
COBOL 128 Software System

By K. A. Alexander

Published by

Abacus ;mHHHI Software

Copyright Notice

Abacus Software makes this package available for use on a single
computer only. It is unlawful to copy any portion of this software
package onto any medium for any purpose other than backup. It is
unlawful to give away or resell copies of this package. Any
unauthorized distribution of this product deprives the authors of
their deserved royalties. For use on single-site multiple computers,
please contact Abacus Software to make arrangements.

Wananty

Abacus Software makes no warnings, expressed or implied, as to
the fitness of this software package for any particular purpose. In
no event will Abacus Software be liable for consequential damages.
Abacus Software will replace any copy of this software which is
unreadable, if returned within 30 days of purchase. Thereafter,
there will be a nominal charge for replacement.

First printing
Printed in U.S.A.
Copyright © 1984
Copyright© 1986

July 1986

K.A. Alexander, Visionary Software
Abacus Software, Inc.
P.O. BOX 7219
Grand Rapids, MI. 49510

ISBN# 0-916439-78-X

(COBOL 128 Supplement)

Abacus Software COBOL 128

I COBOL 64 AND COBOL 128 - DIFFERENCES

The manuals for COBOL 64 and COBOL 128 are the same. There
are a few minor differences in the two versions:

COBOL64 COBOL128

CORD program overlay in memory
COED IT program overlay in memory
COSYN program overlay in memory
COSYNP program overlay in memory
load procedure RUN "VSLOADER"
monitor or television 40 or 80 column monitor/TV

Any references to COBOL 64 throughout this manual also apply to
COBOL 128.

II CONVERTING COBOL 64 CODE TO COBOL 128

To convert a COBOL 64 programs to run on the Commodore 128
using COBOL 128, follow the procedures listed below.

1. With COBOL 64 on a C-64 (C-128 in C-64 mode), create
a sequential file of the program by using the CRUNCH
option from the MAIN MENU. The filename is prefixed by
the letters cs (for COBOL Sequential).

2. Load and run COBOL 128. Replace the COBOL 128
distribution diskette with a diskette containing the
sequential file.

3. Enter CRIP <RETURN> (for CRUNCH input).

4. Now enter the filename without the cs prefix followed by
<RETURN>.

Abacus Software COBOL 128

5. The crunched file is then converted to a format compatible
to COBOL 128.

III CONVERTING COBOL 128 CODE TO COBOL 64

To convert a COBOL 128 programs to run on the Commodore 64
using COBOL 64, follow the procedures listed below.

1. With COBOL 128 on a C-128, create a sequential file of
the program by using the CRUNCH option from the MAIN

MENU. The filename is prefixed by the letters cs (for
COBOL Sequential).

2. Load and run COBOL 64. Replace the COBOL 64
distribution diskette with a diskette containing the
sequential file.

3. Enter CRIP <RETURN> (for CRUNCH input).

4. Now enter the filename without the cs prefix followed by
<RETURN>.

5. The vs ED IT program overlay will now run. When
VSEDIT is done, press any key to continue.

6. The crunched file is then converted to a format compatible
toCOBOL64.

PREFACE

It is assumed that the readers of this manual are familiar with the
Commodore 64 computer and general programming techniques.

The names used in this publication are not of individuals living or
otherwise. Any similarity or likeness of the names used in this
publication with the names of any individuals, living or otherwise,
is purely coincidental and not intentional.

Abacus Software believes that the information described in this
manual is accurate and reliable, and much care has been taken in its
preparation. However, no responsibility, financial or otherwise, is
accepted for any consequences arising out of the use of this
material. The information contained herein is subject to change.

ACKNOWLEDGEMENT

COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or group
of organizations.

No warranty, expressed or implied, is made by any contributor or
by the CODASYL Programming Language Committee as to the
accuracy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or by
the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used
herein,

Flow-matic (trademark of Sperry Rand Corporation).
Programming for the UNIVAC I and II, Data Automation Systems
copyrighted 1958, 1959, by Sperry Rand Corporation; IBM
Commercial Translator Form Number F 28-8013, copyrighted
1959 by IBM;FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell,

have specifically authorized the use of this material in whole or in
part, in the COBOL specifications. Such authorization extends to
the reproduction and use of COBOL specifications in programming
manuals or similar publications.

TABLE OF CONTENTS

Chapter 1 - Introduction
Chapter 2 - The Nature of COBOL IN GENERAL
Chapter 3 - COBOL Advantages
Chapter 4 - COBOL 64 Implementation Notes
Chapter 5 - Hardware Consideration
Chapter 6 - COBOL 64 Source Language

Section 1--Program Organization
Section 2--Language Concepts
Section 3--Editing Format
Section 4--IDENTIFICA TION DIVISION
Section 5--ENVIRONMENT DIVISION
Section 6--DAT A DIVISION
Section 7--PROCEDURE DIVISION

ACCEPT
ACCEPT-1-KEY
ADD
CLOSE
DEBUG-BREAK
DEBUG-TRACE-OFF
DEBUG-TRACE-ON
DISPLAY
DIVIDE
EXIT
FILTER-NUMERIC
GOTO
IF
MOVE
MULTIPLY
OPEN
PERFORM
READ
SET
STOP RUN
SUBTRACT
WRITE

Chapter 7 -- Start Up/Operating Instructions

1
2
4
5
6
7
7
9

29
32
34
47
75
85
86
87
89
89
89
90
90
91
93
93
95
96
98

102
103
105
108
110
112
113
115

119

Chapter 8 -- Main Menu 120
CRUNCH 121
DEBUG 122

START-PROO 123

"""' RESUME-PROO 124
SINGLE-ON 124
SINGLE-OFF 124
EXIT 124
BREAK 1 125
BREAK2 125
BREAK3 125
OPTIONS 125
TRACE-ON-LINE 125
TRACE-OFF-LINE 125
TRACE-FAST 126
TRACE-SLOW 126
TRACE-ON 126
TRACE-OFF 127
RESET-OPTIONS 127

EDIT 128
COBOL 64 Statements 128 ...,,, DIRECTORY 129
LIST 130
DELETE 130
SYNTAX 131
AUTO 132
SAVE 132
RESEQUENCE 133
PRINT-ON 133
PRINT-OFF 133
EXIT 133

GET 134
NEW-NAME 134
NEW-PROO/EDIT 134
PRINT-ON 135
PRINT-OFF 135
RUN 135
SAVE 136

APPENDIX A - Sample Program/Exercises 137 """" APPENDIX B - Reserved Words 143
APPENDIX C - Language Summary 144
APPENDIX D - Sample Programs 146

Abacus Software COBOL 64

CHAPTERl

INTRODUCTION

This manual provides a complete description of the COBOL 64
System as implemented for use on the Commodore 64 computer or
equivalent. The COBOL 64 programming language is designed
along the guidelines of the American National Standards Institute
(ANSI) X3.23-1974.

The language is an easy to learn subset of the ANSI 1974 standard
Level 1 with appropriate extensions to utilize COMMODORE 64
features as well as providing high level program debugging
capabilities. With COBOL 64 there is no need for the user to be
concerned with machine language, memory addressing or
hexadecimal notation. All debugging is performed at the source
language (symbolic) level as opposed to the machine language
level.

The COBOL 64 software system is a combination of an Editor,
Compiler, Interpreter and Symbolic Debugger. These features have
been designed with ease of learning and ease of use in mind to
provide a powerful programming development tool for general
business applications.

Commodore 64 is a registered trademark of Commodore Business
Machines, Inc.

1

Abacus Software COBOL 64

CHAPTER2

THE NATURE OF COBOL IN GENERAL

COBOL is the most widespread commercial programming language
in use today. The reasons for its vast success will be discussed
below.

The word COBOL is an abbreviation for .Common B.usiness
Qriented Language. It is a Business Oriented computer language
designed for commercial applications. The rules governing the use
of the language make it applicable for commercial problems.

COBOL is a computer language that is common to many
computers. That is most computers can process a COBOL program
with minor variations.

The universality of COBOL, therefore, allows computer users
greater flexibility. A company is free to use computers of different
manufacturers while retaining a single programming language. "'111
Similarly, conversion from one model computer to a more
advanced or newer one presents no great problem. Computers of a
future generation will also be equipped to use COBOL.

Since its creation in 1959, the COBOL language has undergone
extensive refinement in an effort to make it more standardized The
American National Standards Institute (ANSI), an association of
computer manufacturers and users, has developed an industry-wide
standard COBOL.

Thus the meaning of the word COBOL suggests two of its basic
advantages. It is common to most computers, and it is
commercially oriented. There are, however, additional reasons
why it is such a popular language.

COBOL is an English-like language. All instructions are coded
using English words rather than complex codes. To add two
numbers together, for example, we use the word ADD. Another
example of a COBOL statement is:

2

Abacus Software COBOL 64

MULTIPLY HOURS-WORKED BY HOURLY-WAGE GIVING GROSS-WAGES

The rules for programming in COBOL conform to many of the

rules for writing in English, making it a relatively simple language

~ to learn. It, therefore, becomes significantly easier to train

programmers. In addition, COBOL programs are written and

tested in far less time than programs written in other computer

languages.

Thus the English-like quality of COBOL makes it easy to write
programs. Similarly, this quality makes COBOL programs easier

to read. Such programs can generally be understood by non-data

processing personnel. The business executive who knows little

about computers can better understand the nature of a programming

job simply by reading a COBOL program.

3

Abacus Software COBOL 64

CHAPTER3

COBOL ADVANTAGES

The long list of COBOL advantages is derived chiefly from its intrinsic quality of permitting the programmer to state the problem solution in English prose, and thus provide automatic program and
system documentation. When users adopt well-chosen data-names before attempting to program a system, maximum documentational advantages of the language described herein are obtained.

To a computer user, COBOL 64 offers the following major advantages:

1. Expeditious means of program implementation providing a
high degree of programmer productivity.

2. Accelerated programmer training and simplified retraining
requirements.

3. Reduced conversion costs when changing from a computer
of one manufacturer to that of another.

4. Significant ease of program modification/enhancements
due to the high level of readability.

5. Documentation which facilitates nontechnical management
participation in data processing activities.

6. A comprehensive source program diagnostic capability
which includes tracing, break points and single step
features.

4

Abacus Software COBOL 64

CHAPTER4

COBOL 64 IMPLEMENTATION NOTES

A program written in COBOL 64, called a source program, is
accepted as input by the COBOL 64 software system. The system
verifies that each source statement is syntactically correct, and then
converts them into an intermediate condensed representation.

The intermediate program can then be executed on the Commodore
64 System using the COBOL 64 Interpreter. The interpreter causes
the system hardware to perform the operations specified by the
intermediate program and thus the source program.

5

Abacus Software COBOL 64

CHAPTERS

HARDWARE CONSIDERATIONS

COMMODORE 64 Computer or equivalent (BASIC V2)
One to four Commodore 1541 disk drives or equivalent
One optional Commodore 1525 printer or equivalent

6

Abacus Software COBOL 64

CHAPTER6

SECTION 1 PROGRAM ORGANIZATION

COBOL 64 SOURCE PROGRAM DIVISIONS

Every COBOL 64 source program must contain these four
di visions in the following order:

IDENTIFICATION
ENVIRONMENT
DATA
PROCEDURE

The IDENTIFICATION DIVISION identifies the program. In
addition to required information, the programmer may include such
optional pieces of information as the date written and programmer's
name for documentation purposes. This division is completely
machine-independent.

The ENVIRONMENT DIVISION specifies the equipment being
used. It contains computer descriptions and some information
about the files the program will use.

The DATA DIVISION contains not only file and record
descriptions describing the data files that the program manipulates
or creates, but also the individual logical records which comprise
these files. The characteristics or properties of the data are
described in relation to a standard data format rather than an

equipment-oriented format. Therefore, this division is to a large
extent, computer-independent. While compatibility among

computers cannot be absolutely assured, careful planning in the
data layout will permit the same data descriptions, with minor

modification, to apply to more than one computer.

The PROCEDURE DIVISION specifies user-supplied steps for
computer execution. These steps are expressed in terms of

meaningful English words, statements, sentences, and paragraphs.

This division of a COBOL 64 program is often referred to as the

7

Abacus Software COBOL 64

"program". In reality, it is only part of the total program, and alone is insufficient to describe the entire program. This is true because repeated references must be made (either explicitly or implicitly) to information appearing in the other divisions. This division, more than any other, allows the user to express thoughts in meaningful English. Concepts of verbs to denote actions, and sentences to describe procedures are basic, as is the use of conditional statements to provide alternative paths of action.

REQUIRED HEADERS

The standard for COBOL 64 requires that a program consist of certain divisions, sections, and fixed paragraph names known as headers.

The following elements are the minimum required for a COBOL 64 program:

IDENTIFICATION DIVISION.
PROGRAM-ID. MINIMUM.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER C64.
OBJECT-COMPUTER C64.

DATA DIVISION.
PROCEDURE DIVISION.
STARTUP.

STOP RUN.

8

Abacus Software COBOL 64

SECTION 2 LANGUAGE CONCEPTS

GENERAL

As stated in Section 1, COBOL 64 is a language based on English
and is composed of words, statements, sentences, and paragraphs.
The following paragraphs define the rules to be followed in the
creation of this language. The use of the different constructs
formed from the created words is covered in subsequent sections of
this document.

LANGUAGE DESCRIPTION NOTATION

A nearly universal form of notation exists for COBOL reference
manuals. This manual uses that notation as described in the
paragraphs that follow.

The apostrophe (') is used to delimit characters with specific
meaning. Other than its use in this manual as a delimiter, it has no
specific use in the COBOL language.

KEYWORDS

All underlined upper-case words are key words and are
required when utilizing related functions. Omissions of
key words will cause error conditions at compilation time.
An example of key words follows:

IF data-name IS [NOT] {NUMERIC }

ALPHABETIC

The key words are I F , N o T , N u ME R I c , and

ALPHABETIC.

9

Abacus Software COBOL 64

OPTIONAL WORDS

All upper case words not underlined are optional words
included for readability only and may be included or ...__..
excluded in the source program. In the preceding example, .,,
the optional word is IS.

GENERIC TERMS

All lower-case words represent generic terms which are
used to represent COBOL w~rds, literals, PI CT URE
character-strings, comment-entries, or a complete
syntactical entry that must be supplied in that format
position by the programmer. Where generic terms are
repeated in a general format, a number or letter appendage
to the term serves to identify that term for explanation or
discussion.

Identifier-1 and identifier-2 are generic terms in this
example:

MOVE identifier-1 TO identif ier-2

BRACES

The following symbols are braces: { } . When words or
phrases are enclosed in braces, a choice of one of the
entries must be made. In the previous example in the
subsection titled Keywords, either NUMER I c or
ALPHABETIC must be included in the statement.

BRACKETS

The following symbols are brackets: [] . Words and
phrases enclosed in brackets represent optional portions of
a statement. A programmer wishing to include the optional """'11
feature may do so by including the entry shown between
brackets. Otherwise, the optional portion may be omitted.
[NOT J in the example titled Keywords, is optional.

10

Abacus Software COBOL 64

LEVEL-NUMBERS

When specific level-numbers appear in data description

entry formats those specific level-numbers are required
when such entries are used in a COBOL 64 program. In

this document, the form O 1, O 2, ... , O 9 is used to

indicate level-numbers 1 through 9.

ELLIPSIS

The presence of the ellipsis (three consecutive

periods(...) within any format indicates the position at

which repetition may occur at the programmer's option.

The portion of the format that may be repeated is defined in
the following paragraph.

The ellipsis applies to the words between the determined

pair of delimiters. Given the ellipsis in a clause or
statement format, scanning right to left, determine the right

bracket or right brace immediately to the left of the ... ;

continue scanning right to left and determine the logically

matching left bracket or left brace.

11

Abacus Software COBOL 64

CHARACTER SET

The COBOL 64 character set for the COBOL 64 System
consists of the following 46 characters:

O through 9
A through Z

blank or space
+ plus sign
- minus sign or hyphen
* asterisk
I slash
$ currency sign
. period or decimal point
" quotation mark
(left parenthesis
) right parenthesis

CHARACTERS USED FOR WORDS

The character set for words consists of the following 3 7
characters:

0 through 9
A through z
- (hyphen)

PUNCTUATION CHARACTERS

The following characters may be used for program
punctuation:

" quotation mark
(left parenthesis
) right parenthesis

space or blank
. period

12

Abacus Software COBOL 64

EDITING CHARACTERS

The COBOL 64 System accepts the following characters in
editing:

$ currency sign

* asterisk (check protect)

' comma
I slash
B space or blank insert
0 zero insert
+ plus sign

minus sign
CR credit
DB debit
z zero suppress

period

LANGUAGE STRUCTURE

The individual characters of the language are concatenated
to form character-strings and separators. A separator may
be concatenated with another separator or with a
character-string.

A character-string may only be concatenated with a
separator. The concatenation of character-strings and
separators forms the text of a source program.

SEPARATORS

A separator is a string of one or more punctuation
characters. The rules for formation of separators are:

1. The punctuation character space is a separator. Anywhere
a space is used as a separator, more than one space may be
used.

2. The punctuation character period is a separator when
immediately followed by a space.

13

Abacus Software COBOL 64

3. The punctuation character quotation mark is a separator.
An opening quotation mark must be immediately preceded
by the separator space, a closing quotation mark must be
immediately followed by one of the separators space or "'11111
period followed by a space. Quotation marks may appear
only in balanced pairs delimiting nonnumeric literals except
when the literal is continued.

4. The punctuation characters right and left parentheses are
separators. Parentheses may appear only in balanced pairs
of left and right parentheses delimiting subscripts or
indices. The right parentheses must be followed by a
space.

5. The separator space may optionally immediately follow any
separator except the opening quotation mark. In this case,
a following space is considered as part of the nonnumeric
literal and not as a separator.

Any punctuation character which appears as part of the
specification of a PI CT URE character-string or numeric
literal is not considered as a punctuation character, but
rather as a symbol used in the specification of that
PICTURE character-string or numeric literal. PICTURE
character-strings are delimited only by the separators space
or period followed by a space.

The rules established for the formation of separators do not
apply to the characters which comprise the contents of
nonnumeric literals, comment-entries, or comment lines.

CHARACTER-STRINGS

A character-string is a character of sequence of contiguous
characters which forms a COBOL 64 word, literal,
PICTURE character-string, or comment-entry. A
character-string is delimited by separators.

14

Abacus Software COBOL 64

DEFINITION OF WORDS

A COBOL 64 word is created from a combination of not
more than 30 characters, selected from the following:

O through 9
A through z
- (hyphen)

A word is ended by a valid separator. A word may not
begin or end with a hyphen. (A literal constitutes an
exception to these rules, as explained in a paragraph
entitled Literals in this section.) A word must begin with
an alphabetic character.

A user-defined word is a COBOL 64 word that must be
supplied by the user to satisfy the format of a clause or
statement

TYPES OF WORDS

COBOL 64 contains the following word types:

nouns (user-defined words)
verbs
reserved words.

15

Abacus Software

NOUNS

Nouns are divided into special categories:

File-name
Record-name
Data-name
Program-name
Index-name
Paragraph-name

COBOL 64

The length of a noun must not exceed 30 characters. For
purposes of readability, a noun may contain one or more
hyphens. However, the hyphen must neither begin nor
end the noun (this does not apply to literals).

All nouns within a given category must be unique, because
no other noun in the same source program has identical
spelling or punctuation. All user-defined words must
begin with an alphabetic character.

File-Name

A file-name is a noun assigned to designate a set of data
items. The contents of a file are divided into logical
records made up of any consecutive set of data items.

Record-Name

A record-name is a noun assigned to identify a logical
record. A record can be subdivided into a set of data
items, each distinguishable by a data-name.

Data-Name

A data-name is a noun assigned to identify elements within 'tfllll
a record or work area and is used in COBOL 64 to refer to
an element of data, or to a defined data area containing data
elements.

16

Abacus Software COBOL 64

Index-Name

An index-name is a word that names an index associated
with a specific table (refer to Indexing in this section). An
index is a register, the contents of which represent the
character position of the first character of an element of a
table with respect to the beginning of the table.

Paragraph-Name

Verbs

A paragraph-name is a word which names a paragraph in
the PROCEDURE DIVISION.

A verb in COBOL 64 is a single word that denotes action,
such as ADD, WRITE, or MOVE. All allowable verbs in
COBOL 64, with the exception of the word IF, are English
verbs. The usage of the COBOL 64 verbs takes place
within the PROCEDURE DIVISION.

17

Abacus Software COBOL 64

RESERVED WORDS

A reserved word is a COBOL 64 word that is one of a
specified list of words which may be used in COBOL 64
source programs, but must not appear in the programs as
user-defined words. Refer to Appendix B, Reserved
Words.

These rules apply to the entire COBOL 64 source program;
no exceptions exist for specific divisions or statements.

There are two types of reserved words:

KEY WORDS

Key words
Optional words

A key word is a word whose presence is required in a
source program. Within each format, such words are
upper-case and underlined.

Key words are of three types:

1. Verbs such as ADD and READ.

2. Required words which appear in statement and entry
formats.

3. Words which have a specific functional meaning such
as SECTION.

OPTIONAL WORDS

Optional words are included in the COBOL 64 language to
improve the readability of the statement formats. These
optional words may be included or omitted. For example,
IF A IS GREATER THAN B •.• is equivalent to IF A
GREATER B ••• ; the inclusion or omission of the words
Is and THAN does not influence the logic of the statement.

18

Abacus Software COBOL 64

LITERALS

A literal is an item of data whose value is implied by an
ordered set of characters of which the literal is composed.
There are two classes of a literal: numeric and
nonnumeric.

NUMERIC LITERAL

A numeric literal is a character-string whose characters are
selected from the digits O through 9, the plus sign (+),the
minus sign (-), and/or the decimal point. Numeric literals
may be from 1 to 18 digits in length. The rules for the
formation of numeric literals are as follows:

1. A numeric literal must contain at least one digit

2. A numeric literal must not contain more than one sign
character. If a sign is used, it must appear as the
leftmost character of the literal. If the literal is
unsigned, the literal is positive.

3. A numeric literal must not contain more than one
decimal point. The decimal point is treated as an
assumed decimal point, and may appear anywhere
within the literal except as the rightmost character. If
the literal contains no decimal point, the literal is an
integer. An integer is a numeric literal which contains
no decimal point.

If a literal conforms to the rules of the formation of
numeric literals, but is enclosed in quotation marks, it
is a nonnumeric literal and is treated as such by the
system.

4. The value of a numeric literal is the algebraic quantify
represented by the characters in the numeric literal.
Every numeric literal belongs to category numeric.
Refer to the P I c Tu RE clause in Section 6 for
additional information. The size of a numeric literal in
standard data format characters is equal to the number

19

Abacus Software COBOL 64

of digits specified by the user. The following are
examples of numeric literals:

NONNUMERIC LITERAL

51678
.005
+2.629
-.8479

6287.92

A nonnumeric literal may be composed of any allowable
character. The beginning and ending of a nonnumeric
literal are both denoted by a quotation mark. Any character
enclosed within quotation marks is part of the nonnumeric
literal. Subsequently, all spaces enclosed within the
quotation marks are considered part of the literal. Two
consecutive quotation marks within a nonnumeric literal
cause a single quotation mark to be inserted into the literal
string.

All other punctuation characters are part of the value of the
nonnumeric literal rather than separators; all nonnumeric
literals belong to category alphanumeric. Refer to the
PICTURE clause in Section 6.

A nonnumeric literal cannot exceed 120 characters.
Examples of nonnumeric literals are:

Literal on Source Program Level Literal Stored by System

"THE TOTAL PRICE"
"-2080.479"
"A""B"

THE TOTAL PRICE
-2080.479
A"B

Literals that are used for arithmetic computation must be
expressed as numeric literals and must not be enclosed in
quotation marks as nonnumeric literals. For example, _......
" 4 . 4 " and 4 . 4 are not equivalent. The system stores the ..._,,
nonnumeric literal as 4 . 4, whereas the numeric literal
would be stored as 0044 ifthe PICTURE were 999V9,

20

Abacus Software COBOL 64

with the assumed decimal point located between the two
fours.

'-" LOGICAL RECORD AND FILE CONCEPTS

The purpose of defining file information is to distinguish
between the physical aspects of the file and the conceptual
characteristics of the data contained within the file.

PHYSICAL ASPECTS OF A FILE

The physical aspects of a file describe the data as it appears
on the input or output media and include such features as:

1. The grouping of logical records within the physical
limitations of the file medium.

2. The means by which the file can be identified.

CONCEPTUAL CHARACTERISTICS OF A FILE

The conceptual characteristics of a file are the explicit
definition of each logical entity within the file itself. In a
COBOL 64 program, the input or output statements refer to
one logical record.

It is important to distinguish between a physical record and
a logical record. A COBOL 64 logical record is a group of
related information, uniquely identifiable, and treated as a
unit.

A physical record is a physical unit of information whose
size and recording mode are adapted to a particular
computer for the storage of data on a input or output
device. The size of a physical record is hardware
dependent and has no direct relationship to the size of the
file of information contained on a device.

The concept of a logical record is not restricted to file data
but is carried over into the definition of working storage.

21

Abacus Software COBOL 64

Working storage may be grouped into logical records and
defined by a series of record description entries.

RECORD CONCEPTS

The record description consists of a set of data description
entries which describe the characteristics of a particular
record. Each data description entry consists of a
level-number followed by a data-name, if required,
followed by a series of independent clauses, as required.

CONCEPT OF LEVELS

A level concept is inherent in the structure of a logical
record. This concept arises from the need to specify
subdivisions of a record for the purpose of data reference.
Once a subdivision has been specified, it may be further
subdivided to permit more detailed data referral.

DATA DESCRIPTION CONCEPTS

The most basic subdivisions of a record, those not further
subdivided, are called elementary items; consequently, a
record is said to consist of a sequence of elementary items,
or the record itself may be an elementary item.

In order to refer to a set of elementary items, the
elementary items are combined into groups. Each group
consists of a named sequence of one or more elementary
items. Groups, in tum, may be combined into groups of
two or more groups. An elementary item may belong to
more than one group.

22

Abacus Software COBOL 64

LEVEL-NUMBERS

A system of level-numbers shows the organization of
elementary items and group items. Since records are the
most inclusive data items, level-numbers for records start
at 01. Less inclusive data items are assigned higher (not
necessarily successive) level-numbers not greater in value
than 10. There is a special level-number 77 which is an
exception to this rule. Separate entries are written in the
source program for each level-number used.

A group includes all group and elementary items following
it until a level-number less than or equal to the
level-number of that group is encountered. All items
which are immediately subordinate to a given group item
must be described using identical level-numbers greater
than the level-number used to describe that group item.
Refer to Section 6 under LEVEL-NUMBER for additional
information.

CONCEPT OF CLASSES OF DATA

The five categories of data items (refer to the PICTURE

clause in Section 6) are grouped into three classes:
alphabetic, numeric, and alphanumeric. For alphabetic and
numeric, the classes and categories are synonymous. The
alphanumeric class includes the categories of alphanumeric
edited, numeric edited, and alphanumeric (without editing).
Every elementary item, except for an index data item,
belongs to one of the classes and also to one of the
categories. The class of a group item is treated as
alphanumeric regardless of the class of elementary items
subordinate to that group item. Table 2-1 shows the
relationship of the class and categories of data items.

23

Abacus Software COBOL 64

Table 2-1. Classes of Data

LEVEL OF ITEM

Elementary

Nonelementary
(Group)

ALGEBRAIC SIGNS

CLASS

Alphabetic

Numeric

Alphanumeric

Alphanumeric

CATEGORY

Alphabetic

Numeric

Numeric Edited
Alphanumeric Edited
Alphanumeric

Alphabetic
Numeric
Numeric Edited
Alphanumeric Edited
Alphanumeric

Algebraic signs fall into two categories: operational signs, ""1IJI
which are associated with signed numeric data items and
signed numeric literals to indicate algebraic properties; and
editing signs, which appear on edited reports to identify the
sign of the item.

Operational signs are represented as defined under symbol
's' of the p ICTURE clause. Refer to the p ICTURE
clause, General Rule 8, the ' s ' symbol in Section 6.

Editing signs are inserted into a data item through the use
of the sign control symbols of the PICTURE clause.

24

Abacus Software COBOL 64

STANDARD ALIGNMENT RULES

The standard rules for positioning data within an
elementary item depend on the category of the receiving
item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved
to the receiving character positions with zero fill or
truncation on either end as required.

b. When an assumed decimal point is not explicitly
specified, the data item is treated as if it had an
assumed decimal point immediately following the
rightmost character and is aligned as in step la
above.

2. If the receiving data item is a numeric edited data item,
the data moved to the edited data item is aligned by
decimal point with zero fill or truncation at either end
as required within the receiving character positions of
the data item, except where editing requirements cause
replacement of the leading zeros.

3. If the receiving data item is alphanumeric (other than a
numeric edited data item), alphanumeric edited or
alphabetic, the sending data is moved to the receiving
character positions and aligned at the left-most
character position in the data item with space fill or
truncation to the right, as required.

25

Abacus Software COBOL 64

SUBSCRIPTING

Subscripts can be used only when reference is made to an
individual element within a list or table of like elements that
have not been assigned individual data-names (refer to the ~
OCCURS clause in Section 6).

The subscript can be represented either by a numeric literal
that is an integer or by a data-name. The data-name must
be a numeric elementary item that represents an integer.
When the subscript is represented by a data-name, the
data-name may not be subscripted.

The subscript may be signed and, if signed, must be
positive. The lowest possible subscript value is 1. This
value points to the first element of the table. The next
sequential elements of the table are pointed to by subscripts
whose values are 2, 3, and so forth. The highest
permissible subscript value, in any particular case, is the
maximum number of occurrences of the item as specified
in the OCCURS clause.

At the time of execution of a statement which refers to a
subscripted table element, each subscript specified is
validated. That is, its value must not be less than one or
more than the maximum number of occurrences as
specified by the corresponding OCCURS clause. If the
subscript value is not within this range, an abnormal
termination of the program occurs.

The subscript or set of subscripts that identifies the table
element is delimited by the balanced pair of separators, left
parenthesis and right parenthesis, following the table
element data-name. The table element data-name appended
with a subscript is called a subscripted data-name or an
identifier.

When more than one subscript is required, they are written
in the order of successively less inclusive dimensions of
the data organization. The maximum number of subscripts
is 3.

26

Abacus Software COBOL 64

General Format:

data-name (subscript-1 [subscript-2 [subscript-3 J J)

Example:

I n the following record description, to reference the first
year, TOTAL-PER-YEAR (1) is written. If data-name
YE AR contains the number of the year desired,
TOTAL-PER-YEAR (YEAR) is written. If the data item
MONTH contains the specific month desired within the
year specified by YEAR, TOTAL-PER-MONTH (YEAR
MONTH) is written.

01 YEAR-TABLE.
02 TOTAL-PER-YEAR OCCURS 10 TIMES.

05 TOTAL-PER-MONTH OCCURS 12 TIMES PIC 999.

77 YEAR PIC 99.

77 MONTH PIC 99.

~ INDEXING

References can be made to individual elements within a
table of like elements by specifying indexing for that
reference. An index is assigned to that level of the table by
using the INDEXED BY phrase in the definition of a table.
A name given in the INDEXED BY phrase is known as an
index-name and is used to refer to the assigned index. The
value of an index corresponds to the occurrence number of
an element in the associated table. An index-name can be
given a value by the execution of a SET statement

The advantage to indexing is derived by faster execution
time when multiple references to the same table element is
required. In subscripting a multiply function is needed
each time a reference is made. In indexing the multiply
only occurs during execution of the SET statement and not
each time a reference is made.

27

Abacus Software COBOL 64

An index-name has the same internal representation as an
index data item. If a value to be stored in an index-name or
in an inde~ data item exceeds the largest value that can be
held in that index-name or index data item, the value is
truncated according to the rules for the occurrence of a size """1111
error condition in an arithmetic statement without a s I z E . .
ERROR phrase.

An index-name assigned to one table may not be used to
index another table.

Direct indexing is specified by using an index-name in the
form of a subscript. When more than one index-name is
required, they are written in the order of successively less
inclusive dimensions of the data organization as in
subscripting.

At the time of execution of a statement which refers to an
indexed table element, the value of each direct index must
not be less than a value which corresponds to the
beginning of the first occurrence of the table element.
Also, the index must not be greater than a value which ·
corresponds to the beginning of the last occurrence of the """1111
table element as specified by the corresponding OCCURS
clause. If the index value is not within this range, the
execution of the program is terminated.

Subscripting is permitted where indexing is permitted.

28

Abacus Software COBOL 64

SECTION 3 EDITING FORMAT

The rules for spacing given in the following description of
the reference format take precedence over all other rules for
spacing.

FIELD DEFINITIONS

The same format is used for all four divisions of a COBOL
64 program. These divisions must appear in proper order:
IDENTIFICATION, ENVIRONMENT, DATA, and
PROCEDURE. The following paragraphs describe the
various fields of this coding form.

SEQUENCE AREA (Record Positions 1-6)

A sequence number, consisting of six digits in the
sequence area, must be used for each source program line.

INDICATOR AREA (Record Position 7)

Column 7 has the following functions:

1. If column 7 contains an asterisk(*), the remainder of
the record is considered to be a comment and, is not
compiled.

2. If column 7 contains a slash {/), the printout is
advanced to the top of the next page before printing,
and the record is considered to be a comment record.
This feature is not available at this time.

3. The presence of a hyphen (-) indicates that the last
nonnumeric literal on the previous record is not
complete and is continued on this record beginning in
Area B (positions 12 through 80).

29

Abacus Software COBOL 64

N onnumeric literals can be split into two or more records.
On the initial record starting from the quotation mark, all
information through position 80 is taken as part of the
literal, and on the next record a quotation mark must be
used to indicate the start of the second part of the literal. ..,,,,,

AREA A (Positions 8-11)

DIVISION, SECTION, and PARAGRAPH headers must
begin in AREA A. A division header consists of the
division name (IDENTIFICATION, ENVIRONMENT,
DATA, or PROCEDURE), followed by a space, then the
word DIVISION followed by a period.

In the ENVIRONMENT and DATA DIVISIONS, a section
header consists of the section-name, followed by a space,
and then the word SECTION followed by a period.

A paragraph header consists of the paragraph-name
followed by a period. The first sentence of the paragraph
may appear on the same line as the paragraph header. ..,,,,

Within the IDENTIFICATION and ENVIRONMENT
divisions, the section and paragraph headers are fixed and
only the headers shown in this manual are permitted.
Within the PROCEDURE DIVISION, the paragraph
headers are defined by the user.

Within the DATA DIVISION, the level indicator FD and
the level numbers 01 and 77 must each begin in Area A,
followed by the associated name and appropriate
descriptive information.

30

Abacus Software COBOL 64

AREA B (Positions 12-80)

All entries which are not DIV Is I ON' SE c TI ON' or
PARAGRAPH headers; level numbers 01 and 77, or level
indicator FD must start in Area B.

When level-numbers are to be indented, each new
level-number may begin any number of spaces to the right
of AreaA.

BLANK LINES

A blank line is one that contains no entries in the Indicator
Area, Area A, and Area B. A blank line may appear
anywhere in the source program except immediately
preceding a continuation line.

PUNCTUATION

The following rules of punctuation apply in COBOL 64
source programs:

1. A sentence must be terminated by a period followed by
a space. A period must not appear within a sentence
unless it is within a nonnumeric literal or is a decimal
point in a numeric literal or PICTURE string.

2. Two or more names in a series must be separated by a
space.

3. A space must never be embedded in a name; hyphens
are to be used instead. A hyphen must not start or
terminate a name. For example:

PAY-DAY
-PAYDAY

31

(correct)
(wrong)

Abacus Software COBOL 64

SECTION 4 IDENTIFICATION DIVISION

GENERAL

The first division of the COBOL 64 source program is the
IDENTIFICATION DIVISION whose function is to
identify the source program and the resultant output. In
addition, the date the program was written and other
pertinent information can be included in the
IDENTIFICATION DIVISION.

IDENTIFICATION DIVISION STRUCTURE

The structure of this division follows:

IDENTIFICATION DIVISION.

[PRQGEAM-ID. program-name.

[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry] ...]

[DATE-WRITTEN. [comment-entry] ...]

[SECURITY. [comment-entry] ...]

The following rules must be observed in the formation of
theIDENTIFICATION DIVISION:

1. The IDENTIFICATION DIVISION must begin with
the reserved words IDENTIFICATION DIVISION
followed by a period and a space.

2. All paragraph-names must begin in positions 8 through
11 (Area A).

3. The comment-entry must be on the same line as the
paragraph name.

32

Abacus Software COBOL 64

4. The comment-entry can consist of any combination of
words and literals allowed by the COBOL 64 Editor.

~ PROGRAM-ID PARAGRAPH

The PROGRAM-ID paragraph gives the name by which a
program is identified.

PROGRAM-ID. program-name.

The following rules must be observed to form
PROGRAM-ID paragraphs.

1. The program-name must conform to the rules for
formation of a user-defined word.

2. The PROGRAM- ID paragraph contains the name of the
program and must be present in every program.

3. The program-name identifies the source program and
all listings pertaining to a particular program.

4. The program-name must be followed by a period and a
space.

33

Abacus Software COBOL 64

SECTION 5 ENVIRONMENT DIVISION

GENERAL

The ENVIRONMENT DIVISION is the second division of
a COBOL 64 source program. Its function is to specify the
computer being used for the program compilation, specify
the computer to be used for program execution, and
associate files with the computer hardware devices.
Furthermore, this di vision is also used to specify
input-output areas to be utilized for each file declared in a
program.

ENVIRONMENT DIVISION ORGANIZATION

The ENVIRONMENT DIVISION consists of two
sections. The CONFIGURATION SECTION contains the
overall specifications of the computer. The
INPUT-OUTPUT SECTION deals with files to be used in
the object program. .,,,.,

ENVIRONMENT DIVISION STRUCTURE

The structure of this division follows:

ENVIRONMENT DIYISTON,

CONFIGURATION SECTION,

SOURCE-COMPUTER. source-computer-entry

OBJECT-COMpUTEB, object-computer-entry

[SPECIAI,-NAMES. special-names-entry]

[INPUT-OUTPUT SECTION,

FIT.E-CONTBOL, {file-control-entry } .. , J

34

Abacus Software COBOL 64

The following rules must be observed in the formulation of
the ENVIRONMENT DIVISION.

1. The ENVIRONMENT DIVISION must begin with the
reserved words ENVIRONMENT D IVI s ION
followed by a period and a space.

2. All entries must begin in Area A (columns 8 through
11).

CONFIGURATION SECTION

The CONFIGURATION SECTION contains information
concerning the system to be used for program compilation
(SOURCE-COMPUTER), the system to be used for
program execution (OBJECT-COMPUTER), and the
SPECIAL-NAMES paragraph. The SPECIAL-NAMES
paragraph is used to define a special currency sign or
decimal point in place of commas.

SOURCE-COMPUTER PARAGRAPH

The SOURCE-COMPUTER paragraph identifies the
computer upon which the program is to be compiled.

General Format:

SOURCE-COMPUTER. computer-name.

Syntax Rule:

1. The computer-name must be equal to c 6 4 followed by
a period and a space.

'-". Example:

SOURCE-COMPUTER. C64.

35

Abacus Software COBOL 64

OBJECT-COMPUTER PARAGRAPH

The OBJECT-COMPUTER paragraph identifies the
computer on which the program is to be executed. "'111

General Format:

OBJECT-COMPUTER. computer-name.

Syntax Rules:

1. Computer-name must be equal to c 6 4 followed by a
period and a space.

SPECIAL-NAMES PARAGRAPH

The s PE c I AL-NAME s paragraph provides a means of
defining a special currency sign or the decimal point in ..,,,,
place of commas.

General Format:

[CURRENCY SIGN .IS. literal]

[DECIMAL-POINT .IS. COMMA] .

36

Abacus Software COBOL 64

SPECIAL-NAMES

"-"' Syntax Rules:

1. The literal which appears in the CURRENCY SIGN IS
literal clause is used in the P I c Tu RE clause to
represent the currency symbol. The literal is limited to
a single character enclosed in quotation marks and
must not be one of the following characters:

a. Digits 0 through 9.

b. Alphabetic characters: A B c D L P R s v x
z space

c. Special characters: * + - , . ; () " I =

If the CURRENCY SIGN IS clause is not present, the
default value dollar sign ($) is used in the PI CT URE
clause.

Forexample: CURRENCY SIGN IS "E"

2. The clause DECIMAL-POINT IS COMMA means that
the functions of the comma and period are exchanged
in the character-string of the PICTURE clause and in
the FILTER-NUMERIC verb. This does not apply to
numeric literals.

37

Abacus Software COBOL 64

INPUT-OUTPUT SECTION

The INPUT-OUTPUT section contains information
concerning files to be used by the program, and the manner """1JIJ
of recording used.

FILE CONCEPTS

In the following paragraphs, concepts of File Types,
Organization, Access Mode, I-0 Status, INVALID KEY
and AT END are discussed pertaining to Sequential and
Relative files.

SEQUENTIAL 1-0

Sequential I -o provides a capability to access records of a
file in established sequence. The sequence is established
as a result of writing the records to the file.

Sequential I-0 provides full facilities for the
FI LE-CONTROL and FD entries as specified in the
formats of this manual. Within the PR o c ED u RE
DIVISION, Sequential I-0 provides full capabilities for
the CLOSE, OPEN, READ and WRITE statements.

RELATIVE 1-0

Relative I-0 provides the capability to access records of a
disk file in either a random or sequential manner. Each
record in a relative file is uniquely identified by an integer
value greater than zero which specifies the record's logical
ordinal position in the file.

Relative I-0 has full facilities for the FILE-CONTROL and
FD entries as specified in the formats of this manual. """1111
Within the PROCEDURE DIVISION, the I-0 provides
full capabilities for the CLOSE, OPEN, READ, and WRITE
statements.

38

Abacus Software COBOL 64

ORGANIZATION

Sequential Files are organized such that each record in the
file except the first has a unique predecessor record, and
each record except the last has a unique successor record.
These predecessor-successor relationships are established
by the order of WRITE statements when the file is created.
Once established, the predecessor-successor relationships
do not change except in the case where records are added
to the end of the file.

Relative File organization is permitted only on disk storage
devices. A Relative File consists of records which are
identified by relative record numbers. The file may be
thought of as composed of a serial string of areas, each
capable of holding a logical record. Each of these areas is
denominated by a relative record number. Records are
stored and retrieved based on this number. For example,
the tenth record is the one addressed by relative record
number 10 and is in the tenth record area, whether or not
records have been written in the first through the ninth
record areas. The maximum size of a relative logical
record is 254 characters.

ACCESS MODE

The ACCESS MODE clause specifies the manner in which
records are accessed in a file. Sequential and Relative File
access methods are discussed in the following paragraphs.

SEQUENTIAL FILES

In the sequential access mode, the sequence in which
records are accessed is by the ascending order of ordinal
location within the file.

39

Abacus Software COBOL 64

RELATIVE FILE

In the sequential access mode, the sequence in which
records are accessed is the ascending order of the relative ""'111
record numbers of all records which currently exist within
the file.

In the random access mode, the sequence in which records
are accessed is controlled by the programmer. The desired
record is accessed by placing its relative record number in a
relative key data item.

I-0 STATUS

If the FILE STATUS clause is specified in a file control
entry, a value is placed into the specified two-character data
item during the execution of an OPEN, CLOSE, READ, or
WRITE statement to indicate to the COBOL 64 program the
status of that input-output operation.

The usage of this feature is strongly recommended. The
testing of 1-0 status after each 1-0 statement will avoid a
good deal of confusion when debugging.

STATUS KEY 1

The leftmost character position of the FILE STATUS
data item is known as status key 1 and is set to a value
which indicates one of the following conditions upon
completion of the input-output operation.

VALUE

0
1
2
3
9

CO ND ID ON

Successful Completion
At End
Invalid Key
Permanent Error
COBOL 64-Defined Condition:

The above conditions are defined in following text.

40

Abacus Software COBOL 64

SUCCESSFUL COMPLETION

The input-output statement was successfully executed.

AT END

The sequential READ statement is unsuccessfully executed
as a result of an attempt to read a record when no next
logical record exists in the file.

INVALID KEY

The input-output statement was unsuccessfully executed as
a result of one of the following:

1. A READ statement when the contents of the ACTUAL
KEY data item are less than 1 or greater than the ordinal
number of the last record ever written to the file, or
trying to READ a relative file record which was never
written to.

2. A WRITE statement when the contents of the ACTUAL
KEY data item are less than 1 or greater than the last
record allowed to be written because of the
specification of a maximum file size.

PERMANENT ERROR

The input-output statement was unsuccessfully executed as
the result of a boundary violation for a sequential file or as
the result of an input-output error, such as data check
parity error.

41

Abacus Software COBOL 64

STATUS KEY 2

The rightmost character position of the FILE STATUS
data item is known as status key 2 and is used to further "1111
describe the results of the input-output operations. This ..
character contains a value as follows:

1. If no further information is available concerning the
input-output operation, then status key 2 contains a
value of 0.

2. When status key 1 contains a value of 2 indicating an
INVALID KEY condition, status key 2 is used to
designate the case of that condition as follows:

a. A value of 3 in status key 2 indicates no record
found. An attempt is made to access a record,
identified by a key, but that record does not exist
in the file.

b. A value of 4 in status key 2 indicates a boundary
violation. An attempt was made to write beyond W
the externally defined boundaries of the file.

3. When status key 1 contains a value of 9 indicating a
COBOL 64-defined condition, the value of status key
2 indicates the condition as follows:

42

Abacus Software COBOL 64

STATUSKEY2

VALUE CONDIDON

0 This is a Commodore exception which is displayed on
the screen. See your Commodore User's Guide for
additional information.

1 Attempted to OPEN or CLOSE when file was already
opened or closed.

2 Device not present or powered on.

3 Attempted READ or WRITE when file was not opened
or not opened properly. A READ must be opened
INPUT or 1-0. A WRITE must be opened OUTPUT or
1-0.

4 Attempted READ when previous READ resulted in an
end of file condition.

VALID COMBINATIONS OF STATUS KEYS 1 and 2

The valid permissible combinations of the values of status
key 1 and status key 2 are shown in Table 5-1.

TABLE 5-1. STATUS KEY COMBINATIONS

STATUS
KEYl

0
1
2
2
3
9
9
9
9
9

STATUS
KEY2

0
0
3
4
0
0
1
2
3
4

Successful completion
AT END
INVALID KEY, no record found
INVALID KEY, boundary violation
Permanent error
Commodore error
OPEN CLOSE error
Devise not present/ready
READ or WRITE with OPEN error
READ after end of file

43

Abacus Software COBOL 64

FILE-CONTROL PARAGRAPH

The F ILE - c ONT RO L paragraph names each file and
allows specification of other file-related information.

General Format:

FIJ.E-CONTROI .• {file-control-entry }

FILE CONTROL ENTRY

The file control entry names a file and may specify other
file-related information.

INPUT-OUTPUT SECTION

FILE-CONTROL

~ filename

~TO

lc OBGANIZAIION IS SEOUENITAI]

~ = MODE IS SEOI!ENTI8!, ~

ORGANIZATION rs REI.ATTYE

PRINTER-J525

{
SEOUENTJAJ[REI.ATiyE KEY rs data-name-~}

~MODE rs .BANUQM REI.ATTYE KEY rs data-name-2

[FILE ~ IS data-name-1 J .

44

Abacus Software COBOL 64

Syntax Rules:

1. The SELECT clause must be specified first in the file
control entry. The clauses which follow the SELECT
clause may appear in any order.

2. Each file described in the DATA DIVISION must be
named only once with a file-name in the
FILE-CONTROL paragraph. Each file specified in the
file control entry must have a file description entry in
the DATA DIVISION.

3. If the ACCESS MODE clause is not specified, the
ACCESS MODE IS SEQUENTIAL clause is implied.

4. Data-name-1 must be defined in the DAT A
DI v Is I ON as a two-character data item of the
category alphanumeric and must not be defined in the
FILE SECT ION or the COMMUN I CAT I ON
SECTION.

5. If no ORGANIZATION IS clause is specified, the
ORGANIZATION IS SEQUENTIAL clause is
implied.

6. The RELATIVE KEY phrase may be specified only
for disk storage files.

7. Data-name-2 must not be defined in a record
description entry associated with that file-name.

8. The data item referenced by data-name-2 must be
defined as an unsigned integer.

45

Abacus Software COBOL 64

General Rules:

1. The AS s I GN clause specifies the association of the file
referenced by file-name to a storage medium. For ..,,,
Relative and Indexed Files, the storage medium must
be DISK-1541.

2. The ORGANIZATION clause specifies the logical
structure of a file. The file organization is established
at the time a file is created and cannot subsequently be
changed.

3. When the access mode of a Relative File is sequential,
records in the file are accessed in the order of
ascending relative record numbers of existing records
in the file.

4. When the FILE STATUS clause is specified, a value
is moved by the COBOL 64 system into the data item
specified by data-name-1 after the execution of every
statement that references that file either explicitly or ..,,.,
implicitly. This value indicates the status of execution
of the statement. Refer to I-0 Status in this section for
additional information.

5. If the access mode of a Relative File is random, the
value of the RELATIVE KEY data item indicates the
record to be accessed.

6. All records stored in a Relative File are uniquely
identified by relative record numbers. The relative
record number of a given record specifies the record's
logical ordinal position in the file. The first logical
record has a relative record number of 1, and
subsequent logical records have relative record
numbers of 2, 3, 4, and so forth.

7. In a Relative File, the data item specified by
data-name-2 is used to communicate a relative record
number between the program and the COBOL 64
system.

46

Abacus Software COBOL 64

SECTION 6 DAT A DIVISION

GENERAL

The DATA DIVISION describes the data that the object
program is to accept as input, to manipulate, to create, or to
produce as output. Data to be processed belongs to these
three categories:

1. That which is contained in files and enters or leaves the
internal memory of the computer from a specified area
or areas.

2. That which is developed internally and placed into
intermediate or working storage, or placed into specific
format for output reporting purposes.

3. Constants which are defined by the user.

DATA DIVISION ORGANIZATION

The DATA DIVISION, which is one of the required
divisions in a program, is subdivided into sections. These
are FILE and WORKING-STORAGE.

The FILE SECTION defines the structure of data files.
Each file is defined by a file description entry and one or
more record descriptions. Record descriptions are written
immediately following the file description entry.

The WORKING-STORAGE SECTION describes records
and noncontiguous data items which are not part of
external data files but are developed and processed
internally. It also describes data items whose values are
preassigned in the source program.

47

Abacus Software COBOL 64

DATA DIVISION STRUCTURE

The following structure shows the general format of the
sections of the DATA DIVISION, and defines the order
of presentation in the source program.

~ DIVISION.

[

I.11.E SECT ION .

[file-description-entry [record-description-entry]

WORKING-STORAGE SECTION.

[
77-level-description-entrJ
record-description-entry J ...

FILE SECTION

...] ..]

In a COBOL 64 program, the file description entry (FD)
represents the highest level of organization in the FI LE
SECTION. The FILE SECTION header is followed by a
file description entry consisting of a level indicator (FD), a
file-name, and a series of independent clauses. The FD
clauses specify the size of the logical records, the presence
or absence of label records and the value of label items.
The entry is terminated by a period.

RECORD DESCRIPTION

A record description consists of a set of data description
entries which describe the characteristics of a particular
record. Each data description entry consists of a
level-number followed by a data-name (if required),
followed by a series of independent clauses as required.

48

Abacus Software COBOL 64

Examples:

01 DATA-ITEM-ONE
03 LINE-COUNTER

PICTURE IS X(lO).
PIC 999.

A record description has a hierarchical structure and,
therefore, the clauses used with an entry may vary
considerably, depending upon whether or not it is followed
by subordinate entries. The structure of a record
description is defined in Concepts of Levels, Section 2,
while the elements allowed in a record description are
shown in the data description structure.

FILE DESCRIPTION STRUCTURE

The file description entry furnishes information concerning
the physical structure and identification pertaining to a
given file.

[[!2, file-name

[VALUE QI. FILE-ID IS literal-1)

{record-description-entry } ...)

49

Abacus Software COBOL 64

LABEL RECORDS

The LABEL RECORDS clause specifies whether labels are
present.

Syntax Rules:

This clause is required. The clause is treated as
documentation only.

VALUE OF

The VALUE OF clause specifies the file identification of a
disk file.

Syntax Rules:

Literal-1 must be a nonnumeric literal not greater than 19
characters. The first three characters must be @ O : if the
"replace" feature is desired. Note that relative files cannot
be "replaced". See your Commodore user's guide for
more detailed information.

General Rules:

1. For an input file, the appropriate label routine checks
to see if the disk drive contains a file name equal to the
value of literal-1.

For an output file, at the appropriate time, the value of
literal-1 is used to create the disk file name.

Example: VALUE OF FILE-ID IS "MY-FILE"

50

Abacus Software COBOL 64

DATA DESCRIPTION STRUCTURE

A data description entry specifies the characteristics of a
particular item of data.

General Format:

level-number {
data-name-1}

FILLER

[{

PICTURE} J
PIC IS character-string

[~ IS l !fillliL

OCCURS integer-2 TIMES

[INDEXED BY index-name-1 [index-name-2)

[~ IS literal-1 J

[~ IS ~ literal-2] .

51

Abacus Software COBOL 64

Syntax Rules:

1. The level-number may be any number from 01 through
10 or 77.

2. The clauses may be written in any order with one
exception: the data-name-1 or FILLER clause must
immediately follo~ the level-number.

3. The P I c TURE clause must be specified for every
elementary item except an index data item, in which
case, use of this clause is prohibited. The PICTURE
clause and character-string must be on the same line.

General Rules:

1. The PICTURE clauses must not be specified except for
an elementary data item.

DATA-NAME OR FILLER

A data-name specifies the name of the data being
described. The word FILLER specifies an elementary
item of the logical record that cannot be referred to
explicitly.

General Format:

{
data-name}

FILLER

52

Abacus Software COBOL 64

Syntax Rules:

1. In the FILE and WORKING-STORAGE SECTIONS,
a data-name or the key word FILLER must be the first
word following the level-number in each data
description entry.

General Rules:

1. The key word FILLER may be used to name an
elementary item in a record. Under no circumstances
can a FILLER item be referred to explicitly.

2. The key word FILLER is not allowed with a level 77
item or with a VALUE clause.

LEVEL-NUMBER

The level-number shows the hierarchy of data within a
logical record. In addition, it is used to identify entries for
working storage items.

General Format:

level-number

Syntax Rules:

1. A level-number is required as the first element in each
data description entry.

2. Data description entries subordinate to an FD must
have level-numbers with the values 01 through 10.
Refer to the FD file description in the paragraph
entitled File Description Structure.

3. Data description entries in the WORKING-STORAGE
SECTION must have level-numbers with the values 01
through 10.

53

Abacus Software COBOL 64

General Rules:

1. The level-number 01 identifies the first entry in each
record description. Less inclusive groupings are given
higher numbers (not necessarily successive) up to a "1111
limit of 10.

2. A special level-number has been assigned to entries
where there is no real concept of level: the
level-number 77 is assigned to identify noncontiguous
working storage data items.

3. Multiple level 01 entries subordinate to any given level
indicator (FD) represent implicit redefinitions of the
same area.

Examples:

The following is an example of record layout which
corresponds to Figure 6-3 showing a record description -........
and the use of level numbers. "119"'

STUDENT NO.

01

STUDENT RECORD

NAME
LAST FIRST

STUDENT-REC.
03 STUDENT-NO
03 STUDENT-NAME.

05 LAST-NAME
05 FIRST-NAME

03 GRADE
03 BIRTH-DATE.

05 BIRTH-MONTH
05 BIRTH-DAY
05 BIRTH-YEAR

GRADE BIRTH DATE
mth day yr

PIC 9 (6) .

PIC x (8) •

PIC x (5) .
PIC 99.

PIC 99.
PIC 99.
PIC 99.

Figure 6-3 Level Numbers

54

Abacus Software COBOL 64

OCCURS

The OCCURS clause eliminates the need for separate entries
for repeated data items and supplies information required
for the application of subscripts or indices.

General Format:

~ integer-2 TIMES

[TNQEXEQ BY index-name-1 [index-name-2) ...]

Syntax Rules:

1. An INDEXED BY phrase is required if the subject of
this entry, or an entry subordinate to this entry, is to be
referred to by indexing.

2. The OCCURS clause cannot be specified in a data
description entry that has an 01or77 level-number.

3. Index-name-1, index-name-2,... must be unique
words within the program.

4. Integer-2 cannot be zero and cannot be greater than
9,999.

General Rules:

1. The OCCURS clause is used in defining tables and
other homogeneous sets of repeated data items.
Whenever the OCCURS clause is used, the data-name
which is the subject of this entry must be either
subscripted or indexed whenever it is referred to in a
statement. Further, if the data-name associated with
the OCCURS clause is the name of a group item, then
all data-names belonging to the group must be
subscripted or indexed when used as operands. Refer
to Subscripting, Indexing, and Identifier in Section 2.

55

Abacus Software COBOL 64

2. Except for the OCCURS clause, all data description
clauses associated with an item whose description
includes an OCCURS clause apply to each occurrence
of the item described.

3. The VALUE clause is not allowed with the OCCURS
clause.

PICTURE

The PICTURE clause describes the general characteristics
and editing requirements of an elementary item.

General Format:

PICTURE

IS character-string
PIC

Syntax Rules:

1. A PI c TURE clause can be specified only at the
elementary item level.

2. A character-string consists of certain allowable
combinations of characters in the COBOL 64 character
set used as symbols. The allowable combinations
determine the category of the elementary item.

3. The maximum number of characters allowed in the
character-string is 30.

4. The PICTURE clause must appear in every elementary """'1111
item except those items whose USAGE is declared as . . .
INDEX.

56

Abacus Software COBOL 64

5. PIC is an abbreviation for PICTURE.

General Rules:

1. There are five categories of data that can be described
with a PI c TURE clause; alphabetic, numeric,
alphanumeric, alphanumeric edited, and numeric
edited.

2. To define an item as alphabetic:

a. The PICTURE character-string can only contain
the symbol ' A ' .

b. The item contents, when represented in standard
data format, must be any combination of the 26
letters of the English alphabet and the space from
the computer character set

3. To define an item as numeric:

a. The PICTURE character-string can only contain
the symbols '9 ', 's ',and 'V'. The number of
digit positions that can be described by the
PI c TURE character-string must range from 1 to
18 inclusive.

b. If unsigned, the item contents must be a
combination of the numerals ' 0 ' , ' 1 ' , ' 2 ' ,
' 3 ' , ' 4 ' , ' 5 ' , ' 6 ' , ' 7 ' , ' 8 ' , and ' 9 ' ; if
signed, the item may also contain a ' + ' or ' - ' .

4. To define an item as alphanumeric:

a. The PI c TURE character-string is restricted to
certain combinations of the symbols 'A ' , ' x ' ,
' 9 ' , and the item is treated as if the
character-string contained all X's. AP ICTURE
character-string which contains all A's or all 9 's
does not define an alphanumeric item.

57

Abacus Software COBOL 64

b. The item contents are allowable characters in the
computers.

5. To define an item as alphanumeric edited:

a. The PICTURE character-string is restricted to
certain combinations of the following symbols:
' A ' , ' x ' , ' 9 ' , ' B ' , ' O ' , and ' I ' .

1) The character-string must contain at least one
' B ' and at least one ' x ' or at least one ' o '
(zero) and at least one 'x ' or at least one
'I ' (stroke) and at least one 'x'.

2) The character-string must contain at least one
' O ' (zero) and at least one ' A' or at least one
'I' (stroke) and at least one 'A'.

b. The contents are allowable characters in the
computer character set.

6. To define an item as numeric edited:

a. The PICTURE character-string is restricted to
certain combinations of the symbols ' B ' , ' I ' ,
'V', 'Z', '0', '9', ',', '.', '*',
' + ' , ' - ' , ' CR ' , ' DB ' , and the currency
symbol ($). The allowable combinations are
determined from the order of precedence of
symbols and the editing rules.

1) The number of digit positions that can be
represented in the PICTURE character-string
must range from 1 to 18 inclusive.

2) The character-string must contain at least one
'0', 'B', '/', 'Z', '*', '+',

' ' ' ' - ' 'CR' ' 'DB' ' or
currency symbol.

58

Abacus Software COBOL 64

b. The contents of the character positions of these
symbols that are allowed to represent a digit in
standard data format must be one of the numerals.

7. The size of an elementary item, where size means the
number of character positions occupied by the
elementary item in standard data format, is determined
by the number of allowable symbols that represent
character positions. An integer which is enclosed in
parentheses following the symbols: 'A' , ' '
'X', '9', 'Z', '*', 'B', '/', '0',
' + ' , ' - ' , or ' $ ' indicates the number of
consecutive occurrences of the symbol. The maximum
value of this integer is 9 , 9 9 9. The following
symbols may appear only once in a given PICTURE:
' s ' , ' v ' , ' . ' , ' CR', and ' DB ' .

8. The functions of the symbols used to describe an
elementary item are explained as follows:

'A'

'B'

'S,

Each letter ' A ' in the character-string represents a
character position which can contain only a letter of the
alphabet or a space.

Each letter 'B' in the character-string represents a
character position into which the space character will
be inserted.

The letter ' s ' is used in a character-string to indicate
the presence of an operational sign in the internal
representation of a numeric data item. It must be the
first (leftmost) character in the character-string.

When an operational sign is specified the sign is
maintained and expected in the zone of the most
significant (leftmost) character. When the data item is
the receiving field in an arithmetic statement the four
zone bits are set to binary 0101 for negative values and
to binary 0100 for positive values. When the data item

59

Abacus Software COBOL 64

'V'

is used in an algebraic comparison or operation to
supply an algebraic value, only the most significant
zone being a binary 0101 will cause the value of the
data item to be considered negative. Only the zone
values 0100 and 0101 will qualify the data item as ""1111
being NUMERIC if tested by the NUMERIC class
condition.

The letter 'v' is used in a character-string to indicate
the location of the assumed decimal point and may
only appear once in a character-string. The ' v ' does
not represent a character position and is not counted in
the size of the elementary item. When the assumed
decimal point is to the right of the rightmost symbol in
the string, the ' v ' is redundant.

'X'

'z'

'9'

'0'

Each letter 'x' in the character-string is used to
represent a character position which contains any
allowable character in the character set

Each letter ' z ' in a character-string may only be used
to represent the leftmost leading numeric character
positions which are replaced by a space character when
the contents of that character positions are zero. Each
' z .. is counted in the size of the item.

Each numeral '9' in the character-string represents a
character position which contains a numeral and is
counted in the size of the item.

Each numeral ' O ' in the character-string represents a
character position into which the numeral zero is
inserted. The ' O ' is counted in the item.

60

Abacus Software COBOL 64

'I'

' '

' '

Each stroke ' I ' in the character-string represents a
character position into which the stroke character is
inserted. The '/' is counted in the size of the item.

Each comma ' , ' in the character-string represents a
character position into which the character ' , ' is
inserted. This character position is counted in the size
of the item. The insertion character ' , ' must not be
the last character in the PICTURE character-string.

When the character period ' . ' appears in the
character-string it is an editing symbol which
represents the decimal point for alignment purposes
and in addition, represents a character position into
which the character ' . ' is inserted. The character ' . '
is counted in the size of the item. For a given program
the functions of the period and comma are exchanged
if the clause DECIMAL-POINT IS COMMA is stated
in the SPECIAL-NAMES paragraph. In this exchange
the rules for the period apply to the comma and the
rules for the comma apply to the period when
appearing in a PI c TURE clause. The insertion
character ' . ' must not be the last character in the
PICTURE character-string.

' + ' ' - ' ' CR ' 'DB '

'*'

These symbols are used as editing sign control
symbols and when used, represent the character
position into which the editing sign control symbol
will be placed. The symbols are mutually exclusive in
any one character-string and each character used in the
symbol is counted in determining the size of the data
item.

Each asterisk ' * ' in the character-string represents a
leading numeric character position into which an
asterisk is placed when the contents of that position are
zero. Each '*' is counted in the size of the item.

61

Abacus Software COBOL 64

'cs'
The currency symbol ' $ ' in the character-string
represents a character position into which a currency
symbol is placed. The currency symbol in a
character-string is represented by either the dollar sign ""1/1
'$' or by the character specified in the CURRENCY
SIGN clause in the SPECIAL-NAMES paragraph. The
currency symbol is counted in the size of the item.

EDITING RULES:

1. There are two general methods of performing editing
in the PI c TURE clause, either by insertion or by
suppression and replacement. The four types of
insertion editing available are:

a. Simple insertion
b. Special insertion
c. Fixed insertion
d. Floating insertion

There are two types of suppression and replacement
editing:

a. Zero suppression and replacement with spaces
b. Zero suppression and replacement with asterisks

2. The type of editing which may be performed upon an
item is dependent upon the category to which the item
belongs. Table 6-1 specifies which type of editing
may be performed upon a given category:

62

Abacus Software COBOL 64

Table 6-1. Editing for Each Item Category

Category Type of Editing

Alphabetic None
None
None

Numeric
Alphanumeric
Alphanumeric Edited
Numeric Edited

Simple insertion ' O ' , ' B ' , and ' I '
All, subject to Editing Rule 3

3. Floating insertion, and editing by zero suppression and
replacement, are mutually exclusive in a PICTURE
clause. Only one type of replacement may be used
with zero suppression in a PICTURE clause.

4. Simple Insertion Editing. The ' , ' (comma), 'B '
(space), 'O' (zero), and 'I' (stroke) are used as the
insertion characters. The insertion characters are
counted in the size of the item and represent the
position in the item into which the character is inserted.

5. Special Insertion Editing. The ' . ' (period) is used as
the insertion character. In addition to being an
insertion character it also represents the decimal point
for alignment purposes. The insertion character, used
for the actual decimal point, is counted in the size of
the item. The use of the assumed decimal point,
represented by the symbol ' v' and the actual decimal
point, represented by the insertion character, in the
same P I c TURE character-string is disallowed. The
result of special insertion editing is the appearance of
the insertion character in the item in the same position
as shown in the character-string.

6. Fixed Insertion Editing. The currency symbol and the
editing sign control symbols, ' + ' , ' - ' , ' CR ' ,
'DB', are the insertion characters. Only one currency
symbol and only one of the editing sign control
symbols can be used in a given P I c Tu RE
character-string. The symbols 'CR' or 'DB' always
represent two character positions in determining the

63

Abacus Software COBOL 64

size of the item and must represent the rightmost
character positions counted in the size of the item. The
symbol '+' or ' - ' when used, must be either the
leftmost or rightmost character position to be counted
in the size of the item. The currency symbol must be
the leftmost character position to be counted in the size
of the item except that it can be preceded by either a
'+' or '-' symbol. Fixed insertion editing results in
the insertion character occupying the same character
position in the edited item as in the P I c Tu RE
character-string. Editing sign control symbols produce
the results shown in Table 6-2 depending upon the
value of the data item.

Table 6-2. Editing of Sign Control Symbols

Result
Editing Symbol in Data Item Data Item

p I c TURE Character-String Positive or Zero Negative

+ +
space

CR 2 spaces CR
DB 2 spaces DB

7. Floating Insertion Editing. The currency symbol and
editing sign control symbols '+' or ' - ' are the
floating insertion characters and are mutually exclusive
in a given PICTURE character-string.

Floating insertion editing is indicated in a P I c TURE
character-string by using a string of at least two of the
floating insertion characters. This string of floating
insertion characters may contain any of the fixed
insertion symbols or have fixed insertion characters
immediately to the right. These simple insertion
characters are part of the floating string.

The leftmost character of the floating insertion string
represents the leftmost limit of the floating symbol in
the data item. The rightmost character of the floating

64

...,,

Abacus Software COBOL 64

string represents the rightmost limit of the floating
symbols in the data item.

The second floating character from the left represents
the leftmost limit of the numeric data that can be stored
in the data item. Nonzero numeric data may replace all
the characters at or to the right of this limit

In a PI c TURE character-string, there are only two
ways of representing floating insertion editing. One is
to represent any or all of the leading numeric character
positions on the left of the decimal point by the
insertion character. The other is to represent all of the
numeric character positions in the P I c Tu RE
character-string by the insertion character.

If the insertion characters are only to the left of the
decimal point in the PI CT URE character-string, the
result is that a single floating insertion character is
placed into the character position immediately
preceding either the decimal point or the first nonzero
digit in the data represented by the insertion symbol
string, whichever is farther to the left in the PICTURE
character-string. The character positions preceding the
insertion character are replaced with spaces.

If all numeric character positions in the PICTURE
character-string are represented by the insertion
character, the result depends upon the value of the
data. If the value is zero, the entire data item will
contain spaces. If the value is not zero, the result is
the same as when the insertion character is only to the
left of the decimal point.

To avoid truncation, the minimum size of the
PICTURE character-string for the receiving data item
must be the number of characters in the sending data
item, plus the number of nonfloating insertion
characters being edited into the receiving data item,
plus one for the floating insertion character.

65

Abacus Software COBOL 64

8. Zero Suppression Editing. The suppression of leading
zeroes in numeric character positions is indicated by
the use of the alphabetic character ' z ' or the character
'*' (asterisk) as suppression symbols in a PICTURE ""1111
character-string. These symbols are mutually
exclusive in a given PICTURE character-string. Each
suppression symbol is counted in determining the size
of the item. If ' z ' is used the replacement character is
the space, and if the asterisk is used the replacement
character will be ' * ' .

Zero suppression and replacement is indicated in a
PI CT URE character-string by using a string of one or
more of the allowable symbols to represent leading
numeric character positions which are to be replaced
when the associated character position in the data
contains a zero. Any of the simple insertion characters
embedded in the string of symbols or to the immediate
right of this string are part of the string.

In a PI c TURE character-string, there are only two ..,,,,
ways of representing zero suppression. One is to
represent any or all of the leading numeric character
positions to the left of the decimal point by
suppression symbols. The other is to represent all of
the numeric character positions in the PICTURE
character-string by suppression symbols.

If the suppression symbols appear only to the left of
the decimal point, any leading zero in the data which
corresponds to a symbol in the string is replaced by the
replacement character. Suppression terminates at the
first nonzero digit in the data represented by the
suppression symbol string or at the decimal point,
whichever is encountered first.

If all numeric character positions in the PICTURE
character-string are represented by suppression _...
symbols, and the value of the data is not zero, the ~
result is the same as if the suppression characters were
only to the left of the decimal point. If the value is
zero and the suppression symbol is ' z ' , the entire

66

Abacus Software COBOL 64

data item will be spaces. If the value is zero and the
suppression symbol ' * ' , the data item will be all
asterisks except for the actual decimal point

9. The symbols ' + ' , ' - ' , ' * ' , ' z ' , and ' $ ' ,
when used as floating replacement characters, are
mutually exclusive within a given character-string.

10. At least one of the symbols ' A ' , ' x ' , ' z ' , ' 9 '
or ' * ' , or at least two of the symbols ' + ' , ' - ' or
'cs' must be present in a PICTURE string.

67

Abacus Software COBOL 64

Examples:

The following Table 6-3 demonstrates the editing function
of the PICTURE Clause.

Table 6-3. Editing Application of the PICTURE Clause

Source Area Receiving Area

Editing
Picture Data Picture Edited Data

9(5) 12345 00999.00 00345.00
9(3)V99 12345 999.BB 123.

S9 (5) (+) 12345 $$$$$$.99CR $12345.00
S99V9 (3) (-) 12345 ------.99 -12.34

S9 (5) (-) 12345 $$$$$$.99CR $12345.00CR
S9(5)V (-) 12345 -ZZZZ9.99 -12345.00

9(5) 12345 BBB99.99 45.00
S9(5) (+) 12345 ZZZZ9.99- 12345.00
S9(5) (-) 12345 ZZZZ9.99- 12345.00-

9(3)V99 12345 999.00 123.00
S9(5) (-) 00123 --99999.99 -00123.00
S9(5) (+) 12345 ZZZZ9.99+ 12345.00+

9(3)V99 00001 $$$,$$$.$$ $.01
9(5) 00000 $ZZ,ZZZ.ZZ
9(5) 12345 $$$,$$9.99 $12,345.00
9(3)V99 00001 $ZZ,ZZZ.99 $.01
9(3)V99 12345 $$$,$$9.99 $123.45
9(3)V99 00012 $ZZ,ZZ9.99 $ 0.12
9(5) 00123 $**,**9.99 $***123.00
9(5) 00000 $** *** ** , . *******.**
9(5) 01234 $**,**9.99 $*1,234.00
9(5) 00000 $$$,$$$.$$
9(3)V99 12345 $ZZ,ZZ9.99 $ 123.45
9(5) 00000 $$$,$$9.99 $0.00

V9(5) 12345 $ZZ,ZZ9.99 $ 0.12
V9(5) 12345 $$$,$$9.99 $0.12

9(5) 12345 $ZZ,ZZ9.99 $12,345.00

68

..,,.,

Abacus Software COBOL 64

USAGE

The USAGE clause specifies the format of a data item in the
computer storage.

General Format:

[USAGE IS] INDEX

Syntax Rules:

1. An index data item can be referenced explicitly only in
a SET statement or a relation condition.

2. The OCCURS, p ICTURE, or VALUE clauses cannot be
used to describe group or elementary items described
with the USAGE IS INDEX clause.

General Rules:

1. An elementary item described with the USAGE IS
INDEX clause is called an index data item and contains
a value which must correspond to an occurrence
number of a table element.

The group item is considered to be a group data item
whose class is alphanumeric and may be referenced
any place in the syntax acceptable for such an item.
The size of the group item is considered to be in terms
of characters, six characters for each subordinate index
data item.

2. An index data item can be part of a group which is
referred to in an MOVE, or input-output statement, in
which case no conversion takes place.

69

Abacus Software COBOL 64

VALUE

The VALUE clause defines the value of constants and the
initial value of working-storage items. ..,,,,

General Format:

Format 1:

YALUE IS literal

Format 2:

YALUE IS .cHB literal-2

Syntax Rules:

1. The VALUE clause cannot be stated for any item that
has the key word F ILLER or one which has an
OCCURS clause or subordinate to an item which has an
OCCURS clause.

2. A signed numeric literal must have an associated
signed numeric PICTURE character-string.

3. All numeric literals in a VALUE clause of an item must
have a value which is within the range of values
indicated by the PICTURE clause, and must not have a
value which would require truncation of nonzero
digits. Nonnumeric literals in a VALUE clause of an
item must not exceed the size indicated by the
p I CTURE clause.

4. Format 2 VALUE clauses must contain a PICTURE
clause with a character-string equal to one x. Literal-2
must be an unsigned integer between 0 and 255.

70

Abacus Software COBOL 64

General Rules:

1. The VALUE clause must not conflict with other clauses
in the data description of the item or in the data
description within the hierarchy of the item. The
following rules apply:

a. If the category of the item is numeric, the literal in
the VALUE clause must be numeric. If the literal
defines the value of a working-storage item, the
literal is aligned in the data item according to the
standard alignment rules. Refer to Standard
Alignment Rules in Section 2.

b. If the category of the item is alphabetic,
alphanumeric, alphanumeric edited or numeric
edited, all literals in the VALUE clause must be
nonnumeric literals. The literal is aligned in the
data item as if the data item had been described as
alphanumeric. (Refer to Standard Alignment
Rules in Section 2.) Editing characters in the
P I c TURE clause are included in determining the
size of the data item (refer to the PICTURE clause
in this section) but have no effect on initialization
of the data item. Therefore, the VALUE for an
edited item is presented in an edited form.

2. Rules governing the use of the VALUE clause differ
with the respective sections of the DATA DIVISION:

a. In the FILE SECTION, the VALUE clause may
not be used.

b. In the WORKING-STORAGE SECTION the
VALUE clause is used to specify the initial value of
the data item, in which case the clause causes the
item to assume the specified value at the start of
the object program. If the VALUE clause is not
used in an item description, the initial value is
undefined.

71

Abacus Software COBOL 64

3. The VALUE clause is not allowed at the group level.

4. Format 2 is intended to provide a method of defining
special character codes which are required for display '...I
or printer commands and for testing certain keyboard
input characters such as function keys. Refer to your
Commodore User's Guide relating to CHR$ codes.

For Example:

77 RETURN-CODE VALUE IS CHR 13 PIC X.

In the PROCEDURE DIVISION when a DISPLAY
RETURN-CODE is executed the cursor will advance to
the next line and then position to column 1.

5. Format 2 is an extension to the ANSI COBOL-74
standard.

WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION is optional and is
that part of the DAT A D Iv I s Io N set aside for
intermediate processing of data. The difference between
the WORKING-STORAGE and FILE SECTIONS is that
the former deals with data that is not associated with an
input or output file. All clauses which are used in normal
input or output record descriptions can be used in a
WORKING-STORAGE record description.

WORKING-STORAGE STRUCTURE

Whereas the FILE SECTION is composed of file
description (FD) entries and associated record description
entries, the WORKING-STORAGE SECTION is composed ..,,,/
only of record description entries and noncontiguous
items. The WORKING-STORAGE SECTION begins with
the section-header and a period, followed by data

72

Abacus Software COBOL 64

description entries for noncontiguous WORKING­

STORAGE items, and/or record description entries for

WORKING-STORAGE records.

Each WORKING-STORAGE SECTION record name and
noncontiguous item name must be unique.

General Example:

WORKING-STORAGE SECTION.

77 data-name-1

77 data-name-n
01 data-name-2

02 data-name-3

01 data-name-4
02 data-name-5

03 data-name-6

NONCONTIGUOUS WORKING-STORAGE

Items in WORKING-STORAGE which have no hierarchical
relationship to one another need not be grouped into
records, provided they do not need to be further
subdivided. These items are classified and defined as
noncontiguous elementary items. Each of these items is
defined in a separate data description entry which begins
with the special level-number 77.

The following record description clauses are required in
each entry:

Level-number 77
Data-name
The PICTURE clause or the USAGE IS INDEX clause.

The OCCURS clause is not meaningful on a 77 level item
and will cause an error. Other data description clauses are
optional and can be used to complete the description of the
item if necessary.

73

Abacus Software COBOL 64

WORKING-STORAGE RECORDS

Data elements and constants in WORKING-STORAGE
which have a definite hierarchic relationship to one another_~
must be grouped into records according to the rules for the ~
formation of record descriptions. All clauses which are
used in normal input or output record descriptions can be
used in a WORKING-STORAGE description.

INITIAL VALUES

The initial value of any item in the WORKING-STORAGE
SECTION except an index data item is specified by using
the VALUE clause with the data item. The initial value of
any index data item is unpredictable.

CODING THE WORKING-STORAGE SECTION

Figure 6-5 illustrates the coding of the
WORKING-STORAGE SECTION

WORKING-STORAGE SECTION.
01 HDG-LINE.

03 FILLER PIC X(52).
03 DN2 PIC A(17) VALUE "SALES PERFORMANCE".

77 DISK-CONTROL
77 TOTAL-SALES
77 SALES-QUOTA
01 STATE-TABLE.

PICTURE 9 (8) •
PIC
PIC

9 (11) VALUE 0.
9 (10).

05 STATE-KEY OCCURS 50.
10 STATE-CODE PIC 99.
10 COUNTY PIC 9.
10 CITY PIC 9.

74

Abacus Software COBOL 64

SECTION 7 PROCEDURE DIVISION

GENERAL

The PROCEDURE DIVISION must be included in every
COBOL 64 source program. This division must contain at
least 1 paragraph.

A paragraph consists of a paragraph-name, followed by a
period and a space, followed by zero, one, or more
successive sentences. A paragraph ends immediately
before the next paragraph-name or at the end of the
PROCEDURE DIVISION.

A sentence consists of one or more statements and is
terminated by a period.

A statement is a syntactically valid combination of words
and symbols beginning with a COBOL 64 verb.

The term 'identifier' is defined as the word or words
necessary to make unique reference to a data item.

EXECUTION OF THE PROCEDURE DIVISION

Execution begins with the first statement of the
PROCEDURE DIVISION. Statements are executed in the
order of appearance, except where the user indicates GO

TO or PERFORM statements.

PROCEDURE DIVISION STRUCTURE

The PROCEDURE DIVIS ION is made up of the
PROCEDURE DIVISION header and the PROCEDURE

DIVISION body. Descriptions of these follow:

75

Abacus Software COBOL 64

PROCEDURE DIVISION HEADER

The PRECEDURE DIVISION is identified by and must
begin with the following header: ""11/1

PROCEDURE DIVISION.

PROCEDURE DIVISION BODY

The body of the PROCEDURE DIVISION must conform
to the following format.

{paragraph-name. [sentence] ... }

STATEMENTS

There are two types of statements; conditional statements
and imperative statements.

CONDITIONAL STATEMENTS

A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action
of the object program is dependent on this truth value.

A conditional statement is

1. An IF statement.

2. A READ statement that specifies the AT END or
INVALID KEY phrase.

3. A WRITE statement that specifies the INVALID KEY
phrase.

4. An arithmetic statement (ADD, DIVIDE, MULTIPLY,
SUBTRACT) that specifies the SIZE ERROR phrase.

5. A FILTER-NUMERIC statement.

76

Abacus Software COBOL 64

IMPERATIVE STATEMENTS

An imperative statement indicates a specific unconditional
action to be taken by the object program. An imperative
statement is any statement that is not a conditional
statement. An imperative statement may consist of a
sequence of imperative statements, each possibly separated
from the next by a separator. The imperative verbs are:

ACCEPT
ACCEPT-1-KEY
ADD (1)
CLOSE
DEBUG-BREAK
DEBUG-TRACE-OFF
DEBUG-TRACE-ON
DISPLAY
DIVIDE (1)
EXIT
GO
MOVE
MULTIPLY (1)
OPEN
PERFORM
READ (2)
SET
STOP
SUBTRACT (1)
WRITE (3)

The numbers in parentheses following some of the verbs
have the following meaning:

Number

1

2

3

Meaning

Without the optional SIZE ERROR
phrase.
Without the optional AT END phrase or
INVALID KEY phrase.
Without the optional INVALID KEY
phrase.

77

Abacus Software COBOL 64

When 'imperative-statement' appears in the general format
of statements, it refers to a statement that begins with an
imperative verb and specifies an unconditional action to be
taken. An imperative statement may consist of a sequence
of imperative statements. Imperative statements must be
ended by a period, or an ELSE phrase associated with a
previous IF statement.

RELATION CONDITION

A relation condition causes a comparison of two operands,
each of which may be the data item referenced by an
identifier or a literal. A relation condition has a truth value
of TRUE if the relation exists between the operands. If
either of the operands is a group item, the nonnumeric
comparison rules apply.

General Format:

IS [N.Q.I] GREATER THAN

tdentifier-1 IS [N.QI] .LE.SS THAN rdent if ier-2}
literal-1 IS [N.QI] f.Q.UAL TO literal-2

The first operand (identifier-I or literal-I) is the subject of
the condition; the second operand (identifier-2 or literal-2)
is the object of the condition. The relation condition must
contain at least one reference to a variable.

When used, NOT and the next key word are one relational
operator that defines the comparison to be executed for
truth value; for example, NOT EQUAL is a truth test for an
unequal comparison; NOT GREATER is a truth test for an
equal or less comparison. The meaning of the relational
operators is as follows:

78

Abacus Software COBOL 64

Relational Operator Meaning

Is [NOT l GREATER THAN Greater than or not greater than

IS [NOT] LESS THAN Less than or not less than

rs [NOT 1 EQUAL To Equal to or not equal to

COMPARISON OF NUMERIC OPERANDS

For operands whose class is numeric, a comparison is
made with respect to the algebraic value of the operands.
The length of the literal in terms of number of digits
represented, is not significant. Zero is considered a unique
value regardless of the sign.

Unsigned numeric operands are considered positive for
purposes of comparison.

COMPARISON OF NONNUMERIC OPERANDS

For nonnumeric operands, or one numeric and one
nonnumeric operand, a comparison is made with respect to
a specified collating sequence of characters. Refer to your
Commodore User's Guide CHR$ codes for additional
information. If one of the operands is specified as
numeric, it must be an integer data item or an integer literal.
The following conditions apply:

1. If the nonnumeric operand is an elementary data item
or a nonnumeric literal, the numeric operand is treated
as though it were moved to an elementary
alphanumeric data item of the same size as the numeric
data item (in terms of standard data format characters),
and the contents of this alphanumeric data item are
compared to the nonnumeric operand. Refer to the
MOVE statement in this section.

2. If the nonnumeric operand is a group item, the numeric
operand is treated as though it were moved to a group

79

Abacus Software COBOL 64

item of the same size as the numeric data item (in terms
of standard data format characters), and the contents of
this group item are compared to the nonnumeric
operand. Refer to the MOVE for additional information. .,,./

3. A noninteger numeric operand cannot be compared to a
nonnumeric operand.

4. The operands must be the same size.

Comparison effectively proceeds by comparing characters
in corresponding character positions starting from the high
order end and continuing until either a pair of unequal
characters is encountered or the low order end of the
operand is reached, whichever comes first. The operands
are determined to be equal if all pairs of characters compare
equally through the last pair, when the low order end is
reached.

The first encountered pair of unequal characters is
compared to determine a relative position in the collating__,,.
sequence. The operand that contains the character that is ..,.
positioned higher in the collating sequence is considered to
be the greater operand.

COMPARISONS INVOLVING INDEX-NAMES
AND/OR INDEX DATA ITEMS

Relation tests may be made between:

1. Two index-names. The result is the same as if the
corresponding occurrence numbers were compared.

2. An index-name and a data item (other than an index
data item) or literal. The occurrence number that
corresponds to the value of the index-name is
compared to the data item or literal.

3. An index data item and an index-name or another index
data item. The actual values are compared without
conversion.

80

Abacus Software COBOL 64

The comparison of an index data item with a literal or with
any data item not specified above, is not allowed.

CLASS CONDITION

The class condition determines whether the operand is
numeric, consisting entirely of the characters 'O', '1' ,

' 2 ' , ' 3 ' , ... , ' 9 ' , with or without the
operational sign, or alphabetic, consisting entirely of the
characters ' A' , ' B ' , ' c ' , . . . , ' z ' , and space.

General Format:

{

NUMERIC }

identifier IS [NQ!] ALPHABETIC

When used, NOT and the next key word specify one class
condition that defines the class test to be executed for truth
value; for example, NOT NUMER I c is a truth test for
determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data
description describes the item as alphabetic or as a group
item composed of elementary items whose data description
indicates the presence of operational sign(s). If the data
description of the item being tested does not indicate the
presence of an operational sign, the item being tested is
determined to be numeric only if the contents are numeric
and an operations! sign is not present. If the data
description of the item does indicate the presence of an
operational sign, the item being tested is determined to be
numeric only if the contents are numeric and a valid
operational sign is present.

The ALPHABETIC test cannot be used with an item whose
data description describes the item as numeric. The item
being tested is determined to be alphabetic only if the
contents consist of any combination of the alphabetic
characters ' A ' through ' z ' and the space character.

81

Abacus Software COBOL 64

COMMON PHRASES

In the statement descriptions that follow, several phrases
appear frequently: the ROUNDED phrase and the s I ZE
ERROR phrase.

In the following discussion, a resultant-identifier is that
identifier associated with a result of an arithmetic
operation.

ROUNDED PHRASE

If, after decimal point alignment, the number of places in
the fraction of the result of an arithmetic operation is
greater than the number of places provided for the fraction
of the resultant-identifier, truncation is relative to the size
provided for the resultant-identifier. When rounding i~
requested, the absolute value of the resultant-identifier is
increased by adding a one into the low-order digit
whenever the absolute value of the next least significant
digit of the intermediate data item is greater than or equal to
five.

SIZE ERROR PHRASE

If, after decimal point alignment, the absolute value of a
result exceeds the largest value that can be contained in the
associated resultant-identifier, a size error condition exists.
Division by zero always causes a size error condition. The
size error condition applies only to the final results of an
arithmetic operation and does not apply to intermediate
results, except in the MULTIPLY and DIVIDE statements,
in which case the size error condition applies to the
intermediate results as well. If the ROUNDED phrase is
specified, rounding takes place before checking for size
error. When a size error condition occurs, the subsequent
action depends on whether or not the SIZE ERROR
phrase is specified.

82

Abacus Software COBOL 64

1. If the SIZE ERROR phrase is not specified and a size
error condition occurs, the resultant value is stored in
each of the receiving fields left truncated where
required. Values of resultant-identifier(s) for which no
size error condition occurs are unaffected by size
errors that occur for other resultant-identifier(s) during
execution of this operation.

2. If the s I ZE ERROR phrase is specified and a size error
condition occurs, then the values of
resultant-identifier(s) affected by the size errors are not
altered. Values of resultant-identifier(s) size error
condition occurs are unaffected by size errors that
occur for other resultant-identifier(s) during execution
of this operation. After completion of the execution of
this operation, the imperative statement in the s I ZE
ERROR phrase is executed.

ST A TEMENT FORMATS

GENERAL RULES FOR STATEMENT FORMATS

The following paragraphs describe general rules for
statement formats.

ARITHMETIC STATEMENTS

The arithmetic statements are ADD, DIVIDE, MULTIPLY,
and SUBTRACT and have several common features:

1. The data descriptions of the operands need not be the
same; any necessary conversion and decimal point
alignment is supplied throughout the calculation.

2. The maximum size of each operand is 18 decimal
digits.

3. Each arithmetic operation is evaluated using an
intermediate data item for the result of the operation.

83

Abacus Software COBOL 64

The contents of the intermediate data item are moved to
the resultant-identifier according to the rules for the
MOVE statement. Rounding is performed and the size
error conditon is determined only during this MOVE
operation.

INCOMPATIBLE DATA

Except for the class condition (refer to Class Condition in
this section), when the contents of a data item are
referenced in the PROCEDURE DIVISION and the
contents of that data item are not compatible with the class
specified for that data item by the PICTURE clause, then
the result of such a reference is undefined.

SPECIFIC VERB FORMATS

The specific verb formats, together with a detailed
discussion of the restrictions and limitations associated
with each, appear on the following pages in alphabetic
sequence.

84

Abacus Software COBOL 64

ACCEPT

The ACCEPT statement is used to input data from the
keyboard and placed in the specified data item.

General Format:

ACCEPT identifier

Syntax Rules:

1. If the identifier describes a numeric item it must be an
integer.

General Rules:

1. The ACCEPT statement causes the transfer of data
from the keyboard. This data replaces the contents of
the data item named by the identifier.

2. The maximum number of characters that can be
transferred is 80. The RETURN key terminates the
transfer.

3. The ACCEPT statement causes the information
requested to be transferred to the data item specified by
identifier according to the rules of the MOVE statement.

4. As each key is entered it is displayed on the screen at
the current cursor position. The cursor control and
insert/delete keys are active.

85

Abacus Software COBOL 64

ACCEPT-1-KEY

The Ac c E P T - 1 - KEY statement is used to input 1
character from the keyboard and place it in the specified
data item. This verb is an extension to ANSI COBOL-74. ""111

General Format:

ACCEPT-1-KEY identifier

This statement differs from the ACCEPT statement in that it
will enable any one key on the keyboard including function
keys. Refer to your Commodore User's Guide under
CHR$ codes for each key's definition. The key entered is
not displayed.

86

Abacus Software COBOL 64

ADD

The ADD statement causes two or more numeric operands
to be summed and the result to be stored.

General Format:

Format 1:

AD.U {identifier-~ [identif ier-21

literal-1 J literal-2 J
.I..Q identifier-m [BOIJNQEQ]

[ON .s.IZi.E. EBBQE. imperative-statement]

Format 2:

{

identifier-} ~dentifier-2~ ~dentifier-3)

literal-1 lliteral-2 ~ ~iteral-3
.G.nl.Ifili ident if ier-m (BOIJNQEQ]

[ON .s.I.Z.E. .E.B.B.Q.B. imperative-statement]

Syntax Rules:

1. In formats 1 and 2, each identifier must refer to an
elementary numeric item, except that in Format 2 the
identifier following the word GIVING must refer to
either an elementary numeric item or an elementary
numeric edited item.

2. Each literal must be a numeric literal.

87

Abacus Software COBOL 64

General Rules:

1. Additional rules and explanation relative to this
statement are given in the appropriate paragraphs.
Refer to ROUNDED Phrase, SIZE ERROR Phrase,
Arithmetic Statements.

2. If Format 1 is used, the values of the operands
preceding the word TO are added together, then the
sum is added to the current value of identifier-n storing
the result immediately into identifier-n.

3. If Format 2 is used, the values of the operands
preceding the word GIVING are added together, then
the sum is stored as the new value of identifier-m, the
resultant-identifier.

4. The system ensures that enough places are carried so
that significant digits are not lost during execution.

Examples:

Assume as initial values for each ADD: X=2, Y=lO,
Z=lS, TOT=SO.

Format 1:

ADD X TO TOT. Results TOT=52

ADD X Y Z TO TOT Results TOT=77

Format 2:

ADD X Y GIVING TOT. Results TOT=12

ADD X Y Z GIVING TOT Results TOT=2 7

88

Abacus Software COBOL 64

CLOSE

General Format:

CLOSE file-name

The CLOSE statement terminates the processing of a file.

General Rules:

A CLOSE statement may only be executed for a file in an
open mode. Refer to I-0 status under the File Concepts
section.

It is very important that you CLOSE files once you have
finished using them. Closing a disk file causes the system
to properly allocate space and update the directory. If you
do not CLOSE the disk file, all of your data will be lost.

DEBUG-BREAK

This verb will cause an execution break if the program is
executing in the DEBUG Mode. Refer to the E>EBUG Mode
sections. The verb is ignored if not executing in the
DEBUG Mode. This verb is an extension to the ANSI
standard.

DEBUG-TRACE-OFF

When executing in the DEBUG Mode this verb will tum off
the trace feature. Refer to the DEBUG section. This verb is
ignored if executing in the DEBUG Mode. This verb is an
extension to the ANSI standard.

89

Abacus Software COBOL 64

DEBUG-TRACE-ON

This verb will cause the trace feature to be turned on if
executing in the DEBUG Mode. Refer to the DEBUG Mode
section. The verb is ignored if not executing in the DEBUG
Mode. This verb is an extension to the ANSI standard.

DISPLAY

The DI SP LAY statement causes the data items to be
displayed on the screen.

General Format:

prspr.AY{identifier-i_

literal-1 J
Syntax Rules:

fdentifier-~ ...

hiteral-2 J

If the literal is numeric, then it must be an unsigned
integer.

General Rules:

1. The DI SPLAY statement causes the contents of each
operand to be transferred to the hardware device in the
order listed.

2. The maximum number of characters that can be
transmitted is unlimited.

3. When a DI SPLAY statement contains more than one
operand, the values of the operands are transferred in
the sequence in which the operands are encountered.

4. For any one data item, if a character code 13
(RETURN) is encountered the transfer will be
terminated after sending the RE TURN code.

90

Abacus Software COBOL 64

5. It is not recommended to DI SPLAY an identifier which
is defined as signed numeric. This is due to the fact
that the sign character is combined with the most
significant number of the data item.

6. The display begins at the current cursor location.

DIVIDE

The DIV IDE statement divides one numeric data item into
others and sets the values of data items equal to the
quotient.

General Formats:

Format 1:

.Ill.Yl.D.E. t'dentifier-1} T~~~
~ identifier-2

literal-1
[ROUNDEQ]

[ON .s.I.Z.E EBB.QR imperative-statement]

Format 2:

.P..DLI.D.E.J"identifier-~f.aY ~}.fidentifier-2~

~iteral-1 J~ ~iteral-2 ~
~ identifier-3 [ROUNQEQ)

[ON .s.I.Z.E .E.B.B.QB. imperative-statement]

91

Abacus Software COBOL 64

Syntax Rules:

I. Each identifier must refer to an elementary numeric
item, except that the identifier associated with the
GIVING phrase must refer to either an elementary
numeric item or an elementary numeric edited item.

2. Each literal must be a numeric literal.

General Rules:

I. Additional rules and explanations relative to this
statement are given in the appropriate paragraphs.
Refer to Arithmetic Statements, ROUNDED phrase and
the SIZE ERROR phrase.

2. When Format I is used, the value of identifier-2 is
divided by either the value of identifier-I or literal-I.
The value of the dividend (identifier-2) is replaced by
this quotient.

3. When Format 2 is used, the value of identifier- I or
literal-1 is divided by the value of identifier-2 or """""'
literal-2, and the result is stored in identifier-3.

92

Abacus Software COBOL 64

EXIT

The EXIT statement provides a means of documenting the
logical end point for a series of paragraphs that may be
executed under the control of a PERFORM statement.

General Format:

E.Xil..

Syntax Rules:

1. The EXIT statement must appear in a sentence alone.

2. The EXIT sentence must be the only sentence in the
paragraph.

General Rules:

1. An EXIT statement serves only to enable the user to
assign a procedure-name to a given point in a program.
Such an EXIT statement has no other effect on the
execution of the program.

FILTER-NUMERIC

The FILTER-NUMERIC statement filters and validates
alphanumeric data to numeric data format. This verb is an
extension to ANSI COBOL-74.

General Format:

FILTER-NQMERIC identif ier-1 .IQ identif ier-2

ON E.E.B.QB imperative-statement

Syntax Rules:

1. Identifier-1 represents the sending area and identifier-2
represents the receiving area.

93

Abacus Software COBOL 64

2. Identifier-2 must be defined as a numeric data item.

General Rules:

1. The contents of identifier-1 are examined. Valid
characters are 0 through 9 and the decimal-point.
Leading and trailing space characters are also valid.
Only one decimal point character is allowed and only if
there is one or more decimal places in the receiving
fields picture. A decimal point without other
characters is invalid.

2. If the above tests are passed the size of significant data
is evaluated against the size of identifier-2. If there is
no size problem, including decimal alignment, the data
is transferred to identifier-2.

3. If any of the above tests fail the ON ERROR imperative
statement is processed.

4. The DECIMAL POINT IS COMMA clause apples to
this statement.

This verb is intended to process data received from the
keyboard (ACCEPT) or other systems.

Examples: The receiving numeric PICTURE is 999V99.

Sending
Data

123.45
1

(all spaces)
.12

1 2
1234.5
1.2345
1.2.3

1A2

Result

12345
00100
00000
00012
ERROR-embedded space
ERROR-size
ERROR- size
ERROR - more than 1 decimal point
ERROR-invalid character
ERROR-decimal point only

94

Abacus Software COBOL 64

GOTO

The GO TO statement causes control to be transferred from
one part of the PROCEDURE DIVISION to another.

General Format:

Format 1:

.GQ TO paragraph-name-1

Format 2:

1iQ TO paragraph-name-1 [paragraph-name-2) .•• paragraph-name-n

DEPENQING ON identifier

Syntax Rules:

1. Identifier is the name of a numeric elementary item
described without any positions to the right of the
assumed decimal point

2. If a GO TO statement, represented by Format 1,
appears in a consecutive sequence of imperative
statements within a sentence, it must appear as the last
statement in that sequence.

General Rules:

1. When a GO TO statement, represented by Format 1 is
executed, control is transferred to paragraph-name-1.

2. When a Format 2 GO TO statement is executed,
control is transferred to the paragraph-name whose
ordinal position in the list following the GO TO
corresponds to the value of the identifier being 1, 2 ,
... , n. If the value of the identifier is anything other
than the positive or unsigned integers 1, 2, ... ,
n, then no transfer occurs and control passes to the
'next statement in the normal sequence for execution.

95

Abacus Software COBOL 64

IF

The IF statement causes a condition to be evaluated. The
subsequent action of the object program depends on
whether the value of the condition is TRUE or FALSE. "'1111

General Format:

.IE. condition{statement-1 l f .E.L.5.E. statement-2 l
~ SENTENCEJ l.E.L.5.E. ~ SENTENCE~

Syntax Rules:

1. Statement-1 and statement-2 must represent an
imperative statement

2. The ELSE NEXT SENTENCE phrase may be omitted
if it immediately precedes the terminal period of the
sentence.

General Rules:

1. When an IF statement is executed, the following
transfers of control occur:

a. If the condition is TRUE, statement- I is executed,
if specified. If statement- I contains a procedure
branching statement, control is explicitly
transferred in accordance with the rules of that
statement. Refer to Categories of Statements in
this section. If statement- I does not contain a
procedure branching statement, the ELSE phrase,
if specified, is ignored and control passes to the
next executable sentence.

b. If the condition is TR u E and the NE x T
s ENT EN c E phrase is specified instead of
statement- I, the EL s E phrase, if specified, is W
ignored and control passes to the next executable
sentence.

96

Abacus Software COBOL 64

Examples:

c. If the condition is FALSE, statement-1 or NEXT
SENTENCE is ignored, and statement-2 if
specified, is executed. If statement-2 contains a
procedure branching statement, control is
explicitly transferred in accordance with the rules
of that statement. Refer to Categories of
Statements in this section. If statement-2 does not
contain a procedure branching statement, control
passes to the next executable sentence. If the
EL s E statement-2 phrase is not specified,
statement-1 is ignored and control passes to the
next executable sentence.

d. If the condition is FALSE, and the ELSE NEXT
SENTENCE phrase is specified, statement-1 is
ignored, if specified, and control passes to the
next executable sentence.

IF APPLE IS EQUAL TO RED
DISPLAY "GOOD"
PERFORM GOOD-APPLE

ELSE PERFORM BAD-APPLE.

IF APPLE EQUAL RED
NEXT SENTENCE

ELSE DISPLAY "BAD"

ADD 1 TO TOT-BAD-APPLES.

IF APPLE NOT EQUAL RED
ADD 1 TO TOT-BAD-APPLES.

97

Abacus Software COBOL 64

MOVE

The MOVE statement transfers data, in accordance with the
rules of editing, to one or more data areas.

General Format:

M~u~ {identifier-;
~ .IQ identifier-2 [identifier-3] ...

literal

Syntax Rules:

l. Identifier-1 and literal represent the sending area;
identifier-2, identifier-3, ... , represent the receiving
area.

2. An index data item cannot appear as an operand of a
MOVE statement. Refer to the USAGE clause in Section
6.

General Rules:

1. The data designated by the literal or identifier-1 is
moved first to identifier-2, then to identifier-3, and so
on. The rules governing identifier-2 also apply to the
other receiving areas. Any subscripting or indexing
associated with identifier-2 is evaluated immediately
before the data is moved to the respective data item.

Any subscripting or indexing associated with
identifier-1 is evaluated only once, immediately before
data is moved to the first of the receiving operands.
The result of the statement:

MOVE a (b) TO b c (b)

is equivalent to:

MOVE a (b) TO temp
MOVE temp TO b
MOVE temp TO c (b)

98

Abacus Software COBOL 64

Temp is an intermediate result item provided by the
system.

2. Any MOVE in which the sending and receiving items
are both elementary items is an elementary move.
Every elementary item belongs to one of the following
categories: numeric, alphabetic, alphanumeric,
numeric edited, alphanumeric edited. These categories
are described in the PICTURE clause in Section 6.
Numeric literals belong to the category numeric, and
nonnumeric literals belong to the category
alphanumeric.

The following rules apply to an elementary move
between the categories:

a. A numeric edited, alphanumeric edited, or
alphabetic data item must not be moved to a
numeric or numeric edited data item.

b. A numeric literal, a numeric data item or a numeric
edited data item must not be moved to an
alphabetic data item.

c. A noninteger numeric literal or a noninteger
numeric data item must not be moved to an
alphanumeric or alphanumeric edited data item.

d. All other elementary moves are legal and are
performed according to the rules given in General
Rule 3.

3. Any necessary conversion of data from one form of
internal representation to another takes place during
legal elementary moves, along with any editing
specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric
item is a receiving item, alignment and any
necessary space filling takes place as defined
under Standard Alignment Rules in Section 2. If
the size of the sending item is greater than the size
of the receiving item, the excess characters are

99

Abacus Software COBOL 64

truncated on the right after the receiving item is
filled. If the sending item is described as being
signed numeric, the operational sign is not moved.

b. When a numeric or numeric edited item is the
receiving item, alignment by decimal point and any
necessary zero-filling takes place as defined under
the Standard Alignment Rules, except where
zeroes are replaced because of editing
requirements.

1) When a signed numeric item is the receiving
item, the sign of the sending item is placed in
the receiving item. If the sending item is
unsigned, a positive sign is generated for the
receiving item.

2) When an unsigned numeric item is the
receiving item, the absolute value of the
sending item is moved and no operational sign
is generated for the receiving item.

3) When a data item described as alphanumeric is
the sending item, data is moved as if the
sending item were described as an unsigned
numeric integer.

c. When a receiving field is described as alphabetic,
justification and any necessary space-filling takes
place as defined under the Standard Alignment
Rules. If the size of the sending item is greater
than the size of the receiving item, the excess
characters are truncated on the right after the
receiving item is filled.

5. Any move that is not an elementary move is treated
exactly as if it were an alphanumeric to alphanumeric
elementary move, except that there is no conversion of
data from one form of internal representation to ..,,,,
another. In such a move, the receiving area is filled
without consideration for the individual elementary or
group items contained within either the sending or
receiving area.

100

Abacus Software COBOL 64

6. The validity of the various types of MOVE statements is
summarized in Table 7-4.

'-" Table 7-4. A Valid MOVE Statement

Category of Receiving Data Item

Alphanumeric Category of
Sending
Data Item

Alphabetic Edited

Alphanumeric

ALPHABETIC YES YES

ALPHANUMERIC YES YES

ALPHANUMERIC EDITED YES YES

NUMERIC INTEGER NO YES

NUMERIC NON INTEGER NO NO

NUMERIC EDITED NO YES

101

Numeric Integer
Numeric Noninteger
Numeric Edited

NO
YES
NO
YES
YES
NO

Abacus Software COBOL 64

MULTIPLY

The MULTIPLY statement causes numeric data items to be
multiplied and sets the value of a data item equal to the
result.

General Format:

Format I:

MULTIPLY {identifier-it .lil'.. identifier-2 [ROUNDED)
literal-1 J

[ON ..5..IZE. .E.B.B.QB. imperative-statement)

Format 2:

MULTipI.Y {identifier-l .lll'.. {identifier-2} ~ identifier-3
literal-1 J literal-2

[ROUNQEQJ

[ON ..5..IZE. .E.B.B.QB. imperative-statement]

Syntax Rules:

1. Each identifier must refer to a numeric elementary
item, except that in Format 2 the identifier following
the word GIVING must refer to either an elementary
numeric item or an elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The composite of operands, determined by
superimposing all receiving data items of a given
statement, aligned on decimal points, must not exceed
18 digits.

102

Abacus Software COBOL 64

General Rules:

OPEN

1. Refer to ROUNDED Phrase, SIZE ERROR Phrase in
Arithmetic Statements in this section for additional
rules and information.

2. When Format 1 is used, the value of identifier-I or
literal-I is multiplied by the value of identifier-2. The
value of the multiplier (identifier-2) is replaced by this
product.

3. When Format 2 is used, the value of identifier-I or
literal-I is multiplied by identifier-2 or literal-2 and the
result is stored in identifier-3.

The OPEN statement initiates the processing of files. It
also performs checking of labels and other operations.

General Format:

INPUT

OUTPUT file-name

Syntax Rules:

1. The 1-0 phrase can be used only for disk files. The
disk file must be defined with ORGANIZATION IS
RELATIVE and ACCESS MODE IS RANDOM
clauses.

2. OPEN INPUT file-name must not be a printer file.

103

Abacus Software COBOL 64

General Rules:

1. The successful execution of an OP EN statement
determines the availability of the file and results in the
file being in an open mode.

2. The execution of an OPEN statement does not affect
either the contents or availability of the file's record
area.

3. When a given file is not in an open mode, no statement
that references that file can be executed successfully.

4. A file may be opened with the INPUT' OUTPUT and
1-0 phrases in the same program. Following the initial
execution of an OP EN statement for a file, each
subsequent OPEN statement execution for that same
file must be preceded by the execution of a CLOSE
statement for that file.

5. Execution of the OPEN statement does not obtain or
release the first data record.

6. The beginning labels are processed as follows:

a. When the IN P u T phrase is specified, the
execution of the OPEN statement causes the labels
to be checked in accordance with conventions for
input label checking.

b. When the OUTPUT phrase is specified, the
execution of the OPEN statement causes the labels
to be written in accordance with conventions for
output label writing.

7. The file description entry for the file-name must be
equivalent to that used when this file was created.

8. For files being opened with the INPUT phrase, the
OPEN statement sets the current record pointer to the
first record currently existing within the file.

104

Abacus Software COBOL 64

9. Upon successful execution of an OPEN statement with

the OUTPUT phrase specified, a file is created. At that
time the associated file contains no data records.

PERFORM

The PERFORM statement is used to transfer control
explicitly to one or more paragraphs and to return control
implicitly whenever execution of the specified paragraph is
complete

General Format:

PEHrQRM paragraph-name-1 [{.'J'H:H} paragraph-name-2 J
Syntax Rules:

1. The words THRU and THROUGH are equivalent.

General Rules:

1. When the PERFORM statement is executed, control is
transferred to the first statement of the paragraph
named paragraph-name-1. This transfer of control
occurs only once for each execution of a PERFORM

statement. An implicit transfer of control to the next
executable statement following the PERFORM

statement is established as follows:

a. Ilf paragraph-name-2 is not specified, then the
return is after the last statement of
paragraph-name-1.

b. If paragraph-name-2 is specified, then the return is
after the last statement of the paragraph-name-2.

2. No particular sequential relationship is required to exist
between paragraph-name-I and paragraph-name-2.
There may be more than one logical path of program

105

Abacus Software COBOL 64

control through the performed range of paragraphs. A
common method, though not a required one, of
documenting the terminal paragraph of a performed
range of paragraphs is through the use of the EXIT
statement.

3. An implicit return mechanism is established at the end
of a performed range of paragraphs and is activated by
the execution of a PERFORM statement. Program
control reaching an active return mechanism always
returns to the activating PERFORM statement. A return
mechanism permanently deactivates by transferring
program control back to a PERFORM statement. An
active return mechanism is temporarily deactivated by
the execution of a PERFORM statement. Program
control always passes through a nonactive return
mechanism to the next executable statement following
the PERFORM range.

4. A paragraph executed under the control of a PERFORM
statement may execute PERFORM statements. There is
no requirement that the range of paragraphs executed
under the control of the nested PERFORM statement be
declared totally within, or disjoint from, the range of
paragraphs executed by the first PERFORM statement.
The permanent deactivation of an active return
mechanism causes the last return mechanism
temporarily deactivated to again become active,
allowing overlapping PERFORM ranges, or two or
more PERFORM ranges that have a common exit point,
to logically execute the same as disjoint PERFORM
ranges.

Transferring program control, by means of a GO TO
statement, from a range of paragraphs being executed
under control of a PERFORM statement does not cause the
return mechanism to be deactivated. This is allowed but
this is not considered good programming practice and 'trJtll should be avoided! Subsequently, transferring program
control back into the PERFORM range causes control to
return to the PERFORM statement, provided that the return

106

Abacus Software COBOL 64

mechanism is still active. Repeatedly branching from a
PERFORM range without allowing control to ever reach an
active return mechanism may cause the program to
terminate abnormally by exhausting the resources allocated
to account for return mechanisms. In such a case, the error
message PERFORM STACK ERROR is displayed

Example:

START. PERFORM PARA

PERFORM PARA THRU PARC.

ENDIT. STOP RUN.

PARA. ADD ••••

PARB. MOVE

PARC. PERFORM PARB

The execution sequence would be:

START

PARA

PARA

PARB

PARC

PARB
END IT

107

Abacus Software COBOL 64

READ

For sequential access, the READ statement makes available
the next logical record from a file. For random access, the
READ statement makes available a specified record.

General Format:

Format I:

RE.All file-name RECORD

AT END. imperative-statement

Format 2:

RE.All file-name RECORD

INVALID KEY imperative-statement

Syntax Rules:

1. Format 1 must be used for all files in sequential access
mode.

2. Format 2 is used for files in random access mode.

General Rules:

1. The associated file must be open in the INPUT or I-0
mode. Refer to the OPEN statement in this section.

2. The execution of the READ statement causes the value
of the FILE STATUS data item, if any, associated
with file-name to be updated. Refer to I-0 Status in
Section 5.

3. If, at the time of the execution of a Format 1 READ
statement, no next logical record exists in the file, the
AT END condition occurs, and the execution of the

108

Abacus Software COBOL 64

READ statement is considered unsuccessful. Refer to
1-0 Status in Section 5.

4. When the AT END condition is recognized, the
following actions are taken in the specified order:

a. A value is placed into the FILE STATUS data
item, if specified for this file, to indicate an AT

END condition. Refer to 1-0 Status in Section 5.

b. Control is transferred to the AT END imperative
statement.

c. The execution of the input-output statement which
caused the condition is unsuccessful.

5. Following the unsuccessful execution of any READ

statement, the contents of the associated record area
and the position of the current record pointer are
undefined.

6. When the AT END condition has been recognized, a
Format 1 READ statement for that file must not be
executed without first executing a successful CLOSE

statement followed by the execution of a successful
OPEN statement for that file.

7. In a Relative File with access mode sequential
declared, if the RELATIVE KEY phrase is specified,
the execution of a Format 1 READ statement updates the
contents of the RELATIVE KEY data item so that it
contains the relative record number of the record made
available.

8. For a Relative File with access mode random declared,
the execution of a Format 2 READ statement sets the
current record pointer and makes available the record
whose relative record number is contained in the data
item named in the RELATIVE KEY phrase for the file.
If the file does not contain such a record, the
INVALID KEY condition exists and execution of the

109

Abacus Software COBOL 64

SET

RE AD statement is unsuccessful. Refer to the
INVALID KEY condition under Invalid Key in
Section 5.

The SET statement establishes reference points for table
handling operations by setting index-names associated with
table elements.

General Format:

{

ident if ier-ll

index-name-1J

Syntax Rules:

identifier-3

index-name-3

integer-1

1. Integer-I may be signed but must be plus.

General Rules:

1. Index-names are considered related to a given table and
are defined by being specified in the I ND EXE D BY
clause.

2. If index-name-3 is specified, the value of the index
before the execution of the s ET statement should
correspond to an occmTence number of an element in
the associated table.

If index-name-1 is specified, the value of the index
after the execution of the SET statement should
correspond to an occurrence number of an element in
the associated table.

When a statement using the index-name to refer to a
table element is executed, the value in the index or the
value produced by relative indexing must fall within

110

Abacus Software COBOL 64

the range specified by the OCCURS clause defining the
table. Otherwise, an abnormal termination of the
program occurs. Refer to Indexing in Section 2.

3. When a SET statement is executed, the following
actions occur:

a. Index-name-I is set to a value causing it to refer to
the table element that corresponds in occurrence
number to the table element referenced by
index-name-3, identifier-3, or integer-I. If
identifier-3 is an index data item, or if
index-name-3 is related to the same table as
index-name-I, no conversion takes place.

b. If identifier-I is an index data item, it may be set
equal to either the contents of index-name-3 or
identifier-3, where identifier-3 is also an index
data item. No conversion takes place in either
case.

c. If identifier-I is not an index data item, it may be
set only to an occurrence number that corresponds
to the value of index-name-3. Neither identifier-3
nor integer-1 can be used in this case.

4. Data in Table 7-6 represents the validity of various
operand combinations in the s ET statement. The
general rule reference (for example, 3b) indicates the
applicable general rule.

111

Abacus Software COBOL 64

Table 7-6. SET Statement Combinations

Sending Item Receiving Item
Integer Data Item Index-Name Index Data Item 'ttttlfl

Integer Literal No/3c Valid/3a

Valid/3a

No/3b

No/3b Integer Data Item N0/3c

lndex-N ame V alid/3c Valid/3a Valid/3b*

Index Data Item No/3c V alid/3a * V alid/3b*

No conversion takes place

STOP

The STOP statement causes a permanent suspension of the "'1lll/I
execution of the object program.

General Format:

Syntax Rules:

1. If a STOP RUN statement appears in a consecutive
sequence of imperative statements within a sentence, it
must appear as the last statement in that sequence.

General Rules:

1. The ending procedure established by the COBOL 64
system is instituted.

112

Abacus Software COBOL 64

SUBTRACT

The SUBTRACT statement is used to subtract one or the
sum of two or more numeric data items from one item and
set the value of one item equal to the result.

General Format:

Format I:

SUBTRACT

{

identifier-} rdentifier-,J:ERQM identifier-m

literal-1 Lliteral-2

[ROIJNQEQ)

[ON .s.IZ.E, .ERB.QR imperative-statement)

Format 2:

SUBTRACT {identifier-~ [dentifier-~ ... E.B.QM {identifier-m}

literal-1 ~ literal-2 ~ literal-m

~ identifier-n

[BO(JNQEQ]

[ON .s.r.z.E. E.RB.Q.B. imperative-statement]

Syntax Rules:

1. Each identifier must refer to a numeric elementary item
except that in Format 2, the identifier following the
word GIVING must refer to either an elementary
numeric item or to an elementary numeric edited item.

2. Each literal must be a numeric literal.

113

Abacus Software COBOL 64

General Rules:

1. Additional rules and explanations related to this
statement are given in the appropriate paragraphs. ""11111
Refer to ROUNDED Phrase, SIZE ERROR Phrase in
Arithmetic Statements in this section.

2. In Format l, all literals or identifiers preceding the
word FR o M are added together, and this total is
subtracted from the current value of identifier-m. The
result is immediately stored into identifier-m.

3. In Format 2, all literals or identifiers preceding the
word FROM are added together, the sum is subtracted
from literal-m or identifier-m, and the result of the
subtraction is stored as the new value of identifier-m.

Examples:

Assume as initial values for each subtract;
X=2, Y=lO, Z=lS, TOT=SO, and SUB=30.

Format I:

SUBTRACT X FROM TOT.
SUBTRACT X Y Z FROM TOT

Format 2:

results TOT=48
results TOT=23

SUBTRACT X Y FROM SUB GIVING TOT.
SUBTRACT X Y FROM Z GIVING TOT

results TOT=18
results TOT=3

114

Abacus Software COBOL 64

WRITE

The WRITE statement releases a logical record for an
output file. It can also be used for vertical positioning of
lines for a printer.

General Format:

Format I:

Format 2:

WRITE record-name

INVALID KEY imperative-statement

Syntax Rules:

1. The record-name is the name of a logical record in the
FILE SECTION of the DATA DIVISION.

2. Integer-1 may not be zero.

3. Format 2 is used for Organization Relative Files.

General Rules:

1. The associated file must be open in the OUTPUT or I-0
mode at the time of the execution of this statement.

2. The execution of a WR I TE statement has no effect
upon either the contents or accessibility of the record
area.

115

Abacus Software COBOL 64

3. The execution of the WRITE statement causes the value
of the FILE STATUS data item, if any, associated
with the file to be updated. Ref er to 1-0 Status iii
Section 5.

4. The maximum record size for a file is established when
the file is created and must not subsequently be
changed.

5. The number of character positions on a disk storage
device required to store a logical record in a file may or
may not be equal to the number of character positions
defined by the logical description of that record in the
program.

6. The execution of the WRITE statement releases a
logical record to the operating system.

PRINTER FILES

1. The ADVANCING phrase allows control of the vertical "111
positioning of each line on a printed page. If the .
ADVANCING phrase is not used, automatic advancing
is provided to act as if the user had specified AFfER
ADVANCING 1 LINE. If the ADVANCING phrase
is used, advancing is provided as follows:

a. Ilf integer-I is specified, the page is advanced the
number of lines equal to the value of integer-I.

b. If the BEFORE phrase is used, the line is written
before the page is advanced.

2. During the transfer of data to the printer, if a character
code 13 (RE TURN) is encountered the transfer is ·
terminated after sending the RETURN code.

116

Abacus Software

DISK FILES

SEQUENTIAL FILES:

COBOL 64

1. When an attempt is made to write beyond the
externally defined boundaries of a Sequential File, an
exception condition exists and the contents of the
record area are unaffected. The value of the FI LE
STATUS data item, if any, of the associated file is set
to a value indicating a boundary violation. Refer to
1-0 Status in Section 5.

RELATIVE FILES:

I. When a Relative File is opened in the output mode,
records may be placed into the file in one of the
following ways:

a. If the access mode is sequential, the WR I TE
statement causes a record to be released. The first
record has a relative record number of 1 and
subsequent records released have relative record
numbers of 2, 3, 4, and so on. If the RELATIVE
KEY data item has been specified in the file control
entry for the associated file, the relative record
number of the record just released is placed into
the RELATIVE KEY data item during execution
of the WRITE statement.

b. If the access mode is random, before the execution
of the WRITE statement, the value of the
RELATIVE KEY data item must be initialized in
the program with the relative record number to be
associated with the record in the record area. That
record is then released by execution of the WRITE
statement.

2. When a Relative File is opened in the 1-0 mode and the
access mode is random, records are to be inserted in
the associated file. The value of the RELATIVE KEY
data item must be initialized by the program with the
relative record number to be associated with the record

117

Abacus Software COBOL 64

in the record area. Execution of a WRITE statement
then causes the contents of the record area to be
released.

3. The INVALID KEY condition exists when an attempt ..,/
is made to write beyond the externally defined
boundaries of the file.

118

Abacus Software COBOL 64

CHAPTER7

START UP/OPERATING INSTRUCTIONS

Connect the system as described in your Commodore
User's Guide. Now tum on the equipment in the
following order:

1. Printer (if present)
2. Computer
3. Disk drives
4. TV or monitor

Insert the COBOL 64 diskette and type:

LOAD "COBOL 64", 8,1

followed by the RETURN key. The system loading process
will then take place. When completed, READY will appear
on the screen. Now type:

SYS 2051

followed by the RETURN key. The COBOL 64 System will
then start.

119

Abacus Software COBOL 64

CHAPTERS

MAIN MENU

The COBOL 64 Main Menu is displayed on the screen and
contains the following functions:

l=EDIT

2=RUN

3=DEBUG

4=SAVE

S=GET

6=NEW-PROG/EDIT

?=CRUNCH

8=PRINT-ON

9=PRINT-OFF

lO=NEW-NAME

At this point enter the number of the function desired
followed by the RE TURN key.

The following sections will describe each function in
detail. They appear in alphabetical order for easy
reference.

120

Abacus Software COBOL 64

Main Menu

CRUNCH

The CRUNCH function is used to reduce the memory size of
your program file. A file must be present, refer to GET
and NEW-PROG. If the COED IT program overlay is not
present in memory, it will be automatically loaded by the
system from disk. Messages will appear on the screen
when this occurs.

While developing your program, each time you delete or
change lines the memory space for the old lines is no
longer available for new lines. This is not a problem
unless you exceed the maximum available memory. At this
time or at any time you wish to consolidate memory,
invoke this function.

The processing associated with this function includes
writing to disk a temporary file with the prefix c s
(COBOL sequential) before your file name. eg.
CS YOUR-NAME. A warning message will appear on the
screen which will allow you to remove the COBOL 64
diskette and insert your diskette. Enter any key on the
keyboard to continue. Once the temporary file is written, it
is then read back into the system. As each line is written to
disk or read back from disk, it will appear on the screen.
At the completion of this task a warning message will
appear which allows you to save the new consolidated
program on disk. The system will now return to the Main
Menu.

121

Abacus Software COBOL 64

Main Menu

DEBUG

This function directs the system to begin executing the """'
current program file in memory. A file must be present,
refer to GET or NEW-PROG. The DEBUG function is
similar to the RUN function described below. In addition to
executing your program a number of powerful debug
features are provided which are intended to facilitate the
debugging of your program. All debugging in COBOL 64
is accomplished at the source (symbolic) language level.
There is no need to be concerned with machine language,
memory addressing or hexadecimal notation.

Before debugging can begin, your program is tested to
determine if it has been successfully syntaxed. If it has,
the CORD (Run/Debug) program overlay is automatically
loaded from disk if required. If your program had not
previously been syntaxed the syntax process will begin.
Refer to EDIT SYNTAX for additional details. If the
syntax process is unsuccessful the system resumes at the """'
main menu. If successful the system proceeds with the
CORD program overlay.

At the beginning of DEBUG Mode a "START DEBUG"
message will appear on the screen followed by the DEBUG
feature menu. At this time you may need to remove the
COBOL 64 diskette and insert your diskette if your
program is going to use the disk drive.

122

Abacus Software COBOL 64

The following is a list of the DEBUG Menu features. Each
one is described in detail below. Enter the feature number
desired followed by the RE TURN key.

START-PROG

l=START-PROG
2=RESUME-PROG
3=SINGLE-ON
4=SINGLE-OFF
S=EXIT
6=BREAK1
7=BREAK2
8=BREAK3
9=0PTIONS

lO=TRACE-ON-LINE
ll=TRACE-OFF-LINE
12=TRACE-FAST
13=TRACE-SLOW
14=TRACE-ON
lS=TRACE-OFF
16=RESET-OPTIONS

This selection will cause your program to begin executing
at the first PROCEDURE DIVISION statement in your
program. Your program is initialized with its starting
VALUE clauses as required. To simplify debugging, all
other data items are initialized to the numeral 9. During
execution, if your program references a data item which
you did not properly initialize, the 9's will be obvious;
otherwise you would see strange characters on the screen
for a DISPLAY statement or as a function of the trace
feature.

123

Abacus Software COBOL 64

RESUME-PROG

This selection allows you to continue execution from the
point where it was before entering the debug menu state.

This selection cannot be used when starting a program, or
after a STOP RUN verb, you must use the START-FROG.

SINGLE-ON

This selection turns on the "single step" feature. Single
stepping allows you to step through your program
execution one statement at a time. Once your program
begins executing (see START-FROG or RESUME-FROG)
each statement will display S=NNNNNN where N is equal to
the line number of the statement followed by the statement.
At this point depress the RETURN key to execute the next
statement. Any other key will direct the system to the
DEBUG Menu. This feature will also automatically tum on
the trace feature, refer to TRACE-ON. Comment lines are ..,,,,,
ignored during execution.

SINGLE-OFF

EXIT

The single step feature described above is turned off. The
trace feature is also turned off.

This selection will direct the system to exit the DEBUG
Mode and proceed to the COBOL 64 Main Menu.

124

Abacus Software COBOL 64

BREAKl BREAK2 BREAK3

A selection of the break feature allows you to enter a
statement line number which when executed will cause the
system to enter the DEBUG Menu state. Note that this
occurs before execution of the statement in the selected line
number. The screen will contain a B=NNNNNN where N is
equal to the line number. The system provides for one to
three line numbers plus the verb DEBUG-BREAK which
you can place in your program as required. Comment lines
are ignored during execution.

OPTIONS

The selection of this feature directs the system to display
the current state of all DEBUG Menu options.

TRACE-ON-LINE

A selection of this feature allows you to enter a statement
line number which when executed will cause the system to
tum on the trace feature. Refer to TRACE-ON for
additional information.

TRACE-OFF-LINE

A selection of this feature allows you to enter a statement
line number which when executed will cause the system to
tum off the trace feature. Refer to TRACE-ON and
TRACE-OFF for more details.

125

Abacus Software COBOL 64

TRACE-FAST

The TRACE-FAST feature displays all trace information at
full speed. This is the default setting for the trace feature.

TRACE-SLOW

The TRACE-SLOW feature provides for slowing down the
speed of the trace display such that it is more readable
during execution.

TRACE-ON

The selection of the TRACE-ON feature provides for
information to be displayed during execution of your
program. The TRACE-ON feature is a default setting.

As each statement is executed the system displays """""'
T=NNNNNN followed by the statement; where N is equal to
the statement line number. All comment lines are ignored
during tracing. If the statement being traced has a receiving
data item such as MOVE A TO B then C= is displayed
followed by the new contents of the data item. The size of
the display is limited to 18 characters. If the receiving field
is a numeric data item the contents display is enhanced to
include the sign (+-)if present and the letter 'v' in the
assumed decimal point position.

Example:

The picture of A is equal to S99V99.

T=OOOlOO MOVE +1.2 TO A

C=+01V20

126

Abacus Software COBOL 64

In addition to the TRACE-ON and TRACE-ON-LINE
features, the system provides a DEBUG-TRACE-ON verb
which you can insert in your program as required.

TRACE-OFF

The trace feature described above is turned off. There is also a
DEBUG-TRACE-OFF verb for this purpose which you
can insert in your program as required.

RESET-OPTIONS

The selection of this feature is used to reset all DEB u G
options to their default settings:

TRACE-ON

TRACE-FAST

127

Abacus Software COBOL 64

Main Menu

EDIT

The ED IT function is used to enter your COBOL 64 """""
statements. A set of EDIT functions are also provided to
facilitate the editing process:

DIRECTORY
LIST
DELETE
SYNTAX
AUTO
SAVE
RESEQUENCE
PRINT-ON
PRINT-OFF
EXIT

list the disk directory
list lines on screen
delete lines
syntax analysis
auto line numbers
save program on disk
renumber all lines
set printer on
set printer off
exit to main menu

If the COED IT program overlay is not present in memory it
will automatically be loaded from disk by the system. "'11111
Messages will appear on the screen when this occurs.
When the START EDIT message appears on the screen
you can begin entering COBOL 64 Statements or
ED IT-Functions.

COBOL 64 Statements

Start by entering a six digit line number followed by the
remainder of your statement. Refer to the section titled
Editing Format for additional information. Each line must
be terminated by the RETURN key before it is processed by
the system. The Commodore cursor control keys are
enabled including the insert/delete keys. Refer to your
Commodore User's Guide for more details. One line on
the screen is 40 characters, a COBOL 64 line can be up to
80 characters, which would occupy 2 lines on the screen.JI
To replace a line you may simply type the new line with the ..._,
same line number as the line your are replacing. The
EDIT-LIST function described below can be used to

128

Abacus Software COBOL 64

view your text. You can, for example, list a line or series
of lines, and then type any changes needed followed by the
RETURN key. Inserting lines is accomplished by typing a
line number which falls between two existing lines.
Deleting lines is accomplished by the ED IT-DELETE
function described below.

While entering COBOL 64 statements some validation of
the text is performed. If an error is detected INVALID
ENTRY is displayed. If this message should appear,
review the entry you have just typed and make any
necessary corrections.

Example:

If you enter -

ADD A TO lB

the INVALID ENTRY message will appear because lB is
not a valid COBOL 64 word.

Additional validation (Syntax Analysis) is performed at
another time.

DIRECTORY

The DIRECTORY function will list the disk directory on
the screen. The abbreviation DIR can be used.

129

Abacus Software COBOL 64

LIST

The LI s T function has the following format:

LIST [starting-line-number] [ending-line-number]

1. If no line numbers are present then the entire file is
displayed.

2. If only one line number is entered then only that line is
displayed (if present).

3. If two line numbers are entered (at least one space
between the numbers is required) then the first number
is interpreted as the starting line and the second as the
ending line number. Note the ending line number
must be greater than or equal to the starting line
number. The lines are displayed if present.

4. The RUN/STOP key can be used to terminate the
listing process or the listing process can be paused by
holding down the SHIFT key.

5. The LIST function can be abbreviated 'L '.

6. Leading zeros on line numbers need not be entered.

7. An error message is displayed if invalid line numbers
are entered; such as 12 X3 or more than 6 digits.

DELETE

The format and validation of DELETE is similar to LIST.
This function deletes the lines indicated. The lines are
displayed for documentation purposes.

130

Abacus Software COBOL 64

SYNTAX

This function performs a complete syntax analysis of your
program. Any errors found will cause the line in error to
be displayed (including the previous 7 lines) and an error
message.

For the IDENTIFICATION, ENVIRONMENT and DATA
divisions the syntax analysis process is aborted following
the first error encountered. The PROCEDURE DIVISION
is only syntaxed if no errors are found in the other
divisions. All errors are reported in the PROCEDURE
DIVISION.

This function is optional during the ED IT Mode. An
automatic syntax analysis will be forced when you select
the RUN or DEBUG Mode for any program. It has been
made available in the ED IT Mode to allow you to
selectively syntax portions of your program as you develop
it.

The syntax analysis process involves two automatic
program overlays to occur from disk, cos YN and
cos YNP. Messages are displayed for this purpose.
Following the syntax process the COEDIT program
overlay is automatically reloaded along with appropriate
messages appearing on the screen. This entire process
(excluding optional printer time) will take less than two
minutes, regardless of the program size.

131

Abacus Software COBOL 64

AUTO

SAVE

The AUTO function provides for automatic display of the
next line number. The AUTO function has the following
format:

AUTO [line-increment-value]

1. The line-number-value must be within the range 1 to
100.

2. If no value is entered then the AUTO function is turned
off.

3. The line number displayed is computed by adding the
line-increment-value to the last line entered into the
system.

4. In addition to displaying the new line number, column
12 is indicated by displaying a large dot. This was
provided to facilitate formatting the line. If no new
text is entered in column 12, the large dot will be ..,,,
automatically removed by the system before validation
begins. There is no need for you to type over it

5. If the automatic increment should cause an overflow,
an error message is displayed and the function is
turned off.

The SAVE function causes your program to be saved to
disk, refer to Main Menu SA VE for additional details. It is
good practice to periodically save your program file onto
disk in case a problem with your computer or electrical
power develops. It is also good practice to save your
program on a second or third diskette in case a problem "'1111
with the diskette develops.

132

Abacus Software COBOL 64

RESEQUENCE

The RESEQUENCE function will renumber all lines in your
program by increments of 100.

PRINT-ON PRINT-OFF

EXIT

This function forces all keyboard input and displays to the
screen to be printed on the printer. The printer must be
powered on. The feature provides for creating program
listings, documents all changes and error messages. For
example, if the PRINT-ON is entered followed by LIST
5 O O O 8 O O O, these lines are displayed on the screen and
printed on the printer. If s YNT AX is selected with the
PRINT-ON, all error messages are printed for later
evaluation.

Printing is terminated with the PRINT-OFF function.

These functions are also available from the COBOL 64
Main Menu selection.

The Ex IT function allows for terminating the ED IT
session and returns processing to the COBOL 64 Main
Menu. If the ED IT session included changing the program
file, then a warning message appears, which will allow
files to be saved on disk. Refer to the Main Menu SA VE
function for additional details on saving a file.

133

Abacus Software COBOL 64

Main Menu

GET

The GET function is used to get (load) an existing program
file from disk into memory. A message appears on the
screen requesting that a file name be entered. At this time
you must remove the COBOL 64 diskette and insert your
diskette. Enter the desired file name (enclosed in quotation
marks) followed by the RETURN key. Messages will
appear during the loading process. The system will return
to the main menu following the loading process. At this
time you may need to remove your diskette and insert the
COBOL 64 diskette, depending on your next menu
selection.

NEW-NAME

The NE w-NAME function provides for the changing of a
program file name. A file must be present, refer to GET or
NEW-PROG. A message appears on the screen requesting
that the new file name be entered. Enter the new file name
(enclosed in quotation marks) followed by the RETURN
key. The system then returns to the Main Menu. This
feature is useful when using an existing program as a basis
for a new program.

NEW-PROG/EDIT

This function erases any existing program in memory and
accepts a new program name. A message appears on the
screen requesting that a file name be entered. Enter the
new program name (enclosed in quotation marks) followed
by the RE TURN key. The system then proceeds as if the
ED IT function had been selected from the Main Menu. ""'1111
Refer to the section on ED IT for additional information.

134

Abacus Software COBOL 64

PRINT-ON PRINT-OFF

RUN

These features force all keyboard input and screen displays
to be printed on the printer. The printer must be powered
on. They are intended for creating program listings,
documenting all changes, menu selections, tracing and
error messages.

Printing is terminated with the PRINT-OFF function.

This function directs the system to begin executing the
current program file in memory. A file must be present,
refer to GET or NEW-PROG. Before execution can begin
your program is tested to determine if it has been
successfully syntaxed.

If it has, the CORD (RUN /DEBUG) program overlay is
automatically loaded from disk if required. At the
beginning of RUN Mode a "START RUN" message will
appear on the screen. At this time you may need to remove
the COBOL 64 diskette and insert your diskette if your
program is going to use the disk drive. Enter any key to
begin execution of your program. When your program
execution is terminated, the system will return to the Main
Menu.

If your program had not previously been successfully
syntaxed, then the syntax process will begin. Refer to
EDIT SYNTAX for additional details. If the syntax
process is unsuccessful, the system resumes at the Main
Menu. If the syntax process is successful, the system
proceeds with the CORD program overlay as described
above.

135

Abacus Software COBOL 64

SAVE

The s A VE function provides for the saving of your
program onto disk. A file must be present, refer to GET or ._.,
NEW-PROG. Before proceeding with the SAVE, remove
the COBOL 64 diskette and insert your diskette.

Program files are saved in two parts. Each part is prefixed
by Cl or C2 before your file name. eg., Cl YOURFILE
C2YOURFILE. Screen messages will appear during the
saving process. If your file already exists on the diskette it
will automatically be overwritten by the new file.

136

Abacus Software

APPENDIX A

SAMPLE PROGRAM

COBOL 64

The following sample program is an example of one way to write a
COBOL 64 program which performs the function of a simple
adding machine. This program is available on the COBOL 64
diskette. It is recommended that you use the program to get
familiar with the COBOL 64 system. After studying the program
listing try the exercises below:

000100 IDENTlFiCATlGN DIVISlON.
000200 PROGRAM-ID. VS-ADDING-MACHINE.
000300 ENVIRONMENT DlV1S10N.
000400 CONFIGURATION SECTION.
000500 SOURCE-COMPUTER. C64.
000600 OBJECT-COMPUTER. C64.
000700 DATA DIVISION.
000800 WORKING-STORAGE SECTION.
000900 01 DISPLAY-LINE.
001000 02 DiSP-SPACE PIC l120l VALUE H ".

001100 02 DISP-NUMBER rIC ZZ,ZZZ,ZZZ.99+.
0~1200 01 ENTRY.
~01300 02 ENTRY-TABLE PIC X OCCURS 12 TIMES.
001400t 10 DIGITS + 1 DECIMAL POINT + 1 FUNCTION KEV
001500 77 ENTRY-SUB PIC 99.
001600 77 KEV-IN PIC X.
001700 77 TOTAL PIC 59(BlV99 VALUE 0.
001800 77 NUHERIC-ENTRV PIC S91BlV99.
001900 77 CLEAR-HOME-CODE VALUE CHR 147 PIC x.
002000 77 RETURN-CODE VALUE CHR i3 PIC X.
002100 77 RVS-ON-CODE VALUE CHR 18 PIC X.
002200 77 RVS-OFF-CODE VALUE CHR 146 PIC X.
002300 PROCEDURE DIVISION.
00240~ START.
0025~l DISPLAY CLE~R-HOME-CGDE
~02600 ~srART ADDING MACHINEU
002700 RETURN-CODE.

137

Abacus Software

002800 START-ENTRY.
002900 DISPLAY RETURN-CODE
003000 5 ENTER: u

003100 MOVE " " TO ENTRY
003200 HOVE 1 TO ENTRY-SUB.
003300 ACCEPT-LOOP.

ACCEPT-1-KEY KEY-IN
DISPLAY KEHN
IF KEY-IN IS EQUAL TO •+•

PERFORM PLUS-KEY THRU PLUS-KEY-EXIT
GO TO START-ENTRY.

IF KEY-IN EQUAL "-"

COBOL 64

003400
003500
003600
003700
003800
003900
004000
004100
004200
004300
004400
004500
004600
004700
004800
004900*

PERFORM MINUS-KEY THRU MINUS-KEY-EXIT
SO TO START-ENTRY.

IF KEY-IN EQUAL n5n
PERFORM SUB-KEY
GO TO START-ENTRY.

IF KEY-IN EQUAL HT"
PERFORl'I TOT-KEY
SO TO START-ENTRY.

IF KEY-IN EQUAL "Eu STOP RUN.

005000 MOVE KEY-IN TO ENTRY-TABLEIENTRY-SUBi
005100 ADD 1 TO ENTRY-SUB
005200 IF ENTRY-SUB IS GREATER THAN 12
005300 PERFORM ERR
005400 60 TD START-ENTR~
005500 ELSE GO TO ACCEPT-LOOP.
005600 PLUS-KEY.
005700 FILTER-NUMERIC ENTRY TO NUMERiC-~NTRY
005800 ON ERROR
005900 PERFORM ERR
006000 GO TO PLLlS-KEY-EXIT.
006100 ADD NUHERIC-EMTRY TO TOTAL
006200 MOVE NUMERIC-ENTRY TO DISP-NUNBER
006300 D1SPLA¥ RETURN-CODE
006400 DISPLAY-LINE.
006500 PLUS-KEY-EXIT. EX1T.
006600 MINUS-KEY.

138

Abacus Software

006700
006800
006900
007000
007100
007200
a01300

FILTER-NUMERIC ENTRY TO NUMERIC-ENTRY
ON ERROR

PERFORM ERR
GO TO MINUS-KEY-EXIT.

MULTIPLY -1 BY NUMERIC-ENTRY
ADD NUMERIC-ENTRY TO TOTAL
MOVE NUMERIC-ENTRY TO DISP-NUMBER

007400 DISPLAY RETURN-CODE
007500 DISPLAY-LINE.
007600 MINUS-KEY-EXIT. EXIT.
0m00 SUB-KEY.
a07800 IF ENTRY-SUB IS EQUAL TO 1
~07900 MOVE TOTAL TO DISP-NUKBER
308000 DISPLAY RETURN-CODE
J0B100 DISPLAY-LINE
a08200 KEY-IN
~08300 ELSE PERFORM ERR.
008400 TOT-KEY.
008500 IF ENTRY-SUB EQUAL 1
008600 PERFORM SUB-KEY
008700 MOVE 0 TO TOTAL
008800 ELSE PERFOR" ERR.
008900 ERR.
009000 DISPLAY RETURN-CODE
009100 RVS-ON-CODE
009200 »JNVALID ENTRY"
009300 RVS-OFF-CODE.
009400 END-PROG.

139

COBOL 64

Abacus Software

APPENDIX A

Exercises

1. Load and execute the program in RUN Mode.

a. From the Main Menu select GET file:

Enter 5 then RETURN

b. Enter the file name in quotes

Enter "ADDING" then RETURN

COBOL 64

At this point the ADDING program is loaded into memory.

c. Select the RUN program option

Enter 2 then RETURN

At this point the CORD program overlay will take place followed "'1111/J
by screen messages "START RUN" and "ENTER ANY KEY TO
CONTINUE".

d. Enter any key to start the ADDING program.

e. Enter some entries such as:

123+
456+

s
T

Try some invalid entries such as:

12B3+ (not a number)
12. 345+ (too many digits after decimal point)

f. To exit the program and return to the Main Menu

EnterE

140

Abacus Software COBOL 64

2. Execute the program in DEBUG Mode.

a. From the Main Menu and with the program already
loaded into memory (Step 1 above).

Enter 3 then RETURN

Note that the CORD program overlay is not needed at this
time because it is still in memory from Step 1 above.

The DEBUG Menu is displayed at this time.

b. Proceed at this point by selecting TRACE-SLOW.

Enter 13 then RETURN.

c. Select the START-PROO option.

Enter 1 then RETURN

The program will start executing with a display of each
COBOL 64 statement as it is being executed. The trace
display will stop when the ACCEPT-1-KEY statement is
executed (line # 003400)

d. Now enter some entries as you did in Step 1 above and
try to follow the program execution sequence.

e. Exit the program as you did in Step 1.

EnterE

The system returns to the DEBUG Menu.

f. Return to the Main Menu by selecting EXIT.

Enter 5 then RETURN

141

Abacus Software COBOL 64

3. Try making some changes to the program so that you can
exercise the EDIT Mode. Consider changing the size of
the entry or even simpler, the "START ADDING
MACHINE" on line 002600.

a. From the Main Menu select EDIT Mode.

Enter 1 then RETURN

The COED IT program overlay is then loaded into memory.

b. List the program on the screen.

Enter LIST then RETURN.

Continue changing and listing as required.

c. To exit the EDIT Mode

Enter EXIT then RETURN

Note the warning message to save the program. You
cannot use the COBOL 64 diskette because it has the write
protect tab on. Insert your own disk to save the program
or bypass the save. If you do insert your disk be sure to
replace it with the COBOL 64 diskette after the save has
been completed. Now the Main Menu is present on the
screen. Try executing your changes by following Step 1
or 2 above. This time you will observe that a Syntax
Analysis is being perf orrned, this will occur whenever a
program is changed.

142

Abacus Software

APPENDIX B

RESERVED WORDS

COBOL 64

All reserved words known to the COBOL 64 System are listed in
this Appendix.

ACCEPT ACCEPT-1-KEY ACCESS
ADD ADVANCING AFTER
ALPHABETIC AT AUTHOR
BEFORE BY CLOSE
COMMA CONFIGURATION CURRENCY
DATA DATE-WRITTEN DEBUG-BREAK
DEBUG-TRACE-OFF DEBUG-TRACE-ON DECIMAL-POINT
DEPENDING DISPLAY DIVIDE
DIVISION END ENVIRONMENT
EQUAL ERROR FD
FILE FILE-CONTROL FILLER
FILTER-NUMERIC FROM GIVING
GO GREATER I-0
IDENTIFICATION IF INDEX
IDEXED INPUT INPUT-OUTPUT
INSTALLATION INTO INVALID
IS KEY LABEL
LESS LINE LINES
MODE MOVE MULTIPLY
NEXT NOT NUMERIC
OBJECT-COMPUTER OCCURS OF
OMITTED ON OPEN
ORGANIZATION OUTPUT PERFORM
PIC PICTURE PROCEDURE
PROGRAM-ID RANDOM READ
RECORD RECORDS RELATIVE
ROUNDED RUN SECURITY
SELECT SENTENCE SEQUENTIAL
SET SIGN SIZE
SOURCE-COMPUTER SPECIAL-NAMES STANDARD
STATUS STOP SUBTRACT
THAN THROUGH THRU
TIMES TO VALUE
WORKING-STORAGE WRITE

143

Abacus Software

APPENDIX C

LANGUAGE SUMMARY

IDENTIFICATION DIVISION
PROGRAM-ID
AUTHOR
INSTALLATION
DATE-WRITTEN
SECURITY

ENVIRONMENT DIVISION
CONFIGURATION SECTION

SOURCE-COMPUTER
OBJECT-COMPUTER
SPECIAL-NAMES

CURRENCY SIGN IS .•.
DECIMAL-POINT IS COMMA

INPUT-OUTPUT SECTION
FILE-CONTROL

SELECT ..• ASSIGN .•.
ORGANIZATION IS SEQUENTIAL

ACCESS MODE IS SEQUENTIAL
ORGANIZATION IS RELATIVE

COBOL 64

ACCESS MODE IS SEQUENTIAL RELATIVE KEY IS
ACCESS MODE IS RANDOM RELATIVE KEY IS ...

FILE STATUS IS ...

DATA DIVISION
FILE SECTION

FD
LABEL RECORDS ARE ..•
VALUE OF FILE-ID IS .••

WORKING STORAGE SECTION
LEVEL-NUMBER ... FILLER •••

PICTURE IS •.•
USAGE IS ..• INDEX .••
OCCURS ..• TIMES •..
INDEXED BY .••
VALUE IS ••. CHR ..•

144

Abacus Software

LANGUAGE SUMMARY continued

PROCEDURE DIVISION
ACCEPT ...
ACCEPT-1-KEY ...
ADD ..• GIVING .•. ROUNDED ON SIZE ERROR ..•
CLOSE ...
DEBUG-BREAK
DEBUG-TRACE-OFF
DEBUG-TRACE-ON
DISPLAY ...

COBOL 64

DIVIDE ..• INTO BY ... GIVING ..• ROUNDED ON SIZE ERROR ...
EXIT
FILTER-NUMERIC ...
GO TO ... DEPENDING ON ...
IF ... NEXT SENTENCE ..• ELSE ... NEXT SENTENCE .•.
MOVE .. .
MULTIPLY ... BY ..• GIVING ... ROUNDED ON SIZE ERROR ..•
OPEN INPUT •.. OUTPUT ... I-0 ...
PERFORM •.. THRU .. .
READ ... AT END ... INVALID KEY ...
SET .. .
STOP RUN
SUBTRACT ... FROM ... GIVING ... ROUNDED ON SIZE ERROR ...
WRITE ... BEFORE/AFTER ADVANCING ... LINES ••• INVALID KEY ...

145

Abacus Software

APPENDIX D

SAMPLE PROGRAMS

000100 IDENTIFIC~TIGN DlvlSIGN.
000200 PROGRAM-ID. BUILD-DATHi.
000300 AUTHOR. K A ALEXANDER.
000400 ENVIRONMENT DIVISION.
000500 CONFIGURATION SECTION.
000600 SOURCE-COMPUTER. C64.
000700 OBJECT-COMPUTER. Cb4.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.

COBOL 64

001000 SELECT DATAl ASSIGN TO DISK-1541 DRIVE-8
001100 FILE STATUS IS FILE-ST.
00120~ DATA DIVISION.
001300 FILE SECTION.
.:~1400 FD
'.101500
1301600
301700 01
~01800

~01900

~02000 01
002100

DATA1
LABEL RECORDS ARE OMITTED
VALUE OF FILE-ID IS "@0:DHfAl".
DATM:ECGRD.
02 NAME-FIELD PIC X(201.
02 ADDR-FIELD PIC X(20l.
DATiHHDRD2.
02 NAME-FIELD-EXIT PIC Xi4l.

002200 02 FILLER PIC X{361.
002300 WORKING-STORAGE SECTION.
00240~ 77 WRITE-FLAB PiC X v~LUi "N".
002500 77 RVS-ON VALuE CHR 18 PIC X.
00260~ 77 RETURN-CODE VALUE CHR 13 ~IC A.

002700 77 CLEAR-HOME VALUE CHR 147 PIC X.
102800 77 FILE-ST PIC Xl.
~029m@ PROCEDURE DIVISJQN.
003000 START-UP.
003100 DISPLAY CLEAR-HOME
003200
003300
003400
003500

OPEN OUTPUT DATAl
IF FILE-ST IS NGT EQUAL TO

"Ii" DlSPLAY "Q?E~ ERRGR­
STOP ~;UN.

0i3600 PERFORM 6~T-DATA-LOOP THRJ LOOP-EXIT.
003700 END-IT.

146

Abacus Software

APPENDIX D

SAMPLE PROGRAMS

003800 CLOSE DATA1
003900 IF FILE-ST NOT EQUAL TO 1 00 1

004000 DISPLAY 9 CLDSE ERRDRH.
004l00 STOP RUN.
004200 GET-DATA-LOOP.
004300 DISPLAY RVS-ON
004400 "ENTER NAME FIELD
004500 RETURN-CODE
004600 ACCEPT NAME-FIELD
004700 IF NAME-FlELD IS NOT ALPHABETIC
004800 DISPLAY "NOT ALPHA"
004900 RETURN-CODE
005000 60 TO GET-DATA-LOOP.
005t00 IF NAME-FIELD-EXIT EQUAL TO
005200 •EXIT 9 GD TD LOOP-EXIT.
005300 DISPLAY RVS-ON
~05400 °ENTER ADDRESS
005500 RETURN-CODE
005600 ACCEPT ADDR-FlELD
005700 DISPLAY HDATA OK? (Y/NJ".
005800 ACCEPT WRITE-FLAG.
005900 IF WRITE-FLAG EQUAL "YH
006000 PERFORM WRITE-ROUTINE.
006t00 GO TO GET-DATA-LOOP.
006200 WRITE-ROUTINE.
006300 wRITE DATA-RECORD.
006400 IF FILE-Sl NOT EQUAL TG "00"
006500 DISPLAY "WRITE ERRORR
006600 STOP RUN.
~~6700 MOVE " 9 TO DATA-RECORD.
806800 MOVE 1 N" TO WRITE-FLAG.
006900 LOOP-EXIT.
007~00 EXIT.
HCQMPLETED
PRHH-OFF

147

COBOL 64

Abacus Software COBOL 64

APPENDIX D

SAMPLE PROGRAMS

000100 IDENTiFICATION DlvlSiuN.
000200 PROGRAM-ID. LIST-DATAl.
000300 AUTHOR. K A ALEXANDER.
000400 ENVIRONMENT DIVISION.
000500 CONFIGURATION SECTION.
000600 SOURCE-COMPUTER. C64.
000700 OBJECT-COMPUTER. Cb4.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000 SELECT DATA1 ASSIGN TO DISk-1541 DRIVE-B
001100 FILE STATUS IS FILE-ST.
001200 SELECT PRINT-FILE ASSIGN TD PRINTER-1525.
001300 DATA DIVISION.
001400 FILE SECTION.
~01500 FD DATA1
001600 LABEL RECORDS ARE OMITTED
001700 VALUE OF FILE-lD IS hDATAl".
001800 01 DATA1-RECGRD PiC X\40i.
001900 FD PRINT-FILE
002000 LABEL RECORDS ARE OMITTED.
002100 01 PRINT-REC PIC X(401.
002200 WORKINS-STORAGE SECTION.
~02300 77 FILE-ST PIC XX.
002400 PROCEDURE DIVISION.
002500 START-UP.
002600 OPEN INPUT DATAl.
002700 IF FILE-ST NQT EQUAL TO •00~

002800 DISPLAY uoPEN ERRORM
002900 STOP RUN.
003000 OPEN OUTPUT PRINT-FILE.
003100 PERFURH READ-WRITE-LOOP THRU LOOP-EXIT.
00:0200 END-UP.
003300 CLOSE PRINT-FILE.
003400 CLOSE DATA1.
003500 IF FILE-ST NOT EQUAL TD "00u
003600 DISPLAY "CLOSE ERROR".
003700 STOP RUN.

148

Abacus Software

APPENDIX D

SAMPLE PROGRAMS

003800 READ-WRITE-LOOP.

COBOL 64

003900 READ DATA1 AT END GO TO LDDP-Eiil.
004000 IF FILE-ST NOT EQUAL TO ·~0·

~04100 DISPLAY uREAD ERROR•
004200 STOP RUN.
004300 MGVE DATAl-RECQRD TO PRINT-REC.
~04400 WRITE FRINT-REC.
i04500 MOVE H n TO PRINT-REC,
004600 GO TO READ-WRITE-LOOP.
004700 LOOP-EXIT.
004800 Em.
HCOMPLETEO
PRINT-Off

149

C-128 REQUIRED
and C-64™ REAi >ING
COMMODORE <}
~u

COMMODORE

©L'l.IQl
COMPUTER AIDED DESIGN

L2wE
f~
~~

ADA~A BC:OIEFIEIOOl(Pl.J8ll&HE08V AllliTA 9£C>(£Fl[lOCJO;PlJIUSl--£08V A.Doi.TA Bl.CO:EFl!l(X)ol;PU8:_lQ-1EOBV Al».TA 8£Cl(EFl80{)0;PUll.J6HED8V AQATA 8ECO:EPl!l()()(PUILISHED8V

AbacusBSoflware /\.bdcusllBlllfl.Softwarc Abacus-Software Abacus-Software Abacus-Software

Detailed guide presents the 12B's Get all the inside information on Filled with inlo 1or everyone. Covers Insiders' guide for novice & ad- Learn fundamentals of CAO while
operating system, explains graphic BASIC 7.0 This exhaustive hand- 80 column hi-res graphics, win- vanced users Covers sequential & developing your own system. Design
chips, Memory Management Unit, 80 book is complete with commenled dewing, memory layout, Kamal relative 11les, & direct access com- ob1ects on your screen to ci.Jmp to a
column graphics and commented BASiC 7.0 ROM listings. Coming routines, sprites, software pro- mands. Describes DOS routines printer. Includes listings for '64 w.i!h
ROM listings 500pp $1995 Summer'86 $19.95 tec1t0n,autostarting 300pp $19.95 Commented listings $1995 Simon'sBasic 300pp $1995

~<l
BASICs.ource lJ

,.@";-::: •• ·s- 11 ~I e¢Sii?F:'

iiiliiil iii
.,. .. ""''"""'""u""'"' I Ai»,IAl1EC<;EFl8000:f>Ull.$HEDIJV

/\.bacusBllll.Softwarc AbacusBllll.Softwarc

Introduction to programing; problem Presents. dozens al programming
analysis thorough descripllOn ol all quick-hitters Easy and useful
BASIC commands with hundreds of techniques on tMe operating system,
examples, monitor commands: util- stac11.s, zero-page, pointers, !Me
i11es, mucM more $16.95 BASIC interpreter and more $16 95

ANATOMY OF C·64 Insider's guide lo the TRICKS & TIPS FOR C-64 Coll8Ction of SCIENCE/ENGINEERING ON C-94 In Adventure G1mewrlter'e H1ndbook

!!!n~~n~~.G~:::~~~o~;~~ ~O~~:~~=~ ~~:~~t~~~sed:l~h~~~t =~~~~:dd g~i1~: ~~~~i~~~~~ t~h';~:.te~0;1~~~'.e:~~0:o:!~~ ~~:~-:!::~~~~~e t;a'::~~;~h ~0::!~~
ROM listings. 300pp $19.95 CP/M, more. 275pp- $19.95 eledronK:s, o1hers. 350pp $19.95 adventure game generator. 200pp $14.95

ANATOMY OF 1~&.DRIVE Best 1541 REPAIR & MAINTENANCE CASSETTE BOOK C-64/VIC-20 PEEKS & POKES FOR THE C-64
handbook on ,_; · s all. Many Handbook describes !he disk drive hard· Comprehensive guide; many sample Includes in-depth explanalions of PEEK,
examples and ~~ commented ware. Includes schemalics and lechniques programs. High speed operating system POKE, USA, and other BASIC commands.
1541 ROM listin 500pp $19.95 to keep 1541 running. 200pp $19.95 fast tile loadmg and saving. 225pp $14.95 Learn the •inside• tric*.s to get the most out

MACHINE LANGUAGE C-64 Learn ADVANCED MACHINE LANGUAGE IDEAS FOR USE ON C-64 Themes: olyour'64. 200pp $14.95
651 O code write last programs. Many sam- Not covered elsewhere: - video conlroller, auto expenses, calculalor. recipe file, stock Option al Dlakettea for book•
pies and listings for comple1e assembler, interrupts, timers, clocks, VO, real time; i1sts, diet planner, window advertising, For your convenience, the programs.
monitor, & simulator. 200pp $14.95 extended BASIC, more. 210pp $14.95 others. Includes listings. 200pp $12.95 contained in each of our books are avail-

GRAPHICS BOOK C-64 ·best reference PRINTER BOOK C-64/VIC·20 Under· COMPILER BOOK C-64/C·128 All you able on diskette to save you time entering
covers basic and advanced graphics. 51and Commodore, Epson-compatible print- need 10 know aboul compilers: how they them from your keyboard. Specify name of
Sprites, animation, Hires, Multicolor, ers and 1520 ploner. Packed: utili,ies; gra· work; designing and writing your own; book when ordering. $14.95 each
llghtpen, 30·graph1cs, IAQ, CAO, pro- phics dump; JD-plot; commenled MPSao1 generating machine code. With working

·"···--·-~~~s 1liiiii1ii~~f~re·---~-
P.O. Box7219 Grand Rapids, Ml 49510· Telex709-101 • Phone(616)241·5510
Call now for the name of your nearest dealer. Or to order directly by credit card, MC, AMEX of VISA call (616)
241-5510. Other software and books are available-Call and ask for your free catalog. Add $4.00 for shipping
per order. Foreign orders add $10.00 per book. Dealer inquires welcome-1400+ nationwide.

TI.ii

'128 and
C·64™

.. ,.,,,,,,,,,,,,,,:,:,:,:,:,:,:,.·:·:::::::::::::\! The complete compiler

ii and development pack­
i' age. Speed up your pro­
!! grams Sx to 35x. Many
ii options: flexible memory
i' management; choice of

-

-

Cl ll
~

'! compiling to machine .
'! code, compact p-code or
> both. '128 version: 40 or
ii 80 column monitor output
'! and FAST-mode opera­
'! lion. '128 Compile(s ex­
:: tensive 80-page pro-

Mait.e yow BAS/CprogrQMS nui.UGHT'NING SPEED! :: grammer's guide covers

l!l!!!!!l!ll!l!!l!l::::::l.,:::,:!:::::::!::::::~'"''l'::i.lnf ~~~~~r t':ct~::is an:,
optimization, memory usage, VO handling, 80 column hi-res graphics, faster,
higher precision math functions. speed and space saving tips, more. A great
package that no software library should be without. 128 Complier $59.95

64 Compiler $39.95

,----====:::::===:;---:-:----:-:---1 Easily create professional
high quality charts and

=---"'---'-'--'"-"~-"--'-.I graphs without programming.
You can immediately change
the scaling, labeling, axis,
bar- filling, etc. to suit your
needs. Accepts data from
CalcResult and MultiPlan.
C-128 version has 3X the

.. resolution of the '64 version.
:H.rr-T,,_.,...,........,.:.;r;,,_, JI Outputs to most printers.

PowerPlan

C-128 $39.95
C-64 $39.95

One of the most powerful spreadsheets with integraded
graphics. Includes menu or keyword selections, online help
screens, field protection, windowing.trig functions and more.
PowerGraph, the graphics package, is included to create
integrated graphs & charts. C-64 $39.95

COBOL Compiler for the C-64 $39.95
Ada Compiler for the C-64 $39.95
VideoBasic Language for the C-64 $39.95

~-----------,Not just a compiler, but a
Comp1lerandSoftwarc
Development System

complete system for develop­
ing applications in Pascal

~. ~i!~ur~~ap~~t:n:~~ :~~:;,~
: :· · 'i::···::· .. 4 :::::: :: .. ~ with search, replace, auto,

' ~~] ~ " ~"~":~ie~t~h~tta~:~:~a~e:
. ·:;}. " ~ last machine code. If you

want to learn Pascal or to

c~ '2. " g:~~~:,:~~~~,~Jp~:
'----------·----'Pase.I is ~~;21;st 5c;:.~s

C-64 $59.95

OTHER TITLES AVAILABLE:
Technical Analysis Systam ~

Sophisticated charting and technical analysis system for '1119"'
serious investors. Charting and analyzing past history of a
stock, TAS can help pinpoint trends & patterns and predict a
stock's future. Enter data from the keyboard or from online
financial services. C-64 $59.95

Personal Portfolio Manager
Complete protfolio management system for the individual or
professional investor. Easily manage your portfolios, obtain
up-to-the-minute quotes and news, and perform selected
analysis. Enter quotes manually or automatically through
Warner Computer Systems. C-64 $39.95

Xper
XPER is the first "expert systerrl' for the C-128 and C-64. While
ordinary data base systems are good for reproducing facts,
XPER can derive knowledge from a mountain of facts and help
you make expert decisions. Large capacity. Complete with
editing and reporting. C-64 $59.95

C· 128 and C-64 •• •ld1miarkl of Ccmmoda• 6Ultnnl W.chlnM Inc.

AbacusliiHHiiil Software
P.O. Box 7219 Grand Rapids, Ml 49510- Telex 709-101 -Phone (616) 241-5510
Call now for the name of your nearest dealer. Or to order directly by credit card, MC, AMEX of VISA call (616)
241-5510. Other software and books are available-Call and ask for your free catalog. Add $4.00 for shipping
per order. Foreign orders add $12.00 per item. Dealer inquires welcome-1400+ nationwide. ..,,,,,

REQUIRED READING

INTERNALS
Essential guide to learning the
inside information of the ST.
Detailed deacrlptions of sound
& graphics chips, internal
hardware, various ports, GEM.
Commented BIOS listing. An
indispensible reference for
your library. 450pp. $19.95

GEM Progr1rnmer'1 Rel. TRICKS & TIPS
Fantastic collection of pro­
grams and Info for the ST.
Complete programs include:
super-fast RAM disk; tlme­
saving printer spooler; color
print hardcopy; plotter output
hardcopy. Money saving tricks
and tips. 200 pp. $19.95

GRAPllCS & SOUND
Detailed guide to understand·
Ing graphics & oound on the
ST. 20 & 30 function plotters,
Moir6 pattern•, various reso­
lutions and graphic memory,
fractals. waveform generation.
Examples written In C, LOGO,
BASIC and Modula2. $19.95

PRESENTING THE ST
Gives you an in-depth
look at this sensational
new computer. Discusses
the architecture of the
ST, working with GEM,
the mouse, operating
system, all the various
interfaces, the 68000
chip and its instructions.
LOGO. $16.95

For serious programmers In
need of detailed Information
on GEM. Written with an
easy-to-understand format. All
GEM examples are written In
C and assembly. Required
reading for the serious pro­
grammer. 450pp. $19.95

MACHINE LANGUAGE
Program in the fastest
language for your Atari
ST. Learn the 68000
assembly language, its
numbering system, use
of registers, the structure
& important details of the
instruction set, and use of

~~Kl~.ter~pp s$~~~~

LOGO PEEKS & POKES BEGINNER'S GUIDE
Take control of your Enhance your programs Finally a book for those
ATARI ST by learning with the examples found new to the ST wanting to
LOGO-the easy-to-use, within this book. Explores understanding ST basics.
yet powerful language. using the different lang- Thoroughly understand
Topics covered include uages BASIC, C, LOGO your ST and its many
structured programming, and machine language, devices. Learn the funda­
graphic movement, file using various interfac~s, mentals of BASIC, L~O
handling and more. An memory. usage, reading '.ind more. Complete. wrth
excellent book tor kids as and saving from and to mdex, glossary and Illus­
well as adults. $19.95 disl<, nnora. $16.96 !rations. +200pp $14.95

=
BASIC Trolnlng Gulde

lndispensible handbook for
beginning BASIC program­
mers. Learn fundamentals of
programming. Flowcharting,
numbering system, logical
operators, program structures,
bits & bytes, disk use, chapter
quizzes. 200pp. $16.95

BASICTOC
If you are already familiar
with BASIC, learning C
will be all that much
easier. Shows the trans­
ition from a BASIC
program, translated step
by step, to the final C
program. For all users
interested in taking the
next step. $19.96

Abacus liiiHHHI Software···--
P.o. Box7219 Grand Rapids, Ml 49510- Telex709-101- Phone(616) 241-5510
Optional diskettes are available for all book titles at $14.95
Call now for the name of your nearest dealer. Or order directly from ABACUS with your MasterCard, VISA, or Amex card. Add
$4.00 per order for postage and handling. Foreign add $10.00 per book. Other software and books coming soon. Call or
write for your free catalog. Dealer inquiries welcom~ver 1400 dealers nationwide.

,...,

REGISTRATION CARD

Registration #. 5 0 4 0 7 ~ Prodoct. ______ _

Nam:'----------------------~
Address·--------------------~
City Stare Zip~----

Purchase Inrormation:
Deal~.~~~~~~~~~~~~~~~~~~~~~~~-

Address.~--------------------~ City Stare Zip. ____ _

Returning this registration card entitles you to phone support for the above
product. You may also obtain a backup copy of the diskette for a handling
charge of $10.00. This card and a check, money order or credit card number
must accompany this request Purchase orders are not acceptable.

BACKUP COPY? __ No, do not send a backup, but register my purchase
__ Yes, send a backup copy, payment is enclosed

Credit card# __________________ _

Expiration Date,_____. _ __. __

Return this Certmcare for
a FREE ISSUE of RUN Magazine!
Canplete this certiOCate and mai today to see fa" youiselt, the money-saving, tine­
saving help yru'I Qti in fM!Jy isrue ol RUN-the Coornodore C-128/C04 Hane

Canl)Jting Guide! IC. OON and ~ the many ways YES, send my FREE EXAMINAl'ION ISSUE of
RUN can increase the value ol yrur canputer fM!Jy RUN and enter my no-risk Subscription fOf one year

I001lh wilt . . (ll mOfe monthly issues), fOf 1JSI S1U7-a savings
• ProgrllllS I Ulllllll that give yru a D" range of o1 $15.43 (44~) off the newsstand price. If I decide

apii::ations . .. ~ Mning programs than eYef not to subscribe, I will mark your invoice "cancel"
before. and owe nothing. The FREE issue is mine to keep .

• Expert fll¥lewl of ha'<t.vare and software for yrur
C-128 or C04 that wil steer yru straiglt .. . help yru
save money . •. avoid ~ mSakes.

• Specill Dlplrlmenll Oil 1ef9:oovnurtalions, educa­
tion, News tran Coovnodore, sdving protms, and
more!

11*1 ilme -°'' - ""

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 73 PETERBOROUGH, NH

POSTAGE WILL BE PAID BY ADDRESSEE

CW Communications/Peterborough
RlJN
P.O. Box 954
Farmingdale, NY 11737

I, II 11 ••• 111 ••• 1 .. 11.1 ••• 11.1 •• 1 •• 1 •• 1.1 .. 1 •• 1.1.1.1

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED
STATES

