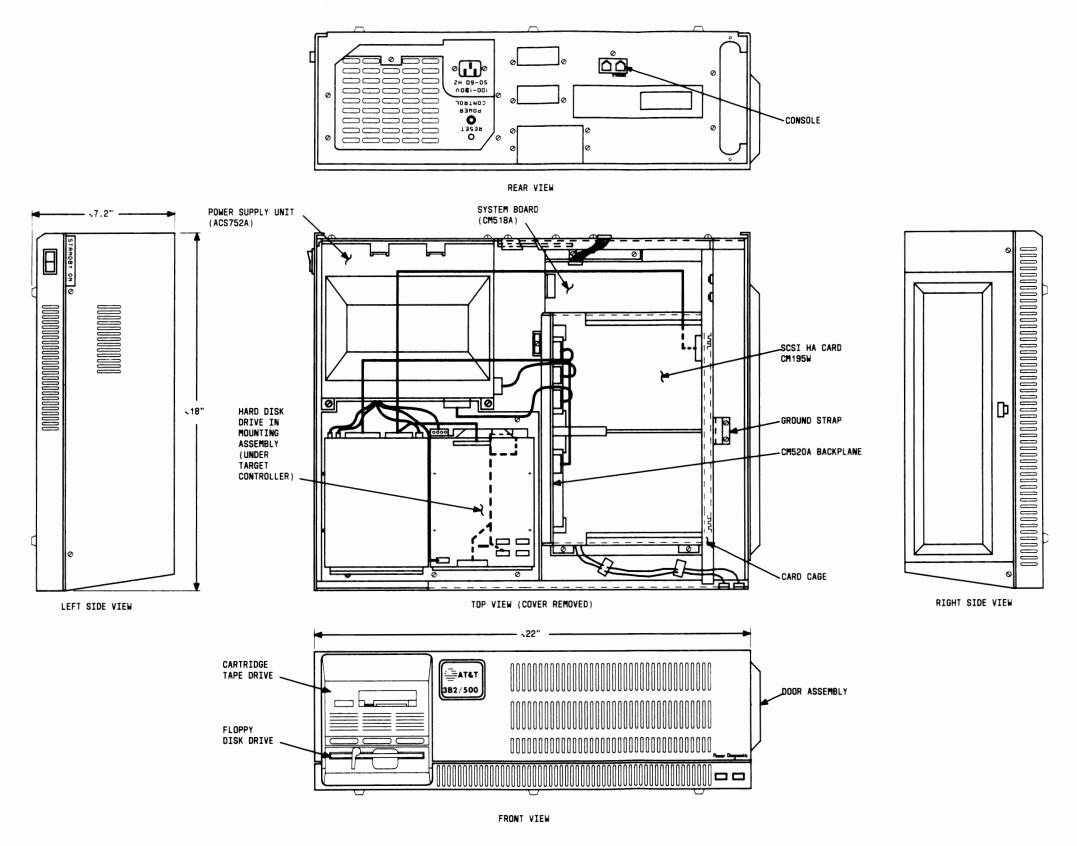
#### **Major Assemblies**

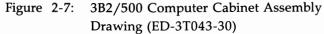
Figure 2-7 shows a typical 3B2/500 computer. Since the 3B2/500 computer is equipped with a "smart" power supply, there is no noticeable difference in the domestic and international versions. The major assemblies include the following:


- Power Supply Unit (ACS752A)
- One Floppy Disk Drive, KS-23114,L4
- One Hard Disk Drive:
  - D 147-megabyte, KS-23371,L17
  - □ 155-megabyte, KS-23483,L25
  - □ 300-megabyte, KS-23483,L1B.
- One 60- or 120-megabyte Cartridge Tape Drive, KS-23417,L1 or KS-23465,L14
- System Board CM518A
- CM520A Backplane and card cage
- Memory card(s)
- DUART Connector-2 Interface, ED-4C631-35,G2
- Backup battery.

### EQUIPMENT DESCRIPTION

## **3B2/500 Computer Equipment Characteristics**


# Physical.


| Height                                                             | 7.6 inches                                                                                                                                    |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Width                                                              | 22.5 inches                                                                                                                                   |
| Depth                                                              | 18 inches                                                                                                                                     |
| Weight                                                             | Approximately 55 pounds                                                                                                                       |
| Cabinet Load                                                       | Supports external loads to 60 pounds                                                                                                          |
| Electrical.                                                        |                                                                                                                                               |
| Voltage                                                            | 115 V AC, 7 Amperes Domestic<br>220 to 240 V AC, 4 Amperes International                                                                      |
| Frequency                                                          | 50/60 Hz                                                                                                                                      |
| Total Power Consumption (Heat Dissipation)                         | Less than 500 watts (maximum)                                                                                                                 |
|                                                                    |                                                                                                                                               |
| Environmental.                                                     |                                                                                                                                               |
| Environmental.<br>Temperature                                      | 40°F to 100°F<br>5°C to 38°C                                                                                                                  |
|                                                                    |                                                                                                                                               |
| Temperature                                                        | 5°C to 38°C<br>20% to 80%, noncondensing                                                                                                      |
| Temperature<br>Humidity                                            | 5°C to 38°C<br>20% to 80%, noncondensing<br>1275 Btu/hour (maximum)                                                                           |
| Temperature<br>Humidity<br>System Power Consumption                | 5°C to 38°C<br>20% to 80%, noncondensing<br>1275 Btu/hour (maximum)<br>374 watts<br>Approximately 42 dB(A) Sound Pressure Level (ANSI S12.10— |
| Temperature<br>Humidity<br>System Power Consumption<br>Noise Level | 5°C to 38°C<br>20% to 80%, noncondensing<br>1275 Btu/hour (maximum)<br>374 watts<br>Approximately 42 dB(A) Sound Pressure Level (ANSI S12.10— |



FRONT VIEW

Figure 2-7: 3B2/500 Computer Cabinet Assembly Drawing (ED-3T043-30)

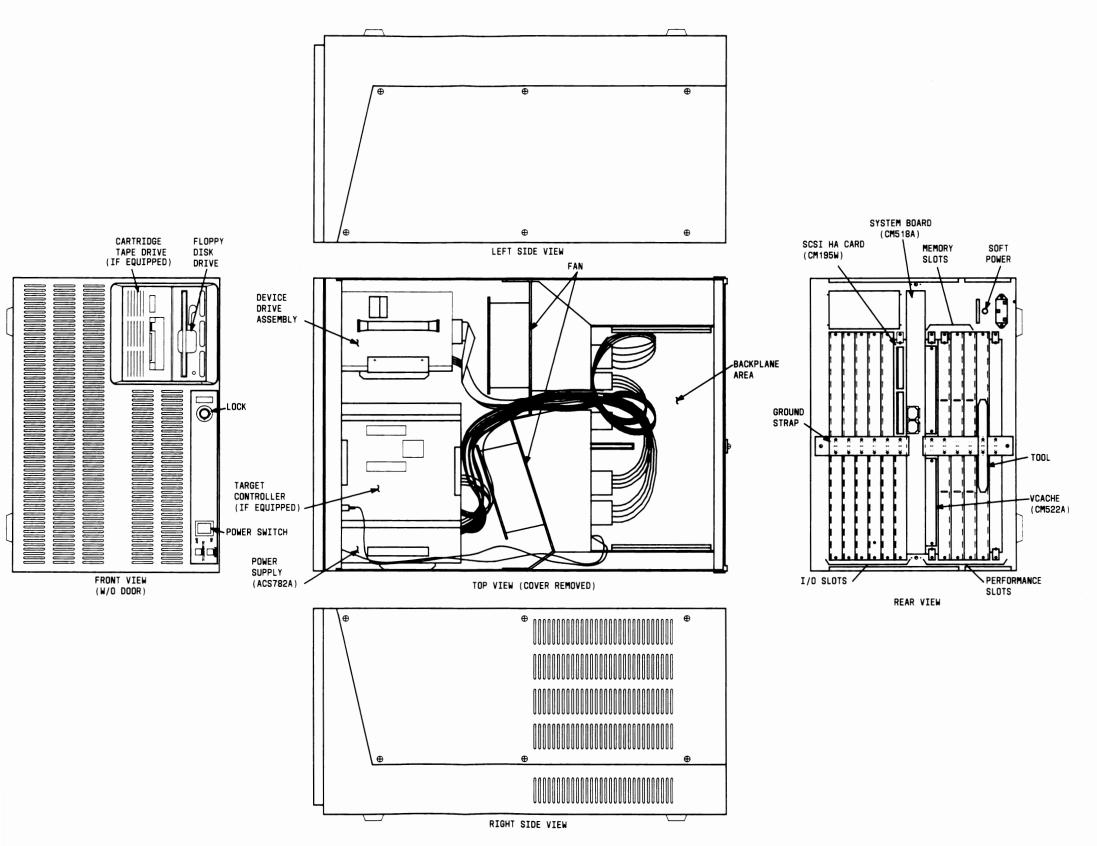




### 3B2/600 Computer Cabinet (ED-3T023-30)

#### **Major Assemblies**

Figure 2-8 shows a typical 3B2/600 computer. Since the 3B2/600 computer is equipped with a "smart" power supply, there is no noticeable difference in the domestic and international versions. The major assemblies include the following:


- Power Supply Unit (ACS782A-0)
- One Floppy Disk Drive, KS-23114,L4
- One or two Hard Disk Drives:
  - □ 147-megabyte, KS-23371,L17
  - □ 155-megabyte, KS-23483,L25.
- One 60-megabyte Cartridge Tape Drive, KS-23417,L1
- System Board CM518A
- CM519A Backplane and card cage
- Memory card(s)
- Backup battery.

### **EQUIPMENT DESCRIPTION** —

# 3B2/600 Computer Equipment Characteristics

| Physical. |
|-----------|
|-----------|

|                | •                                             |                                                                                  |  |  |
|----------------|-----------------------------------------------|----------------------------------------------------------------------------------|--|--|
|                | Height                                        | 13 inches                                                                        |  |  |
|                | Width                                         | 17 inches                                                                        |  |  |
|                | Depth                                         | 24 inches                                                                        |  |  |
|                | Weight                                        | Approximately 82 pounds                                                          |  |  |
|                | Cabinet Load                                  | Supports external loads to 60 pounds                                             |  |  |
| Electrical.    |                                               |                                                                                  |  |  |
|                | Voltage                                       | 115 V AC, 12 Amperes Domestic<br>220 to 240 V AC, 8.5 Amperes International      |  |  |
|                | Frequency                                     | 50/60 Hz                                                                         |  |  |
|                | Total Power Consumption<br>(Heat Dissipation) | Less than 1300 watts (maximum)                                                   |  |  |
| Environmental. |                                               |                                                                                  |  |  |
|                | Temperature                                   | 40°F to 100°F<br>5°C to 38°C                                                     |  |  |
|                | Humidity                                      | 20% to 80%, noncondensing                                                        |  |  |
|                | System Power Consumption                      | 3000 Btu/hour (maximum)<br>879 watts                                             |  |  |
|                | Noise Level                                   | Approximately 50 dB(A) Sound Pressure Level (ANSI S12.10—<br>Bystander Position) |  |  |
| Performance.   |                                               |                                                                                  |  |  |
|                | Concurrent Users                              | 25 to 64                                                                         |  |  |
|                | CPU Benchmark                                 | 2.61 Million Instructions Per Second (MIPS)                                      |  |  |
|                |                                               |                                                                                  |  |  |



.

Figure 2-8: 3B2/600 Computer Cabinet Assembly Drawing (ED-3T023-30)

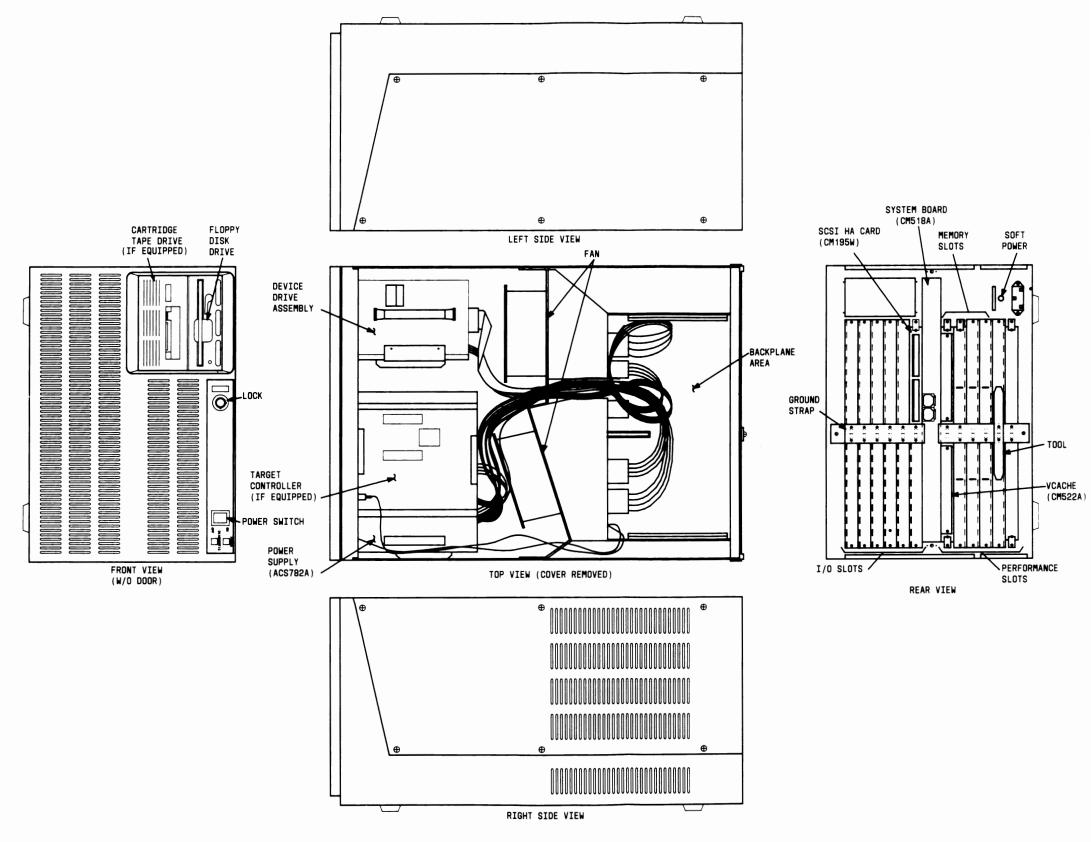



Figure 2-8: 3B2/600 Computer Cabinet Assembly Drawing (ED-3T023-30)

### 3B2/700 Computer Cabinet (ED-3T047-30)

#### **Major Assemblies**

Figure 2-9 shows a typical 3B2/700 computer. Since the 3B2/700 computer is equipped with a "smart" power supply, there is no noticeable difference in the domestic and international versions. The major assemblies include the following:

- Power Supply Unit (ACS782A-0)
- One Floppy Disk Drive, KS-23114,L4
- One or two Hard Disk Drives:
  - □ 300-megabyte, KS-23483,L1B
  - □ 300-megabyte with Enhanced Small Disk Interface (ESDI), KS-23371,L31.
- One 120-megabyte Cartridge Tape Drive, KS-23465,L1A
- System Board CM518B
- CM519A Backplane and card cage
- Memory card(s)
- Backup battery.

# 3B2/700 Computer Equipment Characteristics

| Ph | vsical. |
|----|---------|
|    |         |

|                | -                                             |                                                                                  |  |
|----------------|-----------------------------------------------|----------------------------------------------------------------------------------|--|
|                | Height                                        | 13 inches                                                                        |  |
|                | Width                                         | 17 inches                                                                        |  |
|                | Depth                                         | 24 inches                                                                        |  |
|                | Weight                                        | Approximately 82 pounds                                                          |  |
|                | Cabinet Load                                  | Supports external loads to 60 pounds                                             |  |
| Electrical.    |                                               |                                                                                  |  |
|                | Voltage                                       | 115 V AC, 12 Amperes Domestic<br>220 to 240 V AC, 8.5 Amperes International      |  |
|                | Frequency                                     | 50/60 Hz                                                                         |  |
|                | Total Power Consumption<br>(Heat Dissipation) | Less than 1300 watts (maximum)                                                   |  |
| Environmental. |                                               |                                                                                  |  |
|                | Temperature                                   | 40°F to 100°F<br>5°C to 38°C                                                     |  |
|                | Humidity                                      | 20% to 80%, noncondensing                                                        |  |
|                | System Power Consumption                      | 3000 Btu/hour (maximum)<br>879 watts                                             |  |
|                | Noise Level                                   | Approximately 50 dB(A) Sound Pressure Level (ANSI S12.10—<br>Bystander Position) |  |
| Performance.   |                                               |                                                                                  |  |
|                | Concurrent Users                              | 64 to 80                                                                         |  |
|                | CPU Benchmark                                 | 4.0 Million Instructions Per Second (MIPS)                                       |  |

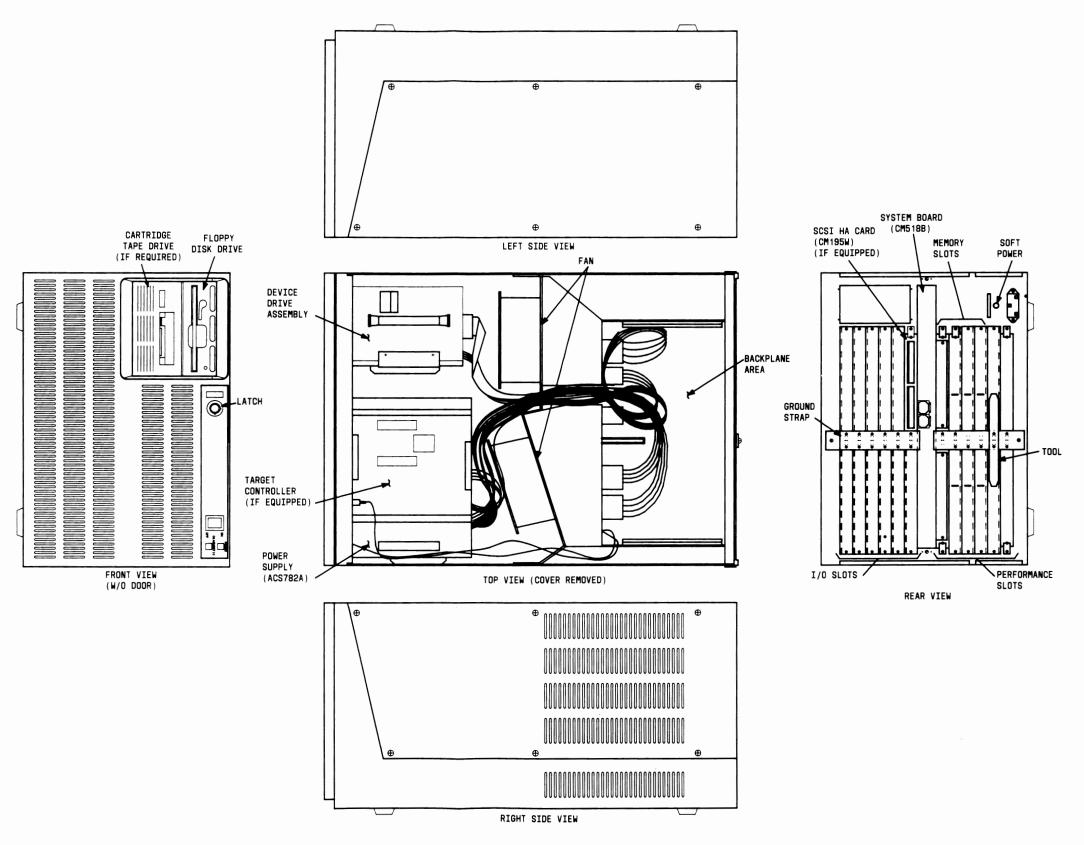



Figure 2-9: 3B2/700 Computer Cabinet Assembly Drawing (ED-3T047-30)

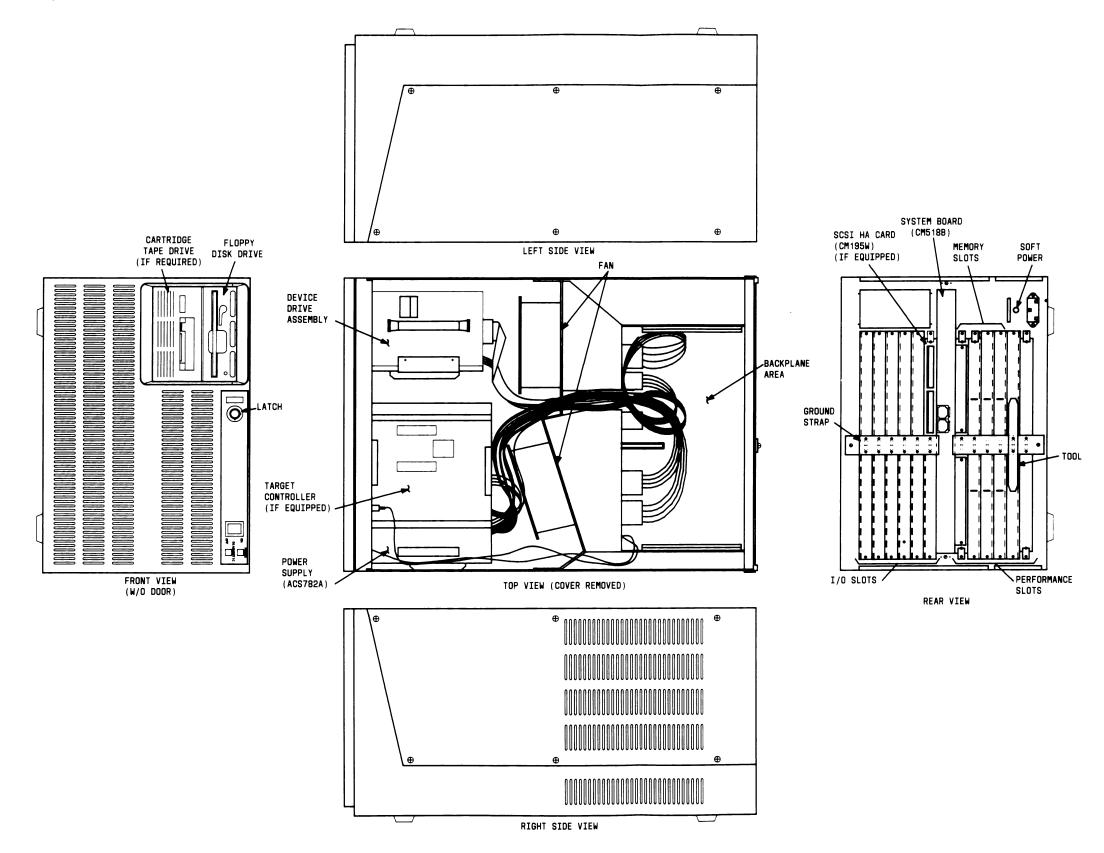



Figure 2-9: 3B2/700 Computer Cabinet Assembly Drawing (ED-3T047-30)

### 3B2/1000 Computer Cabinet (ED-3T056-30)

#### **Major Assemblies**

Figure 2-10 shows a typical 3B2/1000 computer. The 3B2/1000 is available in three different models: 60, 70, and 80. Each model is slightly different in its configuration.

However, each 3B2/1000 computer is equipped with a "smart" power supply so there is no noticeable difference in the domestic and international versions. The major assemblies include the following:

- Power Supply Unit (ACS782A-0)
- One Floppy Disk Drive, KS-23114,L4
- One, two, or three 300-megabyte Hard Disk Drives, KS-23483,L3
- One 120-megabyte Cartridge Tape Drive, KS-23465,L1A
- System Board CM518C
- CM519B Backplane and card cage
- Memory card(s)
- Backup battery.

# **3B2/1000 Computer Equipment Characteristics**

| Height                                                             | 13 inches                                                                                                                                     |  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Width                                                              | 17 inches                                                                                                                                     |  |
| Depth                                                              | 24 inches                                                                                                                                     |  |
| Weight                                                             | Approximately 82 pounds                                                                                                                       |  |
| Cabinet Load                                                       | Supports external loads to 60 pounds                                                                                                          |  |
| Electrical.                                                        |                                                                                                                                               |  |
| Voltage                                                            | 115 V AC, 12 Amperes Domestic<br>220 to 240 V AC, 8.5 Amperes International                                                                   |  |
| Frequency                                                          | 50/60 Hz                                                                                                                                      |  |
| Total Power Consumption (Heat Dissipation)                         | Less than 1300 watts (maximum)                                                                                                                |  |
|                                                                    |                                                                                                                                               |  |
| Environmental.                                                     |                                                                                                                                               |  |
| Environmental.<br>Temperature                                      | 40°F to 100°F<br>5°C to 38°C                                                                                                                  |  |
|                                                                    |                                                                                                                                               |  |
| Temperature                                                        | 5°C to 38°C<br>20% to 80%, noncondensing                                                                                                      |  |
| Temperature<br>Humidity                                            | 5°C to 38°C<br>20% to 80%, noncondensing<br>3000 Btu/hour (maximum)                                                                           |  |
| Temperature<br>Humidity<br>System Power Consumption                | 5°C to 38°C<br>20% to 80%, noncondensing<br>3000 Btu/hour (maximum)<br>879 watts<br>Approximately 50 dB(A) Sound Pressure Level (ANSI S12.10— |  |
| Temperature<br>Humidity<br>System Power Consumption<br>Noise Level | 5°C to 38°C<br>20% to 80%, noncondensing<br>3000 Btu/hour (maximum)<br>879 watts<br>Approximately 50 dB(A) Sound Pressure Level (ANSI S12.10— |  |

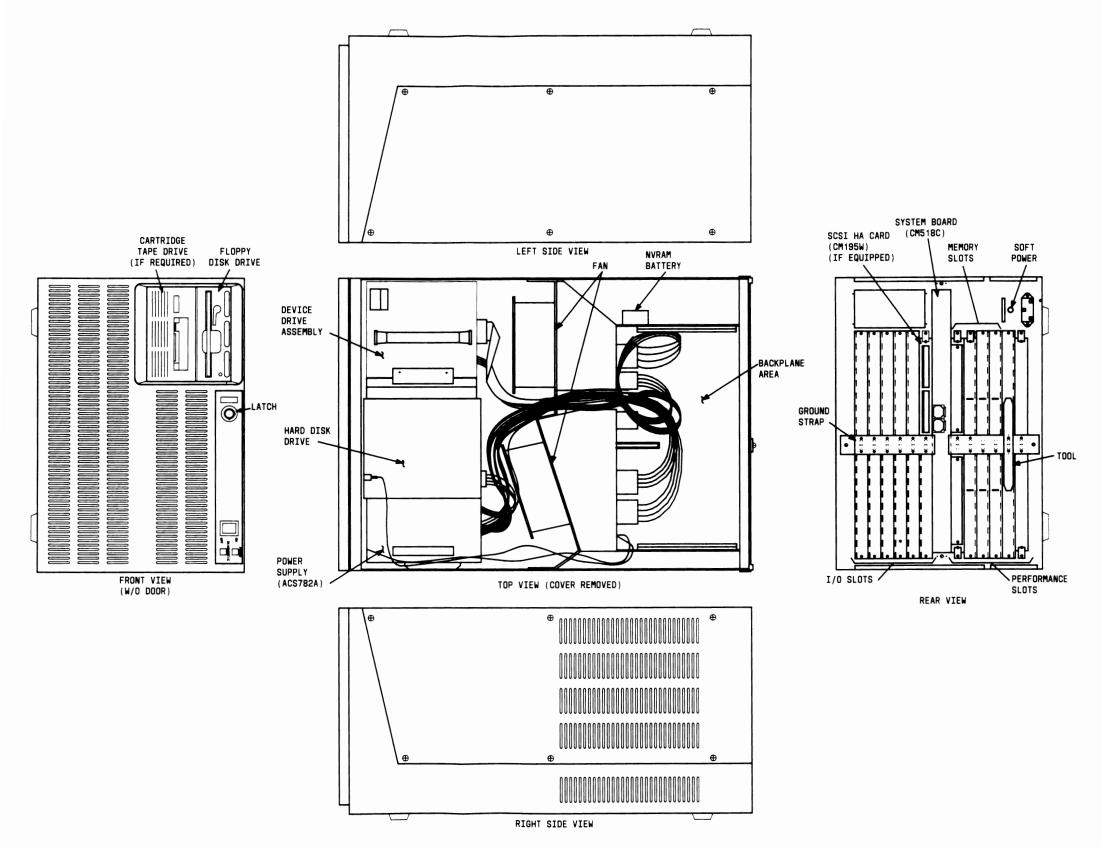



Figure 2-10: 3B2/1000 Computer Cabinet Assembly Drawing (ED-3T056-30)

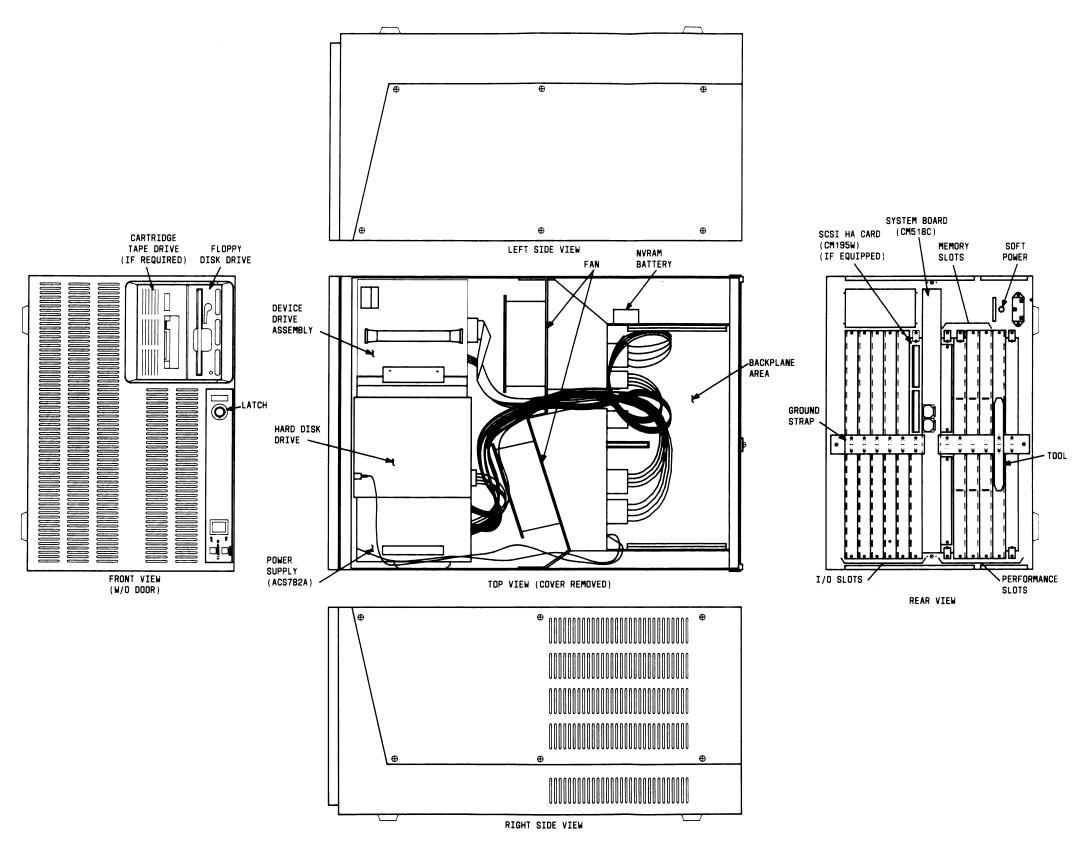



Figure 2-10: 3B2/1000 Computer Cabinet Assembly Drawing (ED-3T056-30)

#### Domestic AT&T/XM (ED-4C580-30)

#### **Major Assemblies**

Figure 2-11 shows a typical domestic AT&T/XM. The major assemblies include a power supply and various combinations of floppy disk drives, cartridge tape drives, and hard disk drives. A maximum of three hard disk drives can be housed in the cabinet. The major assemblies are listed below:

- Power Supply Unit (TRW #095-10040-XX1) set for 115 volt AC operation
- Devices (drives):
  - I Floppy Disk Drive, KS-23114,L4
  - 30-megabyte Hard Disk Drive, KS-23054,L1
  - Disk Drive, KS-23054,L2
  - □ 23-megabyte Cartridge Tape Drive, KS-23165,L1
  - □ 60-megabyte Cartridge Tape Drive, KS-23417,L2.

# Domestic AT&T/XM Equipment Characteristics

| Height         |                                   | 4.6 inches          |
|----------------|-----------------------------------|---------------------|
| Width          |                                   | 22 inches           |
| Depth          |                                   | 17 inches           |
| Electrical.    |                                   |                     |
| Voltage        | 2                                 | 115 V AC, 5 Amperes |
| Freque         | ncy                               | 50/60 Hz            |
|                | Power Consumption<br>Dissipation) | Less than 298 watts |
| Environmental. |                                   |                     |
| Tempe          | rature                            | 40°F to 100°F       |

| Temperature              | 5°C to 38°C                                 |
|--------------------------|---------------------------------------------|
| Humidity                 | 20% to 80%, noncondensing                   |
| System Power Consumption | 1000 Btu/hour (maximum)                     |
| Noise Level              | 45 dB(A) (steady state), 55 dB(A) (maximum) |



Figure 2-11: Domestic AT&T/XM Cabinet Assembly Drawing (ED-4C580-30)

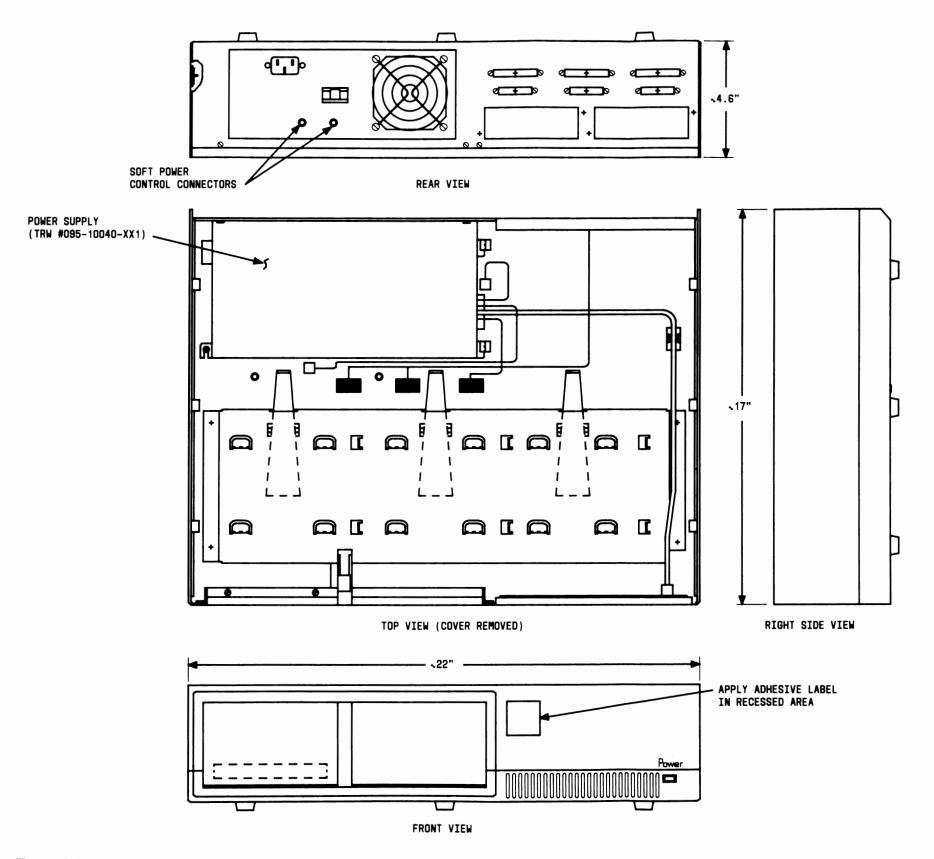



Figure 2-11: Domestic AT&T/XM Cabinet Assembly Drawing (ED-4C580-30)

### International AT&T/XM (ED-4C635-30)

#### **Major Assemblies**

Figure 2-12 shows a typical international AT&T/XM. The major assemblies include a power supply and various combinations of floppy disk drives, cartridge tape drives, or hard disk drives. A maximum of three hard disk drives can be housed in the cabinet. The major assemblies are listed below:

- Power Supply Unit (TRW #095-10040-XX2 or equivalent) set for 220 volt AC operation
- Devices (drives):
  - □ Floppy Disk Drive, KS-23114,L4
  - D 30-megabyte Hard Disk Drive, KS-23054,L1
  - Disk Drive, KS-23054,L2
  - □ 23-megabyte Cartridge Tape Drive, KS-23165,L1
  - □ 60-megabyte Cartridge Tape Drive, KS-23417,L2.

# International AT&T/XM Equipment Characteristics

## Physical.

Noise Level

| Height                                     | 4.6 inches                   |
|--------------------------------------------|------------------------------|
| Width                                      | 22 inches                    |
| Depth                                      | 17 inches                    |
| Electrical.                                |                              |
| Voltage                                    | 220 to 240 V AC, 2.5 Amperes |
| Frequency                                  | 50/60 Hz                     |
| Total Power Consumption (Heat Dissipation) | Less than 298 watts          |
| Environmental.                             |                              |
| Temperature                                | 40°F to 100°F<br>5°C to 38°C |
| Humidity                                   | 20% to 80%, noncondensing    |
| System Power Consumption                   | 1000 Btu/hour (maximum)      |

45 dB(A) (steady state), 55 dB(A) (maximum)

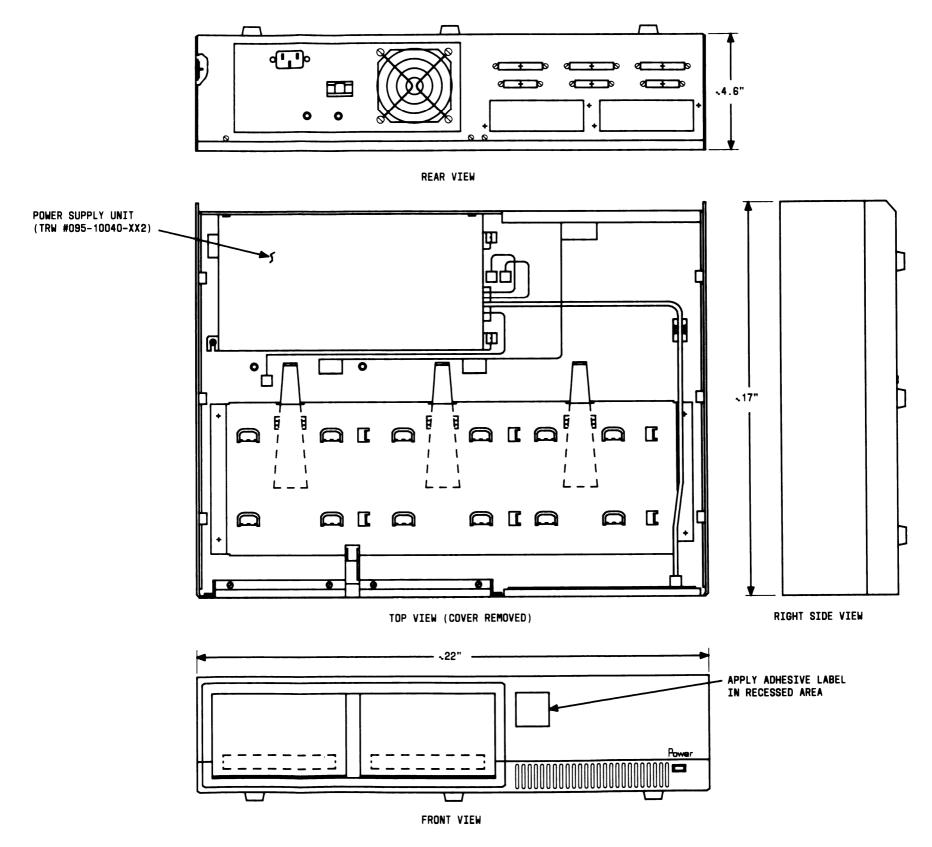



Figure 2-12: International AT&T/XM Cabinet Assembly Drawing (ED-4C635-30)

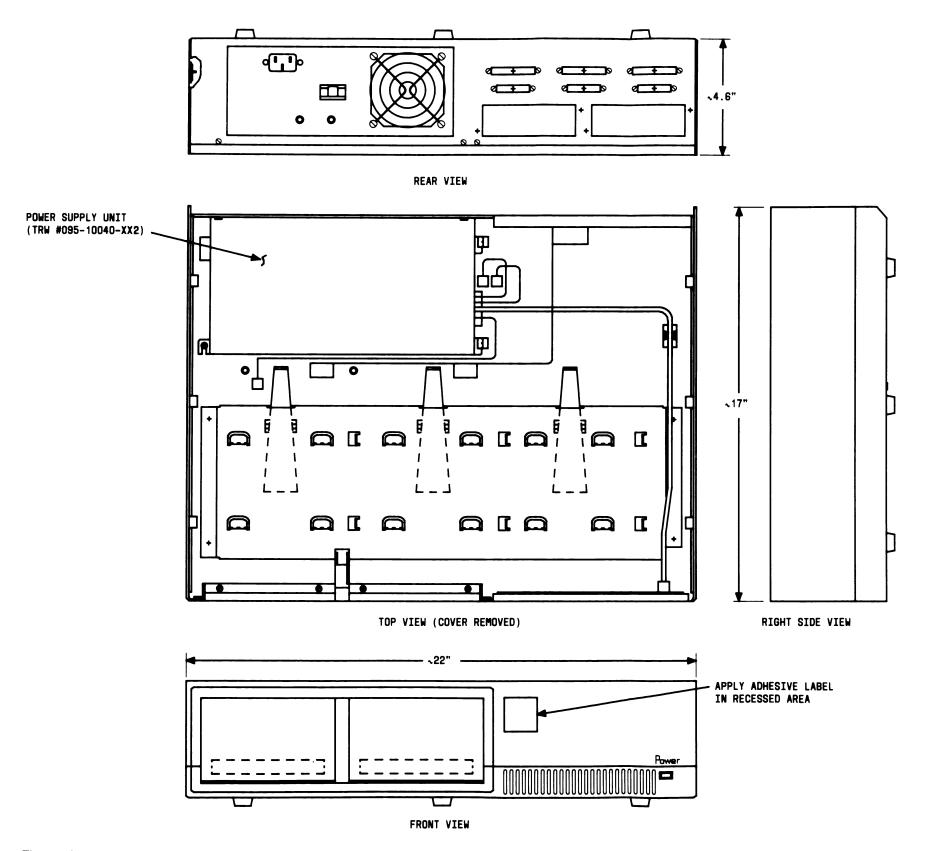



Figure 2-12: International AT&T/XM Cabinet Assembly Drawing (ED-4C635-30)

### Domestic AT&T XM/405S/900S (ED-3T010-30)

#### **Major Assemblies**

Figure 2-13 shows a typical domestic AT&T XM/405S/900S. The major assemblies include a power supply, a bridge controller, and three hard disk drives. The major assemblies are listed below:

- Power Supply Unit (TRW #095-10064-02) set for 115 volt AC operation
- Bridge Controller (WP91205,L3)
- Three 135-megabyte (total of 405 megabytes) Hard Disk Drives, KS-23371,L13 or

Three 300-megabyte (total of 900 megabytes) ESDI Hard Disk Drives, KS-23371,L31 and L33.

# Domestic AT&T XM/405S/900S Equipment Characteristics

## Physical.

| Height                                        | 4.6 inches          |
|-----------------------------------------------|---------------------|
| Width                                         | 22 inches           |
| Depth                                         | 17 inches           |
| Electrical.                                   |                     |
| Voltage                                       | 115 V AC, 5 Amperes |
| Frequency                                     | 50/60 Hz            |
| Total Power Consumption<br>(Heat Dissipation) | Less than 298 watts |

### Environmental.

| Temperature              | 40°F to 100°F<br>5°C to 38°C                |
|--------------------------|---------------------------------------------|
| Humidity                 | 20% to 80%, noncondensing                   |
| System Power Consumption | 1000 Btu/hour (maximum)                     |
| Noise Level              | 45 dB(A) (steady state), 55 dB(A) (maximum) |

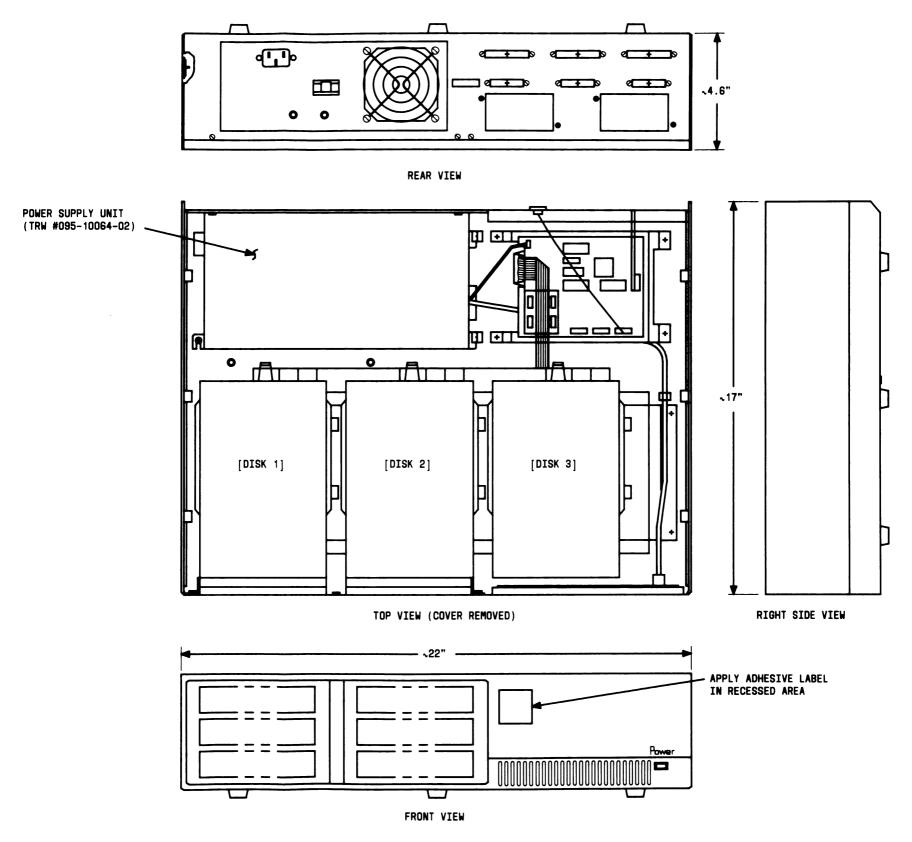



Figure 2-13: Domestic AT&T XM/405S/900S Cabinet Assembly Drawing (ED-3T010-30)

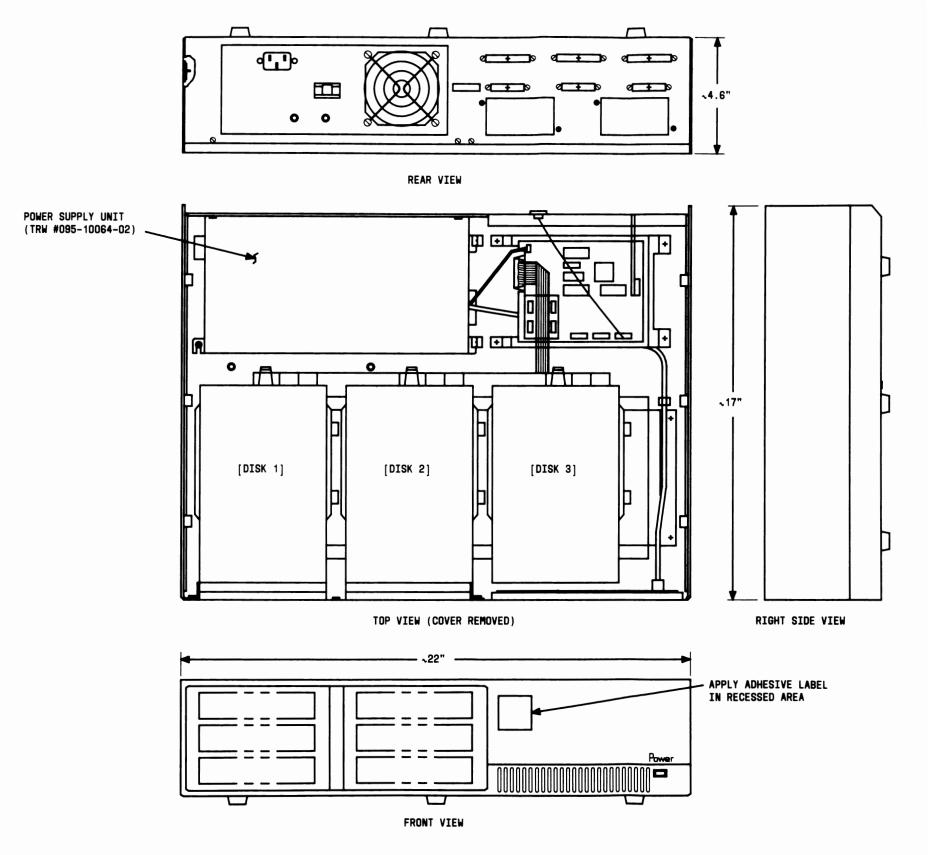



Figure 2-13: Domestic AT&T XM/405S/900S Cabinet Assembly Drawing (ED-3T010-30)

### International AT&T XM/405S/900S (ED-3T027-30)

#### **Major Assemblies**

Figure 2-14 shows a typical international AT&T XM/405S/900S. The major assemblies include a power supply, a bridge controller, and three hard disk drives. The major assemblies are listed below:

- Power Supply Unit (TRW #095-10073 or equivalent) set for 220 volt AC operation
- Bridge Controller (WP91205,L3)
- Three 135-megabyte (total of 405 megabytes) Hard Disk Drives, KS-23371,L13 or

Three 300-megabyte (total of 900 megabytes) ESDI Hard Disk Drives, KS-23371,L31 or L33.

ÿ.

# International AT&T XM/405S/900S Equipment Characteristics

| Height                                     | 4.6 inches                   |
|--------------------------------------------|------------------------------|
| Width                                      | 22 inches                    |
| Depth                                      | 17 inches                    |
| Electrical.                                |                              |
| Voltage                                    | 220 to 240 V AC, 2.5 Amperes |
| Frequency                                  | 50/60 Hz                     |
| Total Power Consumption (Heat Dissipation) | Less than 298 watts          |
| Environmental.                             |                              |
| Temperature                                | 40°F to 100°F                |

| Temperature              | 5°C to 38°C                                 |
|--------------------------|---------------------------------------------|
| Humidity                 | 20% to 80%, noncondensing                   |
| System Power Consumption | 1000 Btu/hour (maximum)                     |
| Noise Level              | 45 dB(A) (steady state), 55 dB(A) (maximum) |

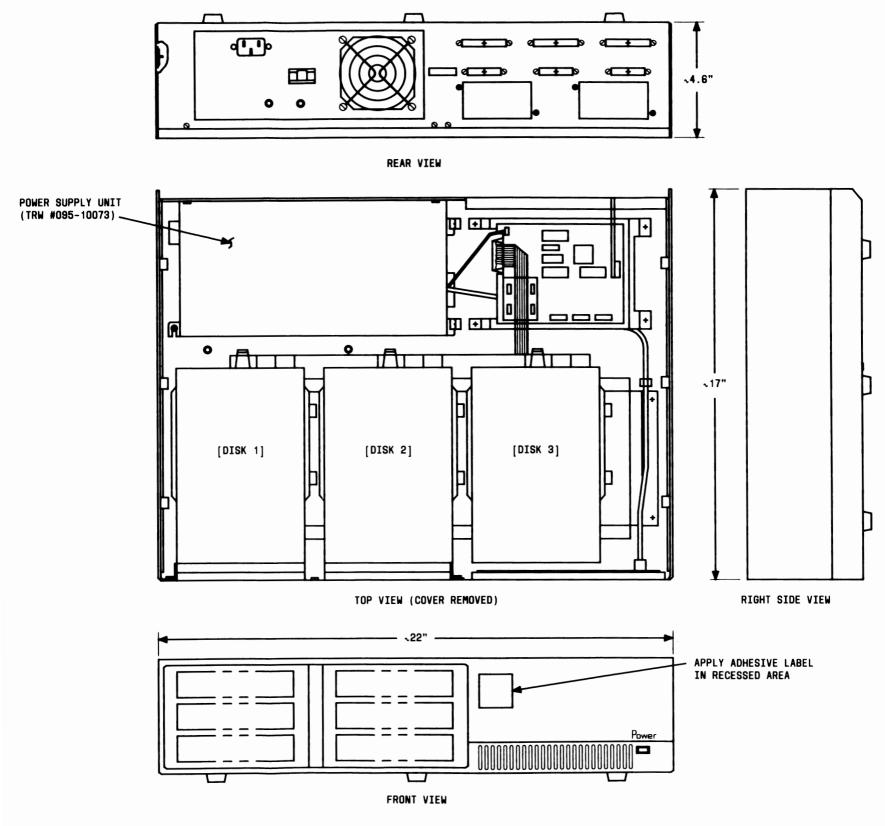



Figure 2-14: International AT&T XM/405S/900S Cabinet Assembly Drawing (ED-3T027-30)

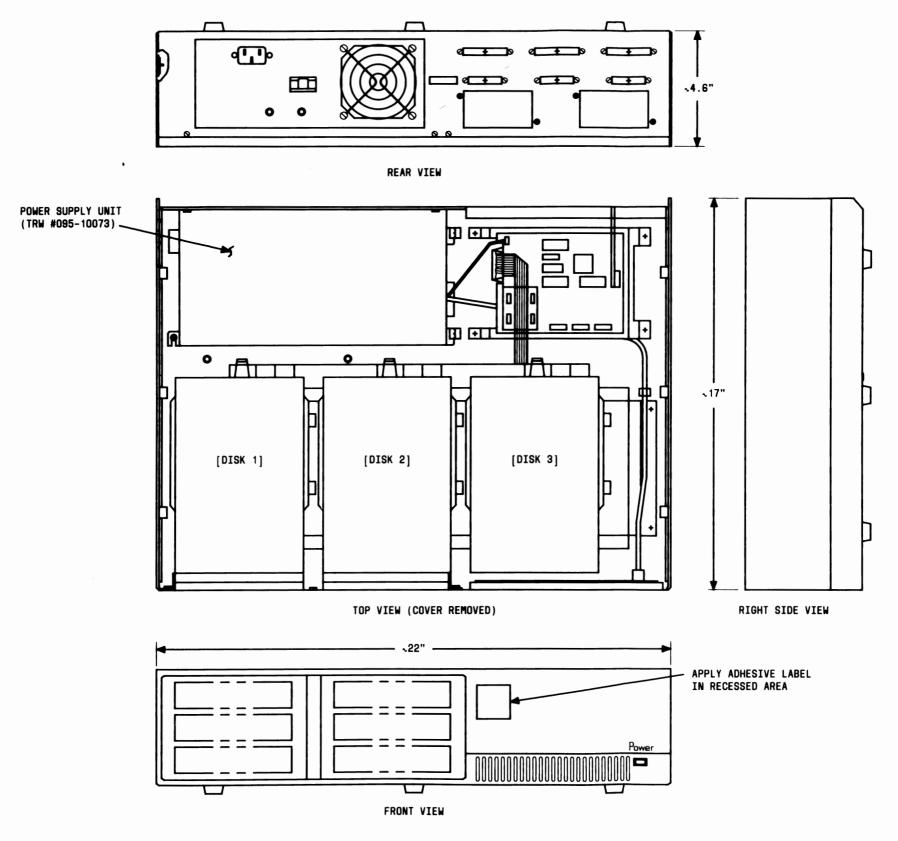



Figure 2-14: International AT&T XM/405S/900S Cabinet Assembly Drawing (ED-3T027-30)

### AT&T Disk Controller Module/4E (ED-3T011-30,G1)

#### **Major Assemblies**

Figure 2-15 shows an AT&T Disk Controller Module (DCM/4E). The DCM/4E cabinet contains an ESDI bridge controller and power supply. The DCM/4E acts as one tap on the SCSI single-ended bus and can control up to four Disk Modules (DMs). The DCM/4E bridges the single-ended SCSI bus of the Host Adapter to the ESDI of the disk drives. The major assemblies are listed below:

- Power Supply (TRW #095-10065)
- Target Bridge Controller (WP91205,L3).

### **EQUIPMENT DESCRIPTION** -

# AT&T DCM/4E Equipment Characteristics

| Height         | 4 inches                                                               |
|----------------|------------------------------------------------------------------------|
| Width          | 11 inches                                                              |
| Depth          | 12.5 inches                                                            |
| Electrical.    |                                                                        |
| Voltage        | 120 V AC, 1.5 Amperes Domestic<br>240 V AC, 0.75 Amperes International |
| Frequency      | 50/60 Hz                                                               |
| Environmental. |                                                                        |
| Temperature    | 40°F to 100°F<br>5°C to 38°C                                           |
| Humidity       | 20% to 80%, noncondensing                                              |

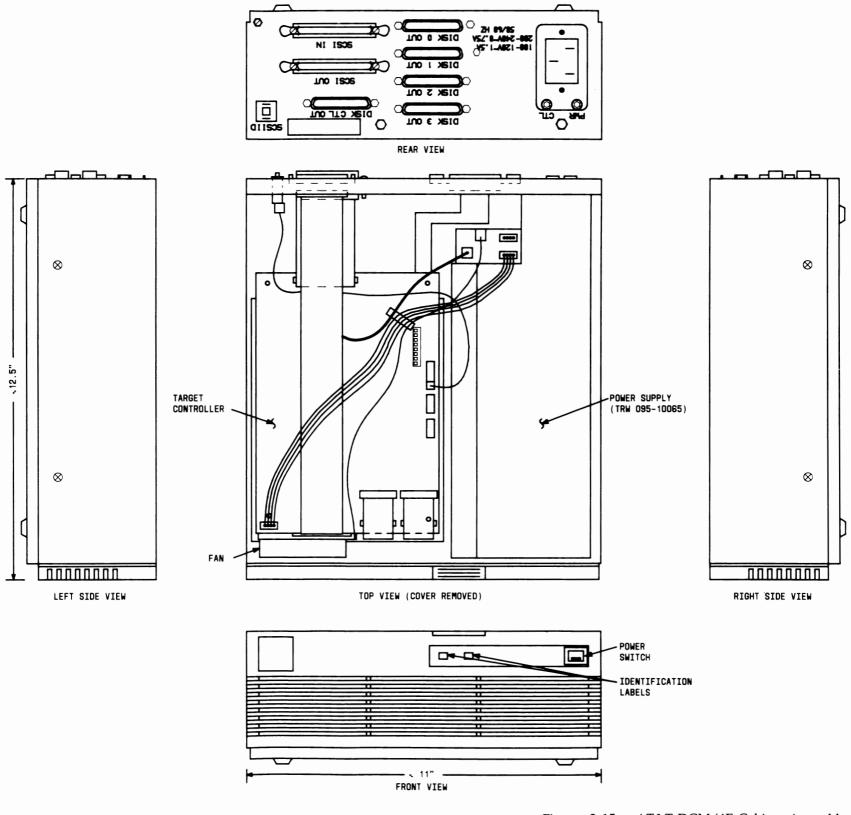
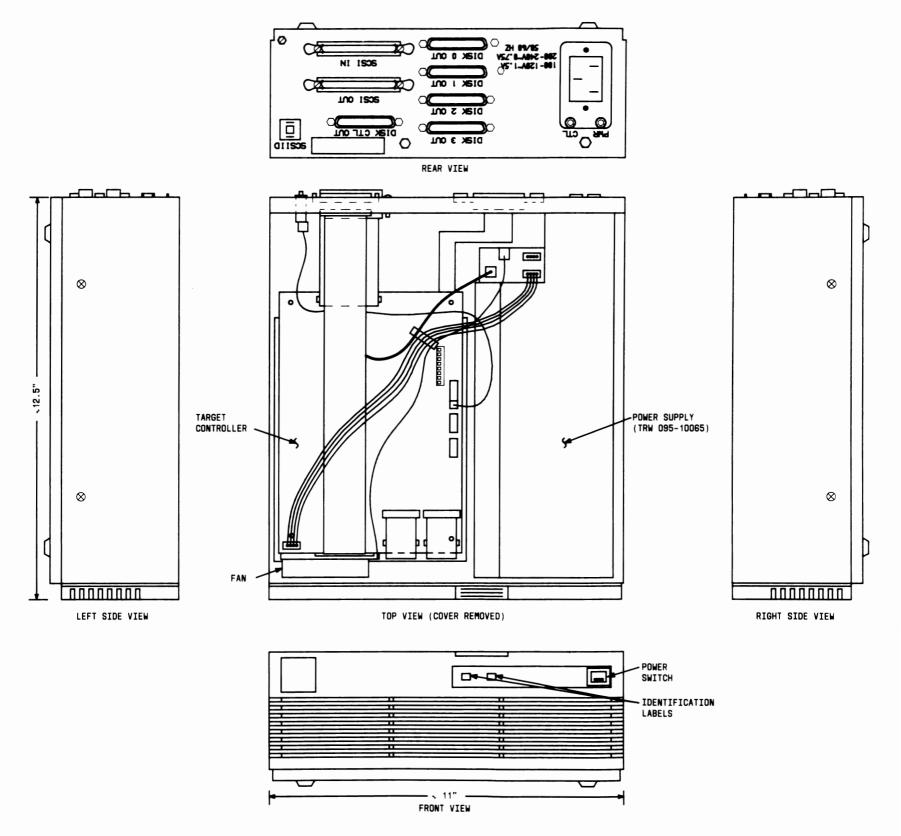
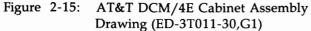





Figure 2-15: AT&T DCM/4E Cabinet Assembly Drawing (ED-3T011-30,G1)





### AT&T Disk Module (ED-3T011-30,G2, G3, G5, G6)

#### **Major Assemblies**

Figure 2-16 shows an AT&T Disk Module (DM). The DM cabinet contains a single ESDI hard disk drive and power supply. The disk drive can be one of several formatted capacities. The major assemblies are listed below:

- Power Supply (TRW #095-10065)
- Disk Drive:
  - □ 94-megabyte, KS-23371,L7
  - □ 147-megabyte, KS-23371,L17
  - □ 300-megabyte, KS-23371,L31.

# **AT&T DM Equipment Characteristics**

| Height         | 4 inches                                                               |
|----------------|------------------------------------------------------------------------|
| Width          | 11 inches                                                              |
| Depth          | 12.5 inches                                                            |
| Electrical.    |                                                                        |
| Voltage        | 120 V AC, 1.5 Amperes Domestic<br>240 V AC, 0.75 Amperes International |
| Frequency      | 50/60 Hz                                                               |
| Environmental. |                                                                        |
| Temperature    | 40°F to 100°F<br>5°C to 38°C                                           |
| Humidity       | 20% to 80%, noncondensing                                              |

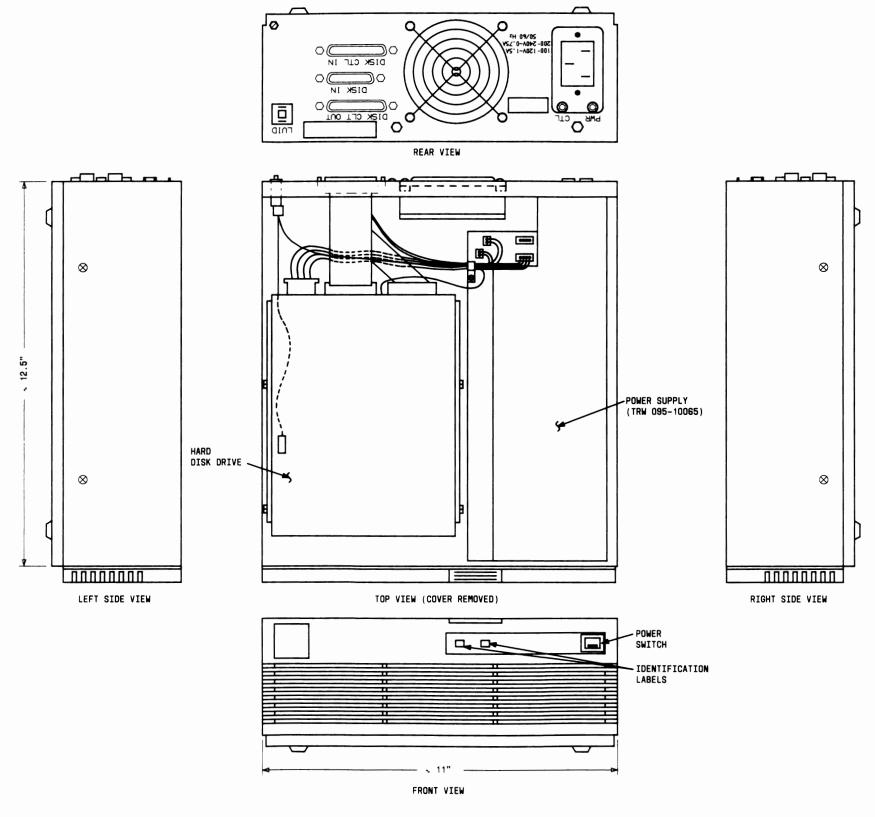
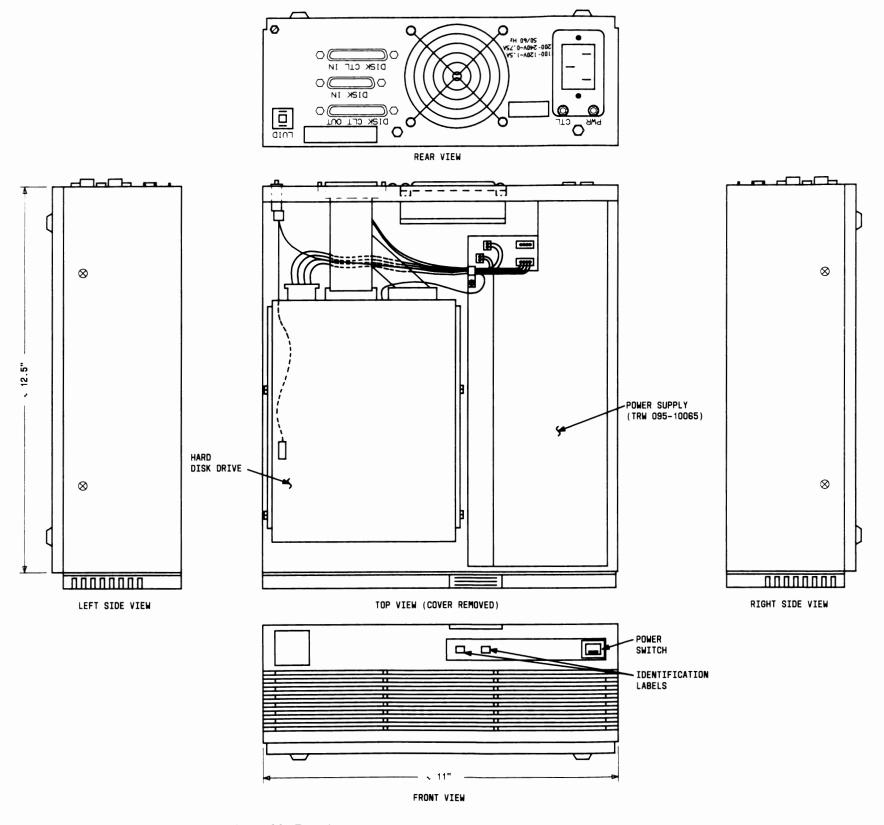
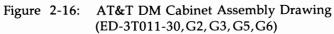





Figure 2-16: AT&T DM Cabinet Assembly Drawing (ED-3T011-30, G2, G3, G5, G6)





### AT&T Embedded Disk Modules (ED-3T011-30,G8, G9, G11)

#### **Major Assemblies**

Figure 2-17 shows an AT&T Disk Module (DM/S or DM/DS). The DM/S cabinet contains a single-ended, embedded SCSI hard disk drive and power supply. The DM/DS cabinet contains a differential, embedded SCSI disk drive. The major assemblies are listed below:

- Power Supply (TRW #095-10065)
- Disk Drive:
  - □ Single-ended 300-megabyte disk drive, KS-23483,L1B
  - Differential 300-megabyte disk drive, KS-23483,L11B
  - Differential 600-megabyte disk drive, KS-23483,L15.

# AT&T DM/S or DM/DS Equipment Characteristics

| Height         | 4 inches                                                               |
|----------------|------------------------------------------------------------------------|
| Width          | 11 inches                                                              |
| Depth          | 12.5 inches                                                            |
| Electrical.    |                                                                        |
| Voltage        | 120 V AC, 1.5 Amperes Domestic<br>240 V AC, 0.75 Amperes International |
| Frequency      | 50/60 Hz                                                               |
| Environmental. |                                                                        |
| Temperature    | 40°F to 100°F<br>5°C to 38°C                                           |
| Humidity       | 20% to 80%, noncondensing                                              |

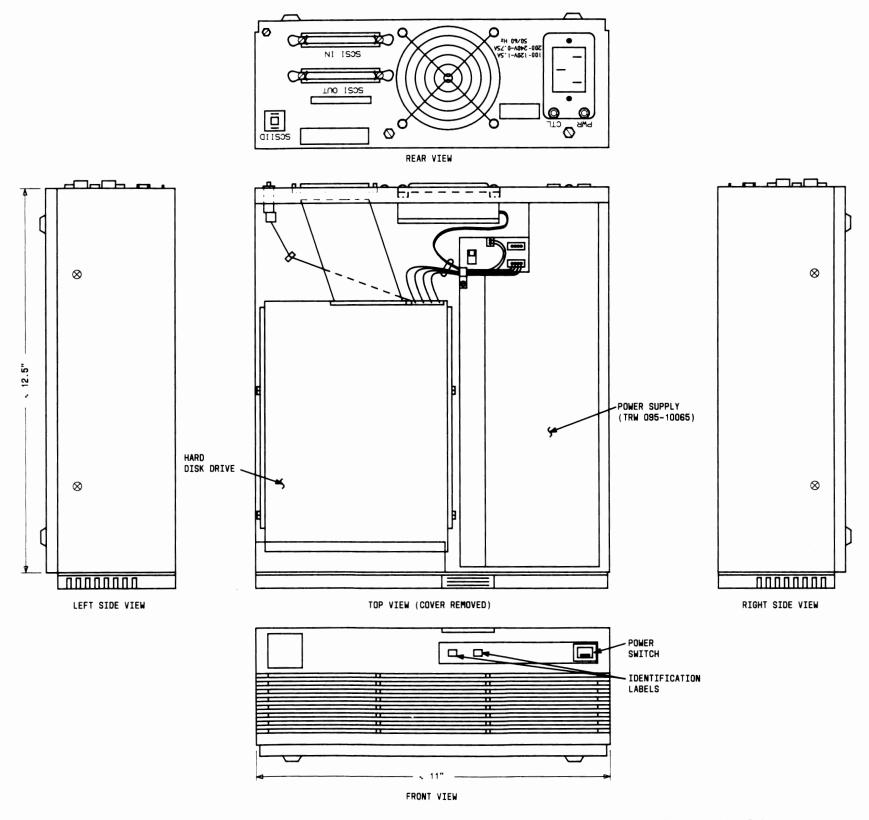



Figure 2-17: AT&T DM/S or DM/DS Cabinet Assembly Drawing (ED-3T011-30, G8, G9, G11)

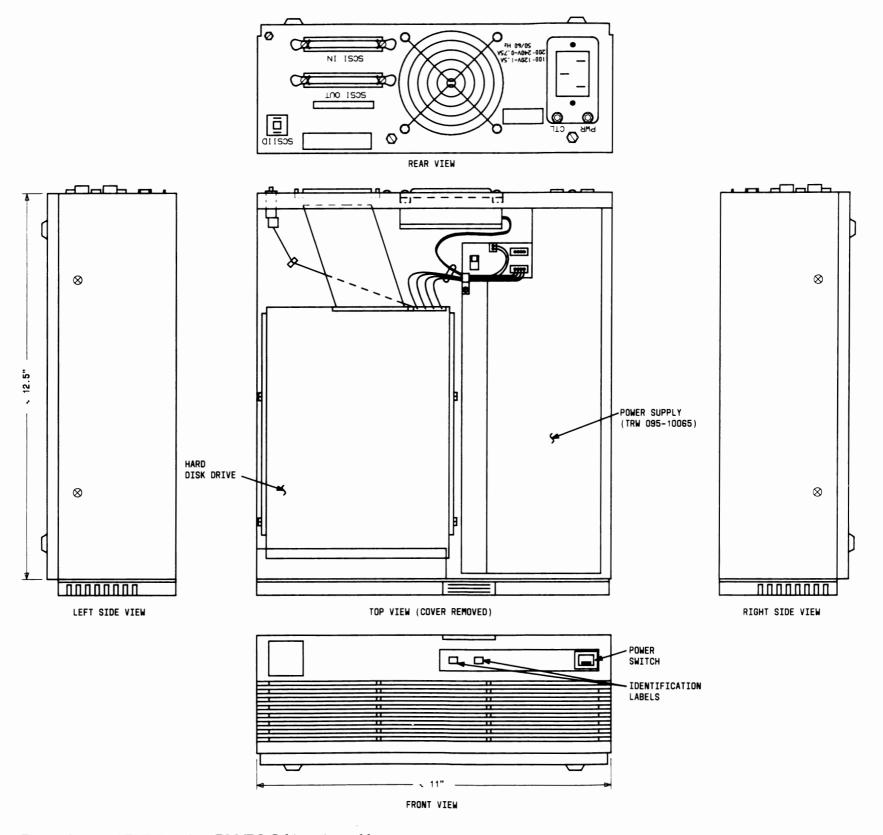



Figure 2-17: AT&T DM/S or DM/DS Cabinet Assembly Drawing (ED-3T011-30,G8,G9,G11)

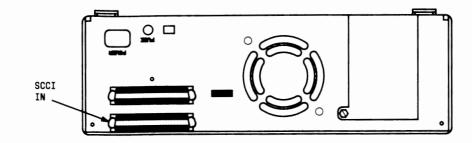
### **AT&T SCSI Rewritable Optical Disk Module**

#### **Major Assemblies**

Figure 2-18 shows an AT&T SCSI Rewritable Optical Disk Module. The optical disk can be used as a storage media or as another hard disk drive. The SCSI Rewritable Optical Disk Module cabinet contains a rewritable optical disk drive, embedded SCSI controller, and power supply. The major assemblies are listed below:

- Power Supply
- Optical Disk Drive.

### **AT&T SCSI Rewritable Optical Disk Equipment Characteristics**


Physical.

| Height | 4.25 inches |
|--------|-------------|
| Width  | 12.8 inches |
| Depth  | 11.2 inches |

If the optical disk is formatted to operate as a hard disk drive, the format is similar to the WREN\* III hard disk drives. The pertinent information is as follows:

| Rotational Speed | 2400 revolutions per minute                                                                                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------|
| Bytes/Sector     | 512                                                                                                                     |
| Sectors/Track    | 32                                                                                                                      |
| Tracks/Cylinder  | 64                                                                                                                      |
| Cylinders        | 279 Accessible, 281 Total                                                                                               |
| Formatted Size   | 571,392 blocks (512 bytes)                                                                                              |
| Operational.     |                                                                                                                         |
| Interface        | SCSI (Single-ended only)                                                                                                |
| Transfer Rate    | 5.44 megabits per second (680 kilobytes per second, read)<br>2.72 megabits per second (340 kilobytes per second, write) |
| Seek Time        | 95 milliseconds, average<br>185 milliseconds, maximum                                                                   |
| Electrical.      |                                                                                                                         |
| Voltage          | 120 V AC, 1.5 Amperes Domestic<br>240 V AC, 0.75 Amperes International                                                  |
| Frequency        | 50/60 Hz                                                                                                                |
| Environmental.   |                                                                                                                         |
| Temperature      | 50°F to 104°F<br>10°C to 40°C                                                                                           |
| Humidity         | 10% to 90%, noncondensing                                                                                               |

<sup>\*</sup> Registered trademark of Control Data Corp.





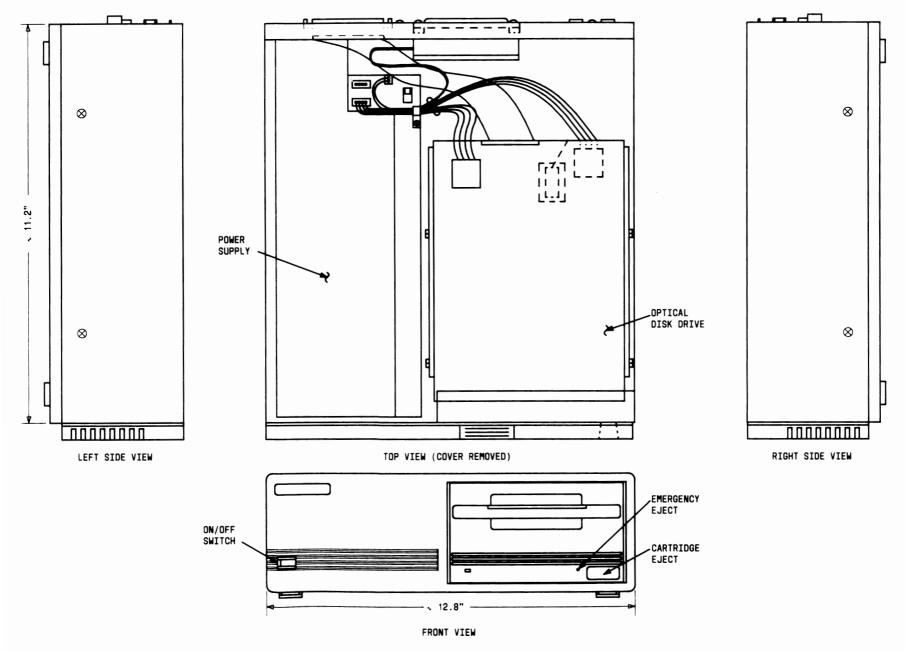
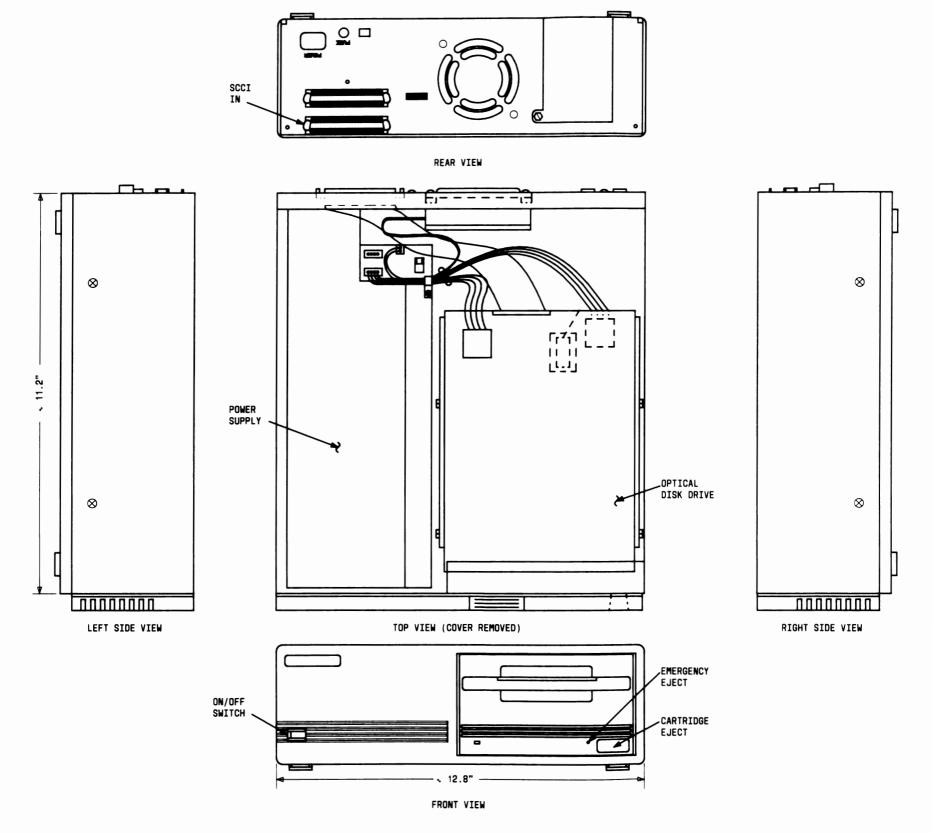




Figure 2-18: AT&T SCSI Rewritable Optical Disk Cabinet Assembly Drawing





## **AT&T SCSI 9-Track Tape**

The AT&T SCSI 9-Track Tape Drives are standard 9-track, reel-to-reel devices which permit transfer of data between AT&T computers that support SCSI. These drives are also media compatible with other vendors' computers. Although a SCSI 9-Track Tape Drive is intended primarily as a data transfer mechanism, it can also be used as a mass storage backup device.

All SCSI 9-Track Tape Drives have an embedded SCSI controller which connects directly to the SCSI bus. There are two SCSI 9-Track Tape Drives:

- Desktop, autoloading, dual density (1600/6250 BPI)
- Manual-loading, single density (1600 BPI).

Figures 2-19 and 2-20 show the two types of SCSI 9-Track Tape Drives.

#### **AT&T SCSI 9-Track Tape Drive Equipment Characteristics**

#### Electrical.

| Voltage        | 120 V AC, 1.5 Amperes Domestic<br>240 V AC, 0.75 Amperes International |
|----------------|------------------------------------------------------------------------|
| Frequency      | 50/60 Hz                                                               |
| Environmental. |                                                                        |
| Temperature    | 40°F to 100°F<br>5°C to 38°C                                           |
| Humidity       | 20% to 80%, noncondensing                                              |

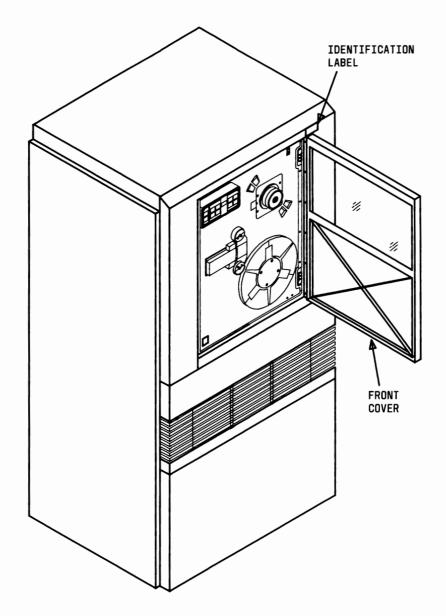



Figure 2-19: SCSI Manual Loading 9-Track Tape Cabinet

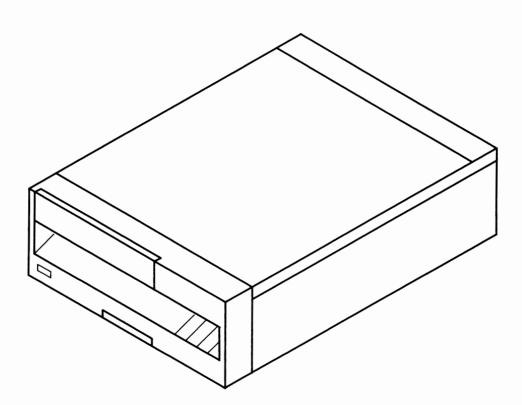



Figure 2-20: SCSI Autoloading 9-Track Tape Cabinet

## AT&T SCSI Tape Module (ED-3T011-30,G4, G7)

#### **Major Assemblies**

Figure 2-21 shows an AT&T SCSI Tape Module (TM). The TM cabinet contains a 60- or 120-megabyte, embedded SCSI Cartridge Tape Drive and power supply. The major assemblies are listed below:

- Power Supply (TRW #095-10065)
- Tape Drive:
  - □ 60-megabyte SCSI Cartridge Tape Drive, KS-23417,L1 or L3
  - □ 120-megabyte SCSI Cartridge Tape Drive, KS-23465,L1, L31, or L51.

# AT&T SCSI TM Equipment Characteristics

# Physical.

| Height         | 4 inches                                                               |
|----------------|------------------------------------------------------------------------|
| Width          | 11 inches                                                              |
| Depth          | 12.5 inches                                                            |
| Electrical.    |                                                                        |
| Voltage        | 120 V AC, 1.5 Amperes Domestic<br>240 V AC, 0.75 Amperes International |
| Frequency      | 50/60 Hz                                                               |
| Environmental. |                                                                        |
| Temperature    | 40°F to 100°F<br>5°C to 38°C                                           |
| Humidity       | 20% to 80%, noncondensing                                              |

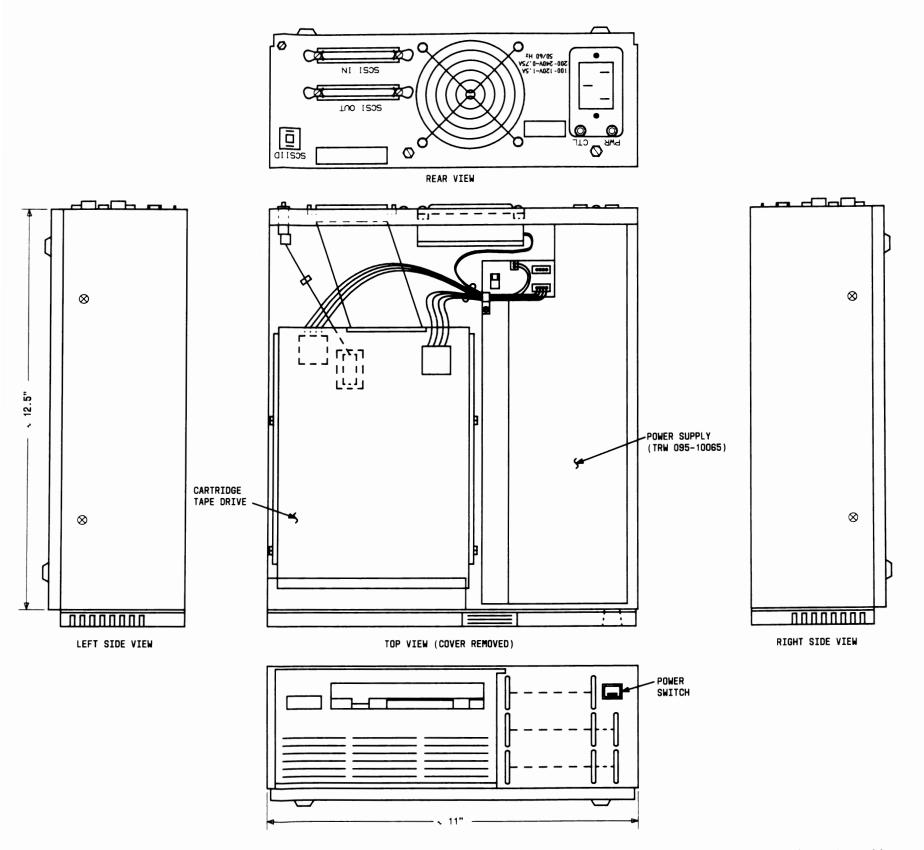



Figure 2-21: AT&T SCSI TM Cabinet Assembly Drawing (ED-3T011-30, G4, G7)

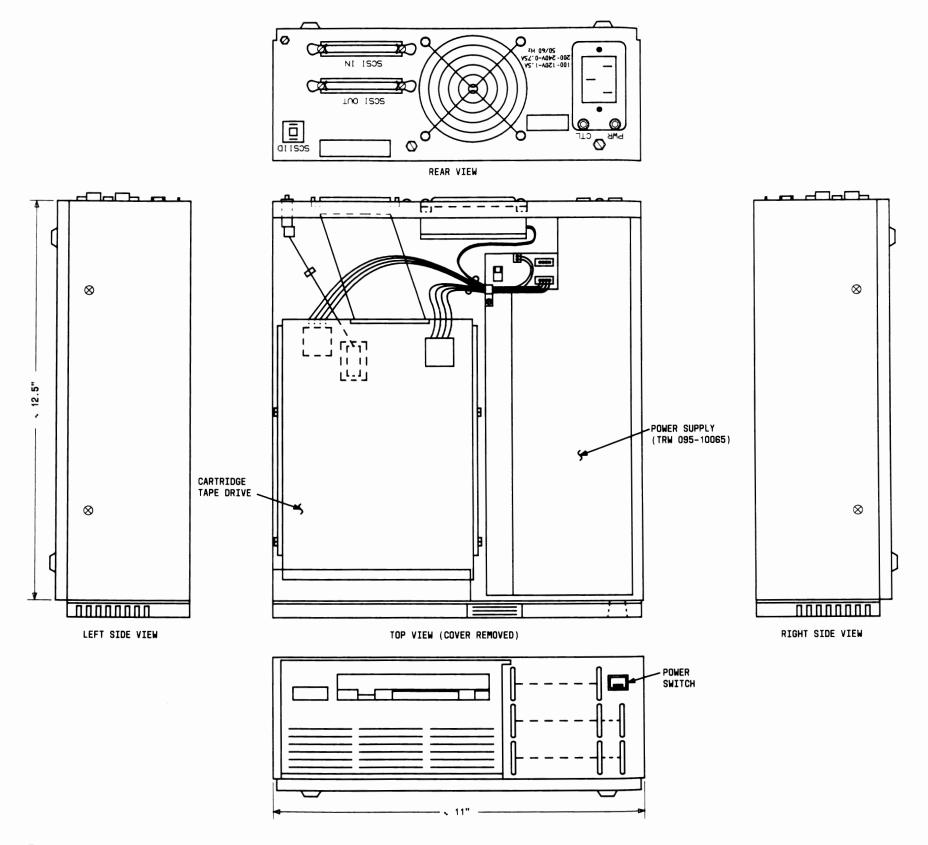



Figure 2-21: AT&T SCSI TM Cabinet Assembly Drawing (ED-3T011-30,G4, G7)

## **AT&T Cartridge Tape Module**

#### **Major Assemblies**

The AT&T Cartridge Tape Module is a 3B2 computer external cartridge tape unit with built-in power supply. The cartridge tape module cabinet houses one 23-megabyte cartridge tape drive and a power supply. The cartridge tape unit is the same tape unit used in the AT&T/XM and 3B2/400. A cartridge tape drive connects to the host 3B2 computer via a CM195H Cartridge Tape Controller Card. The CM195H is installed in a 3B2 computer feature card slot. The AT&T Tape Module is a low-cost alternative to using an AT&T/XM to provide cartridge tape backup capability when the additional hard disk drive expansion is not required. Soft power control is not provided with the AT&T Tape Module. The AT&T Tape Module is available only with a power supply for 115 volts AC operation.

# AT&T Cartridge Tape Module Equipment Characteristics

Physical.

| Height                                     | 5 inches                                                                                          |
|--------------------------------------------|---------------------------------------------------------------------------------------------------|
| Width                                      | 7.75 inches                                                                                       |
| Depth                                      | 15.5 inches                                                                                       |
| Electrical.                                |                                                                                                   |
| Voltage                                    | 120 V AC, 1 Ampere                                                                                |
| Frequency                                  | 50/60 Hz                                                                                          |
| Total Power Consumption (Heat Dissipation) | 120 watts (or less)                                                                               |
| Environmental.                             |                                                                                                   |
| Temperature                                | 40°F to 112°F<br>5°C to 45°C                                                                      |
| Humidity                                   | 20% to 80% relative humidity (noncondensing) with a maximum wet bulb temperature of $26^{\circ}C$ |
| Altitude                                   | 10,000 feet above sea level                                                                       |
| Noise                                      | 40 dB(A) (idle), 43 dB(A) (running)                                                               |

# AT&T Peripheral Power Control Unit (ED-3T011-30,G10)

#### **Major Assemblies**

Figure 2-22 shows an AT&T Peripheral Power Control Unit (PPCU). The PPCU allows multiple host computers to control shared peripheral unit power. Inside the cabinet is the CFW1 Circuit Card that makes the power control connections.

20% to 80%, noncondensing

## **AT&T PPCU Equipment Characteristics**

#### Physical.

| Height         | 4 inches                     |
|----------------|------------------------------|
| Width          | 11 inches                    |
| Depth          | 12.5 inches                  |
| Environmental. |                              |
| Temperature    | 40°F to 100°F<br>5°C to 38°C |

Humidity

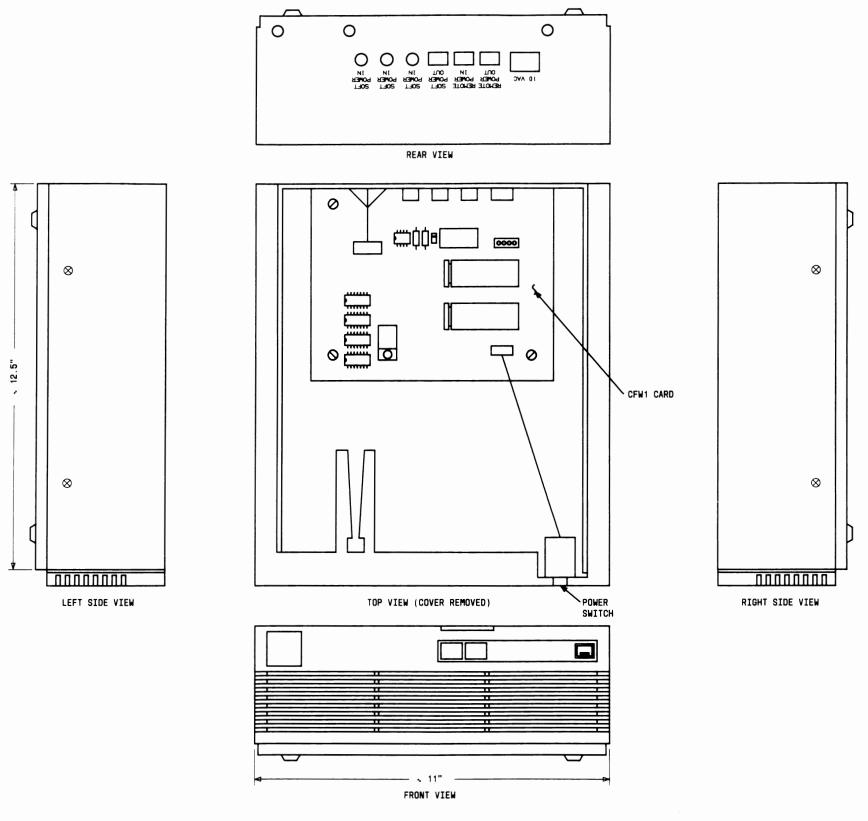
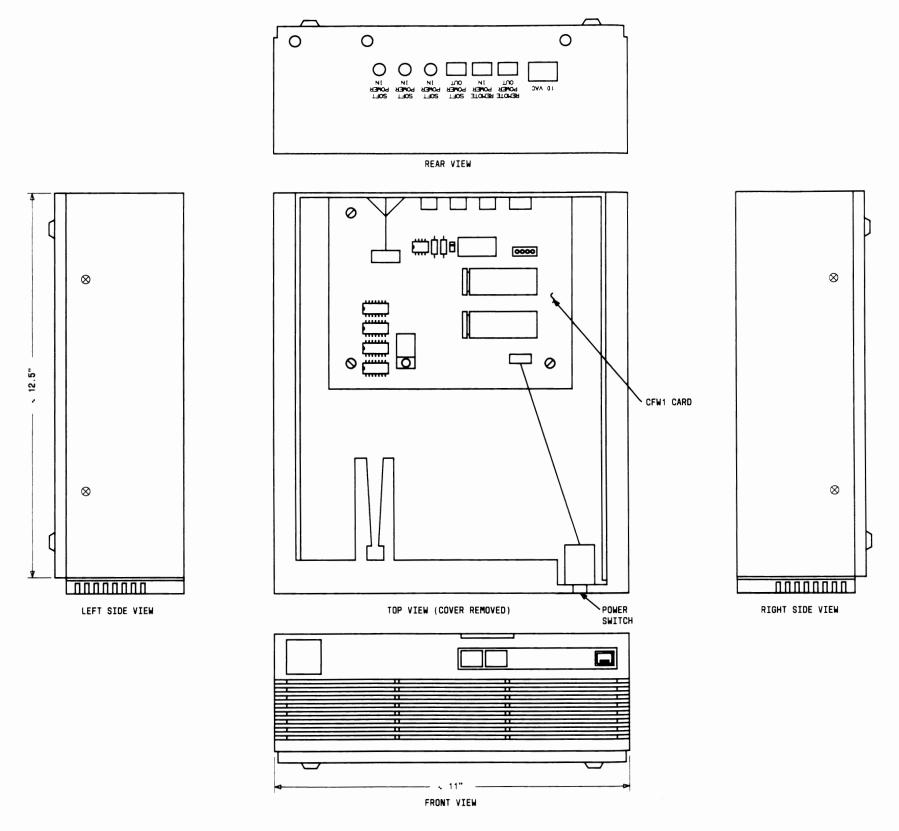
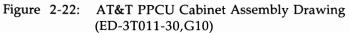





Figure 2-22: AT&T PPCU Cabinet Assembly Drawing (ED-3T011-30,G10)





# SYSTEM BOARDS

## **CM190A System Board**

### **CM190A System Board Layout**

Figure 2-23 shows the layout of the component side of a CM190A System Board. The system board is a multilayer board measuring 7.7 inches wide by 14.8 inches deep. Refer to Appendix B for connector pinout information. All system board interfaces are connectorized as follows:

- CONSOLE and CONTTY RS-232C Ports (J01)
- Backplane Board (J02 and J03)
- Power (J04)
- Random Access Memory (RAM) Cards (M0/J05 and M1/J06)
- Integral Hard Disk Control Bus (J07)
- Integral Hard Disk Data Bus 0 (J08)
- Integral Hard Disk Data Bus 1 (J09)
- Integral Floppy Disk Data and Control Bus (J10)
- Nonvolatile Random Access Memory (NVRAM) Power (J11)
- Diagnostic and Power Indicators (J12 and J13).

The following major components on the system board are connectorized:

- Read Only Memory (ROM) (four Dual Inline Packages)
- WE 32002 Processor Module
- 28.8-MHz Oscillator (divided by four for 7.2-MHz system clock).

#### **CM190A Versions (Series Information)**

The CM190A System Board is used in early production 3B2/300 computers. The CM190A System Board has been discontinued and replaced by the System Board, ED-4C637-30.

Artmaster 5 and later CM190A System Boards are required to run the UNIX System V Release 2.0 and later releases of the operating system. Artmaster 6 and later system boards are required to support a 72-megabyte hard disk drive as an integral disk.

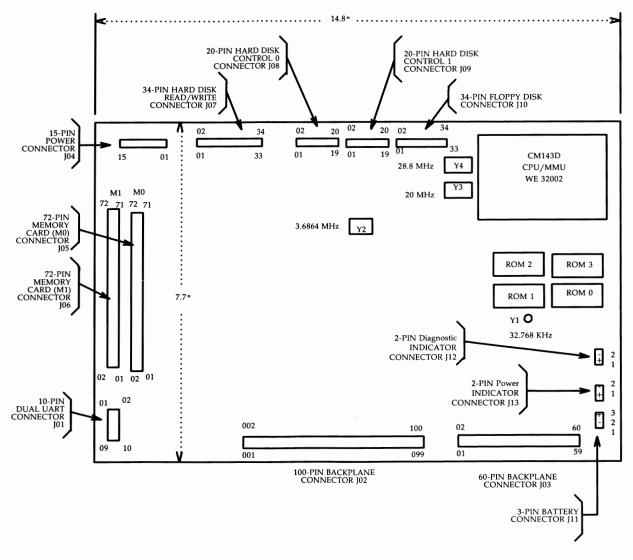



Figure 2-23: CM190A System Board Layout (Discontinued Availability)

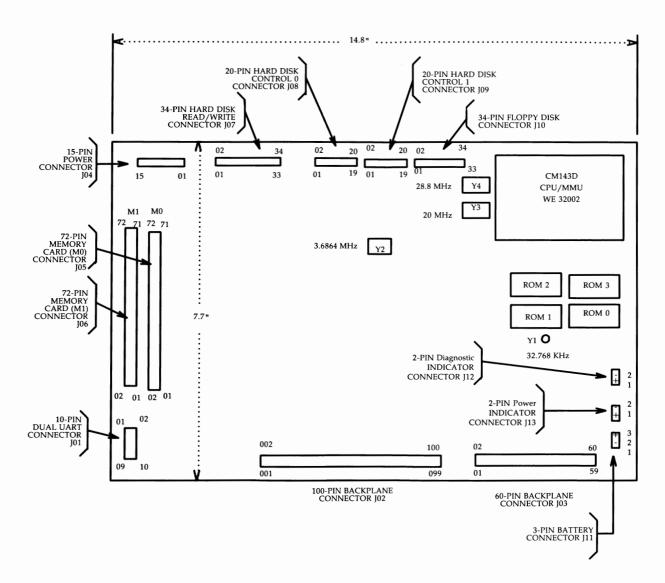



Figure 2-23: CM190A System Board Layout (Discontinued Availability)

## ED-4C637-30 System Board

#### ED-4C637-30 System Board Layout

Figure 2-24 shows the layout of the component side of a typical System Board, ED-4C637-30. The system board is a multilayer board measuring 7.7 inches wide by 14.8 inches deep. Refer to Appendix B for connector pinout information. All system board interfaces are connectorized as follows:

- CONSOLE and CONTTY RS-232C Ports (J01)
- Backplane Board (J02 and J03)
- Power (J04)
- Random Access Memory (RAM) Cards (M0/J05 and M1/J06)
- Integral Hard Disk Control Bus (J07)
- Integral Hard Disk Data Bus 0 (J08)
- Integral Hard Disk Data Bus 1 (J09)
- Integral Floppy Disk Data and Control Bus (J10)
- Nonvolatile Random Access Memory (NVRAM) Power (J11)
- Diagnostic and Power Indicators (J12 and J13)
- Auxiliary Disk Interface Soft Power (J14).

The following major components on the system board are connectorized:

- Read Only Memory (ROM) (four Dual Inline Packages)
- WE 32100 Microprocessor Central Processor Unit (CPU)
- WE 32101 Memory Management Unit (MMU)
- 8.2/10-MHz Oscillator
- WE 32106 Math Acceleration Unit (MAU) (optional).

#### ED-4C637-30 System Board Versions (Series Information)

Different versions (groups) are used for the various 3B2 computer models. The differences among the groups are the system clock (8.2 MHz or 10 MHz) and equipage of the WE 32101 MAU. The system board groups are identified in the following table by the model of computer, system clock rate, and MAU equipage. Not identified in the table is ED-4C637-30,G6 that is a stripped board (no ROM or MAU) used for system board sparing.

| SYSTEM BOARD   | COMPUTER MODEL | SYSTEM CLOCK | MAU |
|----------------|----------------|--------------|-----|
| ED-4C637-30,G1 | 3B2/300        | 8.2 MHz      | _   |
| ED-4C637-30,G2 | 3B2/400        | 10 MHz       | NO  |
| ED-4C637-30,G3 | 3B2/310        | 10 MHz       | NO  |
| ED-4C637-30,G4 | 3B2/310        | 10 MHz       | YES |
| ED-4C637-30,G5 | 3B2/400        | 10 MHz       | YES |

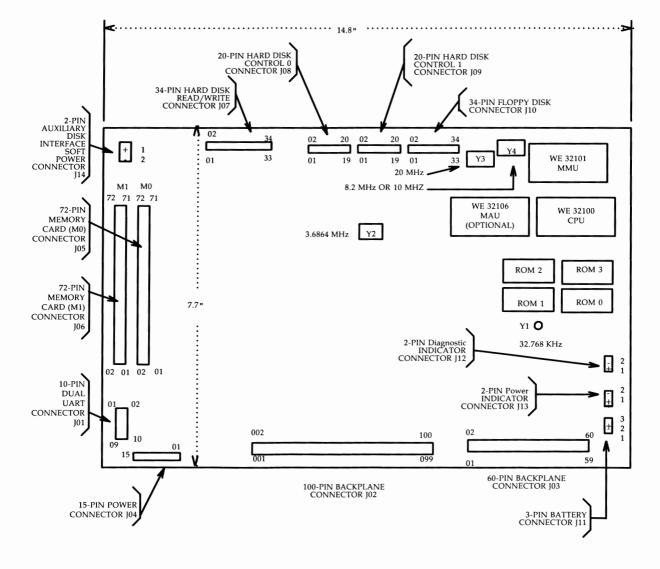



Figure 2-24: System Board, ED-4C637-30 Layout

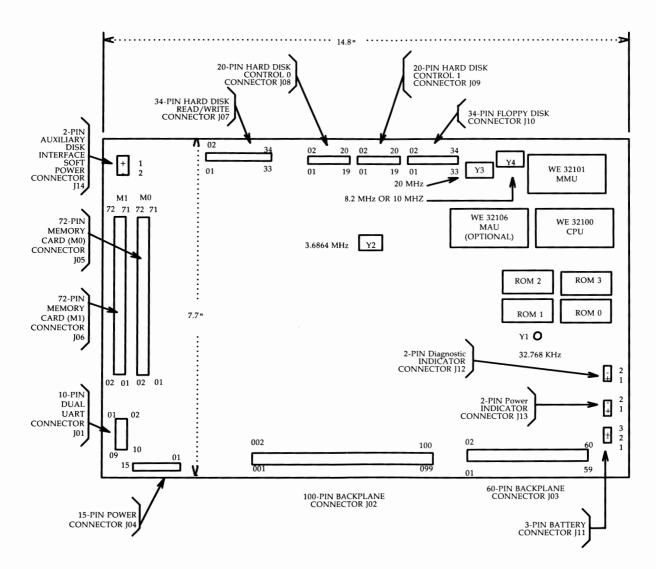



Figure 2-24: System Board, ED-4C637-30 Layout

## **CM518A System Board**

## **CM518A System Board Layout**

Figure 2-25 shows the layout of the component side of a typical CM518A System Board. The system board is a multilayer board measuring 14.8 inches wide by 7.7 inches deep. All system board interfaces are connectorized as follows:

- CONSOLE and CONTTY RS-232C Ports (J4 and J5)
- Alternate CONSOLE and CONTTY RS-232C Ports (J1)
- Backplane Connector (J2)
- Battery Connector (J3).

The following major components on the system board are connectorized:

- Read Only Memory (ROM) (four Dual Inline Packages)
- 82HS321A Integrated Circuit (Artmaster 2 only).

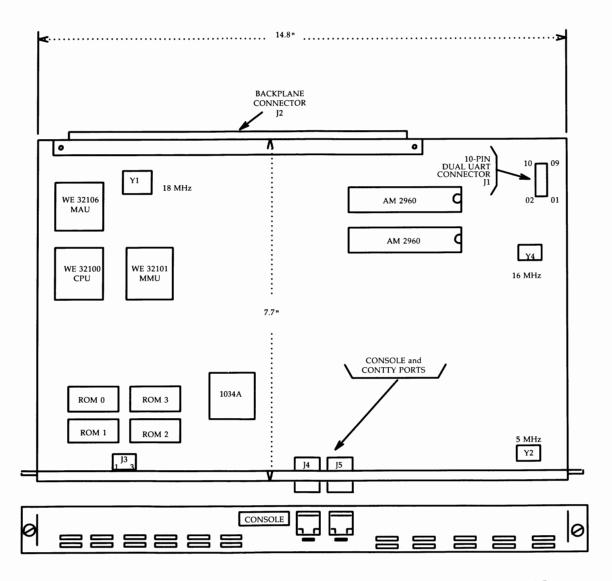



Figure 2-25: CM518A System Board Layout

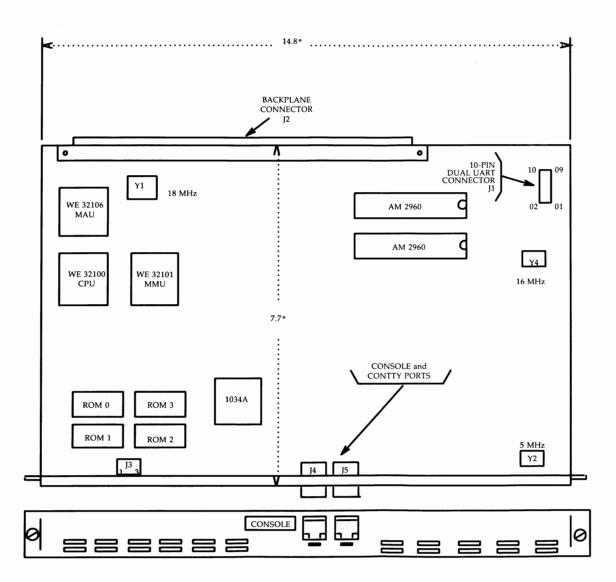



Figure 2-25: CM518A System Board Layout

## **CM518B System Board**

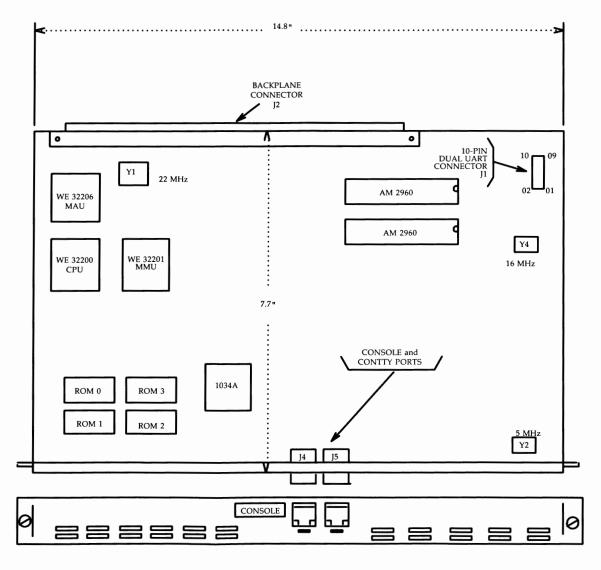
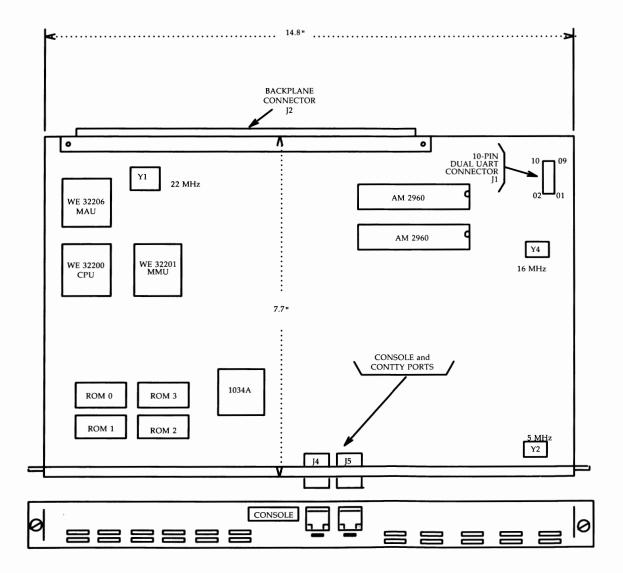
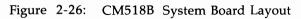

#### **CM518B System Board Layout**

Figure 2-26 shows the layout of the component side of a typical CM518B System Board. The system board is a multilayer board measuring 14.8 inches wide by 7.7 inches deep. All system board interfaces are connectorized as follows:

- CONSOLE and CONTTY RS-232C Ports (J4 and J5)
- Alternate CONSOLE and CONTTY RS-232C Ports (J1)
- Backplane Connector (J2).


The following major components on the system board are connectorized:


- Read Only Memory (ROM) (four Dual Inline Packages)
- WE 32200 Microprocessor Central Processor Unit (CPU)
- WE 32201 Memory Management Unit (MMU)
- WE 32206 Math Acceleration Unit (MAU).



## Figure 2-26: CM518B System Board Layout

#### **EQUIPMENT DESCRIPTION**





#### **EQUIPMENT DESCRIPTION**

# **CM518C System Board**

### **CM518C System Board Layout**

Figure 2-27 shows the layout of the component side of a typical CM518C System Board. The system board is a multilayer board measuring 14.8 inches wide by 7.7 inches deep. All system board interfaces are connectorized as follows:

- CONSOLE and CONTTY RS-232C Ports (J4 and J5)
- Alternate CONSOLE and CONTTY RS-232C Ports (J1)
- Backplane Connector (J2).

The following major components on the system board are connectorized:

- Read Only Memory (ROM) (two Dual Inline Packages)
- WE 32200 Microprocessor Central Processor Unit (CPU)
- Two WE 32201 Memory Management Unit (MMU)
- WE 32206 Math Acceleration Unit (MAU)
- 24-MHz Oscillator.

.

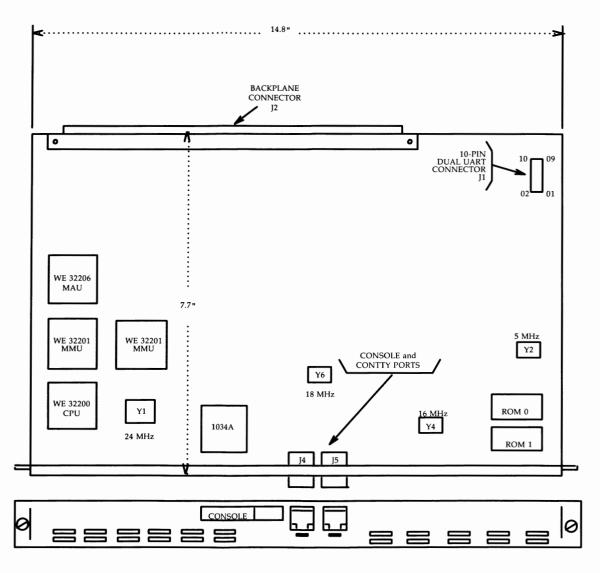



Figure 2-27: CM518C System Board Layout

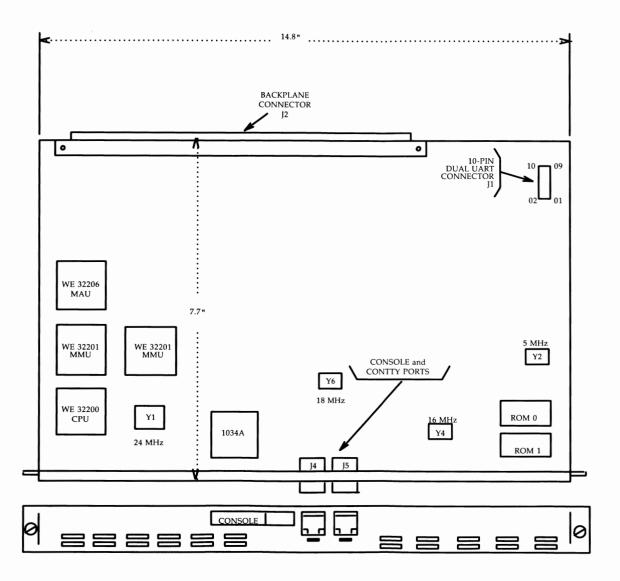



Figure 2-27: CM518C System Board Layout

# **RANDOM ACCESS MEMORY CARDS**

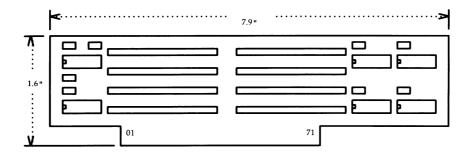
## **Memory Card Types**

The various Random Access Memory (RAM) card types are listed below:

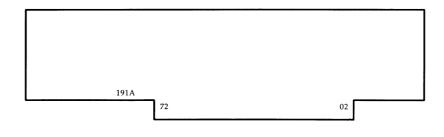
| CM191A  | 0.25-megabyte card (used in 3B2/300 computers, only)                |  |
|---------|---------------------------------------------------------------------|--|
| CM191B  | 1-megabyte card                                                     |  |
| CM191C  | 1-megabyte card (half height, surface mounted technology)           |  |
| CM191D  | 2-megabyte card (half height, surface mounted technology)           |  |
| CM192B  | 2-megabyte card [used in 3B2/400 computers (replaced by CM191D)]    |  |
| CM523A  | 4-megabyte card (used in Version 3 computers; 256-kilobyte devices) |  |
| CM523AA | 4-megabyte card (used in Version 3 computers; 1-megabyte devices)   |  |
| CM523B  | 2-megabyte card (used in Version 3 computers)                       |  |
| CM523D  | 16-megabyte card (used in Version 3 computers).                     |  |

Each of these cards is described in the following paragraphs. A CM192A Card does not exist. Refer to the *AT&T 3B2 Computer Random Access Memory Expansion Manual*, (Select Code 305-532), for additional information. Card interconnections (pinouts) are defined in Appendix B.

## **RAM Equipage Considerations**


Version 3 computers may be equipped with as much memory as the backplane will allow. However, Version 2 computers have certain considerations that must be followed.

The 1- and 2-megabyte cards can be equipped in the same machine; however, the 2-megabyte card must be in connector M0. Four-slot computers (3B2/300 and 3B2/310) equipped with power supplies having a red ON/STANDBY switch are limited to 2 megabytes of RAM. To expand these machines to 3 or 4 megabytes of RAM requires the replacement of the power supply. Only early production units are equipped with power supply units having a red ON/STANDBY switch. The following table summarizes the equipage of RAM cards in Version 2 computers.


| RAM CARD CONFIGURATION SUMMARY   |                                    |                      |  |
|----------------------------------|------------------------------------|----------------------|--|
| MEMORY SIZE                      | M0 CONNECTOR                       | M1 CONNECTOR         |  |
| 0.5 MEGABYTES<br>(3B2/300, only) | 0.25-MEGABYTE CARD                 | 0.25-MEGABYTE CARD   |  |
| 1.0 MEGABYTES                    | 1-MEGABYTE CARD                    | _                    |  |
| 2.0 MEGABYTES<br>2.0 MEGABYTES   | 1-MEGABYTE CARD<br>2-MEGABYTE CARD | 1-MEGABYTE CARD<br>— |  |
| 3.0 MEGABYTES                    | 2-MEGABYTE CARD                    | 1-MEGABYTE CARD      |  |
| 4.0 MEGABYTES                    | 2-MEGABYTE CARD                    | 2-MEGABYTE CARD      |  |

#### CM191A 0.25-Megabyte RAM Card

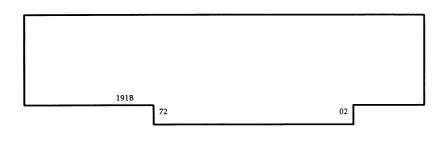
The CM191A 0.25-Megabyte RAM Card is a multilayer board containing eight 64K by 4-bit Dynamic RAM (DRAM) Single Inline Packages (SIPs) (for data), four 64K by 1-bit DRAM chips (for byte parity), and two driver chips. Fourteen bypass capacitors and one resistor network are also on the board. All components are mounted on the front side of the board. Connection to the system board is via a 72-pin edge connector. Card pinout information is provided in Appendix B. The card is 1.6 inches high by 7.9 inches wide. The CM191A is used only in the minimum configuration 3B2/300. Figure 2-28 shows the component layout of the CM191A Card.



#### A. Front View




**B.** Rear View

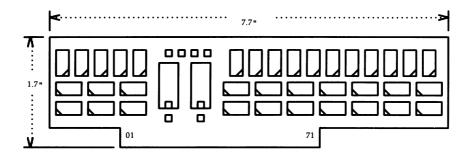

Figure 2-28: CM191A 0.25-Megabyte RAM Card Layout

#### CM191B 1-Megabyte RAM Card

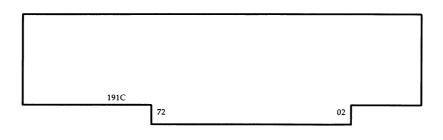
The CM191B 1-Megabyte RAM Card is a multilayer board containing eight 256K by 4-bit DRAM SIPs (for data), four 256K by 1-bit DRAM chips (for byte parity), and two driver chips. Thirteen bypass capacitors and one resistor network are also on the board. All components are mounted on the front side of the board. Connection to the system board is via a 72-pin edge connector. Card pinout information is provided in Appendix B. The card is 1.6 inches high by 7.9 inches wide. Figure 2-29 shows the component layout of the CM191B Card.



#### A. Front View




**B.** Rear View

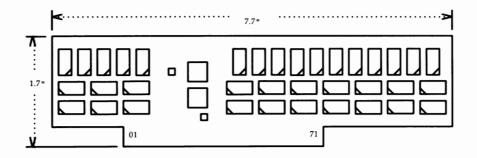

Figure 2-29: CM191B 1-Megabyte RAM Card Layout

#### CM191C 1-Megabyte RAM Card

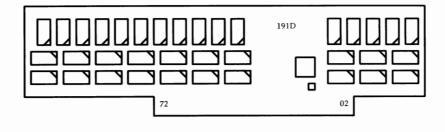
The CM191C 1-Megabyte RAM Card uses surface mount technology. The card is a double-sided multilayer board containing 36 surface mounted 256K by 1-bit DRAM chips, 2 surface mount memory drivers, and 4 pull-up resistors. Thirty-eight bypass capacitors are mounted under the DRAMs and memory drivers. The CM191C Card can be used in all models of Version 2 3B2 computers. Connection to the system board is via a 72-pin edge connector. Card pinout information is provided in Appendix B. The card is 1.7 inches high by 7.7 inches wide. Figure 2-30 shows the component layout of the CM191C Card. All components are mounted on the front side of the board.



A. Front View




**B.** Rear View


Figure 2-30: CM191C 1-Megabyte, Surface Mounted, RAM Card Layout

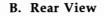
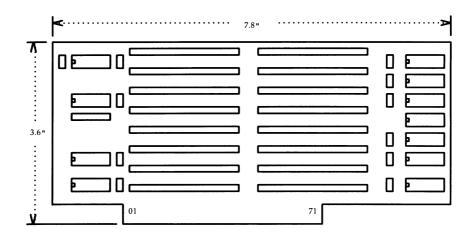
#### CM191D 2-Megabyte RAM Card

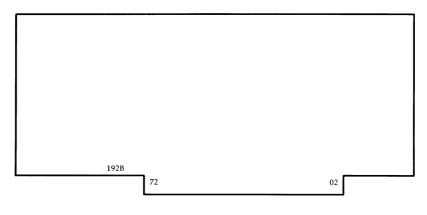
The CM191D 2-Megabyte RAM Card uses surface mount technology. The card is a double-sided multilayer board containing 72 surface mounted 256K by 1-bit DRAM chips, 3 surface mount memory drivers, and 8 pull-up resistors. Seventy-five bypass capacitors are mounted under the DRAMs and memory drivers. The CM191D Card can be used in all models of Version 2 3B2 computers. It replaces the CM192B Card used in the 3B2/400 computer. Connection to the system board is via a 72-pin edge connector. Card pinout information is provided in Appendix B. The card is 1.7 inches high by 7.7 inches wide. Figure 2-31 shows the component layout of the CM191D Card.



A. Front View



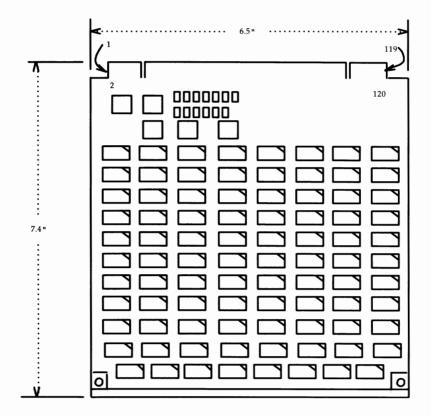


Figure 2-31: CM191D 2-Megabyte, Surface Mounted, RAM Card Layout

#### CM192B 2-Megabyte RAM Card

The CM191D Card has replaced the CM192B Card. The CM192B 2-Megabyte RAM Card is a multilayer board containing sixteen 256K by 4-bit DRAM chips (for data), eight 256K by 1-bit DRAM chips (for byte parity), and three driver chips. Twenty-six bypass capacitors and one resistor network are also on the board. All components are mounted on the front side of the board. Connection to the system board is via a 72-pin edge connector. Card pinout information is provided in Appendix B. The card is 3.6 inches high by 7.8 inches wide. Because of the size (height) of the card, the CM192B Card can only be used in the 3B2/400 computer. Figure 2-32 shows the component layout of the CM192B Card.



A. Front View




**B.** Rear View

Figure 2-32: CM192B 2-Megabyte RAM Card Layout

#### CM523A 4-Megabyte RAM Card

The CM523A 4-Megabyte RAM Card uses surface mount technology. The card is a double-sided (components on both sides) multilayer board containing 176 surface mounted 256K by 1-bit DRAM chips [including 48 chips for storing Error Correction Code (ECC) information] and 9 surface mount memory drivers. Seventy-six bypass capacitors are mounted near the DRAM and memory drivers. The CM523A Card can be used in all models of Version 3 3B2 computers. Connection to the system board is via a 120-pin connector on the backplane. Card pinout information is provided in Appendix B. The card is 6.5 inches wide by 7.4 inches deep. Figure 2-33 shows the component layout of the CM523A Card.



Conventional Component Side (Top) (Bottom Side also has Memory Chips)

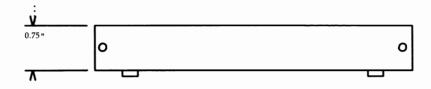
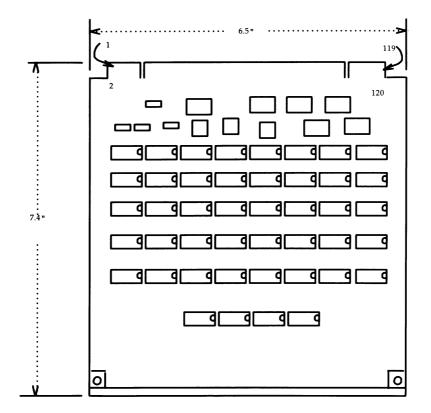




Figure 2-33: CM523A 4-Megabyte, Surface Mounted, RAM Card Layout

#### CM523AA 4-Megabyte RAM Card

The CM523AA 4-Megabyte RAM Card uses surface mount technology. The card is a multilayer board containing 44 surface mounted 1024K (1 M) by 1-bit DRAM chips (including 12 for storing ECC information) and 3 surface mount memory drivers. Twenty-two bypass capacitors are mounted near the DRAM and memory drivers. The CM523AA Card can be used in all models of Version 3 3B2 computers. Connection to the system board is via a 120-pin connector on the backplane. Card pinout information is provided in Appendix B. The card is 6.5 inches wide by 7.4 inches deep. Figure 2-34 shows the component layout of the CM523AA Card.



Conventional Component Side

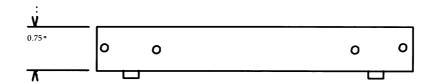
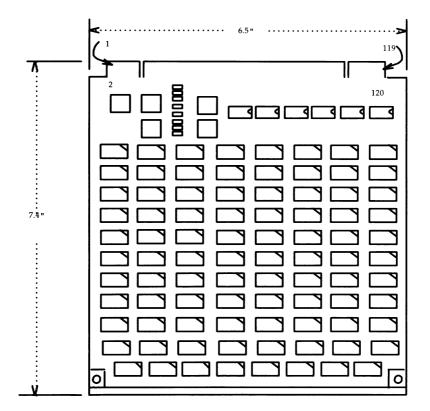




Figure 2-34: CM523AA 4-Megabyte, Surface Mounted, RAM Card Layout

#### CM523B 2-Megabyte RAM Card

The CM523B 2-Megabyte RAM Card uses surface mount technology. The card is a multilayer board containing 88 surface mounted 256K by 1-bit DRAM chips (which includes 24 chips for storing ECC information) and 5 surface mount memory drivers. Forty-two bypass capacitors are mounted near the DRAM and memory drivers. The CM523B Card can be used in all models of Version 3 3B2 computers. Connection to the system board is via a 120-pin connector on the backplane. Card pinout information is provided in Appendix B. The card is 6.5 inches wide by 7.4 inches deep. Figure 2-35 shows the component layout of the CM523A Card.



Conventional Component Side

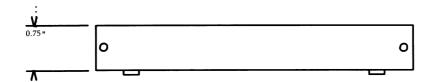
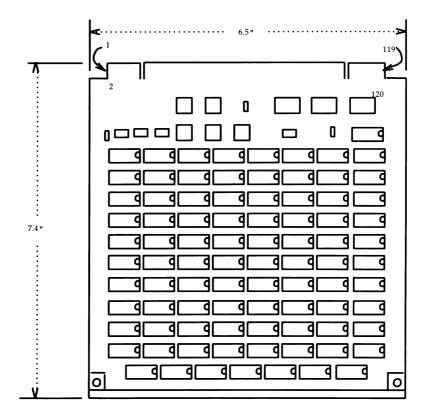




Figure 2-35: CM523B 2-Megabyte, Surface Mounted, RAM Card Layout

#### CM523D 16-Megabyte RAM Card

The CM523D 16-Megabyte RAM Card uses surface mount technology. The card is a double-sided multilayer board containing 176 surface mounted 1024K (1 M) by 1-bit DRAM chips including 48 for storing ECC information) and 9 surface mount memory drivers. Seventy-six bypass capacitors are mounted near the DRAM and memory drivers. The CM523D Card can be used in all models of Version 3 3B2 computers. Connection to the system board is via a 120-pin connector on the backplane. Card pinout information is provided in Appendix B. The card is 6.5 inches wide by 7.4 inches deep. Figure 2-36 shows the component layout of the CM523D Card.



Conventional Component Side (Top) (Bottom Side also has Memory Chips)

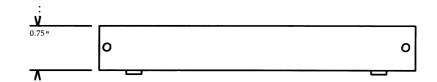
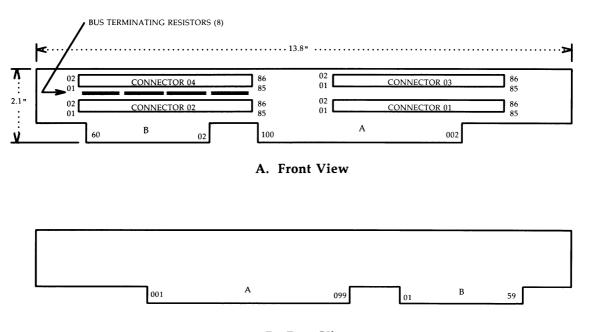



Figure 2-36: CM523D 16-Megabyte, Surface Mounted, RAM Card Layout

# **BACKPLANE BOARDS**


#### **Backplane Types**

The backplane board provides feature card power and signal connections. The backplane board contains resistor networks to terminate the address, data, and status signals. Because of bus termination, the backplane and the system board must always be connected for the system to be operated.

There are five types of backplane boards. Some have 4 slots (CM193A/B), some have 12 slots (CM194B and CM520A), and some have 24 slots plus the system board slot (CM519A and CM519B).

#### CM193A/B, 3B2/300/310 Computer Backplane Board

The CM193A/B is a 4-slot backplane board. The backplane board plugs into the 100-pin (A or J02) and 60-pin (B or J03) Input/Output (I/O) expansion connectors on the system board. A maximum of either 2 double-width or 4 single-width feature cards can be plugged into this backplane. Figure 2-37 shows the component layout of the CM193A/B Backplane. The board is a multilayer board measuring 2.1 inches high and 13.8 inches wide. Card and connector pinout information is provided in Appendix B.

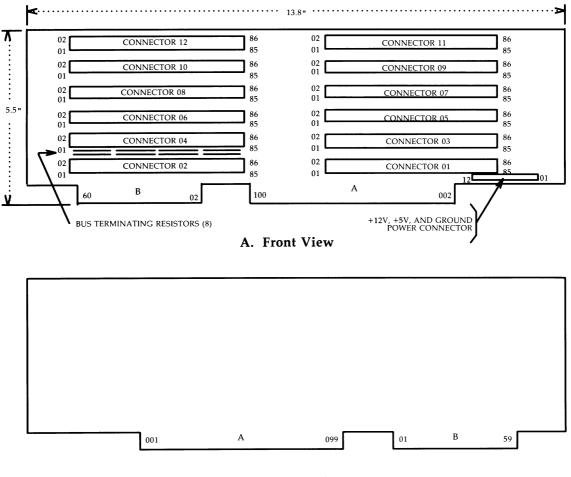
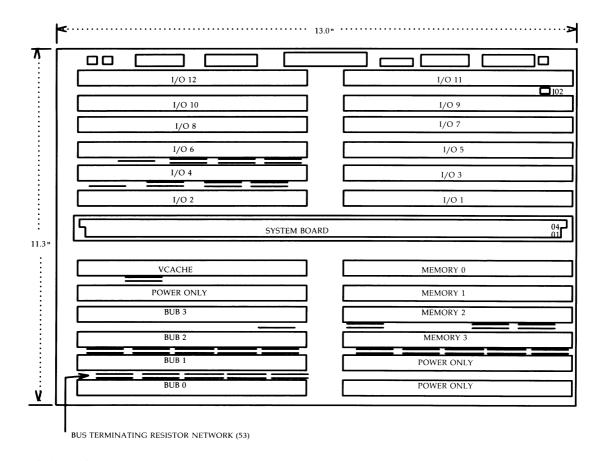


**B.** Rear View

Figure 2-37: CM193A/B Backplane Board Layout

#### CM194B, 3B2/400 Computer Backplane Board

The CM194B is a 12-slot backplane board. The backplane board plugs into the 100-pin (A or J02) and 60-pin (B or J03) I/O expansion connectors on the system board. A maximum of either 6 double-wide or 12 single-width feature cards can be plugged into this backplane. Figure 2-38 shows the component layout of the CM194B Backplane. The board is a multilayer board measuring 5.5 inches high and 13.8 inches wide. Card and connector pinout information is provided in Appendix B.

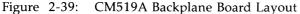




Figure 2-38: CM194B Backplane Board Layout

#### **CM519A Backplane Board Layout**

The CM519A is a 24-slot (plus system board slot) backplane board. The backplane board is connected to the card cage assembly. The system board plugs into the middle of the backplane board. There are 12 I/O slots above the system board to hold a maximum of either 6 double-width or 12 single-width feature cards. There are 12 performance slots underneath the system board for cards that improve the performance of the computer. Figure 2-39 shows the component layout of the CM519A Backplane. The board is a multilayer board measuring 11.3 inches high and 13.0 inches wide. Card and connector pinout information is provided in Appendix B.





#### **CM519B Backplane Board Layout**

The CM519B is a 24-slot (plus system board slot) backplane board. The backplane board is connected to the card cage assembly. The system board plugs into the middle of the backplane board. There are 12 I/O slots above the system board to hold a maximum of either 6 double-width or 12 single-width feature cards. There are 12 performance slots underneath the system board for cards that improve the performance of the computer. Figure 2-40 shows the component layout of the CM519B Backplane. The board is a multilayer board measuring 11.3 inches high and 13.0 inches wide. Card and connector pinout information is provided in Appendix B.

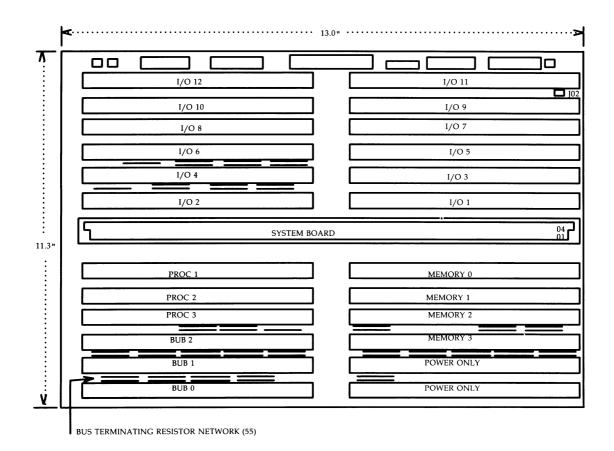
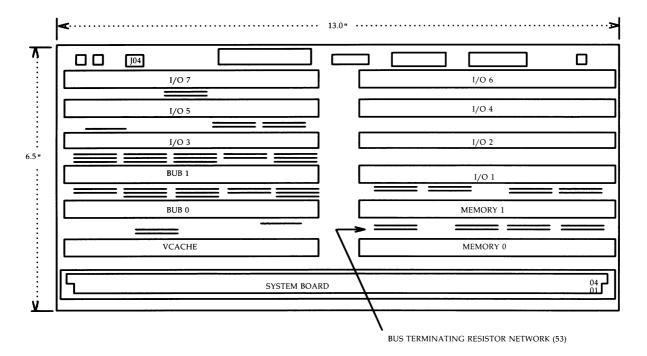
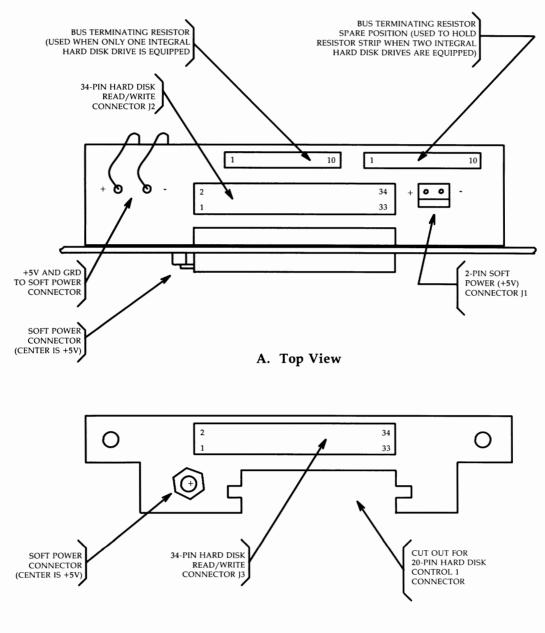



Figure 2-40: CM519B Backplane Board Layout

### **CM520A Backplane Board Layout**

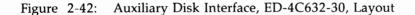
The CM520A is a 12-slot (plus system board slot) backplane board. The backplane board is connected to the card cage assembly. The system board plugs into the backplane board. A maximum of either 3 double-width or 7 single-width I/O feature cards can be plugged into this backplane. It also has five performance slots (two of which are memory card slots). Figure 2-41 shows the component layout of the CM520A Backplane. The board is a multilayer board measuring 6.5 inches high and 13.0 inches wide. Card and connector pinout information is provided in Appendix B.





Figure 2-41: CM520A Backplane Board Layout

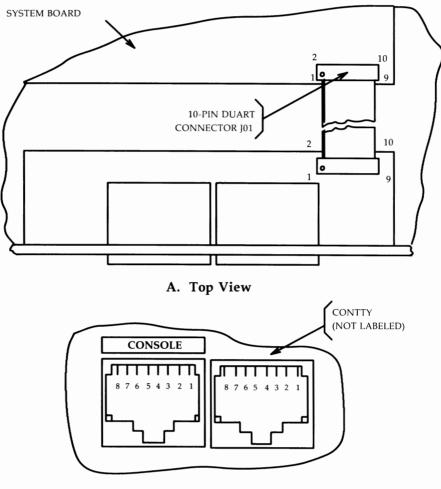
## AUXILIARY DISK INTERFACE (ED-4C632-30)

The Auxiliary Disk Interface, ED-4C632-30, is used to connect a second integral hard disk drive to a 3B2/300 or 3B2/310 computer. The second integral disk drive is equipped in an AT&T Expansion Module (AT&T/XM). The second disk drive is driven from the integral hard disk controller on the system board and is therefore called an integral hard disk drive regardless of where it is physically equipped. The Auxiliary Disk Interface also provides soft power control connections for use when an AT&T/XM is connected to the computer.


Figure 2-42 shows the layout of the Auxiliary Disk Interface. The Auxiliary Disk Interface provides connection for the 34-pin control bus cable that is multipled from connector J07 on the System Board, ED-4C637-30, to each hard disk drive. When only one hard disk drive is equipped, control bus termination is done at the Auxiliary Disk Interface. When two integral hard disk drives are equipped, the control bus terminating resistor is installed in the spare 10-pin socket on the Auxiliary Disk Interface.

The VCC (+5 V DC) used for soft power control connects to the Auxiliary Disk Interface from either the Auxiliary Disk Interface Soft Power Connector J14 when a System Board, ED-4C637-30 is used or from the hard disk drive control bus terminating resistor integrated circuit socket when a CM190A System Board is used. Connector pinout information is provided in Appendix B.




B. Front View (Back of Computer)

.



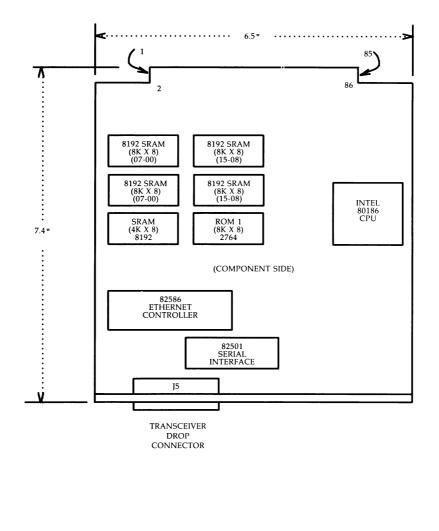
# DUART CONNECTOR-2 INTERFACE (ED-4C492-35,G5 and ED-4C631-35,G2)

The DUART Connector-2 Interface provides the CONSOLE and CONTTY 8-pin modular jacks that connect to the 10-pin DUART system board header J01. Connector pinout information is provided in Appendix B. The 3B2/300 and 3B2/310 computers are equipped with ED-4C492-35,G5. The 3B2/400 computer is equipped with ED-4C631-35,G2. Figure 2-43 shows the DUART Connector-2 Interface layout.



B. Front View (Back of Computer)

Figure 2-43: DUART Connector-2 Interface, ED-4C492-30,G5 (3B2/300/310) and ED-4C631-35,G2 (3B2/400) Layout


# **CM195A NETWORK INTERFACE CARD**

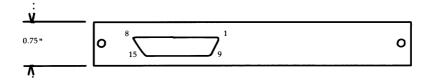
The CM195A Network Interface (NI) Card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. The CM195A Card is used to connect the 3B2 computer to an AT&T 3BNET Local Area Network (3BNET LAN). Connection is via a 14-conductor drop cable to a transceiver unit in the media cable of the network. Power for the transceiver is supplied from the 3B2 computer.

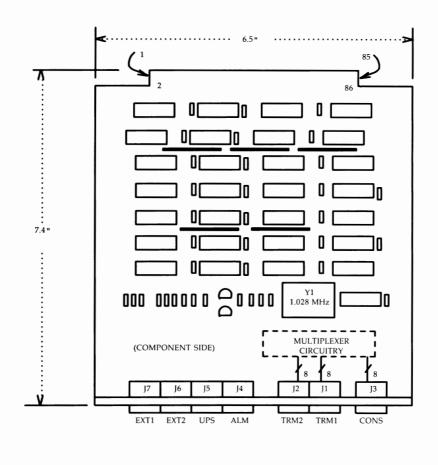
The 3BNET LAN is an Ethernet compatible network operating at 10 megabits per second using the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) algorithm. Figure 2-44 shows the component layout of a typical CM195A NI Card. CM195A Card connector pinout information is provided in Appendix B. The major components of the CM195A Card are listed below:

- An INTEL\* 80186 Microprocessor
- 32K bytes of Dynamic Random Access Memory (DRAM)
- 16K bytes of Read Only Memory (ROM)
- An INTEL 82586 Ethernet Controller.

<sup>\*</sup> Registered trademark of Intel Corp.







Figure 2-44: CM195A NI Card Layout

# **CM195AA ALARM INTERFACE CIRCUIT CARD**

The CM195AA Alarm Interface Circuit (AIC) Card is part of the Remote Management Package feature for the 3B2 computer. The CM195AA Card has three 8-pin modular jacks and four 4-pin modular jacks that provide the physical connections to perform administrative and maintenance operations from a remote location.

The CM195AA Card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. Figure 2-45 shows the component layout of a typical CM195AA AIC Card. CM195AA Card connector pinout information is provided in Appendix B. The major functions of the CM195AA Card are listed below:

- Add dual console capabilities
- Detect system sanity failures and generate alarms
- Provide alarm capability via interface to automatic calling units.



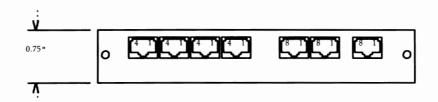


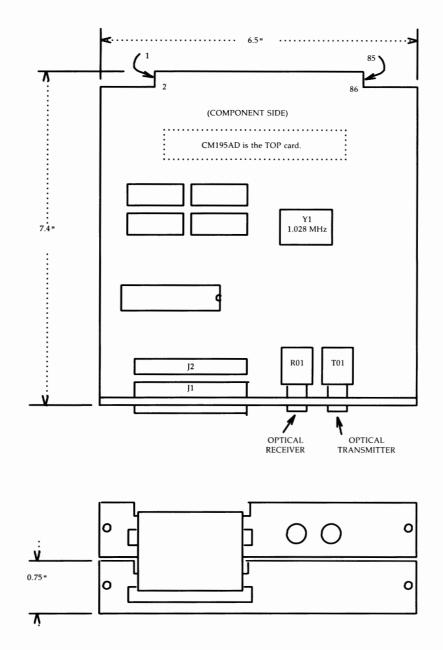

Figure 2-45: CM195AA AIC Layout

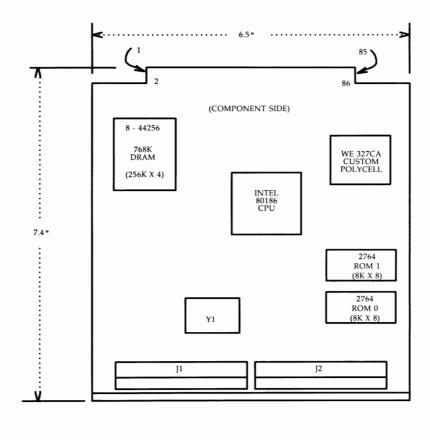
# CM195AC/CM195AD "DATAKIT" VCS INTERFACE CARD

The Datakit<sup>®</sup> Virtual Circuit Switch (VCS) Interface Card consists of two piggy-backed circuit cards that plug into the backplane of the computer. The cards allow data to transmit over a fiber optic link at 230K bits per second to either a Datakit VCS or Information Systems Network (ISN) switch. When coupled with the software, this add-on provides remote login, remote execution, transfer of files and directories, and support of over 250 channels on the fiber link.

The piggy-backed circuit cards are single-width cards measuring 6.5 inches wide by 7.4 inches deep. Figure 2-46 shows the component layout of typical CM195AC and CM195AD Datakit VCS Interface Cards. The connector pinout information is provided in Appendix B. The major components of the CM195AC/CM195AD Cards are listed below:

- An INTEL 80186 Microprocessor
- 256K bytes of Static Random Access Memory (SRAM)
- Synchronous and Asynchronous Data Transfer Logic
- Timers and clock circuitry.





Figure 2-46: CM195AC/CM195AD Datakit VCS Interface Card Layout

# **CM195AE GPSC CARD PACKAGE**

The CM195AE General Purpose Synchronous Controller (GPSC) Card provides two physical interfaces for synchronous data transmission. The card is capable of providing simultaneous full-duplex, full-occupancy data transmission at rates up to 64K bits per second. The connectors contain the required signals to support a variety of industry standard electrical interfaces.

Figure 2-47 shows the component layout of a typical CM195AE GPSC Card. The circuit card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. The connector pinout information is provided in Appendix B. The major components of the CM195AE Card are listed below:

- An INTEL 80186 Microprocessor
- Bus interface circuitry
- 768K bytes of Dynamic Random Access Memory (DRAM)
- Up to 32K bytes of Erasable Programmable Read Only Memory (EPROM)
- Dual Port Arbiter/Controller and Support Logic.



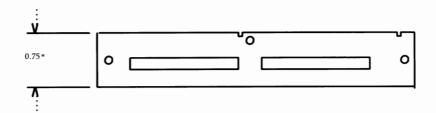



Figure 2-47: CM195AE GPSC Card Layout

# **CM195AY EPORTS CARD**

The CM195AY Enhanced Peripheral Port Controller (EPORTS) Card provides eight separate asynchronous serial ports (RS-232C input/output interfaces). The maximum throughput of the card is 38,400 bits per second.

The high performance capability of the CM195AY EPORTS Card is available only when an accompanying EPORTS software is installed.

The CM195AY Card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. The card uses surface mounted technology. Figure 2-48 shows the component layout of a typical CM195AY EPORTS Card. Connector pinout information is provided in Appendix B. The major components of the CM195AY Card are listed below:

- An INTEL 80186 Microprocessor
- 128K bytes of Dynamic Random Access Memory (DRAM)
- 16K bytes of Erasable Programmable Read Only Memory (EPROM)
- Four Dual Universal Asynchronous Receiver/Transmitter (DUART) chips.

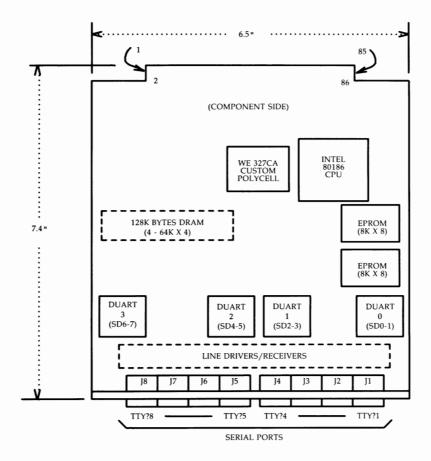





Figure 2-48: CM195AY EPORTS Card Layout

## CM195B PORTS CARD

The CM195B Peripheral Port Controller (PPC) Card (also known as PORTS card) provides four separate asynchronous serial ports (RS-232C) and one parallel (CENTRONICS\*) port input/output interfaces. The maximum throughput of the card is 19,200 bits per second.

A high performance version of the PORTS card (CM195B-7) is available to support certain applications. The CM195B-7 Card is stamped "HPP." The high performance capability of this card is available only when an accompanying High Performance Expanded Input/Output Utilities Package is installed. Without the accompanying software, an HPP PORTS card functions as a conventional CM195B PORTS Card.

The CM195B Card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. Figure 2-49 shows the component layout of an early production CM195B PORTS Card. Figure 2-50 shows the component layout of a typical CM195B-7 PORTS Card. Connector pinout information is provided in Appendix B. The major components of the CM195B Card are listed below:

- An INTEL 80186 Microprocessor
- 32K bytes of Static Random Access Memory (SRAM)
- 16K bytes of Read Only Memory (ROM)
- Two SIGNETICS 2681 Dual Universal Asynchronous Receiver/Transmitter (DUART) chips.

<sup>\*</sup> Registered trademark of Centronics Data Computer Corp.

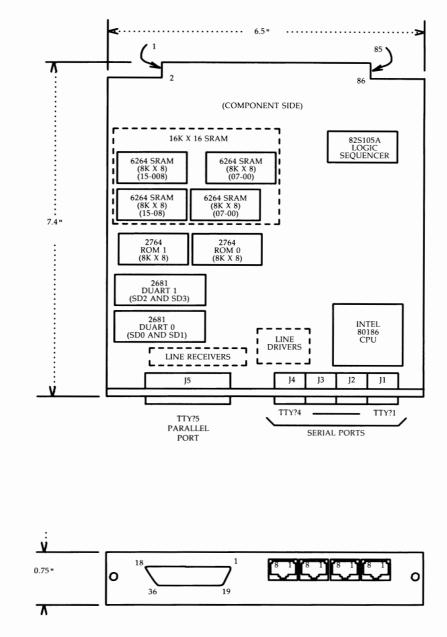



Figure 2-49: CM195B PORTS Card Layout (Early Production)

.'

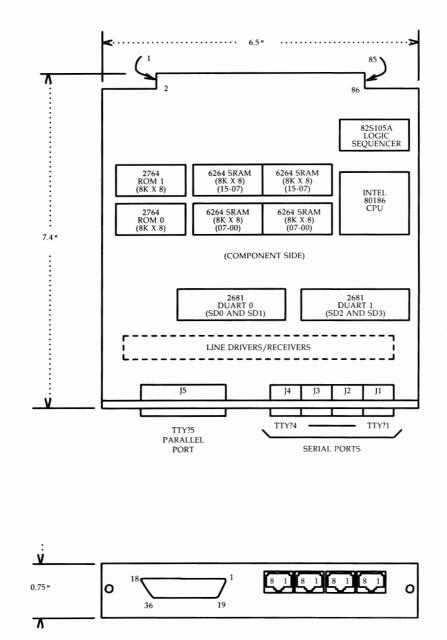
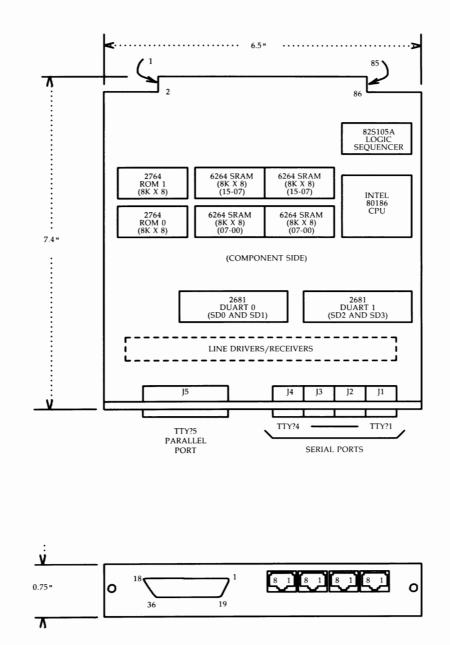



Figure 2-50: CM195B-7 PORTS Card Layout


## **CM195BA PORTS CARD**

The CM195BA Card replaces the CM195B-7 Card. The CM195BA Peripheral Port Controller (PPC) Card (also known as PORTS card) provides four separate asynchronous serial ports (RS-232C) and one parallel (CENTRONICS) port input/output interfaces. The maximum throughput of the card is 19,200 bits per second.

The high performance capability of the CM195BA PORTS Card is available only when an accompanying High Performance Expanded Input/Output Utilities Package is installed. Without the accompanying software, the CM195BA PORTS Card functions as a CM195B PORTS Card.

The CM195BA Card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. Figure 2-51 shows the component layout of a typical CM195BA PORTS Card. Connector pinout information is provided in Appendix B. The major components of the CM195BA Card are listed below:

- An INTEL 80186 Microprocessor
- 32K bytes of Static Random Access Memory (SRAM)
- 16K bytes of Read Only Memory (ROM)
- Two Dual Universal Asynchronous Receiver/Transmitter (DUART) chips.





### CM195H CARTRIDGE TAPE CONTROLLER CARD

The CM195H Cartridge Tape Controller (CTC) Card is a single-width card used to interface one floppy disk drive and/or one cartridge tape drive to a 3B2 computer. The CTC is a single controller that serves two devices. Simultaneous device access of the two devices connected to the same CTC card is NOT possible. The CTC card is equipped in a 3B2 computer feature card slot. The external devices drives are typically equipped in an AT&T Expansion Module (AT&T/XM) cabinet. A cartridge tape drive can be mounted in an AT&T Expansion Module cabinet or by itself in a Tape Module cabinet. For a 3B2/400 computer, the first cartridge tape controller is equipped in slot 2.

The CM195H Card is a multilayer board measuring 6.5 inches wide by 7.4 inches deep. Figure 2-52 shows the component layout of a typical CM195H CTC Card. The major components of the CM195H Card are listed below:

- An INTEL 80186 Microprocessor
- 128K bytes of Dynamic Random Access Memory (DRAM)
- 16K bytes of Read Only Memory (ROM)
- A WD2793 Floppy Disk Formatter/Controller
- An AM9517A Direct Memory Access Controller (DMAC).

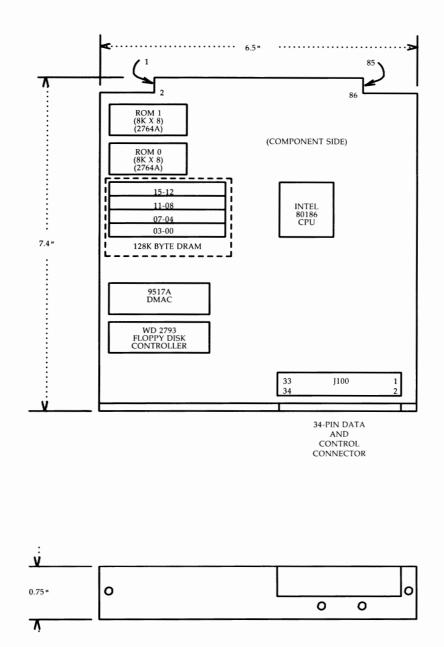



Figure 2-52: CM195H CTC Card Layout

### CM195K EXPANSION DISK CONTROLLER CARD

The CM195K Expansion Disk Controller (XDC) Card is a single-width card used to interface a maximum of two external hard disk drives per card to a 3B2 computer. The hard disk interface is an ST-506 type. The XDC card is equipped in a 3B2 computer feature card slot. The external hard disk drives are equipped in an AT&T Expansion Module (AT&T/XM) cabinet. A maximum of two CM195K Cards can be equipped in the 3B2/300 and 3B2/310 computer. A maximum of four CM195K Cards can be equipped in a 3B2/400 computer. Multiple CM195K Cards are used to expand the ST-506 type hard disk storage capacity of a 3B2 computer to the following:

| 3B2/300 or 3B2/310 | Maximum of 432 megabytes |
|--------------------|--------------------------|
| 3B2/400            | Maximum of 720 megabytes |

These maximum values include the integral hard disk drives.

The CM195K Card is a multilayer board measuring 6.5 inches wide and 7.4 inches deep. Connector pinout information is provided in Appendix B. Figure 2-53 shows the component layout of a typical CM195K XDC Card. The major components of the CM195AK Card are listed below:

- An INTEL 80186 Microprocessor
- 128K bytes of Dynamic Random Access Memory (DRAM)
- 16K or 32K bytes of Read Only Memory (ROM)
- An NEC 7261 Hard Disk Controller.

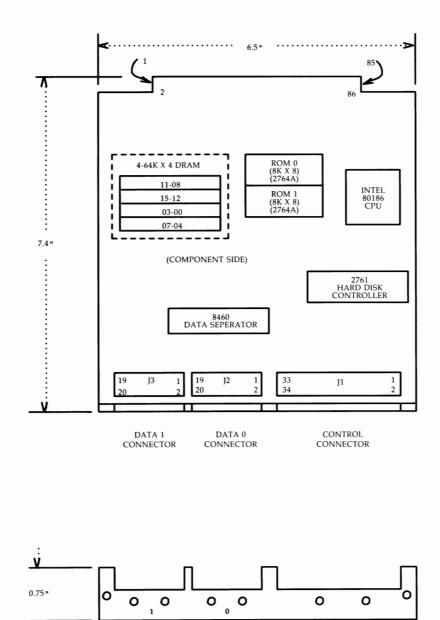



Figure 2-53: CM195K XDC Card Layout

Τ

#### CM195T INTELLIGENT SERIAL CONTROLLER CARD

The CM195T Intelligent Serial Controller (ISC) Card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. The ISC provides for the connection of two serial ports. The CM195T Card is a general purpose, synchronous communications peripheral interface card providing a two channel, full duplex, synchronous interface. The ISC card supports both synchronous and asynchronous peripheral device operation. The ISC supports multiple applications depending on the software executing in the ISC Random Access Memory (RAM). The ISC can provide communication over synchronous channels such as Systems Network Architecture/Synchronous Data Link Control (SNA/SDLC), bi-sync, and X.25 as a function of the appropriate software being loaded on the ISC card.

The communications interface cabling provides two DB-25 male connectors. Both of these connections are RS-232C, Data Terminal Equipment (DTE) connections. Connector pinout information is provided in Appendix B. Figure 2-54 shows the component layout of a typical CM195T ISC Card. The major components of the CM195T Card are listed below:

- An INTEL 80186 Microprocessor
- 128K bytes of Dynamic Random Access Memory (DRAM)
- 16K or 32K bytes of Read Only Memory (ROM)
- An INTEL 8237 Direct Memory Access Controller (DMAC)
- An INTEL 8274 Universal Synchronous/Asynchronous Receiver/Transmitter (USART).

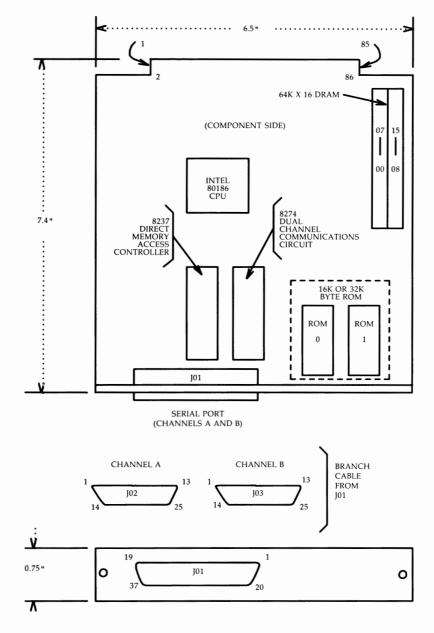



Figure 2-54: CM195T ISC Card Layout

#### CM195U STARLAN INTERFACE CARD

The AT&T STARLAN network is a low-cost, local area network for linking MS-DOS and UNIX system-based computers. STARLAN runs at 1 megabit per second on twisted pair wiring. The wiring is based on AT&T's Premises Distribution System (PDS). The lowest level protocols conform to the IEEE 802.3 standard for Carrier Sense Multiple Access with Collision Detection (CSMA/CD) local area networking. The high-level protocols support applications written for Microsoft Networks.

Connection to STARLAN from a 3B2 computer is provided by a CM195U STARLAN Interface Card that plugs into a 3B2 computer feature card slot. This card is called a Network Access Unit (NAU) in terms of STARLAN.

The CM195U Card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. Figure 2-55 shows the component layout of a typical CM195U STARLAN Interface Card. Connector pinout information is provided in Appendix B. The major components of the CM195U Card are listed below:

- An INTEL 80186 Microprocessor
- 16K bytes of Read Only Memory (ROM)
- 32K bytes of Static Random Access Memory (SRAM)
- An INTEL 82586 Ethernet Controller (also called a Local Area Network Coprocessor).

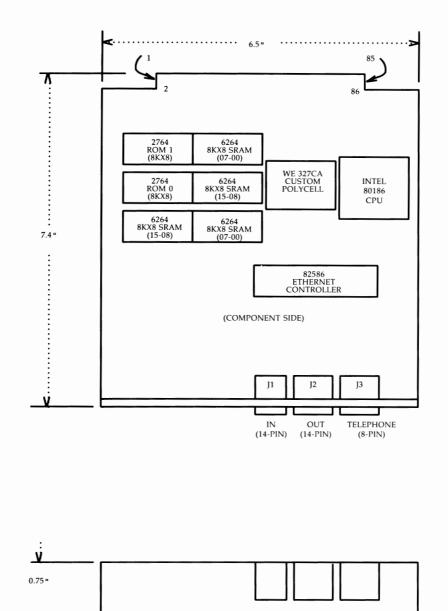





Figure 2-55: CM195U STARLAN Interface Card Layout

#### **CM195W SCSI HOST ADAPTER CARD**

The CM195W Small Computer Systems Interface (SCSI) Host Adapter Card provides connection to the industry standard SCSI bus. The SCSI bus is a 50 conductor bus that supports a wide variety of mass storage peripheral devices. The CM195W Card provides an asynchronous, single-ended interface to the SCSI bus with a peak transfer rate of 1.5 megabytes per second and with a maximum bus length of 6 meters.

The CM195W Card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. Figure 2-56 shows the component layout of a typical CM195W SCSI Host Adapter Card. Connector pinout information is provided in Appendix B. The major components of the CM195W Card are listed below:

- An INTEL 80186 Microprocessor
- 128K bytes of Dynamic Random Access Memory (DRAM)
- 32K bytes of Read Only Memory (ROM)
- An NCR 5385E SCSI Protocol Controller.

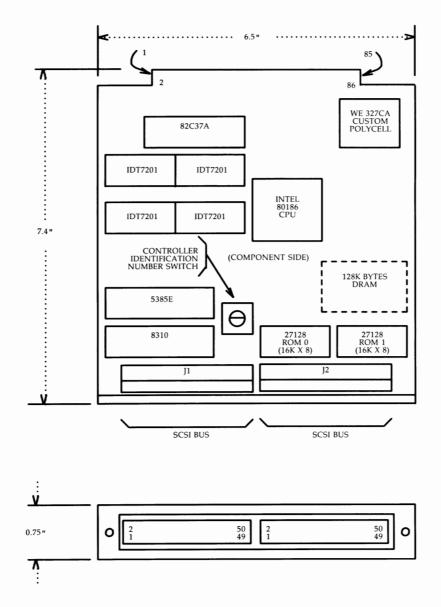



Figure 2-56: CM195W SCSI Host Adapter Card Layout

#### **CM195Y EPORTS CARD**

The CM195Y Enhanced Peripheral Port Controller (EPORTS) Card provides eight separate asynchronous serial ports (RS-232C input/output interfaces). The maximum throughput of the card is 38,400 bits per second.

The high performance capability of the CM195Y EPORTS Card is available only when an accompanying EPORTS software is installed.

The CM195Y Card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. The card uses surface mounted technology. Figure 2-57 shows the component layout of a typical CM195Y EPORTS Card. Connector pinout information is provided in Appendix B. The major components of the CM195Y Card are listed below:

- An INTEL 80186 Microprocessor
- 128K bytes of Dynamic Random Access Memory (DRAM)
- 16K bytes of Read Only Memory (ROM)
- Four Dual Universal Asynchronous Receiver/Transmitter (DUART) chips.

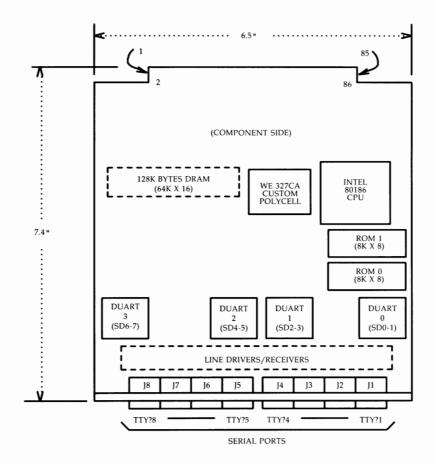





Figure 2-57: CM195Y EPORTS Card Layout

## **CM521A DIFFERENTIAL SCSI HOST ADAPTER CARD**

The CM521A Differential Small Computer System Interface (SCSI) Host Adapter Card provides a differential connection to the industry standard SCSI bus. The SCSI bus is a 50-conductor bus that supports a wide variety of mass storage peripheral devices. The CM521A Card supports synchronous/asynchronous bus transfers and improved bandwidth across the Enhanced Input/Output (EIO) bus with a peak transfer rate of 3.0 megabytes per second and a maximum bus length of 25 meters.

The CM521A Card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. Figure 2-58 shows the component layout of a typical CM521A Differential SCSI Host Adapter Card. Connector pinout information is provided in Appendix B. The major components of the CM521A Card are listed below:

- An INTEL 80186 Microprocessor
- 64K bytes of Static Random Access Memory (SRAM)
- 64K bytes of Erasable Programmable Read Only Memory (EPROM)
- A FUJITSU\* MB87030 SCSI Protocol Controller operating at 8 MHz.

<sup>\*</sup> Registered trademark of FUJITSU Limited, Nakahara-Ku, Kawasaki, Japan

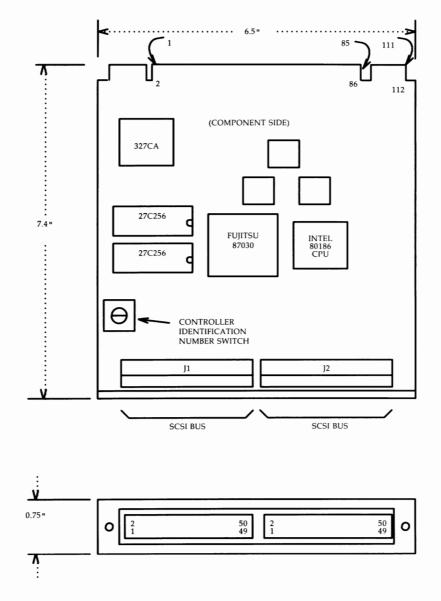
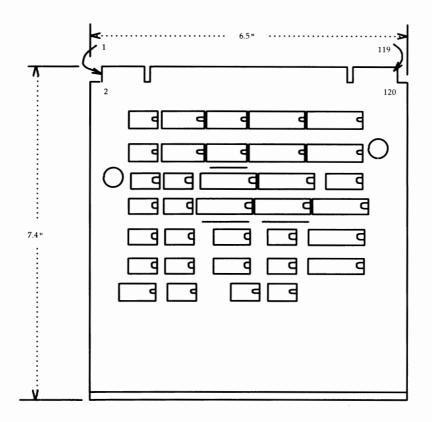



Figure 2-58: CM521A Differential SCSI Host Adapter Card Layout


#### **CM522A VCACHE CARD**

The CM522A Virtual Cache (VCACHE) Card improves system performance by storing instructions and data used by the Central Processing Unit (CPU). Electrically, the VCACHE is located between the CPU and the Memory Management Unit (MMU) and operates in parallel with the virtual-to-physical translation of the MMU. Therefore, the CPU can retrieve information from the VCACHE faster than from main memory via the MMU.

There is a software driver associated with the VCACHE feature. That driver is part of the reason the computer must be running UNIX System V Release 3.1.1 or later.

The CM522A Card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. The card uses surface mounted technology. Figure 2-59 shows the component layout of a typical CM522A VCACHE Card. Connector pinout information is provided in Appendix B. The major features of the CM522A Card are listed below:

- Direct mapped operation using virtual memory addresses
- Allows the CPU access for cache hits resulting in zero CPU wait states
- Operates for frequencies up to 22 MHz
- 4K bytes of instructions and 2K bytes of data.



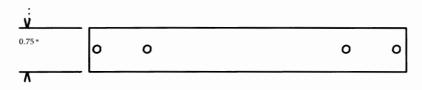
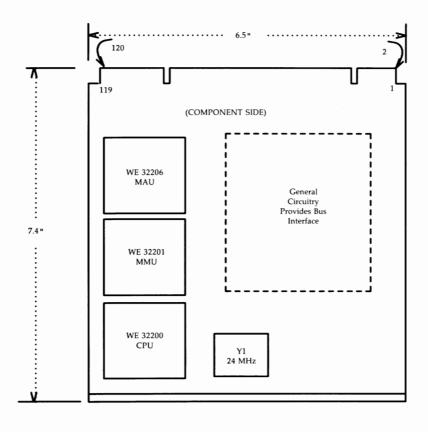



Figure 2-59: CM522A VCACHE Card Layout


#### CM524A PROCESSING ELEMENT CARD

The CM524A Processing Element (PE) Card improves system performance by providing another processing unit similar to that of the system board. The CM524A Card plugs into a Processor Bus (PBUS) backplane slot (labeled PROC*n*). The CM524A Card contains a Central Processing Unit (CPU), Memory Management Unit (MMU), Math Acceleration Unit (MAU), and 24-megahertz clock to form the secondary processing unit.

The Processing Element feature requires UNIX System V Release 3.2.2 or later and a CM519B Backplane. Also, the Multiprocessor Enhancement Utilities software must be installed before any system performance can be obtained.

The CM524A Card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. The card uses surface mounted technology. Figure 2-60 shows the component layout of a typical CM524A PE Card. Connector pinout information is provided in Appendix B. The major components of the CM524A Card are listed below:

- A WE 32200 CPU chip
- A WE 32201 MMU chip
- A WE 32206 MAU chip
- 8K bytes of Static Random Access Memory (SRAM)
- Software controllable timer for rough time measurements and dynamic performance timing
- A 24-MHz oscillator.



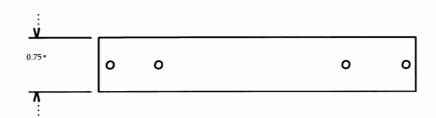



Figure 2-60: CM524A PE Card Layout

### CM525B VMEbus CARD

The Versa Modula Europa bus (VMEbus) is an industry standard bus for a variety of character and networking controllers. The CM525B VMEbus Card provides the circuit interface between the 3B2 Buffered Microbus (BUB) backplane slot and the VMEbus System Controller.

The CM525B Card is a double-width card measuring 13.0 inches wide by 7.4 inches deep. Figure 2-61 shows the component layout of a CM525B VMEbus Card. Connector pinout information is provided in Appendix B. The major components of the CM525B Card are listed below:

- A 16-MHz internal clock
- An AMD29114 Interrupt Controller
- Four 8K by 8 Static Random Access Memory (SRAM).

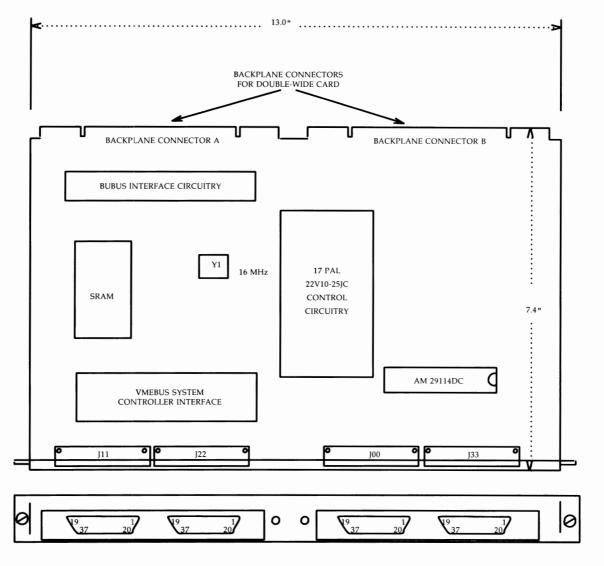
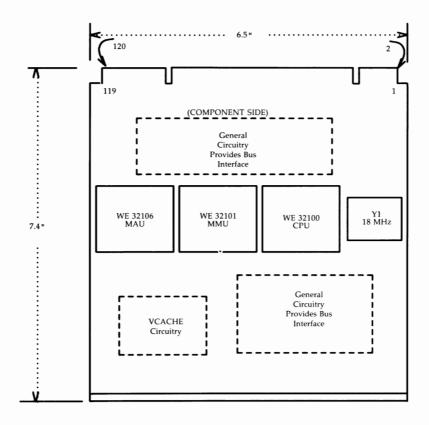



Figure 2-61: CM525B VMEbus Card Layout


### CM527A MULTIPROCESSOR ENHANCEMENT CARD

The CM527A Multiprocessor Enhancement (MPE) Card plugs into a buffered microbus backplane slot (labeled BUB*n*) to improve the system performance. The CM527A Card contains a Central Processing Unit (CPU), Memory Management Unit (MMU), Math Acceleration Unit (MAU), and 18-megahertz clock to provide a secondary processing unit similar to that of the system board.

The Multiprocessor Enhancement feature requires UNIX System V Release 3.1.1 or later. Also, the Multiprocessor Enhancement Utilities software must be installed before any system performance can be obtained.

The CM527A Card is a single-width card measuring 6.5 inches wide by 7.4 inches deep. Figure 2-62 shows the component layout of a typical CM527A MPE Card. Connector pinout information is provided in Appendix B. The major components of the CM527A Card are listed below:

- A WE 32100 CPU chip
- A WE 32101 MMU chip
- A WE 32106 MAU chip
- 6K bytes onboard VCACHE circuitry
- A 18-MHz oscillator.






Figure 2-62: CM527A MPE Card Layout

# FLOPPY DISK DRIVE (KS-23114,L4)

#### **Floppy Disk Drive Use**

One 5.25-inch, 720-kilobyte (formatted), 96 tracks-per-inch floppy disk drive is equipped for all 3B2 computer configurations. A second floppy disk drive can be equipped in an AT&T Expansion Module (AT&T/XM). Connection to the host 3B2 computer is via a CM195H Cartridge Tape Controller (CTC) Card. While it is possible to equip more than two floppy disk drives on a system, equipage of more than two floppy disk drives is not practical. Two floppy disk drives provide drive-to-drive operational capabilities that are considered to be the optimum floppy disk drive equipage.

Floppy disks can be used as file systems or as streaming devices. When used as a streaming device, data is written to and read from the floppy disk using a **cpio -o** and **cpio -i** type commands. In **cpio** form, the floppy disk provides 1422 blocks (512-byte blocks) of storage. When used as a file system, the fixed partitioning of the floppy disk provides a maximum of 1404 blocks (partition 5).

#### **Floppy Disk Partitions**

The following table defines the floppy disk partitions in terms of use, starting sector, and total number of blocks for the various controller (c), drive (d), and section (s) identifiers for the floppy disk. These identifiers are applicable to both the raw and block devices. Note that Volume Table of Contents (VTOC) partitioning is not applicable to the floppy disk drive. The raw and block device partitions for the entire floppy disk (partition 6) are linked to /dev/rSA/diskette1 and /dev/SA/diskette1, respectively. The use of these names when specifying the entire floppy disk is preferred over the use of the controller, drive, and section identifiers to avoid accidentally writing to a different device or partition.

|                                                                              |                                                                | <b>OPPY DISK</b><br>linder, Gap=1)                                                              | DRIVE                                                  |  |  |
|------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| FLOPPY                                                                       | FLOPPY DISK DEFAULT PARTITIONING                               |                                                                                                 |                                                        |  |  |
| DISK SECTOR TOTAL<br>PARTITION USE START SECTORS                             |                                                                |                                                                                                 |                                                        |  |  |
| c0d0s0<br>c0d0s1<br>c0d0s2<br>c0d0s3<br>c0d0s4<br>c0d0s5<br>c0d0s6<br>c0d0s7 | root<br>usr<br>usr<br>usr<br>usr<br>usr<br>entire disk<br>boot | 378 (21*18)<br>452 (34*18)<br>810 (45*18)<br>1008 (56*18)<br>2106 (67*18)<br>1 (1*18)<br>0<br>0 | 1044<br>810<br>612<br>414<br>216<br>1404<br>1422<br>18 |  |  |

\* Blocks (sectors) are reported in 512-byte blocks.

# Floppy Disk Drive Equipment Characteristics

### Reliability.

| Head Life        | 20,000 hours                                                                                                                                                   |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error Rates      | Recoverable (soft) read errors occur less than 1 in $10^9$ bits transferred. Unrecoverable (hard) read errors occur less than 1 in $10^{12}$ bits transferred. |
| Physical.        |                                                                                                                                                                |
| Disk Type        | 5.25 inch, double-sided, 96 tracks per inch                                                                                                                    |
| Rotational Speed | 300 revolutions per minute                                                                                                                                     |
| Height           | 1.625 inches                                                                                                                                                   |
| Width            | 5.75 inches                                                                                                                                                    |
| Depth            | 8.0 inches                                                                                                                                                     |
| Bytes/Sector     | 512                                                                                                                                                            |
| Sectors/Track    | 9                                                                                                                                                              |
| Tracks/Cylinder  | 2                                                                                                                                                              |
| Cylinders        | 79 Accessible, 80 Total                                                                                                                                        |
| Formatted Size   | 1422 blocks (512 bytes)                                                                                                                                        |
| Operational.     |                                                                                                                                                                |
| Interface        | TM100 (34 pin)                                                                                                                                                 |
| Transfer Rate    | 250 kilobits per second (31.25 kilobytes per second)                                                                                                           |
| Latency          | 100 milliseconds, average                                                                                                                                      |
| Seek Time        | 3 milliseconds, single track<br>90 milliseconds, average                                                                                                       |

### 23-MEGABYTE CARTRIDGE TAPE DRIVE (KS-23165,L1)

#### **Cartridge Tape Use**

One or more 23-Megabyte Cartridge Tape Drives can be added to a 3B2 computer. The drive can be mounted in an AT&T Expansion Module cabinet or by itself in a Tape Module cabinet. One 23-megabyte cartridge tape drive is standard equipage with a 3B2/400 computer. Each 23-megabyte cartridge tape drive connects to the host 3B2 computer via a CM195H Cartridge Tape Controller (CTC) Card that is installed in a 3B2 computer feature card slot. For a 3B2/400 computer, the first cartridge tape controller is equipped in slot 2. The primary use of a cartridge tape drive is as a streaming device for backing up the data stored on the hard disk drives. While the 23-megabyte cartridge tape can be configured as a file system, the intended use of a cartridge tape is as a streaming device. As a streaming device, the tape provides a capacity of 45,539 blocks (512-byte blocks). The use of a cartridge tape as a file system substantially degrades both system and tape performance.

Routine cleaning of the cartridge tape drive is required to maintain error-free operation. The CTC card keeps track of the hours of operation. Software is provided to output an advisory message warning of the need to clean the cartridge tape drive after 20 hours of operation. Depending on the environment, more frequent cleaning may be necessary to maintain error-free operation and to promote tape life. The recommended tape life in terms of pass count is 4000, when used as a streaming device. If a tape is used as a file system, the pass count (tape life) should be reduced to 2000 or less.

The 23-megabyte cartridge tape can be formatted with a pass count threshold that is less than or greater than the recommended value(s). Reformatting the cartridge tape does not reset the pass count recorded on the tape. When the pass count recorded on a tape reaches the pass count threshold, an advisory message is output to replace the tape.

#### **Cartridge Tape Partitioning**

The following table defines the partition, use, size, and number of blocks for the various controller (c), drive (d), and section (s) identifiers for the 23-megabyte cartridge tape. These identifiers are applicable to both the raw and block devices. Note that Volume Table of Contents (VTOC) partitioning is fixed for the cartridge tape by the tape formatting process. The controller number (?) depends on the slot in which the CM195H Card is equipped.

|           | YTE CARTR<br>(31 Blocks/Cyline      |                 | E DRIVE |  |
|-----------|-------------------------------------|-----------------|---------|--|
| CARTRID   | CARTRIDGE TAPE DEFAULT PARTITIONING |                 |         |  |
| PARTITION | USE                                 | SECTOR<br>START | SIZE*   |  |
| c?d0s0    | root                                | 5272            | 8928    |  |
| c?d0s1    | swap                                | 126             | 5146    |  |
| c?d0s2    | usr                                 | 14200           | 31341   |  |
| c?d0s3    | usr                                 | 2               | 45539   |  |
| c?d0s6    | entire tape                         | 0               | 45541   |  |
| c?d0s7    | boot                                | 0               | 126     |  |

\* Size is reported in 512-byte blocks.

### **Cartridge Tape Drive Equipment Characteristics**

#### Physical.

| Таре              | DC600A cartridge tape (or equivalent)                                               |
|-------------------|-------------------------------------------------------------------------------------|
| Tracks            | 6                                                                                   |
| Tape Speed        | 78 inches per second                                                                |
| Recording Density | 6400 bits per inch (nominal)                                                        |
| Formatted Size    | 45,541 blocks (512-byte blocks) total<br>45,539 blocks (512-byte blocks) accessible |
| Height            | 3.25 inches                                                                         |
| Width             | 5.75 inches                                                                         |
| Depth             | 8.0 inches                                                                          |
| Operational.      |                                                                                     |
| Interface         | SA450 (34-pin connector)                                                            |
| Transfer Rate     | 500 kilobits per second                                                             |

### **60-MEGABYTE CARTRIDGE TAPE DRIVE (KS-23417,L2)**

The 60-Megabyte Cartridge Tape Drive is used as a streaming device for mass storage of data. As the name suggests, the drive provides 60-megabytes of formatted storage capacity. Formatting of the tape is not necessary because no Volume Table of Contents (VTOC) is used.

The drive may be an internal part of the 3B2 computer cabinet or it may be a separate SCSI peripheral. Either way, connection to the 3B2 computer is via a SCSI Host Adapter card.

#### **60-Megabyte Cartridge Tape Drive Equipment Characteristics**

Physical.

| Таре              | DC600A cartridge tape (or equivalent)  |
|-------------------|----------------------------------------|
| Tracks            | 9                                      |
| Tape Speed        | 90 inches per second                   |
| Recording Density | 8000 bits per inch (nominal)           |
| Formatted Size    | 125,604 blocks (512-byte blocks) total |
| Height            | 3.25 inches                            |
| Width             | 5.75 inches                            |
| Depth             | 8.0 inches                             |
| Operational.      |                                        |
| Interface         | SCSI (34-pin connector)                |
| Transfer Rate     | 720 kilobits per second (sustained)    |

### 120-MEGABYTE CARTRIDGE TAPE DRIVE (KS-23465,L1A)

The 120-Megabyte Cartridge Tape Drive is used as a streaming device for mass storage of data. As the name suggests, the drive provides 120-megabytes of formatted storage capacity. Formatting of the tape is not necessary because no Volume Table of Contents (VTOC) is used.

The 120-Megabyte Cartridge Tape Drive is capable of reading cartridge tapes that were written by a 60-Megabyte Cartridge Tape Drive. This allows greater data interchangeability between machines. However, tapes written by 120-megabyte drives cannot be read on the 60-megabyte drive.

The drive may be an internal part of the 3B2 computer cabinet or it may be a separate SCSI peripheral. Either way, connection to the 3B2 computer is via a SCSI Host Adapter card.

#### **120-Megabyte Cartridge Tape Drive Equipment Characteristics**

Physical.

| Таре              | DC600A cartridge tape (or equivalent)  |
|-------------------|----------------------------------------|
| Tracks            | 15                                     |
| Tape Speed        | 90 inches per second                   |
| Recording Density | 10,000 bits per inch (nominal)         |
| Formatted Size    | 266,004 blocks (512-byte blocks) total |
| Height            | 3.25 inches                            |
| Width             | 5.75 inches                            |
| Depth             | 8.0 inches                             |
| Operational.      |                                        |
| Interface         | SCSI (34-pin connector)                |
| Transfer Rate     | 900 kilobits per second                |

# HARD DISK DRIVES

#### Seagate 10-Megabyte Hard Disk (KS-23034,L1)

#### **10-Megabyte Hard Disk Equipment Characteristics**

#### Reliability.

| •                |                                                                                                                                                                   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Life             | 5 years or 30,000 hours                                                                                                                                           |
| Error Rates      | Recoverable (soft) read errors occur less than 1 in $10^{10}$ bits transferred. Unrecoverable (hard) read errors occur less than 1 in $10^{12}$ bits transferred. |
| Physical.        |                                                                                                                                                                   |
| Disk Type        | 5.25-inch, Winchester drive                                                                                                                                       |
| Rotational Speed | 3600 revolutions per minute                                                                                                                                       |
| Height           | 3.25 inches                                                                                                                                                       |
| Width            | 5.75 inches                                                                                                                                                       |
| Depth            | 8.0 inches                                                                                                                                                        |
| Bytes/Sector     | 512                                                                                                                                                               |
| Sectors/Track    | 18                                                                                                                                                                |
| Tracks/Cylinder  | 4                                                                                                                                                                 |
| Cylinders        | 304 Accessible, 306 Total                                                                                                                                         |
| Formatted Size   | 21,888 blocks (512 bytes)                                                                                                                                         |
| Operational.     |                                                                                                                                                                   |
| Interface        | ST-506                                                                                                                                                            |
| Transfer Rate    | 5.0 megabits per second (625 kilobytes per second)                                                                                                                |
| Latency          | 8.33 milliseconds, average                                                                                                                                        |
| Seek Time        | 85 milliseconds, average                                                                                                                                          |

85 milliseconds, average 205 milliseconds, maximum

#### **Default Device Partitioning**

The following table shows the default device partitioning for the Seagate 10-megabyte hard disk drive.

| SEAGATE                                                     |                                                    | BYTE HAI<br>Cylinder, Ga                                        |                                               | K DRIVE                         |
|-------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|---------------------------------|
| SINGLE HARD DISK DEFAULT PARTITIONING                       |                                                    |                                                                 |                                               |                                 |
| PARTITION                                                   | USE                                                | SECTOR<br>START                                                 | SIZE*                                         | I-NODES                         |
| c1d0s0                                                      | root                                               | 3600                                                            | 8928                                          | 1116                            |
| c1d0s1                                                      | swap                                               | 100                                                             | 3500                                          |                                 |
| c1d0s2                                                      | usr                                                | 12528                                                           | 9360                                          | 1170                            |
| c1d0s6                                                      | entire disk                                        | 0                                                               | 21888                                         |                                 |
| c1d0s7                                                      | boot                                               | 0                                                               | 100                                           |                                 |
| DUAL HARD DISK DEFAULT PARTITIONING                         |                                                    |                                                                 |                                               |                                 |
| DUAL I                                                      | HARD DISK I                                        | DEFAULT PA                                                      | ARTITION                                      | NING                            |
| DUAL F                                                      | HARD DISK I                                        | SECTOR<br>START                                                 | ARTITION<br>SIZE*                             | NING<br>I-NODES                 |
|                                                             |                                                    | SECTOR                                                          |                                               |                                 |
| PARTITION                                                   | USE                                                | SECTOR<br>START                                                 | SIZE*                                         | I-NODES                         |
| PARTITION<br>c1d0s0                                         | USE<br>root                                        | SECTOR<br>START<br>3600                                         | <b>SIZE*</b><br>8928                          | I-NODES                         |
| PARTITION<br>c1d0s0<br>c1d0s1                               | USE<br>root<br>swap                                | <b>SECTOR</b><br><b>START</b><br>3600<br>100                    | <b>SIZE*</b><br>8928<br>3500                  | I-NODES                         |
| PARTITION<br>c1d0s0<br>c1d0s1<br>c1d0s6                     | USE<br>root<br>swap<br>entire disk                 | <b>SECTOR</b><br><b>START</b><br>3600<br>100<br>0               | <b>SIZE*</b><br>8928<br>3500<br>21888         | I-NODES                         |
| PARTITION<br>c1d0s0<br>c1d0s1<br>c1d0s6<br>c1d0s7           | USE<br>root<br>swap<br>entire disk<br>boot         | <b>SECTOR</b><br><b>START</b><br>3600<br>100<br>0<br>0          | <b>SIZE*</b><br>8928<br>3500<br>21888<br>100  | <b>I-NODES</b><br>11116<br><br> |
| PARTITION<br>c1d0s0<br>c1d0s1<br>c1d0s6<br>c1d0s7<br>c1d0s8 | USE<br>root<br>swap<br>entire disk<br>boot<br>usr2 | <b>SECTOR</b><br><b>START</b><br>3600<br>100<br>0<br>0<br>12528 | SIZE*<br>8928<br>3500<br>21888<br>100<br>9360 | I-NODES                         |

\* Size is reported in 512-byte blocks.

# WREN 30-Megabyte Hard Disk (KS-23054,L1)

#### **30-Megabyte Hard Disk Equipment Characteristics**

#### Reliability.

| Life        | 5 years or 40,000 hours                                                                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error Rates | Recoverable (soft) read errors occur less than 1 in $10^{10}$ bits transferred.<br>Unrecoverable (hard) read errors occur less than 1 in $10^{12}$ bits transferred. |

#### Physical.

| Disk Type        | 5.25-inch, Winchester drive                        |
|------------------|----------------------------------------------------|
| Rotational Speed | 3600 revolutions per minute                        |
| Height           | 3.25 inches                                        |
| Width            | 5.75 inches                                        |
| Depth            | 8.0 inches                                         |
| Bytes/Sector     | 512                                                |
| Sectors/Track    | 18                                                 |
| Tracks/Cylinder  | 5                                                  |
| Cylinders        | 695 Accessible, 697 Total                          |
| Formatted Size   | 62,550 blocks (512 bytes)                          |
| Operational.     |                                                    |
| Interface        | ST-506                                             |
| Transfer Rate    | 5.0 megabits per second (625 kilobytes per second) |
| Latency          | 8.33 milliseconds, average                         |
| Seek Time        | 45 milliseconds, average                           |

45 milliseconds, average 90 milliseconds, maximum

#### **Default Device Partitioning**

The following table shows the default device partitioning for the WREN 30-megabyte hard disk drive.

| WREN 30-MEGABYTE HARD DISK DRIVE<br>(90 Blocks/Cylinder, Gap=9)       |                                                                  |                                                                 |                                                        |                                        |
|-----------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|
| SINGLE HARD DISK DEFAULT PARTITIONING                                 |                                                                  |                                                                 |                                                        |                                        |
| PARTITION                                                             | USE                                                              | SECTOR<br>START                                                 | SIZE*                                                  | I-NODES                                |
| c1d0s0                                                                | root                                                             | 6120                                                            | 12510                                                  | 1552                                   |
| c1d0s1                                                                | swap                                                             | 100                                                             | 6020                                                   |                                        |
| c1d0s2                                                                | usr                                                              | 18630                                                           | 43920                                                  | 5490                                   |
| c1d0s6                                                                | entire disk                                                      | 0                                                               | 62550                                                  |                                        |
|                                                                       |                                                                  |                                                                 |                                                        |                                        |
| c1d0s7                                                                | boot                                                             | 0                                                               | 100                                                    |                                        |
|                                                                       | ARD DISK E                                                       |                                                                 |                                                        | <br>NING                               |
|                                                                       |                                                                  |                                                                 |                                                        |                                        |
| DUAL H                                                                | IARD DISK E                                                      | DEFAULT PA                                                      | ARTITIO                                                |                                        |
| DUAL H                                                                | USE                                                              | DEFAULT PA<br>SECTOR<br>START                                   | ARTITIO                                                | I-NODES                                |
| DUAL H<br>PARTITION<br>c1d0s0                                         | USE                                                              | DEFAULT PA<br>SECTOR<br>START<br>6120                           | SIZE*                                                  | I-NODES                                |
| DUAL H<br>PARTITION<br>c1d0s0<br>c1d0s1                               | ARD DISK E<br>USE<br>root<br>swap                                | DEFAULT PA<br>SECTOR<br>START<br>6120<br>100                    | <b>SIZE</b> *<br>12510<br>6020                         | I-NODES                                |
| DUAL H<br>PARTITION<br>c1d0s0<br>c1d0s1<br>c1d0s6                     | ARD DISK E<br>USE<br>root<br>swap<br>entire disk                 | SECTOR<br>SECTOR<br>START<br>6120<br>100<br>0                   | SIZE*<br>12510<br>6020<br>62550                        | <b>I-NODES</b><br>1564<br>             |
| DUAL H<br>PARTITION<br>c1d0s0<br>c1d0s1<br>c1d0s6<br>c1d0s7           | USE<br>root<br>swap<br>entire disk<br>boot                       | DEFAULT P2<br>SECTOR<br>START<br>6120<br>100<br>0<br>0          | <b>SIZE</b> *<br>12510<br>6020<br>62550<br>100         | <b>I-NODES</b><br>1564<br><br>         |
| DUAL H<br>PARTITION<br>c1d0s0<br>c1d0s1<br>c1d0s6<br>c1d0s7<br>c1d0s8 | ARD DISK E<br>USE<br>root<br>swap<br>entire disk<br>boot<br>usr2 | DEFAULT PA<br>SECTOR<br>START<br>6120<br>100<br>0<br>0<br>18630 | <b>SIZE*</b><br>12510<br>6020<br>62550<br>100<br>43920 | <b>I-NODES</b><br>1564<br><br><br>5490 |

\* Size is reported in 512-byte blocks.

# FUJITSU 72-Megabyte Hard Disk (KS-23054,L2)

# 72-Megabyte Hard Disk Equipment Characteristics

#### Reliability.

| Life        | 5 years or 30,000 hours                                                                                                                                           |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error Rates | Recoverable (soft) read errors occur less than 1 in $10^{10}$ bits transferred. Unrecoverable (hard) read errors occur less than 1 in $10^{12}$ bits transferred. |

#### Physical.

| Disk Type        | 5.25-inch, Winchester drive |
|------------------|-----------------------------|
| Rotational Speed | 3600 revolutions per minute |
| Height           | 3.25 inches                 |
| Width            | 5.75 inches                 |
| Depth            | 8.0 inches                  |
| Bytes/Sector     | 512                         |
| Sectors/Track    | 18                          |
| Tracks/Cylinder  | 11                          |
| Cylinders        | 752 Accessible, 754 Total   |
| Formatted Size   | 148,896 blocks (512 bytes)  |
| Operational.     |                             |
| Interface        | ST-506                      |

| Interface     | 51-500                                               |
|---------------|------------------------------------------------------|
| Transfer Rate | 5.0 megabits per second (625 kilobytes per second)   |
| Latency       | 8.33 milliseconds, average                           |
| Seek Time     | 35 milliseconds, average<br>60 milliseconds, maximum |

#### **Default Device Partitioning**

The following table shows the default device partitioning for the FUJITSU 72-megabyte hard disk drive.

| FUJITSU 72-MEGABYTE HARD DISK DRIVE<br>(198 Blocks/Cylinder, Gap=9) |             |                 |        |         |
|---------------------------------------------------------------------|-------------|-----------------|--------|---------|
| SINGLE HARD DISK DEFAULT PARTITIONING                               |             |                 |        |         |
| PARTITION                                                           | USE         | SECTOR<br>START | SIZE*  | I-NODES |
| c1d0s0                                                              | root        | 10296           | 12672  | 1584    |
| c1d0s1                                                              | swap        | 100             | 10196  |         |
| c1d0s2                                                              | usr         | 22968           | 125928 | 15741   |
| c1d0s6                                                              | entire disk | 0               | 148896 |         |
| c1d0s7                                                              | boot        | 0               | 100    |         |

#### DUAL HARD DISK DEFAULT PARTITIONING

| PARTITION                  | USE                         | SECTOR<br>START   | SIZE*                    | I-NODES  |
|----------------------------|-----------------------------|-------------------|--------------------------|----------|
| c1d0s0<br>c1d0s1<br>c1d0s6 | root<br>swap<br>entire disk | 10296<br>100<br>0 | 12672<br>10196<br>148896 | 1584<br> |
| c1d0s7                     | boot                        | 0                 | 100                      | 15741    |
| c1d0s8                     | usr2                        | 22968             | 125928                   |          |
| c1d1s2                     | usr                         | 198               | 148698                   | 18588    |
| c1d1s6                     | entire disk                 | 0                 | 148896                   |          |
| c1d1s7                     | boot                        | 0                 | 198                      |          |

\* Size is reported in 512-byte blocks.

# WREN II 72-Megabyte Hard Disk (KS-23054,L2)

#### 72-Megabyte Hard Disk Equipment Characteristics

Reliability.

| Life        | 5 years or 40,000 hours                                                                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error Rates | Recoverable (soft) read errors occur less than 1 in $10^{10}$ bits transferred.<br>Unrecoverable (hard) read errors occur less than 1 in $10^{12}$ bits transferred. |

# Physical.

| Disk Type        | 5.25-inch, Winchester drive |
|------------------|-----------------------------|
| Rotational Speed | 3600 revolutions per minute |
| Height           | 3.25 inches                 |
| Width            | 5.75 inches                 |
| Depth            | 8.0 inches                  |
| Bytes/Sector     | 512                         |
| Sectors/Track    | 18                          |
| Tracks/Cylinder  | 9                           |
| Cylinders        | 923 Accessible, 925 Total   |
| Formatted Size   | 149,526 blocks (512 bytes)  |
| perational.      |                             |

#### Or

| Interface     | ST-506                                               |
|---------------|------------------------------------------------------|
| Transfer Rate | 5.0 megabits per second (625 kilobytes per second)   |
| Latency       | 8.33 milliseconds, average                           |
| Seek Time     | 35 milliseconds, average<br>85 milliseconds, maximum |

#### **Default Device Partitioning**

The following table shows the default device partitioning for the WREN II 72-megabyte hard disk drive.

| PARTITION | USE        | SECTOR<br>START | SIZE*  | I-NODES |
|-----------|------------|-----------------|--------|---------|
| c1d0s0 r  | oot        | 10206           | 12636  | 1580    |
| c1d0s1 s  | wap        | 100             | 10106  |         |
|           | sr         | 22842           | 126684 | 15836   |
| c1d0s6 e  | ntire disk | 0               | 149526 |         |
| c1d0s7 b  | oot        | 0               | 100    |         |

| PARTITION | USE         | SECTOR<br>START | SIZE*  | I-NODES |
|-----------|-------------|-----------------|--------|---------|
| c1d0s0    | root        | 10206           | 12636  | 1580    |
| c1d0s1    | swap        | 100             | 10106  |         |
| c1d0s6    | entire disk | 0               | 149526 |         |
| c1d0s7    | boot        | 0               | 100    |         |
| c1d0s8    | usr2        | 22842           | 126684 | 15836   |
| c1d1s2    | usr         | 162             | 149364 | 18671   |
| c1d1s6    | entire disk | 0               | 149526 |         |
| c1d1s7    | boot        | 0               | 162    |         |
|           |             |                 |        |         |

\* Size is reported in 512-byte blocks.

# 94-Megabyte Hard Disk (KS-23371,L7)

#### 94-Megabyte Hard Disk Equipment Characteristics

#### Reliability.

| Life        | 5 years or 20,000 hours                                                                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error Rates | Recoverable (soft) read errors occur less than 1 in $10^{10}$ bits transferred.<br>Unrecoverable (hard) read errors occur less than 1 in $10^{12}$ bits transferred. |

#### Physical.

| Disk Type               | 5.25-inch, Winchester drive                          |
|-------------------------|------------------------------------------------------|
| <b>Rotational Speed</b> | 3482 revolutions per minute                          |
| Height                  | 3.25 inches                                          |
| Width                   | 5.75 inches                                          |
| Depth                   | 8.0 inches                                           |
| Bytes/Sector            | 512                                                  |
| Sectors/Track           | 35                                                   |
| Tracks/Cylinder         | 7                                                    |
| Cylinders               | 821 Accessible, 823 Total                            |
| Formatted Size          | 201,145 blocks (512 bytes)                           |
| Operational.            |                                                      |
| Interface               | ESDI                                                 |
| Transfer Rate           | 10.0 megabits per second (1250 kilobytes per second) |
| Latency                 | 8.62 milliseconds, average                           |
| Seek Time               | 23 milliseconds, average<br>45 milliseconds, maximum |

#### **Default Device Partitioning**

# 147-Megabyte Hard Disk (KS-23371,L17)

#### **147-Megabyte Hard Disk Equipment Characteristics**

| Reliability.     |                                                                                                                                                                   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Life             | 5 years or 40,000 hours                                                                                                                                           |
| Error Rates      | Recoverable (soft) read errors occur less than 1 in $10^{10}$ bits transferred. Unrecoverable (hard) read errors occur less than 1 in $10^{12}$ bits transferred. |
| Physical.        |                                                                                                                                                                   |
| Disk Type        | 5.25-inch, Winchester drive                                                                                                                                       |
| Rotational Speed | 3597 revolutions per minute                                                                                                                                       |
| Height           | 3.25 inches                                                                                                                                                       |
| Width            | 5.75 inches                                                                                                                                                       |
| Depth            | 8.0 inches                                                                                                                                                        |
| Bytes/Sector     | 512                                                                                                                                                               |
| Sectors/Track    | 36                                                                                                                                                                |
| Tracks/Cylinder  | 9                                                                                                                                                                 |
| Cylinders        | 967 Accessible, 969 Total                                                                                                                                         |
| Formatted Size   | 313,308 blocks (512 bytes)                                                                                                                                        |
| Operational.     |                                                                                                                                                                   |
| Interface        | ESDI                                                                                                                                                              |
| Transfer Rate    | 10.0 megabits per second (1250 kilobytes per second)                                                                                                              |
| Latency          | 8.34 milliseconds, average                                                                                                                                        |
| Seek Time        | <ul><li>16.5 milliseconds, average</li><li>43.0 milliseconds, maximum</li></ul>                                                                                   |

#### **Default Device Partitioning**

#### 155-Megabyte Hard Disk (KS-23483,L25)

#### **155-Megabyte Hard Disk Equipment Characteristics**

#### Reliability.

| Life        | 5 years or 40,000 hours                                                                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error Rates | Recoverable (soft) read errors occur less than 1 in $10^{10}$ bits transferred.<br>Unrecoverable (hard) read errors occur less than 1 in $10^{12}$ bits transferred. |

#### Physical.

|    | Disk Type        | 5.25-inch, Winchester drive                          |
|----|------------------|------------------------------------------------------|
|    | Rotational Speed | 3597 revolutions per minute                          |
|    | Height           | 3.25 inches                                          |
|    | Width            | 5.75 inches                                          |
|    | Depth            | 8.0 inches                                           |
|    | Bytes/Sector     | 512                                                  |
|    | Sectors/Track    | 35                                                   |
|    | Tracks/Cylinder  | 9                                                    |
|    | Cylinders        | 964 Accessible, 966 Total                            |
|    | Formatted Size   | 303,660 blocks (512 bytes)                           |
| Oj | perational.      |                                                      |
|    | Interface        | SCSI (Single-ended only)                             |
|    | Transfer Rate    | 10.0 megabits per second (1250 kilobytes per second) |
|    | Latency          | 8.34 milliseconds, average                           |
|    |                  |                                                      |

16.5 milliseconds, average 43 milliseconds, maximum

#### **Default Device Partitioning**

Seek Time

### 300-Megabyte Hard Disk (KS-23483,L1B or L11B)

#### **300-Megabyte Hard Disk Equipment Characteristics**

| Rel | iab | ility. |
|-----|-----|--------|
|     |     |        |

| Life        | 5 years or 150,000 hours                                                                                                                                             |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error Rates | Recoverable (soft) read errors occur less than 1 in $10^{10}$ bits transferred.<br>Unrecoverable (hard) read errors occur less than 1 in $10^{12}$ bits transferred. |

#### Physical.

| Disk Type        | 5.25-inch, Winchester drive                                                                              |
|------------------|----------------------------------------------------------------------------------------------------------|
| Rotational Speed | 3348 revolutions per minute                                                                              |
| Height           | 3.25 inches                                                                                              |
| Width            | 5.75 inches                                                                                              |
| Depth            | 8.0 inches                                                                                               |
| Bytes/Sector     | 512                                                                                                      |
| Sectors/Track    | 32                                                                                                       |
| Tracks/Cylinder  | 12                                                                                                       |
| Cylinders        | 1640 Accessible, 1642 Total                                                                              |
| Formatted Size   | 629,760 blocks (512 bytes)                                                                               |
| Operational.     |                                                                                                          |
| Interface        | SCSI (L1B—Single-ended, L11B—Differential)                                                               |
| Transfer Rate    | 10.0 megabits per second (4 megabytes per second synchronous)<br>(1.5 megabytes per second asynchronous) |
| Latency          | 8.96 milliseconds, average                                                                               |

#### **Default Device Partitioning**

Seek Time

The default device partitioning for this disk drive depends on the configuration of the computer and the release of the UNIX operating system.

17.5 milliseconds, average 32 milliseconds, maximum

#### 300-Megabyte Hard Disk (KS-23483,L3)

#### **300-Megabyte Hard Disk Equipment Characteristics**

#### Reliability.

| Life        | 5 years or 150,000 hours                                                                                                                                             |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error Rates | Recoverable (soft) read errors occur less than 1 in $10^{10}$ bits transferred.<br>Unrecoverable (hard) read errors occur less than 1 in $10^{12}$ bits transferred. |

#### Physical.

| Disk Type        | 5.25-inch, Winchester drive                                                   |
|------------------|-------------------------------------------------------------------------------|
| Rotational Speed | 3597 revolutions per minute                                                   |
| Height           | 3.25 inches                                                                   |
| Width            | 5.75 inches                                                                   |
| Depth            | 8.0 inches                                                                    |
| Bytes/Sector     | 512                                                                           |
| Sectors/Track    | 43                                                                            |
| Tracks/Cylinder  | 9                                                                             |
| Cylinders        | 1514 Accessible, 1516 Total                                                   |
| Formatted Size   | 585,937 blocks (512 bytes)                                                    |
| Operational.     |                                                                               |
| Interface        | SCSI (Single-ended only)                                                      |
| Transfer Rate    | 12 megabits per second (1.5 megabytes per second)                             |
| Latency          | 8.34 milliseconds, average                                                    |
| Seek Time        | <ul><li>16.5 milliseconds, average</li><li>43 milliseconds, maximum</li></ul> |

#### **Default Device Partitioning**

# 300-Megabyte Hard Disk (KS-23371,L31)

#### **300-Megabyte Hard Disk Equipment Characteristics**

| Reliability. |
|--------------|
|--------------|

| Life        | 5 years or 30,000 hours                                                                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error Rates | Recoverable (soft) read errors occur less than 1 in $10^{10}$ bits transferred.<br>Unrecoverable (hard) read errors occur less than 1 in $10^{12}$ bits transferred. |

#### Physical.

| Disk Type        | 5.25-inch, Winchester drive                          |
|------------------|------------------------------------------------------|
| Rotational Speed | 3600 revolutions per minute                          |
| Height           | 3.25 inches                                          |
| Width            | 5.75 inches                                          |
| Depth            | 8.0 inches                                           |
| Bytes/Sector     | 512                                                  |
| Sectors/Track    | 35                                                   |
| Tracks/Cylinder  | 15                                                   |
| Cylinders        | 1215 Accessible, 1224 Total                          |
| Formatted Size   | 619,650 blocks (512 bytes)                           |
| Operational.     |                                                      |
| Interface        | ESDI                                                 |
| Transfer Rate    | 10.0 megabits per second (1250 kilobytes per second) |
| Latency          | 8.33 milliseconds, average                           |
| Seek Time        | 18 milliseconds, average<br>40 milliseconds, maximum |

#### **Default Device Partitioning**

#### 600-Megabyte Hard Disk (KS-23483,L5 or L15)

#### **600-Megabyte Hard Disk Equipment Characteristics**

#### Reliability.

| Life        | 5 years or 15,000 hours                                                                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error Rates | Recoverable (soft) read errors occur less than 1 in $10^{10}$ bits transferred.<br>Unrecoverable (hard) read errors occur less than 1 in $10^{12}$ bits transferred. |

#### Physical.

| Disk Type        | 5.25-inch, Winchester drive                         |
|------------------|-----------------------------------------------------|
| Rotational Speed | 3597 revolutions per minute                         |
| Height           | 3.25 inches                                         |
| Width            | 5.75 inches                                         |
| Depth            | 9.06 inches                                         |
| Bytes/Sector     | 512                                                 |
| Sectors/Track    | 52                                                  |
| Tracks/Cylinder  | 15                                                  |
| Cylinders        | 1544 Accessible, 1546 Total                         |
| Formatted Size   | 1,204,320 blocks (512 bytes)                        |
| Operational.     |                                                     |
| Interface        | SCSI (L5—Single-ended, L15—Differential)            |
| Transfer Rate    | 12.0 megabits per second (1.5 megabytes per second) |
| Latency          | 8.34 milliseconds, average                          |

#### **Default Device Partitioning**

Seek Time

The default device partitioning for this disk drive depends on the configuration of the computer and the release of the UNIX operating system.

17.5 milliseconds, average 44 milliseconds, maximum

# 600-Megabyte Hard Disk (KS-23483,L7 or L17)

#### **600-Megabyte Hard Disk Equipment Characteristics**

| Reliability. |                                                                                                                                                                                       |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Life         | 5 years or 15,000 hours                                                                                                                                                               |
| Error Rates  | Recoverable (soft) read errors occur less than 1 in 10 <sup>10</sup> bits transferred.<br>Unrecoverable (hard) read errors occur less than 1 in 10 <sup>12</sup> bits<br>transferred. |

#### Physical.

| Disk Type        | 5.25-inch, Winchester drive                         |
|------------------|-----------------------------------------------------|
| Rotational Speed | 4002 revolutions per minute                         |
| Height           | 3.25 inches                                         |
| Width            | 5.75 inches                                         |
| Depth            | 8.0 inches                                          |
| Bytes/Sector     | 512                                                 |
| Sectors/Track    | 56                                                  |
| Tracks/Cylinder  | 16                                                  |
| Cylinders        | 1447 Accessible, 1457 Total                         |
| Formatted Size   | 1,296,512 blocks (512 bytes)                        |
| Operational.     |                                                     |
| Interface        | SCSI (L7—Single-ended, L17—Differential)            |
| Transfer Rate    | 12.0 megabits per second (1.5 megabytes per second) |
| Latency          | 7.47 milliseconds, average                          |
| Seek Time        | 16.5 milliseconds, average 32 milliseconds, maximum |

#### **Default Device Partitioning**

# **POWER—EQUIPMENT DESCRIPTION**

# Domestic 3B2/300 and 310 Computers Power Supply, #095-10011-XX1 and #095-10060-00

Early domestic production 3B2/300 and 310 computers are equipped with a TRW #095-10011-XX1 Power Supply Unit. Current domestic production 3B2/300 and 310 computers are equipped with a TRW #095-10060-00 Power Supply Unit.

#### TRW #095-10011-XX1 and #095-10060-00 Equipment Characteristics

| Voltage                 | 115 V AC, 4 Amperes |
|-------------------------|---------------------|
| Frequency               | 50/60 Hz            |
| Total Power Consumption | 350 watts (or less) |

# 3B2/300 and 310 Computers International Power Supply, #095-10011-XX2 and #095-10061-00

Early international production 3B2/300 and 310 computers are equipped with a TRW #095-10011-XX2 Power Supply Unit. Current international production 3B2/300 and 310 computers are equipped with a TRW #095-10061-00 Power Supply Unit.

#### TRW #095-10011-XX2 and #095-10061-00 Equipment Characteristics

| Voltage                 | 220 to 240 V AC, 2 Amperes |
|-------------------------|----------------------------|
| Frequency               | 50/60 Hz                   |
| Total Power Consumption | 350 watts (or less)        |

# 3B2/400 Computer Domestic Power Supply, #095-10035-XX1

The domestic production 3B2/400 computer is equipped with a TRW #095-10035-XX1 Power Supply Unit.

#### TRW #095-10035-XX1 Equipment Characteristics

| Voltage                 | 115 V AC, 6 Amperes |
|-------------------------|---------------------|
| Frequency               | 50/60 Hz            |
| Total Power Consumption | 500 watts (or less) |

# 3B2/400 Computer International Power Supply, #095-10035-XX2

The international production 3B2/400 computer is equipped with a TRW #095-10035-XX2 Power Supply Unit.

#### TRW #095-10035-XX2 Equipment Characteristics

| Voltage                 | 220 to 240 V AC, 3 Amperes    |
|-------------------------|-------------------------------|
| Frequency               | 50/60 Hz                      |
| Total Power Consumption | Less than 200 watts (maximum) |

# 3B2/500 Computer Power Supply, ACS752A or CS752A

The 3B2/500 computer is equipped with either an ACS752A or a CS752A Power Supply Unit.

#### **ACS752A and CS752A Equipment Characteristics**

| Voltage           | 100 to 120 V AC, 7 Amperes<br>200 to 240 V AC, 4 Amperes |
|-------------------|----------------------------------------------------------|
| Frequency         | 50/60 Hz                                                 |
| Power Consumption | 680 watts (or less)                                      |

# 3B2/600, 700, and 1000 Computers Power Supply, ACS782A or CS782A

The 3B2/600, 700, and 1000 computers are equipped with either an ACS782A or a CS782A Power Supply Unit.

#### **ACS782A and CS782A Equipment Characteristics**

| Voltage           | 100 to 120 V AC, 12 Amperes<br>200 to 240 V AC, 8.5 Amperes |
|-------------------|-------------------------------------------------------------|
| Frequency         | 50/60 Hz                                                    |
| Power Consumption | 1130 watts (or less)                                        |

# Domestic AT&T Expansion Module Power Supply, #095-10040-XX1

The domestic production AT&T/XM is equipped with a TRW #095-10040-XX1 Power Supply Unit.

#### TRW #095-10040-XX1 Equipment Characteristics

| Voltage                 | 115 V AC, 5 Amperes           |
|-------------------------|-------------------------------|
| Frequency               | 50/60 Hz                      |
| Total Power Consumption | Less than 298 watts (maximum) |

# International AT&T Expansion Module Power Supply, #095-10040-XX2

The international production AT&T/XM is equipped with a TRW #095-10040-XX2 Power Supply Unit.

# TRW #095-10040-XX2 Equipment Characteristics

| Voltage                 | 220 to 240 V AC, 2.5 Amperes  |
|-------------------------|-------------------------------|
| Frequency               | 50/60 Hz                      |
| Total Power Consumption | Less than 298 watts (maximum) |

# Domestic AT&T XM/405S/900S Power Supply, #095-10064-00

The domestic production AT&T XM/405S/900S is equipped with a TRW #095-10064-00 Power Supply Unit.

#### TRW #095-10064-00 Equipment Characteristics

| Voltage                 | 115 V AC, 5 Amperes           |
|-------------------------|-------------------------------|
| Frequency               | 50/60 Hz                      |
| Total Power Consumption | Less than 298 watts (maximum) |

# International AT&T XM/405S/900S Power Supply, #095-10073

The international production AT&T XM/405S/900S is equipped with a TRW #095-10073 Power Supply Unit.

#### TRW #095-10073 Equipment Characteristics

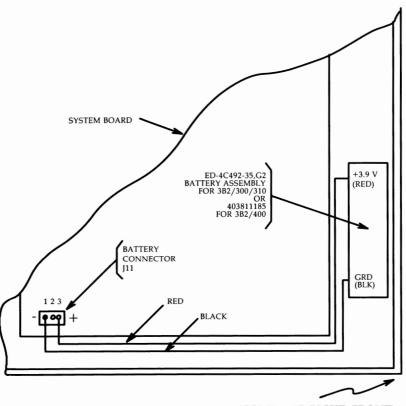
| Voltage                 | 220 to 240 V AC, 2.5 Amperes  |
|-------------------------|-------------------------------|
| Frequency               | 50/60 Hz                      |
| Total Power Consumption | Less than 298 watts (maximum) |

#### AT&T SCSI Peripherals (DCM, DM, TM, and PPCU) Power Supply, #095-10065

The AT&T SCSI Peripherals (DCM, DM, TM, and PPCU) are equipped with a TRW #095-10065 Power Supply Unit.

#### TRW #095-10065 Equipment Characteristics

| Voltage                 | 100 to 120 V AC, 1.5 Amperes<br>200 to 240 V AC, 0.75 Amperes |
|-------------------------|---------------------------------------------------------------|
| Frequency               | 50/60 Hz                                                      |
| Total Power Consumption | Less than 298 watts (maximum)                                 |


#### **3B2 Computer Backup Battery Supply**

A 3.6 volt DC lithium battery is used to supply approximately 3.3 volts DC standby power for the following:

- Time-of-Day Clock
- Nonvolatile Random Access Memory (NVRAM)
- Feature Card Slots.

For the Version 2 computers, the battery connects directly to the system board via the battery connector J11. The battery assembly and the connections to the system board are shown in Figure 2-63.

The Version 3 computers provide a connector on the backplane for the battery. The battery connects to the CM520A Backplane via connector J04 and to the CM519A/B Backplanes via connector J02. The battery itself is mounted on the card cage assembly as shown in Figures 2-64 and 2-65.



(COMPUTER RIGHT, FRONT)

#### Figure 2-63: Version 2 Computer Backup Battery Supply Layout

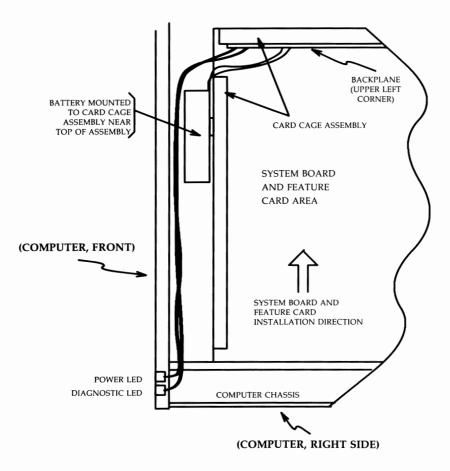



Figure 2-64: 3B2/500 Computer Backup Battery Supply Position

1

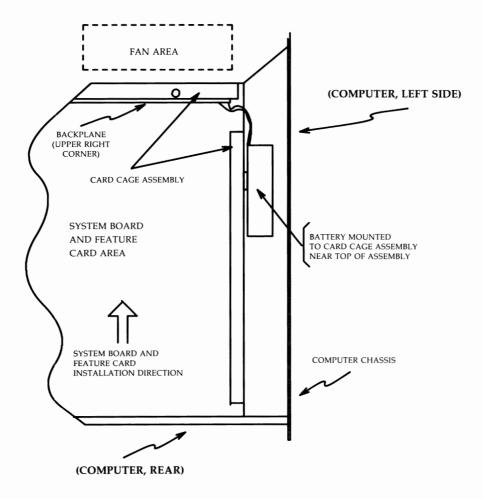



Figure 2-65: 3B2/600, 700, and 1000 Computer Backup Battery Supply Position

# **MISCELLANEOUS EQUIPMENT AND APPARATUS**

#### **Vertical Stands**

The 3B2/300 and 310 computers and the AT&T Expansion Module (AT&T/XM) can be mounted vertically using an optional vertical stand. A vertical stand option is not applicable for the 3B2/400 computer. Refer to the *Vertical Stand Manual*, (Select Code 305-319), for complete information.

#### **3B2 Expansion Cabinet**

The 3B2 Expansion Cabinet provides a means of organizing the 3B2 computer equipment. The cabinet can house a wide variety of equipment configurations according to the mounting kits which are purchased. Refer to the *Expansion Cabinet Assembly Manual*, (Select Code 305-690), for complete information.

# **Chapter 3: FUNCTIONAL DESCRIPTION**

| FUNCTIONAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-1 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| SYSTEM OVERVIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-9 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12  |
| Data Transfers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85  |
| RANDOM ACCESS MEMORY CARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39  |
| CM191A/B/C/D and CM192B Memory Cards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| CM523A/AA/B/D Memory Cards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| BACKPLANES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| CM193A/B Backplane Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| CM199A/B Backplane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| CM194D Backplane Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| CM519B Backplane Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| CM519D Backplane Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| CM195A NETWORK INTERFACE CARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Input/Output Bus Control         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <td></td>    |     |
| / 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| Page Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| Peripheral Control and Status Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Local RAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Local ROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Network Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| CM195A Equipped Device Table Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 3BNET Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| Ethernet Data Packet Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| CM195AA ALARM INTERACE CIRCUIT CARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| I/O Bus Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Dual Console         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <t< td=""><td></td></t<> |     |
| System Failure Detection and Alarm Generation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| External Interface Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| CM195AA Equipped Device Table Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| CM195AC/CM195AD "DATAKIT" VCS INTERFACE CARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| INTEL 80186 Microprocessor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| Input/Output Bus Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| Nonvolatile Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Volatile Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| External Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Data Lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 86  |
| Control Lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87  |
| Timer Input/Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87  |
| CM195AC/CM195AD Equipped Device Table Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88  |

| CM195AE GPSC CARD                         |   |     | 3-189 |
|-------------------------------------------|---|-----|-------|
| General                                   |   |     | 3-189 |
| GPSC Card Features                        |   |     | 3-189 |
| INTEL 80186 Microprocessor                |   |     | 3-191 |
| Application Control Register              |   |     | 3-193 |
| ID/Vector Register                        |   |     | 3-194 |
| Page Register                             |   |     | 3-194 |
| Peripheral Control and Status Register    |   |     | 3-195 |
| Local RAM                                 |   |     | 3-196 |
| Local ROM                                 |   |     | 3-196 |
| CM195AE Equipped Device Table Data        |   |     | 3-196 |
| CM195AY EPORTS CARD                       |   |     | 3-197 |
| General                                   |   |     | 3-197 |
| INTEL 80186 Microprocessor                |   |     | 3-199 |
| ID/Vector Register                        |   |     | 3-199 |
| Page Register                             |   |     | 3-199 |
| Peripheral Control and Status Register    |   |     | 3-201 |
| Local RAM                                 |   |     | 3-202 |
| Local ROM                                 |   |     | 3-202 |
| CM195AY Equipped Device Table Data        |   |     | 3-202 |
| CM195B/CM195BA PORTS CARD                 |   |     | 3-203 |
| General                                   |   |     | 3-203 |
| INTEL 80186 Microprocessor                |   |     | 3-205 |
| ID/Vector Register                        |   |     | 3-205 |
| Page Register                             |   |     | 3-205 |
| Peripheral Control and Status Register    |   |     | 3-205 |
|                                           |   |     | 3-207 |
|                                           |   |     | 3-208 |
|                                           |   |     | 3-208 |
| CM195B/CM195BA Equipped Device Table Data | • | • • |       |
|                                           |   |     | 3-209 |
| General                                   |   |     | 3-209 |
| INTEL 80186 Microprocessor                |   |     | 3-211 |
| ID/Vector Register                        |   |     | 3-211 |
| Page Register                             |   |     | 3-211 |
| Peripheral Control and Status Register    |   |     |       |
| Local RAM                                 |   |     |       |
| Local ROM                                 | • | • • |       |
| Cartridge Tape/Floppy Disk Interface      | • | • • | 3-214 |
| CM195H Equipped Device Table Data         | • | • • | 3-214 |
| CM195K EXPANSION DISK CONTROLLER CARD     | • | • • | 3-215 |
| General                                   | • | • • | 3-215 |
| INTEL 80186 Microprocessor                | • | • • | 3-217 |
| Input/Output Bus Control                  |   | • • | 3-217 |
| ID/Vector Register                        |   |     | 3-219 |
| Page Register                             |   |     | 3-219 |
| Peripheral Control and Status Register    |   |     | 3-220 |
| Local RAM                                 |   |     | 3-221 |
| Local ROM                                 |   |     | 3-221 |
| Disk Interface                            |   |     | 3-222 |
| CM195K Equipped Device Table Data         |   |     | 3-222 |
| CM195T INTELLIGENT SERIAL CONTROLLER CARD | • |     | 3-223 |
| General                                   |   |     | 3-223 |
|                                           |   |     | 3-223 |
|                                           | • |     |       |

| INTEL 80186 Microprocessor             |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-225 |
|----------------------------------------|--------|--------|---|---|---|---|-----|-----|---|----|---|---|---|---|---|---|---|-------|
| Communications Processing              |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-227 |
| ID/Vector Register                     |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-227 |
| Page Register                          |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-227 |
| Peripheral Control and Status Register |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-228 |
| Local RAM                              |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-229 |
| Local ROM                              |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-229 |
| CM195T Equipped Device Table Data      |        |        |   |   |   |   |     |     |   | ÷. |   |   |   | • | • | • | • | 3-229 |
| CM195U STARLAN INTERFACE CARD .        | •      | •      | • | • | • | • | • • | ••• | · | ·  | • | • | • | • | • | • | • | 3-231 |
| General                                | •      | •      | • | • | • | • | • • | ••• | • | •  | • | • | • | • | • | • | • | 3-231 |
|                                        |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-233 |
| INTEL 80186 Microprocessor             | •      | •      | • | • | • | • | • • | • • | • | ·  | · | · | · | · | • | · | · | 3-233 |
| Input/Output Bus Control               | •      | •      | • | • | • | • | • • | • • | • | ·  | · | · | · | · | • | · | · | 3-233 |
| ID/Vector Register                     | •      | •      | · | • | • | • | • • | • • | • | ·  | · | · | · | • | · | · | · |       |
| Page Register                          | •      | •      | · | • | • | • | • • | • • | • | ·  | • | · | • | • | • | • | • | 3-233 |
| Peripheral Control and Status Register | •      | •      | • | • | • | • | • • | • • | • | •  | • | · | · | · | · | · | · | 3-235 |
| Local RAM                              | •      | •      | • | • | • | • | • • |     | • | ·  | · | · | · | • | • | · | · | 3-236 |
| Local ROM                              | ·      | •      | · | • | • | • | • • |     | • | ·  | · | · | · | · | · | · | · | 3-236 |
| Network Interface                      | ·      | •      | • | • | • | • | • • |     | • | •  | • | • | • | • | • | · | • | 3-236 |
| CM195U Equipped Device Table Data      | •      | •      | • | • | • | • | • • |     | • | •  | • | • | • | • | • | • | • | 3-237 |
| Ethernet Data Packet Format            | •      | •      | • | • | • | • |     |     | • | •  | • |   |   |   | • | • | • | 3-237 |
| CM195W SCSI HOST ADAPTER CARD .        | •      | •      | • | • | • |   |     |     |   |    |   |   |   |   |   |   |   | 3-239 |
| General                                | •      | •      |   | • | • |   |     |     |   |    |   |   |   |   |   |   |   | 3-239 |
| INTEL 80186 Microprocessor             |        |        |   |   | • |   |     |     |   |    |   |   |   |   |   |   |   | 3-241 |
| ID/Vector Register                     |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-241 |
| Page Register                          |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-241 |
| Peripheral Control and Status Register |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-244 |
| Local RAM                              |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-246 |
| Local ROM                              |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-246 |
| CM195W Equipped Device Table Data      |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-246 |
| CM195Y EPORTS CARD                     |        |        |   |   |   |   |     |     | • |    | · | · | · | • | • | • | • | 3-247 |
| General                                | •      |        | • | • | • | • |     | ••• | • | ·  | • | · | • | • | • | • | • | 3-247 |
| INTEL 80186 Microprocessor             | •      | •      | • | • | • | • | • • | ••• | • | •  | • | • | • | • | • | • | • | 3-247 |
| ID/Vector Register                     | •      | •      | • | • | • | • | • • | ••• | • | ·  | • | · | • | • | • | • | • | 3-249 |
| Page Register                          | •      | •      | • | • | • | • | • • | ••• | • | ·  | · | · | · | · | • | • | · | 3-249 |
| Parinharal Control and Status Pagistor | •      | •      | • | • | • | • | • • | ••• | · | ·  | · | · | · | · | · | · | · |       |
| Peripheral Control and Status Register | ·      | •      | • | • | • | • | • • | • • | · | ·  | · | · | · | · | · | · | · | 3-251 |
|                                        | •      | •      | • | • | • | • | • • | ••• | · | ·  | · | · | · | · | · | · | · | 3-252 |
| Local ROM                              | •      | •      | • | • | • | • | • • | • • | · | ·  | · | · | • | • | · | · | · | 3-252 |
| CM195Y Equipped Device Table Data      | •<br>• | •<br>• | • |   | • | • | • • | • • | • | ·  | · | · | · | · | · | · | · | 3-252 |
| CM521A DIFFERENTIAL SCSI HOST ADAP     |        |        |   |   |   |   |     |     |   |    |   | · | · | · | · | · | · | 3-253 |
| General                                |        |        |   |   |   |   |     |     |   |    | · | · | · | • | • | · | • | 3-253 |
| INTEL 80C186 Microprocessor            |        |        |   |   |   |   |     |     |   | ·  | · | · | · | · | • | · | · | 3-255 |
| ID/Vector Register                     |        |        |   |   |   |   |     |     |   | ·  | · | · | · | · | · | · | · | 3-255 |
| Page Register                          |        |        |   |   |   |   |     |     |   | ·  | · | · | · | · | • | · | • | 3-255 |
|                                        |        |        |   |   |   | • |     |     |   | •  | • | • | • | · | • | • | · | 3-258 |
| Local RAM                              |        |        |   |   |   |   |     |     |   | •  | • | · | • | · | • | • | • | 3-260 |
| Local ROM                              |        |        |   |   |   |   |     |     |   | •  | • | • | • | • | • | • | • | 3-260 |
| CM521A Equipped Device Table Data      | •      | •      | • | • | • | • |     | •   |   |    | • | • | • | • | • | • |   | 3-260 |
| CM522A VCACHE CARD                     | •      | •      | • | • | • | • |     | •   |   |    |   | • |   |   |   |   |   | 3-261 |
| General                                | •      | •      | • | • | • | • |     |     |   |    |   |   |   |   |   |   |   | 3-261 |
| Address Spectrum                       |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-263 |
| ID Register                            |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-263 |
| CM522A Equipped Device Table Data      |        |        |   |   |   |   |     |     |   |    |   |   |   |   |   |   |   | 3-263 |

| CM524A PROCESSING ELEMENT CARD          |  | 3-265 |
|-----------------------------------------|--|-------|
| General                                 |  | 3-265 |
| Address Spectrum                        |  | 3-267 |
| ID/Vector Register                      |  | 3-267 |
| Control Status Register                 |  | 3-268 |
| CM524A Equipped Device Table Data       |  | 3-269 |
| CM525B VMEbus CARD                      |  | 3-271 |
| Address Spectrum                        |  | 3-273 |
| ID/Vector Register                      |  | 3-273 |
| Control Status Register                 |  | 3-274 |
|                                         |  | 3-275 |
| CM525B Equipped Device Table Data       |  | 3-275 |
| CM527A MULTIPROCESSOR ENHANCEMENT CARD  |  | 3-277 |
| Address Spectrum                        |  | 3-279 |
| ID/Vector Register                      |  |       |
| Control Status Register                 |  | 3-280 |
| CM527A Equipped Device Table Data       |  | 3-281 |
| FLOPPY DISK DRIVE                       |  | 3-283 |
| Floppy Disk Layout                      |  | 3-283 |
| Floppy Disk Layout                      |  | 3-284 |
| 23-MEGABYTE CARTRIDGE TAPE DRIVE        |  | 3-287 |
| Cartridge Tape Format                   |  | 3-287 |
| 23-Megabyte Cartridge Tape Drive        |  | 3-288 |
| 23-Megabyte Cartridge Tape Drive        |  | 3-291 |
| Cartridge Tape Format                   |  | 3-291 |
| 60-Megabyte Cartridge Tape Drive        |  | 3-292 |
| 60-Megabyte Cartridge Tape Drive        |  | 3-295 |
| Cartridge Tape Format                   |  | 3-295 |
| 120-Megabyte Cartridge Tape Drive       |  | 3-296 |
| AT&T SCSI REWRITABLE OPTICAL DISK DRIVE |  | 3-299 |
| Optical Disk Format                     |  | 3-299 |
| AT&T SCSI Rewritable Optical Disk Drive |  | 3-299 |
| HARD DISK DRIVES                        |  | 3-301 |
| HARD DISK DRIVES                        |  | 3-303 |
| Version 2 System Power                  |  | 3-303 |
| Version 2 System Power                  |  | 3-303 |
| Version 2 3B2 Computer Power            |  | 3-307 |
| Version 3 3B2 Computer Power            |  | 3-310 |
| 3B2 Computer Backup Battery Supply      |  |       |
| AT&T Expansion Module Power Supply      |  |       |

#### LIST OF FIGURES

| Figure | 3-1: | Version 2 Computer — High-Level Functional Block Diagram | 3-3 |
|--------|------|----------------------------------------------------------|-----|
| Figure | 3-2: | Version 3 Computer — High-Level Functional Block Diagram | 3-7 |
| Figure | 3-3: | Version 2 Computer Address Spectrum                      | -10 |
| Figure | 3-4: | Version 3 Computer Address Spectrum                      | -11 |
| Figure | 3-5: | Input/Output Bus Signals                                 | -14 |
| Figure | 3-6: | System Board Peripheral Controller Read Operation        | -18 |

| Figure | 3-7:  | System Board Peripheral Controller Write Operation                              | 3-20  |
|--------|-------|---------------------------------------------------------------------------------|-------|
| Figure | 3-8:  | Peripheral Controller Main Memory Read Operation                                | 3-22  |
| Figure | 3-9:  | Peripheral Controller Main Memory Write Operation                               | 3-24  |
| Figure | 3-10: | Self-Configuration — Powerup Sequence                                           | 3-27  |
| Figure | 3-11: | Self-Configuration — Manual Boot Sequence                                       | 3-28  |
| Figure | 3-12: | Self-Configuration Process                                                      | 3-30  |
| Figure | 3-13: | Version 2 3B2 Computer System Board — Functional Block<br>Diagram               | 3-33  |
| Figure | 3-14: | System Board CPU — Functional Block Diagram                                     | 3-36  |
| Figure |       | WE 32101 MMU Interconnection Diagram                                            | 3-44  |
| Figure |       | WE 32101 MMU Block Diagram                                                      | 3-45  |
| Figure |       | MMU Internal Address Spectrum                                                   | 3-51  |
| Figure |       | Virtual Address to Physical Address Translation for Contiguous<br>Segments      | 3-53  |
| Figure | 3-19: | Virtual Address to Physical Address Translation for Paged<br>Segments           | 3-54  |
| Figure | 3-20: | WE 32106 Math Acceleration Unit — Functional Block<br>Diagram                   | 3-56  |
| Figure | 3-21: | Chip Select and Control Signals Address Decode                                  | 3-64  |
| Figure | 3-22: | Version 2 System Board CSR Bit Assignments                                      | 3-68  |
| Figure | 3-23: | System Board Interrupt Assignments                                              | 3-70  |
| Figure | 3-24: | Dual Port Dynamic Random Access Memory Controller —<br>Functional Block Diagram | 3-74  |
| Figure | 3-25: | Data Byte Selection Summary                                                     | 3-77  |
| Figure |       | Direct Memory Access Subsystem — Functional Block                               | 0     |
| Figure |       | Diagram · · · · · · · · · · · · · · · · · · ·                                   | 3- 79 |
|        |       | Diagram                                                                         | 3-87  |
| Figure | 3-28: | CM518B/C System Board CPU — Functional Block Diagram                            | 3-90  |
| Figure |       | WE 32201 MMU Interconnection Diagram                                            | 3-98  |
| Figure | 3-30: | -                                                                               | 3-104 |
| Figure | 3-31: | Virtual Address to Physical Address Translation for Paged<br>Segments           | 3-106 |
| Figure | 3-32: | WE 32206 Math Acceleration Unit — Functional Block                              | 3-108 |
| Figure | 3-33: |                                                                                 | 3-118 |
| Figure | 3-34: |                                                                                 | 3-122 |

#### **Chapter 3: FUNCTIONAL DESCRIPTION -**

| Figure   | 3-35:   | Version 3 System Board Interrupt Assignments                                            | 3-124          |
|----------|---------|-----------------------------------------------------------------------------------------|----------------|
| Figure   | 3-36:   | Dynamic Random Access Memory Controller — Functional<br>Block Diagram                   | 3-128          |
| Figure   | 3-37:   |                                                                                         | 3-131          |
| Figure   | 3-38:   | Direct Memory Access Subsystem — Functional Block                                       |                |
| Figure   | 3-39:   | CM191A 0.25-Megabyte RAM Card — Functional Block                                        | 3-133<br>3-140 |
| Figure   | 3-40.   | CM191B 1-Megabyte RAM Card — Functional Block                                           | 0 1 10         |
| inguie   | 5-40.   | Diagram                                                                                 | 3-141          |
| Figure   | 3-41:   | CM191C 1-Megabyte, Surface Mounted, RAM Card —                                          | 3-142          |
| Figure   | 3-42:   | CM191D 2-Megabyte, Surface Mounted, Full Height, RAM<br>Card — Functional Block Diagram | 3-143          |
| Figure   | 3-43:   | CM192B 2-Megabyte, Surface Mounted, Half Height, RAM<br>Card — Functional Block Diagram | 3-144          |
| Figure   | 3-44:   | CM523A 4-Megabyte RAM Card — Functional Block<br>Diagram                                | 3-147          |
| Figure   | 3-45:   | CM523AA 4-Megabyte RAM Card — Functional Block<br>Diagram                               | 3-148          |
| Figure   | 3-46:   | CM523B 2-Megabyte RAM Card — Functional Block<br>Diagram                                | 3-149          |
| Figure   | 3-47:   | CM523D 16-Megabyte RAM Card — Functional Block                                          | 3-150          |
| Figure   | 3-48:   | CM193A/B (3B2/300 and 310) Backplane — Functional Block                                 | 3-155          |
| Figure   | 3-49:   |                                                                                         | 3-157          |
| Figure   |         | CM519A (3B2/600 and 700) Backplane — Functional Block                                   |                |
| - igui e | 0 0 0 0 |                                                                                         | 3-159          |
| Figure   | 3-51:   | CM519B (3B2/1000) Backplane — Functional Block Diagram                                  | 3-161          |
| Figure   | 3-52:   | CM520A (3B2/500) Backplane — Functional Block Diagram                                   | 3-163          |
| Figure   | 3-53:   | CM195A NI Card — Functional Block Diagram                                               | 3-166          |
| Figure   | 3-54:   | CM195A NI Card Address Map                                                              | 3-168          |
| Figure   | 3-55:   | CM195AA AIC Card — Functional Block Diagram                                             | 3-176          |
| Figure   | 3-56:   | CM195AA AIC Card Address Spectrum                                                       | 3-177          |
| Figure   |         | CM195AC/CM195AD Datakit VCS Interface Card —<br>Functional Block Diagram                | 3-184          |
| Figure   | 3-58:   | 0                                                                                       | 3-185          |

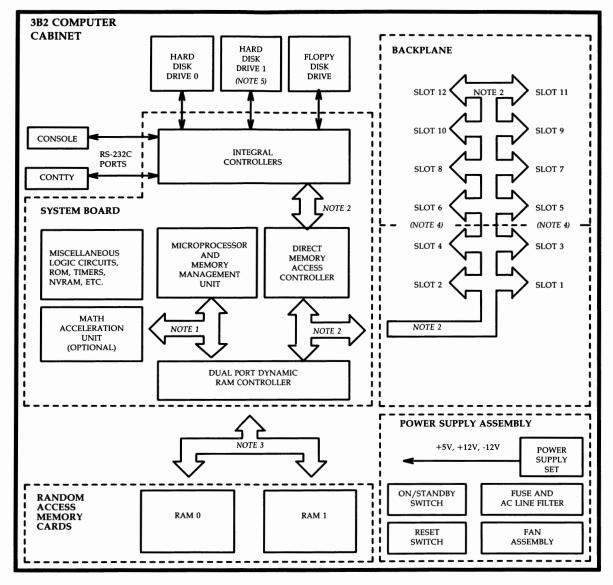
| Figure | 3-59: | CM195AE GPSC Card—Functional Block Diagram 3-190                         |
|--------|-------|--------------------------------------------------------------------------|
| Figure | 3-60: | CM195AE GPSC Card Address Map                                            |
| Figure | 3-61: | CM195AY EPORTS Card — Functional Block Diagram 3-198                     |
| Figure | 3-62: | CM195AY EPORTS Card Address Map                                          |
| Figure | 3-63: | CM195B/CM195BA PORTS Card — Functional Block<br>Diagram                  |
| Figure | 3-64. | CM195B/CM195BA PORTS Card Address Map                                    |
| Figure |       | CM195H CTC Card — Functional Block Diagram                               |
| Figure |       | CM195H CTC Card Address Map                                              |
| Figure |       | CM195K XDC Card — Functional Block Diagram                               |
| Figure |       | CM195K XDC Card Address Map                                              |
| Figure |       | CM195T ISC Card — Functional Block Diagram                               |
| Figure |       | CM195T ISC Card Address Map                                              |
| Figure |       | CM195U STARLAN Interface Card — Functional Block                         |
| inguic | 571.  | Diagram                                                                  |
| Figure | 3-72: | CM195U STARLAN Interface Card Address Map                                |
| Figure | 3-73: | CM195W SCSI Host Adapter Card — Functional Block                         |
| 0      |       | Diagram                                                                  |
| Figure | 3-74: | CM195W SCSI Host Adapter Card Address Map                                |
| Figure | 3-75: | CM195Y EPORTS Card — Functional Block Diagram 3-248                      |
| Figure | 3-76: | CM195Y EPORTS Card Address Map                                           |
| Figure | 3-77: | CM521A Differential SCSI Host Adapter Card — Functional<br>Block Diagram |
| Figure | 3-78: | CM521A Differential SCSI Host Adapter Card Address                       |
|        |       | Map                                                                      |
| Figure | 3-79: | CM522A VCACHE Card — Functional Block Diagram 3-262                      |
| Figure | 3-80: | CM522A VCACHE Card Address Map                                           |
| Figure | 3-81: | CM524A PE Card — Functional Block Diagram                                |
| Figure | 3-82: | CM524A PE Card Address Map                                               |
| Figure | 3-83: | CM525B VMEbus Card — Functional Block Diagram 3-272                      |
| Figure | 3-84: | CM525B VMEbus Card Address Map                                           |
| Figure | 3-85: | CM527A MPE Card — Functional Block Diagram                               |
| Figure | 3-86: | CM527A MPE Card Address Map                                              |
| Figure | 3-87: | Floppy Disk Physical Layout                                              |
| Figure | 3-88: | Floppy Disk Drive — Functional Block Diagram                             |

# **Chapter 3: FUNCTIONAL DESCRIPTION** —

| Figure | 3-89:  | Cartridge Tape Physical Layout                                          |
|--------|--------|-------------------------------------------------------------------------|
| Figure | 3-90:  | 23-Megabyte Cartridge Tape Drive — Functional Block<br>Diagram          |
| Figure | 3-91:  | 60-Megabyte Cartridge Tape Physical Layout                              |
| Figure | 3-92:  | 60-Megabyte Cartridge Tape Drive — Functional Block<br>Diagram          |
| Figure | 3-93:  | 120-Megabyte Cartridge Tape Physical Layout                             |
| Figure | 3-94:  | 120-Megabyte Cartridge Tape Drive — Functional Block<br>Diagram         |
| Figure | 3-95:  | SCSI Rewritable Optical Disk Drive — Functional Block<br>Diagram        |
| Figure | 3-96:  | 3B2/300 or 310 Computer and AT&T/XM Power —<br>Functional Block Diagram |
| Figure | 3-97:  | 3B2/400 Computer and AT&T/XM Power — Functional Block<br>Diagram        |
| Figure | 3-98:  | 3B2/300 and 310 Computer Power Supply — Functional<br>Block Diagram     |
| Figure | 3-99:  | 3B2/400 Computer Power Supply — Functional Block<br>Diagram             |
| Figure | 3-100: | 3B2/500 Computer Power Supply — Functional Block<br>Diagram             |
| Figure | 3-101: | 3B2/600 and 700 Computer Power Supply — Functional<br>Block Diagram     |
| Figure | 3-102: | 3B2 Power Supply for Embedded SCSI— Functional Block<br>Diagram         |
| Figure | 3-103: | 3B2 Computer Backup Battery Supply — Functional Block<br>Diagram        |
| Figure | 3-104: | AT&T/XM Power Supply — Functional Block Diagram 3-318                   |
| 0      | 3-105: | AT&T XM/405S/900S Power Supply — Functional Block                       |
|        |        | Diagram                                                                 |

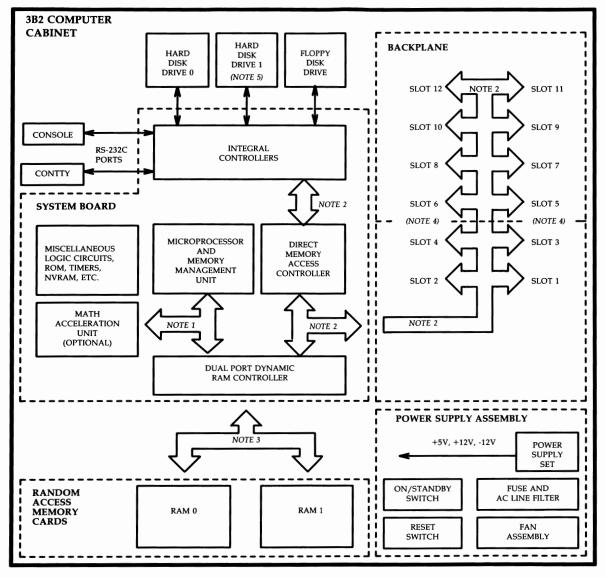
# **FUNCTIONAL DESCRIPTION**

# SYSTEM OVERVIEW


# General

This chapter provides a high-level functional description of the 3B2 computer to a circuit card level. Signal names used in the diagrams and descriptions end with a "[0]" or "[1]" to indicate an active state of the signal. Names ending with a "0" are "active low" signals; names ending with a "1" are "active high" signals. The term "asserted" is used in the descriptions to mean that a signal is driven to its active state. The term "negated" is used in the descriptions to mean that a signal is driven to its inactive state. Hexadecimal (base 16) numbers are denoted with a **0x** prefix; for example, 0x 00A is decimal 10.

## FUNCTIONAL DESCRIPTION


Figure 3-1 is a high-level functional block diagram of the Version 2 3B2 computers (3B2/300, 310, and 400). The following is a list of the major functional areas of Version 2 computers:

- Central Processing Unit (CPU) Microprocessor
- Memory Management Unit (MMU)
- Math Acceleration Unit (MAU) (optional)
- Dual Port Dynamic Random Access Memory (DPDRAM) Subsystem
- Direct Memory Access (DMA) Subsystem
- Input/Output (I/O) Bus
- Feature Card Connectors
- Miscellaneous Status and Control Signals
- Power and Alarm Circuits.



- 1. 32-BIT ADDRESS BUS AND 32-BIT DATA BUS.
- 2: 24-BIT ADDRESS BUS AND 16-BIT DATA BUS.
- 3. 32-BIT DATA BUS PLUS BYTE PARITY.
- 4. 3B2/300 AND 310 COMPUTERS HAVE 4 SLOTS. 3B2/400 COMPUTER HAS 12 SLOTS.
- 5. HARD DISK DRIVE 1 IS MOUNTED IN THE 3B2 COMPUTER CABINET
  - ONLY FOR 3B2/400. FOR 3B2/300 and 310, DRIVE 1 IS MOUNTED IN AN AT&T/XM.

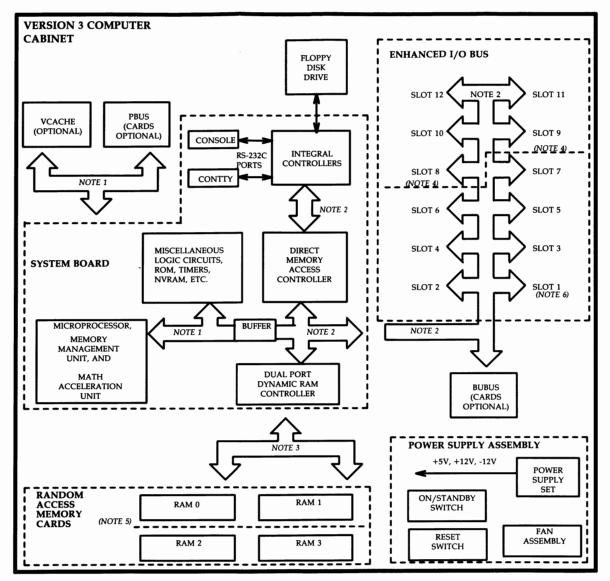
Figure 3-1: 3B2/300/310/400 Computer — High-Level Functional Block Diagram



1. 32-BIT ADDRESS BUS AND 32-BIT DATA BUS.

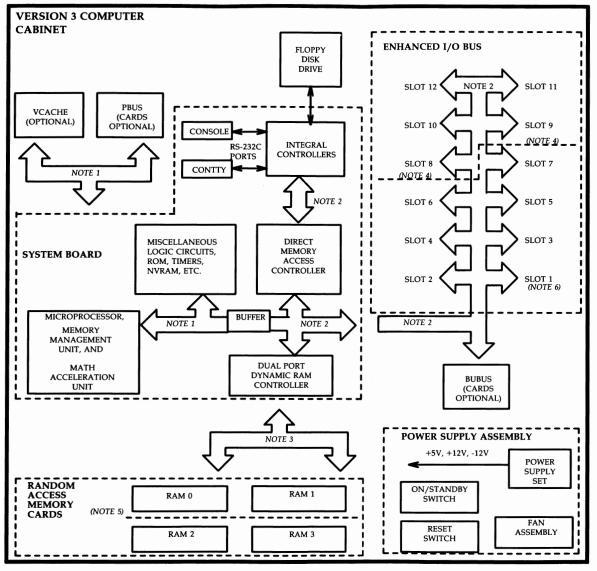
2: 24-BIT ADDRESS BUS AND 16-BIT DATA BUS.

3. 32-BIT DATA BUS PLUS BYTE PARITY.

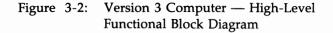

4. 3B2/300 AND 310 COMPUTERS HAVE 4 SLOTS. 3B2/400 COMPUTER HAS 12 SLOTS.

- HARD DISK DRIVE 1 IS MOUNTED IN THE 3B2 COMPUTER CABINET ONLY FOR 3B2/400. FOR 3B2/300 and 310, DRIVE 1 IS MOUNTED IN AN AT&T/XM.

3B2/300/310/400 Computer - High-Level Figure 3-1: Functional Block Diagram


Figure 3-2 is a high-level functional block diagram of the Version 3 3B2 computers (3B2/500, 600, 700, and 1000). The following is a list of the major functional areas of Version 3 computers:

- Central Processing Unit (CPU) Microprocessor
- Memory Management Unit (MMU)
- Math Acceleration Unit (MAU)
- Dual Port Dynamic Random Access Memory (DPDRAM) Subsystem
- Direct Memory Access (DMA) Subsystem
- Enhanced Input/Output (EIO) Bus
- Feature Card Connectors
- Performance Card Connectors
- Miscellaneous Status and Control Signals
- Power and Alarm Circuits.




- 1. UNBUFFERED 32-BIT ADDRESS BUS AND 32-BIT DATA BUS.
- 2. BUFFERED 24-BIT ADDRESS BUS AND 16-BIT DATA BUS.
- 3. 32-BIT DATA BUS PLUS BYTE PARITY.
- 4. 3B2/500 COMPUTER HAS 7 SLOTS. OTHER VERSION 3 COMPUTERS HAVE 12 SLOTS.
- 5. 3B2/500 COMPUTER HAS 2 MEMORY SLOTS. OTHER VERSION 3 COMPUTERS HAVE 4 SLOTS.
- 6. SLOT 1 IS NORMALLY OCCUPIED BY THE SCSI HOST ADAPTER CONNECTED TO THE INTERNAL HARD DISK DRIVE(S) AND CARTRIDGE TAPE DRIVE (IF EQUIPPED).

Figure 3-2: Version 3 Computer — High-Level Functional Block Diagram



- 1. UNBUFFERED 32-BIT ADDRESS BUS AND 32-BIT DATA BUS.
- 2. BUFFERED 24-BIT ADDRESS BUS AND 16-BIT DATA BUS.
- 3. 32-BIT DATA BUS PLUS BYTE PARITY.
- 4. 3B2/500 COMPUTER HAS 7 SLOTS. OTHER VERSION 3 COMPUTERS HAVE 12 SLOTS.
- 5. 3B2/500 COMPUTER HAS 2 MEMORY SLOTS. OTHER VERSION 3 COMPUTERS HAVE 4 SLOTS.
- 6. SLOT 1 IS NORMALLY OCCUPIED BY THE SCSI HOST ADAPTER CONNECTED TO THE
- INTERNAL HARD DISK DRIVE(S) AND CARTRIDGE TAPE DRIVE (IF EQUIPPED).



# **3B2 Computer Address Spectrum**

Figures 3-3 and 3-4 show the 3B2 computer address spectrums for the Version 2 and Version 3 3B2 computers. As shown in Figure 3-3 and 3-4, the Physical Address (PA) scheme internal to the 3B2 computer uses a 27-bit address scheme (PA26—00). The most significant five bits (PA31—27) are not used. These unused bits are negated.

All input/output cards and other devices connected to the DMA Subsystem of the system board [Universal Asynchronous Receiver/Transmitters (UARTS), hard disks, DPDRAM size register, floppy disk, DMA controller] are accessed via the Byte Rotate Unit. The Byte Rotate Unit provides a hardware mechanism to transfer data to/from a 16-bit data bus from/to a 32-bit data bus while preserving byte placement within the word. Each feature card slot is assigned a unique 2-megabyte address range. Address space (2 megabytes per card) is reserved for unimplemented feature card slots 13, 14, and 15.

| VERSION 2 COMPUTER ADDRESS SPECTRUM |                                      |         |                       |
|-------------------------------------|--------------------------------------|---------|-----------------------|
| STARTING<br>ADDRESS                 | DESCRIPTION                          | WIDTH   | SIZE                  |
| 0x 00000000                         | READ ONLY MEMORY (ROM)               | 32 BITS | 64 KILOBYTES (NOTE 1) |
| 0x 00040000                         | MEMORY MANAGEMENT UNIT (MMU)         | —       |                       |
| 0x 00041000                         | TIME-OF-DAY CLOCK                    | 8 BITS  | 16 BYTES              |
| 0x 00042000                         | PROGRAMMABLE INTERVAL TIMER (8253)   | 8 BITS  | 4 BYTES               |
| 0x 00042010                         | CLEAR CSR BIT-6                      | 1 BIT   | 1 BYTE                |
| 0x 00043000                         | NVRAM                                | 4 BITS  | 1 KILONIBBLE          |
| 0x 00044000                         | CONTROL AND STATUS REGISTER (CSR)    | 16 BITS | 2 BYTES (NOTE 2)      |
| 0x 00045000                         | DMA PAGE REGISTER 1 (HARD DISK)      | 8 BITS  | 1 BYTE                |
| 0x 00046000                         | DMA PAGE REGISTER 2 (UART A)         | 8 BITS  | 1 BYTE                |
| 0x 00047000                         | DMA PAGE REGISTER 3 (UART B)         | 8 BITS  | 1 BYTE                |
| 0x 00048000                         | INTEGRAL DMA CONTROLLER (9517)       | 8 BITS  | 16 BYTES              |
| 0x 00049000                         | UARTS (2681)                         | 8 BITS  | 16 BYTES              |
| 0x 00049010                         | CLEAR UDMA INT.                      | 8 BITS  | 1 BYTE                |
| 0x 0004A000                         | INTEGRAL HARD DISK CONTROLLER (2797) | 8 BITS  | 2 BYTES               |
| 0x 0004B000                         | RESERVED                             | —       | —                     |
| 0x 0004C000                         | DPDRAM SIZE REGISTER                 | 8 BITS  | 1 BYTE                |
| 0x 0004D000                         | FLOPPY DISK CONTROLLER (2797)        | 8 BITS  | 4 BYTES               |
| 0x 0004E000                         | DMA PAGE REGISTER 4 (FLOPPY)         | 8 BITS  | 1 BYTE                |
| 0x 0004F000                         | RESERVED                             | —       |                       |
| 0x 00200000                         | FEATURE CARD SLOT 1                  | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 00400000                         | FEATURE CARD SLOT 2                  | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 00600000                         | FEATURE CARD SLOT 3                  | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 00800000                         | FEATURE CARD SLOT 4                  | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 00A00000                         | FEATURE CARD SLOT 5                  | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 00C00000                         | FEATURE CARD SLOT 6                  | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 00E00000                         | FEATURE CARD SLOT 7                  | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 01000000                         | FEATURE CARD SLOT 8                  | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 01200000                         | FEATURE CARD SLOT 9                  | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 01400000                         | FEATURE CARD SLOT 10                 | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 01600000                         | FEATURE CARD SLOT 11                 | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 01800000                         | FEATURE CARD SLOT 12                 | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 01A00000                         | FEATURE CARD SLOT 13                 | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 01C00000                         | FEATURE CARD SLOT 14                 | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 01E00000                         | FEATURE CARD SLOT 15                 | 16 BITS | 2 MEGABYTES (MAXIMUM) |
| 0x 02000000                         | MAIN MEMORY (DPDRAM)                 | 32 BITS | 256 KILOBYTES TO      |
|                                     |                                      |         | 4 MEGABYTES (NOTE 3)  |
|                                     |                                      |         |                       |

1. Size depends on which ROM device is used.

- 2. CSR requires 2 bytes to read, but is bit addressable for writing.
- 3. Size depends on size of memory card (256K/1 M/2 M) and

the number of memory cards (1/2).

LEGEND:

| CSR    | Control and Status Register                  |
|--------|----------------------------------------------|
| DMA    | Direct Memory Access                         |
| DPDRAM | Dual Port Dynamic Random Access Memory       |
| NVRAM  | Nonvolatile Random Access Memory             |
| UARTS  | Universal Asynchronous Receiver/Transmitters |



| VERSION 3 COMPUTER ADDRESS SPECTRUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| STARTING<br>ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SIZE                                                                     |
| 0x         00000000           0x         00040000           0x         00041000           0x         00041000           0x         00041000           0x         00042000           0x         00042000           0x         00045000           0x         00046000           0x         00047000           0x         00048000           0x         00044000           0x         00040000           0x         00600000           0x         00600000           0x         00600000           0x         01200000           0x         01600000           0x         01400000           0x         01400000           0x         01200000           0x         01200000           0x         01200000 | READ ONLY MEMORY [(EP)ROM]<br>FLOPPY CONTROL STATUS REGISTER<br>TIMER<br>NVRAM<br>CONTROL AND STATUS REGISTER (CSR)<br>FLOPPY DMA PAGE REGISTER<br>UARTA DMA PAGE REGISTER<br>UARTB DMA PAGE REGISTER<br>UARTB DMA PAGE REGISTER<br>DMA CONTROLLER (9517)<br>UARTS (2681)<br>FLOPPY CONTROLLER (1793)<br>RESERVED (NOTE 2)<br>FAULT REGISTER 1<br>FAULT REGISTER 2<br>TIME-OF-DAY CLOCK<br>MEMORY MANAGEMENT UNIT (MMU)<br>FEATURE CARD SLOT 1<br>FEATURE CARD SLOT 2<br>FEATURE CARD SLOT 3<br>FEATURE CARD SLOT 3<br>FEATURE CARD SLOT 5<br>FEATURE CARD SLOT 5<br>FEATURE CARD SLOT 7<br>FEATURE CARD SLOT 10<br>FEATURE CARD SLOT 10<br>FEATURE CARD SLOT 11<br>FEATURE CARD SLOT 12<br>RESERVED<br>UBUS CONNECTOR<br>MAIN MEMORY<br>BUBUS CONNECTOR 1 | 32 BITS<br>8 BITS<br>8 BITS<br>32 BITS<br>12 BITS<br>12 BITS<br>12 BITS<br>12 BITS<br>8 BITS<br>8 BITS<br>8 BITS<br>32 BITS<br>32 BITS<br>32 BITS<br>32 BITS<br>4 BITS<br>16 BITS | 128 KILOBYTES<br>1 BYTE<br>                                              |
| 0x 0A000000<br>0x 0E000000<br>0x 12000000<br>0x C0F00000<br>0x C1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BUBUS CONNECTOR 2<br>BUBUS CONNECTOR 3<br>BUBUS CONNECTOR 4<br>HW, SW DEVELOPMENT SYSTEM<br>RESERVED FOR DIAGNOSTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16 BITS<br>16 BITS<br>16 BITS<br>—<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64 MEGABYTES<br>64 MEGABYTES<br>64 MEGABYTES<br>1 MEGABYTE<br>1 MEGABYTE |

- 1. All the bits are settable and clearable by software.
- 2. Accessing this address returns neither DTACK nor SRDY signals.
- 3. 64 megabytes maximum. Actual size depends on size of memory
- card (2 M/4 M/16 M) and the number of memory cards (1/2/3/4).

LEGEND:

| BUBUS | Buffered Microbus                            |
|-------|----------------------------------------------|
| CSR   | Control and Status Register                  |
| DMA   | Direct Memory Access                         |
| NVRAM | Nonvolatile Random Access Memory             |
| UARTS | Universal Asynchronous Receiver/Transmitters |
| UBUS  | Unbuffered Microbus                          |
|       |                                              |



# Input/Output Bus System

## Input/Output Bus System Features

The Input/Output (I/O) bus system is an asynchronous, nonmultiplexed bus providing a flexible interface for feature cards. The system can directly address up to 16 megabytes on this bus via 24-bit address and either 8-bit or 16-bit data transfers. Other features include three interrupt priority levels and a single level of "distributed" bus arbitration.

The I/O bus system also supports a special Multiple Access Transfer Cycle in which more than one data transfer (bus access) can be made by the same feature card in a single bus cycle. After a feature card receives a bus acknowledge signal, the feature card can hold the I/O bus for no more than 4 microseconds. Multiple accesses are executed without bus arbitration and are thus a high performance consideration. A maximum of 4 data half-words can be transferred per one arbitration.

The Version 3 computers have an enhanced I/O bus. This bus supports sequential access—a subset of multiple word transfers. Up to 32 data transfers may be done simultaneously using the sequential access mode.

#### **Peripheral Controllers**

Peripheral controllers are feature cards connected to the system board via the I/O bus. There are two types of peripheral controller feature cards that connect to the I/O bus: programmed and intelligent. Feature cards requiring only power and ground connections are passive cards. Intelligent controllers can use a Bus Abort Feature (BAF) to prevent the INTEL 80186 Microprocessor from being locked up while waiting for an I/O bus request to be acknowledged. Not all intelligent controllers require the use of the BAF.

**Programmed Controllers.** Programmed controllers are feature cards containing programmable registers that can be written or read by the system board CPU. These feature cards have limited "on card" intelligence and operate in response to programming by the system board CPU. Programmed controllers are generally slave devices with respect to the system board CPU. After programming by the system board CPU, these types of feature cards can for example be a bus master.

Feature cards functioning as programmed controllers can provide the following:

- An 8- or 16-bit Feature Card Identification (ID) Code register. This register uniquely identifies the card and is intended to be read by the system board. The size of the register is determined by the word size of the feature card. The 8-bit feature cards use an 8-bit ID code register; 16-bit feature cards use a 16-bit ID code register.
- An optional feature card control register of up to 16 bits.
- An optional feature card status register of up to 16 bits.
- An optional 8-bit interrupt vector register. Any feature card with the capability to interrupt the system board CPU responds with a vector when the interrupt request is acknowledged.

Intelligent Controllers. Intelligent controllers are feature cards containing one or more microprocessors that are capable of autonomously executing programs stored on the cards. The use of intelligent feature cards is a major factor in achieving the high performance capabilities of a 3B2 computer. Intelligent feature cards use request and completion queues to communicate with the system board CPU. Most of the 3B2 computer feature cards are intelligent controllers. The Common Input/Output (CIO) architecture of intelligent controllers includes the following:

- Central Processing Unit (CPU)
- Input/Output (I/O) Bus Control
- Identification/Vector (ID/Vector) Register
- Page Register
- Peripheral Control and Status Register (PCSR)
- Onboard Random Access Memory (RAM)
- Onboard Read Only Memory (ROM)
- Miscellaneous Support Logic.

**Bus Abort Feature.** The Bus Abort Feature (BAF) is a defensive measure against the loss of data from a serial port. Since memory is a shared resource, the peripheral controller can be prevented from rapidly accessing the I/O bus. When a peripheral controller can not rapidly access the I/O bus, serial port data can be lost. To prevent this, intelligent controllers can abort the bus request cycle and resume autonomous processing.

Intelligent controllers use an INTEL 80186 Microprocessor. Timer 1 of the 80186 Microprocessor is used as a bus timer. This timer is reset at the start of each bus cycle. If a bus access cycle fails to complete within the programmed interval, the timer forces a ready condition to the 80186 Microprocessor. This sets the Peripheral Control and Status Register bit 6 (internal timer interrupt).

The 80186 Microprocessor bus cycle is aborted by the bus time-out; however, the bus request is still active. Therefore, the I/O bus cycle continues after the bus time-out until a bus acknowledge is received. Following the bus time-out, the 80186 Microprocessor does not use the I/O bus until the "dummy" read cycle is complete. The "dummy" read cycle is executed in response to the bus acknowledge for the pending bus request.

# **Input/Output Bus Structure**

The system board CPU I/O bus consists of a 32-bit address bus, a 32-bit data bus, and a control bus. The I/O bus as applied to the feature card slots is an asynchronous, nonmultiplexed bus consisting of a 16-bit data, 24-bit address leads, and miscellaneous control and status leads. Figure 3-5 summarizes the I/O bus signals.

| INPUT/OUTPUT BUS SIGNALS                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME                                                                                                                                                                                                                                                                                                                                               | SIGNAL                                                                                                                                                                                                                                          | SOURCE                                                                                                                                                                                                                                                                                                               | ТҮРЕ                                                                                                                                                                                                                                                                                |
| PHYSICAL ADDRESS<br>PHYSICAL ADDRESS STROBE<br>DATA<br>DATA STROBES<br>READ/WRITE<br>DATA ACKNOWLEDGE<br>DATA WIDTH<br>FEATURE CARD FAILURE<br>BUS FAULT<br>BUS REQUEST<br>BUS ACKNOWLEDGE<br>BUS BUSY<br>INTERRUPT REQUEST<br>INTERRUPT ACKNOWLEDGE<br>FEATURE CARD SELECT<br>SYSTEM RESET<br>SYSTEM RESET<br>SYSTEM RESET<br>F12V<br>-12V<br>+5V | PPA23—00[1]<br>PPAS[0]<br>PD15—00[1]<br>PDS1—0[0]<br>PR[1]W[0]<br>PDTACK[0]<br>PSIZE16[0]<br>PFAIL[0]<br>PFAIL[0]<br>PBRQ[0]<br>PBACK[0]<br>PBUSY[0]<br>PINT2—0[0]<br>PINT2—0[0]<br>PCS12—01[0]<br>SYSRST[0]<br>RQRST[0]<br>V12P<br>V12N<br>VCC | BIDIRECTIONAL<br>BIDIRECTIONAL<br>BIDIRECTIONAL<br>BIDIRECTIONAL<br>BIDIRECTIONAL<br>BIDIRECTIONAL<br>FEATURE CARD<br>BIDIRECTIONAL<br>FEATURE CARD<br>BIDIRECTIONAL<br>FEATURE CARD<br>SYSTEM BOARD<br>SYSTEM BOARD<br>SYSTEM BOARD<br>SYSTEM BOARD<br>SYSTEM BOARD<br>SYSTEM BOARD<br>SYSTEM BOARD<br>SYSTEM BOARD | TRI-STATE<br>TRI-STATE<br>TRI-STATE<br>TRI-STATE<br>OPEN COLLECTOR<br>OPEN COLLECTOR<br>OPEN COLLECTOR<br>OPEN COLLECTOR<br>OPEN COLLECTOR<br>TOTEM POLE<br>TRI-STATE<br>OPEN COLLECTOR<br>TOTEM POLE<br>TOTEM POLE<br>TOTEM POLE<br>TOTEM POLE<br>OPEN COLLECTOR<br>POWER<br>POWER |
| BACKUP BATTERY<br>GROUND                                                                                                                                                                                                                                                                                                                           | VBKUP<br>GRD                                                                                                                                                                                                                                    | SYSTEM BOARD<br>SYSTEM BOARD                                                                                                                                                                                                                                                                                         | POWER<br>GROUND                                                                                                                                                                                                                                                                     |

Figure 3-5: Input/Output Bus Signals

Address Bus Signals—PPA23-00[1]. The 24 bidirectional (tri-state) address leads provide a maximum direct address capability of 16 megabytes.

**Note:** For Version 2 computers, the two-most significant address bus bits (bits 23 and 22) are reserved and must always be equal to logical signal zero by all peripherals. Therefore, the actual peripheral address capability used is 4 megabytes.

Data Bus Signals—PD15-00[1]. The 16 bidirectional (tri-state) data leads provide for byte or half-word data transfer.

**Control Bus Signals.** The Control Bus signals include status, strobes, feature card select, interrupts, error detection, and reset signals. The status signals identify the type of bus cycle (read or write) and the word width (8 or 16 bits) of a feature card. Strobes are used to control the transfer of data.

- **PBUSY[0]** The Peripheral Bus Busy (PBUSY) signal is asserted by a feature card after receipt of a bus acknowledge (PBACKIO). PBUSY is asserted during the entire bus cycle to notify all other feature cards that the I/O bus is being used. PBUSY allows multiple accesses by the same bus master without relinquishing control of the bus between data transfers. The maximum of four transfers in one 8 microseconds I/O bus cycle is allowed.
- **PCS12—01[0]** The Peripheral Card (Chip) Select (PCS) signals are asserted by the system board to enable (select) the feature cards. For the 3B2/400, 600, 700, and 1000 computers, 12 peripheral chip selects (PCS12—01) are used. For the 3B2/500 computer, 7 peripheral chip selects (PCS07—01) are used. For the 3B2/300 and 310 computers, only 4 peripheral chip selects (PCS04—01) are used. PCS00[0] is decoded but has no connection.
- **PDS1—0[0]** The Peripheral Data Strobe (PDS) signals are asserted by the bus master to select which bytes of the 16-bit data bus are to be enabled. PDS0[1] enables byte 0 (data bits 15—08); PDS1[1] enables byte 1 (data bits 07—00).
- **PDTACK[0]** The Peripheral Data Acknowledge (PDTACK) signal is asserted by the bus slave to acknowledge the receipt of valid write data or to indicate the presence of valid read data on the I/O bus. A feature card that has requested a system board CPU interrupt also asserts the PDTACK in response to the Peripheral Interrupt Acknowledge (PIAK) asserted by the system board.
- **PPAS[0]** The Peripheral Physical Address Strobe (PPAS) is asserted by the bus master to indicate the presence of a valid physical address on the I/O bus.
- **PR[1]W[0]** The Peripheral Read/Write (PR[1]W[0]) signal is asserted or negated by the bus master to indicate the type of access (read or write). A logic 1 indicates a read operation; a logic 0 indicates a write operation.
- **PSIZE16[0]** The PSIZE16 signal specifies the width of the bus interface for the feature card as either 16 bits (logic 0) or 8 bits wide (logic 1). For 8-bit peripherals, data will be transferred on data bits 07—00.
- **RQRST[0]** The Request System Reset (RQRST) signal is asserted by a feature card to request a system reset.
- **SYSRST[0]** The System Reset (SYSRST) signal is asserted in response to a manual reset, system powerup sequence, a software request, or the RQRST[0] signal.
- **PBRQ[0]** The Peripheral Bus Request (PBRQ) is asserted by a feature card to gain access to the I/O bus. The bus arbitration circuits on the system board handle the bus request.

# PBACKI[0]/PBACKO[0]

The system board asserts a Peripheral Bus Acknowledge Output (PBACKO) signal to acknowledge a feature card bus request. This signal is daisy-chained to all

feature cards. The Peripheral Bus Acknowledge Input (PBACKI) enters a feature card. The PBACKO exits a feature card. The first feature card in the chain (feature card slot 1 to n) wanting bus access inhibits the propagation of the acknowledge signal and asserts a PBUSY[0] signal.

**PINT2—0[0]** Three peripheral interrupt signals are logically OR'ed from all input/output bus devices (PINT2—0[0]). A feature card connects to only one of these three interrupts. PINT2 is the highest priority of the three interrupts. A feature card asserts the appropriate PINT signal to request an interruption of the system board CPU (request for service). PINT2 is reserved for use by AT&T designs.

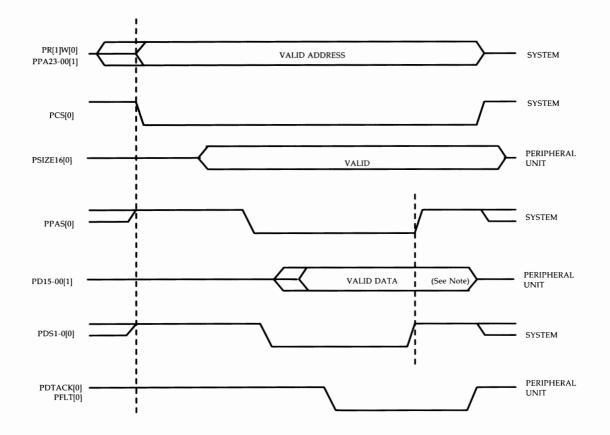
# PIAKI2-0[0]/PIAKO2-0[0]

The system board CPU asserts the appropriate Peripheral Interrupt Acknowledge (PIAK2—0[0]) signal to respond to the receipt of a Peripheral Interrupt (PINT) request. The acknowledge signals are daisy-chained through all feature cards. The Peripheral Interrupt Acknowledge Input (PIAKI) signal enters a feature card. The Peripheral Interrupt Acknowledge Output (PIAKO) signal exits a feature card. A feature card requesting an interrupt of the system board CPU inhibits the propagation of the interrupt acknowledge signal and asserts a Peripheral Data Acknowledge (PDTACK[0]) signal during the normal bus protocol operation.

- **PFAIL[0]** The Peripheral Fail (PFAIL) signal is asserted by a feature card to report a failure on the card.
- **PFLT[0]** The Peripheral Fault (PFLT) signal is asserted by the bus slave to report the detection of an erroneous condition during an I/O bus cycle (for example, bus time-out).

**MOS Data Bus.** The ED-4C637-30 system board buffers the lower 8 bits of the I/O data bus (D07—00[1]) to create an MOS Data Bus. The MOS Data Bus serves the low power devices that cannot drive the TTL inputs over the entire data bus. The MOS Data Bus serves the following:

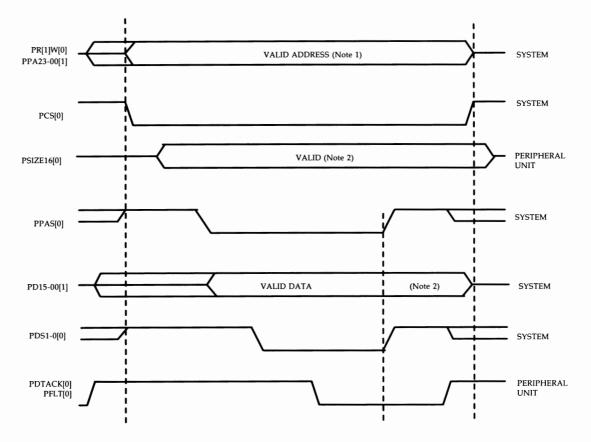
- Read Only Memory (ROM)
- Timers
- Time-of-Day (TOD) Clock
- Nonvolatile Random Access Memory (NVRAM).


The ROM is an exception to the other devices connected to the MOS Data Bus. The ROM also connects to the data bus bits 31—08; however, only data bus bits 07—00 are connected via the MOS Data Bus (buffered).

# **Data Transfers**

Data transfers can be categorized into the following operations:

- Main memory read operation by a feature card
- Main memory write operation by a feature card
- Feature card read operation by the system board
- Feature card write operation by the system board.


**System Board Peripheral Controller Read Operation.** Figure 3-6 shows the system board peripheral controller read operation. A system board CPU read operation of a peripheral controller (feature card) starts with the Peripheral Read/Write signal (PR1W0) (Read=1), Peripheral Physical Address signals (PPA23-00[1]), and the Peripheral Card (Chip) Select signal (PCS) occurring simultaneously. The selected feature card sends the PSIZE16[0] signal to define its data width (8 bits=1, 16 bits=0) in response to the PCS[0] signal. The system board CPU sends the Physical Address Strobe (PPAS[0]) to the feature card when the address lines (PPA23-00[1]) are stable. The Peripheral Data Strobes (PDS01-00[0]) are sent to the feature card to select the data byte(s) to be returned during the data bus transaction. The feature card sends the data via the Peripheral Data bus (PD15-00[1] for 16-bit peripherals or PD07-00[1] for 8-bit peripherals) and sends the Peripheral Data Transfer Acknowledge (PDTACK[0]) signal after a minimum data setup time. The system board relinquishes the bus by driving the address and data strobes inactive (high=1) and then tri-stating all of its I/O bus signals. The feature card relinquishes the bus when it sees the inactive address and data strobes.



Note: Data is valid at system board for at least 20 nanoseconds before PDTACK[0].

Figure 3-6: System Board Peripheral Controller Read Operation

**System Board Peripheral Controller Write Operation**. Figure 3-7 shows the system board peripheral controller write operation. A system board CPU write operation of a peripheral controller (feature card) starts with the Peripheral Read/Write signal (PR1W0) (Write=0), Peripheral Physical Address signals (PPA23-00[1]), and the Peripheral Card (Chip) Select signal (PCS[0]) occurring simultaneously. The selected feature card sends the PSIZE16[0] signal to define its data width (8 bits=1, 16 bits=0) in response to the PCS[0] signal. The system board CPU sends the Physical Address Strobe (PPAS[0]) to the feature card when the address lines (PPA23-00[1]) are stable. The system board CPU puts the data to be written to the feature card on the Peripheral Data bus (PD15-00[1]). The Peripheral Data Strobes (PDS01-00[0]) are sent to the feature card to indicate which data byte(s) were placed on the 16-bit data bus. The feature card sends the Peripheral Data Transfer Acknowledge (PDTACK[0]) signal after getting the write data from the data bus. As with a read operation, the system board releases the bus after receiving the PDTACK[0] signal by driving the strobes inactive and tri-stating the bus. The feature card relinquishes the bus when it sees the inactive (high=1) strobes.



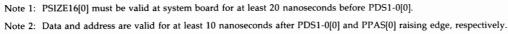



Figure 3-7: System Board Peripheral Controller Write Operation

**Peripheral Controller Main Memory Read Operation.** Figure 3-8 shows the peripheral controller main memory read operation. A main memory read by a peripheral controller (feature card) starts with the feature card asserting an I/O bus access request (PBRQ[0]). When the feature card receives the Peripheral Bus Acknowledge (PBACK[0]), the feature card asserts the Peripheral Bus Busy (PBUSY[0]) signal. The feature card gates the following signals onto the I/O bus to start the data transfer:

- Physical Address (PA23—00[1])
- Peripheral Read/Write (PR[1]W[0]) (1 for read operation)
- Peripheral Size (PSIZE16[0]).

When the address and control signals are stable, the Peripheral Physical Address Strobe (PPAS[0]) and Peripheral Data Strobes (PDS1—0[0]) are asserted. The PBRQ is negated after the data transfer operation has started (following assertion of the PPAS and negation of PBACK). The assertion of the Peripheral Data Strobes causes the main memory to gate the read data onto the I/O bus. When the read data is stable, the main memory asserts the Peripheral Data Acknowledge (PDTACK[0]) signal and the feature card latches the data. The feature card negates the address, strobes, and bus busy signals and then tri-states the I/O bus. The main memory control negates the PDTACK signal and the data when the data strobes are removed.

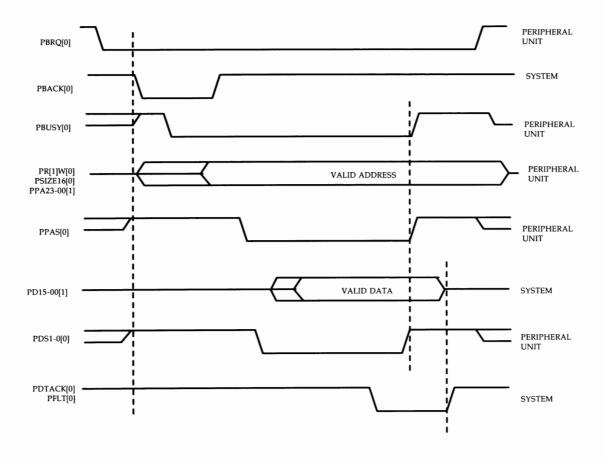



Figure 3-8: Peripheral Controller Main Memory Read Operation

**Peripheral Controller Main Memory Write Operation.** Figure 3-9 shows the peripheral controller main memory write operation. A main memory write by a peripheral controller (feature card) starts with the feature card asserting an I/O bus access request (PBRQ[0]). When the feature card receives the Peripheral Bus Acknowledge (PBACK[0]), the feature card asserts the Peripheral Bus Busy (PBUSY[0]) signal. The feature card gates the following signals onto the I/O bus to start the data transfer:

- Physical Address (PA23—00[1])
- Peripheral Read/Write (PR[1]W[0]) (0 for write operation)
- Peripheral Size (PSIZE16[0]).

When the address and control signals are stable, the Peripheral Physical Address Strobe (PPAS[0]) and Peripheral Data Strobes (PDS1—0[0]) are asserted. The PBRQ is negated after the data transfer operation has started (following assertion of the PPAS and negation of PBACK). The peripheral controller gates the write data onto the I/O bus Peripheral Data lines (PD15-00[1]). When the data is stable, the peripheral controller asserts the appropriate Peripheral Data Strobe(s). Then, the main memory latches the data and asserts the Peripheral Data Acknowledge (PDTACK[0]) signal. The feature card negates the strobes and bus busy signals and then tri-states the I/O bus. The main memory control negates the PDTACK signal when the data strobes are removed.

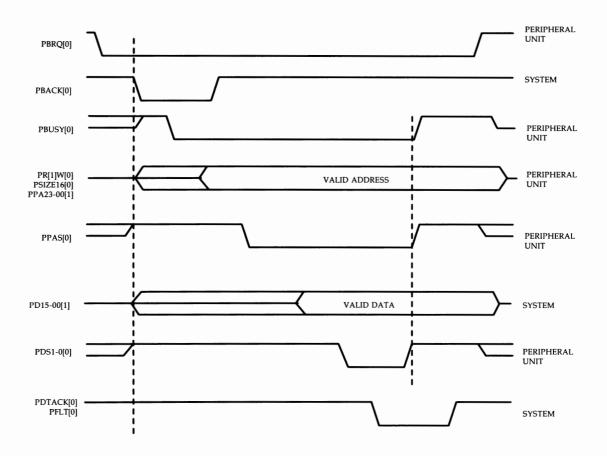



Figure 3-9: Peripheral Controller Main Memory Write Operation

## **Bus Arbitration**

The main memory has two ports on the system board. One port is reserved for the system board (main) CPU. The other port is for the I/O bus. Access to the main memory is controlled by arbitration logic on the system board. This logic also handles the periodic refresh of the Dynamic Random Access Memory (DRAM). The arbitration logic prioritizes bus requests depending on the request source. The bus arbitration priorities are listed below:

- Memory refresh operation (highest priority)
- CPU to main memory interlock requests
- Integral floppy to main memory requests
- CPU to buffered microbus requests (includes CPU to memory)
- Buffered microbus to memory requests and feature card to memory requests (equal, rotating priority).

Any feature card can be the I/O bus master. Feature cards can only request access to the I/O bus for reading or writing main memory. A feature card requests other types of service (other than bus resources) from the system board CPU via an interrupt request. A typical scenario of how the feature card gains I/O bus access is as follows:

A feature card requests I/O bus access by asserting the Peripheral Bus Request (PBRQ[0]) signal. The PBRQ signal can only be asserted by a feature card if PBRQ is first inactive for a minimum of 80 nanoseconds. This delay provides a window sufficient for all feature cards to detect an inactive PBRQ. Similarly, the arbiter delays the assertion of the Peripheral Bus Acknowledge (PBACK[0]) signal for approximately 200 nanoseconds to provide enough time for all interested feature cards to request bus access and inhibit the Peripheral Bus Acknowledge (PBACK[0]) signal propagation. The PBACK[0] is daisy-chained through all feature cards. PBACKI[0] refers to the input acknowledge signal to a feature card. PBACKO[0] refers to the output acknowledge signal from a feature card. A feature card requesting bus access has 200 nanoseconds to block the PBACKI[0] from propagating to PBACKO[0] if the feature card wants to access the I/O bus. The feature card also asserts the Peripheral Bus Busy (PBUSY[0]) for the duration of the bus cycle. The PBACK signal is negated when the system board detects the PBUSY. The PBUSY signal notifies other feature cards that the I/O bus is in use.

When multiple feature cards request I/O bus access, the feature card physically closest to the system board has the first access. The feature card bus access priority is determined by the feature card location on the bus. Feature card slot 1 has the first access; feature card slot 12 has the last access. Bus access is shared in this sequence. Once a feature card slot has accessed the bus, it cannot regain bus access until all other slots requesting service have been accessed in sequence from 1 through 12.

For Version 3 computers, the buffered microbus slots have equal, rotating priority with the I/O bus slots. That is, if buffered microbus slot 0 has the bus now, I/O bus would have it next, followed by buffered microbus slot 1, I/O bus, buffered microbus slot 2, etc.

## **Multiple Input/Output Bus Accesses**

More than one data transfer (bus access) can be done by the same feature card in one bus cycle. Multiple bus accesses are done without the need for additional bus arbitration. This feature is only applicable to feature cards; the system board cannot do multiple accesses on the I/O bus.

The Peripheral Bus Busy (PBUSY[0]) signal asserted by the feature card enables the feature card to maintain control of the I/O bus. The feature card can perform a maximum of four transfers without negating the PBUSY signal.

## Input/Output Bus Interrupts

Three Peripheral Interrupt signals are logically OR'ed from all I/O bus devices (PINT2—0[0]). Three Peripheral Interrupt Acknowledge (PIAK) signals are daisy-chained through all I/O bus devices. PIAKI02—0[0] refers to the input acknowledge signal to a feature card. PIAKO02—0[0] refers to the output acknowledge signal from a feature card.

A feature card connects to only one of these three interrupt levels. PINT2[0] is the highest priority interrupt of these three interrupts. Peripheral controllers (feature cards) request service from the system board CPU by asserting a Peripheral Interrupt. The system board CPU acknowledges the request for service by sending a Peripheral Interrupt Acknowledge Input (PIAK) signal corresponding to the level of the peripheral interrupt being serviced.

The feature card requesting the interrupt responds to the PIAK by returning a vector and preventing the acknowledge signal from propagating further down the chain by holding PIAKO inactive. The acknowledged feature card then asserts a Peripheral Data Acknowledge (PDTACK[0]) signal to indicate a valid read of the I/O bus. The System Board CPU negates the PIAK in response to the PDTACK.

# **Error Detection**

Two I/O bus signals are used for fault detection: Peripheral Fail (PFAIL[0]) and Peripheral Fault (PFLT[0]).

# The PFAIL[0] signal is common to all feature cards. The signal is sent to report a card failure of any kind to the system.

The PFLT[0] signal is sent during a bus transaction by the slave when an erroneous condition, such as a bus time-out, is detected.

# Self-Configuration

The self-configuration feature automatically rebuilds the operating system following changes in the Equipped Device Table (EDT) when the system is powered up or rebooted. Figure 3-10 shows the powerup sequence involving self-configuration. Figure 3-11 shows the manual boot sequence involving self-configuration.

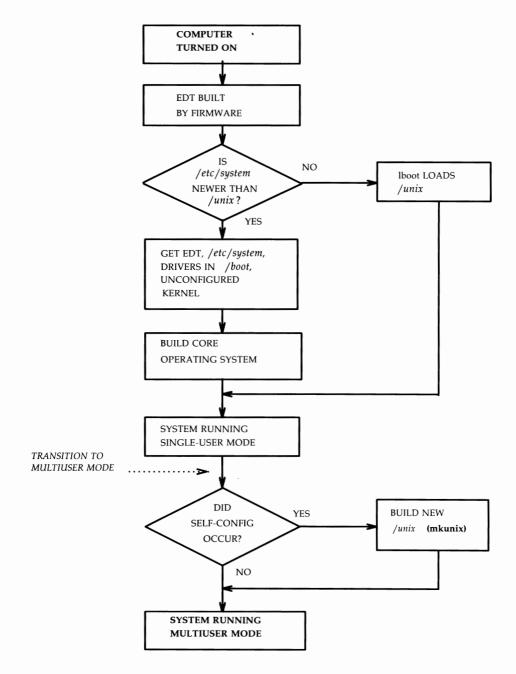



Figure 3-10: Self-Configuration — Powerup Sequence

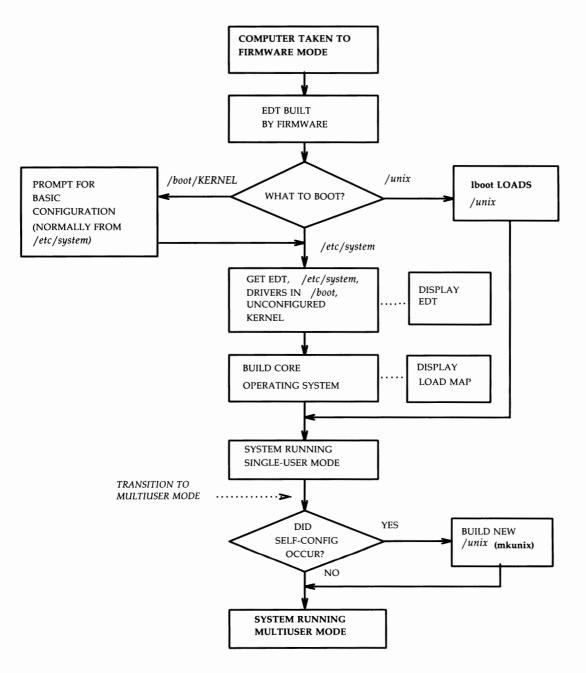



Figure 3-11: Self-Configuration - Manual Boot Sequence

Self-configuration is done by a combination of hardware, firmware, and software supplied functions. Figure 3-12 shows the self-configuration process. This process is also called auto-configuration. The self-configuration process begins with firmware examining the hardware and constructing an EDT in memory. The EDT contains information about the equipped devices. The firmware loads the **mboot** program from the boot block of the designated device into memory and executes the program. The **mboot** loads the **lboot** program from the boot device into memory and starts it running.

| /unix        | No reconfiguration is done if the date on $/unix$ is newer than the date on $/etc/system$ . A preconfigured kernel is loaded into memory and executed. This boot is faster than the self-configuration process.                                                      |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /etc/system  | The kernel is reconfigured when the system description file is booted.                                                                                                                                                                                               |
| /boot/KERNEL | Booting the <i>/boot/KERNEL</i> file is similar to booting <i>/etc/system</i> except no drivers are configured and the process is interactive. During the boot process you are asked to supply (input) information normally provided by the <i>/etc/system</i> file. |

Once the **lboot** program has examined the EDT and */etc/system* file, the proper drivers in the */boot* directory are included into the kernel. The load map of the new kernel is displayed when */etc/system* is booted. When the fully configured kernel is built in memory, the **lboot** program jumps to the starting address of the kernel.

When the operating system transitions to multiuser mode, a check is made to see if the system auto-configured. This check is done by the **/etc/ckauto** command in the */etc/rc.d/autoconfig* file. The core (memory) image of */unix* is copied to */unix* by **/etc/mkunix** when self-configuration occurs. The device nodes are automatically modified to match the hardware configuration as a function of each device driver.

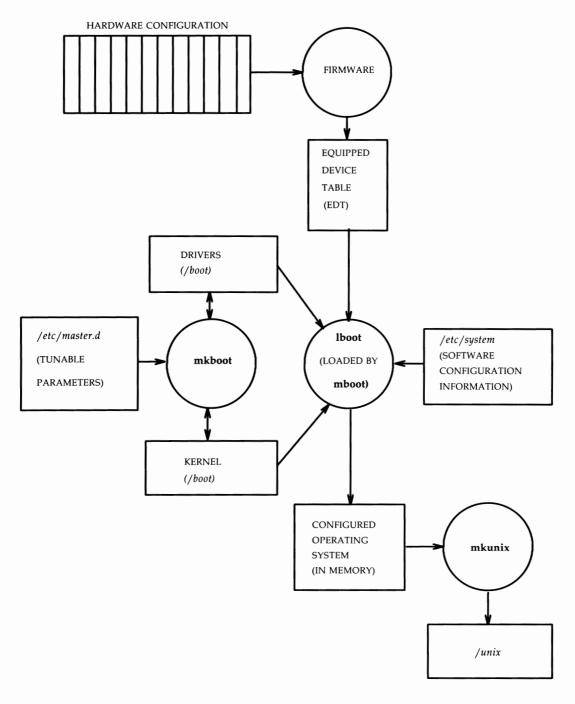



Figure 3-12: Self-Configuration Process

# SYSTEM BOARDS

The Version 2 3B2 computers have a CM190A/ED-4C637-30 System Board. The Version 3 computers have a CM518A/B/C System Board. The two styles of system boards are discussed in the following sections.

# CM190A/ED-4C637-30 System Board

Figure 3-13 is a functional block diagram of the Version 2 system board. The system board functional description is based primarily on the System Board, ED-4C637-30. Collectively, the 3B2 computer system board features are listed below:

- Central Processing Unit (CPU)
- Memory Management Unit (MMU)
- Math Acceleration Unit (MAU) (not supported on CM190A, optional on ED-4C637-30)
- Address decoding for 15 input/output card chip selects
- Time-of-Day (TOD), periodic, sanity, and bus timers
- 16-bit Control and Status Register (CSR)
- Eight interrupt levels (three levels for feature cards)
- Two RS-232C serial ports with data set control
- Direct Memory Access Controller (DMAC) for integral hard disk, integral floppy disk, and Universal Asynchronous Receiver/Transmitters (UARTs)
- 256 kilobytes to 4 megabytes of Dual Port Dynamic Random Access Memory (DPDRAM) with hardware refresh and per-byte parity
- Supports 8- and 16-bit feature cards
- Power reset of system board and feature cards
- "Soft power" control
- IK by 4-bit Nonvolatile Random Access Memory (NVRAM)
- 3.6 volt DC lithium battery for NVRAM, TOD clock, and feature cards
- Supports dumb, programmed, and intelligent controller (feature) cards
- Supports feature card access of DPDRAM via daisy-chained Direct Memory Access (DMA) arbitration
- Supports programmed to control feature card access
- No option straps required for feature card addresses or interrupt vectors.

Early versions of the system board differ in the physical configuration of the CPU and MMU; however, except for the MAU capability and the system clock rate, the CM190A System Board is functionally equivalent to the System Board, ED-4C637-30. Refer to Chapter 2, Equipment Description, for information on the physical configuration of the CM190A System Board and System Board, ED-4C637-30.

·

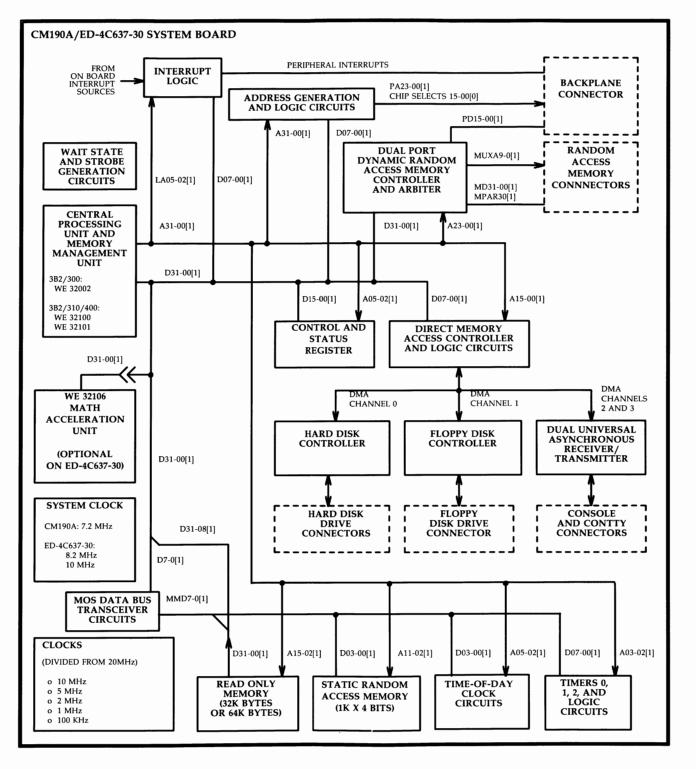



Figure 3-13: Version 2 3B2 Computer System Board — Functional Block Diagram

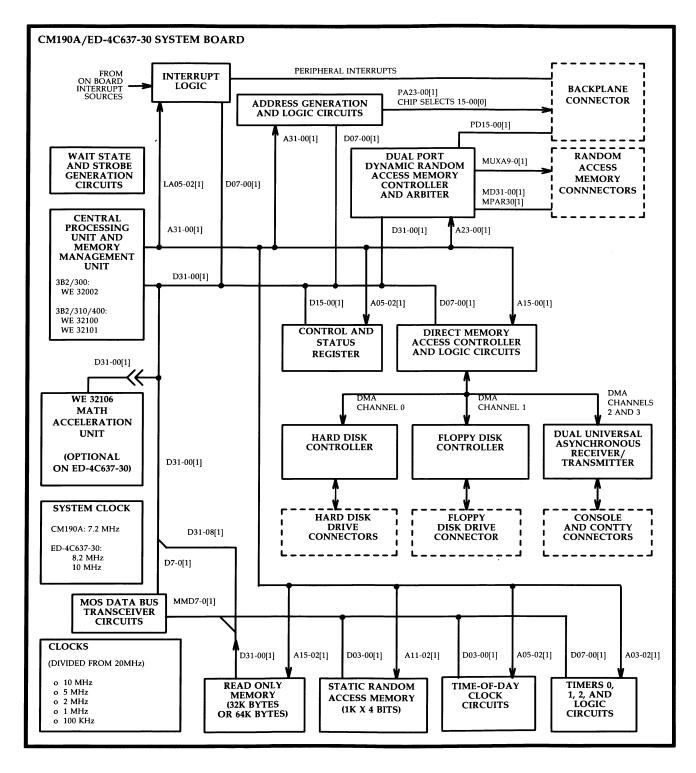



Figure 3-13: Version 2 3B2 Computer System Board — Functional Block Diagram

#### **Central Processing Unit**

The Central Processing Unit (CPU) on System Board, ED-4C637-30 is a WE 32100 Microprocessor. The CPU on a CM190A System Board is a WE 32002 Processor Module with Memory Management Unit. The CPU provides separate 32-bit address and data buses. The 32-bit address bus is used to address memory or peripherals mapped into the system memory space using physical or virtual addresses. Data is read to or written from the CPU over the 32-bit, bidirectional, data bus in either word (32-bit), half-word (16-bit) or byte (8-bit) widths. The CPU automatically expands bytes and half-words to words (32 bits) for processing. Zeros fill the high-order bits for unsigned operations. For signed operations, the sign bit (bit 7 for bytes, bit 15 for half-words) fills the high-order bits.

Instruction execution speed is enhanced by an internal instruction queue and an internal instruction cache. The instruction queue is an 8-byte, First-In-First-Out (FIFO) queue that stores prefetched instructions. The instruction cache is a 64-word cache used to increase the CPU performance by reducing the external memory reads for instruction fetches. When an instruction fetch from memory occurs, the instruction data is placed in both the instruction queue and the instruction cache. If the instruction data is needed again, it is read from the cache rather than from external memory.

Functionally, the system board CPU consists of bus interface control, main controller, fetch unit, and the execute unit circuits. Figure 3-14 shows a functional block diagram of the system board CPU.

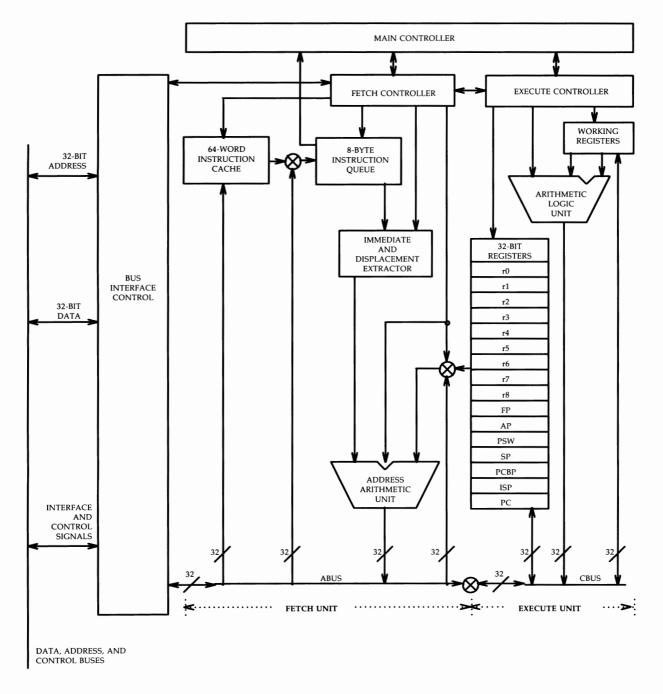



Figure 3-14: System Board CPU — Functional Block Diagram

**Bus Interface Control.** The bus interface control provides all strobes and control signals necessary to interface with peripherals.

**Main Controller.** The main controller is responsible for acquiring and decoding instruction opcodes and directing the action of the fetch and execute controllers as the specified instruction is executed. The main controller also responds to and directs the handling of interrupts and exceptions.

**Fetch Unit.** The fetch unit handles the instruction stream and does memory-based operand accesses. The unit consists of a fetch controller, an instruction cache, and instruction queue, an immediate and displacement extractor, and an Address Arithmetic Unit (AAU).

**Execute Unit.** The execute unit does all arithmetic and logical operations, all shift and rotate operations, and computes condition flags. It consists of an execute controller, sixteen 32-bit registers, working registers, and a 33-bit wide Arithmetic Logic Unit (ALU). The sixteen 32-bit registers are user-accessible. These registers include nine general-purpose registers (r8—r0) and seven dedicated registers (r15—9). All registers except the program counter (r15) can be referenced in all addressing modes. The processor status word (r11), process control block pointer (r13), and the interrupt stack pointer (r14) are privileged registers that can be read at any time, but these registers can only be written when the CPU is in the kernel (highest) execution level. The working registers are used exclusively by the CPU and are not user-accessible. The sixteen 32-bit CPU registers are further defined in the following paragraphs.

### FUNCTIONAL DESCRIPTION

## General Purpose Registers (r8-r0)

Nine general-purpose registers are used for accumulation, addressing, and for temporary data storage. They can be used in any addressing mode by any program (privileged or nonprivileged). Registers r2, r1, and r0 are also implicitly used by certain other data transfer instructions and by certain operating system instructions. Registers r2, r1, and r0 are also used by the CPU as a scratch pad. The contents of registers r8—r3 are part of the error report output by the **/etc/errdump** command.

### Frame Pointer Register (r9)

The Frame Pointer (FP) register (r9) contents point to the beginning address (location) in the stack of a function's local variables. The contents of register r9 are part of the error report output by the **/etc/errdump** command.

#### Argument Pointer Register (r10)

The Argument Pointer (AP) register (r10) contents point to the starting address (location) in the stack where a set of arguments for a function have been pushed. The contents of register r10 are part of the error report output by the **/etc/errdump** command. This register is identified as "oap" in the error report.

#### Processor Status Word Register (r11)

The Processor Status Word (PSW) register (r11) contains information that determines the current execution state of the CPU. The PSW register is kernel level privileged. The contents of PSW register (r11) are part of the error report output by the **/etc/errdump** command. This register is identified as "psw" in the error report. The format of the PSW register is as follows.

|       | PROCESSOR STATUS WORD REGISTER |     |     |    |    |         |    |         |         |         |    |    |         |    |         |
|-------|--------------------------------|-----|-----|----|----|---------|----|---------|---------|---------|----|----|---------|----|---------|
| BITS  | 31 — 26                        | 25  | 24  | 23 | 22 | 21 - 18 | 17 | 16 — 13 | 12 — 11 | 10 — 09 | 08 | 07 | 06 — 03 | 02 | 01 — 00 |
| FIELD | UNUSED                         | CFD | QIE | CD | OE | NZVC    | TE | IPL     | СМ      | РМ      | R  | Ι  | ISC     | ТМ | ET      |

The PSW register fields are defined in the following paragraphs.

**UNUSED** Bits 31—26 are not used and are always cleared [0].

- CFD Bit 25 is the Cache Flush Disable (CFD) bit. When set [1], instruction cache flushing is disabled when a new process is loaded. When clear [0], the contents of the cache are flushed when a new process is loaded.
- **QIE** Bit 24 is the Quick Interrupt Enable (QIE) bit. When set [1], the quick interrupt handling facility is enabled. When clear [0], an interrupt causes a process switch to a full interrupt processing sequence.
- CD Bit 23 is the Cache Disable (CD) bit. When set [1], the instruction cache is not used. When clear [0], the instruction cache is used to store and read text. Normally this bit is clear [0].
- **OE** Bit 22 is the Enable Overflow Trap (OE) bit. When set [1], overflow traps are enabled. This bit is cleared when an overflow trap is detected and processed.

NZVC Bits 21—18 are used to represent four condition codes that reflect the status of the most recent instruction execution. The codes are tested using conditional branching instructions and indicate the following when set.

Bit 21[1] — Negative (N) Bit 20[1] — Zero (Z) Bit 19[1] — Overflow (V) Bit 18[1] — Carry (C)

- **TE** Bit 17 is the Trace Enable (TE) bit. When set [1], the trace function is enabled, causing a trace trap to occur after execution of the next instruction. Debugging and analysis software use the trace facility for single-stepping a program.
- IPL Bits 16—13 are the Interrupt Priority Level (IPL) bits. Bit 13 is the least significant bit. Fifteen interrupt levels are available. An interrupt, unless it is a nonmaskable interrupt, must have a higher priority than the current registered IPL bits in order for the interrupt to be acknowledged. Level 0000 indicated that any of the fifteen interrupt priority levels (0001 through 1111) can interrupt the CPU. A registered IPL of 1111 indicates that no interrupts (except a nonmaskable interrupt) can interrupt the CPU.
- **CM** Bits 12 and 11 are the Current Execution Mode (CM) bits. The code for bits 12 and 11 are as follows.

| BIT 12 | BIT 11 | DESCRIPTION      |  |  |
|--------|--------|------------------|--|--|
| 0      | 0      | KERNEL LEVEL     |  |  |
| 0      | 1      | EXECUTIVE LEVEL  |  |  |
| 1      | 0      | SUPERVISOR LEVEL |  |  |
| 1 1    |        | USER LEVEL       |  |  |

**PM** Bits 10 and 09 are the Previous Execution Mode (PM) bits. The code for bits 10 and 09 are as follows.

| <b>BIT 10</b> | BIT 09 | DÈSCRIPTION      |  |  |
|---------------|--------|------------------|--|--|
| 0             | 0      | KERNEL LEVEL     |  |  |
| 0             | 1      | EXECUTIVE LEVEL  |  |  |
| 1             | 0      | SUPERVISOR LEVEL |  |  |
| 1             | 1      | USER LEVEL       |  |  |

R-I

Bits 08 and 07 are the Register-Initial Context (R-I) bits. These bits control the CPU context switching strategy. The I bit (bit 07) determines if a process executes from initial (I=1) or intermediate saved context (I=0). The R bit (bit 08, read only) determines if the registers of a process should be saved during a process switch (R=1).

ISC

Bits 06—03 are the Internal State Code (ISC) bits. The ISC bits are used to distinguish between exceptions of the same type. This field is used with the Exception Type (ET) field to determine when exception occurred. Traps, exceptions, and faults are equivalent with respect to ISC. Normal exceptions are decoded on a priority scheme if more than one occurs in a particular cycle. Exceptional conditions that reset the PSW flags are indicated by an asterisk (\*) in the following data.

| EXCEPTION<br>TYPE               | EXCEPTION                                                                                                     | ISC BITS<br>6 5 4 3                                                                                                               |
|---------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| NORMAL<br>EXCEPTION<br>(ET=11)  | INTEGER ZERO-DIVIDE<br>TRACE TRAP<br>ILLEGAL OPCODE<br>RESERVED OPCODE                                        | 0 0 0 0*<br>0 0 0 1<br>0 0 1 0<br>0 0 1 1                                                                                         |
|                                 | INVALID DESCRIPTOR<br>EXTERNAL MEMORY FAULT<br>GATE VECTOR FAULT<br>ILLEGAL LEVEL CHANGE                      | 0 1 0 0*<br>0 1 0 1<br>0 1 1 0<br>0 1 1 1                                                                                         |
|                                 | RESERVED DATA TYPE<br>INTEGER OVERFLOW<br>PRIVILEGED OPCODE<br>BREAKPOINT TRAP<br>PRIVILEGED REGISTER         | $ \begin{array}{c} 1 & 0 & 0 & 0^* \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array} $              |
| STACK<br>EXCEPTION<br>(ET=10) • | STACK BOUND<br>STACK FAULT<br>INTERRUPT ID FETCH                                                              | 0000<br>0001<br>0010                                                                                                              |
| PROCESS<br>EXCEPTION<br>(ET=01) | OLD PCB FAULT<br>GATE PCB FAULT<br>NEW PCB FAULT                                                              | 0000<br>0001<br>0100                                                                                                              |
| RESET<br>EXCEPTION<br>(ET=00)   | OLD PCB FAULT<br>SYSTEM DATA<br>INTERRUPT STACK FAULT<br>EXTERNAL RESET<br>NEW PCB FAULT<br>GATE VECTOR FAULT | $\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}$ |

- TMBit 02 is the Trace Mask (TM) bit. This read-only field masks the Trace Enable (TE)<br/>bit for the duration of one instruction to avoid a trace trap. The TM bit is set [1] at<br/>the start of every instruction. The TM bit is cleared [0] as part of every<br/>microsequence that performs a context switch, a return from gate, or when any<br/>fault/interrupt is processed.
- **ET** Bits 01 and 00 are the Exception Type (ET) bits. The ET field is used with the Internal State Code (ISC) field (PSW06—03) to distinguish between exceptions of the same type. The code for bits 01 and 00 are as follows.

| BIT 01 | BIT 00 | DESCRIPTION          |  |  |
|--------|--------|----------------------|--|--|
| 0      | 0      | ON RESET EXCEPTION   |  |  |
| 0      | 1      | ON PROCESS EXCEPTION |  |  |
| 1      | 0      | ON STACK EXCEPTION   |  |  |
| 1      | 1      | ON NORMAL EXCEPTION  |  |  |

## Stack Pointer Register (r12)

The Stack Pointer (SP) register contains the current 32-bit address of the top of the execution stack. This is the memory address of the next place where an item can be stored (pushed) on the stack or the last place where an item was retrieved (popped) from the stack. The SP implements a Last-In-First-Out (LIFO) queue for efficient subroutine linkage and local variable storage. The contents of Stack Pointer register (r12) are part of the error report output by the **/etc/errdump** command. This register is identified as "osp" in the error report.

### Process Control Block Pointer Register (r13)

The Process Control Block Pointer (PCBP) register contains the 32-bit address of the Process Control Block (PCB) for the current process. The PCBP register is kernel level privileged (can only be written when the CPU is in the kernel mode). The PCB contains all switchable process context collected into a compact form for ease of movement between system memory and privileged internal registers. This context consists of the initial and current contents of the processor status word, program counter, and stack pointer; the last contents of registers r0 through r10; boundaries for an execution stack; and block move specifications for the process. The contents of register r13 are part of the error report output by the **/etc/errdump** command. This register is identified as "pcbp" in the error report.

#### Interrupt Stack Pointer Register (r14)

The Interrupt Stack Pointer (ISP) register (r14) contains the 32-bit memory address of the top of the interrupt stack. This stack is used when an interrupt request is received. The interrupt stack is also used by the Call Process (CALLPS) and Return to Process (RETPS) instructions. The ISP register is kernel level privileged. The contents of register r14 are part of the error report output by the **/etc/errdump** command. This register is identified as "isp" in the error report.

# Program Counter Register (r15)

The Program Counter (PC) register (r15) contains the 32-bit memory address of the instruction being executed or, on instruction completion, contains the starting address of the next instruction to be executed. The contents of register r15 are part of the error report output by the **/etc/errdump** command. This register is identified as "opc" in the error report.

#### **Memory Management Unit**

The Memory Management Unit (MMU) on System Board, ED-4C637-30 is a WE 32101 Memory Management Unit. The MMU on a CM190A System Board is part of the WE 32002 CPU Module. Figure 3-15 shows how the MMU connects to the system. Figure 3-16 is a block diagram of the MMU. The internal MMU address spectrum is shown in Figure 3-17. Figure 3-18 shows virtual to physical address translation for contiguous memory segments. Figure 3-19 shows virtual to physical address translation for paged segments.

The MMU manipulates the microprocessor's address space by translating the virtual microprocessor addresses into physical address information. The 32-bit address can access over 4 gigabytes (2<sup>32</sup>) of system memory or peripherals. The MMU also supports demand paged and demand segmented virtual memory. This permits large programs to efficiently use physical memory space.

The MMU divides the virtual address space into four sections. Each of these four sections can be subdivided into as many as 8K segments per section. These segments can be either contiguous or paged and are mapped into the physical address space by the MMU. A contiguous segment can be as large as 128K bytes. A paged segment can contain up to sixty-four 2K byte pages. Contiguous and paged segments start at an address in physical memory that is a multiple of 32 bytes.

Virtual addresses are relative addresses of an active process. Physical addresses are addresses that the main store controller can interpret as the true physical location of the memory. The function of the MMU is to translate virtual addresses to physical addresses. The address of each byte within a 2K byte block (offset) is not translated because the smallest size data block that can be placed in the main store by the MMU is 2K bytes. Therefore, the lower 11 bits of the virtual address spectrum and the lower 11 bits of the physical address spectrum are the same. The MMU stores information describing the physical location of blocks of 2K bytes of process data. This information is called descriptors. The descriptors are stored in the MMU descriptor caches. The MMU uses two descriptor caches: Segment Descriptor Cache (SDC) and Page Descriptor Cache (PDC).

Virtual address space is further described in Appendix A.

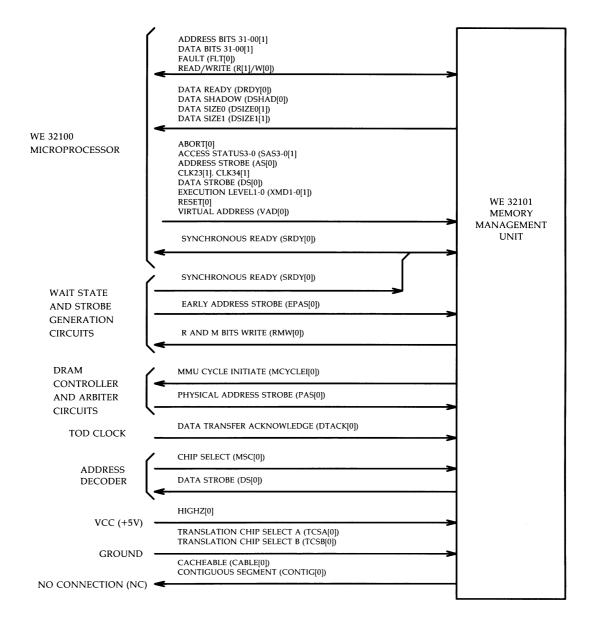
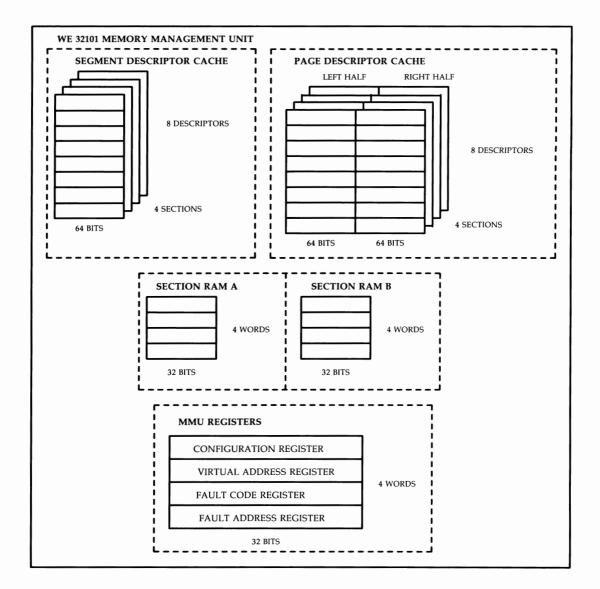
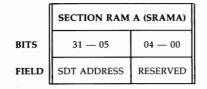



Figure 3-15: WE 32101 MMU Interconnection Diagram





Figure 3-16: WE 32101 MMU Block Diagram

#### FUNCTIONAL DESCRIPTION

Segment Descriptor Cache. The Segment Descriptor Cache (SDC) consists of 32 descriptors. Each descriptor is 64 bits in length and is divided into four parts (sections).

**Page Descriptor Cache.** The Page Descriptor Cache (PDC) consists of sixty-four 64-bit descriptors organized in a 2-way set-associative configuration. The PDC is divided into four parts which correspond to the four sections of virtual memory.

Section Random Access Memories. The MMU contains two Random Access Memory (RAM) areas called Section RAM A (SRAMA) and Section RAM B (SRAMB). Each of these areas contain four 32-bit words. SRAMA bits 31—05 describes the base address of the Segment Descriptor Table (SDT) for each of the four sections of virtual memory. SRAMB bits 22—10 describes the length (number of entries) in the SDT for each of the four sections of virtual memory. The contents of SRAMA (4 words) and SRAMB (4 words) are part of the error report output by the /etc/errdump command. The SRAMA and SRAMB are identified as "srama" and "sramb" in the error report. The format of SRAMA and SRAMB are as follows.



|       | SECTION RAM B (SRAMB) |            |          |  |  |  |
|-------|-----------------------|------------|----------|--|--|--|
| BITS  | 31 — 23               | 22 — 10    | 09 — 00  |  |  |  |
| FIELD | RESERVED              | SDT LENGTH | RESERVED |  |  |  |

MMU Registers. The MMU contains four 32-bit registers:

- Configuration Register (CR)
- Virtual Address Register (VAR)
- Fault Code Register (FLTCR)
- Fault Address Register (FLTAR).

These registers are used to store MMU state information. The contents of FLTAR and FLTCR are part of the error report output by the **/etc/errdump** command. The FLTAR and FLTCR are identified as "fltar" and "fltcr" in the error report.

#### **Configuration Register**

The Configuration Register (CR) is used by the operating system to determine whether or not the Referenced (R) and Modified (M) bits for segment descriptors are to be updated in memory. The format of the CR is as follows.

|       | CONFIGURATION REGISTER |           |            |          |  |  |  |  |
|-------|------------------------|-----------|------------|----------|--|--|--|--|
| BITS  | 31 — 03                | 02        | 01         | 00       |  |  |  |  |
| FIELD | RESERVED               | CACHEABLE | REFERENCED | MODIFIED |  |  |  |  |

The CR fields are defined in the following paragraphs.

**RESERVED** Bits 31–03 are reserved for future use. If read, zeros are returned.

- **CACHEABLE** Bit 02 is the Cacheable bit. The Cacheable (\$) bit determines the state of CABLE during misprocessing and updating of the Referenced and Modified bits. (If \$=0, then CABLE =1; if \$=1, then CABLE =0.)
- **REFERENCED** Bit 01 is the Referenced (R) bit. The R bit in the segment descriptor is set (R=1) when the segment descriptor is brought into the segment descriptor cache as a result of misprocessing. When R=0, the R bit in the segment descriptor is not updated.
- **MODIFIED** Bit 00 is the Modified (M) bit. If M=1, the segment descriptor M bit is updated on the first write to a segment.

## Virtual Address Register

The Virtual Address Register (VAR) contains the virtual address to be translated by the MMU. The VAR is overwritten each time a translation is performed or when the CPU writes to it in the peripheral mode.

### Fault Code Register

The Fault Code Register (FLTCR) records the last fault and operational states in the MMU. The output of the **/etc/errdump** command includes the FLTCR. The format of the FLTCR is as follows.

|       | FAULT CODE REGISTER |                  |               |            |  |  |  |  |
|-------|---------------------|------------------|---------------|------------|--|--|--|--|
| BITS  | 31 — 11             | 10 — 07          | 06 — 05       | 04 — 00    |  |  |  |  |
| FIELD | RESERVED            | ACCESS REQUESTED | ACCESS XLEVEL | FAULT TYPE |  |  |  |  |

The FLTCR fields are defined in the following paragraphs.

**RESERVED** Bits 31—11 are reserved for future use. If read, zeros are returned.

## ACCESS REQUESTED

Bits 10—07 are used to store the type of access the CPU requested when a fault occurred. The decode of bits 10—07 indicate the following.

| BITS 10 — 07 | ACCESS TYPE                           |
|--------------|---------------------------------------|
| 0000         | MOVE TRANSLATED (MT)                  |
| 0001         | SUPPORT PROCESSOR DATA WRITE          |
| 0011         | SUPPORT PROCESSOR DATA FETCH          |
| 0111         | INTERLOCKED READ                      |
| 1000         | ADDRESS FETCH                         |
| 1001         | OPERAND FETCH                         |
| 1010         | WRITE                                 |
| 1100         | INSTRUCTION FETCH AFTER DISCONTINUITY |
| 1110         | INSTRUCTION FETCH                     |
|              |                                       |

# ACCESS XLEVEL

Bits 06 and 05 are used to store the execution level of the requested access when the fault occurred. The decode of bits 06 and 05 indicate the following.

| BIT 06 | BIT 05 | DESCRIPTION      |
|--------|--------|------------------|
| 0      | 0      | KERNEL LEVEL     |
| 0      | 1      | EXECUTIVE LEVEL  |
| 1      | 0      | SUPERVISOR LEVEL |
| 1      | 1      | USER LEVEL       |

# FAULT TYPE

Bits 04—00 are the FAULT TYPE that occurred. The decode of bits 04—00 indicate the following. Unassigned fault type values are not included.

| BITS 04-00 | FAULT NAME                        |
|------------|-----------------------------------|
| 00000      | NO FAULT                          |
| 00001      | MISPROCESSING MEMORY              |
| 00010      | REFERENCE/MODIFIED UPDATE MEMORY  |
| 00011      | SEGMENT DESCRIPTOR TABLE LENGTH   |
| 00100      | PAGE WRITE                        |
| 00101      | PAGE DESCRIPTOR TABLE LENGTH      |
| 00110      | INVALID SEGMENT DESCRIPTOR        |
| 00111      | SEGMENT NOT PRESENT               |
| 01000      | OBJECT TRAP                       |
| 01001      | PAGE DESCRIPTOR TABLE NOT PRESENT |
| 01010      | PAGE NOT PRESENT                  |
| 01011      | TOO MANY INDIRECTIONS             |
| 01101      | ACCESS                            |
| 01110      | SEGMENT OFFSET                    |
| 01111      | ACCESS AND SEGMENT OFFSET         |
| 11111      | DOUBLE PAGE HIT                   |

## Fault Address Register

The Fault Address Register (FLTAR) contains the virtual address that was being processed when the last fault that caused a write to the FLTCR and FLTAR occurred. The contents are changed when the CPU writes to it in the peripheral mode. The output of the **/etc/errdump** command includes the FLTAR.

**Peripheral Mode.** In the peripheral mode of MMU operation, the MMU is accessed as a memory-mapped peripheral. In this mode, internal MMU registers and logic elements are read and write accessible by the system board CPU. All peripheral mode accesses are word (32-bit) accesses. When the system board CPU asserts the MMU Chip Select (MMUCS[0]), the MMU is in the peripheral mode. The internal MMU address spectrum is shown in Figure 3-17. In the peripheral mode, physical address bits 31—00 are interpreted as follows by the MMU.

|       | PERIPHERAL MODE ADDRESS FIELDS |         |          |         |          |  |  |  |
|-------|--------------------------------|---------|----------|---------|----------|--|--|--|
| BITS  | 31 — 12                        | 11 — 08 | 07       | 06 — 02 | 01 — 00  |  |  |  |
| FIELD | RESERVED                       | ENTITY  | RESERVED | INDEX   | RESERVED |  |  |  |

The peripheral mode address fields are defined in the following paragraphs.

**RESERVED** Bits 31—12, 07, 01, and 00 are ignored by the MMU. These bits are negated (treated as zeros).

**ENTITY** Bits 11—08 are used to select the internal MMU circuit (entity) to be accessed. The decode of bits 11—08 is as follows.

| BITS 11 — 08 | SELECTED MMU DEVICE                            |
|--------------|------------------------------------------------|
| 0000         | SEGMENT DESCRIPTOR CACHE BITS 31-00            |
| 0001         | SEGMENT DESCRIPTOR CACHE BITS 63—32            |
| 0010         | RIGHT HALF OF PAGE DESCRIPTOR CACHE BITS 31-00 |
| 0011         | RIGHT HALF OF PAGE DESCRIPTOR CACHE BITS 63-32 |
| 0100         | LEFT HALF OF PAGE DESCRIPTOR CACHE BITS 31-00  |
| 0101         | LEFT HALF OF PAGE DESCRIPTOR CACHE BITS 63-32  |
| 0110         | SECTION RAM A                                  |
| 0111         | SECTION RAM B                                  |
| 1000         | FAULT CODE REGISTER                            |
| 1001         | FAULT ADDRESS REGISTER                         |
| 1010         | CONFIGURATION REGISTER                         |
| 1011         | VIRTUAL ADDRESS REGISTER                       |

INDEX Bits 06—02 are used to index each addressable entity. Bits 06—02 are ignored when registers are accessed. Bits 06—02 are used when segment or page descriptor caches are accessed. Bits 03 and 02 are used for section RAM accesses.

|                       | MMU INTERNAL ADDRESS SPECTRUM                  |  |  |  |  |  |  |
|-----------------------|------------------------------------------------|--|--|--|--|--|--|
| ADDRESS               | DESCRIPTION                                    |  |  |  |  |  |  |
| 0x 000<br>I<br>0x 07C | SEGMENT DESCRIPTOR CACHE BITS 31-00            |  |  |  |  |  |  |
| 0x 100<br>I<br>0x 17C | SEGMENT DESCRIPTOR CACHE BITS 63—32            |  |  |  |  |  |  |
| 0x 200<br>I<br>0x 27C | RIGHT HALF OF PAGE DESCRIPTOR CACHE BITS 31—00 |  |  |  |  |  |  |
| 0x300<br>I<br>0x 37C  | RIGHT HALF OF PAGE DESCRIPTOR CACHE BITS 63—32 |  |  |  |  |  |  |
| 0x 400<br>I<br>0x 47C | LEFT HALF OF PAGE DESCRIPTOR CACHE BITS 31—00  |  |  |  |  |  |  |
| 0x 500<br>I<br>0x 57C | LEFT HALF OF PAGE DESCRIPTOR CACHE BITS 63—32  |  |  |  |  |  |  |
| 0x 600<br>I<br>0x 60C | SECTION RAM A                                  |  |  |  |  |  |  |
| 0x 700<br>I<br>0x 70C | SECTION RAM B                                  |  |  |  |  |  |  |
| 0x 800                | FAULT CODE REGISTER                            |  |  |  |  |  |  |
| 0x 900                | FAULT ADDRESS REGISTER                         |  |  |  |  |  |  |
| 0x A00                | CONFIGURATION REGISTER                         |  |  |  |  |  |  |
| 0x B00                | VIRTUAL ADDRESS REGISTER                       |  |  |  |  |  |  |

Figure 3-17: MMU Internal Address Spectrum

#### **FUNCTIONAL DESCRIPTION**

Virtual to Physical Address Translation for Contiguous Segments. Figure 3-18 shows the translation of a virtual address to a physical address for a contiguous segment of physical memory. The Section Identification (SID) field is used to find the base address of the required Segment Descriptor Table (SDT). The base address of the SDT for each section is stored in the MMU. This base address and the Segment Select (SSL) field are combined to index a Segment Descriptor (SD) within the SDT. This address is added to the Segment Offset (SOT) field to form the required physical address.

Virtual to Physical Address Translation for Paged Segments. Figure 3-19 shows the translation of a virtual address to a physical address for a paged segment of physical memory. The SID field is used to find the base address of the required SDT. The base address of the SDT for each section is stored in the MMU. This base address and the SSL field are combined to index an SD within the SDT. The SD is used as the base address of a Page Descriptor Table (PDT). This PDT address is combined with the Page Select (PSL) field to index a Page Descriptor (PD). The PD contains the starting address of the paged segment that is concatenated with the Page Offset (POT) field to form the required physical address.

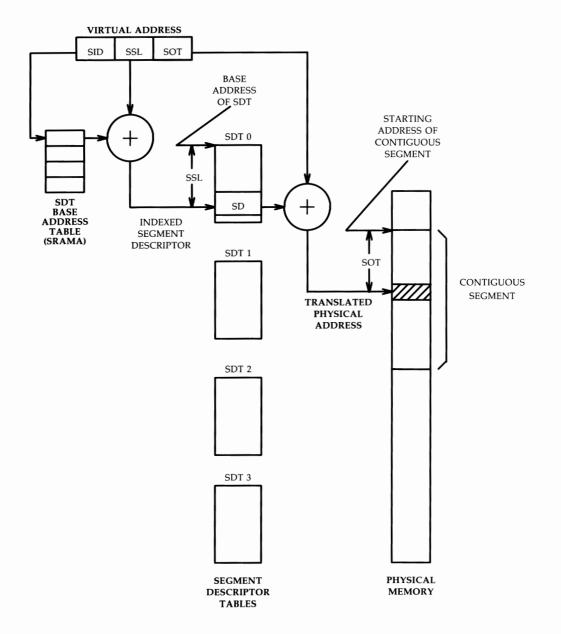



Figure 3-18: Virtual Address to Physical Address Translation for Contiguous Segments

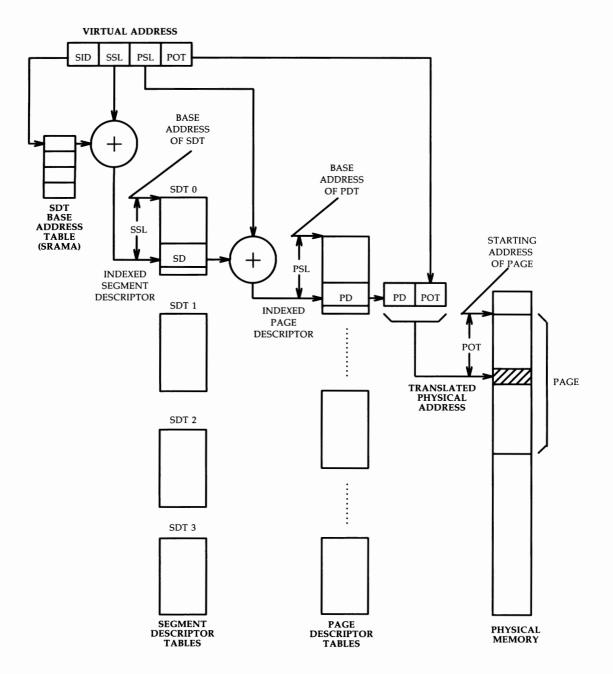



Figure 3-19: Virtual Address to Physical Address Translation for Paged Segments

#### **Math Acceleration Unit (Optional)**

The WE 32106 Math Acceleration Unit (MAU) is used in a coprocessor mode to provide hardware floating point capability for the WE 32100 Microprocessor. The MAU peripheral mode is **not** used in this application; the MAU chip select is held to a logic 1 through a pull-up resistor to VCC. The MAU provides single (32-bit), double (64-bit), and double-extended (80-bit) precision. The single precision format provides an 8-bit exponent and an exponent bias allowing the reciprocal of all normalized numbers to be represented without overflow. Double precision provides an exponent range sufficient for the product of eight 32-bit terms without overflow. Double-extended precision provides a format with a range and precision that is greater than double precision. Double-extended precision numbers lessen the chance of a result being contaminated by excessive round-off error.

The MAU supports add, subtract, multiply, divide, remainder, square root, and compare operations. The operand, result, status, and command information transfers take place over a 32-bit, bidirectional data bus with the WE 32100 Microprocessor. Figure 3-20 is a functional block diagram of the WE 32106 MAU. The WE 32106 is a 100-pin ceramic pin-array package using CMOS technology and operating at 10 MHz.

MAU Registers. The MAU contains the following four register types:

- Auxiliary Status Register
- Operand Registers
- Command Register
- Data Register.

These registers provide status, command, and control for the MAU.

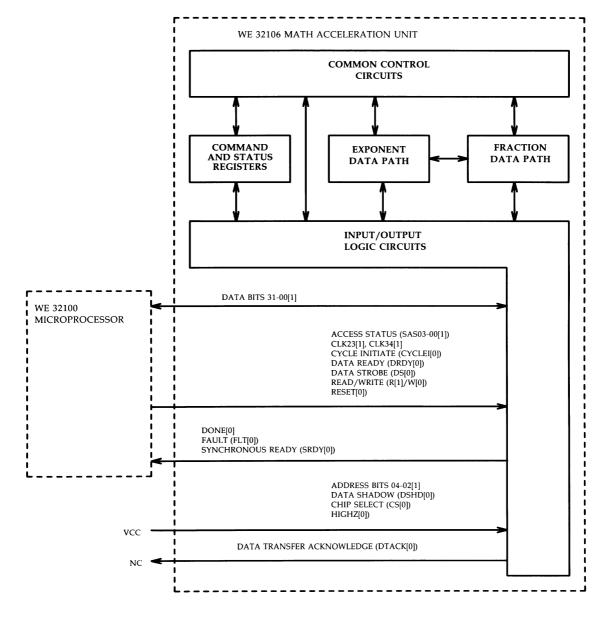



Figure 3-20: WE 32106 Math Acceleration Unit — Functional Block Diagram

## Auxiliary Status Register

The Auxiliary Status Register (ASR) is used to do the following:

- Control the remainder operation (partial remainder bit)
- Signal the state of an operation (result available bit)
- Disable and record exceptions (mask and sticky bits)
- Control rounding of results (round control bits)
- Record condition codes (negative and zero bits).

The negative, zero, inexact, and integer overflow bits in the ASR match the condition codes in the PSW register of the CPU. This allows the bits to be copied into the PSW as part of the coprocessor status access and to be easily tested by the CPU. The format of the ASR is as follows.

|       | AUXILIARY STATUS REGISTER (31—16) |         |     |      |         |    |    |    |    |     |    |
|-------|-----------------------------------|---------|-----|------|---------|----|----|----|----|-----|----|
| BITS  | 31                                | 30 — 26 | 25  | 24   | 23 — 22 | 21 | 20 | 19 | 18 | 17  | 16 |
| FIELD | RA                                | UNUSED  | ECP | NTNC | RC      | N  | Z  | Ю  | PS | CSC | UO |

|       | AUXILIARY STATUS REGISTER (15—00) |    |    |    |    |    |    |    |    |    |    |         |
|-------|-----------------------------------|----|----|----|----|----|----|----|----|----|----|---------|
| BITS  | 15                                | 14 | 13 | 12 | 11 | 10 | 09 | 08 | 07 | 06 | 05 | 04 — 00 |
| FIELD | UNUSED                            | IM | ОМ | UM | QM | РМ | IS | OS | US | QS | PR | UNUSED  |

The ASR fields are defined in the following paragraphs.

**UNUSED** Bits 30—26, 15, and 04—00 are not used. These bits are returned as zeros when read.

- **RA** Bit 31 is the Result Available (RA) bit. It is cleared at the beginning of an operation and set [1] when the operation result is available. During the quiescent state, the RA bit is set.
- **ECP** Bit 25 is the Exception Condition Present (ECP) bit. It is set [1] if any one of the floating point exception conditions except "inexact" is present. The ECP bit is cleared [0].
- **NTNC** Bit 24 is the Nontrapping Not a Number (NAN) Control (NTNC) bit. Bit 24 is tested when an invalid operation exception occurs and bit 14 (IM) is cleared. If bit 24 is set, an exception occurs and bit 09 (IS) is set.

**RC** Bits 23 and 22 are the Round Control (RC) mode bits. The decode of these bits is as follows.

| BIT 23 | BIT 22 | DESCRIPTION                     |
|--------|--------|---------------------------------|
| 0      | 0      | ROUND TO NEAREST                |
| 0      | 1      | ROUND TOWARDS PLUS INFINITY     |
| 1      | 0      | ROUND TOWARDS MINUS INFINITY    |
| 1      | 1      | ROUND TOWARDS ZERO (TRUNCATION) |

- **N** Bit 21 is the Negative (N) condition bit. Bit 21 is set [1] when result of the last operation is negative. Bit 21 is cleared when the result of the last operation is positive.
- **Z** Bit 20 is the Zero (Z) condition bit. Bit 20 is set [1] when the result of the last operation is zero. Bit 20 is cleared when the result of the last operation is nonzero.
- **IO** Bit 19 is the Integer Overflow (IO) bit. Bit 19 is set [1] when a convert float to integer operation causes an overflow.
- **PS** Bit 18 is the Inexact Sticky (PS) bit. Bit 18 is set [1] when the result of an operation cannot be specified in the destination format. Bit 18 is cleared on reset.
- **CSC** Bit 17 is the Context Switch Control (CSC) bit. Bit 17 is set [1] on every MAU instruction execution. Bit 17 is cleared on reset.
- **UO** Bit 16 is the Unordered (UO) bit. Bit 16 is set [1] when a compare operation results in an unordered indication; otherwise this bit is cleared. Bit 16 is cleared on reset.
- IM Bit 14 is the Invalid Operation Mask (IM) bit. Bit 14 is set [1] by the user to enable the generation of an exception when bit 09 (Invalid Operation Sticky bit) is set. There are no invalid operation exceptions when bit 14 is cleared.
- **OM** Bit 13 is the Overflow Mask (OM) bit. Bit 13 is set [1] by the user to enable the generation of an exception when bit 08 (Overflow Sticky bit) is set. There are no overflow exceptions when bit 13 is cleared.
- **UM** Bit 12 is the Underflow Mask (UM) bit. Bit 12 is set [1] by the user to enable the generation of an exception when bit 07 (Underflow Sticky bit) is set. There are no underflow exceptions when bit 12 is cleared.
- **QM** Bit 11 is the Divide by Zero Mask (QM) bit. Bit 11 is set [1] by the user to enable the generation of an exception when bit 06 (Divide by Zero Sticky bit) is set. There are no divide by zero exceptions when bit 11 is cleared.
- **PM** Bit 10 is the Inexact Mask (PM) bit. Bit 10 is set [1] by the user to enable the generation of an exception when bit 18 (Inexact Sticky bit) is set [1]. There are no inexact exceptions when bit 10 is cleared.
- **IS** Bit 09 is the Invalid Operation Sticky (IS) bit. Bit 09 is set [1] when a result cannot be legally stored in a destination, or when illegal operands are given to some operation.
- **OS** Bit 08 is the Overflow Sticky (OS) bit. Bit 08 is set [1] when an exponent of a rounded result of an arithmetic operation is too large for the exponent field of the destination format.
- **US** Bit 07 is the Underflow Sticky (US) bit. Bit 07 is set [1] when an exponent of a rounded result of an arithmetic operation is too small to be represented in the exponent field of the destination format.

- **QS** Bit 06 is the Divide by Zero Sticky (QS) bit. Bit 06 is set [1] when the divisor is normalized zero and the dividend is a finite nonzero number.
- **PR** Bit 05 is the Partial Remainder (PR) bit. Bit 05 is set [1] when the result of a remainder operation is a partial remainder. Bit 05 is cleared when the result of a remainder operation is a full remainder. This bit is cleared on reset.

#### **Operand Registers**

The MAU contains four operand registers (F3—F0). Each operand register is 80 bits and contains one operand in an extended format. These registers are accessed via the Data Register in the format of three 32-bit words. In the peripheral mode, bits 95—80 are ignored during write operations. For read operations, bits 95—80 are returned as zeros. The operand registers are unchanged on reset. The contents of these registers are indeterminate on powerup. The format of each of the four operand registers is as follows.

|       | OPERAND REGISTERS (F3— F0) |      |          |    |          |  |  |  |  |
|-------|----------------------------|------|----------|----|----------|--|--|--|--|
| BITS  | 95 — 80                    | 79   | 78 — 64  | 63 | 62 — 00  |  |  |  |  |
| FIELD | UNUSED                     | SIGN | EXPONENT | J  | FRACTION |  |  |  |  |

The operand register fields are defined in the following paragraphs.

- **UNUSED** Bits 95—80 are not used. These bits are returned as zeros for a read operation.
- SIGN Bit 79 is the SIGN bit. When set [1] the sign is negative; cleared represents a positive value.
- **EXPONENT** Bits 78—64 are used as the EXPONENT field. The exponent is biased by 16,383.
- J Bit 63 is the Explicit (J) bit. The J bit is to the left of the binary point in the 2<sup>0</sup> position. In combination, the J bit and the FRACTION field can represent values in the range 0 to 2-(2<sup>-63</sup>).
- **FRACTION** Bits 62—00 are used to represent the fractional part of a number.

# **Command Register**

The Command Register (CR) stores command words used to initiate MAU operations. The format of this 32-bit register is as follows.

|       | COMMAND REGISTER |         |         |         |         |         |  |  |
|-------|------------------|---------|---------|---------|---------|---------|--|--|
| BITS  | 31 — 24          | 23 — 15 | 14 — 10 | 09 — 07 | 06 — 04 | 03 — 00 |  |  |
| FIELD | ID               | UNUSED  | OPCODE  | OP1     | OP2     | OP3     |  |  |

The CR fields are defined in the following paragraphs.

- **ID** Bits 31—24 are the Processor Identification Number of the processor that should react to the command word. The MAU is ID 0.
- **UNUSED** Bits 23—15 are not used. These bits are returned as zeros for a read operation.
- **OPCODE** Bits 14—10 are the Operation Code (OPCODE) field. The OPCODE field specifies the operation to be done. The OPCODES are as follows.

| OPCODE         | MNEMONIC | INSTRUCTION                               |
|----------------|----------|-------------------------------------------|
| 0x 02          | ADD      | ADD                                       |
| 0x 02          | SUB      | SUBTRACT                                  |
| 0x 03          | DIV      | DIVIDE                                    |
| 0x 04          | REM      | REMAINDER                                 |
| 0x 06          | MUL      | MULTIPLY                                  |
| 0x 00<br>0x 07 | MOVE     | MOVE                                      |
| 0x 07<br>0x 08 | RDASR    | MOVE<br>MOVE FROM ASR                     |
| 0x 08<br>0x 09 | WRASR    | MOVE TO ASR                               |
| 0x 09          | CMP      | COMPARE                                   |
| 0x 0A<br>0x 0B | CMP      |                                           |
|                | 0        | COMPARE WITH EXCEPTIONS                   |
| 0x 0C          | ABS      | ABSOLUTE VALUE                            |
| 0x 0D          | SQRT     | SQUARE ROOT                               |
| 0x 0E          | RTOI     | ROUND TO INTEGRAL VALUE                   |
| 0x 0F          | FTOI     | CONVERT FLOATING POINT TO INTEGER         |
| 0x 10          | ITOF     | CONVERT INTEGER TO FLOATING POINT         |
| 0x 11          | DTOF     | CONVERT DECIMAL TO FLOATING POINT         |
| 0x 12          | FTOD     | CONVERT FLOATING POINT TO DECIMAL         |
| 0x 13          | NOP      | NO OPERATION                              |
| 0x 14          | EROF     | EXTRACT RESULT ON FAULT                   |
| 0x 17          | NEG      | NEGATE                                    |
| 0x 18          | LDR      | LOAD DATA REGISTER                        |
| 0x 1A          | CMPS     | COMPARE WITH FLAGS SWAPPED                |
| 0x 1B          | CMPS     | COMPARE WITH EXCEPTIONS AND FLAGS SWAPPED |

**OP1** Bits 09—07 is the Operand Specifier 1 (OP1) field. OP1 specifies whether the first source operand is a MAU register, a memory-based operand of a given size, or nonexistent (no operand). The value of this field is as follows.

| BITS 09 — 07 | OPERAND LOCATION         |
|--------------|--------------------------|
| 000          | REGISTER F0              |
| 001          | REGISTER F1              |
| 010          | REGISTER F2              |
| 011          | REGISTER F3              |
| 100          | MEMORY-BASED SINGLE WORD |
| 101          | MEMORY-BASED DOUBLE WORD |
| 110          | MEMORY-BASED TRIPLE WORD |
| 111          | NO OPERAND               |

OP2

Bits 06—04 is the Operand Specifier 2 (OP2) field. OP2 specifies whether the second source operand is a MAU register, a memory-based operand of a given size, or nonexistent (no operand). The value of this field is as follows.

| OPERAND LOCATION         |
|--------------------------|
| REGISTER F0              |
| REGISTER F1              |
| REGISTER F2              |
| REGISTER F3              |
| MEMORY-BASED SINGLE WORD |
| MEMORY-BASED DOUBLE WORD |
| MEMORY-BASED TRIPLE WORD |
| NO OPERAND               |
|                          |

OP3

Bits 03—00 are the Operand Specifier 3 (OP3) field. OP3 specifies whether the destination operand is a MAU register, a memory-based operand of a given size, or nonexistent (no operand). Even though the register destinations are specified as single, double, or double-extended, the result is stored in the registers in double-extended precision. The precision designations are used for rounding and checking for underflow and overflow. The value of this field is as follows.

| BITS 03 — 00 | OPERAND<br>REGISTER | DESTINATION<br>PRECISION |
|--------------|---------------------|--------------------------|
| 0000         | FO                  | SINGLE                   |
| 0001         | F1                  | SINGLE                   |
| 0010         | F2                  | SINGLE                   |
| 0011         | F3                  | SINGLE                   |
| 0100         | F0                  | DOUBLE                   |
| 0101         | F1                  | DOUBLE                   |
| 0110         | F2                  | DOUBLE                   |
| 0111         | F3                  | DOUBLE                   |
| 1000         | FO                  | DOUBLE-EXTENDED          |
| 1001         | F1                  | DOUBLE-EXTENDED          |
| 1010         | F2                  | DOUBLE-EXTENDED          |
| 1011         | F3                  | DOUBLE-EXTENDED          |
| 1100         | DR                  | MEMORY-BASED SINGLE WORD |
| 1101         | DR                  | MEMORY-BASED DOUBLE WORD |
| 1110         | DR                  | MEMORY-BASED TRIPLE WORD |
| 1111         | NONE                | NO OPERAND               |

#### **FUNCTIONAL DESCRIPTION -**

### **Data Register**

The system board CPU (WE 32100) uses the MAU as a coprocessor; the peripheral mode of the MAU is NOT used in this application. The Data Register (DR) is used to read and write operands (registers F3-F0) in the peripheral mode. The DR is an 82-bit register. The DR is addressed in the peripheral mode as three 32-bit registers. When exceptions occur in either the coprocessor or peripheral modes, the DR stores the data supplied by the trap handler. This exception data is read when an Extract Result on Fault (EROF) instruction (opcode) is executed. The format of the exception data stored in the DR by the trap handler is as follows.

## **INVALID OPERATION**

If either of the source operands is a trapping Not a Number (NAN), then DR stores the NAN converted to double-extended precision (80 bits) if necessary. If both source operands are trapping NANs or infinities of different signs, then the second operand (OP2) is stored in the DR in double precision (80 bits).

# **OVERFLOW or UNDERFLOW**

The significant (fraction) along with the 17-bit internal result exponent and the result sign are stored in the DR. The most significant bit of the 17-bit exponent is like a sign bit in 2's complement notation. An addition bit (bit 79) in the exponent ensures that no significant exponent bits are lost from an internal representation when an overflow or underflow condition occurs. The exponent is biased by 16,383. The format of the data in the DR for an overflow or underflow exception is as follows.

| BITS  | 81   | 80 — 64  | 63 | 62 — 00  |
|-------|------|----------|----|----------|
| FIELD | SIGN | EXPONENT | J  | FRACTION |

## **DIVIDE BY ZERO**

The dividend (OP2) converted to double-extended precision, if necessary, is stored in the DR for a divide by zero exception.

**INEXACT** The rounded result converted to double-extended precision, if necessary, is stored in the DR for and inexact exception.

MAU Coprocessor Mode. In the Coprocessor Mode, the system board CPU initiates a MAU transaction by doing a coprocessor broadcast access. This sends a 32-bit word to the MAU Command Register. The MAU checks the Identification (ID) field of the Command Register against the MAU ID (0). If an ID matches the stored ID, the 32-bit word is stored in the Command Register.

If any Operand Specifier in the command word indicates that an operand is to be obtained from main memory, the MAU waits until the proper number of coprocessor data fetch bus transactions occur.

The MAU does the operation specified and generates a result, condition codes, and possibly an exception. The MAU asserts a DONE signal and waits for the coprocessor (system board CPU) status fetch. If an exception is present, the MAU faults the access and goes to an idle state. If there is no exception, a word containing the current Auxiliary Status Register (ASR) is returned in response to the status fetch.

If the results are to be written to main memory, The MAU waits until the proper number of coprocessor data write bus transactions occur to transfer the results and then goes to an idle state.

#### **Address Decoder**

The address decoder translates physical CPU/MMU addresses into chip selects (enables) for the various memory and peripheral circuits on the system board and feature cards. The address decoder is built from Programmable Logic Arrays (PLAs) and four 3/8 decoders. The chip select signals are also used to generate Wait Select (WSEL) signals appropriate for the access time of each synchronous device. For devices on the system board, a fixed number of wait states are generated by the address decoder.

The chip selects and controls decoded from physical address bits 26—12, Physical Address Strobe (PAS[0]), Interrupt Acknowledge (IACK[0]) are summarized in Figure 3-21.

## FUNCTIONAL DESCRIPTION

| PAS[0] IACK[0] |         | PHYSICAL ADDRESS BITS |       |       |       | SELECTED DEVICE                             |  |  |  |  |
|----------------|---------|-----------------------|-------|-------|-------|---------------------------------------------|--|--|--|--|
| FASIO          | IACK[0] | 27—24                 | 23—20 | 19—16 | 15—12 | SELECTED DEVICE                             |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 0000  | MEMORY MANAGEMENT UNIT (MMUCS[0])           |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 0001  | TIME-OF-DAY COUNTER (TODCS[0])              |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 0010  | TIMERS (TIMRCS[0])                          |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 0011  | NONVOLATILE RANDOM ACCESS MEMORY (NVRCS[0]) |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 0100  | CONTROL AND STATUS REGISTER (CSRCS[0])      |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 0101  | PAGE REGISTER 1 (PR1CS[0])                  |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 0110  | PAGE REGISTER 2 (PR2CS[0])                  |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 0111  | PAGE REGISTER 3 (PR3CS[0])                  |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 1000  | DIRECT MEMORY ACCESS CONTROLLER (DMACS[0])  |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 1001  | DUART (UARTCS[0])                           |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 1010  | HARD DISK CONTROLLER (DSKCS[0])             |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 1011  | NOT USED                                    |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 1100  | MEMORY SIZE REGISTER (MSIZECS[0])           |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 1101  | FLOPPY DISK CONTROLLER (FCS[0])             |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 1110  | PAGE REGISTER 4 (PR4CS[0])                  |  |  |  |  |
| x              | x       | xxxx                  | xxxx  | xxxx  | 1111  | NOT USED                                    |  |  |  |  |
| x              | x       | xxx0                  | 000x  | xxxx  | xxxx  | NOT USED                                    |  |  |  |  |
| x              | x       | xxx0                  | 001x  | xxxx  | xxxx  | PERIPHERAL CARD 01 (PCS01[0])               |  |  |  |  |
| x              | x       | xxx0                  | 010x  | xxxx  | xxxx  | PERIPHERAL CARD 02 (PCS02[0])               |  |  |  |  |
| x              | x       | xxx0                  | 011x  | xxxx  | xxxx  | PERIPHERAL CARD 03 (PCS03[0])               |  |  |  |  |
| x              | x       | xxx0                  | 100x  | xxxx  | xxxx  | PERIPHERAL CARD 04 (PCS04[0])               |  |  |  |  |
| x              | x       | xxx0                  | 101x  | xxxx  | xxxx  | PERIPHERAL CARD 05 (PCS05[0])               |  |  |  |  |
| x              | x       | xxx0                  | 110x  | xxxx  | xxxx  | PERIPHERAL CARD 06 (PCS06[0])               |  |  |  |  |
| x              | x       | xxx0                  | 111x  | xxxx  | xxxx  | PERIPHERAL CARD 07 (PCS07[0])               |  |  |  |  |
| x              | x       | xxx1                  | 000x  | XXXX  | XXXX  | PERIPHERAL CARD 08 (PCS08[0])               |  |  |  |  |
| x              | x       | xxx1                  | 001x  | XXXX  | xxxx  | PERIPHERAL CARD 09 (PCS09[0])               |  |  |  |  |
| ×              | x       | xxx1                  | 010x  | XXXX  | XXXX  | PERIPHERAL CARD 10 (PCS10[0])               |  |  |  |  |
| ×              | x       | xxx1                  | 011x  | XXXX  | XXXX  | PERIPHERAL CARD 11 (PCS11[0])               |  |  |  |  |
| x              | x       | xxx1                  | 100x  | XXXX  | XXXX  | PERIPHERAL CARD 12 (PCS12[0])               |  |  |  |  |
| x              | x       | xxx1                  | 101x  | XXXX  | XXXX  | PERIPHERAL CARD 13 (PCS13[0])               |  |  |  |  |
| x              | x       | xxx1                  | 110x  | XXXX  | XXXX  | PERIPHERAL CARD 14 (PCS14[0])               |  |  |  |  |
| ×              | x       | xxx1                  | 111x  | XXXX  | XXXX  | PERIPHERAL CARD 15 (PCS15[0])               |  |  |  |  |
| 0              | 1       | x000                  | 0000  | 000x  | xxxx  | READ ONLY MEMORY (ROMCS[0])                 |  |  |  |  |
| 0              | 1       | x00x                  | xx1x  | XXXX  | xxxx  | INPUT/OUTPUT REQUIRED (IOREQ[0])            |  |  |  |  |
| 0              | 1       | x00x                  | x1xx  | xxxx  | xxxx  |                                             |  |  |  |  |
| 0              | 1       | x00x                  | 1xxx  | xxxx  | xxxx  |                                             |  |  |  |  |
| 0              | 1       | x001                  | xxxx  | xxxx  | xxxx  |                                             |  |  |  |  |
| 0              | 1       | x000                  | 0000  | 010x  | 1xxx  | DIRECT MEMORY ACCESS SUBSYSTEM (DMASS[0])   |  |  |  |  |
| 0              | 1       | x000                  | 0000  | 010x  | 0xxx  | MISCELLANEOUS (MISCS[0])                    |  |  |  |  |
|                |         |                       |       |       |       | L                                           |  |  |  |  |

LEGEND:

x Don't care bit

Figure 3-21: Chip Select and Control Signals Address Decode

**Input/Output Chip Selects.** The address decoder enables 1 out of 15 Peripheral Chip Select (PCS) signals (PCS15—01[0]) from latched address bits 24 through 21 (LPA24[1] through LPA21[1]). For the 3B2/400 computer, only 12 peripheral chip selects (PCS12—01) are used. For the 3B2/300 and 310 computers, only 4 peripheral chip selects (PCS04—01) are used. The PCS15 through PCS13 signals are reserved for future enhancements. PCS00[0] is decoded but has no connection.

A composite input/output chip select signal (CREQ[0]) is sent to the Dual Port Dynamic RAM (DPDRAM) Controller and Arbiter Circuits to request the "Bypass Mode" to access the input/output connectors (feature card slots). The Bypass Sequencer returns a Bypass Mode Acknowledge (LCPUIO[0]) signal to enable the individual input/output card chip selects to be passed to the input/output connectors. All inputs to the Address Decoder from off-board and DMA Subsystem devices are latched under the control of the arbiter (LCPUIO signal).

**Other Chip Selects.** Other chip selects are used to enable various devices on and off the system board. The onboard devices chip selects decoded from physical address bits 15 through 12 are listed below:

- Memory Management Unit Chip Select (MMUCS[0])
- Time-of-Day Chip Select (TODCS[0])
- Timer Chip Select (TIMRCS[0])
- Nonvolatile RAM Chip Select (NVRCS[0])
- Control and Status Register Chip Select (CSRCS[0])
- Page Register 1 Chip Select (PR1CS[0])
- Page Register 2 Chip Select (PR2CS[0])
- Page Register 3 Chip Select (PR3CS[0])
- Page Register 4 Chip Select (PR4CS[0])
- Direct Memory Access Chip Select (DMACS[0])
- DUART Chip Select (UARTCS[0])
- Hard Disk Controller Chip Select (DSKCS[0])
- Memory Size Chip Select (MSIZECS[0])
- Floppy Disk Controller Chip Select (FCS[0]).

Physical address bits 26—17 and 15, Physical Address Strobe (PAS[0]), and Interrupt Acknowledge (IACK[0]) are combined to generate the following chip select and control signals:

- Read Only Memory Chip Select (ROMCS[0])
- Direct Memory Access Subsystem (DMASS[0])
- Miscellaneous Chip Select (MISCS[0])
- Input/Output Required (IOREQ[0]).

### **Read Only Memory**

The Read Only Memory (ROM) is equipped as either a 32K byte or a 64K byte ROM. Systems equipped with the DEbug MONitor (DEMON) firmware use the 64K byte ROM. Four 16K by 8 read only memory integrated circuits (27128's) form a 64K byte ROM. Four 8K by 8 read only memory integrated circuits (2764's) form a 32K byte ROM. The starting address of ROM is 0x 00000000.

#### Timers

The timers include the following:

- Time of day (MM58174)
- Periodic (INTEL 8253)
- Sanity (INTEL 8253)
- Bus (INTEL 8253).

The periodic, sanity, and bus timers are an INTEL 8253 Programmable Interval Timer (PIT) package. The PIT package contains three independent 16-bit counters.

**Clock/Calendar Timer.** The Clock/Calendar Timer (MM58174) calculates current date to tenths of a second. The timer is controlled by a 32.768-kHz oscillator. The timer features automatic leap year calculation, protection for read access when changing data, and low standby current (2.2 volt, 10 microamperes). The accuracy is determined by the 32.768-kHz crystal with a 0.003 percent tolerance ( $\pm$ 1.3 minutes per month).

**Periodic Timer.** The Periodic Timer (Timer 1) is a self-restarting count down timer. The time base is 100 kHz (CLKTA[1]). Each time Timer 1 reaches zero, the Periodic Interrupt bit (bit 6) is set in the CSR and a level 15 interrupt is sent to the Interrupt Decoder. The Periodic Interrupt is latched in the CSR and the level 15 interrupt asserted until CSR bit 6 is cleared by writing to address 0x 00042010.

**Sanity Timer**. The Sanity Timer (Timer 0) is a count down timer that is normally reset by software before it reaches zero. The time base is 100 kHz (CLKTB[1]). When the Sanity Timer reaches zero, an error signal turns on the **Diagnostic** indicator, a level 15 interrupt is sent to the Interrupt Decoder, and the Error Timer Time-out bit (bit 15) is set in the CSR. The CSR bit 15 is cleared by writing to address 0x 00044000. This count down timer is started when the power switch is pressed to OFF. System software must read the 8253 package to determine whether Sanity Timer (Timer 0) or the Bus Timer (Timer 2) timed out.

**Bus Timer.** The Bus Timer (Timer 2) is a count down timer that controls time-outs on the address bus. The time base is 2 MHz (CLK02[1]). Timer 2 is used to generate a fault for addresses that do not respond (send an acknowledge signal). The Bus Timer is reset when the arbiter's acknowledge is inactive. When the Bus Timer reaches zero, a bus time-out signal is sent to the DRAM and Arbiter Circuits, an error signal turns on the **Diagnostic** indicator, a level 15 interrupt is sent to the Interrupt Decoder, and the Error Timer Time-out bit (bit 15) is set in the CSR. The CSR bit 15 is cleared by writing to address 0x 00044000. System software must read the 8253 package to determine whether Sanity Timer (Timer 0) or the Bus Timer (Timer 2) timed out.

## **Control and Status Register**

The Control and Status Register (CSR) is a 16-bit register. It provides low-level access to the system board logic circuits. The CSR controls and monitors various system functions. Certain bits are written (cleared or set) under software control. Other bits are controlled exclusively by hardware logic. CSR bits 03 through 00 reflect the state of system board peripheral devices. All CSR bits are readable by software using either a full or half-word read operation. During a read operation the CSR data is latched so that it remains constant throughout the read cycle. The CSR is NOT cleared by a hardware reset. The CSR is bit-addressable for writing. During a software write of the CSR, only one bit at a time is accessed. The state of the CSR bit after the CSR write operation is dependent only on the address; the data written is a "don't care" bit. The contents of the CSR are part of the error report output by the **/etc/errdump** command. The CSR is identified as "csr" in the error report. The CSR bit assignments and access information are shown in Figure 3-22.

| VERSION 2—SYSTEM BOARD CONTROL AND STATUS REGISTER BIT ASSIGNMENTS |                         |                            |              |    |         |    |          |          |          |
|--------------------------------------------------------------------|-------------------------|----------------------------|--------------|----|---------|----|----------|----------|----------|
| BIT                                                                | DESCRIPTION             | WRITE<br>ADDRESS           | FUNCTION     |    | CONTROL |    |          |          |          |
| 15                                                                 | ERROR TIMER TIMEOUT     | 0x 00044000                | CLEAR        |    |         | HS | PC       |          |          |
| 14                                                                 | MEMORY PARITY ERROR     | 0x 00044004                | CLEAR        |    |         | HS | PC       |          |          |
| 13                                                                 | SYSTEM RESET REQUEST    | 0x 00044008                | SET          |    | CR      |    |          | PS       |          |
| 12                                                                 | ALIGNMENT FAULT         | 0x 0004400C                | CLEAR        |    |         | HS | PC       |          |          |
| 11                                                                 | DIAGNOSTIC INDICATOR ON | 0x 00044010<br>0x 00044014 | SET<br>CLEAR |    |         |    | PC<br>PC | PS<br>PS | SR<br>SR |
| 10                                                                 | FLOPPY MOTOR ON         | 0x 00044018<br>0x 0004401C | SET<br>CLEAR |    |         |    | PC<br>PC | PS<br>PS |          |
| 09                                                                 | RESERVED                |                            |              |    |         |    |          |          |          |
| 08                                                                 | INHIBIT TIMERS          | 0x 00044020<br>0x 00044024 | SET<br>CLEAR |    |         |    | PC<br>PC | PS<br>PS |          |
| 07                                                                 | INHIBIT FAULTS          | 0x 00044028<br>0x 0004402C | SET<br>CLEAR |    |         |    | PC<br>PC | PS<br>PS | SR<br>SR |
| 06                                                                 | PERIODIC INTERRUPT      | 0x 00042010                | CLEAR        |    |         | HS | PC       |          |          |
| 05                                                                 | PIR (LEVEL 8 INTERRUPT) | 0x 00044038<br>0x 0004403C | SET<br>CLEAR |    |         |    | PC<br>PC | PS<br>PS |          |
| 04                                                                 | PIR (LEVEL 9 INTERRUPT) | 0x 00044030<br>0x 00044034 | SET<br>CLEAR |    |         |    | PC<br>PC | PS<br>PS |          |
| 03                                                                 | UART INTERRUPT          | -                          | —            | BO |         |    |          |          |          |
| 02                                                                 | FLOPPY DISK INTERRUPT   | —                          | —            | BO |         |    |          |          |          |
| 01                                                                 | DMA INTERRUPT           | _                          |              | BO |         |    |          |          |          |
| 00                                                                 | INPUT/OUTPUT BOARD FAIL | —                          | —            | BO |         |    |          |          |          |

LEGEND:

- Signal originates elsewhere and is only buffered in the CSR Cleared by "system reset" signal BO
- CR
- DMA Direct Memory Access
- HS Set by hardware
- PC Cleared by programmed control
- PIR Programmed Interrupt Request
- PS Set by programmed control
- SR Set by "system reset" signal

Figure 3-22: Version 2 System Board CSR Bit Assignments

#### Interrupts

**Interrupt Mechanism.** When an external device requests an interrupt (request for service to the microprocessor), the microprocessor temporarily stops its current execution and jumps to code that services the interrupt. This code is called an interrupt handler. On completion of the interrupt handler code, execution resumes at the point where the interrupt occurred. An interrupt mechanism performs the process execution switch.

There are three functions of the interrupt mechanism, as follows:

- The interrupt mechanism determines whether or not there will be an interrupt generated in response to an interrupt request. An interrupt is generated if the priority level requested is greater than the priority level in the Interrupt Priority Level (IPL) field of the Processor Status Word (PSW) register of the CPU. If the IPL field equals 0x F, no interrupts are acknowledged except for a nonmaskable interrupt.
- 2. The interrupt mechanism determines how an interrupt request will be acknowledged and the interrupt identification value. Interrupts are acknowledged as full or quick interrupts. A full interrupt starts an interrupt-handler process by means of a full context/process switch. A quick interrupt causes the interrupt handler to store the current Program Counter (PC) register and PSW register values on the execution stack and set the IPL field of the PSW to 0x F (like a subroutine call). Only a nonmaskable interrupt can interrupt the quick-interrupt handler. A nonmaskable interrupt causes the interrupt handler to store the current PC and PSW values on the execution stack just like a quick interrupt. An interrupted interrupt handler's execution is resumed as a function of popping saved states off the execution stack.
- 3. The interrupt mechanism saves the interrupted process context and brings in a new process context (process switching). Interrupt-vector tables are provided for full and quick interrupts. The interrupt-vector tables point to the memory locations (addresses) where interrupt PCBPs and PC/PSW pairs are stored.

**Interrupt Logic.** Eight hardware interrupts are provided. Three of these levels (PINT2—0[0]) are connected to the Input/Output Expansion connector for use by the feature cards that supply their own interrupt vectors. Two interrupt levels are used as Programmed Interrupt Requests (PIRs) and are accessible via the CSR. The three remaining interrupt levels are used by the system board for peripheral devices.

To acknowledge three off-board requests, the interrupt hardware requests the DPDRAM controller to enter the "bypass" mode. When the controller responds with a "bypass mode" acknowledge, the interrupt acknowledge cycle proceeds and the vector is read from the interrupting off-board device.

Interrupt levels are encoded by an 8/3 encoder and applied to the CPU interrupt request inputs as level 15 through 8 interrupts. When interrupts are acknowledged, the CPU uses the address bus bits 05 through 02 to identify the acknowledged level. In the virtual mode (VAD[0]=0), a latched version of address bits 05 through 02 are used by the interrupt circuitry. When bit 2 is low and either bit 3 or bit 4 is high, an off-board interrupt is assumed and an arbiter request is made. When the bus arbiter permits access, the proper off-board interrupt acknowledge signal is sent. Other combinations of address bits 05 through 02 are assumed to be onboard interrupts and a vector is supplied by looping the latched address bits 05 through 02 back to the data bus via a buffer. A unique vector is provided for each onboard interrupt source that is equal to the interrupt level. When an onboard interrupt is decoded, the interrupt circuit sends a wait select (WSEL1[0]).

**Interrupt Assignments.** Figure 3-23 defines the interrupt levels for the various interrupt sources. Interrupt 11 (INT11[0]) can be caused by either an integral floppy disk or an integral hard disk. Bit 02 of the Control and Status Register (CSR02[1]) is used to determine the interrupt source for a INT11. CSR02[1] is set for a floppy disk interrupt, and is clear for a hard disk interrupt.

| VERSION 2 SYSTEM BOARD INTERRUPT ASSIGNMENTS |          |                                          |  |  |  |  |
|----------------------------------------------|----------|------------------------------------------|--|--|--|--|
| LEVEL                                        | VECTOR   | SOURCE                                   |  |  |  |  |
| 15                                           | 15       | SYSTEM ERROR AND PERIODIC TIMER (NOTE 1) |  |  |  |  |
| 14                                           | (NOTE 2) | INPUT/OUTPUT BOARDS (PINT20)             |  |  |  |  |
| 13                                           | 13       | UARTS AND DMA COMPLETE                   |  |  |  |  |
| 12                                           | (NOTE 2) | INPUT/OUTPUT BOARDS (PINT10)             |  |  |  |  |
| 11                                           | 11       | INTEGRAL DISKS (FLOPPY OR HARD DISK)     |  |  |  |  |
| 10                                           | (NOTE 2) | INPUT/OUTPUT BOARDS (PINT00)             |  |  |  |  |
| 9                                            | 9        | PIR-9 (FROM CSR)                         |  |  |  |  |
| 8                                            | 8        | PIR-8 (FROM CSR)                         |  |  |  |  |
|                                              |          |                                          |  |  |  |  |

NOTES:

- 1. System error can be a bus time-out, parity error, or input/output card failure.
- 2. An 8-bit vector is supplied by the input/output card.

#### LEGEND:

- CSR Control and Status Register
- DMA Direct Memory Access
- PIR Programmed Interrupt Request
- UARTS Universal Asynchronous Receiver/Transmitters
- Figure 3-23: System Board Interrupt Assignments

## **Nonvolatile Random Access Memory**

The Nonvolatile Random Access Memory (NVRAM) is a single chip providing 1024 by 4 bits (1024 nibbles) of memory for the storage of system configuration parameters. Parameters include console terminal settings, system error log, and the firmware password. NVRAM is maintained by a backup battery in the absence of VCC. When power is removed from the system, NVRAM enable (chip select) is inhibited to prevent an accidental write operation from destroying the NVRAM data. NVRAM is read and written in nibbles using MOS Data Bus bits 03—00 and address bits 11—02. The following table further defines the contents of NVRAM.

| NVRAM CONTENTS                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |  |  |  |  |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| CATEGORY                                                          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NUMBER<br>OF BYTES                                                              |  |  |  |  |  |
| FIRMWARE<br>(59 OF<br>128 BYTES<br>USED)                          | FIRMWARE PASSWORD (passwd)<br>CONSOLE SLOT AND PORT NUMBERS (cons_def)<br>DOWNLOAD LINK BAUD RATE (link)<br>DEFAULT BOOT DEVICE (b_dev)<br>DEFAULT BOOT PATH NAME (b_name)<br>FLAG TO CHECK FOR SECONTD DISK (dsk_chk)<br>TOTAL FIRMWARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9<br>1<br>2<br>1<br>45<br>1<br>59                                               |  |  |  |  |  |
| UNIX<br>OPERATING<br>SYSTEM<br>(66 OF<br>128 BYTES<br>USED)       | CONSOLE FLAGS (cflags)<br>SAVED MONTH (nv_month)<br>SAVED YEAR (nv_year)<br>START OF PHYSICAL MEMORY (spmem)<br>SYSTEM NAME (sys_name)<br>ROOT DEVICE (rotdev)<br>GENERAL STORAGE FOR I/O DRIVERS (ioslotinfo)<br>TOTAL OPERATING SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>1<br>4<br>9<br>1<br>48<br>66                                               |  |  |  |  |  |
| PANIC<br>ERROR<br>INFORMATION                                     | NVRAM SANITY (nvsanity)<br>COMMAND AND STATUS REGISTER (csr)<br>PROCESSOR STATUS WORD (psw)<br>GENERAL PURPOSE REGISTER 3 (r3)<br>GENERAL PURPOSE REGISTER 4 (r4)<br>GENERAL PURPOSE REGISTER 4 (r4)<br>GENERAL PURPOSE REGISTER 5 (r5)<br>GENERAL PURPOSE REGISTER 7 (r7)<br>GENERAL PURPOSE REGISTER 8 (r8)<br>ADDRESS POINTER (oap)<br>PROGRAM COUNTER (opc)<br>STACK POINTER (osp)<br>FRAME POINTER REGISTER (ofp)<br>INTERRUPT STACK POINTER (isp)<br>PROCESS CONTROL BLOCK POINTER REGISTER (pcbp)<br>FAULT CODE REGISTER (mmufitcr)<br>FAULT CODE REGISTER (mmufitcr)<br>MMU SECTION RAM A (mmusrama)<br>MMU SECTION RAM B (mmusramb)<br>LOCAL FRAME POINTER (lfp)<br>MESSAGE (message)<br>PARAMETER 1 (param1)<br>PARAMETER 2 (param2)<br>TIME (time)<br>TOTAL SAVED PANIC DATA | $ \begin{array}{c} 4\\ 2\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\$ |  |  |  |  |  |
| AND                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                             |  |  |  |  |  |
| FIRMWARE<br>ERROR<br>INFORMATION<br>(186 OF<br>254 BYTES<br>USED) | GOOD ERROR (gooderror)<br>ERROR NUMBER (errno)<br>PROCESSOR STATUS WORD (psw)<br>PROGRAM COUNTER (pc)<br>MISCELLANEOUS (misc)<br>TOTAL UNEXPECTED INTERRUPT AND EXCEPTION DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>4<br>4<br>4<br>4<br>20                                                     |  |  |  |  |  |
| CHECKSUM<br>(2 BYTES)                                             | NVRAM CHECKSUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                               |  |  |  |  |  |
| TOTAL<br>(512 BYTES)                                              | TOTAL BYTES USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 313                                                                             |  |  |  |  |  |

#### **Dual Port Dynamic Random Access Memory Controller**

**General.** The system main memory is a Dual Port Dynamic Random Access Memory (DPDRAM). The system board CPU uses one port and the other memory port is shared by the feature cards and integral Direct Memory Access Controller (DMAC). The DPDRAM Controller provides the system board CPU direct access to the I/O bus without passing through the RAM. The Dynamic Random Access Memory (DRAM) Controller handles the exchange of data and address information between the I/O bus and the system board CPU when operating in the "bypass mode."

Figure 3-24 is a functional block diagram of the DPDRAM Controller. The DRAM Controller for the DPDRAM is divided into the following functional areas:

- Address Generation Logic (address multiplexer)
- Request Generator
- Arbitration Logic
- Memory Refresh Logic
- Sequencer
- Bypass Logic
- Data Byte Rotate Unit Logic
- Parity Generation and Checking Logic.

Each of these functional areas is briefly described in the following paragraphs.

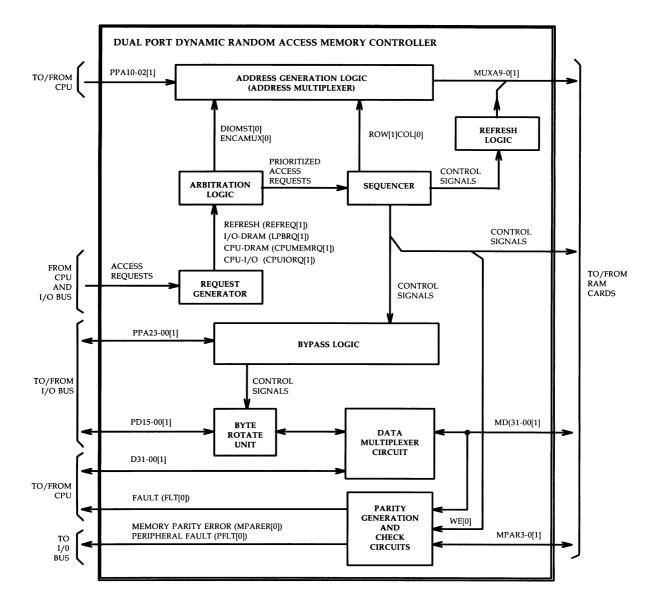



Figure 3-24: Dual Port Dynamic Random Access Memory Controller — Functional Block Diagram

Address Generation Logic. The Address Generation Logic latches the stable virtual address during virtual to physical address translation. Since the 11 least significant bits of a virtual address and a physical address are identical, CPU—memory read accesses are started when the CPU presents a stable virtual address. The early start using the 11 least significant address bits enhances system performance.

**Request Generator.** The Request Generator synchronizes the bus requests with the system clock and passes the synchronized data requests to the Arbitration Logic. The Request Generator passes four types of requests to the Arbitration Logic. These requests are listed below:

#### Memory Refresh (REFREQ[1])

The memory refresh request is automatically generated every 16 microseconds.

### Input/Output—DRAM (LPBRQ[1])

The input/output—memory request can originate from a feature card (PBRQ[0]) or from the Direct Memory Access Controller (XPBRQ[0]). The request is passed to the Arbitration Logic as LPBRQ[1].

### CPU—DRAM (CPUMEMRQ[1])

The CPU—memory read or write operation requests are sent to the Arbitration Logic as CPUMEMRQ[1].

### CPU—Input/Output (CPUIORQ[1])

The CPU—input/output exchange request is asserted by the Address Decoder (CREQ[0]) and is sent to the Arbitration Logic as CPUIORQ[1].

**Arbitration Logic.** The Arbitration Logic determines which requests for memory access are to be acknowledged. These access requests from highest to lowest priority follow:

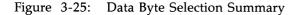
- Memory Refresh (highest priority)
- Input/Output—DRAM
- CPU—DRAM
- CPU—Input/Output (lowest priority).

**Memory Refresh Logic.** The refresh of the DRAM is done one row at a time every 16 microseconds. The Request Generator is a counter and request flip-flop. Refresh requests are derived from the 1-MHz clock and occur every 16 microseconds. The refresh request increments the refresh address counter.

A memory refresh operation can occur between input/output to DRAM block transfers or between the read and write halves of a CPU/MMU interlocked operation. Refresh operations continue during reset sequences to retain any data which existed before the reset.

**Sequencer**. The Sequencer generates the control signals (strobes) for the access operations enabled by the Arbitration logic. The Sequencer is a Field Programmable Logic Array (FPLA) and flip-flop network that combine to generate a variety of memory control signals.

Data Byte Rotate Unit. The Data Byte Rotate Unit is a collection of buffers used to multiplex the 32-bit data bus to/from the main memory to an 8- or 16-bit data bus for the I/O bus. This accommodates the input/output cards and system board devices in the Direct Memory Access Subsystem that do not have a 32 bit capability. The byte rotate unit provides data alignment and packing for 8- and 16-bit peripherals when they access the 32-bit main memory and for system board CPU when the CPU communicates directly with the input/output (feature) cards. The system board devices that use the Data Byte Rotate Unit are listed below:


- Direct Memory Access Controller
- Dual Universal Asynchronous Receiver/Transmitter
- Integral Floppy Disk Controller
- Integral Hard Disk Controller.

The Byte Rotate Unit is controlled by the Sequencer logic. The PSIZE16[0] determines whether a peripheral is capable of transferring 8 or 16 bits at a time. Address bits 01 and 00 are used to select the data bus bytes. PSIZE16 is a 0 for 16-bit transfers; PSIZE16 is a 1 for 8-bit transfers. The PSIZE16[0] signal is sent by the peripheral (feature card) in response to a chip select signal. When a peripheral is a 16-bit device, 8-bit accesses are done by asserting the appropriate data strobe (PDS1—0[0]). Devices having 8-bit data interfaces require four passes to transfer a complete 32-bit word. Devices having 16-bit data interface require two passes to transfer a complete 32-bit word.

Byte 0 (bits 31—24) is the least significant byte. Byte 1 is bits 23—16. Byte 2 is bits 15—08. Byte 3 (bits 07—00) is the most significant byte. Address bits 01 and 00 are decoded (binary) to select the data bus bytes 3—0 as applicable. For 8-bit operations both address bits 01 and 00 are used to select the data bus bytes. For 16-bit operations only address bit 01 is used to select the data bus bytes (address bit 00 is not used in 16-bit operations). For 16-bit operations either data bus bytes 1 and 0 or bytes 3 and 2 are selected by only address bit 01. When address bit 01 is high [1], data bus bytes 2 and 3 are selected (bits 15—00). When address bit 01 is negated, data bus bytes 0 and 1 are selected (bits 31—16). The data strobes (PDS0[0] and PDS1[0]) are used to select which byte or bytes to access within the main memory. Figure 3-25 summarizes the decoding of the PSIZE16, PPA01, PPA00, PDS0, and PDS1 for the selection of data bytes for the 16-bit peripheral input/output bus and for the 32-bit main memory accesses.

| SIZE BIT   | ADDRE    | SS BITS  | DATA S  | TROBES  | VALID DATA BYTES      |                            |  |  |
|------------|----------|----------|---------|---------|-----------------------|----------------------------|--|--|
| PSIZE16[0] | PPA01[1] | PPA00[1] | PDS0[0] | PDS1[0] | 32-BIT<br>MAIN MEMORY | 16-BIT<br>INPUT/OUTPUT BUS |  |  |
| 16 BIT     |          |          |         |         |                       |                            |  |  |
| 0          | 0        | x        | 0       | 0       | 0 AND 1               | 0 AND 1                    |  |  |
| 0          | 0        | x        | 0       | 1       | 0                     | 0                          |  |  |
| 0          | 0        | x        | 1       | 0       | 1                     | 1                          |  |  |
| 0          | 0        | x        | 1       | 1       | ILLEGAL               |                            |  |  |
| 0          | 1        | x        | 0       | 0       | 2 AND 3               | 0 AND 1                    |  |  |
| 0          | 1        | x        | 0       | 1       | 0 OR 2                | 0                          |  |  |
| 0          | 1        | x        | 1       | 0       | 1 OR 3                | 1                          |  |  |
| 0          | 1        | x        | 1       | 1       | ILLEGAL               |                            |  |  |
| 8 BIT      |          |          |         |         |                       |                            |  |  |
| 1          | 0        | 0        | x       | 0       | 0                     | 1                          |  |  |
| 1          | 0        | 1        | x       | 0       | 1                     | 1                          |  |  |
| 1          | 1        | 0        | x       | 0       | 2                     | 1                          |  |  |
| 1          | 1        | 1        | x       | 0       | 3                     | 1                          |  |  |

x Don't care bit



**Parity Generation and Checking.** Four parity bits (MPAR3—0[1]) are generated for each of the four data bytes. Parity is checked only as part of read operations. If bad parity is detected, the Peripheral Fault (PFLT[0]) and Memory Parity Error (MPARER[0]) signals are asserted to the system board CPU or peripheral controllers (feature cards) depending on the type of access.

**Bypass Logic.** The Bypass Logic is used to establish direct communication between the system board CPU and feature cards without having to go through the main memory. Hence the term "bypass" is used to mean that main memory is bypassed for system board—feature card direct communication. The Bypass Logic passes the low order 24 bits of the Address Bus and the lower order 16 bits of the data bus directly to the I/O bus during direct communication between CPU and feature cards.

The system board requests the "bypass" mode by asserting the composite Input/Output Chip Select signal (CREQ[0]).

### **Direct Memory Access Subsystem**

**Subsystem Structure.** Figure 3-26 is a high-level functional block diagram of the Direct Memory Access (DMA) Subsystem. The DMA Subsystem includes the following:

- Direct Memory Access Controller
- Dual Universal Asynchronous Receiver/Transmitter
- Integral Hard Disk Controller
- Integral Floppy Disk Controller.

Each of these functional areas is described in the following paragraphs.

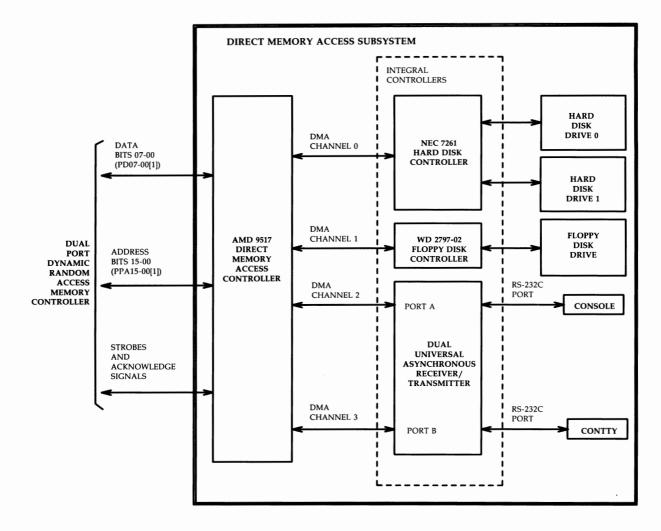



Figure 3-26: Direct Memory Access Subsystem — Functional Block Diagram

Direct Memory Access Controller. The integral Direct Memory Access Controller (DMAC) serves the Dual Universal Asynchronous Receiver/Transmitter (DUART), integral Hard Disk Controller, and the integral Floppy Disk Controller. The DMAC has four independent DMA channels. Each channel has separate registers for mode control, current address, base address, current word count, and base word count.

The DMAC generates a 16-bit address. An additional 8-bit Page Register is used for each of the four DMA channels to provide DMA accessibility to the 22-bit DPDRAM. The most significant bit of each Page Register is the read/write bit.

**Dual Universal Asynchronous Receiver/Transmitter.** The CONSOLE (UART 0) and CONTTY (UART 1) are driven by a Signetics 2681-40 DUART. Each channel (0 and 1) provides the following signals:

- Transmit data (TXD)
- Receive data (RXD)
- Data Carrier Detect (DCD)
- Data Terminal Ready (DTR).

Electrically, the DUART is on the peripheral bus with five other devices in the DMA Subsystem.

The UART has three output ports that are used for non-UART functions. These functions are listed below:

- Control of off-board AC power relay via output port 2 (OP2) (PWRON[0]). The signal is high during normal operations.
- Control of the Power indicator under certain operational conditions via output port 3 (OP3) (GLEDON[1]).
- Output port 4 (OP4) (UFEJCT[0]) is buffered and is sent to the floppy disk interface connector for feature application.
- Output port 5 (OP5) (UFDSEL[0]) is buffered and sent to J10 as the Floppy Drive Select (FDSEL[0]).

**Integral Hard Disk Controller.** The integral Hard Disk Controller provides data and access control for two Winchester disks. The interface is a ST-506 or "floppy disk type" interface at a data rate of 5 MHz. Data transfers are DMA controlled. All data lines are differential RS-422. The receiving end of all data pairs is terminated by 100-ohm resistors. All control lines are open-collector. The receiving end of all control lines are terminated by a resistor network of 220 ohms to VCC and 330 ohms to ground.

The controller connects to data bus bits 07—00[1]. The chip enable is DSKCS[0]. The controller is an NEC 7261 providing the following:

- Programmable track format
- Control two disk drives
- Parallel seek capability
- Multitrack and multisector capability
- Error checking and handling.

**Integral Floppy Disk Controller.** The integral Floppy Disk Controller provides data and access control for a single floppy disk drive. The controller is a WD 2797-02 and provides the following:

- Integrated data separation
- Integrated write precompensation
- Single Frequency Modulation (FM) and Modified Frequency Modulation (MFM) density
- Automatic seek with verify
- Soft sector compatibility.

The controller connects to data bus bits 07—00[1]. The chip is enabled by the FCS[0] signal. All floppy disk interface signals are terminated at the receiving end by a resistor network of 150 ohms to VCC.

### **System Board Firmware**

The system board firmware is programmed instructions stored in Read Only Memory (ROM) which form the basic operating system when the system is not running the UNIX operating system. The purpose of this firmware is to initialize the system and provide the means to load and run other programs such as the UNIX operating system, **filledt**, and **dgmon**. The firmware level built-in programs are listed below:

| baud       | Change the firmware baud rate. Valid firmware baud rates are 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, and 38400. The default baud rate is 9600.            |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| edt        | Display the Equipped Device Table (EDT) data.                                                                                                                                         |
| error info | Display expanded firmware error message information. This capability is provided with firmware PF3 and later versions. (Command is intentionally omitted from firmware command menu.) |
| newkey     | Make a new floppy key.                                                                                                                                                                |
| passwd     | Change the firmware password.                                                                                                                                                         |
| sysdump    | Copy the system image (RAM) to floppy disks.                                                                                                                                          |
| version    | Display firmware version information.                                                                                                                                                 |

When the system is RESET or first powered on, the system board firmware controls the initialization of the system. The sequence of events follows:

- Test processor sanity.
- Check ROM.
- Check NVRAM.
- Check RAM.
- Check DUART.
- Check Disk Sanity.
- Self-configuration (build the EDT).
- Run normal diagnostics on all equipped boards/cards listed in the EDT.
- Boot the UNIX operating system.

# System Board EDT Data

The following table shows the EDT data for a system board. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI).

| EDT ITEM                                                                                                                                                                                                                                                                                                                      | DATA                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (boot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (word_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file)<br>INDIRECT DEVICE (indir_dev) | 0x 0001<br>SBD<br>0x 00<br>0x 00<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>0 |

# CM518A/B/C System Boards

Figure 3-27 is a functional block diagram of the Version 3 system board. The Version 3 3B2 computer system board features are listed below:

- Central Processing Unit (CPU)
- Memory Management Unit (MMU) (two MMUs on CM518C)
- Math Acceleration Unit (MAU)
- Time-of-Day (TOD), interval, system sanity, and unbuffered bus timers
- 32-bit Control, Status, and Error Register (CSER)
- Nine interrupt levels including nonmaskable interrupts
- Two RS-232C serial ports with data set control
- Floppy controller with digital data separator (no adjustments)
- Direct Memory Access Controller (DMAC) for integral floppy disk and Universal Asynchronous Receiver/Transmitters (UARTs)
- 2 megabytes to 64 megabytes of Dynamic Random Access Memory (DRAM) with hardware refresh and Error Correction Code (ECC)
- Supports 8- and 16-bit feature cards
- Power reset of system board and feature cards
- "Soft power" control
- 2K by 8-bit Nonvolatile Random Access Memory (NVRAM)
- 3.6 volt DC lithium battery for NVRAM, TOD clock, and feature cards
- Synchronous memory controller up to 24 MHz
- Supports a 12-slot Enhanced Input/Output (EIO) bus with sequential access capability
- Supports both buffered and unbuffered microbus slots.

Functionally, the CM518 System Boards are very similar. Physically, the CM518A uses a WE 32100 chipset while the CM518B/C System Boards use the WE 32200 chipset. The CM518C System Board also has two MMUs (WE 32201). Refer to Chapter 2, Equipment Description, for information on the physical configuration of the CM518 System Boards.

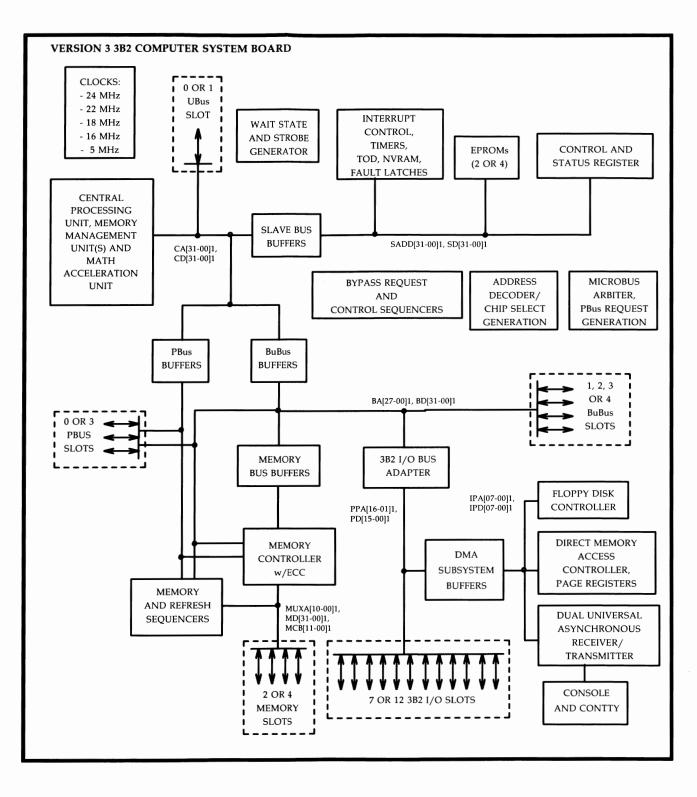



Figure 3-27: Version 3 3B2 Computer System Board — Functional Block Diagram

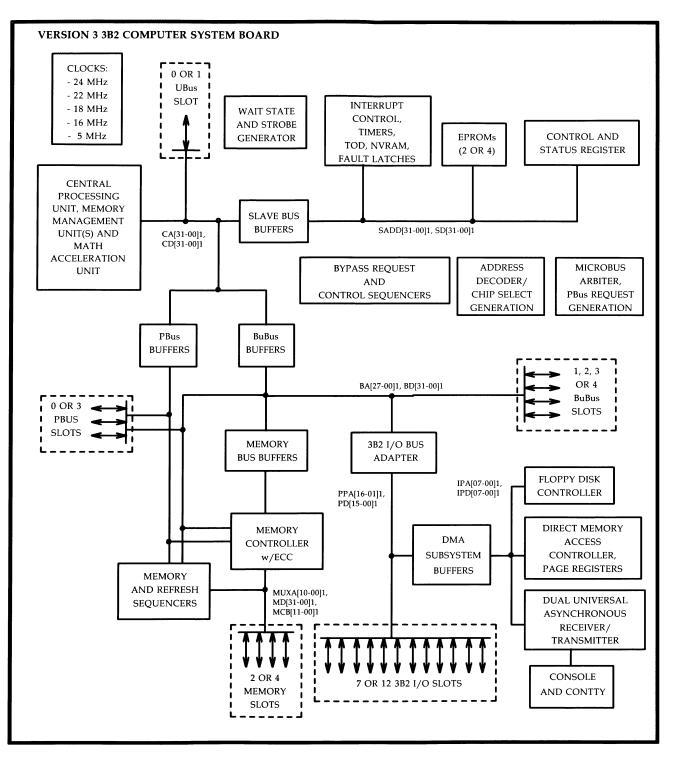



Figure 3-27: Version 3 3B2 Computer System Board — Functional Block Diagram

#### **Central Processing Unit**

The Central Processing Unit (CPU) on a CM518A System Board is a WE 32100 Microprocessor. The CPU on a CM518B/C System Board is WE 32200 Microprocessor. The WE 32100 chipset is covered in the "CM190A/ED-4C637-30 System Board" section of this chapter for Version 2 system boards. Refer to that section for detailed information on the CPU/MMU/MAU chips of the CM518A System Board. The remainder of this section will pertain to the WE 32200 chipset used on the CM518B/C System Boards.

The CPU provides separate 32-bit address and data busses. The 32-bit address bus is used to address memory or peripherals mapped into the system memory space using physical or virtual addresses. Data is read to or written from the CPU over the 32-bit, bidirectional, data bus in either word (32-bit), half-word (16-bit) or byte (8-bit) widths. The CPU automatically expands bytes and half-words to words (32 bits) for processing. Zeros fill the high-order bits for unsigned operations. For signed operations, the sign bit (bit 7 for bytes, bit 15 for half-words) fills the high-order bits.

Instruction execution speed is enhanced by an internal instruction queue and an internal instruction cache. The instruction queue is an 8-byte, First-In-First-Out (FIFO) queue that stores prefetched instructions. The instruction cache is a 64-word cache used to increase the CPU performance by reducing the external memory reads for instruction fetches. When an instruction fetch from memory occurs, the instruction data is placed in both the instruction queue and the instruction cache. If the instruction data is needed again, it is read from the cache rather than from external memory.

Functionally, the system board CPU consists of bus interface control, main controller, fetch unit, and the execute unit circuits. Figure 3-28 shows a functional block diagram of the CM518B/C System Board CPU.

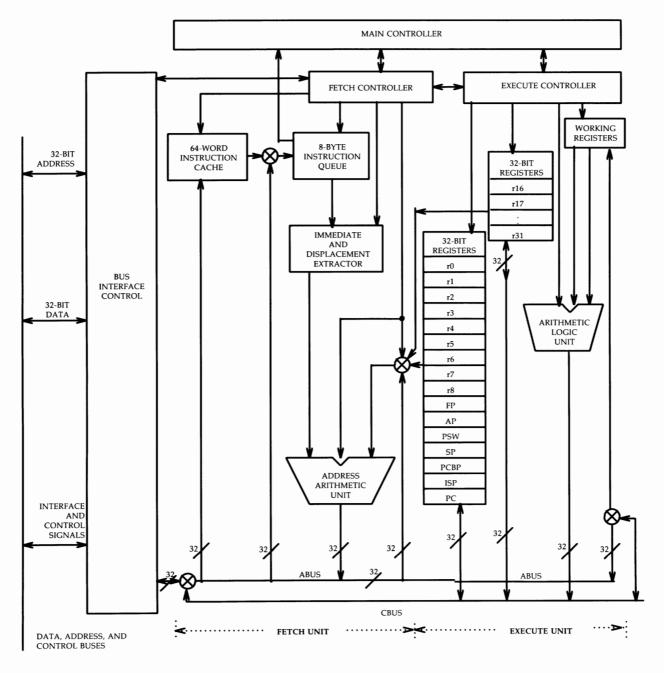



Figure 3-28: CM518B/C System Board CPU — Functional Block Diagram

**Bus Interface Control.** The bus interface control provides all strobes and control signals necessary to interface with peripherals.

**Main Controller.** The main controller is responsible for acquiring and decoding instruction opcodes and directing the action of the fetch and execute controllers as the specified instruction is executed. The main controller also responds to and directs the handling of interrupts and exceptions.

**Fetch Unit.** The fetch unit handles the instruction stream and does memory-based operand accesses. The unit consists of a fetch controller, an instruction cache, and instruction queue, an immediate and displacement extractor, and an Address Arithmetic Unit (AAU).

**Execute Unit.** The execute unit does all arithmetic, binary coded decimal, logical operations, all shift and rotate operations, and computes condition flags. It consists of an execute controller, thirty-two 32-bit registers, working registers, and a 33-bit wide Arithmetic Logic Unit (ALU). The thirty-two 32-bit registers are user-accessible. These registers include 17 general-purpose registers (r23—r16, r8—r0), 8 general-purpose kernel registers (r31—r24), and 7 dedicated registers (r15—r9). All registers except the program counter (r15) and the process status word (r11) can be referenced in all addressing modes. The general-purpose kernel registers (r31—r24), processor status word (r11), process control block pointer (r13), and the interrupt stack pointer (r14) are privileged registers that can be read at any time, but these registers can only be written when the CPU is in the kernel (highest) execution level. The working registers are used exclusively by the CPU and are not user-accessible. The thirty-two 32-bit CPU registers are further defined in the following paragraphs.

# General Purpose Registers (r23—r16, r8—r0)

Seventeen general-purpose registers are used for accumulation, addressing, and for temporary data storage. They can be used in any addressing mode by any program (privileged or nonprivileged). Registers r2, r1, and r0 are also implicitly used by certain other data transfer instructions and by certain operating system instructions. Registers r2, r1, and r0 are also used by the CPU as a scratch pad. The contents of registers r8—r3 are part of the error report output by the **/etc/errdump** command.

# Frame Pointer Register (r9)

The Frame Pointer (FP) register (r9) contents point to the beginning address (location) in the stack of a function's local variables. The contents of register r9 are part of the error report output by the **/etc/errdump** command.

# Argument Pointer Register (r10)

The Argument Pointer (AP) register (r10) contents point to the starting address (location) in the stack where a set of arguments for a function have been pushed. The contents of register r10 are part of the error report output by the **/etc/errdump** command. This register is identified as "oap" in the error report.

# Processor Status Word Register (r11)

The Processor Status Word (PSW) register (r11) contains information that determines the current execution state of the CPU. The PSW register is kernel level privileged. The contents of PSW register (r11) are part of the error report output by the **/etc/errdump** command. This register is identified as "psw" in the error report. The format of the PSW register is as follows.

|       | PROCESSOR STATUS WORD REGISTER |    |       |    |    |     |     |    |    |       |    |       |       |       |    |    |       |    |       |
|-------|--------------------------------|----|-------|----|----|-----|-----|----|----|-------|----|-------|-------|-------|----|----|-------|----|-------|
| BITS  | 31—30                          | 29 | 28    | 27 | 26 | 25  | 24  | 23 | 22 | 21—18 | 17 | 16—13 | 12—11 | 10—09 | 08 | 07 | 06—03 | 02 | 01—00 |
| FIELD | UNUSED                         | EA | EX/UC | AR | x  | CFD | QIE | CD | OE | NZVC  | TE | IPL   | СМ    | РМ    | R  | I  | ISC   | ТМ | ET    |

The PSW register fields are defined in the following paragraphs.

**UNUSED** Bits 31—30 are not used and are always cleared [0].

- **EA** Bit 29 is the Arbitrary Byte Alignment Enable (EA) bit. When set [1], the arbitrary byte alignment is enabled allowing the CPU to read or write word and half-word data from any byte boundary. When clear [0], arbitrary byte alignment is disabled and the alignment fault detection is enabled. The bit is cleared on external reset.
- **EX/UC** Bit 28 is the Normal Exception and User Call (EX/UC) option bit. When set [1], normal exception procedures are identical to process switches and user-initiated process switches are enabled. The bit is cleared on external reset.
- AR Bit 27 is the Additional Register Save (AR) bit. When set [1], this bit enables the additional 8 registers (r23—r16) to be saved during a process switch if no block moves are being executed. The bit is cleared on external reset.
- X Bit 26 is the Extend Carry/Borrow (X) bit. This bit represents the condition code for the binary coded decimal operations. The bitcan only be set if there is a carry or borrow from a binary coded decimal arithmetic operation. The bit is reset if there is no carry or borrow.
- **CFD** Bit 25 is the Cache Flush Disable (CFD) bit. When set [1], instruction cache flushing is disabled when a new process is loaded. When clear [0], the contents of the cache are flushed when a new process is loaded.
- **QIE** Bit 24 is the Quick Interrupt Enable (QIE) bit. When set [1], the quick interrupt handling facility is enabled. When clear [0], an interrupt causes a process switch to a full interrupt processing sequence.

## 3-92 TECHNICAL REFERENCE MANUAL

- CD Bit 23 is the Cache Disable (CD) bit. When set [1], the instruction cache is not used. When clear [0], the instruction cache is used to store and read text. Normally this bit is clear [0].
- **OE** Bit 22 is the Enable Overflow Trap (OE) bit. When set [1], overflow traps are enabled. This bit is cleared when an overflow trap is detected and processed.
- NZVC Bits 21—18 are used to represent four condition codes that reflect the status of the most recent instruction execution. The codes are tested using conditional branching instructions and indicate the following when set.

Bit 21[1] — Negative (N) Bit 20[1] — Zero (Z) Bit 19[1] — Overflow (V) Bit 18[1] — Carry (C)

- **TE** Bit 17 is the Trace Enable (TE) bit. When set [1], the trace function is enabled, causing a trace trap to occur after execution of the next instruction. Debugging and analysis software use the trace facility for single-stepping a program.
- IPL Bits 16—13 are the Interrupt Priority Level (IPL) bits. Bit 13 is the least significant bit. Fifteen interrupt levels are available. An interrupt, unless it is a nonmaskable interrupt, must have a higher priority than the current registered IPL bits in order for the interrupt to be acknowledged. Level 0000 indicated that any of the fifteen interrupt priority levels (0001 through 1111) can interrupt the CPU. A registered IPL of 1111 indicates that no interrupts (except a nonmaskable interrupt) can interrupt the CPU.
- **CM** Bits 12 and 11 are the Current Execution Mode (CM) bits. The code for bits 12 and 11 are as follows.

| BIT 12 | BIT 11 | DESCRIPTION      |
|--------|--------|------------------|
| 0      | 0      | KERNEL LEVEL     |
| 0      | 1      | EXECUTIVE LEVEL  |
| 1      | 0      | SUPERVISOR LEVEL |
| 1      | 1      | USER LEVEL       |

**PM** Bits 10 and 09 are the Previous Execution Mode (PM) bits. The code for bits 10 and 09 are as follows.

| BIT 10 | BIT 09 | DESCRIPTION      |
|--------|--------|------------------|
| 0      | 0      | KERNEL LEVEL     |
| 0      | 1      | EXECUTIVE LEVEL  |
| 1      | 0      | SUPERVISOR LEVEL |
| 1      | 1      | USER LEVEL       |

- **R-I** Bits 08 and 07 are the Register-Initial Context (R-I) bits. These bits control the CPU context switching strategy. The I bit (bit 07) determines if a process executes from initial (I=1) or intermediate saved context (I=0). The R bit (bit 08, read only) determines if the registers of a process should be saved during a process switch (R=1).
- **ISC** Bits 06—03 are the Internal State Code (ISC) bits. The ISC bits are used to distinguish between exceptions of the same type. This field is used with the Exception Type (ET) field to determine when exception occurred. Traps, exceptions, and faults are equivalent with respect to ISC. Normal exceptions are decoded on a priority scheme if more than one occurs in a particular cycle. Exceptional conditions that reset the PSW flags are indicated by an asterisk (\*) in the following data.

| EXCEPTION<br>TYPE               | EXCEPTION                                                                                                     | ISC BITS<br>6 5 4 3                                                                                                               |
|---------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| NORMAL<br>EXCEPTION<br>(ET=11)  | INTEGER ZERO-DIVIDE<br>TRACE TRAP<br>ILLEGAL OPCODE<br>RESERVED OPCODE                                        | 0 0 0 0*<br>0 0 0 1<br>0 0 1 0<br>0 0 1 1                                                                                         |
|                                 | INVALID DESCRIPTOR<br>EXTERNAL MEMORY FAULT<br>GATE VECTOR FAULT<br>ILLEGAL LEVEL CHANGE                      | 0 1 0 0*<br>0 1 0 1<br>0 1 1 0<br>0 1 1 1                                                                                         |
|                                 | RESERVED DATA TYPE<br>INTEGER OVERFLOW<br>PRIVILEGED OPCODE<br>BREAKPOINT TRAP<br>PRIVILEGED REGISTER         | $ \begin{array}{c} 1 & 0 & 0 & 0^* \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array} $              |
| STACK<br>EXCEPTION<br>(ET=10)   | STACK BOUND<br>STACK FAULT<br>INTERRUPT ID FETCH                                                              | $\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}$                                                    |
| PROCESS<br>EXCEPTION<br>(ET=01) | OLD PCB FAULT<br>Gate PCB Fault<br>New PCB Fault                                                              | $\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}$                                                    |
| RESET<br>EXCEPTION<br>(ET=00)   | OLD PCB FAULT<br>SYSTEM DATA<br>INTERRUPT STACK FAULT<br>EXTERNAL RESET<br>NEW PCB FAULT<br>GATE VECTOR FAULT | $\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}$ |

- TMBit 02 is the Trace Mask (TM) bit. This read-only field masks the Trace Enable (TE)<br/>bit for the duration of one instruction to avoid a trace trap. The TM bit is set [1] at<br/>the start of every instruction. The TM bit is cleared [0] as part of every<br/>microsequence that performs a context switch, a return from gate, or when any<br/>fault/interrupt is processed.
- **ET** Bits 01 and 00 are the Exception Type (ET) bits. The ET field is used with the Internal State Code (ISC) field (PSW06—03) to distinguish between exceptions of the same type. The code for bits 01 and 00 are as follows.

| BIT 01 | BIT 00 | DESCRIPTION          |
|--------|--------|----------------------|
| 0      | 0      | ON RESET EXCEPTION   |
| 0      | 1      | ON PROCESS EXCEPTION |
| 1      | 0      | ON STACK EXCEPTION   |
| 1      | 1      | ON NORMAL EXCEPTION  |

### Stack Pointer Register (r12)

The Stack Pointer (SP) register contains the current 32-bit address of the top of the execution stack. This is the memory address of the next place where an item can be stored (pushed) on the stack or the last place where an item was retrieved (popped) from the stack. The SP implements a Last-In-First-Out (LIFO) queue for efficient subroutine linkage and local variable storage. The contents of Stack Pointer register (r12) are part of the error report output by the **/etc/errdump** command. This register is identified as "osp" in the error report.

# Process Control Block Pointer Register (r13)

The Process Control Block Pointer (PCBP) register contains the 32-bit address of the Process Control Block (PCB) for the current process. The PCBP register is kernel level privileged (can only be written when the CPU is in the kernel mode). The PCB contains all switchable process context collected into a compact form for ease of movement between system memory and privileged internal registers. This context consists of the initial and current contents of the processor status word, program counter, and stack pointer; the last contents of registers r0 through r10; boundaries for an execution stack; and block move specifications for the process. The contents of register r13 are part of the error report output by the **/etc/errdump** command. This register is identified as "pcbp" in the error report.

#### Interrupt Stack Pointer Register (r14)

The Interrupt Stack Pointer (ISP) register (r14) contains the 32-bit memory address of the top of the interrupt stack. This stack is used when an interrupt request is received. The interrupt stack is also used by the Call Process (CALLPS) and Return To Process (RETPS) instructions. The ISP register is kernel level privileged. The contents of register r14 are part of the error report output by the **/etc/errdump** command. This register is identified as "isp" in the error report.

# Program Counter Register (r15)

The Program Counter (PC) register (r15) contains the 32-bit memory address of the instruction being executed or, on instruction completion, contains the starting address of the next instruction to be executed. The contents of register r15 are part of the error report output by the **/etc/errdump** command. This register is identified as "opc" in the error report.

# General-Purpose Kernel Registers (r31-r24)

These eight registers can be used for accumulation, addressing, or temporary storage. They are kernel-level privileged and can be used in any addressing mode by any privileged program.

#### **Memory Management Unit**

The Memory Management Unit (MMU) on the CM518A System Board is a WE 32101 Memory Management Unit.

**Note:** The WE 32100 chipset is covered in the "CM190A/ED-4C637-30 System Board" section for Version 2 system boards. Refer to that section for detailed information on the CPU/MMU/MAU chips of the CM518A System Board.

The MMU on a CM518B/C System Board is a WE 32201 Memory Management Unit. Figure 3-29 shows how the MMU connects to the system. The internal MMU address spectrum is shown in Figure 3-30. Figure 2-31 shows the virtual to physical address translation for paged segments.

The MMU manipulates the microprocessor's address space by translating the virtual microprocessor addresses into physical address information. The 32-bit address can access over 4 gigabytes (2<sup>32</sup>) of system memory or peripherals. The MMU also supports demand paged and demand segmented virtual memory. This permits large programs to efficiently use physical memory space. The WE 32201 MMU comes with an on-chip 4K byte, 2-way, set-associative instruction/data cache that returns data with zero wait states on CPU virtual to physical memory accesses.

The MMU divides the virtual address space into four sections. Each of these four sections can be subdivided into as many as 8K segments per section. These segments are paged and are mapped into the physical address space by the MMU. A paged segment can contain up to sixty-four 2K byte pages. Since segments are a multiple of pages, they always start on page boundaries.

Virtual addresses are relative addresses of an active process. Physical addresses are addresses that the main store controller can interpret as the true physical location of the memory. The function of the MMU is to translate virtual addresses to physical addresses. The address of each byte within a 2K byte block (offset) is not translated because the smallest size data block that can be placed in the main store by the MMU is 2K bytes. Therefore, the lower 11 bits of the virtual address spectrum and the lower 11 bits of the physical address spectrum are the same. The MMU stores information describing the physical location of blocks of 2K bytes of process data. The description locations are stored in the MMU caches. The MMU uses four caches: ID Number Cache (IDNC), Current ID Number Registers (CIDNR), Segment Descriptor Cache (SDC) and Page Descriptor Cache (PDC).

Virtual address space is further described in Appendix A.

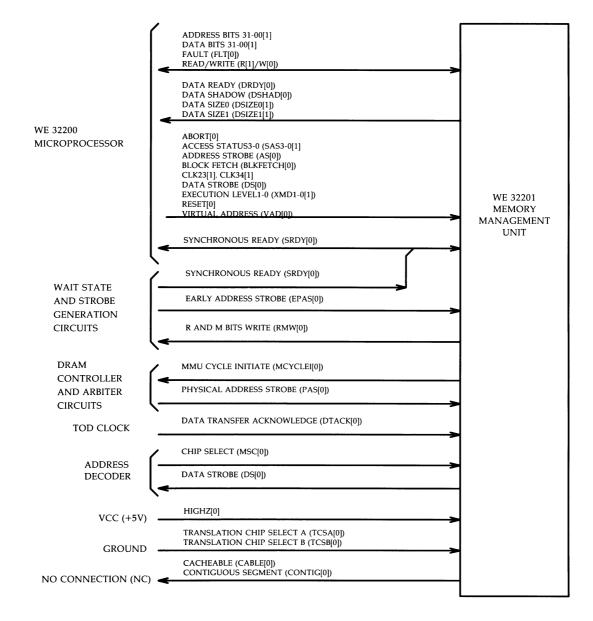



Figure 3-29: WE 32201 MMU Interconnection Diagram

**ID Number Cache.** The ID Number Cache (IDNC) is used to transparently assign ID numbers to each section of the MMU. The cache is organized in a 16-entry, fully associative configuration. Each entry is 32 bits in length divided into "tag" bits and data bits.

**Current ID Number Registers.** The Current ID Number Registers (CIDNR) contain the four current ID numbers (consisting of 4 bits each). The CIDNR is used during translation to select the ID number to be used in the page descriptor cache tag lookup.

Segment Descriptor Cache. The Segment Descriptor Cache (SDC) consists of eight entries in a directly mapped configuration. Each entry is 64 bits in length.

**Page Descriptor Cache.** The Page Descriptor Cache (PDC) consists of sixty-four 64-bit entries organized in a fully associative configuration.

Section Random Access Memories. The MMU contains two Random Access Memory (RAM) areas called Section RAM A (SRAMA) and Section RAM B (SRAMB). Each of these areas contain four 32-bit words. SRAMA bits 31—03 describes the base address of the Segment Descriptor Table (SDT) for each of the four sections of virtual memory. SRAMB bits 22—10 describes the length (number of entries) in the SDT for each of the four sections of virtual memory. The contents of SRAMA (4 words) and SRAMB (4 words) are part of the error report output by the /etc/errdump command. The SRAMA and SRAMB are identified as "srama" and "sramb" in the error report. The format of SRAMA and SRAMB are as follows.

|       | SECTION RAM A (SRAMA) |          |  |  |  |  |  |  |
|-------|-----------------------|----------|--|--|--|--|--|--|
| BITS  | 31 — 03               | 02 — 00  |  |  |  |  |  |  |
| FIELD | SDT ADDRESS           | RESERVED |  |  |  |  |  |  |

|       | SECTION RAM B (SRAMB) |            |          |  |  |  |  |  |  |  |  |
|-------|-----------------------|------------|----------|--|--|--|--|--|--|--|--|
| BITS  | 31 — 23               | 22 — 10    | 09 — 00  |  |  |  |  |  |  |  |  |
| FIELD | RESERVED              | SDT LENGTH | RESERVED |  |  |  |  |  |  |  |  |

MMU Registers. The MMU contains five 32-bit registers:

- Fault Code Register (FLTCR)
- Fault Address Register (FLTAR)
- Virtual Address Register (VAR)
- Configuration Register (CR)
- Flush ID Number Register (FIDNR).

These registers are used to store MMU state information. The contents of FLTAR and FLTCR are part of the error report output by the **/etc/errdump** command. The FLTAR and FLTCR are identified as "fltar" and "fltcr" in the error report.

### Fault Code Register

The Fault Code Register (FLTCR) is loaded whenever a fault occurs during an MMU operation. The contents are changed to the default state when the CPU writes to it in the peripheral mode. Reading the FLTCR does not change the contents. The output of the **/etc/errdump** command includes the FLTCR. The format of the FLTCR is as follows.

|       | FAULT CODE REGISTER |                  |               |            |  |  |  |  |  |
|-------|---------------------|------------------|---------------|------------|--|--|--|--|--|
| BITS  | 31 — 11             | 10 — 07          | 06 — 05       | 04 — 00    |  |  |  |  |  |
| FIELD | RESERVED            | ACCESS REQUESTED | ACCESS XLEVEL | FAULT TYPE |  |  |  |  |  |

The FLTCR fields are defined in the following paragraphs.

**RESERVED** Bits 31—11 are reserved for future use. If read, zeros are returned.

### ACCESS REQUESTED

Bits 10—07 are used to store the type of access the CPU requested when a fault occurred. The decode of bits 10—07 indicate the following.

| BITS 10 - 07 | ACCESS TYPE                           |
|--------------|---------------------------------------|
| 0000         | MOVE TRANSLATED (MT)                  |
| 0001         | SUPPORT PROCESSOR DATA WRITE          |
| 0011         | SUPPORT PROCESSOR DATA FETCH          |
| 0111         | INTERLOCKED READ                      |
| 1000         | ADDRESS FETCH                         |
| 1001         | OPERAND FETCH                         |
| 1010         | WRITE                                 |
| 1100         | INSTRUCTION FETCH AFTER DISCONTINUITY |
| 1101         | INSTRUCTION PREFETCH                  |
| 1110         | INSTRUCTION FETCH                     |

# ACCESS XLEVEL

Bits 06 and 05 are used to store the execution level of the requested access when the fault occurred. The decode of bits 06 and 05 indicate the following.

| BIT 06 | BIT 05 | DESCRIPTION      |
|--------|--------|------------------|
| 0      | 0      | KERNEL LEVEL     |
| 0      | 1      | EXECUTIVE LEVEL  |
| 1      | 0      | SUPERVISOR LEVEL |
| 1      | 1      | USER LEVEL       |
|        |        |                  |

### FAULT TYPE

Bits 04—00 are the FAULT TYPE that occurred. The decode of bits 04—00 indicate the following. Unassigned fault type values are not included.

| BITS 04-00 | FAULT NAME                        |
|------------|-----------------------------------|
| 00000      | NO FAULT                          |
| 00001      | MISPROCESSING MEMORY              |
| 00010      | REFERENCED/MODIFIED UPDATE MEMORY |
| 00011      | SEGMENT DESCRIPTOR TABLE LENGTH   |
| 00100      | PAGE WRITE                        |
| 00101      | PAGE DESCRIPTOR TABLE LENGTH      |
| 00110      | INVALID SEGMENT DESCRIPTOR        |
| 00111      | SEGMENT NOT PRESENT               |
| 01000      | RESERVED                          |
| 01001      | PAGE DESCRIPTOR TABLE NOT PRESENT |
| 01001      | PAGE DESCRIPTOR TABLE NOT TRESENT |
| 01010      | PAGE NOT PRESENT                  |
| 01011      | TOO MANY INDIRECTIONS             |
| 01101      | ACCESS                            |
| 01110      | ACCESS OFFSET                     |
| 01111      | RESERVED                          |

#### Fault Address Register

The Fault Address Register (FLTAR) contains the virtual address that was being processed when the last fault that caused a write to the FLTCR occurred. The output of the **/etc/errdump** command includes the FLTAR.

### Virtual Address Register

The Virtual Address Register (VAR) contains the virtual address to be translated by the MMU. The VAR is overwritten each time a translation is performed. Writing to the VAR causes the corresponding page descriptor and segment descriptor to be flushed. If the segment descriptor is contiguous, then all page descriptors are flushed.

## **Configuration Register**

The Configuration Register (CR) is used to enable or disable certain options of the MMU. Upon reset, all bits are cleared. The format of the CR is as follows.

|       | CONFIGURATION REGISTER |     |     |         |           |            |          |
|-------|------------------------|-----|-----|---------|-----------|------------|----------|
| BITS  | 31 — 07                | 06  | 05  | 04 — 03 | 02        | 01         | 00       |
| FIELD | RESERVED               | DCE | MCE | PS      | CACHEABLE | REFERENCED | MODIFIED |

The CR fields are defined in the following paragraphs.

**RESERVED** Bits 31—07 are reserved for future use. If read, zeros are returned.

**DCE** Bit 06 is the Data Cache Enable (DCE) bit. This bit must be set to enable data cache. For parts without data cache, this bit must contain a zero.

MCE Bit 05 is the Multiple Context Enable (MCE) bit. When set [1], the multiple context feature is enabled. When cleared[0], the MMU operates is single context mode.

PS

Bits 04—03 are the Page Size (PS) bits. These bits determine the page size for the MMU operations as follows:

| BIT 04 | BIT 03 | PAGE SIZE   |
|--------|--------|-------------|
| 0      | 0      | 2 Kilobytes |
| 0      | 1      | 4 Kilobytes |
| 1      | 0      | 8 Kilobytes |
| 1      | 1      | RESERVED    |

### CACHEABLE

Bit 02 is the Cacheable bit. The Cacheable (\$) bit determines the state of  $\overrightarrow{CABLE}$  during misprocessing and updating of the Referenced and Modified bits. (If \$=0, then  $\overrightarrow{CABLE} = 1$ ; if \$=1, then  $\overrightarrow{CABLE} = 0$ .)

### REFERENCED

Bit 01 is the Referenced (R) bit. The R bit in the segment descriptor is set (R=1) when the segment descriptor is brought into the segment descriptor cache as a result of misprocessing. When R=0, the R bit in the segment descriptor is not updated.

**MODIFIED** Bit 00 is the Modified (M) bit. If M=1, the segment descriptor M bit is updated on the first write to a segment.

## Flush ID Number Register

The Flush ID Number Register (FIDNR) is used in multiple context only. Writing the address of the SDT to the FIDNR causes all page descriptor cache entries associated with the flushed ID to be flushed from the PDC and SDC. The format of the FIDNR is as follows.

|       | FLUSH ID NUMBER REGISTER |          |  |  |
|-------|--------------------------|----------|--|--|
| вітѕ  | 31 — 03                  | 02 — 00  |  |  |
| FIELD | SDT ADDRESS              | RESERVED |  |  |

**Peripheral Mode.** In the peripheral mode of MMU operation, the MMU is accessed as a memory-mapped peripheral. In this mode, internal MMU registers and logic elements are read and write accessible by the system board CPU. All peripheral mode accesses are word (32-bit) accesses. When the system board CPU asserts the MMU Chip Select (MMUCS[0]), the MMU is in the peripheral mode. The internal MMU address spectrum is shown in Figure 3-30. In the peripheral mode, physical address bits 31—00 are interpreted as follows by the MMU.

|       | PERIPHERAL MODE ADDRESS FIELDS |         |         |          |
|-------|--------------------------------|---------|---------|----------|
| BITS  | 31 — 12                        | 11 — 08 | 07 — 02 | 01 — 00  |
| FIELD | RESERVED                       | ENTITY  | INDEX   | RESERVED |

The peripheral mode address fields are defined in the following paragraphs.

**RESERVED** Bits 31—12, 01, and 00 are ignored by the MMU. These bits are negated (treated as zeros).

**ENTITY** Bits 11—08 are used to select the internal MMU circuit (entity) to be accessed. The decode of bits 11—08 is as follows.

| BITS 11 — 08 | SELECTED MMU DEVICE                 |
|--------------|-------------------------------------|
| 0000         | SEGMENT DESCRIPTOR CACHE BITS 31-00 |
| 0001         | SEGMENT DESCRIPTOR CACHE BITS 63-32 |
| 0010         | PAGE DESCRIPTOR CACHE BITS 31-00    |
| 0011         | PAGE DESCRIPTOR CACHE BITS 63-32    |
| 0100         | FLUSH DATA CACHE REGISTER           |
| 0101         | RESERVED                            |
| 0110         | SECTION RAM A                       |
| 0111         | SECTION RAM B                       |
| 1000         | FAULT CODE REGISTER                 |
| 1001         | FAULT ADDRESS REGISTER              |
| 1010         | CONFIGURATION REGISTER              |
| 1011         | VIRTUAL ADDRESS REGISTER            |
| 1100         | ID NUMBER CACHE                     |
| 1101         | CURRENT ID NUMBER REGISTER          |
| 1110         | FLUSH ID NUMBER REGISTER            |
| 1111         | VERSION REGISTER                    |

**INDEX** Bits 07—02 are used to index each addressable entity. Bits 07—02 are ignored when register are accessed. Bits 07—02 are used when segment or page descriptor caches are accessed. Bits 03 and 02 are used for section RAM accesses.

| ADDRESS               | DESCRIPTION                         |
|-----------------------|-------------------------------------|
| 0x 000<br> <br>0x 07C | SEGMENT DESCRIPTOR CACHE BITS 31—00 |
| 0x 100<br> <br>0x 17C | SEGMENT DESCRIPTOR CACHE BITS 63—32 |
| 0x 200<br>I<br>0x 27C | PAGE DESCRIPTOR CACHE BITS 31—00    |
| 0x300<br>I<br>0x 37C  | PAGE DESCRIPTOR CACHE BITS 63—32    |
| 0x 400                | FLUSH DATA CACHE REGISTER           |
| 0x 500                | RESERVED                            |
| 0x 600<br>I<br>0x 60C | SECTION RAM A                       |
| 0x 700<br>I<br>0x 70C | SECTION RAM B                       |
| 0x 800                | FAULT CODE REGISTER                 |
| 0x 900                | FAULT ADDRESS REGISTER              |
| 0x A00                | CONFIGURATION REGISTER              |
| 0x B00                | VIRTUAL ADDRESS REGISTER            |
| 0x C00<br>I<br>0xCFC  | ID NUMBER CACHE                     |
| 0x D00<br>I<br>0x D0C | CURRENT ID NUMBER REGISTER          |
| 0x E00                | FLUSH ID NUMBER REGISTER            |
| 0x F00                | VERSION REGISTER                    |

| Figure | 3-30: | MMU Internal Address Spectrum |
|--------|-------|-------------------------------|
|        |       |                               |

Virtual to Physical Address Translation for Paged Segments. Figure 3-31 shows the translation of a virtual address to a physical address for a paged segment of physical memory. The Section Identification (SID) field is used to find the base address of the required Segment Descriptor Table (SDT). The base address of the SDT for each section is stored in the MMU. This base address and the Segment Select (SSL) field are combined to index a Segment Descriptor (SD) within the SDT. The SD is used as the base address of a Page Descriptor Table (PDT). This PDT address is combined with the Page Select (PSL) field to index a Page Descriptor (PD). The PD contains the starting address of the paged segment that is concatenated with the Page Offset (POT) field to form the required physical address.

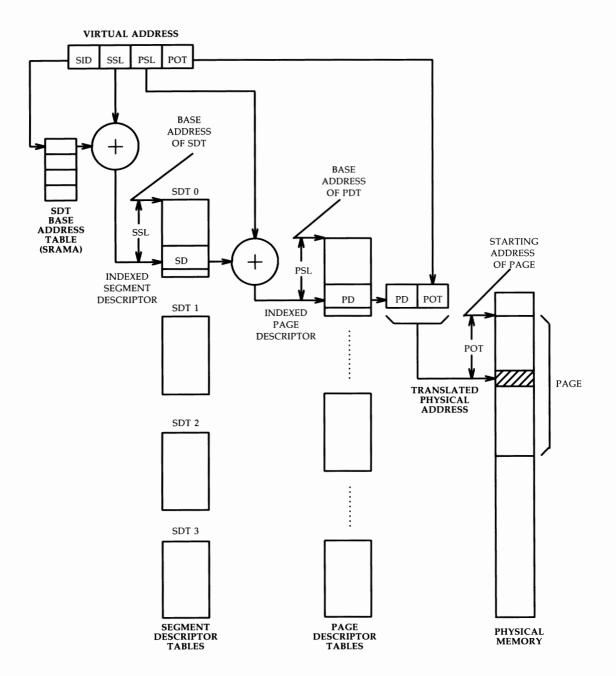



Figure 3-31: Virtual Address to Physical Address Translation for Paged Segments

## **Math Acceleration Unit**

The WE 32106 Math Acceleration Unit (MAU) is used on the CM518A System Board.

**Note:** The WE 32100 chipset is covered in the "CM190A/ED-4C637-30 System Board" section for Version 2 system boards. Refer to that section for detailed information on the CPU/MMU/MAU chips of the CM518A System Board.

The CM518B/C System Boards use the WE 32206 MAU. The MAU is used in a coprocessor mode to provide hardware floating point capability for the WE 32200 Microprocessor. The MAU peripheral mode is **not** used in this application; the MAU chip select is held to a logic 1 through a pull up resistor to VCC. The MAU provides single (32-bit), double (64-bit), and double-extended (80-bit) precision. The single precision format provides an 8-bit exponent and an exponent bias allowing the reciprocal of all normalized numbers to be represented without overflow. Double precision provides an exponent range sufficient for the product of eight 32-bit terms without overflow. Double-extended precision provides a format with a range and precision that is greater than double precision. Double-extended precision numbers lessen the chance of a result being contaminated by excessive roundoff error.

The MAU supports add, subtract, multiply, divide, remainder, square root, and compare operations. The operand, result, status, and command information transfers take place over a 32-bit, bidirectional data bus with the WE 32200 Microprocessor. Figure 3-32 is a functional block diagram of the WE 32206 MAU. The WE 32206 is a 125-pin ceramic pin-array package using CMOS technology and operating at 24 MHz.

MAU Registers. The MAU contains four register types:

- Auxiliary Status Register
- Operand Registers
- Command Register
- Data Register.

These registers provide status, command, and control for the MAU.



Figure 3-32: WE 32206 Math Acceleration Unit - Functional Block Diagram

### Auxiliary Status Register

The Auxiliary Status Register (ASR) is used to do the following:

- Control the remainder operation (partial remainder bit)
- Signal the state of an operation (result available bit)
- Disable and record exceptions (mask and sticky bits)
- Control rounding of results (round control bits)
- Record condition codes (negative and zero bits).

The negative, zero, inexact, and integer overflow bits in the ASR match the condition codes in the PSW register of the CPU. This allows the bits to be copied into the PSW as part of the coprocessor status access and to be easily tested by the CPU. The format of the ASR is as follows.

|       |    | AUXILIARY STATUS REGISTER (31—16) |     |      |         |    |    |    |    |     |    |
|-------|----|-----------------------------------|-----|------|---------|----|----|----|----|-----|----|
| BITS  | 31 | 30 — 26                           | 25  | 24   | 23 — 22 | 21 | 20 | 19 | 18 | 17  | 16 |
| FIELD | RA | UNUSED                            | ECP | NTNC | RC      | N  | Z  | ю  | PS | CSC | UO |

|       |    | AUXILIARY STATUS REGISTER (15-00) |    |    |    |    |    |    |    |    |    |    |       |    |
|-------|----|-----------------------------------|----|----|----|----|----|----|----|----|----|----|-------|----|
| BITS  | 15 | 14                                | 13 | 12 | 11 | 10 | 09 | 08 | 07 | 06 | 05 | 04 | 03—01 | 00 |
| FIELD | WF | IM                                | ОМ | UM | QM | РМ | IS | OS | US | QS | PR | UW | VER   | FE |

The ASR fields are defined in the following paragraphs.

**UNUSED** Bits 30—26 are not used. These bits are returned as zeros when read.

**RA** Bit 31 is the Result Available (RA) bit. It is cleared at the beginning of an operation and set [1] when the operation result is available. During the quiescent state, the RA bit is set.

**ECP** Bit 25 is the Exception Condition Present (ECP) bit. It is set [1] if any one of the floating point exception conditions except "inexact" is present. The ECP bit is cleared [0].

NTNC Bit 24 is the Nontrapping Not a Number (NAN) Control (NTNC) bit. Bit 24 is tested when an invalid operation exception occurs and bit 14 (IM) is cleared. If bit 24 is set, an exception occurs and bit 09 (IS) is set.

RC

Bits 23 and 22 are the Round Control (RC) mode bits. The decode of these bits is as follows.

| BIT 23 | BIT 22 | DESCRIPTION                     |
|--------|--------|---------------------------------|
| 0      | 0      | ROUND TO NEAREST                |
| 0      | 1      | ROUND TOWARDS PLUS INFINITY     |
| 1      | 0      | ROUND TOWARDS MINUS INFINITY    |
| 1      | 1      | ROUND TOWARDS ZERO (TRUNCATION) |

- **N** Bit 21 is the Negative (N) condition bit. Bit 21 is set [1] when result of the last operation is negative. Bit 21 is cleared when the result of the last operation is positive.
- **Z** Bit 20 is the Zero (Z) condition bit. Bit 20 is set [1] when the result of the last operation is zero. Bit 20 is cleared when the result of the last operation is nonzero.
- **IO** Bit 19 is the Integer Overflow (IO) bit. Bit 19 is set [1] when a convert float to integer operation causes an overflow.
- **PS** Bit 18 is the Inexact Sticky (PS) bit. Bit 18 is set [1] when the result of an operation cannot be specified in the destination format. Bit 18 is cleared on reset.
- **CSC** Bit 17 is the Context Switch Control (CSC) bit. Bit 17 is set [1] on every MAU instruction execution. Bit 17 is cleared on reset.
- **UO** Bit 16 is the Unordered (UO) bit. Bit 16 is set [1] when a compare operation results in an unordered indication; otherwise this bit is cleared. Bit 16 is cleared on reset.
- WF Bit 15 is the Write Fault (WF) indicator bit. If enabled (bit 0), this bit is set [1] when a fault condition occurs during the writing of any result to memory. When this bit is set, the MAU will not reexecute the operation upon a restart from the CPU. Instead, it returns a DONE signal and stores the result of the previously faulted operation in memory.
- IM Bit 14 is the Invalid Operation Mask (IM) bit. Bit 14 is set [1] by the user to enable the generation of an exception when bit 09 (Invalid Operation Sticky bit) is set. There are no invalid operation exceptions when bit 14 is cleared.
- **OM** Bit 13 is the Overflow Mask (OM) bit. Bit 13 is set [1] by the user to enable the generation of an exception when bit 08 (Overflow Sticky bit) is set. There are no overflow exceptions when bit 13 is cleared.
- **UM** Bit 12 is the Underflow Mask (UM) bit. Bit 12 is set [1] by the user to enable the generation of an exception when bit 07 (Underflow Sticky bit) is set. There are no underflow exceptions when bit 12 is cleared.
- **QM** Bit 11 is the Divide by Zero Mask (QM) bit. Bit 11 is set [1] by the user to enable the generation of an exception when bit 06 (Divide by Zero Sticky bit) is set. There are no divide by zero exceptions when bit 11 is cleared.
- **PM** Bit 10 is the Inexact Mask (PM) bit. Bit 10 is set [1] by the user to enable the generation of an exception when bit 18 (Inexact Sticky bit) is set [1]. There are no inexact exceptions when bit 10 is cleared.
- **IS** Bit 09 is the Invalid Operation Sticky (IS) bit. Bit 09 is set [1] when a result cannot be legally stored in a destination, or when illegal operands are given to some operation.

| OS  | Bit 08 is the Overflow Sticky (OS) bit. Bit 08 is set [1] when an exponent of a rounded result of an arithmetic operation is too large for the exponent field of the destination format.                                                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US  | Bit 07 is the Underflow Sticky (US) bit. Bit 07 is set [1] when an exponent of a rounded result of an arithmetic operation is too small to be represented in the exponent field of the destination format.                                 |
| QS  | Bit 06 is the Divide by Zero Sticky (QS) bit. Bit 06 is set [1] when the divisor is normalized zero and the dividend is a finite nonzero number.                                                                                           |
| PR  | Bit 05 is the Partial Remainder (PR) bit. Bit 05 is set [1] when the result of a remainder operation is a partial remainder. Bit 05 is cleared when the result of a remainder operation is a full remainder. This bit is cleared on reset. |
| UW  | Bit 04 is the Unaligned Word (UW) bit. If enabled (bit 0), this bit is set [1] when a fault condition occurs due to an unaligned word being received.                                                                                      |
| VER | Bits 03—01 are used to determine which MAU is being used: 001 indicates a WE 32206 MAU, 000 indicates a WE 32106 MAU.                                                                                                                      |
| FE  | Bit 00 is the Feature Enable (FE) bit. When set [1], the Write Fault (WF) and Unaligned Word (UW) features of the MAU are enabled.                                                                                                         |

#### **Operand Registers**

The MAU contains eight operand registers (F7—F0). Each operand register is 80 bits and contains one operand in an extended format. These registers are accessed via the Data Register in the format of three 32-bit words. In the peripheral mode, bits 95—80 are ignored during write operations. For read operations, bits 95—80 are returned as zeros. The operand registers are unchanged on reset. The contents of these registers are indeterminate on powerup. The format of each of the eight operand registers is as follows.

|       | OPERAND REGISTERS (F3— F0) |      |          |    |          |  |  |  |
|-------|----------------------------|------|----------|----|----------|--|--|--|
| BITS  | 95 — 80                    | 79   | 78 — 64  | 63 | 62 — 00  |  |  |  |
| FIELD | UNUSED                     | SIGN | EXPONENT | J  | FRACTION |  |  |  |

The operand register fields are defined in the following paragraphs.

UNUSED Bits 95—80 are not used. These bits are returned as zeros for a read operation.

**SIGN** Bit 79 is the SIGN bit. When set [1] the sign is negative; cleared represents a positive value.

**EXPONENT** Bits 78—64 are used as the EXPONENT field. The exponent is biased by 16,383.

J Bit 63 is the Explicit (J) bit. The J bit is to the left of the binary point in the 2<sup>0</sup> position. In combination, the J bit and the FRACTION field can represent values in the range 0 to 2-(2<sup>-63</sup>).

**FRACTION** Bits 62—00 are used to represent the fractional part of a number.

## **Command Register**

The Command Register (CR) stores command words used to initiate MAU operations. The format of this 32-bit register is as follows.

|       | COMMAND REGISTER |        |     |     |     |     |       |        |       |       |       |
|-------|------------------|--------|-----|-----|-----|-----|-------|--------|-------|-------|-------|
| BITS  | 31—24            | 23—21  | 20  | 19  | 18  | 17  | 16—15 | 14—10  | 09—07 | 06—04 | 03—00 |
| FIELD | ID               | UNUSED | RB1 | RB2 | RB3 | RCS | RC    | OPCODE | OP1   | OP2   | OP3   |

The CR fields are defined in the following paragraphs.

| ID | Bits 31—24 are the Processor Identification Number of the processor that should |
|----|---------------------------------------------------------------------------------|
|    | react to the command word. The MAU is ID 0.                                     |

- **UNUSED** Bits 23—21 are not used. These bits are returned as zeros for a read operation.
- **RB(1-3)** Bits 20—18 are the Register Bank (RB1—RB3) bits. A "0" specifies registers F0 through F3 and a "1" specifies registers F4 through F7.
- **RCS** Bit 17 is the Round Control Selection (RCS) bit. When clear [0], round control is determined by the RC bits in the Auxiliary Status Register. When set [1], round control is determined by the RC bits in the Control Register.
- **RC** Bits 16 and 15 make up the Round Control (RC) bits. They determine the method of rounding as follows.

| BIT 15 | DESCRIPTION                     |  |  |  |  |
|--------|---------------------------------|--|--|--|--|
| 0      | ROUND TO NEAREST                |  |  |  |  |
| 1      | ROUND TOWARDS PLUS INFINITY     |  |  |  |  |
| 0      | ROUND TOWARDS MINUS INFINITY    |  |  |  |  |
| 1      | ROUND TOWARDS ZERO (TRUNCATION) |  |  |  |  |
|        |                                 |  |  |  |  |

| OPCODE | Bits 14—10 are the Operation Code (OPCODE) field. The OPCODE field specifies |  |
|--------|------------------------------------------------------------------------------|--|
|        | the operation to be done. The OPCODES are as follows.                        |  |

| OPCODE | MNEMONIC | INSTRUCTION                               |
|--------|----------|-------------------------------------------|
| 0x 02  | ADD      | ADD                                       |
| 0x 03  | SUB      | SUBTRACT                                  |
| 0x 04  | DIV      | DIVIDE                                    |
| 0x 05  | REM      | REMAINDER                                 |
| 0x 06  | MUL      | MULTIPLY                                  |
| 0x 07  | MOVE     | MOVE                                      |
| 0x 08  | RDASR    | MOVE FROM ASR                             |
| 0x 09  | WRASR    | MOVE TO ASR                               |
| 0x 0A  | СМР      | COMPARE                                   |
| 0x 0B  | CMPE     | COMPARE WITH EXCEPTIONS                   |
| 0x 0C  | ABS      | ABSOLUTE VALUE                            |
| 0x 0D  | SQRT     | SQUARE ROOT                               |
| 0x 0E  | RTOI     | ROUND TO INTEGRAL VALUE                   |
| 0x 0F  | FTOI     | CONVERT FLOATING POINT TO INTEGER         |
| 0x 10  | ITOF     | CONVERT INTEGER TO FLOATING POINT         |
| 0x 11  | DTOF     | CONVERT DECIMAL TO FLOATING POINT         |
| 0x 12  | FTOD     | CONVERT FLOATING POINT TO DECIMAL         |
| 0x 13  | NOP      | NO OPERATION                              |
| 0x 14  | EROF     | EXTRACT RESULT ON FAULT                   |
| 0x 17  | NEG      | NEGATE                                    |
| 0x 18  | LDR      | LOAD DATA REGISTER                        |
| 0x 1A  | CMPS     | COMPARE WITH FLAGS SWAPPED                |
| 0x 1B  | CMPS     | COMPARE WITH EXCEPTIONS AND FLAGS SWAPPED |

**P1** Bits 09—07 is the Operand Specifier 1 (OP1) field. OP1 specifies whether the first source operand is a MAU register, a memory-based operand of a given size, or nonexistent (no operand). The value of this field is as follows.

| BITS 09 — 07 | OPERAND LOCATION                     |
|--------------|--------------------------------------|
| 000          | REGISTER F0 OR F4 (DEPENDING ON RB1) |
| 001          | REGISTER F1 OR F5 (DEPENDING ON RB1) |
| 010          | REGISTER F2 OR F6 (DEPENDING ON RB1) |
| 011          | REGISTER F3 OR F7 (DEPENDING ON RB1) |
| 100          | MEMORY-BASED SINGLE WORD             |
| 101          | MEMORY-BASED DOUBLE WORD             |
| 110          | MEMORY-BASED TRIPLE WORD             |
| 111          | NO OPERAND                           |

OP1

Bits 06—04 is the Operand Specifier 2 (OP2) field. OP2 specifies whether the second source operand is a MAU register, a memory-based operand of a given size, or nonexistent (no operand). The value of this field is as follows.

| BITS 06 — 04 | OPERAND LOCATION                     |
|--------------|--------------------------------------|
| 000          | REGISTER F0 OR F4 (DEPENDING ON RB2) |
| 001          | REGISTER F1 OR F5 (DEPENDING ON RB2) |
| 010          | REGISTER F2 OR F6 (DEPENDING ON RB2) |
| 011          | REGISTER F3 OR F7 (DEPENDING ON RB2) |
| 100          | MEMORY-BASED SINGLE WORD             |
| 101          | MEMORY-BASED DOUBLE WORD             |
| 110          | MEMORY-BASED TRIPLE WORD             |
| 111          | NO OPERAND                           |
|              |                                      |

OP3

Bits 03—00 are the Operand Specifier 3 (OP3) field. OP3 specifies whether the destination operand is a MAU register, a memory-based operand of a given size, or nonexistent (no operand). Even though the register destinations are specified as single, double, or double-extended, the result is stored in the registers in double-extended precision. The precision designations are used for rounding and checking for underflow and overflow. The value of this field is as follows.

| BITS 03 — 00 | OPERAND<br>REGISTER | DESTINATION<br>PRECISION |
|--------------|---------------------|--------------------------|
| 0000         | F0 OR F4            | SINGLE                   |
| 0001         | F1 OR F5            | SINGLE                   |
| 0010         | F2 OR F6            | SINGLE                   |
| 0011         | F3 OR F7            | SINGLE                   |
| 0100         | F0 OR F4            | DOUBLE                   |
| 0101         | F1 OR F5            | DOUBLE                   |
| 0110         | F2 OR F6            | DOUBLE                   |
| 0111         | F3 OR F7            | DOUBLE                   |
| 1000         | F0 OR F4            | DOUBLE-EXTENDED          |
| 1001         | F1 OR F5            | DOUBLE-EXTENDED          |
| 1010         | F2 OR F6            | DOUBLE-EXTENDED          |
| 1011         | F3 OR F7            | DOUBLE-EXTENDED          |
| 1100         | —                   | MEMORY-BASED SINGLE WORD |
| 1101         | —                   | MEMORY-BASED DOUBLE WORD |
| 1110         |                     | MEMORY-BASED TRIPLE WORD |
| 1111         | —                   | NO OPERAND               |

OP2

## Data Register

The system board CPU (WE 32200) uses the MAU as a coprocessor; the peripheral mode of the MAU is NOT used in this application. The Data Register (DR) is used to read and write operands (registers F3-F0) in the peripheral mode. The DR is an 96-bit register. The DR is addressed in the peripheral mode as three 32-bit registers. When exceptions occur in either the coprocessor or peripheral modes, the DR stores the data supplied by the trap handler. This exception data is read when an Extract Result on Fault (EROF) instruction (opcode) is executed. The format of the exception data stored in the DR by the Trap Handler is as follows.

## **INVALID OPERATION**

If either of the source operands is a trapping Not a Number (NAN), then DR stores the NAN converted to double-extended precision (80 bits) if necessary. If both source operands are trapping NANs or infinities of different signs, then the second operand (OP2) is stored in the DR in double precision (80 bits).

## **OVERFLOW or UNDERFLOW**

The significant (fraction) along with the 17-bit internal result exponent and the result sign are stored in the DR. The most significant bit of the 17-bit exponent is like a sign bit in 2's complement notation. An addition bit (bit 79) in the exponent ensures that no significant exponent bits are lost from an internal representation when an overflow or underflow conditions occurs. The exponent is biased by 16,383. The least significant bit (L), the guard (G) bit, round bit (R), and sticky bit (S) of the unrounded result are stored in the DR. The format of the data in the DR for an overflow or underflow exception is as follows.

| BITS  | 95 | 94 | 93 | 92 | 91—82  | 81   | 80—64    | 63 | 62—00    |
|-------|----|----|----|----|--------|------|----------|----|----------|
| FIELD | L  | G  | R  | S  | UNUSED | SIGN | EXPONENT | J  | FRACTION |

#### **DIVIDE BY ZERO**

The dividend (OP2) converted to double-extended precision, if necessary, is stored in the DR for a divide by zero exception. The L, G, R, and S bits are also stored.

**INEXACT** The rounded result converted to double-extended precision, if necessary, is stored in the DR for and inexact exception. The L, G, R, and S bits are also stored.

MAU Coprocessor Mode. In the Coprocessor Mode, the system board CPU initiates a MAU transaction by doing a coprocessor broadcast access. This sends a 32-bit word to the MAU Command Register. The MAU checks the Identification (ID) field of the Command Register against the MAU ID (0). If an ID matches the stored ID, the 32-bit word is stored in the Command Register.

If any Operand Specifier in the command word indicates that an operand is to be obtained from main memory, the MAU waits until the proper number of coprocessor data fetch bus transactions occur.

The MAU does the operation specified and generates a result, condition codes, and possibly an exception. The MAU asserts a DONE signal and waits for the coprocessor (system board CPU) status fetch. If an exception is present, the MAU faults the access and goes to an idle state. If there is no exception, a word containing the current Auxiliary Status Register (ASR) is returned in response to the status fetch.

If the results are to be written to main memory, the MAU waits until the proper number of coprocessor data write bus transactions occur to transfer the results and then goes to an idle state.

#### **Address Decoder**

The address decoder translates physical CPU/MMU addresses into chip selects (enables) for the various memory and peripheral circuits on the system board and feature cards. The address decoder is built from Programmable Logic Arrays (PLAs) and four 3/8 decoders. The chip select signals are also used to generate Wait Select (WSEL) signals appropriate for the access time of each synchronous device. For devices on the system board, a fixed number of wait states are generated by the address decoder.

The chip selects and controls decoded from physical address bits 26—12, Physical Address Strobe (PAS[0]), Interrupt Acknowledge (IACK[0]) are summarized in Figure 3-33.

| PAS[0] | IACK[0] | PHYSICAL ADDRESS BITS |              | BITS         | SELECTED DEVICE |                                                                |
|--------|---------|-----------------------|--------------|--------------|-----------------|----------------------------------------------------------------|
| PASIOJ | ΙΑĊΚ[0] | 27-24                 | 23—20        | 19—16        | 15—12           | SELECTED DEVICE                                                |
| x      | x       | xxxx                  | xxxx         | xxxx         | 0000            | MEMORY MANAGEMENT UNIT (MMUCS[0])                              |
| x      | x       | xxxx                  | xxxx         | xxxx         | 0001            | TIME-OF-DAY COUNTER (TODCS[0])                                 |
| x      | x       | xxxx                  | xxxx         | xxxx         | 0010            | TIMERS (TIMRCS[0])                                             |
| x      | x       | XXXX                  | xxxx         | XXXX         | 0011            | NONVOLATILE RANDOM ACCESS MEMORY (NVRCS[0])                    |
| x      | x       | xxxx                  | xxxx         | xxxx         | 0100            | CONTROL AND STATUS REGISTER (CSRCS[0])                         |
| x      | x       | XXXX                  | XXXX         | XXXX         | 0101            | PAGE REGISTER 1 (PR1CS[0])                                     |
| x      | x       | XXXX                  | XXXX         | XXXX         | 0110            | PAGE REGISTER 2 (PR2CS[0])                                     |
| x      | x       | xxxx                  | XXXX         | XXXX         | 0111            | PAGE REGISTER 3 (PR3CS[0])                                     |
| x      | x       | XXXX                  | XXXX         | XXXX         | 1000<br>1001    | DIRECT MEMORY ACCESS CONTROLLER (DMACS[0])                     |
| x      | x       | XXXX                  | XXXX         | XXXX         | 1001            | DUART (UARTCS[0])<br>HARD DISK CONTROLLER (DSKCS[0])           |
| x      | x<br>x  | XXXX<br>XXXX          | XXXX<br>XXXX | XXXX<br>XXXX | 1010            | NOT USED                                                       |
| x<br>x | x       | XXXX                  | XXXX         | xxxx         | 1100            | MEMORY SIZE REGISTER (MSIZECS[0])                              |
| x      | x       | xxxx                  | xxxx         | xxxx         | 1100            | FLOPPY DISK CONTROLLER (FCS[0])                                |
| x      | x       | xxxx                  | xxxx         | xxxx         | 1110            | PAGE REGISTER 4 (PR4CS[0])                                     |
| x      | x       | xxxx                  | xxxx         | xxxx         | 1111            | NOT USED                                                       |
| x      | x       | xxx0                  | 000x         | xxxx         | xxxx            | NOT USED                                                       |
| x      | x       | xxx0                  | 001x         | xxxx         | xxxx            | PERIPHERAL CARD 01 (PCS01[0])                                  |
| x      | x       | xxx0                  | 010x         | xxxx         | xxxx            | PERIPHERAL CARD 02 (PCS02[0])                                  |
| x      | x       | xxx0                  | 011x         | xxxx         | xxxx            | PERIPHERAL CARD 03 (PCS03[0])                                  |
| x      | x       | xxx0                  | 100x         | XXXX         | XXXX            | PERIPHERAL CARD 04 (PCS04[0])                                  |
| x      | x       | xxx0                  | 101x         | XXXX         | xxxx            | PERIPHERAL CARD 05 (PCS05[0])                                  |
| x      | x       | xxx0                  | 110x         | XXXX         | XXXX            | PERIPHERAL CARD 06 (PCS06[0])                                  |
| x      | x       | xxx0                  | 111x         | XXXX         | XXXX            | PERIPHERAL CARD 07 (PCS07[0])<br>PERIPHERAL CARD 08 (PCS08[0]) |
| x      | x       | xxx1<br>xxx1          | 000x<br>001x | XXXX<br>XXXX | xxxx<br>xxxx    | PERIPHERAL CARD 08 (PCS08[0])                                  |
| x      | x<br>x  | xxx1<br>xxx1          | 010x         | xxxx         | xxxx            | PERIPHERAL CARD 10 (PCS10[0])                                  |
| x      | x       | xxx1                  | 010x<br>011x | xxxx         | xxxx            | PERIPHERAL CARD 11 (PCS11[0])                                  |
| x      | x       | xxx1                  | 100x         | xxxx         | xxxx            | PERIPHERAL CARD 12 (PCS12[0])                                  |
| x      | x       | xxx1                  | 101x         | xxxx         | xxxx            | PERIPHERAL CARD 13 (PCS13[0])                                  |
| x      | x       | xxx1                  | 110x         | xxxx         | xxxx            | PERIPHERAL CARD 14 (PCS14[0])                                  |
| x      | x       | xxx1                  | 111x         | xxxx         | xxxx            | PERIPHERAL CARD 15 (PCS15[0])                                  |
| 0      | 1       | x000                  | 0000         | 000x         | xxxx            | READ ONLY MEMORY (ROMCS[0])                                    |
| 0      | 1       | x00x                  | xx1x         | xxxx         | xxxx            | INPUT/OUTPUT REQUIRED (IOREQ[0])                               |
| 0      | 1       | x00x                  | x1xx         | xxxx         | xxxx            | 1                                                              |
| 0      | 1       | x00x                  | 1xxx         | xxxx         | xxxx            | 1                                                              |
| 0      | 1       | x001                  | XXXX         | XXXX         | XXXX            |                                                                |
| 0      | 1       | x000                  | 0000         | 010x         | 1xxx            | DIRECT MEMORY ACCESS SUBSYSTEM (DMASS[0])                      |
| 0      | 1       | x000                  | 0000         | 010x         | 0xxx            | MISCELLANEOUS (MISCS[0])                                       |

LEGEND:

x

Don't care bit

Figure 3-33: Chip Select and Control Signals Address Decode

**Input/Output Chip Selects.** The Address Decoder enables 1 out of 15 Peripheral Chip Select (PCS) signals (PCS15—01[0]) from latched address bits 24 through 21 (LPA24[1] through LPA21[1]). For the 3B2/400 computer, only 12 peripheral chip selects (PCS12—01) are used. For the 3B2/300/310 computer, only 4 peripheral chip selects (PCS04—01) are used. The PCS15 through PCS13 signals are reserved for future enhancements. PCS00[0] is decoded but has no connection.

A composite input/output chip select signal (CREQ[0]) is sent to the DRAM Controller and Arbiter Circuits to request the "Bypass Mode" to access the input/output connectors (feature card slots). The Bypass Sequencer returns a Bypass Mode Acknowledge (LCPUIO[0]) signal to enable the individual input/output card chip selects to be passed to the input/output connectors. All inputs to the address decoder from off-board and DMA Subsystem devices are latched under the control of the arbiter (LCPUIO signal).

**Other Chip Selects.** Other chip selects are used to enable various devices on and off the system board. The on-board devices chip selects decoded from physical address bits 15 through 12 are listed below:

- Memory Management Unit Chip Select (MMUCS[0])
- Time-of-Day Chip Select (TODCS[0])
- Timer Chip Select (TIMRCS[0])
- Nonvolatile RAM Chip Select (NVRCS[0])
- Control and Status Register Chip Select (CSRCS[0])
- Page Register 1 Chip Select (PR1CS[0])
- Page Register 2 Chip Select (PR2CS[0])
- Page Register 3 Chip Select (PR3CS[0])
- Page Register 4 Chip Select (PR4CS[0])
- Direct Memory Access Chip Select (DMACS[0])
- DUART Chip Select (UARTCS[0])
- Hard Disk Controller Chip Select (DSKCS[0])
- Memory Size Chip Select (MSIZECS[0])
- Floppy Disk Controller Chip Select (FCS[0]).

Physical address bits 26—17 and 15, Physical Address Strobe (PAS[0]), and Interrupt Acknowledge (IACK[0]) are combined to generate the following chip select and control signals:

- Read Only Memory Chip Select (ROMCS[0])
- Direct Memory Access Subsystem (DMASS[0])
- Miscellaneous Chip Select (MISCS[0])
- Input/Output Required (IOREQ[0]).

## **Read Only Memory**

The Erasable Programmable Read Only Memory (EPROM) is configured to yield 128K bytes of ROM. For the CM518A/B System Boards, the ROM is formed using four 32K by 8 EPROM integrated circuits (27256's). For the CM518C System Board, the ROM is formed using two 64K by 8 EPROM integrated circuits (27512's). The starting address of ROM is 0x 00000000.

#### Timers

The timers include the following:

- Time of day (MM58274)
- Interval (INTEL 82C54)
- Sanity (INTEL 82C54)
- Bus (INTEL 82C54).

The interval, sanity, and bus timers are implemented in an INTEL 82C54 timer chip.

**Clock/Calendar Timer.** The Clock/Calendar Timer (MM58374) calculates current date to tenths of a second. The timer is controlled by a 32.768-kHz oscillator. The timer features automatic leap year calculation, protection for read access when changing data, and low standby current (2.2 volt, 10 microamperes). The accuracy is determined by the 32.768-kHz crystal with a 0.003 percent tolerance ( $\pm$ 1.3 minutes per month).

**Periodic Timer.** The Interval Timer (Timer 1) has a 100 kHz (CLKTA[1]). The Inhibit UNIX Interval Timer (INHUIT) CSER bit (bit 7) inhibits operation of this timer. When the timer expires, the UNIX Interval Timer Time-out (UITT) bit (bit 0) of the CSER is set and a level 15 interrupt is sent to the Interrupt Decoder.

**Sanity Timer**. The Sanity Timer (Timer 0) is a count down timer that is normally reset by software before it reaches zero. The time base is 10 kHz (CLKTB[1]). The Inhibit System Sanity Timer (INHSST) CSER bit (bit 8) inhibits operation of this timer. When the Sanity Timer reaches zero, an error signal turns on the **Diagnostic** indicator, a level 15 interrupt is sent to the Interrupt Decoder, and the Sanity Timer Time-out (SANTO) bit (bit 29) is set in the CESR. The CSER bit 29 is cleared by writing to address 0x 00044000. This count down timer is started when the power switch is pressed to OFF. System software must read the 82C54 package to determine whether Sanity Timer (Timer 0) or the Bus Timer (Timer 2) timed out.

**Bus Timer.** The Bus Timer (Timer 2) is as the Unbuffered Bus (UBus) access timer. The time base is 500 kHz (CLK02[1]). The Inhibit UBus Timer (INHUBT) CSER bit (bit 10) inhibits operation of this timer. The UBus timer starts counting when the virtual address strobe is asserted. The UBus timer is reset when the virtual address strobe is negated. If the timer is not reset within the programmed period (1 millisecond), an error signal turns on the **Diagnostic** indicator, a level 15 interrupt is sent to the Interrupt Decoder, and the UBus Timer Time-out bit (bit 26) is set in the CSER. The CSER bit 26 is cleared by writing to address 0x 00044000. System software must read the 82C54 package to determine whether Sanity Timer (Timer 0) or the Bus Timer (Timer 2) timed out.

#### **Control, Status, and Error Register**

The Control, Status, and Error Register (CSER) is a 32-bit register. It provides low-level access to the system board logic circuits. The CSER controls and monitors various system functions. All bits are clearable or setable under software control. All CSER bits are writable by software using a full word write to the address of that bit, half-word write to the given address plus 2, or a byte write to the address plus 3.

The CSER bit assignments and access information are shown in Figure 3-34. The 32 bits are divided into four groups of 8 bits. A read operation at the address of any bit in a group places the whole group on data bits 07—00 so that it remains constant throughout the read cycle. The CSER is NOT cleared by a hardware reset. The state of the CSER after a write operation is dependent only on the address; the data written is a "don't care" bit. The contents of the CSER are part of the error report output by the **/etc/errdump** command. The CSER is identified as "cser" in the error report.

| VERSION 3—CONTROL, STATUS, AND ERROR REGISTER BIT ASSIGNMENTS |                               |                  |        |    |            |    |    |    |
|---------------------------------------------------------------|-------------------------------|------------------|--------|----|------------|----|----|----|
| BIT                                                           | DESCRIPTION                   | WRITE<br>ADDRESS | ACTIVE |    | PROPERTIES |    |    |    |
| 0                                                             | UNIX INTERVAL TIMER TIMEOUT   | 0x 00044000      | SET    | HS |            | РС |    |    |
| 1                                                             | POWER DOWN REQUEST            | 0x 00044004      | SET    | HS | PS         | PC |    |    |
| 2                                                             | OPER. INTERRUPT LEVEL 15      | 0x 00044008      | SET    | HS | PS         | PC |    |    |
| 3                                                             | DUART INTERRUPT               | 0x 0004400C      | SET    | HS |            | PC |    |    |
| 4                                                             | DUART DMA COMPLETE INTERRUPT  | 0x 00044010      | SET    | HS |            | PC |    |    |
| 5                                                             | PIR LEVEL 9                   | 0x 00044014      | SET    |    | PS         | PC |    |    |
| 6                                                             | PIR LEVEL 8                   | 0x 00044018      | SET    |    | PS         | PC |    |    |
| 7                                                             | INHIBIT UNIX INTERVAL TIMER   | 0x 0004401C      | SET    |    | PS         | PC | SR |    |
| 8                                                             | INHIBIT SYSTEM SANITY TIMER   | 0x 00044020      | SET    |    | PS         | РС | SR |    |
| 9                                                             | INHIBIT UBUS TIMER            | 0x 00044024      | SET    |    | PS         | PC | SR |    |
| 10                                                            | INHIBIT FAULTS TO CPU         | 0x 00044028      | SET    |    | PS         | РС | SR |    |
| 11                                                            | INHIBIT SINGLE BIT ERROR RPT. | 0x 0004402C      | SET    |    | PS         | PC |    |    |
| 12                                                            | INHIBIT INTEGRAL 3B2 I/O BUS  | 0x 00044030      | SET    |    | PS         | PC |    |    |
| 13                                                            | INHIBIT 4 BUB SLOTS           | 0x 00044034      | SET    |    | PS         | PC |    |    |
| 14                                                            | FORCE ECC SYNDROME            | 0x 00044038      | CLEAR  |    | PS         | PC |    |    |
| 15                                                            | THERMAL SHUTDOWN REQUEST      | 0x 0004403C      | SET    | нs |            | PC |    | CR |
| 16                                                            | FAILURE LED ON                | 0x 00044040      | SET    | нs | PS         | РС |    |    |
| 17                                                            | POWER DOWN—POWER SUPPLY       | 0x 00044044      | CLEAR  |    | PS         | РС | SR |    |
| 18                                                            | FLOPPY SPEED FAST             | 0x 00044048      | SET    |    | PS         | РС |    |    |
| 19                                                            | FLOPPY SIDE 1                 | 0x 0004404C      | CLEAR  |    | PS         | РС |    |    |
| 20                                                            | FLOPPY MOTOR ON               | 0x 00044050      | CLEAR  |    | PS         | PC | SR |    |
| 21                                                            | FLOPPY DENSITY                | 0x 00044054      | SET    |    | PS         | PC |    |    |
| 22                                                            | FLOPPY SIZE                   | 0x 00044058      | SET    |    | PS         | PC |    |    |
| 23                                                            | SINGLE BIT ERROR              | 0x 0004405C      | SET    | HS |            | РС |    |    |
| 24                                                            | MULTIPLE BIT ERROR            | 0x 00044060      | SET    | HS |            | PC |    |    |
| 25                                                            | UBUS/BUB RECEIVED FAIL        | 0x 00044064      | SET    | HS |            | PC |    |    |
| 26                                                            | UBUS TIMER TIMEOUT            | 0x 00044068      | SET    | HS |            | PC |    |    |
| 27                                                            | FAULT REGISTERS FROZEN        | 0x 0004406C      | SET    | HS |            | PC |    |    |
| 28                                                            | DATA ALIGNMENT ERROR          | 0x 00044070      | SET    | HS |            | PC |    |    |
| 29                                                            | SANITY TIMER TIMEOUT          | 0x 00044074      | SET    | HS |            | PC |    |    |
| 30                                                            | ABORT SWITCH ACTIVATED        | 0x 00044078      | SET    | HS |            | PC |    |    |
| 31                                                            | SYSTEM RESET REQUEST          | 0x 0004407C      | SET    |    | PS         |    |    | CR |

#### LEGEND:

|  | CR | Cleared | by | "system | reset'' | signal |
|--|----|---------|----|---------|---------|--------|
|--|----|---------|----|---------|---------|--------|

- DMA
- HS
- Direct Memory Access Set by hardware Cleared by programmed control Programmed Interrupt Request PC
- PIR
- Set by programmed control Set by "system reset" signal  $\mathbf{PS}$
- SR
- Figure 3-34: Version 3 System Board CSER Bit Assignments

#### Interrupts

**Interrupt Mechanism.** When an external device requests an interrupt (request for service to the microprocessor), the microprocessor temporarily stops its current execution and begins executing code that services the interrupt. This code is called an interrupt handler. On completion of the interrupt handler code, execution resumes at the point where the interrupt occurred. An interrupt mechanism performs the process execution switch.

There are three functions of the interrupt mechanism, as follows.

- 1. The interrupt mechanism determines whether or not there will be an interrupt generated in response to an interrupt request. An interrupt is generated if the priority level requested is greater than the priority level in the Interrupt Priority Level (IPL) field of the Processor Status Word (PSW) register of the CPU. If the IPL field equals 0x F, no interrupts are acknowledged except for a nonmaskable interrupt.
- 2. The interrupt mechanism determines how an interrupt request will be acknowledged and the interrupt identification value. Interrupts are acknowledged as full or quick interrupts. A full interrupt starts an interrupt-handler process by means of a full context/process switch. A quick interrupt causes the interrupt handler to store the current Program Counter (PC) register and PSW register values on the execution stack and set the IPL field of the PSW to 0x F (like a subroutine call). Only a nonmaskable interrupt can interrupt the quick-interrupt handler. A nonmaskable interrupt causes the interrupt handler to store the current PC and PSW values on the execution stack just like a quick interrupt. An interrupted interrupt handler's execution is resumed as a function of popping saved states off the execution stack.
- 3. The interrupt mechanism saves the interrupted process context and brings in a new process context (process switching). Interrupt-vector tables are provided for full and quick interrupts. The interrupt-vector tables point to the memory locations (addresses) where interrupt PCBPs and PC/PSW pairs are stored.

**Interrupt Logic.** Eight hardware interrupts are provided. Three of these levels (PINT2—0[0]) are connected to the Input/Output Expansion connector for use by the feature cards that supply their own interrupt vectors. Two interrupt levels are used as Programmed Interrupt Requests (PIRs) and are accessible via the Control, Status, and Error Register (CSER). The three remaining interrupt levels are used by the system board for peripheral devices.

To acknowledge three off-board requests, the interrupt hardware requests the DRAM controller to enter the "bypass" mode. When the controller responds with a "bypass mode" acknowledge, the interrupt acknowledge cycle proceeds and the vector is read from the interrupting off-board device.

Interrupt levels are encoded by an 8/3 encoder and applied to the CPU interrupt request inputs as level 15 through 8 interrupts. When interrupts are acknowledged, the CPU uses the address bus bits 05 through 02 to identify the acknowledged level. In the virtual mode (VAD[0]=0), a latched version of address bits 05 through 02 are used by the interrupt circuitry. When bit 2 is low and either bit 3 or bit 4 is high, an off-board interrupt is assumed and an arbiter request is made. When the bus arbiter permits access, the proper off-board interrupt acknowledge signal is sent. Other combinations of address bits 05 through 02 are assumed to be onboard interrupts and a vector is supplied by looping the latched address bits 05 through 02 back to the data bus via a buffer. A unique vector is provided for each onboard interrupt source that is equal to the interrupt level. When an onboard interrupt is decoded, the interrupt circuit sends a wait select (WSEL1[0]).

**Interrupt Assignments.** Figure 3-35 defines the interrupt levels for the various interrupt sources. When a 3B2 Enhanced Input/Output (EIO) bus peripheral and a Buffered Microbus (BUB) peripheral interrupt the CPU at the same time and same level, the system board will pass the CPU interrupt acknowledge to the I/O peripheral. The 3B2 EIO bus has priority over the BUB for equal interrupts.

| VERS  | VERSION 3 SYSTEM BOARD INTERRUPT ASSIGNMENTS |                                   |  |  |  |  |
|-------|----------------------------------------------|-----------------------------------|--|--|--|--|
| LEVEL | VECTOR                                       | SOURCE                            |  |  |  |  |
| NMI   | 00                                           | ABORT SWITCH ACTIVATION (NOTE 1)  |  |  |  |  |
| NMI   | 00                                           | SANITY TIMER EXPIRATION (NOTE 1)  |  |  |  |  |
| NMI   | 00                                           | THERMAL SHUTDOWN (NOTE 1)         |  |  |  |  |
| 15    | 15                                           | UNIX INTERVAL TIMER TIMEOUT       |  |  |  |  |
| 15    | 15                                           | POWER DOWN REQUEST                |  |  |  |  |
| 15    | 15                                           | UBUS OR BUB OPERATIONAL INTERRUPT |  |  |  |  |
| 15    | 15                                           | SINGLE BIT MEMORY ERROR           |  |  |  |  |
| 15    | 15                                           | MULTIPLE BIT MEMORY ERROR         |  |  |  |  |
| 15    | 15                                           | UBUS, BUB, EIO BUS RECEIVED FAIL  |  |  |  |  |
| 15    | 15                                           | UBUS TIMER TIMEOUT                |  |  |  |  |
| 14    | (NOTE 2)                                     | BUB (REAL TIME INTERRUPT)         |  |  |  |  |
| 13    | 13                                           | DUART AND DUART DMA COMPLETE      |  |  |  |  |
| 12    | (NOTE 2)                                     | BUB (BLOCK)                       |  |  |  |  |
| 11    | 11                                           | FLOPPY AND FLOPPY DMA COMPLETE    |  |  |  |  |
| 10    | (NOTE 2)                                     | BUB (CHARACTER)                   |  |  |  |  |
| 9     | 9                                            | PIR-9 (FROM CSER)                 |  |  |  |  |
| 8     | 8                                            | PIR-8 (FROM CSER)                 |  |  |  |  |

#### NOTES:

1. Vector 00 is provided by internal CPU operation.

- 2. First level interrupt vector provided by system board
  - hardware; second level by peripheral.

#### LEGEND:

- CSER Control, Status, and Error Register
- DMA Direct Memory Access
- NMI Nonmaskable Interrupt
- PIR Programmed Interrupt Request
- DUART Dual Universal Asynchronous Receiver/Transmitter

Figure 3-35: Version 3 System Board Interrupt Assignments

## **Nonvolatile Random Access Memory**

The Nonvolatile Random Access Memory (NVRAM) is a single chip providing 2K by 8 bits of memory for the storage of system configuration parameters. The chip is an 8K by 8 bit chip, but only 2K of the chip is used. Only 512 bytes of the 2K used is actually allocated. Parameters include console terminal settings, system error log, and the firmware password. NVRAM is maintained by a backup battery in the absence of VCC. When power is removed from the system, NVRAM enable (chip select) is inhibited to prevent an accidental write operation from destroying the NVRAM data. NVRAM should be read and written on full word boundaries using data bus bits 07—00. The following table further defines the contents of NVRAM.

|                                                                   | NVRAM CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| CATEGORY                                                          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NUMBER<br>OF BYTES                                                                               |
| FIRMWARE<br>(59 OF<br>128 BYTES<br>USED)                          | FIRMWARE PASSWORD (passwd)<br>CONSOLE SLOT AND PORT NUMBERS (cons_def)<br>DOWNLOAD LINK BAUD RATE (link)<br>DEFAULT BOOT DEVICE (b_dev)<br>DEFAULT BOOT PATH NAME (b_name)<br>FLAG TO CHECK FOR SECONTD DISK (dsk_chk)<br>TOTAL FIRMWARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9<br>1<br>2<br>1<br>45<br>1<br>59                                                                |
| UNIX<br>OPERATING<br>SYSTEM<br>(67 OF<br>128 BYTES<br>USED)       | CONSOLE FLAGS (cflags)<br>SAVED MONTH (nv_month)<br>SAVED YEAR (nv_year)<br>START OF PHYSICAL MEMORY (spmem)<br>SYSTEM NAME (sys_name)<br>ROOT DEVICE (rotdev)<br>GENERAL STORAGE FOR I/O DRIVERS (ioslotinfo)<br>SYSTEM BOARD ARTMASTER (artmaster)<br>TOTAL OPERATING SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>1<br>4<br>9<br>1<br>48<br>1<br>67                                                           |
| PANIC<br>ERROR<br>INFORMATION                                     | NVRAM SANITY (nvsanity)<br>COMMAND AND STATUS REGISTER (csr)<br>PROCESSOR STATUS WORD (psw)<br>GENERAL PURPOSE REGISTER 3 (r3)<br>GENERAL PURPOSE REGISTER 4 (r4)<br>GENERAL PURPOSE REGISTER 5 (r5)<br>GENERAL PURPOSE REGISTER 6 (r6)<br>GENERAL PURPOSE REGISTER 7 (r7)<br>GENERAL PURPOSE REGISTER 8 (r8)<br>ADDRESS POINTER (oap)<br>PROGRAM COUNTER (opc)<br>STACK POINTER REGISTER (ofp)<br>INTERRUPT STACK POINTER (isp)<br>PROCESS CONTROL BLOCK POINTER REGISTER (pcbp)<br>FAULT CODE REGISTER (mmufltcr)<br>FAULT ADDRESS REGISTER (mmusrama)<br>MMU SECTION RAM 8 (mmusrama)<br>MMU SECTION RAM B (mmusramb)<br>LOCAL FRAME POINTER (lfp)<br>MESSAGE (message)<br>PARAMETER 1 (param1)<br>PARAMETER 2 (param2)<br>TIME (time)<br>TOTAL SAVED PANIC DATA | 4<br>2<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 |
| AND                                                               | TOTAL SAVED PANIC DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 166                                                                                              |
| FIRMWARE<br>ERROR<br>INFORMATION<br>(198 OF<br>254 BYTES<br>USED) | GOOD ERROR (gooderror)<br>ERROR NUMBER (errno)<br>PROCESSOR STATUS WORD (psw)<br>PROGRAM COUNTER (pc)<br>MISCELLANEOUS (misc)<br>STATUS CONTROL REGISTER AT FAULT (cser)<br>FAULT LATCH REGISTER 1 (f1)<br>FAULT LATCH REGISTER 2 (f12)<br>TOTAL UNEXPECTED INTERRUPT AND EXCEPTION DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>32                                                            |
| CHECKSUM<br>(2 BYTES)                                             | NVRAM CHECKSUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                |
| TOTAL<br>(2048 BYTES)                                             | TOTAL BYTES USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 346                                                                                              |

### **Dynamic Random Access Memory Controller**

**General.** The system main memory is Dynamic Random Access Memory (DRAM). The DRAM Controller provides the system board CPU direct access to the I/O bus without passing through the RAM. The DRAM Controller handles the exchange of data and address information between the I/O bus and the system board CPU when operating in the "bypass mode."

Figure 3-36 is a functional block diagram of the DRAM Controller. The DRAM Controller for RAM is divided into the following functional areas:

- Address Generation Logic (address multiplexer)
- Request Generator
- Arbitration Logic
- Memory Refresh Logic
- Sequencer
- Bypass Logic
- Data Byte Rotate Unit Logic
- Parity Generation and Checking Logic.

Each of these functional areas is briefly described in the following paragraphs.

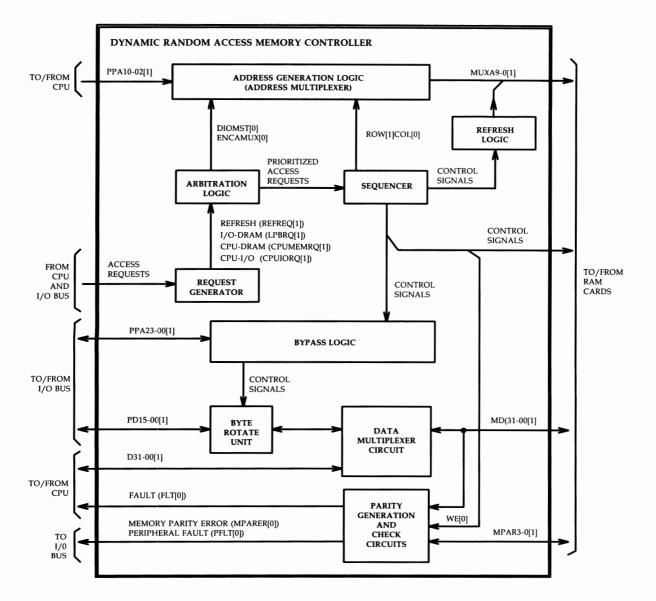



Figure 3-36: Dynamic Random Access Memory Controller — Functional Block Diagram

Address Generation Logic. The Address Generation Logic latches the stable virtual address during virtual to physical address translation. Since the 11 least significant bits of a virtual address and a physical address are identical, CPU—memory read accesses are started when the CPU presents a stable virtual address. The early start using the 11 least significant address bits enhances system performance.

**Request Generator.** The Request Generator synchronizes the bus requests with the system clock and passes the synchronized data requests to the Arbitration Logic. The Request Generator passes four types of requests to the Arbitration Logic. These requests are listed below:

## Memory Refresh (REFREQ[1])

The memory refresh request is automatically generated every 16 microseconds.

## Input/Output-DRAM (LPBRQ[1])

The input/output—memory request can originate from a feature card (PBRQ[0]) or from the Direct Memory Access Controller (XPBRQ[0]). The request is passed to the Arbitration Logic as LPBRQ[1].

### CPU—DRAM (CPUMEMRQ[1])

The CPU—memory read or write operation requests are sent to the Arbitration Logic as CPUMEMRQ[1].

## CPU—Input/Output (CPUIORQ[1])

The CPU—input/output exchange request is asserted by the Address Decoder (CREQ[0]) and is sent to the Arbitration Logic as CPUIORQ[1].

**Arbitration Logic.** The Arbitration Logic determines which requests for memory access are to be acknowledged. These access requests from highest to lowest priority are as follows:

- Memory Refresh (highest priority)
- Input/Output—DRAM
- CPU—DRAM
- CPU—Input/Output (lowest priority).

**Memory Refresh Logic.** The refresh of the DRAM is done one row at a time every 16 microseconds. The Request Generator is a counter and request flip-flop. Refresh requests are derived from the 1-MHz clock and occur every 16 microseconds. The refresh request increments the refresh address counter.

A memory refresh operation can occur between input/output to DRAM block transfers or between the read and write halves of a CPU/MMU interlocked operation. Refresh operations continue during reset sequences to retain any data which existed before the reset.

**Sequencer.** The Sequencer generates the control signals (strobes) for the access operations enabled by the arbitration logic. The Sequencer is a Field Programmable Logic Array (FPLA) and flip-flop network that combine to generate a variety of memory control signals.

Data Byte Rotate Unit. The Data Byte Rotate Unit is a collection of buffers used to multiplex the 32-bit data bus to/from the main memory to an 8- or 16-bit data bus for the I/O bus. This accommodates the input/output cards and system board devices in the DMA Subsystem that do not have a 32 bit capability. The byte rotate unit provides data alignment and packing for 8- and 16-bit peripherals when they access the 32-bit main memory and for system board CPU when the CPU communicates directly with the input/output (feature) cards. The system board devices that use the Data Byte Rotate Unit are listed below:

- Direct Memory Access Controller
- Dual Universal Asynchronous Receiver/Transmitter
- Integral Floppy Disk Controller
- Integral Hard Disk Controller.

The Byte Rotate Unit is controlled by the Sequencer logic. The PSIZE16[0] determines whether a peripheral is capable of transferring 8 or 16 bits at a time. Address bits 01 and 00 are used to select the data bus bytes. PSIZE16 is a 0 for 16-bit transfers; PSIZE16 is a 1 for 8-bit transfers. The PSIZE16[0] signal is sent by the peripheral (feature card) in response to a chip select signal. When a peripheral is a 16-bit device, 8-bit accesses are done by asserting the appropriate data strobe (PDS1—0[0]). Devices having 8-bit data interfaces require four passes to transfer a complete 32-bit word. Devices having 16-bit data interface require two passes to transfer a complete 32-bit word.

Byte 0 (bits 31—24) is the least significant byte. Byte 1 is bits 23—16. Byte 2 is bits 15—08. Byte 3 (bits 07—00) is the most significant byte. Address bits 01 and 00 are decoded (binary) to select the data bus bytes 3—0 as applicable. For 8-bit operations both address bits 01 and 00 are used to select the data bus bytes. For 16-bit operations only address bit 01 is used to select the data bus bytes (address bit 00 is not used in 16-bit operations). For 16-bit operations either data bus bytes 1 and 0 or bytes 3 and 2 are selected by only address bit 01. When address bit 01 is high [1], data bus bytes 2 and 3 are selected (bits 15—00). When address bit 01 is negated, data bus bytes 0 and 1 are selected (bits 31—16). The data strobes (PDS0[0] and PDS1[0]) are used to select which byte or bytes to access within the main memory. Figure 3-37 summarizes the decoding of the PSIZE16, PPA01, PPA00, PDS0, and PDS1 for the selection of data bytes for the 16-bit peripheral input/output bus and for the 32-bit main memory accesses.

| SIZE BIT   | ADDRE    | SS BITS    | DATA S  | TROBES  | VALID DATA BYTES      |                            |  |
|------------|----------|------------|---------|---------|-----------------------|----------------------------|--|
| PSIZE16[0] | PPA01[1] | PPA00[1]   | PDS0[0] | PDS1[0] | 32-BIT<br>MAIN MEMORY | 16-BIT<br>INPUT/OUTPUT BUS |  |
| 16 BIT     |          |            |         |         |                       |                            |  |
| 0          | 0        | x          | 0       | 0       | 0 AND 1               | 0 AND 1                    |  |
| 0          | 0        | x          | 0       | 1       | 0                     | 0                          |  |
| 0          | 0        | x          | 1       | 0       | 1                     | 1                          |  |
| 0          | 0        | x          | 1       | 1       | ILLEGAL               | -                          |  |
| 0          | 1        | x          | 0       | 0       | 2 AND 3               | 0 AND 1                    |  |
| 0          | 1        | x          | 0       | 1       | 0 OR 2                | 0                          |  |
| 0          | 1        | x          | 1       | 0       | 1 OR 3                | 1                          |  |
| 0          | 1        | x          | 1       | 1       | ILLEGAL               | —                          |  |
| 8 BIT      |          |            |         |         |                       |                            |  |
| 1          | 0        | 0          | x       | 0       | 0                     | 1                          |  |
| 1          | 0        | 1          | x       | 0       | 1                     | 1                          |  |
| 1          | 1        | 0          | x       | 0       | 2                     | 1                          |  |
| 1          | 1        | 1          | x       | 0       | 3                     | 1                          |  |
| LEGEND:    |          |            |         |         | <b>L</b>              |                            |  |
| x          | Do       | n't care b | oit     |         |                       |                            |  |

Figure 3-37: Data Byte Selection Summary

**Parity Generation and Checking.** Twelve half-word Hamming check bits (MCB11—0[1]) accompany the 32 data bits on the data bus. Parity is checked only as part of read operations. If bad parity is detected, the Peripheral Fault (PFLT[0]) and Memory Parity Error (MPARER[0]) signals are asserted to the system board CPU or peripheral controllers (feature cards) depending on the type of access.

**Bypass Logic.** The Bypass Logic is used to establish direct communication between the system board CPU and feature cards without having to go through the main memory. Hence the term "bypass" is used to mean that main memory is bypassed for system board—feature card direct communication. The Bypass Logic passes the low order 24 bits of the Address Bus and the lower order 16 bits of the data bus directly to the I/O bus during direct communication between CPU and feature cards.

The system board requests the "bypass" mode by asserting the composite Input/Output Chip Select signal (CREQ[0]).

## **Direct Memory Access Subsystem**

**Subsystem Structure.** Figure 3-38 is a high-level functional block diagram of the Direct Memory Access (DMA) Subsystem. The DMA Subsystem includes the following:

- Page Registers
- Floppy Control Register
- Floppy Disk Controller
- Floppy Controller Data Separator
- Direct Memory Access Controller
- Dual Universal Asynchronous Receiver/Transmitter.

Each of these functional areas is described in the following paragraphs.

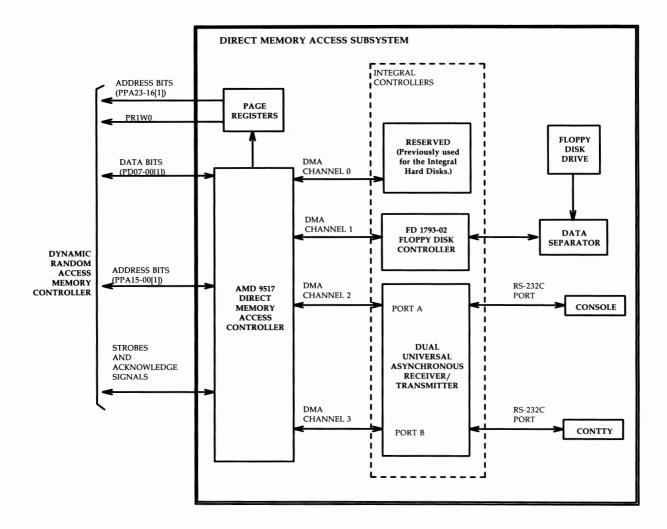



Figure 3-38: Direct Memory Access Subsystem — Functional Block Diagram

**Page Registers.** The Page Registers consist of three 12-bit registers. There is one register for each DMA channel used. (Channel 0 is not used.) The registers are "write only" and MUST be written as a half-word quantity, although they are only 12 bits wide. The addresses for the Page Registers are as follows.

| REGISTER | ADDRESS  |
|----------|----------|
| FLOPPY   | 0x 45002 |
| UART A   | 0x 46002 |
| UART B   | 0x 47002 |

The registers contain the upper portion of the address as well as the read/write (R1W0) bit. The R1W0 bit indicates the type of memory access. If the R1W0 bit is high [1], then the DMAC is going to read main memory. The Page Register address bits will allow up to 16 megabytes of addressing, but are limited to 64 kilobytes by the EIO bus. The order of the Page Register bits is as follows.

**Floppy Control Register.** The floppy control register was implemented to control some of the user programmable functions. The register is an 8-bit read/write register. The beginning address for the floppy control register is 0x 40003. The assignments for the floppy control register bits are as follows.

| BIT | DATA BIT | FUNCTION              |
|-----|----------|-----------------------|
| 0   | D00[1]   | FLOPPY DRIVE SELECT 0 |
| 1   | D01[1]   | FLOPPY DRIVE SELECT 1 |
| 2   | D02[1]   | FLOPPY DRIVE SELECT 2 |
| 3   | D03[1]   | FLOPPY DRIVE SELECT 3 |
| 4   | D04[1]   | PRECOMPENSATION BIT 0 |
| 5   | D05[1]   | PRECOMPENSATION BIT 1 |
| 6   | D06[1]   | PRECOMPENSATION BIT 2 |
| 7   | D07[1]   | FORCE PRECOMPENSATION |
| 1   |          |                       |

Up to four floppy disk drives can be configured with this system. Bits 0—3 are used to select which floppy disk drive is used. Bits 4—6 are used by the data separator to determine the amount of precompensation used when writing the floppy.

Integral Floppy Disk Controller. The integral Floppy Disk Controller provides data and access control for a single floppy disk drive. The controller is a FD 1793-02 and provides the following:

- Single Frequency Modulation (FM) and Modified Frequency Modulation (MFM) density
- Automatic seek with verify
- Soft sector compatibility.

The controller resides on the DMA Subsystem data bus bits 07—00[1]. The chip is enabled by the FCS[0] signal or the DMA acknowledge DACK1[0]. All floppy disk interface signals are terminated at the receiving end by a resistor network of 150 ohms to VCC.

**Floppy Controller Data Separator.** The FDC 9229-BT data separator is used to separate the data and clock signal from the data coming in from the floppy disk drive. The data separator includes the following features:

- Digital data separator
- Separates FM and MFM encoded data
- No adjustments necessary
- Compatible for 5.25- and 8-inch floppy disks
- Variable write precompensation
- Internal oscillator circuit
- Track selectable write precompensation.

The data separator receives controls from the floppy controller and floppy controller register. The floppy controller indicates when a write occurs and if precompensation should be performed. The floppy controller register determines how much precompensation to perform.

The CSER is also involved in the data separator. Bits 21 and 22 select the density of the floppy disk drive and the size of the floppy disk drive, respectively. These signals control the internal dividers of the data separator. A 16-MHz clock signal is connected to the data separator and divided to create the proper clock for the floppy controller. The separator generates the clock for the floppy controller and the read clock for the incoming data.

**Direct Memory Access Controller.** The integral Direct Memory Access Controller (DMAC) serves the Dual Universal Asynchronous Receiver/Transmitter (DUART) and the integral Floppy Disk Controller. The DMAC has four independent DMA channels. Each channel has separate registers for mode control, current address, base address, current word count, and base word count.

The DMAC generates a 16-bit address. An additional 12-bit "page" register is used for three of the four DMA channels (Channel 0 is not used) to provide DMA accessibility to the 26-bit Dynamic Random Access Memory (DRAM). The most significant bit of each Page Register is the read/write bit.

**Dual Universal Asynchronous Receiver/Transmitter.** The CONSOLE (UART 0) and CONTTY (UART 1) are driven by a Signetics 2681-40 DUART. Each channel (0 and 1) provides the following signals:

- Transmit data (TXD)
- Receive data (RXD)
- Data Carrier Detect (DCD)
- Data Terminal Ready (DTR).

Electrically, the DUART is on the peripheral bus with five other devices in the DMA Subsystem.

The UART has three output ports that are used for non-UART functions. These functions are listed below:

- Control of off-board AC power relay via Output Port 2 (OP2) (PWRON[0]). The signal is high during normal operations.
- Control of the Power indicator under certain operational conditions via Output Port 3 (OP3) (GLEDON[1]).
- Output Port 4 (OP4) (UFEJCT[0]) is buffered and is sent to the floppy disk interface connector for feature application.
- Output Port 5 (0P5) (UFDSEL[0]) is buffered and sent to J10 as the Floppy Drive Select (FDSEL[0]).

## **System Board Firmware**

The system board firmware is programmed instructions stored in ROM which form the basic operating system when the system is not running the UNIX operating system. The purpose of this firmware is to initialize the system and provide the means to load and run other programs such as the UNIX operating system, **filledt**, and **dgmon**. The firmware level built-in programs are listed below:

| baud      | Change the firmware baud rate. Valid firmware baud rates are 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, and 38400. The default baud rate is 9600. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| edt       | Display the Equipped Device Table (EDT) data.                                                                                                                              |
| errorinfo | Display expanded firmware error message information. This capability is provided with firmware PF3 and later versions.                                                     |
| express   | Enable/disable diagnostics execution during reboot.                                                                                                                        |
| newkey    | Make a new floppy key.                                                                                                                                                     |
| passwd    | Change the firmware password.                                                                                                                                              |
| sysdump   | Copy the system image (RAM) to floppy disks.                                                                                                                               |
| version   | Display firmware version information.                                                                                                                                      |

When the system is RESET or first powered on, the system board firmware controls the initialization of the system. The sequence of events is as follows:

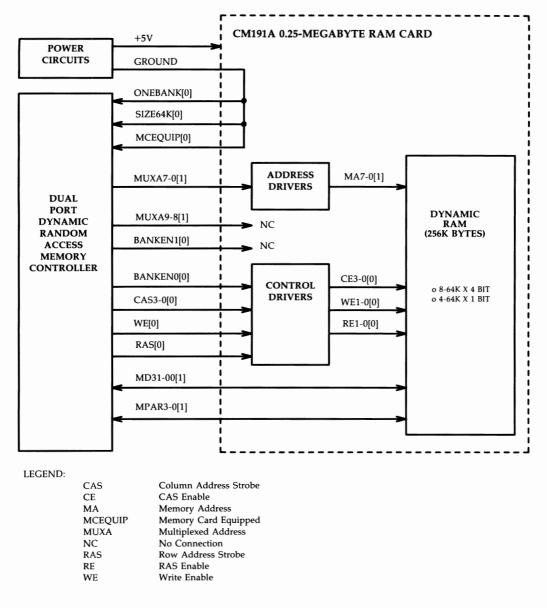
- Test processor sanity.
- Check ROM.
- Check NVRAM.
- Check RAM.
- Check DUART.
- Check Disk Sanity.
- Self-configuration (build the EDT).
- Run normal diagnostics on all equipped boards/cards listed in the EDT. (If not disabled via the express command.)
- Boot the UNIX operating system.

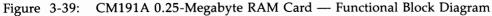
## **System Board EDT Data**

The following table shows the EDT data for a system board. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI).

| EDT ITEM                                                                                                                                                                                                                                                                                       | DATA                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (boot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (word_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file) | 0x 0001<br>SBD<br>0x 00<br>0x 00<br>1<br>1<br>1<br>1<br>1<br>1<br>0 |
| INDIRECT DEVICE (indir_dev)                                                                                                                                                                                                                                                                    | 0                                                                   |

1


# **RANDOM ACCESS MEMORY CARDS**


# CM191A/B/C/D and CM192B Memory Cards

Functional block diagrams of the various Version 2 Random Access Memory (RAM) cards are provided in Figures 3-39 through 3-43. Functionally, all memory cards consist of address drivers, control drivers, and a Dynamic Random Access Memory (DRAM) circuit. The various types and sizes of cards are identified to the system during self-configuration by the state of the SIZE64K[0] and ONEBANK[0] signals. The various types of memory cards in relation to the state of the SIZE64K[0] and ONEBANK[0] signals are summarized in the following table.

| CARD TYPE          | SIZE64K[0] | ONEBANK[0]  |
|--------------------|------------|-------------|
| CM191A<br>(0.25 M) | 0 = 64K    | 0 = 1 BANK  |
| CM191B<br>(1.0 M)  | 1 = 256K   | 0 = 1 BANK  |
| CM191C<br>(1.0 M)  | 1 = 256K   | 0 = 1 BANK  |
| CM191D<br>(2.0 M)  | 1 = 256K   | 1 = 2 BANKS |
| CM192B<br>(2.0 M)  | 1 = 256K   | 1 = 2 BANKS |

#### **FUNCTIONAL DESCRIPTION**





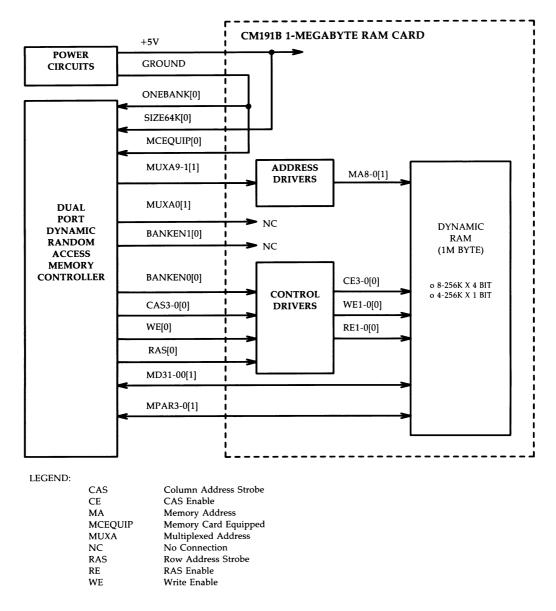



Figure 3-40: CM191B 1-Megabyte RAM Card — Functional Block Diagram

## **FUNCTIONAL DESCRIPTION**

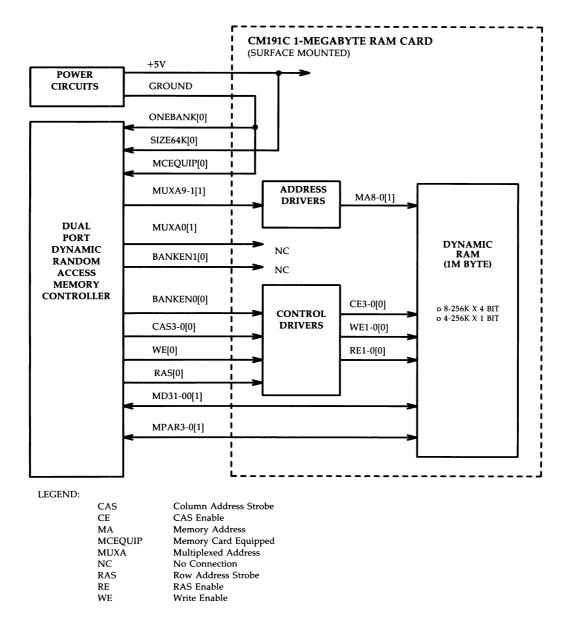



Figure 3-41: CM191C 1-Megabyte, Surface Mounted, RAM Card — Functional Block Diagram

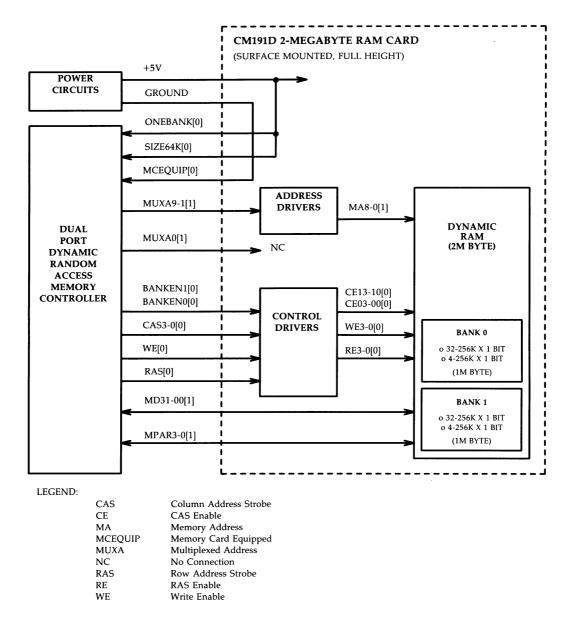



Figure 3-42: CM191D 2-Megabyte, Surface Mounted, Full Height, RAM Card — Functional Block Diagram

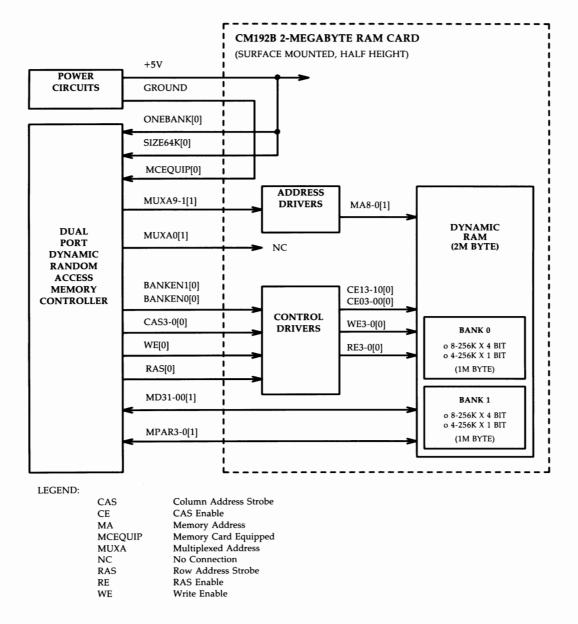



Figure 3-43: CM192B 2-Megabyte, Surface Mounted, Half Height, RAM Card — Functional Block Diagram

#### **Memory Control Signals**

The memory control signals include the following:

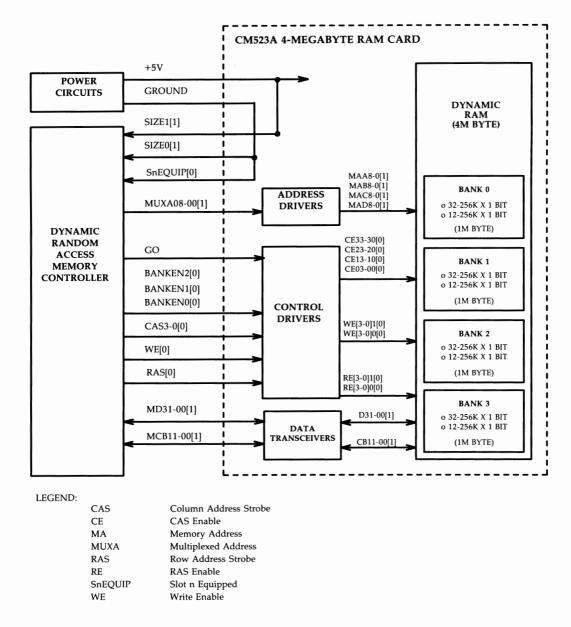
| BANKEN0[0] | The "bank enable $0$ " signal is used to select (enable) the read or write access of memory array bank 0. |
|------------|-----------------------------------------------------------------------------------------------------------|
| BANKEN1[0] | The "bank enable $1$ " signal is used to select (enable) the read or write access of memory array bank 1. |
| CAS3—0[0]  | The "column address strobes" signal is used to strobe (enable) the column address.                        |
| WE[0]      | The "write enable" signal is used to write data to the memory.                                            |
| RAS[0]     | The "row address strobe" signal is used to strobe (enable) the row address.                               |

#### **Memory Address Signals**

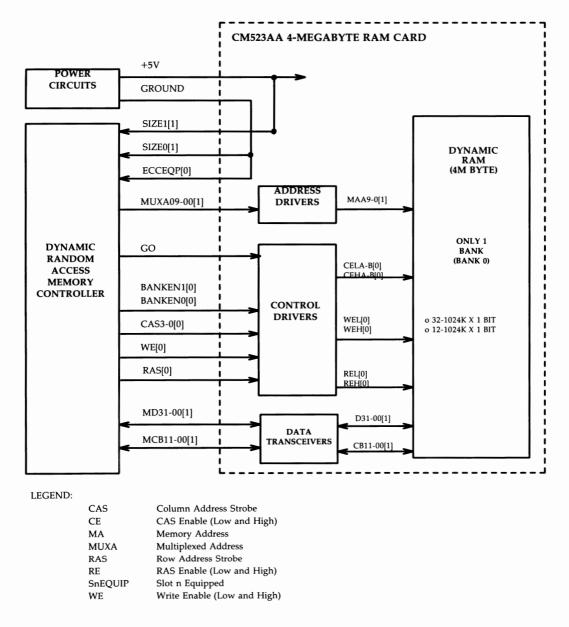
Memory address signals are supplied from the Address Generation logic of the Dual Port Dynamic Random Access Memory Controller via a 10-bit multiplexed memory address bus. Control signals applied to the memory cards determine whether the address is used as a row or column address. The relationship between the I/O bus and the multiplexed memory address bus for row and column addresses is shown in the following table. Note that all multiplexed address bus bits are NOT used by a given RAM card.

| INPUT/OUTPUT<br>ADDRESS BUS |                           | MULTIPLEXED<br>MEMORY<br>ADDRESS |        | MEMORY<br>CARD TYPE |        |
|-----------------------------|---------------------------|----------------------------------|--------|---------------------|--------|
| ROW<br>ADDRESS<br>BITS      | COLUMN<br>ADDRESS<br>BITS | BUS<br>BITS                      | CM191A | CM191B/C/D          | CM192B |
| 02                          | 19                        | 9                                | NC     | x                   | x      |
| 10                          | 18                        | 8                                | NC     | x                   | x      |
| 09                          | 17                        | 7                                | x      | x                   | x      |
| 08                          | 16                        | 6                                | x      | x                   | x      |
| 07                          | 15                        | 5                                | x      | x                   | x      |
| 06                          | 14                        | 4                                | x      | x                   | x      |
| 05                          | 13                        | 3                                | x      | x                   | x      |
| 04                          | 12                        | 2                                | x      | x                   | x      |
| 03                          | 11                        | 1                                | x      | x                   | x      |
| 02                          | 10                        | 0                                | x      | NC                  | NC     |

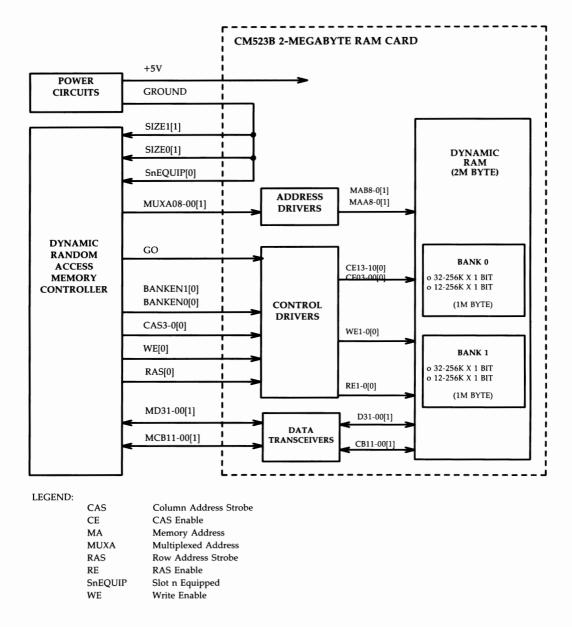
#### **Data and Parity Signals**


The data bus includes 32 data bits (MD31—00[1]) and 4 bits of byte parity (MPAR3—0[1]). The relationship of the parity bits to the data bytes is shown in the following table.

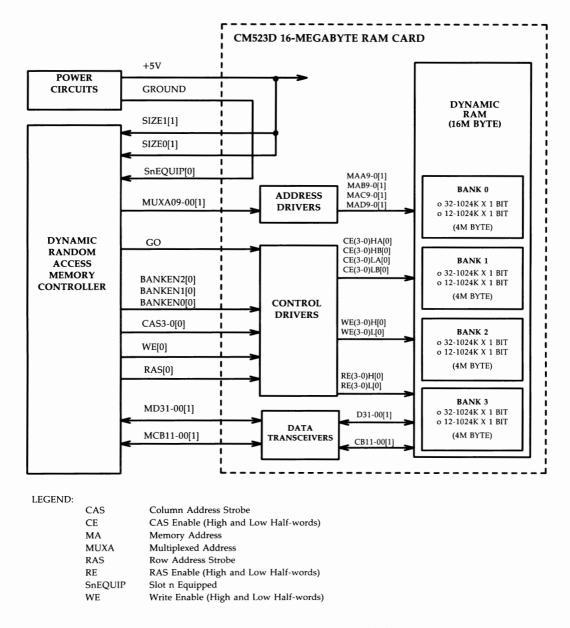
| MPAR0     | MPAR1 MPAR2 |           | MPAR3     |
|-----------|-------------|-----------|-----------|
| MD31 — 24 | MD23 — 16   | MD15 — 08 | MD07 — 00 |


## CM523A/AA/B/D Memory Cards

Functional block diagrams of the various Version 3 RAM cards are provided in Figures 3-44 through 3-47. Functionally, all memory cards consist of address drivers, control drivers, data transceivers, and a Dynamic Random Access Memory (DRAM) circuit. The various types and sizes of cards are identified to the system during self-configuration by the state of the SIZE0[1] and SIZE1[1] signals. The various types of memory cards in relation to the state of the SIZE0[1] and SIZE1[1] signals are summarized in the following table.


| CARD TYPE            | SIZE1[1] | SIZE0[1] |
|----------------------|----------|----------|
| CM523A/AA<br>(4.0 M) | 1        | 0        |
| CM523B<br>(2.0 M)    | 0        | 0        |
| CM523D<br>(16.0 M)   | 1        | 1        |


















#### **Memory Control Signals**

The memory control signals include the following:

| BANKEN(3-0)[ | 0]                                                                                                                                                          |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | The "bank enable" signals are used to select (enable) the read or write access of individual memory array banks.                                            |
| CAS3-0[0]    | The ''column address strobes'' signals are used to strobe (enable) the column address.                                                                      |
| CE(3-0)[0]   | The "CAS enable" signals are buffered versions of CAS(3-0)[0] and are used to enable the column address into the memory chips of the designated bank (3-0). |
| RAS[0]       | The "row address strobe" signals are used to strobe (enable) the row address.                                                                               |
| RE(3-0)[0]   | The "RAS enable" signals are buffered versions of RAS[0] and are used to enable the row address into the memory chips of the designated bank.               |
| WE(3-0)[0]   | The "write enable" signals are used to write data to the memory.                                                                                            |

**Note:** The enable signals operate on half-words, designated by "H" and "L" for "high order" or "low order."

### **Memory Address Signals**

Memory address signals are supplied from the Address Generation logic of the Dynamic Random Access Memory Controller (DRAMC) via a 10-bit multiplexed memory address bus. Control signals applied to the memory cards determine whether the address is used as a row or column address. The relationship between the buffered microbus and the multiplexed memory address bus for row and column addresses is shown in the following table. Note that all multiplexed address bus bits are NOT necessarily used by a given RAM card.

|                        | MICROBUS<br>RESS          | MULTIPLEXED<br>MEMORY  |
|------------------------|---------------------------|------------------------|
| ROW<br>ADDRESS<br>BITS | COLUMN<br>ADDRESS<br>BITS | ADDRESS<br>BUS<br>BITS |
| 23                     | 22                        | 10                     |
| 21                     | 20                        | 9                      |
| 19                     | 10                        | 8                      |
| 18                     | 09                        | 7                      |
| 17                     | 08                        | 6                      |
| 16                     | 07                        | 5                      |
| 15                     | 06                        | 4                      |
| 14                     | 05                        | 3                      |
| 13                     | 04                        | 2                      |
| 12                     | 03                        | 1                      |
| 11                     | 02                        | 0                      |

## **Data and Check Signals**

The data bus includes 32 data bits (MD31—00[0]) and 12 bits of half-word modified Hamming check (MCB11—0[0]). The Hamming bits, along with the error detection and correction circuitry in the memory controller, allow double-bit error detection and single-bit error correction in each half-word of memory. The relationship of the check bits to the data bytes is shown in the following table.

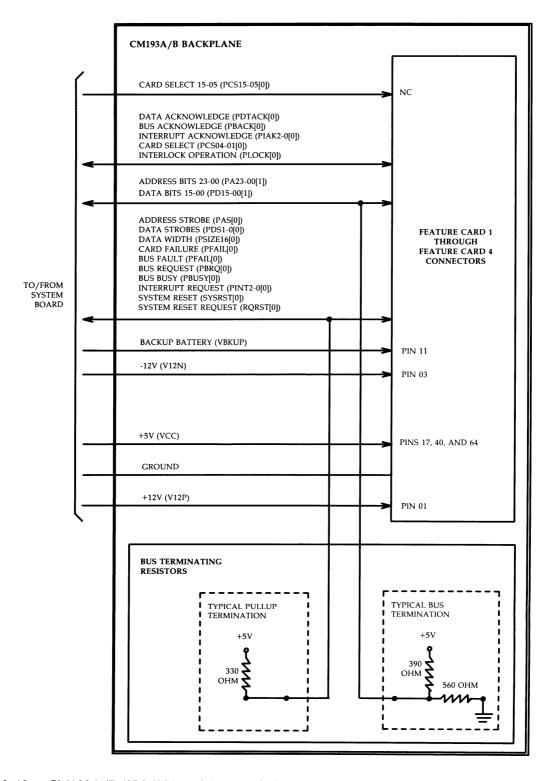
| MCB11-06[1]  | MCB05-00[1]  |
|--------------|--------------|
| MD31 — 16[1] | MD15 — 00[1] |

# BACKPLANES

## General

The backplane provides connections for power and bus signals between the system board and other circuit cards that may be in the computer. The backplane also provides for the proper termination of all bus signals. Because of bus termination, the backplane and system board must always be connected for the computer to be operational.

The Version 2 backplanes are restricted to I/O feature cards. The 3B2/300 and 310 computers backplane (CM193A/B) provide connections for four feature cards. The 3B2/400 computers backplane (CM194B) provides connections for 12 feature cards.


The Version 3 backplanes provide a connection for the Version 3 system boards. There are also connections for I/O feature cards, performance enhancement cards, and memory cards. The CM519 series backplanes also have "power only" slots that supply power but no bus connections. The following table lists the backplane connections for the Version 3 computers.


|                      | 3B2/500<br>(CM520A) | 3B2/600<br>(CM519A) | 3B2/700<br>(CM519A) | 3B2/1000<br>(CM519B) |
|----------------------|---------------------|---------------------|---------------------|----------------------|
| I/O Slots            | 7                   | 12                  | 12                  | 12                   |
| Performance<br>Slots | 3                   | 5                   | 5                   | 6                    |
| Memory Slots         | 2                   | 4                   | 4                   | 4                    |
| Power Only<br>Slots  | 0                   | 3                   | 3                   | 2                    |

## **CM193A/B Backplane Board**

The CM193A/B is a 4-slot backplane board. The backplane board plugs into the 100-pin (A or J02) and 60-pin (B or J03) input/output expansion connectors on the system board. A maximum of either two double-width or four single-width feature cards can be plugged into this backplane. Figure 3-48 is a functional block diagram of a CM193A/B Backplane.

All power, ground, and bus signals for the features cards are from the J02 and J03 system board connections. Certain bus signals are terminated on the backplane as shown on Figure 3-48. No connections are provided for the Card Select 15—05 (CS15—05[0]) signals by the CM193A/B Backplane.





## **CM194B Backplane**

The CM194B is a 12-slot backplane board. The backplane board plugs into the 100-pin (A or J02) and 60-pin (B or J03) input/output expansion connectors on the system board. A maximum of either 6 double-width or 12 single-width feature cards can be plugged into this backplane.

All bus signals for the features cards are from the J02 and J03 system board connections. Certain bus signals are terminated on the backplane as shown on Figure 3-49. No connections are provided for the Card Select 15—13 (CS15—13[0]) signals by the CM194B Backplane.

Power and ground for the features cards are handled differently from the CM193A/B Backplane. Because of the number of feature cards supported by the CM194B Backplane, +5 volt (VCC), +12 volt (V12P) and ground connections are directly supplied from the Power Supply via the 12-pin power connector on the backplane. Only the -12 volt (V12N) power is supplied to the backplane from the system board connector (J02).

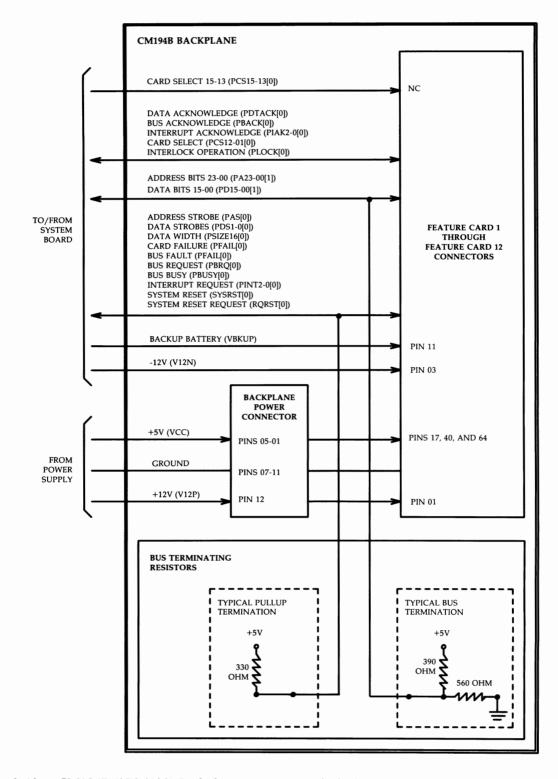



Figure 3-49: CM194B (3B2/400) Backplane — Functional Block Diagram

## **CM519A Backplane Board**

The CM519A is a 24-slot backplane board. The system board plugs into the middle of the backplane board. There are 12 I/O slots above the system board to hold a maximum of either 6 double-wide or 12 single-width feature cards. There are 12 performance slots underneath the system board consisting of 4 memory, 4 buffered microbus (for MPE cards), 1 VCACHE, and 3 power only connectors. Figure 3-50 shows the functional diagram of the CM519A Backplane. Exact signal and pinout information is provided in Appendix B.

Power and ground (+5 volt, +12 volt, -12 volt, and GRD) for the feature cards are supplied from the power supply via connectors on the backplane. The floppy disk drive is connected directly to the backplane via a 34-pin connector. The "Power" and "Diagnostic" LEDs and NVRAM battery are also connected to the backplane.

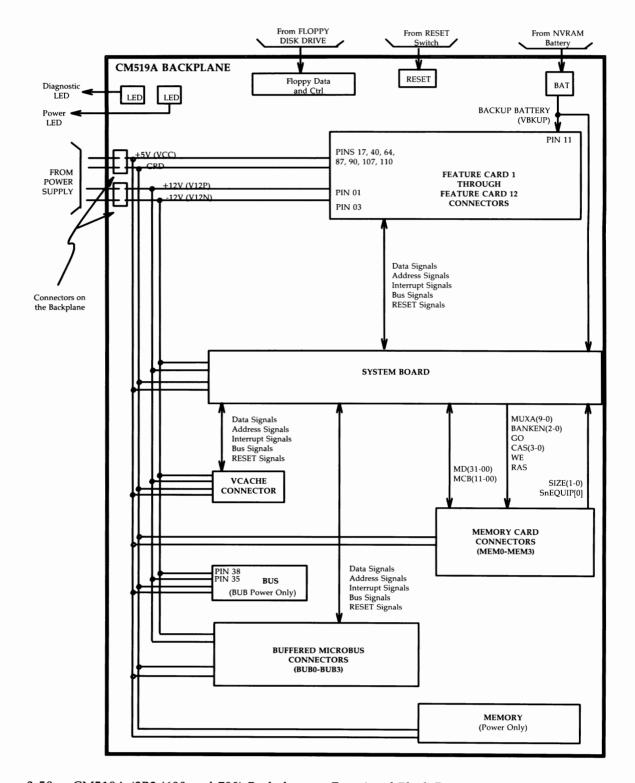



Figure 3-50: CM519A (3B2/600 and 700) Backplane — Functional Block Diagram

## **CM519B Backplane Board**

The CM519B is a 24-slot backplane board. The system board plugs into the middle of the backplane board. There are 12 I/O slots above the system board to hold a maximum of either 6 double-wide or 12 single-width feature cards. There are 12 performance slots underneath the system board consisting of 4 memory, 3 buffered microbus (for MPE cards), 3 processor bus (for PE cards), and 2 power only connectors. Figure 3-51 shows the functional diagram of the CM519B Backplane. Exact signal and pinout information is provided in Appendix B.

Power and ground (+5 volt, +12 volt, -12 volt, and GRD) for the features cards are supplied from the power supply via connectors on the backplane. The floppy disk drive is connected directly to the backplane via a 34-pin connector. The "Power" and "Diagnostic" LEDs and NVRAM battery are also connected to the backplane.

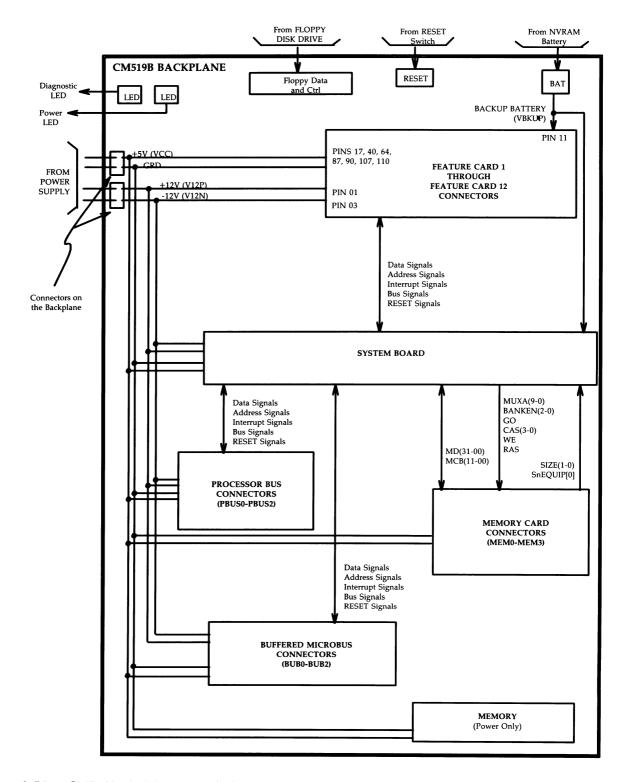



Figure 3-51: CM519B (3B2/1000) Backplane — Functional Block Diagram

## **CM520A Backplane Board**

The CM520A is a 12-slot backplane board. The system board plugs into the bottom of the backplane board. There are 7 I/O slots to hold a maximum of either 3 double-wide or 7 single-width feature cards. There are 5 performance slots consisting of 2 memory, 2 buffered microbus (for MPE cards), and 1 VCACHE connectors. Figure 3-52 shows the functional diagram of the CM520A Backplane. Exact signal and pinout information is provided in Appendix B.

Power and ground (+5 volt, +12 volt, -12 volt, and GRD) for the features cards are supplied from the power supply via connectors on the backplane. The floppy disk drive is connected directly to the backplane via a 34-pin connector. The "Power" and "Diagnostic" LEDs and NVRAM battery are also connected to the backplane.

#### **FUNCTIONAL DESCRIPTION**

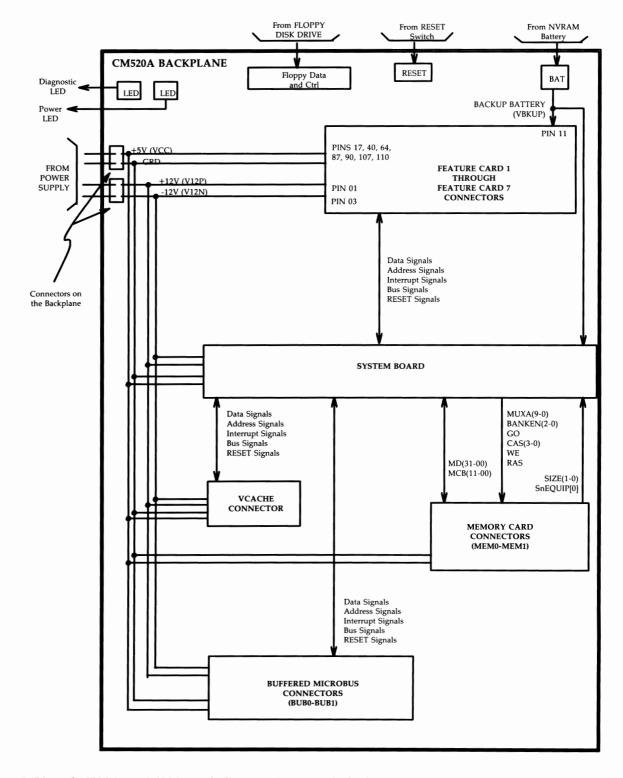



Figure 3-52: CM520A (3B2/500) Backplane — Functional Block Diagram

# **CM195A NETWORK INTERFACE CARD**

## General

The CM195A Network Interface (NI) Card is an intelligent feature card used to interface the 3B2 computer to the AT&T 3BNET Local Area Network. Figure 3-53 is a functional block diagram of the CM195A NI Card. The NI card consists of the Common Input/Output (CIO) circuits and the Network Interface circuits. The CIO circuits include the following:

- INTEL 80186 Microprocessor
- Input/Output (I/O) Bus Control
- Identification/Vector (ID/Vector) Register
- Page Register
- Peripheral Control and Status Register (PCSR)
- Local Random Access Memory (RAM)
- Local Read Only Memory (ROM)
- Miscellaneous circuits.

The Network Interface is an INTEL 82586 Ethernet Controller. The Network Interface circuits function as a network coprocessor.

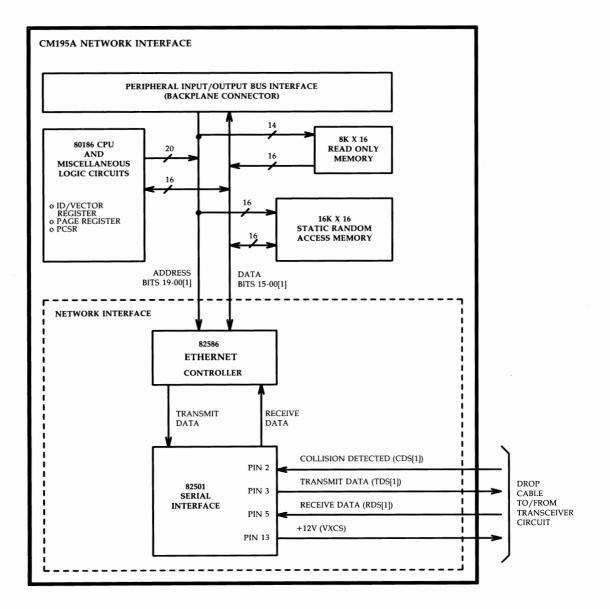



Figure 3-53: CM195A NI Card — Functional Block Diagram

## **INTEL 80186 Microprocessor**

The intelligence of the NI card is provided by an INTEL 80186, 16-bit microprocessor operating at 8 MHz. Some of the microprocessor features used for the NI card are described in the following paragraphs. Figure 3-54 shows the NI card address map.

## **Input/Output Bus Control**

The I/O bus control circuitry responds to I/O bus and 80186 Microprocessor control signals. Three major paths are listed below:

- 80186 Microprocessor read or write of the system board main memory
- System board CPU read or write NI card
- Interrupt Acknowledge (PIAK[0]).

The I/O bus control circuitry responds to the I/O bus and to the 80186 Microprocessor control signals by selectively enabling the appropriate I/O bus signals. In addition, the Bus Abort Feature (BAF) can be prematurely forced. Certain Peripheral Control and Status Register (PCSR) bits can also be set when the NI is accessed.

| NI CARD ADDRESS MAP |                |                |                       |            |                 |                 |
|---------------------|----------------|----------------|-----------------------|------------|-----------------|-----------------|
| MEMORY<br>ADDRESS   | I/O<br>ADDRESS | CHIP<br>SELECT | DESCRIPTION           | ACCESS     | WIDTH<br>(BITS) | SIZE<br>(BYTES) |
| 0x 00000            |                | LCS            | RAM (VECTOR TABLE)    | READ/WRITE | 16              | 128             |
| 0x 00080            |                | LCS            | RAM (DEMON)           | READ/WRITE | 16              | 256             |
| 0x 00180            | _              | LCS            | RAM (USER)            | READ/WRITE | 16              | 255.6K          |
| 0x 20000            |                | LCS            | UNUSED                | <i>,</i>   | _               | 128K            |
| 0x 40000            | _              | (NOTE 1)       | UNUSED                | _          |                 | 256K            |
| 0x 80000            | _              | MCS            | DPDRAM                | READ/WRITE | 16              | 128K/PAGE       |
| 0x A0000            |                | MCS            | NOT USED              | <i>,</i>   | _               | 128K            |
| 0x C0000            | 0x 0400        | PS0            | DEMON                 | _          | _               | 128             |
| 0x C0080            | 0x 0480        | PS1            | ID/VECTOR REGISTER    | WRITE      | 16              | 2               |
| 0x C0082            | 0x 0482        | PS1            | PAGE REGISTER         | WRITE      | 7               | 1               |
| 0x C0082            | 0x 0484        | PS1            | PCSR BITS 7-0         | READ       | 8               | 1               |
| 0x C0086            | 0x 0486        | PS1            | RESERVED              |            |                 |                 |
| 0x C0088            | 0x 0488        | PS1            | PCSR BIT 0 (INT0)     | (NOTE 2)   | 1               | _               |
| 0x C0089            | 0x 0489        | PS1            | PCSR BIT 1 (INT1)     | (NOTE 2)   | 1               | _               |
| 0x C008A            | 0x 048A        | PS1            | PCSR BIT 2 (INT2)     | (NOTE 2)   | 1               | _               |
| 0x C008B            | 0x 048B        | PS1            | PCSR BIT 3 (INT3)     | (NOTE 2)   | 1               | _               |
| 0x C008C            | 0x 048C        | PS1            | PCSR BIT 4 (NOT USED) | (NOTE 3)   | 1               |                 |
| 0x C008D            | 0x 048D        | PS1            | PCSR BIT 5 (ARDY)     | (NOTE 3)   | 1               | _               |
| 0x C008E            | 0x 048E        | PS1            | PCSR BIT 6 (BAF)      | (NOTE 3)   | 1               | -               |
| 0x C008F            | 0x 048F        | PS1            | PCSR BIT 7 (PINT1[0]) | (NOTE 2)   | 1               | -               |
| 0x C0100            | 0x 0500        | PS2            | NOT USED              | —          | _               | 128             |
| 0x C0180            | 0x 0580        | PS3            | NOT USED              | _          |                 | 128             |
| 0x C0200            | 0x 0600        | PS4            | DUART 0 AND 1         | _          | _               | 128             |
| 0x C0280            | 0x 0680        | PS5            | DUART 2 AND 3         |            | _               | 128             |
| 0x C0300            | 0x 0700        | PS6            | PARALLEL PORT         | _          | -               | 128             |
| 0x C0400            | 0x FF00        | 80186          | 80186 CONTROL BLOCK   | —          | 16              | 256             |
| 0x C0420            | 0x FF20        | 80186          | INTERRUPT CONTROL     | —          | 16              | 32              |
| 0x C0450            | 0x FF50        | 80186          | TIMER 0 CONTROL       |            | 16              | 8               |
| 0x C0458            | 0x FF58        | 80186          | TIMER 1 CONTROL       | _          | 16              | 8               |
| 0x C0460            | 0x FF60        | 80186          | TIMER 2 CONTROL       | _          | 16              | 6               |
| 0x C04A0            | 0x FFA0        | 80186          | CHIP SELECT CONTROL   | —          | 16              | 10              |
| 0x C04C0            | 0x FFC0        | 80186          | DMA 0 CONTROL         | —          | 16              | 12              |
| 0x C04D0            | 0x FFD0        | 80186          | DMA 1 CONTROL         | —          | 16              | 12              |
| 0x C04FE            | 0x FFFE        | 80186          | RELOCATION REGISTER   | -          | 16              | 2               |
| 0x F0000            | —              | UCS            | ROM                   | READ       | 16              | 63.9K           |
| (NOTE 4)            | —              | UCS            | DEMON ROM             | READ       | 16              | 128             |

NOTES:

- External address decoding is required to select addresses in the 0x 40000 0x 7FFFF range.
   Bit is cleared [0] (reset) by 80186 Microprocessor access.
   Bit is cleared [0] (reset) by 80186 Microprocessor access unless "dummy" read of BAF is pending.
   The application links ROM firmware with a DEMON function that is limited to 128 bytes.

LEGEND:

| ARDY   | Asynchronous Data Ready                |
|--------|----------------------------------------|
| BAF    | Bus Abort Feature                      |
| DMA    | Direct Memory Access                   |
| DPDRAM | Dual Port Dynamic Random Access Memory |
| LCS    | Lower RAM Chip Select                  |
| MCS    | Memory Chip Select                     |
| NRZI   | Nonreturn to Zero Insertion            |
| PCSR   | Peripheral Control and Status Register |
| PS     | Peripheral Select                      |
| UCS    | Upper RAM Chip Select                  |
|        |                                        |

| Figure | 3-54: | CM195A NI | Card | Address | Map |
|--------|-------|-----------|------|---------|-----|
|--------|-------|-----------|------|---------|-----|

## **ID/Vector Register**

The NI card ID/Vector Register is a 16-bit register that is used for two functions. Initially the register contains the 8-bit NI card ID code. Later the register contains an 8-bit interrupt vector. The interrupt vector is returned in response to an Interrupt Acknowledge (PIAK[0]) signal. On reset, the 80186 Microprocessor writes the NI card ID code to the ID/Vector Register and waits. The NI card ID code is 0x 02. During system self-configuration, the system board CPU polls each feature card slot. This polling reads the ID/Vector Register. The two bytes of the ID/Vector Register are a unique 16-bit ID code of the card.

## Page Register

The NI card uses a 24-bit I/O address to do system board main memory operations. The lower 17 bits are provided by the 80186 Microprocessor. The most significant 7 bits are provided by the Page Register. The Page Register is a write only register for the 80186 Microprocessor. The two most significant address bits (bits 06 and 05) of the Page Register are always zero. This allows the Page Register to select thirty-two 128 kilobyte segments of main memory. The Page Register is addressed by the 80186 Microprocessor at its I/O address 0x 0482. Bits 06—00 of the Page Register map to Peripheral Physical Address bits 23—17 (PPA23—17[1]).

# **Peripheral Control and Status Register**

The NI card contains an 8-bit Peripheral Control and Status Register (PCSR) which is addressable on the lower data byte of the I/O address (0x 048F—0x 0488). Each address corresponds to a single bit of the PCSR. These bits are reset by an 80186 Microprocessor read or write access.

|     | NI PERIPHERAL CONTROL AND STATUS REGISTER                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIT | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7   | <b>REQUEST SYSTEM BOARD CPU INTERRUPT</b> : PCSR7[0] maps to the I/O bus signal PINT1[0] and is asserted by the NI firmware. When negated [1] by hardware, the interrupt has been acknowledged by the system board CPU. When asserted [0], the interrupt request is pending. A system reset negates the bit to a logic 1 (interrupt acknowledged). Addressing PCSR7[1] (0x 048F) clears (negates) the bit.                               |
| 6   | <b>I/O BUS LOCKED</b> : This bit is used for the BAF. Bit 6 is set [1] by hardware when the 80186 Microprocessor is delayed in accessing main memory and must be cleared by firmware. During normal operation, PCSR6 is cleared by the 80186 Microprocessor addressing PCSR6 unless a "dummy" read is pending. The 80186 Microprocessor cannot access DPDRAM when PCSR6 is set [1]. Addressing PCSR6 (0x 048E) clears (negates) the bit. |
| 5   | Used to control Asynchronous Data Ready (ARDY[1]). Addressing PCSR5 asserts ELPBK[0] signal.                                                                                                                                                                                                                                                                                                                                             |
| 4   | PCSR4 is reserved for future NI development. Addressing PCS4[1] (0x 48C) clears (negates) the bit.                                                                                                                                                                                                                                                                                                                                       |
| 3   | PCSR3 is not used by the NI card. Addressing PCSR3 (0x 048B) clears (resets) the bit.                                                                                                                                                                                                                                                                                                                                                    |
| 2   | PCSR2 is not used by the NI card. Add:essing PCSR3 (0x 048A) clears (resets) the bit.                                                                                                                                                                                                                                                                                                                                                    |
| 1   | <b>CLEAR INT1</b> : This 80186 Microprocessor interrupt is set by a system board CPU access of the NI PCSR (attention interrupt). PCSR1 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0489. Following a system reset the state of PCSR1 is undefined and is cleared by the NI firmware.                                                                                            |
| 0   | <b>CLEAR INTO</b> : This 80186 Microprocessor interrupt is set by a system board CPU access of the NI ID/Vector Register (except on an interrupt acknowledge cycle). This interrupt is the SYSGEN and Express Queue interrupt. Bit 0 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0488. Bit 0 is undefined on powerup and is cleared by the NI firmware.                          |

#### Local RAM

The NI card contains 32K bytes of Static Random Access Memory (SRAM) configured as 16K by 16 bits. The DRAM is accessed via the Low Memory Chip Select (LCS0) from 80186 Microprocessor and address bits 12—00. Note that 256K bytes of RAM address space is reserved. The 32K bytes of RAM is used for intermediate data storage of the data being transmitted/received to/from the network.

## Local ROM

Firmware for the 80186 Microprocessor is stored in the ROM. The NI card ROM contains 16K bytes configured as 8K by 16 bits. The ROM is accessed via the Upper Memory Chip Select (UCS[0]) and address bits 14—00.

#### **Network Interface**

The AT&T 3BNET is an Ethernet compatible, local area network. Data is transferred over the network by attaching a destination identification to the data to be transferred. The **nisend** command is used to attach a destination code and file name to the data to be transferred. The NI firmware handles the transfer of the data between the 3B2 computer main memory and the Network Interface Local RAM. The data to be transferred is divided into packets of 1024 bytes for transfer over the network. The Ethernet Controller autonomously reads the data from local RAM, converts the data to serial stream, and transmits the stream over the network. If collisions are detected, the information packet is retransmitted automatically. The receiving system acknowledges the receipt of the data.

#### **Ethernet Controller Circuit**

The Network Interface is an 82586 Ethernet Controller that manages the process of transmitting and receiving data over the network. The primary functions of the controller are as follows:

- Decode the serial data
- Check for data integrity
- Convert serial data into parallel data format
- Store parallel data in the local RAM
- Save and report networking errors for the node.

The Network Interface connects to the network via a coaxial drop cable and a transceiver circuit. The interface between the Network Interface and the transceiver circuit consists of the following signals.

#### **Receive Pair**

A differential signal that is active when any data is received.

## Transmit Pair

A differential signal that is active when any data is transmitted.

## Collision Presence Pair

A differential signal that is active while a collision is in progress.

#### **Power Pair**

The transceiver is powered by +12 volt DC supplied by the 3B2 computer.

## **CM195A Equipped Device Table Data**

The following table shows the Equipped Device Table (EDT) data for a CM195A NI Card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are NI software defined values. As such, the rq\_size and cq\_size values may differ between versions of NI software.

| EDT ITEM                                                                                                                                                                                                                                                                                      | DATA                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (boot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (brd_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file) | 0x 0002<br>NI<br>0x 0A<br>0x 19<br>0<br>1<br>0<br>1<br>0<br>0 |
| INDIRECT DEVICE (indir_dev)                                                                                                                                                                                                                                                                   | 0                                                             |

## **3BNET Characteristics**

**Coaxial Media Cable** 

The maximum end-to-end length of the media cable without using repeaters is 500 meters. The data transmission rate over the media cable is 10 megabits per second.

- **Terminators** The media cable is terminated at each end with 50-ohm resistors to prevent signal reflection.
- **Transceivers** Transceivers provide nodal tap into the media cable and provide electrical isolation for transmitting and receiving signals. These units must be installed at designated points on the media cable to maintain standing wave specifications. Transceivers are powered by 12 volt DC supplied from the NI card via the drop cable.
- **Drop Cable** The drop cable interconnects the transceiver and the NI card. The maximum length of this cable is 50 meters.

## **Ethernet Data Packet Format**

The format of an Ethernet Data Packet is as follows:

| FIELD | PREAMBLE | DESTINATION<br>ADDRESS | SOURCE<br>ADDRESS | TYPE    | DATA             | CRC     |
|-------|----------|------------------------|-------------------|---------|------------------|---------|
| SIZE  | 64 BITS  | 48 BITS                | 48 BITS           | 16 BITS | 46 TO 1500 BYTES | 32 BITS |

**PREAMBLE** The Preamble is a 64-bit field of alternating 1's and 0's, ending with two consecutive 1's. This field synchronizes the receiving circuits to the incoming data packet.

## **DESTINATION ADDRESS**

The 48-bit Destination Address field is the nodal address to which the data is being transmitted.

#### SOURCE ADDRESS

The 48-bit Source Address field is the nodal address from which the data is being transmitted.

- **TYPE** The 16-bit Type field is used for a high-level data protocol.
- **DATA** The Data field is the data to be sent over the network and is from 46 to 1500 bytes in length.
- **CRC** The 32-bit Cyclic Redundancy Check (CRC) field is calculated on all of the other fields. This field is also called the Frame Check Sequence field.

# **CM195AA ALARM INTERACE CIRCUIT CARD**

## General

The CM195AA Alarm Interface Circuit (AIC) Card is part of the Remote Management Package. The AIC card provides the following capabilities:

- Dual console
- System sanity failure detection and alarm generation
- Alarm interface to automatic calling units
- Uninterruptible Power Supply (UPS) and external input connections.

These functions are achieved via hardware resident on the I/O bus. The card contains no "intelligence" as such. Figure 3-55 is a functional block diagram of the AIC card.

## **FUNCTIONAL DESCRIPTION**

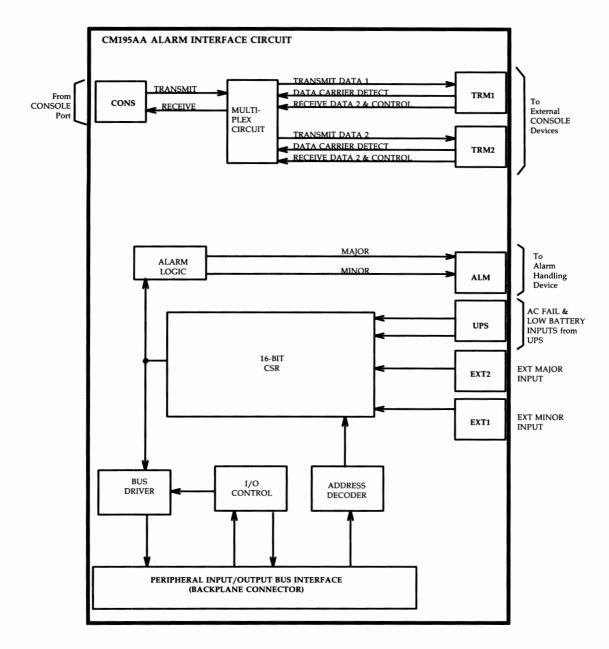



Figure 3-55: CM195AA AIC Card — Functional Block Diagram

## **I/O Bus Interface**

The only operation supported by the AIC hardware is a "read" by the integral CPU. A read operation at a specific address will cause a specific result. The addresses and corresponding results are shown in Figure 3-56.

| OFFSET | LIMIT | CSR<br>BIT | RESULT                                               |
|--------|-------|------------|------------------------------------------------------|
| 0X00   | 0X01  |            | READ BOARD ID (ID=0x0101)                            |
| 0X04   | 0X05  | _          | READ 16 BIT AIC STATUS REGISTER                      |
| 0X20   | _     | 00         | SET SWMINOR1 TO CAUSE MINOR ALARM FROM SOFTWARE      |
| 0X21   |       | 00         | CLEAR SWMINOR1                                       |
| 0X22   | —     | 01         | SET SWMAJOR1 TO CAUSE MAJOR ALARM FROM SOFTWARE      |
| 0X23   | —     | 01         | CLEAR SWMAJOR1                                       |
| 0X24   |       | 02         | SET SANEN1 TO ENABLE SANITY TIMER                    |
| 0X25   |       | 02         | CLEAR SANEN1 TO DISABLE SANITY TIMER                 |
| 0X26   | _     | 03         | NO FUNCTION                                          |
| 0X27   | —     | 03         | CLEAR SANITY TIMER (PRESENTS A LOGIC 0               |
|        |       |            | ON STATUS REGISTER BIT 03 FOR 127.5 MILLISECONDS)    |
| 0X28   | _     | 04         | SET INHALRM1 TO INHIBIT ALL ALARMS                   |
| 0X29   | _     | 04         | CLEAR INHALRM1 TO ENABLE ALARMS                      |
| 0X2A   |       | 05         | SET ACFAIL1 FOR DIAGNOSTIC TEST OF THIS BIT          |
| 0X2B   |       | 05         | CLEAR ACFAIL1 TO CLEAR THIS BIT FROM CSR             |
| 0X2C   | —     | 06         | SET LOWBAT1 FOR DIAGNOSTIC TEST OF THIS BIT          |
| 0X2D   |       | 06         | CLEAR LOWBAT1 (CLEARS LOW BATTERY STATUS FROM CSR)   |
| 0X2E   | —     | 07         | SET EXTTL21 FOR DIAGNOSTIC TEST OF THIS BIT          |
| 0X2F   | —     | 07         | CLEAR EXTTL21 (CLEARS EXTERNAL MAJOR ALARM FROM CSR) |
| 0X30   | —     | 08         | SET EXTTL11 FOR DIAGNOSTIC TEST OF THIS BIT          |
| 0X31   |       | 08         | CLEAR EXTTL11 (CLEARS EXTERNAL MINOR ALARM FROM CSR) |
| 0X32   |       | 09         | SET ISANE1 BIT 9 FOR DIAGNOSTIC TEST OF THIS BIT     |
| 0X33   | —     | 09         | CLEAR INSANE1 INDICATION OF SANITY TIMEOUT FROM CSR  |
| 0X34   | —     | 10         | SET BIT 10 TO SET TMOUT1 TO 1 AND ASSERT PINT20      |
| 0X35   | -     | 10         | CLEAR BIT 10 TO CLEAR TMOUT1 ONLY                    |
| 0X36   |       | —          | CLEAR PENDING PINT20                                 |
| 0X37   |       | —          | CAUSE SYSTEM RESET VIA I/O BUS LEAD RQRST0           |
| 0X38   | —     | 12         | RESERVED                                             |
| 0X39   |       | 12         | RESERVED                                             |
| 0X3A   | —     | 13         | RESERVED                                             |
| 0X3B   | —     | 13         | RESERVED                                             |
| 0X3C   | —     | 14         | RESERVED                                             |
| 0X3D   | —     | 14         | RESERVED                                             |
| 0X3E   | —     | 15         | TRM1 AND TRM2 DTRT IS CONTROLLED BY 3B2 UART         |
| 0X3F   | —     | 15         | TRM1 AND TRM2 DTR IS FORCED ACTIVE                   |
|        |       |            | (POWER UP DEFAULT STATE)                             |

Figure 3-56: CM195AA AIC Card Address Spectrum

ID data is supplied to the bus when the AIC card is read (addresses 0X01 and 0X02). For addresses 0X04 and 0X05, the AIC Status Register information is passed to the bus. The following table contains the AIC Status Register bit definitions.

| BIT | NAME     | DESCRIPTION                                                                               |
|-----|----------|-------------------------------------------------------------------------------------------|
| 15  | RESV151  | WHEN 0, AIC FORCES DTR ACTIVE ON TRM1 & TRM2<br>WHEN 1, DTR IS CONTROLLED BY THE 3B2 UART |
| 14  |          | RESERVED FOR FUTURE APPLICATIONS                                                          |
| 13  |          | RESERVED FOR FUTURE APPLICATIONS                                                          |
| 12  |          | RESERVED FOR FUTURE APPLICATIONS                                                          |
| 11  |          | RESERVED FOR FUTURE APPLICATIONS                                                          |
| 10  | TMOUT1   | WHEN SET, AN INTERRUPT ON FIRST TIMEOUT HAD OCCURRED                                      |
| 09  | INSANE1  | WHEN SET, INDICATES SANITY TIMER HAS FIRED SECOND TIME                                    |
| 08  | EXTTL11  | WHEN SET, INDICATES MINOR ALARM ON TTL INPUT 1                                            |
| 07  | EXTTL21  | WHEN SET, INDICATES MAJOR ALARM ON TTL INPUT 2                                            |
| 06  | LOWBAT1  | WHEN SET TO 1, INDICATES CLOSURE HAD OCCURRED ON<br>EXTERNAL "LOW BATTERY" INPUT FROM UPS |
| 05  | ACFAIL1  | WHEN SET TO 1, INDICATES CLOSURE HAD OCCURRED ON EXTERNAL "AC FAILURE" INPUT              |
| 04  | INHALRM1 | 1 INDICATES ALL ALARM OUTPUTS INHIBITED                                                   |
| 03  | CLRTMRS0 | WILL BE ACTIVE 0 FOR 127.5 MILLISECONDS FOLLOWING A CLEAR SANITY TIMER COMMAND            |
| 02  | SANEN1   | WHEN SET TO 1, SANITY TIMER ENABLED AND RUNNING WHEN CLEARED, THE TIMER IS DISABLED       |
| 01  | SWMAJOR1 | 1 INDICATES SOFTWARE HAD SET MAJOR ALARM                                                  |
| 00  | SWMINOR1 | 1 INDICATES SOFTWARE HAD SET MINOR ALARM                                                  |

#### **Dual Console**

The dual console feature is basically a straight hardware type arrangement. The CONS port on the AIC card is connected to the CONSOLE port of the computer. The leads are reversed on the CONS port to allow the use of a standard 8-pin modular phone cord between the CONSOLE and CONS port.

The Data Carrier Detect (DCD) lines go high to determine which one of the TRM ports has data flow. For example, when DCD1 is high, only data from TRM1 is allowed through the multiplexer.

The TRM1 port has priority over the TRM2 port. That is, if both are ON (DCD high), TRM1 data will flow through the multiplexer and TRM2 will only mirror data received by TRM1. The following table shows the remote console priorities based on DCD condition.

| STATE OF DCD |      | SYSTEM BOARD ACTION |            |          |         |  |
|--------------|------|---------------------|------------|----------|---------|--|
|              |      | TRN                 | <b>/</b> 1 | TRM2     |         |  |
| TRM1         | TRM2 | TRANSMIT            | RECEIVE    | TRANSMIT | RECEIVE |  |
| OFF          | OFF  | NO                  | NO         | NO       | YES     |  |
| ON           | OFF  | YES                 | YES        | NO       | NO      |  |
| OFF          | ON   | NO                  | NO         | YES      | YES     |  |
| ON           | ON   | YES                 | YES        | YES      | NO      |  |

# **System Failure Detection and Alarm Generation**

All alarm stimuli are gated into one of the two alarm outputs from the AIC card. Ultimately, one of these alarm stimuli will induce current flow in one of the opto-coupler devices. One coupler is dedicated to providing closure for major alarms, the other is for minor alarms.

Major alarms are caused by software command, second sanity time-out, AC failure and low battery condition, or an external input which is user defined. Minor alarms are caused by software command, AC failure indication, or external input which is user defined. The following table defines the types of alarm stimuli and the resulting action.

| ALARM STIMULUS                                                                                                                                   | ACTION TAKEN                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SW SET SWMAJOR1                                                                                                                                  | Major alarm sent to autodialer and recorded in Status Register. No other machine action.                                                                                                                                                                                          |
| SW SET SWMINOR1                                                                                                                                  | Minor alarm sent to autodialer and recorded<br>in Status Register. No other machine action.                                                                                                                                                                                       |
| HW SANITY TIMEOUT1                                                                                                                               | PINT20 asserted over I/O bus and recorded<br>separately in AIC CSR bit 10. No alarm or<br>other machine action.                                                                                                                                                                   |
| HW SANITY TIMEOUT2                                                                                                                               | Major alarm sent to autodialer, INSANE1 latched<br>in AIC CSR, RQRST0 asserted (not latched) over<br>I/O bus to bring system down (and back up under<br>software option).                                                                                                         |
| 3B2 DC POWER FAILURE                                                                                                                             | Major alarm sent to autodialer. No other machine action. CSR invalid.                                                                                                                                                                                                             |
| COMMERCIAL AC FAILURE<br>AT 3B2 INPUT (NO UPS<br>INSTALLED)                                                                                      | Same as 3B2 DC power failure.                                                                                                                                                                                                                                                     |
| COMMERCIAL AC FAILURE<br>AT 3B2 INPUT: UPS WITH<br>NO AC CLOSURE ABILITY<br>INSTALLED                                                            | No AIC hardware detection of AC loss. No action taken.                                                                                                                                                                                                                            |
| COMMERCIAL AC FAILURE<br>AT 3B2 INPUT: UPS WITH<br>AC FAILURE DETECTION<br>INSTALLED                                                             | ACFAIL1 latched in CSR. Minor alarm sent to autodialer.                                                                                                                                                                                                                           |
| EXTENDED AC FAILURE<br>AT 3B2 INPUT SUCH THAT<br>BATTERIES BECOME LOW ON<br>A UPS WHICH HAS AC LOSS<br>AND LOW BATTERY DETECTION<br>AND CLOSURES | UPS provides closure on Low Battery lines<br>which is logged in AIC CSR bit LOWBAT1. If<br>ACFAIL1 is also set, PINT20 is asserted over<br>the I/O bus to bring the system down and a<br>major alarm is sent. If ACFAIL1 is not sent,<br>only the Low Battery CSR bit is latched. |
| LOW BATTERY CLOSURE<br>ONLY, FROM UPS WITH<br>LOW BATTERY DETECTION                                                                              | LOWBAT1 latched in CSR. No other machine action unless ACFAIL1 is active. (See above)                                                                                                                                                                                             |

### **External Interface Specification**

The available ports for open-ended development are the ports labeled ALM, UPS, EXT2, and EXT1.

Each of these ports is a 6-pin (4 equipped) modular, plug-type connector. The input ports are designed to support Transistor-Transistor-Logic (TTL) driven inputs or relay closure type inputs. Power should be removed from the 3B2 computer before a connection is made to any of these ports. Since the ports are sensitive to state changes, connecting cables while the power is present can cause erratic system behavior, even system panics.

The following table shows the interface specifications for the external interface ports.

|                     |         | PORT LABELS                                                                       |                                                     |                                                     |                                                     |  |  |
|---------------------|---------|-----------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--|--|
|                     |         | ALM                                                                               | UPS                                                 | EXT2                                                | EXT1                                                |  |  |
| Direction           |         | Output                                                                            | Input                                               | Input                                               | Input                                               |  |  |
| Current             |         | Sink 35ma max                                                                     | Source 2ma max                                      | Source 2ma max                                      | Source 2ma max                                      |  |  |
| Voltage             |         | VCE: 1.0v at 35ma<br>0.8v at 10ma<br>0.7v at 5ma<br>VCE: 30v max<br>VEC: 7.0v max | VIL = 0.8v max<br>VIH = 2.0v min<br>VIH = 7.0v max* | VIL = 0.8v max<br>VIH = 2.0v min<br>VIH = 7.0v max* | VIL = 0.8v max<br>VIH = 2.0v min<br>VIH = 7.0v max* |  |  |
| Active S            | tate    | Conducts                                                                          | Logic Low "0"                                       | Logic Low "0"                                       | Logic Low "0"                                       |  |  |
| Signal D            | uration | 127ms min                                                                         | 20ns min (low)                                      | 20ns min (low)                                      | 20ns min (low)                                      |  |  |
|                     | P1      | Darlington Emitter‡<br>(MJOUT1)                                                   | Ground                                              | Ground§                                             | Ground¶                                             |  |  |
| Pin <sup>†</sup> P2 |         | Darlington Collector‡<br>(MAJORIN1)                                               | AC FAILURE<br>(ACFSET0)                             | EXTERNAL TTL§<br>(EXT2IN0)                          | EXTERNAL TTL¶<br>(EXT1IN0)                          |  |  |
| Signals             | P3      | Darlington Emitter**<br>(MINOUT1)                                                 | Ground                                              | Ground                                              | Ground                                              |  |  |
| P4                  |         | Darlington Collector**<br>(MININ1)                                                | LOWBAT<br>(LOWBSET0)                                | NC                                                  | NC                                                  |  |  |

LEGEND: NC -- No Connection.

- \* Absolute maximum rating over a free-air temperature range of 0 to 70 degrees C.
- † P1 is on the right and P4 is on the left of each modular jack, referenced with the component side up and the face plate toward you.
- ‡ Major alarm outputs (intended for activating an External Alarm Processing Unit).
- § Closure across these pins results in major alarm (accepts either TTL or Closure).
- $\P$  Closure across these pins results in minor alarm (accepts either TTL or Closure).
- \*\* Minor alarm outputs (intended for activating an External Alarm Processing Unit).

# **CM195AA Equipped Device Table Data**

The following table shows the Equipped Device Table (EDT) data for a CM195AA Card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are SCSI software defined values. As such, the rq\_size and cq\_size values may differ between versions of SCSI software.

| EDT ITEM                                                                                                                                                                                                                                                                                                                     | DATA                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (boot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (brd_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file)<br>INDIRECT DEVICE (indir_dev) | 0x 0101<br>AIC<br>0x 00<br>0x 00<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0 |

# CM195AC/CM195AD "DATAKIT" VCS INTERFACE CARD

### General

The Datakit Virtual Circuit Switch (VCS) Interface card provides a high speed fiber optic connection from a 3B2 host computer to a Datakit VCS. The connection is made through a combination of the CM195AD Fiber Interface Board (FIB) and the CM195AC Datakit VCS Processing Unit Card. Both cards are standard 3B2 computer feature cards interconnected by two 40-conductor ribbon cable.

The CM195AC Card provides the interface to the 3B2 computer I/O bus and implements the Level C functions associated with Universal Fiber Trunk Interface (UFTI) protocol. The CM195AD Card implements the point-to-point link functions over the optical fiber. A block diagram of the add-on is shown in Figure 3-57.

The CM195AC Datakit VCS Processing Unit Card hardware consists of five distinct pieces:

- INTEL 80186 Microprocessor
- Input/Output (I/O) Bus Control
- Nonvolatile Memory
- Volatile Memory
- External Interface.

These components are under the control of the INTEL 80186 Microprocessor, unless another intelligent source wishes to make use of the processing unit memory by asserting a "hold" request.

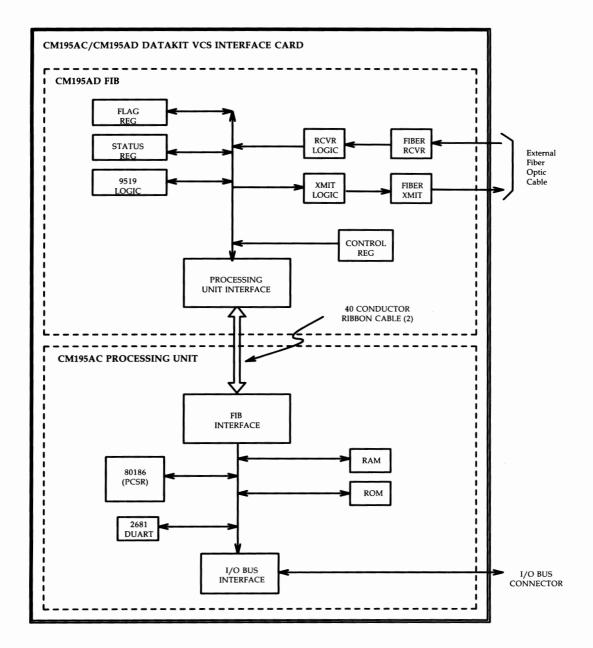



Figure 3-57: CM195AC/CM195AD Datakit VCS Interface Card — Functional Block Diagram

# **INTEL 80186 Microprocessor**

The intelligence of the Datakit VCS Interface card is provided by an INTEL 80186, 16-bit microprocessor operating at 16 MHz. Figure 3-58 shows the CM195AC Datakit VCS Processing Unit Card address map.

|                   | CM195AC/CM195AD CARD ADDRESS MAP |                |                       |            |                 |                 |  |
|-------------------|----------------------------------|----------------|-----------------------|------------|-----------------|-----------------|--|
| MEMORY<br>ADDRESS | I/O<br>ADDRESS                   | CHIP<br>SELECT | DESCRIPTION           | ACCESS     | WIDTH<br>(BITS) | SIZE<br>(BYTES) |  |
| 0x 00000          |                                  | LCS            | RAM (VECTOR TABLE)    | READ/WRITE | 16              | 256K            |  |
| 0x 80000          | —                                | MCS0           | DPDRAM                | READ/WRITE | 16              | 128K            |  |
| 0x 90000          | —                                | MCS1           | DPDRAM                | READ/WRITE | 16              | 128K            |  |
| 0x A0000          | -                                | MCS2           | DPDRAM                | READ/WRITE | 16              | 128K            |  |
| 0x B0000          | _                                | MCS3           | DPDRAM                | READ/WRITE | 16              | 128K            |  |
| 0x C0000          | _                                | UCS            | ROM                   | READ/WRITE | 16              | 32K             |  |
| 0x C0080          | 0x 0480                          | PS1            | ID/VECTOR REGISTER    | WRITE      | 16              | 2               |  |
| 0x C0082          | 0x 0482                          | PS1            | PAGE REGISTER         | WRITE      | 7               | 1               |  |
| 0x C0084          | 0x 0484                          | PS1            | PCSR BITS 7-0         | READ       | 8               | 1               |  |
| 0x C0088          | 0x 0488                          | PS1            | PCSR BIT 0 (INT0)     | (NOTE 1)   | 1               | _               |  |
| 0x C0089          | 0x 0489                          | PS1            | PCSR BIT 1 (INT1)     | (NOTE 1)   | 1               | _               |  |
| 0x C008A          | 0x 048A                          | PS1            | PCSR BIT 2 (NOT USED) | _          | 1               | _               |  |
| 0x C008B          | 0x 048B                          | PS1            | PCSR BIT 3 (NOT USED) | _          | 1               | _               |  |
| 0x C008C          | 0x 048C                          | PS1            | PCSR BIT 4 (NOT USED) |            | 1               |                 |  |
| 0x C008D          | 0x 048D                          | PS1            | PCSR BIT 5 (ARDY)     | (NOTE 2)   | 1               |                 |  |
| 0x C008E          | 0x 048E                          | PS1            | PCSR BIT 6 (BAF)      | (NOTE 2)   | 1               | _               |  |
| 0x C008F          | 0x 048F                          | PS1            | PCSR BIT 7 (PINT1[0]) | (NOTE 1)   | 1               | _               |  |
| 0x C0100          | 0x 0500                          | PS2            | CLEAR NMI REQUEST     |            | _               | _               |  |
| 0x C0102          | 0x 0502                          | PS2            | CLEAR INT0 REQUEST    | _          |                 | _               |  |
| 0x C0104          | 0x 0504                          | PS2            | CLEAR INT1 REQUEST    | _          | _               | _               |  |
| 0x C0106          | 0x 0506                          | PS2            | CLEAR INT2 REQUEST    | _          |                 | _               |  |
| 0x C0180          | 0x 0580                          | PS3            | CM195AD INTERFACE     |            |                 | _               |  |
| 0x C0200          | 0x 0600                          | PS4            | CM195AD INTERFACE     | READ/WRITE | 8               | 16              |  |
| 0x C0280          | 0x 0680                          | PS5            | CM195AD INTERFACE     | READ/WRITE | 8               | 16              |  |
| 0x C0300          | 0x 0700                          | PS6            | CM195AD INTERFACE     | READ/WRITE | 8               | 4               |  |
| 0x C0400          | 0x FF00                          | 80186          | 80186 CONTROL BLOCK   | _          | 16              | _               |  |
| 0x C0420          | 0x FF20                          | 80186          | INTERRUPT CONTROL     | READ/WRITE | 16              |                 |  |
| 0x C0450          | 0x FF50                          | 80186          | TIMER 0 CONTROL       |            | 16              | _               |  |
| 0x C0458          | 0x FF58                          | 80186          | TIMER 1 CONTROL       | —          | 16              |                 |  |
| 0x C0460          | 0x FF60                          | 80186          | TIMER 2 CONTROL       | —          | 16              |                 |  |
| 0x C04A0          | 0x FFA0                          | 80186          | CHIP SELECT CONTROL   |            | 16              | _               |  |
| 0x C04C0          | 0x FFC0                          | 80186          | DMA 0 CONTROL         | —          | 16              | _               |  |
| 0x C04D0          | 0x FFD0                          | 80186          | DMA 1 CONTROL         | —          | 16              | -               |  |
| 0x C04FE          | 0x FFFE                          | 80186          | RELOCATION REGISTER   | —          | 16              | —               |  |

NOTES:

1. Bit is cleared by 80186 Microprocessor access.

2. Bit is set to 0 by 80186 Microprocessor access

unless a "dummy" read is pending.

LEGEND:

| LIND.  |                                        |
|--------|----------------------------------------|
| ARDY   | Asynchronous Data Ready                |
| BAF    | Bus Abort Feature                      |
| DMA    | Direct Memory Access                   |
| DPDRAM | Dual Port Dynamic Random Access Memory |
| LCS    | Lower Memory Chip Select               |
| MCS    | Memory Chip Select                     |
| NMI    | Nonmaskable Interrupt                  |
| PCSR   | Peripheral Control and Status Register |
| PS     | Peripheral Select                      |
| UCS    | Upper RAM Chip Select                  |
|        | • • •                                  |

| Figure 3-58: | CM195AC Processing | Unit ( | Card | Address | Map |
|--------------|--------------------|--------|------|---------|-----|
|--------------|--------------------|--------|------|---------|-----|

### **Input/Output Bus Interface**

The bus interface provides the following functions:

- I/O Control—Provides the functionality of recognizing, controlling, and responding to the I/O bus states. The actions are initiated by the 3B2 CPU or the 80186 Microprocessor.
- Address Drivers—Provides 24 bits of address information over the I/O bus.
  - □ 17 bits of bus address directly from the 80186 Microprocessor
  - □ 7 bits as Page Register.
- Data Transceivers—Holds ID information and Interrupt vectors as well as buffering bidirectional data to and from the I/O bus. There is a byte swap performed with processing unit data bits 0 through 7 being mapped to I/O data bits 8 through 15 and data bits 8 through 15 being mapped to I/O data bits 0 through 7.
- 3B2 Computer Invoked Interrupts—The 3B2 computer may cause interrupts on the processing unit by accessing particular locations (location 1) in the processing unit I/O space.

### **Nonvolatile Memory**

The processing unit supports up to 32K bytes of Erasable Programmable Read Only Memory (EPROM) in the form of two INTEL 27128 PROMs.

#### Volatile Memory

The processing unit is equipped with 256K bytes of Static Random Access Memory (SRAM). This memory is in the form of two 128K by 16-bit SRAM modules.

### **External Interface**

The external interface is handled through the FIB. The signals for the FIB are passed through the two 40-conductor ribbon cables. These signals are grouped as follows:

- Address lines
- Data lines
- Control lines
- Timer Input/Output.

### **Address Signals**

The processing unit provides all 20 address lines to the FIB. These lines are buffered to allow driving from an external interface. The control of the lines is determined by the HOLDA1 signal. A low (0) indicates that the processing unit is driving the address bus and a high (1) indicates that the external board is generating the address information.

### **Data Lines**

The processing unit provides all 16 data bits. The direction control of these signals is driven by the IDT1R0 signal, which is driven by the processing unit or the external board.

# **Control Lines**

The processing unit uses 28 control signals. They can be subgrouped as bus control, external chip selects, and externally generated interrupts. Bus control signals may come from the INTEL 80186 Microprocessor, the external interface, or both. The following table shows the control lines and their purpose.

| SIGNAL      | GROUP                 | PURPOSE                                                               |
|-------------|-----------------------|-----------------------------------------------------------------------|
| PIHOLD1     | Bus                   | Asserted to request the 80186 relinquish the bus (external).          |
| PIDRQ11     | Bus                   | Request a DMA cycle from DMA Channel 1 (external).                    |
| PIURDY1     | Bus                   | External device has transferred data (external).                      |
| PITEST1     | Bus                   | Suspends execution of a wait instruction (external).                  |
| BRDPRES0    | Bus                   | When LOW, indicates an external board is present (external).          |
| PIHLDA1     | Bus                   | Indicates the 80186 has yielded the bus.                              |
| PILOCK0     | Bus                   | Used to acquire sole control of a resource on a multibus.             |
| PICLKOUT1   | Bus                   | 8-MHz system clock.                                                   |
| PIRST1      | Bus                   | Reset from CPU.                                                       |
| PIIS[0-2]0  | Bus                   | Indicates bus cycle type.                                             |
| PIRAMACK0   | Bus                   | RAM has completed a cycle.                                            |
| PIALE1      | Bus                   | Address latch enable (valid on address leads).                        |
| PIWR0       | Bus                   | Data valid for a write operation.                                     |
| PIRD0       | Bus                   | Data being strobed for a read operation.                              |
| PIBHE0      | Bus                   | Used to indicate a word/byte transfer in conjunction with PIADR001.   |
| PIDT1R0     | Bus                   | Indicates data flow direction.                                        |
| PIDEN0      | Bus                   | Indicates that data may be placed on the bus.                         |
| PIPCS[2-5]0 | Chip<br>Select        | I/O chip select lines.                                                |
| PIMCS[23]0  | Chip<br>Select        | Memory chip selects.                                                  |
| PINMI1      | External<br>Interrupt | Used by an external board to generate a nonmaskable interrupt.        |
| PIINTRA1    | External<br>Interrupt | Used by an external board to raise maskable interrupt 2 on the 80186. |
| PIINTRB1    | External<br>Interrupt | Used by an external board to raise maskable interrupt 3 on the 80186. |

### **Timer Input/Output**

There are four timer inputs/outputs used to provide timer/counter capabilities to an external board. Two timer inputs (PITMRIN0 and PITMRIN1) and two timer outputs (PITMR00 and PITMR10) are available and connected to timers 0 and 1 on the 80186 Microprocessor.

# CM195AC/CM195AD Equipped Device Table Data

The following table shows the Equipped Device Table (EDT) data for the CM195AC/CM195AD Cards. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are SCSI software defined values. As such, the rq\_size and cq\_size values may differ between versions of SCSI software.

| EDT ITEM                                                                                                                                                                                                                                                                                                                     | DATA                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (boot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (brd_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file)<br>INDIRECT DEVICE (indir_dev) | 0x 0308<br>DKIT<br>0x 0a<br>0x 19<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>0 |

# CM195AE GPSC CARD

### General

The CM195AE General Purpose Synchronous Controller (GPSC) Card provides two physical interfaces for synchronous data transmission. The card is capable of providing simultaneous full-duplex, full-occupancy data transmission at rates up to 64K bits per second. The output connectors contain the required signals to support a variety of industry standard electrical interfaces. Separate cables provide the electrical connections for the desired interface (see Appendix B). Figure 3-59 shows the functional block diagram of a CM195AE GPSC Card.

# **GPSC Card Features**

The major components of the GPSC card are listed below.

- An INTEL 80186 Microprocessor
- Bus interface circuitry
- 768K bytes of Dynamic Random Access Memory (DRAM)
- Up to 32K bytes of Erasable Programmable Read Only Memory (EPROM)
- Dual Port Arbiter/Controller and Support Logic.

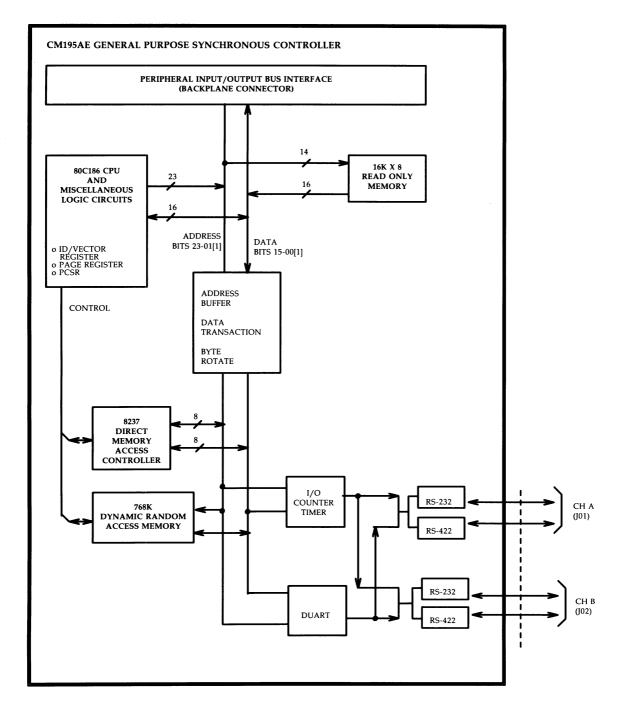



Figure 3-59: CM195AE GPSC Card—Functional Block Diagram

### **INTEL 80186 Microprocessor**

The intelligence of the GPSC card is provided by an INTEL 80C186, 16-bit microprocessor operating at 16 MHz. Some of the microprocessor features used for the GPSC card are described in the following paragraphs. Figure 3-60 shows the GPSC card address map.

#### **DMA Channels**

Four independent 4-bit Page Registers, one for each channel, are provided to allow access to the entire DRAM address range. All four are used by supporting both transmit and receive on each port. Note that for Direct Memory Access (DMA), DRAM is partitioned into 64-kilobyte segments and that a single DMA job cannot cross the segment boundaries.

Channel 0 and 1 are Receive Channel A and Transmit Channel A, respectively. Channel 2 and 3 are Receive Channel B and Transmit Channel B, respectively.

#### **Interrupt Controller**

The internal Interrupt Controller of the 80C186 Microprocessor is programmed to accept five separate interrupts: INT3 through INT0, and NMI. Interrupts INT0 and INT1 are reserved for common I/O firmware use. INT2 is dedicated to the 82C37A DMA Controller. INT3 is a combined 85C30/8536 interrupt. Nonmaskable Interrupt (NMI) is used by the common I/O firmware to control the Bus Abort Feature (BAF).

#### **Internal Timers**

Timer 0 is a DRAM refresh timer. Timer 1 controls the BAF. Timer 2 is used as a general purpose timer.

The 8536 Counter/Timer Parallel I/O (CT/PIO) device contains three independent 16-bit counter/timers. Timers 1 and 2 are the clock tick counters for Channel B transmit clock and Channel A transmit clock, respectively. Timer 3 is the zero counter for Channel A.

### **Memory and Peripheral Chip Selects**

The memory and peripheral chip selects are programmed by the GPSC firmware to provide chip selects in the 80C186 Microprocessor memory map (Figure 3-60).

|                      | GPSC CARD ADDRESS MAP |                  |                                                     |                          |                 |                 |  |
|----------------------|-----------------------|------------------|-----------------------------------------------------|--------------------------|-----------------|-----------------|--|
| MEMORY<br>ADDRESS    | I/O<br>ADDRESS        | CHIP<br>SELECT   | DESCRIPTION                                         | ACCESS                   | WIDTH<br>(BITS) | SIZE<br>(BYTES) |  |
| 0x 00000             | _                     | LCS              | GPSC LOCAL DRAM                                     | READ/WRITE               | 16              | 256K            |  |
| 0x 40000             | —                     | LCS<br>MCS0      | GPSC LOCAL DRAM<br>3B2 MAIN MEMORY                  | READ/WRITE               | 16<br>16        | 512K            |  |
| 0x C0000<br>0x C8000 | _                     | MCS0<br>MCS1     | 3B2 MAIN MEMORY                                     | READ/WRITE<br>READ/WRITE | 16              | 32K<br>32K      |  |
| 0x C8000             |                       | MCS1<br>MCS2     | 3B2 MAIN MEMORY                                     | READ/WRITE               | 16              | 32K<br>32K      |  |
| 0x D0000             |                       | MCS2<br>MCS3     | 3B2 MAIN MEMORY                                     | READ/WRITE               | 16              | 32K<br>32K      |  |
| 0x E0000             | 0x 0400               | PCS0             | NOT USED (DEBUGGING ONLY)                           | READ/WRITE               | 8               | 16              |  |
| 0x E0080             | 0x 0480               | PCS1             | ID/VECTOR REGISTER                                  | WRITE                    | 16              | 2               |  |
| 0x E0082             | 0x 0482               | PCS1             | CIO PAGE REGISTER                                   | WRITE                    | 8               | 1               |  |
| 0x E0084             | 0x 0484               | PCS1             | PCSR[7-0]                                           | READ                     | 8               | 1               |  |
| 0x E0086             | 0x 0486               | PCS1             | RESERVED                                            |                          |                 |                 |  |
| 0x E0088             | 0x 0488               | PCS1             | PCSR BIT 0 (INT0)                                   | (NOTE 1)                 | 1               |                 |  |
| 0x E0089             | 0x 0489               | PCS1             | PCSR BIT 1 (INT1)                                   | (NOTE 1)                 | 1               |                 |  |
| 0x E008A             | 0x 048A               | PCS1             | PCSR BIT 2 (INT2)                                   | (NOTE 1)                 | 1               |                 |  |
| 0x E008B             | 0x 048B               | PCS1             | PCSR BIT 3 (NMI)                                    | (NOTE 1)                 | 1               |                 |  |
| 0x E008C             | 0x 048C               | PCS1             | PCSR BIT 4 (BAF-DMA BLOCK)                          |                          | 1               |                 |  |
| 0x E008D             | 0x 048D               | PCS1             | PCSR BIT 5 (RESERVED)                               |                          | 1               |                 |  |
| 0x E008E             | 0x 048E               | PCS1             | PCSR BIT 6 (BAF-ABORT)                              | (NOTE 1)                 | 1               |                 |  |
| 0x E008F             | 0x 048F               | PCS1             | PCSR BIT 7 (PINT00)                                 | (NOTE 1)                 | 1               |                 |  |
| 0x E0100             | 0x 0500               | PCS2             | ADMA PAGE REGISTER                                  | WRITE                    | 16              | 2               |  |
| 0x E0180             | 0x 0580               | PCS3             | APPL. CONTROL REGISTER                              | READ/WRITE               | 16              | 2               |  |
| 0x E0200             | 0x 0600               | PCS4             | ADMAC                                               | READ/WRITE               | 8               | 32              |  |
| 0x E0280             | 0x 0680               | PCS5             | DUART CHANNEL B (85C30)                             | READ/WRITE               | 8               | 1               |  |
| 0x E0281             | 0x 0681               | PCS5             | DUART CHANNEL A (85C30)                             | READ/WRITE               | 8               | 1               |  |
| 0x E02C0             | 0x 06C0               | PCS5             | 8536<br>UNDEFINED                                   | READ/WRITE               | 8               | 4               |  |
| 0x E0300             | 0x 0700               | PCS6             |                                                     | READ/WRITE               | 16              | 256             |  |
| 0                    | 0x FF00               | 80C186<br>80C186 | 80186 CONTROL BLOCK (NOTE 2)<br>RELOCATED CTL BLOCK | READ/WRITE               | 16              | 256<br>256      |  |
| 0x E0600<br>0x F8000 | _                     | UCS              | EPROM                                               | READ/WRITE<br>READ       | 16              | 256<br>32K      |  |
| 0X F8000             |                       | 005              | LIKOW                                               | READ                     | 10              | 32K             |  |

NOTES:

1. Bit is cleared by 80186 Microprocessor access.

2. After a reset, the 80C186 control block is located at I/O address 0x0FF00.

LEGEND:

ADMAC Application Direct Memory Access Controller

BAF Bus Abort Feature

DMA Direct Memory Access

LCS Lower RAM Chip Select

- MCS Memory Chip Select PCS Peripheral Chip Select
- Peripheral Chip Select
- PCSR Peripheral Control and Status Register
- UCS Upper RAM Chip Select

### Figure 3-60: CM195AE GPSC Card Address Map

# **Application Control Register**

The Application Control Register (ACR) bits are defined in the following table. All GPSC card resets clear ALL bits in this register to logical "0."

| BIT | SIGNAL     | FUNCTION                                                               |
|-----|------------|------------------------------------------------------------------------|
| 0   | DIVA00[1]  | Port A Clock Division                                                  |
| 1   | DIVA01[1]  | (Note 1)                                                               |
| 2   | TCKOUTA[0] | Tx Clock Out Enable Port A Write<br>"0" to enable output.              |
| 3   | NEWSIGA[0] | Port A New Signal                                                      |
| 4   | DIVB00[1]  | Port B Clock Division                                                  |
| 5   | DIVB01[1]  | (Note 1)                                                               |
| 6   | TCKOUTB[0] | Tx Clock Out Enable Port B Write<br>"0" to enable output.              |
| 7   | NEWSIGB[0] | Port B New Signal                                                      |
| 8   | EECS[1]    | EEPROM Chip Select (Note 2)                                            |
| 9   | EECLK[1]   | EEPROM Serial Clock                                                    |
| 10  | EEDIN[1]   | Serial Data Input To EEPROM                                            |
| 11  | EEDOUT[1]  | Serial Data Output From EEPROM                                         |
| 12  | TCLKINA[0] | Transmit Clock Input Enable (CH A)<br>Write "0" to enable clock input. |
| 13  | TCLKINB[0] | Transmit Clock Input Enable (CH B)<br>Write "0" to enable clock input. |
| 14  | FAIL[1]    | PFAIL—Activates PFAIL0                                                 |
| 15  | -          | Unassigned                                                             |

NOTES:

1. Transmit clock division is required in some instances. The transmit clock division is designated as follows:

DIVx01 DIVx00

1

1

| lo Division |
|-------------|
|             |

- 0 1 Clock divided by 16 before output
  - 0 Clock divided by 32 before output
  - 1 Undefined
- 2. Timing of EEPROM accesses are controlled by software.

### **ID/Vector Register**

The GPSC card ID/Vector Register is a 16-bit register that is used for two functions. Initially the register contains the 16-bit GPSC card ID code. The GPSC card ID code is 0x 0104. Later the register contains an 8-bit interrupt vector for the ID code. The interrupt vector is returned in response to an Interrupt Acknowledge (PIAK[0]) signal.

### **Page Register**

The GPSC card uses a 24-bit address to do main memory operations. The lower 17 bits are provided by the 80C186 Microprocessor. The most significant 7 bits are provided by the Page Register. The Page Register is a write only register for the 80C186 Microprocessor. The two most significant address bits (bits 06 and 05) of the Page Register are always zero. This allows the Page Register to select thirty-two 128 kilobyte segments of main memory. The Page Register is addressed by the 80186 Microprocessor at its I/O address 0x 0482.

# **Peripheral Control and Status Register**

The GPSC card contains an 8-bit Peripheral Control and Status Register (PCSR) addressable on the lower data byte of the I/O address (0x 048F—0x 0488). Each address corresponds to a single bit of the PCSR. These bits are reset by an 80C186 Microprocessor read or write access except for PCSR6 that is controlled by the Bus Abort Feature (BAF).

|     | GPSC PERIPHERAL CONTROL AND STATUS REGISTER                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| BIT | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 7   | <b>REQUEST SYSTEM BOARD CPU INTERRUPT</b> : PCSR7[0] maps to the I/O bus signal PINT0[0] and is asserted by the GPSC firmware. When negated [1] by hardware, the interrupt has been acknowledged by the system board CPU. When asserted [0], the interrupt request is pending. A system reset negates the bit to a logic 1 (interrupt acknowledged). Addressing PCSR7[1] (0x 048F) clears (negates) the bit. |  |  |  |  |
| 6   | <b>I/O BUS LOCKED</b> : This bit is used for the BAF. Bit 6 is set by hardware when the 80C186 Microprocessor is delayed in accessing main memory and must be cleared by firmware. During normal operation, PCSR6 is cleared by the 80C186 Microprocessor addressing PCSR6 unless a "dummy" read is pending. Addressing PCSR6 (0x 048E) clears (negates) the bit.                                            |  |  |  |  |
| 5   | <b>RESERVED:</b> A "1" indicates BAF occurred during DMA; a "0" indicates BAF occurred during PIO.                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 4   | <b>BAF OCCURRED AND DMA BLOCKED</b> : A BAF has occurred and the DMA has been blocked from further use.                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 3   | <b>NONMASKABLE INTERRUPT</b> : This bit indicates that the GPSC received a peripheral fault during a DMA transfer or a fault from the debugger. Bit 3 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 048B.                                                                                                                                              |  |  |  |  |
| 2   | <b>CLEAR INT2—EOP</b> : This 80C186 Microprocessor interrupt is set by the 8274 Dual Channel Communications Chip. Bit 2 is cleared during the interrupt service routine by an access of the 80C186 Microprocessor address 0x 048A.                                                                                                                                                                           |  |  |  |  |
| 1   | <b>CLEAR INT1</b> : This 80C186 Microprocessor interrupt is set by a system board CPU access of the GPSC PCSR (attention interrupt). PCSR1 is cleared during the interrupt service routine by an access of the 80C186 Microprocessor address 0x 0489. Following a system reset the state o PCSR1 is undefined and is cleared by the GPSC firmware.                                                           |  |  |  |  |
| 0   | <b>CLEAR INTO:</b> This 80C186 Microprocessor interrupt is set by an access of the GPSC ID/Vector register (except on an interrupt acknowledge cycle). Bit 0 is cleared during the interrupt service routine by an access of the 80C186 Microprocessor address 0x 0488. Bit 0 is undefined on powerup and is cleared by the firmware.                                                                        |  |  |  |  |

# Local RAM

The GPSC card contains 768K bytes of Dynamic Random Access Memory (DRAM) composed of eight 256K by 4-bit chips.

# Local ROM

Firmware for the 80C186 Microprocessor is stored in the Read Only Memory (ROM). The GPSC card ROM contains either 16K bytes configured as 8K by 16 bits or 32K bytes configured as 16K by 16 bits.

## **CM195AE Equipped Device Table Data**

The following table shows the Equipped Device Table (EDT) data for a CM195AE GPSC Card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI).

| EDT ITEM                        | DATA    |
|---------------------------------|---------|
| IDENTIFICATION CODE (ID_code)   | 0x 0104 |
| DEVICE NAME (dev_name)          | GPSC    |
| REQUEST QUEUE SIZE (rq_size)    | 0x 14   |
| COMPLETION QUEUE SIZE (cq_size) | 0x 14   |
| BOOT DEVICE (boot_dev)          | 0       |
| WORD SIZE (word_size)           | 1       |
| BOARD SIZE (brd_size)           | 0       |
| SMART BOARD (smrt_brd)          | 1       |
| CONSOLE CAPABILITY (cons_cap)   | 0       |
| CONSOLE FILE (cons_file)        | 0       |
| INDIRECT DEVICE (indir_dev)     | 0       |
|                                 |         |

# **CM195AY EPORTS CARD**

# General

The CM195AY Enhanced Peripheral Port Controller (EPORTS) Card provides eight separate, asynchronous serial ports (RS-232C). Functionally, the EPORTS card consists of the Common Input/Output (CIO) circuits, and four Serial Communication Controllers (SCCs). The Serial Communication Controllers function as Dual Universal Asynchronous Receiver/Transmitter (DUART) circuits. The eight asynchronous serial ports are identified as subdevices. DUART 0 (SCC 0) supports subdevices SD0 and SD1; DUART 1 (SCC 1) supports subdevices SD2 and SD3. DUART 2 (SCC 2) supports subdevices SD4 and SD5; DUART 3 (SCC 3) supports subdevices SD6 and SD7. Drivers and receiver circuits are used to interface the DUARTs to MODEMS and/or data terminals (RS-232C). Figure 3-61 is a functional block diagram of the CM195Y EPORTS Card.

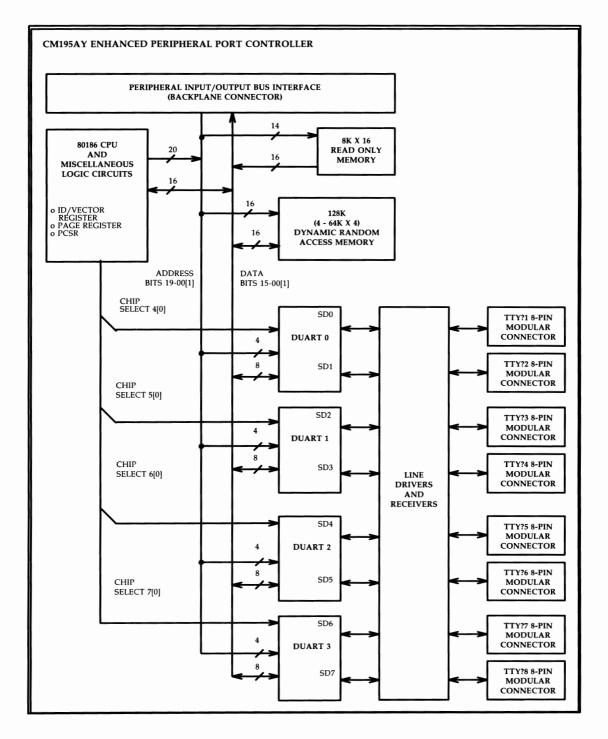



Figure 3-61: CM195AY EPORTS Card — Functional Block Diagram

#### **INTEL 80186 Microprocessor**

The intelligence of the EPORTS card is provided by an INTEL 80186, 16-bit microprocessor operating at 8 MHz. Some of the microprocessor features used for the EPORTS card are described in the following paragraphs. Figure 3-62 shows the EPORTS card address map.

### **ID/Vector Register**

The EPORTS card ID/Vector Register is a 16-bit register that is used for two functions. Initially the register contains the 16-bit EPORTS card ID code. Later the register contains an 8-bit interrupt vector for the ID code. The interrupt vector is returned in response to an Interrupt Acknowledge (PIAK[0]) signal. On reset, the 80186 Microprocessor writes the EPORTS card ID code to the high order bits (byte 1) of the ID/Vector Register and waits. The EPORTS card ID code is 0x 0102. During system self-configuration, the system board CPU polls each feature card slot. This polling reads the ID/Vector Register. The two bytes of the ID/Vector Register form a unique 16-bit ID code of the card.

### **Page Register**

The EPORTS card uses a 24-bit I/O address to do main memory operations. The lower 17 bits are provided by the 80186 Microprocessor. The most significant 7 bits are provided by the Page Register. The Page Register is a write only register for the 80186 Microprocessor. The two most significant address bits (bits 06 and 05) of the Page Register are always zero. This allows the Page Register to select thirty-two 128-kilobyte segments of main memory. The Page Register is addressed by the 80186 Microprocessor at its I/O address 0x 0482. Bits 06—00 of the Page Register map to Peripheral Physical Address bits 23—17 (PPA23—17[1]).

| EPORTS CARD ADDRESS MAP |                |                |                         |            |                 |                 |
|-------------------------|----------------|----------------|-------------------------|------------|-----------------|-----------------|
| MEMORY<br>ADDRESS       | I/O<br>ADDRESS | CHIP<br>SELECT | DESCRIPTION             | ACCESS     | WIDTH<br>(BITS) | SIZE<br>(BYTES) |
| 0x 00000                |                | LCS            | DRAM (VECTOR TABLE)     | READ/WRITE | 16              | 128K            |
| 0x 80000                |                | MCS            | DPDRAM(3B2 MAIN MEMORY) | READ/WRITE | 16              | 128K            |
| 0x C0080                | 0x 0480        | PS1            | ID/VECTOR REGISTER      | WRITE      | 16              | 2               |
| 0x C0082                | 0x 0482        | PS1            | PAGE REGISTER           | WRITE      | 7               | 1               |
| 0x C0084                | 0x 0484        | PS1            | PCSR BITS 7–0           | READ       | 8               | 1               |
| 0x C0086                | 0x 0486        | PS1            | NOT USED                | —          |                 | —               |
| 0x C0088                | 0x 0488        | PS1            | PCSR BIT 0 (INT0)       | (NOTE 1)   | 1               |                 |
| 0x C0089                | 0x 0489        | PS1            | PCSR BIT 1 (INT1)       | (NOTE 1)   | 1               |                 |
| 0x C008A                | 0x 048A        | PS1            | PCSR BIT 2 (EOP0)       | (NOTE 1)   | 1               |                 |
| 0x C008B                | 0x 048B        | PS1            | PCSR BIT 3 (EOP1)       | (NOTE 1)   | 1               |                 |
| 0x C008C                | 0x 048C        | PS1            | PCSR BIT 4 (EOP2)       | (NOTE 1)   | 1               |                 |
| 0x C008D                | 0x 048D        | PS1            | PCSR BIT 5 (EOP3)       | (NOTE 1)   | 1               | _               |
| 0x C008E                | 0x 048E        | PS1            | PCSR BIT 6 (NOT USED)   | _          | _               | _               |
| 0x C008F                | 0x 048F        | PS1            | PCSR BIT 7 (PINT00)     | (NOTE 1)   | 1               | _               |
| 0x C0100                | 0x 0500        | PS2            | DTR REGISTER            | READ/WRITE | 8               | 1               |
| 0x C0200                | 0x 0600        | PS4            | DMAC0                   | READ/WRITE | 8               | 32              |
| 0x C0220                | 0x 0620        | PS4            | DMAC1                   | READ/WRITE | 8               | 32              |
| 0x C0240                | 0x 0640        | PS4            | DMAC2                   | READ/WRITE | 8               | 32              |
| 0x C0260                | 0x 0660        | PS4            | DMAC3                   | READ/WRITE | 8               | 32              |
| 0x C0280                | 0x 0680        | PS5            | SCCO (CH B)             | READ/WRITE | 8               | 1               |
| 0x C0281                | 0x 0681        | PS5            | SCCO (CH A)             | READ/WRITE | 8               | 1               |
| 0x C02A0                | 0x 06A0        | PS5            | SCC1 (CH B)             | READ/WRITE | 8               | 1               |
| 0x C02A1                | 0x 06A1        | PS5            | SCC1 (CH A)             | READ/WRITE | 8               | 1               |
| 0x C02C0                | 0x 06C0        | PS5            | SCC2 (CH B)             | READ/WRITE | 8               | 1               |
| 0x C02C1                | 0x 06C1        | PS5            | SCC2 (CH A)             | READ/WRITE | 8               | 1               |
| 0x C02E0                | 0x 06E0        | PS5            | SCC3 (CH B)             | READ/WRITE | 8               | 1               |
| 0x C02E1                | 0x 06E1        | PS5            | SCC3 (CH A)             | READ/WRITE | 8               | 1               |
| 0x C0300                | 0x 0700        | PS6            | SCCIACK                 | RÉAD       | 8               | 1               |
| (NOTE 2)                | _              | 80186          | 80186 CONTROL BLOCK     | READ/WRITE | 16              | 256             |
| 0x F8000                |                | UCS            | EPROM                   | RÉAD       | 16              | 32K             |

NOTES:

1. Bit is cleared by 80186 Microprocessor access.

 After a reset, this address is an I/O address, 0x 0FF00. It may be reprogrammed to a different address.

LEGEND:

| DMAC    | Direct Memory Access Controller                       |
|---------|-------------------------------------------------------|
| DTR     | Data Terminal Ready                                   |
| EOP     | End of Process                                        |
| LCS     | Lower Chip Select                                     |
| MCS     | Memory Chip Select                                    |
| PCSR    | Peripheral Control and Status Register                |
| PS      | Peripheral Select                                     |
| SCC     | Serial Communication Controller                       |
| SCCIACK | Serial Communication Controller Interrupt Acknowledge |
| UCS     | Upper Chip Select                                     |
|         |                                                       |

# Figure 3-62: CM195AY EPORTS Card Address Map

# **Peripheral Control and Status Register**

The EPORTS card contains an 8-bit Peripheral Control and Status Register (PCSR) addressable on the lower data byte of the I/O address (0x 048F—0x 0488). Each address corresponds to a single bit of the PCSR. These bits are reset by an 80186 Microprocessor read or write access except for PCSR6 that is controlled by the Bus Abort Feature (BAF).

|     | EPORTS PERIPHERAL CONTROL AND STATUS REGISTER                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| BIT | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 7   | <b>REQUEST SYSTEM BOARD CPU INTERRUPT</b> : PCSR7[0] maps to the I/O bus signal PINT0[0] and is asserted by the EPORTS firmware. When negated [1] by hardware, the interrupt has been acknowledged by the system board CPU. When asserted [0], the interrupt request is pending. A system reset negates the bit to a logic 1 (interrupt acknowledged). Addressing PCSR7[1] (0x 048F) clears (negates) the bit. |  |  |  |  |  |
| 6   | I/O BUS LOCKED: This bit is normally used for the BAF. EPORTS does not use PCSR6.                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 5   | Used to control the End-of-Page 3 (EOP3) interrupt. Addressing PCSR6 (0x 048D) clears (negates) the bit.                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 4   | Used to control End-of-Page 2 (EOP2) interrupt. Addressing PCSR6 (0x 048C) clears (negates) the bit.                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 3   | Used to control End-of-Page 1 (EOP1) interrupt. Addressing PCSR6 (0x 048B) clears (negates) the bit.                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 2   | Used to control End-of-Page 0 (EOP0) interrupt. Addressing PCSR6 (0x 048A) clears (negates) the bit.                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 1   | <b>CLEAR INT1</b> : This 80186 Microprocessor interrupt is set by a system board CPU access of the EPORTS PCSR (attention interrupt). PCSR1 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0489. Following a system reset the state of PCSR1 is undefined and is cleared by the EPORTS firmware.                                                          |  |  |  |  |  |
| 0   | <b>CLEAR INTO:</b> This 80186 Microprocessor interrupt is set by an access of the EPORTS ID/Vector Register (except on an interrupt acknowledge cycle). This interrupt is the SYSGEN and Express Queue interrupt. Bit 0 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0488. Bit 0 is undefined on powerup and is cleared by the firmware.                |  |  |  |  |  |

## Local RAM

The EPORTS card contains 128K bytes of Dual Ported Dynamic Random Access Memory (DPDRAM) configured as 64K by 16 bits. Four Direct Memory Access Controllers (DMACs) are used to provide individual transmit and receive DMA channels for each of the eight RS-232C ports.

## Local ROM

The EPORTS card firmware is in 16K bytes of Read Only Memory (ROM) configured as 8K by 16 bits.

### **CM195AY Equipped Device Table Data**

The following table shows the Equipped Device Table (EDT) data for an EPORTS card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are EPORTS software defined values. As such, the rq\_size and cq\_size values may differ between versions of EPORTS software.

| EDT ITEM                        | DATA    |
|---------------------------------|---------|
| IDENTIFICATION CODE (ID_code)   | 0x 0102 |
| DEVICE NAME (dev_name)          | EPORTS  |
| REQUEST QUEUE SIZE (rq_size)    | 0x 21   |
| COMPLETION QUEUE SIZE (cq_size) | 0x 46   |
| BOOT DEVICE (boot_dev)          | 0       |
| WORD SIZE (word_size)           | 1       |
| BOARD SIZE (brd_size)           | 1       |
| SMART BOARD (smrt_brd)          | 1       |
| CONSOLE CAPABILITY (cons_cap)   | 1       |
| CONSOLE FILE (cons_file)        | 1       |
| INDIRECT DEVICE (indir_dev)     | 0       |

# CM195B/CM195BA PORTS CARD

### General

The CM195B/CM195BA Peripheral Port Controller (PORTS) Card provides four separate, asynchronous serial ports (RS-232C) and one parallel (CENTRONICS) port. Functionally, the PORTS card consists of the Common Input/Output (CIO) circuits, two Dual Universal Asynchronous Receiver/Transmitter (DUART) circuits, and a parallel interface circuit. The four asynchronous serial ports are identified as subdevices. DUART 0 supports subdevices SD0 and SD1; DUART 1 supports subdevices SD2 and SD3. The DUART circuits are polled by the 80186 Microprocessor. Neither the DUART or parallel interface circuits can interrupt the 80186 Microprocessor. Drivers and receiver circuits are used to interface the DUARTs to MODEMS and/or data terminals (RS-232C). The parallel interface (CENTRONICS interface) is intended to be used to interface a printer. Figure 3-63 is a functional block diagram of the CM195B/CM195BA PORTS Card.

The CIO circuits include the following:

- INTEL 80186 Microprocessor
- Input/Output (I/O) Bus Control
- Identification/Vector (ID/Vector) Register
- Page Register
- Peripheral Control and Status Register (PCSR)
- Local Random Access Memory (RAM)
- Local Read Only Memory (ROM)
- Miscellaneous Circuits.

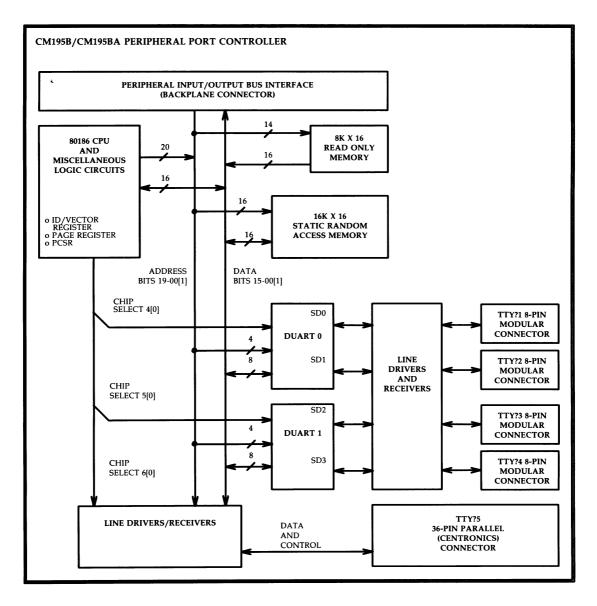



Figure 3-63: CM195B/CM195BA PORTS Card — Functional Block Diagram

#### **INTEL 80186 Microprocessor**

The intelligence of the PORTS card is provided by an INTEL 80186, 16-bit microprocessor operating at 8 MHz. Some of the microprocessor features used for the PORTS card are described in the following paragraphs. Figure 3-64 shows the PORTS card address map.

### **ID/Vector Register**

The PORTS card ID/Vector Register is a 16-bit register that is used for two functions. Initially the register contains the 8-bit PORTS card ID code. Later the register contains an 8-bit interrupt vector for the ID code. The interrupt vector is returned in response to an Interrupt Acknowledge (PIAK[0]) signal. On reset, the 80186 Microprocessor writes the PORTS card ID code to the high order bits (byte 1) of the ID/Vector Register and waits. The PORTS card ID code is 0x 03. During system self-configuration, the system board CPU polls each feature card slot. This polling reads the ID/Vector Register. The two bytes of the ID/Vector Register form a unique 16-bit ID code of the card.

### **Page Register**

The PORTS card uses a 24-bit I/O address to do main memory operations. The lower 17 bits are provided by the 80186 Microprocessor. The most significant 7 bits are provided by the Page Register. The Page Register is a write only register for the 80186 Microprocessor. The two most significant address bits (bits 06 and 05) of the Page Register are always zero. This allows the Page Register to select thirty-two 128 kilobyte segments of main memory. The Page Register is addressed by the 80186 Microprocessor at its I/O address 0x 0480. Bits 06—00 of the Page Register map to Peripheral Physical Address bits 23—17 (PPA23—17[1]).

### **FUNCTIONAL DESCRIPTION**

| PORTS CARD ADDRESS MAP |                |                |                       |            |                 |                 |
|------------------------|----------------|----------------|-----------------------|------------|-----------------|-----------------|
| MEMORY<br>ADDRESS      | I/O<br>ADDRESS | CHIP<br>SELECT | DESCRIPTION           | ACCESS     | WIDTH<br>(BITS) | SIZE<br>(BYTES) |
| 0x 00000               |                | LCS            | RAM (VECTOR TABLE)    | READ/WRITE | 16              | 32K             |
| 0x 80000               |                | MCS            | DPDRAM                | READ/WRITE | 16              | 128K            |
| 0x C0080               | 0x 0480        | PS1            | ID/VECTOR REGISTER    | WRITE      | 16              | 2               |
| 0x C0082               | 0x 0482        | PS1            | PAGE REGISTER         | WRITE      | 7               | 1               |
| 0x C0084               | 0x 0484        | PS1            | PCSR BITS 7-0         | READ       | 8               | 1               |
| 0x C0088               | 0x 0488        | PS1            | PCSR BIT 0 (INT0)     | (NOTE 1)   | 1               | _               |
| 0x C0089               | 0x 0489        | PS1            | PCSR BIT 1 (INT1)     | (NOTE 1)   | 1               | _               |
| 0x C008A               | 0x 048A        | PS1            | PCSR BIT 2 (NOT USED) |            | 1               |                 |
| 0x C008B               | 0x 048B        | PS1            | PCSR BIT 3 (NOT USED) |            | 1               |                 |
| 0x C008C               | 0x 048C        | PS1            | PCSR BIT 4 (NOT USED) | -          | 1               |                 |
| 0x C008D               | 0x 048D        | PS1            | PCSR BIT 5 (ARDY)     | (NOTE 2)   | 1               | _               |
| 0x C008E               | 0x 048E        | PS1            | PCSR BIT 6 (BAF)      | (NOTE 2)   | 1               | _               |
| 0x C008F               | 0x 048F        | PS1            | PCSR BIT 7 (PINT1[0]) | (NOTE 1)   | 1               | _               |
| 0x C0100               | 0x 0500        | PS2            | CLEAR NMI REQUEST     | —          |                 | _               |
| 0x C0102               | 0x 0502        | PS2            | CLEAR INT0 REQUEST    | _          | —               | _ 1             |
| 0x C0104               | 0x 0504        | PS2            | CLEAR INT1 REQUEST    |            |                 | _               |
| 0x C0106               | 0x 0506        | PS2            | CLEAR INT2 REQUEST    | _          | _               | _               |
| 0x C0180               | 0x 0580        | PS3            | REQUEST RESET         | _          |                 | _               |
| 0x C0200               | 0x 0600        | PS4            | DUART 0               | READ/WRITE | 8               | 16              |
| 0x C0280               | 0x 0680        | PS5            | DUART 1               | READ/WRITE | 8               | 16              |
| 0x C0300               | 0x 0700        | PS6            | PARALLEL PORT         | READ/WRITE | 8               | 4               |
| 0x C0400               | 0x FF00        | 80186          | 80186 CONTROL BLOCK   |            | 16              |                 |
| 0x C0420               | 0x FF20        | 80186          | INTERRUPT CONTROL     | READ/WRITE | 16              | —               |
| 0x C0450               | 0x FF50        | 80186          | TIMER 0 CONTROL       |            | 16              |                 |
| 0x C0458               | 0x FF58        | 80186          | TIMER 1 CONTROL       | —          | 16              |                 |
| 0x C0460               | 0x FF60        | 80186          | TIMER 2 CONTROL       | —          | 16              | —               |
| 0x C04A0               | 0x FFA0        | 80186          | CHIP SELECT CONTROL   | —          | 16              | —               |
| 0x C04C0               | 0x FFC0        | 80186          | DMA 0 CONTROL         | —          | 16              |                 |
| 0x C04D0               | 0x FFD0        | 80186          | DMA 1 CONTROL         | —          | 16              | —               |
| 0x C04FE               | 0x FFFE        | 80186          | RELOCATION REGISTER   | —          | 16              |                 |
| 0x FC000               | —              | UCS            | ROM                   | READ/WRITE | 16              | 16K             |

NOTES:

1. Bit is cleared by 80186 Microprocessor access.

Bit is set to 0 by 80186 Microprocessor access unless a "dummy" read is pending.

LEGEND:

| ARDY   | Asynchronous Data Ready                |
|--------|----------------------------------------|
| BAF    | Bus Abort Feature                      |
| DMA    | Direct Memory Access                   |
| DPDRAM | Dual Port Dynamic Random Access Memory |
| LCS    | Lower RAM Chip Select                  |
| MCS    | Memory Chip Select                     |
| NMI    | Nonmaskable Interrupt                  |
| PCSR   | Peripheral Control and Status Register |
| PS     | Peripheral Select                      |
|        |                                        |

UCS Upper RAM Chip Select

# Figure 3-64: CM195B/CM195BA PORTS Card Address Map

# **Peripheral Control and Status Register**

The PORTS card contains an 8-bit Peripheral Control and Status Register (PCSR) addressable on the lower data byte of the I/O address (0x 048F—0x 0488). Each address corresponds to a single bit of the PCSR. These bits are reset by an 80186 Microprocessor read or write access except for PCSR6 that is controlled by the Bus Abort Feature (BAF).

|     | PORTS PERIPHERAL CONTROL AND STATUS REGISTER                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| BIT | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 7   | <b>REQUEST SYSTEM BOARD CPU INTERRUPT</b> : PCSR7[0] maps to the I/O bus signal PINT0[0] and is asserted by the PORTS firmware. When negated [1] by hardware, the interrupt has been acknowledged by the system board CPU. When asserted [0], the interrupt request is pending. A system reset negates the bit to a logic 1 (interrupt acknowledged). Addressing PCSR7[1] (0x 048F) clears (negates) the bit. |  |  |  |  |  |  |
| 6   | <b>I/O BUS LOCKED</b> : This bit is used for the BAF. Bit 6 is set by hardware when the 80186 Microprocessor is delayed in accessing main memory and must be cleared by firmware. During normal operation, PCSR6 is cleared by the 80186 Microprocessor addressing PCSR6 unless a "dummy" read is pending. Addressing PCSR6 (0x 048E) clears (negates) the bit.                                               |  |  |  |  |  |  |
| 5   | Used to control Asynchronous Data Ready (ARDY[1]).                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 4   | Not used by PORTS.                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 3   | Not used by PORTS.                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 2   | Not used by PORTS.                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 1   | <b>CLEAR INT1</b> : This 80186 Microprocessor interrupt is set by a system board CPU access of the PORTS PCSR (attention interrupt). PCSR1 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0489. Following a system reset the state of PCSR1 is undefined and is cleared by the PORTS firmware.                                                           |  |  |  |  |  |  |
| 0   | <b>CLEAR INTO:</b> This 80186 Microprocessor interrupt is set by an access of the PORTS ID/Vector Register (except on an interrupt acknowledge cycle). This interrupt is the SYSGEN and Express Queue interrupt. Bit 0 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0488. Bit 0 is undefined on powerup and is cleared by the firmware.                |  |  |  |  |  |  |

### Local RAM

The PORTS card contains 32K bytes of Static Random Access Memory (SRAM) configured as 16K by 16 bits.

### Local ROM

The PORTS card firmware is in 16K bytes of ROM configured as 8K by 16 bits.

# CM195B/CM195BA Equipped Device Table Data

The following table shows the Equipped Device Table (EDT) data for a PORTS card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are PORTS software defined values. As such, the rq\_size and cq\_size values may differ between versions of PORTS software.

| EDT ITEM                                                                                                                                                                                                                                                                                                                      | DATA                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (boot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (word_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file)<br>INDIRECT DEVICE (indir_dev) | 0x 0003<br>PORTS<br>0x 03<br>0x 23<br>0<br>1<br>0<br>1<br>1<br>1<br>1<br>1<br>0 |

# **CM195H CARTRIDGE TAPE CONTROLLER CARD**

# General

Figure 3-65 is a functional block diagram of the CM195H Cartridge Tape Controller (CTC) Card. Functionally, the CTC card consists of the Common Input/Output (CIO) circuits and Cartridge Tape/Floppy Disk Interface circuits. Driver and receiver circuits are used to interface one cartridge tape drive and one floppy disk drive. Two devices can be connected to a Cartridge Tape Controller; however, only one of the two devices can be accessed at a given time. The CIO circuits include the following:

- INTEL 80186 Microprocessor
- Input/Output (I/O) Bus Control
- Identification/Vector (ID/Vector) Register
- Page Register
- Peripheral Control and Status Register (PCSR)
- Local Random Access Memory (RAM)
- Local Read Only Memory (ROM)
- Direct Memory Access Controller (AM 9517A)
- Miscellaneous Circuits.

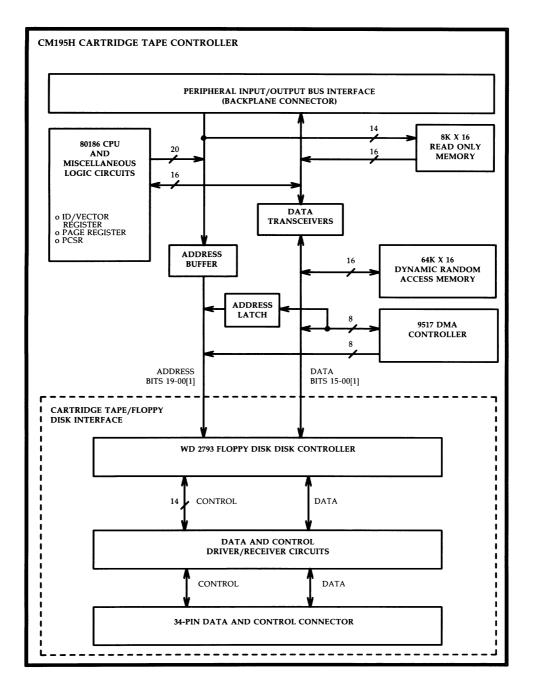



Figure 3-65: CM195H CTC Card — Functional Block Diagram

### **INTEL 80186 Microprocessor**

The intelligence of the CTC card is provided by an INTEL 80186, 16-bit microprocessor operating at 6 MHz. Some of the microprocessor features used for the CTC card are described in the following paragraphs. Figure 3-66 shows the CTC card address map.

### **ID/Vector Register**

The CTC card ID/Vector Register is a 16-bit register that is used for two functions. Initially the register contains the 16-bit CTC card ID code. Later the register contains an 8-bit interrupt vector for the ID code. The interrupt vector is returned in response to an Interrupt Acknowledge (PIAK[0]) signal. On reset, the 80186 Microprocessor writes the CTC card ID code to the high order bits (byte 1) of the ID/Vector Register and waits. The CTC card ID code is 0x 0005. During system self-configuration, the system board CPU polls each feature card slot. This polling reads the ID/Vector Register. The two bytes of the ID/Vector Register form a unique 16-bit ID code of the card.

### Page Register

The CTC card uses a 24-bit I/O address to do main memory operations. The lower 17 bits are provided by the 80186 Microprocessor. The most significant 7 bits are provided by the Page Register. The Page Register is a write only register for the 80186 Microprocessor. The two most significant address bits (bits 06 and 05) of the Page Register are always zero. This allows the Page Register to select thirty-two 128 kilobyte segments of main memory. The Page Register is addressed by the 80186 Microprocessor at its I/O address 0x 0482. Bits 06—00 of the Page Register map to Peripheral Physical Address bits 23—17 (PPA23—17[1]).

#### FUNCTIONAL DESCRIPTION

|                   | CTC CARD ADDRESS MAP |                |                               |            |                 |                 |  |
|-------------------|----------------------|----------------|-------------------------------|------------|-----------------|-----------------|--|
| MEMORY<br>ADDRESS | I/O<br>ADDRESS       | CHIP<br>SELECT | DESCRIPTION                   | ACCESS     | WIDTH<br>(BITS) | SIZE<br>(BYTES) |  |
| 0x 00000          | _                    | LCS            | CTC DRAM (VECTOR TABLE)       | READ/WRITE | _               | 128K            |  |
| 0x 80000          | —                    | MCS            | SBD DPDRAM                    | READ/WRITE | 16              | 128K            |  |
| 0x C0080          | 0x 0480              | PS1            | ID/VECTOR REGISTER            | WRITE      | 16              | 2               |  |
| 0x C0082          | 0x 0482              | PS1            | PAGE REGISTER                 | WRITE      | 7               | 1               |  |
| 0x C0084          | 0x 0484              | PS1            | PCSR BITS 7-0                 | READ       | 8               | 1               |  |
| 0x C0088          | 0x 0488              | PS1            | PCSR BIT 0 (INT0)             | (NOTE 1)   | 1               |                 |  |
| 0x C0089          | 0x 0489              | PS1            | PCSR BIT 1 (INT1)             | (NOTE 1)   | 1               | _               |  |
| 0x C008A          | 0x 048A              | PS1            | PCSR BIT 2 (INT2)             | (NOTE 1)   | 1               | —               |  |
| 0x C008B          | 0x 048B              | PS1            | PCSR BIT 3 (INT3)             | (NOTE 1)   | 1               | _               |  |
| 0x C008C          | 0x 048C              | PS1            | PCSR BIT 4 (NOT USED)         | —          | 1               | _               |  |
| 0x C008D          | 0x 048D              | PS1            | PCSR BIT 5 (RESERVED)         | —          | 1               |                 |  |
| 0x C008E          | 0x 048E              | PS1            | PCSR BIT 6 (BAF)              | (NOTE 2)   | 1               |                 |  |
| 0x C008F          | 0x 048F              | PS1            | PCSR BIT 7 (PINT)             | (NOTE 1)   | 1               | _               |  |
| 0x C0100          | 0x 0500              | PS2            | 8237 DMA CONTROLLER           | READ/WRITE |                 | 128K            |  |
| 0x C0200          | 0x 0600              | PS4            | FLOPPY DISK CONTROLLER        | READ/WRITE | _               | 128K            |  |
| 0x C0300          | 0x 0700              | PS6            | SELECT/CONFIGURATION REGISTER | WRITE      | 16              | 2               |  |
| 0x C0450          | 0x FF50              | 80186          | TIMER 0 CONTROL               |            | _               | _               |  |
| 0x C04A0          | 0x FFA0              | 80186          | ADDRESS DECODER               | _          | _               | _               |  |
| 0x C04FE          | 0x FFFE              | 80186          | RELOCATION REGISTER           | _          | 16              | 2               |  |
| 0x FC000          | —                    | UCS            | ROM                           | READ       | 16              | 16K             |  |

NOTES:

- 1. Bit is cleared by 80186 Microprocessor access.
- 2. Bit is set to 0 by 80186 Microprocessor access
  - unless a "dummy" read is pending.
- 3. Firmware can re-program the UCS addresses for 32K bytes.

LEGEND:

BAFBus Abort FeatureDMADirect Memory AccessDRAMDynamic Random Access MemoryLCSLower RAM Chip SelectMCSMemory Chip SelectPSPeripheral SelectPCSRPeripheral Control and Status RegisterUCSUpper RAM Chip Select

# Figure 3-66: CM195H CTC Card Address Map

# **Peripheral Control and Status Register**

The CTC card contains an 8-bit Peripheral Control and Status Register (PCSR) addressable on the lower data byte of the I/O address (0x 048F—0x 0488). Each address corresponds to a single bit of the PCSR. These bits are reset by an 80186 Microprocessor read or write access except for PCSR6 that is controlled by the Bus Abort Feature (BAF).

|     | CTC PERIPHERAL CONTROL AND STATUS REGISTER                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| віт | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 7   | <b>REQUEST SYSTEM BOARD CPU INTERRUPT</b> : PCSR7[0] maps to the I/O bus signal PINT0[0] and is asserted by the PORTS firmware. When negated [1] by hardware, the interrupt has been acknowledged by the system board CPU. When asserted [0], the interrupt request is pending. A system reset negates the bit to a logic 1 (interrupt acknowledged). Addressing PCSR7[1] (0x 048F) clears (negates) the bit. |  |  |  |  |  |
| 6   | <b>I/O BUS LOCKED:</b> This bit is used for the BAF. Bit 6 is set by hardware when the 80186 Microprocessor is delayed in accessing main memory and must be cleared by firmware. During normal operation, PCSR6 is cleared by the 80186 Microprocessor addressing PCSR6 unless a "dummy" read is pending. Addressing PCSR6 (0x 048E) clears (negates) the bit.                                                |  |  |  |  |  |
| 5   | Used to control Asynchronous Data Ready (ARDY[1]).                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 4   | Not used by CTC.                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 3   | Not used by CTC.                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 2   | Not used by CTC.                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 1   | <b>CLEAR INT1</b> : This 80186 Microprocessor interrupt is set by a system board CPU access of the CTC PCSR (attention interrupt). PCSR1 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0489. Following a system reset the state of PCSR1 is undefined and is cleared by the CTC firmware.                                                               |  |  |  |  |  |
| 0   | <b>CLEAR INTO:</b> This 80186 Microprocessor interrupt is set by an access of the CTC ID/Vector Register (except on an interrupt acknowledge cycle). This interrupt is the SYSGEN and Express Queue interrupt. Bit 0 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0488. Bit 0 is undefined on powerup and is cleared by the firmware.                  |  |  |  |  |  |

# Local RAM

The CTC card contains 128K bytes of Dynamic Random Access Memory (DRAM) configured as 64K by 16 bits.

### Local ROM

The CTC card firmware is in 16K bytes of ROM configured as 8K by 16 bits.

## **Cartridge Tape/Floppy Disk Interface**

The Cartridge Tape/Floppy Disk Interface is a WD 2793 Floppy Disk Controller. The chip contains write precompensation and data separation circuits. The 34-pin data and control connector is a SA-450 interface.

### **CM195H Equipped Device Table Data**

The following table shows the Equipped Device Table (EDT) data for a CTC card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are CTC software defined values. As such, the rq\_size and cq\_size values may differ between versions of CTC software.

| EDT ITEM                                                                                                                                                                                                                                                                                      | DATA                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (boot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (brd_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file) | 0x 0005<br>CTC<br>0x 10<br>0x 20<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| INDIRECT DEVICE (indir_dev)                                                                                                                                                                                                                                                                   | 0                                                                        |

# **CM195K EXPANSION DISK CONTROLLER CARD**

### General

The CM195K Expansion Disk Controller (XDC) Card is an intelligent feature card used to interface a maximum of two external hard disk drives to a 3B2 computer. The interface is ST-506. Figure 3-67 is a functional block diagram of the XDC card. The XDC card consists of the Common Input/Output (CIO) circuits and the Disk Interface circuits. The CIO circuits include the following:

- INTEL 80186 Microprocessor
- Input/Output (I/O) Bus Control
- Identification/Vector (ID/Vector) Register
- Page Register
- Peripheral Control and Status Register (PCSR)
- Local Random Access Memory (RAM)
- Local Read Only Memory (ROM)
- Miscellaneous Circuits.

The Disk Interface circuits include the following:

- Hard Disk Controller
- Data Separator
- Write Precompensation.

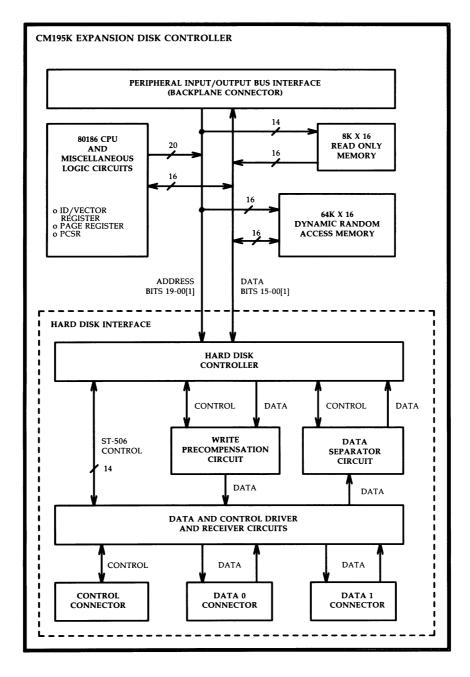



Figure 3-67: CM195K XDC Card — Functional Block Diagram

# **INTEL 80186 Microprocessor**

The intelligence of the XDC card is provided by an INTEL 80186, 16-bit microprocessor operating at 8 MHz. Some of the microprocessor features used for the XDC card are described in the following paragraphs. Figure 3-68 shows the XDC card address map.

The Direct Memory Access (DMA) Channel 0 is used to move data from the XDC card RAM to the system board main memory and vice-versa. Data is transferred on DMA Channel 0 in either 8- or 16-bit words, to and from even and odd addresses.

DMA Channel 1 is used by the XDC card to transfer data between the XDC RAM and the disk drives connected to the XDC card, via the hard disk controller. This channel supports a transfer rate of 625 kilobytes per second.

# **Input/Output Bus Control**

The XDC card does not support the Bus Abort Feature (BAF). I/O bus control circuitry responds to I/O bus and 80186 Microprocessor control signals. Three major paths are listed below:

- 80186 Microprocessor read or write of the system board main memory
- System board CPU read or write XDC card
- Interrupt Acknowledge (PIAK[0]).

The I/O bus control circuitry responds to the I/O bus and to the 80186 Microprocessor control signals by selectively enabling the appropriate I/O bus signals. Certain Peripheral Control and Status Register (PCSR) bits can also be set when the XDC card is accessed.

# FUNCTIONAL DESCRIPTION -

.

ið

| XDC CARD ADDRESS MAP |                |                |                          |            |                 |                 |
|----------------------|----------------|----------------|--------------------------|------------|-----------------|-----------------|
| MEMORY<br>ADDRESS    | I/O<br>ADDRESS | CHIP<br>SELECT | DESCRIPTION              | ACCESS     | WIDTH<br>(BITS) | SIZE<br>(BYTES) |
| 0x 00000             | _              | LCS            | DRAM (VECTOR TABLE)      | READ/WRITE | 16              | 128             |
| 0x 00080             | _              | LCS            | DRAM (APPLICATION)       | READ/WRITE | 16              | 127.9K          |
| 0x 20000             | —              | LCS            | NOT USED                 | _          | —               | 128K            |
| 0x 40000             | _              | _              | NOT USED                 | —          | —               | 256K            |
| 0x 80000             |                | MCS            | SBD DPDRAM               | READ/WRITE | 16              | 128K/PAGE       |
| 0x A0000             |                | MCS            | NOT USED                 | —          | _               | 128K            |
| 0x C0000             | 0x 0400        | PS0            | NOT USED                 |            | —               | 128             |
| 0x C0080             | 0x 0480        | PS0            | ID/VECTOR REGISTER       | WRITE      | 16              | 2               |
| 0x C0082             | 0x 0482        | PS1            | PAGE REGISTER            | WRITE      | 7               |                 |
| 0x C0084             | 0x 0484        | PS1            | PCSR BITS 7—0            | READ       | 8               | 1               |
| 0x C0086             | 0x 0486        | PS1            | RESERVED                 |            |                 |                 |
| 0x C0088             | 0x 0488        | PS1            | PCSR BIT 0 (INT0)        | (NOTE 1)   | 1               |                 |
| 0x C0089             | 0x 0489        | PS1            | PCSR BIT 1 (INT1)        | (NOTE 1)   | 1               |                 |
| 0x C008A             | 0x 048A        | PS1            | PCSR BIT 2 (INT2)        | (NOTE 1)   | 1               |                 |
| 0x C008B             | 0x 048B        | PS1            | PCSR BIT 3 (INT3)        | (NOTE 1)   | 1               |                 |
| 0x C008C             | 0x 048C        | PS1            | PCSR BIT 4 (RESET PCSR4) | (NOTE 2)   | 1               |                 |
| 0x C008D             | 0x 048D        | PS1            | PCSR BIT 5 (ARDY)        | READ/WRITE | 1               |                 |
| 0x C008E             | 0x 048E        | PS1            | PCSR BIT 6 (SET PCSR4)   | (NOTE 2)   | 1               |                 |
| 0x C008F             | 0x 048F        | PS1            | PCSR BIT 7 (PINT1[0])    | (NOTE 1)   | 1               |                 |
| 0x C0090             | 0x 0490        | PS1            | NOT USED                 | —          | 16              | 111             |
| 0x C0100             | 0x 0500        | PS2            | NOT USED                 | -          |                 | 128             |
| 0x C0180             | 0x 0580        | PS3            | NOT USED                 |            |                 | 128             |
| 0x C0200             | 0x 0600        | PS4            | HDC CHIP FIFO            | READ/WRITE | 8               | 1               |
| 0x C0202             | 0x 0602        | PS4            | HDC COMMAND REGISTER     | WRITE      | 8               | 1               |
| 0x C0202             | 0x 0602        | PS4            | HDC STATUS REGISTER      | READ       | 8               | 1               |
| 0x C0204             | 0x 0604        | PS4            | NOT USED                 |            | 16              | 126             |
| 0x C0280             | 0x 0680        | PS5            | NOT USED                 | —          | 16              | 128             |
| 0x C0300             | 0x 0700        | PS6            | NOT USED                 | _          | 16              | 128             |
| 0x C0400             | 0x FF00        | 80186          | 80186 CONTROL BLOCK      | —          | 16              | 256             |
| 0x C0420             | 0x FF20        | 80186          | INTERRUPT CONTROL        | —          | 16              | 32              |
| 0x C0450             | 0x FF50        | 80186          | TIMER 0 CONTROL          | -          | 16              | 8               |
| 0x C0458             | 0x FF58        | 80186          | TIMER 1 CONTROL          | —          | 16              | 8               |
| 0x C0460             | 0x FF60        | 80186          | TIMER 2 CONTROL          |            | 16              | 6               |
| 0x C0466             | 0x FF66        | 80186          | NOT USED                 | —          | -               | 58              |
| 0x C04A0             | 0x FFA0        | 80186          | CHIP SELECT CONTROL      |            | 16              | 10              |
| 0x C04AA             | 0x FFAA        | 80186          | NOT USED                 | —          | _               | 22              |
| 0x C04C0             | 0x FFC0        | 80186          | DMA 0 CONTROL            | -          | 16              | 12              |
| 0x C04CC             | 0x FFCC        | 80186          | NOT USED                 | —          |                 | 4               |
| 0x C04D0             | 0x FFD0        | 80186          | DMA 1 CONTROL            |            | 16              | 12              |
| 0x C04DC             | 0x FFDC        | 80186          | NOT USED                 |            |                 | 34              |
| 0x C04FE             | 0x FFFE        | 80186          | RELOCATION REGISTER      |            | 16              | 2               |
| 0x C0500             | _              | 80186          | NOT USED                 |            | —               | 47872           |
| 0x FC000             | —              | UCS            | ROM                      | READ       | 16              | 16K             |

#### NOTES:

1. Bit is cleared (reset) by 80186 Microprocessor access.

 Dris cleared (reset) by boroor introprocessor access.
 PCSR6 is set [1] by 80186 Microprocessor access to reset the hard disk controller. PCSR4 is set [1] by either system reset or by addressing PCSR6. PCSR4 (HDC reset) is turned off [0] by addressing PCSR4.

#### LEGEND:

| ARDY   | Asynchronous Data Ready                |
|--------|----------------------------------------|
| DMA    | Direct Memory Access                   |
| DPDRAM | Dual Port Dynamic Random Access Memory |
| DRAM   | Dynamic Random Access Memory           |
| HDC    | Hard Disk Controller                   |
| LCS    | Lower RAM Chip Select                  |
| MCS    | Memory Chip Select                     |
| PCSR   | Peripheral Control and Status Register |
| PS     | Peripheral Select                      |
| SBD    | System Board                           |
| UCS    | Upper RAM Chip Select                  |

# Figure 3-68: CM195K XDC Card Address Map

# **ID/Vector Register**

The XDC card ID/Vector Register is a 16-bit register that is used for two functions. Initially the register contains the 16-bit XDC card ID code. Later the register contains an 8-bit interrupt vector. The interrupt vector is returned in response to an Interrupt Acknowledge (PIAK[0]) signal. On reset, the 80186 Microprocessor writes the XDC card ID code to the ID/Vector Register and waits. The XDC card ID code is 0x 0204. During system self-configuration, the system board CPU polls each feature card slot. This polling reads the ID/Vector Register. The two bytes of the ID/Vector Register are a unique 16-bit ID code of the card.

# **Page Register**

The XDC card uses a 24-bit I/O address to do system board main memory operations. The lower 17 bits are provided by the 80186 Microprocessor. The most significant 7 bits are provided by the Page Register. The Page Register is a write only register for the 80186 Microprocessor. The two most significant address bits (bits 06 and 05) of the Page Register are always zero. This allows the Page Register to select thirty-two 128 kilobyte segments of main memory. The Page Register is addressed by the 80186 Microprocessor at its I/O address 0x 0482. Bits 06–00 of the Page Register map to Peripheral Physical Address bits 23–17 (PPA23–17[1]).

# **Peripheral Control and Status Register**

The XDC card contains an 8-bit Peripheral Control and Status Register (PCSR) which is addressable on the lower data byte of the I/O address (0x 048F—0x 0488). Each address corresponds to a single bit of the PCSR. These bits are reset by an 80186 Microprocessor read or write access.

|     | XDC PERIPHERAL CONTROL AND STATUS REGISTER                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| віт | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 7   | <b>REQUEST SYSTEM BOARD CPU INTERRUPT</b> : PCSR7[0] maps to the I/O bus signal PINT1[0] and is asserted by the XDC firmware. When negated [1] by hardware, the interrupt has been acknowledged by the system board CPU. When asserted [0], the interrupt request is pending. A system reset negates the bit to a logic 1 (interrupt acknowledged). Addressing PCSR7[1] (0x 048F) clears (negates) the bit.       |  |  |  |  |  |
| 6   | PCSR6 is not registered; however, the PCSR6 address (0x 048E) is used to set PCSR4.<br>Addressing PCSR6 asserts PCSR4. This provides the XDC the ability to reset the hard disk<br>controller under XDC firmware control.                                                                                                                                                                                         |  |  |  |  |  |
| 5   | Used to control Asynchronous Data Ready (ARDY[1]).                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 4   | <b>HARD DISK CONTROLLER RESET</b> : This bit resets the hard disk controller when asserted [1]. Addressing PCSR4 (0x 048C) clears the bit and negates the reset. The hard disk controller is reset by either a system reset or by the 80186 Microprocessor addressing PCSR6 (0x 048E) which asserts PCSR4.                                                                                                        |  |  |  |  |  |
| 3   | Not used by the XDC card. Addressing PCSR3 (0x 048B) clears (resets) the bit.                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 2   | <b>CLEAR INT2</b> : This 80186 Microprocessor interrupt is set by the hard disk controller on seek end, disk ready change, seek error, or equipment check conditions. PCSR2 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 048A.                                                                                                                             |  |  |  |  |  |
| 1   | <b>CLEAR INT1</b> : This 80186 Microprocessor interrupt is set by a system board CPU access of the XDC PCSR (attention interrupt). PCSR1 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0489. Following a system reset the state of PCSR1 is undefined and is cleared by the XDC firmware.                                                                   |  |  |  |  |  |
| 0   | <b>CLEAR INT0</b> : This 80186 Microprocessor interrupt is set by a system board CPU access of the XDC ID/Vector Register (except on an interrupt acknowledge cycle). This interrupt is the SYSGEN and Express Queue interrupt. Bit 0 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0488. Bit 0 is undefined on powerup and is cleared by the XDC firmware. |  |  |  |  |  |

# Local RAM

The XDC card contains 128K bytes of Dynamic Random Access Memory (DRAM) configured as 64K by 16 bits. The DRAM is accessed via the Low Memory Chip Select (LCS0) from 80186 Microprocessor. The 16-bit address consists of the row address (bits 15—08) and the column address (bits 07—00).

The DRAM refresh operations are interleaved with CPU read/write accesses. If a memory access is in progress when the refresh timer requests a refresh operation, the memory refresh operation occurs immediately following the access. If a memory refresh operation is in progress when the CPU attempts a DRAM access, the memory refresh operation is allowed to complete before the CPU access is permitted. The CPU access is suspended by a maximum of three wait states to allow for the completion of the refresh cycle.

# Local ROM

Firmware for the 80186 Microprocessor is stored in the ROM. The XDC card ROM contains 16K bytes configured as 8K by 16 bits. The ROM is accessed via the Upper Memory Chip Select (UCS[0]) and address bits 14-00.

# **Disk Interface**

The Disk Interface consists of the following circuits.

### Hard Disk Controller

The hard disk controller (NEC  $\mu$ PD7261) connects to the lower half of the demultiplexed 80186 Microprocessor data bus. Under the control of the 80186 Microprocessor, the hard disk controller generates the ST-506 signals to control the associated disk drives.

#### **Data Separator**

The data separator processes (separates) the serial stream of bits read from the disk drive into clock and data signals that are applied to the  $\mu$ PD7261.

#### Write Precompensation

The bits recorded on the inner tracks of a disk are more densely packed than the outer tracks. Write precompensation is necessary to ensure that the data bits are stored at the right place on the disk. The controller sends two signals to enable either an early or a late write to the disk. These write enables are actually too late to correctly adjust the data. The precompensation circuit is a 10 tap, 100-nanosecond delay line with the 50 percent tap delaying the data enough to have valid early and late enable. The 80, 90, and 100 percent taps provide the early, normal, and late data. The write precompensation is turned on or off by the Reduced Write Current (RWC) signal from the hard disk controller.

#### Driver/Receiver

The driver and receiver circuits interface the Control Bus, Data 0, and the Data 1 with the associated disk drives.

#### CM195K Equipped Device Table Data

The following table shows the Equipped Device Table (EDT) data for an XDC card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are XDC software defined values. As such, the rq\_size and cq\_size values may differ between versions of XDC software.

| EDT ITEM                                                                                                                                                                                                                                                                                                                     | DATA                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (boot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (brd_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file)<br>INDIRECT DEVICE (indir_dev) | 0x 0204<br>XDC<br>0x 14<br>0x 28<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>0 |

# CM195T INTELLIGENT SERIAL CONTROLLER CARD

# General

The CM195T Intelligent Serial Controller (ISC) Card is a general purpose, synchronous communications peripheral interface card providing a two channel, full duplex, synchronous interface. The ISC card supports both synchronous and asynchronous peripheral device operation. The ISC supports multiple applications depending on the software executing in the ISC Random Access Memory (RAM). The ISC card can provide communication over synchronous channels such as Systems Network Architecture/Synchronous Data Link Control (SNA/SDLC), bi-sync and X.25 as a function of the appropriate software being loaded on the ISC card. Figure 3-69 is a functional block diagram of the ISC card.

# **ISC Card Features**

The ISC card features include the following:

- Serial communications for the 3B2 computer Common I/O (CIO) bus
- Intelligent INTEL 80186 Microprocessor-based controller
- Local RAM
- Local Read Only Memory (ROM)
- Two, fully duplex, synchronous RS-232C channels
- Nonreturn to Zero (NRZ)/Nonreturn to Zero Insertion (NRZI) encoding/decoding
- Direct Memory Access (DMA) for communications ports.

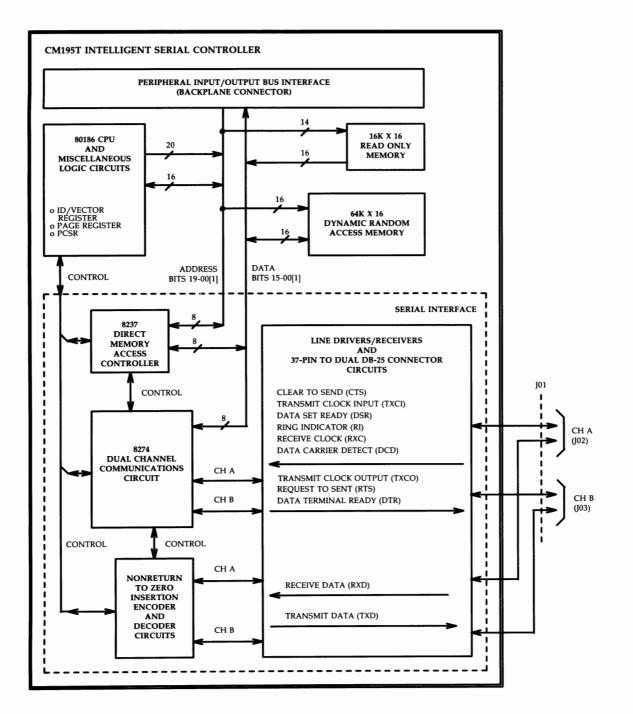



Figure 3-69: CM195T ISC Card — Functional Block Diagram

#### **INTEL 80186 Microprocessor**

The intelligence of the ISC card is provided by an INTEL 80186, 16-bit microprocessor operating at 8 MHz. Some of the microprocessor features used for the ISC card are described in the following paragraphs. Figure 3-70 shows the ISC card address map.

#### **DMA Channels**

Direct Memory Access (DMA) Channel 0 is used by the CIO firmware to move data between the ISC card RAM and the 3B2 computer main memory. DMA Channel 1 is programmed to do memory refresh operations for the ISC internal RAM (along with Timer 2).

#### **Interrupt Controller**

The internal Interrupt Controller of the 80186 Microprocessor is programmed to accept five separate interrupts: INT3 through INT0, and NMI. Interrupts INT0 and INT1 are reserved for CIO firmware use. INT2 is dedicated to the 8274 Dual Channel Communications Chip. INT3 is dedicated to the 8237 DMA controller. Nonmaskable Interrupt (NMI) is used by the CIO firmware to control the Bus Abort Feature (BAF).

#### **Internal Timers**

Timer 0 is available to applications software since external hardware is used to generate the I/O bus PFAIL0 signal. Timer 1 controls the BAF. Timer 2 is used to generate DMA requests to DMA Channel 1 for starting memory refresh operations.

#### **Memory and Peripheral Chip Selects**

The memory and peripheral chip selects are programmed by the ISC firmware to provide chip selects in the 80186 Microprocessor memory map (Figure 3-70).

#### **Internal Clock Generator**

The 80186 Microprocessor operates at 8 MHz (crystal controlled). The 80186 Microprocessor provides an 8-MHz output for other ISC functions. The 8-MHz signal is divided to provide 4 MHz to the 8237 DMA Controller and the 8274 Dual Channel Communications Chip.

| ISC CARD ADDRESS MAP |                    |                |                                      |            |                 |                 |
|----------------------|--------------------|----------------|--------------------------------------|------------|-----------------|-----------------|
| MEMORY<br>ADDRESS    | I/O<br>ADDRESS     | CHIP<br>SELECT | DESCRIPTION                          | ACCESS     | WIDTH<br>(BITS) | SIZE<br>(BYTES) |
| 0x 00000             | _                  | LCS            | RAM (VECTOR TABLE)                   | READ/WRITE | 16              | 128             |
| 0x 00080             |                    | LCS            | RAM (DEMON)                          | READ/WRITE | 16              | 256             |
| 0x 00180             | —                  | LCS            | RAM (USER)                           | READ/WRITE | 16              | 127.6K          |
| 0x 20000             | —                  | LCS            | NOT USED                             | _          |                 | 128K            |
| 0x 40000             | —                  |                | NOT USED                             | —          | —               | 128K            |
| 0x 60000             |                    | —              | RAM REFRESH                          | READ/WRITE | 16              | 128K            |
| 0x 80000             | -                  | MCS            | DPDRAM                               | READ/WRITE | 16              | 128K            |
| 0x A0000             | _                  | MCS            | NOT USED                             | -          | _               | 128K            |
| 0x C0000             | 0x 0400            | PS0            | DEMON                                | —          |                 | —               |
| 0x C0080             | 0x 0480            | PS0            | ID/VECTOR REGISTER                   | WRITE      | 16              |                 |
| 0x C0082             | 0x 0482            | PS1            | PAGE REGISTER                        | WRITE      | 7               |                 |
| 0x C0084             | 0x 0484            | PS1            | PCSR BITS 7—0                        | READ       | 8               |                 |
| 0x C0086             | 0x 0486            | PS1            | RESERVED                             |            |                 |                 |
| 0x C0088             | 0x 0488            | PS1            | PCSR BIT 0 (INT0)                    | (NOTE 1)   | 1               |                 |
| 0x C0089             | 0x 0489            | PS1            | PCSR BIT 1 (INT1)                    | (NOTE 1)   | 1               |                 |
| 0x C008A             | 0x 048A            | PS1            | PCSR BIT 2 (INT2)                    | (NOTE 1)   | 1               |                 |
| 0x C008B             | 0x 048B            | PS1            | PCSR BIT 3 (INT3)                    | (NOTE 1)   | 1               |                 |
| 0x C008C             | 0x 048C            | PS1            | PCSR BIT 4 (NOT USED)                |            | 1               |                 |
| 0x C008D             | 0x 048D            | PS1            | PCSR BIT 5 (NOT USED)                |            | 1               |                 |
| 0x C008E             | 0x 048E            | PS1            | PCSR BIT 6 (BAF)                     | (NOTE 2)   | 1               |                 |
| 0x C008F             | 0x 048F            | PS1            | PCSR BIT 7 (PINT)                    | (NOTE 1)   | 1               |                 |
| 0x C0100             | 0x 0500            | PS2            | 8237 DMA CONTROLLER (NOTE 3)         | READ/WRITE | 8               |                 |
|                      | 1                  | 1              | 1                                    | l          | 1               |                 |
| 0x C011F             | 0x 051F            | PS2            | 8237 DMA CONTROLLER                  | READ/WRITE | 8               |                 |
| 0x C0180             | 0x 0580            | PS3            | 8274 CHANNEL A DATA                  | READ/WRITE | 12/8            |                 |
| 0x C0182             | 0x 0582            | PS3            | 8274 CHANNEL B DATA                  | READ/WRITE | 12/8            |                 |
| 0x C0184             | 0x 0584            | PS3            | 8274 CHANNEL A CONTROL               | READ/WRITE | 12/8            |                 |
| 0x C0186             | 0x 0586            | PS3            | 8274 CHANNEL B CONTROL               | READ/WRITE | 12/8            |                 |
| 0x C0200             | 0x 0600            | PS4            | NRZI CHANNEL A OFF                   | READ/WRITE | 16              |                 |
| 0x C0202             | 0x 0602            | PS4            | NRZI CHANNEL A ON                    | READ/WRITE | 16              |                 |
| 0x C0204             | 0x 0604            | PS4            | NRZI CHANNEL B OFF                   | READ/WRITE | 16              |                 |
| 0x C0206             | 0x 0606            | PS4            | NRZI CHANNEL B ON                    | READ/WRITE | 16              |                 |
| 0x C0280             | 0x 0680            | PS5            | SANITY FLIP-FLOP RESET               | READ/WRITE | 16              |                 |
| 0x C0300             | 0x 0700            | PS6            | RESERVED                             |            | 16              |                 |
| 0x C0400             | 0x FF00            | 80186          | 80186 CONTROL BLOCK                  |            | 16<br>16        |                 |
| 0x C0420             | 0x FF20<br>0x FF50 | 80186<br>80186 | INTERRUPT CONTROL<br>TIMER 0 CONTROL |            | 16<br>16        |                 |
| 0x C0450             |                    |                |                                      |            | 16<br>16        |                 |
| 0x C045B             | 0x FF5B<br>0x FF60 | 80186<br>80186 | TIMER 1 CONTROL<br>TIMER 2 CONTROL   | (NOTE 4)   | 16              |                 |
| 0x C0460             |                    |                |                                      | (INUTE 4)  | 16<br>16        |                 |
| 0x C04A0             | 0x FFA0            | 80186          | CHIP SELECT CONTROL<br>DMA 0 CONTROL |            | 16              |                 |
| 0x C04C0             | 0x FFC0<br>0x FFD0 | 80186<br>80186 | DMA U CONTROL<br>DMA 1 CONTROL       | (NOTE 4)   | 16<br>16        |                 |
| 0x C04FD             |                    | 80186          | RELOCATION REGISTER                  | (NUTE 4)   | 16              |                 |
| 0x C04FE             | 0x FFFE            | 80186<br>UCS   | ROM                                  | READ/WRITE | 16              | 32K             |
| 0x F8000             |                    | 003            | NOM                                  | KLAD/WKITE | 10              | 52N             |

NOTES:

- 1. Bit is cleared by 80186 Microprocessor access.
- 2. Bit is set to 0 by 80186 Microprocessor access
  - unless a "dummy" read is pending.
- 3. Only even addresses are used in this range.
- 4. Timer 2 and DMA channel 1 provide RAM refresh for ISC.

LEGEND:

| BAF | Bus Abort Feature |
|-----|-------------------|

- DMA Direct Memory Access
- DPDRAM Dual Port Dynamic Random Access Memory
- LCS Lower RAM Chip Select
- MCS Memory Chip Select
- NRZI Nonreturn to Zero Insertion
- PCSR Peripheral Control and Status Register
- PS Peripheral Chip Select
- UCS Upper RAM Chip Select

Figure 3-70: CM195T ISC Card Address Map

### **Communications Processing**

The ISC card supports a variety of synchronous protocols. This diversity is provided by the 8274 Dual Channel Communications Chip. The 8274 controls two independent, full duplexed channels and directly supports certain of the RS-232C MODEM control signals. The MODEM control signals not supported by the 8274 are supported by other components of the ISC and are available to the 80186 Microprocessor on data bits D11—D08 during a read operation of the 8274 Dual Channel Communications Chip.

# **ID/Vector Register**

The ISC card ID/Vector Register is a 16-bit register that is used for two functions. Initially the register contains the 16-bit ISC card ID code. Later the register contains an 8-bit interrupt vector for the ID code. The interrupt vector is returned in response to an Interrupt Acknowledge (PIAK[0]) signal. The ISC card ID code is 0x 0201.

# **Page Register**

The ISC card uses a 24-bit address to do main memory operations. The lower 17 bits are provided by the 80186 Microprocessor. The most significant 7 bits are provided by the Page Register. The Page Register is a write only register for the 80186 Microprocessor. The two most significant address bits (bits 06 and 05) of the Page Register are always zero. This allows the Page Register to select thirty-two 128 kilobyte segments of main memory. The Page Register is addressed by the 80186 Microprocessor at its I/O address 0x 0482.

# **Peripheral Control and Status Register**

The ISC card contains an 8-bit Peripheral Control and Status Register (PCSR) which is addressable on the lower data byte of the I/O address (0x 048F—0x 0488). Each address corresponds to a single bit of the PCSR. These bits are reset by an 80186 Microprocessor read or write access except for PCSR6 that is controlled by the BAF.

|     | ISC PERIPHERAL CONTROL AND STATUS REGISTER                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| BIT | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 7   | <b>REQUEST SYSTEM BOARD CPU INTERRUPT</b> : PCSR7[0] maps to the I/O bus signal PINT1[0] and is asserted by the ISC firmware. When negated [1] by hardware, the interrupt has been acknowledged by the system board CPU. When asserted [0], the interrupt request is pending. A system reset negates the bit to a logic 1 (interrupt acknowledged). Addressing PCSR7[1] (0x 048F) clears (negates) the bit. |  |  |  |  |  |
| 6   | <b>I/O BUS LOCKED</b> : This bit is used for the BAF. Bit 6 is set by hardware when the 80186 Microprocessor is delayed in accessing main memory and must be cleared by firmware. During normal operation, PCSR6 is cleared by the 80186 Microprocessor addressing PCSR6 unless a "dummy" read is pending. Addressing PCSR6 (0x 048E) clears (negates) the bit.                                             |  |  |  |  |  |
| 5   | Not used by the ISC card.                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 4   | Not used by the ISC card.                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 3   | <b>CLEAR INT3</b> : This 80186 Microprocessor interrupt is set by the 8237 DMA Controller. Bit 3 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 048B.                                                                                                                                                                                                  |  |  |  |  |  |
| 2   | <b>CLEAR INT2:</b> This 80186 Microprocessor interrupt is set by the 8274 Dual Channel Communications Chip. Bit 2 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 048A.                                                                                                                                                                                 |  |  |  |  |  |
| 1   | <b>CLEAR INT1</b> : This 80186 Microprocessor interrupt is set by a system board CPU access of the ISC PCSR (attention interrupt). PCSR1 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0489. Following a system reset the state of PCSR1 is undefined and is cleared by the ISC firmware.                                                             |  |  |  |  |  |
| 0   | <b>CLEAR INTO:</b> This 80186 Microprocessor interrupt is set by an access of the ISC ID/Vector Register (except on an interrupt acknowledge cycle). Bit 0 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0488. Bit 0 is undefined on powerup and is cleared by the firmware.                                                                          |  |  |  |  |  |

# Local RAM

The ISC card contains 128K bytes of Dynamic Random Access Memory (DRAM) configured as 64K by 16 bits.

# Local ROM

Firmware for the 80186 Microprocessor is stored in the ROM. The ISC card ROM contains either 16K bytes configured as 8K by 16 bits or 32K bytes configured as 16K by 16 bits. The ROM is accessed via the Upper Memory Chip Select (UCS[0]) and address bits 14—00.

# **CM195T Equipped Device Table Data**

The following table shows the Equipped Device Table (EDT) data for an ISC card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are ISC software defined values. As such, the rq\_size and cq\_size values may differ between versions of ISC software.

| EDT ITEM                                                                                                                                                                                                                                                                                                                      | DATA                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (boot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (word_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file)<br>INDIRECT DEVICE (indir_dev) | 0x 0201<br>ISC<br>0x 1E<br>0x 3C<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0 |

# **CM195U STARLAN INTERFACE CARD**

# General

The AT&T STARLAN network is a low-cost, local area network for linking MS-DOS and UNIX system-based computers. STARLAN runs at 1 megabit per second on twisted pair wiring. The wiring is based on AT&T's Premises Distribution System (PDS). The lowest level protocols conform to the IEEE 802.3 standards for Carrier Sense Multiple Access with Collision Detection (CSMA/CD) local area networking. The high-level protocols support applications written for Microsoft Networks.

Connection to STARLAN from a 3B2 computer is provided by a CM195U STARLAN Interface Card, which plugs into a 3B2 computer feature card slot. This card is called a Network Access Unit (NAU) in terms of STARLAN. The CM195U Card supports asynchronous terminals at speeds up to 19.2 kilobits per second.

Figure 3-71 is a functional block diagram of the CM195U Card. The CM195U Network Access Unit Card consists of the Common Input/Output (CIO) circuits and the Network Interface circuits. The CIO circuits include the following:

- INTEL 80186 Microprocessor
- Input/Output (I/O) Bus Control
- Identification/Vector (ID/Vector) Register
- Page Register
- Peripheral Control and Status Register (PCSR)
- Local Random Access Memory (RAM)
- Local Read Only Memory (ROM)
- Miscellaneous Circuits.

The Network Interface is an INTEL 82586 Ethernet Controller. The Network Interface circuits function as a network coprocessor and is an INTEL 82586 Local Area Network (LAN) Coprocessor.

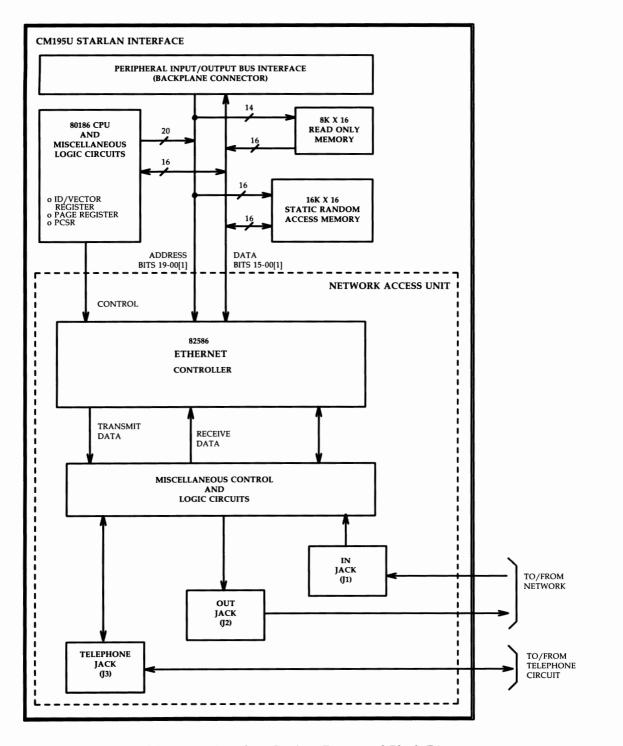



Figure 3-71: CM195U STARLAN Interface Card — Functional Block Diagram

### **INTEL 80186 Microprocessor**

The intelligence of the STARLAN card is provided by an INTEL 80186, 16-bit microprocessor operating at 8 MHz. Some of the microprocessor features used for the STARLAN card are described in the following paragraphs. Figure 3-72 shows the STARLAN Interface card address map.

### Input/Output Bus Control

I/O bus control circuitry responds to I/O bus and 80186 Microprocessor control signals. Three major paths are listed below:

- 80186 Microprocessor read or write of the system board main memory
- System board CPU read or write STARLAN card
- Interrupt Acknowledge (PIAK[0]).

The I/O bus control circuitry responds to the I/O bus and to the 80186 Microprocessor control signals by selectively enabling the appropriate I/O bus signals. In addition, the Bus Abort Feature (BAF) can be prematurely forced. Certain PCSR bits can also be set when the STARLAN Interface card is accessed.

### **ID/Vector Register**

The STARLAN Interface card ID/Vector Register is a 16-bit register that is used for two functions. Initially the register contains the 16-bit STARLAN Interface card ID code. Later the register contains an 8-bit interrupt vector. The interrupt vector is returned in response to an Interrupt Acknowledge (PIAK[0]) signal. On reset, the 80186 Microprocessor writes the ID code to the ID/Vector Register and waits. The STARLAN Interface card ID code is 0x 0002. During system self-configuration, the system board CPU polls each feature card slot. This polling reads the ID/Vector Register. The two bytes of the ID/Vector Register are a unique 16-bit ID code of the card.

### **Page Register**

The STARLAN Interface card uses a 24-bit I/O address to do system board main memory operations. The lower 17 bits are provided by the 80186 Microprocessor. The most significant 7 bits are provided by the Page Register. The Page Register is a write only register for the 80186 Microprocessor. The two most significant address bits (bits 06 and 05) of the Page Register are always zero. This allows the Page Register to select thirty-two 128 kilobyte segments of main memory. The Page Register is addressed by the 80186 Microprocessor at its I/O address 0x 0482. Bits 06—00 of the Page Register map to Peripheral Physical Address bits 23—17 (PPA23—17[1]).

|                   | STARLAN INTERFACE CARD ADDRESS MAP |                |                         |            |                 |                 |  |
|-------------------|------------------------------------|----------------|-------------------------|------------|-----------------|-----------------|--|
| MEMORY<br>ADDRESS | I/O<br>ADDRESS                     | CHIP<br>SELECT | DESCRIPTION             | ACCESS     | WIDTH<br>(BITS) | SIZE<br>(BYTES) |  |
| 0x 00000          | _                                  | LCS            | RAM (VECTOR TABLE)      | READ/WRITE | 16              | 128             |  |
| 0x 00180          | _                                  | LCS            | RAM (APPLICATION)       | READ/WRITE | 16              | 31.9K           |  |
| 0x 08000          |                                    | _              | NOT USED                |            | _               |                 |  |
| 0x 80000          | _                                  | MCS            | DPDRAM                  | READ/WRITE | 16              | 128K/PAGE       |  |
| 0x A0000          | _                                  | MCS            | NOT USED                |            | _               |                 |  |
| 0x C0000          | 0x 0400                            | PS0            | NOT USED                |            | —               | -               |  |
| 0x C0080          | 0x 0480                            | PS1            | ID/VECTOR REGISTER      | WRITE      | 16              | _               |  |
| 0x C0082          | 0x 0482                            | PS1            | PAGE REGISTER           | WRITE      | 7               | _               |  |
| 0x C0084          | 0x 0484                            | PS1            | PCSR BITS 7-0           | READ       | 8               |                 |  |
| 0x C0086          | 0x 0486                            | PS1            | RESERVED                | _          | _               | _               |  |
| 0x C0088          | 0x 0488                            | PS1            | PCSR BIT 0 (INT0)       | (NOTE 1)   | 1               |                 |  |
| 0x C0089          | 0x 0489                            | PS1            | PCSR BIT 1 (INT1)       | (NOTE 1)   | 1               |                 |  |
| 0x C008A          | 0x 048A                            | PS1            | PCSR BIT 2 (INT2)       | (NOTE 1)   | 1               | _               |  |
| 0x C008B          | 0x 048B                            | PS1            | PCSR BIT 3 (INT3)       | (NOTE 1)   | 1               |                 |  |
| 0x C008C          | 0x 048C                            | PS1            | PCSR BIT 4 (NOT USED)   |            | _               | _               |  |
| 0x C008D          | 0x 048D                            | PS1            | PCSR BIT 5              | RESERVED   | 1               |                 |  |
| 0x C008E          | 0x 048E                            | PS1            | PCSR BIT 6 (BAF)        | (NOTE 2)   | 1               |                 |  |
| 0x C008F          | 0x 048F                            | PS1            | PCSR BIT 7 (PINT1[0])   | (NOTE 1)   | 1               |                 |  |
| 0x C0100          | 0x 0500                            | PS2            | (NOT USED)              |            | _               | _               |  |
| 0x C0180          | 0x 0580                            | PS3            | (NOT USED)              | _          | _               |                 |  |
| 0x C0200          | 0x 0600                            | PS4            | (NOT USED)              |            |                 | _               |  |
| 0x C0280          | 0x 0680                            | PS5            | (NOT USED)              |            |                 | _               |  |
| 0x C0300          | 0x 0700                            | PS6            | 82586 CHANNEL ATTENTION | _          |                 | -               |  |
| 0x C0400          | 0x FF00                            | 80186          | 80186 CONTROL BLOCK     |            | 16              | _               |  |
| 0x C0420          | 0x FF20                            | 80186          | INTERRUPT CONTROL       |            | 16              | _               |  |
| 0x C0450          | 0x FF50                            | 80186          | TIMER 0 CONTROL         | _          | 16              |                 |  |
| 0x C0458          | 0x FF58                            | 80186          | TIMER 1 CONTROL         | _          | 16              | _               |  |
| 0x C0460          | 0x FF60                            | 80186          | TIMER 2 CONTROL         |            | 16              | _               |  |
| 0x C04A0          | 0x FFA0                            | 80186          | CHIP SELECT CONTROL     |            | 16              | _               |  |
| 0x C04C0          | 0x FFC0                            | 80186          | DMA 0 CONTROL           |            | 16              | -               |  |
| 0x C04D0          | 0x FFD0                            | 80186          | DMA 1 CONTROL           |            | 16              |                 |  |
| 0x C04FE          | 0x FFFE                            | 80186          | RELOCATION REGISTER     | _          | 16              | -               |  |
| 0x FC000          | _                                  | UCS            | ROM                     | READ       | 16              | 16K             |  |

NOTES:

Bit is cleared [0] (reset) by 80186 Microprocessor access.
 Bit is cleared [0] (reset) by 80186 Microprocessor access unless "dummy" read of BAF is pending.

#### LEGEND:

| BAF    | Bus Abort Feature                      |
|--------|----------------------------------------|
| DMA    | Direct Memory Access                   |
| DPDRAM | Dual Port Dynamic Random Access Memory |
| LCS    | Lower RAM Chip Select                  |
| MCS    | Memory Chip Select                     |
| NRZI   | Nonreturn to Zero Insertion            |
| PCSR   | Peripheral Control and Status Register |
| PS     | Peripheral Select                      |
| UCS    | Upper RAM Chip Select                  |
|        |                                        |

# Figure 3-72: CM195U STARLAN Interface Card Address Map

# **Peripheral Control and Status Register**

The STARLAN Interface card contains an 8-bit Peripheral Control and Status Register (PCSR) which is addressable on the lower data byte of the I/O address (0x 048F—0x 0488). Each address corresponds to a single bit of the PCSR. These bits are reset by an 80186 Microprocessor read or write access.

|     | STARLAN INTERFACE PERIPHERAL CONTROL AND STATUS REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| BIT | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 7   | <b>REQUEST SYSTEM BOARD CPU INTERRUPT</b> : PCSR7[0] maps to the I/O bus signal PINT1[0] and is asserted by the STARLAN Interface card firmware. When negated [1] by hardware, the interrupt has been acknowledged by the system board CPU. When asserted [0], the interrupt request is pending. A system reset negates the bit to a logic 1 (interrupt acknowledged). Addressing PCSR7[1] (0x 048F) clears (negates) the bit.                                                                          |  |  |  |  |  |
| 6   | <b>I/O BUS LOCKED</b> : This bit is used for the BAF. The BAF is not supported on the CM195U STARLAN Interface Card. Bit 6 is set [1] by hardware when the 80186 Microprocessor is delayed in accessing main memory and must be cleared by firmware. During normal operation, PCSR6 is cleared by the 80186 Microprocessor addressing PCSR6 unless a "dummy" read is pending. The 80186 Microprocessor cannot access DPDRAM when PCSR6 is set [1]. Addressing PCSR6 (0x 048E) clears (negates) the bit. |  |  |  |  |  |
| 5   | Bit 5 is not used by the STARLAN Interface card. Addressing PCS5[1] (0x 48D) clears (negates) the bit.                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 4   | PCSR4 is reserved for future STARLAN Interface card development. Addressing PCS4[1]<br>(0x 48C) clears (negates) the bit.                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 3   | PCSR3 is not used by the STARLAN Interface card. Addressing PCSR3 (0x 048B) clears (resets) the bit.                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 2   | PCSR2 is used by the 82586 LAN Coprocessor to interrupt the 80186 Microprocessor.<br>Addressing PCSR3 (0x 048A) clears (resets) the bit.                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 1   | <b>CLEAR INT1</b> : This 80186 Microprocessor interrupt is set by a system board CPU access of the STARLAN Interface PCSR (attention interrupt). PCSR1 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0489. Following a system reset the state of PCSR1 is undefined and is cleared by the STARLAN firmware.                                                                                                                                       |  |  |  |  |  |
| 0   | <b>CLEAR INTO:</b> This 80186 Microprocessor interrupt is set by a system board CPU access of the STARLAN Interface card ID/Vector Register (except on an interrupt acknowledge cycle). This interrupt is the SYSGEN and Express Queue interrupt. Bit 0 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0488. Bit 0 is undefined on powerup and is cleared by the STARLAN firmware.                                                                 |  |  |  |  |  |

# Local RAM

The STARLAN Interface card contains 32K bytes of Static Random Access Memory (SRAM) configured as 16K by 16 bits. The DRAM is accessed via the Low Memory Chip Select (LCS0) from 80186 Microprocessor and address bits 12—00. Note that 256K bytes of RAM address space is reserved. The 32K bytes of RAM is used for intermediate data storage of the data being transmitted to/received from the network.

### Local ROM

Firmware for the 80186 Microprocessor is stored in the ROM. The STARLAN Interface card ROM contains 16K bytes configured as 8K by 16 bits. The ROM is accessed via the Upper Memory Chip Select (UCS[0]) and address bits 14—00.

## **Network Interface**

The AT&T STARLAN is an Ethernet compatible, local area network. Data is transferred over the network by attaching a destination identification to the data to be transferred. The **nisend** command is used to attach a destination code and file name to the data to be transferred. The STARLAN Interface Card firmware handles the transfer of the data between the 3B2 computer main memory and the Network Interface local RAM. The data to be transferred is divided into packets of 1024 bytes for transfer over the network. The Ethernet Controller autonomously reads the data from local RAM, converts the data to serial stream, and transmits the stream over the network. If collisions are detected, the information packet is retransmitted automatically. The receiving system acknowledges the receipt of the data.

#### **Ethernet Controller Circuit**

The Network Interface is a 82586 Ethernet Controller that manages the process of transmitting and receiving data over the network. The primary functions of the controller are to do the following:

- Decode the serial data
- Check for data integrity
- Convert serial data into parallel data format
- Store parallel data in the local RAM
- Save and report networking errors for the node.

The Network Access Unit Serial Interface provides the connection between the 82586 LAN Coprocessor and the transmission media. The interface consists of the following signals.

#### **Receive Pair**

A differential signal that is active when any data is received.

#### **Transmit Pair**

A differential signal that is active when any data is transmitted.

#### **Collision Presence Pair**

A differential signal that is active while a collision is in progress.

Connectors are provided to support both daisy-chained and star connections (J1 and J2). A connector (J3) is also provided for a telephone link to an AT&T Premises Distribution System.

# CM195U Equipped Device Table Data

The following table shows the Equipped Device Table (EDT) data for a STARLAN Interface card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are STARLAN software defined values. As such, the rq\_size and cq\_size values may differ between versions of STARLAN software.

| EDT ITEM                        | DATA    |
|---------------------------------|---------|
| IDENTIFICATION CODE (ID_code)   | 0x 0002 |
| DEVICE NAME (dev_name)          | NI      |
| REQUEST QUEUE SIZE (rq_size)    | 0x 0A   |
| COMPLETION QUEUE SIZE (cq_size) | 0x 19   |
| BOOT DEVICE (boot_dev)          | 0       |
| WORD SIZE (word_size)           | 1       |
| BOARD SIZE (brd_size)           | 0       |
| SMART BOARD (smrt_brd)          | 1       |
| CONSOLE CAPABILITY (cons_cap)   | 0       |
| CONSOLE FILE (cons_file)        | 0       |
| INDIRECT DEVICE (indir_dev)     | 0       |

# **Ethernet Data Packet Format**

The format of an Ethernet Data Packet is as follows:

| FIELD | PREAMBLE | DESTINATION<br>ADDRESS | SOURCE<br>ADDRESS | TYPE    | DATA             | CRC     |
|-------|----------|------------------------|-------------------|---------|------------------|---------|
| SIZE  | 64 BITS  | 48 BITS                | 48 BITS           | 16 BITS | 46 TO 1500 BYTES | 32 BITS |

**PREAMBLE** The Preamble is a 64-bit field of alternating 1's and 0's, ending with two consecutive 1's. This field synchronizes the receiving circuits to the incoming data packet.

# **DESTINATION ADDRESS**

The 48-bit Destination Address field is the nodal address to which the data is being transmitted.

### SOURCE ADDRESS

The 48-bit Source Address field is the nodal address from which the data is being transmitted.

- **TYPE** The 16-bit Type field is used for a high-level data protocol.
- **DATA** The Data field is the data to be sent over the network and is from 46 to 1500 bytes in length.
- **CRC** The 32-bit Cyclic Redundancy Check (CRC) field is calculated on all of the other fields. This field is also called the Frame Check Sequence field.

# **CM195W SCSI HOST ADAPTER CARD**

# General

The CM195W Small Computer Systems Interface (SCSI) Host Adapter Card provides an asynchronous, single-ended interface to the industry standard SCSI bus. Functionally, the CM195W Card consists of the Common Input/Output (CIO) circuits, and SCSI Protocol Controller. Figure 3-73 is a functional block diagram of the CM195W SCSI Host Adapter Card. The CM195W Card consists of the CIO circuits and a SCSI Protocol Controller. The CIO circuits include the following:

- INTEL 80186 Microprocessor
- Input/Output (I/O) Bus Control
- Identification/Vector (ID/Vector) Register
- Page Register
- Peripheral Control and Status Register (PCSR)
- Local Random Access Memory (RAM)
- Local Read Only Memory (ROM)
- Miscellaneous Circuits.

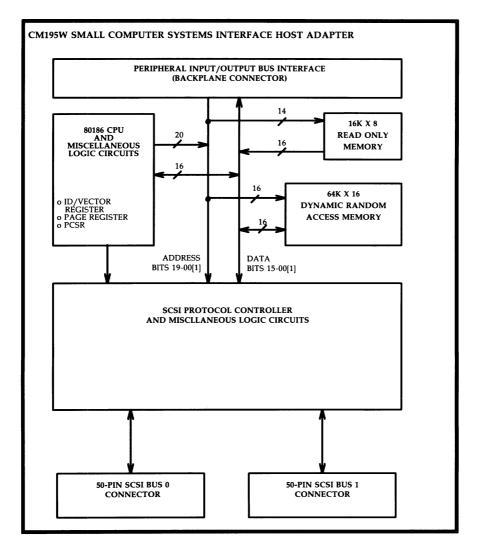



Figure 3-73: CM195W SCSI Host Adapter Card — Functional Block Diagram

#### **INTEL 80186 Microprocessor**

The intelligence of the CM195W Card is provided by an INTEL 80186, 16-bit microprocessor operating at 8 MHz. Some of the microprocessor features used for the CM195W Card are described in the following paragraphs. Figure 3-74 shows the CM195W SCSI Host Adapter Card address map.

# **ID/Vector Register**

The CM195W SCSI Host Adapter Card ID/Vector Register is a 16-bit register that is used for two functions. Initially the register contains the 16-bit CM195W Card ID code. Later the register contains an 8-bit interrupt vector for the ID code. The interrupt vector is returned in response to an Interrupt Acknowledge (PIAK[0]) signal. On reset, the 80186 Microprocessor writes the CM195W Card ID code to the high order bits (byte 1) of the ID/Vector Register and waits. The CM195W Card ID code is 0x 0100. During system self-configuration, the system board CPU polls each feature card slot. This polling reads the ID/Vector Register. The two bytes of the ID/Vector Register form a unique 16-bit ID code of the card.

### **Page Register**

The CM195W Card uses a 24-bit I/O address to do main memory operations. The lower 17 bits are provided by the 80186 Microprocessor. The most significant 7 bits are provided by the Page Register. The Page Register is a write only register for the 80186 Microprocessor. The two most significant address bits (bits 06 and 05) of the Page Register are always zero. This allows the Page Register to select thirty-two 128 kilobyte segments of main memory. The Page Register is addressed by the 80186 Microprocessor at its I/O address 0x 0482. Bits 06—00 of the Page Register map to Peripheral Physical Address bits 23—17 (PPA23—17[1]).

# FUNCTIONAL DESCRIPTION -

| SCSI HOST ADAPTER CARD OUTPUT ADDRESS MAP |                |                |                                  |            |                 |                 |
|-------------------------------------------|----------------|----------------|----------------------------------|------------|-----------------|-----------------|
| MEMORY<br>ADDRESS                         | I/O<br>ADDRESS | CHIP<br>SELECT | DESCRIPTION                      | ACCESS     | WIDTH<br>(BITS) | SIZE<br>(BYTES) |
| 0x 00000                                  | _              | LCS            | DRAM (VECTOR TABLE)              | READ/WRITE | 16              | 128             |
| 0x 00080                                  | _              | LCS            | DRAM (DEMON)                     | READ/WRITE | 16              | 123.9K          |
| 0x 1F060                                  |                | LCS            | DRAM (EDT, SANITY, STATE FLAGS)  | READ/WRITE | 16              | 4K              |
| 0x 20000                                  |                | LCS            | NOT USED                         | ,<br>      | _               | 128K            |
| 0x 40000                                  | _              |                | NOT USED                         |            | _               | 256K            |
| 0x 80000                                  | _              | MCS            | DPDRAM                           | READ/WRITE | 16              | 128K            |
| 0x A0000                                  |                | MCS            | NOT USED                         | ,<br>      | _               | 256K            |
| 0x C0000                                  | 0x 0400        | PS0            | (NOT USED)                       | _          |                 | 1               |
| 0x C0001                                  | 0x 0401        | PS0            | 5386 DATA REGISTER               | READ/WRITE | 8               | 1               |
| 0x C0003                                  | 0x 0403        | PS0            | 5386 COMMAND REGISTER            | READ/WRITE | 8               | 1               |
| 0x C0005                                  | 0x 0405        | PS0            | 5386 CONTROL REGISTER            | READ/WRITE | 8               | 1               |
| 0x C0007                                  | 0x 0407        | PS0            | 5386 DESTINATION ID              | READ/WRITE | 8               | 1               |
| 0x C0009                                  | 0x 0409        | PS0            | 5386 AUXILIARY STATUS REGISTER   | RÉAD       | 8               | 1               |
| 0x C000B                                  | 0x 040B        | PS0            | 5386 ID REGISTER                 | READ       | 8               | 1               |
| 0x C000D                                  | 0x 040D        | PS0            | 5386 INTERRUPT REGISTER          | READ       | 8               | 1               |
| 0x C000F                                  | 0x 040F        | PS0            | 5386 SOURCE ID                   | READ       | 8               | 1               |
| 0x C0013                                  | 0x 0413        | PS0            | 5386 DIAGNOSTIC REGISTER         | READ       | 8               | 1               |
| 0x C0019                                  | 0x 0419        | PS0            | 5386 TRANSFER CONTROL MSB        | READ/WRITE | 8               | 1               |
| 0x C001D                                  | 0x 041D        | PS0            | 5386 TRANSFER CONTROL LSB        | READ/WRITE | 8               | 1               |
| 0x C001F                                  | 0x 041F        | PS0            | 5386 (RESERVED)                  | ,<br>      | 8               | 1               |
| 0x C001F                                  | 0x 041F        | PS0            | 5386 FIFO ACCESS                 | READ/WRITE | 8               | 1               |
| 0x C0080                                  | 0x 0480        | PS1            | ID/VECTOR REGISTER               | WRITE      | 16              | 2               |
| 0x C0082                                  | 0x 0482        | PS1            | 80186 PAGE REGISTER              | WRITE      | 7               | 1               |
| 0x C0084                                  | 0x 0484        | PS1            | PCSR BITS 15-0                   | READ       | 8               | 2               |
| 0x C0086                                  | 0x 0486        | PS1            | SCSI BUS RESET                   | WRITE      | 1               | _               |
| 0x C0088                                  | 0x 0488        | PS1            | PCSR BIT 0 (INT0)                |            | 1               |                 |
| 0x C0089                                  | 0x 0489        | PS1            | PCSR BIT 1 (INT1)                |            | 1               |                 |
| 0x C008A                                  | 0x 048A        | PS1            | PCSR BIT 2 (INT2)                | _          | 1               |                 |
| 0x C008B                                  | 0x 048B        | PS1            | PCSR BIT 3 (INT3)                |            | 1               |                 |
| 0x C008C                                  | 0x 048C        | PS1            | PCSR BIT 4 (INT3)                | _          | 1               |                 |
| 0x C008D                                  | 0x 048D        | PS1            | PCSR BIT 5 (NMI)                 | _          | 1               |                 |
| 0x C008E                                  | 0x 048E        | PS1            | PCSR BIT 6 (INT2)                | _          | 1               |                 |
| 0x C008F                                  | 0x 048F        | PS1            | PCSR BIT 7 (PINT)                | _          | 1               |                 |
| 0x C00A2                                  | 0x 04A2        | PS1            | SCSI TO 3B2 PAGE REGISTER        | WRITE      | 7               | 1               |
| 0x C00C2                                  | 0x 04C2        | PS1            | 3B2 TO SCSI PAGE REGISTER        | WRITE      | 7               | 1               |
| 0x C0100                                  | 0x 0500        | PS2            | RESET 3B2 FIFO                   |            |                 | 1               |
| 0x C0180                                  | 0x 0580        | PS3            | RESET SCSI FIFO                  |            |                 | 1               |
| 0x C0200                                  | 0x 0600        | PS4            | 3B2 FIFO WORD ACCESS             | READ/WRITE | 16              | 2               |
| 0x C0280                                  | 0x 0680        | PS5            | 8237 CHANNEL 0 ADDRESS REGISTER  | READ/WRITE | 8               | 1               |
| 0x C0282                                  | 0x 0682        | PS5            | 8237 CHANNEL 0 CONTROL REGISTER  | READ/WRITE | 8               | 1               |
| 0x C0284                                  | 0x 0684        | PS5            | 8237 CHANNEL 1 ADDRESS REGISTER  | READ/WRITE | 8               | 1               |
| 0x C0286                                  | 0x 0682        | PS5            | 8237 CHANNEL 1 CONTROL REGISTER  | READ/WRITE | 8               | 1               |
| 0x C0290                                  | 0x 0690        | PS5            | 8237 COMMAND AND STATUS REGISTER | READ/WRITE | 8               | 1               |
| 0x C0292                                  | 0x 0692        | PS5            | 8237 ILLEGAL REQUEST REGISTER    | READ/WRITE | 8               | 1               |
| 0x C0294                                  | 0x 0694        | PS5            | 8237 ILLEGAL MASK REGISTER       | READ/WRITE | 3               | 1               |
| 0x C0296                                  | 0x 0696        | PS5            | 8237 ILLEGAL MODE REGISTER       | READ/WRITE | 8               | 1               |
| 0x C0298                                  | 0x 0698        | PS5            | 8237 ILLEGAL BYTE FLIPFLOP       | READ/WRITE | 1               | 1               |
| 0x C029A                                  | 0x 069A        | PS5            | 8237 TEMPORARY REG MASTER CLEAR  | READ/WRITE | 8               | 1               |
| 0x C029C                                  | 0x 069C        | PS5            | 8237 ILLEGAL CLEAR MASK REGISTER | READ/WRITE | 1               | 1               |
| 0x C029E                                  | 0x 069E        | PS5            | 8237 ILLEGAL MASK REGISTER BITS  | READ/WRITE | 4               |                 |
| 0x C029F                                  | 0x 069F        | PS5            | 8237 (RESERVED)                  |            |                 | 96              |

Figure 3-74: CM195W SCSI Host Adapter Card Address Map (Sheet 1 of 2)

| SCSI HOST ADAPTER CARD OUTPUT ADDRESS MAP (Contd) |                |                |                                     |            |                 |                 |
|---------------------------------------------------|----------------|----------------|-------------------------------------|------------|-----------------|-----------------|
| MEMORY<br>ADDRESS                                 | I/O<br>ADDRESS | CHIP<br>SELECT | DESCRIPTION                         | ACCESS     | WIDTH<br>(BITS) | SIZE<br>(BYTES) |
| 0x C0300                                          | 0x 0700        | PS6            | DUART MODE REGISTER A               | READ/WRITE | 16              | 2               |
| 0x C0302                                          | 0x 0702        | PS6            | DUART STATUS REGISTER A             | READ       | 16              | 2               |
| 0x C0302                                          | 0x 0702        | PS6            | DUART CLOCK REGISTER A              | WRITE      | 16              | 2               |
| 0x C0304                                          | 0x 0704        | PS6            | DUART (RESERVED                     | READ       | 16              | 2               |
| 0x C0304                                          | 0x 0704        | PS6            | DUART COMMAND REGISTER A            | WRITE      | 16              | 2               |
| 0x C0306                                          | 0x 0706        | PS6            | DUART RECEIVE HOLD REGISTER A       | READ       | 16              | 2               |
| 0x C0306                                          | 0x 0706        | PS6            | DUART TRANSMIT HOLD REGISTER A      | WRITE      | 16              | 2               |
| 0x C0308                                          | 0x 0708        | PS6            | DUART IPC REGISTER                  | READ       | 16              | 2               |
| 0x C0308                                          | 0x 0708        | PS6            | DUART AUXILIARY CONTROL REGISTER    | WRITE      | 16              | 2               |
| 0x C030A                                          | 0x 070A        | PS6            | DUART INTERRUPT STATUS REGISTER     | READ       | 16              | 2               |
| 0x C030A                                          | 0x 070A        | PS6            | DUART INTERRUPT MASK REGISTER       | WRITE      | 16              | 2               |
| 0x C030C                                          | 0x 070C        | PS6            | DUART CONTROL, TIMER UPPER REGISTER | READ/WRITE | 16              | 2               |
| 0x C030E                                          | 0x 070E        | PS6            | DUART CONTROL, TIMER LOWER REGISTER | READ/WRITE | 16              | 2               |
| 0x C0310                                          | 0x 0710        | PS6            | DUART MODE REGISTER B               | READ/WRITE | 16              | 2               |
| 0x C0312                                          | 0x 0712        | PS6            | DUART STATUS REGISTER B             | RÉAD       | 16              | 2               |
| 0x C0312                                          | 0x 0712        | PS6            | DUART CLOCK REGISTER B              | WRITE      | 16              | 2               |
| 0x C0314                                          | 0x 0714        | PS6            | DUART (RESERVED                     | READ       | 16              | 2               |
| 0x C0314                                          | 0x 0714        | PS6            | DUART COMMAND REGISTER B            | WRITE      | 16              | 2               |
| 0x C0316                                          | 0x 0716        | PS6            | DUART RECEIVE HOLD REGISTER B       | READ       | 16              | 2               |
| 0x C0316                                          | 0x 0716        | PS6            | DUART TRANSMIT HOLD REGISTER B      | WRITE      | 16              | 2               |
| 0x C0318                                          | 0x 0718        | PS6            | (RESERVED)                          | READ/WRITE | 16              | 2               |
| 0x C031A                                          | 0x 071A        | PS6            | DUART INPUT PORT                    | READ       | 16              | 2               |
| 0x C031A                                          | 0x 071A        | PS6            | DUART OUTPUT PORT                   | WRITE      | 16              | 2               |
| 0x C031C                                          | 0x 071C        | PS6            | DUART START COUNT COMMAND           | _          | _               | 1               |
| 0x C031C                                          | 0x 071C        | PS6            | DUART SET OP BITS                   | _          |                 | 1               |
| 0x C031E                                          | 0x 071E        | PS6            | DUART STOP COUNT COMMAND            | _          | _               | 1               |
| 0x C031E                                          | 0x 071E        | PS6            | DUART RESET OP BITS                 | _          |                 | 1               |
| 0x C0320                                          | 0x 0720        | PS6            | DUART RESET                         | WRITE      |                 | 16              |
| 1                                                 |                | 1              |                                     | 1          | 1               |                 |
| 0x C032F                                          | 0x 072F        | PS6            | DUART RESET                         | WRITE      | _               | 16              |
| 0x C0400                                          | 0x FF00        | 80186          | 80186 CONTROL BLOCK                 | _          |                 | 256             |
| 0x C0420                                          | 0x FF20        | 80186          | INTERRUPT CONTROL                   | READ/WRITE | 16              | 32              |
| 0x C0450                                          | 0x FF50        | 80186          | TIMER 0 CONTROL                     | READ/WRITE | 16              | 8               |
| 0x C0458                                          | 0x FF58        | 80186          | TIMER 1 CONTROL                     | READ/WRITE | 16              | 8               |
| 0x C0460                                          | 0x FF60        | 80186          | TIMER 2 CONTROL                     | READ/WRITE | 16              | 8               |
| 0x C04A0                                          | 0x FFA0        | 80186          | CHIP SELECT CONTROL                 | READ/WRITE | 16              | 10              |
| 0x C04C0                                          | 0x FFC0        | 80186          | DMA 0 CONTROL                       | READ/WRITE | 16              | 12              |
| 0x C04D0                                          | 0x FFD0        | 80186          | DMA 1 CONTROL                       | READ/WRITE | 16              | 12              |
| 0x C04FE                                          | 0x FFFE        | 80186          | RELOCATION REGISTER                 | READ/WRITE | 16              | 2               |
| 0x F8000                                          | _              | UCS            | ROM                                 | READ/WRITE | 16              | 32K             |

Figure 3-74: CM195W SCSI Host Adapter Card Address Map (Sheet 2 of 2)

# **Peripheral Control and Status Register**

The CM195W Card contains a 16-bit Peripheral Control and Status Register (PCSR) used to control and monitor certain CM195W functions. The CM195W PCSR bits are defined in the following table.

|     | CM195W PERIPHERAL CONTROL AND STATUS REGISTER                                                                                                                                                                                                                                     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIT | DESCRIPTION                                                                                                                                                                                                                                                                       |
| 15  | <b>BYTE WRITE POINTER</b> : PCSR15[1] points to the FIFO, FIFO 0 or 1, in which the next byte of data will be written. PCSR15 is incremented after each access by hardware. PCSR15 is zeroed by activating the 80186 Microprocessor Peripheral Chip Select 3 (PSC3).              |
| 14  | <b>BYTE READ POINTER:</b> PCSR14[1] points to the FIFO, FIFO 0 or 1, from which the next byte of data will be read. PCSR14 is incremented after each access by hardware. PCSR14 is zeroed by activating the 80186 Microprocessor Peripheral Chip Select 2 (PSC2).                 |
| 13  | <b>BYTE EMPTY INDICATOR:</b> PCSR13[1] indicates if the FIFO pointed to by the Byte Read Pointer is empty. The 80186 Microprocessor checks PCSR13 before attempting to read data from the FIFO. If PCSR13 is set, data read from the FIFO by the 80186 Microprocessor is invalid. |
| 12  | <b>BYTE FULL INDICATOR</b> : PCSR12[1] indicates if the FIFO pointed to by the Byte Write Pointer is full. The 80186 Microprocessor checks PCSR12 before attempting to write data to the FIFO. If PCSR12 is set, data written to the FIFO by the 80186 Microprocessor is lost.    |
| 11  | <b>WORD FULL FLAG 1</b> : PCSR11[0] is used to indicate if the FIFO containing the most significant byte is full. Additional writes to the word side of the FIFO by the 80186 Microprocessor while PCSR11 is set results in lost data.                                            |
| 10  | <b>WORD FULL FLAG 0</b> : PCSR10[0] is used to indicate if the FIFO containing the least significant byte is full. Additional writes to the word side of the FIFO by the 80186 Microprocessor while PCSR10 is set results in lost data.                                           |
| 09  | <b>WORD EMPTY FLAG 1</b> : PCSR09[0] is used to indicate if the most significant byte of the word side of the FIFO is available. PCSR09 is polled prior to an 80186 Microprocessor read of the word side of the FIFO.                                                             |
| 08  | <b>WORD EMPTY FLAG 0</b> : PCSR08[0] is used to indicate if the least significant byte of the word side of the FIFO is available. PCSR08 is polled prior to an 80186 Microprocessor read of the word side of the FIFO.                                                            |

| BIT | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 07  | <b>REQUEST SYSTEM BOARD CPU INTERRUPT</b> : PCSR07[0] maps to the I/O bus signal PINT0[0] and is asserted by the CM195W firmware. When negated [1] by hardware, the interrupt has been acknowledged by the system board CPU. When asserted [0], the interrupt request is pending. A system reset negates the bit to a logic 1 (interrupt acknowledged). Addressing PCSR7[1] (0x 048F) clears (negates) the bit.          |
| 06  | <b>INT2—SCSI PROTOCOL CONTROLLER CHIP (SPCC) INTERRUPT</b> : PCSR06[0] is used to<br>indicate the current state of the NCR 5386 SPCC interrupt request. PCSR06 is cleared by<br>reading the 5386 Interrupt Request Register. Addressing PCSR6 (0x 040D) clears (negates) the<br>bit.                                                                                                                                     |
| 05  | <b>NONMASKABLE INTERRUPT</b> : PCSR05[0] is used to indicate the CM195W received a peripheral fault during a DMA transfer between the FIFO and main memory. Addressing PCSR05 (0x 048D) clears (negates) the bit. On powerup, PCSR05 is undefined and is cleared by firmware.                                                                                                                                            |
| 04  | <b>INT3—8237 DMA COMPLETION INTERRUPT</b> : PCSR04[0] is used to indicate an end of process has been reached during a DMA transfer from the main memory to the FIFO. PCSR04 is set by the 8237 and is cleared by addressing PCSR04 (0x 048C). On powerup, PCSR04 is undefined and is cleared by firmware.                                                                                                                |
| 03  | <b>INT3—8237 DMA COMPLETION INTERRUPT</b> : PCSR03[0] is used to indicate an end of process has been reached during a DMA transfer from the main memory to the FIFO. PCSR04 is set by the 8237 and is cleared by addressing PCSR03 (0x 048B). On powerup, PCSR03 is undefined and is cleared by firmware.                                                                                                                |
| 02  | <b>INT2—SCSI BUS RESET</b> : PCSR02[0] is set when a SCSI bus reset condition is detected.<br>Addressing PCSR02 (0x 048A) clears the bit; however, the bit remains set as long as the SCSI bus reset condition exists. On powerup, PCSR02 is undefined and is cleared by firmware.                                                                                                                                       |
| 01  | <b>INT1—SYSGEN ATTENTION INTERRUPT</b> : PCSR01 is set by a CPU system board access of the CM195W Control Register. PCSR01 is cleared during the interrupt service routine by at access of the 80186 Microprocessor address 0x 0489. Following a system reset the state of PCSR1 is undefined and is cleared by the CM195W firmware.                                                                                     |
| 00  | <b>INT0—PRE-SYSGEN/EXPRESS INTERRUPT</b> : This 80186 Microprocessor interrupt is set by an access of the CM195W ID/Vector Register (except on an interrupt acknowledge cycle). This interrupt is the SYSGEN and Express Queue interrupt. PCSR00 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0488. Bit 0 is undefined on powerup and is cleared by the firmware. |

# Local RAM

The CM195W Card contains 128K bytes of Dynamic Random Access Memory (DRAM) configured as 64K by 16 bits.

# Local ROM

The CM195W Card firmware is in 32K bytes of ROM configured as 16K by 16 bits.

# **CM195W Equipped Device Table Data**

The following table shows the Equipped Device Table (EDT) data for a CM195W Card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are SCSI software defined values. As such, the rq\_size and cq\_size values may differ between versions of SCSI software.

| EDT ITEM                                                                                                                                                                                                                                                                                                                    | DATA                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (bot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (brd_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file)<br>INDIRECT DEVICE (indir_dev) | 0x 0100<br>SCSI<br>0x 56<br>0x 56<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 |

# **CM195Y EPORTS CARD**

# General

The CM195Y Enhanced Peripheral Port Controller (EPORTS) Card provides eight separate, asynchronous serial ports (RS-232C). Functionally, the EPORTS card consists of the Common Input/Output (CIO) circuits, and four Serial Communication Controllers (SCCs). The SCCs function as Dual Universal Asynchronous Receiver/Transmitter (DUART) circuits. The eight asynchronous serial ports are identified as subdevices. DUART 0 (SCC 0) supports subdevices SD0 and SD1; DUART 1 (SCC 1) supports subdevices SD2 and SD3. DUART 2 (SCC 2) supports subdevices SD4 and SD5; DUART 3 (SCC 3) supports subdevices SD6 and SD7. Drivers and receiver circuits are used to interface the DUARTs to MODEMS and/or data terminals (RS-232C). Figure 3-75 is a functional block diagram of the CM195Y EPORTS Card.

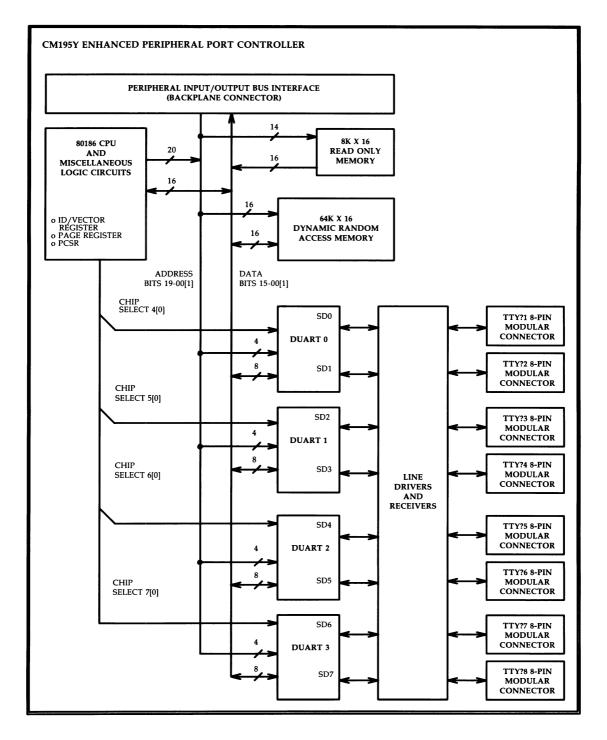



Figure 3-75: CM195Y EPORTS Card — Functional Block Diagram

#### **INTEL 80186 Microprocessor**

The intelligence of the EPORTS card is provided by an INTEL 80186, 16-bit microprocessor operating at 8 MHz. Some of the microprocessor features used for the EPORTS card are described in the following paragraphs. Figure 3-76 shows the EPORTS card address map.

### **ID/Vector Register**

The EPORTS card ID/Vector Register is a 16-bit register that is used for two functions. Initially the register contains the 16-bit EPORTS card ID code. Later the register contains an 8-bit interrupt vector for the ID code. The interrupt vector is returned in response to an Interrupt Acknowledge (PIAK[0]) signal. On reset, the 80186 Microprocessor writes the EPORTS card ID code to the high order bits (byte 1) of the ID/Vector Register and waits. The EPORTS card ID code is 0x 0102. During system self-configuration, the system board CPU polls each feature card slot. This polling reads the ID/Vector Register. The two bytes of the ID/Vector Register form a unique 16-bit ID code of the card.

#### Page Register

The EPORTS card uses a 24-bit I/O address to do main memory operations. The lower 17 bits are provided by the 80186 Microprocessor. The most significant 7 bits are provided by the Page Register. The Page Register is a write only register for the 80186 Microprocessor. The two most significant address bits (bits 06 and 05) of the Page Register are always zero. This allows the Page Register to select thirty-two 128 kilobyte segments of main memory. The Page Register is addressed by the 80186 Microprocessor at its I/O address 0x 0482. Bits 06—00 of the Page Register map to Peripheral Physical Address bits 23—17 (PPA23—17[1]).

# FUNCTIONAL DESCRIPTION

| EPORTS CARD ADDRESS MAP |                |                |                         |            |                 |                 |
|-------------------------|----------------|----------------|-------------------------|------------|-----------------|-----------------|
| MEMORY<br>ADDRESS       | I/O<br>ADDRESS | CHIP<br>SELECT | DESCRIPTION             | ACCESS     | WIDTH<br>(BITS) | SIZE<br>(BYTES) |
| 0x 00000                | _              | LCS            | DRAM (VECTOR TABLE)     | READ/WRITE | 16              | 128K            |
| 0x 80000                | _              | MCS            | DPDRAM(3B2 MAIN MEMORY) | READ/WRITE | 16              | 128K            |
| 0x C0080                | 0x 0480        | PS1            | ID/VECTOR REGISTER      | WRITE      | 16              | 2               |
| 0x C0082                | 0x 0482        | PS1            | PAGE REGISTER           | WRITE      | 7               | 1               |
| 0x C0084                | 0x 0484        | PS1            | PCSR BITS 7—0           | READ       | 8               | 1               |
| 0x C0086                | 0x 0486        | PS1            | NOT USED                | —          | _               |                 |
| 0x C0088                | 0x 0488        | PS1            | PCSR BIT 0 (INT0)       | (NOTE 1)   | 1               | _               |
| 0x C0089                | 0x 0489        | PS1            | PCSR BIT 1 (INT1)       | (NOTE 1)   | 1               |                 |
| 0x C008A                | 0x 048A        | PS1            | PCSR BIT 2 (EOP0)       | (NOTE 1)   | 1               | _               |
| 0x C008B                | 0x 048B        | PS1            | PCSR BIT 3 (EOP1)       | (NOTE 1)   | 1               | _               |
| 0x C008C                | 0x 048C        | PS1            | PCSR BIT 4 (EOP2)       | (NOTE 1)   | 1               | _               |
| 0x C008D                | 0x 048D        | PS1            | PCSR BIT 5 (EOP3)       | (NOTE 1)   | 1               | _               |
| 0x C008E                | 0x 048E        | PS1            | PCSR BIT 6 (NOT USED)   | _          | —               |                 |
| 0x C008F                | 0x 048F        | PS1            | PCSR BIT 7 (PINT00)     | (NOTE 1)   | 1               |                 |
| 0x C0100                | 0x 0500        | PS2            | DTR REGISTER            | READ/WRITE | 8               | 1               |
| 0x C0200                | 0x 0600        | PS4            | DMAC0                   | READ/WRITE | 8               | 32              |
| 0x C0220                | 0x 0620        | PS4            | DMAC1                   | READ/WRITE | 8               | 32              |
| 0x C0240                | 0x 0640        | PS4            | DMAC2                   | READ/WRITE | 8               | 32              |
| 0x C0260                | 0x 0660        | PS4            | DMAC3                   | READ/WRITE | 8               | 32              |
| 0x C0280                | 0x 0680        | PS5            | SCCO (CH B)             | READ/WRITE | 8               | 1               |
| 0x C0281                | 0x 0681        | PS5            | SCCO (CH A)             | READ/WRITE | 8               | 1               |
| 0x C02A0                | 0x 06A0        | PS5            | SCC1 (CH B)             | READ/WRITE | 8               | 1               |
| 0x C02A1                | 0x 06A1        | PS5            | SCC1 (CH A)             | READ/WRITE | 8               | 1               |
| 0x C02C0                | 0x 06C0        | PS5            | SCC2 (CH B)             | READ/WRITE | 8               | 1               |
| 0x C02C1                | 0x 06C1        | PS5            | SCC2 (CH A)             | READ/WRITE | 8               | 1               |
| 0x C02E0                | 0x 06E0        | PS5            | SCC3 (CH B)             | READ/WRITE | 8               | 1               |
| 0x C02E1                | 0x 06E1        | PS5            | SCC3 (CH A)             | READ/WRITE | 8               | 1               |
| 0x C0300                | 0x 0700        | PS6            | SCCIACK                 | RÉAD       | 8               | 1               |
| (NOTE 2)                |                | 80186          | 80186 CONTROL BLOCK     | READ/WRITE | 16              | 256             |
| 0x F8000                | —              | UCS            | ROM                     | RÉAD       | 16              | 32K             |

NOTES:

Bit is cleared by 80186 Microprocessor access.
 After a reset, this address is an I/O address, 0x 0FF00. It may be reprogrammed to a different address.

LEGEND:

| DMAC    | DIRECT MEMORY ACCESS CONTROLLER                       |
|---------|-------------------------------------------------------|
| DPDRAM  | DUAL PORT DYNAMIC RANDOM ACCESS MEMORY                |
| DTR     | DATA TERMINAL READY                                   |
| EOP     | END OF PROCESS                                        |
| LCS     | LOWER CHIP SELECT                                     |
| MCS     | MEMORY CHIP SELECT                                    |
| PCSR    | PERIPHERAL CONTROL AND STATUS REGISTER                |
| PS      | PERIPHERAL SELECT                                     |
| SCC     | SERIAL COMMUNICATION CONTROLLER                       |
| SCCIACK | SERIAL COMMUNICATION CONTROLLER INTERRUPT ACKNOWLEDGE |
| UCS     | UPPER CHIP SELECT                                     |
|         |                                                       |

# Figure 3-76: CM195Y EPORTS Card Address Map

# **Peripheral Control and Status Register**

The EPORTS card contains an 8-bit Peripheral Control and Status Register (PCSR) addressable on the lower data byte of the I/O address (0x 048F—0x 0488). Each address corresponds to a single bit of the PCSR. These bits are reset by an 80186 Microprocessor read or write access except for PCSR6 that is controlled by the Bus Abort Feature (BAF).

|     | EPORTS PERIPHERAL CONTROL AND STATUS REGISTER                                                                                                                                                                                                                                                                                                                                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIT | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7   | <b>REQUEST SYSTEM BOARD CPU INTERRUPT</b> : PCSR7[0] maps to the I/O bus signal PINT0[0] and is asserted by the EPORTS firmware. When negated [1] by hardware, the interrupt has been acknowledged by the system board CPU. When asserted [0], the interrupt request is pending. A system reset negates the bit to a logic 1 (interrupt acknowledged). Addressing PCSR7[1] (0x 048F) clears (negates) the bit. |
| 6   | I/O BUS LOCKED: This bit is normally used for the BAF. EPORTS does not use PCSR6.                                                                                                                                                                                                                                                                                                                              |
| 5   | Used to control the End-of-Page 3 (EOP3) interrupt. Addressing PCSR6 (0x 048D) clears (negates) the bit.                                                                                                                                                                                                                                                                                                       |
| 4   | Used to control End-of-Page 2 (EOP2) interrupt. Addressing PCSR6 (0x 048C) clears (negates) the bit.                                                                                                                                                                                                                                                                                                           |
| 3   | Used to control End-of-Page 1 (EOP1) interrupt. Addressing PCSR6 (0x 048B) clears (negates) the bit.                                                                                                                                                                                                                                                                                                           |
| 2   | Used to control End-of-Page 0 (EOP0) interrupt. Addressing PCSR6 (0x 048A) clears (negates) the bit.                                                                                                                                                                                                                                                                                                           |
| 1   | <b>CLEAR INT1</b> : This 80186 Microprocessor interrupt is set by a system board CPU access of the EPORTS PCSR (attention interrupt). PCSR1 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0489. Following a system reset the state of PCSR1 is undefined and is cleared by the EPORTS firmware.                                                          |
| 0   | <b>CLEAR INTO:</b> This 80186 Microprocessor interrupt is set by an access of the EPORTS ID/Vector Register (except on an interrupt acknowledge cycle). This interrupt is the SYSGEN and Express Queue interrupt. Bit 0 is cleared during the interrupt service routine by an access of the 80186 Microprocessor address 0x 0488. Bit 0 is undefined on powerup and is cleared by the firmware.                |

## Local RAM

The EPORTS card contains 128K bytes of Dual Ported Dynamic Random Access Memory (DPDRAM) configured as 64K by 16 bits. Four Direct Memory Access Controllers (DMACs) are used to provide individual transmit and receive DMA channels for each of the eight RS-232C ports.

## Local ROM

The EPORTS card firmware is in 16K bytes of ROM configured as 8K by 16 bits.

# **CM195Y Equipped Device Table Data**

The following table shows the Equipped Device Table (EDT) data for an EPORTS card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are EPORTS software defined values. As such, the rq\_size and cq\_size values may differ between versions of EPORTS software.

| EDT ITEM                                                                                                                                                                                                                                                                                                                      | DATA                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (boot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (word_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file)<br>INDIRECT DEVICE (indir_dev) | 0x 0102<br>EPORTS<br>0x 21<br>0x 46<br>0<br>1<br>1<br>1<br>1<br>0 |

# **CM521A DIFFERENTIAL SCSI HOST ADAPTER CARD**

#### General

The CM521A Differential Small Computer Systems Interface (SCSI) Host Adapter Card provides an asynchronous, differential interface to the industry standard SCSI bus. Functionally, the CM521A Card consists of the Common Input/Output (CIO) circuits, and SCSI Protocol Controller. Figure 3-77 is a functional block diagram of the CM521A SCSI Host Adapter Card. The CM521A Card consists of the CIO circuits and a SCSI Protocol Controller. The CIO circuits include the following:

- INTEL 80C186 Microprocessor
- Input/Output (I/O) Bus Control
- Identification/Vector (ID/Vector) Register
- Page Register
- Peripheral Control and Status Register (PCSR)
- Local Random Access Memory (RAM)
- Local Read Only Memory (ROM)
- Miscellaneous Circuits.

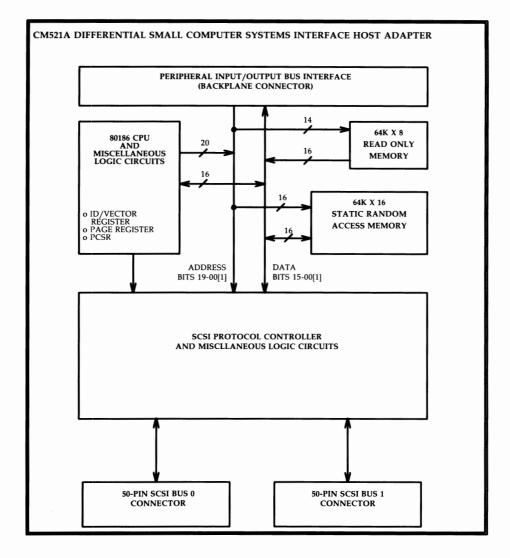



Figure 3-77: CM521A Differential SCSI Host Adapter Card — Functional Block Diagram

#### **INTEL 80C186 Microprocessor**

The intelligence of the CM521A Card is provided by an INTEL 80C186, 16-bit microprocessor operating at 8 MHz. Some of the microprocessor features used for the CM521A Card are described in the following paragraphs. Figure 3-78 shows the CM521A Differential SCSI Host Adapter Card address map.

#### **ID/Vector Register**

The CM521A Differential SCSI Host Adapter Card ID/Vector Register is a 16-bit register that is used for two functions. Initially the register contains the 16-bit CM521A Card ID code. Later the register contains an 8-bit interrupt vector for the ID code. The interrupt vector is returned in response to an Interrupt Acknowledge (PIAK[0]) signal. On reset, the 80186 Microprocessor writes the CM521A Card ID code to the high order bits (byte 1) of the ID/Vector Register and waits. The CM521A Card ID code is 0x 0100. During system self-configuration, the system board CPU polls each feature card slot. This polling reads the ID/Vector Register. The two bytes of the ID/Vector Register form a unique 16-bit ID code of the card.

#### **Page Register**

The CM521A Card uses a 24-bit I/O address to do main memory operations. The lower 17 bits are provided by the 80186 Microprocessor. The most significant 7 bits are provided by the Page Register. The Page Register is a write only register for the 80186 Microprocessor. The two most significant address bits (bits 06 and 05) of the Page Register are always zero. This allows the Page Register to select thirty-two 128 kilobyte segments of main memory. The Page Register is addressed by the 80186 Microprocessor at its I/O address 0x 0482. Bits 06–00 of the Page Register map to Peripheral Physical Address bits 23–17 (PPA23–17[1]).

| DIFFERENTIAL SCSI HOST ADAPTER CARD OUTPUT ADDRESS MAP |                    |                |                                       |                |                 |                |
|--------------------------------------------------------|--------------------|----------------|---------------------------------------|----------------|-----------------|----------------|
| MEMORY<br>ADDRESS                                      | I/O<br>ADDRESS     | CHIP<br>SELECT | DESCRIPTION                           | ACCESS         | WIDTH<br>(BITS) | SIZE<br>(BYTES |
| 0x 00000                                               |                    | LCS            | DRAM (VECTOR TABLE)                   | READ/WRITE     | 16              | 128            |
| 0x 00080                                               |                    | LCS            | DRAM (DEMON)                          | READ/WRITE     | 16              | 59.9K          |
| 0x 0F060                                               |                    | LCS            | DRAM (EDT, SANITY, STATE FLAGS)       | READ/WRITE     | 16              | 4K             |
| 0x 10000                                               |                    | LCS            | NOT USED                              | · _            | —               | 458K           |
| 0x 80000                                               |                    | MCS            | DPDRAM                                | READ/WRITE     | 16              | 128K           |
| 0x A0000                                               | _                  | MCS            | NOT USED                              |                |                 | 256K           |
| 0x C0000                                               | 0x 0400            | PCS0           | 87030 SCSI BUS ID                     | READ/WRITE     | 8               | 1              |
| 0x C0001                                               | 0x 0401            | PCS0           | NOT USED                              | ,<br>          | 8               | 1              |
| 0x C0002                                               | 0x 0402            | PCS0           | 87030 CONTROL REGISTER                | _              |                 | 1              |
| 0x C0004                                               | 0x 0404            | PCS0           | 87030 COMMAND REGISTER                | _              |                 | 1              |
| 0x C0006                                               | 0x 0406            | PCS0           | 87030 TRANSFER MODE REGISTER          | _              |                 | 1              |
| 0x C0008                                               | 0x 0408            | PCS0           | 87030 INTERRUPT REGISTER              | 8              |                 | 1              |
| 0x C000A                                               | 0x 040A            | PCS0           | 87030 PHASE/DIAGNOSTIC REG.           | _              | _               | 1              |
| 0x C000C                                               | 0x 040C            | PCS0           | 87030 STATUS REGISTER                 | _              |                 | 1              |
| 0x C000E                                               | 0x 040E            | PCS0           | 87030 ERROR STATUS REG.               | _              | _               | 1              |
| 0x C000L                                               | 0x 0410            | PCS0           | 87030 PHASE/MODIFIED BYTE CONTROL     | _              | 24              | 3              |
| 0x C0010<br>0x C0014                                   | 0x 0410            | PCS0           | 87030 DATA/TEMPORARY/TRANS. HIGH REG. |                | 40              | 5              |
| 0x C0014<br>0x C001A                                   | 0x 0414<br>0x 041A | PCS0           | 87030 TRANS. MID REG.                 |                | 8               | 1              |
|                                                        |                    | PCS0           | 87030 TRANS. LOW REG.                 | _              | 8               | 1              |
| 0x C001C                                               | 0x 041C            |                | 87030 EXBUFFER REG.                   |                | 8               | 1              |
| 0x C001E                                               | 0x 041E            | PCS0           |                                       |                |                 | 2              |
| 0x C0080                                               | 0x 0480            | PCS1           | ID/VECTOR REGISTER                    | WRITE<br>WRITE | 16              |                |
| 0x C0082                                               | 0x 0482            | PCS1           | 80186 PAGE REGISTER                   |                | 16              | 1              |
| 0x C0084                                               | 0x 0484            | PCS1           | PCSR BITS 15—0                        | READ           | 16              | 2              |
| 0x C0088                                               | 0x 0488            | PCS1           | PCSR BIT 0 (INT0)                     | —              | 1               |                |
| 0x C0089                                               | 0x 0489            | PCS1           | PCSR BIT 1 (INT1)                     | _              | 1               |                |
| 0x C008A                                               | 0x 048A            | PCS1           | PCSR BIT 2 (INT2)                     |                | 1               |                |
| 0x C008B                                               | 0x 048B            | PCS1           | PCSR BIT 3 (INT3)                     | -              | 1               |                |
| 0x C008C                                               | 0x 048C            | PCS1           | PCSR BIT 4 (INT3)                     | —              | 1               |                |
| 0x C008D                                               | 0x 048D            | PCS1           | PCSR BIT 5 (NMI)                      | —              | 1               |                |
| 0x C008E                                               | 0x 048E            | PCS1           | PCSR BIT 6 (INT2)                     | —              | 1               |                |
| 0x C008F                                               | 0x 048F            | PCS1           | PCSR BIT 7 (PINT10)                   | -              | 1               |                |
| 0x C00A2                                               | 0x 04A2            | PCS1           | SCSI TO 3B2 PAGE REGISTER             | WRITE          | 16              | 1              |
| 0x C00C2                                               | 0x 04C2            | PCS1           | 3B2 TO SCSI PAGE REGISTER             | WRITE          | 16              | 1              |
| 0x C0100                                               | 0x 0500            | PCS2           | ACCESSING SCSI ID                     | READ           | 8               | 1              |
| 0x C0100                                               | 0x 0500            | PCS2           | RESET PARITY                          | —              |                 | 1              |
| 0x C0180                                               | 0x 0580            | PCS3           | RESET SCSI FIFO                       | —              | 8               | 1              |
| 0x C0200                                               | 0x 0600            | PCS4           | 3B2 FIFO WORD ACCESS                  | READ/WRITE     | 16              | 2              |
| 0x C0280                                               | 0x 0680            | PCS5           | 8237 CHANNEL 0 ADDRESS REGISTER       | READ/WRITE     | 8               | 1              |
| 0x C0282                                               | 0x 0682            | PCS5           | 8237 CHANNEL 0 CONTROL REGISTER       | READ/WRITE     | 8               | 1              |
| 0x C0284                                               | 0x 0684            | PCS5           | 8237 CHANNEL 1 ADDRESS REGISTER       | READ/WRITE     | 8               | 1              |
| 0x C0286                                               | 0x 0686            | PCS5           | 8237 CHANNEL 1 CONTROL REGISTER       | READ/WRITE     | 8               | 1              |
| 0x C0290                                               | 0x 0690            | PCS5           | 8237 COMMAND AND STATUS REGISTER      | READ/WRITE     | 8               | 1              |
| 0x C0292                                               | 0x 0692            | PCS5           | 8237 ILLEGAL REQUEST REGISTER         | READ/WRITE     | 8               | 1              |
| 0x C0294                                               | 0x 0694            | PCS5           | 8237 ILLEGAL MASK REGISTER            | READ/WRITE     | 3               | 1              |
| 0x C0296                                               | 0x 0696            | PCS5           | 8237 ILLEGAL MODE REGISTER            | READ/WRITE     | 8               | 1              |
| 0x C0298                                               | 0x 0698            | PCS5           | 8237 ILLEGAL BYTE FLIPFLOP            | READ/WRITE     | 1               | _              |
| 0x C029A                                               | 0x 069A            | PCS5           | 8237 TEMPORARY REG MASTER CLEAR       | READ/WRITE     | 8               | 1              |
| 0x C029C                                               | 0x 069C            | PCS5           | 8237 ILLEGAL CLEAR MASK REGISTER      | READ/WRITE     | 1—1             |                |
| 0x C029E                                               | 0x 069E            | PCS5           | 8237 ILLEGAL MASK REGISTER BITS       | READ/WRITE     | 4               |                |
| 0x C029E                                               | 0x 069F            | PCS5           | 8237 (RESERVED)                       | ,<br>          | 768             | 96             |
|                                                        |                    |                | L                                     |                |                 |                |

Figure 3-78: CM521A Differential SCSI Host Adapter Card Address Map (Sheet 1 of 2)

| DIFFERENTIAL SCSI HOST ADAPTER CARD OUTPUT ADDRESS MAP (Contd) |                |                |                                     |            |                 |                 |
|----------------------------------------------------------------|----------------|----------------|-------------------------------------|------------|-----------------|-----------------|
| MEMORY<br>ADDRESS                                              | I/O<br>ADDRESS | CHIP<br>SELECT | DESCRIPTION                         | ACCESS     | WIDTH<br>(BITS) | SIZE<br>(BYTES) |
| 0x C0300                                                       | 0x 0700        | PCS6           | DUART MODE REGISTER A               | READ/WRITE | 16              | 2               |
| 0x C0302                                                       | 0x 0702        | PCS6           | DUART STATUS REGISTER A             | READ       | 16              | 2               |
| 0x C0302                                                       | 0x 0702        | PCS6           | DUART CLOCK REGISTER A              | WRITE      | 16              | 2               |
| 0x C0304                                                       | 0x 0704        | PCS6           | DUART (RESERVED                     | READ       | 16              | 2               |
| 0x C0304                                                       | 0x 0704        | PCS6           | DUART COMMAND REGISTER A            | WRITE      | 16              | 2               |
| 0x C0306                                                       | 0x 0706        | PCS6           | DUART RECEIVE HOLD REGISTER A       | READ       | 16              | 2               |
| 0x C0306                                                       | 0x 0706        | PCS6           | DUART TRANSMIT HOLD REGISTER A      | WRITE      | 16              | 2               |
| 0x C0308                                                       | 0x 0708        | PCS6           | DUART IPC REGISTER                  | READ       | 16              | 2               |
| 0x C0308                                                       | 0x 0708        | PCS6           | DUART AUXILIARY CONTROL REGISTER    | WRITE      | 16              | 2               |
| 0x C030A                                                       | 0x 070A        | PCS6           | DUART INTERRUPT STATUS REGISTER     | READ       | 16              | 2               |
| 0x C030A                                                       | 0x 070A        | PCS6           | DUART INTERRUPT MASK REGISTER       | WRITE      | 16              | 2               |
| 0x C030C                                                       | 0x 070C        | PCS6           | DUART CONTROL, TIMER UPPER REGISTER | READ/WRITE | 16              | 2               |
| 0x C030E                                                       | 0x 070E        | PCS6           | DUART CONTROL, TIMER LOWER REGISTER | READ/WRITE | 16              | 2               |
| 0x C0310                                                       | 0x 0710        | PCS6           | DUART MODE REGISTER B               | READ/WRITE | 16              | 2               |
| 0x C0312                                                       | 0x 0712        | PCS6           | DUART STATUS REGISTER B             | READ       | 16              | 2               |
| 0x C0312                                                       | 0x 0712        | PCS6           | DUART CLOCK REGISTER B              | WRITE      | 16              | 2               |
| 0x C0314                                                       | 0x 0714        | PCS6           | DUART (RESERVED                     | READ       | 16              | 2               |
| 0x C0314                                                       | 0x 0714        | PCS6           | DUART COMMAND REGISTER B            | WRITE      | 16              | 2               |
| 0x C0316                                                       | 0x 0716        | PCS6           | DUART RECEIVE HOLD REGISTER B       | READ       | 16              | 2               |
| 0x C0316                                                       | 0x 0716        | PCS6           | DUART TRANSMIT HOLD REGISTER B      | WRITE      | 16              | 2               |
| 0x C0318                                                       | 0x 0718        | PCS6           | (RESERVED)                          | READ/WRITE | 16              | 2               |
| 0x C031A                                                       | 0x 071A        | PCS6           | DUART INPUT PORT                    | READ       | 16              | 2               |
| 0x C031A                                                       | 0x 071A        | PCS6           | DUART OUTPUT PORT                   | WRITE      | 16              | 2               |
| 0x C031C                                                       | 0x 071C        | PCS6           | DUART START COUNT COMMAND           | _          | 8               | 1               |
| 0x C031C                                                       | 0x 071C        | PCS6           | DUART SET OP BITS                   | _          | 8               | 1               |
| 0x C031E                                                       | 0x 071E        | PCS6           | DUART STOP COUNT COMMAND            | _          | 8               | 1               |
| 0x C031E                                                       | 0x 071E        | PCS6           | DUART RESET OP BITS                 | _          | 8               | 1               |
| 0x C0320                                                       | 0x 0720        | PCS6           | DUART RESET                         | WRITE      | 128             | 16              |
| 1                                                              | I              | 1              | 1                                   | l          | l I             | 1               |
| 0x C032F                                                       | 0x 072F        | PCS6           | DUART RESET                         | WRITE      | 128             | 16              |
| 0x C0400                                                       | 0x FF00        | 80186          | 80186 CONTROL BLOCK                 | _          | 2048            | 256             |
| 0x C0420                                                       | 0x FF20        | 80186          | INTERRUPT CONTROL                   | READ/WRITE | 16              | 32              |
| 0x C0450                                                       | 0x FF50        | 80186          | TIMER 0 CONTROL                     | READ/WRITE | 16              | 8               |
| 0x C0458                                                       | 0x FF58        | 80186          | TIMER 1 CONTROL                     | READ/WRITE | 16              | 8               |
| 0x C0460                                                       | 0x FF60        | 80186          | TIMER 2 CONTROL                     | READ/WRITE | 16              | 8               |
| 0x C04A0                                                       | 0x FFA0        | 80186          | CHIP SELECT CONTROL                 | READ/WRITE | 16              | 10              |
| 0x C04C0                                                       | 0x FFC0        | 80186          | DMA 0 CONTROL                       | READ/WRITE | 16              | 12              |
| 0x C04D0                                                       | 0x FFD0        | 80186          | DMA 1 CONTROL                       | READ/WRITE | 16              | 12              |
| 0x C04FE                                                       | 0x FFFE        | 80186          | RELOCATION REGISTER                 | READ/WRITE | 16              | 2               |
| 0x F8000                                                       | —              | UCS            | EPROM                               | READ/WRITE | 16              | 32K             |

Figure 3-78: CM521A Differential SCSI Host Adapter Card Address Map (Sheet 2 of 2)

# **Peripheral Control and Status Register**

The CM521A Card contains a 16-bit Peripheral Control and Status Register (PCSR) used to control and monitor certain CM521A functions. The CM521A Card PCSR bits are defined in the following table.

|     | CM521A PERIPHERAL CONTROL AND STATUS REGISTER                                                                                                                                                                                                                                        |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| BIT | DESCRIPTION                                                                                                                                                                                                                                                                          |  |  |  |  |
| 15  | <b>BYTE WRITE POINTER</b> : PCSR15[1] points to the FIFO, FIFO 0 or 1, in which the next byte of data will be written. PCSR15 is incremented after each access by hardware. PCSR15 is zeroed by activating the 80186 Microprocessor Peripheral Chip Select 3 (PSC3).                 |  |  |  |  |
| 14  | <b>BYTE READ POINTER:</b> PCSR14[1] points to the FIFO, FIFO 0 or 1, from which the next byte of data will be read. PCSR14 is incremented after each access by hardware. PCSR14 is zeroed by activating the 80C186 Microprocessor Peripheral Chip Select 2 (PSC2).                   |  |  |  |  |
| 13  | <b>BYTE EMPTY INDICATOR</b> : PCSR13[1] indicates if the FIFO pointed to by the Byte Read Pointer is empty. The 80C186 Microprocessor checks PCSR13 before attempting to read data from the FIFO. If PCSR13 is set, data read from the FIFO by the 80C186 Microprocessor is invalid. |  |  |  |  |
| 12  | <b>BYTE FULL INDICATOR:</b> PCSR12[1] indicates if the FIFO pointed to by the Byte Write Pointer is full. The 80C186 Microprocessor checks PCSR12 before attempting to write data to the FIFO. If PCSR12 is set, data written to the FIFO by the 80C186 Microprocessor is lost.      |  |  |  |  |
| 11  | <b>WORD FULL FLAG 1</b> : PCSR11[0] is used to indicate if the FIFO containing the most significant byte is full. Additional writes to the word side of the FIFO by the 80C186 Microprocessor while PCSR11 is set results in lost data.                                              |  |  |  |  |
| 10  | <b>WORD FULL FLAG 0</b> : PCSR10[0] is used to indicate if the FIFO containing the least significant byte is full. Additional writes to the word side of the FIFO by the 80C186 Microprocessor while PCSR10 is set results in lost data.                                             |  |  |  |  |
| 09  | <b>WORD EMPTY FLAG 1</b> : PCSR09[0] is used to indicate if the most significant byte of the word side of the FIFO is available. PCSR09 is polled prior to an 80C186 Microprocessor read of the word side of the FIFO.                                                               |  |  |  |  |
| 08  | <b>WORD EMPTY FLAG 0</b> : PCSR08[0] is used to indicate if the least significant byte of the word side of the FIFO is available. PCSR08 is polled prior to an 80C186 Microprocessor read of the word side of the FIFO.                                                              |  |  |  |  |

|     | CM521A PERIPHERAL CONTROL AND STATUS REGISTER (Contd)                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| віт | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 07  | <b>REQUEST SYSTEM BOARD CPU INTERRUPT</b> : PCSR07[0] maps to the I/O bus signal PINT0[0] and is asserted by the CM521A firmware. When negated [1] by hardware, the interrupt has been acknowledged by the system board CPU. When asserted [0], the interrupt request is pending. A system reset negates the bit to a logic 1 (interrupt acknowledged). Addressing PCSR7[1] (0x 048F) clears (negates) the bit.                         |  |  |  |
| 06  | <b>SPINTR[1]—SCSI PROTOCOL CONTROLLER CHIP (SPCC) INTERRUPT</b> : PCSR06[0] is used to indicate the current state of the MB87030 SPCC interrupt request. PCSR06 is cleared by reading the 5386 Interrupt Request Register. Addressing PCSR6 (0x 040D) clears (negates) the bit.                                                                                                                                                         |  |  |  |
| 05  | <b>NONMASKABLE INTERRUPT</b> : PCSR05[0] is used to indicate the CM521A received a peripheral fault during a DMA transfer between the FIFO and main memory. Addressing PCSR05 (0x 048D) clears (negates) the bit. On powerup, PCSR05 is undefined and is cleared by firmware.                                                                                                                                                           |  |  |  |
| 04  | <b>82C37 DMA COMPLETION INTERRUPT</b> : PCSR04[0] is used to indicate an end of process has been reached during a DMA transfer from the FIFO to the main memory. PCSR04 is set by the 82C37 and is cleared by addressing PCSR04 (0x 048C). On powerup, PCSR04 is undefined and is cleared by firmware.                                                                                                                                  |  |  |  |
| 03  | <b>CINT3—82C37 DMA COMPLETION INTERRUPT</b> : PCSR03[0] is used to indicate an end of process has been reached during a DMA transfer from the main memory to the FIFO. PCSR04 is set by the 82C37 and is cleared by addressing PCSR03 (0x 048B). On powerup, PCSR03 is undefined and is cleared by firmware.                                                                                                                            |  |  |  |
| 02  | <b>PSSSA0—SYSTEM BOARD SUPPORTS SEQUENTIAL ACCESS:</b> PCSR02[0] is set when the system board supports sequential access data transfers. Addressing PCSR02 (0x 048A) clears the bit. On powerup, PCSR02 is undefined and is cleared by firmware.                                                                                                                                                                                        |  |  |  |
| 01  | <b>CINT1—SYSGEN ATTENTION INTERRUPT</b> : PCSR01 is set by a CPU system board access of the CM521A Control Register. PCSR01 is cleared during the interrupt service routine by an access of the 80C186 Microprocessor address 0x 0489. Following a system reset the state of PCSR1 is undefined and is cleared by the CM521A firmware.                                                                                                  |  |  |  |
| 00  | <b>CINTO—PRE-SYSGEN/EXPRESS INTERRUPT</b> : This 80C186 Microprocessor interrupt is set<br>by an access of the CM521A ID/Vector Register (except on an interrupt acknowledge cycle).<br>This interrupt is the SYSGEN and Express Queue interrupt. PCSR00 is cleared during the<br>interrupt service routine by an access of the 80C186 Microprocessor address 0x 0488. Bit 0 is<br>undefined on powerup and is cleared by the firmware. |  |  |  |

٠

# Local RAM

The CM521A Card contains 64K bytes of Static Random Access Memory (SRAM) configured as 32K by 16 bits.

# Local ROM

The CM521A Card firmware is in 64K bytes of ROM configured as 32K by 16 bits.

# **CM521A Equipped Device Table Data**

The following table shows the Equipped Device Table (EDT) data for a CM521A Card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are SCSI software defined values. As such, the rq\_size and cq\_size values may differ between versions of SCSI software.

| EDT ITEM                        | DATA    |
|---------------------------------|---------|
| IDENTIFICATION CODE (ID_code)   | 0x 0100 |
| DEVICE NAME (dev_name)          | SCSI    |
| REQUEST QUEUE SIZE (rq_size)    | 0x 56   |
| COMPLETION QUEUE SIZE (cq_size) | 0x 56   |
| BOOT DEVICE (boot_dev)          | 0       |
| WORD SIZE (word_size)           | 1       |
| BOARD SIZE (brd_size)           | 0       |
| SMART BOARD (smrt_brd)          | 1       |
| CONSOLE CAPABILITY (cons_cap)   | 0       |
| CONSOLE FILE (cons_file)        | 0       |
| INDIRECT DEVICE (indir_dev)     | 1       |

# **CM522A VCACHE CARD**

### General

The CM522A Virtual Cache (VCACHE) Card stores instructions and data for the Central Processing Unit (CPU). Electrically, the virtual cache is accessed between the CPU and the main memory and operates in parallel with the virtual to physical translation of the Memory Management Unit (MMU). When the CPU makes a memory address request, the virtual cache compares the requested memory address to the addresses currently stored in its own memory to see if there is a match.

If the requested address is in the virtual cache, the information is sent to the CPU and the request is halted before it goes to memory through the MMU. This is accomplished by returning the "data ready" signal to the CPU and canceling the control signals that would have gone to the main memory.

If the virtual cache makes the comparison and determines it does not have the data, then it remains passive and the request is passed on to main memory through the MMU as though the virtual cache were not present. The block diagram for the VCACHE card is shown in Figure 3-79.

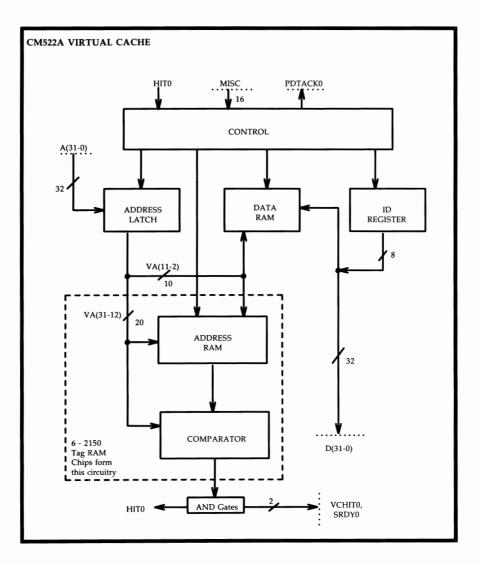



Figure 3-79: CM522A VCACHE Card — Functional Block Diagram

#### **Address Spectrum**

The VCACHE card provides "pulse points" to control the operation of the cache. By accessing the addresses shown in Figure 3-80, the listed operations are performed.

| OPERATION                | ACCESS                                                                                                                                       |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| READ ID REGISTER         | READ                                                                                                                                         |
| TURN VCACHE OFF          | READ/WRITE                                                                                                                                   |
| TURN VCACHE ON           | READ/WRITE                                                                                                                                   |
| FLUSH ENTIRE CACHE       | READ/WRITE                                                                                                                                   |
| TURN DIAGNOSTIC MODE OFF | READ/WRITE                                                                                                                                   |
| TURN DIAGNOSTIC MODE ON  | READ/WRITE                                                                                                                                   |
| UNUSED                   | READ/WRITE                                                                                                                                   |
| FLUSH DATA CACHE         | READ/WRITE                                                                                                                                   |
| RAM                      | READ/WRITE                                                                                                                                   |
|                          | TURN VCACHE OFF<br>TURN VCACHE ON<br>FLUSH ENTIRE CACHE<br>TURN DIAGNOSTIC MODE OFF<br>TURN DIAGNOSTIC MODE ON<br>UNUSED<br>FLUSH DATA CACHE |

Figure 3-80: CM522A VCACHE Card Address Map

#### **ID Register**

The VCACHE card provides a one byte ID Register at byte 0 of address 0x1C00000. Reading this register will return the ID of 0x00.

#### **CM522A Equipped Device Table Data**

The following table shows the Equipped Device Table (EDT) data for a CM522A Card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are SCSI software defined values. As such, the rq\_size and cq\_size values may differ between versions of SCSI software.

| EDT ITEM                                                                                                                                                                                                                                                                                                                     | DATA                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (boot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (brd_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file)<br>INDIRECT DEVICE (indir_dev) | 0x FE00<br>VCACHE<br>0x 00<br>0x 00<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

.

# **CM524A PROCESSING ELEMENT CARD**

#### General

The CM524A Processing Element (PE) Card improves system performance by providing another processing unit similar to that of the system board. The CM524A contains a Central Processing Unit (CPU), Memory Management Unit (MMU), and Math Acceleration Unit (MAU), and 24-megahertz clock to form the secondary processing unit.

The PE feature requires UNIX System V Release 3.2.2 or later and a CM519B or CM519C Backplane. Also, the Multiprocessor Enhancement Utilities software must be installed before any system performance can be obtained.

The major circuits of the CM524A Card are listed below:

- A WE 32200 chipset processing unit (CPU, MMU, MAU)
- An ID Register
- A Control Status Register (CSR)
- A 24-MHz oscillator.

The block diagram for the CM524A PE Card is shown in Figure 3-81.

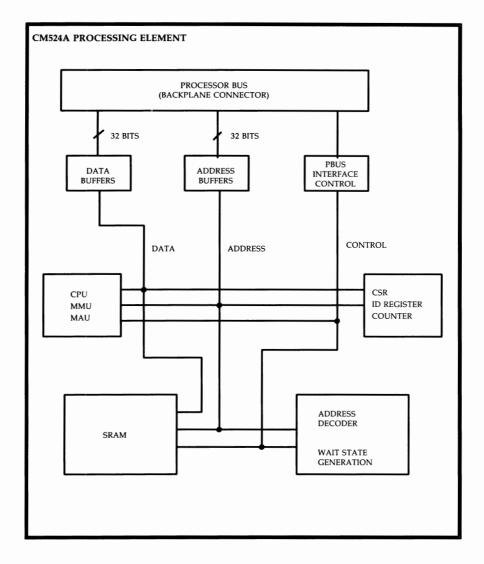



Figure 3-81: CM524A PE Card — Functional Block Diagram

# **Address Spectrum**

Figure 3-82 lists the board addresses for the main circuits on the PE card.

| ADDRESS               | DESCRIPTION | SIZE<br>(BYTES) |
|-----------------------|-------------|-----------------|
| 0x00000000-0x00008FFF | SRAM        | 32K             |
| 0x00010000-0x00010048 | CSR         | 128             |
| 0x00014003            | ID REGISTER | 1               |
| 0x0004F000-0x0004FFFF | MMU         | 4K              |
| 0x0004B000            | COUNTER     | 2               |
| 0x02000000-0x05FFFFFF | MAINSTORE   | 64M             |
| 0xC0F00000-0xC0FFFFFF | RESERVED    | 1M              |

Figure 3-82: CM524A PE Card Address Map

## **ID/Vector Register**

The CM524A Card ID/Vector Register is a 16-bit register that is used for two functions. The CM524A Card ID code is 0x fe01. Initially the register contains the lower byte (0x01) of the CM524A Card ID code. The 0xfe is supplied by firmware. Later the register contains an 8-bit interrupt vector for the ID code. During system self-configuration, the system board CPU polls each feature card slot. This polling reads the ID/Vector Register. The two bytes of the ID/Vector Register form a unique 16-bit ID code of the card.

# **Control Status Register**

The CM524A Card contains a 16-bit Control Status Register (CSR) used to control and monitor certain CM524A functions. Each bit is readable/writable. During the read operation, it is output to the bus as 32 bits with the upper 16 bits unknown.

The write operation will only write the specified bit. The CM524A Card CSR bits are defined in the following table.

|      | CM524A CONTROL STATUS REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| BIT  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 15   | <b>ADPINT10</b> : This bit is set under program control. When set, a level 10 interrupt will be generated to the PE card CPU. It must be cleared under program control. After a powerup reset, this bit will be cleared. This bit is required by the common PBus interface.                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 14   | <b>ADPINT12</b> : This bit is set under program control. When set, a level 12 interrupt will be generated to the PE card CPU. It must be cleared under program control. After a powerup reset, this bit will be cleared. This bit is required by the common PBus interface.                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 13   | <b>ADPINT15</b> : This bit is set under program control. When set, a level 15 interrupt will be generated to the PE card CPU. It must be cleared under program control. After a powerup reset, this bit will be cleared. This bit is required by the common PBus interface.                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 12   | <b>ADPNMI:</b> This bit is set under program control. When set, a nonmaskable interrupt will be generated to the PE card CPU. It will be cleared through hardware after being acknowledged. After a powerup reset, this bit will be cleared. This bit is required by the common PBus interface.                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 11   | <b>ULFLT</b> : This bit is set by hardware when the PE card encounters an alignment fault condition.<br>It is cleared under program control. After a powerup reset, the state of this bit is<br>indeterminate.                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 4-10 | <b>RESERVED</b> : These bits and their corresponding addresses are reserved for the PBus Common Interface. They will always be returned as unknown when read.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 03   | <b>ERROR</b> : This bit should be set whenever the PE card generates or detects any error condition<br>on the PBus. Since the PE card does not generate UFLT0 or UFAIL0, it is only set by<br>hardware when the PE card encounters a fault on the BUB when it is accessing main memory.<br>Note that in the case of a BUB fault while the PE card is accessing memory, an external<br>memory exception will be generated to the PE card CPU. This bit is cleared under program<br>control. After a powerup reset, the state of this bit is indeterminate. This bit is required by the<br>common PBus interface.                                             |  |  |  |
| 02   | <b>OPINT15:</b> This bit can be set under program control. When set, it will cause a level 15 interrupt to be sent over the PBus to the system CPU. The bit is also cleared under program control. After a PE card reset, this bit will be cleared. This bit is required by the common PBus interface.                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 01   | <b>HALT</b> : This bit is automatically set on PE card reset, causing the PE card processor to remain<br>in a quiescent state until the bit is cleared under program control. In addition, this bit can be<br>set under program control. This will provide the system with a means to synchronously<br>inhibit the PE card from accessing the PBus. Clearing the bit after being set will allow the PE<br>card to start execution where it left off when it was set. (Note that the PBus connector inhibit<br>will turn off the board asynchronously and should not be used during normal operation.) This<br>bit is required by the common PBus interface. |  |  |  |
| 00   | <b>RESET</b> : This bit can be written under program control to reset the PE card. It is automatically cleared on uMPB reset. This bit is required by the common PBus interface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |

# **CM524A Equipped Device Table Data**

The following table shows the Equipped Device Table (EDT) data for a CM524A Card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are SCSI software defined values. As such, the rq\_size and cq\_size values may differ between versions of SCSI software.

| EDT ITEM                                                                                                                                                                                                                                                                                                                      | DATA                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (boot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (word_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file)<br>INDIRECT DEVICE (indir_dev) | 0x fe01<br>MPB<br>0x 00<br>0x 00<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

# **CM525B VMEbus CARD**

The Versa Modula Europa bus (VMEbus) is an industry standard bus for a variety of character and networking controllers. The CM525B VMEbus Card provides the circuit interface between the 3B2 computer Buffered Microbus (BUB) backplane slot and the VMEbus System Controller.

The CM525B VMEbus Card is a double-width card measuring 13.0 inches wide by 7.4 inches deep. The card contains four, 37-pin D-type connectors to provide the connection to the VMEbus System Controller. Connector pinout information is provided in Appendix B. The major components of the CM525B Card are listed below.

- A 16-MHz internal clock
- Data transfer circuitry
- Transfer control logic circuitry
- Interrupt handling circuitry.

The functional block diagram for the VMEbus card is shown in Figure 3-83.

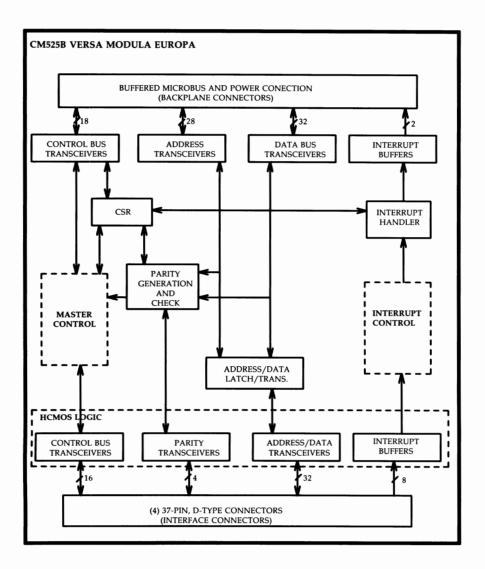



Figure 3-83: CM525B VMEbus Card — Functional Block Diagram

### **Address Spectrum**

The address spectrum for the VMEbus card is 32 megabytes. As shown in Figure 3-84, 16 megabytes are dedicated to the VMEbus spectrum where VME target controllers will reside.

| ADDRESS             | DESCRIPTION                             | ACCESS     | WIDTH<br>(BITS) [NOTE 1] |
|---------------------|-----------------------------------------|------------|--------------------------|
| 0x0000000-0x0008FFF | VME SYSTEM CONTROLLER ADDRESS SPECTRUM  | READ/WRITE | 8,16,32                  |
| 0x0010000-0x001007F | CONTROL AND STATUS REGISTER             | READ/WRITE | 8,16                     |
| 0x0014000           | ID REGISTER                             | READ       | 8                        |
| 0x0032000-0x0033FFF | XEDT SRAM                               | READ/WRITE | 8,16,32                  |
| 0x0040000           | INTERRUPT CONTROL MASTER CLEAR          | WRITE      | 8                        |
| 0x0040004           | INTERRUPT CONTROL END OF SERVICE        | WRITE      | 8                        |
| 0x0041000           | MASK REGISTER (IMR)                     | READ/WRITE | 8                        |
| 0x0042000           | IN-SERVICE REGISTER (ISR)               | READ/WRITE | 8                        |
| 0x0043000           | PENDING REGISTER (IPR)                  | READ/WRITE | 8                        |
| 0x0044000           | SOFT INTERRUPT ACKNOWLEDGE REGISTER     | READ       | 8                        |
| 0x0050000           | ADDRESS LATCH (AL)                      | READ/WRITE | 32                       |
| 0x0052000           | DATA LATCH (DL)                         | READ/WRITE | 32                       |
| 0x0062000           | CLEAR CURRENT INTERRUPT (CCIR) [NOTE 2] | WRITE      | 8                        |
| 0x1000000-0x1FFFFFF | 16 MEGABYTE VMEBUS                      | READ/WRITE | 8,16,32                  |

NOTES:

- This is the largest quantity of data that can be accessed at the location. All data should read and write with 32-bit accesses to ensure proper alignment (except SRAM).
- A write to this location clears the bit in the IPR that corresponds to the highest priority bit in the ISR.

| Figure | 3-84: | CM525B | VMEbus | Card | Address | Map |
|--------|-------|--------|--------|------|---------|-----|
|--------|-------|--------|--------|------|---------|-----|

#### **ID/Vector Register**

The CM525B Card ID/Vector Register is an 8-bit, hard-wired, read only buffer. The buffer contents (0x 01) are read on receive data bits 07—00 (RD07—00) and controlled by ID register chip select from the host address decoder circuit.

### **Control Status Register**

The CM525B Card contains a 26-bit Control and Status Register (CSR). The CSR is a modified version of the standard CSR for a buffered microbus peripheral. For normal operation, each bit is individually controlled by hardware, firmware/software, or both. For diagnostic purposes, each bit is designed to be individually written (set or clear) by firmware/software. This is accomplished by performing a byte write to the specified address plus three and driving a "1" or "0" onto bit 0 of byte 3.

The CSR is read by performing a 32-bit read access at the base address (0x 0010000). The CSR bits are defined in the following table.

| VME CONTROL AND STATUS REGISTER BIT ASSIGNMENTS |                              |                  |                  |         |    |    |    |    |
|-------------------------------------------------|------------------------------|------------------|------------------|---------|----|----|----|----|
| віт                                             | DESCRIPTION                  | WRITE<br>ADDRESS | INITIAL<br>STATE | CONTROL |    | OL |    |    |
| 25                                              | XBUS INTERRUPT BUFFER ENABLE | _                |                  | HS      |    |    |    | SR |
| 24                                              | UNEQUIPPED ADDRESS ERROR     | 0x 0010060       | CLEAR            | HS      |    | PC |    |    |
| 23                                              | DIRECTOR FAULT               | 0x 001005C       | CLEAR            | HS      |    | PC |    |    |
| 22                                              | RESERVED                     | 0x 0010058       |                  |         |    |    |    |    |
| 21                                              | RESERVED                     | 0x 0010054       |                  |         |    |    |    |    |
| 20                                              | XBUS REQUEST LOCK            | 0x 0010050       | CLEAR            |         | PS | PC | CR |    |
| 19                                              | INHIBIT XBUS RESERVATION     | 0x 001004C       | OPTIONAL         |         | PS | PC |    | SR |
| 18                                              | RESERVED                     | 0x 0010048       |                  |         |    |    |    |    |
| 17                                              | XBUS RESET                   | 0x 0010044       | CLEAR            |         | PS | PC | CR |    |
| 16                                              | TRANSACTION DIRECTION        | 0x 0010040       |                  | HS      |    | PC |    |    |
| 15                                              | RECEIVED XBUS ERROR          | 0x 001003C       | CLEAR            | HS      |    | PC |    |    |
| 14                                              | RECEIVED BUBUS FAULT         | 0x 0010038       | CLEAR            | HS      |    | PC |    |    |
| 13                                              | RESERVED                     | 0x 0010034       |                  |         |    |    |    |    |
| 12                                              | INHIBIT XBUS PARITY          | 0x 0010030       | CLEAR            |         | PS | PC |    | SR |
| 11                                              | RESERVED                     | 0x 001002C       |                  |         |    |    |    |    |
| 10                                              | RESERVED                     | 0x 0010028       |                  |         |    |    |    |    |
| 9                                               | RESERVED                     | 0x 0010024       |                  |         |    |    |    |    |
| 8                                               | LEVEL 10 INTERRUPT           | 0x 0010020       | CLEAR            | HS      | PS |    | CR |    |
| 7                                               | RESERVED                     | 0x 001001C       |                  |         |    |    |    |    |
| 6                                               | DATA PARITY ERROR            | 0x 0010018       | CLEAR            | HS      |    | PC |    |    |
| 5                                               | ADDRESS PARITY ERROR         | 0x 0010014       | CLEAR            | HS      |    | PC |    |    |
| 4                                               | INHIBIT ERROR REPORTING      | 0x 0010010       | CLEAR            |         | PS | PC |    | SR |
| 3                                               | ERROR DETECTED               | 0x 001000C       | CLEAR            | HS      |    | PC |    |    |
| 2                                               | LEVEL 15 INTERRUPT           | 0x 0010008       | CLEAR            | нs      |    | PC |    |    |
| 1                                               | HALT                         | 0x 0010004       | CLEAR            |         | PS | PC | CR |    |
| 0                                               | RESET                        | 0x 0010000       | CLEAR            | HC      | PS |    | CR |    |

#### LEGEND:

- CR Cleared by "system reset" signal
- HC Cleared by hardware
- HS Set by hardware
- PC Cleared by programmed control
- PS Set by programmed control
- SR Set by "system reset" signal

# Local RAM

The CM525B Card contains 32K bytes of Static Random Access Memory (SRAM) configured as 8K by 32 bits.

# **CM525B Equipped Device Table Data**

The following table shows the Equipped Device Table (EDT) data for a CM525B Card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are SCSI software defined values. As such, the rq\_size and cq\_size values may differ between versions of SCSI software.

| EDT ITEM                        | DATA     |  |
|---------------------------------|----------|--|
| IDENTIFICATION CODE (ID_code)   | 0x 1FF01 |  |
| DEVICE NAME (dev_name)          | VXI      |  |
| REQUEST QUEUE SIZE (rq_size)    | 0x 0     |  |
| COMPLETION QUEUE SIZE (cq_size) | 0x 0     |  |
| BOOT DEVICE (boot_dev)          | 0        |  |
| WORD SIZE (word_size)           | 0        |  |
| BOARD SIZE (brd_size)           | 1        |  |
| SMART BOARD (smrt_brd)          | 0        |  |
| CONSOLE CAPABILITY (cons_cap)   | 0        |  |
| CONSOLE FILE (cons_file)        | 0        |  |
| INDIRECT DEVICE (indir_dev)     | 1        |  |

# **CM527A MULTIPROCESSOR ENHANCEMENT CARD**

The CM527A Multiprocessor Enhancement (MPE) Card improves system performance by providing another processing unit similar to that of the system board. The CM527A Card contains a Central Processing Unit (CPU), Memory Management Unit (MMU), and Math Acceleration Unit (MAU), and 6-kilobyte virtual cache (4-kilobyte instruction and 2-kilobyte data) to form the secondary processing unit.

The Multiprocessor Enhancement Utilities software must be installed before any system performance can be obtained.

The major circuits of the CM527A Card are listed below:

- A WE 32100 chipset processing unit (CPU, MMU, MAU)
- An Identification (ID) Register
- A Control Status Register (CSR)
- A oscillator compatible for 18 through 22 MHz.

The block diagram for the CM527A MPE Card is shown in Figure 3-85.

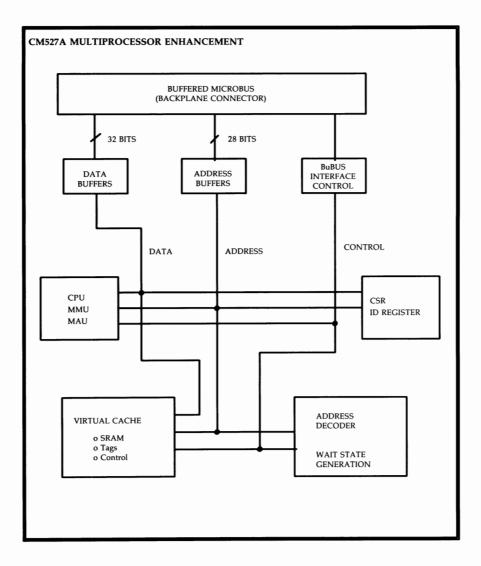



Figure 3-85: CM527A MPE Card — Functional Block Diagram

# **Address Spectrum**

Figure 3-86 lists the board addresses for the main circuits on the MPE card.

| ADDRESS               | DESCRIPTION   | SIZE<br>(BYTES) |  |
|-----------------------|---------------|-----------------|--|
| 0x0000000-0x00001FFF  | SRAM          | 8K              |  |
| 0x00010000-0x0001004B | CSR           | 128             |  |
| 0x00014000            | ID REGISTER   | 1               |  |
| 0x0004F000-0x0004FFFF | MMU           | 4K              |  |
| 0x02000000-0x11FFFFFF | MAINSTORE     | 256M            |  |
| 0xC0F00000-0xC0FFFFFF | RESERVED      | 1M              |  |
| 0xFFFFFFFC-0xFFFFFFFF | DGN. RESERVED | 1 word          |  |

Figure 3-86: CM527A MPE Card Address Map

### **ID/Vector Register**

The CM527A Card ID/Vector Register is a 16-bit register that is used for two functions. The CM527A Card ID code is 0x ff00. Initially the register contains the lower byte (0x00) of the CM527A Card ID code. The 0xff is supplied by firmware. Later the register contains an 8-bit interrupt vector for the ID code. During system self-configuration, the system board CPU polls each feature card slot. This polling reads the ID/Vector Register. The two bytes of the ID/Vector Register form a unique 16-bit ID code of the card.

# **Control Status Register**

The CM527A Card contains a 16-bit Control Status Register (CSR) used to control and monitor certain CM527A functions. Each bit is readable/writable. During the read operation, it is output to the bus as 32 bits with the upper 16 bits unknown.

The write operation will only write the specified bit. The CM527A Card CSR bits are defined in the following table.

|      | CM527A CONTROL STATUS REGISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| BIT  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 15   | <b>RESERVED:</b> This bit is reserved for future needs. This bit will always return a "0" and can not be modified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 14   | <b>VCOFF</b> : When set, the virtual cache is turned OFF. This bit is both set and cleared under program control. After a powerup reset, this bit is set. Also, two CSR addresses are provided to flush the entire virtual cache (0x10044) or flush the data section of the virtual cache (0x10048).                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 13   | <b>ADPINT15</b> : This bit is set under program control. When set, a level 15 interrupt will be generated to the MPE card CPU. It must be cleared under program control. After powerup reset, this bit is indeterminate.                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 12   | <b>RESERVED</b> : This bit is reserved for future needs. This bit will always return a "0" and can not be modified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 11   | <b>ALFLT</b> : This bit is set by hardware when the MPE card encounters an alignment fault condition. It is cleared under program control. After a powerup reset, the state of this bit is indeterminate.                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 4-10 | <b>RESERVED</b> : These bits and their corresponding addresses are reserved for the BUB Common Interface. They will always be returned as "0" when read.                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 03   | <b>ERROR</b> : This bit should be set whenever the MPE card generates or detects any error condition on the BUB. Since the MPE card does not generate BFLT0 or BFAIL0, it is only set by hardware when the MPE card encounters a fault on the BUB when it is accessing main memory. Note that in the case of a BUB fault while the MPE card is accessing memory, an external memory exception will be generated to the MPE card CPU. This bit is cleared under program control. After powerup reset, the state of this bit is indeterminate.                                             |  |  |  |  |
| 02   | <b>OPINT15</b> : This bit can be set under program control. When set, it will cause a level 15 interrupt to be sent over the BUB to the system CPU. The bit is also cleared under program control. After a powerup reset, this bit will be cleared.                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 01   | <b>HALT</b> : This bit is automatically set on MPE card reset, causing the MPE card processor to remain in a quiescent state until the bit is cleared under program control. In addition, this bit can be set under program control. This will provide the system with a means to synchronously inhibit the MPE card from accessing the BUB. Clearing the bit after being set will allow the MPE card to start execution where it left off when it was set. (Note that the BUB connector inhibit will turn off the board asynchronously and should not be used during normal operation.) |  |  |  |  |
| 00   | <b>RESET</b> : This bit can be written under program control to reset the MPE card. It is automatically cleared on uMPB reset.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |

# **CM527A Equipped Device Table Data**

The following table shows the Equipped Device Table (EDT) data for a CM527A Card. A value of 0 means NO; a value of 1 means YES. The indirect device (indir\_dev) is only applicable to systems equipped with Small Computer System Interface (SCSI). The request queue size (rq\_size) and the completion queue size (cq\_size) are SCSI software defined values. As such, the rq\_size and cq\_size values may differ between versions of SCSI software.

| EDT ITEM                                                                                                                                                                                                                                                                                                                      | DATA                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| IDENTIFICATION CODE (ID_code)<br>DEVICE NAME (dev_name)<br>REQUEST QUEUE SIZE (rq_size)<br>COMPLETION QUEUE SIZE (cq_size)<br>BOOT DEVICE (boot_dev)<br>WORD SIZE (word_size)<br>BOARD SIZE (word_size)<br>SMART BOARD (smrt_brd)<br>CONSOLE CAPABILITY (cons_cap)<br>CONSOLE FILE (cons_file)<br>INDIRECT DEVICE (indir_dev) | 0x ff00<br>MPB<br>0x 00<br>0x 00<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

# **FLOPPY DISK DRIVE**

# **Floppy Disk Layout**

Figure 3-87 shows the physical layout of a 5.25-inch floppy disk media. The floppy disk has 80 cylinders, numbered 0 through 79. Side 0 is the bottom side of the floppy diskette; side 1 is the top of the floppy diskette.

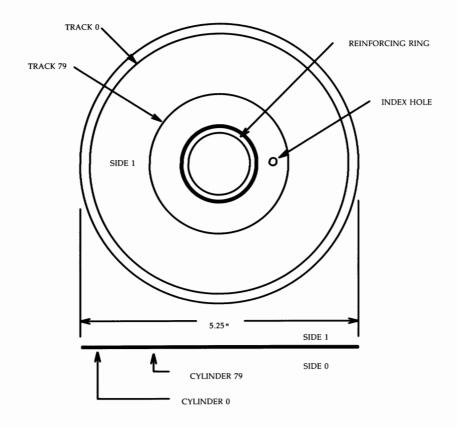



Figure 3-87: Floppy Disk Physical Layout

## **TANDON Model TM 55-4 Floppy Disk Drive**

Figure 3-88 is a functional block diagram of a floppy disk drive. The floppy disk drive consists of a spindle drive mechanism, head positioning mechanism, control logic, and read/write logic. Some of the features are as follows.

#### Index Generator/Detector

An index pulse is generated once every revolution of the floppy disk to indicate the beginning of a track to the control logic.

#### Write Protection Logic

When the Write Protect lead is asserted (low) the diskette is write protected by disabling the write logic. When the Write Protect signal is high, the write logic is enabled. A write protect tab on the diskette asserts the Write Protect signal.

#### Logical Drive/Side Selection

The floppy disk drive is selected by the Drive Select Lead 0 from the Integral Floppy Disk Controller or CM195H Cartridge Tape Controller depending on the application. The drive identification jumpers are set for a drive 0 identification for all 3B2 computer floppy disk configurations. Drive Select leads 3—1 are not connected. The side selection (0 or 1) is controlled by the Side Select lead. Side 0 is selected by a high (1) Side Select signal. Side 1 is selected by a low (0) Side Select signal. (Head 0 is the lower of the two heads.)

#### **Head Positioning Mechanism**

The heads are positioned over the desired cylinder by a 4-phase stepper motor. When the drive is selected the read/write heads are positioned to track 0. The Track 0[0] signal is asserted by the positioning logic as long as the heads are positioned at track 0.

# **Disk Hub Speed Control**

The drive hub is maintained at a constant speed of 300 revolutions per minute by a servo-controlled DC motor. Motor speed stablizes at 300 revolutions per minute in less than 250 milliseconds.

• • •

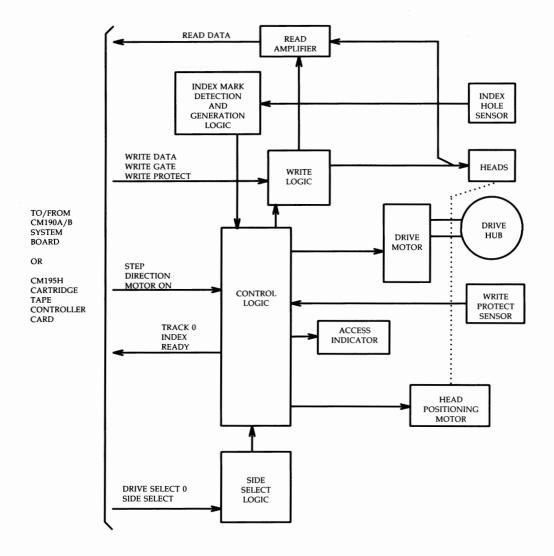



Figure 3-88: Floppy Disk Drive — Functional Block Diagram

# 23-MEGABYTE CARTRIDGE TAPE DRIVE

### **Cartridge Tape Format**

Figure 3-89 shows the physical layout of the 0.25-inch tape media. The media is configured as six streams (tracks) which are used in a serpentine recording technique. Each stream consists of 255 segments; only 245 segments (0 through 244) are used for the storage of data. Segments are separated by Index Marks.

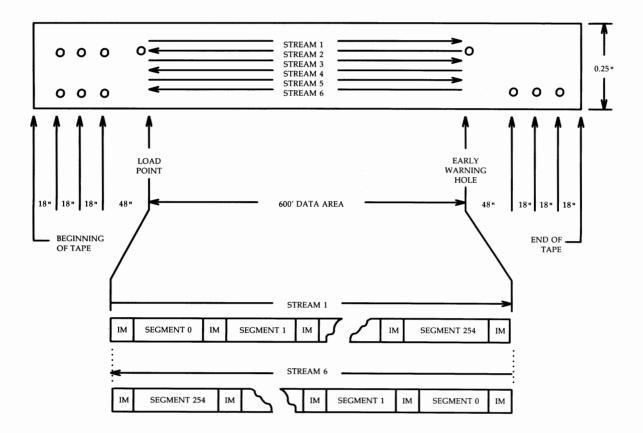
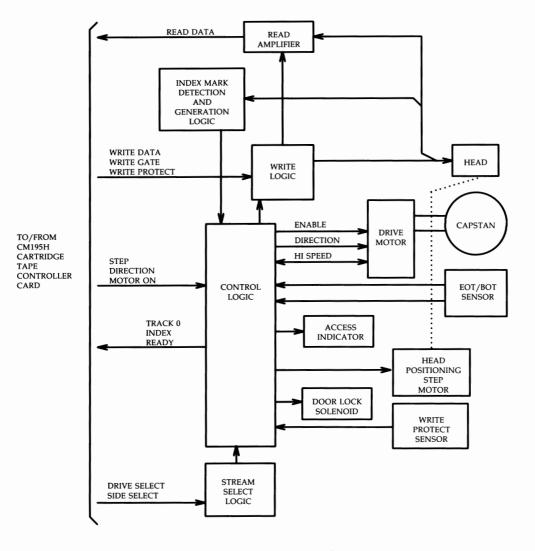
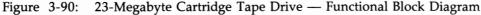



Figure 3-89: Cartridge Tape Physical Layout


### 23-Megabyte Cartridge Tape Drive


Figure 3-90 is a functional block diagram of a 23-megabyte cartridge tape drive. The cartridge tape drive is a floppy disk-like device, using an SA-450 interface. The cartridge tape drive circuits include the following:

- Index Detector/Generator
- Write Current Driver
- Read Amplifier and Transition Detector
- Write Protection Logic
- Logical Drive/Stream Selection
- Tape Speed/Capstan Control
- End-of-Tape/Beginning-of-Tape (EOT/BOT) Monitor
- Door Lock Solenoid (not used on all versions).

The cartridge tape drive circuits combine to do the following:

- Decode, generate, and emulate floppy disk drive type control signals
- Position the read/write head to the selected stream
- Monitor and control tape speed
- Read/write data from/to the media.





#### **Tape Drive**

Tape motion is via a capstan driven by a 3-phase, brushless DC motor. The motor speed is controlled by an onboard microprocessor using pulse-width modulated signals. Tape speed is 78 inches per second.

Read/write head positioning is done by a stepper motor controlled by the control logic in response to the Drive/Side Select signals. The read/write head is always returned to a home position before positioning the head to a new stream. This technique provides optimum positioning accuracy. Each position step requires 200 milliseconds.

### **60-MEGABYTE SCSI CARTRIDGE TAPE DRIVE**

### **Cartridge Tape Format**

Figure 3-91 shows the physical layout of the 60-megabyte tape media. The media is configured as nine streams (tracks) which are used in a nonsequential serpentine recording technique. Each stream consists of a preamble, data block marker (1 byte), data field (512 bytes), block address (4 bytes), Cyclical Redundancy Check (CRC) (2 bytes), and a postamble.

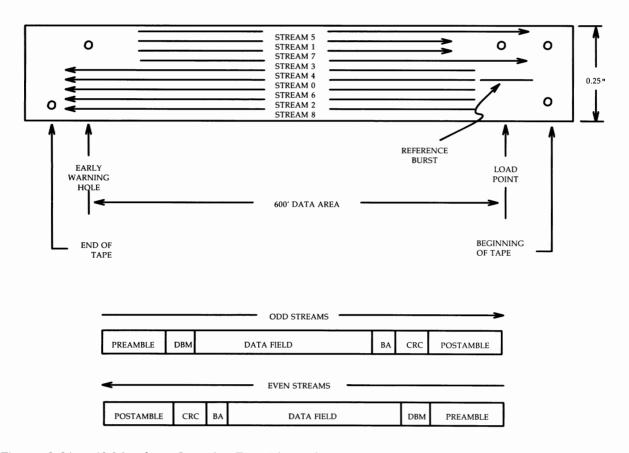



Figure 3-91: 60-Megabyte Cartridge Tape Physical Layout

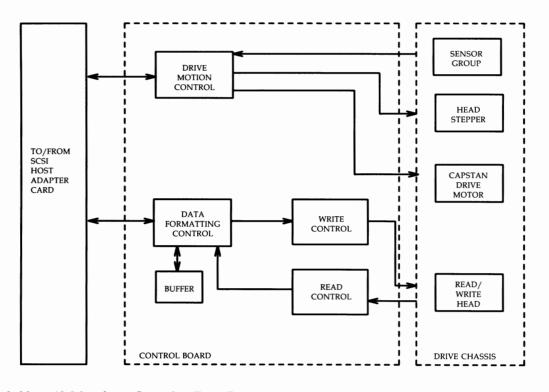

### 60-Megabyte Cartridge Tape Drive

Figure 3-92 is a functional block diagram of a 60-megabyte cartridge tape drive. The cartridge tape drive interfaces with the host computer using the Small Computer System Interface (SCSI) industry standard. The cartridge tape drive circuits include the following:

- Drive Motion Control
- Data Formatting Control
- Read/Write Control
- Buffer
- Sensor Group
- Head Stepper
- Capstan Drive Motor
- Read/Write Head.

The cartridge tape drive circuits combine to do the following:

- Decode, generate, and emulate drive control signals
- Position the read/write head to the selected stream
- Monitor and control tape speed
- Read/write data from/to the media.





#### **Tape Drive**

Tape motion is via a capstan driven by a 8-pole, 3-phase, brushless DC motor. The motor speed is controlled by an onboard microprocessor using pulse-width modulated signals. Tape speed is 90 inches per second.

Read/write head positioning is done by a stepper motor controlled by the onboard CPU in response to the interface signals. These signals are converted into discrete mechanical movements referred to as steps. The steps are changed in a logical sequence to move the stepper motor the desired number of steps for the required stream selected.

- .

### **120-MEGABYTE SCSI CARTRIDGE TAPE DRIVE**

### **Cartridge Tape Format**

Figure 3-93 shows the physical layout of the 120-megabyte tape media. The media is configured as 15 streams (tracks) which are used in a nonsequential serpentine recording technique. Each stream consists of a preamble, data block marker (1 byte), data field (512 bytes), block address (4 bytes), Cyclical Redundancy Check (CRC) (2 bytes), and a postamble.

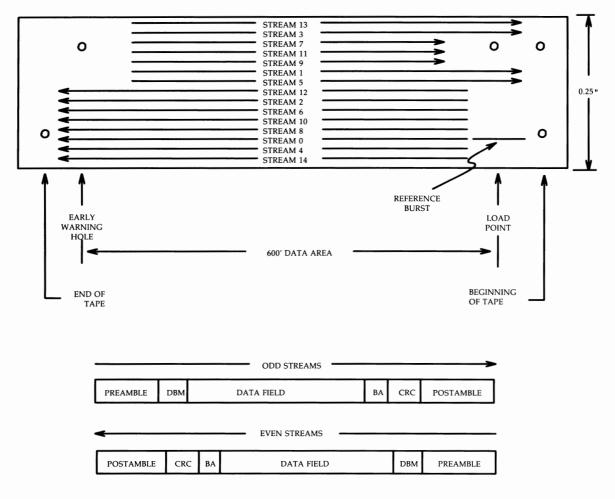



Figure 3-93: 120-Megabyte Cartridge Tape Physical Layout

### **120-Megabyte Cartridge Tape Drive**

Figure 3-94 is a functional block diagram of a 120-megabyte cartridge tape drive. The cartridge tape drive interfaces with the host computer using the Small Computer System Interface (SCSI) industry standard. The cartridge tape drive circuits include the following:

- Drive Motion Control
- Data Formatting Control
- Read/Write Control
- Buffer
- Sensor Group
- Head Stepper
- Capstan Drive Motor
- Read/Write Head.

The cartridge tape drive circuits combine to do the following:

- Decode, generate, and emulate drive control signals
- Position the read/write head to the selected stream
- Monitor and control tape speed
- Read/write data from/to the media.

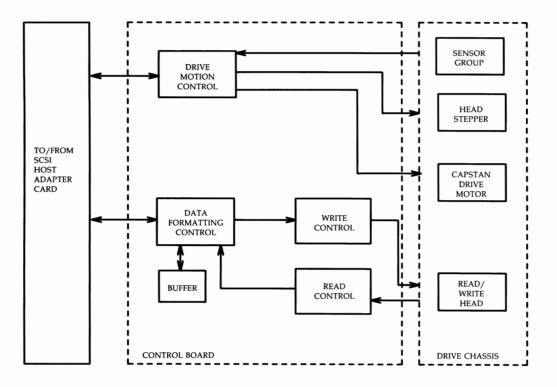



Figure 3-94: 120-Megabyte Cartridge Tape Drive — Functional Block Diagram

#### **Tape Drive**

Tape motion is via a capstan driven by a 8-pole, 3-phase, brushless DC motor. The motor speed is controlled by an onboard microprocessor using pulse-width modulated signals. Tape speed is 90 inches per second.

Read/write head positioning is done by a stepper motor controlled by the onboard CPU in response to the interface signals. These signals are converted into discrete mechanical movements referred to as steps. The steps are changed in a logical sequence to move the stepper motor the desired number of steps for the required stream selected.

### **AT&T SCSI REWRITABLE OPTICAL DISK DRIVE**

### **Optical Disk Format**

The format for the rewritable optical disk is like a standard hard disk. The main difference is that the optical disk can be removed. The media is formatted and partitioned as though it were another hard disk.

### **AT&T SCSI Rewritable Optical Disk Drive**

Figure 3-95 is a functional block diagram of a Small Computer System Interface (SCSI) Rewritable Optical Disk Drive. The optical disk drive interfaces with the host computer using the SCSI industry standard. The optical disk drive circuits include the following:

- Mechanical components to rotate the disk and move the head
- Read/Write Laser
- Writing magnet
- Analog circuitry for data separation
- Digital circuitry for drive control, formatting, and controller communication.

The optical disk drive circuits combine to do the following:

- Control motor speed
- Decode, generate, and emulate drive control signals
- Position the read/write laser to the selected position
- Read/write data from/to the media.

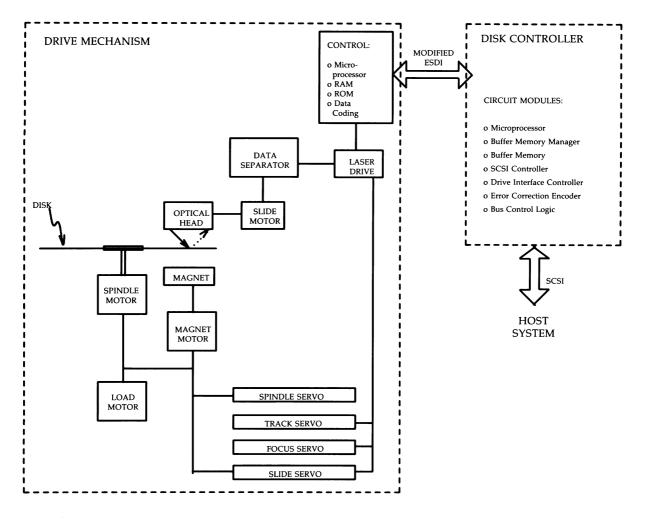



Figure 3-95: SCSI Rewritable Optical Disk Drive — Functional Block Diagram

#### **Optical Disk Drive**

Disk motion is controlled by the drive mechanism circuitry. The motor speed is controlled by the spindle servo mechanism which keeps the spindle motor at a constant 2400 rpm.

Read/write head positioning is done by a slide motor and servo system controlled by the data separator in response to the interface signals. These signals are converted into discrete mechanical movements which move the motors the proper amount for the required head position.

The laser drive controls the power to the laser diode. A low power beam is used for reading while a powerful heating beam is required for writing and erasing.

### **HARD DISK DRIVES**

A variety of hard disk drive types are used with a 3B2 computer. Refer to the applicable vendor document for detailed functional information.

, ite

### **POWER—FUNCTIONAL DESCRIPTION**

### **Version 2 System Power**

Figure 3-96 shows a functional block diagram of a typical 3B2/300 or 3B2/310 computer and AT&T/XM power arrangement. Figure 3-97 shows a functional block diagram of a typical 3B2/400 computer and AT&T/XM power arrangement. Domestic arrangements are set for 115 volt AC operation. In general, international arrangements are set for 220 to 240 volt AC operation. International markets using 115 volt AC operation are also supported via the applicable solution packages providing that arrangement.

The AT&T/XM Power Supply is controlled by the +5 volt Power Control signal from the 3B2 computer Power Supply. As additional AT&T Expansion Modules are added to a system, the Soft Power Control lead is multipled from module to module.

### **Version 3 System Power**

The typical power arrangements for Version 3 computers would be the same as for the Version 2 computers. However, since the Version 3 computers are equipped with a "smart" power supply, the voltage settings are done automatically.

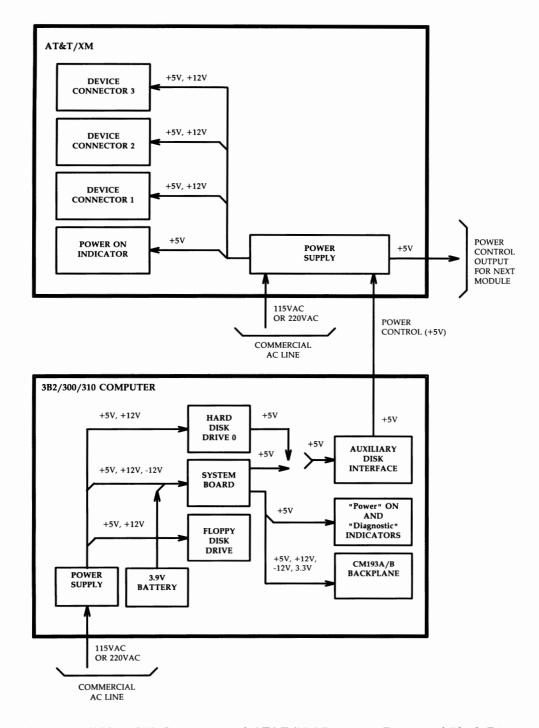
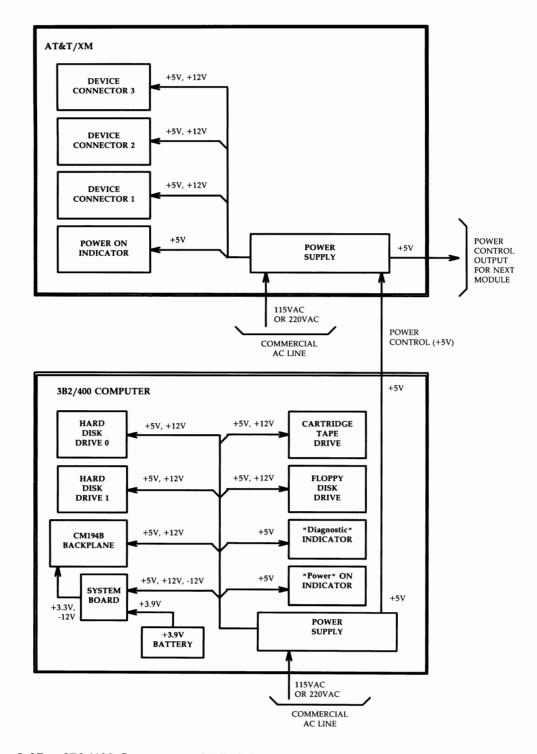




Figure 3-96: 3B2/300 or 310 Computer and AT&T/XM Power — Functional Block Diagram





- -

### **Version 2 3B2 Computer Power**

Figures 3-98 and 3-99 are functional block diagrams of the 3B2/300 and 310 computers Power Supply and the 3B2/400 computer Power Supply. Color codes and power connector pin identification for the power cables are shown in these figures. The 3B2 computer requires +5 volt (VCC), +12 volt, and -12 volt power. Logic power is +5 volt. The power supply upper trip point for VCC is between +6.00 volt and +6.75 volt. The DUART uses +12 volt and -12 volt. The various drives (hard disk, floppy, and cartridge tape) require +5 volt and +12 volt.

The commercial AC line is fused and filtered at the Power Supply Set input. The input AC line voltage is selected for either 115 volt AC or 220 to 240 volt AC operation. The Voltage Select Jumper is a factory installed jumper. Different solution packages are provided to support the different input AC lines.

Cooling for the power supply and the 3B2 computer is provided by a current load sensitive fan in the power supply assembly. As additional equipment is added to the configuration, the fan speed increases in response to the increased load. Unfiltered air is pulled from the front and left side of the cabinet and is exhausted at the back of the power supply.

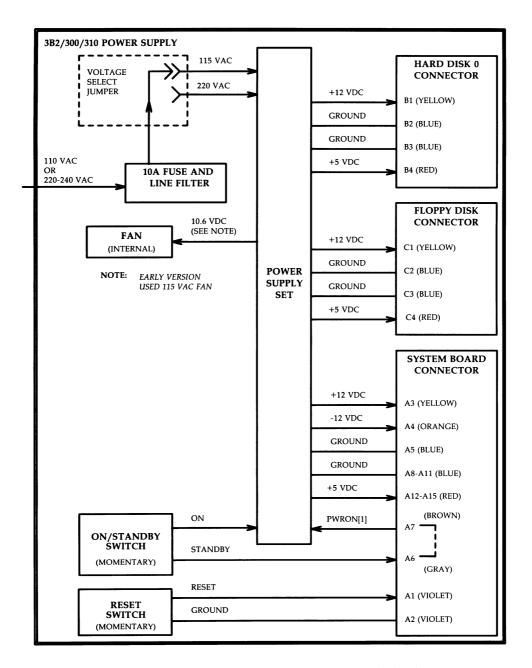



Figure 3-98: 3B2/300 and 310 Computer Power Supply — Functional Block Diagram

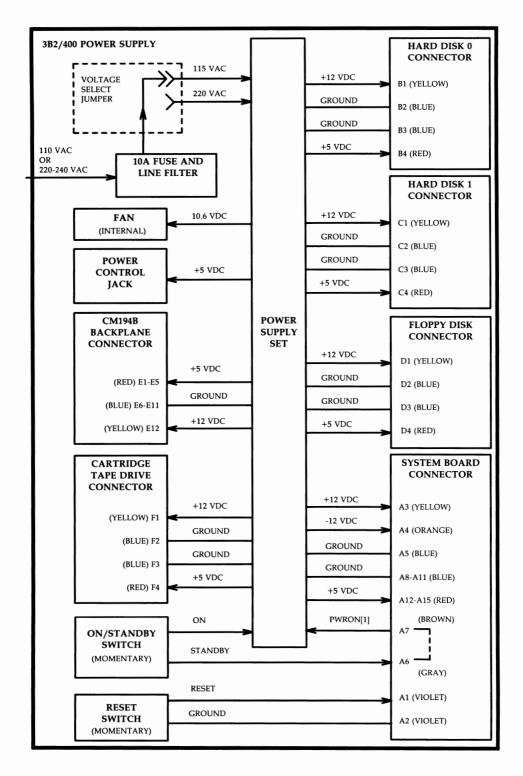



Figure 3-99: 3B2/400 Computer Power Supply — Functional Block Diagram

### Version 3 3B2 Computer Power

Figures 3-100 and 3-101 are functional block diagrams of the 3B2/500 computer Power Supply and the 3B2/600 and 700 computers Power Supply. Figure 3-102 is a functional block diagram of a power supply for a 3B2 computer with embedded SCSI.

Color codes and power connector pin identification for the power cables are shown in the figures. The 3B2 computer requires +5 volt (VCC), +12 volt, and -12 volt power. Logic power is +5 volt. The power supply upper trip point for VCC is between +5.5 volt and +7.0 volt. The Dual Universal Asynchronous Receiver/Transmitter (DUART) uses +12 volt and -12 volt. The various drives (hard disk, floppy, and cartridge tape) require +5 volt and +12 volt.

The commercial AC line is fused and filtered at the Power Supply Set input. The input AC line voltage is automatically set for either 115 volt AC or 220 to 240 volt AC operation.

Cooling for the power supply and the 3B2 computer is provided by a current load sensitive fan in the power supply assembly. As additional equipment is added to the configuration, the fan speed increases in response to the increased load. Unfiltered air is pulled from the front and left side of the cabinet and is exhausted at the back of the power supply.

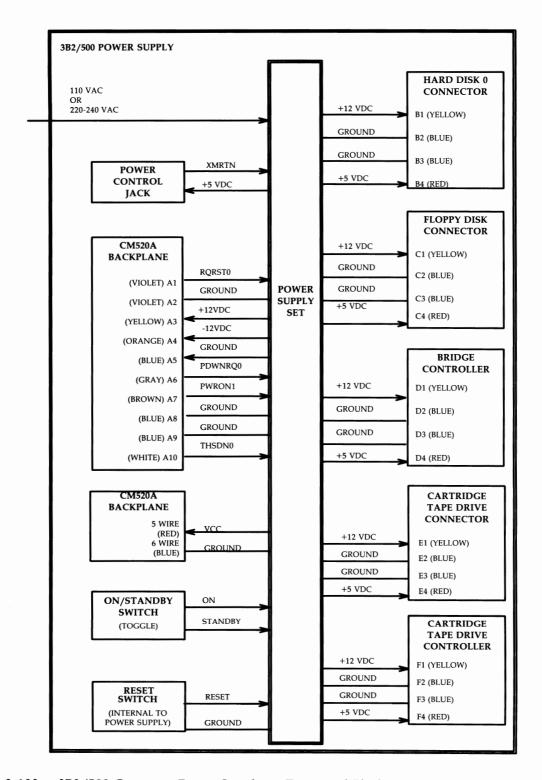



Figure 3-100: 3B2/500 Computer Power Supply — Functional Block Diagram

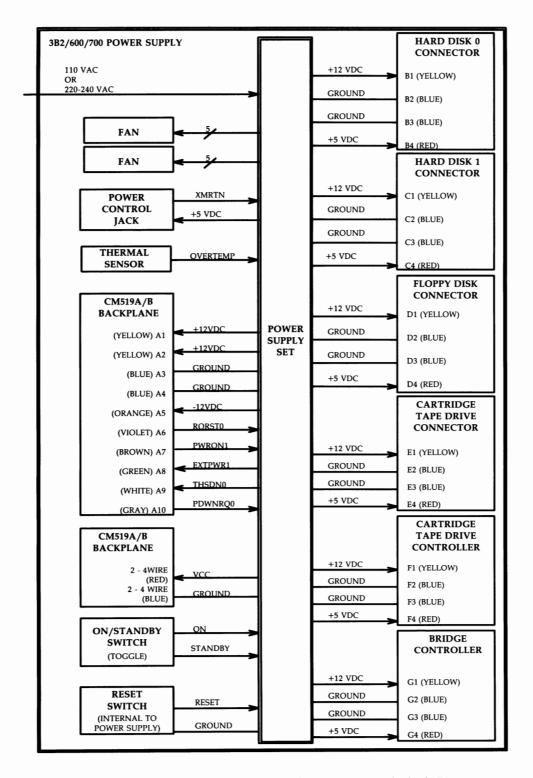



Figure 3-101: 3B2/600 and 700 Computer Power Supply — Functional Block Diagram

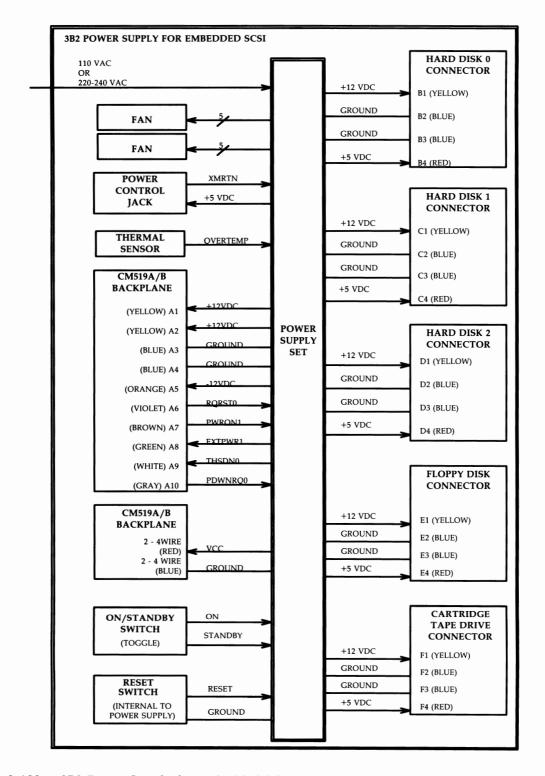
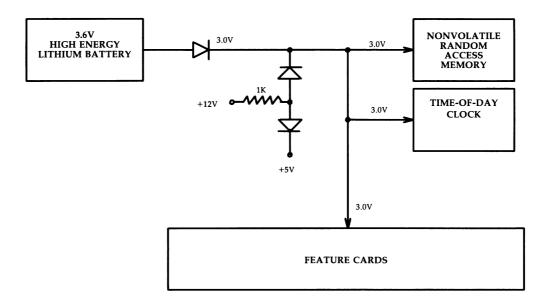



Figure 3-102: 3B2 Power Supply for Embedded SCSI— Functional Block Diagram

### **3B2 Computer Backup Battery Supply**


Figure 3-103 is a functional block diagram of the 3B2 computer Backup Battery Supply. A 3.6 volt DC high energy lithium battery is used to supply approximately 3.3 volt DC standby power for the following:

- Time-of-Day Clock
- Nonvolatile Random Access Memory (NVRAM)
- Feature Card Slots.

A reverse biased diode isolates the battery from the connecting circuits when VCC and +12 volt DC are applied to the system board. A small leakage current of approximately 100 microamperes serves to maintain the battery in the fresh state while the external power is applied. When VCC and 12 volt DC are absent, the battery supplies approximately 3.0 volt DC to the connecting circuits. The expected battery life is approximately six years if only the system board current drain is considered.\* The battery life will be less than six years depending on the amount of standby current drawn by the feature cards.

| FEATURE CARD<br>CURRENT DRAIN<br>(microamperes) | BATTERY<br>LIFE<br>(Years) |
|-------------------------------------------------|----------------------------|
| 0                                               | 6.0                        |
| 10                                              | 4.0                        |
| 20                                              | 3.0                        |
| 30                                              | 2.4                        |
| 40                                              | 2.0                        |
| 50                                              | 1.5                        |
| 60                                              | 1.1                        |

<sup>\*</sup> Some of the newer 3B2/400 computers may use Performance Semiconductor P4C148L-35 (1K by 4 bits) Static Random Access Memory (SRAM) which will decrease this "system board only" lifetime to about 4.8 years.



NOTE: The battery connects to the system board on Version 2 computers and to the backplane on Version 3 computers.

Figure 3-103: 3B2 Computer Backup Battery Supply — Functional Block Diagram

#### AT&T Expansion Module Power Supply

Figure 3-104 is a functional block diagram of an AT&T/XM Power Supply and Figure 3-105 is a functional block diagram of an AT&T XM/405S/900S Power Supply. Color codes and power connector pin identification for the power cables are shown in these figures. The equipment mounted in the AT&T/XM requires +5 volt (VCC) and +12 volt power. The power supply upper trip point for VCC is between +6.00 volt and +6.75 volt. The various drives (hard disk, floppy, and cartridge tape) require +5 volt and +12 volt.

The commercial AC line is fused and filtered at the Power Supply Set input. The input AC line voltage is selected for either 115 volt AC or 220 to 240 volt AC operation. The Voltage Select Jumper is a factory installed jumper. Different solution packages are provided to support the different input AC lines.

Cooling for the power supply and the equipment mounted in the AT&T/XM cabinet is provided by a current load sensitive fan in the power supply assembly. As additional equipment is added to the configuration, the fan speed increases in response to the increased load. Unfiltered air is pulled from the front and left side of the cabinet and is exhausted at the back of the power supply.

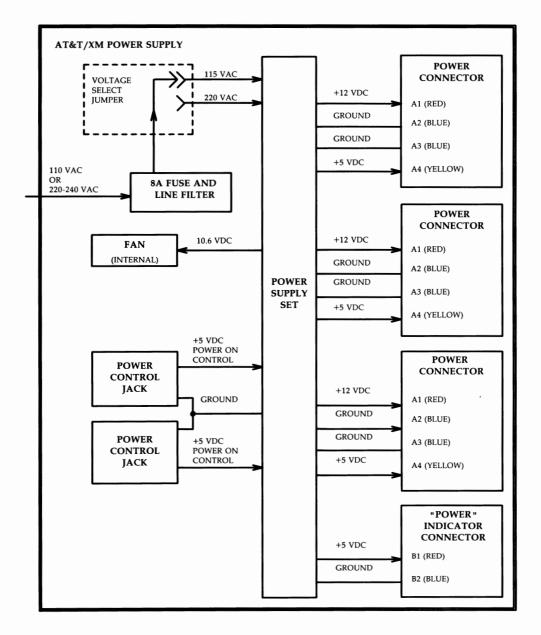



Figure 3-104: AT&T/XM Power Supply — Functional Block Diagram

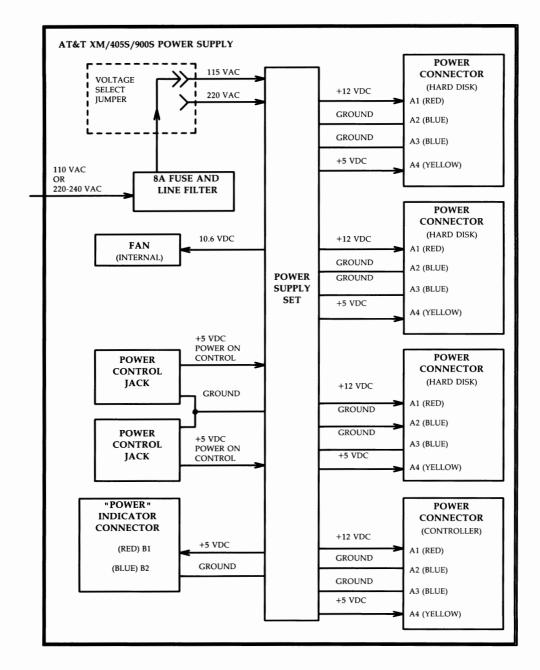



Figure 3-105: AT&T XM/405S/900S Power Supply — Functional Block Diagram

# Appendix A: VIRTUAL ADDRESS SPACE

| Appendix A : | VIRTUAL A        | ADD   | RES | SS | SI | ΡA | CI | Ξ |   |  |   |   |   |   |   |  | • | A-1 |
|--------------|------------------|-------|-----|----|----|----|----|---|---|--|---|---|---|---|---|--|---|-----|
| Swapping V   | irtual Address S | Space | •   | •  | •  |    |    |   |   |  |   | • |   | • |   |  |   | A-1 |
| Paging Virtu | al Address Spa   | ce.   | •   | •  | •  |    | •  | • | • |  | • | • | • | • | • |  | • | A-4 |

### LIST OF FIGURES

| Figure | A-1: | Virtual Address Space Sections                     | • | • | • | • | • | A-1 |
|--------|------|----------------------------------------------------|---|---|---|---|---|-----|
| Figure | A-2: | Virtual Address Space — Section 0                  |   | • | • | • |   | A-2 |
| Figure | A-3: | Virtual Address Space — Section 1                  |   | • | • | • |   | A-3 |
| Figure | A-4: | Virtual Address Space — Section 2                  | • | • | • | • |   | A-3 |
| Figure | A-5: | Virtual Address Space — Section 3                  |   | • | • | • | • | A-4 |
| Figure | A-6: | Paging Virtual Address Map (Minimum Configuration) | • |   |   | • | • | A-4 |

## Appendix A: VIRTUAL ADDRESS SPACE

### **Swapping Virtual Address Space**

Translation of virtual memory addresses to physical memory addresses is done by the WE 32101 Memory Management Unit (MMU). The WE 32101 MMU divides the virtual address space into four address subspaces called *sections*. Each *section* is 1 gigabyte in length. Each section is divided into 128 kilobyte segments. The MMU provides for both contiguous and paged segments. A contiguous segment can be as large as 128 kilobytes. A paged segment can contain up to sixty-four 2-kilobyte pages. Three virtual address sections are assigned as user address space and one virtual address section is assigned as system address space. The system address space is common for all processes and is not changed in a context switch. The operating system is located in the system address space. Therefore, all operating system functions are shared by all processes and are available to all user processes.

The user address space is separate for each process. However, several processes can access the same memory pages (controlled sharing). The layout of the user address space is shown in Figure A-1. The program text begins at address 0x A0000000 and is write protected. Nonshared, writable data begins at the first segment after the program text. The size of the data segment is extendible by a system call. The stack begins at address 0x C0020000 and is grown automatically by the operating system when the process runs out of stack space. The segment in the user address space at address 0x C0000000 is reserved for storing operating system related information about user processes (u\_block).

A process executing in the user mode has access only to sections 1, 2, and 3 of the virtual address space. When the operating system is running in the kernel mode for a user process, the process has access to both the user and kernel address spaces. Figures A-2 through A-5 show the layout of sections 0 through 3 of the virtual address space.

| SYSTEM VIRTUAL ADDRESS SPACE |                         |                                      |  |  |  |  |
|------------------------------|-------------------------|--------------------------------------|--|--|--|--|
| SECTION                      | ADDRESS                 | DESCRIPTION                          |  |  |  |  |
| 0                            | 0x 00000000-0x 3FFFFFFF | KERNEL INPUT/OUTPUT AND SYSTEM BOARD |  |  |  |  |
| 1                            | 0x 40000000-0x 7FFFFFF  | KERNEL TEXT AND DATA                 |  |  |  |  |
| 2                            | 0x 80000000-0x BFFFFFF  | PROCESS TEXT AND DATA                |  |  |  |  |
| 3                            | 0x C0000000-0x FFFFFFF  | PROCESS U_BLOCK AND STACK            |  |  |  |  |

Figure A-1: Virtual Address Space Sections

### Appendix: VIRTUAL ADDRESS SPACE -

| SECTION 0 KERNEL VIRTUAL ADDRESS SPACE |                    |                 |                 |                        |                   |                  |
|----------------------------------------|--------------------|-----------------|-----------------|------------------------|-------------------|------------------|
| SEGMENT<br>NUMBER                      | VIRTUAL<br>ADDRESS | SEGMENT<br>SIZE | SECTION<br>NAME | SEGMENT<br>CONTENTS    | SEGMENT<br>ACCESS | LOADER<br>OPTION |
| 0x 0                                   | 0x 00000000        | 2 KB            | .gate           | GATE TABLE             | KR                |                  |
| 0x 1                                   | 0x 00020000        | 64 KB           | KV_demot        | SYSTEM BOARD ROM       | KR                | NOLOAD           |
| 0x 2                                   | 0x 00040000        | 64 KB           | KV_ccmmu        | SYSTEM BOARD REGISTERS | KRW               | NOLOAD           |
| 0x 3—0x 12                             | 0x 00060000        | 2 MB            |                 | FEATURE CARD SLOT 1    | KRW               |                  |
| 0x 13                                  |                    |                 |                 | NOT USED               |                   |                  |
| 0x 14—0x 23                            | 0x 00280000        | 2 MB            |                 | FEATURE CARD SLOT 2    | KRW               |                  |
| 0x 24                                  |                    |                 |                 | NOT USED               |                   |                  |
| 0x 25—0x 34                            | 0x 004A0000        | 2 MB            |                 | FEATURE CARD SLOT 3    | KRW               |                  |
| 0x 35                                  |                    |                 |                 | NOT USED               |                   |                  |
| 0x 36—0x 45                            | 0x 006C0000        | 2 MB            |                 | FEATURE CARD SLOT 4    | KRW               |                  |
| 0x 46                                  |                    |                 |                 | NOT USED               |                   |                  |
| 0x 47—0x 56                            | 0x 008E0000        | 2 MB            |                 | FEATURE CARD SLOT 5    | KRW               |                  |
| 0x 57                                  |                    |                 |                 | NOT USED               |                   |                  |
| 0x 58—0x 67                            | 0x 00B00000        | 2 MB            |                 | FEATURE CARD SLOT 6    | KRW               |                  |
| 0x 68                                  |                    |                 |                 | NOT USED               |                   |                  |
| 0x 69—0x 78                            | 0x 00D20000        | 2 MB            |                 | FEATURE CARD SLOT 7    | KRW               |                  |
| 0x 79                                  |                    |                 |                 | NOT USED               |                   |                  |
| 0x 80—0x 8F                            | 0x 01000000        | 2 MB            |                 | FEATURE CARD SLOT 8    | KRW               |                  |
| 0x 90                                  |                    |                 |                 | NOT USED               |                   |                  |
| 0x 91—0x A0                            | 0x 01220000        | 2 MB            |                 | FEATURE CARD SLOT 9    | KRW               |                  |
| 0x A1                                  |                    |                 |                 | NOT USED               |                   |                  |
| 0x A2—0x B1                            | 0x 01440000        | 2 MB            |                 | FEATURE CARD SLOT A    | KRW               |                  |
| 0x B2                                  |                    |                 |                 | NOT USED               |                   |                  |
| 0x B3—0x C2                            | 0x 01660000        | 2 MB            |                 | FEATURE CARD SLOT B    | KRW               |                  |
| 0x C3                                  |                    |                 |                 | NOT USED               |                   |                  |
| 0x C4—0x D3                            | 0x 01880000        | 2 MB            |                 | FEATURE CARD SLOT C    | KRW               |                  |
| 0x D4                                  |                    |                 |                 | NOT USED               |                   |                  |
| 0x D5—0x E4                            | 0x 01AA0000        | 2 MB            |                 | FEATURE CARD SLOT D    | KRW               |                  |
| 0x E5                                  |                    |                 |                 | NOT USED               |                   |                  |
| 0x E6—0x F5                            | 0x 01CC0000        | 2 MB            |                 | FEATURE CARD SLOT E    | KRW               |                  |
| 0x F6—0x FF                            |                    |                 |                 | NOT USED               |                   |                  |
| 0x 100—0x 1FF                          | 0x 02000000        | 16 MB           |                 | MAIN MEMORY            | KRW               |                  |

LEGEND:

| KB  | KILOBYTE          |
|-----|-------------------|
| KR  | KERNEL READ       |
| KRW | KERNEL READ/WRITE |
| MB  | MEGABYTE          |

Figure A-2: Virtual Address Space — Section 0

### - Appendix: VIRTUAL ADDRESS SPACE

| SECTION 1 KERNEL VIRTUAL ADDRESS SPACE |                    |                 |                 |                           |                   |                  |
|----------------------------------------|--------------------|-----------------|-----------------|---------------------------|-------------------|------------------|
| SEGMENT<br>NUMBER                      | VIRTUAL<br>ADDRESS | SEGMENT<br>SIZE | SECTION<br>NAME | SEGMENT<br>CONTENTS       | SEGMENT<br>ACCESS | LOADER<br>OPTION |
| 0x 0—0x 7                              | 0x 44000000        | 1 MB            | .text           | KERNEL TEXT               | KR                |                  |
| 0x 8—0x F                              | 0x 44100000        | 1 MB            | .data           | KERNEL DATA               | KRW               |                  |
| 0x 10-0x 1F                            | 0x 44200000        | 2 MB            | .bss            | KERNEL STATIC DATA        | KRW               |                  |
| 0x 20—0x 2F                            | 0x 44400000        | 2 MB            | KV_resmm        | KERNEL SCRATCH            | KRW               | NOLOAD           |
| 0x 30—0x 3F                            | 0x 44600000        | 2 MB            | KV_sysseg       | NETWORK INTERFACE SCRATCH | KRW               | NOLOAD           |
| 0x 40                                  | 0x 44800000        | 128 KB          | KV_prfdat       | PAGE FRAME DATA           | KRW               | NOLOAD           |
| 0x 41                                  | 0x 44820000        | 128 KB          | KV_tables       | SYSTEM TABLES             | KRW               | NOLOAD           |

LEGEND:

| KB  | KILOBYTE          |
|-----|-------------------|
| KR  | KERNEL READ       |
| KRW | KERNEL READ/WRITE |
| MB  | MEGABYTE          |

Figure A-3: Virtual Address Space - Section 1

| SE                    | CTION 2 USE | R VIRTUAL | ADDRESS SPA | CE      |        |
|-----------------------|-------------|-----------|-------------|---------|--------|
| VIRTUAL               | SEGMENT     | SECTION   | SEGMENT     | SEGMENT | LOADER |
| ADDRESS               | SIZE        | NAME      | CONTENTS    | ACCESS  | OPTION |
| 0x A0000000           | 1 MB        | .text     | USER TEXT   | KR/UR   |        |
| 0x A0000000 + n*20000 | 1 MB        | .data     | USER DATA   | KRW/URW |        |

LEGEND:

KR KERNEL READ KRW KERNEL READ/WRITE UR USER READ URW USER READ/WRITE

Figure A-4: Virtual Address Space — Section 2

## Appendix: VIRTUAL ADDRESS SPACE -

| SECTION 3 USER VIRTUAL ADDRESS SPACE                                                 |        |  |                                 |                  |  |
|--------------------------------------------------------------------------------------|--------|--|---------------------------------|------------------|--|
| VIRTUAL<br>ADDRESSSEGMENT<br>SIZESECTION<br>NAMESEGMENT<br>CONTENTSSEGMENT<br>ACCESS |        |  |                                 | LOADER<br>OPTION |  |
| 0x C0000000<br>0x C0020000                                                           | 1 BYTE |  | USER U_BLOCK<br>USER STACK DATA | KRW<br>KRW/URW   |  |

LEGEND:

KRW KERNEL READ/WRITE URW USER READ/WRITE

Figure A-5: Virtual Address Space — Section 3

## **Paging Virtual Address Space**

Figure A-6 shows the minimal virtual address map for a 3B2 computer running a paging operating system.

| PAGING VIRTUAL ADDRESS SPACE                                                    |                                                                                                                                                                                                                   |  |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ADDRESS                                                                         | DESCRIPTION                                                                                                                                                                                                       |  |  |
| 0x 00000000-0x 7FFFFFF<br>0x 8000000-0x 807FFFF<br>0x 80800000-0x 9FFFFFF       | OPERATING SYSTEM<br>RESERVED<br>Start of the user .text segment. At next 512 KB boundary (after end of text)<br>.data begins. The .data segment typically grows toward higher addresses as<br>a process executes. |  |  |
| 0x 0A0000000—0x BFFFFFF<br>0x C00000000—0x DFFFFFFF<br>0x E00000000—0x FFFFFFFF | RESERVED<br>RESERVED                                                                                                                                                                                              |  |  |

Figure A-6: Paging Virtual Address Map (Minimum Configuration)

# Appendix B: CONNECTOR AND CABLING INFORMATION

| Appendix B: CONNECTOR AND CABLING INFORMATION                 | B-1   |
|---------------------------------------------------------------|-------|
| GÉNERAL                                                       | B-1   |
| CM190A/ED-4C637-30 SYSTEM BOARD INTERCONNECTIONS              | B-3   |
| CM518A/B/C SYSTEM BOARD INTERCONNECTIONS                      | B-23  |
| CM191A/B/C/D AND CM192B MEMORY CARD INTERCONNECTIONS          | B-41  |
| CM523A/AA/B/D MEMORY CARD INTERCONNECTIONS                    | B-55  |
| CM193A/B AND CM194B BACKPLANE INTERCONNECTIONS                | B-67  |
| CM519A/B AND CM520A BACKPLANE INTERCONNECTIONS                | B-80  |
| CM195A NETWORK INTERFACE CARD INTERCONNECTIONS                | B-109 |
| CM195AA ALARM INTERFACE CIRCUIT CARD INTERCONNECTIONS         | B-117 |
| CM195AC/CM195AD "DATAKIT" VCS INTERFACE CARD INTERCONNECTIONS | B-125 |
| CM195AE GPSC CARD INTERCONNECTIONS                            | B-135 |
| GPSC Interface Cables                                         | B-142 |
| CM195AY/CM195Y EPORTS CARD INTERCONNECTIONS                   | B-143 |
| CM195B/CM195BA PORTS CARD INTERCONNECTIONS                    | B-151 |
| CM195H CARTRIDGE TAPE CONTROLLER CARD INTERCONNECTIONS        | B-159 |
| CM195K EXPANSION DISK CONTROLLER CARD INTERCONNECTIONS        | B-167 |
| CM195T INTELLIGENT SERIAL CONTROLLER CARD INTERCONNECTIONS    | B-177 |
| CM195U STARLAN INTERFACE CARD INTERCONNECTIONS                | B-185 |
| CM195W SCSI HOST ADAPTER CARD INTERCONNECTIONS                | B-193 |
| CM521A DIFFERENTIAL SCSI HOST ADAPTER CARD INTERCONNECTIONS   | B-201 |
| CM522A VCACHE CARD INTERCONNECTIONS                           | B-209 |
| CM524A PROCESSING ELEMENT CARD INTERCONNECTIONS               | B-215 |
| CM525B VMEbus CARD INTERCONNECTIONS                           | B-221 |
| CM527A MULTIPROCESSOR ENHANCEMENT CARD INTERCONNECTIONS       | B-233 |
| MISCELLANEOUS CONNECTORS AND CABLES                           | B-239 |
| General                                                       | B-239 |
| 8-Pin Module to 25-Pin Connectors                             | B-240 |
| PORTS Loop Around Connections                                 | B-244 |
| Terminal/Printer/Peripheral Device Cables                     | B-245 |

## LIST OF FIGURES

| Figure | B-1: | CM190A System Board Layout                                  |
|--------|------|-------------------------------------------------------------|
| Figure | B-2: | System Board, ED-4C637-30 Layout                            |
| Figure | B-3: | CM518A System Board Layout                                  |
| Figure | B-4: | CM518B System Board Layout                                  |
| Figure | B-5: | CM518C System Board Layout                                  |
| Figure | B-6: | CM191A 0.25-Megabyte Memory Card Layout B-43                |
| Figure | B-7: | CM191B 1-Megabyte Memory Card Layout                        |
| Figure | B-8: | CM191C 1-Megabyte, Surface Mounted, Memory Card Layout B-47 |
| Figure | B-9: | CM191D 2-Megabyte, Surface Mounted, Memory Card Layout B-49 |

| Figure | B-10: | CM192B 2-Megabyte, Surface Mounted, Memory                              |
|--------|-------|-------------------------------------------------------------------------|
|        |       | Card Layout                                                             |
| Figure | B-11: | CM523A 4-Megabyte Memory Card Layout                                    |
| Figure | B-12: | CM523AA 4-Megabyte Memory Card Layout B-59                              |
| Figure | B-13: | CM523B 2-Megabyte Memory Card Layout                                    |
| Figure | B-14: | CM523D 16-Megabyte Memory Card Layout B-63                              |
| Figure | B-15: | CM193A/B Backplane Layout                                               |
| Figure | B-16: | CM194B Backplane Layout                                                 |
| Figure | B-17: | CM519A Backplane Layout                                                 |
| Figure | B-18: | CM519B Backplane Layout                                                 |
| Figure | B-19: | CM520A Backplane Layout                                                 |
| Figure | B-20: | CM195A NI Card Layout                                                   |
| Figure | B-21: | CM195AA AIC Card Layout                                                 |
| Figure | B-22: | CM195AC/CM195AD Datakit VCS Interface Card Layout B-127                 |
| Figure | B-23: | CM195AE GPSC Card Layout                                                |
| Figure | B-24: | CM195AY/CM195Y EPORTS Card Layout B-145                                 |
| Figure | B-25: | CM195B/CM195BA PORTS Card Layout                                        |
| Figure | B-26: | CM195H CTC Card Layout                                                  |
| Figure | B-27: | CM195K XDC Card Layout                                                  |
| Figure | B-28: | CM195T ISC Card Layout                                                  |
| Figure | B-29: | CM195U STARLAN Interface Card Layout                                    |
| Figure | B-30: | CM195W SCSI Host Adapter Card Layout                                    |
| Figure | B-31: | CM521A Differential SCSI Host Adapter Card Layout B-203                 |
| Figure | B-32: | CM522A VCACHE Card Layout                                               |
| Figure | B-33: | CM524A PE Card Layout                                                   |
| Figure | B-34: | CM525B VMEbus Card Layout                                               |
| Figure | B-35: | CM527A MPE Card Layout                                                  |
| Figure | B-36: | CONSOLE, CONTTY, and PORTS 8-Pin Modular Jacks Pin<br>Identification    |
| Figure | B-37: | ACU/MODEM Connector (232-21-25-005) Pin Identification B-240            |
| Figure | B-38: | Terminal/Printer Female Connector (232-22-25-006) Pin<br>Identification |
| Figure | B-39: | Terminal/Printer Male Connector (232-21-25-010) Pin<br>Identification   |

## Appendix B: CONNECTOR AND CABLING INFORMATION

| Figure B-40: | Remote Console Male Connector (232-21-25-008) Pin            |
|--------------|--------------------------------------------------------------|
|              | Identification                                               |
| Figure B-41: | PORTS Loop Around Connections                                |
| Figure B-42: | 8-Conductor Modular Cable Connector Pin Identification B-246 |
| Figure B-43: | CENTRONICS Connectorized Cable Pin Identification B-247      |

Sec. ....

"Water

## Appendix B: CONNECTOR AND CABLING INFORMATION

## GENERAL

This appendix contains specific card interconnection information. Interconnection information is provided for following equipment:

- CM190A/ED-4C637-30 and CM518A/B/C System Boards
- CM191A/B/C/D, CM192B, CM523A/AA/B/D Memory Cards
- CM193A/B, CM194B, CM519A/B, and CM520A Backplanes
- CM195A Network Interface (NI) Card
- CM195AA Alarm Interface Circuit (AIC) Card
- CM195AC/CM195AD Datakit Virtual Circuit Switch (VCS) Interface Card
- CM195AE General Purpose Synchronous Controller (GPSC) Card
- CM195AY/CM195Y Enhanced Peripheral Port Controller (EPORTS) Card
- CM195B/CM195BA Peripheral Port Controller (PORTS) Cards
- CM195H Cartridge Tape Controller (CTC) Card
- CM195K Expansion Disk Controller (XDC) Card
- CM195T Intelligent Serial Controller (ISC) Card
- CM195U STARLAN Interface Card
- CM195W Small Computer System Interface (SCSI) Host Adapter Card
- CM521A Differential SCSI Host Adapter Card
- CM522A Virtual Cache (VCACHE) Card
- CM524A Processing Element (PE) Card
- CM525B Versa Modula Europa bus (VMEbus) Card
- CM527A Multiprocessor Enhancement (MPE) Card
- Miscellaneous Connectors and Cables.

## CM190A/ED-4C637-30 SYSTEM BOARD INTERCONNECTIONS

Figure B-1 shows the layout of the CM190A System Board. Figure B-2 shows the layout of the System Board, ED-4C637-30. Refer to these figures for system board connector location information. Pin and signal information is provided in tables following the figures for each of the system board connectors. The connector tables are presented in sequence by connector designation. The figures are printed front and back with a blank unit so that either figure can be used in conjunction with any table.

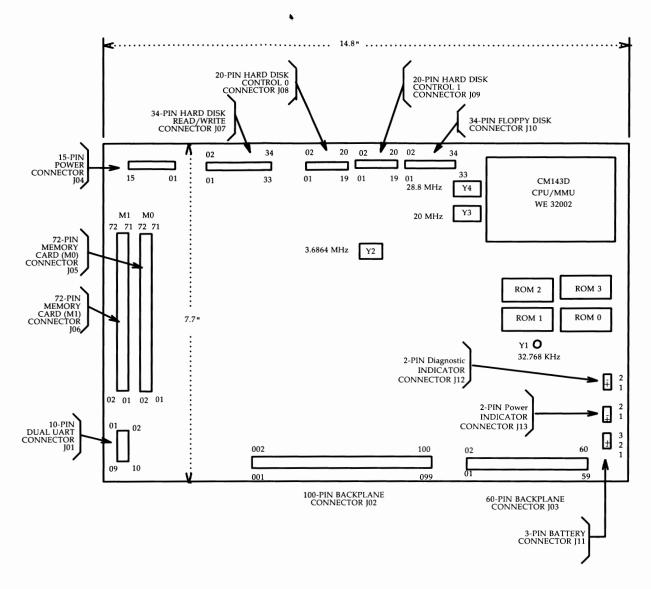



Figure B-1: CM190A System Board Layout

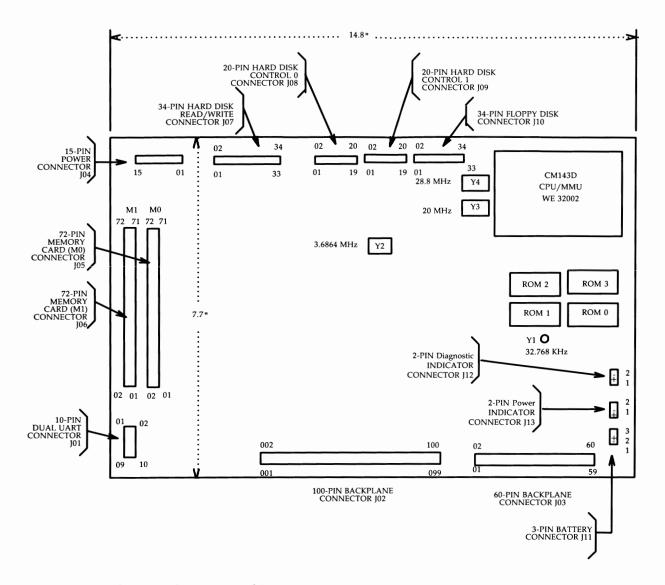



Figure B-1: CM190A System Board Layout

### Appendix: CONNECTOR AND CABLING INFORMATION

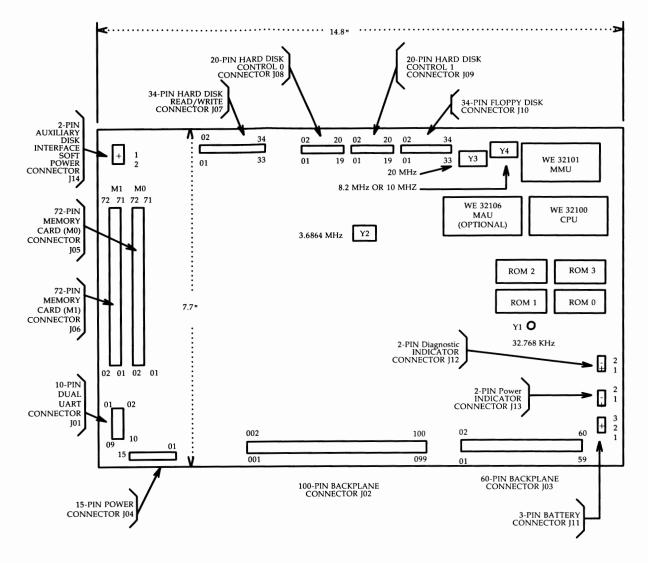



Figure B-2: System Board, ED-4C637-30 Layout

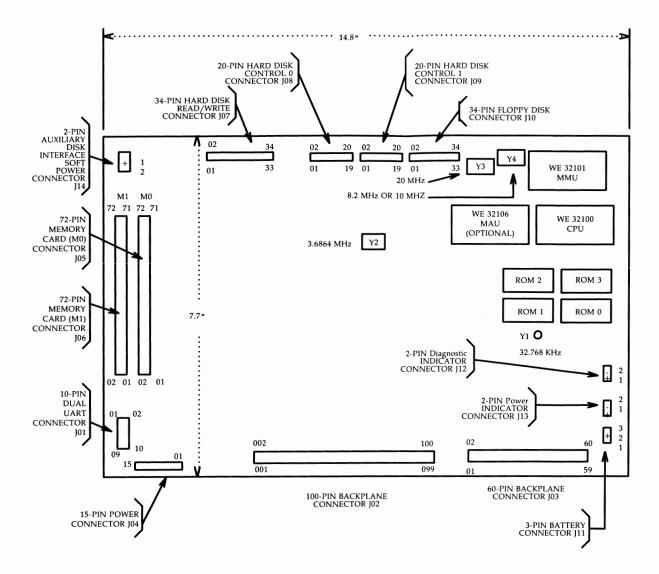



Figure B-2: System Board, ED-4C637-30 Layout

|     | 10-PIN DUAL UART CONNECTOR, J01               |          |  |  |
|-----|-----------------------------------------------|----------|--|--|
| PIN | DESCRIPTION                                   | FUNCTION |  |  |
| 1   | CONSOLE RECEIVE DATA (BB 2) (RXD0[0])         | INPUT    |  |  |
| 2   | CONSOLE TRANSMIT DATA (BA 3) (TXD0[0])        | OUTPUT   |  |  |
| 3   | CONSOLE DATA TERMINAL READY (CD 20) (DTR0[0]) | OUTPUT   |  |  |
| 4   | CONSOLE DATA CARRIER DETECT (CF 8) (DCD0[0])  | INPUT    |  |  |
| 5   | GROUND (GRD)                                  | GROUND   |  |  |
| 6   | CONTTY TRANSMIT DATA (BA 3) (TXD1[0])         | OUTPUT   |  |  |
| 7   | CONTTY RECEIVE DATA (BB 2) (RXD1[0])          | INPUT    |  |  |
| 8   | CONTTY DATA TERMINAL READY (CD 20) (DTR1[0])  | OUTPUT   |  |  |
| 9   | CONTTY DATA CARRIER DETECT (CF 8) (DCD1[0])   | INPUT    |  |  |
| 10  | GROUND (GRD)                                  | GROUND   |  |  |

NOTE: The CONSOLE AND CONTTY are classed as Data Terminal Equipment (DTE) connections.

|          | 100-PIN BACKPLANE CONNECTOR, J02                           |                        |  |  |
|----------|------------------------------------------------------------|------------------------|--|--|
| PIN      | DESCRIPTION                                                | FUNCTION               |  |  |
| 1        | +5V (VCC)                                                  | POWER                  |  |  |
| 2        | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1])              | INPUT/OUTPUT           |  |  |
| 3        | PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1])              | INPUT/OUTPUT           |  |  |
| 4        | GROUND (GRD)                                               | GROUND                 |  |  |
| 5        | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1])              | INPUT/OUTPUT           |  |  |
| 6        | PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1])              | INPUT/OUTPUT           |  |  |
| 7        | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1])              | INPUT/OUTPUT           |  |  |
| 8        | GROUND (GRD)                                               | GROUND                 |  |  |
| 9        | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1])              | INPUT/OUTPUT           |  |  |
| 10<br>11 | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1])<br>+5V (VCC) | INPUT/OUTPUT<br>POWER  |  |  |
| 12       | GROUND (GRD)                                               | GROUND                 |  |  |
| 12       | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1])              | INPUT/OUTPUT           |  |  |
| 13       | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA16[1])              | INPUT/OUTPUT           |  |  |
| 15       | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1])              | INPUT/OUTPUT           |  |  |
| 16       | GROUND (GRD)                                               | GROUND                 |  |  |
| 17       | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1])              | INPUT/OUTPUT           |  |  |
| 18       | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1])              | INPUT/OUTPUT           |  |  |
| 19       | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1])              | INPUT/OUTPUT           |  |  |
| 20       | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1])              | INPUT/OUTPUT           |  |  |
| 21       | +5V (VCC)                                                  | POWER                  |  |  |
| 22       | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1])              | INPUT/OUTPUT           |  |  |
| 23       | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1])              | INPUT/OUTPUT           |  |  |
| 24       | GROUND (GRD)                                               | GROUND                 |  |  |
| 25       | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1])              | INPUT/OUTPUT           |  |  |
| 26       | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1])              | INPUT/OUTPUT           |  |  |
| 27       | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1])              | INPUT/OUTPUT           |  |  |
| 28       | GROUND (GRD)                                               | GROUND                 |  |  |
| 29       | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1])              | INPUT/OUTPUT           |  |  |
| 30<br>31 | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1])              | INPUT/OUTPUT<br>POWER  |  |  |
| 31       | +5V (VCC)<br>GROUND (GRD)                                  | GROUND                 |  |  |
| 33       | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1])              | INPUT/OUTPUT           |  |  |
| 34       | PERIPHERAL PHYSICAL ADDRESS BIT 02 (11 Ad[1])              | INPUT/OUTPUT           |  |  |
| 35       | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1])              | INPUT/OUTPUT           |  |  |
| 36       | GROUND (GRD)                                               | GROUND                 |  |  |
| 37       | PERIPHERAL INTERLOCK (PLOCK[0])                            | INPUT/OUTPUT           |  |  |
| 38       | PERIPHERAL READ-WRITE (PR[1]W[0])                          | INPUT/OUTPUT           |  |  |
| 39       | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])               | INPUT/OUTPUT           |  |  |
| 40       | GROUND (GRD)                                               | GROUND                 |  |  |
| 41       | +5V (VCC)                                                  | POWER                  |  |  |
| 42       | PERIPHERAL BUS ACKNOWLEDGE (PBACK[0])                      | INPUT/OUTPUT           |  |  |
| 43       | PERIPHERAL BUS REQUEST (PBRQ[0])                           | INPUT/OUTPUT           |  |  |
| 44       | GROUND (GRD)                                               | GROUND                 |  |  |
| 45       | PERIPHERAL DATA BIT 15 (PD15[1])                           | INPUT/OUTPUT           |  |  |
| 46       | PERIPHERAL DATA BIT 14 (PD14[1])                           | INPUT/OUTPUT           |  |  |
| 47<br>48 | PERIPHERAL DATA BIT 13 (PD13[1])<br>GROUND (GRD)           | INPUT/OUTPUT<br>GROUND |  |  |
| 48<br>49 | PERIPHERAL DATA BIT 12 (PD12[1])                           | INPUT/OUTPUT           |  |  |
| 49<br>50 | PERIPHERAL DATA BIT 12 (PD12[1])                           | INPUT/OUTPUT           |  |  |
| 50       |                                                            |                        |  |  |

## Appendix: CONNECTOR AND CABLING INFORMATION

• •

| 100-PIN BACKPLANE CONNECTOR, J02 (Contd) |                                                  |                              |  |
|------------------------------------------|--------------------------------------------------|------------------------------|--|
| PIN                                      | DESCRIPTION                                      | FUNCTION                     |  |
| 51                                       | +5V (VCC)                                        | POWER                        |  |
| 52                                       | GROUND (GRD)                                     | GROUND                       |  |
| 53                                       | PERIPHERAL DATA BIT 10 (PD10[1])                 | INPUT/OUTPUT                 |  |
| 54                                       | PERIPHERAL DATA BIT 09 (PD09[1])                 | INPUT/OUTPUT                 |  |
| 55                                       | PERIPHERAL DATA BIT 08 (PD08[1])                 | INPUT/OUTPUT                 |  |
| 56                                       | GROUND (GRD)                                     | GROUND                       |  |
| 57                                       | PERIPHERAL DATA BIT 07 (PD07[1])                 | INPUT/OUTPUT                 |  |
| 58                                       | PERIPHERAL DATA BIT 06 (PD06[1])                 | INPUT/OUTPUT                 |  |
| 59                                       | PERIPHERAL DATA BIT 05 (PD05[1])                 | INPUT/OUTPUT                 |  |
| 60                                       | GROUND (GRD)                                     | GROUND                       |  |
| 61                                       | +5V (VCC)                                        | POWER                        |  |
| 62                                       | PERIPHERAL DATA BIT 04 (PD04[1])                 | INPUT/OUTPUT                 |  |
| 63                                       | PERIPHERAL DATA BIT 03 (PD03[1])                 | INPUT/OUTPUT                 |  |
| 64                                       | GROUND (GRD)                                     | GROUND                       |  |
| 65                                       | PERIPHERAL DATA BIT 02 (PD02[1])                 | INPUT/OUTPUT                 |  |
| 66                                       | PERIPHERAL DATA BIT 01 (PD01[1])                 | INPUT/OUTPUT                 |  |
| 67                                       | PERIPHERAL DATA BIT 00 (PD00[1])                 | INPUT/OUTPUT                 |  |
| 68                                       | GROUND (GRD)                                     | GROUND                       |  |
| 69                                       | PERIPHERAL DATA STROBE 1 (PDS1[0])               | INPUT/OUTPUT                 |  |
| 70                                       | PERIPHERAL DATA STROBE 0 (PDS0[0])               | INPUT/OUTPUT                 |  |
| 71                                       | +5V (VCC)                                        | POWER                        |  |
| 72                                       | GROUND (GRD)                                     | GROUND                       |  |
| 73                                       | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])          | INPUT/OUTPUT                 |  |
| 74                                       | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0]) | INPUT/OUTPUT                 |  |
| 75                                       | PERIPHERAL BUS FAULT (PFLT[0])                   | INPUT/OUTPUT                 |  |
| 76                                       | GROUND (GRD)                                     | GROUND                       |  |
| 77                                       | PERIPHERAL CARD FAILURE (PFAIL[0])               |                              |  |
| 78                                       | PERIPHERAL BUS BUSY (PBUSY[0])                   |                              |  |
| 79                                       | SYSTEM RESET (SYSRST[0])                         | INPUT/OUTPUT<br>INPUT/OUTPUT |  |
| 80                                       | GROUND (GRD)                                     | GROUND                       |  |
| 81                                       | +5V (VCC)                                        | POWER                        |  |
| 82                                       | PERIPHERAL INTERRUPT ACKNOWLEDGE 0 (PIAK0[0])    |                              |  |
| 82<br>83                                 |                                                  | INPUT/OUTPUT                 |  |
| 83<br>84                                 | REQUEST SYSTEM RESET (RQRST[0])                  | INPUT/OUTPUT                 |  |
| 84<br>85                                 | PERIPHERAL INTERRUPT ACKNOWLEDGE 1 (PIAK1[0])    | INPUT/OUTPUT                 |  |
|                                          | PERIPHERAL INTERRUPT REQUEST 0 (PINT0[0])        | INPUT/OUTPUT                 |  |
| 86<br>87                                 | PERIPHERAL INTERRUPT ACKNOWLEDGE 2 (PIAK2[0])    | INPUT/OUTPUT                 |  |
|                                          | PERIPHERAL INTERRUPT REQUEST 1 (PINT1[0])        | INPUT/OUTPUT                 |  |
| 88                                       | GROUND (GRD)                                     | GROUND                       |  |
| 89                                       | PERIPHERAL INTERRUPT REQUEST 2 (PINT2[0])        | INPUT/OUTPUT                 |  |
| 90<br>01                                 | BACKUP BATTERY (+3.9V) (VBKUP)                   | POWER                        |  |
| 91                                       | +5V (VCC)                                        | POWER                        |  |
| 92<br>02                                 | GROUND (GRD)                                     | GROUND                       |  |
| 93                                       | PERIPHERAL CARD SELECT 01 (PCS01[0])             | OUTPUT                       |  |
| 94                                       | -12V (V12N)                                      | POWER                        |  |
| 95<br>0(                                 | PERIPHERAL CARD SELECT 02 (PCS02[0])             | OUTPUT                       |  |
| 96                                       | GROUND (GRD)                                     | GROUND                       |  |
| 97<br>00                                 | PERIPHERAL CARD SELECT 03 (PCS03[0])             | OUTPUT                       |  |
| 98<br>00                                 | +12V (V12P)                                      | INPUT/OUTPUT                 |  |
| 99<br>100                                | PERIPHERAL CARD SELECT 04 (PCS04[0])             | OUTPUT                       |  |
| 100                                      | GROUND (GRD)                                     | GROUND                       |  |

| 60-PIN BACKPLANE CONNECTOR, J03 |                                      |          |
|---------------------------------|--------------------------------------|----------|
| PIN                             | DESCRIPTION                          | FUNCTION |
| 1                               | +5V (VCC)                            | POWER    |
| 2                               | PERIPHERAL CARD SELECT 05 (PCS05[0]) | OUTPUT   |
| 3                               | +5V (VCC)                            | POWER    |
| 4                               | GROUND (GRD)                         | GROUND   |
| 5                               | PERIPHERAL CARD SELECT 06 (PCS06[0]) | OUTPUT   |
| 6                               | GROUND (GRD)                         | GROUND   |
| 7                               | +5V (VCC)                            | POWER    |
| 8                               | GROUND (GRD)                         | GROUND   |
| 9                               | +5V (VCC)                            | POWER    |
| 10                              | GROUND (GRD)                         | GROUND   |
| 11                              | PERIPHERAL CARD SELECT 07 (PCS07[0]) | OUTPUT   |
| 12                              | GROUND (GRD)                         | GROUND   |
| 13                              | +5V (VCC)                            | POWER    |
| 14                              | GROUND (GRD)                         | GROUND   |
| 15                              | +5V (VCC)                            | POWER    |
| 16                              | GROUND (GRD)                         | GROUND   |
| 17                              | PERIPHERAL CARD SELECT 08 (PCS08[0]) | OUTPUT   |
| 18                              | GROUND (GRD)                         | GROUND   |
| 19                              | +5V (VCC)                            | POWER    |
| 20                              | GROUND (GRD)                         | GROUND   |
| 21                              | +5V (VCC)                            | POWER    |
| 22                              | GROUND (GRD)                         | GROUND   |
| 23                              | PERIPHERAL CARD SELECT 09 (PCS09[0]) | OUTPUT   |
| 24                              | GROUND (GRD)                         | GROUND   |
| 25                              | +5V (VCC)                            | POWER    |
| 26                              | GROUND (GRD)                         | GROUND   |
| 27                              | +5V (VCC)                            | POWER    |
| 28                              | GROUND (GRD)                         | GROUND   |
| 29                              | PERIPHERAL CARD SELECT 10 (PCS10[0]) | OUTPUT   |
| 30                              | GROUND (GRD)                         | GROUND   |

.

|     | 60-PIN BACKPLANE CONNECTOR, J03 (Contd) |          |
|-----|-----------------------------------------|----------|
| PIN | DESCRIPTION                             | FUNCTION |
| 31  | +5V (VCC)                               | POWER    |
| 32  | GROUND (GRD)                            | GROUND   |
| 33  | +5V (VCC)                               | POWER    |
| 34  | GROUND (GRD)                            | GROUND   |
| 35  | PERIPHERAL CARD SELECT 11 (PCS11[0])    | OUTPUT   |
| 36  | GROUND (GRD)                            | GROUND   |
| 37  | +5V (VCC)                               | POWER    |
| 38  | GROUND (GRD)                            | GROUND   |
| 39  | +5V (VCC)                               | POWER    |
| 40  | GROUND (GRD)                            | GROUND   |
| 41  | PERIPHERAL CARD SELECT 12 (PCS12[0])    | OUTPUT   |
| 42  | GROUND (GRD)                            | GROUND   |
| 43  | +5V (VCC)                               | POWER    |
| 44  | GROUND (GRD)                            | GROUND   |
| 45  | +5V (VCC)                               | POWER    |
| 46  | GROUND (GRD)                            | GROUND   |
| 47  | PERIPHERAL CARD SELECT 13 (PCS13[0])    | OUTPUT   |
| 48  | GROUND (GRD)                            | GROUND   |
| 49  | +5V (VCC)                               | POWER    |
| 50  | GROUND (GRD)                            | GROUND   |
| 51  | +5V (VCC)                               | POWER    |
| 52  | GROUND (GRD)                            | GROUND   |
| 53  | PERIPHERAL CARD SELECT 14 (PCS14[0])    | OUTPUT   |
| 54  | GROUND (GRD)                            | GROUND   |
| 55  | +5V (VCC)                               | POWER    |
| 56  | GROUND (GRD)                            | GROUND   |
| 57  | +5V (VCC)                               | POWER    |
| 58  | GROUND (GRD)                            | GROUND   |
| 59  | PERIPHERAL CARD SELECT 15 (PCS15[0])    | OUTPUT   |
| 60  | GROUND (GRD)                            | GROUND   |

|     | 15-PIN POWER CONNECTOR, J04    |          |  |
|-----|--------------------------------|----------|--|
| PIN | DESCRIPTION                    | FUNCTION |  |
| 1   | RESET SWITCH (RTSTSW[0])       | CONTROL  |  |
| 2   | RESET SWITCH GROUND            | CONTROL  |  |
| 3   | +12V RS-232C SUPPLY (V12P)     | POWER    |  |
| 4   | -12V RS-232C SUPPLY (V12N)     | POWER    |  |
| 5   | GROUND (GRD)                   | GROUND   |  |
| 6   | REMOTE VCC SENSE (PONSW[0])    | CONTROL  |  |
|     | (SOFT POWER CONTROL)           |          |  |
|     | (POWER DOWN REQUEST)           |          |  |
| 7   | REMOTE GROUND SENSE (PWRON[1]) | CONTROL  |  |
|     | (SOFT POWER CONTROL)           |          |  |
| 1   | (ac POWER CONTROL)             |          |  |
| 8   | GROUND (GRD)                   | GROUND   |  |
| 9   | GROUND (GRD)                   | GROUND   |  |
| 10  | GROUND (GRD)                   | GROUND   |  |
| 11  | GROUND (GRD)                   | GROUND   |  |
| 12  | +5V LOGIC SUPPLY (VCC)         | POWER    |  |
| 13  | +5V LOGIC SUPPLY (VCC)         | POWER    |  |
| 14  | +5V LOGIC SUPPLY (VCC)         | POWER    |  |
| 15  | +5V LOGIC SUPPLY (VCC)         | POWER    |  |

|     | 72-PIN MEMORY CARD CONNECTOR, J05 AND J06 |                           |
|-----|-------------------------------------------|---------------------------|
| PIN | DESCRIPTION                               | FUNCTION                  |
| 1   | GROUND (GRD)                              | GROUND                    |
| 2   | VCC                                       | POWER                     |
| 3   | MULTIPLEXED ADDRESS BIT 7 (MUXA7[1])      | OUTPUT                    |
| 4   | MULTIPLEXED ADDRESS BIT 0 (MUXA0[1])      | OUTPUT                    |
| 5   | MULTIPLEXED ADDRESS BIT 6 (MUXA6[1])      | OUTPUT                    |
| 6   | MULTIPLEXED ADDRESS BIT 1 (MUXA1[1])      | OUTPUT                    |
| 7   | MULTIPLEXED ADDRESS BIT 5 (MUXA5[1])      | OUTPUT                    |
| 8   | GROUND (GRD)                              | GROUND                    |
| 9   | MULTIPLEXED ADDRESS BIT 4 (MUXA4[1])      | OUTPUT                    |
| 10  | MULTIPLEXED ADDRESS BIT 2 (MUXA2[1])      | OUTPUT                    |
| 11  | MULTIPLEXED ADDRESS BIT 8 (MUXA8[1])      | OUTPUT                    |
| 12  | MULTIPLEXED ADDRESS BIT 3 (MUXA3[1])      | OUTPUT                    |
| 13  | GROUND (GRD)                              | GROUND                    |
| 14  | MULTIPLEXED ADDRESS BIT 9 (MUXA9[1])      | OUTPUT                    |
| 15  | WRITE ENABLE (WE[0])                      | OUTPUT                    |
| 16  | ROW ADDRESS SELECT (RAS[0])               | OUTPUT                    |
| 17  | BANK ENABLE 0 (BANKEN0[0])                | OUTPUT                    |
| 18  | BANK ENABLE 1 (BANKEN1[0])                | OUTPUT                    |
| 19  | ONEBANK[0]                                | (0 = 191A/B/C)            |
|     |                                           | (1 = 191D  and  192A/B)   |
| 20  | COLUMN ADDRESS SELECT 2 (CAS2[0])         | OUTPUT                    |
| 21  | COLUMN ADDRESS SELECT 0 (CAS0[0])         | OUTPUT                    |
| 22  | COLUMN ADDRESS SELECT 3 (CAS3[0])         | OUTPUT                    |
| 23  | GROUND (GRD)                              | GROUND                    |
| 24  | SIZE64K[0]                                | (0 = 191A  and  192A)     |
|     |                                           | (1 = 191B/C/D  and  192B) |
| 25  | COLUMN ADDRESS SELECT 1 (CAS1[0])         | OUTPUT                    |
| 26  | MEMORY DATA BIT 31 (MD31[1])              | INPUT/OUTPUT              |
| 27  | MEMORY DATA BIT 30 (MD30[1])              | INPUT/OUTPUT              |
| 28  | GROUND (GRD)                              | GROUND                    |
| 29  | MEMORY DATA BIT 28 (MD28[1])              | INPUT/OUTPUT              |
| 30  | MEMORY DATA BIT 29 (MD29[1])              | INPUT/OUTPUT              |
| 31  | MEMORY DATA BIT 26 (MD26[1])              | INPUT/OUTPUT              |
| 32  | MEMORY DATA BIT 27 (MD27[1])              | INPUT/OUTPUT              |
| 33  | GROUND (GRD)                              | GROUND                    |
| 34  | MEMORY DATA BIT 25 (MD25[1])              | INPUT/OUTPUT              |
| 35  | MEMORY DATA BIT 24 (MD24[1])              | INPUT/OUTPUT              |
| 36  | MEMORY DATA BIT 23 (MD23[1])              | INPUT/OUTPUT              |
| 37  | MEMORY DATA BIT 22 (MD22[1])              | INPUT/OUTPUT              |

|     | 72-PIN MEMORY CARD CONNECTOR, J05 AND J06 (Contd) |              |
|-----|---------------------------------------------------|--------------|
| PIN | DESCRIPTION                                       | FUNCTION     |
| 38  | GROUND (GRD)                                      | GROUND       |
| 39  | MEMORY DATA BIT 20 (MD20[1])                      | INPUT/OUTPUT |
| 40  | MEMORY DATA BIT 21 (MD21[1])                      | INPUT/OUTPUT |
| 41  | MEMORY DATA BIT 18 (MD18[1])                      | INPUT/OUTPUT |
| 42  | MEMORY DATA BIT 19 (MD19[1])                      | INPUT/OUTPUT |
| 43  | GROUND (GRD)                                      | GROUND       |
| 44  | MEMORY DATA BIT 17 (MD17[1])                      | INPUT/OUTPUT |
| 45  | MEMORY DATA BIT 16 (MD16[1])                      | INPUT/OUTPUT |
| 46  | MEMORY DATA BIT 15 (MD15[1])                      | INPUT/OUTPUT |
| 47  | MEMORY DATA BIT 14 (MD14[1])                      | INPUT/OUTPUT |
| 48  | GROUND (GRD)                                      | GROUND       |
| 49  | MEMORY DATA BIT 12 (MD12[1])                      | INPUT/OUTPUT |
| 50  | MEMORY DATA BIT 13 (MD13[1])                      | INPUT/OUTPUT |
| 51  | MEMORY DATA BIT 10 (MD10[1])                      | INPUT/OUTPUT |
| 52  | MEMORY DATA BIT 11 (MD11[1])                      | INPUT/OUTPUT |
| 53  | GROUND (GRD)                                      | GROUND       |
| 54  | MEMORY DATA BIT 09 (MD09[1])                      | INPUT/OUTPUT |
| 55  | MEMORY DATA BIT 08 (MD08[1])                      | INPUT/OUTPUT |
| 56  | MEMORY DATA BIT 07 (MD07[1])                      | INPUT/OUTPUT |
| 57  | MEMORY DATA BIT 06 (MD06[1])                      | INPUT/OUTPUT |
| 58  | MEMORY DATA BIT 05 (MD05[1])                      | INPUT/OUTPUT |
| 59  | MEMORY DATA BIT 04 (MD04[1])                      | INPUT/OUTPUT |
| 60  | GROUND (GRD)                                      | GROUND       |
| 61  | MEMORY DATA BIT 02 (MD02[1])                      | INPUT/OUTPUT |
| 62  | MEMORY DATA BIT 03 (MD03[1])                      | INPUT/OUTPUT |
| 63  | GROUND (GRD)                                      | GROUND       |
| 64  | MEMORY DATA BIT 01 (MD01[1])                      | INPUT/OUTPUT |
| 65  | MEMORY DATA BIT 00 (MD00[1])                      | INPUT/OUTPUT |
| 66  | MEMORY CARD EQUIPPED (MCEQUIP[0])                 | GROUND       |
| 67  | MEMORY PARITY ADDRESS REGISTER BIT 0 (MPAR0[1])   | INPUT/OUTPUT |
| 68  | MEMORY PARITY ADDRESS REGISTER BIT 2 (MPAR2[1])   | INPUT/OUTPUT |
| 69  | MEMORY PARITY ADDRESS REGISTER BIT 1 (MPAR1[1])   | INPUT/OUTPUT |
| 70  | MEMORY PARITY ADDRESS REGISTER BIT 3 (MPAR3[1])   | INPUT/OUTPUT |
| 71  | GROUND (GRD)                                      | GROUND       |
| 72  | +5V (VCC)                                         | POWER        |

•

|     | 34-HARD DISK READ/WRITE CONNECTOR, J07 |          |
|-----|----------------------------------------|----------|
| PIN | DESCRIPTION                            | FUNCTION |
| 1   | GROUND                                 | GROUND   |
| 2   | HEAD SELECT 3 (HS3[0])                 | OUTPUT   |
|     | REDUCED WRITE CURRENT (RWC[0])         | OUTPUT   |
| 3   | GROUND                                 | GROUND   |
| 4   | HEAD SELECT 2 (HS2[0])                 | OUTPUT   |
| 5   | GROUND                                 | GROUND   |
| 6   | WRITE GATE (WGATE[0])                  | OUTPUT   |
| 7   | GROUND                                 | GROUND   |
| 8   | SEEK COMPLETE (SKC[0])                 | INPUT    |
| 9   | GROUND                                 | GROUND   |
| 10  | TRACK 0 (TRK[0])                       | INPUT    |
| 11  | GROUND                                 | GROUND   |
| 12  | WRITE FAULT (WRTFLT[0])                | INPUT    |
| 13  | GROUND                                 | GROUND   |
| 14  | HEAD SELECT 0 (HS0[0])                 | OUTPUT   |
| 15  | GROUND                                 | GROUND   |
| 16  | CONNECTOR COMMON (J2P7)                | GROUND   |
| 17  | GROUND                                 | GROUND   |
| 18  | HEAD SELECT 1 (HS1[0])                 | OUTPUT   |
| 19  | GROUND                                 | GROUND   |
| 20  | INDEX (INDEX[0])                       | INPUT    |
| 21  | GROUND                                 | GROUND   |
| 22  | READY (RDY[0])                         | INPUT    |
| 23  | GROUND                                 | GROUND   |
| 24  | STEP (XSTEP[0])                        | OUTPUT   |
| 25  | GROUND                                 | GROUND   |
| 26  | DRIVE SELECT 0 (DSEL0[0])              | OUTPUT   |
| 27  | GROUND                                 | GROUND   |
| 28  | DRIVE SELECT 1 (DSEL1[0])              | OUTPUT   |
| 29  | GROUND                                 | GROUND   |
| 30  | NOT USED                               | NC       |
| 31  | GROUND                                 | GROUND   |
| 32  | NOT USED                               | NC       |
| 33  | GROUND                                 | GROUND   |
| 34  | DIRECTION IN (DIR[0])                  | OUTPUT   |

LEGEND:

NC No Connection

|     | 20-PIN HARD DISK CONTROL 0 CONNECTOR, J08 |          |
|-----|-------------------------------------------|----------|
| PIN | DESCRIPTION                               | FUNCTION |
| 1   | DRIVE SELECTED (DSD[0])                   | INPUT    |
| 2   | GROUND                                    | GROUND   |
| 3   | NOT USED                                  | NC       |
| 4   | GROUND                                    | GROUND   |
| 5   | GROUND                                    | GROUND   |
| 6   | GROUND                                    | GROUND   |
| 7   | CONNECTOR COMMON (J1P16)                  | GROUND   |
| 8   | GROUND                                    | GROUND   |
| 9   | NOT USED                                  | NC       |
| 10  | GROUND                                    | GROUND   |
| 11  | GROUND                                    | GROUND   |
| 12  | GROUND                                    | GROUND   |
| 13  | +MFM WRITE DATA (MFMOP[0])                | OUTPUT   |
| 14  | -MFM WRITE DATA (MFMON[0])                | OUTPUT   |
| 15  | GROUND                                    | GROUND   |
| 16  | GROUND                                    | GROUND   |
| 17  | +MFM READ DATA (MFMIP[0])                 | INPUT    |
| 18  | -MFM READ DATA (MFMIN[0])                 | INPUT    |
| 19  | GROUND                                    | GROUND   |
| 20  | NOT USED                                  | NC       |

### LEGEND:

NC No Connection

|     | 20-PIN HARD DISK CONTROL 1 CONNECTOR, J09 |          |
|-----|-------------------------------------------|----------|
| PIN | DESCRIPTION                               | FUNCTION |
| 1   | DRIVE SELECTED (DSD[0])                   | INPUT    |
| 2   | GROUND                                    | GROUND   |
| 3   | NOT USED                                  | NC       |
| 4   | GROUND                                    | GROUND   |
| 5   | GROUND                                    | GROUND   |
| 6   | GROUND                                    | GROUND   |
| 7   | CONNECTOR COMMON (J1P16)                  |          |
| 8   | GROUND                                    | GROUND   |
| 9   | NOT USED                                  | NC       |
| 10  | GROUND                                    | GROUND   |
| 11  | GROUND                                    | GROUND   |
| 12  | GROUND                                    | GROUND   |
| 13  | +MFM WRITE DATA (MFMOP[1])                | OUTPUT   |
| 14  | -MFM WRITE DATA (MFMON[1])                | OUTPUT   |
| 15  | GROUND                                    | GROUND   |
| 16  | GROUND                                    | GROUND   |
| 17  | +MFM READ DATA (MFMIP[1])                 | INPUT    |
| 18  | -MFM READ DATA (MFMIN[1])                 | INPUT    |
| 19  | GROUND                                    | GROUND   |
| 20  | NOT USED                                  | NC       |

#### LEGEND:

MFM Modified Frequency Modulation NC No Connection

|     | 34-PIN FLOPPY DISK CONNECTOR, J10  |          |
|-----|------------------------------------|----------|
| PIN | DESCRIPTION                        | FUNCTION |
| 1   | GROUND                             | GROUND   |
| 2   | NOT USED                           | NC       |
| 3   | GROUND                             | GROUND   |
| 4   | NOT USED                           | NC       |
| 5   | GROUND                             | GROUND   |
| 6   | NOT USED                           | NC       |
| 7   | GROUND                             | GROUND   |
| 8   | INDEX (FINDEX[0])                  | INPUT    |
| 9   | GROUND                             | GROUND   |
| 10  | FLOPPY DRIVE SELECT 0 (FDSEL[0])   | OUTPUT   |
| 11  | GROUND                             | GROUND   |
| 12  | NOT USED                           | NC       |
| 13  | GROUND                             | GROUND   |
| 14  | NOT USED                           | NC       |
| 15  | GROUND                             | GROUND   |
| 16  | MOTOR ON (MON[0])                  | OUTPUT   |
| 17  | GROUND                             | GROUND   |
| 18  | FLOPPY DIRECTION SELECT (FDIRC[0]) | OUTPUT   |
| 19  | GROUND                             | GROUND   |
| 20  | FLOPPY STEP (FSTEP[0])             | OUTPUT   |
| 21  | GROUND                             | GROUND   |
| 22  | WRITE DATA (FWDATA[0])             | OUTPUT   |
| 23  | GROUND                             | GROUND   |
| 24  | FLOPPY WRITE GATE (FWGATE[0])      | OUTPUT   |
| 25  | GROUND                             | GROUND   |
| 26  | FLOPPY TRACK 0 (FTR0[0])           | INPUT    |
| 27  | GROUND                             | GROUND   |
| 28  | FLOPPY WRITE PROTECT (FWRTPRT[0])  | INPUT    |
| 29  | GROUND                             | GROUND   |
| 30  | READ DATA (FRDATA[0])              | INPUT    |
| 31  | GROUND                             | GROUND   |
| 32  | FLOPPY SIDE SELECT (FSSEL[0])      | OUTPUT   |
| 33  | GROUND                             | GROUND   |
| 34  | FLOPPY READY (FRDY[0])             | INPUT    |

### LEGEND:

NC No Connection

|     | 3-PIN BATTERY CONNECTOR, J11 |             |  |
|-----|------------------------------|-------------|--|
| PIN |                              | DESCRIPTION |  |
| 1   | +3.9V (VBAT)                 |             |  |
| 2   | NOT USED                     |             |  |
| 3   | GROUND                       |             |  |

| 2-PIN DIAGNOSTIC INDICATOR CONNECTOR, J12 |             |
|-------------------------------------------|-------------|
| PIN                                       | DESCRIPTION |
| 1                                         | D1PU1 (+)   |
| 2                                         | ERLED0 (-)  |

| 2-PIN POWER INDICATOR CONNECTOR, J13 |             |  |
|--------------------------------------|-------------|--|
| DESCRIPTION                          |             |  |
| D2PU2 (+)<br>CLEDON( (-)             |             |  |
|                                      | DESCRIPTION |  |

| 2-PIN AUXILIARY DISK INTERFACE SOFT POWER CONNECTOR, J14 |                     |  |
|----------------------------------------------------------|---------------------|--|
| PIN                                                      | DESCRIPTION         |  |
| 1<br>2                                                   | VCC (+5V)<br>GROUND |  |

•

## **CM518A/B/C SYSTEM BOARD INTERCONNECTIONS**

Figures B-3, B-4, and B-5 show the layouts of the CM518 series System Boards. Refer to these figures for system board connector location information. Pin and signal information is provided in tables following the figures for each of the system board connectors. The connector tables are presented in sequence by connector designation. The figures are printed front and back with a blank unit so that either figure can be used in conjunction with any table.

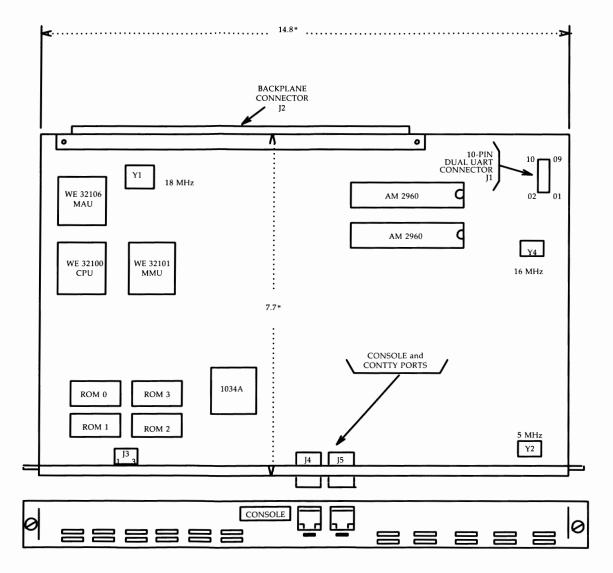



Figure B-3: CM518A System Board Layout

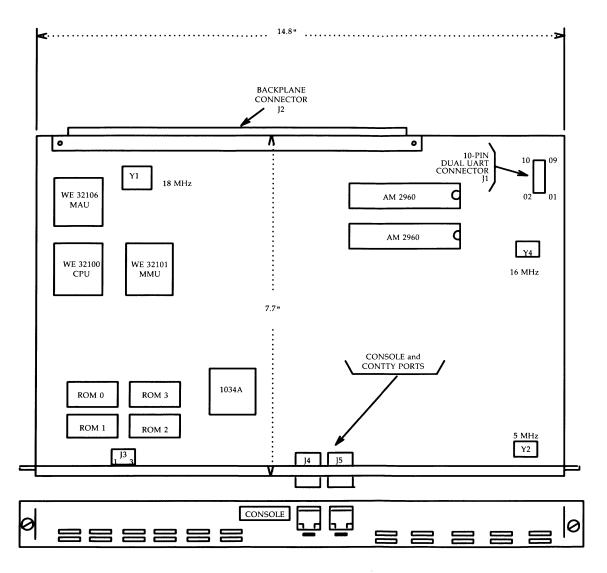



Figure B-3: CM518A System Board Layout

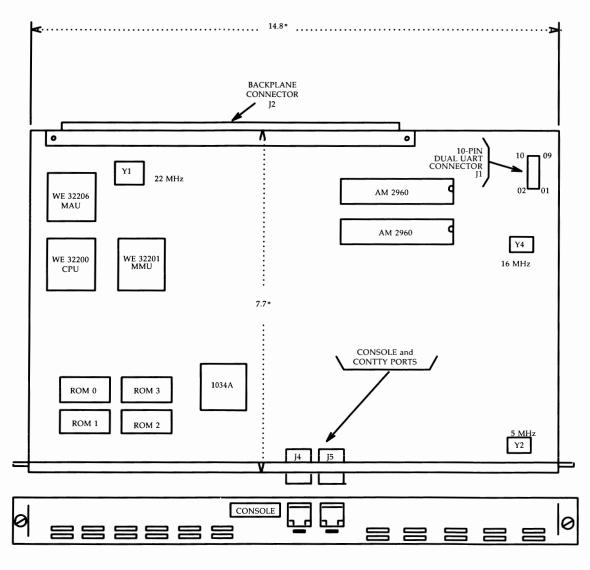



Figure B-4: CM518B System Board Layout

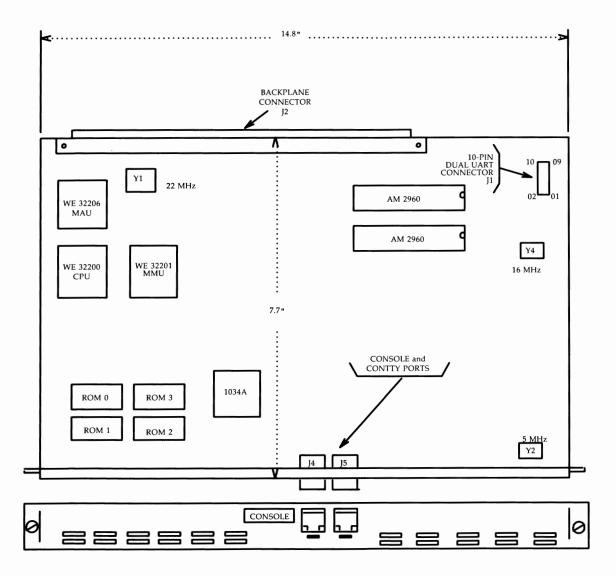



Figure B-4: CM518B System Board Layout

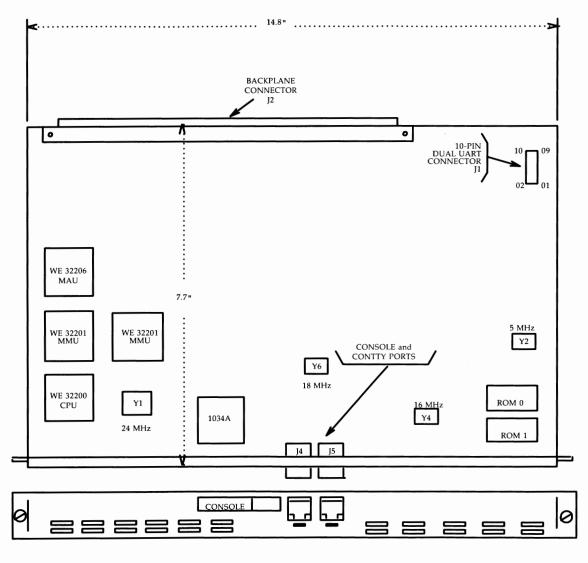
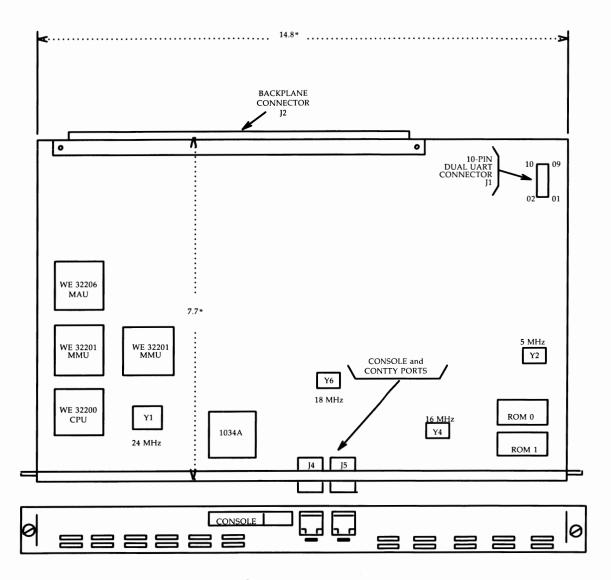




Figure B-5: CM518C System Board Layout

•

.



. .

•

Figure B-5: CM518C System Board Layout

### - Appendix: CONNECTOR AND CABLING INFORMATION

•

. .

| 464-PIN BACKPLANE CONNECTOR, J02 |                                                                  |                 |  |
|----------------------------------|------------------------------------------------------------------|-----------------|--|
| PIN                              | DESCRIPTION                                                      | FUNCTION        |  |
| 001                              | +12V (V12P)                                                      | POWER           |  |
| 002                              | +5V (VCC)                                                        | POWER           |  |
| 003                              | FLOPPY READY (FRDY[0])                                           | INPUT           |  |
| 004                              | FLOPPY SIDE SELECT (FSSEL[0])                                    | OUTPUT          |  |
| 005                              | -12V (V12N)                                                      | POWER           |  |
| 006                              | FLOPPY READ DATA (FRDATA[0])                                     | INPUT           |  |
| 007                              | GROUND (GRD)                                                     | GROUND          |  |
| 008                              | FLOPPY WRITE PROTECT (FWRPRT[0])                                 | INPUT           |  |
| 009                              | FLOPPY TRACK 0 (FTR0[0])                                         | INPUT           |  |
| 010                              | GROUND (GRD)                                                     | GROUND          |  |
| 011                              | FLOPPY WRITE GATE (FWGATE[0])                                    | OUTPUT          |  |
| 012                              | FLOPPY WRITE DATA (FWDATA[0])                                    | OUTPUT          |  |
| 013                              | FLOPPY STEP (FSTEP[0])                                           | OUTPUT          |  |
| 014                              | FLOPPY DIRECTION SELECT (FDIRC[0])                               | OUTPUT          |  |
| 015                              | FLOPPY MOTOR ON (FMOTON[0])                                      | OUTPUT          |  |
| 016                              | FLOPPY DRIVE SELECT 2 (FDS2[0])                                  | OUTPUT          |  |
| 017                              | FLOPPY DRIVE SELECT 1 (FDS1[0])                                  | OUTPUT          |  |
| 018                              | FLOPPY DRIVE SELECT 0 (FDS0[0])                                  | OUTPUT<br>POWER |  |
| 019                              | +5V (VCC)                                                        |                 |  |
| 020                              | FLOPPY LOW RPM (FLOW[0])                                         | OUTPUT<br>INPUT |  |
| 021                              | FLOPPY INDEX (FINDEX[0])                                         | OUTPUT          |  |
| 022                              | FLOPPY DRIVE SELECT 3 (FDS3[0])                                  | INPUT           |  |
| 023                              | NOT USED (FSPARE[0])<br>MEMORY CHECK BIT 00 (MCB00[1])           | INPUT/OUTPUT    |  |
| 024<br>025                       | MEMORY CHECK BIT 00 (MCB00[1])<br>MEMORY CHECK BIT 01 (MCB01[1]) | INPUT/OUTPUT    |  |
| 025                              |                                                                  | GROUND          |  |
| 028                              | GROUND (GRD)<br>Memory Check Bit 03 (MCB03[1])                   | INPUT/OUTPUT    |  |
| 027                              | MEMORY CHECK BIT 02 (MCB02[1])                                   | INPUT/OUTPUT    |  |
| 028                              | MEMORY CHECK BIT 05 (MCB05[1])                                   | INPUT/OUTPUT    |  |
| 030                              | MEMORY CHECK BIT 04 (MCB04[1])                                   | INPUT/OUTPUT    |  |
| 031                              | +5V (VCC)                                                        | POWER           |  |
| 032                              | MEMORY CHECK BIT 09 (MCB09[1])                                   | INPUT/OUTPUT    |  |
| 033                              | MEMORY CHECK BIT 06 (MCB06[1])                                   | INPUT/OUTPUT    |  |
| 034                              | MEMORY CHECK BIT 07 (MCB07[1])                                   | INPUT/OUTPUT    |  |
| 035                              | MEMORY CHECK BIT 08 (MCB08[1])                                   | INPUT/OUTPUT    |  |
| 036                              | MEMORY CHECK BIT 11 (MCB11[1])                                   | INPUT/OUTPUT    |  |
| 037                              | MEMORY CHECK BIT 10 (MCB10[1])                                   | INPUT/OUTPUT    |  |
| 038                              | GROUND (GRD)                                                     | GROUND          |  |
| 039                              | MEMORY DATA BIT 00 (MD00[1])                                     | INPUT/OUTPUT    |  |
| 040                              | MEMORY DATA BIT 01 (MD01[1])                                     | INPUT/OUTPUT    |  |
| 041                              | MEMORY DATA BIT 02 (MD02[1])                                     | INPUT/OUTPUT    |  |
| 042                              | MEMORY DATA BIT 03 (MD03[1])                                     | INPUT/OUTPUT    |  |
| 043                              | GROUND (GRD)                                                     | GROUND          |  |
| 044                              | MEMORY DATA BIT 04 (MD04[1])                                     | INPUT/OUTPUT    |  |
| 045                              | MEMORY DATA BIT 05 (MDO5[1])                                     | INPUT/OUTPUT    |  |
| 046                              | +5V (VCC)                                                        | POWER           |  |
| 047                              | MEMORY DATA BIT 06 (MD06[1])                                     | INPUT/OUTPUT    |  |
| 048                              | MEMORY DATA BIT 07 (MD07[1])                                     | INPUT/OUTPUT    |  |
| 049                              | MEMORY DATA BIT 08 (MD08[1])                                     | INPUT/OUTPUT    |  |
| 050                              | MEMORY DATA BIT 09 (MD09[1])                                     | INPUT/OUTPUT    |  |
| 051                              | MEMORY DATA BIT 10 (MD10[1])                                     | INPUT/OUTPUT    |  |
| 052                              | MEMORY DATA BIT 11 (MD11[1])                                     | INPUT/OUTPUT    |  |
| 053                              | MEMORY DATA BIT 12 (MD12[1])                                     | INPUT/OUTPUT    |  |
| 054                              | MEMORY DATA BIT 13 (MD13[1])                                     | INPUT/OUTPUT    |  |
| 055                              | GROUND (GRD)                                                     | GROUND          |  |
| 056                              | MEMORY DATA BIT 14 (MD14[1])                                     | INPUT/OUTPUT    |  |
| 057                              | MEMORY DATA BIT 15 (MD15[1])                                     | INPUT/OUTPUT    |  |
| 058                              | MEMORY DATA BIT 16 (MD16[1])                                     | INPUT/OUTPUT    |  |

•

| 464-PIN BACKPLANE CONNECTOR, J02 (Contd) |                                                                        |                        |
|------------------------------------------|------------------------------------------------------------------------|------------------------|
| PIN                                      | DESCRIPTION                                                            | FUNCTION               |
| 059                                      | MEMORY DATA BIT 17 (MD17[1])                                           | INPUT/OUTPUT           |
| 060                                      | MEMORY DATA BIT 18 (MD18[1])                                           | INPUT/OUTPUT           |
| 061                                      | MEMORY DATA BIT 19 (MD19[1])                                           | INPUT/OUTPUT           |
| 062                                      | GROUND (GRD)                                                           | GROUND                 |
| 063                                      | MEMORY DATA BIT 20 (MD20[1])                                           | INPUT/OUTPUT           |
| 064                                      | MEMORY DATA BIT 21 (MD21[1])                                           | INPUT/OUTPUT           |
| 065                                      | MEMORY DATA BIT 22 (MD22[1])                                           | INPUT/OUTPUT           |
| )66                                      | MEMORY DATA BIT 23 (MD23[1])                                           | INPUT/OUTPUT           |
| )67                                      | MEMORY DATA BIT 24 (MD24[1])                                           | INPUT/OUTPUT           |
| 068                                      | MEMORY DATA BIT 25 (MD25[1])                                           | INPUT/OUTPUT           |
| 069                                      | MEMORY DATA BIT 26 (MD26[1])                                           | INPUT/OUTPUT           |
| 070                                      | MEMORY DATA BIT 27 (MD27[1])                                           | INPUT/OUTPUT<br>GROUND |
| )71                                      | GROUND (GRD)                                                           | INPUT/OUTPUT           |
| )72                                      | MEMORY DATA BIT 28 (MD28[1])<br>MEMORY DATA BIT 29 (MD29[1])           | INPUT/OUTPUT           |
| 073<br>074                               | MEMORY DATA BIT 29 (MD29[1])<br>MEMORY DATA BIT 30 (MD30[1])           | INPUT/OUTPUT           |
| 074<br>075                               | MEMORY DATA BIT 30 (MD30[1])<br>MEMORY DATA BIT 31 (MD31[1])           | INPUT/OUTPUT           |
| 076                                      | SLOT 3 EQUIPPED (S3EQUIP[0])                                           | INPUT                  |
| )77                                      | SLOT 3 SIZE 1 (S3SIZ1[1])                                              | INPUT                  |
| 078                                      | +5V (VCC)                                                              | POWER                  |
| 079                                      | SLOT 3 SIZE 0 (S3SIZ0[1])                                              | INPUT                  |
| 080                                      | SLOT 2 EQUIPPED (S2EQUIP[0])                                           | INPUT                  |
| 081                                      | SLOT 2 SIZE 1 (S2SIZ1[1])                                              | INPUT                  |
| 082                                      | SLOT 2 SIZE 0 (S2SIZ0[1])                                              | INPUT                  |
| 083                                      | GROUND (GRD)                                                           | GROUND                 |
| 084                                      | SLOT 1 EQUIPPED (S1EQUIP[0])                                           | INPUT                  |
| 085                                      | SLOT 1 SIZE 1 (S1SIZ1[1])                                              | INPUT                  |
| 086                                      | SLOT 1 SIZE 0 (S1SIZ0[1])                                              | INPUT                  |
| 087                                      | SLOT 0 SIZE 1 (S0SIZ1[1])                                              | INPUT                  |
| 088                                      | SLOT 0 EQUIPPED (S0EQUIP[0])                                           | INPUT                  |
| 089                                      | SLOT 0 SIZE 0 (S0SIZ0[1])                                              | INPUT                  |
| 090                                      | GROUND (GRD)                                                           | GROUND                 |
| 091                                      | COLUMN ADDRESS STROBE 1 (CAS1[0])                                      | OUTPUT                 |
| 092                                      | BANK ENABLE 2 (BANKEN2[0])                                             | OUTPUT                 |
| 093                                      | COLUMN ADDRESS STROBE 0 (CAS0[0])                                      | OUTPUT                 |
| 094                                      | COLUMN ADDRESS STROBE 2 (CAS2[0])                                      | OUTPUT<br>OUTPUT       |
| 095<br>096                               | COLUMN ADDRESS STROBE 3 (CAS3[0])<br>SLOT 3 BANK ENABLE 1 (S3BKEN1[0]) | OUTPUT                 |
| 096<br>097                               | SLOT 3 BANK ENABLE 0 (S3BKEN0[0])                                      | OUTPUT                 |
| 097                                      | SLOT 2 BANK ENABLE 1 (S2BKEN1[0])                                      | OUTPUT                 |
| 098                                      | GROUND (GRD)                                                           | GROUND                 |
| 100                                      | SLOT 1 BANK ENABLE 1 (S1BKEN1[0])                                      | OUTPUT                 |
| 101                                      | SLOT 2 BANK ENABLE 0 (S2BKEN0[0])                                      | OUTPUT                 |
| 102                                      | GROUND (GRD)                                                           | GROUND                 |
| 103                                      | SLOT 1 BANK ENABLE 0 (S1BKEN0[0])                                      | OUTPUT                 |
| 104                                      | ROW ADDRESS STROBE 1 (RAS1[0])                                         | OUTPUT                 |
| 105                                      | SLOT 0 BANK ENABLE 0 (SOBKEN0[0])                                      | OUTPUT                 |
| 106                                      | SLOT 0 BANK ENABLE 1 (S0BKEN1[0])                                      | OUTPUT                 |
| 107                                      | +5V (VCC)                                                              | POWER                  |
| 108                                      | ROW ADDRESS STROBE 0 (RAS0[0])                                         | OUTPUT                 |
| 109                                      | WRITE ENABLE 1 (WE1[0])                                                | OUTPUT                 |
| 110                                      | GROUND (GRD)                                                           | GROUND                 |
| 111                                      | MEMORY CYCLE STATUS (G[0])                                             | OUTPUT                 |
| 112                                      | NOT USED                                                               | NC                     |
| 113                                      | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1])                          |                        |
| 114                                      | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1])                          | INPUT/OUTPUT<br>OUTPUT |
| 115                                      | WRITE ENABLE 0 (WE0[0])                                                | OUTPUT                 |
| 116                                      | BUB CONNECTOR CHIP SELECT 2 (BCCS2[0])                                 | OUIPUI                 |

-

| PIN        |                                                                                                |                              |
|------------|------------------------------------------------------------------------------------------------|------------------------------|
|            | DESCRIPTION                                                                                    | FUNCTION                     |
| 117        | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1])                                                  | INPUT/OUTPUT                 |
| 118        | GROUND (GRD)                                                                                   | GROUND                       |
| 119        | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1])                                                  | INPUT/OUTPUT                 |
| 120        | PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1])                                                  | INPUT/OUTPUT                 |
| 121        | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1])                                                  | INPUT/OUTPUT                 |
| 122        | PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1])                                                  | INPUT/OUTPUT                 |
| 123        | +5V (VCC)                                                                                      | POWER                        |
| 124        | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1])                                                  | INPUT/OUTPUT                 |
| 125        | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1])                                                  | INPUT/OUTPUT                 |
| 126        | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1])                                                  | INPUT/OUTPUT                 |
| 127        | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1])                                                  | INPUT/OUTPUT                 |
| 128        | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1])                                                  | INPUT/OUTPUT                 |
| 129        | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1])                                                  | INPUT/OUTPUT                 |
| 130        | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1])                                                  | INPUT/OUTPUT<br>GROUND       |
| 131        | GROUND (GRD)                                                                                   |                              |
| 132        | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1])                                                  |                              |
| 133        | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1])                                                  |                              |
| 134        | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1])                                                  | INPUT/OUTPUT<br>INPUT/OUTPUT |
| 135<br>136 | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1]) | INPUT/OUTPUT                 |
| 130        | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1])                                                  | INPUT/OUTPUT                 |
| 137        | +5V (VCC)                                                                                      | POWER                        |
| 139        | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1])                                                  | INPUT/OUTPUT                 |
| 140        | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1])                                                  | INPUT/OUTPUT                 |
| 141        | NOT USED                                                                                       | NC                           |
| 142        | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1])                                                  | INPUT/OUTPUT                 |
| 143        | GROUND (GRD)                                                                                   | GROUND                       |
| 144        | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1])                                                  | INPUT/OUTPUT                 |
| 145        | PERIPHERAL DATA BIT 11 (PD11[1])                                                               | INPUT/OUTPUT                 |
| 146        | GROUND (GRD)                                                                                   | GROUND                       |
| 147        | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])                                                   | INPUT/OUTPUT                 |
| 148        | PERIPHERAL READ-WRITE (PR1W[0])                                                                | INPUT/OUTPUT                 |
| 149        | PERIPHERAL DATA BIT 15 (PD15[1])                                                               | INPUT/OUTPUT                 |
| 150        | PERIPHERAL DATA BIT 09 (PD09[1])                                                               | INPUT/OUTPUT                 |
| 151        | +5V (VCC)                                                                                      | POWER                        |
| 152        | PERIPHERAL DATA BIT 14 (PD14[1])                                                               | INPUT/OUTPUT                 |
| 153        | PERIPHERAL DATA BIT 12 (PD12[1])                                                               | INPUT/OUTPUT                 |
| 154        | PERIPHERAL DATA BIT 04 (PD04[1])                                                               | INPUT/OUTPUT                 |
| 155        | PERIPHERAL BUS REQUEST (PBRQ[0])                                                               | INPUT                        |
| 156        | PERIPHERAL DATA BIT 06 (PD06[1])                                                               | INPUT/OUTPUT                 |
| 157        | PERIPHERAL DATA BIT 08 (PD08[1])                                                               | INPUT/OUTPUT                 |
| 158        | GROUND (GRD)                                                                                   | GROUND                       |
| 159        | PERIPHERAL DATA BIT 13 (PD13[1])                                                               | INPUT/OUTPUT                 |
| 160        | PERIPHERAL DATA BIT 10 (PD10[1])                                                               | INPUT/OUTPUT                 |
| 161        | PERIPHERAL DATA BIT 07 (PD07[1])                                                               | INPUT/OUTPUT                 |
| 162        | PERIPHERAL CARD WIDTH (8 OR 16 BITS) (PSIZE16[0])                                              | INPUT                        |
| 163        | PERIPHERAL DATA BIT 01 (PD01[1])                                                               | INPUT/OUTPUT                 |
| 164        | PERIPHERAL DATA STROBE 0 (PDS0[0])                                                             | INPUT/OUTPUT                 |
| 165        | PERIPHERAL DATA BIT 03 (PD03[1])                                                               | INPUT/OUTPUT<br>POWER        |
| 66         | +5V (VCC)<br>PERIPHERAL BUS BUSY (PBUSY[0])                                                    | POWER                        |
| 167<br>168 | PERIPHERAL DATA BIT 05 (PD05[1])                                                               | INPUT/OUTPUT<br>INPUT/OUTPUT |
| 169        | PERIPHERAL DATA BIT 05 (PD05[1])<br>PERIPHERAL DATA BIT 00 (PD00[1])                           | INPUT/OUTPUT                 |
| 170        | GROUND (GRD)                                                                                   | GROUND                       |
| 71         | PERIPHERAL INTERRUPT ACKNOWLEDGE 0 (PIAK0[0])                                                  | OUTPUT                       |
| 72         | PERIPHERAL DATA BIT 02 (PD02[1])                                                               | INPUT/OUTPUT                 |
| 73         | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])                                                        | INPUT/OUTPUT                 |
| 174        | PERIPHERAL INTERRUPT ACKNOWLEDGE 1 (PIAK1[0])                                                  | OUTPUT                       |

|            | 464-PIN BACKPLANE CONNECTOR, J02 (Contd)                                          |           |                  |    |  |
|------------|-----------------------------------------------------------------------------------|-----------|------------------|----|--|
| PIN        | DESCRIPTION                                                                       |           | FUNCTION         |    |  |
| 175        | GROUND (GRD)                                                                      |           | GROUND           |    |  |
| 176        | PERIPHERAL DATA STROBE 1 (PDS1[0])                                                |           | INPUT/OUTPUT     |    |  |
| 177        | RECEIVED FAILURE (RFAIL[0])                                                       |           | INPUT            |    |  |
| 178        | +5V (VCC)                                                                         |           | POWER            |    |  |
| 179        | PERIPHERAL INTERRUPT ACKNOWLEDGE 2 (PIAK2[0])                                     |           | OUTPUT           |    |  |
| 180        | PERIPHERAL BUS FAULT (PFLT[0])                                                    |           | INPUT/OUTPUT     |    |  |
| 181        | PERIPHERAL CARD SELECT 09 (PCS09[0])                                              |           | OUTPUT           |    |  |
| 182        | PERIPHERAL CARD SELECT 10 (PCS10[0])                                              |           | OUTPUT           |    |  |
| 183        | PERIPHERAL CARD SELECT 11 (PCS11[0])                                              |           | OUTPUT           |    |  |
| 184        | PERIPHERAL CARD SELECT 12 (PCS12[0])                                              |           | OUTPUT           |    |  |
| 185        | PERIPHERAL CARD SELECT 06 (PCS06[0])                                              |           | OUTPUT           |    |  |
| 186        | GROUND (GRD)                                                                      |           | GROUND           |    |  |
| 187        | PERIPHERAL CARD SELECT 07 (PCS07[0])                                              |           | OUTPUT           |    |  |
| 188        | PERIPHERAL CARD SELECT 08 (PCS08[0])                                              |           | OUTPUT           |    |  |
| 189        | PERIPHERAL CARD SELECT 03 (PCS03[0])                                              |           | OUTPUT           |    |  |
| 190        | PERIPHERAL CARD SELECT 04 (PCS04[0])                                              |           | OUTPUT<br>GROUND |    |  |
| 191        | GROUND (GRD)                                                                      |           | OUTPUT           |    |  |
| 192        | PERIPHERAL CARD SELECT 05 (PCS05[0])                                              |           | OUTPUT           |    |  |
| 193        | PERIPHERAL BUS ACKNOWLEDGE (PBACK[0])<br>BUB GRANTED SLOT 1 (BUBGT1[0])           |           | OUTPUT           |    |  |
| 194<br>195 | PERIPHERAL CARD SELECT 01 (PCS01[0])                                              |           | OUTPUT           |    |  |
| 195<br>196 | PERIPHERAL CARD SELECT 01 (1 C301[0])<br>PERIPHERAL CARD SELECT 02 (PCS02[0])     |           | OUTPUT           |    |  |
| 196        | PERIPHERAL CARD SELECT 02 (PCS02[0])<br>PERIPHERAL INTERRUPT REQUEST 2 (PINT2[0]) |           | INPUT            |    |  |
| 197        | PERIPHERAL INTERRUPT REQUEST 2 (INTERRUPT REQUEST 1 (PINTI[0])                    |           | INPUT            |    |  |
| 199        | GROUND (GRD)                                                                      |           | GROUND           |    |  |
| 200        | PERIPHERAL INTERRUPT REQUEST 0 (PINT0[0])                                         |           | INPUT            |    |  |
| 201        | BACKUP BATTERY (VBKUP)                                                            |           | OUTPUT           |    |  |
| 202        | GROUND (GRD)                                                                      |           | GROUND           |    |  |
| 203        | PERIPHERAL SEQUENTIAL ACCESS (PSEQACC[0])                                         |           | OUTPUT           |    |  |
| 204        | BUB BUS REQUEST SLOT 2 (BUBRQ2[0])                                                |           | INPUT            |    |  |
| 205        | BUB DATA STROBE (BDS[0])                                                          |           | INPUT/OUTPUT     |    |  |
| 206        | BUB ADDRESS STROBE (BAS[0])                                                       |           | INPUT/OUTPUT     |    |  |
| 207        | GROUND (GRD)                                                                      |           | GROUND           |    |  |
| 208        | BUB DATA ACKNOWLEDGE (BDTCK[0])                                                   |           | INPUT/OUTPUT     |    |  |
| 209        | BUB GRANTED SLOT 0 (BUBGT0[0])                                                    |           | OUTPUT           |    |  |
| 210        | GROUND (GRD)                                                                      |           | GROUND           |    |  |
| 211        | BUB BYPASS MODE ACCESS (BYPASS[0])                                                |           | OUTPUT           |    |  |
| 212        | BUB DATA FAULT (BFLT[0])                                                          |           | INPUT/OUTPUT     |    |  |
| 213        | NOT USED                                                                          | NOT LICED | NC               | NC |  |
| 214*       | BUB BUS REQUEST SLOT 3 (BUBRQ3[0])                                                | NOT USED  | INPUT<br>POWER   | NC |  |
| 215        | +5V (VCC)<br>PERIPHERAL PARITY CHECK (PPCHECK[0])                                 |           | INPUT            |    |  |
| 216<br>217 | NOT USED                                                                          |           | NC               |    |  |
| 217        | GROUND (GRD)                                                                      |           | GROUND           |    |  |
| 218        | BUB BUS REQUEST SLOT 1 (BUBRQ1[0])                                                |           | INPUT            |    |  |
| 220        | BUB BUS REQUEST SLOT 1 (BUBRQ0[0])                                                |           | INPUT            |    |  |
| 221        | MULTIPLEXED ADDRESS BIT 02 (MUXA02[1])                                            |           | OUTPUT           |    |  |
| 222        | MULTIPLEXED ADDRESS BIT 01 (MUXA01[1])                                            |           | OUTPUT           |    |  |
| 223        | MULTIPLEXED ADDRESS BIT 00 (MUXA00[1])                                            |           | OUTPUT           |    |  |
| 224        | BUB GRANTED SLOT 2 (BUBGT2[0])                                                    |           | OUTPUT           |    |  |
| 225        | MULTIPLEXED ADDRESS BIT 05 (MUXA05[1])                                            |           | OUTPUT           |    |  |
| 226        | MULTIPLEXED ADDRESS BIT 04 (MUXA04[1])                                            |           | OUTPUT           |    |  |
| 227        | GROUND (GRD)                                                                      |           | GROUND           |    |  |
| 228        | MULTIPLEXED ADDRESS BIT 03 (MUXA03[1])                                            |           | OUTPUT           |    |  |
| 229        | MULTIPLEXED ADDRESS BIT 08 (MUXA08[1])                                            |           | OUTPUT           |    |  |
| 230        | +5V (VCC)                                                                         |           | POWER            |    |  |
| 231        | MULTIPLEXED ADDRESS BIT 07 (MUXA07[1])                                            |           | OUTPUT           |    |  |
| 232        | MULTIPLEXED ADDRESS BIT 06 (MUXA06[1])                                            |           | OUTPUT           |    |  |

|            | 464-PIN BACKPLANE CONNECTOR, J02 (Contd)                     |                        |  |  |
|------------|--------------------------------------------------------------|------------------------|--|--|
| PIN        | DESCRIPTION                                                  | FUNCTION               |  |  |
| 233        | MULTIPLEXED ADDRESS BIT 10 (MUXA10[1])                       | OUTPUT                 |  |  |
| 234        | MULTIPLEXED ADDRESS BIT 09 (MUXA09[1])                       | OUTPUT                 |  |  |
| 235        | BUB GRANTED SLOT 3 (BUBGT3[0])                               | OUTPUT                 |  |  |
| 236        | BUB PERIPHERAL PARITY CHECK (BPCHECK[0])                     | INPUT/OUTPUT           |  |  |
| 237        | BUB CONNECTOR CHIP SELECT 0 (BCCS0[0])                       | OUTPUT                 |  |  |
| 238        | BUB DATA SIZE BIT 0 (BDSIZE0[1])                             | INPUT/OUTPUT           |  |  |
| 239        | GROUND (GRD)                                                 | GROUND                 |  |  |
| 240        | BUB SEQUENTIAL ACCESS (BSEQACC[0])                           | INPUT/OUTPUT           |  |  |
| 241        | NOT USED                                                     | NC                     |  |  |
| 242        | NOT USED                                                     | NC                     |  |  |
| 243        | +5V (VCC)                                                    | POWER                  |  |  |
| 244        | NOT USED                                                     | NC                     |  |  |
| 245        | NOT USED                                                     | NC                     |  |  |
| 246        | GROUND (GRD)                                                 | GROUND                 |  |  |
| 247        | BUB DATA SIZE BIT 1 (BDSIZE1[1])                             | INPUT/OUTPUT           |  |  |
| 248        | BUB READ/WRITE (BR1W[0])                                     | INPUT/OUTPUT           |  |  |
| 249        | BUB ADDRESS BIT 02 (BA02[1])                                 | INPUT/OUTPUT           |  |  |
| 250        | BUB ADDRESS BIT 01 (BA01[1])                                 | INPUT/OUTPUT           |  |  |
| 251        | NOT USED                                                     | NC                     |  |  |
| 252        | NOT USED                                                     | NC                     |  |  |
| 253        | BUB ADDRESS BIT 05 (BA05[1])                                 | INPUT/OUTPUT           |  |  |
| 254        | BUB ADDRESS BIT 04 (BA04[1])                                 | INPUT/OUTPUT           |  |  |
| 255        | GROUND (GRD)                                                 | GROUND                 |  |  |
| 256        | NOT USED                                                     | NC                     |  |  |
| 257        | BUB ADDRESS BIT 08 (BA08[1])                                 | INPUT/OUTPUT           |  |  |
| 258        | +5V (VCC)                                                    | POWER                  |  |  |
| 259        | BUB ADDRESS BIT 00 (BA00[1])                                 | INPUT/OUTPUT           |  |  |
| 260        | BUB ADDRESS BIT 03 (BA03[1])                                 | INPUT/OUTPUT           |  |  |
| 261        | BUB ADDRESS BIT 11 (BA11[1])                                 | INPUT/OUTPUT           |  |  |
| 262        | BUB ADDRESS BIT 10 (BA10[1])                                 | INPUT/OUTPUT           |  |  |
| 263        | GROUND (GRD)                                                 | GROUND                 |  |  |
| 264        | BUB ADDRESS BIT 06 (BA06[1])                                 | INPUT/OUTPUT           |  |  |
| 265        | BUB BUSY (BUSY[0])                                           | INPUT/OUTPUT           |  |  |
| 266        | GROUND (GRD)                                                 | GROUND                 |  |  |
| 267        | BUB CONNECTOR CHIP SELECT 1 (BCCS1[0])                       | OUTPUT                 |  |  |
| 268        | BUB ADDRESS BIT 09 (BA09[1])                                 | INPUT/OUTPUT           |  |  |
| 269        | BUB ADDRESS BIT 12 (BA12[1])                                 | INPUT/OUTPUT           |  |  |
| 270        | BUB ADDRESS BIT 15 (BA15[1])                                 | INPUT/OUTPUT           |  |  |
| 271        | BUB ADDRESS BIT 07 (BA07[1])                                 | INPUT/OUTPUT           |  |  |
| 272        | BUB ADDRESS BIT 13 (BA13[1])                                 | INPUT/OUTPUT           |  |  |
| 273        | BUB ADDRESS BIT 16 (BA16[1])                                 | INPUT/OUTPUT           |  |  |
| 274<br>275 | BUB ADDRESS BIT 18 (BA18[1])                                 | INPUT/OUTPUT           |  |  |
| 275<br>276 | +5V (VCC)<br>BUB ADDRESS BIT 17 (BA17(1))                    | POWER                  |  |  |
| 276        | BUB ADDRESS BIT 17 (BA17[1])<br>BUB ADDRESS BIT 19 (BA19[1]) | INPUT/OUTPUT           |  |  |
| 277        | GROUND (GRD)                                                 | INPUT/OUTPUT<br>GROUND |  |  |
| 278<br>279 | BUB ADDRESS BIT 14 (BA14[1])                                 | INPUT/OUTPUT           |  |  |
| 280        | BUB ADDRESS BIT 20 (BA20[1])                                 | INPUT/OUTPUT           |  |  |
| 280        | BUB ADDRESS BIT 22 (BA22[1])                                 | INPUT/OUTPUT           |  |  |
| 282        | BUB ADDRESS BIT 24 (BA24[1])                                 | INPUT/OUTPUT           |  |  |
| 283        | BUB ADDRESS BIT 21 (BA21[1])                                 | INPUT/OUTPUT           |  |  |
| 284        | BUB ADDRESS BIT 23 (BA23[1])                                 | INPUT/OUTPUT           |  |  |
| 285        | BUB ADDRESS BIT 25 (BA25[1])                                 | INPUT/OUTPUT           |  |  |
| 286        | +5V (VCC)                                                    | POWER                  |  |  |
| 287        | NOT USED                                                     | NC                     |  |  |
| 288        | NOT USED                                                     | NC                     |  |  |
| 289        | NOT USED                                                     | NC                     |  |  |
| 290        | BUB DATA BIT 01 (BD01[1])                                    | INPUT/OUTPUT           |  |  |

|            | 464-PIN BACKPLANE CONNECTOR, J02 (Contd)                 |          |                        |          |  |  |
|------------|----------------------------------------------------------|----------|------------------------|----------|--|--|
| PIN        | DESCRIPT                                                 | FUNCTION |                        |          |  |  |
| 291        | BUB DATA BIT 00 (BD00[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 292        | NOT USED                                                 |          | NC                     |          |  |  |
| 293        | BUB DATA BIT 02 (BD02[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 294        | BUB DATA BIT 04 (BD04[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 295        | GROUND (GRD)                                             |          | GROUND                 |          |  |  |
| 296        | BUB DATA BIT 03 (BD03[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 297        | BUB DATA BIT 05 (BD05[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 298<br>299 | GROUND (GRD)<br>BUB DATA BIT 07 (BD07[1])                |          | GROUND<br>INPUT/OUTPUT |          |  |  |
| 300        | BUB DATA BIT 07 (BD0/[1])<br>BUB DATA BIT 06 (BD06[1])   |          | INPUT/OUTPUT           |          |  |  |
| 301        | BUB DATA BIT 08 (BD08[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 302        | BUB DATA BIT 10 (BD10[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 303        | +5V (VCC)                                                |          | POWER                  |          |  |  |
| 304        | BUB DATA BIT 09 (BD09[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 305        | BUB DATA BIT 11 (BD11[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 306        | GROUND (GRD)                                             |          | GROUND                 |          |  |  |
| 307        | BUB DATA BIT 13 (BD13[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 308        | BUB DATA BIT 12 (BD12[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 309        | BUB DATA BIT 14 (BD14[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 310        | BUB DATA BIT 17 (BD17[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 311        | BUB DATA BIT 16 (BD16[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 312        | BUB DATA BIT 15 (BD15[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 313        | BUB DATA BIT 18 (BD18[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 314        | BUB DATA BIT 20 (BD20[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 315        | GROUND (GRD)                                             |          | GROUND                 |          |  |  |
| 316        | BUB DATA BIT 19 (BD19[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 317        | BUB DATA BIT 21 (BD21[1])                                |          |                        |          |  |  |
| 318<br>319 | GROUND (GRD)<br>BUB DATA BIT 23 (BD23[1])                |          | GROUND<br>INPUT/OUTPUT |          |  |  |
| 320        | BUB DATA BIT 22 (BD22[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 321        | BUB DATA BIT 24 (BD24[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 322        | BUB DATA BIT 26 (BD26[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 323        | GROUND (GRD)                                             |          | GROUND                 |          |  |  |
| 324        | BUB DATA BIT 25 (BD25[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 325        | BUB DATA BIT 27 (BD27[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 326        | GROUND (GRD)                                             |          | GROUND                 |          |  |  |
| 327        | BUB DATA BIT 29 (BD29[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 328        | BUB DATA BIT 28 (BD28[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 329        | SYSTEM RESET (SYSRST[0])                                 |          | OUTPUT                 |          |  |  |
| 330        | REQUEST SYSTEM RESET (RQRST[0])                          |          | INPUT/OUTPUT           |          |  |  |
| 331        | NOT USED                                                 |          | NC                     |          |  |  |
| 332        | THERMAL SHUTDOWN (THSDN[0])<br>BUB DATA BIT 30 (BD30[1]) |          |                        |          |  |  |
| 333<br>334 | RECEIVED FAILURE (RFAIL[0])                              |          | INPUT/OUTPUT<br>INPUT  |          |  |  |
| 335        | +5V (VCC)                                                |          | POWER                  |          |  |  |
| 336        | BUB DATA BIT 31 (BD31[1])                                |          | INPUT/OUTPUT           |          |  |  |
| 337        | BUB CONNECTOR INHIBIT (BINHIB0[0])                       |          | OUTPUT                 |          |  |  |
| 338        | BUB INTERRUPT LEVEL 10 (BINT010[0])                      |          | INPUT                  |          |  |  |
| 339        | BUB INTERRUPT LEVEL 12 (BINT012[0])                      |          | INPUT                  |          |  |  |
| 340        | BUB INTERRUPT LEVEL 14 (BINT014[0])                      |          | INPUT                  |          |  |  |
| 341*       | UBUS DATA BIT 01 (CD01[1])                               | NOT USED | INPUT/OUTPUT           | NC       |  |  |
| 342        | GROUND (GRD)                                             |          | GROUND                 |          |  |  |
| 343*       | UBUS DATA BIT 00 (CD00[1])                               | NOT USED | INPUT/OUTPUT           | NC       |  |  |
| 344*       | UBUS SEQUENTIAL ACCESS (CSEQACC[0])                      | NOT USED | INPUT                  | NC       |  |  |
| 345*       | UBUS DATA BIT 05 (CD05[1])                               | NOT USED | INPUT/OUTPUT           | NC       |  |  |
| 346*       | UBUS DATA BIT 04 (CD04[1])                               | NOT USED | INPUT/OUTPUT           | NC       |  |  |
| 347*       | UBUS DATA BIT 03 (CD03[1])                               | NOT USED | INPUT/OUTPUT           | NC<br>NC |  |  |
| 348*       | UBUS DATA BIT 02 (CD02[1])                               | NOT USED | INPUT/OUTPUT           | NC       |  |  |

| 464-PIN BACKPLANE CONNECTOR, J02 (Contd) |                                                                |                      |                              |          |  |
|------------------------------------------|----------------------------------------------------------------|----------------------|------------------------------|----------|--|
| PIN                                      | DESC                                                           | RIPTION              | FUNCTION                     |          |  |
| 349*                                     | UBUS DATA BIT 08 (CD08[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 350*                                     | UBUS DATA BIT 07 (CD07[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 351                                      | +5V (VCC)                                                      |                      | POWER                        |          |  |
| 352*                                     | UBUS DATA BIT 06 (CD06[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 353*                                     | UBUS DATA BIT 11 (CD11[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 354                                      | GROUND (GRD)                                                   | NOT LICED            | GROUND                       | NC       |  |
| 355*                                     | UBUS DATA BIT 10 (CD10[1])                                     | NOT USED<br>NOT USED | INPUT/OUTPUT<br>INPUT/OUTPUT | NC<br>NC |  |
| 356*<br>357*                             | UBUS DATA BIT 09 (CD09[1])<br>UBUS DATA BIT 14 (CD14[1])       | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 358*                                     | UBUS DATA BIT 13 (CD13[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 359                                      | GROUND (GRD)                                                   | NOT USED             | GROUND                       | NC       |  |
| 360*                                     | UBUS DATA BIT 12 (CD12[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 361*                                     | UBUS DATA BIT 18 (CD18[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 362*                                     | UBUS DATA BIT 17 (CD17[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 363*                                     | UBUS DATA BIT 16 (CD16[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 364*                                     | UBUS DATA BIT 15 (CD15[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 365*                                     | UBUS DATA BIT 21 (CD21[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 366                                      | +5V (VCC)                                                      |                      | POWER                        |          |  |
| 367*                                     | UBUS DATA BIT 20 (CD20[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 368*                                     | UBUS DATA BIT 19 (CD19[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 369*                                     | UBUS DATA BIT 24 (CD24[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 370*                                     | UBUS DATA BIT 23 (CD23[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 371                                      | GROUND (GRD)                                                   |                      | GROUND                       |          |  |
| 372*                                     | UBUS DATA BIT 22 (CD22[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 373*                                     | UBUS DATA BIT 27 (CD27[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 374                                      | GROUND (GRD)                                                   |                      | GROUND                       |          |  |
| 375*                                     | UBUS DATA BIT 26 (CD26[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 376*                                     | UBUS DATA BIT 25 (CD25[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 377*                                     | UBUS DATA BIT 31 (CD31[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 378*                                     | UBUS DATA BIT 30 (CD30[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 379*                                     | UBUS DATA BIT 29 (CD29[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 380*                                     | UBUS DATA BIT 28 (CD28[1])                                     | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 381*                                     | UBUS ADDRESS BIT 02 (CA02[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 382*                                     | UBUS ADDRESS BIT 01 (CA01[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 383<br>384*                              | +5V (VCC)                                                      | NOT LICED            | POWER                        | NC       |  |
| 385*                                     | UBUS ADDRESS BIT 00 (CA00[1])<br>UBUS ADDRESS BIT 05 (CA05[1]) | NOT USED<br>NOT USED | INPUT/OUTPUT<br>INPUT/OUTPUT | NC       |  |
| 386*                                     | UBUS ADDRESS BIT 05 (CA05[1])<br>UBUS ADDRESS BIT 06 (CA06[1]) | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 387*                                     | UBUS ADDRESS BIT 06 (CA06[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 388*                                     | UBUS ADDRESS BIT 04 (CA04[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 389*                                     | UBUS ADDRESS BIT 08 (CA08[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 390*                                     | UBUS ADDRESS BIT 07 (CA07[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 391                                      | GROUND (GRD)                                                   |                      | GROUND                       |          |  |
| 392*                                     | UBUS ADDRESS BIT 09 (CA09[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 393*                                     | UBUS ADDRESS BIT 11 (CA11[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 394                                      | +5V (VCC)                                                      |                      | POWER                        |          |  |
| 395*                                     | UBUS ADDRESS BIT 10 (CA10[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 396*                                     | UBUS ADDRESS BIT 12 (CA12[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 397*                                     | UBUS ADDRESS BIT 15 (CA15[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 398*                                     | UBUS ADDRESS BIT 14 (CA14[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 399*                                     | UBUS ADDRESS BIT 13 (CA13[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 400*                                     | UBUS ADDRESS BIT 16 (CA16[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 401*                                     | UBUS ADDRESS BIT 18 (CA18[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 402*                                     | UBUS ADDRESS BIT 17 (CA17[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 403                                      | GROUND (GRD)                                                   | NOT HEED             | GROUND                       |          |  |
| 404*                                     | UBUS ADDRESS BIT 19 (CA19[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 405*                                     | UBUS ADDRESS BIT 21 (CA21[1])                                  | NOT USED             | INPUT/OUTPUT                 | NC       |  |
| 406                                      | GROUND (GRD)                                                   |                      | GROUND                       |          |  |

••

|      | 464-PIN BACKPLANE CONNECTOR, J02 (Contd)       |                                             |              |              |  |
|------|------------------------------------------------|---------------------------------------------|--------------|--------------|--|
| PIN  | DESCRIPTION                                    |                                             | FUNCTION     |              |  |
| 407* | UBUS ADDRESS BIT 20 (CA20[1])                  | NOT USED                                    | INPUT/OUTPUT | NC           |  |
| 408* | UBUS ADDRESS BIT 22 (CA22[1])                  | NOT USED                                    | INPUT/OUTPUT | NC           |  |
| 409* | UBUS ADDRESS BIT 24 (CA24[1])                  | NOT USED                                    | INPUT/OUTPUT | NC           |  |
| 410* | UBUS ADDRESS BIT 23 (CA23[1])                  | NOT USED                                    | INPUT/OUTPUT | NC           |  |
| 411  | +5V (VCC)                                      |                                             | POWER        |              |  |
| 412* | UBUS ADDRESS BIT 25 (CA25[1])                  | NOT USED                                    | INPUT/OUTPUT | NC           |  |
| 413* | UBUS ADDRESS BIT 27 (CA27[1])                  | NOT USED                                    | INPUT/OUTPUT | NC           |  |
| 414* | GROUND (GRD)                                   | PBUS INHIBIT(UINHIB[0])                     | GROUND       | OUTPUT       |  |
| 415* | UBUS ADDRESS BIT 26 (CA26[1])                  | NOT USED                                    | INPUT/OUTPUT | NC           |  |
| 416* | UBUS ADDRESS BIT 28 (CA28[1])                  | NOT USED                                    | INPUT/OUTPUT | NC           |  |
| 417* | UBUS ADDRESS BIT 31 (CA31[1])                  | NOT USED                                    | INPUT/OUTPUT | NC           |  |
| 418* | UBUS ADDRESS BIT 30 (CA30[1])                  | NOT USED                                    | INPUT/OUTPUT | NC           |  |
| 419* | UBUS ADDRESS BIT 29 (CA29[1])                  | NOT USED                                    | INPUT/OUTPUT | NC           |  |
| 420* | CLOCK 23 (CLK23[1])                            | NOT USED                                    | OUTPUT       | NC           |  |
| 421  | HOLD REMOTE POWERON (PWRON[1])                 |                                             | OUTPUT       |              |  |
| 422  | REMOTE POWER DOWN REQUEST<br>(PDWNRQ[0])       |                                             | INPUT        |              |  |
| 423  | GROUND (GRD)                                   |                                             | GROUND       |              |  |
| 424* | CLOCK 34 (CLK34[1])                            | NOT USED                                    | OUTPUT       | NC           |  |
| 425* | UBUS GRANTED (BUSGT[0])                        | CPU LATCH ADDRESS (CPULTCH[1])              | OUTPUT       | OUTPUT       |  |
| 426  | SANITY TIMER TIMEOUT (SANTO[0])                |                                             | INPUT/OUTPUT |              |  |
| 427  | OPERATIONAL INTERRUPT LEVEL 15<br>(OPINT15[0]) |                                             | INPUT        |              |  |
| 428* | VIRTUAL CACHE HIT (VCHIT[0])                   | SLOT 3 VIRTUAL ADDRESS STROBE<br>(C3VAS[0]) | INPUT        | INPUT/OUTPUT |  |
| 429* | UBUS EXECUTION MODE 1 (XMD1[1])                | NOT USED                                    | OUTPUT       | NC           |  |
| 430  | +5V (VCC)                                      |                                             | POWER        |              |  |
| 431* | UBUS BUS REQUEST (BUSRQ[0])                    | SLOT 2 VIRTUAL ADDRESS STROBE<br>(C2VAS[0]) | INPUT        | INPUT        |  |
| 432* | UBUS COPROCESSOR DONE (DONE[0])                | SLOT 1 VIRTUAL ADDRESS STROBE<br>(C1VAS[0]) | INPUT        | INPUT        |  |
| 433* | UBUS VIRTUAL ADDRESS (BY CPU)<br>(VAD[0])      | PBUS INTERLOCK (UINTLK[0])                  | OUTPUT       | INPUT        |  |
| 434* | UBUS ACCESS STATUS BIT 3 (SAS3[1])             | PBUS CARD SELECT SLOT 3 (UPCS3[0]           | OUTPUT       | OUTPUT       |  |
| 435  | GROUND (GRD)                                   |                                             | GROUND       |              |  |
| 436* | UBUS ACCESS STATUS BIT 2 (SAS2[1])             | PBUS CARD SELECT SLOT 2 (UPCS2[0])          | OUTPUT       | OUTPUT       |  |
| 437* | UBUS DATA ACKNOWLEDGE (DTACK[0])               | PBUS SLOT 3 MEMORY REQUEST<br>(CPU3MEM[0]   | INPUT        | INPUT        |  |
| 438  | GROUND (GRD)                                   |                                             | GROUND       |              |  |
| 439* | UBUS ABORT ACTIVATED (ABORT[0])                | NOT USED                                    | OUTPUT       | NC           |  |

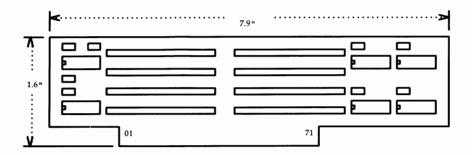
••

|              | 464-PIN BACKPLANE CONNECTOR, J02 (Contd)                                 |                                                                                 |                  |                  |  |  |
|--------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------|------------------|--|--|
| PIN          | DESCRIPTION                                                              |                                                                                 | FUNCTION         |                  |  |  |
| 440*         | UBUS CACHE ABLE (CABLE[0])                                               | PBUS DATA ACKNOWLEDGE<br>(UDTACK[0])                                            | INPUT/OUTPUT     | ОИТРИТ           |  |  |
| 441*         | UBUS EARLY PHYSICAL ADDRESS<br>STROBE (EPAS[0])                          | PBUS PHYSICAL ADDRESS STROBE<br>(UPAS[0])                                       | OUTPUT           | INPUT            |  |  |
| 442*         | UBUS VIRTUAL ADDRESS STROBE<br>(VAS[0])                                  | NOT USED                                                                        | OUTPUT           | NC               |  |  |
| 443*<br>444* | UBUS ACCESS STATUS BIT 1 (SAS1[1])<br>UBUS ACCESS STATUS BIT 0 (SAS0[1]) | PBUS CARD SELECT SLOT 1 (UPCS1[0])<br>PBUS SLOT 3 OUTPUT ENABLE<br>(C3ALOE[0])  | OUTPUT<br>OUTPUT | ОИТРИТ<br>ОИТРИТ |  |  |
| 445*<br>446* | UBUS DATA SIZE BIT 0 (CDSIZE0[1])<br>UBUS SYNCHRONOUS READY (SRDY[0])    | PBUS DATA SIZE BIT 0 (UDSIZE0[1])<br>PBUS SLOT 2 MEMORY REQUEST<br>(CPU2MEM[0]) | OUTPUT<br>INPUT  | INPUT<br>INPUT   |  |  |
| 447<br>448*  | +5V (VCC)<br>UBUS CYCLE INITIATE (CYCLEI[0])                             | PBUS SLOT 2 OUTPUT ENABLE<br>(C2ALOE[0])                                        | POWER<br>OUTPUT  | ОИТРИТ           |  |  |
| 449*         | BUB CONNECTOR CHIP SELECT 3 (BCCS3[0])                                   | PBUS SLOT 1 OUTPUT ENABLE<br>(C1ALOE[0])                                        | OUTPUT           | OUTPUT           |  |  |
| 450          | GROUND (GRD)                                                             |                                                                                 | GROUND           |                  |  |  |
| 451*         | UBUS DATA READY (DRDY[0])                                                | NOT USED                                                                        | OUTPUT           | NC               |  |  |
| 452*         | RECEIVED FAILURE (RFAIL[0])                                              | PBUS SLOT 1 MEMORY REQUEST<br>(CPU1MEM[0])                                      | INPUT            | INPUT            |  |  |
| 453          | UBUS CHIP SELECT (CS1[0])                                                | PULLED UP                                                                       | OUTPUT           | OUTPUT           |  |  |
| 454*         | UBUS FAULT (FLT[0])                                                      | PBUS FAULT (UFLT[0])                                                            | INPUT            | OUTPUT           |  |  |
| 455          | ABORT PUSH BUTTON (ABUTTN[0])                                            |                                                                                 | INPUT            |                  |  |  |
| 456*         | UBUS DATA SIZE BIT 1 (CDSIZE1[1])                                        | PBUS DATA SIZE BIT 1 (UDSIZE1[1])                                               | OUTPUT           | INPUT            |  |  |
| 457*<br>458  | UBUS DATA SHADOW (DSHAD[0])<br>GROUND (GRD)                              | NOT USED                                                                        | OUTPUT           | NC               |  |  |
| 458<br>459*  | UBUS READ/WRITE (CR1W[0])                                                | PBUS READ/WRITE (UR1W[0])                                                       | GROUND<br>OUTPUT | INPUT            |  |  |
| 459*         | UBUS DATA STROBE (DS[0])                                                 | NOT USED                                                                        | OUTPUT           | NC               |  |  |
| 461          | POWER LED (GLED[0])                                                      |                                                                                 | OUTPUT           | NC               |  |  |
| 462          | +5V (VCC)                                                                |                                                                                 | POWER            |                  |  |  |
| 463          | DIAGNOSTIC LED (ERLED[0])                                                |                                                                                 | OUTPUT           |                  |  |  |
| 464          | +3.6V (VBAT)                                                             |                                                                                 | INPUT            |                  |  |  |

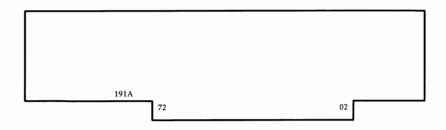
\* CM518C System Board signal description shown in *italics*.

LEGEND:

NC No Connection

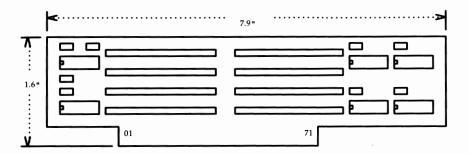

# CM191A/B/C/D AND CM192B MEMORY CARD INTERCONNECTIONS

All memory card interconnections are provided by a 72-pin card edge connector. The following memory cards are used in the 3B2 computer.

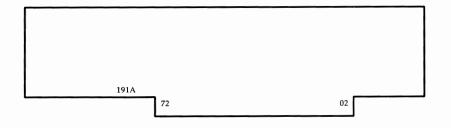

| CM191A | Figure B-6 shows the layout of the 0.25-Megabyte Memory Card, CM191A. The card is approximately 7.9 inches wide and 1.6 inches high.                 |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| CM191B | Figure B-7 shows the layout of the 1-Megabyte Memory Card, CM191B. The card is approximately 7.9 inches wide and 1.6 inches high.                    |
| CM191C | Figure B-8 shows the layout of the 1-Megabyte, Surface Mounted, Memory Card, CM191C. The card is approximately 7.7 inches wide and 1.7 inches high.  |
| CM191D | Figure B-9 shows the layout of the 2-Megabyte, Surface Mounted, Memory Card, CM191D. The card is approximately 7.9 inches wide and 1.6 inches high.  |
| CM192B | Figure B-10 shows the layout of the 2-Megabyte, Surface Mounted, Memory Card, CM192B. The card is approximately 7.9 inches wide and 3.6 inches high. |

Refer to these figures for card connector location information. Card pin and signal information is provided in tables following the figures. The figures are printed front and back with a blank unit so that the figures can be used in conjunction with the tables.

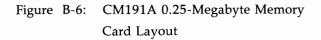
• ·

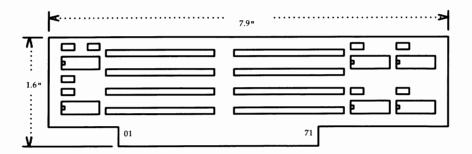



A. Front View




**B.** Rear View


Figure B-6: CM191A 0.25-Megabyte Memory Card Layout





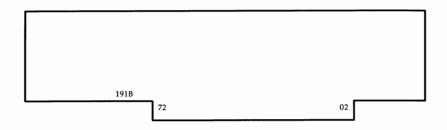
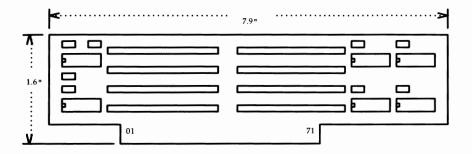
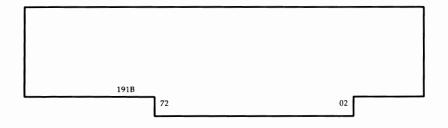


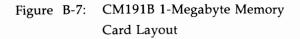

**B.** Rear View

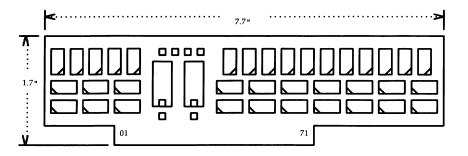




A. Front View



Figure B-7: CM191B 1-Megabyte Memory Card Layout




A. Front View



B. Rear View





A. Front View

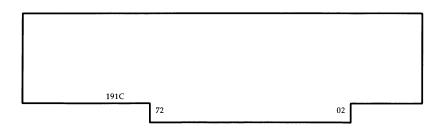
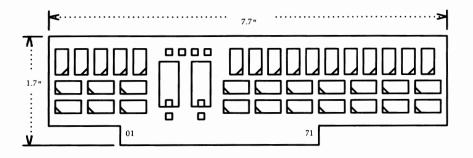




Figure B-8: CM191C 1-Megabyte, Surface Mounted, Memory Card Layout



A. Front View

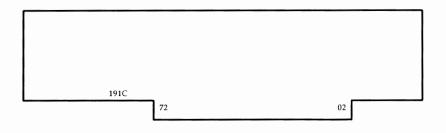
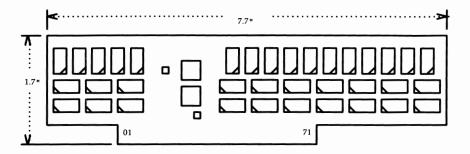




Figure B-8: CM191C 1-Megabyte, Surface Mounted, Memory Card Layout



A. Front View

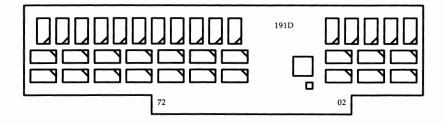
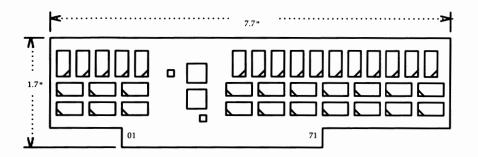
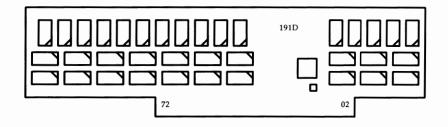
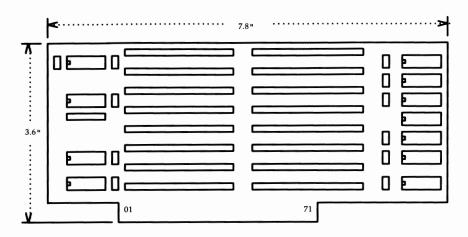





Figure B-9: CM191D 2-Megabyte, Surface Mounted, Memory Card Layout ••

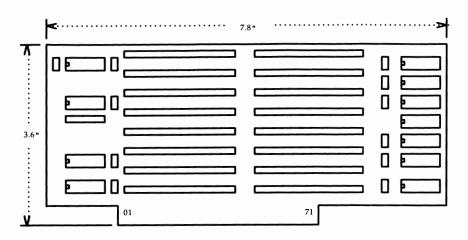
•




A. Front View



**B.** Rear View


Figure B-9: CM191D 2-Megabyte, Surface Mounted, Memory Card Layout



A. Front View



Figure B-10: CM192B 2-Megabyte, Surface Mounted, Memory Card Layout



A. Front View

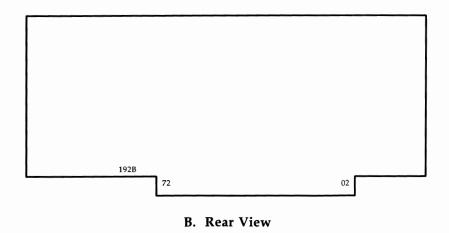



Figure B-10: CM192B 2-Megabyte, Surface Mounted, Memory Card Layout

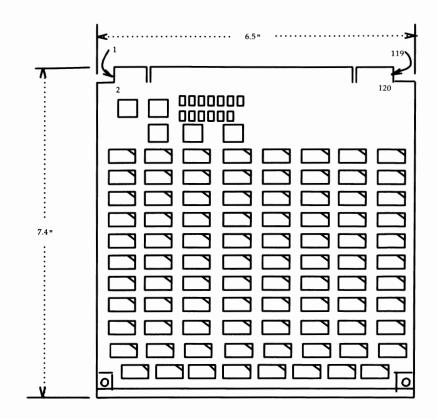
|     | 72-PIN CM191 AND CM192 MEMORY CARD EDGE CONNECTIONS              |              |  |  |  |
|-----|------------------------------------------------------------------|--------------|--|--|--|
| PIN | DESCRIPTION                                                      | FUNCTION     |  |  |  |
| 001 | GROUND (GRD)                                                     | GROUND       |  |  |  |
| 002 | +5V (VCC)                                                        | POWER        |  |  |  |
| 003 | MULTIPLEXED ADDRESS BIT 7 (MUXA7[1])                             | INPUT        |  |  |  |
| 004 | MULTIPLEXED ADDRESS BIT 0 (MUXA0[1])                             | INPUT        |  |  |  |
| 005 | MULTIPLEXED ADDRESS BIT 6 (MUXA6[1])                             | INPUT        |  |  |  |
| 006 | MULTIPLEXED ADDRESS BIT 1 (MUXA1[1])                             | INPUT        |  |  |  |
| 007 | MULTIPLEXED ADDRESS BIT 5 (MUXA5[1])                             | INPUT        |  |  |  |
| 008 | GROUND (GRD)                                                     | GROUND       |  |  |  |
| 009 | MULTIPLEXED ADDRESS BIT 4 (MUXA4[1])                             | INPUT        |  |  |  |
| 010 | MULTIPLEXED ADDRESS BIT 2 (MUXA2[1])                             | INPUT        |  |  |  |
| 011 | NOT USED for CM191A                                              | NC           |  |  |  |
|     | MULTIPLEXED ADDRESS BIT 8 (MUXA8[1]) for CM191B/C/D and CM192A/B | INPUT .      |  |  |  |
| 012 | MULTIPLEXED ADDRESS BIT 3 (MUXA3[1])                             | INPUT        |  |  |  |
| 013 | GROUND (GRD)                                                     | GROUND       |  |  |  |
| 014 | NOT USED for CM191A                                              | NC           |  |  |  |
|     | MULTIPLEXED ADDRESS BIT 9 (MUXA9[1]) for CM191B/C/D and CM192A/B | INPUT        |  |  |  |
| 015 | WRITE ENABLE (WE[0])                                             | INPUT        |  |  |  |
| 016 | ROW ADDRESS STROBE (RAS[0])                                      | INPUT        |  |  |  |
| 017 | BANK ENABLE 0 (BANKEN0[0])                                       | INPUT        |  |  |  |
| 018 | NOT USED for CM191A/B/C                                          | NC           |  |  |  |
|     | BANK ENABLE 1 (BANKEN1[0]) for CM191D and CM192A/B               | INPUT        |  |  |  |
| 019 | ONEBANK[0] for CM191A/B/C                                        | GROUND       |  |  |  |
|     | ONEBANK[0] for CM191D and CM192A/B                               | VCC          |  |  |  |
| 020 | COLUMN ADDRESS STROBE 2 (CAS2[0])                                | INPUT        |  |  |  |
| 021 | COLUMN ADDRESS STROBE 0 (CAS0[0])                                | INPUT        |  |  |  |
| 022 | COLUMN ADDRESS STROBE 3 (CAS3[0])                                | INPUT        |  |  |  |
| 023 | GROUND (GRD)                                                     | GROUND       |  |  |  |
| 024 | SIZE64K[0] for CM191A/B/C                                        | GROUND       |  |  |  |
|     | SIZE64K[0] for CM191D and CM192A/B                               | VCC          |  |  |  |
| 025 | COLUMN ADDRESS STROBE 1 (CAS1[0])                                | INPUT        |  |  |  |
| 026 | MEMORY DATA BIT 31 (MD31[1])                                     | INPUT/OUTPUT |  |  |  |
| 027 | MEMORY DATA BIT 30 (MD30[1])                                     | INPUT/OUTPUT |  |  |  |
| 028 | GROUND (GRD)                                                     | GROUND       |  |  |  |
| 029 | MEMORY DATA BIT 28 (MD28[1])                                     | INPUT/OUTPUT |  |  |  |
| 030 | MEMORY DATA BIT 29 (MD29[1])                                     | INPUT/OUTPUT |  |  |  |
| 031 | MEMORY DATA BIT 26 (MD26[1])                                     | INPUT/OUTPUT |  |  |  |
| 032 | MEMORY DATA BIT 27 (MD27[1])                                     | INPUT/OUTPUT |  |  |  |
| 033 | GROUND (GRD)                                                     | GROUND       |  |  |  |

-

|     | 72-PIN CM191 AND CM192 MEMORY CARD EDGE CONNECTIONS (Contd) |              |  |  |
|-----|-------------------------------------------------------------|--------------|--|--|
| PIN | DESCRIPTION                                                 | FUNCTION     |  |  |
| 034 | MEMORY DATA BIT 25 (MD25[1])                                | INPUT/OUTPUT |  |  |
| 035 | MEMORY DATA BIT 24 (MD24[1])                                | INPUT/OUTPUT |  |  |
| 036 | MEMORY DATA BIT 23 (MD23[1])                                | INPUT/OUTPUT |  |  |
| 037 | MEMORY DATA BIT 22 (MD22[1])                                | INPUT/OUTPUT |  |  |
| 038 | GROUND (GRD)                                                | GROUND       |  |  |
| 039 | MEMORY DATA BIT 20 (MD20[1])                                | INPUT/OUTPUT |  |  |
| 040 | MEMORY DATA BIT 21 (MD21[1])                                | INPUT/OUTPUT |  |  |
| 041 | MEMORY DATA BIT 18 (MD18[1])                                | INPUT/OUTPUT |  |  |
| 042 | MEMORY DATA BIT 19 (MD19[1])                                | INPUT/OUTPUT |  |  |
| 043 | GROUND (GRD)                                                | GROUND       |  |  |
| 044 | MEMORY DATA BIT 17 (MD17[1])                                | INPUT/OUTPUT |  |  |
| 045 | MEMORY DATA BIT 16 (MD16[1])                                | INPUT/OUTPUT |  |  |
| 046 | MEMORY DATA BIT 15 (MD15[1])                                | INPUT/OUTPUT |  |  |
| 047 | MEMORY DATA BIT 14 (MD14[1])                                | INPUT/OUTPUT |  |  |
| 048 | GROUND (GRD)                                                | GROUND       |  |  |
| 049 | MEMORY DATA BIT 12 (MD12[1])                                | INPUT/OUTPUT |  |  |
| 050 | MEMORY DATA BIT 13 (MD13[1])                                | INPUT/OUTPUT |  |  |
| 051 | MEMORY DATA BIT 10 (MD10[1])                                | INPUT/OUTPUT |  |  |
| 052 | MEMORY DATA BIT 11 (MD11[1])                                | INPUT/OUTPUT |  |  |
| 053 | GROUND (GRD)                                                | GROUND       |  |  |
| 054 | MEMORY DATA BIT 09 (MD09[1])                                | INPUT/OUTPUT |  |  |
| 055 | MEMORY DATA BIT 08 (MD08[1])                                | INPUT/OUTPUT |  |  |
| 056 | MEMORY DATA BIT 07 (MD07[1])                                | INPUT/OUTPUT |  |  |
| 057 | MEMORY DATA BIT 06 (MD06[1])                                | INPUT/OUTPUT |  |  |
| 058 | MEMORY DATA BIT 05 (MD05[1])                                | INPUT/OUTPUT |  |  |
| 059 | MEMORY DATA BIT 04 (MD04[1])                                | INPUT/OUTPUT |  |  |
| 060 | GROUND (GRD)                                                | GROUND       |  |  |
| 061 | MEMORY DATA BIT 02 (MD02[1])                                | INPUT/OUTPUT |  |  |
| 062 | MEMORY DATA BIT 03 (MD03[1])                                | INPUT/OUTPUT |  |  |
| 063 | GROUND (GRD)                                                | GROUND       |  |  |
| 064 | MEMORY DATA BIT 01 (MD01[1]                                 | INPUT/OUTPUT |  |  |
| 065 | MEMORY DATA BIT 00 (MD00[1]                                 | INPUT/OUTPUT |  |  |
| 066 | MEMORY CARD EQUIPPED (MCEQUIP[0])                           | GROUND       |  |  |
| 067 | MEMORY PARITY ADDRESS REGISTER BIT 0 (MPAR0[1])             | INPUT/OUTPUT |  |  |
| 068 | MEMORY PARITY ADDRESS REGISTER BIT 0 (MPAR2[1])             | INPUT/OUTPUT |  |  |
| 069 | MEMORY PARITY ADDRESS REGISTER BIT 0 (MPAR1[1])             | INPUT/OUTPUT |  |  |
| 070 | MEMORY PARITY ADDRESS REGISTER BIT 0 (MPAR3[1])             | INPUT/OUTPUT |  |  |
| 071 | GROUND (GRD)                                                | GROUND       |  |  |
| 072 | +5V (VCC)                                                   | POWER        |  |  |

LEGEND:

NC No Connection


## **CM523A/AA/B/D MEMORY CARD INTERCONNECTIONS**

All CM523 series memory cards are surface mount technology. The interconnections are provided by a 120-pin card edge connector. The following memory cards are used in the Version 3 3B2 computer.

| CM523A  | Figure B-11 shows the layout of the 4-Megabyte Memory Card, CM523A. The card is approximately 6.5 inches wide and 7.4 inches deep.  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------|
| CM523AA | Figure B-12 shows the layout of the 4-Megabyte Memory Card, CM523AA. The card is approximately 6.5 inches wide and 7.4 inches deep. |
| СМ523В  | Figure B-13 shows the layout of the 2-Megabyte Memory Card, CM523B. The card is approximately 6.5 inches wide and 7.4 inches deep.  |
| CM523D  | Figure B-14 shows the layout of the 16-Megabyte Memory Card, CM523D. The card is approximately 6.5 inches wide and 7.4 inches deep. |

Refer to these figures for card connector location information. Card pin and signal information is provided in tables following the figures. The figures are printed front and back with a blank unit so that the figures can be used in conjunction with the tables.

### Appendix: CONNECTOR AND CABLING INFORMATION



Conventional Component Side (Top) (Bottom Side also has Memory Chips)

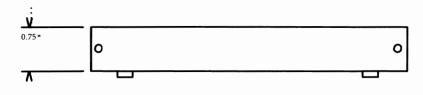
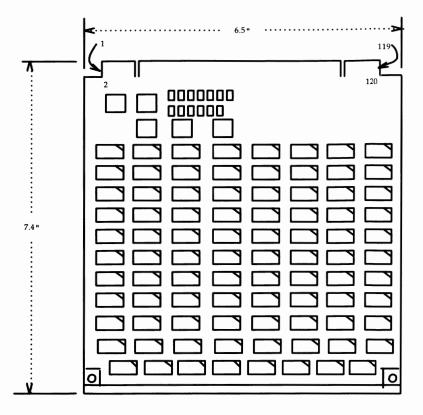




Figure B-11: CM523A 4-Megabyte Memory Card Layout



Conventional Component Side (Top) (Bottom Side also has Memory Chips)

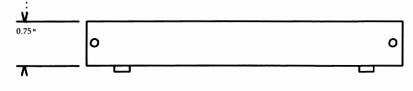
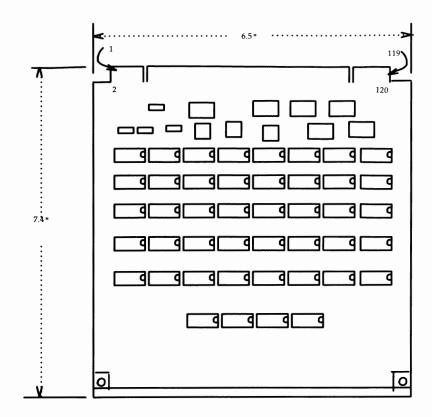




Figure B-11: CM523A 4-Megabyte Memory Card Layout



Conventional Component Side

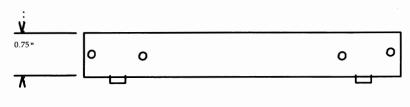
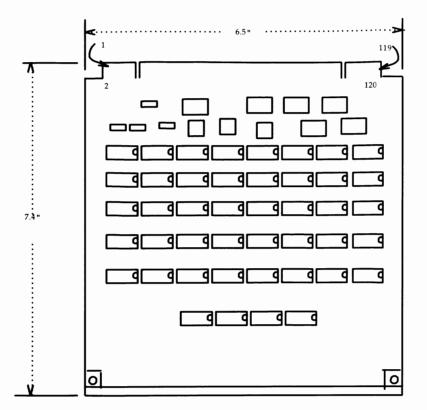




Figure B-12: CM523AA 4-Megabyte Memory Card Layout



Conventional Component Side

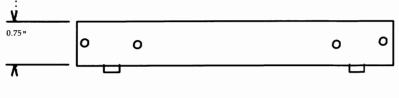
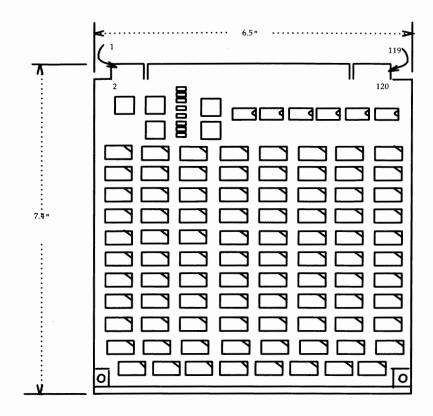




Figure B-12: CM523AA 4-Megabyte Memory Card Layout

### Appendix: CONNECTOR AND CABLING INFORMATION



Conventional Component Side

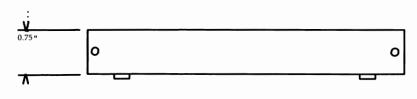
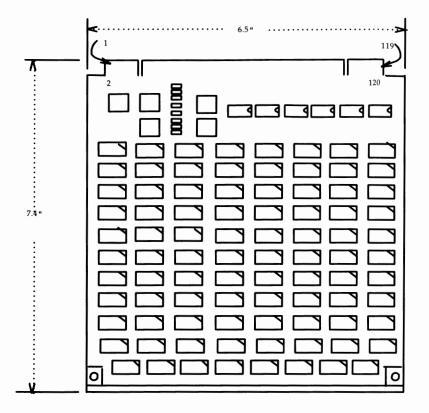
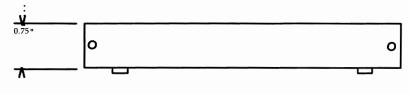
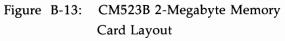
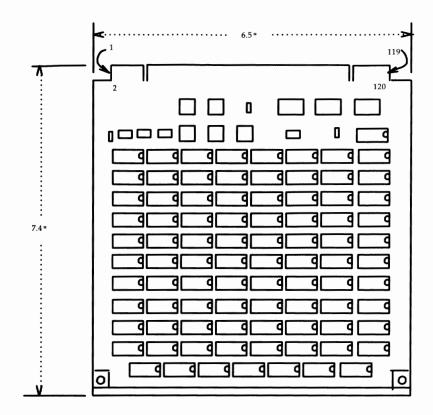






Figure B-13: CM523B 2-Megabyte Memory Card Layout




Conventional Component Side





#### Appendix: CONNECTOR AND CABLING INFORMATION



Conventional Component Side (Top) (Bottom Side also has Memory Chips)

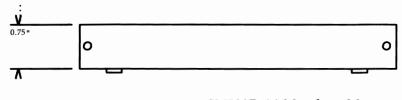
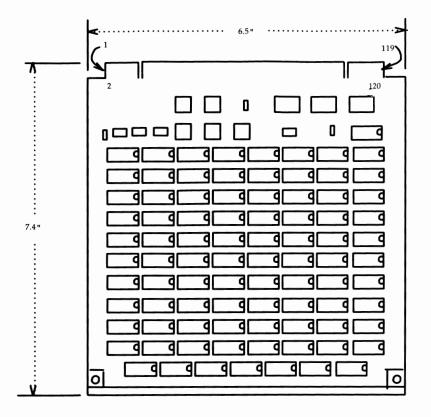




Figure B-14: CM523D 16-Megabyte Memory Card Layout



Conventional Component Side (Top) (Bottom Side also has Memory Chips)

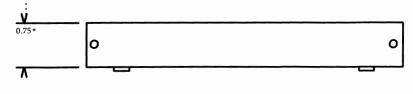



Figure B-14: CM523D 16-Megabyte Memory Card Layout

.

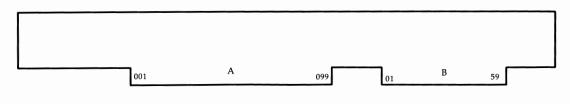
|            | 120-PIN CM523 MEMORY CARD EDGE CONNECTIONS             |                  |
|------------|--------------------------------------------------------|------------------|
| PIN        | DESCRIPTION                                            | FUNCTION         |
| 001        | GROUND (GRD)                                           | GROUND           |
| 002        | +5V (VCC)                                              | POWER            |
| 003        | NOT USED                                               | NC               |
| 004        | NOT USED                                               | NC               |
| 005        | NOT USED                                               | NC               |
| 006        | NOT USED                                               | NC               |
| 007        | GROUND (GRD)                                           | GROUND           |
| 008        | GROUND (GRD)                                           | GROUND           |
| 009        | ROW ADDRESS STROBE (RAS[0])                            | INPUT            |
| 010        | WRITE ENABLE (WE[0])                                   | INPUT            |
| 011        | GROUND (GRD)                                           | GROUND           |
| 012        | GROUND (GRD)                                           | GROUND<br>INPUT  |
| 013<br>014 | MEMORY CYCLE STATUS G[0]<br>BANK ENABLE 1 (BANKEN1[0]) | INPUT            |
| 014        | BANK ENABLE 2 (BANKEN2[0])                             | INPUT            |
| 015        | BANK ENABLE 2 (BANKEN2[0])                             | INPUT            |
| 017        | GROUND (GRD)                                           | GROUND           |
| 018        | GROUND (GRD)                                           | GROUND           |
| 019        | COLUMN ADDRESS STROBE 1 (CAS1[0])                      | INPUT            |
| 020        | COLUMN ADDRESS STROBE 3 (CAS3[0])                      | INPUT            |
| 021        | COLUMN ADDRESS STROBE 0 (CAS0[0])                      | INPUT            |
| 022        | COLUMN ADDRESS STROBE 2 (CAS2[0])                      | INPUT            |
| 023        | +5V (VCC)                                              | POWER            |
| 024        | +5V (VCC)                                              | POWER            |
| 025        | SIZE BIT 0 (SIZE0[0])                                  | INPUT/OUTPUT     |
| 026        | NOT USED                                               | NC               |
| 027        | SIZE BIT 1 (SIZE1[0])                                  | INPUT/OUTPUT     |
| 028        | SLOT EQUIPPED (ECCEQP[0])                              | OUTPUT           |
| 029        | LARGER SIZED MEMORY BOARD (BIGMEM[0])                  | OUTPUT           |
| 030        | NOT USED                                               | NC               |
| 031        | GROUND (GRD)                                           | GROUND           |
| 032        | GROUND (GRD)                                           | GROUND           |
| 033        | MULTIPLEXED ADDRESS BIT 00 (MUXA00[1])                 | INPUT            |
| 034        | MULTIPLEXED ADDRESS BIT 03 (MUXA03[1])                 | INPUT            |
| 035        | GROUND (GRD)                                           | GROUND           |
| 036        | GROUND (GRD)                                           | GROUND           |
| 037        | MULTIPLEXED ADDRESS BIT 01 (MUXA01[1])                 | INPUT            |
| 038        | MULTIPLEXED ADDRESS BIT 02 (MUXA02[1])                 | INPUT            |
| 039<br>040 | GROUND (GRD)<br>GROUND (GRD)                           | GROUND<br>GROUND |
| 040        | MULTIPLEXED ADDRESS BIT 04 (MUXA04[1])                 | INPUT            |
| 041        | MULTIPLEXED ADDRESS BIT 07 (MUXA07[1])                 | INPUT            |
| 042        | +5V (VCC)                                              | POWER            |
| 043        | +5V (VCC)                                              | POWER            |
| 045        | MULTIPLEXED ADDRESS BIT 05 (MUXA05[1])                 | INPUT            |
| 046        | MULTIPLEXED ADDRESS BIT 06 (MUXA06[1])                 | INPUT            |
| 047        | GROUND (GRD)                                           | GROUND           |
| 048        | GROUND (GRD)                                           | GROUND           |
| 049        | MULTIPLEXED ADDRESS BIT 08 (MUXA08[1])                 | INPUT            |
| 050        | MULTIPLEXED ADDRESS BIT 11 (MUXA11[1]) (IF USED)       | INPUT            |
| 051        | GROUND (GRD)                                           | GROUND           |
| 052        | GROUND (GRD)                                           | GROUND           |
| 053        | MULTIPLEXED ADDRESS BIT 09 (MUXA09[1]) (IF USED)       | INPUT            |
| 054        | MULTIPLEXED ADDRESS BIT 10 (MUXA10[1]) (IF USED)       | INPUT            |
| 055        | GROUND (GRD)                                           | GROUND           |
| 056        | +5V (VCC)                                              | POWER            |
| 057        | MULTIPLEXED ADDRESS BIT 12 (MUXA12[1]) (IF USED)       | INPUT            |
| 058        | NOT USED                                               | NC               |
| 059        | GROUND (GRD)                                           | GROUND           |
| 060        | GROUND (GRD)                                           | GROUND           |

| 120-PIN CM523 MEMORY CARD EDGE CONNECTIONS (Contd) |                                                              |                              |  |
|----------------------------------------------------|--------------------------------------------------------------|------------------------------|--|
| PIN                                                | DESCRIPTION                                                  | FUNCTION                     |  |
| 061                                                | MEMORY DATA BIT 31 (MD31[1])                                 | INPUT/OUTPUT                 |  |
| 062                                                | MEMORY DATA BIT 30 (MD30[1])                                 | INPUT/OUTPUT                 |  |
| 063                                                | GROUND (GRD)                                                 | GROUND                       |  |
| 064                                                | MEMORY DATA BIT 28 (MD28[1])                                 | INPUT/OUTPUT                 |  |
| 065                                                | MEMORY DATA BIT 29 (MD29[1])                                 | INPUT/OUTPUT                 |  |
| 066                                                | MEMORY DATA BIT 26 (MD26[1])                                 | INPUT/OUTPUT                 |  |
| 067                                                | MEMORY DATA BIT 27 (MD27[1])                                 | INPUT/OUTPUT                 |  |
| 068                                                | GROUND (GRD)                                                 | GROUND                       |  |
| 069                                                | MEMORY DATA BIT 25 (MD25[1])                                 | INPUT/OUTPUT                 |  |
| 070                                                | MEMORY DATA BIT 24 (MD24[1])                                 | INPUT/OUTPUT                 |  |
| 071                                                | GROUND (GRD)                                                 | GROUND                       |  |
| 072                                                | MEMORY DATA BIT 22 (MD22[1])                                 | INPUT/OUTPUT                 |  |
| 073                                                | MEMORY DATA BIT 23 (MD23[1])                                 | INPUT/OUTPUT                 |  |
| 074                                                | MEMORY DATA BIT 20 (MD20[1])                                 | INPUT/OUTPUT                 |  |
| 075                                                | MEMORY DATA BIT 21 (MD21[1])                                 | INPUT/OUTPUT                 |  |
| 076                                                | +5V (VCC)                                                    | POWER                        |  |
| 077                                                | MEMORY DATA BIT 19 (MD19[1])                                 | INPUT/OUTPUT                 |  |
| 078                                                | MEMORY DATA BIT 18 (MD18[1])                                 | INPUT/OUTPUT                 |  |
| 079                                                | +5V (VCC)                                                    | POWER                        |  |
| 080                                                | MEMORY DATA BIT 16 (MD16[1])                                 | INPUT/OUTPUT                 |  |
| 081                                                | MEMORY DATA BIT 17 (MD17[1])                                 |                              |  |
| 082                                                | MEMORY DATA BIT 14 (MD14[1])                                 | INPUT/OUTPUT                 |  |
| 083                                                | MEMORY DATA BIT 15 (MD15[1])                                 | INPUT/OUTPUT                 |  |
| 084                                                | GROUND (GRD)                                                 | GROUND                       |  |
| 085                                                | MEMORY DATA BIT 13 (MD13[1])                                 | INPUT/OUTPUT                 |  |
| 086                                                | MEMORY DATA BIT 12 (MD12[1])                                 |                              |  |
| 087                                                | GROUND (GRD)                                                 | GROUND                       |  |
| 088                                                | MEMORY DATA BIT 10 (MD10[1])<br>MEMORY DATA BIT 11 (MD11[1]) | INPUT/OUTPUT<br>INPUT/OUTPUT |  |
| 089<br>090                                         | MEMORY DATA BIT 11 (MDTI[1])<br>MEMORY DATA BIT 08 (MD08[1]) | INPUT/OUTPUT                 |  |
| 090                                                | MEMORY DATA BIT 09 (MD09[1])                                 | INPUT/OUTPUT                 |  |
| 091                                                | GROUND (GRD)                                                 | GROUND                       |  |
| 092                                                | MEMORY DATA BIT 07 (MD07[1])                                 | INPUT/OUTPUT                 |  |
| 093                                                | MEMORY DATA BIT 06 (MD06[1])                                 | INPUT/OUTPUT                 |  |
| 095                                                | GROUND (GRD)                                                 | GROUND                       |  |
| 096                                                | MEMORY DATA BIT 04 (MD04[1])                                 | INPUT/OUTPUT                 |  |
| 097                                                | MEMORY DATA BIT 05 (MD05[1])                                 | INPUT/OUTPUT                 |  |
| 098                                                | MEMORY DATA BIT 02 (MD02[1])                                 | INPUT/OUTPUT                 |  |
| 099                                                | MEMORY DATA BIT 03 (MD03[1])                                 | INPUT/OUTPUT                 |  |
| 100                                                | +5V (VCC)                                                    | POWER                        |  |
| 101                                                | MEMORY DATA BIT 01 (MD01[1]                                  | INPUT/OUTPUT                 |  |
| 102                                                | MEMORY DATA BIT 00 (MD00[1]                                  | INPUT/OUTPUT                 |  |
| 103                                                | +5V (VCC)                                                    | POWER                        |  |
| 104                                                | MEMORY CHECK BIT (MCB10[1])                                  | NPUT/OUTPUT                  |  |
| 105                                                | MEMORY CHECK BIT (MCB11[1])                                  | NPUT/OUTPUT                  |  |
| 106                                                | MEMORY CHECK BIT (MCB08[1])                                  | NPUT/OUTPUT                  |  |
| 107                                                | MEMORY CHECK BIT (MCB09[1])                                  | NPUT/OUTPUT                  |  |
| 108                                                | GROUND (GRD)                                                 | GROUND                       |  |
| 109                                                | MEMORY CHECK BIT (MCB07[1])                                  | NPUT/OUTPUT                  |  |
| 110                                                | MEMORY CHECK BIT (MCB06[1])                                  | NPUT/OUTPUT                  |  |
| 111                                                | GROUND (GRD)                                                 | GROUND                       |  |
| 112                                                | MEMORY CHECK BIT (MCB04[1])                                  | NPUT/OUTPUT                  |  |
| 113                                                | MEMORY CHECK BIT (MCB05[1])                                  | NPUT/OUTPUT                  |  |
| 114                                                | MEMORY CHECK BIT (MCB02[1])                                  | NPUT/OUTPUT                  |  |
| 115                                                | MEMORY CHECK BIT (MCB03[1])                                  | NPUT/OUTPUT                  |  |
| 116                                                | GROUND (GRD)                                                 | GROUND                       |  |
| 117                                                | MEMORY CHECK BIT (MCB01[1])                                  | NPUT/OUTPUT                  |  |
| 118                                                | MEMORY CHECK BIT (MCB00[1])                                  | NPUT/OUTPUT                  |  |
| 119                                                | GROUND (GRD)                                                 | GROUND                       |  |
| 120                                                | +5V (VCC)                                                    | POWER                        |  |

LEGEND:

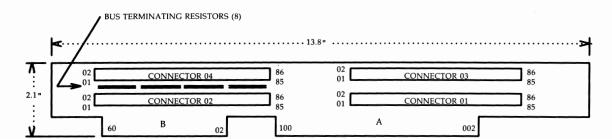
NC No Connection

## CM193A/B AND CM194B BACKPLANE INTERCONNECTIONS


Figures B-15 and B-16 show the layout of the CM193A/B and CM194B Backplanes. The CM193A/B Backplane provides four 86-pin edge connectors. The CM194B Backplane provides twelve 86-pin edge connectors. These backplane edge connectors are used to interface feature cards with the system board. The backplane connects to the system board via a 100-pin (Connector A) and a 60-pin (Connector B) card edge connector. Refer to Figures B-15 and B-16 for backplane connector location information. Pin and signal information is provided in tables following the figures for each of the system board connectors. The figures are printed front and back with a blank unit so that the figures can be used in conjunction with the tables.

•

.








**B.** Rear View

Figure B-15: CM193A/B Backplane Layout





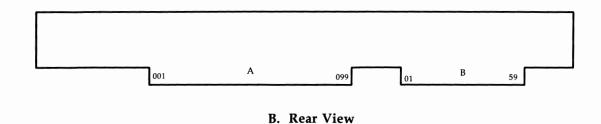
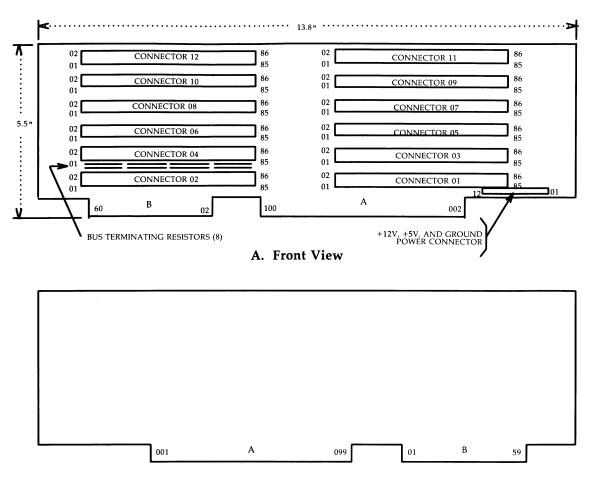




Figure B-15: CM193A/B Backplane Layout



**B.** Rear View

Figure B-16: CM194B Backplane Layout

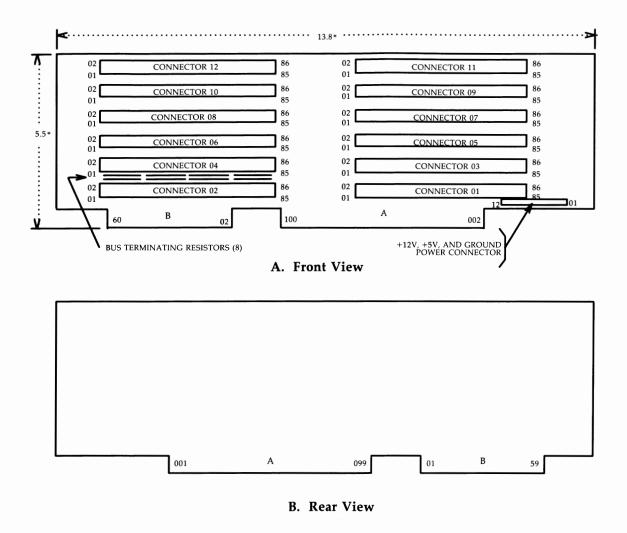



Figure B-16: CM194B Backplane Layout

| 100-PIN BACKPLANE EDGE (A) CONNECTIONS |                                                     |                              |
|----------------------------------------|-----------------------------------------------------|------------------------------|
| PIN                                    | DESCRIPTION                                         | FUNCTION                     |
| A001                                   | +5V (VCC)                                           | POWER                        |
| A002                                   | PHYSICAL ADDRESS (PPA23[1])                         | INPUT/OUTPUT                 |
| A003                                   | PHYSICAL ADDRESS (PPA22[1])                         | INPUT/OUTPUT                 |
| A004                                   | GROUND (GRD)                                        | GROUND                       |
| A005                                   | PHYSICAL ADDRESS (PPA21[1])                         | INPUT/OUTPUT                 |
| A006                                   | PHYSICAL ADDRESS (PPA20[1])                         | INPUT/OUTPUT                 |
| A007                                   | PHYSICAL ADDRESS (PPA19[1])                         | INPUT/OUTPUT                 |
| A008                                   | GROUND (GRD)                                        | GROUND                       |
| A009                                   | PHYSICAL ADDRESS (PPA18[1])                         | INPUT/OUTPUT                 |
| A010                                   | PHYSICAL ADDRESS (PPA17[1])                         | INPUT/OUTPUT                 |
| A011                                   | +5V (VCC)                                           | POWER                        |
| A012                                   | GROUND (GRD)                                        | GROUND                       |
| A013                                   | PHYSICAL ADDRESS (PPA16[1])                         | INPUT/OUTPUT                 |
| A014                                   | PHYSICAL ADDRESS (PPA15[1])                         | INPUT/OUTPUT                 |
| A015                                   | PHYSICAL ADDRESS (PPA14[1])                         | INPUT/OUTPUT                 |
| A016                                   | GROUND (GRD)                                        | GROUND                       |
| A017                                   | PHYSICAL ADDRESS (PPA13[1])                         | INPUT/OUTPUT                 |
| A018                                   | PHYSICAL ADDRESS (PPA12[1])                         | INPUT/OUTPUT                 |
| A019                                   | PHYSICAL ADDRESS (PPA11[1])                         | INPUT/OUTPUT                 |
| A020                                   | PHYSICAL ADDRESS (PPA10[1])                         | INPUT/OUTPUT                 |
| A021                                   | +5V (VCC)                                           | POWER                        |
| A022                                   | PHYSICAL ADDRESS (PPA09[1])                         | INPUT/OUTPUT                 |
| A023                                   | PHYSICAL ADDRESS (PPA08[1])                         | INPUT/OUTPUT                 |
| A024                                   | GROUND (GRD)                                        | GROUND                       |
| A025                                   | PHYSICAL ADDRESS (PPA07[1])                         | INPUT/OUTPUT                 |
| A026                                   | PHYSICAL ADDRESS (PPA06[1])                         | INPUT/OUTPUT                 |
| A027                                   | PHYSICAL ADDRESS (PPA05[1])                         | INPUT/OUTPUT                 |
| A028                                   | GROUND (GRD)                                        | GROUND                       |
| A029                                   | PHYSICAL ADDRESS (PPA04[1])                         | INPUT/OUTPUT                 |
| A030                                   | PHYSICAL ADDRESS (PPA03[1])                         | INPUT/OUTPUT                 |
| A031                                   | +5V (VCC)                                           | POWER                        |
| A032                                   | GROUND (GRD)                                        | GROUND                       |
| A033                                   | PHYSICAL ADDRESS (PPA02[1])                         | INPUT/OUTPUT                 |
| A034                                   | PHYSICAL ADDRESS (PPA01[1])                         | INPUT/OUTPUT                 |
| A035                                   | PHYSICAL ADDRESS (PPA00[1])                         |                              |
| A036                                   | GROUND (GRD)                                        | GROUND                       |
| A037                                   | INTERLOCK (PLOCK[0])                                | INPUT/OUTPUT                 |
| A038                                   | READ-WRITE (PR1W[0])                                | INPUT/OUTPUT                 |
| A039<br>A040                           | PHYSICAL ADDRESS STROBE (PPAS[0])                   | INPUT/OUTPUT<br>GROUND       |
| A040<br>A041                           | GROUND (GRD)<br>+5V (VCC)                           | POWER                        |
| A041<br>A042                           |                                                     |                              |
| A042<br>A043                           | BUS ACKNOWLEDGE (PBACK[0])<br>BUS REQUEST (PBRQ[0]) | INPUT/OUTPUT<br>INPUT/OUTPUT |
| A043<br>A044                           | GROUND (GRD)                                        | GROUND                       |
| A044<br>A045                           | DATA BIT 15 (PD15[1])                               | INPUT/OUTPUT                 |
| A045<br>A046                           | DATA BIT 15 (PD15[1])<br>DATA BIT 14 (PD14[1])      | INPUT/OUTPUT                 |
| A046<br>A047                           | DATA BIT 14 (PD14[1])<br>DATA BIT 13 (PD13[1])      | INPUT/OUTPUT                 |
| A047<br>A048                           | GROUND (GRD)                                        | GROUND                       |
| A048                                   | DATA BIT 12 (PD12[1])                               | INPUT/OUTPUT                 |
| A049<br>A050                           | DATA BIT 12 (1D12[1])                               | INPUT/OUTPUT                 |

| 100-PIN BACKPLANE EDGE (A) CONNECTIONS (Contd) |                                       |              |
|------------------------------------------------|---------------------------------------|--------------|
| PIN                                            | DESCRIPTION                           | FUNCTION     |
| A051                                           | +5V (VCC)                             | POWER        |
| A052                                           | GROUND (GRD)                          | GROUND       |
| A053                                           | DATA BIT 10 (PD10[1])                 | INPUT/OUTPUT |
| A054                                           | DATA BIT 09 (PD09[1])                 | INPUT/OUTPUT |
| A055                                           | DATA BIT 08 (PD08[1])                 | INPUT/OUTPUT |
| A056                                           | GROUND (GRD)                          | GROUND       |
| A057                                           | DATA BIT 07 (PD07[1])                 | INPUT/OUTPUT |
| A058                                           | DATA BIT 06 (PD06[1])                 | INPUT/OUTPUT |
| A059                                           | DATA BIT 05 (PD05[1])                 | INPUT/OUTPUT |
| A060                                           | GROUND (GRD)                          | GROUND       |
| A061                                           | +5V (VCC)                             | POWER        |
| A062                                           | DATA BIT 04 (PD04[1])                 | INPUT/OUTPUT |
| A063                                           | DATA BIT 03 (PD03[1])                 | INPUT/OUTPUT |
| A064                                           | GROUND (GRD)                          | GROUND       |
| A065                                           | DATA BIT 02 (PD02[1])                 | INPUT/OUTPUT |
| A066                                           | DATA BIT 01 (PD01[1])                 | INPUT/OUTPUT |
| A067                                           | DATA BIT 00 (PD00[1])                 | INPUT/OUTPUT |
| A068                                           | GROUND                                | GROUND       |
| A069                                           | DATA STROBE 1 (PDS1[0])               | INPUT/OUTPUT |
| A070                                           | DATA STROBE 0 (PDS0[0])               | INPUT/OUTPUT |
| A071                                           | +5V (VCC)                             | POWER        |
| A072                                           | GROUND (GRD)                          | GROUND       |
| A073                                           | DATA ACKNOWLEDGE (PDTACK[0])          | INPUT/OUTPUT |
| A074                                           | CARD WIDTH (8 OR 16 BITS)(PSIZE16[0]) | INPUT/OUTPUT |
| A075                                           | BUS FAULT (PFLT[0])                   | INPUT/OUTPUT |
| A076                                           | GROUND (GRD)                          | GROUND       |
| A077                                           | INPUT/OUTPUT BOARD FAILURE (PFAIL[0]) | INPUT/OUTPUT |
| A078                                           | BUS BUSY (PBUSY[0])                   | INPUT/OUTPUT |
| A079                                           | SYSTEM RESET (SYSRST[0])              | INPUT/OUTPUT |
| A080                                           | GROUND (GRD)                          | GROUND       |
| A081                                           | +5V (VCC)                             | POWER        |
| A082                                           | INTERRUPT ACKNOWLEDGE 0 (PIAK0[0])    | INPUT/OUTPUT |
| A083                                           | REQUEST SYSTEM RESET (RQRST[0])       | INPUT/OUTPUT |
| A084                                           | INTERRUPT ACKNOWLEDGE 1 (PIAK1[0])    | INPUT/OUTPUT |
| A085                                           | INTERRUPT REQUEST 0 (PINT0[0])        | INPUT/OUTPUT |
| A086                                           | INTERRUPT ACKNOWLEDGE 2 (PIAK2[0])    | INPUT/OUTPUT |
| A087                                           | INTERRUPT REQUEST 1 (PINT1[0])        | INPUT/OUTPUT |
| A088                                           | GROUND (GRD)                          | GROUND       |
| A089                                           | INTERRUPT REQUEST 2 (PINT2[0])        | INPUT/OUTPUT |
| 4090                                           | BACKUP BATTERY (+3.9V) (VBKUP)        | POWER        |
| A091                                           | +5V (VCC)                             | POWER        |
| A092                                           | GROUND (GRD)                          | GROUND       |
| A093                                           | CARD SELECT 01 (PCS01[0])             | INPUT        |
| A094                                           | -12V (V12N)                           | POWER        |
| A095                                           | CARD SELECT 02 (PCS02[0])             | INPUT        |
| A096                                           | GROUND (GRD)                          | GROUND       |
| A097                                           | CARD SELECT 03 (PCS03[0])             | INPUT        |
| A098                                           | +12V (V12P)                           | INPUT/OUTPUT |
| A099                                           | CARD SELECT 04 (PCS04[0])             | INPUT        |
| A100                                           | GROUND (GRD)                          | GROUND       |

|      | 60-PIN BACKPLANE EDGE (B) CONNECTIONS |          |  |
|------|---------------------------------------|----------|--|
| PIN  | DESCRIPTION                           | FUNCTION |  |
| B001 | +5V (VCC)                             | POWER    |  |
| B002 | CARD SELECT 05 (PCS05[0])             | INPUT    |  |
| B003 | +5V (VCC)                             | POWER    |  |
| B004 | GROUND (GRD)                          | GROUND   |  |
| B005 | CARD SELECT 06 (PCS06[0])             | INPUT    |  |
| B006 | GROUND (GRD)                          | GROUND   |  |
| B007 | +5V (VCC)                             | POWER    |  |
| B008 | GROUND (GRD)                          | GROUND   |  |
| B009 | +5V (VCC)                             | POWER    |  |
| B010 | GROUND (GRD)                          | GROUND   |  |
| B011 | CARD SELECT 07 (PCS07[0])             | INPUT    |  |
| B012 | GROUND (GRD)                          | GROUND   |  |
| B013 | +5V (VCC)                             | POWER    |  |
| B014 | GROUND (GRD)                          | GROUND   |  |
| B015 | +5V (VCC)                             | POWER    |  |
| B016 | GROUND (GRD)                          | GROUND   |  |
| B017 | CARD SELECT 08 (PCS08[0])             | INPUT    |  |
| B018 | GROUND (GRD)                          | GROUND   |  |
| B019 | +5V (VCC)                             | POWER    |  |
| B020 | GROUND (GRD)                          | GROUND   |  |
| B021 | +5V (VCC)                             | POWER    |  |
| B022 | GROUND (GRD)                          | GROUND   |  |
| B023 | CARD SELECT 09 (PCS09[0])             | INPUT    |  |
| B024 | GROUND (GRD)                          | GROUND   |  |
| B025 | +5V (VCC)                             | POWER    |  |
| B026 | GROUND (GRD)                          | GROUND   |  |
| B027 | +5V (VCC)                             | POWER    |  |
| B028 | GROUND (GRD)                          | GROUND   |  |
| B029 | CARD SELECT 10 (PCS10[0])             | INPUT    |  |
| B030 | GROUND (GRD)                          | GROUND   |  |

|      | 60-PIN BACKPLANE EDGE (B) CONNECTIONS (Contd) |          |  |
|------|-----------------------------------------------|----------|--|
| PIN  | DESCRIPTION                                   | FUNCTION |  |
| B031 | +5V (VCC)                                     | POWER    |  |
| B032 | GROUND (GRD)                                  | GROUND   |  |
| B033 | +5V (VCC)                                     | POWER    |  |
| B034 | GROUND (GRD)                                  | GROUND   |  |
| B035 | CARD SELECT 11 (PCS11[0]                      | INPUT    |  |
| B036 | GROUND (GRD)                                  | GROUND   |  |
| B037 | +5V (VCC)                                     | POWER    |  |
| B038 | GROUND (GRD)                                  | GROUND   |  |
| B039 | +5V (VCC)                                     | POWER    |  |
| B040 | GROUND (GRD)                                  | GROUND   |  |
| B041 | CARD SELECT 12 (PCS12[0])                     | INPUT    |  |
| B042 | GROUND (GRD)                                  | GROUND   |  |
| B043 | +5V (VCC)                                     | POWER    |  |
| B044 | GROUND (GRD)                                  | GROUND   |  |
| B045 | +5V (VCC)                                     | POWER    |  |
| B046 | GROUND (GRD)                                  | GROUND   |  |
| B047 | CARD SELECT 13 (PCS13[0])                     | INPUT    |  |
| B048 | GROUND (GRD)                                  | GROUND   |  |
| B049 | +5V (VCC)                                     | POWER    |  |
| B050 | GROUND (GRD)                                  | GROUND   |  |
| B051 | +5V (VCC)                                     | POWER    |  |
| B052 | GROUND (GRD)                                  | GROUND   |  |
| B053 | CARD SELECT 14 (PCS14[0])                     | INPUT    |  |
| B054 | GROUND (GRD)                                  | GROUND   |  |
| B055 | +5V (VCC)                                     | POWER    |  |
| B056 | GROUND (GRD)                                  | GROUND   |  |
| B057 | +5V (VCC)                                     | POWER    |  |
| B058 | GROUND (GRD)                                  | GROUND   |  |
| B059 | CARD SELECT 15 (PCS15[0])                     | INPUT    |  |
| B060 | GROUND (GRD)                                  | GROUND   |  |

| 86-PIN FEATURE CARD CONNECTORS |                                                                |                              |  |
|--------------------------------|----------------------------------------------------------------|------------------------------|--|
| PIN                            | DESCRIPTION                                                    | FUNCTION                     |  |
| 001                            | +12V (V12P)                                                    | POWER                        |  |
| 002                            | PERIPHERAL INTERRUPT REQUEST 2 (PINT2[0])                      | INPUT/OUTPUT                 |  |
| 003                            | -12V (V12N)                                                    | POWER                        |  |
| 004                            | PERIPHERAL INTERRUPT REQUEST 1 (PINT1[0])                      | INPUT/OUTPUT                 |  |
| 005                            | PERIPHERAL BUS ACKNOWLEDGE IN 1 (PBACKI1[0])                   | INPUT/OUTPUT                 |  |
| 006                            | PERIPHERAL INTERRUPT REQUEST 1 (PINT0[0])                      | INPUT/OUTPUT                 |  |
| 007                            | PERIPHERAL CARD SELECT (PCS01[0]—PCS12[0], as applicable)      | INPUT                        |  |
| 008                            | PERIPHERAL REQUEST SYSTEM RESET (RQRST[0])                     | INPUT/OUTPUT                 |  |
| 009                            | GROUND (GRD)                                                   | GROUND                       |  |
| 010                            | SYSTEM RESET (SYSRST[0])                                       | INPUT                        |  |
| 011                            | +3.9V BACKUP BATTERY (VBKUP)                                   | POWER                        |  |
| 012                            | PERIPHERAL CARD FAILURE (PFAIL[0])                             | INPUT/OUTPUT                 |  |
| 013                            | PERIPHERAL INTERRUPT ACKNOWLEDGE 2 (PIAK2[0])                  | INPUT/OUTPUT                 |  |
| 014                            | PERIPHERAL BUS FAULT (PFLT0)                                   | INPUT/OUTPUT                 |  |
| 015                            | PERIPHERAL INTERRUPT ACKNOWLEDGE 2 (PIAK2[0])                  | INPUT/OUTPUT                 |  |
| 016                            | GROUND (GRD)                                                   | GROUND                       |  |
| 017                            | +5V (VCC)                                                      | POWER                        |  |
| 018                            | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])                        | INPUT/OUTPUT                 |  |
| 019                            | PERIPHERAL INTERRUPT ACKNOWLEDGE 1 (PIAK1[0])                  | INPUT/OUTPUT                 |  |
| 020                            | PERIPHERAL DATA STROBE 1 (PDS1[0])                             | INPUT/OUTPUT                 |  |
| 021                            | PERIPHERAL INTERRUPT ACKNOWLEDGE 1 (PIAK1[0])                  | INPUT/OUTPUT                 |  |
| 022                            | PERIPHERAL DATA BIT 00 (PD00[1])                               | INPUT/OUTPUT                 |  |
| 023<br>024                     | PERIPHERAL INTERRUPT ACKNOWLEDGE 0 (PIAK0[0])                  | INPUT/OUTPUT                 |  |
| 024                            | PERIPHERAL DATA BIT 02 (PD02[1])                               | INPUT/OUTPUT                 |  |
|                                | GROUND (GRD)                                                   | GROUND                       |  |
| 026<br>027                     | PERIPHERAL DATA BIT 03 (PD03[1])<br>PERIPHERAL BUSY (PBUSY[0]) | INPUT/OUTPUT                 |  |
| 027                            | PERIPHERAL DATA BIT 05 (PD05[1])                               | INPUT/OUTPUT                 |  |
| 028                            | PERIPHERAL INTERRUPT ACKNOWLEDGE 0 (PIAK0[0])                  | INPUT/OUTPUT                 |  |
| 029                            | PERIPHERAL DATA BIT 07 (PD07[1])                               | INPUT/OUTPUT                 |  |
| 031                            | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])               | INPUT/OUTPUT<br>INPUT/OUTPUT |  |
| 032                            | GROUND (GRD)                                                   | GROUND                       |  |
| 032                            | PERIPHERAL DATA STROBE 0 (PDS0[0])                             | INPUT/OUTPUT                 |  |
| 034                            | PERIPHERAL DATA BIT 08 (PD08[1])                               | INPUT/OUTPUT                 |  |
| 035                            | PERIPHERAL DATA BIT 01 (PD01[1])                               | INPUT/OUTPUT                 |  |
| 036                            | PERIPHERAL DATA BIT 10 (PD10[1])                               | INPUT/OUTPUT                 |  |
| 037                            | GROUND (GRD)                                                   | GROUND                       |  |
| 038                            | PERIPHERAL DATA BIT 12 (PD12[1])                               | INPUT/OUTPUT                 |  |
| 039                            | PERIPHERAL DATA BIT 04 (PD04[1])                               | INPUT/OUTPUT                 |  |
| 040                            | +5V (VCC)                                                      | POWER                        |  |
| 041                            | GROUND (GRD)                                                   | GROUND                       |  |

|            | 86-PIN FEATURE CARD CONNECTORS (Contd)                                                         |                              |  |  |
|------------|------------------------------------------------------------------------------------------------|------------------------------|--|--|
| PIN        | DESCRIPTION                                                                                    | FUNCTION                     |  |  |
| 042        | PERIPHERAL DATA BIT 13 (PD13[1])                                                               | INPUT/OUTPUT                 |  |  |
| 043        | PERIPHERAL DATA BIT 06 (PD06[1])                                                               | INPUT/OUTPUT                 |  |  |
| 044        | PERIPHERAL DATA BIT 15 (PD15[1])                                                               | INPUT/OUTPUT                 |  |  |
| 045        | PERIPHERAL DATA BIT 09 (PD09[1])                                                               | INPUT/OUTPUT                 |  |  |
| 046        | PERIPHERAL BUS REQUEST (PBRQ[0])                                                               | INPUT/OUTPUT                 |  |  |
| 047        | PERIPHERAL DATA BIT 11 (PD11[1])                                                               | INPUT/OUTPUT                 |  |  |
| 048        | GROUND (GRD)                                                                                   | GROUND                       |  |  |
| 049        | GROUND (GRD)                                                                                   | GROUND                       |  |  |
| 050        | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])                                                   | INPUT/OUTPUT                 |  |  |
| 051        | PERIPHERAL DATA BIT 14 (PD14[1])                                                               | INPUT/OUTPUT                 |  |  |
| 052        | PERIPHERAL INTERLOCK OPERATION (PLOCK[0])                                                      | INPUT/OUTPUT                 |  |  |
| 053        | PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO1[0])                                                    | INPUT/OUTPUT                 |  |  |
| 054        | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1])                                                  | INPUT/OUTPUT                 |  |  |
| 055        | READ-WRITE (PR[1]W[0])                                                                         | INPUT/OUTPUT                 |  |  |
| 056        | GROUND (GRD)                                                                                   | GROUND                       |  |  |
| 057        | GROUND (GRD)                                                                                   | GROUND                       |  |  |
| 058        | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1])                                                  | INPUT/OUTPUT                 |  |  |
| 059        | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1])                                                  | INPUT/OUTPUT                 |  |  |
| 060        | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1])                                                  | INPUT/OUTPUT                 |  |  |
| 061        | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1])                                                  | INPUT/OUTPUT                 |  |  |
| 062        | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1])                                                  | INPUT/OUTPUT                 |  |  |
| 063        | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1])                                                  | INPUT/OUTPUT                 |  |  |
| 064        | +5V (VCC)                                                                                      | POWER                        |  |  |
| 065        | GROUND                                                                                         | GROUND                       |  |  |
| 066        | PHYSICAL ADDRESS BIT 07 (PPA07[1])                                                             | INPUT/OUTPUT                 |  |  |
| 067        | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1])                                                  | INPUT/OUTPUT                 |  |  |
| 068        | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1])                                                  | INPUT/OUTPUT                 |  |  |
| 069        | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1])                                                  | INPUT/OUTPUT                 |  |  |
| 070        | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1])                                                  | INPUT/OUTPUT                 |  |  |
| 071        | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1])                                                  | INPUT/OUTPUT                 |  |  |
| 072        | GROUND                                                                                         | GROUND                       |  |  |
| 073        | GROUND                                                                                         | GROUND                       |  |  |
| 074        | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1])                                                  |                              |  |  |
| 075        | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1])                                                  |                              |  |  |
| 076        | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1])                                                  |                              |  |  |
| 077        | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1]) | INPUT/OUTPUT<br>INPUT/OUTPUT |  |  |
| 078<br>079 | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1]) | INPUT/OUTPUT                 |  |  |
| 079        | GROUND                                                                                         | GROUND                       |  |  |
| 080        | GROUND                                                                                         | GROUND                       |  |  |
| 081        | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1])                                                  | INPUT/OUTPUT                 |  |  |
| 082        | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1]) | INPUT/OUTPUT                 |  |  |
| 083        | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1])                                                  | INPUT/OUTPUT                 |  |  |
| 084        | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1])                                                  | INPUT/OUTPUT                 |  |  |
| 085        | PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1])                                                  | INPUT/OUTPUT                 |  |  |
| 000        |                                                                                                |                              |  |  |

| CM194B 12-PIN BACKPLANE POWER CONNECTIONS |              |  |          |
|-------------------------------------------|--------------|--|----------|
| PIN                                       | DESCRIPTION  |  | FUNCTION |
| 01                                        | +5V (VCC)    |  | POWER    |
| 02                                        | +5V (VCC)    |  | POWER    |
| 03                                        | +5V (VCC)    |  | POWER    |
| 04                                        | +5V (VCC)    |  | POWER    |
| 05                                        | +5V (VCC)    |  | POWER    |
| 06                                        | NC           |  | NC       |
| 07                                        | GROUND (GRD) |  | GROUND   |
| 08                                        | GROUND (GRD) |  | GROUND   |
| 09                                        | GROUND (GRD) |  | GROUND   |
| 10                                        | GROUND (GRD) |  | GROUND   |
| 11                                        | GROUND (GRD) |  | GROUND   |
| 12                                        | -12V (N12V)  |  | POWER    |

LEGEND:

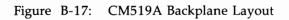
## **CM519A/B AND CM520A BACKPLANE INTERCONNECTIONS**

Figures B-17, B-18, and B-19 show the layout of the CM519A, CM519B, and CM520A Backplanes. The CM519A Backplane provides twelve 112-pin feature card connectors. There are 12 performance slots underneath the system board consisting of 4 memory, 4 buffered microbus (for MPE cards), 1 VCACHE, and 3 power only connectors.

The CM519B Backplane provides twelve 112-pin feature card connectors. The 12 performance slots underneath the system board consist of 4 memory, 3 buffered microbus (for MPE cards), 3 unbuffered microbus (for PE cards), and 2 power only connectors.

The CM520A Backplane provides seven 112-pin feature card connectors, 2 memory, 2 buffered microbus, and 1 VCACHE.

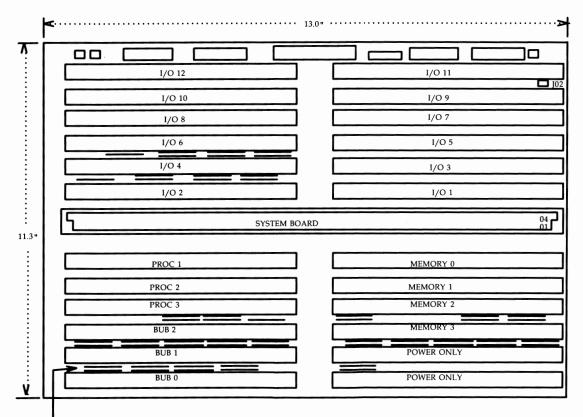
Refer to these figures for backplane connector location information. Pin and signal information is provided in tables following the figures for each of the backplane connectors. The figures are printed front and back with a blank unit so that the figures can be used in conjunction with the tables.


| <u>v</u> |            |              |                        |             |
|----------|------------|--------------|------------------------|-------------|
|          | I/O 12     |              | I/O 11                 | <b>1</b> 02 |
|          | I/O 10     |              | I/O 9                  |             |
|          | I/O 8      |              | I/O 7                  |             |
|          | I/O 6      |              | I/O 5                  |             |
|          | I/O 4      |              | I/O 3                  |             |
|          | I/O 2      |              | l/0 1                  |             |
| 11.3"    | ٢          | SYSTEM BOARD |                        | 04<br>01    |
|          | VCACHE     |              | MEMORY 0               |             |
| :        | POWER ONLY |              | MEMORY 1               |             |
| •        | BUB 3      | r            | MEMORY 2               |             |
|          |            |              |                        |             |
|          | BUB 2      |              | MEMORY 3               |             |
|          |            |              | MEMORY 3<br>POWER ONLY |             |

BUS TERMINATING RESISTOR NETWORK (53)

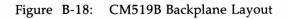
Figure B-17: CM519A Backplane Layout

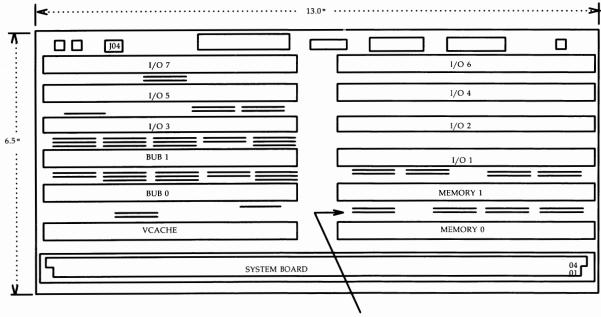
| I/O 12     |              | I/O 11              |  |
|------------|--------------|---------------------|--|
| I/O 10     |              | I/O 9               |  |
| I/O 8      |              | I/O 7               |  |
| I/O 6      |              | I/O 5               |  |
| I/O 4      |              | I/O 3               |  |
| I/O 2      |              | I/O 1               |  |
| ٢          | SYSTEM BOARD |                     |  |
| VCACHE     |              | MEMORY 0            |  |
| POWER ONLY |              | MEMORY 1            |  |
| BUB 3      |              | MEMORY 2            |  |
| 5053       |              |                     |  |
| BUB 2      |              | MEMORY 3            |  |
|            |              | MEMORY 3 POWER ONLY |  |


BUS TERMINATING RESISTOR NETWORK (53)



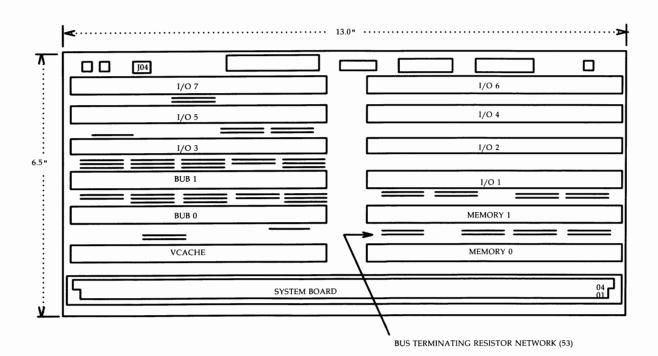
| I/O 12 | I/O 11     |
|--------|------------|
| I/O 10 | 1/0 9      |
| I/O 8  | I/O 7      |
| 1/0 6  | I/O 5      |
| I/O 4  | I/O 3      |
| 1/0 2  | I/O 1      |
| Syst   | EM BOARD   |
| PROC 1 | MEMORY 0   |
| PROC 2 | MEMORY 1   |
| PROC 3 | MEMORY 2   |
| B∪B 2  | MEMORY 3   |
|        |            |
| BUB 1  | POWER ONLY |

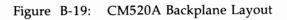

BUS TERMINATING RESISTOR NETWORK (55)


## Figure B-18: CM519B Backplane Layout



•


BUS TERMINATING RESISTOR NETWORK (55)






BUS TERMINATING RESISTOR NETWORK (53)

Figure B-19: CM520A Backplane Layout





## - Appendix: CONNECTOR AND CABLING INFORMATION

|            | 464-PIN BACKPLANE CONNECTOR, J02                                   |                              |  |  |
|------------|--------------------------------------------------------------------|------------------------------|--|--|
| PIN        | DESCRIPTION                                                        | FUNCTION                     |  |  |
| 001        | +12V (V12P)                                                        | POWER                        |  |  |
| 002        | +5V (VCC)                                                          | POWER                        |  |  |
| 003        | FLOPPY READY (FRDY[0])                                             | INPUT                        |  |  |
| 004        | FLOPPY SIDE SELECT (FSSEL[0])                                      | OUTPUT                       |  |  |
| 005        | -12V (V12N)                                                        | POWER                        |  |  |
| 006        | FLOPPY READ DATA (FRDATA[0])                                       | INPUT                        |  |  |
| 007        | GROUND (GRD)                                                       | GROUND                       |  |  |
| 008        | FLOPPY WRITE PROTECT (FWRPRT[0])                                   | INPUT                        |  |  |
| 009        | FLOPPY TRACK 0 (FTR0[0])                                           | INPUT                        |  |  |
| 010        | GROUND (GRD)                                                       | GROUND                       |  |  |
| 011        | FLOPPY WRITE GATE (FWGATE[0])                                      | OUTPUT                       |  |  |
| 012        | FLOPPY WRITE DATA (FWDATA[0])                                      | OUTPUT                       |  |  |
| 013        | FLOPPY STEP (FSTEP[0])                                             | OUTPUT                       |  |  |
| 014        | FLOPPY DIRECTION SELECT (FDIRC[0])                                 | OUTPUT                       |  |  |
| 015        | FLOPPY MOTOR ON (FMOTON[0])                                        | OUTPUT                       |  |  |
| 016        | FLOPPY DRIVE SELECT 2 (FDS2[0])                                    | OUTPUT<br>OUTPUT             |  |  |
| 017        | FLOPPY DRIVE SELECT 1 (FDS1[0])<br>FLOPPY DRIVE SELECT 0 (FDS0[0]) | OUTPUT                       |  |  |
| 018        |                                                                    | POWER                        |  |  |
| 019<br>020 | +5V (VCC)                                                          | OUTPUT                       |  |  |
| 020        | FLOPPY LOW RPM (FLOW[0])<br>FLOPPY INDEX (FINDEX[0])               | INPUT                        |  |  |
| 021        | FLOPPY DRIVE SELECT 3 (FDS3[0])                                    | OUTPUT                       |  |  |
| 022        | NOT USED (FSPARE[0])                                               | INPUT                        |  |  |
| 023        | MEMORY CHECK BIT 00 (MCB00[1])                                     | INPUT/OUTPUT                 |  |  |
| 024        | MEMORY CHECK BIT 00 (MCB00[1])                                     | INPUT/OUTPUT                 |  |  |
| 026        | GROUND (GRD)                                                       | GROUND                       |  |  |
| 027        | MEMORY CHECK BIT 03 (MCB03[1])                                     | INPUT/OUTPUT                 |  |  |
| 028        | MEMORY CHECK BIT 02 (MCB02[1])                                     | INPUT/OUTPUT                 |  |  |
| 029        | MEMORY CHECK BIT 05 (MCB05[1])                                     | INPUT/OUTPUT                 |  |  |
| 030        | MEMORY CHECK BIT 04 (MCB04[1])                                     | INPUT/OUTPUT                 |  |  |
| 031        | +5V (VCC)                                                          | POWER                        |  |  |
| 032        | MEMORY CHECK BIT 09 (MCB09[1])                                     | INPUT/OUTPUT                 |  |  |
| 033        | MEMORY CHECK BIT 06 (MCB06[1])                                     | INPUT/OUTPUT                 |  |  |
| 034        | MEMORY CHECK BIT 07 (MCB07[1])                                     | INPUT/OUTPUT                 |  |  |
| 035        | MEMORY CHECK BIT 08 (MCB08[1])                                     | INPUT/OUTPUT                 |  |  |
| 036        | MEMORY CHECK BIT 11 (MCB11[1])                                     | INPUT/OUTPUT                 |  |  |
| 037        | MEMORY CHECK BIT 10 (MCB10[1])                                     | INPUT/OUTPUT                 |  |  |
| 038        | GROUND (GRD)                                                       | GROUND                       |  |  |
| 039        | MEMORY DATA BIT 00 (MD00[1])                                       | INPUT/OUTPUT                 |  |  |
| 040        | MEMORY DATA BIT 01 (MD01[1])                                       | INPUT/OUTPUT                 |  |  |
| 041        | MEMORY DATA BIT 02 (MD02[1])                                       | INPUT/OUTPUT                 |  |  |
| 042        | MEMORY DATA BIT 03 (MD03[1])                                       | INPUT/OUTPUT                 |  |  |
| 043        | GROUND (GRD)                                                       | GROUND                       |  |  |
| 044        | MEMORY DATA BIT 04 (MD04[1])                                       | INPUT/OUTPUT                 |  |  |
| 045        | MEMORY DATA BIT 05 (MDO5[1])                                       | INPUT/OUTPUT                 |  |  |
| 046        | +5V (VCC)                                                          | POWER                        |  |  |
| 047        | MEMORY DATA BIT 06 (MD06[1])                                       | INPUT/OUTPUT                 |  |  |
| 048        | MEMORY DATA BIT 07 (MD07[1])                                       | INPUT/OUTPUT                 |  |  |
| 049        | MEMORY DATA BIT 08 (MD08[1])                                       | INPUT/OUTPUT                 |  |  |
| 050        | MEMORY DATA BIT 09 (MD09[1])                                       | INPUT/OUTPUT                 |  |  |
| 051        | MEMORY DATA BIT 10 (MD10[1])                                       | INPUT/OUTPUT                 |  |  |
| 052        | MEMORY DATA BIT 11 (MD11[1])                                       | INPUT/OUTPUT                 |  |  |
| 053<br>054 | MEMORY DATA BIT 12 (MD12[1])<br>MEMORY DATA BIT 13 (MD13[1])       |                              |  |  |
| 054        | GROUND (GRD)                                                       | INPUT/OUTPUT<br>GROUND       |  |  |
| 055        | MEMORY DATA BIT 14 (MD14[1])                                       | INPUT/OUTPUT                 |  |  |
| 056        | MEMORY DATA BIT 14 (MD14[1])<br>MEMORY DATA BIT 15 (MD15[1])       | INPUT/OUTPUT<br>INPUT/OUTPUT |  |  |
| 058        | MEMORY DATA BIT 16 (MD16[1])                                       | INPUT/OUTPUT                 |  |  |
| 0.50       |                                                                    |                              |  |  |

| 464-PIN BACKPLANE CONNECTOR, J02 (Contd) |                                                                        |                              |  |
|------------------------------------------|------------------------------------------------------------------------|------------------------------|--|
| PIN                                      | DESCRIPTION                                                            | FUNCTION                     |  |
| 059                                      | MEMORY DATA BIT 17 (MD17[1])                                           | INPUT/OUTPUT                 |  |
| 060                                      | MEMORY DATA BIT 18 (MD18[1])                                           | INPUT/OUTPUT                 |  |
| 061                                      | MEMORY DATA BIT 19 (MD19[1])                                           | INPUT/OUTPUT                 |  |
| 062                                      | GROUND (GRD)                                                           | GROUND                       |  |
| 063                                      | MEMORY DATA BIT 20 (MD20[1])                                           | INPUT/OUTPUT                 |  |
| 064                                      | MEMORY DATA BIT 21 (MD21[1])                                           | INPUT/OUTPUT                 |  |
| 065                                      | MEMORY DATA BIT 22 (MD22[1])                                           | INPUT/OUTPUT                 |  |
| 066                                      | MEMORY DATA BIT 23 (MD23[1])                                           | INPUT/OUTPUT                 |  |
| 067                                      | MEMORY DATA BIT 24 (MD24[1])                                           | INPUT/OUTPUT                 |  |
| 068                                      | MEMORY DATA BIT 25 (MD25[1])                                           | INPUT/OUTPUT<br>INPUT/OUTPUT |  |
| 069<br>070                               | MEMORY DATA BIT 26 (MD26[1])<br>MEMORY DATA BIT 27 (MD27[1])           | INPUT/OUTPUT                 |  |
| 070                                      | GROUND (GRD)                                                           | GROUND                       |  |
| 071                                      | MEMORY DATA BIT 28 (MD28[1])                                           | INPUT/OUTPUT                 |  |
| 072                                      | MEMORY DATA BIT 29 (MD29[1])                                           | INPUT/OUTPUT                 |  |
| 074                                      | MEMORY DATA BIT 30 (MD30[1])                                           | INPUT/OUTPUT                 |  |
| 075                                      | MEMORY DATA BIT 31 (MD31[1])                                           | INPUT/OUTPUT                 |  |
| 076                                      | SLOT 3 EQUIPPED (S3EQUIP[0])                                           | INPUT                        |  |
| 077                                      | SLOT 3 SIZE 1 (S3SIZ1[1])                                              | INPUT                        |  |
| 078                                      | +5V (VCC)                                                              | POWER                        |  |
| 079                                      | SLOT 3 SIZE 0 (S3SIZ0[1])                                              | INPUT                        |  |
| 080                                      | SLOT 2 EQUIPPED (S2EQUIP[0])                                           | INPUT                        |  |
| 081                                      | SLOT 2 SIZE 1 (S2SIZ1[1])                                              | INPUT                        |  |
| 082                                      | SLOT 2 SIZE 0 (S2SIZ0[1])                                              | INPUT                        |  |
| 083                                      | GROUND (GRD)                                                           | GROUND                       |  |
| 084                                      | SLOT 1 EQUIPPED (S1EQUIP[0])                                           | INPUT                        |  |
| 085                                      | SLOT 1 SIZE 1 (S1SIZ1[1])                                              | INPUT                        |  |
| 086                                      | SLOT 1 SIZE 0 (S1SIZ0[1])                                              | INPUT                        |  |
| 087                                      | SLOT 0 SIZE 1 (S0SIZ1[1])                                              | INPUT                        |  |
| 088                                      | SLOT 0 EQUIPPED (S0EQUIP[0])                                           | INPUT                        |  |
| 089                                      | SLOT 0 SIZE 0 (S0SIZ0[1])                                              | INPUT                        |  |
| 090                                      | GROUND (GRD)                                                           | GROUND                       |  |
| 091                                      | COLUMN ADDRESS STROBE 1 (CAS1[0])                                      | OUTPUT                       |  |
| 092                                      | BANK ENABLE 2 (BANKEN2[0])                                             | OUTPUT                       |  |
| 093                                      | COLUMN ADDRESS STROBE 0 (CAS0[0])                                      | OUTPUT                       |  |
| 094<br>095                               | COLUMN ADDRESS STROBE 2 (CAS2[0])<br>COLUMN ADDRESS STROBE 3 (CAS3[0]) | OUTPUT                       |  |
| 095                                      | SLOT 3 BANK ENABLE 1 (S3BKEN1[0])                                      | OUTPUT                       |  |
| 090                                      | SLOT 3 BANK ENABLE 9 (S3BKEN0[0])                                      | OUTPUT                       |  |
| 097                                      | SLOT 2 BANK ENABLE 1 (S2BKEN1[0])                                      | OUTPUT                       |  |
| 099                                      | GROUND (GRD)                                                           | GROUND                       |  |
| 100                                      | SLOT 1 BANK ENABLE 1 (S1BKEN1[0])                                      | OUTPUT                       |  |
| 101                                      | SLOT 2 BANK ENABLE 0 (S2BKEN0[0])                                      | OUTPUT                       |  |
| 102                                      | GROUND (GRD)                                                           | GROUND                       |  |
| 103                                      | SLOT 1 BANK ENABLE 0 (S1BKEN0[0])                                      | OUTPUT                       |  |
| 104                                      | ROW ADDRESS STROBE 1 (RAS1[0])                                         | OUTPUT                       |  |
| 105                                      | SLOT 0 BANK ENABLE 0 (S0BKEN0[0])                                      | OUTPUT                       |  |
| 106                                      | SLOT 0 BANK ENABLE 1 (S0BKEN1[0])                                      | OUTPUT                       |  |
| 107                                      | +5V (VCC)                                                              | POWER                        |  |
| 108                                      | ROW ADDRESS STROBE 0 (RAS0[0])                                         | OUTPUT                       |  |
| 109                                      | WRITE ENABLE 1 (WE1[0])                                                | OUTPUT                       |  |
| 110                                      | GROUND (GRD)                                                           | GROUND                       |  |
| 111                                      | MEMORY CYCLE STATUS (G[0])                                             | OUTPUT                       |  |
| 112                                      | NOT USED                                                               |                              |  |
| 113                                      | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1])                          |                              |  |
| 114                                      | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1])                          | INPUT/OUTPUT<br>OUTPUT       |  |
| 115                                      | WRITE ENABLE 0 (WE0[0])                                                | OUTPUT                       |  |
| 116                                      | BUB CONNECTOR CHIP SELECT 2 (BCCS2[0])                                 | 001101                       |  |

.

|            | 464-PIN BACKPLANE CONNECTOR, J02 (Contd)                                        |                              |  |
|------------|---------------------------------------------------------------------------------|------------------------------|--|
| PIN        | DESCRIPTION                                                                     | FUNCTION                     |  |
| 117        | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1])                                   | INPUT/OUTPUT                 |  |
| 118        | GROUND (GRD)                                                                    | GROUND                       |  |
| 119        | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1])                                   | INPUT/OUTPUT                 |  |
| 120        | PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1])                                   | INPUT/OUTPUT                 |  |
| 121        | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1])                                   | INPUT/OUTPUT                 |  |
| 122        | PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1])                                   | INPUT/OUTPUT                 |  |
| 123        | +5V (VCC)                                                                       | POWER                        |  |
| 124        | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1])                                   | INPUT/OUTPUT                 |  |
| 125        | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1])                                   | INPUT/OUTPUT                 |  |
| 126        | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1])                                   | INPUT/OUTPUT                 |  |
| 127        | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1])                                   | INPUT/OUTPUT                 |  |
| 128        | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1])                                   | INPUT/OUTPUT                 |  |
| 129        | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1])                                   | INPUT/OUTPUT                 |  |
| 130        | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1])                                   | INPUT/OUTPUT                 |  |
| 131        | GROUND (GRD)                                                                    | GROUND                       |  |
| 132        | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1])                                   | INPUT/OUTPUT                 |  |
| 133        | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1])                                   | INPUT/OUTPUT                 |  |
| 134        | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1])                                   | INPUT/OUTPUT                 |  |
| 135        | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1])                                   | INPUT/OUTPUT                 |  |
| 136        | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1])                                   | INPUT/OUTPUT                 |  |
| 137        | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1])                                   | INPUT/OUTPUT                 |  |
| 138        | +5V (VCC)                                                                       | POWER                        |  |
| 139        | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1])                                   | INPUT/OUTPUT                 |  |
| 140        | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1])                                   | INPUT/OUTPUT                 |  |
| 141        | NOT USED                                                                        | NC                           |  |
| 142        | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1])                                   | INPUT/OUTPUT                 |  |
| 143        | GROUND (GRD)                                                                    | GROUND                       |  |
| 144        | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1])                                   | INPUT/OUTPUT                 |  |
| 145        | PERIPHERAL DATA BIT 11 (PD11[1])                                                | INPUT/OUTPUT                 |  |
| 146        | GROUND (GRD)                                                                    | GROUND                       |  |
| 147<br>148 | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])<br>PERIPHERAL READ-WRITE (PR1W[0]) | INPUT/OUTPUT                 |  |
| 148        | PERIPHERAL DATA BIT 15 (PD15[1])                                                | INPUT/OUTPUT<br>INPUT/OUTPUT |  |
| 149        | PERIPHERAL DATA BIT 09 (PD09[1])                                                | INPUT/OUTPUT                 |  |
| 150        | +5V (VCC)                                                                       | POWER                        |  |
| 151        | PERIPHERAL DATA BIT 14 (PD14[1])                                                | INPUT/OUTPUT                 |  |
| 152        | PERIPHERAL DATA BIT 12 (PD12[1])                                                | INPUT/OUTPUT                 |  |
| 154        | PERIPHERAL DATA BIT 12 (1 D12[1])                                               | INPUT/OUTPUT                 |  |
| 155        | PERIPHERAL BUS REQUEST (PBRQ[0])                                                | INPUT                        |  |
| 155        | PERIPHERAL DATA BIT 06 (PD06[1])                                                | INPUT/OUTPUT                 |  |
| 157        | PERIPHERAL DATA BIT 08 (PD08[1])                                                | INPUT/OUTPUT                 |  |
| 158        | GROUND (GRD)                                                                    | GROUND                       |  |
| 159        | PERIPHERAL DATA BIT 13 (PD13[1])                                                | INPUT/OUTPUT                 |  |
| 160        | PERIPHERAL DATA BIT 10 (PD10[1])                                                | INPUT/OUTPUT                 |  |
| 161        | PERIPHERAL DATA BIT 07 (PD07[1])                                                | INPUT/OUTPUT                 |  |
| 162        | PERIPHERAL CARD WIDTH (8 OR 16 BITS) (PSIZE16[0])                               | INPUT                        |  |
| 163        | PERIPHERAL DATA BIT 01 (PD01[1])                                                | INPUT/OUTPUT                 |  |
| 164        | PERIPHERAL DATA STROBE 0 (PDS0[0])                                              | INPUT/OUTPUT                 |  |
| 165        | PERIPHERAL DATA BIT 03 (PD03[1])                                                | INPUT/OUTPUT                 |  |
| 166        | +5V (VCC)                                                                       | POWER                        |  |
| 167        | PERIPHERAL BUS BUSY (PBUSY[0])                                                  | INPUT/OUTPUT                 |  |
| 168        | PERIPHERAL DATA BIT 05 (PD05[1])                                                | INPUT/OUTPUT                 |  |
| 169        | PERIPHERAL DATA BIT 00 (PD00[1])                                                | INPUT/OUTPUT                 |  |
| 170        | GROUND (GRD)                                                                    | GROUND                       |  |
| 171        | PERIPHERAL INTERRUPT ACKNOWLEDGE 0 (PIAK0[0])                                   | OUTPUT                       |  |
| 172        | PERIPHERAL DATA BIT 02 (PD02[1])                                                | INPUT/OUTPUT                 |  |
| 173        | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])                                         | INPUT/OUTPUT                 |  |
| 174        | PERIPHERAL INTERRUPT ACKNOWLEDGE 1 (PIAK1[0])                                   | OUTPUT                       |  |

| 464-PIN BACKPLANE CONNECTOR, J02 (Contd) |                                                      |          |                        |  |
|------------------------------------------|------------------------------------------------------|----------|------------------------|--|
| PIN                                      | DESCRIPTION                                          | FUNCTION |                        |  |
| 175                                      | GROUND (GRD)                                         |          | GROUND                 |  |
| 176                                      | PERIPHERAL DATA STROBE 1 (PDS1[0])                   |          | INPUT/OUTPUT           |  |
| 177                                      | RECEIVED FAILURE (RFAIL[0])                          |          | INPUT                  |  |
| 178                                      | +5V (VCC)                                            |          | POWER                  |  |
| 179                                      | PERIPHERAL INTERRUPT ACKNOWLEDGE 2 (PIAK2[0])        |          | OUTPUT                 |  |
| 180                                      | PERIPHERAL BUS FAULT (PFLT[0])                       |          | INPUT/OUTPUT           |  |
| 181                                      | PERIPHERAL CARD SELECT 09 (PCS09[0])                 |          | OUTPUT                 |  |
| 182                                      | PERIPHERAL CARD SELECT 10 (PCS10[0])                 |          | OUTPUT                 |  |
| 183                                      | PERIPHERAL CARD SELECT 11 (PCS11[0])                 |          | OUTPUT                 |  |
| 184                                      | PERIPHERAL CARD SELECT 12 (PCS12[0])                 |          | OUTPUT                 |  |
| 185                                      | PERIPHERAL CARD SELECT 06 (PCS06[0])                 |          | OUTPUT                 |  |
| 186                                      | GROUND (GRD)                                         |          | GROUND<br>OUTPUT       |  |
| 187                                      | PERIPHERAL CARD SELECT 07 (PCS07[0])                 |          | OUTPUT                 |  |
| 188                                      | PERIPHERAL CARD SELECT 08 (PCS08[0])                 |          | OUTPUT                 |  |
| 89                                       | PERIPHERAL CARD SELECT 03 (PCS03[0])                 |          | OUTPUT                 |  |
| 90<br>91                                 | PERIPHERAL CARD SELECT 04 (PCS04[0])<br>GROUND (GRD) |          | GROUND                 |  |
| 191                                      | PERIPHERAL CARD SELECT 05 (PCS05[0])                 |          | OUTPUT                 |  |
| 192                                      | PERIPHERAL BUS ACKNOWLEDGE (PBACK[0])                |          | OUTPUT                 |  |
| 195                                      | BUB GRANTED SLOT 1 (BUBGT1[0])                       |          | OUTPUT                 |  |
| 95                                       | PERIPHERAL CARD SELECT 01 (PCS01[0])                 |          | OUTPUT                 |  |
| 96                                       | PERIPHERAL CARD SELECT 02 (PCS02[0])                 |          | OUTPUT                 |  |
| 97                                       | PERIPHERAL INTERRUPT REQUEST 2 (PINT2[0])            |          | INPUT                  |  |
| 98                                       | PERIPHERAL INTERRUPT REQUEST 1 (PINT1[0])            |          | INPUT                  |  |
| 99                                       | GROUND (GRD)                                         |          | GROUND                 |  |
| 200                                      | PERIPHERAL INTERRUPT REQUEST 0 (PINT0[0])            |          | INPUT                  |  |
| 201                                      | BACKUP BATTERY (VBKUP)                               |          | OUTPUT                 |  |
| 202                                      | GROUND (GRD)                                         |          | GROUND                 |  |
| 203                                      | PERIPHERAL SEQUENTIAL ACCESS (PSEQACC[0])            |          | OUTPUT                 |  |
| 204                                      | BUB BUS REQUEST SLOT 2 (BUBRQ2[0])                   |          | INPUT                  |  |
| 205                                      | BUB DATA STROBE (BDS[0])                             |          | INPUT/OUTPUT           |  |
| 206                                      | BUB ADDRESS STROBE (BAS[0])                          |          | INPUT/OUTPUT           |  |
| 207                                      | GROUND (GRD)                                         |          | GROUND                 |  |
| 208                                      | BUB DATA ACKNOWLEDGE (BDTCK[0])                      |          | INPUT/OUTPUT           |  |
| 209                                      | BUB GRANTED SLOT 0 (BUBGT0[0])                       |          | OUTPUT                 |  |
| 210                                      | GROUND (GRD)                                         |          | GROUND                 |  |
| 211                                      | BUB BYPASS MODE ACCESS (BYPASS[0])                   |          | OUTPUT<br>INPUT/OUTPUT |  |
| 212                                      | BUB DATA FAULT (BFLT[0])                             |          | NC                     |  |
| 213<br>214*                              | NOT USED<br>BUB BUS REQUEST SLOT 3 (BUBRQ3[0])       | NOT USED | INPUT                  |  |
| 214                                      | +5V (VCC)                                            | NOT USED | POWER                  |  |
| 216                                      | PERIPHERAL PARITY CHECK (PPCHECK[0])                 |          | INPUT                  |  |
| 217                                      | NOT USED                                             |          | NC                     |  |
| 218                                      | GROUND (GRD)                                         |          | GROUND                 |  |
| 219                                      | BUB BUS REQUEST SLOT 1 (BUBRQ1[0])                   |          | INPUT                  |  |
| 220                                      | BUB BUS REQUEST SLOT 0 (BUBRQ0[0])                   |          | INPUT                  |  |
| 221                                      | MULTIPLEXED ADDRESS BIT 02 (MUXA02[1])               |          | OUTPUT                 |  |
| 222                                      | MULTIPLEXED ADDRESS BIT 01 (MUXA01[1])               |          | OUTPUT                 |  |
| 223                                      | MULTIPLEXED ADDRESS BIT 00 (MUXA00[1])               |          | OUTPUT                 |  |
| 224                                      | BUB GRANTED SLOT 2 (BUBGT2[0])                       |          | OUTPUT                 |  |
| 225                                      | MULTIPLEXED ADDRESS BIT 05 (MUXA05[1])               |          | OUTPUT                 |  |
| 226                                      | MULTIPLEXED ADDRESS BIT 04 (MUXA04[1])               |          | OUTPUT                 |  |
| 227                                      | GROUND (GRD)                                         |          | GROUND                 |  |
| 228                                      | MULTIPLEXED ADDRESS BIT 03 (MUXA03[1])               |          | OUTPUT<br>OUTPUT       |  |
| 229                                      | MULTIPLEXED ADDRESS BIT 08 (MUXA08[1])               |          | POWER                  |  |
| 230                                      | +5V (VCC)                                            |          | OUTPUT                 |  |
| 231                                      | MULTIPLEXED ADDRESS BIT 07 (MUXA07[1])               |          | OUTPUT                 |  |
| 232                                      | MULTIPLEXED ADDRESS BIT 06 (MUXA06[1])               |          | 001101                 |  |

|            | 464-PIN BACKPLANE CONNECTOR, J02 (Contd)                     |                              |  |  |
|------------|--------------------------------------------------------------|------------------------------|--|--|
| PIN        | DESCRIPTION                                                  | FUNCTION                     |  |  |
| 233        | MULTIPLEXED ADDRESS BIT 10 (MUXA10[1])                       | OUTPUT                       |  |  |
| 234        | MULTIPLEXED ADDRESS BIT 09 (MUXA09[1])                       | OUTPUT                       |  |  |
| 235        | BUB GRANTED SLOT 3 (BUBGT3[0])                               | OUTPUT                       |  |  |
| 236        | BUB PERIPHERAL PARITY CHECK (BPCHECK[0])                     | INPUT/OUTPUT                 |  |  |
| 237        | BUB CONNECTOR CHIP SELECT 0 (BCCS0[0])                       | OUTPUT                       |  |  |
| 238        | BUB DATA SIZE BIT 0 (BDSIZE0[1])                             | INPUT/OUTPUT                 |  |  |
| 239        | GROUND (GRD)                                                 | GROUND                       |  |  |
| 240        | BUB SEQUENTIAL ACCESS (BSEQACC[0])                           | INPUT/OUTPUT                 |  |  |
| 241        | NOT USED                                                     | NC                           |  |  |
| 242        | NOT USED                                                     | NC                           |  |  |
| 243        | +5V (VCC)                                                    | POWER                        |  |  |
| 244        | NOT USED                                                     | NC                           |  |  |
| 245        | NOT USED                                                     | NC<br>GROUND                 |  |  |
| 246        | GROUND (GRD)                                                 | INPUT/OUTPUT                 |  |  |
| 247<br>248 | BUB DATA SIZE BIT 1 (BDSIZE1[1])<br>BUB READ/WRITE (BR1W[0]) | INPUT/OUTPUT                 |  |  |
| 240        | BUB ADDRESS BIT 02 (BA02[1])                                 | INPUT/OUTPUT                 |  |  |
| 250        | BUB ADDRESS BIT 01 (BA01[1])                                 | INPUT/OUTPUT                 |  |  |
| 251        | NOT USED                                                     | NC                           |  |  |
| 252        | NOT USED                                                     | NC                           |  |  |
| 253        | BUB ADDRESS BIT 05 (BA05[1])                                 | INPUT/OUTPUT                 |  |  |
| 254        | BUB ADDRESS BIT 04 (BA04[1])                                 | INPUT/OUTPUT                 |  |  |
| 255        | GROUND (GRD)                                                 | GROUND                       |  |  |
| 256        | NOT USED                                                     | NC                           |  |  |
| 257        | BUB ADDRESS BIT 08 (BA08[1])                                 | INPUT/OUTPUT                 |  |  |
| 258        | +5V (VCC)                                                    | POWER                        |  |  |
| 259        | BUB ADDRESS BIT 00 (BA00[1])                                 | INPUT/OUTPUT                 |  |  |
| 260        | BUB ADDRESS BIT 03 (BA03[1])                                 | INPUT/OUTPUT                 |  |  |
| 261        | BUB ADDRESS BIT 11 (BA11[1])                                 | INPUT/OUTPUT                 |  |  |
| 262        | BUB ADDRESS BIT 10 (BA10[1])                                 | INPUT/OUTPUT                 |  |  |
| 263        | GROUND (GRD)                                                 | GROUND                       |  |  |
| 264        | BUB ADDRESS BIT 06 (BA06[1])                                 | INPUT/OUTPUT                 |  |  |
| 265        | BUB BUSY (BUSY[0])                                           | INPUT/OUTPUT<br>GROUND       |  |  |
| 266<br>267 | GROUND (GRD)<br>Bub Connector Chip Select 1 (BCCS1[0])       | OUTPUT                       |  |  |
| 267        | BUB ADDRESS BIT 09 (BA09[1])                                 | INPUT/OUTPUT                 |  |  |
| 269        | BUB ADDRESS BIT 12 (BA12[1])                                 | INPUT/OUTPUT                 |  |  |
| 270        | BUB ADDRESS BIT 15 (BA15[1])                                 | INPUT/OUTPUT                 |  |  |
| 271        | BUB ADDRESS BIT 07 (BA07[1])                                 | INPUT/OUTPUT                 |  |  |
| 272        | BUB ADDRESS BIT 13 (BA13[1])                                 | INPUT/OUTPUT                 |  |  |
| 273        | BUB ADDRESS BIT 16 (BA16[1])                                 | INPUT/OUTPUT                 |  |  |
| 274        | BUB ADDRESS BIT 18 (BA18[1])                                 | INPUT/OUTPUT                 |  |  |
| 275        | +5V (VCC)                                                    | POWER                        |  |  |
| 276        | BUB ADDRESS BIT 17 (BA17[1])                                 | INPUT/OUTPUT                 |  |  |
| 277        | BUB ADDRESS BIT 19 (BA19[1])                                 | INPUT/OUTPUT                 |  |  |
| 278        | GROUND (GRD)                                                 | GROUND                       |  |  |
| 279        | BUB ADDRESS BIT 14 (BA14[1])                                 | INPUT/OUTPUT                 |  |  |
| 280<br>281 | BUB ADDRESS BIT 20 (BA20[1])<br>BUB ADDRESS BIT 22 (BA22[1]) | INPUT/OUTPUT<br>INPUT/OUTPUT |  |  |
| 281        | BUB ADDRESS BIT 22 (BA22[1])<br>BUB ADDRESS BIT 24 (BA24[1]) | INPUT/OUTPUT                 |  |  |
| 282        | BUB ADDRESS BIT 21 (BA21[1])                                 | INPUT/OUTPUT                 |  |  |
| 284        | BUB ADDRESS BIT 23 (BA23[1])                                 | INPUT/OUTPUT                 |  |  |
| 285        | BUB ADDRESS BIT 25 (BA25[1])                                 | INPUT/OUTPUT                 |  |  |
| 286        | +5V (VCC)                                                    | POWER                        |  |  |
| 287        | NOT USED                                                     | NC                           |  |  |
| 288        | NOT USED                                                     | NC                           |  |  |
| 289        | NOT USED                                                     | NC                           |  |  |
|            |                                                              |                              |  |  |

|            | 464-PIN BACKPLANE CONNECTOR, J02 (Contd)    |          |                        |    |  |
|------------|---------------------------------------------|----------|------------------------|----|--|
| PIN        | DESCRIPTI                                   | FUNCTION |                        |    |  |
| 291        | BUB DATA BIT 00 (BD00[1])                   |          | INPUT/OUTPUT           |    |  |
| 292        | NOT USED                                    |          | NC                     |    |  |
| 293        | BUB DATA BIT 02 (BD02[1])                   |          | INPUT/OUTPUT           |    |  |
| 294        | BUB DATA BIT 04 (BD04[1])                   |          | INPUT/OUTPUT           |    |  |
| 295        | GROUND (GRD)                                |          | GROUND                 |    |  |
| 296        | BUB DATA BIT 03 (BD03[1])                   |          | INPUT/OUTPUT           |    |  |
| 297        | BUB DATA BIT 05 (BD05[1])                   |          | INPUT/OUTPUT           |    |  |
| 298        | GROUND (GRD)                                |          | GROUND                 |    |  |
| 299        | BUB DATA BIT 07 (BD07[1])                   |          | INPUT/OUTPUT           |    |  |
| 300        | BUB DATA BIT 06 (BD06[1])                   |          | INPUT/OUTPUT           |    |  |
| 301        | BUB DATA BIT 08 (BD08[1])                   |          | INPUT/OUTPUT           |    |  |
| 302        | BUB DATA BIT 10 (BD10[1])                   |          | INPUT/OUTPUT<br>POWER  |    |  |
| 303        | +5V (VCC)                                   |          | INPUT/OUTPUT           |    |  |
| 304<br>305 | BUB DATA BIT 09 (BD09[1])                   |          | INPUT/OUTPUT           |    |  |
| 305        | BUB DATA BIT 11 (BD11[1])<br>Ground (grd)   |          | GROUND                 |    |  |
| 307        | BUB DATA BIT 13 (BD13[1])                   |          | INPUT/OUTPUT           |    |  |
| 308        | BUB DATA BIT 12 (BD12[1])                   |          | INPUT/OUTPUT           |    |  |
| 309        | BUB DATA BIT 14 (BD14[1])                   |          | INPUT/OUTPUT           |    |  |
| 310        | BUB DATA BIT 17 (BD17[1])                   |          | INPUT/OUTPUT           |    |  |
| 311        | BUB DATA BIT 16 (BD16[1])                   |          | INPUT/OUTPUT           |    |  |
| 312        | BUB DATA BIT 15 (BD15[1])                   |          | INPUT/OUTPUT           |    |  |
| 313        | BUB DATA BIT 18 (BD18[1])                   |          | INPUT/OUTPUT           |    |  |
| 314        | BUB DATA BIT 20 (BD20[1])                   |          | INPUT/OUTPUT           |    |  |
| 315        | GROUND (GRD)                                |          | GROUND                 |    |  |
| 316        | BUB DATA BIT 19 (BD19[1])                   |          | INPUT/OUTPUT           |    |  |
| 317        | BUB DATA BIT 21 (BD21[1])                   |          | INPUT/OUTPUT           |    |  |
| 318        | GROUND (GRD)                                |          | GROUND                 |    |  |
| 319        | BUB DATA BIT 23 (BD23[1])                   |          | INPUT/OUTPUT           |    |  |
| 320        | BUB DATA BIT 22 (BD22[1])                   |          | INPUT/OUTPUT           |    |  |
| 321        | BUB DATA BIT 24 (BD24[1])                   |          | INPUT/OUTPUT           |    |  |
| 322        | BUB DATA BIT 26 (BD26[1])                   |          | INPUT/OUTPUT           |    |  |
| 323        | GROUND (GRD)                                |          | GROUND                 |    |  |
| 324        | BUB DATA BIT 25 (BD25[1])                   |          | INPUT/OUTPUT           |    |  |
| 325        | BUB DATA BIT 27 (BD27[1])                   |          |                        |    |  |
| 326        | GROUND (GRD)                                |          | GROUND                 |    |  |
| 327        | BUB DATA BIT 29 (BD29[1])                   |          | INPUT/OUTPUT           |    |  |
| 328        | BUB DATA BIT 28 (BD28[1])                   |          | INPUT/OUTPUT<br>OUTPUT |    |  |
| 329        | SYSTEM RESET (SYSRST[0])                    |          | INPUT/OUTPUT           |    |  |
| 330<br>331 | REQUEST SYSTEM RESET (RQRST[0])<br>NOT USED |          | NC                     |    |  |
| 332        | THERMAL SHUTDOWN (THSDN[0])                 |          | INPUT                  |    |  |
| 333        | BUB DATA BIT 30 (BD30[1])                   |          | INPUT/OUTPUT           |    |  |
| 334        | RECEIVED FAILURE (RFAIL[0])                 |          | INPUT                  |    |  |
| 335        | +5V (VCC)                                   |          | POWER                  |    |  |
| 336        | BUB DATA BIT 31 (BD31[1])                   |          | INPUT/OUTPUT           |    |  |
| 337        | BUB CONNECTOR INHIBIT (BINHIB0[0])          |          | OUTPUT                 |    |  |
| 338        | BUB INTERRUPT LEVEL 10 (BINT010[0])         |          | INPUT                  |    |  |
| 339        | BUB INTERRUPT LEVEL 12 (BINT012[0])         |          | INPUT                  |    |  |
| 340        | BUB INTERRUPT LEVEL 14 (BINT014[0])         |          | INPUT                  |    |  |
| 341*       | UBUS DATA BIT 01 (CD01[1])                  | NOT USED | INPUT/OUTPUT           | NC |  |
| 342        | GROUND (GRD)                                |          | GROUND                 |    |  |
| 343*       | UBUS DATA BIT 00 (CD00[1])                  | NOT USED | INPUT/OUTPUT           | NC |  |
| 344*       | UBUS SEQUENTIAL ACCESS (CSEQACC[0])         | NOT USED | INPUT                  | NC |  |
| 345*       | UBUS DATA BIT 05 (CD05[1])                  | NOT USED | INPUT/OUTPUT           | NC |  |
| 346*       | UBUS DATA BIT 04 (CD04[1])                  | NOT USED | INPUT/OUTPUT           | NC |  |
| 347*       | UBUS DATA BIT 03 (CD03[1])                  | NOT USED | INPUT/OUTPUT           | NC |  |
| 348*       | UBUS DATA BIT 02 (CD02[1])                  | NOT USED | INPUT/OUTPUT           | NC |  |

| 464-PIN BACKPLANE CONNECTOR, J02 (Contd) |                                                          |                      |                              |          |
|------------------------------------------|----------------------------------------------------------|----------------------|------------------------------|----------|
| PIN                                      | DESC                                                     | RIPTION              | FUNCTION                     |          |
| 349*                                     | UBUS DATA BIT 08 (CD08[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 350*                                     | UBUS DATA BIT 07 (CD07[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 351                                      | +5V (VCC)                                                |                      | POWER                        |          |
| 352*                                     | UBUS DATA BIT 06 (CD06[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 353*                                     | UBUS DATA BIT 11 (CD11[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 354                                      | GROUND (GRD)                                             |                      | GROUND                       |          |
| 355*                                     | UBUS DATA BIT 10 (CD10[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 356*                                     | UBUS DATA BIT 09 (CD09[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 357*                                     | UBUS DATA BIT 14 (CD14[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 358*                                     | UBUS DATA BIT 13 (CD13[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 359                                      | GROUND (GRD)                                             | NOT WED              | GROUND                       | NG       |
| 360*                                     | UBUS DATA BIT 12 (CD12[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 361*                                     | UBUS DATA BIT 18 (CD18[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 362*                                     | UBUS DATA BIT 17 (CD17[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 363*                                     | UBUS DATA BIT 16 (CD16[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 364*                                     | UBUS DATA BIT 15 (CD15[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 365*                                     | UBUS DATA BIT 21 (CD21[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 366                                      | +5V (VCC)                                                | NOT HEED             | POWER                        | NC       |
| 367*                                     | UBUS DATA BIT 20 (CD20[1])                               | NOT USED             |                              | NC<br>NC |
| 368*                                     | UBUS DATA BIT 19 (CD19[1])                               | NOT USED             | INPUT/OUTPUT<br>INPUT/OUTPUT | NC       |
| 369*                                     | UBUS DATA BIT 24 (CD24[1])                               | NOT USED<br>NOT USED | INPUT/OUTPUT                 | NC       |
| 370*<br>371                              | UBUS DATA BIT 23 (CD23[1])                               | NOT USED             | GROUND                       | NC       |
|                                          | GROUND (GRD)                                             | NOT USED             | INPUT/OUTPUT                 | NC       |
| 372*<br>373*                             | UBUS DATA BIT 22 (CD22[1])<br>UBUS DATA BIT 27 (CD27[1]) | NOT USED             | INPUT/OUTPUT                 | NC       |
| 373                                      |                                                          | NOT USED             | GROUND                       | NC       |
| 374<br>375*                              | GROUND (GRD)<br>UBUS DATA BIT 26 (CD26[1])               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 376*                                     | UBUS DATA BIT 25 (CD25[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 377*                                     | UBUS DATA BIT 23 (CD25[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 378*                                     | UBUS DATA BIT 30 (CD30[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 379*                                     | UBUS DATA BIT 29 (CD29[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 380*                                     | UBUS DATA BIT 28 (CD28[1])                               | NOT USED             | INPUT/OUTPUT                 | NC       |
| 381*                                     | UBUS ADDRESS BIT 02 (CA02[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 382*                                     | UBUS ADDRESS BIT 01 (CA01[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 383                                      | +5V (VCC)                                                |                      | POWER                        |          |
| 384*                                     | UBUS ADDRESS BIT 00 (CA00[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 385*                                     | UBUS ADDRESS BIT 05 (CA05[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 386*                                     | UBUS ADDRESS BIT 06 (CA06[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 387*                                     | UBUS ADDRESS BIT 04 (CA04[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 388*                                     | UBUS ADDRESS BIT 03 (CA03[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 389*                                     | UBUS ADDRESS BIT 08 (CA08[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 390*                                     | UBUS ADDRESS BIT 07 (CA07[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 391                                      | GROUND (GRD)                                             |                      | GROUND                       |          |
| 392*                                     | UBUS ADDRESS BIT 09 (CA09[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 393*                                     | UBUS ADDRESS BIT 11 (CA11[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 394                                      | +5V (VCC)                                                |                      | POWER                        |          |
| 395*                                     | UBUS ADDRESS BIT 10 (CA10[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 396*                                     | UBUS ADDRESS BIT 12 (CA12[1])                            | NOT USED             | ,                            | NC       |
| 397*                                     | UBUS ADDRESS BIT 15 (CA15[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 398*                                     | UBUS ADDRESS BIT 14 (CA14[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 399*                                     | UBUS ADDRESS BIT 13 (CA13[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 400*                                     | UBUS ADDRESS BIT 16 (CA16[1])                            | NOT USED             | INPUT/OUTPUT                 | NC       |
| 401*                                     | UBUS ADDRESS BIT 18 (CA18[1])                            | NOT USED             | ,                            | NC       |
| 402*                                     | UBUS ADDRESS BIT 17 (CA17[1])                            | NOT USED             | ,                            | NC       |
| 403                                      | GROUND (GRD)                                             |                      | GROUND                       |          |
| 404*                                     | UBUS ADDRESS BIT 19 (CA19[1])                            | NOT USED             |                              | NC       |
| 405*                                     | UBUS ADDRESS BIT 21 (CA21[1])                            | NOT USED             | ,                            | NC       |
| 406                                      | GROUND (GRD)                                             |                      | GROUND                       |          |

|              | 464-PIN BACKPLANE CONNECTOR, J02 (Contd)                                          |                                             |                              |              |  |
|--------------|-----------------------------------------------------------------------------------|---------------------------------------------|------------------------------|--------------|--|
| PIN          | DESCRIPTION                                                                       |                                             | FUNCTION                     |              |  |
| 407*         | UBUS ADDRESS BIT 20 (CA20[1])                                                     | NOT USED                                    | INPUT/OUTPUT                 | NC           |  |
| 408*         | UBUS ADDRESS BIT 22 (CA22[1])                                                     | NOT USED                                    | INPUT/OUTPUT                 | NC           |  |
| 409*         | UBUS ADDRESS BIT 24 (CA24[1])                                                     | NOT USED                                    | INPUT/OUTPUT                 | NC           |  |
| 410*         | UBUS ADDRESS BIT 23 (CA23[1])                                                     | NOT USED                                    | INPUT/OUTPUT                 | NC           |  |
| 411          | +5V (VCC)                                                                         | NOT HEED                                    | POWER<br>INPUT/OUTPUT        | NC           |  |
| 412*         | UBUS ADDRESS BIT 25 (CA25[1])                                                     | NOT USED<br>NOT USED                        | INPUT/OUTPUT<br>INPUT/OUTPUT | NC           |  |
| 413*<br>414* | UBUS ADDRESS BIT 27 (CA27[1])<br>Ground (grd)                                     | PBUS INHIBIT(UINHIB[0])                     | GROUND                       | OUTPUT       |  |
| 414*<br>415* | UBUS ADDRESS BIT 26 (CA26[1])                                                     | NOT USED                                    | INPUT/OUTPUT                 | NC           |  |
| 415*         | UBUS ADDRESS BIT 28 (CA28[1])                                                     | NOT USED                                    | INPUT/OUTPUT                 | NC           |  |
| 417*         | UBUS ADDRESS BIT 28 (CA26[1])                                                     | NOT USED                                    | INPUT/OUTPUT                 | NC           |  |
| 417          | UBUS ADDRESS BIT 31 (CA31[1])                                                     | NOT USED                                    | INPUT/OUTPUT                 | NC           |  |
| 419*         | UBUS ADDRESS BIT 29 (CA29[1])                                                     | NOT USED                                    | INPUT/OUTPUT                 | NC           |  |
| 420*         | CLOCK 23 (CLK23[1])                                                               | NOT USED                                    | OUTPUT                       | NC           |  |
| 421          | HOLD REMOTE POWERON (PWRON[1])                                                    | Nor dele                                    | OUTPUT                       |              |  |
| 422          | REMOTE POWER DOWN REQUEST<br>(PDWNRQ[0])                                          |                                             | INPUT                        |              |  |
| 423          | GROUND (GRD)                                                                      |                                             | GROUND                       |              |  |
| 424*         | CLOCK 34 (CLK34[1])                                                               | NOT USED                                    | OUTPUT                       | NC           |  |
| 425*         | UBUS GRANTED (BUSGT[0])                                                           | CPU LATCH ADDRESS (CPULTCH[1])              | OUTPUT                       | OUTPUT       |  |
| 426<br>427   | SANITY TIMER TIMEOUT (SANTO[0])<br>OPERATIONAL INTERRUPT LEVEL 15<br>(OPINT15[0]) |                                             | INPUT/OUTPUT<br>INPUT        |              |  |
| 428*         | VIRTUAL CACHE HIT (VCHIT[0])                                                      | SLOT 3 VIRTUAL ADDRESS STROBE<br>(C3VAS[0]) | INPUT                        | INPUT/OUTPUT |  |
| 429*         | UBUS EXECUTION MODE 1 (XMD1[1])                                                   | NOT USED                                    | OUTPUT                       | NC           |  |
| 430          | +5V (VCC)                                                                         |                                             | POWER                        |              |  |
| 431*         | UBUS BUS REQUEST (BUSRQ[0])                                                       | SLOT 2 VIRTUAL ADDRESS STROBE<br>(C2VAS[0]) | INPUT                        | INPUT        |  |
| 432*         | UBUS COPROCESSOR DONE (DONE[0])                                                   | SLOT 1 VIRTUAL ADDRESS STROBE<br>(C1VAS[0]) | INPUT                        | INPUT        |  |
| 433*         | UBUS VIRTUAL ADDRESS (BY CPU)<br>(VAD[0])                                         | PBUS INTERLOCK (UINTLK[0])                  | OUTPUT                       | INPUT        |  |
| 434*<br>435  | UBUS ACCESS STATUS BIT 3 (SAS3[1])<br>GROUND (GRD)                                | PBUS CARD SELECT SLOT 3 (UPCS3[0]           | OUTPUT<br>GROUND             | OUTPUT       |  |
| 435<br>436*  | UBUS ACCESS STATUS BIT 2 (SAS2[1])                                                | PBUS CARD SELECT SLOT 2 (UPCS2[0])          | OUTPUT                       | ОИТРИТ       |  |
| 437*         | UBUS DATA ACKNOWLEDGE (DTACK[0])                                                  | PBUS SLOT 3 MEMORY REQUEST<br>(CPU3MEM[0]   | INPUT                        | INPUT        |  |
| 438          | GROUND (GRD)                                                                      |                                             | GROUND                       |              |  |
| 439*         | UBUS ABORT ACTIVATED (ABORT[0])                                                   | NOT USED                                    | OUTPUT                       | NC           |  |

|              | 464-PIN BACKPLANE CONNECTOR, J02 (Contd)                                 |                                                                                 |                  |                  |  |  |
|--------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------|------------------|--|--|
| PIN          | DESCRIP                                                                  | FUNCTION                                                                        |                  |                  |  |  |
| 440*         | UBUS CACHE ABLE (CABLE[0])                                               | PBUS DATA ACKNOWLEDGE<br>(UDTACK[0])                                            | INPUT/OUTPUT     | OUTPUT           |  |  |
| 441*         | UBUS EARLY PHYSICAL ADDRESS<br>STROBE (EPAS[0])                          | PBUS PHYSICAL ADDRESS STROBE<br>(UPAS[0])                                       | OUTPUT           | INPUT            |  |  |
| 442*         | UBUS VIRTUAL ADDRESS STROBE<br>(VAS[0])                                  | NOT USED                                                                        | OUTPUT           | NC               |  |  |
| 443*<br>444* | UBUS ACCESS STATUS BIT 1 (SAS1[1])<br>UBUS ACCESS STATUS BIT 0 (SAS0[1]) | PBUS CARD SELECT SLOT 1 (UPCS1[0])<br>PBUS SLOT 3 OUTPUT ENABLE<br>(C3ALOE[0])  | OUTPUT<br>OUTPUT | ОИТРИТ<br>ОИТРИТ |  |  |
| 445*<br>446* | UBUS DATA SIZE BIT 0 (CDSIZE0[1])<br>UBUS SYNCHRONOUS READY (SRDY[0])    | PBUS DATA SIZE BIT 0 (UDSIZE0[1])<br>PBUS SLOT 2 MEMORY REQUEST<br>(CPU2MEM[0]) | OUTPUT<br>INPUT  | INPUT<br>INPUT   |  |  |
| 447<br>448*  | +5V (VCC)<br>UBUS CYCLE INITIATE (CYCLEI[0])                             | PBUS SLOT 2 OUTPUT ENABLE<br>(C2ALOE[0])                                        | POWER<br>OUTPUT  | ОИТРИТ           |  |  |
| 449*         | BUB CONNECTOR CHIP SELECT 3<br>(BCCS3[0])                                | PBUS SLOT 1 OUTPUT ENABLE<br>(C1ALOE[0])                                        | OUTPUT           | OUTPUT           |  |  |
| 450          | GROUND (GRD)                                                             |                                                                                 | GROUND           |                  |  |  |
| 451*         | UBUS DATA READY (DRDY[0])                                                | NOT USED                                                                        | OUTPUT           | NC               |  |  |
| 452*         | RECEIVED FAILURE (RFAIL[0])                                              | PBUS SLOT 1 MEMORY REQUEST<br>(CPU1MEM[0])                                      | INPUT            | INPUT            |  |  |
| 453          | UBUS CHIP SELECT (CS1[0])                                                | PULLED UP                                                                       | OUTPUT           | OUTPUT           |  |  |
| 454*         | UBUS FAULT (FLT[0])                                                      | PBUS FAULT (UFLT[0])                                                            | INPUT            | ОИТРИТ           |  |  |
| 455          | ABORT PUSH BUTTON (ABUTTN[0])                                            |                                                                                 | INPUT            |                  |  |  |
| 456*         | UBUS DATA SIZE BIT 1 (CDSIZE1[1])                                        | PBUS DATA SIZE BIT 1 (UDSIZE1[1])                                               | OUTPUT           | INPUT            |  |  |
| 457*         | UBUS DATA SHADOW (DSHAD[0])                                              | NOT USED                                                                        | OUTPUT           | NC               |  |  |
| 458          | GROUND (GRD)                                                             |                                                                                 | GROUND           |                  |  |  |
| 459*         | UBUS READ/WRITE (CR1W[0])                                                | PBUS READ/WRITE (UR1W[0])                                                       | OUTPUT           | INPUT            |  |  |
| 460*         | UBUS DATA STROBE (DS[0])                                                 | NOT USED                                                                        | OUTPUT<br>OUTPUT | NC               |  |  |
| 461          | POWER LED (GLED[0])                                                      |                                                                                 | POWER            |                  |  |  |
| 462<br>463   | +5V (VCC)<br>DIAGNOSTIC LED (ERLED[0])                                   |                                                                                 | OUTPUT           |                  |  |  |
| 463<br>464   | +3.6V (VBAT)                                                             |                                                                                 | INPUT            |                  |  |  |

LEGEND:

| 88 | 02 | 86 1 |
|----|----|------|
| 87 | 01 | 85 1 |

|            | 112-PIN FEATURE CARD CONNECTORS                                                                         |                                 |  |  |
|------------|---------------------------------------------------------------------------------------------------------|---------------------------------|--|--|
| PIN        | DESCRIPTION                                                                                             | FUNCTION<br>(From Feature Card) |  |  |
| 001        | +12V (V12P)                                                                                             | POWER                           |  |  |
| 002        | PERIPHERAL INTERRUPT REQUEST 2 (PINT2[0])                                                               | OUTPUT                          |  |  |
| 003        | -12V (V12N)                                                                                             | POWER                           |  |  |
| 004        | PERIPHERAL INTERRUPT REQUEST 1 (PINT1[0])                                                               | OUTPUT                          |  |  |
| 005        | PERIPHERAL BUS ACKNOWLEDGE IN (PBACKI[0])                                                               | INPUT                           |  |  |
| 006        | PERIPHERAL INTERRUPT REQUEST 0 (PINT0[0])                                                               | OUTPUT                          |  |  |
| 007        | PERIPHERAL CARD SELECT (PCS01[0]—PCS12[0], as applicable)<br>PERIPHERAL REQUEST SYSTEM RESET (RQRST[0]) | INPUT<br>OUTPUT                 |  |  |
| 008        | GROUND (GRD)                                                                                            | GROUND                          |  |  |
| 010        | SYSTEM RESET (SYSRST[0])                                                                                | INPUT                           |  |  |
| 011        | +3.6V BACKUP BATTERY (VBKUP)                                                                            | POWER                           |  |  |
| 012        | PERIPHERAL CARD FAILURE (PFAIL[0])                                                                      | OUTPUT                          |  |  |
| 013        | PERIPHERAL INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])                                                      | OUTPUT                          |  |  |
| 014        | PERIPHERAL BUS FAULT (PFLT0)                                                                            | INPUT/OUTPUT                    |  |  |
| 015        | PERIPHERAL INTERRUPT ACKNOWLEDGE IN 2 (PIAKI2[0])                                                       | INPUT                           |  |  |
| 016        | GROUND (GRD)                                                                                            | GROUND                          |  |  |
| 017        | +5V (VCC)                                                                                               | POWER                           |  |  |
| 018        | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])                                                                 | INPUT/OUTPUT                    |  |  |
| 019        | PERIPHERAL INTERRUPT ACKNOWLEDGE IN 1 (PIAKI1[0])                                                       | INPUT                           |  |  |
| 020        | PERIPHERAL DATA STROBE 1 (PDS1[0])                                                                      | INPUT/OUTPUT                    |  |  |
| 021        | PERIPHERAL INTERRUPT ACKNOWLEDGE OUT 1 (PIAKO1[0])                                                      | OUTPUT                          |  |  |
| 022        | PERIPHERAL DATA BIT 00 (PD00[1])                                                                        | INPUT/OUTPUT                    |  |  |
| 023        | PERIPHERAL INTERRUPT ACKNOWLEDGE IN 0 (PIAKI0[0])                                                       | INPUTT                          |  |  |
| 024<br>025 | PERIPHERAL DATA BIT 02 (PD02[1])<br>GROUND (GRD)                                                        | INPUT/OUTPUT<br>GROUND          |  |  |
| 025        | PERIPHERAL DATA BIT 03 (PD03[1])                                                                        | INPUT/OUTPUT                    |  |  |
| 020        | PERIPHERAL BUSY (PBUSY[0])                                                                              | INPUT/OUTPUT                    |  |  |
| 028        | PERIPHERAL DATA BIT 05 (PD05[1])                                                                        | INPUT/OUTPUT                    |  |  |
| 029        | PERIPHERAL INTERRUPT ACKNOWLEDGE OUT 0 (PIAKO0[0])                                                      | OUTPUT                          |  |  |
| 030        | PERIPHERAL DATA BIT 07 (PD07[1])                                                                        | INPUT/OUTPUT                    |  |  |
| 031        | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])                                                        | OUTPUT                          |  |  |
| 032        | GROUND (GRD)                                                                                            | GROUND                          |  |  |
| 033        | PERIPHERAL DATA STROBE 0 (PDS0[0])                                                                      | INPUT/OUTPUT                    |  |  |
| 034        | PERIPHERAL DATA BIT 08 (PD08[1])                                                                        | INPUT/OUTPUT                    |  |  |
| 035        | PERIPHERAL DATA BIT 01 (PD01[1])                                                                        | INPUT/OUTPUT                    |  |  |
| 036        | PERIPHERAL DATA BIT 10 (PD10[1])                                                                        | INPUT/OUTPUT                    |  |  |
| 037        | GROUND (GRD)                                                                                            | GROUND                          |  |  |
| 038        | PERIPHERAL DATA BIT 12 (PD12[1])<br>PERIPHERAL DATA BIT 04 (PD04[1])                                    | INPUT/OUTPUT<br>INPUT/OUTPUT    |  |  |
| 040        | +5V (VCC)                                                                                               | POWER                           |  |  |
| 041        | GROUND (GRD)                                                                                            | GROUND                          |  |  |
| 042        | PERIPHERAL DATA BIT 13 (PD13[1])                                                                        | INPUT/OUTPUT                    |  |  |
| 043        | PERIPHERAL DATA BIT 06 (PD06[1])                                                                        | INPUT/OUTPUT                    |  |  |
| 044        | PERIPHERAL DATA BIT 15 (PD15[1])                                                                        | INPUT/OUTPUT                    |  |  |
| 045        | PERIPHERAL DATA BIT 09 (PD09[1])                                                                        | INPUT/OUTPUT                    |  |  |
| 046        | PERIPHERAL BUS REQUEST (PBRQ[0])                                                                        | INPUT/OUTPUT                    |  |  |
| 047        | PERIPHERAL DATA BIT 11 (PD11[1])                                                                        | INPUT/OUTPUT                    |  |  |
| 048        | GROUND (GRD)                                                                                            | GROUND                          |  |  |
| 049        | GROUND (GRD)                                                                                            | GROUND                          |  |  |
| 050        | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])                                                            | INPUT/OUTPUT                    |  |  |
| 051<br>052 | PERIPHERAL DATA BIT 14 (PD14[1])                                                                        | INPUT/OUTPUT                    |  |  |
| 052        | PERIPHERAL INTERLOCK OPERATION (PLOCK[0])<br>PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO[0])                 | INPUT/OUTPUT<br>OUTPUT          |  |  |
| 053        | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1])                                                           | INPUT/OUTPUT                    |  |  |
| 055        | READ-WRITE (PR[1]W[0])                                                                                  | INPUT/OUTPUT                    |  |  |
|            |                                                                                                         |                                 |  |  |

|            | 112-PIN FEATURE CARD CONNECTORS (Contd)                                                        |                                 |  |  |
|------------|------------------------------------------------------------------------------------------------|---------------------------------|--|--|
| PIN        | DESCRIPTION                                                                                    | FUNCTION<br>(From Feature Card) |  |  |
| 056        | GROUND (GRD)                                                                                   | GROUND                          |  |  |
| 057        | GROUND (GRD)                                                                                   | GROUND                          |  |  |
| 058        | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1])                                                  | INPUT/OUTPUT                    |  |  |
| 059        | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1])                                                  | INPUT/OUTPUT                    |  |  |
| 060        | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1])                                                  | INPUT/OUTPUT                    |  |  |
| 061        | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1])                                                  | INPUT/OUTPUT                    |  |  |
| 062        | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1])                                                  | INPUT/OUTPUT                    |  |  |
| 063        | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1])                                                  | INPUT/OUTPUT                    |  |  |
| 064        | +5V (VCC)                                                                                      | POWER                           |  |  |
| 065        | GROUND                                                                                         | GROUND                          |  |  |
| 066        | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1])                                                  | INPUT/OUTPUT                    |  |  |
| 067        | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1])                                                  | INPUT/OUTPUT                    |  |  |
| 068        | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1])                                                  | INPUT/OUTPUT                    |  |  |
| 069        | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1])                                                  | INPUT/OUTPUT                    |  |  |
| 070        | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1])                                                  | INPUT/OUTPUT                    |  |  |
| 071        | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1])                                                  | INPUT/OUTPUT                    |  |  |
| 072        | GROUND                                                                                         | GROUND<br>GROUND                |  |  |
| 073        | GROUND                                                                                         |                                 |  |  |
| 074        | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1])                                                  | INPUT/OUTPUT<br>INPUT/OUTPUT    |  |  |
| 075<br>076 | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1]) | INPUT/OUTPUT                    |  |  |
| 076        | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1]) | INPUT/OUTPUT                    |  |  |
| 077        | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1]) | INPUT/OUTPUT                    |  |  |
| 078        | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA20[1])                                                  | INPUT/OUTPUT                    |  |  |
| 079        | GROUND                                                                                         | GROUND                          |  |  |
| 080        | GROUND                                                                                         | GROUND                          |  |  |
| 082        | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1])                                                  | INPUT/OUTPUT                    |  |  |
| 083        | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1])                                                  | INPUT/OUTPUT                    |  |  |
| 084        | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1])                                                  | INPUT/OUTPUT                    |  |  |
| 085        | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1])                                                  | INPUT/OUTPUT                    |  |  |
| 086        | PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1])                                                  | INPUT/OUTPUT                    |  |  |
| 087        | +5V (VCC)                                                                                      | POWER                           |  |  |
| 088        | PERIPHERAL SEQUENTIAL ACCESS (PSEQACC[0])                                                      | INPUT/OUTPUT                    |  |  |
| 089        | PERIPHERAL SYSTEMS SUPPORT ACCESS (PSSSA[0])                                                   | INPUT/OUTPUT                    |  |  |
| 090        | +5V (VCC)                                                                                      | POWER                           |  |  |
| 091        | GROUND                                                                                         | GROUND                          |  |  |
| 092        | GROUND                                                                                         | GROUND                          |  |  |
| 093        | SPARE                                                                                          | NC                              |  |  |
| 094        | SPARE                                                                                          | NC                              |  |  |
| 095        | SPARE                                                                                          | NC                              |  |  |
| 096        | SPARE                                                                                          | NC                              |  |  |
| 097        | SPARE                                                                                          | NC                              |  |  |
| 098        | SPARE                                                                                          | NC                              |  |  |
| 099        | GROUND                                                                                         | GROUND                          |  |  |
| 100        | RESERVED                                                                                       | NC                              |  |  |
| 101        | RESERVED                                                                                       |                                 |  |  |
| 102        | GROUND                                                                                         | GROUND<br>NC                    |  |  |
| 103        | RESERVED                                                                                       | NC                              |  |  |
| 104        | RESERVED                                                                                       | NC                              |  |  |
| 105<br>106 | RESERVED<br>RESERVED                                                                           | NC                              |  |  |
| 106        | +5V (VCC)                                                                                      | POWER                           |  |  |
| 107        | RESERVED                                                                                       | NC                              |  |  |
| 108        | RESERVED                                                                                       | NC                              |  |  |
| 109        | +5V (VCC)                                                                                      | POWER                           |  |  |
| 111        | RESERVED                                                                                       | NC                              |  |  |
|            |                                                                                                |                                 |  |  |

LEGEND:

| 02 | 11 | 1 1 |
|----|----|-----|
| 02 | 11 |     |

|            | 120-PIN CM523 MEMORY CARD EDGE CONNECTIONS                             |                 |  |  |
|------------|------------------------------------------------------------------------|-----------------|--|--|
| PIN        | DESCRIPTION                                                            | FUNCTION        |  |  |
| 001        | GROUND (GRD)                                                           | GROUND          |  |  |
| 002        | +5V (VCC)                                                              | POWER           |  |  |
| 003        | NOT USED                                                               | NC              |  |  |
| 004        | NOT USED                                                               | NC              |  |  |
| 005        | NOT USED                                                               | NC              |  |  |
| 006        | NOT USED                                                               | NC              |  |  |
| 007        | GROUND (GRD)                                                           | GROUND          |  |  |
| 008        | GROUND (GRD)                                                           | GROUND          |  |  |
| 009        | ROW ADDRESS STROBE (RAS[0])                                            | OUTPUT          |  |  |
| 010        | WRITE ENABLE (WE[0])                                                   | OUTPUT          |  |  |
| 011        | GROUND (GRD)                                                           | GROUND          |  |  |
| 012        | GROUND (GRD)                                                           | GROUND          |  |  |
| 013        | MEMORY CYCLE STATUS G[0]                                               | OUTPUT          |  |  |
| 014        | BANK ENABLE 1 (BANKEN1[0])                                             | OUTPUT          |  |  |
| 015        | BANK ENABLE 2 (BANKEN2[0])                                             | OUTPUT          |  |  |
| 016        | BANK ENABLE 0 (BANKEN0[0])                                             | OUTPUT          |  |  |
| 017        | GROUND (GRD)                                                           | GROUND          |  |  |
| 018        | GROUND (GRD)                                                           | GROUND          |  |  |
| 019        | COLUMN ADDRESS STROBE 1 (CAS1[0])<br>COLUMN ADDRESS STROBE 3 (CAS3[0]) | OUTPUT          |  |  |
| 020        | COLUMN ADDRESS STROBE 3 (CAS3[0])<br>COLUMN ADDRESS STROBE 0 (CAS0[0]) | OUTPUT          |  |  |
| 021        |                                                                        | OUTPUT          |  |  |
| 022<br>023 | COLUMN ADDRESS STROBE 2 (CAS2[0])                                      | OUTPUT<br>POWER |  |  |
| 023        | +5V (VCC)<br>+5V (VCC)                                                 | POWER           |  |  |
| 024        | SIZE BIT 0 (SIZE0[0])                                                  | INPUT/OUTPUT    |  |  |
| 025        | NOT USED                                                               | NC              |  |  |
| 020        | SIZE BIT 1 (SIZE1[0])                                                  | INPUT/OUTPUT    |  |  |
| 027        | SLOT EQUIPPED (ECCEQP[0])                                              | OUTPUT          |  |  |
| 028        | LARGER SIZED MEMORY BOARD (BIGMEM[0])                                  | OUTPUT          |  |  |
| 030        | NOT USED                                                               | NC              |  |  |
| 031        | GROUND (GRD)                                                           | GROUND          |  |  |
| 032        | GROUND (GRD)                                                           | GROUND          |  |  |
| 033        | MULTIPLEXED ADDRESS BIT 00 (MUXA00[1])                                 | OUTPUT          |  |  |
| 034        | MULTIPLEXED ADDRESS BIT 03 (MUXA03[1])                                 | OUTPUT          |  |  |
| 035        | GROUND (GRD)                                                           | GROUND          |  |  |
| 036        | GROUND (GRD)                                                           | GROUND          |  |  |
| 037        | MULTIPLEXED ADDRESS BIT 01 (MUXA01[1])                                 | OUTPUT          |  |  |
| 038        | MULTIPLEXED ADDRESS BIT 02 (MUXA02[1])                                 | OUTPUT          |  |  |
| 039        | GROUND (GRD)                                                           | GROUND          |  |  |
| 040        | GROUND (GRD)                                                           | GROUND          |  |  |
| 041        | MULTIPLEXED ADDRESS BIT 04 (MUXA04[1])                                 | OUTPUT          |  |  |
| 042        | MULTIPLEXED ADDRESS BIT 07 (MUXA07[1])                                 | OUTPUT          |  |  |
| 043        | +5V (VCC)                                                              | POWER           |  |  |
| 044        | +5V (VCC)                                                              | POWER           |  |  |
| 045        | MULTIPLEXED ADDRESS BIT 05 (MUXA05[1])                                 | OUTPUT          |  |  |
| 046        | MULTIPLEXED ADDRESS BIT 06 (MUXA06[1])                                 | OUTPUT          |  |  |
| 047        | GROUND (GRD)                                                           | GROUND          |  |  |
| 048        | GROUND (GRD)                                                           | GROUND          |  |  |
| 049        | MULTIPLEXED ADDRESS BIT 08 (MUXA08[1])                                 | OUTPUT          |  |  |
| 050        | MULTIPLEXED ADDRESS BIT 11 (MUXA11[1]) (IF USED)                       | OUTPUT          |  |  |
| 051        | GROUND (GRD)                                                           | GROUND          |  |  |
| 052        | GROUND (GRD)                                                           | GROUND          |  |  |
| 053        | MULTIPLEXED ADDRESS BIT 09 (MUXA09[1]) (IF USED)                       | OUTPUT          |  |  |
| 054        | MULTIPLEXED ADDRESS BIT 10 (MUXA10[1]) (IF USED)                       | OUTPUT          |  |  |
| 055        | GROUND (GRD)                                                           | GROUND          |  |  |
| 056        | +5V (VCC)                                                              | POWER           |  |  |
| 057<br>058 | MULTIPLEXED ADDRESS BIT 12 (MUXA12[1]) (IF USED)                       | OUTPUT          |  |  |
| 058        | NOT USED                                                               | NC              |  |  |

| <b></b>    | 120-PIN CM523 MEMORY CARD EDGE CONNECTIONS (Contd)           |                              |  |  |  |
|------------|--------------------------------------------------------------|------------------------------|--|--|--|
| PIN        | DESCRIPTION                                                  | FUNCTION                     |  |  |  |
| 059        | GROUND (GRD)                                                 | GROUND                       |  |  |  |
| 060        | GROUND (GRD)                                                 | GROUND                       |  |  |  |
| 061        | MEMORY DATA BIT 31 (MD31[1])<br>MEMORY DATA BIT 30 (MD30[1]) | INPUT/OUTPUT<br>INPUT/OUTPUT |  |  |  |
| 062<br>063 | GROUND (GRD)                                                 | GROUND                       |  |  |  |
| 063        | MEMORY DATA BIT 28 (MD28[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 065        | MEMORY DATA BIT 29 (MD29[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 066        | MEMORY DATA BIT 26 (MD26[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 067        | MEMORY DATA BIT 27 (MD27[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 068        | GROUND (GRD)                                                 | GROUND                       |  |  |  |
| 069        | MEMORY DATA BIT 25 (MD25[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 070        | MEMORY DATA BIT 24 (MD24[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 071        | GROUND (GRD)                                                 | GROUND                       |  |  |  |
| 072        | MEMORY DATA BIT 22 (MD22[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 073<br>074 | MEMORY DATA BIT 23 (MD23[1])<br>MEMORY DATA BIT 20 (MD20[1]) | INPUT/OUTPUT<br>INPUT/OUTPUT |  |  |  |
| 074        | MEMORY DATA BIT 20 (MD20[1])<br>MEMORY DATA BIT 21 (MD21[1]) | INPUT/OUTPUT                 |  |  |  |
| 075        | +5V (VCC)                                                    | POWER                        |  |  |  |
| 077        | MEMORY DATA BIT 19 (MD19[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 078        | MEMORY DATA BIT 18 (MD18[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 079        | +5V (VCC)                                                    | POWER                        |  |  |  |
| 080        | MEMORY DATA BIT 16 (MD16[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 081        | MEMORY DATA BIT 17 (MD17[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 082        | MEMORY DATA BIT 14 (MD14[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 083        | MEMORY DATA BIT 15 (MD15[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 084        | GROUND (GRD)                                                 | GROUND                       |  |  |  |
| 085        | MEMORY DATA BIT 13 (MD13[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 086        | MEMORY DATA BIT 12 (MD12[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 087        | GROUND (GRD)<br>MEMORY DATA BIT 10 (MD10[1])                 | GROUND<br>INPUT/OUTPUT       |  |  |  |
| 088<br>089 | MEMORY DATA BIT 10 (MD10[1])<br>MEMORY DATA BIT 11 (MD11[1]) | INPUT/OUTPUT                 |  |  |  |
| 089        | MEMORY DATA BIT 11 (MD11[1])<br>MEMORY DATA BIT 08 (MD08[1]) | INPUT/OUTPUT                 |  |  |  |
| 091        | MEMORY DATA BIT 09 (MD09[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 092        | GROUND (GRD)                                                 | GROUND                       |  |  |  |
| 093        | MEMORY DATA BIT 07 (MD07[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 094        | MEMORY DATA BIT 06 (MD06[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 095        | GROUND (GRD)                                                 | GROUND                       |  |  |  |
| 096        | MEMORY DATA BIT 04 (MD04[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 097        | MEMORY DATA BIT 05 (MD05[1])                                 | INPUT/OUTPUT                 |  |  |  |
| 098<br>099 | MEMORY DATA BIT 02 (MD02[1])<br>MEMORY DATA BIT 03 (MD03[1]) | INPUT/OUTPUT<br>INPUT/OUTPUT |  |  |  |
| 100        | +5V (VCC)                                                    | POWER                        |  |  |  |
| 100        | MEMORY DATA BIT 01 (MD01[1]                                  | INPUT/OUTPUT                 |  |  |  |
| 101        | MEMORY DATA BIT 00 (MD00[1]                                  | INPUT/OUTPUT                 |  |  |  |
| 103        | +5V (VCC)                                                    | POWER                        |  |  |  |
| 104        | MEMORY CHECK BIT (MCB10[1])                                  | NPUT/OUTPUT                  |  |  |  |
| 105        | MEMORY CHECK BIT (MCB11[1])                                  | NPUT/OUTPUT                  |  |  |  |
| 106        | MEMORY CHECK BIT (MCB08[1])                                  | NPUT/OUTPUT                  |  |  |  |
| 107        | MEMORY CHECK BIT (MCB09[1])                                  | NPUT/OUTPUT                  |  |  |  |
| 108        | GROUND (GRD)                                                 | GROUND                       |  |  |  |
| 109        | MEMORY CHECK BIT (MCB07[1])<br>MEMORY CHECK BIT (MCB06[1])   | NPUT/OUTPUT<br>NPUT/OUTPUT   |  |  |  |
| 110<br>111 | GROUND (GRD)                                                 | GROUND                       |  |  |  |
| 111        | MEMORY CHECK BIT (MCB04[1])                                  | NPUT/OUTPUT                  |  |  |  |
| 112        | MEMORY CHECK BIT (MCB05[1])                                  | NPUT/OUTPUT                  |  |  |  |
| 114        | MEMORY CHECK BIT (MCB02[1])                                  | NPUT/OUTPUT                  |  |  |  |
| 115        | MEMORY CHECK BIT (MCB03[1])                                  | NPUT/OUTPUT                  |  |  |  |
| 116        | GROUND (GRD)                                                 | GROUND                       |  |  |  |
| 117        | MEMORY CHECK BIT (MCB01[1])                                  | NPUT/OUTPUT                  |  |  |  |
| 118        | MEMORY CHECK BIT (MCB00[1])                                  | NPUT/OUTPUT                  |  |  |  |
| 119        | GROUND (GRD)                                                 | GROUND                       |  |  |  |
| 120        | +5V (VCC)                                                    | POWER                        |  |  |  |

LEGEND:

| 119 |  |  |
|-----|--|--|
| 120 |  |  |

| 002         0           003         0           004         H           005         H           006         -           007         H           008         O           007         H           010         H           011         H           012         H           013         H           014         O           015         -           016         H           017         H           018         H           019         H           020         O           021         H           022         H           023         H           024         H           025         H           026         H           027         O           030         H           031         H           032         -           033         H           034         H           037         H                                                                 | BUB CONNECTOR INHIBIT SLOT 0 (BINHIB0[0])           GROUND (GRD)           OPERATIONAL INTERRUPT LEVEL 15 (OPINT15[0])           BUB INTERRUPT LEVEL 10 (BINT010[0])           BUB INTERRUPT LEVEL 12 (BINT012[0])           +5V (VCC)           BUB INTERRUPT LEVEL 14 (BINT014[0])           GROUND (GRD)           3UB FAILURE (BFAIL[0])           BUB DATA BIT 30 (BD30[1])           BUB DATA BIT 29 (BD29[1])           BUB DATA BIT 28 (BD28[1])           GROUND (GRD)           +5V (VCC)           BUB DATA BIT 26 (BD26[1])           BUB DATA BIT 27 (BD27[1])           BUB DATA BIT 26 (BD26[1])           BUB DATA BIT 27 (BD27[1])           BUB DATA BIT 28 (BD23[1])           GROUND (GRD)           BUB DATA BIT 22 (BD22[1])           BUB DATA BIT 23 (BD23[1])           BUB DATA BIT 21 (BD21[1])           BUB DATA BIT 21 (BD21[1])           BUB DATA BIT 18 (BD18[1])           BUB DATA BIT 19 (BD19[1])           GROUND (GRD) | OUTPUT<br>GROUND<br>INPUT<br>INPUT<br>INPUT<br>POWER<br>INPUT<br>GROUND<br>INPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 002         0           003         0           004         H           005         H           006         -           007         H           008         C           007         H           010         H           011         H           012         H           013         H           014         C           015         -           016         H           017         H           018         H           019         H           020         C           021         H           022         H           023         H           024         H           025         H           026         H           027         C           028         H           030         H           031         H           032         -           033         H           034         H           037         H                                         | GROUND (GRD)<br>OPERATIONAL INTERRUPT LEVEL 15 (OPINT15[0])<br>BUB INTERRUPT LEVEL 10 (BINT010[0])<br>BUB INTERRUPT LEVEL 12 (BINT012[0])<br>+5V (VCC)<br>BUB INTERRUPT LEVEL 14 (BINT014[0])<br>GROUND (GRD)<br>BUB DATA BIT 31 (BD31[1])<br>BUB DATA BIT 30 (BD30[1])<br>BUB DATA BIT 29 (BD29[1])<br>BUB DATA BIT 29 (BD29[1])<br>BUB DATA BIT 28 (BD28[1])<br>GROUND (GRD)<br>+5V (VCC)<br>BUB DATA BIT 26 (BD26[1])<br>BUB DATA BIT 25 (BD25[1])<br>BUB DATA BIT 24 (BD24[1])<br>GROUND (GRD)<br>BUB DATA BIT 22 (BD22[1])<br>BUB DATA BIT 23 (BD23[1])<br>BUB DATA BIT 23 (BD23[1])<br>BUB DATA BIT 21 (BD21[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                              | INPUT<br>INPUT<br>INPUT<br>POWER<br>INPUT<br>GROUND<br>INPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>POWER<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT |
| 003         0           004         I           005         I           006         -           007         I           008         0           009         I           0010         I           0112         I           012         I           013         I           014         0           015         -           016         I           017         I           010         I           010         I           011         I           012         I           013         I           020         0           021         I           022         I           023         I           024         I           025         I           032         I           033         I           034 | DPERATIONAL INTERRUPT LEVEL 15 (OPINT15[0])<br>BUB INTERRUPT LEVEL 10 (BINT010[0])<br>BUB INTERRUPT LEVEL 12 (BINT012[0])<br>+5V (VCC)<br>BUB INTERRUPT LEVEL 14 (BINT014[0])<br>GROUND (GRD)<br>BUB DATA BIT 31 (BD31[1])<br>BUB DATA BIT 30 (BD30[1])<br>BUB DATA BIT 29 (BD29[1])<br>BUB DATA BIT 29 (BD29[1])<br>BUB DATA BIT 28 (BD28[1])<br>GROUND (GRD)<br>+5V (VCC)<br>BUB DATA BIT 26 (BD26[1])<br>BUB DATA BIT 27 (BD27[1])<br>BUB DATA BIT 25 (BD25[1])<br>BUB DATA BIT 24 (BD24[1])<br>GROUND (GRD)<br>BUB DATA BIT 22 (BD22[1])<br>BUB DATA BIT 23 (BD23[1])<br>BUB DATA BIT 21 (BD21[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                 | INPUT<br>INPUT<br>POWER<br>INPUT<br>GROUND<br>INPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>POWER<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT          |
| 004         I           005         I           006         -           007         I           008         C           009         I           010         I           011         I           012         I           013         I           014         C           015         -           016         I           017         I           018         I           020         C           021         I           022         I           023         I           024         I           025         I           026         I           027         C           028         I           030         I           031         I           032         -           033         I           034         I           037         I                                                                                                                 | BUB INTERRUPT LEVEL 10 (BINT010[0])         BUB INTERRUPT LEVEL 12 (BINT012[0])         +5V (VCC)         BUB INTERRUPT LEVEL 14 (BINT014[0])         GROUND (GRD)         BUB FAILURE (BFAIL[0])         BUB DATA BIT 31 (BD31[1])         BUB DATA BIT 30 (BD30[1])         BUB DATA BIT 29 (BD29[1])         BUB DATA BIT 28 (BD28[1])         GROUND (GRD)         +5V (VCC)         BUB DATA BIT 26 (BD26[1])         BUB DATA BIT 27 (BD27[1])         BUB DATA BIT 26 (BD25[1])         BUB DATA BIT 27 (BD27[1])         BUB DATA BIT 22 (BD22[1])         BUB DATA BIT 23 (BD23[1])         BUB DATA BIT 24 (BD24[1])         GROUND (GRD)         BUB DATA BIT 22 (BD22[1])         BUB DATA BIT 21 (BD21[1])         BUB DATA BIT 20 (BD20[1])         BUB DATA BIT 18 (BD18[1])         BUB DATA BIT 19 (BD19[1])                                                                                                                                 | INPUT<br>POWER<br>INPUT<br>GROUND<br>INPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>POWER<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT   |
| 005         I           006         -           007         I           008         C           009         I           010         I           011         I           012         I           013         I           014         C           015         -           016         I           017         I           018         I           020         C           021         I           022         I           023         I           024         I           025         I           026         I           027         C           028         I           030         I           031         I           032         -           033         I           034         I           037         I                                                                                                                                         | BUB INTERRUPT LEVEL 12 (BINT012[0])         +5V (VCC)         BUB INTERRUPT LEVEL 14 (BINT014[0])         GROUND (GRD)         BUB DATA BIT 31 (BD31[1])         BUB DATA BIT 30 (BD30[1])         BUB DATA BIT 29 (BD29[1])         BUB DATA BIT 29 (BD29[1])         BUB DATA BIT 28 (BD28[1])         GROUND (GRD)         +5V (VCC)         BUB DATA BIT 26 (BD26[1])         BUB DATA BIT 27 (BD27[1])         BUB DATA BIT 25 (BD25[1])         BUB DATA BIT 22 (BD22[1])         BUB DATA BIT 23 (BD23[1])         BUB DATA BIT 21 (BD21[1])         BUB DATA BIT 20 (BD20[1])         BUB DATA BIT 21 (BD21[1])         BUB DATA BIT 21 (BD21[1])         BUB DATA BIT 21 (BD21[1])         BUB DATA BIT 18 (BD18[1])         BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                               | POWER<br>INPUT<br>GROUND<br>INPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>POWER<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                            |
| 006         -           007         I           008         G           009         I           010         I           011         I           012         I           013         I           014         G           015         -           016         I           017         I           018         I           019         I           020         G           021         I           022         I           023         I           024         I           025         I           026         I           027         G           030         I           031         I           032         -           033         I           033         I           033         I           034         I           037         I                                                                                                                 | +5V (VCC)<br>BUB INTERRUPT LEVEL 14 (BINT014[0])<br>GROUND (GRD)<br>BUB DATA BIT 31 (BD31[1])<br>BUB DATA BIT 30 (BD30[1])<br>BUB DATA BIT 29 (BD29[1])<br>BUB DATA BIT 29 (BD29[1])<br>BUB DATA BIT 28 (BD28[1])<br>GROUND (GRD)<br>+5V (VCC)<br>BUB DATA BIT 26 (BD26[1])<br>BUB DATA BIT 27 (BD27[1])<br>BUB DATA BIT 25 (BD25[1])<br>BUB DATA BIT 25 (BD25[1])<br>BUB DATA BIT 22 (BD22[1])<br>BUB DATA BIT 22 (BD22[1])<br>BUB DATA BIT 23 (BD23[1])<br>BUB DATA BIT 21 (BD21[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                              | INPUT<br>GROUND<br>INPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>POWER<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                     |
| 007         I           008         0           009         I           010         I           011         I           012         I           013         I           014         0           015         -           016         I           017         I           018         I           019         I           020         020           021         I           022         I           023         I           024         I           025         I           026         I           027         0           030         I           031         I           032         -           033         I           033         I           033         I           034         I           037         I                                                                                                                                       | BUB INTERRUPT LEVEL 14 (BINT014[0])         GROUND (GRD)         BUB FAILURE (BFAIL[0])         BUB DATA BIT 31 (BD31[1])         BUB DATA BIT 30 (BD30[1])         BUB DATA BIT 29 (BD29[1])         BUB DATA BIT 28 (BD28[1])         GROUND (GRD)         +5V (VCC)         BUB DATA BIT 26 (BD26[1])         BUB DATA BIT 27 (BD27[1])         BUB DATA BIT 25 (BD25[1])         BUB DATA BIT 22 (BD22[1])         BUB DATA BIT 23 (BD23[1])         BUB DATA BIT 20 (BD21[1])         BUB DATA BIT 20 (BD21[1])         BUB DATA BIT 21 (BD21[1])         BUB DATA BIT 20 (BD20[1])         BUB DATA BIT 18 (BD18[1])         BUB DATA BIT 19 (BD19[1])                                                                                                                                                          | GROUND<br>INPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>POWER<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                              |
| 009         I           010         I           011         I           012         I           013         I           014         O           015         -           016         I           017         I           018         I           019         I           020         O           021         I           022         I           023         I           024         I           025         I           026         I           027         O           028         I           030         I           031         I           032         -           033         I           034         I           035         -           036         I           037         I                                                                                                                                                                 | BUB FAILURE (BFAIL[0])         BUB DATA BIT 31 (BD31[1])         BUB DATA BIT 30 (BD30[1])         BUB DATA BIT 29 (BD29[1])         BUB DATA BIT 28 (BD28[1])         GROUND (GRD)         +5V (VCC)         BUB DATA BIT 26 (BD26[1])         BUB DATA BIT 27 (BD27[1])         BUB DATA BIT 26 (BD25[1])         BUB DATA BIT 22 (BD22[1])         BUB DATA BIT 22 (BD22[1])         BUB DATA BIT 23 (BD23[1])         BUB DATA BIT 21 (BD21[1])         BUB DATA BIT 28 (BD28[1])         BUB DATA BIT 29 (BD29[1])                                                                                                                                                                                                                                                                                                                                                                                                                                       | INPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>POWER<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                        |
| 010         F           011         F           012         F           013         F           014         C           015         -           016         F           017         F           018         F           019         F           020         C           021         F           022         F           023         F           024         F           025         F           026         F           027         C           028         F           030         F           031         F           033         F           033         F           033         F           033         F           033         F           036         F           037         F                                                                                                                                                                 | BUB DATA BIT 31 (BD31[1])         BUB DATA BIT 30 (BD30[1])         BUB DATA BIT 29 (BD29[1])         BUB DATA BIT 28 (BD28[1])         GROUND (GRD)         +5V (VCC)         BUB DATA BIT 26 (BD26[1])         BUB DATA BIT 27 (BD27[1])         BUB DATA BIT 25 (BD25[1])         BUB DATA BIT 24 (BD24[1])         GROUND (GRD)         BUB DATA BIT 22 (BD22[1])         BUB DATA BIT 23 (BD23[1])         BUB DATA BIT 20 (BD20[1])         BUB DATA BIT 21 (BD21[1])         BUB DATA BIT 20 (BD20[1])         BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                               | INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>POWER<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                       |
| 011         I           012         I           013         I           014         0           015         -           016         I           017         I           010         I           010         I           0117         I           01017         I           01018         I           01020         0           021         I           022         I           023         I           024         I           025         I           026         I           027         0           028         I           030         I           031         I           032         -           033         I           033         I           033         I           033         I           033         I           033         I           034         I           037         I                                                          | BUB DATA BIT 30 (BD30[1])         BUB DATA BIT 29 (BD29[1])         BUB DATA BIT 28 (BD28[1])         GROUND (GRD)         +5V (VCC)         BUB DATA BIT 26 (BD26[1])         BUB DATA BIT 27 (BD27[1])         BUB DATA BIT 25 (BD25[1])         BUB DATA BIT 24 (BD24[1])         GROUND (GRD)         BUB DATA BIT 22 (BD22[1])         BUB DATA BIT 23 (BD23[1])         BUB DATA BIT 20 (BD20[1])         BUB DATA BIT 28 (BD21[1])         BUB DATA BIT 29 (BD21[1])         BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>POWER<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                       |
| 012     I       013     I       014     0       015     -       016     I       017     I       018     I       0019     I       020     0       021     I       022     I       023     I       024     I       025     I       026     I       027     0       028     I       030     I       031     I       032     -       033     I       034     I       035     -       036     I       037     I                                                                                                                                                                                                                                                                                                                                                                                                                                            | BUB DATA BIT 29 (BD29[1])<br>BUB DATA BIT 28 (BD28[1])<br>GROUND (GRD)<br>+5V (VCC)<br>BUB DATA BIT 26 (BD26[1])<br>BUB DATA BIT 27 (BD27[1])<br>BUB DATA BIT 27 (BD27[1])<br>BUB DATA BIT 25 (BD25[1])<br>BUB DATA BIT 25 (BD25[1])<br>BUB DATA BIT 24 (BD24[1])<br>GROUND (GRD)<br>BUB DATA BIT 22 (BD22[1])<br>BUB DATA BIT 21 (BD23[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>POWER<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                       |
| 013     I       014     0       015     -       016     I       017     I       018     I       019     I       020     0       021     I       022     I       023     I       024     I       025     I       026     I       027     0       028     I       030     I       031     I       033     I       033     I       034     I       035     I       036     I                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BUB DATA BIT 28 (BD28[1])<br>GROUND (GRD)<br>+5V (VCC)<br>BUB DATA BIT 26 (BD26[1])<br>BUB DATA BIT 27 (BD27[1])<br>BUB DATA BIT 25 (BD25[1])<br>BUB DATA BIT 24 (BD24[1])<br>GROUND (GRD)<br>BUB DATA BIT 22 (BD22[1])<br>BUB DATA BIT 22 (BD23[1])<br>BUB DATA BIT 21 (BD21[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INPUT/OUTPUT<br>GROUND<br>POWER<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                       |
| 014         0           015         -           016         H           017         H           019         H           020         O           021         H           022         H           023         H           024         H           025         H           026         H           027         O           028         H           030         H           031         H           033         H           033         H           034         H           035         H           036         H           037         H                                                                                                                                                                                                                                                                                                                 | GROUND (GRD)<br>+5V (VCC)<br>BUB DATA BIT 26 (BD26[1])<br>BUB DATA BIT 27 (BD27[1])<br>BUB DATA BIT 27 (BD27[1])<br>BUB DATA BIT 25 (BD25[1])<br>BUB DATA BIT 24 (BD24[1])<br>GROUND (GRD)<br>BUB DATA BIT 22 (BD22[1])<br>BUB DATA BIT 23 (BD23[1])<br>BUB DATA BIT 21 (BD21[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GROUND<br>POWER<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                                       |
| 015         -           016         I           017         I           018         I           019         I           020         G           021         I           022         I           023         I           024         I           025         I           026         I           027         G           028         I           030         I           031         I           032         -           033         I           034         I           035         -           036         I           037         I                                                                                                                                                                                                                                                                                                                 | +5V (VCC)<br>BUB DATA BIT 26 (BD26[1])<br>BUB DATA BIT 27 (BD27[1])<br>BUB DATA BIT 25 (BD25[1])<br>BUB DATA BIT 24 (BD24[1])<br>GROUND (GRD)<br>BUB DATA BIT 22 (BD22[1])<br>BUB DATA BIT 23 (BD23[1])<br>BUB DATA BIT 21 (BD21[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | POWER<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                                                 |
| 016         I           017         I           018         I           019         I           020         O           021         I           022         I           023         I           024         I           025         I           026         I           027         O           028         I           029         I           030         I           032         -           033         I           035         -           036         I           037         I                                                                                                                                                                                                                                                                                                                                                                 | BUB DATA BIT 26 (BD26[1])         BUB DATA BIT 27 (BD27[1])         BUB DATA BIT 25 (BD25[1])         BUB DATA BIT 24 (BD24[1])         GROUND (GRD)         BUB DATA BIT 22 (BD22[1])         BUB DATA BIT 23 (BD23[1])         BUB DATA BIT 21 (BD21[1])         BUB DATA BIT 20 (BD20[1])         BUB DATA BIT 18 (BD18[1])         BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                                          |
| 017         I           018         I           019         I           020         O           021         I           022         I           023         I           024         I           025         I           026         I           027         O           028         I           029         I           030         I           031         I           032         -           033         I           034         I           035         -           036         I           037         I                                                                                                                                                                                                                                                                                                                                         | BUB DATA BIT 27 (BD27[1])<br>BUB DATA BIT 25 (BD25[1])<br>BUB DATA BIT 25 (BD25[1])<br>BUB DATA BIT 24 (BD24[1])<br>GROUND (GRD)<br>BUB DATA BIT 22 (BD22[1])<br>BUB DATA BIT 23 (BD23[1])<br>BUB DATA BIT 21 (BD21[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                                                                          |
| 018         I           019         I           020         0           021         I           022         I           023         I           024         I           025         I           026         I           027         0           028         I           029         I           030         I           031         I           032         -           033         I           034         I           035         -           036         I           037         I                                                                                                                                                                                                                                                                                                                                                                 | BUB DATA BIT 25 (BD25(1))<br>BUB DATA BIT 24 (BD24[1))<br>GROUND (GRD)<br>BUB DATA BIT 22 (BD22[1])<br>BUB DATA BIT 23 (BD23[1])<br>BUB DATA BIT 21 (BD21[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INPUT/OUTPUT<br>INPUT/OUTPUT<br>GROUND<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                                                                          |
| 019         I           020         0           021         I           022         I           023         I           024         I           025         I           026         I           027         0           028         I           029         I           030         I           031         I           032         -           033         I           034         I           035         -           036         I           037         I                                                                                                                                                                                                                                                                                                                                                                                         | BUB DATA BIT 24 (BD24[1])<br>GROUND (GRD)<br>BUB DATA BIT 22 (BD22[1])<br>BUB DATA BIT 23 (BD23[1])<br>BUB DATA BIT 21 (BD21[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INPUT/OUTPUT<br>GROUND<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                                                                                                          |
| 020         0           021         I           022         I           023         I           024         I           025         I           026         I           027         0           028         I           030         I           031         I           032         -           033         I           034         I           035         -           036         I           037         I                                                                                                                                                                                                                                                                                                                                                                                                                                         | GROUND (GRD)<br>BUB DATA BIT 22 (BD22[1])<br>BUB DATA BIT 23 (BD23[1])<br>BUB DATA BIT 21 (BD21[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GROUND<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                                                                                                                          |
| 021         I           022         I           023         I           024         I           025         I           026         I           027         G           028         I           029         I           030         I           031         I           032         -           033         I           034         I           035         -           036         I           037         I                                                                                                                                                                                                                                                                                                                                                                                                                                         | BUB DATA BIT 22 (BD22[1])<br>BUB DATA BIT 23 (BD23[1])<br>BUB DATA BIT 21 (BD21[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                                                                                                                    |
| 022         I           023         I           024         I           025         I           026         I           027         O           028         I           029         I           030         I           031         I           032         I           033         I           033         I           035         I           036         I           037         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BUB DATA BIT 23 (BD23[1])<br>BUB DATA BIT 21 (BD21[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                                                                                                                                    |
| 023         I           024         I           025         I           026         I           027         C           028         I           030         I           031         I           032         -           033         I           034         I           035         -           036         I           037         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BUB DATA BIT 21 (BD21[1])<br>BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                                                                                                                                                    |
| 024         I           025         I           026         I           027         C           028         I           029         I           030         I           031         I           032         -           033         I           034         I           035         -           036         I           037         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BUB DATA BIT 20 (BD20[1])<br>BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                                                                                                                                                                    |
| 025         I           026         I           027         G           028         I           029         I           030         I           031         I           032         -           033         I           034         I           035         -           036         I           037         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BUB DATA BIT 18 (BD18[1])<br>BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                                                                                                                                                                                    |
| 026   1<br>027 (<br>028   1<br>029   1<br>030   1<br>031   1<br>032 -<br>033   1<br>034   1<br>035 -<br>036   1<br>037   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BUB DATA BIT 19 (BD19[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
| 027 (<br>028 I<br>029 I<br>030 I<br>031 I<br>032 -<br>033 I<br>034 I<br>035 -<br>036 I<br>037 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                                                                                                                                                                                                                                                                                                               |
| 028         H           029         H           030         H           031         H           032         -           033         H           034         H           035         -           036         H           037         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GROUND (GRD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 |
| 029 H<br>030 H<br>031 H<br>032 -<br>033 H<br>034 H<br>035 -<br>036 H<br>037 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GROUND                                                                                                                                                                                                                                                                                                                          |
| 030 H<br>031 H<br>032 -<br>033 H<br>034 H<br>035 -<br>036 H<br>037 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BUB DATA BIT 17 (BD17[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
| 031 H<br>032 -<br>033 H<br>034 H<br>035 -<br>036 H<br>037 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BUB DATA BIT 16 (BD16[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
| 032 -<br>033 H<br>034 H<br>035 -<br>036 H<br>037 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BUB DATA BIT 14 (BD14[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
| 033 H<br>034 H<br>035 -<br>036 H<br>037 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BUB DATA BIT 15 (BD15[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
| 034 H<br>035 -<br>036 H<br>037 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +5V (VCC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | POWER                                                                                                                                                                                                                                                                                                                           |
| 035 -<br>036 H<br>037 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BUB DATA BIT 12 (BD12[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
| 036 I<br>037 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BUB DATA BIT 13 (BD13[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
| 037   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +12V (V12P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | POWER                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BUB DATA BIT 11 (BD11[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BUB DATA BIT 10 (BD10[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -12V (V12N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | POWER                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GROUND (GRD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GROUND                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BUB DATA BIT 08 (BD08[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BUB DATA BIT 09 (BD09[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT<br>INPUT/OUTPUT                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BUB DATA BIT 07 (BD07[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BUB DATA BIT 06 (BD06[1])<br>BUB DATA BIT 05 (BD05[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BUB DATA BIT 04 (BD04[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GROUND (GRD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GROUND                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BUB DATA BIT 03 (BD03[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3UB DATA BIT 02 (BD03[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BUB DATA BIT 00 (BD00[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BUB DATA BIT 01 (BD01[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GROUND (GRD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GROUND                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BUB DATA PARITY BIT 0 (BDP0[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BUB DATA PARITY BIT 1 (BDP1[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SUB DATA PARITY BIT 3 (BDP3(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INPUT/OUTPUT                                                                                                                                                                                                                                                                                                                    |
| 056 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BUB DATA PARITY BIT 3 (BDP3[1])<br>BUB DATA PARITY BIT 2 (BDP2[1])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                 |

|            | 120-PIN BUFFERED MICROBUS (BUB) EDGE CONNECTIONS (Contd)             |                                 |  |  |
|------------|----------------------------------------------------------------------|---------------------------------|--|--|
| PIN        | DESCRIPTION                                                          | FUNCTION<br>(From System Board) |  |  |
| 057        | BUB ADDRESS BIT 26 (BA26[1])                                         | INPUT/OUTPUT                    |  |  |
| 058        | BUB ADDRESS BIT 25 (BA25[1])                                         | INPUT/OUTPUT                    |  |  |
| 059        | BUB ADDRESS BIT 24 (BA24[1])                                         | INPUT/OUTPUT                    |  |  |
| 060        | BUB ADDRESS BIT 23 (BA23[1])                                         | INPUT/OUTPUT                    |  |  |
| 061        | BUB ADDRESS BIT 22 (BA22[1])                                         | INPUT/OUTPUT                    |  |  |
| 062        | BUB ADDRESS BIT 21 (BA21[1])                                         | INPUT/OUTPUT                    |  |  |
| 063        | GROUND (GRD)                                                         | GROUND                          |  |  |
| 064        | BUB ADDRESS BIT 20 (BA20[1])                                         | INPUT/OUTPUT                    |  |  |
| 065        | BUB ADDRESS BIT 12 (BA12[1])                                         | INPUT/OUTPUT                    |  |  |
| 066        | BUB ADDRESS BIT 19 (BA19[1])                                         | INPUT/OUTPUT                    |  |  |
| 067        | BUB ADDRESS BIT 18 (BA18[1])                                         | INPUT/OUTPUT                    |  |  |
| 068        | BUB ADDRESS BIT 17 (BA17[1])<br>BUB ADDRESS BIT 16 (BA16[1])         | INPUT/OUTPUT<br>INPUT/OUTPUT    |  |  |
| 069<br>070 | GROUND (GRD)                                                         | GROUND                          |  |  |
| 070        | BUB ADDRESS BIT 15 (BA15[1])                                         | INPUT/OUTPUT                    |  |  |
| 072        | BUB ADDRESS BIT 14 (BA14[1])                                         | INPUT/OUTPUT                    |  |  |
| 072        | GROUND (GRD)                                                         | GROUND                          |  |  |
| 074        | BUB ADDRESS BIT 13 (BA13[1])                                         | INPUT/OUTPUT                    |  |  |
| 075        | +5V (VCC)                                                            | POWER                           |  |  |
| 076        | SYSTEM RESET (SYSRST[0])                                             | OUTPUT                          |  |  |
| 077        | REQUEST SYSTEM RESET (RQRST[0])                                      | INPUT                           |  |  |
| 078        | BUB ADDRESS BIT 27 (BA27[1])                                         | INPUT/OUTPUT                    |  |  |
| 079        | BUB BUSY (BUSY[0])                                                   | INPUT/OUTPUT                    |  |  |
| 080        | GROUND (GRD)                                                         | GROUND                          |  |  |
| 081        | BUB ADDRESS BIT 11 (BA11[1])                                         | INPUT/OUTPUT                    |  |  |
| 082        | BUB ADDRESS BIT 10 (BA10[1])                                         | INPUT/OUTPUT                    |  |  |
| 083        | BUB ADDRESS BIT 09 (BA09[1])                                         | INPUT/OUTPUT                    |  |  |
| 084        | BUB ADDRESS BIT 08 (BA08[1])                                         | INPUT/OUTPUT                    |  |  |
| 085        | BUB ADDRESS BIT 07 (BA07[1])                                         | INPUT/OUTPUT                    |  |  |
| 086        | BUB ADDRESS BIT 06 (BA06[1])                                         | INPUT/OUTPUT                    |  |  |
| 087        | GROUND (GRD)                                                         | GROUND                          |  |  |
| 088        | BUB ADDRESS BIT 05 (BA05[1])                                         | INPUT/OUTPUT<br>GROUND          |  |  |
| 089<br>090 | GROUND (GRD)<br>BUB ADDRESS BIT 04 (BA04[1])                         | INPUT/OUTPUT                    |  |  |
| 090        | BUB ADDRESS BIT 03 (BA03[1])                                         | INPUT/OUTPUT                    |  |  |
| 092        | BUB ADDRESS BIT 02 (BA02[1])                                         | INPUT/OUTPUT                    |  |  |
| 093        | BUB ADDRESS BIT 01 (BA01[1])                                         | INPUT/OUTPUT                    |  |  |
| 094        | +5V (VCC)                                                            | POWER                           |  |  |
| 095        | BUB ADDRESS BIT 00 (BA00[1])                                         | INPUT/OUTPUT                    |  |  |
| 096        | BUB ADDRESS PARITY BIT 0 (BAP0[1])                                   | INPUT/OUTPUT                    |  |  |
| 097        | BUB ADDRESS PARITY BIT 2 (BAP2[1])                                   | INPUT/OUTPUT                    |  |  |
| 098        | BUB ADDRESS PARITY BIT 1 (BAP1[1])                                   | INPUT/OUTPUT                    |  |  |
| 099        | GROUND (GRD)                                                         | GROUND                          |  |  |
| 100        | BUB ADDRESS PARITY BIT 3 (BAP3[1])                                   | INPUT/OUTPUT                    |  |  |
| 101        | BUB READ/WRITE (BR1W0)                                               | INPUT/OUTPUT                    |  |  |
| 102        | +5V (VCC)                                                            | POWER                           |  |  |
| 103        | BUB CONNECTOR CHIP SELECT 0 (BCCS0[0])                               | OUTPUT                          |  |  |
| 104        | GROUND (GRD)<br>BUR DATA SIZE BIT 0 (RDSIZE0(1))                     | GROUND                          |  |  |
| 105<br>106 | BUB DATA SIZE BIT 0 (BDSIZE0[1])<br>BUB DATA SIZE BIT 1 (BDSIZE1[1]) | INPUT/OUTPUT<br>INPUT/OUTPUT    |  |  |
| 108        | BUB SEQUENTIAL ACCESS (BSEQACC[0])                                   | INPUT                           |  |  |
| 107        | BUB PERIPHERAL PARITY (BPCHECK[0])                                   | INPUT                           |  |  |
| 103        | BUB BUS REQUEST (BUBRQ[0])                                           | INPUT                           |  |  |
| 110        | SANITY TIMER TIMEOUT (SANT[0])                                       | OUTPUT                          |  |  |
| 111        | +5V (VCC)                                                            | POWER                           |  |  |
| 112        | BUB FAULT (BFLT[0])                                                  | INPUT/OUTPUT                    |  |  |
| 113        | BUB GRANTED SLOT (BUBGT[0])                                          | OUTPUT                          |  |  |
| 114        | BUB BYPASS MODE ACCESS (BYPASS[0])                                   | OUTPUT                          |  |  |
| 115        | BUB DATA STROBE (BDS[0])                                             | INPUT/OUTPUT                    |  |  |
| 116        | BUB ADDRESS STROBE (BAS[0])                                          | INPUT/OUTPUT                    |  |  |
| 117        | BUB DATA ACKNOWLEDGE (BDTCK[0])                                      | INPUT/OUTPUT                    |  |  |
| 118        | GROUND (GRD)                                                         | GROUND                          |  |  |
| 119        | NOT USED (BSPARE1)                                                   | INPUT/OUTPUT                    |  |  |
| 120        | NOT USED (BSPARE2)                                                   | INPUT/OUTPUT                    |  |  |

| 02 | 120 |
|----|-----|
|    |     |

| _          | 120-PIN VCACHE EDGE CONNECTIONS              |                           |  |
|------------|----------------------------------------------|---------------------------|--|
| PIN        | DESCRIPTION                                  | FUNCTION<br>(From VCACHE) |  |
| 001        | UBUS DATA STROBE (DS[0])                     | INPUT                     |  |
| 002        | UBUS READ/WRITE (CR1W0)                      | INPUT                     |  |
| 003        | GROUND (GRD)                                 | GROUND                    |  |
| 004        | UBUS DATA SHADOW (DSHAD[0])                  | INPUT                     |  |
| 005        | UBUS DATA SIZE BIT 1 (CDSIZE1[1])            | INPUT                     |  |
| 006        | UBUS FAULT (FLT[0])                          | OUTPUT                    |  |
| 007        | UBUS CARD SELECT (CS1[0])                    | INPUT                     |  |
| 008        | GROUND (GRD)                                 | GROUND                    |  |
| 009        | UBUS FAILURE (FAIL[0])                       | OUTPUT                    |  |
| 010        | UBUS DATA READY (DRDY[0])                    | OUTPUT                    |  |
| 011        | UBUS CYCLE INITIATE (CYCLEI[0])              | INPUT                     |  |
| 012        | UBUS SYNCHRONOUS READY (SRDY[0])             | OUTPUT                    |  |
| 013        | UBUS DATA SIZE BIT 0 (CDSIZE0[1])            | INPUT                     |  |
| 014        | UBUS ACCESS STATUS BIT 0 (SAS0[1])           | INPUT                     |  |
| 015        | +5V (VCC)                                    | POWER                     |  |
| 016        | ACCESS STATUS BIT 1 (SAS1[1])                | INPUT                     |  |
| 017        | UBUS VIRTUAL ADDRESS STROBE (VAS[0])         | INPUT                     |  |
| 018        | UBUS EARLY PHYSICAL ADDRESS STROBE (EPAS[0]) | INPUT                     |  |
| 019        | UBUS CACHE ABLE (CABLE[0])                   | INPUT                     |  |
| 020        | GROUND (GRD)                                 | GROUND                    |  |
| 021        | UBUS ABORT ACTIVATED (ABORT[0])              | INPUT                     |  |
| 022        | UBUS DATA ACKNOWLEDGE (DTACK[0])             | OUTPUT                    |  |
| 023        | UBUS ACCESS STATUS BIT 2 (SAS2[1])           | INPUT                     |  |
| 024        | UBUS ACCESS STATUS BIT 3 (SAS3[1])           | INPUT                     |  |
| 025        | UBUS VIRTUAL ADDRESS (BY CPU) (VAD[0])       | INPUT                     |  |
| 026        | UBUS COPROCESSOR DONE (DONE[0])              | OUTPUT                    |  |
| 027        | GROUND (GRD)                                 | GROUND                    |  |
| 028        | UBUS BUS REQUEST (BUSRQ[0])                  | OUTPUT                    |  |
| 029        | UBUS EXECUTION MODE 1 (XMD1[1])              | INPUT                     |  |
| 030        | UBUS VIRTUAL CACHE HIT (VCHIT[0])            | OUTPUT                    |  |
| 031        | OPERATIONAL INTERRUPT LEVEL 15 (OPINT15[0])  | OUTPUT                    |  |
| 032        | +5V (VCC)                                    | POWER                     |  |
| 033        | SANITY TIMER TIMEOUT (SANT[0])               | INPUT                     |  |
| 034        | UBUS GRANTED (BUSGT[0])                      | INPUT                     |  |
| 035        | +12V (V12P)                                  | POWER                     |  |
| 036        | NOT USED                                     | NC                        |  |
| 037        | CLOCK 34 (CLK34[1])                          | INPUT                     |  |
| 038        | -12V (V12N)                                  | POWER                     |  |
| 039        | GROUND (GRD)                                 | GROUND                    |  |
| 040        | UBUS SEQUENTIAL ACCESS (CSEQACC[0])          | OUTPUT                    |  |
| 041<br>042 | CLOCK 23 (CLK23[1])                          | INPUT                     |  |
| 042        | SYSTEM RESET (SYSRST[0])<br>NOT USED         | INPUT<br>NC               |  |
| 043        | REQUEST SYSTEM RESET (RQRST[0])              |                           |  |
| 044        | UBUS ADDRESS BIT 31 (CA31[1])                | OUTPUT<br>INPUT           |  |
| 045        | UBUS ADDRESS BIT 30 (CA30[1])                | INPUT                     |  |
| 040        | UBUS ADDRESS BIT 29 (CA29[1])                | INPUT                     |  |
| 048        | UBUS ADDRESS BIT 28 (CA28[1])                | INPUT                     |  |
| 049        | UBUS ADDRESS BIT 27 (CA27[1])                | INPUT                     |  |
| 050        | UBUS ADDRESS BIT 26 (CA26[1])                | INPUT                     |  |
| 051        | GROUND (GRD)                                 | GROUND                    |  |
| 052        | UBUS ADDRESS BIT 25 (CA25[1])                | INPUT                     |  |
| 053        | UBUS ADDRESS BIT 24 (CA24[1])                | INPUT                     |  |
| 054        | UBUS ADDRESS BIT 23 (CA23[1])                | INPUT                     |  |
| 055        | UBUS ADDRESS BIT 22 (CA22[1])                | INPUT                     |  |
| 056        | +5V (VCC)                                    | POWER                     |  |
| 057        | UBUS ADDRESS BIT 21 (CA21[1])                | INPUT                     |  |
|            |                                              | 1 1 1 0 1                 |  |

| [          | 120-PIN VCACHE EDGE CONNECTIONS (Contd)                        |                              |  |
|------------|----------------------------------------------------------------|------------------------------|--|
| PIN        | DESCRIPTION                                                    | FUNCTION<br>(From VCACHE)    |  |
| 059        | UBUS ADDRESS BIT 19 (CA19[1])                                  | INPUT                        |  |
| 060        | UBUS ADDRESS BIT 18 (CA18[1])                                  | INPUT                        |  |
| 061        | UBUS ADDRESS BIT 17 (CA17[1])                                  | INPUT                        |  |
| 062        | UBUS ADDRESS BIT 16 (CA16[1])                                  | INPUT                        |  |
| 063        | GROUND (GRD)                                                   | GROUND                       |  |
| 064        | UBUS ADDRESS BIT 15 (CA15[1])                                  | INPUT                        |  |
| 065<br>066 | UBUS ADDRESS BIT 14 (CA14[1])<br>UBUS ADDRESS BIT 13 (CA13[1]) | INPUT<br>INPUT               |  |
| 067        | UBUS ADDRESS BIT 12 (CA12[1])                                  | INPUT                        |  |
| 068        | UBUS ADDRESS BIT 11 (CA11[1])                                  | INPUT                        |  |
| 069        | UBUS ADDRESS BIT 10 (CA10[1])                                  | INPUT                        |  |
| 070        | GROUND (GRD)                                                   | GROUND                       |  |
| 071        | UBUS ADDRESS BIT 09 (CA09[1])                                  | INPUT                        |  |
| 072        | UBUS ADDRESS BIT 08 (CA08[1])                                  | INPUT                        |  |
| 073        | UBUS ADDRESS BIT 07 (CA07[1])                                  | INPUT                        |  |
| 074        | UBUS ADDRESS BIT 06 (CA06[1])                                  | INPUT                        |  |
| 075        | +5V (VCC)                                                      | POWER                        |  |
| 076        | UBUS ADDRESS BIT 05 (CA05[1])                                  | INPUT                        |  |
| 077        | UBUS ADDRESS BIT 04 (CA04[1])                                  | INPUT                        |  |
| 078        | UBUS ADDRESS BIT 03 (CA03[1])                                  | INPUT                        |  |
| 079        | UBUS ADDRESS BIT 02 (CA02[1])                                  | INPUT                        |  |
| 080        | UBUS ADDRESS BIT 01 (CA01[1])<br>UBUS ADDRESS BIT 00 (CA00[1]) | INPUT<br>INPUT               |  |
| 081<br>082 | GROUND (GRD)                                                   | GROUND                       |  |
| 082        | UBUS DATA BIT 31 (CD31[1])                                     | INPUT/OUTPUT                 |  |
| 084        | UBUS DATA BIT 30 (CD30[1])                                     | INPUT/OUTPUT                 |  |
| 085        | UBUS DATA BIT 29 (CD29[1])                                     | INPUT/OUTPUT                 |  |
| 086        | UBUS DATA BIT 28 (CD28[1])                                     | INPUT/OUTPUT                 |  |
| 087        | GROUND (GRD)                                                   | GROUND                       |  |
| 088        | UBUS DATA BIT 27 (CD27[1])                                     | INPUT/OUTPUT                 |  |
| 089        | UBUS DATA BIT 26 (CD26[1])                                     | INPUT/OUTPUT                 |  |
| 090        | UBUS DATA BIT 25 (CD25[1])                                     | INPUT/OUTPUT                 |  |
| 091        | UBUS DATA BIT 24 (CD24[1])                                     | INPUT/OUTPUT                 |  |
| 092        | UBUS DATA BIT 23 (CD23[1])                                     | INPUT/OUTPUT                 |  |
| 093<br>094 | UBUS DATA BIT 22 (CD22[1])<br>+5V (VCC)                        | INPUT/OUTPUT<br>POWER        |  |
| 095        | UBUS DATA BIT 21 (CD21[1])                                     | INPUT/OUTPUT                 |  |
| 096        | UBUS DATA BIT 20 (CD20[1])                                     | INPUT/OUTPUT                 |  |
| 097        | UBUS DATA BIT 19 (CD19[1])                                     | INPUT/OUTPUT                 |  |
| 098        | UBUS DATA BIT 18 (CD18[1])                                     | INPUT/OUTPUT                 |  |
| 099        | GROUND (GRD)                                                   | GROUND                       |  |
| 100        | UBUS DATA BIT 17 (CD17[1])                                     | INPUT/OUTPUT                 |  |
| 101        | UBUS DATA BIT 16 (CD16[1])                                     | INPUT/OUTPUT                 |  |
| 102        | UBUS DATA BIT 15 (CD15[1])                                     | INPUT/OUTPUT                 |  |
| 103        | UBUS DATA BIT 14 (CD14[1])                                     | INPUT/OUTPUT                 |  |
| 104<br>105 | UBUS DATA BIT 13 (CD13[1])<br>UBUS DATA BIT 12 (CD12[1])       | INPUT/OUTPUT<br>INPUT/OUTPUT |  |
| 105        | GROUND (GRD)                                                   | GROUND                       |  |
| 100        | UBUS DATA BIT 11 (CD11[1])                                     | INPUT/OUTPUT                 |  |
| 108        | UBUS DATA BIT 10 (CD10[1])                                     | INPUT/OUTPUT                 |  |
| 109        | UBUS DATA BIT 09 (CD09[1])                                     | INPUT/OUTPUT                 |  |
| 110        | UBUS DATA BIT 08 (CD08[1])                                     | INPUT/OUTPUT                 |  |
| 111        | +5V (VCC)                                                      | POWER                        |  |
| 112        | UBUS DATA BIT 07 (CD07[1])                                     | INPUT/OUTPUT                 |  |
| 113        | UBUS DATA BIT 06 (CD06[1])                                     | INPUT/OUTPUT                 |  |
| 114        | UBUS DATA BIT 05 (CD05[1])                                     | INPUT/OUTPUT                 |  |
| 115        | UBUS DATA BIT 04 (CD04[1])                                     | INPUT/OUTPUT                 |  |
| 116        | UBUS DATA BIT 03 (CD03[1])                                     | INPUT/OUTPUT                 |  |
| 117<br>118 | UBUS DATA BIT 02 (CD02[1])<br>GROUND (GRD)                     | INPUT/OUTPUT<br>GROUND       |  |
| 118        | UBUS DATA BIT 01 (CD01[1])                                     | INPUT/OUTPUT                 |  |
| 120        | UBUS DATA BIT 00 (CD00[1])                                     | INPUT/OUTPUT                 |  |
| 120        |                                                                |                              |  |

| 110 |   | 01 |
|-----|---|----|
| 120 | 1 | 02 |
|     |   |    |

|            | 120-PIN PROCESSING BUS (PBUS) EDGE CONNECTIONS     |                                 |  |
|------------|----------------------------------------------------|---------------------------------|--|
| PIN        | DESCRIPTION                                        | FUNCTION<br>(From System Board) |  |
| 001        | BUB CONNECTOR INHIBIT SLOT 0 (BINHIB0[0])          | OUTPUT                          |  |
| 002        | GROUND (GRD)                                       | GROUND                          |  |
| 003        | <b>OPERATIONAL INTERRUPT LEVEL 15 (OPINT15[0])</b> | INPUT                           |  |
| 004        | BUB INTERRUPT LEVEL 10 (UINT10[0])                 | INPUT                           |  |
| 005        | BUB INTERRUPT LEVEL 12 (UINT12[0])                 | INPUT                           |  |
| 006        | +5V (VCC)                                          | POWER                           |  |
| 007        | BUB INTERRUPT LEVEL 14 (UINT14[0])                 | INPUT                           |  |
| 008        | GROUND (GRD)                                       | GROUND                          |  |
| 009        | BUB PHYSICAL ADDRESS STROBE (UPAS[0])              | INPUT                           |  |
| 010        | BUB DATA BIT 31 (BD31[1])                          | INPUT/OUTPUT                    |  |
| 011        | BUB DATA BIT 30 (BD30[1])                          | INPUT/OUTPUT                    |  |
| 012        | BUB DATA BIT 29 (BD29[1])                          | INPUT/OUTPUT                    |  |
| 013        | BUB DATA BIT 28 (BD28[1])                          | INPUT/OUTPUT                    |  |
| 014        | GROUND (GRD)                                       | GROUND                          |  |
| 015        | +5V (VCC)                                          | POWER                           |  |
| 016        | BUB DATA BIT 26 (BD26[1])                          | INPUT/OUTPUT                    |  |
| 017        | BUB DATA BIT 27 (BD27[1])                          | INPUT/OUTPUT                    |  |
| 018        | BUB DATA BIT 25 (BD25[1])                          | INPUT/OUTPUT                    |  |
| 019        | BUB DATA BIT 24 (BD24[1])                          | INPUT/OUTPUT                    |  |
| 020        | GROUND (GRD)                                       | GROUND                          |  |
| 021        | BUB DATA BIT 22 (BD22[1])                          | INPUT/OUTPUT                    |  |
| 022        | BUB DATA BIT 23 (BD23[1])                          | INPUT/OUTPUT                    |  |
| 023        | BUB DATA BIT 21 (BD21[1])                          | INPUT/OUTPUT                    |  |
| 024        | BUB DATA BIT 20 (BD20[1])                          | INPUT/OUTPUT                    |  |
| 025        | BUB DATA BIT 18 (BD18[1])                          | INPUT/OUTPUT                    |  |
| 026        | BUB DATA BIT 19 (BD19[1])                          | INPUT/OUTPUT                    |  |
| 027        | GROUND (GRD)                                       | GROUND                          |  |
| 028        | BUB DATA BIT 17 (BD17[1])                          | INPUT/OUTPUT                    |  |
| 029        | BUB DATA BIT 16 (BD16[1])                          | INPUT/OUTPUT                    |  |
| 030        | BUB DATA BIT 14 (BD14[1])                          | INPUT/OUTPUT                    |  |
| 031        | BUB DATA BIT 15 (BD15[1])                          | INPUT/OUTPUT<br>POWER           |  |
| 032<br>033 | +5V (VCC)<br>BUB DATA BIT 12 (BD12[1])             | INPUT/OUTPUT                    |  |
| 033        | BUB DATA BIT 13 (BD13[1])                          | INPUT/OUTPUT                    |  |
| 034        | +12V (V12P)                                        | POWER                           |  |
| 036        | BUB DATA BIT 11 (BD11[1])                          | INPUT/OUTPUT                    |  |
| 037        | BUB DATA BIT 10 (BD10[1])                          | INPUT/OUTPUT                    |  |
| 038        | -12V (V12N)                                        | POWER                           |  |
| 039        | GROUND (GRD)                                       | GROUND                          |  |
| 040        | BUB DATA BIT 08 (BD08[1])                          | INPUT/OUTPUT                    |  |
| 041        | BUB DATA BIT 09 (BD09[1])                          | INPUT/OUTPUT                    |  |
| 042        | BUB DATA BIT 07 (BD07[1])                          | INPUT/OUTPUT                    |  |
| 043        | BUB DATA BIT 06 (BD06[1])                          | INPUT/OUTPUT                    |  |
| 044        | BUB DATA BIT 05 (BD05[1])                          | INPUT/OUTPUT                    |  |
| 045        | BUB DATA BIT 04 (BD04[1])                          | INPUT/OUTPUT                    |  |
| 046        | GROUND (GRD)                                       | GROUND                          |  |
| 047        | BUB DATA BIT 03 (BD03[1])                          | INPUT/OUTPUT                    |  |
| 048        | BUB DATA BIT 02 (BD02[1])                          | INPUT/OUTPUT                    |  |
| 049        | BUB DATA BIT 00 (BD00[1])                          | INPUT/OUTPUT                    |  |
| 050        | BUB DATA BIT 01 (BD01[1])                          | INPUT/OUTPUT                    |  |
| 051        | GROUND (GRD)                                       | GROUND                          |  |
| 052        | NOT USED                                           | NC                              |  |
| 053        | NOT USED                                           | NC                              |  |
| 054        | NOT USED                                           | NC                              |  |
| 055        | NOT USED                                           | NC                              |  |
| 056        | +5V (VCC)                                          | POWER                           |  |
| 057        | BUB ADDRESS BIT 26 (BA26[1])                       | INPUT/OUTPUT                    |  |
| 058        | BUB ADDRESS BIT 25 (BA25[1])                       | INPUT/OUTPUT                    |  |

|            | 120-PIN PROCESSING BUS (PBUS) EDGE CONNECTIONS (Contd)             |                                 |  |
|------------|--------------------------------------------------------------------|---------------------------------|--|
| PIN        | DESCRIPTION                                                        | FUNCTION<br>(From System Board) |  |
| 059        | BUB ADDRESS BIT 24 (BA24[1])                                       | INPUT/OUTPUT                    |  |
| 060        | BUB ADDRESS BIT 23 (BA23[1])                                       | INPUT/OUTPUT                    |  |
| 061        | BUB ADDRESS BIT 22 (BA22[1])                                       | INPUT/OUTPUT                    |  |
| 062        | BUB ADDRESS BIT 21 (BA21[1])                                       | INPUT/OUTPUT                    |  |
| 063        | GROUND (GRD)                                                       | GROUND                          |  |
| 064        | BUB ADDRESS BIT 20 (BA20[1])                                       | INPUT/OUTPUT                    |  |
| 065<br>066 | BUB ADDRESS BIT 12 (BA12[1])<br>BUB ADDRESS BIT 19 (BA19[1])       | INPUT/OUTPUT<br>INPUT/OUTPUT    |  |
| 067        | BUB ADDRESS BIT 18 (BA18[1])                                       | INPUT/OUTPUT                    |  |
| 068        | BUB ADDRESS BIT 17 (BA17[1])                                       | INPUT/OUTPUT                    |  |
| 069        | BUB ADDRESS BIT 16 (BA16[1])                                       | INPUT/OUTPUT                    |  |
| 070        | GROUND (GRD)                                                       | GROUND                          |  |
| 071        | BUB ADDRESS BIT 15 (BA15[1])                                       | INPUT/OUTPUT                    |  |
| 072        | BUB ADDRESS BIT 14 (BA14[1])                                       | INPUT/OUTPUT                    |  |
| 073        | GROUND (GRD)                                                       | GROUND                          |  |
| 074<br>075 | BUB ADDRESS BIT 13 (BA13[1])                                       | INPUT/OUTPUT<br>POWER           |  |
| 075        | +5V (VCC)<br>SYSTEM RESET (SYSRST[0])                              | OUTPUT                          |  |
| 077        | REQUEST SYSTEM RESET (RQRST[0])                                    | INPUT                           |  |
| 078        | BUB ADDRESS BIT 27 (BA27[1])                                       | INPUT/OUTPUT                    |  |
| 079        | PBUS INTERLOCK (UINTLK[0])                                         | INPUT                           |  |
| 080        | GROUND (GRD)                                                       | GROUND                          |  |
| 081        | BUB ADDRESS BIT 11 (BA11[1])                                       | INPUT/OUTPUT                    |  |
| 082        | BUB ADDRESS BIT 10 (BA10[1])                                       | INPUT/OUTPUT                    |  |
| 083<br>084 | BUB ADDRESS BIT 09 (BA09[1])<br>BUB ADDRESS BIT 08 (BA08[1])       | INPUT/OUTPUT                    |  |
| 085        | BUB ADDRESS BIT 07 (BA07[1])                                       | INPUT/OUTPUT<br>INPUT/OUTPUT    |  |
| 086        | BUB ADDRESS BIT 06 (BA06[1])                                       | INPUT/OUTPUT                    |  |
| 087        | GROUND (GRD)                                                       | GROUND                          |  |
| 088        | BUB ADDRESS BIT 05 (BA05[1])                                       | INPUT/OUTPUT                    |  |
| 089        | GROUND (GRD)                                                       | GROUND                          |  |
| 090        | BUB ADDRESS BIT 04 (BA04[1])                                       | INPUT/OUTPUT                    |  |
| 091<br>092 | BUB ADDRESS BIT 03 (BA03[1])<br>BUB ADDRESS BIT 02 (BA02[1])       | INPUT/OUTPUT<br>INPUT/OUTPUT    |  |
| 092        | BUB ADDRESS BIT 02 (BA01[1])                                       | INPUT/OUTPUT                    |  |
| 094        | +5V (VCC)                                                          | POWER                           |  |
| 095        | BUB ADDRESS BIT 00 (BA00[1])                                       | INPUT/OUTPUT                    |  |
| 096        | NOT USED                                                           | NC                              |  |
| 097        | NOT USED                                                           | NC                              |  |
| 098        | NOT USED                                                           | NC                              |  |
| 099        | GROUND (GRD)                                                       | GROUND                          |  |
| 100<br>101 | NOT USED<br>PBUS READ/WRITE (UR1W0)                                | NC<br>INPUT                     |  |
| 101        | +5V (VCC)                                                          | POWER                           |  |
| 103        | PBUS CONNECTOR CHIP SELECT (UPCS[0])                               | OUTPUT                          |  |
| 104        | GROUND (GRD)                                                       | GROUND                          |  |
| 105        | PBUS DATA SIZE BIT 0 (UDSIZE0[1])                                  | INPUT/OUTPUT                    |  |
| 106        | PBUS DATA SIZE BIT 1 (UDSIZE1[1])                                  | INPUT/OUTPUT                    |  |
| 107<br>108 | PBUS ADDRESS STROBE (UAS[0])<br>BUB PERIPHERAL PARITY (BPCHECK[0]) | INPUT<br>INPUT                  |  |
| 108        | PBUS MEMORY ACCESS (CPUMEM[0])                                     | INPUT                           |  |
| 110        | CPU LATCH (CPULTCH[1])                                             | OUTPUT                          |  |
| 111        | +5V (VCC)                                                          | POWER                           |  |
| 112        | PBUS FAULT (UFLT[0])                                               | OUTPUT                          |  |
| 113        | PBUS OUTPUT ENABLE (CBALOE[0])                                     | OUTPUT                          |  |
| 114        | PBUS DATA ACKNOWLEDGE (UDTCK[0])                                   | OUTPUT                          |  |
| 115        | PBUS DATA STROBE (BDS[0])                                          | INPUT/OUTPUT<br>OUTPUT          |  |
| 116<br>117 | BUB ADDRESS STROBE (BAS[0])<br>BUB DATA ACKNOWLEDGE (BDTCK[0])     | INPUT                           |  |
| 117        | GROUND (GRD)                                                       | GROUND                          |  |
| 119        | NOT USED                                                           | NC                              |  |
| 120        | NOT USED                                                           | NC                              |  |

|     | 34-PIN FLOPPY DISK CONNECTOR, J10  |        |  |
|-----|------------------------------------|--------|--|
| PIN | PIN DESCRIPTION                    |        |  |
| 1   | GROUND                             | GROUND |  |
| 2   | FLOPPY LOW RPM (FLOW)              | OUTPUT |  |
| 3   | GROUND                             | GROUND |  |
| 4   | NOT USED (FSPARE)                  | NC     |  |
| 5   | GROUND                             | GROUND |  |
| 6   | FLOPPY DRIVE SELECT 3 (FDS3[0])    | OUTPUT |  |
| 7   | GROUND                             | GROUND |  |
| 8   | INDEX (FINDEX[0])                  | INPUT  |  |
| 9   | GROUND                             | GROUND |  |
| 10  | FLOPPY DRIVE SELECT 0 (FDS0[0])    | OUTPUT |  |
| 11  | GROUND                             | GROUND |  |
| 12  | FLOPPY DRIVE SELECT 1 (FDS1[0])    | OUTPUT |  |
| 13  | GROUND                             | GROUND |  |
| 14  | FLOPPY DRIVE SELECT 2 (FDS2[0])    | OUTPUT |  |
| 15  | GROUND                             | GROUND |  |
| 16  | MOTOR ON (FMOTON[0])               | OUTPUT |  |
| 17  | GROUND                             | GROUND |  |
| 18  | FLOPPY DIRECTION SELECT (FDIRC[0]) | OUTPUT |  |
| 19  | GROUND                             | GROUND |  |
| 20  | FLOPPY STEP (FSTEP[0])             | OUTPUT |  |
| 21  | GROUND                             | GROUND |  |
| 22  | WRITE DATA (FWDATA[0])             | OUTPUT |  |
| 23  | GROUND                             | GROUND |  |
| 24  | FLOPPY WRITE GATE (FWGATE[0])      | OUTPUT |  |
| 25  | GROUND                             | GROUND |  |
| 26  | FLOPPY TRACK 0 (FTR0[0])           | INPUT  |  |
| 27  | GROUND                             | GROUND |  |
| 28  | FLOPPY WRITE PROTECT (FWRTPRT[0])  | INPUT  |  |
| 29  | GROUND                             | GROUND |  |
| 30  | READ DATA (FRDATA[0])              | INPUT  |  |
| 31  | GROUND                             | GROUND |  |
| 32  | FLOPPY SIDE SELECT (FSSEL[0])      | OUTPUT |  |
| 33  | GROUND                             | GROUND |  |
| 34  | FLOPPY READY (FRDY[0])             | INPUT  |  |

#### 

| 4-PLUG POWER CONNECTORS |             |          |
|-------------------------|-------------|----------|
| PIN                     | DESCRIPTION | FUNCTION |
| 1,2,3,4                 | +5 V (VCC)  | POWER    |

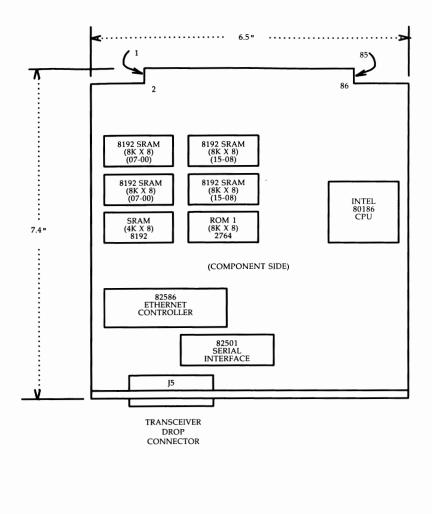
| 5-PLUG GROUND CONNECTORS |              |          |  |
|--------------------------|--------------|----------|--|
| PIN                      | DESCRIPTION  | FUNCTION |  |
| 1,2,3,4,5                | GROUND (GRD) | GROUND   |  |

|     | <b>10-PIN POWER CONTROL CONNECTOR</b> |         |  |
|-----|---------------------------------------|---------|--|
| PIN | DESCRIPTION FUNCTION                  |         |  |
| 1,2 | +12V RS-232C SUPPLY (V12P)            | POWER   |  |
| 3,4 | GROUND                                | GROUND  |  |
| 5   | -12V RS-232C SUPPLY (V12N)            | POWER   |  |
| 6   | SYSTEM RESET REQUEST (RQRST[0])       | CONTROL |  |
| 7   | POWER ON HOLD (PWRON[1])              | CONTROL |  |
| 8   | EXTERNAL POWER HOLD (EXTPWR[1])       | CONTROL |  |
|     | (SOFT POWER CONTROL)                  |         |  |
| 9   | THERMAL SHUTDOWN REQUEST (THSDN[0])   | CONTROL |  |
| 10  | POWER DOWN REQUEST (PDWNRQ[0])        | CONTROL |  |

|             | 3-PIN BATTERY CONNECTOR, J11       |             |  |
|-------------|------------------------------------|-------------|--|
| PIN         |                                    | DESCRIPTION |  |
| 1<br>2<br>3 | +3.9V (VBAT)<br>NOT USED<br>GROUND |             |  |

|        | 2-PIN DIAGNOSTIC INDICATOR CONNECTOR, J12 |  |  |
|--------|-------------------------------------------|--|--|
| PIN    | DESCRIPTION                               |  |  |
| 1<br>2 | D1PU1 (+)<br>ERLED0 (-)                   |  |  |

|        | 2-PIN POWER INDICATOR CONNECTOR, J13 |
|--------|--------------------------------------|
| PIN    | DESCRIPTION                          |
| 1<br>2 | D2PU2 (+)<br>GLEDON0 (-)             |


## **CM195A NETWORK INTERFACE CARD INTERCONNECTIONS**

The CM195A Network Interface (NI) Card interconnections include the following:

- 86-pin card edge connections
- 15-transceiver drop connector.

Figure B-20 shows the layout of the CM195A NI Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.

#### Appendix: CONNECTOR AND CABLING INFORMATION



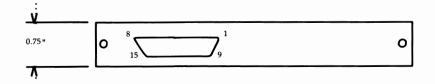
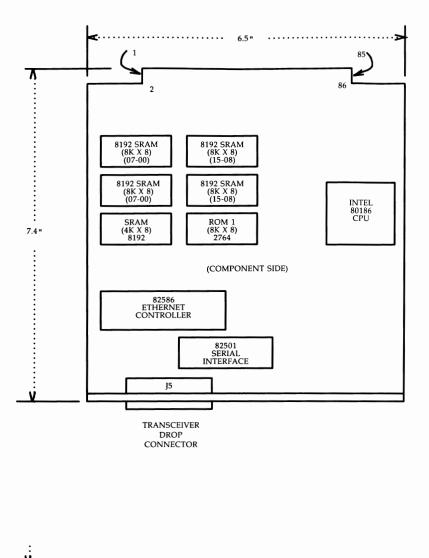
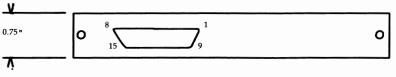
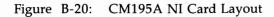






Figure B-20: CM195A NI Card Layout

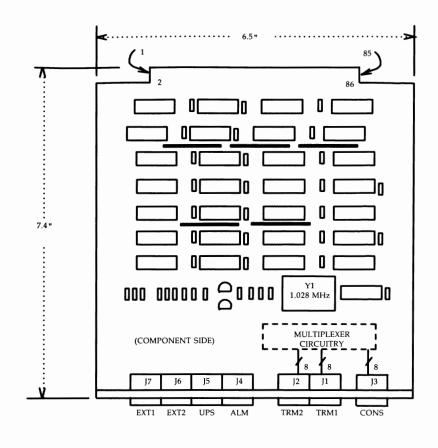


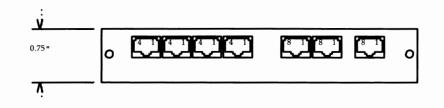




|     | 86-PIN CM195A NI CARD EDGE CONNECTION                     | s            |
|-----|-----------------------------------------------------------|--------------|
| PIN | DESCRIPTION                                               | FUNCTION     |
| 001 | +12V (V12P)                                               | POWER        |
| 002 | NOT USED                                                  | NC           |
| 003 | -12V (V12N)                                               | POWER        |
| 004 | PERIPHERAL INTERRUPT REQUEST 1 (PINT1[0])                 | OUTPUT       |
| 005 | PERIPHERAL BUS ACKNOWLEDGE IN 1 (PBACKI1[0])              | INPUT/OUTPUT |
| 006 | NOT USED                                                  | NC           |
| 007 | PERIPHERAL CARD SELECT (PCS01[0]—PCS12[0], as applicable) | INPUT        |
| 008 | NOT USED                                                  | NC           |
| 009 | GROUND (GRD)                                              | GROUND       |
| 010 | SYSTEM RESET (SYSRST[0])                                  | INPUT        |
| 011 | NOT USED                                                  | NC           |
| 012 | PERIPHERAL CARD FAILURE (PFAIL[0])                        | OUTPUT       |
| 013 | INTERRUPT ACKNOWLEDGE IN 2 (PIAKI2[0])                    | INPUT/OUTPUT |
| 014 | BUS FAULT (PFLT[0])                                       | INPUT        |
| 015 | INTERRUPT ACKNOWLEDGE IN 2 (PIAKI2[0])                    | INPUT/OUTPUT |
| 016 | GROUND (GRD)                                              | GROUND       |
| 017 | +5V (VCC)                                                 | POWER        |
| 018 | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])                   | INPUT/OUTPUT |
| 019 | PERIPHERAL INTERRUPT ACKNOWLEDGE IN 1 (PIAKI1[0])         | INPUT/OUTPUT |
| 020 | PERIPHERAL DATA STROBE 1 (PDS1[0])                        | INPUT/OUTPUT |
| 021 | PERIPHERAL INPUT ACKNOWLEDGE OUT 1 (PIAKO1[0])            | INPUT/OUTPUT |
| 022 | PERIPHERAL DATA BIT 00 (PD00[1])                          | INPUT/OUTPUT |
| 023 | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKI0[0])             | INPUT/OUTPUT |
| 024 | PERIPHERAL DATA BIT 02 (PD02[1])                          | INPUT/OUTPUT |
| 025 | GROUND (GRD)                                              | GROUND       |
| 026 | PERIPHERAL DATA BIT 03 (PD03[1])                          | INPUT/OUTPUT |
| 027 | PERIPHERAL BUSY (PBUSY[0])                                | INPUT/OUTPUT |
| 028 | PERIPHERAL DATA BIT 05 (PD05[1])                          | INPUT/OUTPUT |
| 029 | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKI0[0])             | INPUT/OUTPUT |
| 030 | PERIPHERAL DATA BIT 07 (PD07[1])                          | INPUT/OUTPUT |
| 031 | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])          | OUTPUT       |
| 032 | GROUND (GRD)                                              | GROUND       |
| 033 | PERIPHERAL DATA STROBE 0 (PDS0[0])                        | INPUT/OUTPUT |
| 034 | PERIPHERAL DATA BIT 08 (PD08[1])                          | INPUT/OUTPUT |
| 035 | PERIPHERAL DATA BIT 01 (PD01[1])                          | INPUT/OUTPUT |
| 036 | PERIPHERAL DATA BIT 10 (PD10[1])                          | INPUT/OUTPUT |
| 037 | GROUND (GRD)                                              | GROUND       |
| 038 | PERIPHERAL DATA BIT 12 (PD12[1])                          | INPUT/OUTPUT |
| 039 | PERIPHERAL DATA BIT 04 (PD04[1])                          | INPUT/OUTPUT |
| 040 | +5V (VCC)                                                 | POWER        |
| 041 | GROUND (GRD)                                              | GROUND       |
| 042 | PERIPHERAL DATA BIT 13 (PD13[1])                          | INPUT/OUTPUT |
| 043 | PERIPHERAL DATA BIT 06 (PD06[1])                          | INPUT/OUTPUT |

|            | 86-PIN CM195A NI CARD EDGE CONNECTIONS (Contd)                                                 |                  |  |
|------------|------------------------------------------------------------------------------------------------|------------------|--|
| PIN        | DESCRIPTION                                                                                    | FUNCTION         |  |
| 044        | PERIPHERAL DATA BIT 15 (PD15[1])                                                               | INPUT/OUTPUT     |  |
| 045        | PERIPHERAL DATA BIT 09 (PD09[1])                                                               | INPUT/OUTPUT     |  |
| 046        | PERIPHERAL BUS REQUEST (PBRQ[0])                                                               | OUTPÚT           |  |
| 047        | PERIPHERAL DATA BIT 11 (PD11[1])                                                               | INPUT/OUTPUT     |  |
| 048        | GROUND (GRD)                                                                                   | GROUND           |  |
| 049        | GROUND (GRD)                                                                                   | GROUND           |  |
| 050        | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])                                                   | INPUT/OUTPUT     |  |
| 051        | PERIPHERAL DATA BIT 14 (PD14[1])                                                               | INPUT/OUTPUT     |  |
| 052        | PERIPHERAL INTERLOCK OPERATION (PLOCK[0])                                                      | OUTPUT           |  |
| 053        | PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO[0])                                                     | INPUT/OUTPUT     |  |
| 054        | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1])                                                  | INPUT/OUTPUT     |  |
| 055        | PERIPHERAL READ-WRITE (PR1W0)                                                                  | INPUT/OUTPUT     |  |
| 056        | GROUND (GRD)                                                                                   | GROUND           |  |
| 057        | GROUND (GRD)                                                                                   | GROUND           |  |
| 058        | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1])                                                  | INPUT/OUTPUT     |  |
| 059        | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1])                                                  | INPUT/OUTPUT     |  |
| 060        | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1])                                                  | OUTPUT           |  |
| 061        | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1])                                                  | OUTPUT           |  |
| 062        | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1])                                                  | OUTPUT           |  |
| 063        | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1])                                                  | OUTPUT           |  |
| 064        | +5V (VCC)                                                                                      | POWER            |  |
| 065        | GROUND                                                                                         | GROUND           |  |
| 066        | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1])                                                  | OUTPUT           |  |
| 067        | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1])                                                  | OUTPUT           |  |
| 068        | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1])                                                  | OUTPUT           |  |
| 069        | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1])                                                  | OUTPUT           |  |
| 070        | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1])                                                  | OUTPUT           |  |
| 071        | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1])                                                  | OUTPUT           |  |
| 072        | GROUND                                                                                         | GROUND           |  |
| 073        | GROUND                                                                                         | GROUND           |  |
| 074        | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1])                                                  | OUTPUT           |  |
| 075        | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1])                                                  | OUTPUT           |  |
| 076        | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1])                                                  | OUTPUT           |  |
| 077        | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1])                                                  | OUTPUT           |  |
| 078        | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1])                                                  | OUTPUT           |  |
| 079        | PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1])                                                  | OUTPUT           |  |
| 080        | GROUND                                                                                         | GROUND           |  |
| 081        | GROUND                                                                                         | GROUND           |  |
| 082        | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1])                                                  | OUTPUT           |  |
| 083<br>084 | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1]) | OUTPUT<br>OUTPUT |  |
| 084<br>085 | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1]) | OUTPUT           |  |
| 085        | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1]) | OUTPUT           |  |
| 000        |                                                                                                | 001101           |  |


|     | 15-PIN CM195A NI CARD TRANSCEIVER DROP CONNECTOR |          |
|-----|--------------------------------------------------|----------|
| PIN | DESCRIPTION                                      | FUNCTION |
| 01  | GROUND                                           | GROUND   |
| 02  | COLLISION DETECTED (CDS1)(COIL+)                 | INPUT    |
| 03  | TRANSMITTED DATA (TDS1)(TX+)                     | OUTPUT   |
| 04  | NOT USED                                         | NC       |
| 05  | RECEIVE DATA (RDS1)(RX+)                         | INPUT    |
| 06  | TRANSCEIVER POWER RETURN (VXCR)                  | GROUND   |
| 07  | NOT USED                                         | NC       |
| 08  | NOT USED                                         | NC       |
| 09  | COLLISION DETECTED RETURN (RDR0)                 | INPUT    |
| 10  | TRANSMITTED DATA RETURN (TDR0)(TX-)              | OUTPUT   |
| 11  | NOT USED                                         | NC       |
| 12  | RECEIVED DATA RETURN (RDR0)(RX-)                 | INPUT    |
| 13  | +12V TRANSCEIVER POWER (VXCS)(V12P)              | POWER    |
| 14  | NOT USED                                         | NC       |
| 15  | NOT USED                                         | NC       |


# CM195AA ALARM INTERFACE CIRCUIT CARD INTERCONNECTIONS

The CM195AA Alarm Interface Circuit (AIC) Card interconnections include the following:

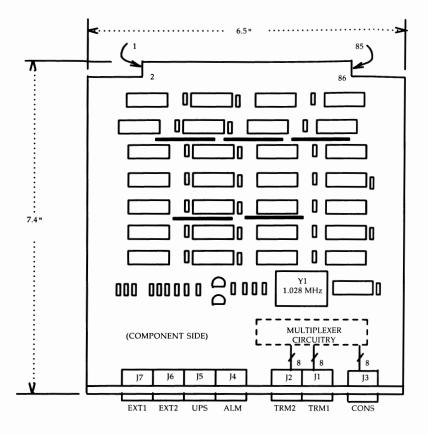

- 86-pin card edge connections
- Three 8-pin modular jacks
- Four 4-pin modular jacks.

Figure B-21 shows the layout of the CM195AA AIC Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.





### Figure B-21: CM195AA AIC Card Layout



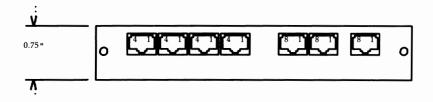



Figure B-21: CM195AA AIC Card Layout

|     | 86-PIN CM195AA AIC CARD EDGE CONNECTIONS           |              |
|-----|----------------------------------------------------|--------------|
| PIN | DESCRIPTION                                        | FUNCTION     |
| 001 | +12V (V12P)                                        | POWER        |
| 002 | PERIPHERAL INTERRUPT REQUEST 2 (PINT2[0])          | OUTPUT       |
| 003 | -12V (V12N)                                        | POWER        |
| 004 | NOT USED                                           | NC           |
| 005 | PERIPHERAL BUS ACKNOWLEDGE IN 1 (PBACKI1[0])       | INPUT/OUTPUT |
| 006 | NOT USED                                           | NC           |
| 007 | PERIPHERAL CARD SELECT (PCS0[0])                   | INPUT        |
| 008 | RESET REQUEST (RQRST[0])                           | OUTPUT       |
| 009 | GROUND (GRD)                                       | GROUND       |
| 010 | SYSTEM RESET (SYSRST[0])                           | INPUT        |
| 011 | NOT USED                                           | NC           |
| 012 | NOT USED                                           | NC           |
| 013 | INTERRUPT ACKNOWLEDGE IN 2 (PIAKI2[0])             | INPUT/OUTPUT |
| 014 | NOT USED                                           | NC           |
| 015 | INTERRUPT ACKNOWLEDGE IN 2 (PIAKI2[0])             | INPUT/OUTPUT |
| 016 | GROUND (GRD)                                       | GROUND       |
| 017 | NOT USED                                           | NC           |
| 018 | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])            | INPUT/OUTPUT |
| 019 | PERIPHERAL INTERRUPT ACKNOWLEDGE OUT 1 (PIAKO1[0]) | INPUT/OUTPUT |
| 020 | PERIPHERAL DATA STROBE 1 (PDS1[0])                 | INPUT/OUTPUT |
| 021 | PERIPHERAL INPUT ACKNOWLEDGE OUT 1 (PIAKO1[0])     | OUTPUT       |
| 022 | PERIPHERAL DATA BIT 00 (PD00[1])                   | INPUT/OUTPUT |
| 023 | PERIPHERAL INPUT ACKNOWLEDGE OUT 0 (PIAKO0[0])     | INPUT/OUTPUT |
| 024 | PERIPHERAL DATA BIT 02 (PD02[1])                   | INPUT/OUTPUT |
| 025 | GROUND (GRD)                                       | GROUND       |
| 026 | PERIPHERAL DATA BIT 03 (PD03[1])                   | INPUT/OUTPUT |
| 027 | NOT USED                                           | NC           |
| 028 | PERIPHERAL DATA BIT 05 (PD05[1])                   | INPUT/OUTPUT |
| 029 | PERIPHERAL INPUT ACKNOWLEDGE OUT 0 (PIAKO0[0])     | OUTPUT       |
| 030 | PERIPHERAL DATA BIT 07 (PD07[1])                   | INPUT/OUTPUT |
| 031 | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])   | OUTPUT       |
| 032 | GROUND (GRD)                                       | GROUND       |
| 033 | PERIPHERAL DATA STROBE 0 (PDS0[0])                 | INPUT/OUTPUT |
| 034 | PERIPHERAL DATA BIT 08 (PD08[1])                   | INPUT/OUTPUT |
| 035 | PERIPHERAL DATA BIT 01 (PD01[1])                   | INPUT/OUTPUT |
| 036 | PERIPHERAL DATA BIT 10 (PD10[1])                   | INPUT/OUTPUT |
| 037 | GROUND (GRD)                                       | GROUND       |
| 038 | PERIPHERAL DATA BIT 12 (PD12[1])                   | INPUT/OUTPUT |
| 039 | PERIPHERAL DATA BIT 04 (PD04[1])                   | INPUT/OUTPUT |
| 040 | +5V (VCC)                                          | POWER        |
| 041 | GROUND (GRD)                                       | GROUND       |
| 042 | PERIPHERAL DATA BIT 13 (PD13[1])                   | INPUT/OUTPUT |
| 043 | PERIPHERAL DATA BIT 06 (PD06[1])                   | INPUT/OUTPUT |

| PIN        | DESCRIPTION                                   | FUNCTION     |
|------------|-----------------------------------------------|--------------|
| 044        | PERIPHERAL DATA BIT 15 (PD15[1])              | INPUT/OUTPUT |
| 045        | PERIPHERAL DATA BIT 09 (PD09[1])              | INPUT/OUTPUT |
| 046        | NOT USED                                      | NC           |
| 047        | PERIPHERAL DATA BIT 11 (PD11[1])              | INPUT/OUTPUT |
| 048        | GROUND (GRD)                                  | GROUND       |
| 049        | GROUND (GRD)                                  | GROUND       |
| 050        | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])  | INPUT/OUTPUT |
| 051        | PERIPHERAL DATA BIT 14 (PD14[1])              | INPUT/OUTPUT |
| 052        | NOT USED                                      | NC           |
| 053        | PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO[0])    | INPUT/OUTPUT |
| 054        | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1]) | INPUT        |
| 055        | PERIPHERAL READ-WRITE (PR1W0)                 | INPUT/OUTPUT |
| 056        | GROUND (GRD)                                  | GROUND       |
| 057        | GROUND (GRD)                                  | GROUND       |
| 058        | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1]) | INPUT/OUTPUT |
| 059        | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1]) | INPUT/OUTPUT |
| 060        | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1]) | OUTPUT       |
| 061        | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1]) | INPUT        |
| 062        | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1]) | OUTPUT       |
| 063        | NOT USED                                      | NC           |
| 064        | +5V (VCC)                                     | POWER        |
| 065        | GROUND                                        | GROUND       |
| 066        | NOT USED                                      | NC           |
| 067        | NOT USED                                      | NC           |
| 068        | NOT USED                                      | NC           |
| 069        | NOT USED                                      | NC           |
| 070        | NOT USED                                      | NC           |
| 071        | NOT USED                                      | NC           |
| 072        | GROUND                                        | GROUND       |
| 073        | GROUND                                        | GROUND       |
| 074        | NOT USED                                      | NC           |
| 075<br>076 | NOT USED<br>NOT USED                          | NC           |
| 076        | NOT USED                                      | NC           |
| 077        | NOT USED                                      | NC           |
| 078        | NOT USED                                      | NC           |
| 079        | GROUND                                        | GROUND       |
| 080        | GROUND                                        | GROUND       |
| 081        | NOT USED                                      | NC           |
| 083        | NOT USED                                      | NC           |
| 084        | NOT USED                                      | NC           |
| 085        | NOT USED                                      | NC           |
| 086        | NOT USED                                      | NC           |

|     | 8-PIN AIC CARD CONS CONNECTOR, J3 |          |
|-----|-----------------------------------|----------|
| PIN | DESCRIPTION                       | FUNCTION |
| 1   | REQUEST TO SEND (RTS)             | OUTPUT   |
| 2   | GROUND                            | GROUND   |
| 3   | DATA CARRIER DETECT (DCD)         | OUTPUT   |
| 4   | RECEIVE DATA (RXD)                | OUTPUT   |
| 5   | DATA TERMINAL READY (DTR)         | INPUT    |
| 6   | TRANSMIT DATA (TXD)               | INPUT    |
| 7   | CLEAR TO SEND (CTS)               | OUTPUT   |
| 8   | GROUND                            | GROUND   |
|     |                                   |          |

|                                      | 8-PIN AIC CARD TRM CONNECTORS, J1 and J2                                                                                                                                | AIC CARD TRM CONNECTORS, J1 and J2                                |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| PIN                                  | DESCRIPTION                                                                                                                                                             | FUNCTION                                                          |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | GROUND<br>CLEAR TO SEND (CTS)<br>TRANSMIT DATA (TXD)<br>DATA TERMINAL READY (DTR)<br>RECEIVE DATA (RXD)<br>DATA CARRIER DETECT (DCD)<br>GROUND<br>REQUEST TO SEND (RTS) | GROUND<br>OUTPUT<br>INPUT<br>OUTPUT<br>OUTPUT<br>GROUND<br>OUTPUT |  |

| PIN* | ALM                                 | UPS                     | EXT2                       | EXT1                       |
|------|-------------------------------------|-------------------------|----------------------------|----------------------------|
| 1    | Darlington Emitter†<br>(MJOUT1)     | Ground                  | Ground‡                    | Ground§                    |
| 2    | Darlington Collector†<br>(MAJORIN1) | AC FAILURE<br>(ACFSET0) | EXTERNAL TTL‡<br>(EXT2IN0) | EXTERNAL TTL§<br>(EXT1IN0) |
| 3    | Darlington Emitter¶<br>(MINOUT1)    | Ground                  | Ground                     | Ground                     |
| 4    | Darlington Collector¶<br>(MININ1)   | LOWBAT<br>(LOWBSET0)    | NC                         | NC                         |

- \* P1 is on the right and P4 is on the left of each modular jack, referenced with the component side up and the face plate toward you.
- † Major Alarm outputs (intended for activating an External Alarm Processing Unit).
- ‡ Closure across these pins results in major alarm (accepts either TTL or Closure).
- § Closure across these pins results in minor alarm (accepts either TTL or Closure).
   ¶ Minor Alarm outputs (intended for activating an External Alarm Processing Unit).

# CM195AC/CM195AD "DATAKIT" VCS INTERFACE CARD INTERCONNECTIONS

The CM195AC/CM195AD Datakit Virtual Circuit Switch (VCS) Interface Card consists of two circuit cards. The interconnections for the two cards include the following:

- Two 86-pin card edge connections
- Two 40-conductor ribbon cables
- Fiber optic receiver
- Fiber optic transceiver.

Figure B-22 shows the layout of the Datakit VCS Interface Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.

### - Appendix: CONNECTOR AND CABLING INFORMATION

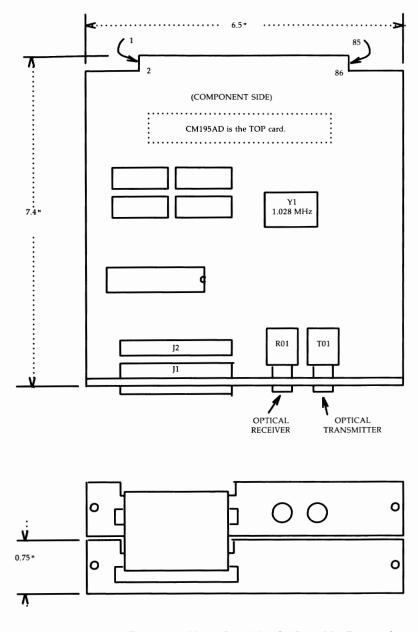
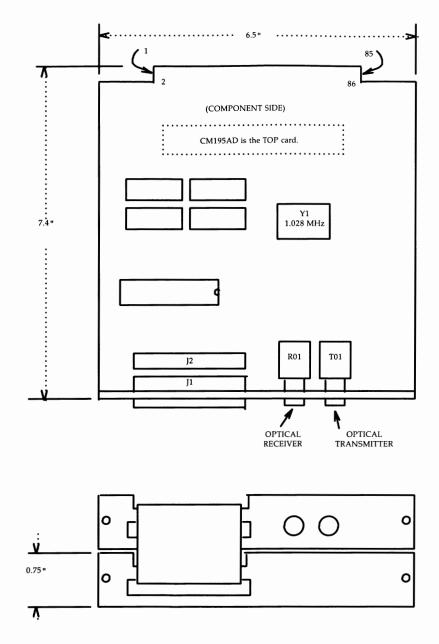
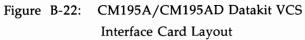





Figure B-22: CM195AC/CM195AD Datakit VCS Interface Card Layout





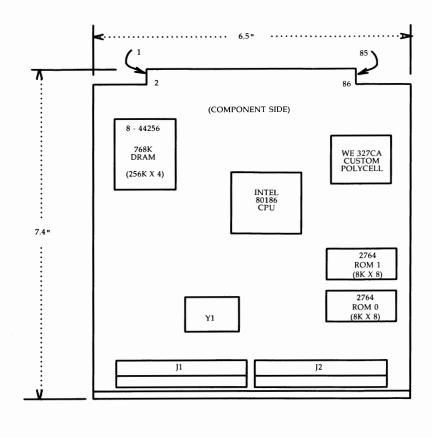
|     | 86-PIN CM195AC DATAKIT VCS CARD EDGE CONN         | 86-PIN CM195AC DATAKIT VCS CARD EDGE CONNECTIONS |  |
|-----|---------------------------------------------------|--------------------------------------------------|--|
| PIN | DESCRIPTION                                       | FUNCTION                                         |  |
| 001 | +12V (V12P)                                       | POWER                                            |  |
| 002 | PERIPHERAL INTERRUPT REQUEST 2 (PINT2[0])         | OUTPUT                                           |  |
| 003 | -12V (V12N)                                       | POWER                                            |  |
| 004 | PERIPHERAL INTERRUPT REQUEST 1 (PINT1[0])         | OUTPUT                                           |  |
| 005 | PERIPHERAL BUS ACKNOWLEDGE IN 1 (PBACKI1[0])      | INPUT/OUTPUT                                     |  |
| 006 | PERIPHERAL INTERRUPT REQUEST 0 (PINT0[0])         | OUTPUT                                           |  |
| 007 | PERIPHERAL CARD SELECT (PCS0[0])                  | INPUT                                            |  |
| 008 | REQUEST RESET (RQRST[0])                          | OUTPUT                                           |  |
| 009 | GROUND (GRD)                                      | GROUND                                           |  |
| 010 | SYSTEM RESET (SYSRST[0])                          | INPUT                                            |  |
| 011 | +3.9V BACKUP BATTERY (VBKUP)                      | POWER                                            |  |
| 012 | PERIPHERAL CARD FAILURE (PFAIL[0])                | OUTPUT                                           |  |
| 013 | INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])           | INPUT/OUTPUT                                     |  |
| 014 | BUS FAULT (PFLT[0])                               | INPUT                                            |  |
| 015 | INTERRUPT ACKNOWLEDGE IN 2 (PIAKI2[0])            | INPUT/OUTPUT                                     |  |
| 016 | GROUND (GRD)                                      | GROUND                                           |  |
| 017 | +5V (VCC)                                         | POWER                                            |  |
| 018 | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])           | INPUT/OUTPUT                                     |  |
| 019 | PERIPHERAL INTERRUPT ACKNOWLEDGE IN 1 (PIAKI1[0]) | INPUT/OUTPUT                                     |  |
| 020 | PERIPHERAL DATA STROBE 1 (PDS1[0])                | INPUT/OUTPUT                                     |  |
| 021 | PERIPHERAL INPUT ACKNOWLEDGE OUT 1 (PIAKO1[0])    | INPUT/OUTPUT                                     |  |
| 022 | PERIPHERAL DATA BIT 00 (PD00[1])                  | INPUT/OUTPUT                                     |  |
| 023 | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKI0[0])     | INPUT/OUTPUT                                     |  |
| 024 | PERIPHERAL DATA BIT 02 (PD02[1])                  | INPUT/OUTPUT                                     |  |
| 025 | GROUND (GRD)                                      | GROUND                                           |  |
| 026 | PERIPHERAL DATA BIT 03 (PD03[1])                  | INPUT/OUTPUT                                     |  |
| 027 | PERIPHERAL BUSY (PBUSY[0])                        | INPUT/OUTPUT                                     |  |
| 028 | PERIPHERAL DATA BIT 05 (PD05[1])                  | INPUT/OUTPUT                                     |  |
| 029 | PERIPHERAL INPUT ACKNOWLEDGE OUT 0 (PIAKO0[0])    | INPUT/OUTPUT                                     |  |
| 030 | PERIPHERAL DATA BIT 07 (PD07[1])                  | INPUT/OUTPUT                                     |  |
| 031 | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])  | OUTPUT                                           |  |
| 032 | GROUND (GRD)                                      | GROUND                                           |  |
| 033 | PERIPHERAL DATA STROBE 0 (PDS0[0])                | INPUT/OUTPUT                                     |  |
| 034 | PERIPHERAL DATA BIT 08 (PD08[1])                  | INPUT/OUTPUT                                     |  |
| 035 | PERIPHERAL DATA BIT 01 (PD01[1])                  | INPUT/OUTPUT                                     |  |
| 036 | PERIPHERAL DATA BIT 10 (PD10[1])                  | INPUT/OUTPUT                                     |  |
| 037 | GROUND (GRD)                                      | GROUND                                           |  |
| 038 | PERIPHERAL DATA BIT 12 (PD12[1])                  | INPUT/OUTPUT                                     |  |
| 039 | PERIPHERAL DATA BIT 04 (PD04[1])                  | INPUT/OUTPUT                                     |  |
| 040 | +5V (VCC)                                         | POWER                                            |  |
| 041 | GROUND (GRD)                                      | GROUND                                           |  |
| 042 | PERIPHERAL DATA BIT 13 (PD13[1])                  | INPUT/OUTPUT                                     |  |
| 043 | PERIPHERAL DATA BIT 06 (PD06[1])                  | INPUT/OUTPUT                                     |  |

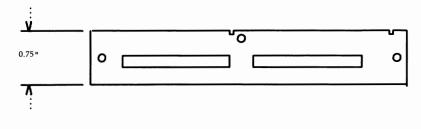
|     | 86-PIN CM195AC DATAKIT VCS CARD EDGE CONN     | 86-PIN CM195AC DATAKIT VCS CARD EDGE CONNECTIONS (Contd) |  |
|-----|-----------------------------------------------|----------------------------------------------------------|--|
| PIN | DESCRIPTION                                   | FUNCTION                                                 |  |
| 044 | PERIPHERAL DATA BIT 15 (PD15[1])              | INPUT/OUTPUT                                             |  |
| 045 | PERIPHERAL DATA BIT 09 (PD09[1])              | INPUT/OUTPUT                                             |  |
| 046 | PERIPHERAL BUS REQUEST (PBRQ[0])              | OUTPUT                                                   |  |
| 047 | PERIPHERAL DATA BIT 11 (PD11[1])              | INPUT/OUTPUT                                             |  |
| 048 | GROUND (GRD)                                  | GROUND                                                   |  |
| 049 | GROUND (GRD)                                  | GROUND                                                   |  |
| 050 | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])  | INPUT/OUTPUT                                             |  |
| 051 | PERIPHERAL DATA BIT 14 (PD14[1])              | INPUT/OUTPUT                                             |  |
| 052 | PERIPHERAL INTERLOCK OPERATION (PLOCK[0])     | OUTPUT                                                   |  |
| 053 | PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO[0])    | INPUT/OUTPUT                                             |  |
| 054 | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1]) | INPUT/OUTPUT                                             |  |
| 055 | PERIPHERAL READ-WRITE (PR1W0)                 | INPUT/OUTPUT                                             |  |
| 056 | GROUND (GRD)                                  | GROUND                                                   |  |
| 057 | GROUND (GRD)                                  | GROUND                                                   |  |
| 058 | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1]) | INPUT/OUTPUT                                             |  |
| 059 | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1]) | INPUT/OUTPUT                                             |  |
| 060 | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1]) | OUTPUT                                                   |  |
| 061 | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1]) | OUTPUT                                                   |  |
| 062 | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1]) | OUTPUT                                                   |  |
| 063 | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1]) | OUTPUT                                                   |  |
| 064 | +5V (VCC)                                     | POWER                                                    |  |
| 065 | GROUND                                        | GROUND                                                   |  |
| 066 | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1]) | OUTPUT                                                   |  |
| 067 | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1]) | OUTPUT                                                   |  |
| 068 | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1]) | OUTPUT                                                   |  |
| 069 | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1]) | OUTPUT                                                   |  |
| 070 | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1]) | OUTPUT                                                   |  |
| 071 | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1]) | OUTPUT                                                   |  |
| 072 | GROUND                                        | GROUND                                                   |  |
| 073 | GROUND                                        | GROUND                                                   |  |
| 074 | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1]) | OUTPUT                                                   |  |
| 075 | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1]) | OUTPUT                                                   |  |
| 076 | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1]) | OUTPUT                                                   |  |
| 077 | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1]) | OUTPUT                                                   |  |
| 078 | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1]) | OUTPUT                                                   |  |
| 079 | PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1]) | OUTPUT                                                   |  |
| 080 | GROUND                                        | GROUND                                                   |  |
| 081 | GROUND                                        | GROUND                                                   |  |
| 082 | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1]) | OUTPUT                                                   |  |
| 083 | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1]) | OUTPUT                                                   |  |
| 084 | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1]) | OUTPUT                                                   |  |
| 085 | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1]) | OUTPUT                                                   |  |
| 086 | PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1]) | OUTPUT                                                   |  |

| 86-PIN CM195AD FIBER INTERFACE CARD EDGE CONNECTION |                                                   |              |
|-----------------------------------------------------|---------------------------------------------------|--------------|
| PIN                                                 | DESCRIPTION                                       | FUNCTION     |
| 001                                                 | +12V (V12P)                                       | POWER        |
| 002                                                 | NOT USED                                          | NC           |
| 003                                                 | -12V (V12N)                                       | POWER        |
| 004                                                 | NOT USED                                          | NC           |
| 005                                                 | PERIPHERAL BUS ACKNOWLEDGE IN 1 (PBACKI1[0])      | INPUT/OUTPUT |
| 006                                                 | NOT USED                                          | NC           |
| 007                                                 | NOT USED                                          | NC           |
| 008                                                 | NOT USED                                          | NC           |
| 009                                                 | GROUND (GRD)                                      | GROUND       |
| 010                                                 | NOT USED                                          | NC           |
| 011                                                 | +3.9V BACKUP BATTERY (VBKUP)                      | POWER        |
| 012                                                 | NOT USED                                          | NC           |
| 013                                                 | INTERRUPT ACKNOWLEDGE IN 2 (PIAKI2[0])            | INPUT        |
| 014                                                 | NOT USED                                          | NC           |
| 015                                                 | INTERRUPT ACKNOWLEDGE IN 2 (PIAKI2[0])            | OUTPUT       |
| 016                                                 | GROUND (GRD)                                      | GROUND       |
| 017                                                 | +5V (VCC)                                         | POWER        |
| 018                                                 | NOT USED                                          | NC           |
| 019                                                 | PERIPHERAL INTERRUPT ACKNOWLEDGE IN 1 (PIAKI1[0]) | INPUT        |
| 020                                                 | NOT USED                                          | NC           |
| 021                                                 | PERIPHERAL INPUT ACKNOWLEDGE IN 1 (PIAKI1[0])     | OUTPUT       |
| 022                                                 | NOT USED                                          | NC           |
| 023                                                 | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKI0[0])     | INPUT        |
| 024                                                 | NOT USED                                          | NC           |
| 025                                                 | GROUND (GRD)                                      | GROUND       |
| 026                                                 | NOT USED                                          | NC           |
| 027                                                 | NOT USED                                          | NC           |
| 028                                                 | NOT USED                                          | NC           |
| 029                                                 | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKI0[0])     | OUTPUT       |
| 030                                                 | NOT USED                                          | NC           |
| 031                                                 | NOT USED                                          | NC           |
| 032                                                 | GROUND (GRD)                                      | GROUND       |
| 033                                                 | NOT USED                                          | NC           |
| 034                                                 | NOT USED                                          | NC           |
| 035                                                 | NOT USED                                          | NC           |
| 036                                                 | NOT USED                                          | NC           |
| 037                                                 | GROUND (GRD)                                      | GROUND       |
| 038                                                 | NOT USED                                          | NC           |
| 039                                                 | NOT USED                                          | NC           |
| 040                                                 | +5V (VCC)                                         | POWER        |
| 041                                                 | GROUND (GRD)                                      | GROUND       |

| 86-PIN CM195AD FIBER INTERFACE CARD EDGE CONNECTIONS (Contd) |                                           |          |  |  |
|--------------------------------------------------------------|-------------------------------------------|----------|--|--|
| PIN                                                          | DESCRIPTION                               | FUNCTION |  |  |
| 042                                                          | NOT USED                                  | NC       |  |  |
| 043                                                          | NOT USED                                  | NC       |  |  |
| 044                                                          | NOT USED                                  | NC       |  |  |
| 045                                                          | NOT USED                                  | NC       |  |  |
| 046                                                          | NOT USED                                  | NC       |  |  |
| 047                                                          | NOT USED                                  | NC       |  |  |
| 048                                                          | GROUND (GRD)                              | GROUND   |  |  |
| 049                                                          | GROUND (GRD)                              | GROUND   |  |  |
| 050                                                          | NOT USED                                  | NC       |  |  |
| 051                                                          | NOT USED                                  | NC       |  |  |
| 052                                                          | NOT USED                                  | NC       |  |  |
| 053                                                          | PERIPHERAL BUS ACKNOWLEDGE IN (PBACKI[0]) | OUTPUT   |  |  |
| 054                                                          | NOT USED                                  | NC       |  |  |
| 055                                                          | NOT USED                                  | NC       |  |  |
| 056                                                          | GROUND (GRD)                              | GROUND   |  |  |
| 057                                                          | GROUND (GRD)                              | GROUND   |  |  |
| 058                                                          | NOT USED                                  | NC       |  |  |
| 059                                                          | NOT USED                                  | NC       |  |  |
| 060                                                          | NOT USED                                  | NC       |  |  |
| 061                                                          | NOT USED                                  | NC       |  |  |
| 062                                                          | NOT USED                                  | NC       |  |  |
| 063                                                          | NOT USED                                  | NC       |  |  |
| 064                                                          | +5V (VCC)                                 | POWER    |  |  |
| 065                                                          | GROUND (GRD)                              | GROUND   |  |  |
| 066                                                          | NOT USED                                  | NC       |  |  |
| 067                                                          | NOT USED                                  | NC       |  |  |
| 068                                                          | NOT USED                                  | NC       |  |  |
| 069                                                          | NOT USED                                  | NC       |  |  |
| 070                                                          | NOT USED                                  | NC       |  |  |
| 071                                                          | NOT USED                                  | NC       |  |  |
| 072                                                          | GROUND (GRD)                              | GROUND   |  |  |
| 073                                                          | GROUND (GRD)                              | GROUND   |  |  |
| 074                                                          | NOT USED                                  | NC       |  |  |
| 075                                                          | NOT USED                                  | NC       |  |  |
| 076                                                          | NOT USED                                  | NC       |  |  |
| 077                                                          | NOT USED                                  | NC       |  |  |
| 078                                                          | NOT USED                                  | NC       |  |  |
| 079                                                          | NOT USED                                  | NC       |  |  |
| 080                                                          | GROUND (GRD)                              | GROUND   |  |  |
| 081                                                          | GROUND (GRD)                              | GROUND   |  |  |
| 082                                                          | NOT USED                                  | NC       |  |  |
| 083                                                          | NOT USED                                  | NC       |  |  |
| 084                                                          | NOT USED                                  | NC       |  |  |
| 085                                                          | NOT USED                                  | NC       |  |  |
| 086                                                          | NOT USED                                  | NC       |  |  |

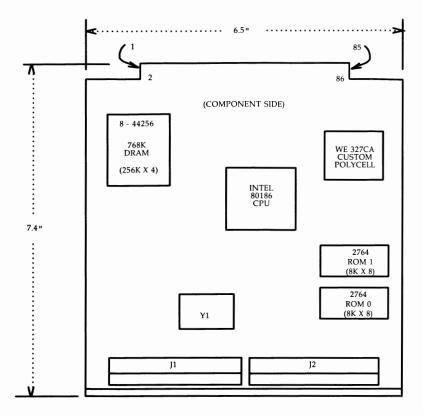
| 40-CONDUCTOR RIBBON CABLE CONNECTIONS, INNER CABLE |                |                |  |  |
|----------------------------------------------------|----------------|----------------|--|--|
| PIN                                                | CM195AC SIGNAL | CM195AD SIGNAL |  |  |
| 01                                                 | GROUND         | GROUND         |  |  |
| 02                                                 | PIBD00[1]      | PIADR00[1]     |  |  |
| 03                                                 | PIBD01[1]      | PIADR01[1]     |  |  |
| 04                                                 | PIBD02[1]      | PIADR02[1]     |  |  |
| 05                                                 | PIBD03[1]      | PIADR03[1]     |  |  |
| 06                                                 | PIBD04[1]      | PIADR04[1]     |  |  |
| 07                                                 | PIBD05[1]      | PIADR05[1]     |  |  |
| 08                                                 | PIBD06[1]      | PIADR06[1]     |  |  |
| 09                                                 | PIBD07[1]      | PIADR07[1]     |  |  |
| 10                                                 | PIBD08[1]      | PIADR08[1]     |  |  |
| 11                                                 | GROUND         | GROUND         |  |  |
| 12                                                 | PIBD09[1]      | PIADR09[1]     |  |  |
| 13                                                 | PIBD10[1]      | PIADR10[1]     |  |  |
| 14                                                 | PIBD11[1]      | PIADR11[1]     |  |  |
| 15                                                 | PIBD12[1]      | PIADR12[1]     |  |  |
| 16                                                 | PIBD13[1]      | PIADR13[1]     |  |  |
| 17                                                 | PIBD14[1]      | PIADR14[1]     |  |  |
| 18                                                 | PIBD15[1]      | PIADR15[1]     |  |  |
| 19                                                 | PIBD16[1]      | PIADR17[1]     |  |  |
| 20                                                 | PIBD18[1]      | PIADR19[1]     |  |  |
| 21                                                 | GROUND         | GROUND         |  |  |
| 22                                                 | PITMR0[0]      | PITMRIN[0]     |  |  |
| 23                                                 | PITMR1[0]      | PITMRIN[1]     |  |  |
| 24                                                 | PILOCK[0]      | PIDRQ1[1]      |  |  |
| 25                                                 | PIHLDA[1]      | PIHOLD[1]      |  |  |
| 26                                                 | PIPCS4[0]      | PIURDY[1]      |  |  |
| 27                                                 | PIPCS5[0]      | PINMI[1]       |  |  |
| 28                                                 | PIRAMACK[0]    | PIS0[0]        |  |  |
| 29                                                 | PIMCS2[0]      | PITEST[1]      |  |  |
| 30                                                 | PICLKOUT[1]    | PIBHE[0]       |  |  |
| 31                                                 | GROUND         | PIS1[0]        |  |  |
| 32                                                 | PIRST[1]       | PIALE[1]       |  |  |
| 33                                                 | PIPCS3[0]      | PR1W0          |  |  |
| 34                                                 | PIPCS2[0]      | PIRD[0]        |  |  |
| 35                                                 | PIMCS3[0]      | PIDT1R0        |  |  |
| 36                                                 | GROUND         | GROUND         |  |  |
| 37                                                 | PIINTRA[1]     | PIINTRB[1]     |  |  |
| 38                                                 | SPARE          | PIDEN[0]       |  |  |
| 39                                                 | BRDPRES[0]     | PIS2[0]        |  |  |
| 40                                                 | GROUND         | GROUND         |  |  |

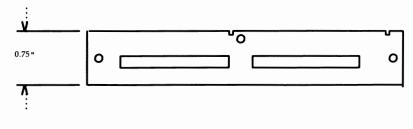

| 40-CONDUCTOR RIBBON CABLE CONNECTIONS, OUTER CABLE |                |                |  |
|----------------------------------------------------|----------------|----------------|--|
| PIN                                                | CM195AD SIGNAL | CM195AC SIGNAL |  |
| 01                                                 | GROUND         | GROUND         |  |
| 02                                                 | PED00[1]       | NC             |  |
| 03                                                 | PED01[1]       | ADR01[1]       |  |
| 04                                                 | PED02[1]       | ADR02[1]       |  |
| 05                                                 | PED03[1]       | NC             |  |
| 06                                                 | PED04[1]       | NC             |  |
| 07                                                 | PED05[1]       | NC             |  |
| 08                                                 | PED06[1]       | NC             |  |
| 09                                                 | PED07[1]       | NC             |  |
| 10                                                 | PED08[1]       | NC             |  |
| 11                                                 | GROUND         | GROUND         |  |
| 12                                                 | PED09[1]       | NC             |  |
| 13                                                 | PED10[1]       | NC             |  |
| 14                                                 | PED11[1]       | NC             |  |
| 15                                                 | PED12[1]       | NC             |  |
| 16                                                 | PED13[1]       | NC             |  |
| 17                                                 | PED14[1]       | NC             |  |
| 18                                                 | PED15[1]       | NC             |  |
| 19                                                 | PIADR16[1]     | NC             |  |
| 20                                                 | PIADR18[1]     | NC             |  |
| 21                                                 | GROUND         | GROUND         |  |
| 22                                                 | NC             | NC             |  |
| 23                                                 | NC             | NC             |  |
| 24                                                 | NC             | DRQ1[1]        |  |
| 25                                                 | NC             | NC             |  |
| 26                                                 | PCS4[0]        | URDY[1]        |  |
| 27                                                 | PCS5[0]        | NC             |  |
| 28                                                 | NC             | NC             |  |
| 29                                                 | MCS2[0]        | NC             |  |
| 30                                                 | NC             | NC             |  |
| 31                                                 | GROUND         | NC             |  |
| 32                                                 | PRST[1]        | NC             |  |
| 33                                                 | PCS3[0]        | WR[0]          |  |
| 34                                                 | NC             | RD[0]          |  |
| 35                                                 | NC             | NC             |  |
| 36                                                 | GROUND         | GROUND         |  |
| 37                                                 | INTRA[1]       | INTRB[1]       |  |
| 38                                                 | NC             | NC             |  |
| 39                                                 | BRDPRES[0]     | NC             |  |
| 40                                                 | GROUND         | GROUND         |  |
| 40                                                 | GROUND         | GROUND         |  |


# **CM195AE GPSC CARD INTERCONNECTIONS**

The CM195AE General Purpose Synchronous Controller (GPSC) Card interconnections include the following:

- 86-pin card edge connections
- Two 50-pin synchronous interface connections.


Figure B-23 shows the layout of the CM195AE GPSC Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.






## Figure B-23: CM195AE GPSC Card Layout

•







B-138 TECHNICAL REFERENCE MANUAL

| 86-PIN CM195E GPSC CARD EDGE CONNECTIONS |                                                   |              |
|------------------------------------------|---------------------------------------------------|--------------|
| PIN                                      | DESCRIPTION                                       | FUNCTION     |
| 001                                      | +12V (V12P)                                       | POWER        |
| 002                                      | NOT USED                                          | NC           |
| 003                                      | -12V (V12N)                                       | POWER        |
| 004                                      | NOT USED                                          | NC           |
| 005                                      | PERIPHERAL BUS ACKNOWLEDGE IN 1 (PBACKI1[0])      | INPUT        |
| 006                                      | PERIPHERAL INTERRUPT REQUEST 0 (PINT0[0])         | OUTPUT       |
| 007                                      | PERIPHERAL CARD SELECT (PCS0[0])                  | INPUT        |
| 008                                      | NOT USED                                          | NC           |
| 009                                      | GROUND (GRD)                                      | GROUND       |
| 010                                      | SYSTEM RESET (SYSRST[0])                          | INPUT        |
| 011                                      | NOT USED                                          | NC           |
| 012                                      | PERIPHERAL CARD FAILURE (PFAIL[0])                | OUTPUT       |
| 013                                      | INTERRUPT ACKNOWLEDGE IN 2 (PIAKI2[0])            | INPUT/OUTPUT |
| 014                                      | BUS FAULT (PFLT[0])                               | INPUT        |
| 015                                      | INTERRUPT ACKNOWLEDGE IN 2 (PIAKI2[0])            | INPUT/OUTPUT |
| 016                                      | GROUND (GRD)                                      | GROUND       |
| 017                                      | +5V (VCC)                                         | POWER        |
| 018                                      | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])           | INPUT/OUTPUT |
| 019                                      | PERIPHERAL INTERRUPT ACKNOWLEDGE IN 1 (PIAKI1[0]) | INPUT/OUTPUT |
| 020                                      | PERIPHERAL DATA STROBE 1 (PDS1[0])                | INPUT/OUTPUT |
| 021                                      | PERIPHERAL INPUT ACKNOWLEDGE IN 1 (PIAKI1[0])     | INPUT/OUTPUT |
| 022                                      | PERIPHERAL DATA BIT 00 (PD00[1])                  | INPUT/OUTPUT |
| 023                                      | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKI0[0])     | INPUT        |
| 024                                      | PERIPHERAL DATA BIT 02 (PD02[1])                  | INPUT/OUTPUT |
| 025                                      | GROUND (GRD)                                      | GROUND       |
| 026                                      | PERIPHERAL DATA BIT 03 (PD03[1])                  | INPUT/OUTPUT |
| 027                                      | PERIPHERAL BUSY (PBUSY[0])                        | INPUT/OUTPUT |
| 028                                      | PERIPHERAL DATA BIT 05 (PD05[1])                  | INPUT/OUTPUT |
| 029                                      | PERIPHERAL INPUT ACKNOWLEDGE OUT 0 (PIAKO0[0])    | INPUT/OUTPUT |
| 030                                      | PERIPHERAL DATA BIT 07 (PD07[1])                  | INPUT/OUTPUT |
| 031                                      | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])  | OUTPUT       |
| 032                                      | GROUND (GRD)                                      | GROUND       |
| 033                                      | PERIPHERAL DATA STROBE 0 (PDS0[0])                | INPUT/OUTPUT |
| 034                                      | PERIPHERAL DATA BIT 08 (PD08[1])                  | INPUT/OUTPUT |
| 035                                      | PERIPHERAL DATA BIT 01 (PD01[1])                  | INPUT/OUTPUT |
| 036                                      | PERIPHERAL DATA BIT 10 (PD10[1])                  | INPUT/OUTPUT |
| 037                                      | GROUND (GRD)                                      | GROUND       |
| 038                                      | PERIPHERAL DATA BIT 12 (PD12[1])                  | INPUT/OUTPUT |
| 039                                      | PERIPHERAL DATA BIT 04 (PD04[1])                  | INPUT/OUTPUT |
| 040                                      | +5V (VCC)                                         | POWER        |
| 041                                      | GROUND (GRD)                                      | GROUND       |
| 042                                      | PERIPHERAL DATA BIT 13 (PD13[1])                  | INPUT/OUTPUT |
| 043                                      | PERIPHERAL DATA BIT 06 (PD06[1])                  | INPUT/OUTPUT |

| 86-PIN CM195AE GPSC CARD EDGE CONNECTIONS (Contd) |                                               |              |
|---------------------------------------------------|-----------------------------------------------|--------------|
| PIN                                               | DESCRIPTION                                   | FUNCTION     |
| 044                                               | PERIPHERAL DATA BIT 15 (PD15[1])              | INPUT/OUTPUT |
| 045                                               | PERIPHERAL DATA BIT 09 (PD09[1])              | INPUT/OUTPUT |
| 046                                               | PERIPHERAL BUS REQUEST (PBRQ[0])              | OUTPUT       |
| 047                                               | PERIPHERAL DATA BIT 11 (PD11[1])              | INPUT/OUTPUT |
| 048                                               | GROUND (GRD)                                  | GROUND       |
| 049                                               | GROUND (GRD)                                  | GROUND       |
| 050                                               | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])  | INPUT        |
| 051                                               | PERIPHERAL DATA BIT 14 (PD14[1])              | INPUT/OUTPUT |
| 052                                               | PERIPHERAL INTERLOCK OPERATION (PLOCK[0])     | OUTPUT       |
| 053                                               | PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO[0])    | INPUT/OUTPUT |
| 054                                               | NOT USED                                      | NC           |
| 055                                               | PERIPHERAL READ-WRITE (PR1W0)                 | INPUT        |
| 056                                               | GROUND (GRD)                                  | GROUND       |
| 057                                               | GROUND (GRD)                                  | GROUND       |
| 058                                               | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1]) | INPUT/OUTPUT |
| 059                                               | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1]) | INPUT/OUTPUT |
| 060                                               | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1]) | OUTPUT       |
| 061                                               | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1]) | OUTPUT       |
| 062                                               | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1]) | OUTPUT       |
| 063                                               | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1]) | OUTPUT       |
| 064                                               | +5V (VCC)                                     | POWER        |
| 065                                               | GROUND                                        | GROUND       |
| 066                                               | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1]) | OUTPUT       |
| 067                                               | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1]) | OUTPUT       |
| 068                                               | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1]) | OUTPUT       |
| 069                                               | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1]) | OUTPUT       |
| 070                                               | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1]) | OUTPUT       |
| 071                                               | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1]) | OUTPUT       |
| 072                                               | GROUND                                        | GROUND       |
| 073                                               | GROUND                                        | GROUND       |
| 074                                               | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1]) | OUTPUT       |
| 075                                               | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1]) | OUTPUT       |
| 076                                               | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1]) | OUTPUT       |
| 077                                               | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1]) | OUTPUT       |
| 078                                               | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1]) | OUTPUT       |
| 079                                               | PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1]) | OUTPUT       |
| 080                                               | GROUND                                        | GROUND       |
| 081                                               | GROUND                                        | GROUND       |
| 082                                               | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1]) | OUTPUT       |
| 083                                               | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1]) | OUTPUT       |
| 084                                               | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1]) | OUTPUT       |
| 085                                               | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1]) | OUTPUT       |
| 086                                               | PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1]) | OUTPUT       |

|     | 50-PIN CM195AE GPSC INTERFACE CONNECTORS, J1 and J2 |              |  |
|-----|-----------------------------------------------------|--------------|--|
| PIN | DESCRIPTION                                         | FUNCTION     |  |
| 01  | TRANSMIT DATA BALANCED (TXDB[1])                    | OUTPUT       |  |
| 02  | TRANSMIT DATA BALANCED (TXDB[0])                    | OUTPUT       |  |
| 03  | TRANSMIT DATA UNBALANCED (TXDU[0])                  | OUTPUT       |  |
| 04  | READY TO SEND UNBALANCED (RTSU[1])                  | OUTPUT       |  |
| 05  | READY TO SEND BALANCED (RTSB[1])                    | OUTPUT       |  |
| 06  | READY TO SEND BALANCED (RTSB[0])                    | OUTPUT       |  |
| 07  | DATA TERMINAL READY UNBALANCED (DTRU[1])            | OUTPUT       |  |
| 08  | INTERFACE CLOCK UNBALANCED (ICKU[0])                | INPUT        |  |
| 09  | DATA TERMINAL READY BALANCED (DTRB[1])              | OUTPUT       |  |
| 10  | DATA TERMINAL READY BALANCED (DTRB[0])              | OUTPUT       |  |
| 11  | INTERFACE CLOCK BALANCED (ICKB[1])                  | INPUT        |  |
| 12  | INTERFACE CLOCK BALANCED (ICKB[0])                  | INPUT        |  |
| 13  | RATE SELECT UNBALANCED (RASU[1])                    | INPUT        |  |
| 14  | LOCAL LOOP BACK UNBALANCED (LLBU[1])                | INPUT/OUTPUT |  |
| 15  | RECEIVE DATA UNBALANCED (RXDU[0])                   | INPUT        |  |
| 16  | CLEAR TO SEND UNBALANCED (CTSU[1])                  | INPUT        |  |
| 17  | RECEIVE DATA BALANCED (RXDB[1])                     | INPUT        |  |
| 18  | RECEIVE DATA BALANCED (RXDB[0])                     | INPUT        |  |
| 19  | CLEAR TO SEND BALANCED (CTSB[1])                    | INPUT        |  |
| 20  | CLEAR TO SEND BALANCED (CTSB[0])                    | INPUT        |  |
| 21  | DATA SET READY UNBALANCED (DSRU[1])                 | OUTPUT       |  |
| 22  | DATA CARRIER DETECT UNBALANCED (DCDU[1])            | INPUT        |  |
| 23  | DATA SET READY BALANCED (DSRB[1])                   | OUTPUT       |  |
| 24  | DATA SET READY BALANCED (DSRB[0])                   | OUTPUT       |  |
| 25  | TRANSMIT SIGNAL UNBALANCED (XTCU[0])                | OUTPUT       |  |
| 26  | GROUND                                              | GROUND       |  |
| 27  | DATA CARRIER DETECT BALANCED (DCDB[1])              | INPUT        |  |
| 28  | DATA CARRIER DETECT BALANCED (DCDB[0])              | INPUT        |  |
| 29  | TRANSMIT SIGNAL BALANCED (XTCB[1])                  | OUTPUT       |  |
| 30  | TRANSMIT SIGNAL BALANCED (XTCB[0])                  | OUTPUT       |  |
| 31  | RECEIVE SIGNAL BALANCED (XRCB[1])                   | INPUT        |  |
| 32  | RECEIVE SIGNAL BALANCED (XRCB[0])                   | INPUT        |  |
| 33  | RING INDICATOR UNBALANCED (RINU[1])                 | NPUT         |  |
| 34  | TIMEOUT (TMOU[1])                                   | INPUT        |  |
| 35  | RECEIVE SIGNAL UNBALANCED (XRCU[0])                 | INPUT        |  |
| 36  | GROUND                                              | GROUND       |  |
| 37  | GENERAL PURPOSE BIT 1 UNBALANCED/BALANCED (GP1U1B0) | INPUT/OUTPUT |  |
| 38  | GENERAL PURPOSE BIT 2 UNBALANCED/BALANCED (GP2U1B0) | INPUT/OUTPUT |  |
| 39  | +12V (POS12V)                                       | POWER        |  |
| 40  | POSITIVE DRIVE POWER (PDRVP)                        | POWER        |  |
| 41  | NEGATIVE DRIVE POWER (NDRVP)                        | POWER        |  |
| 42  | -12V (NEG12V)                                       | POWER        |  |
| 43  | +5V VCC                                             | POWER        |  |
| 44  | NEW SIGNAL (NSUN[1])                                | NC           |  |
| 45  | NOT USED                                            | NC           |  |
| 46  | NOT USED                                            | NC           |  |
| 47  | NOT USED                                            | NC           |  |
| 48  | NOT USED                                            | NC           |  |
| 49  | NOT USED                                            | NC           |  |
| 50  | NOT USED                                            | NC           |  |

#### **GPSC Interface Cables**

There are three different cables available for connection to several industry-standard interfaces. The following table lists the GPSC connector pins and the associated industry-standard connector pin.

| GPSC INT        | GPSC INTERFACE CABLE PIN TRANSLATION |                    |                  |  |  |
|-----------------|--------------------------------------|--------------------|------------------|--|--|
| GPSC<br>PIN NO. | RS-232C<br>(25-PIN)                  | RS-449<br>(37-PIN) | V-35<br>(34-PIN) |  |  |
| 01              | NC                                   | 4                  | P (Note)         |  |  |
| 02              | NC                                   | 22                 | S (Note)         |  |  |
| 03              | 2                                    | NC                 | NC               |  |  |
| 04              | 4                                    | NC                 | C                |  |  |
| 05              | NC                                   | 7                  | NC               |  |  |
| 06              | NC                                   | 25                 | NC               |  |  |
| 07              | 20                                   | NC                 | H                |  |  |
| 08              | 24                                   | NC                 | NC               |  |  |
| 09              | NC                                   | 12                 | NC               |  |  |
| 10              | NC                                   | 30                 | NC               |  |  |
| 11              | NC                                   | 17                 | U (Note)         |  |  |
| 12              | NC                                   | 12                 | W (Note)         |  |  |
| 13              | 23                                   | 16                 | NC               |  |  |
| 14              | 18                                   | 10<br>NG           | K                |  |  |
| 15              | 3                                    | NC                 | NC               |  |  |
| 16              | 5                                    | NC                 | D                |  |  |
| 17              | NC                                   | 6                  | R (Note)         |  |  |
| 18              | NC                                   | 24                 | T (Note)         |  |  |
| 19              | NC                                   | 9                  | NC               |  |  |
| 20              | NC                                   | 27                 | NC               |  |  |
| 21              | 6                                    | NC                 | E                |  |  |
| 22              | 8                                    | NC                 | F                |  |  |
| 23              | NC                                   | 11                 | NC               |  |  |
| 24              | NC                                   | 29                 | NC               |  |  |
| 25              | 15                                   | NC                 | NC               |  |  |
| 26              | 7                                    | 19,20,37           | В                |  |  |
| 27              | NC                                   | 13                 | NC               |  |  |
| 28              | NC                                   | 31                 | NC               |  |  |
| 29              | NC                                   | 5                  | Y (Note)         |  |  |
| 30              | NC                                   | 23                 | AA (Note)        |  |  |
| 31              | NC                                   | 8                  | V (Note)         |  |  |
| 32              | NC                                   | 26                 | X (Note)         |  |  |
| 33              | 22                                   | 15                 | J                |  |  |
| 34              | 25                                   | 18<br>NG           | NC               |  |  |
| 35              | 17                                   | NC                 | NC<br>B          |  |  |
| 36<br>37        | NC                                   | 19,20,37<br>GRD    | GRD              |  |  |
| 37              | NC                                   | GRD                | NC               |  |  |
| 38<br>39        | PDRVxP                               | NC                 | PDRVxP           |  |  |
| 40              | V12P                                 | NC                 | V12P             |  |  |
| 40              | V121<br>V12N                         | NC                 | V12N             |  |  |
| 41              | NDRVxP                               | NC                 | NDRVxP           |  |  |
| 42              | NC                                   | NC                 | NC               |  |  |
| 43              | NC                                   | NC                 | NC               |  |  |
| 45              | NC                                   | NC                 | NC               |  |  |
| 46              | NC                                   | NC                 | NC               |  |  |
| 40              | NC                                   | NC                 | NC               |  |  |
| 48              | NC                                   | NC                 | NC               |  |  |
| 40              | NC                                   | NC                 | NC               |  |  |
| 49<br>50        | NC                                   | NC                 | NC               |  |  |
| 50              | NC                                   |                    | NC               |  |  |

NOTE: For these signals, the cable assembly will provide a passive network required to convert to/from EIA RS-422 signal levels and CCITT V.35 signal levels.

LEGEND:

| GRD | Ground        |
|-----|---------------|
| NC  | No Connection |

# **CM195AY/CM195Y EPORTS CARD INTERCONNECTIONS**

The CM195AY/CM195Y Enhanced Peripheral Port Controller (EPORTS) Card interconnections include the following:

- 86-pin card edge connections
- Eight 8-pin RS-232C modular connectors.

Figure B-24 shows the layout of the CM195AY/CM195Y EPORTS Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.

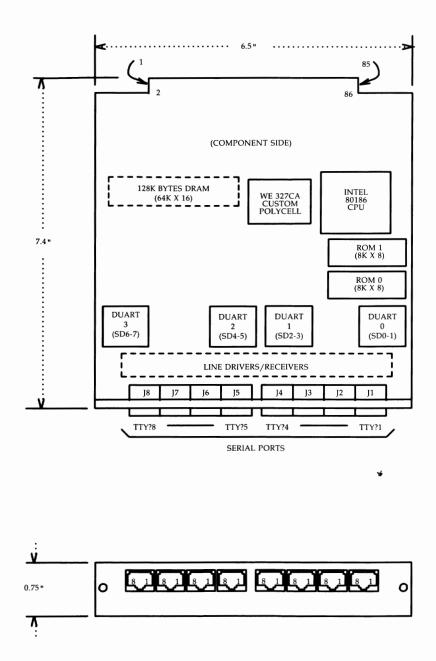
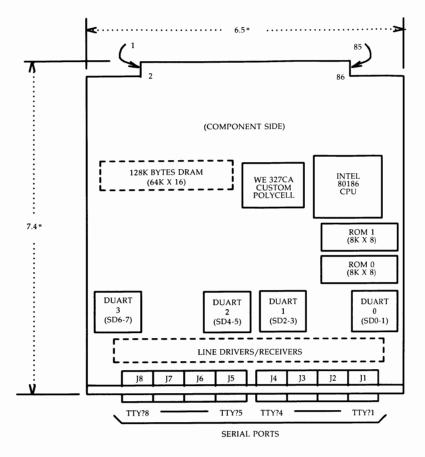




Figure B-24: CM195AY/CM195Y EPORTS Card Layout



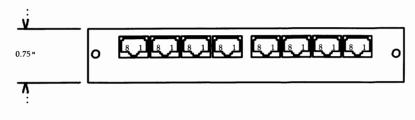


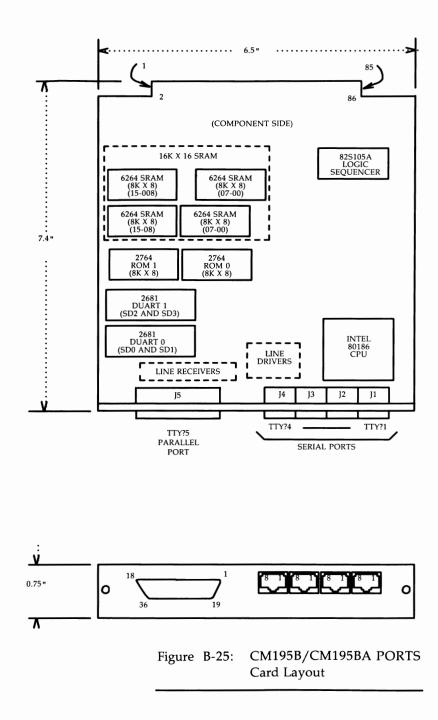

Figure B-24: CM195AY/CM195Y EPORTS Card Layout

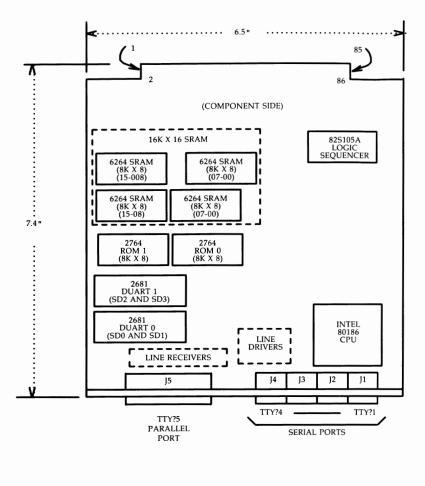
| 86-PIN CM195AY/CM195Y EPORTS CARD EDGE CONNECTIONS |                                                           |              |
|----------------------------------------------------|-----------------------------------------------------------|--------------|
| PIN                                                | DESCRIPTION                                               | FUNCTION     |
| 001                                                | +12V (V12P)                                               | POWER        |
| 002                                                | NOT USED                                                  | NC           |
| 003                                                | -12V (V12N)                                               | POWER        |
| 004                                                | NOT USED                                                  | NC           |
| 005                                                | PERIPHERAL BUS ACKNOWLEDGE IN (PBACKI0)                   | INPUT        |
| 006                                                | PERIPHERAL INTERRUPT REQUEST 0 (PINT0[0])                 | OUTPUT       |
| 007                                                | PERIPHERAL CARD SELECT (PCS01[0]—PCS12[0], as applicable) | INPUT        |
| 008                                                | NOT USED                                                  | NC           |
| 009                                                | GROUND (GRD)                                              | GROUND       |
| 010                                                | SYSTEM RESET (SYSRST[0])                                  | INPUT        |
| 011                                                | NOT USED                                                  | NC           |
| 012                                                | PERIPHERAL CARD FAILURE (PFAIL[0])                        | OUTPUT       |
| 013                                                | INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])                   | INPUT/OUTPUT |
| 014                                                | BUS FAULT (PFLT[0])                                       | INPUT        |
| 015                                                | INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])                   | INPUT/OUTPUT |
| 016                                                | GROUND (GRD)                                              | GROUND       |
| 017                                                | +5V (VCC)                                                 | POWER        |
| 018                                                | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])                   | INPUT/OUTPUT |
| 019                                                | PERIPHERAL INTERRUPT ACKNOWLEDGE OUT 1 (PIAKO1[0])        | INPUT/OUTPUT |
| 020                                                | PERIPHERAL DATA STROBE 1 (PDS1[0])                        | INPUT/OUTPUT |
| 021                                                | PERIPHERAL INPUT ACKNOWLEDGE OUT 1 (PIAKO1[0])            | INPUT/OUTPUT |
| 022                                                | PERIPHERAL DATA BIT 00 (PD00[1])                          | INPUT/OUTPUT |
| 023                                                | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKI0[0])             | INPUT        |
| 024                                                | PERIPHERAL DATA BIT 02 (PD02[1])                          | INPUT/OUTPUT |
| 025                                                | GROUND (GRD)                                              | GROUND       |
| 026                                                | PERIPHERAL DATA BIT 03 (PD03[1])                          | INPUT/OUTPUT |
| 027                                                | PERIPHERAL BUSY (PBUSY[0])                                | OUTPUT       |
| 028                                                | PERIPHERAL DATA BIT 05 (PD05[1])                          | INPUT/OUTPUT |
| 029                                                | PERIPHERAL INPUT ACKNOWLEDGE OUT 0 (PIAKO0[0])            | INPUT/OUTPUT |
| 030                                                | PERIPHERAL DATA BIT 07 (PD07[1])                          | INPUT/OUTPUT |
| 031                                                | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])          | OUTPUT       |
| 032                                                | GROUND (GRD)                                              | GROUND       |
| 033                                                | PERIPHERAL DATA STROBE 0 (PDS0[0])                        | OUTPUT       |
| 034                                                | PERIPHERAL DATA BIT 08 (PD08[1])                          | INPUT/OUTPUT |
| 035                                                | PERIPHERAL DATA BIT 01 (PD01[1])                          | INPUT/OUTPUT |
| 036                                                | PERIPHERAL DATA BIT 10 (PD10[1])                          | INPUT/OUTPUT |
| 037                                                | GROUND (GRD)                                              | GROUND       |
| 038                                                | PERIPHERAL DATA BIT 12 (PD12[1])                          | INPUT/OUTPUT |
| 039                                                | PERIPHERAL DATA BIT 04 (PD04[1])                          | INPUT/OUTPUT |
| 040                                                | +5V (VCC)                                                 | POWER        |
| 041                                                | GROUND (GRD)                                              | GROUND       |
| 042                                                | PERIPHERAL DATA BIT 13 (PD13[1])                          | INPUT/OUTPUT |
| 043                                                | PERIPHERAL DATA BIT 06 (PD06[1])                          | INPUT/OUTPUT |

| PIN        | DESCRIPTION                                                                                    | FUNCTION         |
|------------|------------------------------------------------------------------------------------------------|------------------|
| 044        | PERIPHERAL DATA BIT 15 (PD15[1])                                                               | INPUT/OUTPUT     |
| 045        | PERIPHERAL DATA BIT 09 (PD09[1])                                                               | INPUT/OUTPUT     |
| 046        | PERIPHERAL BUS REQUEST (PBRQ[0])                                                               | OUTPUT           |
| 047        | PERIPHERAL DATA BIT 11 (PD11[1])                                                               | INPUT/OUTPUT     |
| 048        | GROUND (GRD)                                                                                   | GROUND           |
| 049        | GROUND (GRD)                                                                                   | GROUND           |
| 050        | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])                                                   | INPUT/OUTPUT     |
| 051        | PERIPHERAL DATA BIT 14 (PD14[1])                                                               | INPUT/OUTPUT     |
| 052        | PERIPHERAL INTERLOCK OPERATION (PLOCK[0])                                                      | OUTPUT           |
| 053        | PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO[0])                                                     | OUTPUT           |
| 054        | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1])                                                  | INPUT/OUTPUT     |
| 055        | PERIPHERAL READ-WRITE (PR[1]W[0])                                                              | INPUT/OUTPUT     |
| 056        | GROUND (GRD)                                                                                   | GROUND           |
| 057        | GROUND (GRD)                                                                                   | GROUND           |
| 058        | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1])                                                  | INPUT/OUTPUT     |
| 059        | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1])                                                  | INPUT/OUTPUT     |
| 060        | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1])                                                  | OUTPUT           |
| 061        | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1])                                                  | OUTPUT           |
| 062        | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1])                                                  | OUTPUT           |
| 063        | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1])                                                  | OUTPUT           |
| 064        | +5V (VCC)                                                                                      | POWER            |
| 065        | GROUND                                                                                         | GROUND           |
| 066        | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1])                                                  | OUTPUT           |
| 067        | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1])                                                  | OUTPUT           |
| 068        | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1])                                                  | OUTPUT           |
| 069        | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1])                                                  | OUTPUT           |
| 070        | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1])                                                  | OUTPUT           |
| 071        | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1])                                                  | OUTPUT           |
| 072        | GROUND                                                                                         | GROUND           |
| 073        | GROUND<br>PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1])                                        | GROUND<br>OUTPUT |
| 074<br>075 | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1]) | OUTPUT           |
| 075        | PERIPHERAL PHYSICAL ADDRESS BIT 15 (FFA15[1])                                                  | OUTPUT           |
| 076        | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1]) | OUTPUT           |
| 077        | PERIPHERAL PHYSICAL ADDRESS BIT 17 (17A17[1])                                                  | OUTPUT           |
| 078        | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1]) | OUTPUT           |
| 079        | GROUND                                                                                         | GROUND           |
| 080        | GROUND                                                                                         | GROUND           |
| 081        | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1])                                                  | OUTPUT           |
| 082        | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1])                                                  | OUTPUT           |
| 084        | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1])                                                  | OUTPUT           |
| 085        | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1])                                                  | OUTPUT           |
| 086        | PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1])                                                  | OUTPUT           |

|     | 8-PIN CM195AY/CM195Y EPORTS CARD MODULAR CONNECTORS, J1 through J8 |          |  |
|-----|--------------------------------------------------------------------|----------|--|
| PIN | DESCRIPTION                                                        | FUNCTION |  |
| 1   | GROUND                                                             | GROUND   |  |
| 2   | CLEAR TO SEND (CTS)                                                | INPUT    |  |
| 3   | TRANSMIT DATA (TXD)                                                | INPUT    |  |
| 4   | DATA TERMINAL READY (DTR)                                          | INPUT    |  |
| 5   | RECEIVE DATA (RXD)                                                 | OUTPUT   |  |
| 6   | DATA CARRIER DETECT (DCD)                                          | OUTPUT   |  |
| 7   | GROUND                                                             | GROUND   |  |
| 8   | REQUEST TO SEND (RTS)                                              | OUTPUT   |  |

Alleria


## **CM195B/CM195BA PORTS CARD INTERCONNECTIONS**


The CM195B/CM195BA Peripheral Port Controller (PORTS) Card interconnections include the following:

- 86-pin card edge connections
- Four 8-pin RS-232C modular connectors
- One 36-pin CENTRONICS parallel connector.

Figure B-25 shows the layout of the CM195B/CM195BA PORTS Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.

X





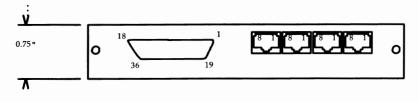



Figure B-25: CM195B/CM195BA PORTS Card Layout

**B-154 TECHNICAL REFERENCE MANUAL** 

|     | 86-PIN CM195B/CM195BA PORTS CARD EDGE CONNECTIONS         |              |  |
|-----|-----------------------------------------------------------|--------------|--|
| PIN | DESCRIPTION                                               | FUNCTION     |  |
| 001 | +12V (V12P)                                               | POWER        |  |
| 002 | NOT USED                                                  | NC           |  |
| 003 | -12V (V12N)                                               | POWER        |  |
| 004 | NOTUSED                                                   | NC           |  |
| 005 | PERIPHERAL BUS ACKNOWLEDGE IN (PBACKI[0])                 | INPUT        |  |
| 006 | PERIPHERAL INTERRUPT REQUEST 0 (PINT0[0])                 | OUTPUT       |  |
| 007 | PERIPHERAL CARD SELECT (PCS01[0]-PCS12[0], as applicable) | INPUT        |  |
| 008 | NOT USED                                                  | NC           |  |
| 009 | GROUND (GRD)                                              | GROUND       |  |
| 010 | SYSTEM RESET (SYSRST[0])                                  | INPUT        |  |
| 011 | NOT USED                                                  | NC           |  |
| 012 | PERIPHERAL CARD FAILURE (PFAIL[0])                        | OUTPUT       |  |
| 013 | INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])                   | INPUT/OUTPUT |  |
| 014 | BUS FAULT (PFLT0)                                         | INPUT        |  |
| 015 | INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])                   | INPUT/OUTPUT |  |
| 016 | GROUND (GRD)                                              | GROUND       |  |
| 017 | +5V (VCC)                                                 | POWER        |  |
| 018 | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])                   | INPUT/OUTPUT |  |
| 019 | PERIPHERAL INTERRUPT ACKNOWLEDGE OUT 1 (PIAKO1[0])        | INPUT/OUTPUT |  |
| 020 | PERIPHERAL DATA STROBE 1 (PDS1[0])                        | INPUT/OUTPUT |  |
| 021 | PERIPHERAL INPUT ACKNOWLEDGE OUT 1 (PIAKO1[0])            | INPUT/OUTPUT |  |
| 022 | PERIPHERAL DATA BIT 00 (PD00[1])                          | INPUT/OUTPUT |  |
| 023 | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKI0[0])             | INPUT        |  |
| 024 | PERIPHERAL DATA BIT 02 (PD02[1])                          | INPUT/OUTPUT |  |
| 025 | GROUND (GRD)                                              | GROUND       |  |
| 026 | PERIPHERAL DATA BIT 03 (PD03[1])                          | INPUT/OUTPUT |  |
| 027 | PERIPHERAL BUSY (PBUSY[0])                                | OUTPUT       |  |
| 028 | PERIPHERAL DATA BIT 05 (PD051)                            | INPUT/OUTPUT |  |
| 029 | PERIPHERAL INPUT ACKNOWLEDGE OUT 0 (PIAKO0[0])            | INPUT/OUTPUT |  |
| 030 | PERIPHERAL DATA BIT 07 (PD07[1])                          | INPUT/OUTPUT |  |
| 031 | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])          | OUTPUT       |  |
| 032 | GROUND (GRD)                                              | GROUND       |  |
| 033 | PERIPHERAL DATA STROBE 0 (PDS0[0])                        | OUTPUT       |  |
| 034 | PERIPHERAL DATA BIT 08 (PD08[1])                          | INPUT/OUTPUT |  |
| 035 | PERIPHERAL DATA BIT 01 (PD01[1])                          | INPUT/OUTPUT |  |
| 036 | PERIPHERAL DATA BIT 10 (PD10[1])                          | INPUT/OUTPUT |  |
| 037 | GROUND (GRD)                                              | GROUND       |  |
| 038 | PERIPHERAL DATA BIT 12 (PD12[1])                          | INPUT/OUTPUT |  |
| 039 | PERIPHERAL DATA BIT 04 (PD04[1])                          | INPUT/OUTPUT |  |
| 040 | +5V (VCC)                                                 | POWER        |  |
| 041 | GROUND (GRD)                                              | GROUND       |  |
| 042 | PERIPHERAL DATA BIT 13 (PD13[1])                          | INPUT/OUTPUT |  |
| 043 | PERIPHERAL DATA BIT 06 (PD06[1])                          | INPUT/OUTPUT |  |

| PIN        | DESCRIPTION                                                                                    | FUNCTION         |
|------------|------------------------------------------------------------------------------------------------|------------------|
| 044        | PERIPHERAL DATA BIT 15 (PD15[1])                                                               | INPUT/OUTPUT     |
| 045        | PERIPHERAL DATA BIT 09 (PD09[1])                                                               | INPUT/OUTPUT     |
| 046        | PERIPHERAL BUS REQUEST (PBRQ[0])                                                               | OUTPUT           |
| 047        | PERIPHERAL DATA BIT 11 (PD11[1])                                                               | INPUT/OUTPUT     |
| 048        | GROUND (GRD)                                                                                   | GROUND           |
| 049        | GROUND (GRD)                                                                                   | GROUND           |
| 050        | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])                                                   | INPUT/OUTPUT     |
| 051        | PERIPHERAL DATA BIT 14 (PD14[1])                                                               | INPUT/OUTPUT     |
| 052        | PERIPHERAL INTERLOCK OPERATION (PLOCK[0])                                                      | OUTPUT           |
| 053        | PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO0)                                                       | OUTPUT           |
| 054        | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1])                                                  | INPUT/OUTPUT     |
| 055        | PERIPHERAL READ-WRITE (PR[1]W[0])                                                              | INPUT/OUTPUT     |
| 056        | GROUND (GRD)                                                                                   | GROUND           |
| 057        | GROUND (GRD)                                                                                   | GROUND           |
| 058        | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1])                                                  | INPUT/OUTPUT     |
| 059        | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1])                                                  | INPUT/OUTPUT     |
| 060        | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1])                                                  | OUTPUT           |
| 061        | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1])                                                  | OUTPUT           |
| 062        | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1])                                                  | OUTPUT           |
| 063        | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1])                                                  | OUTPUT           |
| 064        | +5V (VCC)                                                                                      | POWER            |
| 065        | GROUND                                                                                         | GROUND           |
| 066        | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1])                                                  | OUTPUT           |
| 067        | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1])                                                  | OUTPUT           |
| 068        | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1])                                                  | OUTPUT           |
| 069        | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1])                                                  | OUTPUT           |
| 070        | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1])                                                  | OUTPUT           |
| 071        | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1])                                                  | OUTPUT           |
| 072        | GROUND                                                                                         | GROUND           |
| 073        | GROUND                                                                                         | GROUND           |
| 074        | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1])                                                  | OUTPUT           |
| 075        | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1])                                                  | OUTPUT           |
| 076        | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1])                                                  | OUTPUT<br>OUTPUT |
| 077<br>078 | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1]) | OUTPUT           |
| 078<br>079 | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1]) | OUTPUT           |
| 079        | GROUND                                                                                         | GROUND           |
| 080        | GROUND                                                                                         | GROUND           |
| 081        | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1])                                                  | OUTPUT           |
| 082        | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA23[1])                                                  | OUTPUT           |
| 085        | PERIPHERAL PHYSICAL ADDRESS BIT 25 (PPA19[1])                                                  | OUTPUT           |
| 084        | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA21[1])                                                  | OUTPUT           |
| 085        | PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1])                                                  | OUTPUT           |

| 8-PIN CM195B/CM195BA PORTS CARD MODULAR CONNECTORS, J1 through J4 |                           |          |
|-------------------------------------------------------------------|---------------------------|----------|
| PIN                                                               | DESCRIPTION               | FUNCTION |
| 1                                                                 | GROUND                    | GROUND   |
| 2                                                                 | NOT USED                  | NC       |
| 3                                                                 | TRANSMIT DATA (TXD)       | INPUT    |
| 4                                                                 | DATA TERMINAL READY (DTR) | INPUT    |
| 5                                                                 | RECEIVE DATA (RXD)        | OUTPUT   |
| 6                                                                 | DATA CARRIER DETECT (DCD) | OUTPUT   |
| 7                                                                 | GROUND                    | GROUND   |
| 8                                                                 | NOT USED                  | NC       |

| PINDESCRIPTIONFUNC01(PRSTRB[0])INPUT/OL02(PRPA0[1])OUTPUT03(PRPA1[1])OUTPUT04(PRPA2[1])OUTPUT05(PRPA3[1])OUTPUT06(PRPA4[1])OUTPUT07(PRPA5[1])OUTPUT08(PRPA7[1])OUTPUT09(PRPA7[1])OUTPUT10NOT USEDNC11PERIPHERAL BUS BUSY (PRBUSY[1])INPUT12PERIPHERAL PARITY EROR (PRPE[1])INPUT13PERIPHERAL CARD SELECT (PRSEL[1])INPUT14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND26GROUNDGROUND26GROUNDGROUND26GROUNDGROUND                                                     | 36-PIN CM195B/CM195BA PORTS CARD PARALLEL CONNECTOR, J5 |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|
| 02(PRPA0[1])OUTPUT03(PRPA1[1])OUTPUT04(PRPA2[1])OUTPUT05(PRPA3[1])OUTPUT06(PRPA4[1])OUTPUT07(PRPA5[1])OUTPUT08(PRPA6[1])OUTPUT09(PRPA7[1])OUTPUT10NOT USEDNC11PERIPHERAL BUS BUSY (PRBUSY[1])INPUT12PERIPHERAL CARD SELECT (PRSEL[1])INPUT13PERIPHERAL CARD SELECT (PRSEL[1])INPUT14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND26GROUNDGROUND27GROUNDGROUND                                                                                                         | ΓΙΟΝ                                                    |  |  |
| 02(PRPA0[1)OUTPUT03(PRPA1[1)OUTPUT04(PRPA2[1)OUTPUT05(PRPA3[1)OUTPUT06(PRPA4[1)OUTPUT07(PRPA5[1)OUTPUT08(PRPA6[1)OUTPUT09(PRPA7[1)OUTPUT10NOT USEDNC11PERIPHERAL BUS BUSY (PRBUSY[1))INPUT12PERIPHERAL CARD SELECT (PRSEL[1))INPUT13PERIPHERAL CARD SELECT (PRSEL[1))INPUT14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND27GROUNDGROUND28GROUNDGROUND29GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND | TPUT                                                    |  |  |
| 04(PRPA2[1])OUTPUT05(PRPA3[1])OUTPUT06(PRPA4[1])OUTPUT07(PRPA5[1])OUTPUT08(PRPA6[1])OUTPUT09(PRPA7[1])OUTPUT09(PRPA7[1])OUTPUT10NOT USEDNC11PERIPHERAL BUS BUSY (PRBUSY[1])INPUT12PERIPHERAL PARITY ERROR (PRPE[1])INPUT13PERIPHERAL CARD SELECT (PRSEL[1])INPUT14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND26GROUNDGROUND                                                                                                                                         |                                                         |  |  |
| 05(PRPA3[1)OUTPUT06(PRPA4[1)OUTPUT07(PRPA5[1)OUTPUT08(PRPA6[1)OUTPUT09(PRPA7[1])OUTPUT10NOT USEDNC11PERIPHERAL BUS BUSY (PRBUSY[1))NC12PERIPHERAL PARITY ERROR (PRPE[1])INPUT13PERIPHERAL CARD SELECT (PRSEL[1])INPUT14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND26GROUNDGROUND26GROUNDGROUND27GROUNDGROUND28GROUNDGROUND29GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                          |                                                         |  |  |
| 06(PRPA4[1)OUTPUT07(PRPA5[1)OUTPUT08(PRPA6[1)OUTPUT09(PRPA7[1])OUTPUT10NOT USEDNC11PERIPHERAL BUS BUSY (PRBUSY[1))INPUT12PERIPHERAL PARITY ERROR (PRPE[1])INPUT13PERIPHERAL CARD SELECT (PRSEL[1])INPUT14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                  |                                                         |  |  |
| 07(PRPA5[1])OUTPUT08(PRPA6[1])OUTPUT09(PRPA7[1])OUTPUT10NOT USEDNC11PERIPHERAL BUS BUSY (PRBUSY[1])INPUT12PERIPHERAL PARITY ERROR (PRPE[1])INPUT13PERIPHERAL CARD SELECT (PRSEL[1])INPUT14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                 |                                                         |  |  |
| 08(PRPA6[1)OUTPUT09(PRPA7[1)OUTPUT10NOT USEDNC11PERIPHERAL BUS BUSY (PRBUSY[1))INPUT12PERIPHERAL PARITY ERROR (PRPE[1))INPUT13PERIPHERAL CARD SELECT (PRSEL[1))INPUT14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                     |                                                         |  |  |
| 09(PRPA7[1)OUTPUT10NOT USEDNC11PERIPHERAL BUS BUSY (PRBUSY[1)INPUT12PERIPHERAL PARITY ERROR (PRPE[1))INPUT13PERIPHERAL CARD SELECT (PRSEL[1])INPUT14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                     |                                                         |  |  |
| 10NOT USEDNC11PERIPHERAL BUS BUSY (PRBUSY[1])INPUT12PERIPHERAL PARITY ERROR (PRPE[1])INPUT13PERIPHERAL CARD SELECT (PRSEL[1])INPUT14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                     |                                                         |  |  |
| 11PERIPHERAL BUS BUSY (PRBUSY[1])INPUT12PERIPHERAL PARITY ERROR (PRPE[1])INPUT13PERIPHERAL CARD SELECT (PRSEL[1])INPUT14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                               |                                                         |  |  |
| 12PERIPHERAL PARITY ERROR (PRPE[1])INPUT13PERIPHERAL CARD SELECT (PRSEL[1])INPUT14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                                                       |                                                         |  |  |
| 13PERIPHERAL CARD SELECT (PRSEL[1])INPUT14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                                                                                               |                                                         |  |  |
| 14GROUNDGROUND15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |  |  |
| 15NOT USEDNC16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |  |  |
| 16GROUNDGROUND17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |  |  |
| 17GROUNDGROUND18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |  |  |
| 18NOT USEDNC19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |  |  |
| 19GROUNDGROUND20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |  |  |
| 20GROUNDGROUND21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |  |  |
| 21GROUNDGROUND22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |  |  |
| 22GROUNDGROUND23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |  |  |
| 23GROUNDGROUND24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |  |  |
| 24GROUNDGROUND25GROUNDGROUND26GROUNDGROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |  |  |
| 25     GROUND       26     GROUND       GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |  |  |
| 26 GROUND GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |  |  |
| 27 GROUND GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |  |  |
| 28 GROUND GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |  |  |
| 29 GROUND GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |  |  |
| 30 GROUND GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |  |  |
| 31 PERIPHERAL REQUEST SYSTEM RESET (PRREST[0]) INPUT/OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |  |  |
| 32 PERIPHERAL BUS FAULT (PRFAILT[0]) INPUT/OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TPUT                                                    |  |  |
| 33 GROUND GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |  |  |
| 34 NOT USED NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |  |  |
| 35 NOT USED NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |  |  |
| 36 NOT USED NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |  |  |

# CM195H CARTRIDGE TAPE CONTROLLER CARD INTERCONNECTIONS

The CM195H Cartridge Tape Controller (CTC) Card interconnections include the following:

- 86-pin card edge connections
- 34-pin device connector.

Figure B-26 shows the layout of the CM195H CTC Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.

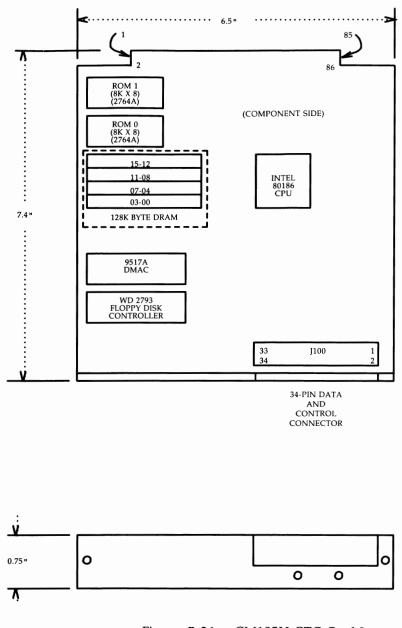
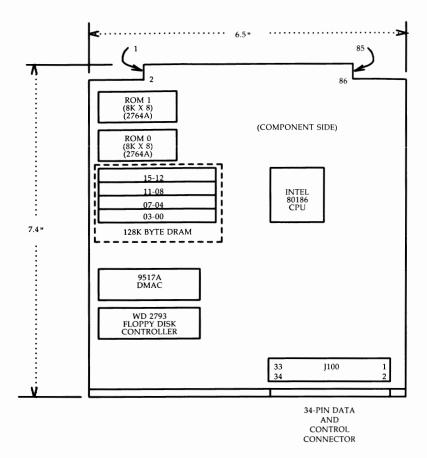
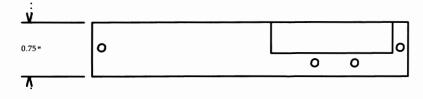
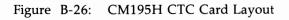






Figure B-26: CM195H CTC Card Layout



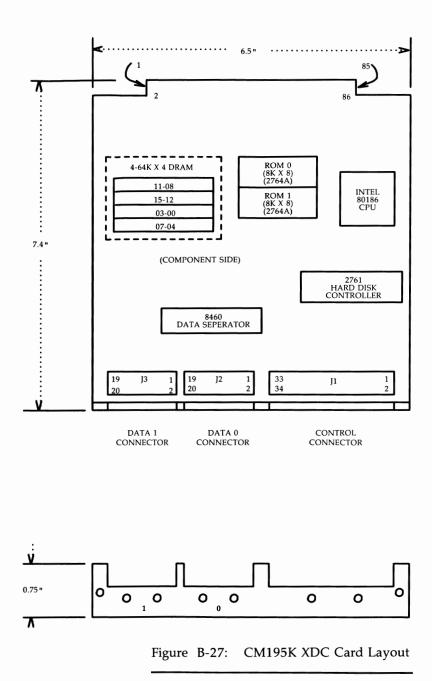




| 86-PIN CM195H CTC CARD EDGE CONNECTIONS |                                                           |              |
|-----------------------------------------|-----------------------------------------------------------|--------------|
| PIN                                     | DESCRIPTION                                               | FUNCTION     |
| 001                                     | +12V (V12P)                                               | POWER        |
| 002                                     | NOT USED                                                  | NC           |
| 003                                     | NOT USED                                                  | NC           |
| 004                                     | PERIPHERAL INTERRUPT REQUEST 1 (PINT1[0])                 | OUTPUT       |
| 005                                     | PERIPHERAL BUS ACKNOWLEDGE IN (PBACKI[0])                 | INPUT        |
| 006                                     | NOT USED                                                  | NC           |
| 007                                     | PERIPHERAL CARD SELECT (PCS01[0]—PCS12[0], as applicable) | INPUT        |
| 008                                     | NOT USED                                                  | NC           |
| 009                                     | GROUND (GRD)                                              | GROUND       |
| 010                                     | SYSTEM RESET (SYSRST[0])                                  | INPUT        |
| 011                                     | NOT USED                                                  | NC           |
| 012                                     | PERIPHERAL CARD FAILURE (PFAIL[0])                        | OUTPUT       |
| 013                                     | INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])                   | INPUT/OUTPUT |
| 014                                     | PERIPHERAL BUS FAULT (PFLT[0])                            | INPUT        |
| 015                                     | INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])                   | INPUT/OUTPUT |
| 016                                     | GROUND (GRD)                                              | GROUND       |
| 017                                     | +5V (VCC)                                                 | POWER        |
| 018                                     | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])                   | INPUT/OUTPUT |
| 019                                     | PERIPHERAL INTERRUPT ACKNOWLEDGE IN 1 (PIAKI1[0])         | INPUT/OUTPUT |
| 020                                     | PERIPHERAL DATA STROBE 1 (PDS1[0])                        | INPUT/OUTPUT |
| 021                                     | PERIPHERAL INPUT ACKNOWLEDGE OUT 1 (PIAKO1[0])            | INPUT/OUTPUT |
| 022                                     | PERIPHERAL DATA BIT 00 (PD00[1])                          | INPUT/OUTPUT |
| 023                                     | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKI0[0])             | INPUT        |
| 024                                     | PERIPHERAL DATA BIT 02 (PD02[1])                          | INPUT/OUTPUT |
| 025                                     | GROUND (GRD)                                              | GROUND       |
| 026                                     | PERIPHERAL DATA BIT 03 (PD03[1])                          | INPUT/OUTPUT |
| 027                                     | PERIPHERAL BUSY (PBUSY[0])                                | OUTPUT       |
| 028                                     | PERIPHERAL DATA BIT 05 (PD05[1])                          | INPUT/OUTPUT |
| 029                                     | PERIPHERAL INPUT ACKNOWLEDGE OUT 0 (PIAKO0[0])            | INPUT/OUTPUT |
| 030                                     | PERIPHERAL DATA BIT 07 (PD07[1])                          | INPUT/OUTPUT |
| 031                                     | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])          | OUTPUT       |
| 032                                     | GROUND (GRD)                                              | GROUND       |
| 033                                     | PERIPHERAL DATA STROBE 0 (PDS0[0])                        | OUTPUT       |
| 034                                     | PERIPHERAL DATA BIT 08 (PD08[1])                          | INPUT/OUTPUT |
| 035                                     | PERIPHERAL DATA BIT 01 (PD01[1])                          | INPUT/OUTPUT |
| 036                                     | PERIPHERAL DATA BIT 10 (PD10[1])                          | INPUT/OUTPUT |
| 037                                     | GROUND (GRD)                                              | GROUND       |
| 038                                     | PERIPHERAL DATA BIT 12 (PD12[1])                          | INPUT/OUTPUT |
| 039                                     | PERIPHERAL DATA BIT 04 (PD04[1])                          | INPUT/OUTPUT |
| 040                                     | +5V (VCC)                                                 | POWER        |
| 041                                     | GROUND (GRD)                                              | GROUND       |
| 042                                     | PERIPHERAL DATA BIT 13 (PD13[1])                          | INPUT/OUTPUT |
| 043                                     | PERIPHERAL DATA BIT 06 (PD06[1])                          | INPUT/OUTPUT |

| 86-PIN CM195H CTC CARD EDGE CONNECTIONS (Contd) |                                                                                                |                  |
|-------------------------------------------------|------------------------------------------------------------------------------------------------|------------------|
| PIN                                             | DESCRIPTION                                                                                    | FUNCTION         |
| 044                                             | PERIPHERAL DATA BIT 15 (PD15[1])                                                               | INPUT/OUTPUT     |
| 045                                             | PERIPHERAL DATA BIT 09 (PD09[1])                                                               | INPUT/OUTPUT     |
| 046                                             | PERIPHERAL BUS REQUEST (PBRQ[0])                                                               | OUTPUT           |
| 047                                             | PERIPHERAL DATA BIT 11 (PD11[1])                                                               | INPUT/OUTPUT     |
| 048                                             | GROUND (GRD)                                                                                   | GROUND           |
| 049                                             | GROUND (GRD)                                                                                   | GROUND           |
| 050                                             | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])                                                   | INPUT/OUTPUT     |
| 051                                             | PERIPHERAL DATA BIT 14 (PD14[1])                                                               | INPUT/OUTPUT     |
| 052                                             | PERIPHERAL INTERLOCK OPERATION (PLOCK[0])                                                      | OUTPUT           |
| 053                                             | PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO[0])                                                     | OUTPUT           |
| 054                                             | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA001)                                                    | INPUT/OUTPUT     |
| 055                                             | PERIPHERAL READ-WRITE (PR[1]W[0])                                                              | INPUT/OUTPUT     |
| 056                                             | GROUND (GRD)                                                                                   | GROUND           |
| 057                                             | GROUND (GRD)                                                                                   | GROUND           |
| 058                                             | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1])                                                  | INPUT/OUTPUT     |
| 059                                             | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1])                                                  | INPUT/OUTPUT     |
| 060                                             | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1])                                                  | OUTPUT           |
| 061                                             | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1])                                                  | OUTPUT           |
| 062                                             | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1])                                                  | OUTPUT           |
| 063                                             | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1])                                                  | OUTPUT           |
| 064                                             | +5V (VCC)                                                                                      | POWER            |
| 065                                             | GROUND                                                                                         | GROUND           |
| 066                                             | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1])                                                  | OUTPUT           |
| 067                                             | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1])                                                  | OUTPUT           |
| 068                                             | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1])                                                  | OUTPUT           |
| 069                                             | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1])                                                  | OUTPUT           |
| 070                                             | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1])                                                  | OUTPUT           |
| 071                                             | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1])                                                  | OUTPUT           |
| 072                                             | GROUND                                                                                         | GROUND           |
| 073                                             | GROUND                                                                                         | GROUND           |
| 074                                             | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1])                                                  | OUTPUT           |
| 075                                             | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1])                                                  | OUTPUT           |
| 076                                             | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1])                                                  | OUTPUT           |
| 077                                             | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1])                                                  | OUTPUT           |
| 078                                             | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1])                                                  | OUTPUT           |
| 079                                             | PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1])                                                  | OUTPUT<br>GROUND |
| 080                                             | GROUND                                                                                         | GROUND           |
| 081                                             | GROUND                                                                                         | OUTPUT           |
| 082                                             | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1]) | OUTPUT           |
| 083                                             | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1]) | OUTPUT           |
| 084<br>085                                      | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1]) | OUTPUT           |
| 085                                             | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1]) | OUTPUT           |
| 000                                             |                                                                                                | 001101           |

| PIN     DESCRIPTION       1     GROUND       2     NOT USED       3     GROUND       4     NOT USED       5     GROUND       6     NOT USED       7     GROUND       8     INDEX (FINDEX[0])       9     GROUND       10     FLOPPY DRIVE SELECT 0 (FDSEL[0])       11     GROUND       12     NOT USED | FUNCTION<br>GROUND<br>NC<br>GROUND<br>NC<br>GROUND<br>NC<br>GROUND<br>INPUT |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 2       NOT USED         3       GROUND         4       NOT USED         5       GROUND         6       NOT USED         7       GROUND         8       INDEX (FINDEX[0])         9       GROUND         10       FLOPPY DRIVE SELECT 0 (FDSEL[0])         11       GROUND         12       NOT USED    | NC<br>GROUND<br>NC<br>GROUND<br>NC<br>GROUND<br>INPUT                       |
| 3       GROUND         4       NOT USED         5       GROUND         6       NOT USED         7       GROUND         8       INDEX (FINDEX[0])         9       GROUND         10       FLOPPY DRIVE SELECT 0 (FDSEL[0])         11       GROUND         12       NOT USED                             | GROUND<br>NC<br>GROUND<br>NC<br>GROUND<br>INPUT                             |
| 4         NOT USED           5         GROUND           6         NOT USED           7         GROUND           8         INDEX (FINDEX[0])           9         GROUND           10         FLOPPY DRIVE SELECT 0 (FDSEL[0])           11         GROUND           12         NOT USED                  | NC<br>GROUND<br>NC<br>GROUND<br>INPUT                                       |
| 5       GROUND         6       NOT USED         7       GROUND         8       INDEX (FINDEX[0])         9       GROUND         10       FLOPPY DRIVE SELECT 0 (FDSEL[0])         11       GROUND         12       NOT USED                                                                             | GROUND<br>NC<br>GROUND<br>INPUT                                             |
| <ul> <li>6 NOT USED</li> <li>7 GROUND</li> <li>8 INDEX (FINDEX[0])</li> <li>9 GROUND</li> <li>10 FLOPPY DRIVE SELECT 0 (FDSEL[0])</li> <li>11 GROUND</li> <li>12 NOT USED</li> </ul>                                                                                                                    | NC<br>GROUND<br>INPUT                                                       |
| <ul> <li>7 GROUND</li> <li>8 INDEX (FINDEX[0])</li> <li>9 GROUND</li> <li>10 FLOPPY DRIVE SELECT 0 (FDSEL[0])</li> <li>11 GROUND</li> <li>12 NOT USED</li> </ul>                                                                                                                                        | GROUND<br>INPUT                                                             |
| <ul> <li>8 INDEX (FINDEX[0])</li> <li>9 GROUND</li> <li>10 FLOPPY DRIVE SELECT 0 (FDSEL[0])</li> <li>11 GROUND</li> <li>12 NOT USED</li> </ul>                                                                                                                                                          | INPUT                                                                       |
| 9 GROUND<br>10 FLOPPY DRIVE SELECT 0 (FDSEL[0])<br>11 GROUND<br>12 NOT USED                                                                                                                                                                                                                             |                                                                             |
| 9 GROUND<br>10 FLOPPY DRIVE SELECT 0 (FDSEL[0])<br>11 GROUND<br>12 NOT USED                                                                                                                                                                                                                             |                                                                             |
| 11   GROUND     12   NOT USED                                                                                                                                                                                                                                                                           | GROUND                                                                      |
| 12 NOT USED                                                                                                                                                                                                                                                                                             | OUTPUT                                                                      |
|                                                                                                                                                                                                                                                                                                         | GROUND                                                                      |
|                                                                                                                                                                                                                                                                                                         | NC                                                                          |
| 13 GROUND                                                                                                                                                                                                                                                                                               | GROUND                                                                      |
| 14 NOT USED                                                                                                                                                                                                                                                                                             | NC                                                                          |
| 15 GROUND                                                                                                                                                                                                                                                                                               | GROUND                                                                      |
| 16 MOTOR ON (MON[0])                                                                                                                                                                                                                                                                                    | OUTPUT                                                                      |
| 17 GROUND                                                                                                                                                                                                                                                                                               | GROUND                                                                      |
| 18 FLOPPY DIRECTION SELECT (FDIRC[0])                                                                                                                                                                                                                                                                   | OUTPUT                                                                      |
| 19 GROUND                                                                                                                                                                                                                                                                                               | GROUND                                                                      |
| 20 FLOPPY STEP (FSTEP[0])                                                                                                                                                                                                                                                                               | OUTPUT                                                                      |
| 21 GROUND                                                                                                                                                                                                                                                                                               | GROUND                                                                      |
| 22 WRITE DATA (FWDATA[0])                                                                                                                                                                                                                                                                               | OUTPUT                                                                      |
| 23 GROUND                                                                                                                                                                                                                                                                                               | GROUND                                                                      |
| 24 FLOPPY WRITE GATE (FWGATE[0])                                                                                                                                                                                                                                                                        | OUTPUT                                                                      |
| 25 GROUND                                                                                                                                                                                                                                                                                               | GROUND                                                                      |
| 26 FLOPPY TRACK 0 (FTR0[0]                                                                                                                                                                                                                                                                              | INPUT)                                                                      |
| 27 GROUND                                                                                                                                                                                                                                                                                               | GROUND                                                                      |
| 28 FLOPPY WRITE PROTECT (FWRTPRT[0])                                                                                                                                                                                                                                                                    | INPUT                                                                       |
| 29 GROUND                                                                                                                                                                                                                                                                                               | GROUND                                                                      |
| 30 READ DATA (FRDATA[0])                                                                                                                                                                                                                                                                                | INPUT                                                                       |
| 31 GROUND                                                                                                                                                                                                                                                                                               | GROUND                                                                      |
| 32 FLOPPY SIDE SELECT (FSSEL[0])                                                                                                                                                                                                                                                                        | OUTPUT                                                                      |
| 33 GROUND                                                                                                                                                                                                                                                                                               | GROUND                                                                      |
| 34 FLOPPY READY (FRDY[0])                                                                                                                                                                                                                                                                               | INPUT                                                                       |


# CM195K EXPANSION DISK CONTROLLER CARD INTERCONNECTIONS

The CM195K Expansion Disk Controller (XDC) Card interconnections include the following:

- 86-pin card edge connections
- 34-pin control connector (J1)
- 20-pin data 0 connector (J2)
- 20-pin data 1 connector (J3).

Figure B-27 shows the layout of the CM195K XDC Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.

~



CONNECTOR AND CABLING INFORMATION B-169

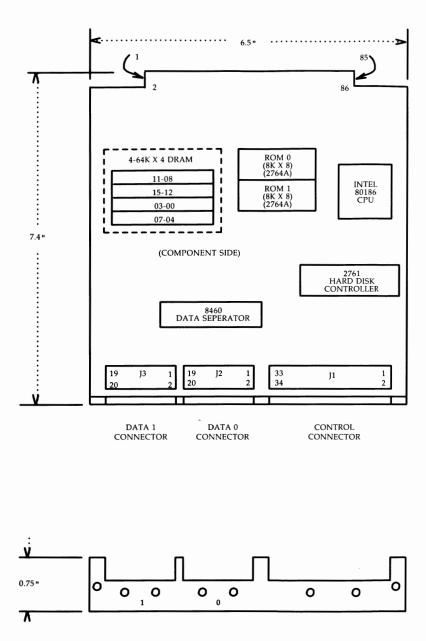



Figure B-27: CM195K XDC Card Layout

|     | 86-PIN CM195K XDC CARD EDGE CONNECTIONS           |              |
|-----|---------------------------------------------------|--------------|
| PIN | DESCRIPTION                                       | FUNCTION     |
| 001 | +12V (V12P)                                       | POWER        |
| 002 | NOT USED                                          | NC           |
| 003 | NOT USED                                          | NC           |
| 004 | PERIPHERAL INTERRUPT REQUEST 1 (PINT1[0])         | OUTPUT       |
| 005 | PERIPHERAL BUS ACKNOWLEDGE IN (PBACKI[0])         | INPUT        |
| 006 | NOT USED                                          | NC           |
| 007 | PERIPHERAL CARD SELECT (PCS[0])                   | INPUT        |
| 008 | NOT USED                                          | NC           |
| 009 | GROUND (GRD)                                      | GROUND       |
| 010 | SYSTEM RESET (SYSRST[0])                          | INPUT        |
| 011 | NOT USED                                          | NC           |
| 012 | PERIPHERAL CARD FAILURE (PFAIL[0])                | OUTPUT       |
| 013 | INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])           | INPUT/OUTPUT |
| 014 | PERIPHERAL BUS FAULT (PFLT[0])                    | INPUT        |
| 015 | INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])           | INPUT/OUTPUT |
| 016 | GROUND (GRD)                                      | GROUND       |
| 017 | +5V (VCC)                                         | POWER        |
| 018 | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])           | INPUT/OUTPUT |
| 019 | PERIPHERAL INTERRUPT ACKNOWLEDGE IN 1 (PIAKI1[0]) | INPUT        |
| 020 | PERIPHERAL DATA STROBE 1 (PDS1[0])                | INPUT/OUTPUT |
| 021 | PERIPHERAL INPUT ACKNOWLEDGE OUT 1 (PIAKO1[0])    | INPUT/OUTPUT |
| 022 | PERIPHERAL DATA BIT 00 (PD00[1])                  | INPUT/OUTPUT |
| 023 | PERIPHERAL INPUT ACKNOWLEDGE OUT 0 (PIAKO0[0])    | INPUT/OUTPUT |
| 024 | PERIPHERAL DATA BIT 02 (PD02[1])                  | INPUT/OUTPUT |
| 025 | GROUND (GRD)                                      | GROUND       |
| 026 | PERIPHERAL DATA BIT 03 (PD03[1])                  | INPUT/OUTPUT |
| 027 | PERIPHERAL BUSY (PBUSY[0])                        | OUTPUT       |
| 028 | PERIPHERAL DATA BIT 05 (PD05[1])                  | INPUT/OUTPUT |
| 029 | PERIPHERAL INPUT ACKNOWLEDGE OUT 0 (PIAKO0[0])    | INPUT/OUTPUT |
| 030 | PERIPHERAL DATA BIT 07 (PD07[1])                  | INPUT/OUTPUT |
| 031 | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])  | OUTPUT       |
| 032 | GROUND (GRD)                                      | GROUND       |
| 033 | PERIPHERAL DATA STROBE 0 (PDS0[0])                | OUTPUT       |
| 034 | PERIPHERAL DATA BIT 08 (PD08[1])                  | INPUT/OUTPUT |
| 035 | PERIPHERAL DATA BIT 01 (PD01[1])                  | INPUT/OUTPUT |
| 036 | PERIPHERAL DATA BIT 10 (PD10[1])                  | INPUT/OUTPUT |
| 037 | GROUND (GRD)                                      | GROUND       |
| 038 | PERIPHERAL DATA BIT 12 (PD12[1])                  | INPUT/OUTPUT |
| 039 | PERIPHERAL DATA BIT 04 (PD04[1])                  | INPUT/OUTPUT |
| 040 | +5V (VCC)                                         | POWER        |
| 041 | GROUND (GRD)                                      | GROUND       |
| 042 | PERIPHERAL DATA BIT 13 (PD13[1])                  | INPUT/OUTPUT |
| 043 | PERIPHERAL DATA BIT 06 (PD06[1])                  | INPUT/OUTPUT |

|     | 86-PIN CM195K XDC CARD EDGE CONNECTIO         | NS (Contd)   |
|-----|-----------------------------------------------|--------------|
| PIN | DESCRIPTION                                   | FUNCTION     |
| 044 | PERIPHERAL DATA BIT 15 (PD15[1])              | INPUT/OUTPUT |
| 045 | PERIPHERAL DATA BIT 09 (PD09[1])              | INPUT/OUTPUT |
| 046 | PERIPHERAL BUS REQUEST (PBRQ[0])              | OUTPUT       |
| 047 | PERIPHERAL DATA BIT 11 (PD11[1])              | INPUT/OUTPUT |
| 048 | GROUND (GRD)                                  | GROUND       |
| 049 | GROUND (GRD)                                  | GROUND       |
| 050 | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])  | INPUT/OUTPUT |
| 051 | PERIPHERAL DATA BIT 14 (PD141)                | INPUT/OUTPUT |
| 052 | PERIPHERAL INTERLOCK OPERATION (PLOCK[0])     | OUTPUT       |
| 053 | PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO[0])    | INPUT/OUTPUT |
| 054 | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1]) | NC           |
| 055 | PERIPHERAL READ-WRITE (PR[1]W[0])             | INPUT/OUTPUT |
| 056 | GROUND (GRD)                                  | GROUND       |
| 057 | GROUND (GRD)                                  | GROUND       |
| 058 | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1]) | INPUT/OUTPUT |
| 059 | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1]) | INPUT/OUTPUT |
| 060 | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1]) | OUTPUT       |
| 061 | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1]) | OUTPUT       |
| 062 | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1]) | OUTPUT       |
| 063 | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1]) | OUTPUT       |
| 064 | +5V (VCC)                                     | POWER        |
| 065 | GROUND                                        | GROUND       |
| 066 | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1]) | OUTPUT       |
| 067 | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1]) | OUTPUT       |
| 068 | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1]) | OUTPUT       |
| 069 | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1]) | OUTPUT       |
| 070 | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1]) | OUTPUT       |
| 071 | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1]) | OUTPUT       |
| 072 | GROUND                                        | GROUND       |
| 073 | GROUND                                        | GROUND       |
| 074 | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1]) | OUTPUT       |
| 075 | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1]) | OUTPUT       |
| 076 | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1]) | OUTPUT       |
| 077 | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1]) | OUTPUT       |
| 078 | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1]) | OUTPUT       |
| 079 | PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1]) | OUTPUT       |
| 080 | GROUND                                        | GROUND       |
| 081 | GROUND                                        | GROUND       |
| 082 | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1]) | OUTPUT       |
| 083 | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1]) | OUTPUT       |
| 084 | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1]) | OUTPUT       |
| 085 | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1]) | OUTPUT       |
| 086 | PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1]) | OUTPUT       |

NC

No Connection

| 34-PIN CONTROL CONNECTOR, J1 |                                |          |
|------------------------------|--------------------------------|----------|
| PIN                          | DESCRIPTION                    | FUNCTION |
| 1                            | GROUND                         | GROUND   |
| 2                            | HEAD SELECT 3 (HS3[0])         | OUTPUT   |
|                              | REDUCED WRITE CURRENT (RWC[0]) | OUTPUT   |
| 3                            | GROUND                         | GROUND   |
| 4                            | HEAD SELECT 2 (HS2[0])         | OUTPUT   |
| 5                            | GROUND                         | GROUND   |
| 6                            | WRITE GATE (WGATE[0])          | OUTPUT   |
| 7                            | GROUND                         | GROUND   |
| 8                            | SEEK COMPLETE (SKC[0])         | INPUT    |
| 9                            | GROUND                         | GROUND   |
| 10                           | TRACK 0 (TRK0[0])              | INPUT    |
| 11                           | GROUND                         | GROUND   |
| 12                           | WRITE FAULT (WRTFLT[0])        | INPUT    |
| 13                           | GROUND                         | GROUND   |
| 14                           | HEAD SELECT 0 (HS0[0])         | OUTPUT   |
| 15                           | GROUND                         | GROUND   |
| 16                           | CONNECTOR COMMON (J2P7)(J3P7)  | GROUND   |
| 17                           | GROUND                         | GROUND   |
| 18                           | HEAD SELECT 1 (HS1[0])         | OUTPUT   |
| 19                           | GROUND                         | GROUND   |
| 20                           | INDEX (INDEX[0])               | INPUT    |
| 21                           | GROUND                         | GROUND   |
| 22                           | READY (RDY[0])                 | INPUT    |
| 23                           | GROUND                         | GROUND   |
| 24                           | STEP (XSTEP[0])                | OUTPUT   |
| 25                           | GROUND                         | GROUND   |
| 26                           | DRIVE SELECT 0 (DSEL0[0])      | OUTPUT   |
| 27                           | GROUND                         | GROUND   |
| 28                           | DRIVE SELECT 1 (DSEL1[0])      | OUTPUT   |
| 29                           | GROUND                         | GROUND   |
| 30                           | NOT USED                       | NC       |
| 31                           | GROUND                         | GROUND   |
| 32                           | NOT USED                       | NC       |
| 33                           | GROUND                         | GROUND   |
| 34                           | DIRECTION IN (DIR[0])          | OUTPUT   |

NC

No Connection

| 20-PIN DATA 0 CONNECTOR, J2 |                                |          |
|-----------------------------|--------------------------------|----------|
| PIN                         | DESCRIPTION                    | FUNCTION |
| 1                           | DRIVE SELECTED (DSD[0])        | INPUT    |
| 2                           | GROUND                         | GROUND   |
| 3                           | NOT USED                       | NC       |
| 4                           | GROUND                         | GROUND   |
| 5                           | NOT USED                       | NC       |
| 6                           | GROUND                         | GROUND   |
| 7                           | CONNECTOR COMMON (J1P16)(J3P7) |          |
| 8                           | GROUND                         | GROUND   |
| 9                           | NOT USED                       | NC       |
| 10                          | GROUND                         | GROUND   |
| 11                          | GROUND                         | GROUND   |
| 12                          | GROUND                         | GROUND   |
| 13                          | +MFM WRITE DATA (MFMOP0)       | OUTPUT   |
| 14                          | -MFM WRITE DATA (MFMON0)       | OUTPUT   |
| 15                          | GROUND                         |          |
| 16                          | GROUND                         | GROUND   |
| 17                          | +MFM READ DATA (MFMIP0)        | INPUT    |
| 18                          | -MFM READ DATA (MFMIN0)        | INPUT    |
| 19                          | GROUND                         | GROUND   |
| 20                          | NOT USED                       | NC       |

| MFM | Modified Frequency Modulation |
|-----|-------------------------------|
| NC  | No Connection                 |

| 20-PIN DATA 1 CONNECTOR, J3 |                                |          |
|-----------------------------|--------------------------------|----------|
| PIN                         | DESCRIPTION                    | FUNCTION |
| 1                           | DRIVE SELECTED (DSD[0])        | INPUT    |
| 2                           | GROUND                         | GROUND   |
| 3                           | NOT USED                       | NC       |
| 4                           | GROUND                         | GROUND   |
| 5                           | NOT USED                       | NC       |
| 6                           | GROUND                         | GROUND   |
| 7                           | CONNECTOR COMMON (J1P16)(J2P7) |          |
| 8                           | GROUND                         | GROUND   |
| 9                           | NOT USED                       | NC       |
| 10                          | GROUND                         | GROUND   |
| 11                          | GROUND                         | GROUND   |
| 12                          | GROUND                         | GROUND   |
| 13                          | +MFM WRITE DATA (MFMOP1)       | OUTPUT   |
| 14                          | -MFM WRITE DATA (MFMON1)       | OUTPUT   |
| 15                          | GROUND                         | GROUND   |
| 16                          | GROUND                         | GROUND   |
| 17                          | +MFM READ DATA (MFMIP1)        | INPUT    |
| 18                          | -MFM READ DATA (MFMIN1)        | INPUT    |
| 19                          | GROUND                         | GROUND   |
| 20                          | NOT USED                       | NC       |

| MFM | Modified Frequency Modulation |
|-----|-------------------------------|
| NC  | No Connection                 |

# CM195T INTELLIGENT SERIAL CONTROLLER CARD INTERCONNECTIONS

The CM195T Intelligent Serial Controller (ISC) Card interconnections include the following:

- 86-pin card edge connections
- 37-pin serial port connector (J01)
- 25-pin serial port Channel A connector (J02)
- 25-pin serial port Channel B connector (J03).

Figure B-28 shows the layout of the CM195T ISC Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.

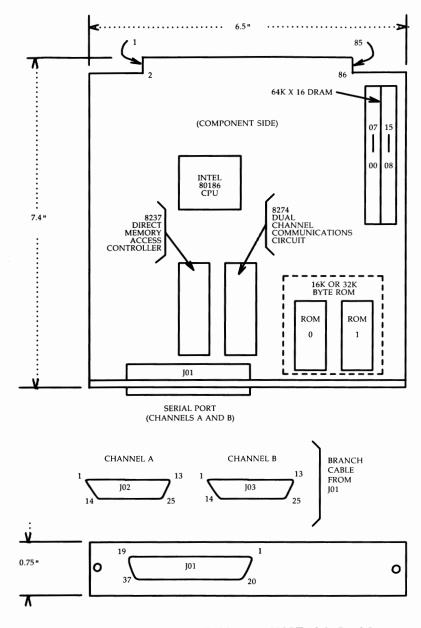
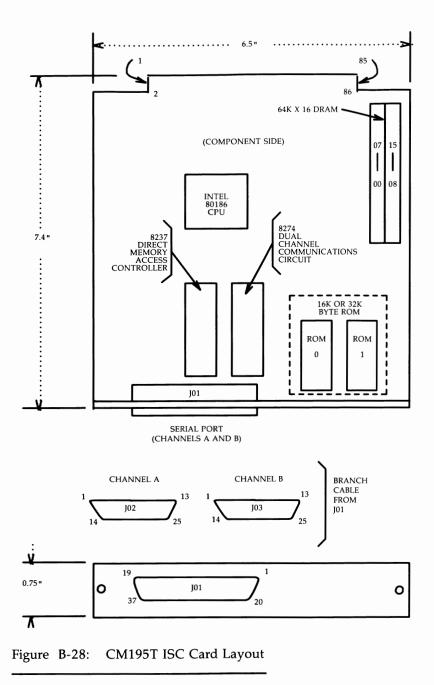




Figure B-28: CM195T ISC Card Layout



| PIN        | DESCRIPTION                                       | FUNCTION     |
|------------|---------------------------------------------------|--------------|
|            |                                                   |              |
| 001        | +12V (V12P)                                       | POWER        |
| 002        | PERIPHERAL INTERRUPT REQUEST 2 (PINT2[0])         | OUTPUT       |
| 003        | -12V (V12N)                                       | POWER        |
| 004        | PERIPHERAL INTERRUPT REQUEST 1 (PINT1[0])         | OUTPUT       |
| 005        | PERIPHERAL BUS ACKNOWLEDGE IN (PBACKI[0])         | INPUT        |
| 006        | PERIPHERAL INTERRUPT REQUEST 0 (PINT0[0])         | OUTPUT       |
| 007        | PERIPHERAL CARD SELECT (PCS[0])                   | INPUT        |
| 008        | PERIPHERAL REQUEST SYSTEM RESET (RQRST[0])        | INPUT/OUTPUT |
| 009<br>010 | GROUND (GRD)<br>SYSTEM RESET (SYSRST[0])          | GROUND       |
| 010        | +3.9V BACKUP BATTERY (VBKUP)                      | POWER        |
| 012        | PERIPHERAL CARD FAILURE (PFAIL[0])                | OUTPUT       |
| 012        | INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])           | INPUT/OUTPUT |
| 013        | PERIPHERAL BUS FAULT (PFLT[0])                    | INPUT        |
| 015        | INTERRUPT ACKNOWLEDGE IN 2 (PIAKO2[0])            | INPUT/OUTPUT |
| 016        | GROUND (GRD)                                      | GROUND       |
| 017        | +5V (VCC)                                         | POWER        |
| 018        | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])           | INPUT/OUTPUT |
| 019        | PERIPHERAL INTERRUPT ACKNOWLEDGE IN 1 (PIAKI1[0]) | INPUT        |
| 020        | PERIPHERAL DATA STROBE 1 (PDS1[0])                | INPUT/OUTPUT |
| 021        | PERIPHERAL INPUT ACKNOWLEDGE OUT 1 (PIAKO1[0])    | INPUT/OUTPUT |
| 022        | PERIPHERAL DATA BIT 00 (PD00[1])                  | INPUT/OUTPUT |
| 023        | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKO0[0])     | INPUT/OUTPUT |
| 024        | PERIPHERAL DATA BIT 02 (PD02[1])                  | INPUT/OUTPUT |
| 025        | GROUND (GRD)                                      | GROUND       |
| 026        | PERIPHERAL DATA BIT 03 (PD03[1])                  | INPUT/OUTPUT |
| 027        | PERIPHERAL BUSY (PBUSY[0])                        | OUTPUT       |
| 028        | PERIPHERAL DATA BIT 05 (PD05[1])                  | INPUT/OUTPUT |
| 029        | PERIPHERAL INPUT ACKNOWLEDGE OUT 0 (PIAKO0[0])    | INPUT/OUTPUT |
| 030        | PERIPHERAL DATA BIT 07 (PD07[1])                  | INPUT/OUTPUT |
| 031        | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])  | OUTPUT       |
| 032        | GROUND (GRD)                                      | GROUND       |
| 033        | PERIPHERAL DATA STROBE 0 (PDS0[0])                | OUTPUT       |
| 034        | PERIPHERAL DATA BIT 08 (PD08[1])                  | INPUT/OUTPUT |
| 035        | PERIPHERAL DATA BIT 01 (PD01[1])                  | INPUT/OUTPUT |
| 036        | PERIPHERAL DATA BIT 10 (PD10[1])                  | INPUT/OUTPUT |
| 037        | GROUND (GRD)                                      | GROUND       |
| 038        | PERIPHERAL DATA BIT 12 (PD12[1])                  | INPUT/OUTPUT |
| 039<br>040 | PERIPHERAL DATA BIT 04 (PD04[1])                  | INPUT/OUTPUT |
| 040        | +5V (VCC)<br>GROUND (GRD)                         | POWER        |
| 041        |                                                   | GROUND       |

|            | 86-PIN CM195T ISC CARD EDGE CONNECTIONS (Contd)                                                |              |  |
|------------|------------------------------------------------------------------------------------------------|--------------|--|
| PIN        | DESCRIPTION                                                                                    | FUNCTION     |  |
| 042        | PERIPHERAL DATA BIT 13 (PD13[1])                                                               | INPUT/OUTPUT |  |
| 043        | PERIPHERAL DATA BIT 06 (PD06[1])                                                               | INPUT/OUTPUT |  |
| 044        | PERIPHERAL DATA BIT 15 (PD15[1])                                                               | INPUT/OUTPUT |  |
| 045        | PERIPHERAL DATA BIT 09 (PD09[1])                                                               | INPUT/OUTPUT |  |
| 046        | PERIPHERAL BUS REQUEST (PBRQ[0])                                                               | OUTPUT       |  |
| 047        | PERIPHERAL DATA BIT 11 (PD11[1])                                                               | INPUT/OUTPUT |  |
| 048        | GROUND (GRD)                                                                                   | GROUND       |  |
| 049        | GROUND (GRD)                                                                                   | GROUND       |  |
| 050        | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])                                                   | INPUT/OUTPUT |  |
| 051        | PERIPHERAL DATA BIT 14 (PD14[1])                                                               | INPUT/OUTPUT |  |
| 052        | PERIPHERAL INTERLOCK OPERATION (PLOCK[0])                                                      | OUTPUT       |  |
| 053        | PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO[0])                                                     | INPUT/OUTPUT |  |
| 054        | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1])                                                  | INPUT/OUTPUT |  |
| 055        | PERIPHERAL READ-WRITE (PR1W0)                                                                  | INPUT/OUTPUT |  |
| 056        | GROUND (GRD)                                                                                   | GROUND       |  |
| 057        | GROUND (GRD)                                                                                   | GROUND       |  |
| 058        | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1])                                                  | INPUT/OUTPUT |  |
| 059        | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1])                                                  | INPUT/OUTPUT |  |
| 060        | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1])                                                  | OUTPUT       |  |
| 061        | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1])                                                  | OUTPUT       |  |
| 062        | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1])                                                  | OUTPUT       |  |
| 063        | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1])                                                  | OUTPUT       |  |
| 064        | +5V (VCC)                                                                                      | POWER        |  |
| 065        | GROUND                                                                                         | GROUND       |  |
| 066        | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1])                                                  | OUTPUT       |  |
| 067        | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1])                                                  | OUTPUT       |  |
| 068        | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1])                                                  | OUTPUT       |  |
| 069        | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1])                                                  | OUTPUT       |  |
| 070        | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1])                                                  | OUTPUT       |  |
| 071        | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1])                                                  | OUTPUT       |  |
| 072        | GROUND                                                                                         | GROUND       |  |
| 073        | GROUND                                                                                         | GROUND       |  |
| 074        | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1])                                                  | OUTPUT       |  |
| 075        | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1])                                                  | OUTPUT       |  |
| 076        | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1])                                                  | OUTPUT       |  |
| 077        | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1])                                                  | OUTPUT       |  |
| 078        | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1])                                                  | OUTPUT       |  |
| 079        | PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1])                                                  | OUTPUT       |  |
| 080        | GROUND                                                                                         | GROUND       |  |
| 081<br>082 | GROUND<br>PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1])                                        | OUTPUT       |  |
| 082        | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1]) | OUTPUT       |  |
| 083        | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1]) | OUTPUT       |  |
| 084        | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1]) | OUTPUT       |  |
| 085        | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PRA2[1])                                                   | OUTPUT       |  |
| 000        |                                                                                                |              |  |

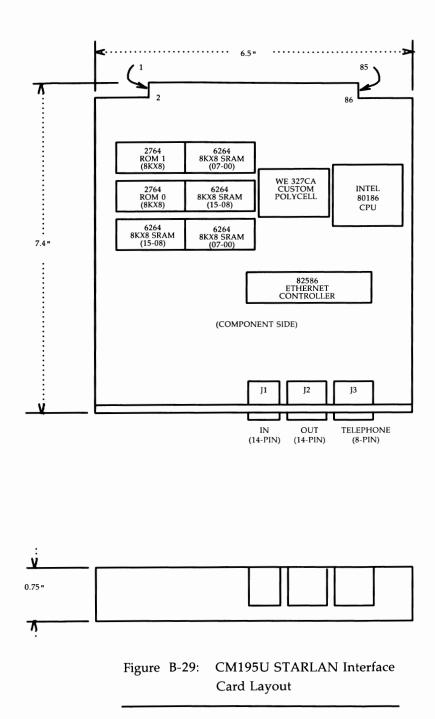
| 37-PIN CM195T ISC CARD SERIAL PORT CONNECTOR, J01 |                                                |          |
|---------------------------------------------------|------------------------------------------------|----------|
| PIN                                               | DESCRIPTION                                    | FUNCTION |
| 01                                                | SIGNAL GROUND (J2P1)                           | GROUND   |
| 02                                                | A CHANNEL RECEIVE CLOCK (ARXC)(J2P17)          | INPUT    |
| 03                                                | A CHANNEL TRANSMIT DATA (ATXD)(J2P2)           | OUTPUT   |
| 04                                                | A CHANNEL TRANSMIT CLOCK INPUT (ATXCI)(J2P15)  | INPUT    |
| 05                                                | A CHANNEL RECEIVE DATA (ARXD)(J2P3)            | INPUT    |
| 06                                                | NOT USED                                       | NC       |
| 07                                                | A CHANNEL REQUEST TO SEND (ARTS)(J2P4)         | OUTPUT   |
| 08                                                | NOT USED                                       | NC       |
| 09                                                | A CHANNEL CLEAR TO SEND (ACTS)(J2P5)           | INPUT    |
| 10                                                | NOT USED                                       | NC       |
| 11                                                | SIGNAL GROUND (J2P7)                           | GROUND   |
| 12                                                | NOT USED                                       | NC       |
| 13                                                | A CHANNEL DATA CARRIER DETECT (ADCD)(J2P8)     | INPUT    |
| 14                                                | NOT USED                                       | NC       |
| 15                                                | A CHANNEL DATA TERMINAL READY (ADTR)(J2P20)    | OUTPUT   |
| 16                                                | A CHANNEL RING INDICATOR (ARI)(J2P22)          | INPUT    |
| 17                                                | A CHANNEL DATA SET READY (ADSR)(J2P6)          | INPUT    |
| 18                                                | A CHANNEL TRANSMIT CLOCK OUTPUT (ATXCO)(J2P24) | OUTPUT   |
| 19                                                | NOT USED                                       | NC       |
| 20                                                | NOT USED                                       | NC       |
| 21                                                | B CHANNEL TRANSMIT DATA (BTXD)(J3P2)           | OUTPUT   |
| 22                                                | B CHANNEL RECEIVE CLOCK (BRXC)(J3P17)          | INPUT    |
| 23                                                | B CHANNEL RECEIVE DATA (BRXD)(J3P3)            | INPUT    |
| 24                                                | B CHANNEL TRANSMIT CLOCK INPUT(BTXCI)(J3P15)   | INPUT    |
| 25                                                | B CHANNEL REQUEST TO SEND (BRTS)(J3P4)         | OUTPUT   |
| 26                                                | NOT USED                                       | NC       |
| 27                                                | B CHANNEL CLEAR TO SEND (BCTS)(J3P5)           | INPUT    |
| 28                                                | SIGNAL GROUND (J3P1)                           | GROUND   |
| 29                                                | SIGNAL GROUND                                  | GROUND   |
| 30                                                | NOT USED                                       | NC       |
| 31                                                | B CHANNEL DATA CARRIER DETECT (BDCD)(J3P8)     | INPUT    |
| 32                                                | NOT USED                                       | NC       |
| 33                                                | B CHANNEL DATA TERMINAL READY (BDTR)(J3P20)    | OUTPUT   |
| 34                                                | NOT USED                                       | NC       |
| 35                                                | B CHANNEL DATA SET READY (BDSR)(J3P6)          | INPUT    |
| 36                                                | B CHANNEL TRANSMIT CLOCK OUTPUT (BTXCO)(J3P24) | OUTPUT   |
| 37                                                | B CHANNEL RING INDICATOR (BRI)(J3P22           | INPUT    |

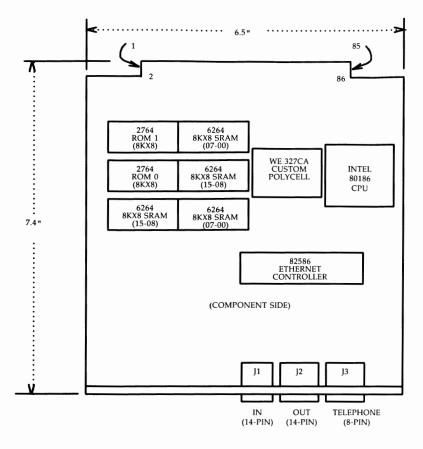
NC

No Connection

| 25-PIN CM195T ISC CARD SERIAL PORT CONNECTOR, J02 OR J03<br>(CHANNEL A IS J02, CHANNEL B IS J03) |                              |          |
|--------------------------------------------------------------------------------------------------|------------------------------|----------|
| PIN                                                                                              | DESCRIPTION                  | FUNCTION |
| 01                                                                                               | SIGNAL GROUND                | GROUND   |
| 02                                                                                               | TRANSMIT DATA (TXD)          | OUTPUT   |
| 03                                                                                               | RECEIVE DATA (RXD)           | INPUT    |
| 04                                                                                               | REQUEST TO SEND (RTS)        | OUTPUT   |
| 05                                                                                               | CLEAR TO SEND (CTS)          | INPUT    |
| 06                                                                                               | DATA SET READY (DSR)         | INPUT    |
| 07                                                                                               | SIGNAL GROUND                | GROUND   |
| 08                                                                                               | DATA CARRIER DETECT (DCD)    | INPUT    |
| 09                                                                                               | NOT USED                     | NC       |
| 10                                                                                               | NOT USED                     | NC       |
| 11                                                                                               | NOT USED                     | NC       |
| 12                                                                                               | NOT USED                     | NC       |
| 13                                                                                               | NOT USED                     | NC       |
| 14                                                                                               | NOT USED                     | NC       |
| 15                                                                                               | TRANSMIT CLOCK INPUT(BTXCI)  | INPUT    |
| 16                                                                                               | NOT USED                     | NC       |
| 17                                                                                               | RECEIVE CLOCK (RXC)          | INPUT    |
| 18                                                                                               | NOT USED                     | NC       |
| 19                                                                                               | NOT USED                     | NC       |
| 20                                                                                               | DATA TERMINAL READY (DTR)    | OUTPUT   |
| 21                                                                                               | NOT USED                     | NC       |
| 22                                                                                               | RING INDICATOR (RI)          | INPUT    |
| 23                                                                                               | NOT USED                     | NC       |
| 24                                                                                               | TRANSMIT CLOCK OUTPUT (TXCO) | OUTPUT   |
| 25                                                                                               | NOT USED                     | NC       |

### LEGEND:


| MFM | Modified Frequency Modulation |
|-----|-------------------------------|
| NC  | No Connection                 |


## **CM195U STARLAN INTERFACE CARD INTERCONNECTIONS**


The CM195U STARLAN Interface Card interconnections include the following:

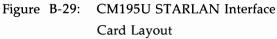

- 86-pin card edge connections
- 14-pin IN connector (J1)
- 14-pin OUT connector (J2)
- 8-pin TELEPHONE connector (J3).

Figure B-29 shows the layout of the CM195U STARLAN Interface Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.









•

| 86-PIN CM195U STARLAN INTERFACE CARD EDGE CONNECTIONS |                                                   |              |
|-------------------------------------------------------|---------------------------------------------------|--------------|
| PIN                                                   | DESCRIPTION                                       | FUNCTION     |
| 001                                                   | +12V (V12P)                                       | POWER        |
| 002                                                   | PERIPHERAL INTERRUPT REQUEST 2 (PINT2[0])         | OUTPUT       |
| 003                                                   | -12V (V12N)                                       | POWER        |
| 004                                                   | PERIPHERAL INTERRUPT REQUEST 1 (PINT1[0])         | OUTPUT       |
| 005                                                   | PERIPHERAL BUS ACKNOWLEDGE IN (PBACKI[0])         | INPUT        |
| 006                                                   | PERIPHERAL INTERRUPT REQUEST 0 (PINT0[0])         | OUTPUT       |
| 007                                                   | PERIPHERAL CARD SELECT (PCS[0])                   | INPUT        |
| 008                                                   | PERIPHERAL REQUEST SYSTEM RESET (RQRST[0])        | INPUT/OUTPUT |
| 009                                                   | GROUND (GRD)                                      | GROUND       |
| 010                                                   | SYSTEM RESET (SYSRST[0])                          | INPUT        |
| 011                                                   | +3.9V BACKUP BATTERY (VBKUP)                      | POWER        |
| 012                                                   | PERIPHERAL CARD FAILURE (PFAIL[0])                | OUTPUT       |
| 013                                                   | INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])           | INPUT/OUTPUT |
| 014                                                   | PERIPHERAL BUS FAULT (PFLT[0])                    | INPUT        |
| 015                                                   | INTERRUPT ACKNOWLEDGE IN 2 (PIAKO2[0])            | INPUT/OUTPUT |
| 016                                                   | GROUND (GRD)                                      | GROUND       |
| 017                                                   | +5V (VCC)                                         | POWER        |
| 018                                                   | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])           | INPUT/OUTPUT |
| 019                                                   | PERIPHERAL INTERRUPT ACKNOWLEDGE IN 1 (PIAKI1[0]) | INPUT        |
| 020                                                   | PERIPHERAL DATA STROBE 1 (PDS1[0])                | INPUT/OUTPUT |
| 021                                                   | PERIPHERAL INPUT ACKNOWLEDGE OUT 1 (PIAKO1[0])    | INPUT/OUTPUT |
| 022                                                   | PERIPHERAL DATA BIT 00 (PD00[1])                  | INPUT/OUTPUT |
| 023                                                   | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKO0[0])     | INPUT/OUTPUT |
| 024                                                   | PERIPHERAL DATA BIT 02 (PD02[1])                  | INPUT/OUTPUT |
| 025                                                   | GROUND (GRD)                                      | GROUND       |
| 026                                                   | PERIPHERAL DATA BIT 03 (PD03[1])                  | INPUT/OUTPUT |
| 027                                                   | PERIPHERAL BUSY (PBUSY[0])                        | OUTPUT       |
| 028                                                   | PERIPHERAL DATA BIT 05 (PD05[1])                  | INPUT/OUTPUT |
| 029                                                   | PERIPHERAL INPUT ACKNOWLEDGE OUT 0 (PIAKO0[0])    | INPUT/OUTPUT |
| 030                                                   | PERIPHERAL DATA BIT 07 (PD07[1])                  | INPUT/OUTPUT |
| 031                                                   | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])  | OUTPUT       |
| 032                                                   | GROUND (GRD)                                      | GROUND       |
| 033                                                   | PERIPHERAL DATA STROBE 0 (PDS0[0])                | OUTPUT       |
| 034                                                   | PERIPHERAL DATA BIT 08 (PD08[1])                  | INPUT/OUTPUT |
| 035                                                   | PERIPHERAL DATA BIT 01 (PD01[1])                  | INPUT/OUTPUT |
| 036                                                   | PERIPHERAL DATA BIT 10 (PD10[1])                  | INPUT/OUTPUT |
| 037                                                   | GROUND (GRD)                                      | GROUND       |
| 038                                                   | PERIPHERAL DATA BIT 12 (PD12[1])                  | INPUT/OUTPUT |
| 039                                                   | PERIPHERAL DATA BIT 04 (PD04[1])                  | INPUT/OUTPUT |
| 040                                                   | +5V (VCC)                                         | POWER        |
| 041                                                   | GROUND (GRD)                                      | GROUND       |

| 86-PIN CM195U STARLAN INTERFACE CARD EDGE CONNECTIONS (Contd) |                                               |              |
|---------------------------------------------------------------|-----------------------------------------------|--------------|
| PIN                                                           | DESCRIPTION                                   | FUNCTION     |
| 042                                                           | PERIPHERAL DATA BIT 13 (PD13[1])              | INPUT/OUTPUT |
| 043                                                           | PERIPHERAL DATA BIT 06 (PD06[1])              | INPUT/OUTPUT |
| 044                                                           | PERIPHERAL DATA BIT 15 (PD15[1])              | INPUT/OUTPUT |
| 045                                                           | PERIPHERAL DATA BIT 09 (PD09[1])              | INPUT/OUTPUT |
| 046                                                           | PERIPHERAL BUS REQUEST (PBRQ[0])              | OUTPUT       |
| 047                                                           | PERIPHERAL DATA BIT 11 (PD11[1])              | INPUT/OUTPUT |
| 048                                                           | GROUND (GRD)                                  | GROUND       |
| 049                                                           | GROUND (GRD)                                  | GROUND       |
| 050                                                           | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])  | INPUT/OUTPUT |
| 051                                                           | PERIPHERAL DATA BIT 14 (PD14[1])              | INPUT/OUTPUT |
| 052                                                           | PERIPHERAL INTERLOCK OPERATION (PLOCK[0])     | OUTPUT       |
| 053                                                           | PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO[0])    | INPUT/OUTPUT |
| 054                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1]) | INPUT/OUTPUT |
| 055                                                           | PERIPHERAL READ-WRITE (PR[1]W[0])             | INPUT/OUTPUT |
| 056                                                           | GROUND (GRD)                                  | GROUND       |
| 057                                                           | GROUND (GRD)                                  | GROUND       |
| 058                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1]) | INPUT/OUTPUT |
| 059                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1]) | INPUT/OUTPUT |
| 060                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1]) | OUTPUT       |
| 061                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1]) | OUTPUT       |
| 062                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1]) | OUTPUT       |
| 063                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1]) | OUTPUT       |
| 064                                                           | +5V (VCC)                                     | POWER        |
| 065                                                           | GROUND                                        | GROUND       |
| 066                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1]) | OUTPUT       |
| 067                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1]) | OUTPUT       |
| 068                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1]) | OUTPUT       |
| 069                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1]) | OUTPUT       |
| 070                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1]) | OUTPUT       |
| 071                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1]) | OUTPUT       |
| 072                                                           | GROUND                                        | GROUND       |
| 073                                                           | GROUND                                        | GROUND       |
| 074                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1]) | OUTPUT       |
| 075                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1]) | OUTPUT       |
| 076                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1]) | OUTPUT       |
| 077                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1]) | OUTPUT       |
| 078                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1]) | OUTPUT       |
| 079                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1]) | OUTPUT       |
| 080                                                           | GROUND                                        | GROUND       |
| 081                                                           | GROUND                                        | GROUND       |
| 082                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1]) | OUTPUT       |
| 083                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1]) | OUTPUT       |
| 084                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1]) | OUTPUT       |
| 085                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1]) | OUTPUT       |
| 086                                                           | PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1]) | OUTPUT       |

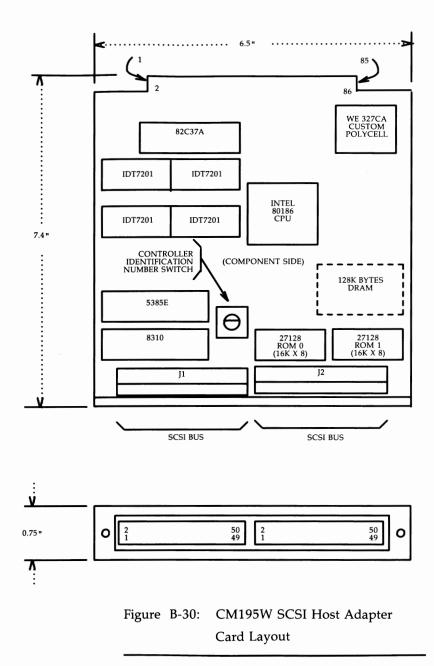
#### — Appendix: CONNECTOR AND CABLING INFORMATION

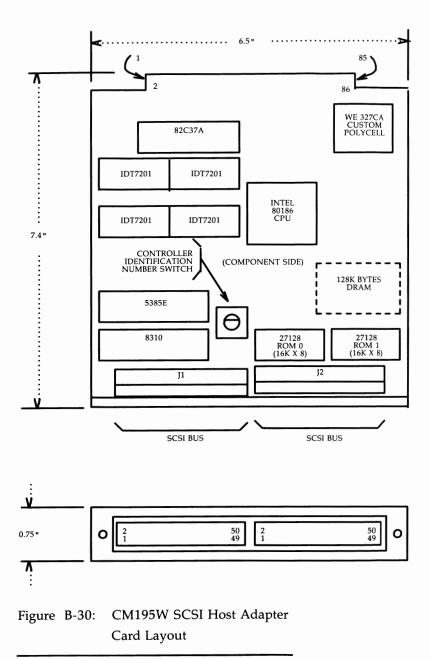
| 14-PIN CM195U STARLAN INTERFACE CARD "IN" CONNECTOR, J1 |          |             |          |
|---------------------------------------------------------|----------|-------------|----------|
| PIN                                                     |          | DESCRIPTION | FUNCTION |
| 001                                                     | OUT2     |             | TRANSMIT |
| 002                                                     | OUT1     |             | TRANSMIT |
| 003                                                     | OUT1     |             | TRANSMIT |
| 004                                                     | OUT2     |             | TRANSMIT |
| 005                                                     | IN1      |             | RECEIVE  |
| 006                                                     | NOT USED |             | NC       |
| 007                                                     | NOT USED |             | NC       |
| 008                                                     | IN2      |             | RECEIVE  |
| 009                                                     | NOT USED |             | NC       |
| 010                                                     | NOT USED |             | NC       |
| 011                                                     | IN1      |             | RECEIVE  |
| 012                                                     | NOT USED |             | NC       |
| 013                                                     | NOT USED |             | NC       |
| 014                                                     | IN2      |             | RECEIVE  |

| 14-PIN CM195U STARLAN INTERFACE CARD "OUT" CONNECTOR, J2 |                                     |                                 |
|----------------------------------------------------------|-------------------------------------|---------------------------------|
| PIN                                                      | DESCRIPTION                         | FUNCTION                        |
| 001<br>002<br>003                                        | IN1<br>OUT1<br>OUT1                 | RECEIVE<br>TRANSMIT<br>TRANSMIT |
| 004<br>005<br>006                                        | OUT2<br>IN1                         | RECEIVE                         |
| 007<br>008<br>009                                        | IN2                                 | RECEIVE                         |
| 010<br>011<br>012<br>013<br>014                          | OUT2<br>NOT USED<br>NOT USED<br>IN2 | TRANSMIT<br>NC<br>NC<br>RECEIVE |

|                                                      | 8-PIN CM195U STARLAN INTERFACE CARD "TELEPHONE" CONNECTOR, J3 |                |  |  |
|------------------------------------------------------|---------------------------------------------------------------|----------------|--|--|
| PIN                                                  | DESCRIPTION                                                   | FUNCTION       |  |  |
| 001<br>002<br>003<br>004<br>005<br>006<br>007<br>008 | NOT USED<br>NOT USED<br>NOT USED                              | NC<br>NC<br>NC |  |  |

LEGEND:


NC No Connection


## **CM195W SCSI HOST ADAPTER CARD INTERCONNECTIONS**

The CM195W Small Computer System Interface (SCSI) Host Adapter Card interconnections include the following:

- 86-pin card edge connections
- 50-pin SCSI Bus 0 connections
- 50-pin SCSI Bus 1 connections.

Figure B-30 shows the layout of the CM195W SCSI Host Adapter Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.



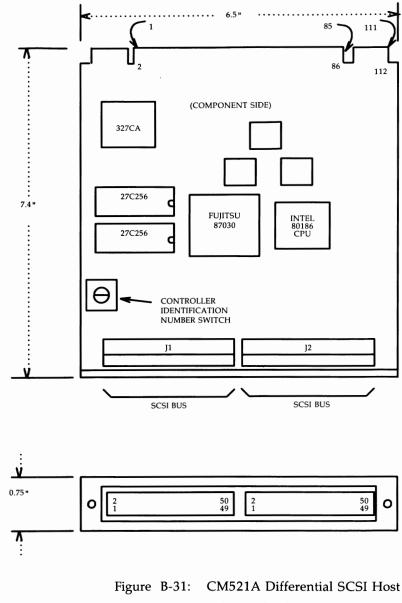


B-196 TECHNICAL REFERENCE MANUAL

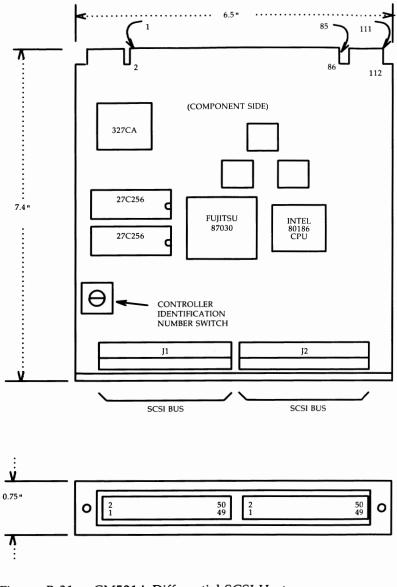
| 86-PIN CM195W SCSI HOST ADAPTER CARD EDGE CONNECTIONS |                                                           |              |
|-------------------------------------------------------|-----------------------------------------------------------|--------------|
| PIN                                                   | DESCRIPTION                                               | FUNCTION     |
| 001                                                   | +12V (V12P)                                               | POWER        |
| 002                                                   | NOT USED                                                  | NC           |
| 003                                                   | -12V (V12N)                                               | POWER        |
| 004                                                   | PERIPHERAL INTERRUPT REQUEST 1 (PINT1[0])                 | OUTPUT       |
| 005                                                   | PERIPHERAL BUS ACKNOWLEDGE IN (PBACKI[0])                 | INPUT        |
| 006                                                   | PERIPHERAL INTERRUPT REQUEST 0 (PINT0[0])                 | NC           |
| 007                                                   | PERIPHERAL CARD SELECT (PCS01[0]—PCS12[0], as applicable) | INPUT        |
| 008                                                   | NOT USED                                                  | NC           |
| 009                                                   | GROUND (GRD)                                              | GROUND       |
| 010                                                   | SYSTEM RESET (SYSRST[0])                                  | INPUT        |
| 011                                                   | NOT USED                                                  | NC           |
| 012                                                   | PERIPHERAL CARD FAILURE (PFAIL[0])                        | OUTPUT       |
| 013                                                   | INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])                   | INPUT/OUTPUT |
| 014                                                   | BUS FAULT (PFLT[0])                                       | INPUT        |
| 015                                                   | INTERRUPT ACKNOWLEDGE OUT 2 (PIAKO2[0])                   | INPUT/OUTPUT |
| 016                                                   | GROUND (GRD)                                              | GROUND       |
| 017                                                   | +5V (VCC)                                                 | POWER        |
| 018                                                   | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])                   | INPUT/OUTPUT |
| 019                                                   | PERIPHERAL INTERRUPT ACKNOWLEDGE OUT 1 (PIAKO1[0])        | INPUT/OUTPUT |
| 020                                                   | PERIPHERAL DATA STROBE 1 (PDS1[0])                        | INPUT/OUTPUT |
| 021                                                   | PERIPHERAL INPUT ACKNOWLEDGE OUT 1 (PIAKO1[0])            | INPUT/OUTPUT |
| 022                                                   | PERIPHERAL DATA BIT 00 (PD00[1])                          | INPUT/OUTPUT |
| 023                                                   | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKI0[0])             | INPUT        |
| 024                                                   | PERIPHERAL DATA BIT 02 (PD02[1])                          | INPUT/OUTPUT |
| 025                                                   | GROUND (GRD)                                              | GROUND       |
| 026                                                   | PERIPHERAL DATA BIT 03 (PD03[1])                          | INPUT/OUTPUT |
| 027                                                   | PERIPHERAL BUSY (PBUSY[0])                                | OUTPUT       |
| 028                                                   | PERIPHERAL DATA BIT 05 (PD05[1])                          | INPUT/OUTPUT |
| 029                                                   | PERIPHERAL INPUT ACKNOWLEDGE OUT 0 (PIAKO0[0])            | INPUT/OUTPUT |
| 030                                                   | PERIPHERAL DATA BIT 07 (PD07[1])                          | INPUT/OUTPUT |
| 031                                                   | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])          | OUTPUT       |
| 032                                                   | GROUND (GRD)                                              | GROUND       |
| 033                                                   | PERIPHERAL DATA STROBE 0 (PDS0[0])                        | OUTPUT       |
| 034                                                   | PERIPHERAL DATA BIT 08 (PD08[1])                          | INPUT/OUTPUT |
| 035                                                   | PERIPHERAL DATA BIT 00 (1 D00[1])                         | INPUT/OUTPUT |
| 036                                                   | PERIPHERAL DATA BIT 10 (PD10[1])                          | INPUT/OUTPUT |
| 037                                                   | GROUND (GRD)                                              | GROUND       |
| 038                                                   | PERIPHERAL DATA BIT 12 (PD12[1])                          | INPUT/OUTPUT |
| 039                                                   | PERIPHERAL DATA BIT 12 (PD04[1])                          | INPUT/OUTPUT |
| 040                                                   | +5V (VCC)                                                 | POWER        |
| 040                                                   | GROUND (GRD)                                              | GROUND       |
| 041                                                   | PERIPHERAL DATA BIT 13 (PD13[1])                          |              |
| 042                                                   | PERIPHERAL DATA BIT 06 (PD06[1])                          | INPUT/OUTPUT |
| 545                                                   |                                                           | INPUT/OUTPUT |

|            | 86-PIN CM195W SCSI HOST ADAPTER CARD EDGE CONNECTIONS (Contd)                                  |                  |  |
|------------|------------------------------------------------------------------------------------------------|------------------|--|
| PIN        | DESCRIPTION                                                                                    | FUNCTION         |  |
| 044        | PERIPHERAL DATA BIT 15 (PD15[1])                                                               | INPUT/OUTPUT     |  |
| 045        | PERIPHERAL DATA BIT 09 (PD09[1])                                                               | INPUT/OUTPUT     |  |
| 046        | PERIPHERAL BUS REQUEST (PBRQ[0])                                                               | OUTPUT           |  |
| 047        | PERIPHERAL DATA BIT 11 (PD11[1])                                                               | INPUT/OUTPUT     |  |
| 048        | GROUND (GRD)                                                                                   | GROUND           |  |
| 049        | GROUND (GRD)                                                                                   | GROUND           |  |
| 050        | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])                                                   | INPUT/OUTPUT     |  |
| 051        | PERIPHERAL DATA BIT 14 (PD14[1])                                                               | INPUT/OUTPUT     |  |
| 052        | PERIPHERAL INTERLOCK OPERATION (PLOCK[0])                                                      | OUTPUT           |  |
| 053        | PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO[0])                                                     | OUTPUT           |  |
| 054        | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1])                                                  | INPUT/OUTPUT     |  |
| 055        | PERIPHERAL READ-WRITE (PR[1]W[0])                                                              | INPUT/OUTPUT     |  |
| 056        | GROUND (GRD)                                                                                   | GROUND           |  |
| 057        | GROUND (GRD)                                                                                   | GROUND           |  |
| 058        | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1])                                                  | INPUT/OUTPUT     |  |
| 059        | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1])                                                  | INPUT/OUTPUT     |  |
| 060        | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1])                                                  | OUTPUT           |  |
| 061        | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1])                                                  | OUTPUT           |  |
| 062        | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1])                                                  | OUTPUT           |  |
| 063        | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1])                                                  | OUTPUT           |  |
| 064        | +5V (VCC)                                                                                      | POWER            |  |
| 065        | GROUND                                                                                         | GROUND           |  |
| 066        | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1])                                                  | OUTPUT           |  |
| 067        | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1])                                                  | OUTPUT           |  |
| 068        | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1])                                                  | OUTPUT           |  |
| 069        | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1])                                                  | OUTPUT           |  |
| 070        | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1])                                                  | OUTPUT           |  |
| 071        | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1])                                                  | OUTPUT           |  |
| 072        | GROUND                                                                                         | GROUND           |  |
| 073<br>074 | GROUND<br>PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13(1))                                        | GROUND<br>OUTPUT |  |
| 074 075    | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1]) | OUTPUT           |  |
| 075        | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1]) | OUTPUT           |  |
| 076        | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1]) | OUTPUT           |  |
| 077        | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA1/[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16/1]) | OUTPUT           |  |
| 078        | PERIPHERAL PHYSICAL ADDRESS BIT 16 (PPA16[1])                                                  | OUTPUT           |  |
| 079        | GROUND                                                                                         | GROUND           |  |
| 080        | GROUND                                                                                         | GROUND           |  |
| 081        | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1])                                                  | OUTPUT           |  |
| 082        | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1])                                                  | OUTPUT           |  |
| 084        | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1])                                                  | OUTPUT           |  |
| 085        | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1])                                                  | OUTPUT           |  |
| 086        | PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1])                                                  | OUTPUT           |  |
|            |                                                                                                |                  |  |

NC No Connection


| 50-PIN CM195W SCSI HOST ADAPTER CARD BUS 0 AND 1 CONNECTORS, J1 and J2 |                             |              |
|------------------------------------------------------------------------|-----------------------------|--------------|
| PIN                                                                    | DESCRIPTION                 | FUNCTION     |
| 01                                                                     | GROUND                      | GROUND       |
| 02                                                                     | -DATA BUS BIT 0 (-DB0)      | INPUT/OUTPUT |
| 03                                                                     | GROUND                      | GROUND       |
| 04                                                                     | -DATA BUS BIT 1 (-DB1)      | INPUT/OUTPUT |
| 05                                                                     | GROUND                      | GROUND       |
| 06                                                                     | -DATA BUS BIT 2 (-DB2)      | INPUT/OUTPUT |
| 07                                                                     | GROUND                      | GROUND       |
| 08                                                                     | -DATA BUS BIT 3 (-DB3)      | INPUT/OUTPUT |
| 09                                                                     | GROUND                      | GROUND       |
| 10                                                                     | -DATA BUS BIT 4 (-DB4)      | INPUT/OUTPUT |
| 11                                                                     | GROUND                      | GROUND       |
| 12                                                                     | -DATA BUS BIT 5 (-DB5)      | INPUT/OUTPUT |
| 13                                                                     | GROUND                      | GROUND       |
| 14                                                                     | -DATA BUS BIT 6 (-DB6)      | INPUT/OUTPUT |
| 15                                                                     | GROUND                      | GROUND       |
| 16                                                                     | -DATA BUS BIT 7 (-DB7)      | INPUT/OUTPUT |
| 17                                                                     | GROUND                      | GROUND       |
| 18                                                                     | -DATA BUS PARITY BIT (-DBP) | INPUT/OUTPUT |
| 19                                                                     | GROUND                      | GROUND       |
| 20                                                                     | GROUND                      | GROUND       |
| 21                                                                     | GROUND                      | GROUND       |
| 22                                                                     | GROUND                      | GROUND       |
| 23                                                                     | GROUND                      | GROUND       |
| 24                                                                     | GROUND                      | GROUND       |
| 25                                                                     | OPEN                        |              |
| 26                                                                     | TERMINATOR POWER            | POWER        |
| 27                                                                     | GROUND                      | GROUND       |
| 28                                                                     | GROUND                      | GROUND       |
| 29                                                                     | GROUND                      | GROUND       |
| 30                                                                     | GROUND                      | GROUND       |
| 31                                                                     | GROUND                      | GROUND       |
| 32                                                                     | -ATTENTION                  | INPUT/OUTPUT |
| 33                                                                     | GROUND                      | GROUND       |
| 34                                                                     | GROUND                      | GROUND       |
| 35                                                                     | GROUND                      | GROUND       |
| 36                                                                     | -BUSY                       | INPUT/OUTPUT |
| 37                                                                     | GROUND                      | GROUND       |
| 38                                                                     | -ACKNOWLEDGE                | INPUT/OUTPUT |
| 39                                                                     | GROUND                      | GROUND       |
| 40                                                                     | -RESET                      | OUTPUT       |
| 41                                                                     | GROUND                      | GROUND       |
| 42                                                                     | -MESSAGE                    | INPUT/OUTPUT |
| 43                                                                     | GROUND                      | GROUND       |
| 44                                                                     | -SELECT                     | INPUT/OUTPUT |
| 45                                                                     | GROUND                      | GROUND       |
| 46                                                                     | -CONTROL/DATA               | INPUT/OUTPUT |
| 47                                                                     | GROUND                      | GROUND       |
| 48                                                                     | -REQUEST                    | INPUT/OUTPUT |
| 49                                                                     | GROUND                      | GROUND       |
| 50                                                                     | -INPUT/OUTPUT               | INPUT/OUTPUT |

# CM521A DIFFERENTIAL SCSI HOST ADAPTER CARD INTERCONNECTIONS


The CM521A Differential SCSI Host Adapter Card interconnections include the following:

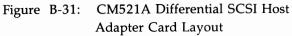

- 112-pin card edge connections
- 50-pin SCSI Bus 0 connections
- 50-pin SCSI Bus 1 connections.

Figure B-31 shows the layout of the CM521A Differential SCSI Host Adapter Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.



Adapter Card Layout



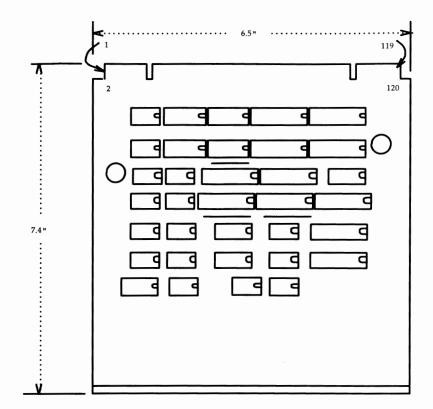


| 112-PIN CM521A DIFFERENTIAL SCSI HOST ADAPTER CARD EDGE CONNECTIO |                                                                 |              |
|-------------------------------------------------------------------|-----------------------------------------------------------------|--------------|
| PIN                                                               | DESCRIPTION                                                     | FUNCTION     |
| 001                                                               | NOT USED                                                        | NC           |
| 002                                                               | NOT USED                                                        | NC           |
| 003                                                               | NOT USED                                                        | NC           |
| 004                                                               | PERIPHERAL INTERRUPT REQUEST 1 (PINT1[0])                       | OUTPUT       |
| 005                                                               | PERIPHERAL BUS ACKNOWLEDGE IN (PBACKI[0])                       | INPUT        |
| 006                                                               | NOT USED                                                        | NC           |
| 007                                                               | PERIPHERAL CARD SELECT (PCS[0])                                 | INPUT        |
| 008                                                               | NOT USED                                                        | NC           |
| 009                                                               | GROUND (GRD)                                                    | GROUND       |
| 010                                                               | SYSTEM RESET (SYSRST[0])                                        | INPUT        |
| 011                                                               | NOT USED                                                        | NC           |
| 012                                                               | PERIPHERAL CARD FAILURE (PFAIL[0])                              | OUTPUT       |
| 013                                                               | INTERRUPT ACKNOWLEDGE IN 2 (PIAKI2[0])                          | OUTPUT       |
| 014                                                               | BUS FAULT (PFLT[0])                                             | INPUT/OUTPUT |
| 015                                                               | INTERRUPT ACKNOWLEDGE IN 2 (PIAKI2[0])                          | INPUT        |
| 016                                                               | GROUND (GRD)                                                    | GROUND       |
| 017                                                               | +5V (VCC)                                                       | POWER        |
| 018                                                               | PERIPHERAL DATA ACKNOWLEDGE (PDTACK[0])                         | INPUT/OUTPUT |
| 019                                                               | PERIPHERAL INTERRUPT ACKNOWLEDGE IN 1 (PIAKI1[0])               | INPUT        |
| 020                                                               | PERIPHERAL DATA STROBE 1 (PDS1[0])                              | INPUT/OUTPUT |
| 021                                                               | PERIPHERAL INPUT ACKNOWLEDGE OUT 1 (PIACKO1[0])                 | INPUT/OUTPUT |
| 022                                                               | PERIPHERAL DATA BIT 00 (PD00[1])                                | INPUT/OUTPUT |
| 023                                                               | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKI0[0])                   | INPUT        |
| 023                                                               | PERIPHERAL DATA BIT 02 (PD02[1])                                | INPUT/OUTPUT |
| 025                                                               | GROUND (GRD)                                                    | GROUND       |
| 025                                                               | PERIPHERAL DATA BIT 03 (PD03[1])                                | INPUT/OUTPUT |
| 020                                                               | PERIPHERAL BUSY (PBUSY[0])                                      | INOUT/OUTPUT |
| 027                                                               | PERIPHERAL DOST (1 DOST(0))<br>PERIPHERAL DATA BIT 05 (PD05[1]) | INPUT/OUTPUT |
| 028                                                               | PERIPHERAL INPUT ACKNOWLEDGE IN 0 (PIAKI0[0])                   | OUTPUT       |
| 029                                                               | PERIPHERAL DATA BIT 07 (PD07[1])                                | INPUT/OUTPUT |
|                                                                   | PERIPHERAL CARD WIDTH (8 OR 16 BITS)(PSIZE16[0])                | OUTPUT       |
| 031                                                               |                                                                 | GROUND       |
| 032                                                               | GROUND (GRD)                                                    |              |
| 033                                                               | PERIPHERAL DATA STROBE 0 (PDS0[0])                              | INPUT/OUTPUT |
| 034                                                               | PERIPHERAL DATA BIT 08 (PD08[1])                                | INPUT/OUTPUT |
| 035                                                               | PERIPHERAL DATA BIT 01 (PD01[1])                                | INPUT/OUTPUT |
| 036                                                               | PERIPHERAL DATA BIT 10 (PD10[1])                                | INPUT/OUTPUT |
| 037                                                               | GROUND (GRD)                                                    | GROUND       |
| 038                                                               | PERIPHERAL DATA BIT 12 (PD12[1])                                | INPUT/OUTPUT |
| 039                                                               | PERIPHERAL DATA BIT 04 (PD04[1])                                | INPUT/OUTPUT |
| 040                                                               | +5V (VCC)                                                       | POWER        |
| 041                                                               | GROUND (GRD)                                                    | GROUND       |
| 042                                                               | PERIPHERAL DATA BIT 13 (PD13[1])                                | INPUT/OUTPUT |
| 043                                                               | PERIPHERAL DATA BIT 06 (PD06[1])                                | INPUT/OUTPUT |
| 044                                                               | PERIPHERAL DATA BIT 15 (PD15[1])                                | INPUT/OUTPUT |
| 045                                                               | PERIPHERAL DATA BIT 09 (PD09[1])                                | INPUT/OUTPUT |
| 046                                                               | PERIPHERAL BUS REQUEST (PBRQ[0])                                | INPUT/OUTPUT |
| 047                                                               | PERIPHERAL DATA BIT 11 (PD11[1])                                | INPUT/OUTPUT |
| 048                                                               | GROUND (GRD)                                                    | GROUND       |
| 049                                                               | GROUND (GRD)                                                    | GROUND       |
| 050                                                               | PERIPHERAL PHYSICAL ADDRESS STROBE (PPAS[0])                    | INPUT/OUTPUT |
| 051                                                               | PERIPHERAL DATA BIT 14 (PD14[1])                                | INPUT/OUTPUT |
| 052                                                               | PERIPHERAL INTERLOCK OPERATION (PLOCK[0])                       | OUTPUT       |
| 053                                                               | PERIPHERAL BUS ACKNOWLEDGE OUT (PBACKO[0])                      | OUTPUT       |
| 054                                                               | PERIPHERAL PHYSICAL ADDRESS BIT 00 (PPA00[1])                   | INPUT/OUTPUT |
| 055                                                               | PERIPHERAL READ-WRITE (PR[1]W[0])                               | INPUT/OUTPUT |
| 056                                                               | GROUND (GRD)                                                    | GROUND       |

| PIN        | DESCRIPTION                                                                                    | FUNCTION               |
|------------|------------------------------------------------------------------------------------------------|------------------------|
| 057        | GROUND (GRD)                                                                                   | GROUND                 |
| 058        | PERIPHERAL PHYSICAL ADDRESS BIT 02 (PPA02[1])                                                  | INPUT/OUTPUT           |
| 059        | PERIPHERAL PHYSICAL ADDRESS BIT 01 (PPA01[1])                                                  | INPUT/OUTPUT           |
| 060        | PERIPHERAL PHYSICAL ADDRESS BIT 04 (PPA04[1])                                                  | INPUT/OUTPUT           |
| 061        | PERIPHERAL PHYSICAL ADDRESS BIT 03 (PPA03[1])                                                  | INPUT/OUTPUT           |
| 062        | PERIPHERAL PHYSICAL ADDRESS BIT 05 (PPA05[1])                                                  | INPUT/OUTPUT           |
| 063        | PERIPHERAL PHYSICAL ADDRESS BIT 06 (PPA06[1])                                                  | INPUT/OUTPUT           |
| 064        | +5V (VCC)                                                                                      | POWER                  |
| 065        | GROUND                                                                                         | GROUND                 |
| 066        | PERIPHERAL PHYSICAL ADDRESS BIT 07 (PPA07[1])                                                  | INPUT/OUTPUT           |
| 067        | PERIPHERAL PHYSICAL ADDRESS BIT 09 (PPA09[1])                                                  | INPUT/OUTPUT           |
| 068        | PERIPHERAL PHYSICAL ADDRESS BIT 08 (PPA08[1])                                                  | INPUT/OUTPUT           |
| 069        | PERIPHERAL PHYSICAL ADDRESS BIT 10 (PPA10[1])                                                  | INPUT/OUTPUT           |
| 070        | PERIPHERAL PHYSICAL ADDRESS BIT 11 (PPA11[1])                                                  | INPUT/OUTPUT           |
| 071        | PERIPHERAL PHYSICAL ADDRESS BIT 12 (PPA12[1])                                                  | INPUT/OUTPUT           |
| 072        | GROUND                                                                                         | GROUND                 |
| 073        | GROUND                                                                                         | GROUND                 |
| 074<br>075 | PERIPHERAL PHYSICAL ADDRESS BIT 13 (PPA13[1])                                                  | INPUT/OUTPUT           |
| 075        | PERIPHERAL PHYSICAL ADDRESS BIT 15 (PPA15[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1]) | INPUT/OUTPUT           |
| 078        | PERIPHERAL PHYSICAL ADDRESS BIT 14 (PPA14[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1]) | INPUT/OUTPUT<br>OUTPUT |
| 078        | PERIPHERAL PHYSICAL ADDRESS BIT 17 (PPA17[1])                                                  | INPUT/OUTPUT           |
| 079        | PERIPHERAL PHYSICAL ADDRESS BIT 20 (PPA20[1])                                                  | OUTPUT                 |
| 080        | GROUND                                                                                         | GROUND                 |
| 081        | GROUND                                                                                         | GROUND                 |
| 082        | PERIPHERAL PHYSICAL ADDRESS BIT 18 (PPA18[1])                                                  | OUTPUT                 |
| 083        | PERIPHERAL PHYSICAL ADDRESS BIT 23 (PPA23[1])                                                  | OUTPUT                 |
| 084        | PERIPHERAL PHYSICAL ADDRESS BIT 19 (PPA19[1])                                                  | OUTPUT                 |
| 085        | PERIPHERAL PHYSICAL ADDRESS BIT 21 (PPA21[1])                                                  | OUTPUT                 |
| 086        | PERIPHERAL PHYSICAL ADDRESS BIT 22 (PPA22[1])                                                  | OUTPUT                 |
| 087        | +5V (VCC)                                                                                      | POWER                  |
| 088        | PERIPHERAL SEQUENTIAL ACCESS (PSEQACC[0])                                                      | OUTPUT                 |
| 089        | PERIPHERAL SYSTEMS SUPPORT ACCESS (PSSSA[0])                                                   | INPUT                  |
| 090        | +5V (VCC)                                                                                      | POWER                  |
| 091        | GROUND                                                                                         | GROUND                 |
| 092        | GROUND                                                                                         | GROUND                 |
| 093        | PERIPHERAL PHYSICAL ADDRESS BIT 31 (PPA31[1])                                                  | OUTPUT                 |
| 094        | PERIPHERAL PHYSICAL ADDRESS BIT 30 (PPA30[1])                                                  | OUTPUT                 |
| 095        | PERIPHERAL PHYSICAL ADDRESS BIT 29 (PPA29[1])                                                  | OUTPUT                 |
| 096        | PERIPHERAL PHYSICAL ADDRESS BIT 28 (PPA28[1])                                                  | OUTPUT                 |
| 097        | PERIPHERAL PHYSICAL ADDRESS BIT 27 (PPA27[1])                                                  | OUTPUT                 |
| 098        | PERIPHERAL PHYSICAL ADDRESS BIT 26 (PPA26[1])                                                  | OUTPUT                 |
| 099        | GROUND                                                                                         | GROUND                 |
| 100        | PERIPHERAL ADDRESS PARITY BIT 0 (PAP0[1])                                                      |                        |
| 101<br>102 | PERIPHERAL ADDRESS PARITY BIT 1 (PAP1[1])                                                      | INPUT/OUTPUT           |
| 102        | GROUND<br>PERIPHERAL PHYSICAL ADDRESS BIT 24 (PPA24[1])                                        | GROUND<br>OUTPUT       |
| 103        | PERIPHERAL PHYSICAL ADDRESS BIT 24 (PPA24[1])<br>PERIPHERAL PHYSICAL ADDRESS BIT 25 (PPA25[1]) | OUTPUT                 |
| 104        | PERIPHERAL ADDRESS PARITY BIT 2 (PAP2[1])                                                      | INPUT/OUTPUT           |
| 106        | PERIPHERAL ADDRESS PARITY BIT 2 (PAP3[1])                                                      | INPUT/OUTPUT           |
| 107        | +5V (VCC)                                                                                      | POWER                  |
| 108        | PERIPHERAL DATA PARITY BIT 0 (PDP0[1])                                                         | INPUT/OUTPUT           |
| 109        | PERIPHERAL DATA PARITY BIT 1 (PDP1[1])                                                         | INPUT/OUTPUT           |
| 110        | +5V (VCC)                                                                                      | POWER                  |
| 111        | PERIPHERAL PARITY CHECK (PPCHEK[0])                                                            | OUTPUT                 |
| 112        | PERIPHERAL SUPPORT OF PARITY (PSSSPOE[0])                                                      | INPUT                  |

NC

No Connection


|     | 50-PIN CM521A DIFFERENTIAL SCSI HOST ADAPTER CARD BUS 0 AND 1 CONNECTORS |              |  |
|-----|--------------------------------------------------------------------------|--------------|--|
| PIN | DESCRIPTION                                                              | FUNCTION ·   |  |
| 01  | GROUND                                                                   | GROUND       |  |
| 02  | GROUND                                                                   | GROUND       |  |
| 03  | +DATA BUS BIT 0 (+DB0)                                                   | INPUT/OUTPUT |  |
| 04  | -DATA BUS BIT 0 (-DB0)                                                   | INPUT/OUTPUT |  |
| 05  | +DATA BUS BIT 1 (+DB1)                                                   | INPUT/OUTPUT |  |
| 06  | -DATA BUS BIT 1 (-DB1)                                                   | INPUT/OUTPUT |  |
| 07  | +DATA BUS BIT 2 (+DB2)                                                   | INPUT/OUTPUT |  |
| 08  | -DATA BUS BIT 2 (-DB2)                                                   | INPUT/OUTPUT |  |
| 09  | +DATA BUS BIT 3 (+DB3)                                                   | INPUT/OUTPUT |  |
| 10  | -DATA BUS BIT 3 (-DB3)                                                   | INPUT/OUTPUT |  |
| 11  | +DATA BUS BIT 4 (+DB4)                                                   | INPUT/OUTPUT |  |
| 12  | -DATA BUS BIT 4 (-DB4)                                                   | INPUT/OUTPUT |  |
| 13  | +DATA BUS BIT 5 (+DB5)                                                   | INPUT/OUTPUT |  |
| 14  | -DATA BUS BIT 5 (-DB5)                                                   | INPUT/OUTPUT |  |
| 15  | +DATA BUS BIT 6 (+DB6)                                                   | INPUT/OUTPUT |  |
| 16  | -DATA BUS BIT 6 (-DB6)                                                   | INPUT/OUTPUT |  |
| 17  | +DATA BUS BIT 7 (+DB7)                                                   | INPUT/OUTPUT |  |
| 18  | -DATA BUS BIT 7 (-DB7)                                                   | INPUT/OUTPUT |  |
| 19  | +DATA BUS PARITY BIT (+DBP)                                              | INPUT/OUTPUT |  |
| 20  | -DATA BUS PARITY BIT (-DBP)                                              | INPUT/OUTPUT |  |
| 21  | DIFFERENTIAL SENSE                                                       | INPUT/OUTPUT |  |
| 22  | GROUND                                                                   | GROUND       |  |
| 23  | GROUND                                                                   | GROUND       |  |
| 24  | GROUND                                                                   | GROUND       |  |
| 25  | TERMINATOR POWER                                                         | POWER        |  |
| 26  | TERMINATOR POWER                                                         | POWER        |  |
| 27  | GROUND                                                                   | GROUND       |  |
| 28  | GROUND                                                                   | GROUND       |  |
| 29  | +ATTENTION                                                               | INPUT/OUTPUT |  |
| 30  | -ATTENTION                                                               | INPUT/OUTPUT |  |
| 31  | GROUND                                                                   | GROUND       |  |
| 32  | GROUND                                                                   | GROUND       |  |
| 33  | +BUSY                                                                    | INPUT/OUTPUT |  |
| 34  | -BUSY                                                                    | INPUT/OUTPUT |  |
| 35  | +ACKNOWLEDGE                                                             | INPUT/OUTPUT |  |
| 36  | -ACKNOWLEDGE                                                             | INPUT/OUTPUT |  |
| 37  | +RESET                                                                   | OUTPUT       |  |
| 38  | -RESET                                                                   | OUTPUT       |  |
| 39  | +MESSAGE                                                                 | INPUT/OUTPUT |  |
| 40  | -MESSAGE                                                                 | INPUT/OUTPUT |  |
| 41  | +SELECT                                                                  | INPUT/OUTPUT |  |
| 42  | -SELECT                                                                  | INPUT/OUTPUT |  |
| 43  | +CONTROL/DATA                                                            | INPUT/OUTPUT |  |
| 44  | -CONTROL/DATA                                                            | INPUT/OUTPUT |  |
| 45  | +REQUEST                                                                 | INPUT/OUTPUT |  |
| 46  | -REQUEST                                                                 | INPUT/OUTPUT |  |
| 47  | +INPUT/OUTPUT                                                            | INPUT/OUTPUT |  |
| 48  | -INPUT/OUTPUT                                                            | INPUT/OUTPUT |  |
| 49  | GROUND                                                                   | GROUND       |  |
| 50  | GROUND                                                                   | GROUND       |  |

## **CM522A VCACHE CARD INTERCONNECTIONS**

The CM522A Virtual Cache (VCACHE) Card interconnection consists of a 120-pin card edge connection. Figure B-32 shows the layout of the CM522A VCACHE Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.

•

### Appendix: CONNECTOR AND CABLING INFORMATION



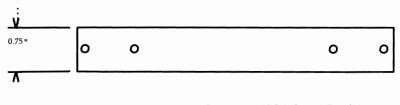
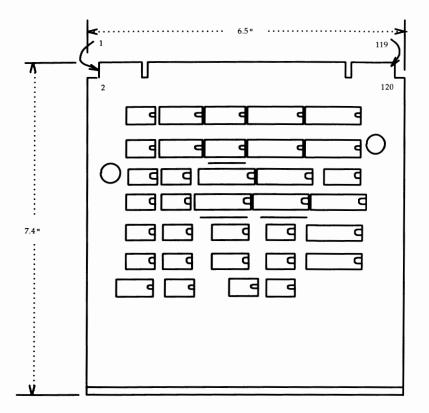




Figure B-32: CM522A VCACHE Card Layout



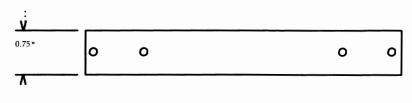
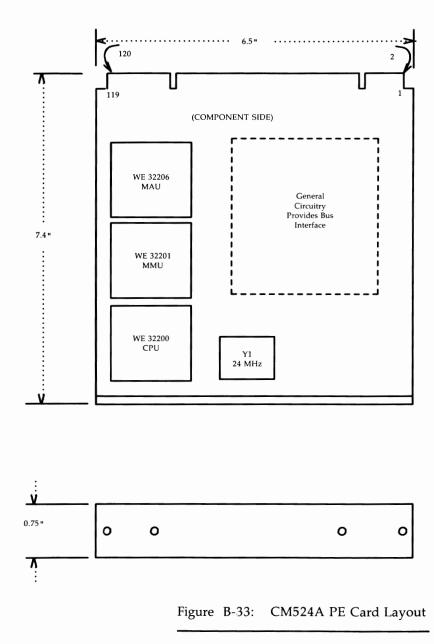
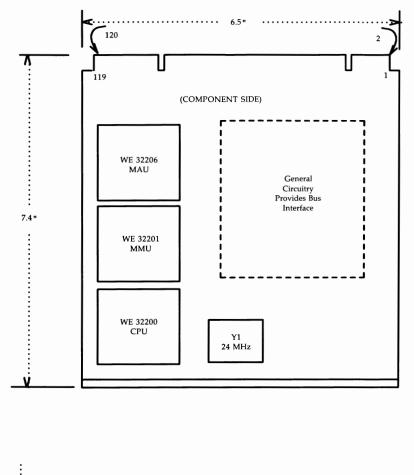


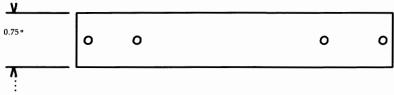

Figure B-32: CM522A VCACHE Card Layout

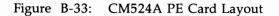
| 120-PIN VCACHE CARD EDGE CONNECTIONS |                                                                |          |
|--------------------------------------|----------------------------------------------------------------|----------|
| PIN                                  | DESCRIPTION                                                    | FUNCTION |
| 1                                    | UBUS DATA STROBE (DS[0])                                       | INPUT    |
| 2                                    | NOT USED                                                       | NC       |
| 3                                    | GROUND (GRD)                                                   | GROUND   |
| 4                                    | UBUS DATA SHADOW (DSHAD[0])                                    | INPUT    |
| 5                                    | UBUS DATA SIZE BIT 1 (CDSIZE1[1])                              | INPUT    |
| 6                                    | UBUS FAULT (FLT[0])                                            | OUTPUT   |
| 7                                    | UBUS CARD SELECT (CS1[0])                                      | INPUT    |
| 8                                    | GROUND (GRD)                                                   | GROUND   |
| 9                                    | NOT USED                                                       | NC       |
| 10                                   | NOT USED                                                       | NC       |
| 11                                   | NOT USED                                                       | NC       |
| 12                                   | UBUS SYNCHRONOUS READY (SRDY[0])                               | OUTPUT   |
| 13                                   | UBUS DATA SIZE BIT 0 (CDSIZE0[1])                              | INPUT    |
| 14                                   | UBUS ACCESS STATUS BIT 0 (SAS0[1])                             | INPUT    |
| 15                                   | +5V (VCC)                                                      | POWER    |
| 16                                   | ACCESS STATUS BIT 1 (SAS1[1])                                  | INPUT    |
| 17                                   | UBUS VIRTUAL ADDRESS STROBE (VAS[0])                           | INPUT    |
| 18                                   | NOT USED                                                       | NC       |
| 19                                   | UBUS CACHE ABLE (CABLE[0])                                     | INPUT    |
| 20                                   | GROUND (GRD)                                                   | GROUND   |
| 21                                   | UBUS ABORT ACTIVATED (ABORT[0])                                | INPUT    |
| 22                                   | UBUS DATA ACKNOWLEDGE (DTACK[0])                               | OUTPUT   |
| 23                                   | UBUS ACCESS STATUS BIT 2 (SAS2[1])                             | INPUT    |
| 24                                   | UBUS ACCESS STATUS BIT 3 (SAS3[1])                             | INPUT    |
| 25                                   | NOT USED                                                       | NC       |
| 26                                   | NOT USED                                                       | NC       |
| 27                                   | GROUND (GRD)                                                   | GROUND   |
| 28                                   | NOT USED                                                       | NC       |
| 29                                   | UBUS EXECUTION MODE 1 (XMD1[1])                                | INPUT    |
| 30                                   | UBUS VIRTUAL CACHE HIT (VCHIT[0])                              | OUTPUT   |
| 31                                   | NOT USED                                                       | NC       |
| 32                                   | +5V (VCC)                                                      | POWER    |
| 33                                   | NOT USED                                                       | NC       |
| 34                                   | NOT USED                                                       | NC       |
| 35                                   | NOT USED                                                       | NC       |
| 35<br>36                             | NOT USED                                                       | NC       |
| 37                                   | CLOCK 34 (CLK34[1])                                            | INPUT    |
| 38                                   | NOT USED                                                       | NC       |
| 38<br>39                             |                                                                | GROUND   |
|                                      | GROUND (GRD)<br>NOT USED                                       | NC       |
| 40                                   |                                                                | INPUT    |
| 41<br>42                             | CLOCK 23 (CLK23[1])                                            | INPUT    |
|                                      | SYSTEM RESET (SYSRST[0])<br>NOT USED                           | NC       |
| 43                                   |                                                                | NC       |
| 44                                   | NOT USED                                                       | INPUT    |
| 45<br>46                             | UBUS ADDRESS BIT 31 (CA31[1])                                  | INPUT    |
| 46<br>47                             | UBUS ADDRESS BIT 30 (CA30[1])<br>UBUS ADDRESS BIT 29 (CA29[1]) | INPUT    |
|                                      | UBUS ADDRESS BIT 29 (CA29[1])<br>UBUS ADDRESS BIT 28 (CA28[1]) | INPUT    |
| 48<br>49                             |                                                                | INPUT    |
|                                      | UBUS ADDRESS BIT 27 (CA27[1])                                  | INPUT    |
| 50                                   | UBUS ADDRESS BIT 26 (CA26[1])<br>GROUND (GRD)                  | GROUND   |
| 51<br>52                             |                                                                | INPUT    |
| 52                                   | UBUS ADDRESS BIT 25 (CA25[1])                                  | INPUT    |
| 53                                   | UBUS ADDRESS BIT 24 (CA24[1])                                  |          |
| 54                                   | UBUS ADDRESS BIT 23 (CA23[1])                                  | INPUT    |
| 55                                   | UBUS ADDRESS BIT 22 (CA22[1])                                  | INPUT    |
| 56                                   | +5V (VCC)                                                      | POWER    |
| 57                                   | UBUS ADDRESS BIT 21 (CA21[1])                                  | INPUT    |
| 58                                   | UBUS ADDRESS BIT 20 (CA20[1])                                  | INPUT    |
| 59                                   | UBUS ADDRESS BIT 19 (CA19[1])                                  | INPUT    |
| 60                                   | UBUS ADDRESS BIT 18 (CA18[1])                                  | INPUT    |

|            | 120-PIN VCACHE CARD EDGE CONNECTIONS (Contd)                   |                              |  |
|------------|----------------------------------------------------------------|------------------------------|--|
| PIN        | DESCRIPTION                                                    | FUNCTION                     |  |
| 61         | UBUS ADDRESS BIT 17 (CA17[1])                                  | INPUT                        |  |
| 62         | UBUS ADDRESS BIT 16 (CA16[1])                                  | INPUT                        |  |
| 63         | GROUND (GRD)                                                   | GROUND                       |  |
| 64         | UBUS ADDRESS BIT 15 (CA15[1])                                  | INPUT                        |  |
| 65         | UBUS ADDRESS BIT 14 (CA14[1])                                  | INPUT                        |  |
| 66         | UBUS ADDRESS BIT 13 (CA13[1])                                  | INPUT                        |  |
| 67         | UBUS ADDRESS BIT 12 (CA12[1])                                  | INPUT                        |  |
| 68         | UBUS ADDRESS BIT 11 (CA11[1])                                  | INPUT                        |  |
| 69         | UBUS ADDRESS BIT 10 (CA10[1])                                  | INPUT                        |  |
| 70         | GROUND (GRD)                                                   | GROUND                       |  |
| 71         | UBUS ADDRESS BIT 09 (CA09[1])                                  | INPUT                        |  |
| 72         | UBUS ADDRESS BIT 08 (CA08[1])                                  | INPUT                        |  |
| 73         | UBUS ADDRESS BIT 07 (CA07[1])                                  | INPUT                        |  |
| 74         | UBUS ADDRESS BIT 06 (CA06[1])                                  | INPUT                        |  |
| 75         | +5V (VCC)                                                      | POWER                        |  |
| 76<br>77   | UBUS ADDRESS BIT 05 (CA05[1])                                  | INPUT                        |  |
| 77         | UBUS ADDRESS BIT 04 (CA04[1])                                  | INPUT                        |  |
| 78<br>79   | UBUS ADDRESS BIT 03 (CA03[1])                                  | INPUT                        |  |
| 80         | UBUS ADDRESS BIT 02 (CA02[1])<br>UBUS ADDRESS BIT 01 (CA01[1]) | INPUT<br>INPUT               |  |
| 80<br>81   | UBUS ADDRESS BIT 01 (CA0[1])                                   | INPUT                        |  |
| 81         | GROUND (GRD)                                                   |                              |  |
| 82<br>83   | UBUS DATA BIT 31 (CD31[1])                                     | GROUND<br>INPUT/OUTPUT       |  |
| 84         | UBUS DATA BIT 30 (CD30[1])                                     | INPUT/OUTPUT                 |  |
| 85         | UBUS DATA BIT 29 (CD29[1])                                     | INPUT/OUTPUT                 |  |
| 85<br>86   | UBUS DATA BIT 28 (CD28[1])                                     | INPUT/OUTPUT                 |  |
| 87         | GROUND (GRD)                                                   | GROUND                       |  |
| 88         | UBUS DATA BIT 27 (CD27[1])                                     | INPUT/OUTPUT                 |  |
| 89         | UBUS DATA BIT 26 (CD26[1])                                     | INPUT/OUTPUT                 |  |
| 90         | UBUS DATA BIT 25 (CD25[1])                                     | INPUT/OUTPUT                 |  |
| 91         | UBUS DATA BIT 24 (CD24[1])                                     | INPUT/OUTPUT                 |  |
| 92         | UBUS DATA BIT 23 (CD23[1])                                     | INPUT/OUTPUT                 |  |
| 93         | UBUS DATA BIT 22 (CD22[1])                                     | INPUT/OUTPUT                 |  |
| 94         | +5V (VCC)                                                      | POWER                        |  |
| 95         | UBUS DATA BIT 21 (CD21[1])                                     | INPUT/OUTPUT                 |  |
| 96         | UBUS DATA BIT 20 (CD20[1])                                     | INPUT/OUTPUT                 |  |
| 97         | UBUS DATA BIT 19 (CD19[1])                                     | INPUT/OUTPUT                 |  |
| 98         | UBUS DATA BIT 18 (CD18[1])                                     | INPUT/OUTPUT                 |  |
| 99         | GROUND (GRD)                                                   | GROUND                       |  |
| 100        | UBUS DATA BIT 17 (CD17[1])                                     | INPUT/OUTPUT                 |  |
| 101        | UBUS DATA BIT 16 (CD16[1])                                     | INPUT/OUTPUT                 |  |
| 102        | UBUS DATA BIT 15 (CD15[1])                                     | INPUT/OUTPUT                 |  |
| 103        | UBUS DATA BIT 14 (CD14[1])                                     | INPUT/OUTPUT                 |  |
| 104        | UBUS DATA BIT 13 (CD13[1])                                     | INPUT/OUTPUT                 |  |
| 105        | UBUS DATA BIT 12 (CD12[1])                                     | INPUT/OUTPUT                 |  |
| 106        | GROUND (GRD)                                                   | GROUND                       |  |
| 107<br>108 | UBUS DATA BIT 11 (CD11[1])<br>UBUS DATA BIT 10 (CD10[1])       | INPUT/OUTPUT<br>INPUT/OUTPUT |  |
| 108        | UBUS DATA BIT 10 (CD10[1])<br>UBUS DATA BIT 09 (CD09[1])       | INPUT/OUTPUT<br>INPUT/OUTPUT |  |
| 109        | UBUS DATA BIT 09 (CD09[1])<br>UBUS DATA BIT 08 (CD08[1])       | INPUT/OUTPUT<br>INPUT/OUTPUT |  |
| 111        | +5V (VCC)                                                      | POWER                        |  |
| 112        | UBUS DATA BIT 07 (CD07[1])                                     | INPUT/OUTPUT                 |  |
| 112        | UBUS DATA BIT 06 (CD06[1])                                     | INPUT/OUTPUT                 |  |
| 113        | UBUS DATA BIT 05 (CD06[1])                                     | INPUT/OUTPUT                 |  |
| 114        | UBUS DATA BIT 05 (CD05[1])<br>UBUS DATA BIT 04 (CD04[1])       | INPUT/OUTPUT                 |  |
| 116        | UBUS DATA BIT 04 (CD04[1])<br>UBUS DATA BIT 03 (CD03[1])       | INPUT/OUTPUT                 |  |
| 117        | UBUS DATA BIT 03 ( $CD03[1]$ )                                 | INPUT/OUTPUT                 |  |
| 118        | GROUND (GRD)                                                   | GROUND                       |  |
| 110        | UBUS DATA BIT 01 (CD01[1])                                     | INPUT/OUTPUT                 |  |
| 120        | UBUS DATA BIT 00 (CD00[1])                                     | INPUT/OUTPUT                 |  |


NC


No Connection


## **CM524A PROCESSING ELEMENT CARD INTERCONNECTIONS**


The CM524A Processing Element (PE) Card interconnection consists of a 120-pin card edge connection. Figure B-33 shows the layout of the CM524A PE Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.

, estates,









| 120-PIN PE CARD EDGE CONNECTIONS |                                                              |                              |
|----------------------------------|--------------------------------------------------------------|------------------------------|
| PIN                              | DESCRIPTION                                                  | FUNCTION                     |
| 1                                | BUB CONNECTOR INHIBIT SLOT 0 (BINHIB0[0])                    | INPUT                        |
| 2                                | GROUND (GRD)                                                 | GROUND                       |
| 3                                | OPERATIONAL INTERRUPT LEVEL 15 (OPINT15[0])                  | OUTPUT                       |
| 4                                | NOT USED                                                     | NC                           |
| 5                                | NOT USED                                                     | NC                           |
| 6                                | +5V (VCC)                                                    | POWER                        |
| 7                                | NOT USED                                                     | NC                           |
| 8                                | GROUND (GRD)                                                 | GROUND                       |
| 9                                | BUB PHYSICAL ADDRESS STROBE (UPAS[0])                        | OUTPUT                       |
| 10                               | BUB DATA BIT 31 (BD31[1])                                    | INPUT/OUTPUT                 |
| 11                               | BUB DATA BIT 30 (BD30[1])                                    | INPUT/OUTPUT                 |
| 12                               | BUB DATA BIT 29 (BD29[1])                                    | INPUT/OUTPUT                 |
| 13                               | BUB DATA BIT 28 (BD28[1])                                    | INPUT/OUTPUT<br>GROUND       |
| 14                               | GROUND (GRD)                                                 | POWER                        |
| 15                               | +5V (VCC)                                                    | INPUT/OUTPUT                 |
| 16<br>17                         | BUB DATA BIT 26 (BD26[1])<br>Bub data bit 27 (BD27[1])       | INPUT/OUTPUT                 |
| 17                               | BUB DATA BIT 25 (BD25[1])                                    | INPUT/OUTPUT                 |
| 10                               | BUB DATA BIT 24 (BD24[1])                                    | INPUT/OUTPUT                 |
| 20                               | GROUND (GRD)                                                 | GROUND                       |
| 21                               | BUB DATA BIT 22 (BD22[1])                                    | INPUT/OUTPUT                 |
| 22                               | BUB DATA BIT 23 (BD23[1])                                    | INPUT/OUTPUT                 |
| 23                               | BUB DATA BIT 21 (BD21[1])                                    | INPUT/OUTPUT                 |
| 24                               | BUB DATA BIT 20 (BD20[1])                                    | INPUT/OUTPUT                 |
| 25                               | BUB DATA BIT 18 (BD18[1])                                    | INPUT/OUTPUT                 |
| 26                               | BUB DATA BIT 19 (BD19[1])                                    | INPUT/OUTPUT                 |
| 27                               | GROUND (GRD)                                                 | GROUND                       |
| 28                               | BUB DATA BIT 17 (BD17[1])                                    | INPUT/OUTPUT                 |
| 29                               | BUB DATA BIT 16 (BD16[1])                                    | INPUT/OUTPUT                 |
| 30                               | BUB DATA BIT 14 (BD14[1])                                    | INPUT/OUTPUT                 |
| 31                               | BUB DATA BIT 15 (BD15[1])                                    | INPUT/OUTPUT                 |
| 32                               | +5V (VCC)                                                    | POWER                        |
| 33                               | BUB DATA BIT 12 (BD12[1])                                    | INPUT/OUTPUT                 |
| 34                               | BUB DATA BIT 13 (BD13[1])                                    | INPUT/OUTPUT                 |
| 35                               | NOT USED                                                     | NC                           |
| 36                               | BUB DATA BIT 11 (BD11[1])                                    | INPUT/OUTPUT<br>INPUT/OUTPUT |
| 37                               | BUB DATA BIT 10 (BD10[1])                                    | NC                           |
| 38<br>39                         | NOT USED<br>GROUND (GRD)                                     | GROUND                       |
| 39<br>40                         | BUB DATA BIT 08 (BD08[1])                                    | INPUT/OUTPUT                 |
| 40<br>41                         | BUB DATA BIT 09 (BD09[1])                                    | INPUT/OUTPUT                 |
| 41                               | BUB DATA BIT 07 (BD07[1])                                    | INPUT/OUTPUT                 |
| 43                               | BUB DATA BIT 06 (BD06[1])                                    | INPUT/OUTPUT                 |
| 44                               | BUB DATA BIT 05 (BD05[1])                                    | INPUT/OUTPUT                 |
| 45                               | BUB DATA BIT 04 (BD04[1])                                    | INPUT/OUTPUT                 |
| 46                               | GROUND (GRD)                                                 | GROUND                       |
| 47                               | BUB DATA BIT 03 (BD03[1])                                    | INPUT/OUTPUT                 |
| 48                               | BUB DATA BIT 02 (BD02[1])                                    | INPUT/OUTPUT                 |
| 49                               | BUB DATA BIT 00 (BD00[1])                                    | INPUT/OUTPUT                 |
| 50                               | BUB DATA BIT 01 (BD01[1])                                    | INPUT/OUTPUT                 |
| 51                               | GROUND (GRD)                                                 | GROUND                       |
| 52                               | NOT USED                                                     | NC                           |
| 53                               | NOT USED                                                     | NC                           |
| 54                               | NOT USED                                                     | NC                           |
| 55                               | NOT USED                                                     | NC                           |
| 56                               | +5V (VCC)                                                    | POWER                        |
| 57                               | BUB ADDRESS BIT 26 (BA26[1])                                 |                              |
| 58                               | BUB ADDRESS BIT 25 (BA25[1])                                 | INPUT/OUTPUT<br>INPUT/OUTPUT |
| 59<br>60                         | BUB ADDRESS BIT 24 (BA24[1])<br>BUB ADDRESS BIT 23 (BA23[1]) | INPUT/OUTPUT                 |
| 00                               | DUD ADDKEDD DII 20 (DA20[1])                                 |                              |

|                   | 120-PIN PE CARD EDGE CONNECTIONS (Contd)                                                     |                                              |
|-------------------|----------------------------------------------------------------------------------------------|----------------------------------------------|
| PIN               | DESCRIPTION                                                                                  | FUNCTION                                     |
| 61                | BUB ADDRESS BIT 22 (BA22[1])                                                                 | INPUT/OUTPUT                                 |
| 62                | BUB ADDRESS BIT 21 (BA21[1])                                                                 | INPUT/OUTPUT                                 |
| 63                | GROUND (GRD)                                                                                 | GROUND                                       |
| 64                | BUB ADDRESS BIT 20 (BA20[1])                                                                 | INPUT/OUTPUT                                 |
| 65                | BUB ADDRESS BIT 12 (BA12[1])                                                                 | INPUT/OUTPUT                                 |
| 66                | BUB ADDRESS BIT 19 (BA19[1])                                                                 | INPUT/OUTPUT                                 |
| 67                | BUB ADDRESS BIT 18 (BA18[1])                                                                 | INPUT/OUTPUT                                 |
| 68<br>69          | BUB ADDRESS BIT 17 (BA17[1])<br>BUB ADDRESS BIT 16 (BA16[1])<br>CRDUIN (CRD)                 | INPUT/OUTPUT<br>INPUT/OUTPUT                 |
| 70                | GROUND (GRD)                                                                                 | GROUND                                       |
| 71                | BUB ADDRESS BIT 15 (BA15[1])                                                                 | INPUT/OUTPUT                                 |
| 72                | BUB ADDRESS BIT 14 (BA14[1])                                                                 | INPUT/OUTPUT                                 |
| 73                | GROUND (GRD)                                                                                 | GROUND                                       |
| 74                | BUB ADDRESS BIT 13 (BA13[1])                                                                 | INPUT/OUTPUT                                 |
| 75                | +5V (VCC)                                                                                    | POWER                                        |
| 76                | SYSTEM RESET (SYSRST[0])                                                                     | INPUT                                        |
| 77                | NOT USED                                                                                     | NC                                           |
| 78                | BUB ADDRESS BIT 27 (BA27[1])                                                                 | INPUT/OUTPUT                                 |
| 79                | PBUS INTERLOCK (UINTLK[0])                                                                   | OUTPUT                                       |
| 80                | GROUND (GRD)                                                                                 | GROUND                                       |
| 81                | BUB ADDRESS BIT 11 (BA11[1])                                                                 | INPUT/OUTPUT                                 |
| 82                | BUB ADDRESS BIT 10 (BA10[1])                                                                 | INPUT/OUTPUT                                 |
| 83                | BUB ADDRESS BIT 09 (BA09[1])                                                                 | INPUT/OUTPUT                                 |
| 84<br>85          | BUB ADDRESS BIT 08 (BA08[1])<br>BUB ADDRESS BIT 07 (BA07[1])<br>BUB ADDRESS BIT 07 (BA07[1]) | INPUT/OUTPUT<br>INPUT/OUTPUT<br>INPUT/OUTPUT |
| 86<br>87<br>88    | BUB ADDRESS BIT 06 (BA06[1])<br>GROUND (GRD)<br>BUB ADDRESS BIT 05 (BA05[1])                 | GROUND<br>INPUT/OUTPUT                       |
| 89                | GROUND (GRD)                                                                                 | GROUND                                       |
| 90                | BUB ADDRESS BIT 04 (BA04[1])                                                                 | INPUT/OUTPUT                                 |
| 91                | BUB ADDRESS BIT 03 (BA03[1])                                                                 | INPUT/OUTPUT                                 |
| 92                | BUB ADDRESS BIT 02 (BA02[1])                                                                 | INPUT/OUTPUT                                 |
| 93                | BUB ADDRESS BIT 01 (BA01[1])                                                                 | INPUT/OUTPUT                                 |
| 94                | +5V (VCC)                                                                                    | POWER                                        |
| 95<br>96          | BUB ADDRESS BIT 00 (BA00[1])<br>NOT USED                                                     | INPUT/OUTPUT<br>NC<br>NC                     |
| 97                | NOT USED                                                                                     | NC                                           |
| 98                | NOT USED                                                                                     | NC                                           |
| 99                | GROUND (GRD)                                                                                 | GROUND                                       |
| 100               | NOT USED                                                                                     | NC                                           |
| 101               | PBUS READ/WRITE (UR1W0)                                                                      | OUTPUT                                       |
| 102               | +5V (VCC)                                                                                    | POWER                                        |
| 103               | PBUS CONNECTOR CHIP SELECT (UPCS[0])                                                         | INPUT                                        |
| 104               | GROUND (GRD)                                                                                 | GROUND                                       |
| 105               | PBUS DATA SIZE BIT 0 (UDSIZE0[1])                                                            | INPUT/OUTPUT                                 |
| 106<br>107        | PBUS DATA SIZE BIT 1 (UDSIZE1[1])<br>PBUS ADDRESS STROBE (UAS[0])                            | INPUT/OUTPUT<br>OUTPUT<br>NC                 |
| 108<br>109<br>110 | NOT USED<br>PBUS MEMORY ACCESS (CPUMEM[0])<br>CPU LATCH (CPULTCH[1])                         | OUTPUT<br>INPUT                              |
| 110<br>111<br>112 | +5V (VCC)<br>PBUS FAULT (UFLT[0])                                                            | POWER                                        |
| 112<br>113<br>114 | PBUS OUTPUT ENABLE (CBALOE[0])<br>PBUS DATA ACKNOWLEDGE (UDTCK[0])                           | INPUT<br>INPUT                               |
| 115               | PBUS DATA STROBE (BDS[0])                                                                    | INPUT/OUTPUT                                 |
| 116               | BUB ADDRESS STROBE (BAS[0])                                                                  | INPUT                                        |
| 117               | BUB DATA ACKNOWLEDGE (BDTCK[0])                                                              | OUTPUT                                       |
| 118               | GROUND (GRD)                                                                                 | GROUND                                       |
| 119<br>120        | NOT USED                                                                                     | NC<br>NC                                     |

NC No Connection

## **CM525B VMEbus CARD INTERCONNECTIONS**

The CM525B Versa Modula Europa bus (VMEbus) Card interconnections include the following:

- Two 120-pin card edge connections
- Four 37n miniature D-type connectors.

Figure B-34 shows the layout of the CM525B VMEbus Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.

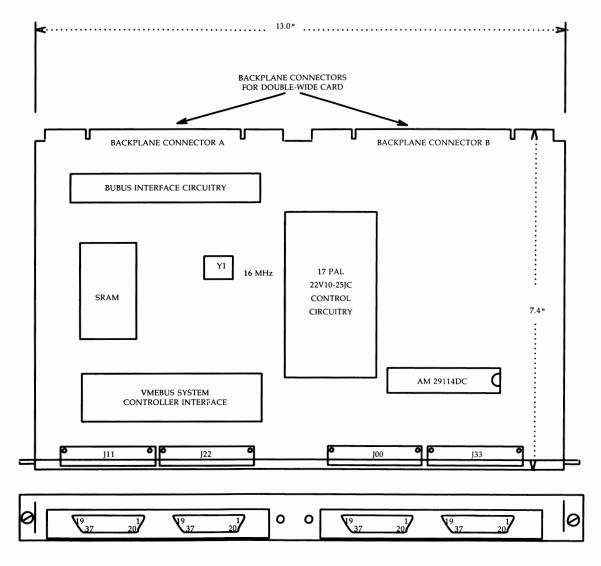
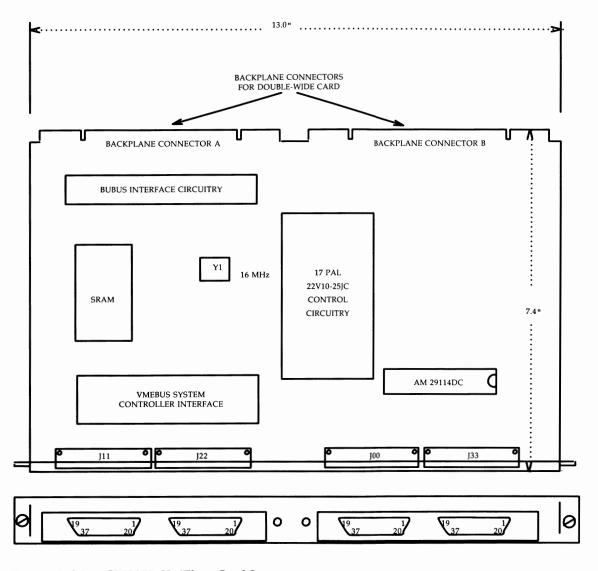




Figure B-34: CM525B VMEbus Card Layout





| PIN      | DESCRIPTION                                                  | FUNCTION                     |
|----------|--------------------------------------------------------------|------------------------------|
| 1        | BUB CONNECTOR INHIBIT SLOT 0 (BINHIB0[0])                    | INPUT                        |
| 2        | GROUND (GRD)                                                 | GROUND                       |
| 3        | NOT USED                                                     | NC                           |
| 4        | NOT USED                                                     | NC                           |
| 5        | NOT USED                                                     | NC                           |
| 6        | +5V (VCC)                                                    | POWER                        |
| 7        | BUB INTERRUPT LEVEL 14 (BINT14[0])                           | OUTPUT                       |
| 8        | GROUND (GRD)                                                 | GROUND                       |
| 9        | BUB FAILURE (BFAIL[0])                                       | OUTPUT                       |
| 10       | BUB DATA BIT 31 (BD31[1])                                    | INPUT/OUTPUT                 |
| 11       | BUB DATA BIT 30 (BD30[1])                                    | INPUT/OUTPUT                 |
| 12<br>13 | BUB DATA BIT 29 (BD29[1])                                    | INPUT/OUTPUT                 |
| 13       | BUB DATA BIT 28 (BD28[1])                                    | INPUT/OUTPUT<br>GROUND       |
| 14       | GROUND (GRD)<br>+5V (VCC)                                    | POWER                        |
| 16       | BUB DATA BIT 26 (BD26[1])                                    | INPUT/OUTPUT                 |
| 17       | BUB DATA BIT 27 (BD27[1])                                    | INPUT/OUTPUT                 |
| 18       | BUB DATA BIT 25 (BD25(1))                                    | INPUT/OUTPUT                 |
| 19       | BUB DATA BIT 24 (BD24[1])                                    | INPUT/OUTPUT                 |
| 20       | GROUND (GRD)                                                 | GROUND                       |
| 21       | BUB DATA BIT 22 (BD22[1])                                    | INPUT/OUTPUT                 |
| 22       | BUB DATA BIT 23 (BD23[1])                                    | INPUT/OUTPUT                 |
| 23       | BUB DATA BIT 21 (BD21[1])                                    | INPUT/OUTPUT                 |
| 24       | BUB DATA BIT 20 (BD20[1])                                    | INPUT/OUTPUT                 |
| 25       | BUB DATA BIT 18 (BD18[1])                                    | INPUT/OUTPUT                 |
| 26       | BUB DATA BIT 19 (BD19[1])                                    | INPUT/OUTPUT                 |
| 27       | GROUND (GRD)                                                 | GROUND                       |
| 28       | BUB DATA BIT 17 (BD17[1])                                    | INPUT/OUTPUT                 |
| 29       | BUB DATA BIT 16 (BD16[1])                                    | INPUT/OUTPUT                 |
| 30       | BUB DATA BIT 14 (BD14[1])                                    | INPUT/OUTPUT                 |
| 31       | BUB DATA BIT 15 (BD15[1])                                    | INPUT/OUTPUT                 |
| 32       | +5V (VCC)                                                    | POWER                        |
| 33       | BUB DATA BIT 12 (BD12[1])                                    | INPUT/OUTPUT                 |
| 34       | BUB DATA BIT 13 (BD13[1])                                    | INPUT/OUTPUT                 |
| 35       | NOT USED                                                     | NC                           |
| 36       | BUB DATA BIT 11 (BD11[1])                                    | INPUT/OUTPUT                 |
| 37<br>38 | BUB DATA BIT 10 (BD10[1])<br>NOT USED                        | INPUT/OUTPUT<br>NC           |
| 30<br>39 | GROUND (GRD)                                                 | GROUND                       |
| 40       | BUB DATA BIT 08 (BD08[1])                                    | INPUT/OUTPUT                 |
| 40       | BUB DATA BIT 09 (BD09[1])                                    | INPUT/OUTPUT                 |
| 42       | BUB DATA BIT 07 (BD07[1])                                    | INPUT/OUTPUT                 |
| 43       | BUB DATA BIT 06 (BD06[1])                                    | INPUT/OUTPUT                 |
| 44       | BUB DATA BIT 05 (BD05[1])                                    | INPUT/OUTPUT                 |
| 45       | BUB DATA BIT 04 (BD04[1])                                    | INPUT/OUTPUT                 |
| 46       | GROUND (GRD)                                                 | GROUND                       |
| 47       | BUB DATA BIT 03 (BD03[1])                                    | INPUT/OUTPUT                 |
| 48       | BUB DATA BIT 02 (BD02[1])                                    | INPUT/OUTPUT                 |
| 49       | BUB DATA BIT 00 (BD00[1])                                    | INPUT/OUTPUT                 |
| 50       | BUB DATA BIT 01 (BD01[1])                                    | INPUT/OUTPUT                 |
| 51       | GROUND (GRD)                                                 | GROUND                       |
| 52       | BUB DATA PARITY BIT 0 (BDP0[1])                              | INPUT/OUTPUT                 |
| 53       | BUB DATA PARITY BIT 1 (BDP1[1])                              | INPUT/OUTPUT                 |
| 54<br>55 | BUB DATA PARITY BIT 3 (BDP3[1])                              | INPUT/OUTPUT                 |
| 55<br>56 | BUB DATA PARITY BIT 2 (BDP2[1])                              | INPUT/OUTPUT                 |
| 56<br>57 | +5V (VCC)                                                    | POWER                        |
| 57<br>58 | BUB ADDRESS BIT 26 (BA26[1])<br>BUB ADDRESS BIT 25 (BA2511)) | INPUT/OUTPUT                 |
| 58<br>59 | BUB ADDRESS BIT 25 (BA25[1])<br>BUB ADDRESS BIT 24 (BA24[1]) | INPUT/OUTPUT<br>INPUT/OUTPUT |
|          |                                                              |                              |

|            | 120-PIN VMEbus CARD EDGE CONNECTIONS, CONNECTOR A (Conto                 | 1)                           |
|------------|--------------------------------------------------------------------------|------------------------------|
| PIN        | DESCRIPTION                                                              | FUNCTION                     |
| 61         | BUB ADDRESS BIT 22 (BA22[1])                                             | INPUT/OUTPUT                 |
| 62         | BUB ADDRESS BIT 21 (BA21[1])                                             | INPUT/OUTPUT                 |
| 63         | GROUND (GRD)                                                             | GROUND                       |
| 64         | BUB ADDRESS BIT 20 (BA20[1])                                             | INPUT/OUTPUT                 |
| 65<br>66   | BUB ADDRESS BIT 12 (BA12[1])<br>BUB ADDRESS BIT 19 (BA19[1])             | INPUT/OUTPUT<br>INPUT/OUTPUT |
| 67         | BUB ADDRESS BIT 18 (BA18[1])                                             | INPUT/OUTPUT                 |
| 68         | BUB ADDRESS BIT 17 (BA17[1])                                             | INPUT/OUTPUT                 |
| 69         | BUB ADDRESS BIT 16 (BA16[1])                                             | INPUT/OUTPUT                 |
| 70         | GROUND (GRD)                                                             | GROUND                       |
| 71         | BUB ADDRESS BIT 15 (BA15[1])                                             | INPUT/OUTPUT                 |
| 72<br>73   | BUB ADDRESS BIT 14 (BA14[1])<br>GROUND (GRD)                             | INPUT/OUTPUT<br>GROUND       |
| 74         | BUB ADDRESS BIT 13 (BA13[1])                                             | INPUT/OUTPUT                 |
| 75         | +5V (VCC)                                                                | POWER                        |
| 76         | SYSTEM RESET (SYSRST[0])                                                 | INPUT                        |
| 77         | NOT USED                                                                 | NC                           |
| 78         | BUB ADDRESS BIT 27 (BA27[1])                                             | INPUT/OUTPUT                 |
| 79         | NOT USED                                                                 | NC                           |
| 80<br>91   | GROUND (GRD)<br>BUB ADDRESS BIT 11 (BA11[1])                             | GROUND<br>INPUT/OUTPUT       |
| 81<br>82   | BUB ADDRESS BIT 10 (BA10[1])                                             | INPUT/OUTPUT                 |
| 83         | BUB ADDRESS BIT 09 (BA09[1])                                             | INPUT/OUTPUT                 |
| 84         | BUB ADDRESS BIT 08 (BA08[1])                                             | INPUT/OUTPUT                 |
| 85         | BUB ADDRESS BIT 07 (BA07[1])                                             | INPUT/OUTPUT                 |
| 86         | BUB ADDRESS BIT 06 (BA06[1])                                             | INPUT/OUTPUT                 |
| 87         | GROUND (GRD)                                                             | GROUND                       |
| 88         | BUB ADDRESS BIT 05 (BA05[1])                                             | INPUT/OUTPUT<br>GROUND       |
| 89<br>90   | GROUND (GRD)<br>BUB ADDRESS BIT 04 (BA04[1])                             | INPUT/OUTPUT                 |
| 91         | BUB ADDRESS BIT 03 (BA03[1])                                             | INPUT/OUTPUT                 |
| 92         | BUB ADDRESS BIT 02 (BA02[1])                                             | INPUT/OUTPUT                 |
| 93         | BUB ADDRESS BIT 01 (BA01[1])                                             | INPUT/OUTPUT                 |
| 94         | +5V (VCC)                                                                | POWER                        |
| 95         | BUB ADDRESS BIT 00 (BA00[1])                                             | INPUT/OUTPUT                 |
| 96<br>07   | BUB ADDRESS PARITY BIT 0 (BAP0[1])                                       | INPUT/OUTPUT<br>INPUT/OUTPUT |
| 97<br>98   | BUB ADDRESS PARITY BIT 2 (BAP2[1])<br>BUB ADDRESS PARITY BIT 1 (BAP1[1]) | INPUT/OUTPUT                 |
| 99         | GROUND (GRD)                                                             | GROUND                       |
| 100        | BUB ADDRESS PARITY BIT 3 (BAP3[1])                                       | INPUT/OUTPUT                 |
| 101        | BUB READ/WRITE (BR1W0)                                                   | INPUT/OUTPUT                 |
| 102        | +5V (VCC)                                                                | POWER                        |
| 103        | BUB CONNECTOR CHIP SELECT (BCCS[0])                                      | INPUT<br>GROUND              |
| 104<br>105 | GROUND (GRD)<br>BUB DATA SIZE BIT 0 (BDSIZE0[1])                         | INPUT/OUTPUT                 |
| 105        | BUB DATA SIZE BIT (BDSIZE0[1])<br>BUB DATA SIZE BIT 1 (BDSIZE1[1])       | INPUT/OUTPUT                 |
| 107        | BUB SEQUENTIAL ACCESS (BSEQACC[0])                                       | OUTPUT                       |
| 108        | BUB PARITY CHECK (BPCHECK[0])                                            | OUTPUT                       |
| 109        | BUB REQUEST (BUBRQ[0])                                                   | OUTPUT                       |
| 110        | NOT USED                                                                 | NC                           |
| 111<br>112 | +5V (VCC)<br>BUB FAULT (BFLT[0])                                         | POWER<br>INPUT/OUTPUT        |
| 112        | BUB GRANTED (BUBGT[0])                                                   | INPUT                        |
| 114        | NOT USED                                                                 | NC                           |
| 115        | BUB DATA STROBE (BDS[0])                                                 | INPUT/OUTPUT                 |
| 116        | BUB ADDRESS STROBE (BAS[0])                                              | INPUT                        |
| 117        | BUB DATA ACKNOWLEDGE (BDTCK[0])                                          | INPUT/OUTPUT                 |
| 118        | GROUND (GRD)                                                             | GROUND<br>NC                 |
| 119<br>120 | NOT USED<br>NOT USED                                                     | NC<br>NC                     |

NC

No Connection

| VMEbus BACKPLANE CONNECTOR B |        |
|------------------------------|--------|
| VCC                          | GROUND |
| 002                          | 001    |
| 023                          | 007    |
| 024                          | 008    |
| 043                          | 011    |
| 044                          | 012    |
| 056                          | 017    |
| 076                          | 018    |
| 079                          | 031    |
| 100                          | 032    |
| 103                          | 035    |
| 120                          | 036    |
|                              | 039    |
|                              | 040    |
|                              | 047    |
|                              | 048    |
|                              | 051    |
|                              | 052    |
|                              | 055    |
|                              | 059    |
|                              | 060    |
|                              | 063    |
|                              | 068    |
|                              | 071    |
|                              | 084    |
|                              | 087    |
|                              | 092    |
|                              | 095    |
|                              | 108    |
|                              | 111    |
|                              | 116    |
|                              | 119    |

Backplane Connector B is used to supply VCC and Ground. Any pins that are not listed in the following table are NOT USED.

|     | 37-PIN VME XBUS CONNECTIONS, J00        |              |  |
|-----|-----------------------------------------|--------------|--|
| PIN | DESCRIPTION                             | FUNCTION     |  |
| 01  | GROUND                                  | GROUND       |  |
| 02  | XBUS RESET (XRESET[1])                  | INPUT        |  |
| 03  | XBUS DATA STROBE 0 (XDS0[1])            | INPUT        |  |
| 04  | XBUS FAIL (XSFAIL[1])                   | INPUT        |  |
| 05  | XBUS DATA ACKNOWLEDGE (XDTACK[1])       | INPUT        |  |
| 06  | XBUS READ/WRITE (XR0W1)                 | INPUT/OUTPUT |  |
| 07  | XBUS INTERRUPT REQUEST BIT 4 (XIRQ4[1]) | INPUT        |  |
| 08  | XBUS INTERRUPT REQUEST BIT 3 (XIRQ3[1]) | INPUT        |  |
| 09  | XBUS ADDRESS PARITY BIT 1 (XADP1[0])    | INPUT/OUTPUT |  |
| 10  | XBUS ADDRESS PARITY BIT 2 (XADP2[0])    | INPUT/OUTPUT |  |
| 11  | XBUS ADDRESS PARITY BIT 3 (XADP3[0])    | INPUT/OUTPUT |  |
| 12  | XBUS ADDRESS ACKNOWLEDGE (XAACK[1])     | OUTPUT       |  |
| 13  | XBUS ADDRESS PARITY BIT 0 (XADP0[0])    | INPUT/OUTPUT |  |
| 14  | XBUS INTERRUPT REQUEST BIT 2 (XIRQ2[1]) | INPUT        |  |
| 15  | XBUS ADDRESS STROBE (XAS[1])            | INPUT        |  |
| 16  | XBUS ERROR (XBERR[1])                   | INPUT        |  |
| 17  | XBUS INTERRUPT REQUEST BIT 1 (XIRQ1[1]) | INPUT        |  |
| 18  | NOT USED                                | NC           |  |
| 19  | NOT USED                                | NC           |  |
| 20  | GROUND                                  | GROUND       |  |
| 21  | GROUND                                  | GROUND       |  |
| 22  | GROUND                                  | GROUND       |  |
| 23  | GROUND                                  | GROUND       |  |
| 24  | GROUND                                  | GROUND       |  |
| 25  | GROUND                                  | GROUND       |  |
| 26  | GROUND                                  | GROUND       |  |
| 27  | GROUND                                  | GROUND       |  |
| 28  | GROUND                                  | GROUND       |  |
| 29  | GROUND                                  | GROUND       |  |
| 30  | GROUND                                  | GROUND       |  |
| 31  | GROUND                                  | GROUND       |  |
| 32  | GROUND                                  | GROUND       |  |
| 33  | GROUND                                  | GROUND       |  |
| 34  | GROUND                                  | GROUND       |  |
| 35  | GROUND                                  | GROUND       |  |
| 36  | GROUND                                  | GROUND       |  |
| 37  | NOT USED                                | NC           |  |

NC

No Connection

| 37-PIN VME XBUS CONNECTIONS, J11 |                            |              |
|----------------------------------|----------------------------|--------------|
| PIN                              | DESCRIPTION                | FUNCTION     |
| 01                               | GROUND                     | GROUND       |
| 02                               | XBUS ADDRESS 30 (XAD30[0]) | INPUT/OUTPUT |
| 03                               | XBUS ADDRESS 25 (XAD25[0]) | INPUT/OUTPUT |
| 04                               | XBUS ADDRESS 31 (XAD31[0]) | INPUT/OUTPUT |
| 05                               | XBUS ADDRESS 26 (XAD26[0]) | INPUT/OUTPUT |
| 06                               | XBUS ADDRESS 27 (XAD27[0]) | INPUT/OUTPUT |
| 07                               | XBUS ADDRESS 28 (XAD28[0]) | INPUT/OUTPUT |
| 08                               | XBUS ADDRESS 29 (XAD29[0]) | INPUT/OUTPUT |
| 09                               | XBUS ADDRESS 22 (XAD22[0]) | INPUT/OUTPUT |
| 10                               | XBUS ADDRESS 23 (XAD23[0]) | INPUT/OUTPUT |
| 11                               | XBUS ADDRESS 24 (XAD24[0]) | INPUT/OUTPUT |
| 12                               | XBUS ADDRESS 20 (XAD20[0]) | INPUT/OUTPUT |
| 13                               | XBUS ADDRESS 21 (XAD21[0]) | INPUT/OUTPUT |
| 14                               | XBUS ADDRESS 18 (XAD18[0]) | INPUT/OUTPUT |
| 15                               | XBUS ADDRESS 19 (XAD19[0]) | INPUT/OUTPUT |
| 16                               | XBUS ADDRESS 16 (XAD16[0]) | INPUT/OUTPUT |
| 17                               | XBUS ADDRESS 17 (XAD17[0]) | INPUT/OUTPUT |
| 18                               | NOT USED                   | NC           |
| 19                               | NOT USED                   | NC           |
| 20                               | GROUND                     | GROUND       |
| 21                               | GROUND                     | GROUND       |
| 22                               | GROUND                     | GROUND       |
| 23                               | GROUND                     | GROUND       |
| 24                               | GROUND                     | GROUND       |
| 25                               | GROUND                     | GROUND       |
| 26                               | GROUND                     | GROUND       |
| 27                               | GROUND                     | GROUND       |
| 28                               | GROUND                     | GROUND       |
| 29                               | GROUND                     | GROUND       |
| 30                               | GROUND                     | GROUND       |
| 31                               | GROUND                     | GROUND       |
| 32                               | GROUND                     | GROUND       |
| 33                               | GROUND                     | GROUND       |
| 34                               | GROUND                     | GROUND       |
| 35                               | GROUND                     | GROUND       |
| 36                               | GROUND                     | GROUND       |
| 37                               | NOT USED                   | NC           |

NC

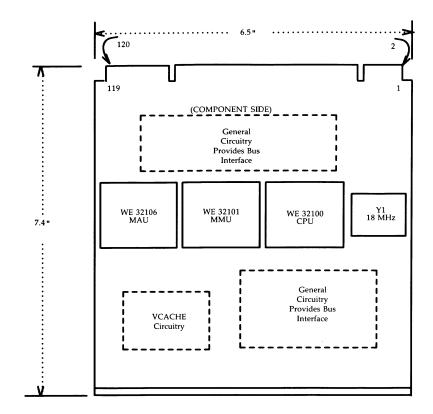
No Connection

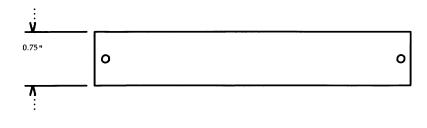
# Appendix: CONNECTOR AND CABLING INFORMATION -

|     | 37-PIN VME XBUS CONNECTIONS, J22 |              |  |
|-----|----------------------------------|--------------|--|
| PIN | DESCRIPTION                      | FUNCTION     |  |
| 01  | GROUND                           | GROUND       |  |
| 02  | XBUS ADDRESS 14 (XAD14[0])       | INPUT/OUTPUT |  |
| 03  | XBUS ADDRESS 09 (XAD09[0])       | INPUT/OUTPUT |  |
| 04  | XBUS ADDRESS 15 (XAD15[0])       | INPUT/OUTPUT |  |
| 05  | XBUS ADDRESS 10 (XAD10[0])       | INPUT/OUTPUT |  |
| 06  | XBUS ADDRESS 11 (XAD11[0])       | INPUT/OUTPUT |  |
| 07  | XBUS ADDRESS 12 (XAD12[0])       | INPUT/OUTPUT |  |
| 08  | XBUS ADDRESS 13 (XAD13[0])       | INPUT/OUTPUT |  |
| 09  | XBUS ADDRESS 06 (XAD06[0])       | INPUT/OUTPUT |  |
| 10  | XBUS ADDRESS 07 (XAD07[0])       | INPUT/OUTPUT |  |
| 11  | XBUS ADDRESS 08 (XAD08[0])       | INPUT/OUTPUT |  |
| 12  | XBUS ADDRESS 04 (XAD04[0])       | INPUT/OUTPUT |  |
| 13  | XBUS ADDRESS 05 (XAD05[0])       | INPUT/OUTPUT |  |
| 14  | XBUS ADDRESS 02 (XAD02[0])       | INPUT/OUTPUT |  |
| 15  | XBUS ADDRESS 03 (XAD03[0])       | INPUT/OUTPUT |  |
| 16  | XBUS ADDRESS 00 (XAD00[0])       | INPUT/OUTPUT |  |
| 17  | XBUS ADDRESS 01 (XAD01[0])       | INPUT/OUTPUT |  |
| 18  | NOT USED                         | NC           |  |
| 19  | NOT USED                         | NC           |  |
| 20  | GROUND                           | GROUND       |  |
| 21  | GROUND                           | GROUND       |  |
| 22  | GROUND                           | GROUND       |  |
| 23  | GROUND                           | GROUND       |  |
| 24  | GROUND                           | GROUND       |  |
| 25  | GROUND                           | GROUND       |  |
| 26  | GROUND                           | GROUND       |  |
| 27  | GROUND                           | GROUND       |  |
| 28  | GROUND                           | GROUND       |  |
| 29  | GROUND                           | GROUND       |  |
| 30  | GROUND                           | GROUND       |  |
| 31  | GROUND                           | GROUND       |  |
| 32  | GROUND                           | GROUND       |  |
| 33  | GROUND                           | GROUND       |  |
| 34  | GROUND                           | GROUND       |  |
| 35  | GROUND                           | GROUND       |  |
| 36  | GROUND                           | GROUND       |  |
| 37  | NOT USED                         | NC           |  |

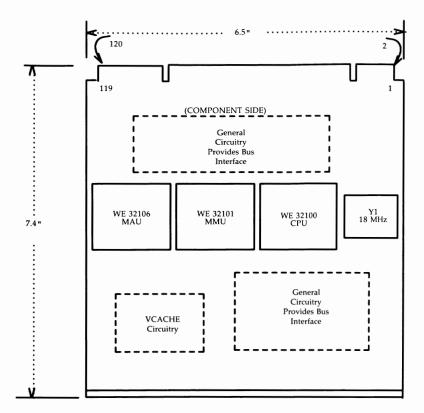
### LEGEND:

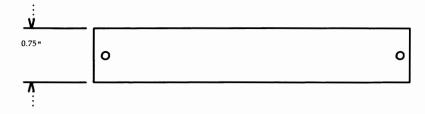
NC No Connection

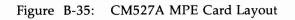

| 37-PIN VME XBUS CONNECTIONS, J33 |                                         |          |
|----------------------------------|-----------------------------------------|----------|
| PIN                              | DESCRIPTION                             | FUNCTION |
| 01                               | GROUND                                  | GROUND   |
| 02                               | GROUND                                  | GROUND   |
| 03                               | NOT USED                                | NC       |
| 04                               | GROUND                                  | GROUND   |
| 05                               | XBUS INTERRUPT REQUEST BIT 7 (XIRQ7[1]) | INPUT    |
| 06                               | XBUS INTERRUPT REQUEST BIT 6 (XIRQ6[1]) | INPUT    |
| 07                               | XBUS INTERRUPT REQUEST BIT 5 (XIRQ5[1]) | INPUT    |
| 08                               | GROUND                                  | GROUND   |
| 09                               | XBUS DATA STROBE 1 (XDS1[1])            | INPUT    |
| 10                               | XBUS DATA STROBE 2 (XDS2[1])            | INPUT    |
| 11                               | GROUND                                  | GROUND   |
| 12                               | XBUS SEQUENCE (XSEQ[1])                 | INPUT    |
| 13                               | XBUS INTERRUPT ACKNOWLEDGE (XIACK[1])   | OUTPUT   |
| 14                               | XBUS LOCK (XLOCK[1])                    | INPUT    |
| 15                               | XBUS DATA STROBE 3 (XDS3[1])            | INPUT    |
| 16                               | XBUS REQUEST (XBREQ[1])                 | OUTPUT   |
| 17                               | XBUS GRANTED (XBUSGRT[1])               | OUTPUT   |
| 18                               | NOT USED                                | NC       |
| 19                               | NOT USED                                | NC       |
| 20                               | GROUND                                  | GROUND   |
| 21                               | GROUND                                  | GROUND   |
| 22                               | GROUND                                  | GROUND   |
| 23                               | GROUND                                  | GROUND   |
| 24                               | GROUND                                  | GROUND   |
| 25                               | GROUND                                  | GROUND   |
| 26                               | GROUND                                  | GROUND   |
| 27                               | GROUND                                  | GROUND   |
| 28                               | GROUND                                  | GROUND   |
| 29                               | GROUND                                  | GROUND   |
| 30                               | GROUND                                  | GROUND   |
| 31                               | GROUND                                  | GROUND   |
| 32                               | GROUND                                  | GROUND   |
| 33                               | GROUND                                  | GROUND   |
| 34                               | GROUND                                  | GROUND   |
| 35                               | GROUND                                  | GROUND   |
| 36                               | GROUND                                  | GROUND   |
| 37                               | NOT USED                                | NC       |


NC No Connection

# CM527A MULTIPROCESSOR ENHANCEMENT CARD INTERCONNECTIONS


The CM527A Multiprocessor Enhancement (MPE) Card interconnection consists of a 120-pin card edge connection. Figure B-35 shows the layout of the CM527A MPE Card. Refer to this figure for card connector location information. Pin and signal information is provided in tables following the figure for each of the card connectors. The figure is printed front and back with a blank unit so that the figure can be used in conjunction with any table.


### Appendix: CONNECTOR AND CABLING INFORMATION






# Figure B-35: CM527A MPE Card Layout





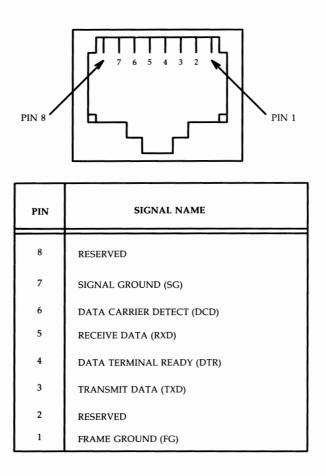


## —— Appendix: CONNECTOR AND CABLING INFORMATION

| 120-PIN MPE CARD EDGE CONNECTIONS |                                                              |                              |
|-----------------------------------|--------------------------------------------------------------|------------------------------|
| PIN                               | DESCRIPTION                                                  | FUNCTION                     |
| 1                                 | BUB CONNECTOR INHIBIT SLOT 0 (BINHIB0[0])                    | INPUT                        |
| 2                                 | GROUND (GRD)                                                 | GROUND                       |
| 3                                 | OPERATIONAL INTERRUPT LEVEL 15 (OPINT15[0])                  | OUTPUT                       |
| 4                                 | NOT USED                                                     | NC                           |
| 5                                 | NOT USED                                                     | NC                           |
| 6                                 | +5V (VCC)                                                    | POWER                        |
| 7                                 | NOT USED                                                     | NC                           |
| 8                                 | GROUND (GRD)                                                 | GROUND                       |
| 9                                 | NOT USED                                                     | NC                           |
| 10                                | BUB DATA BIT 31 (BD31[1])                                    | INPUT/OUTPUT                 |
| 11                                | BUB DATA BIT 30 (BD30[1])                                    | INPUT/OUTPUT                 |
| 12                                | BUB DATA BIT 29 (BD29[1])                                    | INPUT/OUTPUT                 |
| 13<br>14                          | BUB DATA BIT 28 (BD28[1])                                    | INPUT/OUTPUT<br>GROUND       |
| 14                                | GROUND (GRD)<br>+5V (VCC)                                    | POWER                        |
| 16                                | BUB DATA BIT 26 (BD26[1])                                    | INPUT/OUTPUT                 |
| 17                                | BUB DATA BIT 27 (BD27[1])                                    | INPUT/OUTPUT                 |
| 18                                | BUB DATA BIT 25 (BD25[1])                                    | INPUT/OUTPUT                 |
| 19                                | BUB DATA BIT 24 (BD24[1])                                    | INPUT/OUTPUT                 |
| 20                                | GROUND (GRD)                                                 | GROUND                       |
| 21                                | BUB DATA BIT 22 (BD22[1])                                    | INPUT/OUTPUT                 |
| 22                                | BUB DATA BIT 23 (BD23[1])                                    | INPUT/OUTPUT                 |
| 23                                | BUB DATA BIT 21 (BD21[1])                                    | INPUT/OUTPUT                 |
| 24                                | BUB DATA BIT 20 (BD20[1])                                    | INPUT/OUTPUT                 |
| 25                                | BUB DATA BIT 18 (BD18[1])                                    | INPUT/OUTPUT                 |
| 26                                | BUB DATA BIT 19 (BD19[1])                                    | INPUT/OUTPUT                 |
| 27                                | GROUND (GRD)                                                 | GROUND                       |
| 28                                | BUB DATA BIT 17 (BD17[1])                                    | INPUT/OUTPUT                 |
| 29                                | BUB DATA BIT 16 (BD16[1])                                    | INPUT/OUTPUT                 |
| 30                                | BUB DATA BIT 14 (BD14[1])                                    | INPUT/OUTPUT                 |
| 31                                | BUB DATA BIT 15 (BD15[1])                                    | INPUT/OUTPUT                 |
| 32                                | +5V (VCC)                                                    | POWER                        |
| 33                                | BUB DATA BIT 12 (BD12[1])                                    | INPUT/OUTPUT                 |
| 34                                | BUB DATA BIT 13 (BD13[1])                                    | INPUT/OUTPUT                 |
| 35                                | NOT USED                                                     |                              |
| 36<br>37                          | BUB DATA BIT 11 (BD11[1])<br>BUB DATA BIT 10 (BD10[1])       | INPUT/OUTPUT<br>INPUT/OUTPUT |
| 38                                | NOT USED                                                     | NC                           |
| 39                                | GROUND (GRD)                                                 | GROUND                       |
| 40                                | BUB DATA BIT 08 (BD08[1])                                    | INPUT/OUTPUT                 |
| 41                                | BUB DATA BIT 09 (BD09[1])                                    | INPUT/OUTPUT                 |
| 42                                | BUB DATA BIT 07 (BD07[1])                                    | INPUT/OUTPUT                 |
| 43                                | BUB DATA BIT 06 (BD06[1])                                    | INPUT/OUTPUT                 |
| 44                                | BUB DATA BIT 05 (BD05[1])                                    | INPUT/OUTPUT                 |
| 45                                | BUB DATA BIT 04 (BD04[1])                                    | INPUT/OUTPUT                 |
| 46                                | GROUND (GRD)                                                 | GROUND                       |
| 47                                | BUB DATA BIT 03 (BD03[1])                                    | INPUT/OUTPUT                 |
| 48                                | BUB DATA BIT 02 (BD02[1])                                    | INPUT/OUTPUT                 |
| 49                                | BUB DATA BIT 00 (BD00[1])                                    | INPUT/OUTPUT                 |
| 50                                | BUB DATA BIT 01 (BD01[1])                                    | INPUT/OUTPUT                 |
| 51                                | GROUND (GRD)                                                 | GROUND                       |
| 52                                | NOT USED                                                     | NC                           |
| 53                                | NOT USED                                                     | NC                           |
| 54                                | NOT USED                                                     | NC                           |
| 55<br>56                          | NOT USED                                                     | NC                           |
| 56<br>57                          | +5V (VCC)<br>BUB ADDRESS BIT 26 (BA26(1))                    | POWER                        |
| 57<br>58                          | BUB ADDRESS BIT 26 (BA26[1])<br>BUB ADDRESS BIT 25 (BA25[1]) | INPUT/OUTPUT                 |
| 58<br>59                          | BUB ADDRESS BIT 25 (BA25[1])<br>BUB ADDRESS BIT 24 (BA24[1]) | INPUT/OUTPUT<br>INPUT/OUTPUT |
| 59<br>60                          | BUB ADDRESS BIT 24 (BA24[1])<br>BUB ADDRESS BIT 23 (BA23[1]) | INPUT/OUTPUT<br>INPUT/OUTPUT |
| 00                                |                                                              |                              |

|            | 120-PIN MPE CARD EDGE CONNECTIONS (Contd)                            |                              |  |
|------------|----------------------------------------------------------------------|------------------------------|--|
| PIN        | DESCRIPTION                                                          | FUNCTION                     |  |
| 61         | BUB ADDRESS BIT 22 (BA22[1])                                         | INPUT/OUTPUT                 |  |
| 62         | BUB ADDRESS BIT 21 (BA21[1])                                         | INPUT/OUTPUT                 |  |
| 63         | GROUND (GRD)                                                         | GROUND                       |  |
| 64         | BUB ADDRESS BIT 20 (BA20[1])                                         | INPUT/OUTPUT<br>INPUT/OUTPUT |  |
| 65<br>66   | BUB ADDRESS BIT 12 (BA12[1])<br>BUB ADDRESS BIT 19 (BA19[1])         | INPUT/OUTPUT                 |  |
| 67         | BUB ADDRESS BIT 18 (BA18[1])                                         | INPUT/OUTPUT                 |  |
| 68         | BUB ADDRESS BIT 17 (BA17[1])                                         | INPUT/OUTPUT                 |  |
| 69         | BUB ADDRESS BIT 16 (BA16[1])                                         | INPUT/OUTPUT                 |  |
| 70         | GROUND (GRD)                                                         | GROUND                       |  |
| 71         | BUB ADDRESS BIT 15 (BA15[1])                                         | INPUT/OUTPUT                 |  |
| 72         | BUB ADDRESS BIT 14 (BA14[1])                                         | INPUT/OUTPUT                 |  |
| 73         | GROUND (GRD)                                                         | GROUND                       |  |
| 74         | BUB ADDRESS BIT 13 (BA13[1])                                         | INPUT/OUTPUT                 |  |
| 75         | +5V (VCC)                                                            | POWER<br>INPUT               |  |
| 76<br>77   | SYSTEM RESET (SYSRST[0])<br>NOT USED                                 | NC                           |  |
| 78         | BUB ADDRESS BIT 27 (BA27[1])                                         | INPUT/OUTPUT                 |  |
| 79         | BUB BUSY (BUSY[0])                                                   | OUTPUT                       |  |
| 80         | GROUND (GRD)                                                         | GROUND                       |  |
| 81         | BUB ADDRESS BIT 11 (BA11[1])                                         | INPUT/OUTPUT                 |  |
| 82         | BUB ADDRESS BIT 10 (BA10[1])                                         | INPUT/OUTPUT                 |  |
| 83         | BUB ADDRESS BIT 09 (BA09[1])                                         | INPUT/OUTPUT                 |  |
| 84         | BUB ADDRESS BIT 08 (BA08[1])                                         | INPUT/OUTPUT                 |  |
| 85         | BUB ADDRESS BIT 07 (BA07[1])                                         | INPUT/OUTPUT                 |  |
| 86<br>87   | BUB ADDRESS BIT 06 (BA06[1])<br>GROUND (GRD)                         | INPUT/OUTPUT<br>GROUND       |  |
| 88         | BUB ADDRESS BIT 05 (BA05[1])                                         | INPUT/OUTPUT                 |  |
| 89         | GROUND (GRD)                                                         | GROUND                       |  |
| 90         | BUB ADDRESS BIT 04 (BA04[1])                                         | INPUT/OUTPUT                 |  |
| 91         | BUB ADDRESS BIT 03 (BA03[1])                                         | INPUT/OUTPUT                 |  |
| 92         | BUB ADDRESS BIT 02 (BA02[1])                                         | INPUT/OUTPUT                 |  |
| 93         | BUB ADDRESS BIT 01 (BA01[1])                                         | INPUT/OUTPUT                 |  |
| 94         | +5V (VCC)                                                            | POWER                        |  |
| 95<br>96   | BUB ADDRESS BIT 00 (BA00[1])<br>Not used                             | INPUT/OUTPUT<br>NC           |  |
| 97         | NOT USED                                                             | NC                           |  |
| 98         | NOT USED                                                             | NC                           |  |
| 99         | GROUND (GRD)                                                         | GROUND                       |  |
| 100        | NOT USED                                                             | NC                           |  |
| 101        | BUB READ/WRITE (BR1W0)                                               | INPUT/OUTPUT                 |  |
| 102        | +5V (VCC)                                                            | POWER                        |  |
| 103        | BUB CONNECTOR CHIP SELECT (BCCS[0])                                  | INPUT                        |  |
| 104        | GROUND (GRD)                                                         | GROUND<br>INPUT/OUTPUT       |  |
| 105<br>106 | BUB DATA SIZE BIT 0 (BDSIZE0[1])<br>BUB DATA SIZE BIT 1 (BDSIZE1[1]) | INPUT/OUTPUT                 |  |
| 108        | BUB SEQUENTIAL ACCESS (BSEQACC[0])                                   | OUTPUT                       |  |
| 108        | NOT USED                                                             | NC                           |  |
| 109        | BUB REQUEST (BUBRQ[0])                                               | OUTPUT                       |  |
| 110        | NOT USED                                                             | NC                           |  |
| 111        | +5V (VCC)                                                            | POWER                        |  |
| 112        | BUB FAULT (BFLT[0])                                                  | INPUT/OUTPUT<br>INPUT        |  |
| 113        | BUB GRANTED (BUBGT[0])                                               | NC                           |  |
| 114<br>115 | NOT USED<br>BUB DATA STROBE (BDS[0])                                 | INPUT/OUTPUT                 |  |
| 115        | BUB ADDRESS STROBE (BAS[0])                                          | INPUT                        |  |
| 117        | BUB DATA ACKNOWLEDGE (BDTCK[0])                                      | INPUT/OUTPUT                 |  |
| 118        | GROUND (GRD)                                                         | GROUND                       |  |
| 119        | NOT USED                                                             | NC                           |  |
| 120        | NOT USED                                                             | NC                           |  |

NC No Connection


# **MISCELLANEOUS CONNECTORS AND CABLES**

### General

The miscellaneous connectors and cables are used to do the following:

- Interface the serial and parallel Input/Output (I/O) ports on the Peripheral Port Controller Card (PORTS) with various peripheral devices
- Interface serial I/O CONSOLE and CONTTY ports with various peripheral devices.

Figure B-36 identifies the CONSOLE, CONTTY, and PORTS 8-pin modular jacks.





## 8-Pin Module to 25-Pin Connectors

#### ACU/MODEM Connector, 232-21-25-005

Figure B-37 identifies the Automatic Calling Unit (ACU)/MODEM Connector pins. This connector is used to interface an 8-pin modular, RS-232C, serial port to a female, 25-pin, connector on a MODEM configured as Data Communication Equipment (DCE).

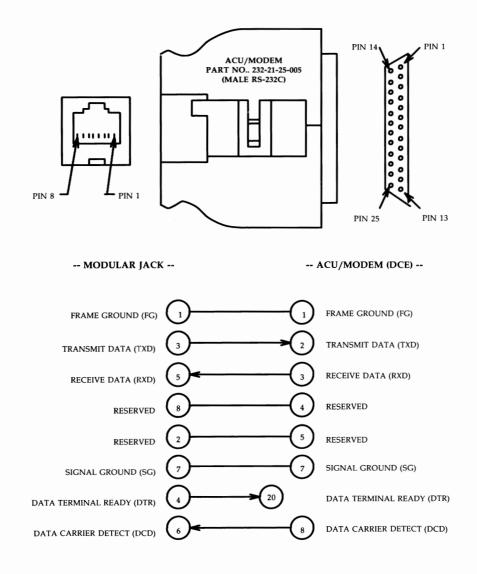
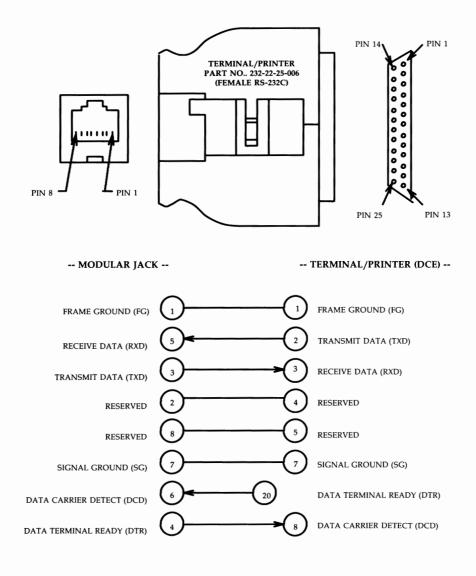




Figure B-37: ACU/MODEM Connector (232-21-25-005) Pin Identification

### Terminal/Printer Female Connector, 232-22-25-006

Figure B-38 identifies the Terminal/Printer Female Connector pins. This connector is used to interface the 8-pin modular, RS-232C, serial port to a male 25-pin connector on a terminal or printer connector configured as Data Communication Equipment (DCE).





### Terminal/Printer Male Connector, 232-21-25-010

Figure B-39 identifies the Terminal/Printer Male Connector pins. This connector is used to interface the 8-pin modular, RS-232C, serial port to a female 25-pin connector on a terminal or printer connector configured as Data Terminal Equipment (DTE).

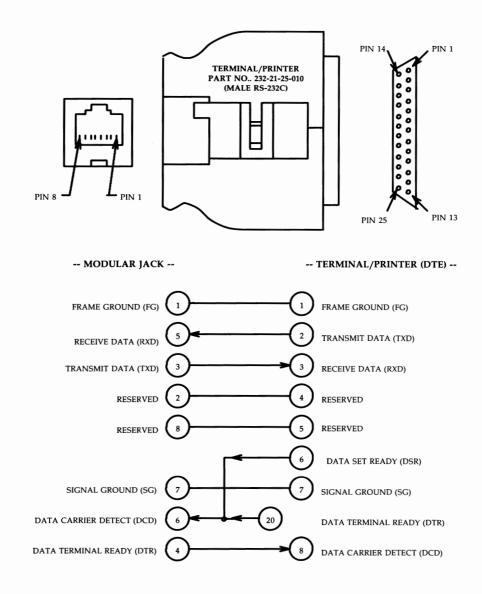
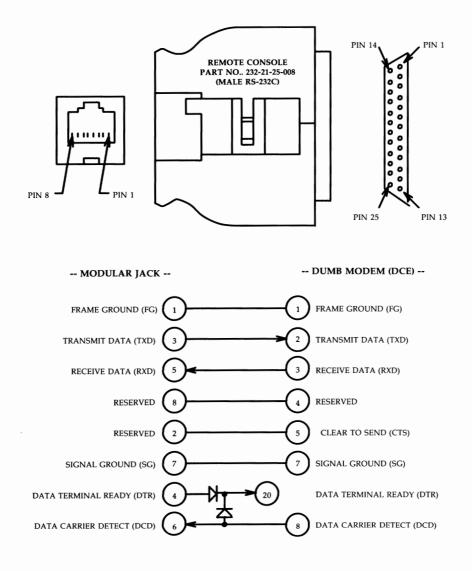
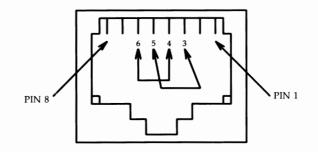



Figure B-39: Terminal/Printer Male Connector (232-21-25-010) Pin Identification

## **Remote Console Male Connector, 232-21-25-008**

Figure B-40 identifies the Remote Console Male Connector pins. This connector is used to interface the 8-pin modular, RS-232C, serial port to a female 25-pin connector on a console terminal configured as Data Communication Equipment (DCE). This connector is also called a dumb MODEM connector.





Figure B-40: Remote Console Male Connector (232-21-25-008) Pin Identification

## **PORTS Loop Around Connections**

A minimum of two PORTS Loop Around connectors are required to run certain PORTS interactive diagnostic phases. A PORTS Loop Around connector is an 8-pin modular plug with the following pins tied together:

- Transmit Data (pin 3) tied to Receive Data (pin 5)
- Data Terminal Ready (pin 4) tied to Data Carrier Detect (pin 6).

Figure B-41 shows the PORTS modular jack and plug arrangement.



| PIN           | SIGNAL NAME               |
|---------------|---------------------------|
| 8             | RESERVED                  |
| 7             | SIGNAL GROUND (SG)        |
| <b>6</b>      | DATA CARRIER DETECT (DCD) |
| 5 🗲 – – – –   | RECEIVE DATA (RXD)        |
| <b>&gt;</b> 4 | DATA TERMINAL READY (DTR) |
| 3 👞           | TRANSMIT DATA (TXD)       |
| 2             | RESERVED                  |
| 1             | FRAME GROUND (FG)         |
|               |                           |

Figure B-41: PORTS Loop Around Connections

#### **EPORTS Loop Around Connections**

The CM195AY EPORTS Card can use the same connections with some modifications. The ground signals (pins 1 and 7) are tied together and pin 8 is tied to Transmit Data (pin 3) before the connection to Receive Data (pin 5).

## **Terminal/Printer/Peripheral Device Cables**

### **8-Conductor Modular Cables**

The 8-conductor modular cables are available in 7-, 14-, 25-, and 50-foot lengths. The pinouts for these connectorized cables are shown in Figure B-42.

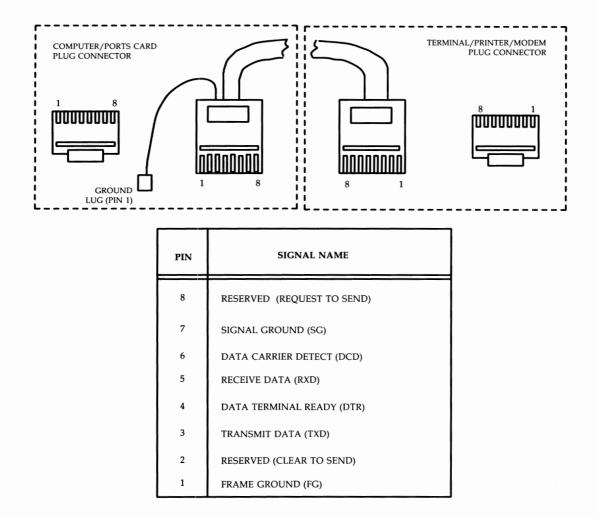



Figure B-42: 8-Conductor Modular Cable Connector Pin Identification

#### **36-Conductor CENTRONICS Connectorized Cable**

The 36-conductor CENTRONICS cable is used to connect the parallel port of a Peripheral Controller (PORTS) card to a female CENTRONICS connector of a peripheral device. Figure B-43 shows the pinout for this connectorized cable. The following table identifies the signals carried on this cable. The FUNCTION column is with respect to the PORTS card connection for I/O definitions.

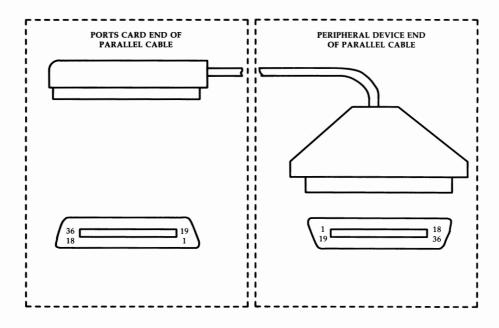



Figure B-43: CENTRONICS Connectorized Cable Pin Identification

| 36-PIN CENTRONICS CONNECTORIZED CABLE |                                             |              |  |  |
|---------------------------------------|---------------------------------------------|--------------|--|--|
| PIN                                   | DESCRIPTION                                 | FUNCTION     |  |  |
| 01                                    | (PRSTRB[0])                                 | INPUT/OUTPUT |  |  |
| 02                                    | (PRPA0[1])                                  | OUTPUT       |  |  |
| 03                                    | (PRPA1[1])                                  | OUTPUT       |  |  |
| 04                                    | (PRPA2[1])                                  | OUTPUT       |  |  |
| 05                                    | (PRPA3[1])                                  | OUTPUT       |  |  |
| 06                                    | (PRPA4[1])                                  | OUTPUT       |  |  |
| 07                                    | (PRPA5[1])                                  | OUTPUT       |  |  |
| 08                                    | (PRPA6[1])                                  | OUTPUT       |  |  |
| 09                                    | (PRPA7[1])                                  | OUTPUT       |  |  |
| 10                                    | NOT USED                                    | NC           |  |  |
| 11                                    | PERIPHERAL BUS BUSY (PRBUSY[1])             | INPUT        |  |  |
| 12                                    | PERIPHERAL PARITY ERROR (PRPE[1])           | INPUT        |  |  |
| 13                                    | PERIPHERAL CARD SELECT (PRSEL[1])           | INPUT        |  |  |
| 14                                    | GROUND                                      | GROUND       |  |  |
| 15                                    | NOT USED                                    | NC           |  |  |
| 16                                    | GROUND                                      | GROUND       |  |  |
| 17                                    | GROUND                                      | GROUND       |  |  |
| 18                                    | NOT USED                                    | NC           |  |  |
| 19                                    | GROUND                                      | GROUND       |  |  |
| 20                                    | GROUND                                      | GROUND       |  |  |
| 21                                    | GROUND                                      | GROUND       |  |  |
| 22                                    | GROUND                                      | GROUND       |  |  |
| 23                                    | GROUND                                      | GROUND       |  |  |
| 24                                    | GROUND                                      | GROUND       |  |  |
| 25                                    | GROUND                                      | GROUND       |  |  |
| 26                                    | GROUND                                      | GROUND       |  |  |
| 27                                    | GROUND                                      | GROUND       |  |  |
| 28                                    | GROUND                                      | GROUND       |  |  |
| 29                                    | GROUND                                      | GROUND       |  |  |
| 30                                    | GROUND                                      | GROUND       |  |  |
| 31                                    | PERIPHERAL REQUEST SYSTEM RESET (PRREST[0]) | INPUT/OUTPUT |  |  |
| 32                                    | PERIPHERAL BUS FAULT (PRFAILT[0])           | INPUT/OUTPUT |  |  |
| 33                                    | GROUND                                      | GROUND       |  |  |
| 34                                    | NOT USED                                    | NC           |  |  |
| 35                                    | NOT USED                                    | NC           |  |  |
| 36                                    | NOT USED                                    | NC           |  |  |

### LEGEND:

NC No Connection

## Index

10-Megabyte Hard Disk Equipment Characteristics Operational, 2-191 Physical,2-191 Reliability,2-191 120-Megabyte Cartridge Tape Drive, Tape Drive, 3-297 120-Megabyte Cartridge Tape Drive Equipment Characteristics, 2-189 **120-MEGABYTE CARTRIDGE TAPE DRIVE** (KS-23465,L1A),2-189 **120-MEGABYTE SCSI CARTRIDGE TAPE** DRIVE. 120-Megabyte Cartridge Tape Drive, 3-296 Cartridge Tape Format, 3-295 147-Megabyte Hard Disk Equipment Characteristics, 2-200 Operational, 2-200 Physical, 2-200 Reliability,2-200 147-Megabyte Hard Disk (KS-23371,L17),2-200 147-Megabyte Hard Disk Equipment Characteristics, 2-200 Default Device Partitioning, 2-200 155-Megabyte Hard Disk Equipment Characteristics, 2-201 Operational, 2-201 Physical, 2-201 Reliability,2-201 155-Megabyte Hard Disk (KS-23483,L25),2-201 155-Megabyte Hard Disk Equipment Characteristics, 2-201 Default Device Partitioning, 2-201 23-MEGABYTE CARTRIDGE TAPE DRIVE,-3-287 23-Megabyte Cartridge Tape Drive, 3-288 Cartridge Tape Format, 3-287 23-Megabyte Cartridge Tape Drive, Tape Drive, 3-289 23-MEGABYTE CARTRIDGE TAPE DRIVE (KS-23165,L1),2-183 Cartridge Tape Drive Equipment Characteristics, 2-185 Cartridge Tape Partitioning, 2-184 Cartridge Tape Use, 2-183 23-Megabyte Cartridge Tape, Expansion, 2-10 300-Megabyte Hard Disk Equipment Characteristics, 2-202-2-204 Operational, 2-202-2-204 Physical, 2-202-2-204 Reliability, 2-202-2-204 300-Megabyte Hard Disk (KS-23371,L31),2-204

300-Megabyte Hard Disk (KS-23371,L31) (Continued) 300-Megabyte Hard Disk Equipment Characteristics, 2-204 Default Device Partitioning, 2-204 300-Megabyte Hard Disk (KS-23483,L1B or L11B),2-202 300-Megabyte Hard Disk Equipment Characteristics, 2-202 Default Device Partitioning, 2-202 300-Megabyte Hard Disk (KS-23483,L3),2-203 300-Megabyte Hard Disk Equipment Characteristics, 2-203 Default Device Partitioning, 2-203 30-Megabyte Hard Disk Equipment Characteristics, Operational, 2-193 Physical, 2-193 Reliability,2-193 3B2 Expansion Cabinet, 2-221 3B2/1000 Computer Cabinet (ED-3T056-30),-2-49 3B2/1000 Computer Equipment Characteristics, 2-50 Major Assemblies, 2-49 3B2/1000 Computer Equipment Characteristics,-2-50 Electrical, 2-50 Environmental,2-50 Performance, 2-50 Physical,2-50 3B2/300 and 310 Computers International Power Supply, #095-10011-XX2 and #095-10061-00, TRW #095-10011-XX2 and #095-10061-00 Equipment Characteristics, 2-208 3B2/400 Computer Domestic Power Supply, #095-10035-XX1, TRW #095-10035-XX1 Equipment Characteristics, 2-209 3B2/400 Computer International Power Supply, #095-10035-XX2, TRW #095-10035-XX2 Equipment Characteristics,2-210 3B2/500 Computer Cabinet (ED-3T043-30),2-37 3B2/500 Computer Equipment Characteristics, 2-38 Major Assemblies, 2-37 3B2/500 Computer Equipment Characteristics,-2-38 Electrical, 2-38 Environmental, 2-38

#### Index ·

3B2/500 Computer Equipment Characteristics (Continued) Performance, 2-38 Physical, 2-38 3B2/500 Computer Power Supply, ACS752A or CS752A, ACS752A and CS752A Equipment Characteristics, 2-211 3B2/600, 700, and 1000 Computer Power Supply, ACS782A or CS782A, ACS782A and CS782A Equipment Characteristics, 2-212 3B2/600 Computer Cabinet (ED-3T023-30),2-41 3B2/600 Computer Equipment Characteristics, 2-42 Major Assemblies, 2-41 3B2/600 Computer Equipment Characteristics,-2 - 42Electrical, 2-42 Environmental, 2-42 Performance, 2-42 Physical,2-42 3B2/700 Computer Cabinet (ED-3T047-30),2-45 3B2/700 Computer Equipment Characteristics, 2-46 Major Assemblies, 2-45 3B2/700 Computer Equipment Characteristics,-2-46 Electrical, 2-46 Environmental, 2-46 Performance,2-46 Physical, 2-46 600-Megabyte Hard Disk Equipment Characteristics, 2-205, 2-206 Operational, 2-205, 2-206 Physical, 2-205, 2-206 Reliability, 2-205, 2-206 600-Megabyte Hard Disk (KS-23483,L5 or L15),-2-205 600-Megabyte Hard Disk Equipment Characteristics, 2-205 Default Device Partitioning, 2-205 600-Megabyte Hard Disk (KS-23483,L7 or L17),-2-206 600-Megabyte Hard Disk Equipment Characteristics, 2-206 Default Device Partitioning, 2-206 60- and 120-Megabyte Cartridge Tape, Expansion,2-10 60-Megabyte Cartridge Tape Drive, Tape Drive, 3-293 60-Megabyte Cartridge Tape Drive Equipment Characteristics, 2-187

**60-MEGABYTE CARTRIDGE TAPE DRIVE** (KS-23417,L2),2-187 60-MEGABYTE SCSI CARTRIDGE TAPE DRIVE, 60-Megabyte Cartridge Tape Drive, 3-292 Cartridge Tape Format, 3-291 72-Megabyte Hard Disk Equipment Characteristics, 2-195, 2-197 Operational, 2-195, 2-197 Physical, 2-195, 2-197 Reliability, 2-195, 2-197 8-Pin Module to 25-Pin Connectors, ACU/MODEM Connector, 232-21-25-005,-B-240 Remote Console Male Connector, 232-21-25-008,B-243 Terminal/Printer Female Connector, 232-22-25-006,B-241 Terminal/Printer Male Connector, 232-21-25-010,B-242 94-Megabyte Hard Disk Equipment Characteristics, 2-199 Operational, 2-199 Physical, 2-199 Reliability,2-199 94-Megabyte Hard Disk (KS-23371,L7),2-199 94-Megabyte Hard Disk Equipment Characteristics, 2-199 Default Device Partitioning, 2-199

## A

ACS752A and CS752A Equipment Characteristics, Electrical, 2-211 ACS782A and CS782A Equipment Characteristics, Electrical, 2-212 Add-On Features, 2-8 AT&T 3BNET Local Area Network, 2-10 AT&T STARLAN Network,2-10 Data Terminal/Communications Equipment,2-8 Debug Monitor (DEMON),2-11 Hard Disk Expansion, 2-9 RAM Expansion, 2-9 Removable Media Expansion, 2-10 Address Bus Signals, 3-15 Address Decoder, Input/Output Chip Selects, 3-65, 3-119 Other Chip Selects, 3-65, 3-119 Address Decoder, System Board, 3-63, 3-117 Address Spectrum, 3B2 Computer, 3-9

ALARM INTERFACE CIRCUIT CARD, CM195AA,2-143 alarm processing ports, 3-180 ALM port,3-180 Appendix A: VIRTUAL ADDRESS SPACE, A-1 Appendix B: CONNECTOR AND CABLING INFORMATION. CM190A/ED-4C637-30 SYSTEM BOARD INTERCONNECTIONS, B-3 CM191A/B/C/D AND CM192B MEMORY CARD INTERCONNECTIONS, B-41 CM193A/B AND CM194B BACKPLANE INTERCONNECTIONS, B-67 CM195A NETWORK INTERFACE CARD INTERCONNECTIONS, B-109 CM195AA ALARM INTERFACE CIRCUIT CARD INTERCONNECTIONS.B-117 CM195AC/CM195AD "DATAKIT" VCS **INTERFACE CARD INTERCONNECTIONS, B-125** CM195AE GPSC CARD **INTERCONNECTIONS, B-135** CM195AY/CM195Y EPORTS CARD **INTERCONNECTIONS, B-143** CM195B/CM195BA PORTS CARD **INTERCONNECTIONS, B-151** CM195H CARTRIDGE TAPE CONTROLLER CARD INTERCONNECTIONS, B-159 CM195K EXPANSION DISK CONTROLLER CARD INTERCONNECTIONS, B-167 CM195T INTELLIGENT SERIAL CONTROLLER CARD **INTERCONNECTIONS, B-177** CM195U STARLAN INTERFACE CARD **INTERCONNECTIONS, B-185** CM195W SCSI HOST ADAPTER CARD **INTERCONNECTIONS, B-193** CM518A/B/C SYSTEM BOARD INTERCONNECTIONS, B-23 CM519A/B AND CM520A BACKPLANE INTERCONNECTIONS, B-80 CM521A DIFFERENTIAL SCSI HOST ADAPTER CARD INTERCONNECTIONS, B-201 CM522A VCACHE CARD INTERCONNECTIONS, B-209 CM523A/AA/B/D MEMORY CARD INTERCONNECTIONS, B-55 CM524A PROCESSING ELEMENT CARD INTERCONNECTIONS, B-215

Appendix B: CONNECTOR AND CABLING **INFORMATION** (Continued) CM525B VMEbus CARD INTERCONNECTIONS, B-221 CM527A MULTIPROCESSOR ENHANCEMENT CARD INTERCONNECTIONS, B-233 GENERAL, B-1 MISCELLANEOUS CONNECTORS AND CABLES, B-239 Argument Pointer Register (r10), CPU, 3-38, 3-92 AT&T 3BNET Local Area Network,2-10 AT&T Cartridge Tape Module, 2-93 AT&T Cartridge Tape Module Equipment Characteristics, 2-94 Major Assemblies, 2-93 AT&T Cartridge Tape Module Equipment Characteristics, 2-94 Electrical, 2-94 Environmental, 2-94 Physical, 2-94 AT&T DCM/4E Equipment Characteristics, 2-70 Electrical, 2-70 Environmental, 2-70 Physical, 2-70 AT&T Disk Controller Module/4E (ED-3T011-30,G1), AT&T DCM/4E Equipment Characteristics, 2-70 Major Assemblies, 2-69 AT&T Disk Module (ED-3T011-30,G2, G3, G5, G6), AT&T DM Equipment Characteristics, 2-74 Major Assemblies, 2-73 AT&T DM Equipment Characteristics, 2-74 Electrical, 2-74 Environmental, 2-74 Physical, 2-74 AT&T DM/S or DM/DS Equipment Characteristics, 2-78 Electrical,2-78 Environmental, 2-78 Physical, 2-78 AT&T Embedded Disk Modules (ED-3T011-30,G8, G9, G11), AT&T DM/S or DM/DS Equipment Characteristics, 2-78 Major Assemblies, 2-77 AT&T Peripheral Power Control Unit (ED-3T011-30,G10), AT&T PPCU Equipment Characteristics,-2-95 Major Assemblies, 2-95

AT&T PPCU Equipment Characteristics, 2-95 Environmental, 2-95 Physical, 2-95 AT&T SCSI 9-Track Tape, SCSI 9-Track Tape Drive Equipment Characteristics, 2-85 AT&T SCSI Peripherals (DCM, DM, TM, and PPCU) Power Supply, #095-10065,2-217 TRW #095-10065 Equipment Characteristics, 2-217 AT&T SCSI REWRITABLE OPTICAL DISK DRIVE, AT&T SCSI Rewritable Optical Disk Drive,3-299 AT&T SCSI Rewritable Optical Disk Drive, Optical Disk Drive, 3-300 AT&T SCSI REWRITABLE OPTICAL DISK DRIVE. Optical Disk Format, 3-299 AT&T SCSI Rewritable Optical Disk Equipment Characteristics, 2-82 Electrical, 2-82 Environmental, 2-82 Operational, 2-82 Physical,2-82 AT&T SCSI Rewritable Optical Disk Module, AT&T SCSI Rewritable Optical Disk Equipment Characteristics, 2-82 Major Assemblies, 2-81 AT&T SCSI Tape Module (ED-3T011-30,G4, G7), AT&T SCSI TM Equipment Characteristics, 2-90 Major Assemblies, 2-89 AT&T SCSI TM Equipment Characteristics, 2-90 Electrical, 2-90 Environmental, 2-90 Physical, 2-90 AT&T STARLAN Network, 2-10 auto-configuration, 3-26 AUXILIARY DISK INTERFACE (ED-4C632-30),-2-137 Auxiliary Status Register (ASR), MAU, 3-57, 3-109

## В

BACKPLANE BOARDS,2-131 Backplane Types,2-131 CM193A/B, 3B2/300/310 Computer Backplane Board,2-131 CM194B, 3B2/400 Computer Backplane Board,2-132 **BACKPLANE BOARDS** (Continued) CM519A Backplane Board Layout, 2-133 CM519B Backplane Board Layout,2-134 CM520A Backplane Board Layout, 2-135 BACKPLANES, 3-153 CM193A/B Backplane Board, 3-154 CM194B Backplane, 3-156 CM519A Backplane Board, 3-158 CM519B Backplane Board, 3-160 CM520A Backplane Board, 3-162 General, 3-153 Backup Battery Supply, 3B2 Computer, 2-218 Bus Abort Feature, 3-13 Bus Arbitration, 3-25 bus arbitration priorities,3-25 Bus Interface Control, CPU, 3-37, 3-91

## С

CARTRIDGE TAPE CONTROLLER CARD, CM195H,2-157 Cartridge Tape Drive Equipment Characteristics, 2-185 Cartridge Tape Partitioning, 2-184 Cartridge Tape Use,2-183 Cartridge Tape/Floppy Disk Interface, 3-214 Central Processing Unit, Bus Interface Control, 3-37, 3-91 Execute Unit, 3-37, 3-91 Fetch Unit, 3-37, 3-91 Main Controller, 3-37, 3-91 Central Processing Unit (CPU), System Board,-3-35, 3-89 CM190A System Board, CM190A System Board Layout, 2-99 CM190A Versions (Series Information), 2-99 CM190A System Board Layout, 2-99 CM190A Versions (Series Information),2-99 CM190A/ED-4C637-30 System Board,3-31 Address Decoder, 3-63 Central Processing Unit, 3-35 Control and Status Register, 3-67 Direct Memory Access Subsystem, 3-78 Dual Port Dynamic Random Access Memory Controller, 3-73 Interrupts, 3-69 Math Acceleration Unit (Optional),3-55 Memory Management Unit, 3-43 Nonvolatile Random Access Memory, 3-71 Read Only Memory, 3-66 System Board EDT Data, 3-83 System Board Firmware, 3-82 Timers, 3-66

CM191A 0.25-Megabyte RAM Card, 2-121 CM191A/B/C/D and CM192B Memory Cards, Data and Parity Signals, 3-145 Memory Address Signals, 3-145 Memory Control Signals, 3-145 CM191A/B/C/D memory cards,3-139 CM191B 1-Megabyte RAM Card, 2-122 CM191C 1-Megabyte RAM Card, 2-123 CM191D 2-Megabyte RAM Card, 2-124 CM192B 2-Megabyte RAM Card, 2-125 CM192B memory card,3-139 CM193A/B (3B2/300/310) Backplane Board,-3-154 CM193A/B Backplane Board,2-131 CM194B (3B2/400) Backplane Board, 3-156 CM194B Backplane Board, 2-132 CM195A NETWORK INTERFACE CARD,3-165 3BNET Characteristics, 3-172 CM195A Equipped Device Table Data,-3-172 Ethernet Data Packet Format, 3-173 General, 3-165 ID/Vector Register,3-169 Input/Output Bus Control,3-167 INTEL 80186 Microprocessor, 3-167 Local RAM, 3-171 Local ROM,3-171 Network Interface, 3-171 Page Register, 3-169 Peripheral Control and Status Register,-3 - 170CM195AA ALARM INTERACE CIRCUIT CARD, CM195AA Equipped Device Table Data,-3-181 Dual Console, 3-178 External Interface Specification, 3-180 General, 3-175 I/O Bus Interface, 3-177 System Failure Detection and Alarm Generation, 3-179 CM195AC/CM195AD DATAKIT VCS INTERFACE CARD, 3-183 CM195AC/CM195AD "DATAKIT" VCS INTERFACE CARD, CM195AC/CM195AD Equipped Device Table Data, 3-188 Control Lines, 3-187 Data Lines, 3-186 External Interface, 3-186 General, 3-183 Input/Output Bus Interface,3-186 INTEL 80186 Microprocessor, 3-185

CM195AC/CM195AD "DATAKIT" VCS **INTERFACE CARD** (Continued) Nonvolatile Memory, 3-186 Timer Input/Output,3-187 Volatile Memory, 3-186 CM195AE GPSC CARD, Application Control Register, 3-193 CM195AE Equipped Device Table Data,-3-196 General, 3-189 GPSC Card Features, 3-189 ID/Vector Register,3-194 INTEL 80186 Microprocessor, 3-191 Local RAM, 3-196 Local ROM, 3-196 Page Register, 3-194 Peripheral Control and Status Register,-3-195 CM195AE GPSC CARD INTERCONNECTIONS, GPSC Interface Cables, B-142 CM195AY EPORTS CARD, CM195AY Equipped Device Table Data,-3-202 General, 3-197 ID/Vector Register,3-199 INTEL 80186 Microprocessor, 3-199 Local RAM, 3-202 Local ROM, 3-202 Page Register, 3-199 Peripheral Control and Status Register,-3-201 CM195B/CM195BA PORTS CARD,3-203 CM195B/CM195BA Equipped Device Table Data, 3-208 General, 3-203 ID/Vector Register,3-205 INTEL 80186 Microprocessor, 3-205 Local RAM,3-208 Local ROM,3-208 Page Register, 3-205 Peripheral Control and Status Register,-3-207 CM195H CARTRIDGE TAPE CONTROLLER CARD,3-209 Cartridge Tape/Floppy Disk Interface, 3-214 CM195H Equipped Device Table Data,-3-214 General, 3-209 ID/Vector Register,3-211 INTEL 80186 Microprocessor, 3-211 Local RAM, 3-214 Local ROM, 3-214

CM195H CARTRIDGE TAPE CONTROLLER CARD (Continued) Page Register, 3-211 Peripheral Control and Status Register,-3-213 CM195K EXPANSION DISK CONTROLLER CARD,3-215 CM195K Equipped Device Table Data,-3-222 Disk Interface, 3-222 General, 3-215 ID/Vector Register,3-219 Input/Output Bus Control,3-217 INTEL 80186 Microprocessor, 3-217 Local RAM, 3-221 Local ROM, 3-221 Page Register, 3-219 Peripheral Control and Status Register,-3-220 CM195T INTELLIGENT SERIAL CONTROLLER CARD,3-223 CM195T Equipped Device Table Data,-3-229 Communications Processing, 3-227 General, 3-223 ID/Vector Register, 3-227 INTEL 80186 Microprocessor, 3-225 ISC Card Features, 3-223 Local RAM, 3-229 Local ROM, 3-229 Page Register, 3-227 Peripheral Control and Status Register,-3-228 CM195U STARLAN INTERFACE CARD, 3-231 CM195U Equipped Device Table Data,-3-237 Ethernet Data Packet Format, 3-237 General, 3-231 ID/Vector Register,3-233 Input/Output Bus Control,3-233 INTEL 80186 Microprocessor, 3-233 Local RAM, 3-236 Local ROM, 3-236 Network Interface, 3-236 Page Register, 3-233 Peripheral Control and Status Register,-3-235 CM195W SCSI HOST ADAPTER CARD,3-239 CM195W Equipped Device Table Data,-3-246 General, 3-239 ID/Vector Register, 3-241 INTEL 80186 Microprocessor, 3-241

CM195W SCSI HOST ADAPTER CARD (Continued) Local RAM, 3-246 Local ROM, 3-246 Page Register, 3-241 Peripheral Control and Status Register,-3-244 CM195Y EPORTS CARD, CM195Y Equipped Device Table Data,-3-252 General, 3-247 ID/Vector Register,3-249 INTEL 80186 Microprocessor, 3-249 Local RAM, 3-252 Local ROM, 3-252 Page Register, 3-249 Peripheral Control and Status Register,-3-251 CM518A System Board, CM518A System Board Layout,2-107 CM518A System Board Layout,2-107 CM518A/B/C System Board, 3-85 CM518A/B/C System Boards, Address Decoder, 3-117 Central Processing Unit, 3-89 Control, Status, and Error Register, 3-121 Direct Memory Access Subsystem, 3-132 Dynamic Random Access Memory Controller, 3-127 Interrupts, 3-123 Math Acceleration Unit, 3-107 Memory Management Unit, 3-97 Nonvolatile Random Access Memory, 3-125 Read Only Memory, 3-120 System Board EDT Data, 3-138 System Board Firmware, 3-137 Timers, 3-120 CM518B System Board, CM518B System Board Layout,2-111 CM518B System Board Layout,2-111 CM518C System Board, CM518C System Board Layout,2-115 CM518C System Board Layout,2-115 Operational, 2-181, 2-185, 2-187, 2-189 Physical, 2-181, 2-185, 2-187, 2-189 Reliability,2-181 CM519A Backplane Board, 2-133, 3-158 CM519B Backplane Board, 2-134, 3-160 CM520A Backplane Board, 2-135, 3-162 CM521A DIFFERENTIAL SCSI HOST ADAPTER, CM521A Equipped Device Table Data,-3-260

CM521A DIFFERENTIAL SCSI HOST ADAPTER (Continued) General, 3-253 ID/Vector Register,3-255 INTEL 80C186 Microprocessor, 3-255 Local RAM, 3-260 Local ROM, 3-260 Page Register, 3-255 Peripheral Control and Status Register,-3-258 CM522A VCACHE CARD, Address Spectrum, 3-263 CM522A Equipped Device Table Data,-3-263 General, 3-261 ID Register, 3-263 CM523A 4-Megabyte RAM Card, 2-126 CM523AA 4-Megabyte RAM Card, 2-127 CM523A/AA/B/D memory cards,3-146 CM523A/AA/B/D Memory Cards, Data and Check Signals, 3-152 Memory Address Signals, 3-151 Memory Control Signals, 3-151 CM523B 2-Megabyte RAM Card, 2-128 CM523D 16-Megabyte RAM Card, 2-129 CM524A PROCESSING ELEMENT CARD, Address Spectrum, 3-267 CM524A Equipped Device Table Data,-3-269 Control Status Register, 3-268 General, 3-265 ID/Vector Register,3-267 CM525B VMEbus CARD, Address Spectrum, 3-273 CM525B Equipped Device Table Data,-3-275 Control Status Register, 3-274 ID/Vector Register,3-273 Local RAM, 3-275 CM527A MULTIPROCESSOR ENHANCEMENT CARD, Address Spectrum, 3-279 CM527A Equipped Device Table Data,-3-281 Control Status Register, 3-280 ID/Vector Register,3-279 Command Register, MAU, 3-60, 3-113 Computer Models,2-3 Configuration Register (CR), MMU, 3-47, 3-101 Control and Status Register, System Board, 3-67 Control Bus Signals, 3-15 Control, Status, and Error Register, System Board, 3-121

Control Status Register (CSR), CM524A PE,-3-268 Control Status Register (CSR), CM525B VME,-3-274 Control Status Register (CSR), CM527A MPE,-3 - 280Coprocessor Mode, MAU, 3-63, 3-117 CPU Argument Pointer Register (r10), 3-38, 3-92 CPU Bus Interface Control, 3-37, 3-91 CPU Execute Unit, 3-37, 3-91 CPU Fetch Unit, 3-37, 3-91 CPU Frame Pointer Register (r9), 3-38, 3-92 CPU General Purpose Registers, 3-92 CPU General Purpose Registers (r8-r0),3-38 CPU General-Purpose Kernel Registers (r31r24),3-96 CPU Interrupt Stack Pointer Register (r14),3-42, 3-96 CPU Main Controller, 3-37, 3-91 CPU Process Control Block Pointer Register (r13),3-42, 3-96 CPU Processor Status Word Register (r11),3-38, 3-92 CPU Program Counter Register (r15), 3-42, 3-96 CPU Stack Pointer Register (r12),3-42, 3-96 CPU, System Board, 3-35, 3-89 Current ID Number Registers (CIDNR), MMU,-

## D

3-99

Data Bus Signals, 3-15 Data Communications Equipment, 2-8 Data Register, MAU, 3-62, 3-116 Data Terminal Equipment, 2-8 Data Terminal/Communications Equipment, AT&T 605 Terminals,2-8 AT&T 615 Terminals,2-8 AT&T 620 Terminals,2-8 AT&T 630 Terminals,2-8 AT&T Automatic Dial Modem, 2-8 Model 455 Printer, 2-9 Model 470 and 475 Printers, 2-9 Model 5310 and 5320 Printers, 2-9 Model DQP-10 Printer, 2-9 Model LQP-40 Printer,2-9 TELETYPE Model 5420/AT&T Model 4415 Terminal,2-8 TELETYPE Model 5425/AT&T Model 4425 Terminal,2-8 TELETYPE Model 5620 Dot-Mapped Display Terminal,2-8 TELETYPE<sup>®</sup> Model 5410/AT&T Model 4410 Terminal, 2-8

Data Transfers, Bus Arbitration, 3-25 Error Detection, 3-26 Input/Output Bus Interrupts, 3-26 Multiple Input/Output Bus Accesses, 3-25 DATAKIT VCS INTERFACE CARD, CM195AC and CM195AD,2-145 Debug Monitor (DEMON),2-11 Default Device Partitioning, FUJITSU 72-Megabyte Hard Disk Drive, 2-196 Default Device Partitioning, Seagate 10egabyte Hard Disk Drive, 2-192 Default Device Partitioning, WREN 30-Megabyte Hard Disk Drive, 2-194 Default Device Partitioning, WREN II 72-Megabyte Hard Disk Drive, 2-198 DIFFERENTIAL SCSI HOST ADAPTER, CM521A,2-169 Direct Memory Access Subsystem, 3-78, 3-132 Direct Memory Access Controller, 3-80, 3 - 135Dual Universal Asynchronous Receiver/Transmitter, 3-80, 3-136 Floppy Control Register, 3-134 Floppy Controller Data Separator, 3-135 Integral Floppy Disk Controller, 3-81, 3-135 Integral Hard Disk Controller, 3-80 Page Registers, 3-134 Subsystem Structure, 3-78, 3-132 Domestic 3B2/300 and 310 Computer Power Supply, #095-10011-XX1 and #095-10060-00, TRW #095-10011-XX1 and #095-10060-00 Equipment Characteristics, 2-207 Domestic 3B2/300 Computer Cabinet (ED-4C492-30),2-13 Domestic 3B2/300 Computer Equipment Characteristics, 2-14 Major Assemblies, 2-13 Domestic 3B2/300 Computer Equipment Characteristics, 2-14 Electrical, 2-14 Environmental,2-14 Performance, 2-14 Physical,2-14 Domestic 3B2/310 Computer Cabinet (ED-4C645-30),2-21 Domestic 3B2/310 Computer Equipment Characteristics, 2-22 Major Assemblies, 2-21 Domestic 3B2/310 Computer Equipment Characteristics, 2-22 Electrical, 2-22 Environmental, 2-22

Domestic 3B2/310 Computer Equipment Characteristics (Continued) Performance, 2-22 Physical, 2-22 Domestic 3B2/400 Computer Cabinet (ED-4C631-30),2-29 Domestic 3B2/400 Computer Equipment Characteristics, 2-30 Major Assemblies, 2-29 Domestic 3B2/400 Computer Equipment Characteristics, 2-30 Electrical, 2-30 Environmental, 2-30 Performance, 2-30 Physical, 2-30 Domestic AT&T Expansion Module Power Supply, #095-10040-XX1,2-213 TRW #095-10040-XX1 Equipment Characteristics, 2-213 Domestic AT&T XM/405S/900S (ED-3T010-30),2-61 Domestic AT&T XM/405S/900S Equipment Characteristics, 2-62 Major Assemblies, 2-61 Domestic AT&T XM/405S/900S Equipment Characteristics, 2-62 Electrical, 2-62 Environmental, 2-62 Physical, 2-62 Domestic AT&T XM/405S/900S Power Supply, #095-10064-00,2-215 TRW #095-10064-00 Equipment Characteristics, 2-215 Domestic AT&T/XM (ED-4C580-30),2-53 Domestic AT&T/XM Equipment Characteristics, 2-54 Major Assemblies, 2-53 Domestic AT&T/XM Equipment Characteristics,-2-54Electrical,2-54 Environmental,2-54 Physical, 2-54 Domestic Power Supply, 3B2/400, #095-10035-XX1,2-209 Dual Port Dynamic Random Access Memory Controller, Address Generation Logic, 3-75 Arbitration Logic, 3-75 Bypass Logic, 3-77 Data Byte Rotate Unit, 3-76 General, 3-73 Memory Refresh Logic, 3-75 Parity Generation and Checking, 3-77

Dual Port Dynamic Random Access Memory Controller (Continued) Request Generator, 3-75 Sequencer, 3-75 Dual Port Dynamic Random Access Memory Controller, System Board, 3-73 **DUART CONNECTOR-2 INTERFACE** (ED-4C492-35,G5 and ED-4C631-35,G2),-2-139 Dynamic Random Access Memory Controller, Address Generation Logic, 3-129 Arbitration Logic, 3-129 Bypass Logic, 3-131 Data Byte Rotate Unit, 3-130 General, 3-127 Memory Refresh Logic, 3-129 Parity Generation and Checking, 3-131 Request Generator, 3-129 Sequencer, 3-129 Dynamic Random Access Memory Controller, System Board, 3-127

## Е

ED-4C637-30 System Board, ED-4C637-30 System Board Layout, 2-103 ED-4C637-30 System Board Versions (Series Information),2-103 ED-4C637-30 System Board Versions (Series Information),2-103 EDT Data, CM195A NI,3-172 EDT Data, CM195AA AIC,3-181 EDT Data, CM195AC/CM195AD,3-188 EDT Data, CM195AE GPSC, 3-196 EDT Data, CM195AY EPORTS, 3-202 EDT Data, CM195B/CM195BA PORTS,3-208 EDT Data, CM195H CTC,3-214 EDT Data, CM195K XDC,3-222 EDT Data, CM195T ISC,3-229 EDT Data, CM195U STARLAN, 3-237 EDT Data, CM195W SCSI,3-246 EDT Data, CM195Y EPORTS, 3-252 EDT Data, CM521A SCSI,3-260 EDT Data, CM522A VCACHE, 3-263 EDT Data, CM524A PE,3-269 EDT Data, CM525B VME, 3-275 EDT Data, CM527A MPE,3-281 EPORTS CARD, CM195AY,2-149 EPORTS CARD (CM195AY),3-197 EPORTS CARD, CM195Y,2-167 EPORTS CARD (CM195Y),3-247 Equipment Characteristics, 10-Megabyte Hard Disk,2-191

Equipment Characteristics, 120-Megabyte Cartridge Tape Drive, 2-189 Equipment Characteristics, 147-Megabyte Hard Disk,2-200 Equipment Characteristics, 155-Megabyte Hard Disk,2-201 Equipment Characteristics, 300-Megabyte Hard Disk,2-202-2-204 Equipment Characteristics, 30-Megabyte Hard Disk,2-193 Equipment Characteristics, 3B2/1000 Computer,2-50 Equipment Characteristics, 3B2/500 Computer,-2-38 Equipment Characteristics, 3B2/600 Computer,-2 - 42Equipment Characteristics, 3B2/700 Computer,-2-46 Equipment Characteristics, 600-Megabyte Hard Disk, 2-205, 2-206 Equipment Characteristics, 60-Megabyte Cartridge Tape Drive, 2-187 Equipment Characteristics, 94-Megabyte Hard Disk,2-199 Equipment Characteristics, AT&T Cartridge Tape Module,2-94 Equipment Characteristics, AT&T DCM/4E,2-70 Equipment Characteristics, AT&T DM,2-74 Equipment Characteristics, AT&T DM/S or DM/DS,2-78 Equipment Characteristics, AT&T PPCU,2-95 Equipment Characteristics, AT&T SCSI Rewritable Optical Disk, 2-82 Equipment Characteristics, AT&T TM,2-90 Equipment Characteristics, Cartridge Tape Drive,2-185 Equipment Characteristics, Domestic 3B2/300 Computer, 2-14 Equipment Characteristics, Domestic 3B2/310 Computer, 2-22 Equipment Characteristics, Domestic 3B2/400 Computer,2-30 Equipment Characteristics, Domestic AT&T XM/405S/900S,2-62 Equipment Characteristics, Domestic AT&T/XM,2-54 Equipment Characteristics, Floppy Disk Drive,-2-181 Equipment Characteristics, FUJITSU 72-Megabyte Hard Disk, 2-195 Equipment Characteristics, International 3B2/300 Computer, 2-18 Equipment Characteristics, International 3B2/310 Computer, 2-26

Equipment Characteristics, International 3B2/400 Computer, 2-34 Equipment Characteristics, International AT&T XM/405S/900S,2-66 Equipment Characteristics, International AT&T/XM,2-58 Equipment Characteristics, SCSI 9-Track Tape Drive, 2-85 Equipment Characteristics, WREN II 72-Megabyte Hard Disk, 2-197 EOUIPMENT DESCRIPTION, **120-MEGABYTE CARTRIDGE TAPE** DRIVE (KS-23465,L1A),2-189 23-MEGABYTE CARTRIDGE TAPE DRIVE (KS-23165,L1),2-183 **60-MEGABYTE CARTRIDGE TAPE DRIVE** (KS-23417,L2),2-187 AUXILIARY DISK INTERFACE (ED-4C632-30),2-137 **BACKPLANE BOARDS, 2-131** CM195A NETWORK INTERFACE CARD,-2-141 CM195AA ALARM INTERFACE CIRCUIT CARD,2-143 CM195AC/CM195AD "DATAKIT" VCS **INTERFACE CARD, 2-145** CM195AE GPSC CARD PACKAGE,2-147 CM195AY EPORTS CARD,2-149 CM195B PORTS CARD,2-151 CM195BA PORTS CARD,2-155 CM195H CARTRIDGE TAPE **CONTROLLER CARD, 2-157** CM195K EXPANSION DISK **CONTROLLER CARD, 2-159** CM195T INTELLIGENT SERIAL CONTROLLER CARD,2-161 CM195U STARLAN INTERFACE CARD,-2-163 CM195W SCSI HOST ADAPTER CARD,-2 - 165CM195Y EPORTS CARD,2-167 CM521A DIFFERENTIAL SCSI HOST ADAPTER CARD, 2-169 CM522A VCACHE CARD,2-171 CM524A PROCESSING ELEMENT CARD,2-173 CM525B VMEbus CARD,2-175 CM527A MULTIPROCESSOR **ENHANCEMENT CARD, 2-177 DUART CONNECTOR-2 INTERFACE** (ED-4C492-35,G5 and ED-4C631-35,G2),2-139 FLOPPY DISK DRIVE (KS-23114,L4),2-179

EQUIPMENT DESCRIPTION (Continued) HARD DISK DRIVES,2-191 HARDWARE OVERVIEW, 2-13 MISCELLANEOUS EQUIPMENT AND APPARATUS, 2-221 POWER-EQUIPMENT DESCRIPTION,-2-207 RANDOM ACCESS MEMORY CARDS,-2-119 SYSTEM BOARDS,2-99 SYSTEM (EQUIPMENT) CONFIGURATIONS,2-3 Error Detection, Input/Output Bus,3-26 Execute Unit, CPU, 3-37, 3-91 EXPANSION DISK CONTROLLER CARD, CM195K,2-159 EXT ports,3-180 External Interface, Address Signals, 3-186

## F

Fault Address Register (FLTAR), MMU, 3-49, 3-101 Fetch Unit, CPU, 3-37, 3-91 Firmware, System Board, 3-82, 3-137 FLOPPY DISK DRIVE,3-283 Floppy Disk Layout, 3-283 TANDON Model TM 55-4 Floppy Disk Drive,3-284 Floppy Disk Drive Equipment Characteristics,-2-181 FLOPPY DISK DRIVE (KS-23114,L4),2-179 Floppy Disk Drive Equipment Characteristics, 2-181 Floppy Disk Drive Use,2-179 Floppy Disk Partitions, 2-180 Floppy Disk Drive Use,2-179 Floppy Disk, Expansion, 2-10 Floppy Disk Layout, 3-283 Floppy Disk Partitions, 2-180 Flush ID Number Register (FIDNR), MMU,3-102 Frame Pointer Register (r9), CPU, 3-38, 3-92 FUJITSU 72-Megabyte Hard Disk (KS-23054,L2),2-195 72-Megabyte Hard Disk Equipment Characteristics, 2-195 Default Device Partitioning, 2-196 FUNCTIONAL DESCRIPTION, 120-MEGABYTE SCSI CARTRIDGE TAPE DRIVE,3-295 23-MEGABYTE CARTRIDGE TAPE DRIVE, 3-287

FUNCTIONAL DESCRIPTION (Continued) 60-MEGABYTE SCSI CARTRIDGE TAPE DRIVE, 3-291 AT&T SCSI REWRITABLE OPTICAL DISK DRIVE,3-299 BACKPLANES, 3-153 CM195A NETWORK INTERFACE CARD,-3-165 CM195AA ALARM INTERACE CIRCUIT CARD,3-175 CM195AC/CM195AD "DATAKIT" VCS **INTERFACE CARD, 3-183** CM195AE GPSC CARD,3-189 CM195AY EPORTS CARD,3-197 CM195B/CM195BA PORTS CARD.3-203 CM195H CARTRIDGE TAPE CONTROLLER CARD, 3-209 CM195K EXPANSION DISK CONTROLLER CARD,3-215 CM195T INTELLIGENT SERIAL **CONTROLLER CARD, 3-223** CM195U STARLAN INTERFACE CARD,-3-231 CM195W SCSI HOST ADAPTER CARD,-3-239 CM195Y EPORTS CARD,3-247 CM521A DIFFERENTIAL SCSI HOST ADAPTER, 3-253 CM522A VCACHE CARD,3-261 CM524A PROCESSING ELEMENT CARD,3-265 CM525B VMEbus CARD, 3-271 CM527A MULTIPROCESSOR **ENHANCEMENT CARD, 3-277** FLOPPY DISK DRIVE, 3-283 HARD DISK DRIVES,3-301 POWER-FUNCTIONAL DESCRIPTION,-3-303 RANDOM ACCESS MEMORY CARDS,-3-139 SYSTEM BOARDS,3-31 SYSTEM OVERVIEW, 3-1

## G

General Purpose Registers, CPU,3-92 General Purpose Registers (r8—r0), CPU,3-38 General-Purpose Kernel Registers (r31—r24), CPU,3-96 GPSC PACKAGE, CM195AE,2-147

## Н

HARD DISK DRIVES, 2-191, 3-301 147-Megabyte Hard Disk (KS-23371,L17),-2-200 155-Megabyte Hard Disk (KS-23483,L25),-2-201 300-Megabyte Hard Disk (KS-23371,L31),-2 - 204300-Megabyte Hard Disk (KS-23483,L1B or L11B),2-202 300-Megabyte Hard Disk (KS-23483,L3),-2-203 600-Megabyte Hard Disk (KS-23483,L5 or L15),2-205 600-Megabyte Hard Disk (KS-23483,L7 or L17),2-206 94-Megabyte Hard Disk (KS-23371,L7),-2-199 FUJITSU 72-Megabyte Hard Disk (KS-23054,L2),2-195 Seagate 10-Megabyte Hard Disk (KS-23034,L1),2-191 WREN 30-Megabyte Hard Disk (KS-23054,L1),2-193 WREN II 72-Megabyte Hard Disk (KS-23054,L2),2-197 Hard Disk Expansion, 2-9 HARDWARE OVERVIEW, 3B2/1000 Computer Cabinet (ED-3T056-30),2-49 3B2/500 Computer Cabinet (ED-3T043-30),2-37 3B2/600 Computer Cabinet (ED-3T023-30),2-41 3B2/700 Computer Cabinet (ED-3T047-30),2-45 AT&T Cartridge Tape Module,2-93 AT&T Disk Controller Module/4E (ED-3T011-30,G1),2-69 AT&T Disk Module (ED-3T011-30,G2, G3, G5, G6),2-73 AT&T Embedded Disk Modules (ED-3T011-30,G8, G9, G11),2-77 AT&T Peripheral Power Control Unit (ED-3T011-30,G10),2-95 AT&T SCSI 9-Track Tape,2-85 AT&T SCSI Rewritable Optical Disk Module,2-81 AT&T SCSI Tape Module (ED-3T011-30,G4, G7),2-89 Domestic 3B2/300 Computer Cabinet (ED-4C492-30),2-13

HARDWARE OVERVIEW (Continued) Domestic 3B2/310 Computer Cabinet (ED-4C645-30),2-21 Domestic 3B2/400 Computer Cabinet (ED-4C631-30),2-29 Domestic AT&T XM/405S/900S (ED-3T010-30),2-61 Domestic AT&T/XM (ED-4C580-30),2-53 International 3B2/300 Computer Cabinet (ED-4C560-30),2-17 International 3B2/310 Computer Cabinet (ED-4C646-30),2-25 International 3B2/400 Computer Cabinet (ED-4C638-30),2-33 International AT&T XM/405S/900S (ED-3T027-30),2-65 International AT&T/XM (ED-4C635-30),-2-57

## 

ID Number Cache (IDNC), MMU,3-99 Input/Output Bus Interrupts, 3-26 Input/Output Bus Structure,3-14 Address Bus Signals-PPA23-00[1],3-15 Control Bus Signals, 3-15 Data Bus Signals-PD15-00[1],3-15 MOS Data Bus,3-16 Peripheral Controller Main Memory Read Operation, 3-21 Peripheral Controller Main Memory Write Operation, 3-23 System Board Peripheral Controller Read Operation,3-17 System Board Peripheral Controller Write Operation, 3-19 Input/Output Bus System, 3-12 Input/Output Bus Structure,3-14 Input/Output Bus System Features, 3-12 Peripheral Controllers, 3-12 INTEL 80186 Microprocessor, DMA Channels, 3-191, 3-225 Internal Clock Generator, 3-225 Internal Timers, 3-191, 3-225 Interrupt Controller, 3-191, 3-225 Memory and Peripheral Chip Selects, 3-192, 3-225 Intelligent Controllers, 3-13 INTELLIGENT SERIAL CONTROLLER CARD, CM195T,2-161 interface specifications, 3-180 International 3B2/300 Computer Cabinet (ED-4C560-30),2-17

International 3B2/300 Computer Cabinet (ED-4C560-30) (Continued) International 3B2/300 Computer Equipment Characteristics, 2-18 Major Assemblies, 2-17 International 3B2/300 Computer Equipment Characteristics, 2-18 Electrical,2-18 Environmental, 2-18 Performance, 2-18 Physical, 2-18 International 3B2/310 Computer Cabinet (ED-4C646-30),2-25 International 3B2/310 Computer Equipment Characteristics, 2-26 Major Assemblies, 2-25 International 3B2/310 Computer Equipment Characteristics, 2-26 Electrical, 2-26 Environmental, 2-26 Performance, 2-26 Physical, 2-26 International 3B2/400 Computer Cabinet (ED-4C638-30),2-33 International 3B2/400 Computer Equipment Characteristics, 2-34 Major Assemblies, 2-33 International 3B2/400 Computer Equipment Characteristics, 2-34 Electrical, 2-34 Environmental, 2-34 Performance, 2-34 Physical,2-34 International AT&T Expansion Module Power Supply, #095-10040-XX2,2-214 TRW #095-10040-XX2 Equipment Characteristics, 2-214 International AT&T XM/405S/900S (ED-3T027-30),2-65 International AT&T XM/405S/900S Equipment Characteristics, 2-66 Major Assemblies, 2-65 International AT&T XM/405S/900S Equipment Characteristics, 2-66 Electrical, 2-66 Environmental, 2-66 Physical,2-66 International AT&T XM/405S/900S Power Supply, #095-10073,2-216 TRW #095-10073 Equipment Characteristics, 2-216 International AT&T/XM (ED-4C635-30),2-57 International AT&T/XM Equipment Characteristics, 2-58

International AT&T/XM (ED-4C635-30) (Continued) Major Assemblies, 2-57 International AT&T/XM Equipment Characteristics, 2-58 Electrical, 2-58 Environmental, 2-58 Physical,2-58 International Power Supply, 3B2/400, #095-10035-XX2,2-210 Interrupt Assignments, System Board, 3-70, 3-124 Interrupt Logic, System Board, 3-69, 3-123 Interrupt Mechanism, 3-69, 3-123 Interrupt Stack Pointer Register (r14), CPU, 3-42, 3-96 Interrupts, 3-69, 3-123 Interrupt Assignments, 3-70, 3-124 Interrupt Logic, 3-69, 3-123 Interrupt Mechanism, 3-69, 3-123 INTRODUCTION, MANUAL ORGANIZATION,1-1 PURPOSE OF TECHNICAL REFERENCE MANUAL,1-1 **RELATED DOCUMENTATION,1-1** ISC Card Features, 3-223

#### Μ

Main Controller, CPU, 3-37, 3-91 Major Assemblies, 3B2/1000-80,2-49 Major Assemblies, 3B2/500,2-37 Major Assemblies, 3B2/600,2-41 Major Assemblies, 3B2/700,2-45 Major Assemblies, AT&T DCM/4E,2-69 Major Assemblies, AT&T DM,2-73 Major Assemblies, AT&T DM/S or DM/DS,2-77 Major Assemblies, AT&T PPCU,2-95 Major Assemblies, AT&T TM,2-89 Major Assemblies, Cartridge Tape Module, 2-93 Major Assemblies, Domestic 3B2/300,2-13 Major Assemblies, Domestic 3B2/310,2-21 Major Assemblies, Domestic 3B2/400,2-29 Major Assemblies, Domestic AT&T XM/405S/900S,2-61 Major Assemblies, Domestic AT&T/XM,2-53 Major Assemblies, International 3B2/300,2-17 Major Assemblies, International 3B2/310,2-25 Major Assemblies, International 3B2/400,2-33 Major Assemblies, International AT&T XM/405S/900S,2-65 Major Assemblies, International AT&T/XM,2-57 Major Assemblies, Optical Disk, 2-81

Math Acceleration Unit, MAU Coprocessor Mode, 3-117 MAU Registers, 3-107 Math Acceleration Unit (MAU),3-107 Math Acceleration Unit (MAU) (Optional),3-55 Math Acceleration Unit (Optional), MAU Coprocessor Mode, 3-63 MAU Registers, 3-55 MAU Auxiliary Status Register, 3-109 MAU Auxiliary Status Register (ASR),3-57 MAU Command Register, 3-60, 3-113 MAU Coprocessor Mode, 3-63, 3-117 MAU Data Register, 3-62, 3-116 MAU Operand Registers, 3-59, 3-112 MAU Registers, 3-55, 3-107 Maximum 3B2 Computer Equipment Configuration, 2-7 Memory Card Types, 2-119 Memory Management Unit, 3-43, 3-97 Current ID Number Registers, 3-99 ID Number Cache, 3-99 MMU Registers, 3-46, 3-99 Page Descriptor Cache, 3-46, 3-99 Peripheral Mode, 3-50, 3-103 Section Random Access Memories, 3-46, 3-99 Segment Descriptor Cache, 3-46, 3-99 Virtual to Physical Address Translation for Contiguous Segments, 3-52 Virtual to Physical Address Translation for Paged Segments, 3-52, 3-105 Minimum 3B2 Computer Equipment Configuration, 2-6 MISCELLANEOUS CONNECTORS AND CABLES, 8-Pin Module to 25-Pin Connectors, B-240 General, B-239 PORTS Loop Around Connections, B-244 Terminal/Printer/Peripheral Device Cables, B-245 MISCELLANEOUS EQUIPMENT AND APPARATUS, 3B2 Expansion Cabinet, 2-221 Vertical Stands, 2-221 MMU Configuration Register, 3-47, 3-101 MMU Current ID Number Registers, 3-99 MMU Fault Address Register, 3-49, 3-101 MMU Flush ID Number Register, 3-102 MMU ID Number Cache, 3-99 MMU Page Descriptor Cache, 3-46, 3-99 MMU Peripheral Mode, 3-50, 3-103 MMU Registers, 3-46, 3-99 MMU Section Random Access Memories, 3-46, 3-99

MMU Segment Descriptor Cache, 3-46, 3-99 MMU Virtual Address Register, 3-47, 3-101 Models, Computer, 2-3 MOS Data Bus, 3-16 MPE Card, CM527A, 3-277 Multiple Input/Output Bus Accesses, 3-25 MULTIPROCESSOR ENHANCEMENT, CM527A, 2-177

#### N

Network Interface, Ethernet Controller Circuit,3-171, 3-236 NETWORK INTERFACE CARD, CM195A,2-141 Nonvolatile Random Access Memory (NVRAM),3-71, 3-125

### 0

Operand Registers, MAU, 3-59, 3-112

#### Ρ

Page Descriptor Cache (PDC), MMU, 3-46, 3-99

Paging Virtual Address Space, A-4 PE Card, CM524A,3-265 Peripheral Control and Status Register (PCSR), CM195A NI,3-170 Peripheral Control and Status Register (PCSR), CM195AE GPSC,3-195 Peripheral Control and Status Register (PCSR), CM195B/CM195BA PORTS,3-207 Peripheral Control and Status Register (PCSR), CM195H CTC,3-213 Peripheral Control and Status Register (PCSR), CM195K XDC,3-220 Peripheral Control and Status Register (PCSR), CM195T ISC,3-228 Peripheral Control and Status Register (PCSR), CM195U STARLAN,3-235 Peripheral Control and Status Register (PCSR), CM195W SCSI,3-244 Peripheral Control and Status Register (PCSR), CM195Y EPORTS, 3-201, 3-251 Peripheral Control and Status Register (PCSR), CM521A SCSI,3-258 Peripheral Controller Main Memory Read Operation, 3-21 Peripheral Controller Main Memory Write Operation, 3-23 Peripheral Controllers, 3-12 Bus Abort Feature, 3-13 Intelligent Controllers, 3-13

Peripheral Controllers (Continued) Programmed Controllers, 3-12 Peripheral Mode, MMU, 3-50, 3-103 physical interface specifications, 3-180 PORTS CARD, CM195B,2-151 PORTS CARD, CM195BA,2-155 PORTS Loop Around Connections, EPORTS Loop Around Connections, B-244 Power Supply, 3B2/500, 752A,2-211 Power Supply, 3B2/600/700/1000, 782A,2-212 POWER-EQUIPMENT DESCRIPTION, 2-207 3B2 Computer Backup Battery Supply,-2-218 3B2/300 and 310 Computers International Power Supply, #095-10011-XX2 and #095-10061-00,2-208 3B2/400 Computer Domestic Power Supply, #095-10035-XX1,2-209 3B2/400 Computer International Power Supply, #095-10035-XX2,2-210 3B2/500 Computer Power Supply, ACS752A or CS752A,2-211 3B2/600, 700, and 1000 Computer Power Supply, ACS782A or CS782A,2-212 AT&T SCSI Peripherals (DCM, DM, TM, and PPCU) Power Supply, #095-10065,-2-217 Domestic 3B2/300 and 310 Computer Power Supply, #095-10011-XX1 and #095-10060-00,2-207 Domestic AT&T Expansion Module Power Supply, #095-10040-XX1,2-213 Domestic AT&T XM/405S/900S Power Supply, #095-10064-00,2-215 International AT&T Expansion Module Power Supply, #095-10040-XX2,2-214 International AT&T XM/405S/900S Power Supply, #095-10073,2-216 POWER—FUNCTIONAL DESCRIPTION, 3B2 Computer Backup Battery Supply,-3-315 AT&T Expansion Module Power Supply,-3-317 Version 2 3B2 Computer Power, 3-307 Version 2 System Power, 3-303 Version 3 3B2 Computer Power, 3-310 Version 3 System Power, 3-303 Process Control Block Pointer Register (r13), CPU, 3-42, 3-96 PROCESSING ELEMENT, CM524A, 2-173 Processor Status Word Register (r11), CPU,3-38, 3-92

Program Counter Register (r15), CPU,3-42, 3-96 Programmed Controllers,3-12

## R

RAM Equipage Considerations, 2-120 RAM Expansion, 2-9 RANDOM ACCESS MEMORY CARDS, 2-119, 3-139 CM191A 0.25-Megabyte RAM Card,2-121 CM191A/B/C/D and CM192B Memory Cards.3-139 CM191B 1-Megabyte RAM Card,2-122 CM191C 1-Megabyte RAM Card, 2-123 CM191D 2-Megabyte RAM Card,2-124 CM192B 2-Megabyte RAM Card,2-125 CM523A 4-Megabyte RAM Card, 2-126 CM523AA 4-Megabyte RAM Card, 2-127 CM523A/AA/B/D Memory Cards,3-146 CM523B 2-Megabyte RAM Card, 2-128 CM523D 16-Megabyte RAM Card, 2-129 Memory Card Types, 2-119 RAM Equipage Considerations, 2-120 Read Only Memory (ROM), System Board, 3-66, 3-120 Removable Media Expansion, 2-10 23-Megabyte Cartridge Tape, 2-10 60- and 120-Megabyte Cartridge Tape, 2-10 Floppy Disk,2-10 Rewritable Optical Disk, 2-10 Rewritable Optical Disk, 2-10

## S

SCSI 9-Track Tape Drive Equipment Characteristics, 2-85 Electrical, 2-85 Environmental, 2-85 SCSI HOST ADAPTER CARD, CM195W,2-165 SEAGATE 10-Megabyte Hard Disk (KS-23034,L1),2-191 Seagate 10-Megabyte Hard Disk (KS-23034,L1), 10-Megabyte Hard Disk Equipment Characteristics, 2-191 Default Device Partitioning, 2-192 Section Random Access Memories, MMU,3-46, 3-99 Segment Descriptor Cache (SDC), MMU, 3-46, 3-99 self-configuration, 3-26 Stack Pointer Register (r12), CPU,3-42, 3-96 STARLAN INTERFACE CARD, CM195U,2-163 System Board, CM518A,2-107 System Board, CM518B,2-111

System Board, CM518C,2-115 System Board CPU, 3-35, 3-89 System Board, ED-4C637-30,2-103 System Board, ED-4C637-30 Layout, 2-103 System Board EDT Data, 3-83, 3-138 System Board Peripheral Controller Read Operation, 3-17 System Board Peripheral Controller Write Operation, 3-19 SYSTEM BOARDS,3-31 CM190A System Board, 2-99 CM190A/ED-4C637-30 System Board,3-31 CM518A System Board, 2-107 CM518A/B/C System Boards,3-85 CM518B System Board, 2-111 CM518C System Board, 2-115 ED-4C637-30 System Board, 2-103 SYSTEM (EQUIPMENT) CONFIGURATIONS,-2-3 Add-On Features, 2-8 Computer Models, 2-3 Maximum 3B2 Computer Equipment Configuration, 2-7 Minimum 3B2 Computer Equipment Configuration, 2-6 SYSTEM OVERVIEW, 3B2 Computer Address Spectrum, 3-9 Data Transfers, 3-16 General,3-1 Input/Output Bus System, 3-12 Self-Configuration, 3-26

## Т

TANDON Model TM 55-4 Floppy Disk Drive,-3 - 284Terminal/Printer/Peripheral Device Cables, **36-Conductor CENTRONICS** Connectorized Cable, B-247 8-Conductor Modular Cables, B-245 Timers, Bus Timer, 3-66, 3-120 Clock/Calendar Timer, 3-66, 3-120 Periodic Timer, 3-66, 3-120 Sanity Timer, 3-66, 3-120 Timers, System Board, 3-66, 3-120 TRW #095-10011-XX1 and #095-10060-00 Equipment Characteristics, Electrical, 2-207 TRW #095-10011-XX2 and #095-10061-00 Equipment Characteristics, Electrical, 2-208

TRW #095-10035-XX1 Equipment Characteristics. Electrical, 2-209 TRW #095-10035-XX2 Equipment Characteristics, Electrical, 2-210 TRW #095-10040-XX1 Equipment Characteristics, Electrical, 2-213 TRW #095-10040-XX2 Equipment Characteristics, Electrical, 2-214 TRW #095-10064-00 Equipment Characteristics, Electrical, 2-215 TRW #095-10065 Equipment Characteristics, Electrical, 2-217 TRW #095-10073 Equipment Characteristics, Electrical, 2-216

#### U

UPS port,3-180

#### V

VCACHE Card, CM522A,3-261
VCACHE, CM522A,2-171
Vertical Stands,2-221
Virtual Address Register (VAR), MMU,3-47, 3-101
Virtual to Physical Address Translation for Contiguous Segments,3-52
Virtual to Physical Address Translation for Paged Segments,3-52, 3-105
VMEbus CARD, CM525B,2-175
VMEbus Card, CM525B,3-271

#### W

WREN 30-Megabyte Hard Disk (KS-23054,L1),-2-193
30-Megabyte Hard Disk Equipment Characteristics,2-193
Default Device Partitioning,2-194
WREN II 72-Megabyte Hard Disk (KS-23054,L2),2-197
72-Megabyte Hard Disk Equipment Characteristics,2-197
Default Device Partitioning,2-198 C

C

 $\mathbf{C}$ 

| Excellent       Adequate       Poor         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.       | How would you rate this document for COMPLETENESS? (Please Circle) |                                        |                              |                                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------|----------------------------------------|------------------------------|---------------------------------------|--|--|
| 2. Identify any information that you feel should be included or removed.  3. How would you rate this document for ACCURACY of information? (Please Circle)  Excellent Adequate Poor 4. Specify page and nature of any error(s) found in this document.  5. How would you rate this document for ORGANIZATION of information? (Please Circle)  Excellent Adequate Poor 4. Poor 4. Poor 5. Describe any format or packaging problems you have experienced with this document.  7. Do you have any general comments or suggestions regarding this document?  8. We would like to know a little about your background as a user of this document:  A. Your job function  8. Number of years experience with computer hardware: operation, maintenance  4. Your point of years experience with computer software: user, programmer  4. Your Name Phone No |          | Excellent                                                          | Adequate                               |                              |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 43                                                                 | 2                                      | -10                          |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.       | Identify any informatio                                            | on that you feel should b              | e included or removed.       |                                       |  |  |
| Excellent       Adequate       Poor         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                                                    |                                        |                              |                                       |  |  |
| Excellent       Adequate       Poor         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                                                    |                                        |                              |                                       |  |  |
| Excellent       Adequate       Poor         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                                                    |                                        |                              |                                       |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.       | How would you rate th                                              | nis document for ACCUI                 | ACY of information? (Plea    | se Circle)                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | Excellent                                                          | Adequate                               | Poor                         |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 43                                                                 | 2                                      | -10                          |                                       |  |  |
| How would you rate this document for ORGANIZATION of information? (Please Circle)      Excellent Adequate Poor     40     Describe any format or packaging problems you have experienced with this document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L        | Specify page and natur                                             | e of any error(s) found i              | n this document              |                                       |  |  |
| Excellent       Adequate       Poor         432      0         Describe any format or packaging problems you have experienced with this document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •        | opeeny page and natur                                              | e of any chor(b) found f               | a this document.             |                                       |  |  |
| Excellent       Adequate       Poor         432      0         Describe any format or packaging problems you have experienced with this document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                    |                                        |                              |                                       |  |  |
| Excellent       Adequate       Poor         432      0         Describe any format or packaging problems you have experienced with this document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                    |                                        |                              |                                       |  |  |
| Excellent       Adequate       Poor         432      0         Describe any format or packaging problems you have experienced with this document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                    |                                        |                              |                                       |  |  |
| 40      Describe any format or packaging problems you have experienced with this document.      Describe any general comments or suggestions regarding this document?      Do you have any general comments or suggestions regarding this document?      We would like to know a little about your background as a user of this document:      A. Your job function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •        | How would you rate th                                              | his document for ORGAN                 | NIZATION of information?     | (Please Circle)                       |  |  |
| 40      Describe any format or packaging problems you have experienced with this document.      Describe any general comments or suggestions regarding this document?      Do you have any general comments or suggestions regarding this document?      We would like to know a little about your background as a user of this document:      A. Your job function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | Excellent                                                          | Adequate                               | Poor                         |                                       |  |  |
| <ul> <li>Do you have any general comments or suggestions regarding this document?</li> <li>We would like to know a little about your background as a user of this document: <ul> <li>A. Your job function</li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 43                                                                 | 2                                      |                              |                                       |  |  |
| <ul> <li>We would like to know a little about your background as a user of this document:</li> <li>A. Your job function</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | Describe any format or                                             | packaging problems you                 | a have experienced with this | s document.                           |  |  |
| <ul> <li>A. Your job function</li> <li>B. Number of years experience with computer hardware: operation, maintenance</li> <li>C. Number of years experience with computer software: user, programmer</li> <li>Your Name Phone No</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.       | Do you have any gener                                              | ral comments or suggesti               | ons regarding this documen   | ıt?                                   |  |  |
| <ul> <li>A. Your job function</li> <li>B. Number of years experience with computer hardware: operation, maintenance</li> <li>C. Number of years experience with computer software: user, programmer</li> <li>Your Name Phone No</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                    | ······································ |                              | · · · · · · · · · · · · · · · · · · · |  |  |
| <ul> <li>B. Number of years experience with computer hardware: operation, maintenance</li> <li>C. Number of years experience with computer software: user, programmer</li> <li>four Name Phone No</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | We would like to know                                              | v a little about your back             | ground as a user of this doc | ument:                                |  |  |
| maintenance C. Number of years experience with computer software: user, programmer our Name Phone No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | A. Your job function                                               | on                                     | ·                            |                                       |  |  |
| our Name Phone No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                    |                                        | uter hardware: operation _   | ,                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | -                                                                  |                                        | uter software: user ,        |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                    |                                        |                              |                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0        | ur Name                                                            |                                        | Phone No                     |                                       |  |  |
| City & State Zip Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Co<br>Ad | mpany<br>Idress                                                    |                                        |                              |                                       |  |  |





## BUSINESS REPLY MAIL FIRST CLASS PERMIT NO. 1999 GREENSBORO, N.C.

POSTAGE WILL BE PAID BY ADDRESSEE

# DOCUMENTATION SERVICES 2400 Reynolda Road Winston-Salem, N.C. 27106-9989

հահվհակակիկումիսիսիսիսիսիսիսիսի

. . . . . . . . . . . .

Do Not Tear—Fold Here and Tape