
I

r
l

l

KICR0-68000 USERS MANUAL

Published by:

Coaputer Systea Assiciates, Inc.
7564 Trade Street

San Diego, CA 92121
(619) 566-3911
Telex 333693

-2 Edition
First Printing

August,. 1985

Copyright 1985 by CSA, Inc.
All rights reserved.

l
1

l
i I

'1

j

I
l

l
l
l
l

I
i

CSA Users Manual <CSA-UMM68KTA>
for, CSA TRAINER <CSA-M68000TA>
TABLE OF CONTENTS Page 1

TABLE OF CONTENTS

Table o-£ Contents
List 0£ Illustrations
List o-£ Tables

Pre£ace
The CSA Trainer
The Users Manual
In Case 0£ Di-£-£iculty

CHAPTER 1 GENERAL DESCRIPTION

Introduction
CSA Trainer Documentation
CSA Trainer Features and Speci£ications
Equipment and Accessories Supplied
CSA Trainer Assemblies
CSA Trainer Keypad
CSA Trainer Display
Summary

CHAPTER 2 OPERATION/POWER UP

Introduction
Installation
Power Up
Theory o-£ Trainer Operation
The MC68000 MPU At Power Up
Versabus in the CSA Trainer
The MPU, Bus and Petebug
Summary ofOperation
Initial Trainer Testa
Demo 1 Procedures
Demo 2 Procedures
Master Mind
Master Mind Game Play
Summary

i

i
iv
iv

1-1
1-1
1-1
1-2
1-2
1-6
1-7
1-8

2-1
2-1
2-1
2-2
2-2
2-4
2-5
2-9
2-9
2-9
2-9
2-10
2-14
2-15

CSA Users Manual CCSA-UMM68KTA>
for, CSA TRAINER CCSA-M68OOOTA>
TABLE OF CONTENTS Page 2

CHAPTER 3 FUNCTIONAL DESCRIPTION

Introduction
MaJor Assemblies
Power Supply
MPU Board
MPU Section

The MPU Bus and Versabus
The MPU Peripheral Section
EEROMS
Memory Map
Address Decoders
Initial Start and Reset
DTACK and FPGA Devices
EEROM and FPGA Devices
I/0 and FPGA Devices
FPGA Summary
Parallel Input/Output <PIA)
Serial Input/Output <ACIA)

The Keyboard/Display Assembly
The Keyboard
The Displays

Petebug Routines
Refresh the Displays
Display Values in Seven Segments
Display Value in a Set 0£ LED's
Scan the Keyboard

The Stepper Motor
The Stepper Motor Program
Stepper Motor Basics

CHAPTER 4 USING PETEBUG

Introduction
Petebug Command Table
Petebug Command Summary
Summary

CHAPTER 5 MC68OOO

Introduction

\
\CHITECTURE

Quick Reference Guide

ii

3-1
3-1
3-1
3-2
3-2
3-5
3-6
3-7
3-8
3-13
3-15
3-16
3-16
3-16
3-17
3-18
3-18
3-19
3-19
3-21
3-23
3-24
3-24
3-25
3-25
3-26
3-26
3-27

4-1
4-2
4-13
4-47

5-1
5-2

I

I.

CHAPTER 6 MC68000 INSTRUCTIONS

Introduction
Quick Reference Guide

CHAPTER 7 MC68000 INPUT/OUTPUT

Introduction
Quick Re£erence Guide

CHAPTER 8 TINY BASIC

Introduction
Numbers
Variables
Functions

CSA Users Manual <CSA-UMM68KTA>
£or, CSA TRAINER <CSA-M68000TA>
TABLE OF CONTENTS Page 3

6-1
6-2

7-1
7-2

Arithmetic and Compare Operators
Expressions

8-1
8-1
8-1
8-1
8-1
8-2
8-2
8-3
8-3
8-3
8-4
8-4
8-5
8-5
8-5
8-5
8-5
8-6
8-6
8-7
8-7
8-7
8-7
8-7
8-7
8-7
8-8
8-8
8-8
8-8
8-9
8-9
8-9
8-10

Program Lines
Tiny Basic Commands

REMARK
LET
PRINT
INPUT
POKE
CALL
IF
GOTO
GOSUB
RETURN
FOR and NEXT
STOP
BYE

Direct Commands
RUN
LIST
NEW
SAVE
l..OAD

Stopping Program Execution
Abbreviations and Blanks
Error Reports
Error Corrections
Running Tiny Basic
New Features
Saving and Loading Tiny Basic Programs in EEROM

iii

CSA Users Manual (CSA-UMM68KTA>
£or~ CSA TRAINER (CSA-M68000TA>
TABLE OF CONTENTS Page #4

CHAPTER 9 AID CONVERTER

Introduction
Program Overview
General Organization
Data Direction Registers
Display PIA
Keyboard PIA
Sending Control Signals
Di.splaying Data
Sample Program
Summary

CHAPTER 10 DIA CONVERTER

Introduction
Program Overview
General Organization
Tone Generation by the Sample Program
DIA Sample Program
Summary

APPENDIX A

GLOSSARY

LIST OF ILLUSTRATIONS

CSA Trainer Rear View
MC68000 Instruction Format
Master Mind Display
Digital Logic Circuits
MPU Component Location Diagram

• Trainer Display Schematic
Versabu.s Pinout
Memory Jumper Selection
Memory Map
FPGA Program Charts
Keyboard Key Labels
Keyboard Matrix
Display Layout
Display Block Diagram
Stepper Motor Schematic Diagram
Digital Gates/Logic

iv

9-1
9-1
9-1
9-1
9-2
9-2
9-3
'9-3
9-3
9-4

10-1
10-1
10-1
10-1
10-2
10-2

G-l/G-24

2-1
2-2
2-3
2-4
3-1
3-lA
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11

CSA Users Manual <CSA-UMM68KTA>
£or, CSA TRAINER <CSA-M68OOOTA>
TABLE OF CONTENTS Page #5

o Micro-68000 Trainer Schematic Diagram
Petebug Diagram

3-12
4-1
4-2
4-3
4-4
9-5

Auto Flow Chart
Change Flow Chart
Display Flow Chart
AID Converter Schematic
DIA Converter Schematic

LIST OF TABLES

CSA Trainer Documentation List
CSA M68000TA Speci£ications
CSA M68000TA Equipment List
Petebug Subroutines
Master Mind Keyboard Commands
AO Bit Byte Addressing
Trainer Designated Addresses
FPGA Input Signals
FPGA Outputs
Petebug Keyboard Input
AID Control Signals
A/D Input Selection

V

10-3

1-1
1-2
1-3
2-1
2-2
3-1
3-2
3-3
3-4
4-1
9-1
9-2

CSA Users Manual <CSA-UMM68KTA)
£or, CSA TRAINER CCSA-M68OOOTA)
SAFETY AND NOTICE PAGE

SAFETY NOTICE

The operation 0£ the Micro 68000 Trainer/ Prototyping System
(CSA-M68000TA) presents no electrical or mechanical danger to
personnel when installed and operated as directed by this manual
and COMPUTER SYSTEM ASSOCIATES. However, ALL PERSONNEL having
access to this equipment should be aware 0£ and observe all
practical safety precautioncs, as proscribed £or equipments oper
ating £ram £acility line AC HIGH VOLTAGE, (110/230 VAC, 60 Hertz,
50 Watts, single phase).

----=--------------------~---------------------------------------
FEDERAL COMMUNICATIONS COMMISSION <FCC>

required warning £or CLASS A computing devices

WARNING

This equipment generates, uses, and can radiate radio £re
quency energy and i£ not installed and used in accordance with
the instructions contained in this manual, may cause inter£erence
to radio communications. The CSA-M68000TA has been tested and
£ound to comply with the limits £or a Class A computing device
pursuant to Subpart J 0£ Part 15 a£ FCC Rules, which are designed
to provide reasonable protection against such inter£erence when
operated in a commercial environment. Operation 0£ this
equipment in a residential area is likely to cause inter£erence
in which case the user, at his own expense, will be required to
take whatever measures may be required to correct the
inter£erence

CSA Users Manual <CSA-UMM68KTA)
£or. CSA TRAINER CCSA-M68000TA)
PREF ACE Pa-ge 1

PREFACE
GENERAL CSA INFORMATION

BACKGROUND

The CSA M68OOOTA Trainer <henceforth re£erred to as the CSA
Trainer or Trainer) has been designed to meet the critical need
for a valid training device in the microprocessing industry. The
training required to acquire a working knowledge of sophisticated
microprocessors, such as the MC68OOO (32 bit microprocessor),
created the need for a complex training device. This need, was
further complicated, in that, the training device should not
require more attention to use. than the topic that is to be
taught. The CSA Trainer has sucessfully supplied a solution to
both of these needs. The CSA Trainer is an easy to use
interface that will fulfill all of the requirements necessary £or
an excellant MC68OOO training device.

THE CSA TRAINER

The CSA Trainer grants total access to the MC68OOO internal
structure and instruction set (at both the machine language level
and at the assembly language level). while presenting the student
with a real time, interactive, microprocessor environment. The
ease of use that the CSA Trainer employs, allows the Trainer to
become a transparent background, therefore the total attention 0£
the student can be focused on the MC68OOO microprocessor unit
CMPU) and on the learning topic at hand. Some of ~he £eatures
oi the CSA Trainer are as follows:

a. All of the cecessary CSA Trainer/MC68OOO input keys are
on one kepad. These deys (hexadecimal. binary and command keys)
are oversized. clearly labeled and are color coded.

b. The display is separated into two clearly definable
hexadecimal (alphanumeric segments) and binary
During all trainer operations, a separate group a£
an indication 0£ the sta~us currently functioning
trainer.

(LED) areas.
LEDs presents

on the CSA

c. Additional features such as serial and parallel
input/output (I/O), extended Versabus (wire wrap compatible),
Jumper selec~ao~e hardware/firmware options and open circuit
architecture all contribute to the overall versatility and user
control 0£ the CSA trainer.

d. The CSA trainer may be expanded to include EEROM user
memory. a video terminal <needed for Tutor operation) and
demonstrator equipment (stepper motor, AID converter, D/A-s?eaker

THE CSA TRAINER MANUAL

This manual re£lects only a part of the documentation

CSA Users Manual <CSA-UMM68KTA>
£or, CSA TRAINER <CSA-M68000TA>
PREFACE PAGE 2

delivered with the CSA Trainer <see Table 1-1). The Motorola
MC68000 Manual and the Assembly Language Manual are sources 0£
invaluable re£erence data and represent the type 0£ materials
that the student will need to use in the industry. The CSA
Laboratory Manual has been included to £acilitate the use 0£
"hands on" training through the various processes 0£ programming
using the binary (base 2) and hexadecimal (base 16) number
systems. This manual contains the information and instructions
required to operate and utilize the Trainer. Information from
Motorola in direct relation to the MC68000 has been included to
supplement the Trainer documentation. A copy of the
applicable Tutor documentation has been included to aid in using
Tutor. Tutor may be used for machine language programming and for
assembly and disassembly 0£ the MC68000 Instruction Set. In
addition, a training aids section and a glossary have been
included to support training. A look at the Table of Contents
will contribute to an understanding 0£ the organization and
presentation 0£ the material contained within this manual.

IN CASE OF DIFFICULTY

CSA is prepared to assist you with any problem that you may
encounter with the CSA t~ainer. Prior to asking CSA £or
assistance, please check the section 0£ this manual that applies
to your problem. Many problems are not problems at all, Just a
lack 0£ proper in£ormation. CSA has made every e££ort to
ensure that the in£ormation, required to 09erate and use your
Trainer is available to you. When phoning CSA ensure that you
have the Serial Number 0£ the CSA Trainer <located on the label,
on the rear 0£ the unit). Also have pencil and
shou~d a Return Material Number <RMN) be required.
and phone number £or CSA are:

COMPUTER SYSTEMS ASSOCIATES <CSA)
7564 TRADE STREET
SAN DIEGO, CA 92121
(6l'3) 566-3911
T~lex 333693

paper ready,
The address

INTRODUCTION

CSA Users Manual <CSA-UMM68KTA)
£or. CSA TRAINER (CSA-M68000TA)
CHAPTER 1 Page 1

CHAPTER ONE
GENERAL DESCRIPTION

This chapter will introduce the CSA Trainer and the
accessories required to operate the unit. The assemblies 0£ the
CSA Trainer will be described and you will be introduced to the
Trainer contlrols and displays. A brie£ overview 0£ the CSA
Trainer hardware and £irmware is included in this chapter. how
ever, detailed descriptions 0£ these £eatures are presented in
chapters 3 and 4, respectively. Tables showing the complete
documentation and speci£ications 0£ the·CSA Trainer are also
presented and may be used £or £uture quick reference. The unpack
ing and repacking instructions that were shipped with this Train
er should be added to the end of this chapter, in case 0£ £uture
need.

CSA TRAINER DOCUMENTATION

As described in the Pre£ace, this manual is only a part 0£
the suooort documentation that is supplied with the CSA Trainer.
T~ble 1-1 presents a complete list 0£ all the support docu
mentation that is supplied.

CSA TRAINER FEATURES AND SPECIFICATIONS

The features and speci£icationa 0£ the CSA Trainer are
listed in Table 1-2. The CSA Trainer specifications in the
table are separated into areas 0£ general, hardware, iirmware,
and expansion options.

CSA Number

cs,; UI1M68KT A

esp,. - Ll'1.N.68KT A

l:SA - TBM58KTA

GSA - AL1168KT l\

CSA - i"!OM68KTA

CSA - SCM68KTAM

Table 1-1 CSA Trainer Documentation

Title

CSA Users Manual

CSA Laboratory nanual

68000 TUTOR ~ANUAL
(Appendix A)

68000 ASSEMBLY LANGUAGE
<McGraw - Hill)

16-Bit Microprocessor
Users Manual <Motorola)

680010, 16-Bit ?rogrammimg
card (Motorola)

Use

T::r. ... a.1.n.1.ng

Tr-5.i.ning

Tra1nin•.j

Re£erence

Reference

Quick Ke£.

CSA Users Manual <CSA-UMM68KTA>
£or~ CSA Trainer CCSA-M68OOOTA>
CHAPTER 1 Page 2

EQUIPMENT AND ACCESSORIES SUPPLIED

Table 1-3 presents a list 0£ the equipment Cother than the
documentation) that was shipped with the CSA Trainer. Whether
the Trainer you received was a long unit or the short brei£case
type. the acessories will be the same, only the packaging di££ers
between the two Trainers. A check of this table against the
materials actually received will determine whether your shipment
was complete. Should a shortage 0£ some item be discovered.
no~1%y CSA_ immediately (during working hours). The address
and phone number £or CSA are given in the Pre£ace.

CSA TRAINER ASSEMBLIES

The CSA Trainer has three maJor assemblies. as follows:
a. The Power Supply Assembly
b. The MC68000 MPU board assembly
c. The Keyboard/Display Assembly.

Table 1-2 CSA M-68OOOTA Speci£ications

GENERAL SPECIFICATIONS:
Name Description

Power Supply Switching type, rated
+5 VDC@ 6 Amps
-12 VDC@ 0.2 Apms, and
+12 VDC@ 3 Amps

MC68000 MPU 16-bit microprocessor
Facility Power 115/230 VAC. SO Hz,

Single Phase, 50 Watts

Packaging Two Types:

Dimensions

Weight

FCC Rated

Documentation

a. Long Case
Hardwood Case
See Through Cover
b. Short Case
Hardwood Case (2 units)
See Through Cover

Long: 31L, 11.75w, 3.125H
Short: 17L, 11.5W, 4 H

Trainer: 10 Pounds

Class A Computner

Fully Supported

Comment

C }'Jax . Load)

(4 Amps Peak)

Motorola
Source
Power

Name:
Long

Short:.

Inches
Inches

Each

Commercial

See Table 1-1

CSA Uaera Manual <CSA-UMK68KTA>
£or, CSA TRAINER <CSA-M68OOOTA>
CHAPTER 1 PAGE 3

--
HARDWARE SPECIFICATIONS:
Na•• Description Coaaent

--
MaJor Assemblies

Memory

Serial I/0

Parallel I/0

VERSABUS

Clock Crystal

<MPU Yl>

FIRMWARE SPECIFICATIONS:

Monitor <Programs)

Petebug

Tutorbug

Tiny Basic

Three:
Power Supply
MPU Board
Keyboard/Display

Installed:
RAM/ 16 K Bytes
PROM/ 16 K Bytes
PROM/ 16 K Bytes

2 Supported:
a. TERM
b. HOST
2 Supplied:
32 Data Lines
4 Control lines

On MPU Board <BUS>
140 Lines Avail2.
16 Data Lines
24 Address Linea

MPU Control Lines

2 Available

Freq. Set: 4.9152 Mz.

3 Supplied

Hex/ Binary
Input to memory
and MPU registers

Hex/ Binary Input
Plus AssSembler /
Disassembler

High Level Language

* Requires a video terminal

See Text (all)
Switching
MC68000
Main Control

Jumper Selectable
Systell\ I User
Petebug
Tutor

Connectors:
Female
Male
MPU to Keyboard/
Display Asay

Extended to
rear 0£ unit
Wire wrap
connectionsg

l Supplied

See Options

Re:ference

Chapter 4

• Appendix A

• Chapter 8

CSA Users Manual (CSA-UMM68KTA)
FOR. CSA TRAINER CCSA-M68000TA)
CHAPTER 1 PAGE 4

EXPANSION OPTIONS: •

Carrying Case

Video Terminal

Stepper rlotor

EEROMs

Analog to Digital
Converter

Digital to Analog
Converter

Clock Crystal

Serial I/0

2 Styles:
Both are heavy
constructed. padded,
£inely cra£ted. Long
or Short briefcase ~ype.

RS232 Compatible

Programmable
Automation
Demonstrator
Memory ExpansiOon
16 K Electrical
Eraseable ROMs.

8 Bit

8 Bit

User Speci£ied

Frequency

Connecting
Ribbon Cables

1 Each Unit

Tut.or Cont.rol

CSA Option

CSA Option

With speaker

Special Order

Call CSA

2 Types, Option
Call CSA

* CSA will consider requests £or any User speci£ied special
options. call or wr~te CSA £or an estimate.

CSA Users Manual <CSA-UMM68KTA>
£or, CSA TRAINER CCSA-M68OOOTA>
CHAPTER 1 Page 5

Table 1-3 CSA M-68OOOTA Equipment Supplied

Quantity Description Comment

1
1
1
1
2
1
2
1
1
l
1
~

1
1
l
.l.

Power Supply
68000 MPU
Keyboard/Display
Hardwood Case
Hardwood Cases
Clear F Cover
Clear Covers
AC Power Cord
Parallel Ribbon
Installed Fuse
Document Package
Pack/ Unpack
CSA Warranty
User's Grp. Reg.
User's Report/
Product Pro£ile

Assembly
Assembly
Assembly
Long Unit
Short Unit
Long Unit
Short Unit
Black
3 Connect.or
3 Amp/ Rear
List/ Table 1-1
Instructions
Return to CSA
Mail
Fill out &
Return CSA

EXPANSION OPTIONS// USER FILL IN FOR REFERENCE.

Name Description Serial#
==

CSA Users Manual <CSA-UMM68KTA>
£or. CSA TRAINER CCSA-M68000TA>
CHAPTER 1 Page 6

The assemblies listed in table 1-3 are sel£ identi£ying, the
metal box with a single red LED, is the sealed Power Supply
Assembly. The MPU assembly has the large MC68000
microprocessor installed in a Zero Insertion Force <ZIF) socket,
on the £ar le£t 0£ the MPU board. The keyboard/display assembly
is obvious by its components (keypad and display indicators).
These assemblies will be described in detail in chapter 3. Notice
that all 0£ the IC chips on the CSA Trainer have been mounted in
IC sockets. This will not only allow £or quick replacement 0£
chi9s if required, but allows instructors to purposely install
training CadJusted) chips £or troubleshooting exercises. There
are two large ZIF sockets in the lower mid protion 0£ the MPU
board. These sockets are £or the optional EEROM memory chi~s tha~
will be described later. Should these two sockets be empty on
your Trainer, 1t is probably no mistake, only that the EEROMs
were not ordered with your unit. However, should the EEROMs be
ordered at some £uture date, CSA has prepared the MPU board to
accommodate the installation of the new chips.

CSA TRAINER KEYPAD

The CSA Trainer keyboard consists 0£ twenty color-coded keys
arranged in a 4 column, by 5 row rectangle. Across the top
row are the command keys, ENTER KEY (in this manual the
convention- <ENTER> will be used), HEX/BIN key, <hexadecimal or
binary>, BREAK key, (re£ered to as ABORT in some instances) and
~he RESET key (hardware reset ... memory is not cleared). Across
the second row are the hexadecimal <Hex) literal numeric Keys (C
~hrough F). and in columns 3 and 4 0£ the next row are Hex A and
B. Look at the keypad closely and you will see that these keys
<except El have a command function label also. These command
£unctions will be understood by the CSA Trainer dependent on the
Mode and order 0£ entry into the keypad. Brie£ly, these £unctions
are as £allows:

CHANGE CC keyl -

DISPLAY CD keyJ -

FWD FCF ~ey) -

AUTO <A key) -

BACK CB key)

Used to change data in memory or
register
Used to display cata in memorv or
register
Used to step £orward in memory or
regiscer count
Used for automatic sequence of data
input
Used to step back in memory or regiscer
CNot allowed in Memory Instruccion Mode)

The remaining keys are the numeric keys CO through 9): there
are also commands associated with these keys that are invoked in
the same maner as the previous command keys.

RUN

STEP

+

MODE

CSA Users Manual <CSA-UMM68KTA>
£or, CSA TRAINER (CSA-M68000TA>
CHAPTER 1 Page 7

Beginning a~ row 3, column 1, these command kays are:

(8 key) - Used to run a program in memory

(9 key) - Used to Single Step one program
instruction

(4 key) Used in binary entry to move cursor right

(6 key) - Used in binary entry t.o move cursor left

(1 key) - Used for Hex addition

(2 key) - Used £or Hex subtraction

(3 key) - Used to select Mode of operation (memory.
or register and data size)

CSA TRAINER DISPLAY

T~e CSA Trainer Display is organized in a logical manner as
follows:

The top eight Hex digit displays are the Address display,
these display segments are also used for Petebug error (HUH?) or
status messages (68000 UP, ABORT).

The lower five groups, of four Hex segments each. on ~~e Hex
display are used £or displaying data or 68000 insLruc~ions.

The first 16 bit LED display is located next Lo the Hex
instruction display, and will display data and instructions in
the binary £ormat.

There
instruction

are three more groups 0£ LEDs
extension displays (extension

display instruction extensions in binary.

alongside 0£ the
1 through 3) tha~ will

3elow the Hex display groups, there are eight LEDs ~na~ are
used to display the STATUS 0£ the operation a£ the Trainer aurina
various £unctions.

There are more detailed descriptions 0£ the disnlays
func~ional capibilities and Trainer uses in Chapter 3 and Chapter
4. At present. you only have to be able to recognize whether a
value is being displayed or not. When a Hex digit or an LED is
illuminated, this indicates that data or insLructions are being
displayed. All binary LEDs will not light, Just those signifying
bi.nary one's.

CSA Users Manual <CSA-UMM68KTA>
£or~ CSA TRAINER <CSA-M68000TA)
CHAPTER 1 Page 8

SUMMARY

have
In this c~apter.

been introduced
through the use 0£ text and tables.

to a number 0£ speci£ications
you
and

characteristics related to the CSA Trainer. At this point the CSA
Trainer should be unpacked and inspected £or damage, and the
student should be aware 0£ the Assemblies, maJor hardware. and
£irmware that makes up the CSA Trainer. In the next chapter the
operation 0£ the CSA Trainer will be discussed as well as how to
properly a9ply Power to the unit.

Ensure that the entire chapter (2) is read and understood.
prior to applying AC Power to the CSA Trainer.

INTRODUCTION

CSA Users Manual
£or~ CSA TRAINER
CHAPTER 2

CHAPTER TWO
OPERATION AND POWER

(CSA-UMM68KTA)
CCSA-M68000TA>

Page 1

In Chapter 1 the CSA Trainer was described and the maJor
assemblies and components were introduced. In this chapter
the installation (interconnects) of the Trainer, the power
connections and controis, and a description 0£ Trainer theory of
operation will be presented. With primary power connected to
~ne 1rainer, you may perform an operational test on the Trainer,
with the two demonstration programs available in ?e~ebug. Then
there will be an introduction to the game of Master Mind, where
the User may match wits with the computer. To complete the
presentation 0£ the operational abilities of the CSA Trainer a
list 0£ the subroutines available in Petebug is presented in
Table 2-1. CSA recommends that this chapter be read in its
entirety. prior to connecting AC power or any attempts co operate
t.he ':'rainer.

INSTALLATION

The CSA Trainer is a portable unit and easily installed for
operation. However. to ensure that an important step is not.
overlooked, £allow this procedure:

1. On the rear 0£ the Trainer, <see Figure 2-1), ensure that the
ON/OFF Crocker type) Power switch has the lower switch arm
pressed into the case (OFF).

L. • Locate the black AC Power Cord and connect the female end to
the CSA Trainer and the male end to the source power
(wall receptacle).

,.::onnectir.::;n

POWER UP

CSA Trainer is now installed and ready to "t."'e,:= .::.eve
power. As shipped. the Trainer will power UD and ~h~ xcsaooo

e~~ecute monitor opera-c.ing program.
_:::;roceaures for

the ?etebug
connecting a viceo terminal and e>::e(::u -:..1. r19

Tut.or operating program are ~resented in Appendix A and in -r..:-.1.e
CSA Laboratory Manual. The procedures ior using the Tiny Ba . .s.i.c:

language are shown in Appendix C. Also, in Chapter 3 o-£ this
manual, the details £or Jumper selecting any oi three MC68000
Vector Start options. during power up, are described. To
accly AC 9ower and make the initial checks on the CSA 1rainer.
nroceed as £allows:

l. ?ress the upper rocker arm 0£ the ?ower switch in toward
the Trainer case CON).

CSA Users Manual <CSA-UMM68KTA)
£or, CSA TRAINER <CSA-M68000TA>
CHAPTER 2 Page 2

CAUTION

High voltage AC power is now applied to the CSA Trainer. Although
CSA has taken every precaution to protect the User from contact
with the primary power (sealed and shielded power supply). the
user is reminded to observe all safety procedures ap?licable to
operating electronic equipment.

2. Observe the power LEDs on each of the three maJor
and verify that the LEDs are illuminated.

assemblies

3. Observe the display and verify that the messaqe "58000 :Ji?" is
displayed. This message indicates that the CSA Trainer has
properly executed the Petebug monitor program (during power up),
and is ready £or operation.

I£ conditions are as stated in steps 2 and 3 then proceed
tne next paragraph. I£ conditions are not as stated. remove
power from the Trainer and review the installation steps £or
error. If a malfunction still exists after review. see

THEORY OF TRAINER OPERATION

ADDITIONAL REFERENCE MATERIAL

Motorola (16 bit) Micro Manual ... Chapters 1 & 2 to Para 2.11
Assembly Language Manual Chapter 3, pp 3-1 to 3-6
CSA Laboratory Manual Chapter 1 CAlll

The CSA Trainer, as a computer system,
basic reouirements of all computer systems:

BASIC SYSTEM CSA TRAINER

a. Central Processing Unit MC68000 microprocessor <MPUJ

b. Memory RAM, PROM, Optional EE~OM

to

.an
the

c. Input and OuLput CI/0) Keyboard. input/Display. output

In addition to ~hese minimum essentials listed above.
CSA Trainer has three operational ~rograms installed in PROM
<Petebug. Tutor and Basic). As the Trainer is con£igured to
vector to and RUN Petebug, at initial Power Up, we shall only
discuss the Petebug monitor during this description.

The MPU <MC68000) at Power Up

When the power is £irat applied to the CSA 7rainer, or when
RESET is pressed, the MPU clears all registers and seeks an
address in the Program Counter CPC) register to fetch (load) an

B
L

A
N

K
 (

E
X

P
A

N
S

IO
N

)
M

A
IN

 (
A

C
)

P
W

R

S
W

IT
C

H

P
A

R
A

L
L

E
L

 C
A

R
D

E
D

G
E

 C
O

N
N

E
C

T
O

R
S

P

O
W

E
R

C

O
R

D

C
O

N
N

E
C

T

L
A

B
E

L
S

V

E
R

S
A

B
U

S
 W

IR
E

W
R

A
P

 F
U

S
E

(3

 A
M

P
)

K
E

Y
B

O
A

R
D

/D
IS

P
L

A
Y

M

A
IN

M

P
U

M

C
6

8
0

0
0

csn
 COMP

U
TE

R
 S

Y
S

TE
M

 A
S

S
O

C
IA

TE
S

6
8

0
0

0

R
E

A
R

V

IE
W

F
IG

U
R

E

2
-1

15 1 ST WORD (MINIMUM LENGTH) 0
BYTE 00 BYTE 01 -i..-.,__-------------------.-.i-----,-

LOW ORDER BYTE I
I

WORD

HIGH ORDER BYTE

0 00 00000--1--00000001

~ ACCESS BYTE ON j-.- ODD BOUNDRY
_EVE~OUNDR~ __ J_ NE~R_!CCESSE~ _ ·t OPERATION SPECIFIES !TYPE AND MODE CODE ♦
_ FOR ADDITIONAL wo1RDS j

I

,., 2ND WORD _____ o2\ ______ 07.j
IMMEDIATE OPERAND NO. 1 ·

CONTAINS OPERAND OR EXTENSION

I'-◄ I . I __ 3RD WORD _____ o4I ______ 05~

IMMEDlATE OPERAND NO, 2
CONTAINS OPERAND OR EXTENSION

I 4TH WORD _____ Q6 i (IF ANY)-- __ 01 ... j
◄ SOURCE EFFECTIVE ADDRESS

WORDS 4 AND 5

J.., 5TH
I

WORD _____ 08 I

I ◄ 4TH WORD ____ Q61 ______ 01.j

DESTINATION EFFECT! E ADDRESS (IF ANY)

I◄
MSB

WORDS 4 AND 5
I

5TH WORD _____ oa I

LSB

MAXI MUM

INSTRUCTION
LENGTH

IS 5 WORDS

csn COMPUTER SYSTEM ASSOCIATES

NOTE: INSTRUCTIONS ARE ALWAYS AT MC 68000
LEAST ONE WORD (16 BITS) LONG,
AN 8 BIT OR LESS WILL BE PADDED INSTRUCTION FORMAT
WITH ZEROS TO FILLIN 16 BITS

FIGURE 2-2

a. T~e MC68000 £etches an

CSA Users Manual
-.for~ CSA TRAINER
CHAPTER 2

<CSA-UMM68KTA)
(CSA-M68000TA)

Page 3

specified by the PC
and executes the instruction

instruction from a
register, decodes

memorv location
the instruction

~- The MC68000. through the Trainer hardware, genera~es the
co11trol signals to transfer data on the data lines £rem the
instruction speci£ied address (if any). loads the data Cwhich may
be another instruction), decodes the new instruction. and/or
executes the £armer instruction on the data retrieved.

c. The M?U increments the PC resgister the correct amount of
<,,.;(::ird C16 bi~s) increments, so as to fetch the next ins-::.ruc~.1.on
and repeats the cycle started at "a" above.

This cycle can be interrupted. or diverted but essentiallv
t~is is the cycle that the XPU per£orms over and over again. In
the discuasion 0£ the MPU thus £ar many terms have been used that
may require £urther explanation. The £allowing terms are commonly
used in the microprocessor industry:

INSTRUCTION - The machine code (binary) ~hat has been ae
into the MC68000

(ins-:::.ruction codes).
to communicate with external direc~ions

Instructions that are ?art a£ the
~C68000 Instruction set are £rem one to £ives words in length,
(see Fisure 2-2). Instructions are planned as a sequence 0£ steps
in a computer program or routine,
an entire sequence 0£ operations

organized to accomplish ei~her
(program) or a particular task

(routine).
part.. is the

Instructions normally have two parts.
the Operation Code <OPcode). The O?ccde

the £ i::-s-:.

the MPU operatiodn that the MC68000 is to perform.
second part of an instruction. the Operand. is ~ne aa~a, Cc:::
soeci£ies the address 0£ the data), that the OPcode is ~o operate
on. :~~ MC68000 has an entire set 0£ instructions ~o cer£orm
tasks such as £etch, store, arithmetic, logic and other
microcrocessor functions, (see Motorola, 16 bit Microprocessor
Jsere Manual. Pages 79 through 182).

ADDRESSING
amongst ~housands) in ~emory.

specify I /{J aevice Cadaressl. 7here are several
adaressing ava1labla to the programmer when planning ~PU instruc
tions that will perform an operation or tas~. : :1ese £0:::-ms ,:,£
addressing will be described in Chapter 6 0£ this manual. An
address is the specific identibty <in oinary> assigned to a
memory cell or I/0 device in order that the ~PU may .i.ocate ana
communicate with that cell or device.

DATA - Data as a general term relates to binary iniormation
required to perfrom a £unction within the computer system (CSA
Trainer). Data is moved, trans£ered in memory. or to
registers. input £rem external devices (keyboard), output to

CSA Users Manual <CSA-UMM68KTA)
£or~ CSA TRAINER <CSA-M68000TA)
CHAPTER 2 Page 4

external devices (display), and combined with or comoared to
other data to create new data. The data tvces for ~he MC68000
must be grouped in a specific manner. ~e£er to the Motorola :6-
bit Microprocessor Manual, Section 2, page 13, for a detailed
description 0£ MC68000 data organization. The MC68000 acceptable
data types are listed below:

a. Bit Data Cl, 4, 8, 16, or 32 bits)
4 bits O= nibble
8 bits= byte
lb bits= word.
32 bits= long word

b. .Addresses up to
significant in
address lines

32 bits. Only the low order 24
the CSA Trainer as there are

are
only

c. Binary Coded Decimal <4 bits). Binary coded decimal is a
coding system to represent the numbers O through 9 in a
special £our bit code

See the Assembly Language
througu 3-6 for a description of
ters and in memory.

VERSABUS In The CSA Trainer

Manual.
data and

Chapter
addresses

3.
in

p-ase 3-3
N?U reg.1.s-

In order £or addresses to be speci£ied, data to be tranaier
red, and synchronization of actions (control) to exist, tnere
must be multiple paths to allow ~hese separate but related s.1.0-
nala to ~ravei from place to place. When severa~ related signals
are carried by a group 0£ circuit board traces or wires, the
group is commonly-referred to as a bus. The overall bus structure
£or the MPU system in the CSA Trainer is called the Versabus (see
Chapter 3>. The three maJor busses within the Versacus and on the
.MPIJ board are.:

a. Address bus (23 lines, Al through A23)

NOTE
The AO bit in an address is internally generated bv the

MC68000. The MPU then generates the Upper Data Strobe CUDS> iz

the AO oit is low CO) or the Lower Data Strobe tLDS) I£ the AO
bit is high (1). See Chapter 3.

b. (.. -
. .l. b .Lines. DO thrugh 015)

c. Control bus (address and data strobes and various other
control signals).

CSA Users Manual
£or, CSA TRAINER
CHAPTER 2

<CSA-UMM68KTA)
<CSA-M68000TA)

Page 5

MPU, Petebug, and Busses

In this paragraph. as the title suggests. the
elements 0£ the CSA Trainer will be brought together

inciividual
to work in

harmony as a system. The MPU is constantly seeking new inst.rue-
at a rate that is determined by the CLOCK oscillator.

each instruction is £etched and processed. the MPU increments the
?C register and begins a new instruction cycle. These inscruc
tions are supplied to the MPU by the Petebug program. ~hat CSA
has developed to reside within the PROM memory. The program
instructions tell the MPU what to do <OPcodes) and speci£y where
to £ind the data to do it (Operands>.
instructions by addressing memory or I/0

T~e MPU carries out the
devices.

control and timing signals. and £allowing the program instruc
tions. Adresses are located on the Address bus and cia~a is ~rans-
ierred on the Data bus. The Control bus supplies the signals L..O

dea:.ermine
sent £rorn
;i,etermine

i£ data is to be loaded into an MPU regis~er <?EAD> or
the MPU to msemory <WRITE). Controia signals also

when addresses and daLa are stable on their res~ective
busses and allow
the hardware on

the MPU to make the required trans£ers. Mucn 0£
the MPU board is in support of the control sig-

nals
The

and
FPCrA..s"

used
as

to maintain order . +- ' . wi nin the Trainer system.
previously mentioned, decode the addresses and

ensure that the proper memory location or I/0 device is addres
sed. Although the MPU is the heart of the system, there would be
no operation without instructions that direct the MC68000 to
per£orm.

The MC68000 £etches these instructions £rem Petebug ana ~nto
the designated (Instruction) register. The current address 0£ tne
instruction remains in the ?C register until the M?G per£orms the
£unctions 0£ the instruction. Once the instruction nas oeen
completed, the MPU increments the PC register the proper amount
of words and fetches the next instruction. The instructions from

ma~✓ contain a Jump or brancr1 .1.ns-c..ruct1.on. In -:.h ls Petebu,;
1.nstance the PC register is incremented to tne next inst..ruct..1.on
address dDd that address is stored in memory £or use la~er.

£etches the address of the Jump or branch and per£or·:rts
C...I1"2 1:.----outine: or aubrouLine beginning at £et..cl"'lt::ci

Routines and subroutines are sets 0(£ coded instruct.ions designed
~a per£orm one small t:.aak (see Glossary).

larger program are called suorout:.ines. anci are
.su:Oordinate to the program. Upon complet:.ion 0£ the routine,
control will :Oe passed back to the main program. The MPU uses t:.he
previously stored address to enter t:.he main proqram one
1.ns·c.ruct.ion increment greater than ... ' '-ne]Ump or br.:::r1c:h.
9reviously carried out. ?etebuq contains t:.he subroucines t:.hat:. t:.ne

Trainer requires to per£orm the house keeping tas~a 0£

see
,.:ii.splay

system.
a key nas

must :Oe

The ~eyboard has to be periodically scannea
been pressed. I£ a ;,ey has been pressed_

u p,:ia t:.ed to indicate the ci.et:.ection

CSA Users Manual
£or# CSA TRAINER
CHAPTER 2

keystroke. '?he

<CSA-UMM68KTA)
<CSA-M68000TA)

Page 6

keystro:.-<e data musL be gatherec and
until <ENTER> signifies that the input is complete. When ~he
input has been completed and entered, Petebug makes the inout
available £or a £etch from the MPU for action. While all 0£ this
is going on, the display has to be refreshed continually or it
will go black, (no indication). The M?U uses a ?ete6ug subrou~ine
to refresh the display periodically and ensure that it scavs
bright and readable. Some of the subroutines in ?eteoug that will
instruct the MPU ~o perform various functions are ava~lable by
external Dser's calls en~ered at the keyooard. T~ese subroutines

activated £rem the keyboard by entering RU~ cs ~ey) and
st..art ad.dress of t:-i.e suoroutine.
sun:i:.--outine.s available in the ?eteoug ;Y[oni tor.

that. are initiated by the MPU are labeled AUTO
su0routine.s are labeled MAN.

Tl-le
and the

t.~e

CSA Users Manual <CSA-UMM68KTA>
£or. CSA TRAINER <CSA-M68000TA>
CHAPTER 2 Page 7

Table 2-1 Petebug Subroutines

--
Add. Name Description Type

--
FF800C
to
FF800F

FF8010
to
FF8013

FF8014
to
FF8017

FF8018
to
FF801B

FF801C
to
FF801F

START

REFRESH

DSPVAL

DSPLED

SCNKP

This is the address and label £or
the actual start 0£ routines in
Petebug

Re£resh the display to maintain bright
illumination. Values (data) £or the
display are stored in an area 0£ memory
<RAM) designated the REFRESH BUFFER.

Display a numeric value as a Hex digit
in the seven segment Hex display.

Display a byte value <in reverse bit
order) in the LED disp~ay. The reversal
0£ bits is required in order that the
value will be displayed in logical order.

Keyboard scan routine - Detects when a
key has been pressed and returns key
value to register DO. BREAK and RESET
are interrupts and are not detected by
this routine.

AUTO

AUTO

AUTO

AUTO

AUTO

FF8020
to
FF8023

GNUM Get Number - This routine collects Hex AUTO
number input £ram the keyboard and
displays each hex digit as it is input
This routine also checks £or length 0£
input and returns the ZERO Flag as £allows:

a. Set to O - length good
b. Set to 1 - length no good

Routine is terminated by <ENTER>.

FF8024
to
FF8027

RPSAVE This routine is called £rom Petebug MAN
by the "7" key. The routine requests
more input <see Chapter 3), then
READs an EEROM program into RAM.

FF8028 WPSAVE This routine is 6called £rom Petebug
to by the "5" key. The routine requests
FF802B more input <see Chapter 3), then

WRITEs a RAM program to EEROM.

MAN

CSA Users Manual <CSA-UMM68KTA>
£or. CSA TRAINER <CSA-M68000TA)
CHAPTER 2 Page 8

Table 2-1 Petebug Subroutines (Cont.'d)

Add. Name Description

NOTE

The next two routines are similar to R?SAVE

Type

ansd W?SAVE.
except that they are Tutor routines. These routines CRTSAVE
and WTSAVE) are accessed from Tutor by entering the Jump address.
£allowed by either a GO CG) or a GO DIRECT CGD> command.

F?802C RTSAVE
t.o
?c802F

FF8030 WTSAVE
to
FF8033

This routine is called from Tutor
and requests more input. The
function is the same as RPSAVE

This routine is called £rem Tutor
and requests more input. The
£unction is the same as W?SAVE

FF8034 ERMCOM This subroutine is used by the MPU
Ito to program EE~OMs.
F?-3037

FF8030 DEMOl
to
FF803B

?F803C DEM02
-:::.o
F'F803F

This routine is called £rom Petebug
by pressing the RUN key followed by
the address. This routine will cycle
the lights COFFION) on the display.
as well as act aa an overall test 0£
the Tr-s. i ner.

This routine is called £arm ?etebug
and is very simi:ar to DEMOl (above>
except that the scan pattern is dif£8rent

AU'TG

F?3040 STEPPE~ This routine may be called from Petebug, MA~
to

I1ASTER
Mii'iD

but requires special I/0 and progr~mmin9.
(See Cha~ter ~). This is ~h~ s~~pcer
;·1ot.or routine.

Th~s program is called £rem ~ece~uq
by the Trainer key~oarci. ZERO tO) key.
Th1s game program cMaster Mind; may be
playea to £amiliarize the User witn t~e
CSA Trainer System.

CSA Users Manual
£or, CSA TRAINER
CHAPTER 2

<CSA-UMM68KTA)
(CSA-M68000TA)

Page 9

Summary 0£ Operation

Juring this description,
:r1a~-1e been brief and only ~he ~aJor Deen.

ciesci--1.bed. The I/0 capabilities £0 the CSA Trainer are much more
co~oiex and versatile then we have described and ~he ½?U i3 :n i_:Cfl

more than a £etch and storage machine. The Arichmetic Logic
Unit CA~U) of the MC68000 is very µoweriul dnd may ceriorm ~CV2S
0£ large data blocks in memory. compare by~es anc wares. as well
as many other sochisticated logic and mach £unctions.
~ewer of che MC68000 has to be im~lementec by che
ins~ructicns chat the M?U receives.

one 0£ the two on board monitor orocra~a.
UlUSt. be entered into memory by the Uaer.

studies 0£ the ~C68000 microprocessor you will

.-,,_ ._, ~nev
of

o-pport.uni"C.Y
h,5:ve

Lat1()ratoryr

t:.hat may be

t:.o oroqram instructions into the 7rai~er me~orv and
MPU execute your program. ~e£er ~o ~~e CSA

Manual for some examples o~ the t:.ypes 0£ programming
practiced with the CSA Trainer.

CSA TRAINER INITIAL TESTS

To understand the following tests ~he Theory o:t

paragraphs should have been read.
understand the tests to perform them,
manual strongly suggests that tr1e

While it:. is no~ reauired to
the training na~ure 0£ this
effort be e~tended. This

;iaragraph present the procedures for per£crming t.:iree o-£

?etaous's built in routines. The £irat two. DE~O: and DE~02. are
CJU .l te .s:.~,ilar except for the scanning 9attern 0£

recommencs that the game be usec to become
~eycoard and disolay 0£ the CSA Trainer.

ia~.:.l.:..ar
7he rout~ne~ are a

good indication 0£ ~he Trainer's readiness as most of the Trainer
.1.nter:faces and controls are required to suc:c:e.sc:s£ul l y
--:!"".1e performance. The Petebug program is used by t~e ~PU as a

0£ :.nst.ructions.

comma::cis

cvcled ON/GFF ana a ~aultv 1na1ca~or

avaid £ut:.ure problems. oerform the routines as ~resentea anc ycu
can be asaurea t~at the .,. ' ,rainer is functioning

DEMOl PROCEDURES

NOTE
anv of the following procedures.

abort ~~e proceaure in process.

proper.:.y.

may oe pressed to clear all M?U regia~ers and return to
?et.ebuq star-c. mess.ac:.e, "68000 UP".

CSA Users Manual
£or~ CSA TRAINER
CHAPTER 2

the

<CSA-UMM68KTA)
<CSA-M68000TA)

Page 10

routine, £ol.low tnese 9roceaures:

On the Trainer keyboard. cress the RUN CS) key.

2. On the Trainer keyboard, cress the following ser~es o:f
and

sL.ii:-,rout.1.ne:
numerals to inouc the JUmp address ~or

<FF8038 - NO COMMAS)

;Jbserve the address disclay and ensure ~hat tne cisolav
3~ows the correct address,
Jump adddress ~o Petebug.

4. After the DEMOl program has run ~hrough che diplay cycle
a £ew times. and che indicators have been visually checked, oress
3~EAK ~o abor~ the program. RESET may be pressed t.o brine ~he CSA
7ra.:iner back to the Pet.ebug · message "6,3t)OCi 1JP"

DEM02 PROCEDURES

key
During
will

any
aboJ:."'t

NOTE
0£ the following procedures,
the procedure in process.

l?ress.:..r-.1g

RESET key may be oressed to clear
the Petebug s-c.art message, "6,3000

all M?U
UP".

A-::.. any
registers and

7o RUN the DEM02 routine, follow these procedures:

On the Trainer ~eyboard. press the RUN l8) ~ev.

t:.:-.e 3~.i::.:,,_;;:
time t.'.'"le
return t:.o

2. Gn the Trainer ~eyboard, press the following series
and

subroutine:
numera~s

F. F. 8. o. 3. C

input . . - . .-
~ ~e Jump acaress ~or

<FF803C - NO COMMAS)

Observe the address disolay and ensure L~at L~e
the ~orrect address.

1ump adccress to Petebug.
(above). Presa <ENTER> to incut the

4. After the DEM02 program has run through the dipiay cycle
a few times.
press BREAK to

and the indicators have
abort the program. RESET

oeen visuali.y
may be pressed

the CSA Trainer back -c.o the Petebug message "68000 UP"

MASTER MIND

to bring

The original game 0£ ~aster Mind, is played by two ?layers.
selects four colored pegs, :from a group o:£

CSA Users Manual CCSA-UMM68KTA)
£or, CSA TRAINER (CSA-M68000TA>
CHAPTER 2 Page 11

and arranqes t~ese £our oegs in a row. ?layer

or the challenger, has to guess the color 0£ the £our oeos
the position 0£ eacn colored peg within

p~ayer one selects colors red Cr). orange Co). blue
(:=1) an,.:i greer1 < g) . When olacing the selected pegs in~ row.
same order is oreserved (r,o.b,g). The challenger does not
~no~ ~~e colors or the order of the colored ?@gs selec~ec. To win
the game. both 0£ these unknowns must be guessea ~n a limited

of moves or guesses. As the game progresses. Pl aye::
ta give Player Two cer~ain hints

the correct solution. The challenger is ~o:a
eacn guess, two valuable pieces oz in£ormation:

a. Anv color tnat was guessed correctlv, regardless ai
~::c:s.1. t..ion.

"':..l.On, out
b.
not

one or
soecifically

more pegs are co~rect
which pegs.

colc,r

3y using these two clues (a and b)
rezining tne next guess to logically get closer ::..c

a.nc

,:::orrect..
The play continues until the correct aolu~ion

all iour colors and their matching positions is quessed ,w:NJ. er
the challenger uses all 0£ the allowed number of guesses llaae).

Master Mind, as programmed into the CSA Trainer. operates in
a very similar manner to the original game. The color of the
selected pegs has been translated to a numoer weight £or a digit
in the range of Oto 9. To simulate selecting io~r colors.

7rainer system selects four digits. and arranges them in
order wi~hin a row. ?or inss:..ance: should

select 3S67 ·" then t~e digits 3,

digits (3967) is fixed, as it.. was w i t..r-. t.he colored
in the original game. 1ne user becomes ?:aver .wo

or t..he challenger. £ind

aic in finding t..he correct solution.

1..n t..h.1s example, aigit 7 is in the correct oositian and is
one LED on the leit oi

would illuminate. ~ooKJ.ng again at. t..he user's guess (92~7J i~ can
seen t..hat.. digits 2 and~ do not.. matcn in any ~a~ner and

Z-:owever.
but i.s 1 ::'T\ ..-.-.

~ 4-. ,_,, .. J.

t..ne display would indicate the relationshic rignt
posit.ion (dicit.. 9) by illuminating.

CSA Users Manual (CSA-UMM68KTA)
£or, CSA TRAINER <CSA-M68000TA)
CHAPTER 2 Page 12

NOTE
the event that the Game Number <Trainer selec~ed)

9923 or 3S9S) and a single digit
in ~he 0uess matches these duplicate numbers. then the RIG27 ~~Js
~ill ~ndica~e £or all matches of right value/wrong oosition.
Games 2 and 3. Ficure 2-3.

See

Going bac~ to our original guess example (9217). the ?layer
can assume at this point, (one L~FT LED and one RIG~T LED illumi
nated) £ram these L~0 hints t~at:

a. One of the four inout digits is correctly nosi~•on~~ and
of the correct value. CLEFT LED indication) but in an incorrec~
oosition. CRIGHT LED indication>.

One 0£ the four in9u~ digits is CI the correc~
cweight) but in an incorrect 9osition. CRIGHT ~E~ indication) .

. ne ~eyboard becomes t~e communication device ~etwee~ ?laver
One Ct~e Trainer) and ?laver Two Cthe User). A list of tie
board en~r~es. used during the game. is 9rovided in Table 2-2.
7he next oaragraph will oresent game playinc oroce~ures.

GAME OVER
CORRECT ANSWER
_____ A_ ___ ___

("I

GUESS
NUMBER
(1 TO 99)

~
ADDRESS

NOT USED
11.,,_==='====6::=::l:====:!1 _ __L._...J!::=~.=.=.=_.., .._ ___ INSTRUCTION

r I I I I I oooqOoooooodpooo
I kxrENSION 1 I I I I I oooo[oooooooqoooo

GAME
HISTORY I bxTENStON 2

I I I \ I ooooloooooooqoooo {FOUR
PREVIOUS
GUESSES)

NOTE 1
I kxrENStON 3

I I I I I 0000000000000000
LEFT LEDS I\. v ,1 RIGHT LEDS

. NOTE 2 NOT USED NOTE 3

__ Je_,~l_o.,...I _ __._I_ I} CURRENT INPUT DISPLAY

{.__ ________ CURSOR (A KEY)

e0000000 STATUS

00000000

LED Examples:

Symbols: 0 = LED OFF • = LED ON

Game 1 No. = 3967 Game 2 No. = 9923
Guess 1 No. = 9217 Guess 2 No. = 6789

LEFT RIGHT (LEDs)
•000 000•

Game 3 No. = 3999
Guess 3 No. = 6789

LEFT
0000

RIGHT (LEDs)
0• ••

LEFT RIGHT (LEDs)
0000 00• •

NOTES: csn COMPUTER SYSTEM ASSOCIATES

#1. History (guesses) may be scrolled BACK and FWD
(See Table 2-2)

#2. LEFT LEDs indicate correct value, correct position
#3. RIGHT LEDs indicate correct value, wrong position

MASTER MIND DISPLAY

FIGURE 2-3

TRUTH TABLE
IN OUT

A B C , 0 1
0 t 1
1 1 0
0 0 0

© ®
A 1 0 B A 1 1

E
0

E
1

DISABLED ENABLED
OFF ON

HIGH Z
I TRI. STATE I

B

EXCLUSIVE
OR GATE

@
A 0 [? 0

E
1

ENABLED
NO

OUTPUT

B

STATES

© OUTPUT LINE SHUT OFF/ HIGH IMPEDANCE

@ ACTIVE INPUT/ ENABLE/ OUTPUT

0 ACTIVE/ ENABLE/ NO INPUT/ OUTPUT

SET

RESET

FLI p - FLOP I
(TRIGGERED Bl-STABLE)

csn COMPUTER SYSTEM ASSOCIATES

DIGITAL LOGIC/CIRCUITS

FIGURE 2-4

CSA Users Manual
£or, CSA TRAINER
CHAPTER 2

<CSA-UMM68KTA)
<CSA-M68000TA)

Page 13

Table 2-2 Master Mind Keyboard Commands

Command Description Comment

22RO (0)

0 :::.:-i.rough 9
(ciJ.q J. t.s)

31.\C:K

?wD

A Key

C Eey

..... _ ~ .,
u t\.ey

Call Master ~ind ?rogram
,; i,;;nore dis;:,i.a.y)

End random number
generation, store
game num:Oer.

End \.3ny"C.1me)

Pressed to input
each number ciigit

Allows review of
previous guesses

Al.:..ows forward
memory stepping

Controls cursor Dot
allows changing an
input digit.

Cancel current g~ess

No Fu.:1ction

Blank character
(not allowed)

qame end.

Dot. appears to right ox
uex dig~~ dispiay ~cs~~ion,
prior to input, then moves
right one position.

?o:io\veC =-.v
<E)l'i'~i.;:>

Game Start

z-r.:)u::::. ... in~ut..s
t.:,en < C:2-i T ;:::; >

c:annot. FWD

Aopears to rigr-,t
0£ current posi~ion
See Cursor (below)

Save quess count,

0o Not. Jse

Do .:,,;oc:. use

CSA Users Manual
£or. CSA TRAINER
CHAPTER 2

CCSA-UMM68KTA)
CCSA-M68OOOTA)

Page 14

GAME PLAY <MASTER MIND)

To play Master Mind on the CSA Trainer, proceec as iollows:
~- ?ress RESET to clear the M?U registers and return to ?ete~ug
"6.~,0()0 U?".

Press

<ENTER>
NOTE

has been pressed,

,and

the 7rainer will enter
number genera~ion cycle; ignore ~he disp:ay during

cvcl~ as presentations may appear errat~c.

?ress the BREA~ ~ey to end the random number genera~icn

a

select the secret game number ... 7his is the actual STA~T ~£ che
At -:.his t.ime, the CSA Trainer has selected t:.he £cur digit:.

game number that the Player will try to guess.

4. Input a four digit guess number at the keyccard, see Ta~le -
2. £or aaditional k~y inputs.

£our digit:.s have ~een input, press
display will show ~he last guesses, Cu9 to four> en~ered, see
?igure 2-3. The display will also present the guess hints after
each input guess, LEDs <LE?T) will indicate thai::. a is

number/correct position. <J:?ut not s;:,eci£ically correct
digii::.). LEDs <RIGHT) will indicate correc"t:. number/incorrect:.
?Osition, (again. not specifically which digit).

NOTE
'7hese LED indications .a.re

int.erpret:.ed as •~ne of :four. i::wo of ::our. etc. . --- . . Ll::.0 1..na.1cat.ors
never specific digit value or digit oosition t.he

input, only one or more 0£ £our.

6. Continue ~o input number guesses.
co re£ine vour inputs. ?lay continues until the secret number is

mat:.checi by the input. or 99 moves (guesses) have been enter~~-

NOTE
When the game has been comcleted,

st.ill ne scro:led see Ta:.:,le
GVE? is indicated by the game number appearing in che Adaress hex
space, (see ~igure 23), or by the guess count reaching SS and t.he
game number displayed.

7o play Master Mind again.
~he random num~er selection to ~roceed,
raceat stecs 3 through o.

M.2.nd may ~e aborted and a return to ?etebug

CSA Users Manual
£or, CSA TRAINER
CHAPTER 2

<CSA-UMM68KTA)
<CSA-M68000TA)

_Page 15

may oerforme~ a~ anv ~irne by ?ressinc
There are 09~1onal M3a~er Mina keyboara inputs listed in 7able 2-
2 tnat may be very neloful coward winning ~he game. A

Ta~le 2-2 could ~ean the di££erence between
Also.

dis?lay presentation shown in figure 2-3 s~owld be
Wi~h an unders~andi~g 0£ ~hese aids, Xas~er ~ind

is £unto clay and your chances 0£ winning are increased.
t:t"1e cr,:::cedure.s.
and begin F1 la.~1.

SUMMARY

study and understand Table 2-2 and Figure
GOOD LUCK!

2 has oreaented many new £ea~ures and
:£ you nave 0een £oilowing along an~ 9erforming

~ne recommended procedurss.
You shouici have an understandinG 0£ ~ne

ooe:c•.'.3. ti.en ana a genera~ ~nowlege 0£ programs an,.:i

the di££erence be~ween a crogram and a
denonst.r.s.1:.ed by running the DEMO routines and

t.:c·a:..n.1.ng
?i'.=t.ebug.

to
The User has .:-,een

power
c:-i-:Lpter

up and operate the CSA Train2r
3 will describe ~ore a~cut ~~e

.3 !l.ci

capabilities 0£
description 0£
presented.

the CSA Trainer and in Chapter 4 a
all ?etebug commands and operations

detailed
wi. .:.1 Oe

INTRODUCTION

CSA, Users Manual (CSA-OMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Pagel

CHAPTER 3

This chapter contains the functional descriptions of the CSA
Trainer hardware. Tables and illustrations are provided to aid
the User in locating various functional groups and components.
In some instances, the functional operation of Trainer hardware
is more related to the software operation. In those instances,
reference to the appropriate chapter of this manual or to a
specific support reference document has been included. CSA
recommends that this chapter be used with all reference material
and with an operating CSA Trainer to gain maximum training
benefit from the material presented.

MAJOR ASSEMBLIES

The CSA Trainer contains three major assemblies:

a. Power Supply

b. MPU Board

c. Keyboard/Display

Each of these major assemblies will be described separately
and their contribution to the overal system (Trainer) function
will be explained.

POWER SUPPLY

The Trainer power supply is a self contained unit that
is replaceable as a part. The unit contains a switching type AC
to DC rectifyer and all filtering required to produce stable DC
voltages and currents for Trainer operation. The power supply
voltages are distributed throughout the Trainer by circuit traces
and connectors and each assembly is equipped with an LED to
indicate (ON) when DC power is applied.

The power supply will accept either one of two source input
voltages:

a. 90 to 130 VAC, single phase

b. 180 to 260 VAC, single phase

at 47 to 450 HZ. The efficiency of the unit is rated at 70 to 80
percent, with an output ripple (high frequency noise) at no more
than 10 mV RMS. The power supply may operate at a maximum of 50

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 2

watts continuous output for four voltage levels (+SVDC, -SVDC,
+12VDC and -12VDC). See Table 1-2 for further specifications.

MPU BOARD

The MPU Board is the largest assembly in the CSA Trainer and
is easily identified by the large MC68OOO/MPU component mounted
in a Zero Insertion Force (ZIF) socket.

CAUTION

If the MPU is removed from the board, ensure
that the component is properly oriented when
reinstalled in the ZIF socket. Else severe
damage to the component and the Trainer may
occur.

The MPU Board contains two functional sections:

a. The MPU section

b. The peripherial support section.

The following paragraphs will describe each of these
sections.

MPU Section

The MPU Section of the MPU Board contains the MC68OOO and
the Clock Interrupt Priority Encoder and the data and address
line buffers, and MPU/signal bus interfacing.

The MPU (MC68OOO) is a 64 pin Integrated Circuit (IC)
contained in a Dual In Line Package (DIP). The MPU is physically
mounted on the board in a ZIF socket for easy removal and
insertion.

The MC68OOO is a 16 bit microprocessor containing seventeen,
32 bit general purpose registers and additionally a 32 bit PC
register and 16 bit SR register. The seventeen general purpose
registers are named DO through D7 (data registers) and AO through
A6 (address registers). Two stack pointer registers (A7) named
User Stack Pointer (USP) and Supervisor Stack Pointer (USP) may
also be used as general purpose registers. All seventeen
registers may be used as index registers. A complete description
of the MPU architecture is presented in Chapter 5 and the
Motorola 16-bit Users Manual, Chapters 1 and 2.

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

C'BAPTER 3 Page 3

The HALT and RESET lines of the MPO are connected to the
circuit consisting of 030 and 031. The RESET line is taken from
this circuit through the ribbon connector to the keyboard. See
Schematic Diagram, rear of manual. A jumper connection from 031,
through a resistor to ground is available to install a switch
controlled MPU, RESET. To the right of the MPU (see Figure 3-1)
are the address line buffer amplifiers (US, 06, 07) and the data
line receiver/transmitters (08 and 09). Directly below the MPU
are the clock crystals Yl (4.9152 MHZ) and Y2 (User option), and
the clock amplifier (043). The crysal (Yl) supplies the timing
for all MPU functions and for the Band Rate generator for the RS-
232 serial I/0. The Band Rate is jumper selectable (see Trainer
Schematic, rear of manual) and frequencies are multiples of the
clock frequency. A second crystal (Y2) may be optionally
installed to alter the MPU clock rate but Yl must always remain
installed for RS-232 timing.

Above the MPU is the Interrupt priority encoder and the
Interrupt Request (IRQ) jumper connections (0 through 7). See
Motorola 1 s 16 bit User's manual, page 61, for interrupt data. Of
the eight IRQ connections, only number 7 is not available to the
User as it is used for the abort function (BREAK). The VMA
signal (for 6800 control) and the UDS and LDS signals are routed
through buffer 03. The VMA and E (Enable) control lines are used
to control the PIAs and ACIAs instead of employing DTACK. A
close look at the MPU section of the schematic will reveal there
are only 23 physical address lines. The MPU internally generates
an AO bit to control the UDS and LDS signals (see Table 3-1)
thereby providing 24 lines of address. In addition to the
gating and buffer circuits required for control signals, the MPU
section contains one more important component. The Latch (053)
is used to send a bus error signal (BERR) to the MPU. This
function will be activated when non-existing addresses are input
on the keyboard (DTACK is not received). This is a jumper
selected function and the jumper must be installed for proper
Trainer operation. With the jumper installed, an address error
as described above will cause the following:

a. In Petebug - 68000 UP (RESET)

b. In Tutor - All registers displayed

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3

Table 3-1 Byte Addressing with AO(bit)

MPU Active R/W Select

AO UDS LSD DO-D7 D8-Dl5

1 No Yes· R Yes No
0 Yes No R No Yes
1 No Yes w *(Yes) Yes
0 Yes No w Yes *(Yes)

*Temporary-may change in future.

1 See Motorola 16 bit Users Manual (Pages
38, 39 and 34)

2 See Chapter 5, READ and WRITE CYCLES,
Pages 11-14

Page 4

CSA,
for,

Users Manual (CSA-oL68KTA)
CSA TRAINER (CSA-M~8000TA)

CHAPTER 3 page 5
I

The MPU Bus and VERSAbus

The bus interface on the MPU Board connects the MPU to the
peripherial section of the board and to the VERSAbus (see
Schematic). The MPU bus lines are:

16 data lines D0-D7 and D8-D15
23 address lines Al-AS, A9-Al6 an Al7-A23

FC0-FC3
RESET
HALT
VPA
VMA
E
ODS
LOS
AS
DTACK

- Privilege State (Supervisor/User)
- Clear Registers
- Break/Abort
- (6800) Address Line
- (6800) Serial/Parallel I/O
- (Enable) Control
- AO Bit - Upper Data Strobe

AO Bit - Lower Data Strobe
- Address Strobe
- Data Transfer Acknowledge

NOTE

A jumper selection point is provided to set
DTACK timing in accordance with the slowest
device to be accessed (see Figure 3-1, 027).

CLK
BG
R/*W
VDD
IPL0,
*BERR
BGACK
BR
vss
vss

- Clock
- Bus Grant
- Read/not WRITE
- +SVDC

IPLl, IPL2 - Interrupt (Auto Vector Lines)
- Bus Error (jumper selected/hardware)
- Bus Grant Acknowledge
- Bus Request
- Ground
- Ground

These signals are used in the Trainer and are connected to
the VERSAbus external wire wrap connector.

For a detailed description of these signals and their
functions, see Chapter 5 and 16 bit Users Manual, Section 4. The
Trainer uses the VMA and E signals for controlling serial I/O
(ACIAs) and parallel I/O (PIAs) thereby not using the DTACK
control signal. A diagram of the VERSAbus pin out and
orientation is presented in Figure 3-2.

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 6

The MPU, Peripherial Section

Connected to the MPU by the on-board bus,
the MPU board contains components which
practical use of the MPU. The major functions
MPU peripherial section are as follows:

a. Memory (RAM, EPROM and EEROM)

this section
are essential

supported in

of
to

the

b. Address Decoding (Field Programmable Gated Arrays,
FPGAs)

c. Serial I/O (ACIAs) and Band Rate Selection (Jumper/U35)

d. Parallel I/O (PIAs)

Each of these MPU functional support circuits will be
described in the following paragraphs.

Memory

The CSA Trainer has a unique and versatile memory hardware
circuit. Each of the four pair of hardware sockets (8 total) may
accept memory components in accordance with the jumper positions
selected for the memories. The MPU Schematic diagram (rear of
manual) shows the eight jumper positions available for each chip.

The memory sockets will accept devices such as 2716, 2732,
or 2764 (ROM or EPROMs) and 6116, 6264 type CMOS RAMS. As these
memory components are eight bit devices and the MPU bus requires
16 bit devices, pairs {2) of memory components are used. Figure
3-? shows the possible jumper selections available for memory
devices in the Trainer. To prevent writing to a lower address
RAM, when only an upper is to be written (8 bits), the UDS and
LDS lines are·gated with R/W before being sent to these devices.
The memory in the Trainer may be delivered with or without
options as shown in the memory map in Figure 3-4.

CAUTION

To remove or install CMOS RAM devices, ensure
that the MPU board and the personnel are
grounded. CMOS devices may be destroyed by
static electricity in equipment or personnel.

The labels on the memory map describe the type of component,
the address boundaries, the capacity (in kilobytes) and the
component identity (UXX) The Petebug EPROM are described
functionally in Chapters 2 and 4. The Tutor EPROM functions are
described in the CSA Laboratory Manual, Appendix C and D and in
this manual in Appendix A. The RAM Locations (addresses) and

108 BR1 38 BA3
81 SERR 37 BA2

112 BBSY 36 BA1

30 BAS 34 BR/W
99 BG1 IN 26 BUDS
58 BA23 25 BLOS
57 BA22 20 8015
56 BA21 19 8014
55 BA20 18 8013 I ----
54 BA19 17 8012 CSA - MC 68OOOTA

53 BA18 16 8011 (REAR VIEW)

52 BA17 15 8010 . I·
51 BA16 14 809
50 BA15 13 808
49 BA14 12 807 rn ru 48 BA13 1 1 806 0

C 0
47 BA12 10 805 2 140

46 BA11 9 804 LERSABUS WIREWRAP

45 BA10 8 803
CONNECTOR

- -44 BA9 7 802
43 BAS 6 801
42 BA7 5 BOO
41 BA6 29 BDTACK
40 BA5 74 BRESET
39 BA4 70 CLK

csn COMPUTER SYSTEM ASSOCIATES:

VERSABUS PINOUTS

FIGURE 3-2

l:Ffftl:l~F!ffi:I
1:1:;:1~fff!l:I
~=~□ 1:1
~:W;II~ I

□

D

2716

2732

2764

27128

27258

27512

l □ r□ ~:~:I 6116

l □ l:w.r□fl:I 6264
'\....__ ___ ,

'-J-. U_M_P_E_R -C----0-N-Fl-G U-R-A-Tl...,,,,ON M EM. TYPE

MEM JUMPER SELECT

csn COMPUTER SYSTEM ASSOCIATES. F I G u R E 3 - 3

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 7

functions are described ~n the User programs in the CSA
Laboratory Manual and through all references as used by the MPU.
A list of designated addresses for the Trainer is shown in Table
3-2. At the rear of this chapter a description of Petebug
subroutines is available. The optional EEROMs are described in
the following paragraphs.

Optional EEROMs

Two optional memories (U51 and U52) are available for the
CSA Trainer and are Electrical Erasable E2 ROM (EEROM). These
type of components have the ability to retain their contents when
power is removed (ROM) yet are programmable while in the system
(Trainer). The Trainer is equipped with two ZIF sockets for
these components. These EEROM memories may be programmed
(SAVE) from RAM using Petebug or tutor. The User may also

program RAM using Petebug or Tutor. The User may also program
RAM (LOAD) from the EEROMs with the monitor programs. There are
certain parameters for working with the EEROMs that should always
be observed to avoid problems:

1. The EEROMs will accept byte data, but always operate on
a word (16 bits). Therefore all START, BYTE, and
OFFSET inputs should always be an even number.

2. The User is responsible for recording how much memory
is occupied and how much is free within the EEROM. If
a program or data is resident in the first 4k of EEROM
memory and an OFFSET of at least 4k is not input, the
resident data will be written over by the new data and
destroyed (lost).

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 8

Address

Start--End

Table 3-2 Trainer Designated Addresses

Description

000000-000003 Contains address of initial trainer stack pointer

000004-000007 Contains address of trainer start up location

000008-0003FF Contains 6800 interrupt vectors

From Pointer Refresh buffer (located by Pointer - Petebug)

001000-003FFF Memory available for user programs and data under
Petebug

000F80-000FFF Trainer stack area

FD0000 Keyboard PIA: A side data

FD000l Display PIA: A side data

FD0002 Keyboard PIA: B side data I

FD0003 Display PIA: B side data

FD0004 Keyboard PIA: A side control

FD000S Display PIA: A side control

FD0006 Keyboard PIA: B side control

FD0007 Display PIA: B side control

FD0041 ACIA 1 Status and control register

FD0043 ACIA 1 Data register

FD0061 ACIA 2 Status and control !register

FD0063 ACIA 2 Data register

FD8000-FDFFFF The EEROM address space (2k actual}

FF0000-FF7FFF Address space for Sockets Ul9-U20 (Tutor)

I - - --- ----

0 I 2, 3 l ty _5 l:,t

O()(X) ()

:S'lflc.fc,.

Ff E:'?O 0
75' q ,A (3/C.O £F_ I'
o(..,,ot> 00€ ;?..16 o oo o __ 7r-'E:

VU •i. n 't~, 8RA 5rt:1tli
L---, ____ Vi9~A 0

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 9

Address

Table 3-2 Trainer Designated Addresses (cont'd)

Description

start--End

FFOOOO-FF0003 Contains address of Tutor initial stack pointer

FF0004-FF0007 Contains address of Tutor start up location

FF8000-FFFFFF Address space for Sockets Ul7-Ul8 (Petebug)

FF8000-FF8003 Contains address of Petebug initial stack pointe:

FF8004-FF8007 Contains address of Petebug start up location (;)0,"F~E'ilt/4

FF8008-FF800B Contains trainer monitor version number , oo Ff: f ODA,

FF800C-FF800F Contains: BRA START ' , 6000 . . o1fF$. --------.........-==,,,-..,-, ./·-·", - 0.... __._.._.~-

FF8010-FF8013 Contains: BRA REFRSH . ~ooo DIC. 2., ------- ---·-'< i

FF8014-FF8017 Contains: BRA DSPVAL

FF8018-FF801B Contains: BRA DSPLED

., .. ··-········ B·i ,_,,.•,_;::., -..

FF801C-FF801F Contains: BRA SCNKP

FF8020-FF8023 Contains: BRA GNUM

FF8024-FF8027 Contains: BRA RPSAVE

FF8028-FF802B

FF802C-FF802F

FF8030-FF8033

FF8034-FF8037

FF8038-FF803B

FF803C-FF803F

FF8040-FF8043

FF8O54

FF8O58

Contains:

Contains:

Contains:

Contains:

Contains:

Contains:

Contains:

BRA WPSAVE

BRA RTSAVE

BRA WTSAVE

BRA ERMCOM

BRA DEM0l

BRA DEM02

JMP STEPPER

CONTAINS: A/D CONVERTER

CONTAINS D/A CONVERTER

L ,,, o· ,1:-' .. tf.-:• ~ Qi'J , .. ,

b /~' t.tJ.f·h

CSA, Users Manual (CSA-OMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 10

3. When moving data from RAM to EEROM the START address
for a SAVE is the source data start address in RAM.

4. When moving data from EEROM to RAM the START address
for the LOAD is the destination address in RAM.

5. The OFFSET address is always in EEROM and must be an
even number. The User is responsible for keeping track
of OFFSET addresses and programs resident in EEROM.

Operating in Petebug, the two EEROM commands are as follows:

5 key - SAVE command - Write to EEROM from RAM.

7 key - LOAD command - READ into RAM from EEROM.

These two Petebug commands are always followed by three
prompts:

1.

2.

Start?
number)

(SAVE=SOURCE/LOAD=Destination, in RAM even

Input hex number - ENTER

Bytes? (Number of bytes to move, must be even number)

Input hex number - ENTER

3. Offset? (The "safe" address to start of program - even
number - User supplied).

Input hex number - ENTER

The User responds to each prompt with the appropriate hex
number, followed by ENTER. Upon completion of the response to
the final prompt (OFFSET) and ENTER, the data transfer (LOAD or
SAVE) will begin immediately. The transfer will take some time
and the display will show the message "done" when complete.

U NO. HEX DEC BLOCK

00 0000 MEMORY START 0 h

I "-'? 4-o<rt; TRAIN ER START

U23 STACK POINTERS
00 OFFF INTERRUPT VECTORS 4,095

1- AND
16K

00 1000 4,096
U24 •

,, / '1 I') C,)f'J USER RAM ? I Ci, '""' t., I
00 3FFF 16,383 , ' 1-----

U21 00 4000 16,384 .~
I AND '7 EPROM ', SK

(OPTION)

+ ~u22_ 00 7FFF 32,767

00 8000 32,768

I * NOT USED 4 ";1 15 MEG

~--- FC FFFF 16, 580,607 + FD 0000 16, 580,608
I I/0

C PI A'S , AC I A'S -? 32K
I ADDR

FD 7FFF 16,613,375 + t---
FD 8000 16, 613, 376 I U51

AND EEROM 4., I6K

~~2 FD FFFF
(OPT I-ON)

16,646, 143 + FE 0000 16, 646, 144

I *
.,

NOT USED '1 64K

~-- FE FFFF 16, 71 l, 679 + FF 0000 16, 711, 680 -, U19 TUTOR
A-ND ' ADDRESSES ~, I6K

1-u20 FF 7FFF EPROM 16,744,447 + FF 8000 16, 744, 448 I U17 PETEBUG
AND 7 FF

ADDRESSES "' I6K

L~s_ FFFF EPROM I

16 I 7 77, 215 ' (END MEMORY)

MEMORY MAP

csn COMPUTER SYSTEM ASSOCIATES F , G u R E 3 - 4

r-,, n LJ\t:
I

GATE AS A2'3 ~22 A2I A20 Al9 AIS Al7 Al6 Al5 Al4 Al3 Al2 Al I AIO A9 & ACT LEV 115 114 113 !12 Ill 110 !9 rs 17 16 15 I4 I3 I2 I1 10

FO H H L L L L L L L L L L L L L L L

F1 H H H H H H H H L H L

F2 H H H H H H H H H H H

F3 H H H H H H H H H H L

F4 H H L L L L L L L L L H

F5 H H L L L L L L L L L L

F6 H H H H H H H H L H L L L L L L L

F7 L H H H H H H H L H H EEROM

FS L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

INPUT Im::> H Im ::::) L DON'T CARE ⇒ -
GATE ACTIVE HIGH ::;> H ACTIVE LOW~ L 82$103 (T.SJ ~

U25 (FPGA NO. 1)
-

GATE FG F5 F4 F3 F2 F1 FO AS A7 A6 AS A4 A3 A2 A1 ffi ACT LEV 115 !14 113 112 Ill IIO 19 IS 17 IS 15 I4 13 12 11 10

FO H H L L L L L L ® FU/IO

F1 L H L L L L L L START

F2 L H PETE.BUG

F3 L H TUTOR

F4 L H OPTION

F5 L H L RAM

FS H H L L L L L PlA

F7 H H L L H ACIA

FS L H L VPA
INPUT rm~H Im=> L DON'T CARE ⇒ - 82$102 (O.C.) ~

GATE ACTIVE HIGH ⇒ H ACTIVE LOW⇒ L

U26 (FPGA NO. 2)

@ FUNCTION/ INPUT OUTPUT FPGA PROG. CHARTS

& INPUT (ADDRESS) VARIABLE FIGURE 3-5 -~, ..

---~--,,~···~~-....._,,,,.--• .

fO I I O () rl(f t "<- / ••• ····-rr::, i,

J 5f\ 0 I O O (\ \ o Io
If ,:t, ..

CSA, Users Manual (CSA-OMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

, CHAPTER 3 Page 11

Transfer of sixteen bit data to eight bit devices requires
special circuitry and programming which directs the MPO to make
the appropriare data transfer. The EEROM devices have the
capacity to store 2000 (eight bit} data bytes. Each EEROM has
this capability. By using two EEROMs (051, 052), the Trainer
increases the EEROM memory capacity to 2000, 16 bit words.
However, the software transfer routines must direct the MPO to
store eight bits of each word from RAM (16 bits) into each EEROM.
The reverse is true when loading RAM from EEROM, half of each 16
bit word (8 bits) must come from each EEROM.

While operating in Tutor, the EEROM commands are:

LE - Similar to Petebug LOAD
PE - Similar to Petebug SAVE

The three prompts and parameters are the same as for Petebug
but the data transfer will be serial I/0.

In Tutor, the RTSAVE and WTSAVE (READ/WRITE EEROMs
respectively} may be called with the GO (G} or GO Direct (GD}
commands to transfer data to and from Tutor. See the CSA
Laboratory Manual and Table 4-1 for details.

The EEROM circuitry can be accessed directly in software.
To read the EEROM, one need only read the address, as there is no
distinction between EEROM and any other memory. Writing to the
EEROM is more difficult.

In order to write a word (and it must be done word at a
time} to the EEROM, there are two very similar steps. They both
involve setting a flip flop to allow an extended write, doing the
write, delaying and resetting the flip flop. The first time it
is done is to erase the byte in each EEROM, and the second time
is to write the data.

For each of the above two cycles, the following procedure is
followed: First the flip flop needs to be reset, and then
allowed to be set. This is done by setting CA2 of the Keypad PIA
high and then low. Next write the data to the word in the EEROM,
which will be held until the flip flop is reset. Now delay for 1
millisecond or 10 milliseconds depending on the type of EEROM.
Finally, raise CA2 of the keypad PIA to high to complete the
cycle. This cycle needs to be done twice for each word, as
stated above.

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 12

There are four subroutines in Petebug, accessable through
the addresses in Table 2-1. The key to using these routines is
the following codes:

W = WRITE to EEROM
R = READ from EEROM
T = Tutor
P = Petebug

The four subroutines are WTSAVE, RTSAVE, WPSAVE and RPSAVE.
These subroutines will present the three prompts (START, bytes,
OFFSET), do the transfer, and return. To be safe, presume that
all registers are used or effected by these subroutines. See the
descriptive list of Petebug subroutines at the rear of this
chapter.

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 13

Address Decoders (Field Programmable Gated Arrays, FPGA's)

The Trainer employs two FPGA's (see Trainer Schematic at U25
and U26) to decode addressing from the MPU to memory and devices.
The capabilities of FPGA include the asset that the devices
(82Sl03's) are reprogrammable. The User may modify the
allocation of addresses (see memory map) to suit his needs. The
FPGA's used in the Trainer receive 16 input signals which are
decoded to 9 output signals. Figure 3-5 is a program chart for
each FPGA and Table 3-3 is a list of the input signals and pin
connections for each FPGA.

In the following description FPGA/U25 will be FPGA #1 and
FPGA/U26 will be FPGA #2. Refer to the tables and program charts
(above) for clarity. An address is decoded as follows. When an
address is presented to this section of the board by any valid
bus master, and the Address Strobe (AS) is asserted (brought
low), the AS signal is at the address inputs of both FPGA's. If
the high order address bits, combined with the Address Strobe
match any pattern programmed into FPGA #1, then one of its
outputs will go from low to high. The outputs from FPGA #1 (FO
through F6) are connected to the input lines of FPGA #2.

Table 3-3 FPGA Input Signals

*Reference Schematic, Trainer MPU Board

FPGA (U25, 82Sl03)

(I) Input Signal (From)

IlS Address Strobe (active true)/high
Il4 A23 (address line)
Il3 A22 (address line)
Il2 A21 (address line)
Ill A20 (address line)
IlO Al9 (address line)
I9 A18 (address line)
I8 Al7 (address line)
I7 Al6 (address line)
I6 Al5 (address line)
IS Al4 (address line)
I4 Al3 (address line)
I3 Al2 (address line)
I2 All (address line)
Il AlO (address line)
IO A9 (address line)

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 14

Table 3-3 FPGA Input Signals (cont'd)

FPGA (025, 82Sl03)

(I) Input Signal (From)

Il5 Output F6 from FPGA (025)
Il4 Output F5 from FPGA (025)
Il3 Output F4 from FPGA (025)
Il2 Output F3 from FPGA (025)
Ill Output F2 from FPGA (025}
IlO Output Fl from FPGA (U25}
I9 Output FO from FPGA (025)
I8 AB (address line)
I7 A7 (address line}
I6 A6 {address line)
IS AS (address line}
I4 A4 (address line)
I3 A3 (address line)
I2 A2 (address line)
Il Al (address line)
IO Output FO from FPGA (U26} 1

1 Used for disabling addresses 0-7 (RAM)

Table 3-4 FPGA Outputs

Il.2..5.

FO U26
Fl 026
F2 026
F3 U26
F4 U26
FS 026
F6 U26
P7 EEROMs {051, U52)
F8 N.C.

~

FO
Fl
F2
F3
F4
F5
F6
F7
F8

EPROM
RAM

- PIA
- ACIA
- VPA

To Io
START
(Ul 7,
(Ul9,
(U21,
(U23,
(036,
(U33,

U26 (output to input)

018)
U20}
022)
U24}
U37}
U34)

/Petebug (Jumper Select}
/Petebug Program
/Tutor Program
/SK Option
/User
/Parallel I/0
/Serial I/0
/6800 device (PIA's/ACIA's)

CSA, Users Manual (CSA-OMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 15 .

When a high output from FPGA #1
#2) forms a programmed match with the
through A8), FPGA #2 will generate a
asserted state of the FPGA #2 output
of device as follows:

(coupled and input to
low order address bits
valid address output.
is programmed for each

a. RAM and EPROM memory - Active Low
b. PIA's, ACIA's - Active High
c. VPA - Active Low (6800 device I/O)

Trainer Initial Start and RESET

FPGA
(Al
The

type

When the MPU is initialized (power up or RESET), it fetches
the contents from the memory address in the PC register. These
initial addresses are a funtion of the internal MPU and are
called the start vector. The addresses of the start vector are 0
to 7 of the RAM {see memory map). The start vector could be in
ROM, but this would interfere with changing start and trap vector
addressing. For versatility and latitude in addressing, the
first 1000 (lK) words of addresses should be RAM addresses.

The memory map shows Trainer RAM address (000000 to 0003E8)
as reserved for vectors and MPU functions.

The problem arises, with the use of RAM vector addresses,
that there is no immediate data available if power has been
removed. The MPU will fetch from RAM for vector start, and find
no jump instruction to begin processing. The CSA Trainer solves
the RAM versus ROM start problem in the following manner:

a. The Trainer hardware is designed to make a double
address fetch.

b. Through jumper selection (see (Trainer Schematic, U25
Fl/out and U29/in), three options are available for
start vector:

0 - Petebug
1 - Tutor
2 - User (specified)

These jumper connections (SEL) are on the MPU board and the
Trainer is configured for Petebug, when shipped, unless otherwise
requested.

To accomplish vector start, the FPGA's are programmed to
make a double fetch. The initial fetch by the MPU to RAM (0,. to
7) is decoded and output on FPGA #2, F0. The F0 output is wired";-----,,
to FPGA #2 's Io inpt,1t, simulating a second address fetch, the ·--------"
resultant output fro·m FPGA #2, Fl is OR gated by jumper selection
to the appropriate ROM or User start address. The decoding and

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 16

feedback of F0 causes the addresses in RAM (0 to 7) to be
effectively shut off from MPU access. This allows the ROMs
selected to simulate the first eight bytes of RAM and send the
start instructions to the MPU.

FPGA's and DTACK

When any of the memory devices are selected, the Data
Transfer Acknowledge (DTACK) circuit is enabled. DTAK provides
the MPU with the cycle end signal that the data operation has
been performed. However, the device addresses employ the VPA
signal, together with the VMA and E signals for control thereby
avoiding the use of DTACK.

There is a jumper selection for the DTACK signal, that
allows the User to lengthen DTACK time for slower memory chips
and devices (see Trainer Schematic, at 027). The eight (8)
jumper positions will sequentially (1-8) lengthen the DTACK time
period. When setting this jumper, it should be adjusted for the
slowest rated (time) device that the MPO will interface with.

FPGA's and EEROM

The EEROM's require a special technique for READ and WRITE
that requires a time interval much longer than DTACK can provide.
The EEROM circuit is addressed from FPGA #1, F07. The EEROM
circuit consists of two EEROM's (051, 052) parallel input/output
(I/O) and a flip-flop (054)

The EEROM WRITE signal must stay asserted (low) for 1 to 10
milliseconds (MS). The flip-flop is used to hold the WRITE line
low until parallel I/O resets the flip-flop and holds it high •

. The flip-flop (054) is also RESET by the RESET line when
asserted. The circuit operation is started by signals from FPGA
#1, F07 (inverted) to 032 and DTACK from 027. The flip-flop
(054) is set, and remains set until PIA, 036, CA2 (parallel I/0)
or RESET are received at 032 (bottom), inverted and coupled to
054.

FPGA's and I/O Devices

The decoding for the I/O devices needs a bit of explanation.
The 68000 processor supports special cycles for 6800 type
devices (like the ACIA and PIA). In order to activate these
cycles, the VPA line of the processor is asserted (brought low),
rather than having a DTACK signal returned. In order to
facilitate easy experimentation with the Micro 68000 in terms of
adding I/O devices, the range of memory addresses for which 6800
type cycles are run was made much larger than the space used by
the ACIA's and PIA's alone. This requires that the PIA's and
ACIA's be fairly close to each other in address range, and there

CSA, Users Manual (CSA-OMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 17

MUST be a VPA decoded in the space decoded for those parts. The
VPA will NOT be generated by other hardware. A good point to
remember when reprogramming the FPGA's.

FPGA Summary

The only restrictions to FPGA reprogramming, other than
those in the preceding paragraphs, are that there are only seven
output lines used to decode 8 functions. The functions are shown
in Table 3-4, FPGA outputs. As mentioned previously, the FPGA's
may be reprogrammed - provided that all . memory and device
requirements are adequately understood and provided.

Parallel Input/Output (I/O)

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER {CSA-M68000TA)

CHAPTER 3 Page 18

parallel I/O consists of two Parallel Interface
(PIA's), which are dual 8 bit configurable parallel I/O

The
Adapters
devices.
decoded by
connector,
lines may
See Petebug

These use the VPA/VMA cycles of the 68000, and are
the address decoding. The I/O pins go to the 50 pin
and if the keyboard is not being used, then these
be used for parallel I/O for a control application.
subroutines, Stepper Motor at rear of this chapter.

The parallel I/O on the Trainer is controlled by the VPA,
VMA and E control signals and the PIA interfacing. As used in
the Trainer, the PIA's (036, 037) are similar to 6800 devices.

Serial Input/Output (I/O)

The serial I/O consists of 2 Asynchronous Communications
Interface Adapters (ACIA's) and associated circuitry for RS232
levels, and a baud rate generator. The two serial devices are
accessed the same way as the PIA's, except that the fifth address
line is used to select between them, as they both use the same
data lines. For each ACIA, there are five RS232 level buffers,
these are for the following signals:

a. Transmit data
b. Receive data
C. Carrier detect
d. Request to send
e. Clear to send

These signals go to two on board 25 pin RS232 compatible
connectors. The configuration of pins on the TERM port is set up
to interface to DTE (data terminal equipment, most terminals),
while the HOST port is set to interface to DCE (data
communications equipment, most computers). Baud rates from 300
to 38,400 are available as jumper selections (see Trainer
Schematic, 035). These baud rate parameters are generated by the
CLOCK Crystal (Yl). Baud rate is individually selectable for
each ACIA (U33, 034).

THE KEYBOARD/DISPLAY ASSEMBLY

CSA, Users Manual {CSA-UMM68KTA)
for, CSA TRAINER {CSA-M68000TA)

CHAPTER 3 Page 19

Although the keyboard and display circuits share a common
assembly board, each of these circuits operates independently of
the other. The keyboard/display assembly is connected to the MPU
assembly through a three connector (one unused) ribbon cable with
50 pin edgeboard connectors on each end. The signals to the
keyboard/display assembly are parallel I/0 and are processed by
the PIAs on the MPU board. PIA, 036 processes signals for the
keyboard and PIA, U37 processes signals for the display. The CSA
Laboratory Manual, Appendix E-2 and E-3 show the signal paths of
the PIAs, ribbon connectors, and circuit of the Display (E-2) and
Keyboard (E-3). The following paragraphs will discuss the
keyboard circuits and the display circuits, each will be
discussed separately.

The Keyboard

The CSA Trainer keyboard consists of twenty keys, arranged
in a four horizontal row by five vertical column matrix. The
keys are labeled as shown in Figure 3.6.

The input (B side) of the keyboard is connected to a PIA and
receives output signals from the MPU board. The output (A side)
of the keyboard is connected to the same PIA and transfers
signals to the input of the MPU board. (See Figure 3.7).·

The BREAK and RESET keys are connected as interrupts and
are not connected into the keyboard matrix. The following
description of keyboard signals refers to matrix keys, the BREAK
and RESET keys are not included.

The MPU, directed by Petebug's keyboard scan routine
{SCNKP), outputs a negative true low to each of the four B side
columns of the keyboard. These outputs from the MPU are
sequentially sent to each of the four columns in sequential order
and many times a second {loop). If no key is pressed, there will
be no output. As shown in Figure 3.7 (detail), each column/row
interconnect is a normally open keyswitch.

When a key is pressed, the input from the column is
connected to the output from the row of the pressed key. This
output from the A side of the keyboard is connected to the PIA,
inverted, and input to the MPU. The keyboard to MPU inputs are
decoded in the following manner:

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 20.

Row inputs (key pressed) to the MPU.

Bit 0 on = top row keys ENTER through RESET

Bit 1 on = next row down keys C through F

Bit 2 on = next row down keys 8 through B

Bit 3 on = next row down keys 4 through 7

Bit 4 on = bottom row keys 0 through 3

Column inputs (column scanned) from the MPU.

Bit 1 off = scan the 0 through ENTER column

Bit 2 off = scan the 1 through H/B column

Bit 3 off = scan the 2 through BREAK column

Bit 4 off = scan the 3 through RESET column

The keyboard is the Trainer/User interface for MPU input.
The inputs on the keyboard are processed by the MPU and Petebug
subroutines. The User receives immediate feedback on the display
of the keys that he has pressed. The display circuits are
described in the following paragraph.

ENTER HEX BREAK RESET BIN

CHG DSPY FWD

C D E F
RUN STEP AUTO BACK

8 9 A B
.. --+

4 5 6 7
+ - MODE

0 1 2 3

csn COMPUTER SYSTEM ASSOCIATES,

KEYBOARD KEYS

FIGURE 3-6

SEE II
MICRO 68000
SCHEMATIC 49
NO. 00064

PA

0 2

5 7

1 3

6 8

4

45

46

2 --43

7
9

5
3 t-------1 44

4
6

U36
MC682I

P.LA.
O 10

1-'-'-
2 12

3 13
PB 4 _14 __

5 15

6 16

7 17

41

40

37

38
35

I
___ __,I

PIA

Jt ~OT SCANNED- 7
11 +5V I

RS, IK .
491------------------.J\N\t--f.--4

HEX I BREAK RESET I ENTER

41

40

37

38
35

(DETAlL)
(OUTPUT BITS 0-4)

8

. I
I ~ R4, 1oon1 , L: _____ :._J

E F

+5V
R6 IK

R7 IK

RS IK

R9 IK

lcOLUMNBEING7
SCANNED { 1) j

li}__OF4J__ I

4 BIT 2 'Row c2) KEY 8 I ~-~-LJ-------E~--+----+------1~ E SS E·o CLOSE~

BIT 1

LJ KEYBOARD MATRIX

csn COMPUTER SYSTEM ASSOCIATES FIGURE 3-7

Displays

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 21

The CSA Trainer has two types of displays (hex and LED) that
share the same circuitry. The hex dispaly components are common
cathode type, seven segment displays with a decimal point. See
Figure 3.8.

The displays are constantly scanned (data input) by row and
strobed (power input) by column. The MPU, directed by the
Petebug subroutines (REFRESH, DSPVAL, DSPLED) controls the
displays on the Trainer. For a detailed description of operation
of the seven segment and LED displays, see the CSA Laboratory
Manual, Page 23. Also to understand the bit pattern of the
display data output byte, see the CSA Laboratory Manual, Page 25.

A block diagram (Figure 3.9) of the display circuits is
shown at the rear of this chapter. Notice in the diagram that
the data is presented at each Octal Latch (Ul through UlO), but
only those latches that are enabled by the multiplex decoder
(Ull} and the scan drivers (Ul3, Ul4) will output to the
displays. The column power drivers (Ql through Q4) are also
turned on/off (strobed) by the MPU/PIA input to the Decoder (Ul2)
and the four strobe driver lines (015). Multiplexing the display
is a time-sharing technique used to save on power consumption.
If each display were to remain lighted (constant) when data was
displayed, each would need its own driver. The cost in
components and power would be expensive. By multiplexing the
relatively high transister output power, the display can be
pulsed at a rapid rate saving on parts and power. When the rate
of strobing is high enough (100 hz or more), the displays appear
to be lighted continuously. The REFRESH subroutine in Petebug
directs the MPU to continuously refresh (strobe) the displays. A
table of Petebug routines is presented in Chapter 2, with the
start addresses for each routine.

The
referred
keyboard
data for

data to be displayed is stored in an area of RAM memory
to as the Refresh Buffer. This data is changed by

input and MPU output. A pointer in Petebug locates this
the MPU during REFRESH.

As there are only enough latches to hold one column of data,
the display must be continuously refreshed in order to keep a
pattern displayed in all the seven segment and LED displays. If
this is not done, only the last column selected will be
displayed. In addition to this, unless the updating of the
displays is done in an extremely careful fashion, bleed through
(interference from one display element to another) will result.

What follows is is a description of how to refresh the displays
so that bleed through does not occur:

CSA, Users Manual (CSA-OMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 22

1. Set both the A and B sides of the display PIA for output.

2. The current values for all data to be displayed should be in
a refresh buffer.

3. The refreshing of the displays will be done a column at a
time. So the following steps will be repeated four times,
once for each column. Column numbers are O through 3.

4. Merge in the blank display bit into a byte which contains
the current column number (in the column number field bits 5
through 4) with a group select of group zero.

5. Loop through the group numbers (0 through 9) setting the
group number in bits 3-0 of the value to select the column
an group_.

6. Output the data for the selected column and group to the A
side of the display PIA.

7. Output the group and column along with the display blanking
bit on to the B side of the display PIA. This latches the
data into the desired location to be displayed.

8. Output a value to the B side of the display PIA to select an
illegal group with the display blanking bit still set. (The
value 4F hexadecimal works fine). This keeps the next data
which will be output from overwriting that which we just
output.

9. Output the value for the last legal group and column with
the blanking display bit turned off. This enables the
display.

10. Delay about 25 milliseconds to enable displays to reach
brightness.

11. Continue with loop or return when all groups and columns
have been refreshed.

12. End.

GROUP 21

GROUP 41

GROUP s I

3 2 1 0

I I I I

I I I I
I I I I

I I I I
GROUP 1 I I I I I
GROUP a I I I I I

00000000
COLUMN 3

00000000
COLUMN 2

3 2 1 0

GROUP 1 I I I I I
ADDRESS

INSTRUCTION
00000000

COLUMN 3

EXTENSION 1
00000000

COLUMN 1

EXTENSION 2
00000000

COLUMN 3

EXTENSION 3
00000000

COLUMN 1

STATUS :

00000000 11
COLUMN 2 I

GROUP 3
I

00000000 j
COLUMN 0

000000001
COLUMN 2 I

GROUP 6
I

00000000)
COLUMN 0

1 GROUP 9
J

csn COMPUTER SYSTEM ASSOCIATES

DISPLAY LAYOUT

FIGURE 3- 8

PIA

U37

68000 I
~~°:_J .

NOTES:

I
I
I
I
I

UI -UIO OCTAL LATCH I
U 11 1 OF 16

DECADE/MUX I
U12 3 TO 8 I

DECODER

8 LINES

TO u1-u10

U11 Ul3

R
0
w
E Ul4 N
A
B
L
E

Ul2

HEX ADDR HEX ADDR
OSI -· 0S4 DS5 - DS8

HEX INSTR INSTR
DS9 - OS 12 16 LEDS

EXTN 1 EXTN 1
HEX DSI3-16 16 LEDS

EXTN 2 EXTN 2
U6 HEX DSl7-20 16 LEDS

U71----------,

EXTN 3 EXTN 3
HEX D521-24 16 LEDS

EXTN 4
HEX 0525-28

8 LEDS

DISPLAY BLOCK DIAGRAM

csn COMPUTER SYSTEM ASSOCIATES F , G u R E 3 - 9

1.

2.

3.

4.

5.

6.

7.

PETEBUG

REFRESH

DSPVAL

DSPLED

SCHNKP

GNUM

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 23

SUBROUTINES

Page 24

Page 24

Page 25

Page 25

Page 25

DEMO1/DEMO2 Page 26

STEPPER MOTOR Page 26

-
C) -

I I -
{ l -

Using Petebug Subroutines

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 24

As has been seen, both scanning the keyboard and refreshing
the displays are non trivial matters. Fortunately the User of
the 68000 Trainer has the Petebug monitor available to scan the
keyboard and refresh the display. What follows is a list of
subroutines which enable the User to easily access the 68000
Trainer keyboard and displays.

Refresh the Displays

JSR $FF8010 CALL REFRSH SUBROUTINE

This subroutine must be called continuously if all the
displays are to remain on. There is an area of RAM memory called
the refresh buffer. This memory contains the values to be
displayed. The refresh subroutine takes the values from
the refresh buffer and outputs them to the displays in the
fashion described in the CSA Laboratory Manual (Pages 23, 25).

Note: prior to calling this subroutine, the User must have
placed the values to be displayed in the refresh buffer.
To change the values being displayed by this subroutine,
one need only change the values in the refresh buffer.
The following registers are used by the REFRSH subroutine:
D0-D3 and A0-A2.

Display Value in 7 Segment

MOVE.L
MOVE.L
MOVE.B

JSR

VAL,DO
OFFSET,Dl
NHDIGIT,D2

$FF8014

VALUE TO DISPLAY
OFFSET INTO REFRESH BUFFER
NUMBER OF HEX DIGiiS TO DSPLY

CALL DSPVAL SUBROUTINE

This subroutine allows the User to display a numeric value
as hexadecimal digits in the seven segment displays. The first
argument placed in DO is the actual value to display. The second
argument placed in Dl is the offset into the refresh buffer where
the first digit of the number of digits to be displayed will be
placed. The third argument placed in D2 is the number of
hexadecimal digits to display at the specified location. The
value will be displayed right justified and zero filled to the
left. Note: care must be taken to insure that the number of
digits specified from the initial offset does not cross into an
area of the display which contains LEDs instead of seven segment
displays. The following registers are used by the DSPVAL
subroutine: D0-D5 and AO-Al.

Display value in a set of LEDs

MOVE.B
MOVE.L
JSR

VAL,DO
OFFSET,Dl
$FF8018

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 25

BYTE VALUE TO DISPLAY
OFFSETINTO REFRESH BUFFER
CALL DSPLED SUBROUTINE

This subroutine places the byte value given in DO in the refresh
buffer at the location specified by the offset given in Dl. This
subroutine reverses the bits so that the value will be displayed
in a logical fashion (see description of how values are displayed
in the LEDs in CSA Laboratory Manual).

Note: care must be taken not to specify an offset to a seven
segment display instead of a group of LEDs. The following
registers are used by the DSPLED subroutine: D0-D4 and
AO.

Scan Keyboard

JSR $FF801C CALL SCNKP SUBROUTINE

This subroutine scans the keyboard to see if the User is
striking any one of the keys. It returns a byte value in DO. If
the value $FF is returned, it means that no key or multiple keys
have been hit by the User. Otherwise the values 0-F reflect
that the User hit one of the keys 0-F, the value $10 means the
User hit the ENTER ke¥ and the value $11 means the User hit 'the
HEX/BIN key. ,

Note: the BREAK and RESET keys cause interrupts and therefore
cannot be detected in this fashion. This subroutine does
not wait until the User strikes a key It will always
return immediately. The following registers are used by
the SCNKP subroutine: D0-D4 and AO-Al.

Get Hex Number From Keyboard (Displaying Digits as Input)

MOVE.L
MOVE.B
JSR

OFFSET,D0
MXDGIN,Dl
$FF8020

OFFSET INTO RFBUF FOR DISPLAY
MAX NO. OF DIGITS TO INPUT
CALL GNUM SUBROUTINE

This subroutine enables the User to collect a hexadecimal
number from the keyboard while at the same time displaying each
hexadecimal digit as it is input. The first argument in DO is
the offset into the refresh buffer for the area to display the
digits as they are input. The second argument in Dl is the
maximum number of digits to allow the User to input. This
subroutine will return the value collected from the keyboard in
DO. It will also return with the condition code set to non-zero
if the User inputs a reasonable number or with the condition code
set to zero if the User inputs an unreasonable number (too long

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER {CSA-M68000TA)

CHAPTER 3 Page 26

or included the HEX/Bin key). The User terminates the number by
striking the ENTER key. The GNUM subroutine uses the following
registers: D0-D7, Al-A2 and A5-A6.

The Demonstration Programs

The demonstration programs are listed in the Chapter 2. In
all revisions of Petebug (after ver 8.5) the jump addresses for
these demonstration programs will remain constant. See Table 2-
1, for address and description.

The Stepper Motor

The Trainer contains a program to control an optional
stepper motor, and the address of that program is also in the
jump table of the prom. This is only true for Petebug revision
8.7 and later. The program is described in the following
paragraphs.

Stepper Motor Program

The Micro 68000 has an option that allows it to control
stepper motor. This makes learning easier, as visual results of
coding can be seen. Either the User can write the control to
control the motor directly, or use a program supplied with the
Petebug monitor package. All revisions of Petebug greater than
8.5 have this in them. No attempt will be made here to describe
the operation of a stepper motor, just the use of the program in
Petebug.

Stepper Motor

The 68K stepper consists of a four-coiled stepper motor,
which is driven off four lines of the B side of the display PIA.
Operation of this motor can be accomplished by using a program
located in Petebug. This program works by changing the state of
the four lines connected to the four coils in a particular
sequence. The operation of this program consists of giving a set
of instructions, in a code used by this program, which are
interpreted to give the desired stepping function.

Stepper Motor

To operate the 68K stepper, one must provide a set of
commands located at $000A0O. These commands are one word wide
and tell the function speed and number of steps for each
instruction. Each part of the each word gives a particular
portion of that instruction. A word consists of 16 bits, which
is 4 nibbles. The high nibble is bits 15-12, and the low is 3-0.

7

14

16
2

17 3 4

18 5 6

19
13 12

J1

R2
220

CRI CR2

QI
MPS6560

Q2
MPS6560

CRI THRU CR4 ARE 1N4004

+5VDC

R4
220

CR3 CR4 CR8
N

G'3
MPS6560

Q4
MPS6560

STEPPER MOTOR
SCHEMATIC

FIGURE 3-1 0

IN ~ ~ 0- - - -~ 0-- - ~ 0 UT
SW 1 SW3 SWn

1----! ____)0UT I AND GATE I
~---- OUT

IN ~ ,-----.--~
~l-----

OR GATE

0
IN--

INVERTER

1

I)0 1

1

jNANO GATE!

..
I

0
0

I NOR GATE l

1

I
1 ,

1
0
0

1 IN~-

)1 [>o >ouT

AND INVERTER

OUT

NOR INVERTER

csn COMPUTER SYSTEM ASSOCIATES

DIGITAL GATES/ LOGIC

FIGURE 3-11

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 3 Page 27

Top Nibble (15-12)

This nibble tells the function, and the available functions
are:

Clockwise steps

Counter-Clockwise steps

Delay-waste time as though stepping

End-return to Petebug

F

B

D

E

C Continue program - re-run from the start

Second Nibble (8-11)

This nibble controls the speed,
the fastest.

Lower Byte (2 nibbles, 0-7}

0 is the slowest, and $Fis

This byte controls the number of steps, from Oto 255.

STEPPER MOTOR BASICS

permanent magnet stepping motors belong to the class ot
stepping motors frequently identified as "can-stack" stepping mo
tors with step angles typically in the range of 7.5 to 20 degrees.
The motors contain two stacked sets of toothed stator poles and
circular coils and a permanent magnet rotor with radial alternating
north and south poles as shown in figure 1. The number of rotor
poles is equal to the number of stator teeth in each set of poles.
The stator pole sets are offset by 1 /4 of the pole pitch. With both
stator coils energized, the rotor will align itself between the two
equal stator fields.

A single step of the rotor is the result of a change of magnetic
polarity of one set of stator teeth. This change in polarity is
brought about by reversing the direction of current flow in the coil
associated with those teeth. The rotor motion for a single step with
no load applied is that of a damped oscillation as shown in figure 2.
The damping characteristics of this curve may be modified by
frictional and inertial loading,the sequence in which windings are
energized, and the electronic damping in the drive circuitry.

ROTOR
POSITION

FIGURE 2

SINGLE STEP RESPONSE

FIGURE1

TIME

STEPPING SEQUENCES

For continuous rotation a repeating sequence of
changing tooth polarity is required. Differences in
motor performance characteristics result from differ
ent types of sequences.

The most commonly used scheme for stepping the
motor is to energize both stator coils and to reverse
the current in alternate coils with each successive
step. This results in a four step sequence as shown
in figure 3. Reversing the sequence reverses the di
rection of rotation. This is called a full step mode with
two phases on.

It is also possible to step the rotor with the same
angular increment by energizing only one phase
each step as shown in figure 4. This is also a four
step sequence and is commonly known as a wave
drive. Since only half the copper volume is being
used, the efficiency is lower and there is less
damping with this sequence than with two phases
on.

A third sequence alternates between one and
two phases energized to produce 1 /2 the step an
gle of the previous sequences. The half step se
quence shown in figure 5 requires eight steps.
Although angular resolution may be improved with
half-stepping, an important characteristic to note
is the lower torque on alternate steps when only
one phase is energized. The smaller step angle
does provide an improvement in damping, and
half-stepping may be advantageous in applica
tions which require operation of the motor at or
near resonant frequencies.

TORQUE CHARACTERISTICS

The maximum torque developed by the motor is
the static or holding torque. It is measured while
displacing the rotor one step with two phases
energized (full step mode). The torque developed
during continuous stepping decreases with
increasing stepping rate since the current rise
time when a phase is energized is limited by the
inductance to resistance ratio of that coil.

A typical dynamic torque curve is shown in fig
ure 6. The lower curve represents the maximum
torque load which the motor will start and stop
without losing steps. The upper curve represents
the maximum torque which the motor can develop
at a given pulse rate or alternately, the maximum
rate to which a given load can be accelerated.

The curve of figure 6 is obtained while operating
the motor at a constant voltage over the entire
range of pulse rates. Thus the input power to the
motor is substantially decreased at higher pulse
rates. The torque can be increased at higher pulse
rates by increasing the input using a variety of
drive techniques. These include simple schemes
such as increasing the voltage directly or de
creasing the time constant by adding external se
ries resistance, and more elaborate techniques
such as bi-level voltage drives or chopper type
drives which sense the winding current.

When overdriving techniques are used to
increase motor performance, consideration must
be given to the maximum permissible temperature
rise of the motor windings based on the insulation
rating of the motor.

14

:J¢,
CSA Users Manual (CSA-UMM68KTA>
£or. CSA TRAINER <CSA-M68000TA>
CHAPTER 3 Page 28

1D 1 ,p2 I

A B C 0

/\
l - + - +

¢,. 2 - + + -

ii
cw ccw

3 + - + -

II/ 4 . - - +
C 1)

FIGURE 3. Full Step, 2 Phases On Sequence

$1 $2

!; 8 C D

~! $2 1 - + - +

A 8 C 0 2 - +

1 - + 3 + - - +

2 + - 4 + -
cw cm CW ccw

3 + - 5 + - + -

II/ 4 - + 6 + -
7 - + + -

FIGURE 4. Wave Drive Sequence
8 - +

FIGURE 5. Half-Step Sequence

TORQUE
(OZ-IN)

8

7

6

5

4

3

2

1

RESONANCE

50 100 150 200 250
PULSES/SECOND

FIGURE 6. Dynamic Torque

AVERAGE
DC

CURRENT
(MA)

600

500
400

300

200
11)0

All stepping motors exhibit resonance at certain pulse rates. In
typical can-stack type stepper applications the most com[Tlonly
encountered resonances occur at lower frequencies (less than
100 pulses per second). Although there is no loss of steps at these
frequencies, there is an increase in vibration and noise. This be
comes even more noticeable when a gear train is coupled to the
motor. When operation at resonant frequencies cannot be avoided,
some improvement may be made by such methods as increased
frictional damping, reduced input power, modified drive circuitry or
half-stepping.

STEP ANGLE ACCURACY

The average value of the 111easurea step angles of
an unloaded stepping motor over 360 degrees will be
equal to the nominal step angle. The maximum devia
tion of the individual steps from the nominal step
angle is the error usually specified as a non-cumula
tive or incremental step angle error.

BIFILAR AND BIPOLAR OPERATION

The terms bifilar and bipolar refer to two different
types of coil windings that may be used in the stator
coils. Bipolar windings contain a single coil in each
stator half. The switching circuitry used to reverse
the direction of current flow with this coil is typically
of the full bridge or dual supply type (figure 7). Bifilar
windings contain two windings in each stator half.
When they are connected as shown in figure 8, the
magnetic field may be reversed by switching from
one winding to the other. Note that although a bifilar
wound motor does contain four coils or "phases", it
is operated as a two phase motor.

The bifilar-wound PM steppers are widely used be
cause of the drive circuit simplicity. However, there
are performance differences between the two types
of windings. Since the winding volume per phase ofa
bifilar-wound stepper is only half that of a bipolar
wound stepper, the attainable ampere-turns for a giv
en input power will necessarily be lower for the bifi
lar-wound motor. As expected the torque is therefore
lower. However, it is only lower in a holding mode or
at low stepping rates. The reason is that the bipoiar
coil with its larger volume will also have a larger time
constant (L/R) and at higher stepping rates the bipo
lar-wound motor's torque will decrease to approxi
mately the same level as that of the bifilar-wound
motor.

The choice of winding type will depend upon the
application. The holding torque for a bipolar version
of a given motor will be 20-30% higher than the bifilar
version and the dynamic torque will be higher at low
stepping rates. Difference in dynamic performance
will be small at higher stepping rates. These perfor
mance differences must then be weighed against the
drive circuit complexity.

B

CSA Uaera Manual <CSA-UMM68KTA>
for# CSA TRAINER (CSA-M68OOOTA>
CHAPTER 3 Page 29

•

+v

+v

qi,

-v

FIGURE 7. Dual Supply and Full Bridge Drivers

ct;) ctl.

[ooooooT· 000000 l
C D

+V

FIGURE 8. Bifilar Windings

+V

"stock motors" are supplied as "four phase" bifilar-wound motors. The standard lead wire con
figuration is six leads. The color code and switching sequence for the full step, two-phase-on mode is
shown below.

+V

4 PHASE BIFILAR
STEPPER WINDINGS
STANDARD WINDING
COLOR CODE: 6 LEADS

.cl...,.

l
,u..

z
0 ;:

" ,..
0
II:

~
()

4"' </>3 ¢2 ¢1
WHITE BLACK BLUE RED

1 0 1 0

l
z
0

1 0 0 1 ;:

" ,..
0

0 1 0 1 a:

~
0 1 1 0

1 = ON, 0 = OFF

SWITCHING SEQUENCE

P
W

R

O
N

R

E
S

E
T

6

8
0

0
0

 U
P

E

E
R

O
M

S

r
:-

-
-
-
-
7

I

P
E

T
E

B
U

G

P
R

O
G

R
A

M

I N
U

M
B

E
R

S
 I

N

H
E

X

I
B

R
E

A
K

I

(A
B

O
R

T
)

Ll S
U

~
12

_1
 I A

D
~

 I 1
 I I

M
O

D
E

S

E
LE

C
T

3

0
3

1
3

2
3

3
 3

4

1'°3
1

(M
E

M
O

R
Y

IN

S
T

R
U

C
T

IO
N

L!

::!J

. M
O

D
E

3

0
 S

H
O

W
N

)

--~
-=

-__
 -_

-7

-
D

A

ir
rf

~
l

s
._

_E
N

_T
_E

_R
_;

--
-_

-
__

 _I
 _
_

 _
S

E
E

 D
IS

P
L

A
Y

F

IG
.

3
-3

~-

LA
_Y

_)
_c

_s
_A

_-
M

_C
_6

_a
_o

o_
o_

TA
_K

Y
_B

D
_S

_E
Q

_U
E

~

(A
D

D
R

E
S

S

S
E

LE
C

TE
D

 B
Y

 D
IS

P
LA

Y
 F

U
N

C
T

IO
N

)

M
E

M
O

R
Y

 C
LE

A
R

E
D

D

IS
P

LA
Y

 C
LE

A
R

E
D

lg

(C

H
A

N
G

E
)

-
~

-
_

1

C
U

R
S

O
R

 T
O

1

S
T

I
~

P
O

S
IT

IO
N

s
E

E

F
IG

U
R

E

3

_
2

◄
r
-
-
-
t
-

B

F

,N
cR

E
-A

D
D

R
 I

I
I

.
O

N
E

 I
N

•

r
-

-
-

-
_

_
J

L
_

_
B

A
C

K

FW
D

A

D
D

R
~

~
R

-
I

l
_

_
.
t
_

_

-

IN
P

A

D
D

R
E

S
S

E

N
TE

R

1
-
~

7

I
~~

U!
ID

!L
JI

I
I

!I
L

L
E

G
A

L
 C

O
M

M
D

7
.,

L

~
O

D
E

3

0

'I

--=
--=

-~

IN
P

U
T

H

 I
N

P
U

T
 M

A
Y

 B
E

 B
IN

A
R

Y

(
B

IN
T

7

IN
S

T
R

U
C

T
IO

N

~
 H

E
X

ID
E

C
IM

A
L

_
(H

E
X

)_
j

IN
P

U
T

 C
O

M
PL

T.

I-

-.
-·

· ·
 f

t-
--

--
-t

l
(E

N
T

E
R

)

B
IN

A
R

Y

IN
P

U
T

IN
S

T
R

U
C

T
IO

N

TO
 M

E
M

O
R

Y

A
N

D
 T

O
 D

IS
P

L

S
E

E

C
H

A
N

G
E

F
IG

.
3

-2

P
E

T
E

B
U

G

D
IA

G
R

A
M

C
S

II
~

 SYST
EM

 A
SS

O
C

IA
1U

F

IG
U

R
E

4

-1

I 68000 UP

SELECT MODE
MODE UP= 30

--------i PRESS A (AUTO)

PETEBUG
AUTO ROUTINE

INPUT MEM. ADDR.
-----iOR REGIS. - KYBD

0

I
I

PRESS ENTER -©- I
BEGIN CHANGE - 6 __ J
AUTO LOOP

CURRENT ADDRESS
OR REGISTER IS
CLEARED - CHANGE

LOOPS THROUGH, DISPLAY
TRACKS 8 SHOWS
ACTIONS AS

THEY OCCUR
INPUT DATA/
rNSTRUCTION

D (DISPLAY), C (CHANGE)
_ ___, F (FWD), COMPUTES

PRESS (ENTER)

MC68000

DATA IS STORED 0
ADDRESSINCREMENTS @

PRESS BREAK @2
END i.a-----f KEY

NEXT VALID ADDRESS
AND DISPLAYS IT

csn COMPUTER SYSTEM ASSOCIATES

AUTO FLOW CHART

FIGURE 4- 2

Input

HEX
BIN

0

0

1

1

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 4 Page 3

Table 4-1 Petebug Keyboard Input (Cont'd)

Description

Mode:
Oper:
Form:
Def :

Mode:
Oper:
Form:
Def :

Mode:
Oper:
Form:
Def :

Mode:
Oper:
Form:
Def :

Mode:
Oper:
Form:

Def :

Memory See Figure 4-1.
Toggle hex to binary/binary to hex
Press key HEX/BIN once each toggle
This command toggles the hexadecimal/
binary input mode. It can be issued as
an independent command, when the START
COMMAND LED is lit, or it can be
issued in the middle of a CHANGE or
AUTO command while ih the instruction
mode (30). When in the hexadecimal
mode, all input is done in hexadecimal
format. When in binary mode, all data
(not address) input is in binary
format.

Command
Select Master Mind game
RESET -0- ENTER
See Master Mind, Chapter 2.

Binary
Enter Oto memory
Press key 0
0 is entered

Binary
Enter 1 to memory
Press key l
1 is entered

Command
Add
l[data#l] ENTER [data#2] ENTER
displays sum in address field.
This command performs hexadecimal
addition. After the ONE command,
enter the first number, then ENTER the
second number, then ENTER. The sum of
the two numbers will be displayed.

Input

2

3 0

3 1

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 4 Page 4

Table 4-1 Petebug Keyboard Input

Description

{Cont'd)

Mode:
Oper:
Form:

Def :

Command
Subtract
2[data#l] ENTER [data#2] ENTER
displays difference in address field
This command allows hexadecimal
subtraction. After the TWO command,
enter the two numbers, each followed
by the ENTER key. The trainer will
then display the result of the
subtraction of the second number less
the first (data #1 minus data
i2=displayed result).

NOTE

Mode (Key 3) is always a
function to change modes.
select register mode three
required for some registers.

two
In

keys

key
the
are

Mode:
Oper:

Form:
Def :

Mode:
Oper:
Form:
Def :

Command
Select memory instruction mode
{opcodes/programs enter to memory)
(from other modes): BREAK 3 0 ENTER
Memory is displayed as machine
instructions on both the seven segment
displays and the binary LEDs.

Command
Select Memory {data 8 bit)
{from other modes): BREAK 3 1 ENTER
Memory is displayed as 8 bit bytes on
the last two digits of the first data
row of the seven segment displays
only.

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 4 Page 5

Input

3 2

Table 4-1 Petebug Keyboard Input (Cont'd)

Description

3 3

3 4

3 4 D O ENTER

3 4 D 1 ENTER

3 4 D 2 ENTER

3 4 D 3 ENTER

4 (CURSOR LEFT)

Mode:
Oper:
Form:
Def :

Mode:
Oper:
Form:
Def :

Mode:
Oper:
Form:
Def :

Command
Select memory (data, 16 bit)
(from other modes): BREAK 3 2 ENTER
Memory is displayed as 16 bit words on
the first and second lines of the
seven segments only.

Command
Select memory (data, 32 bit)
(from other modes): BREAK 3 3 ENTER
Memory is displayed as 32 bits long
words on the first and second lines of
the seven segments only.

Command
Select register
(from other modes): BREAK 3 4 ENTER
Registers are displayed as 32 bits (16
for the status register) on the first
and second lines of the seven segment
area only.

*SELECT REGISTER SUB MODES

Select user stack pointer (USP)

Select supervisor stack pointer (SSP)

Select program counter (PC)

Select status register (SR)

Mode:
Oper:
Form:
Def :

Binary
Move cursor left one bit
Press 4 key
This command is only valid
changing data in the binary mode.
moves the cursor one position to
left.

when
It

the

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 4 Page 6

Input

Table 4-1 Petebug Keyboard Input {Cont'd)

Description

5 (SAVE) Mode:
Oper:
Form:

Def :

6 {CURSOR RIGHT) Mode:
Oper:
Form:
Def :

7 {LOAD) Mode:

Oper:
Form:

Def

Memory instructions (30) save to EEROMS
See EEROMs, Chapter 3
5 ENTER
1. Start address in RAM

(Save=source area/load=destination
area)

2. Number of bytes (8 bits) to Save
or Load.

3. Offset address (must be an even
number).

This command is used to write an area
of RAM into the EEROMs in order to
save it. Once this key has been
pressed, Petebug will begin a sequence
to save an area to EEROMs. See
Chapter 3, EEROMs for details.

Binary
Move cursor right one bit
Press 6 key
This command, only valid when changing
data in binary mode. It moves the
cursor one position to the right.

Memory instructions (30) load from
EEROMS
See EEROMs, Chapter 3
7 ENTER
1. Start address in RAM

(Save=source area/load=destination
area)

2. Number of bytes (8 bits) to Save
or Load.

3. Offset address (must be an even
number).

This command is used to load an area
of RAM from the EEROMs. Once this key
has been pressed, Petebug will begin a
sequence to load from the EEROMs. See
Chapter 3, EEROMs for details.

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 4 Page 7

Input

Table 4-1 Petebug Keyboard Input (Cont'd)

Description

8 (RUN)

9 (STEP)

A (AUTO)

Mode:
Oper:
Form:
Def :

Mode:
Oper:
Form:
Def :

Mode:

Command
RUN user.program
(from other modes): BREAK 8 ENTER
This command starts the execution of
any program. The command key (8) is
followed by the starting address for
the execution and the ENTER key. If
no address is given, then the current
program counter location will be used.
The trainer keeps track of the
registers used by the user's program.
When the trainer is first turned on or
RESET, all the data and address
registers are cleared, and the other
registers have these values.

Command
Single STEP an instruction.
(from other modes): BREAK 9 ENTER
This command traces one instruction
from the current program counter
location. After the instruction is
executed, the new program counter is
displayed on the trainer display.
Registers and memory may be displayed
with the D command, and another STEP
command may be performed. The
registers are saved and loaded as
described in the run command.

Mode Dependent (Mode 30-34) See Figure
. 4-2.

Oper: On ENTER advances to next address
Form: (from selected mode): A [address].

ENTER [data] ENTER [data] ENTER ...
Data is cleared from current register
or memory address and input data is
stored. See CHANGE command. BREAK
(must be terminated with BREAK).

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 4 Page 8

Input

Table 4-1 Petebug Keyboard Input (Cont'd)

Description

A (AUTO)

(BACK)

C (CHANGE)

Def : This command is used to enter large
amounts of data to memory or
registers, without having to hit the
FORWARD and CHANGE keys for each
additional location. After pressing
the AIJl'.Q key, enter the starting
address or register and press ENTER.
The trainer will display the location
being changed, now you enter the data
for that location. Then press ENTER to
store the data. AUTO will
automatically advance to the next
location. The only way to end the
AUTO command is to use the BREAK key.

Mode: Mode dependent (Mode 31-34)
(*Not valid mode 30/error message:
huh?)

Oper: Displays previous register or fixed
length data word

Form: Press B
Def : This command displays the previous

memory or register that is consistent
with the display mode. The registers
are in reverse order of FORWARD.

Mode:
Oper:

Form:

Def :

Mode dependent See Figure 4-3.
Change the contents of register or
memory cell
D-Address-[ENTER]-C • • (clears
current contents, input new data from
keyboard) ••• [ENTER]
This command is used to change the
contents of what is currently being
displayed. In any mode except mode
30, data is exclusively entered in
hexadecimal, ignoring the HEX/BIN
flag. Binary mode can only be used in
mode 30 (memory as instructions), when
the HEX/BIN flag is on. When entering
data in hexadecimal mode, enter the
new data, and press ENTER. When
changing in binary, the keys O and 1
change the data under the blinking

68000 UP 0
SELECT MODE ~
MODE UP= 30 \.::.)

PRESS D KEYBD (';\
------1 INPUT ADDR/REGIS \V

DISPLAY HEX/LED

PRESS C KEYBD

(CHANGE)

DISPLAYS ACTION 1----1. MC 68000
AS IT PROGRESSES

/
/

,____/~,...C_L_E_A_R_A_DD_R ___ /R_E_G_I_S _ ©
/ MOVE CURSOR LEFT

(
I

MC68000 STORE
INPUT TO LOCATION
AND DISPL STORED
DATA/ IN STRU.

0
YES

INPUT INSTRUCTION ..,_ _ _,a

DATA HEX

PRESS <ENTER) ©

HEX

SEE DISPLAY
FLOW CHART
FIGURE 4-4
FOR BACK i FWD

INPUT INSTRUCTION
BINARY (0,1,4,6)

END csn COMPUTER SYSTEM ASSOCIATES

CHANGE FLOW CHART

FIGURE 4-3

!DISPLAY 7
I ERROR I
I MESSAGE I
L~H ! _ _J

NO

68000 UP 0
SELECT MODE t'z\
MODE UP = 30 \.::.J

PRESS D KEYBD ~
(DISPLAY} \V

INPUT ADDR/NAME 0
30=- INSTRUCTION i----------.
31, 32,33 =DATA MEM

34 = REGISTER

PRESS ENTER ©

DISPLAY INSTRUCTION
DATA REGISTER IN HEX

PREVIOUS

YES

DISPLAY KEYBD
INPUT

DISPLAY INSTRUCTION
IN BINARY

END

csn COMPUTER SYSTEM ASSOCIATES

DISPLAY FLOW CHART

FIGURE 4-4

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 4 Page 9

Input

Table 4-1 Petebug Keyboard Input (Cont'd}

Description

C (CHANGE}

D (DISPLAY) Mode:
Oper:

Form:

Def:

cursor, and the left and right arrows
(~ and ~ respectively) move the
blinking, cursor. When all the binary
changes have been made, press the
ENTER key.

Note: If binary mode is legal, you
may switch from binary to hexadecimal
at any 4 bit (nibble) boundary.

All registers are 32 bits, except SR,
which is 16. Early revision Petebugs
treat input of the SR as 32 bits,
where the upper 16 bits are put in the
register, thus the desired value is
typed in followed by four extra
digits.

Mode dependent (30-34) See Figure 4-4.
Di~play current instruction, memory
contents, data or register contents
depending on mode.
Select mode, press D, address, then
[ENTER]
This command is used to display the
contents of memory or registers, and
it is also used to setup the address
for the CHANGE, FORWARD and BACK
commands. The MODE command {see 30-
34) is used to specify the format and
content of the display. If memory is
being displayed, the~ (display) key
is followed by a valid 68000 memory
address and the ENTER key. The
contents of the specified memory
location(s) will be displayed in the
current display format. Note that
68000 machine instructions are
variable length, but the proper number
of words will be displayed by Petebug.

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 4 Page 10

Input

Table 4-1 Petebug Keyboard Input (Cont'd)

Description

D {DISPLAY)

E (TUTOR) Mode:
Oper:
Form:
Def :

F {FWD) Mode:
Oper:

Form:

Def :

An attempt to display non-existent
memory will cause the trainer to hang
up, waiting for a reply that will
never come. All revision I trainers
will do this, but with revision II
trainers, a jumper can be installed to
cause a bus error if this happens. If
this happens, you must reset the
trainer to bring it back. If
registers are being displayed, the ~
key is followed by the register name
from the table below.

Command
Causes "Execute Tutor"
Press E
If Petebug is running,
key will cause the
monitor, {TUTOR) to
Appendix A.)

pressing this
RS-232 based

execute. (See

Mode dependent (30-34) See Figure 4-1.
Advance display forward to next higher
address, register, instruction,
dependent on mode.
Select mode, display address, press F
to advance
This command displays the next
register or memory location, depending
on the display mode. For register
displays, the order is as follows: DO
to DO, AO to A6, user stack pointer,
supervisor stack pointer, program
counter and then status register. The
register set wraps around; ie. after
the status register, DO will be

Input

CSA, Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 4 Page 11

Table 4-1 Petebug Keyboard Input (Cont'd)

Description

F (FWD) displayed. When used for memory, the
next location displayed depends on the
current display mode. For bytes,
words and long words, the address is
incremented the appropriate number of
bytes (1, 2 and 4 respectively). For
instructions, the display is
incremented by the length of the
previous instruction, so as to display
the beginning of the next instruction.

**

NOTE

The following commands are Tutor commands
(see Appendix A) and are presented here
for quick reference.

GP (GO PETEBUG)

LE (LOAD EEROM)

PE (SAVE EEROM)

This command is similar in function to
the Petebug E command. When GP
followed by ENTER is input from Tutor,
the Trainer will initialize the
Petebug monitor program (68000 UP).

While operating Tutor, this (LE)
command will cause a program stored in
EEROM to be LOADED to RAM under Tutor
control (similar to Petebug 7 (LOAD)
command).

While operating Tutor, this (PE)
command will cause a program stored in
RAM to be loaded into EEROM (saved)
under Tutor control (similar to
Petebug 5 (SAVE) command).

CSA, Users Manual (CSA-UMM68KTA)
-for, CSA TRAINER (CSA-M68000TA)

CHAPTER 4 Page 12

Table 4-1 Petebug Keyboard Input (Cont'd)

Input

G (GO)

GD (GO DIRECT)

Description

While in Tutor, the GO (G) command,
followed by the desired address and
ENTER will cause Trainer operation to
jump to the program starting at the
address specified (similar to
Petebug's RUN (8) command).

This command will bypass all
intermediate Tutor program functions
and jump to the address specified.

- 13 -

Resetting Petebug and the Processor

SUMlVIARY
I RESET! - while in the Pete bug Monitor Program, causes a soft reset that clears
the registers of the MPU, but does not disturb or clear memory.

The I RESETI key and function will become one of the most often used com
mands while operating with the Petebug Monitor Program. The command will be
used to ensure that Petebug and MPU are initialized and prepared to begin new opera
tions. However, due to the training nature of the CSA Trainer, the memory (and any
programming that may have been saved in memory) remain intact after a I RESET! has
been performed.

There is a jumper connection on the MPU board, lower right corner that may be
wired to perform the exact same function as the I RESET! key on the keyboard, (see
Chapter 3).

IEXAMPLEI

Press:

RESET

Petebug is RESET

- 14 -

lslslololol lulPI ADDRESS

INSTRUCTION I I I I I 0000000000000000
EXTENSION I I I I I I 0000000000000000
1::XTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
•0000000 STATUS

00000000

Example: Reset of Petebug

- 15 -

Arithmetic Commands (Add and Subtract)

SUMMARY
[] <datal> IENTERI <data2> IENTERI displays <datal> +<data2> in the
address field of the display.
11] <datal> IENTERI <data2> IENTERI displays <datal>-<data2> in the
address field of the display.

These instructions form the minimal calculator for use with relative displace
ments of instructions. The form of the two commands are identical; press the com
mand key, and then the two data in hexadecimal, each followed by the I ENTER! key.
The result is calculated with a numeric wraparound (modulus) at 2 to 32nd power.

For example, to calculate an instruction offset: the 68000 uses the address at the
end of the instruction, plus the offset contained in the instruction. If the instruction is
at $A3E, and is a one word (2 byte) instruction jumping to $A10, then the result
should be $DO. This can be done using the calculator's subtract command; subtract
$A3E from $A10. From this result ($FFFFFFD2) subtract 2, giving $FFFFFFDO,
from which only the last 8 bits are significant.

a) 2 <AlO> IENTERI <A3E> I ENTER! displays <FFFFFFD2>
b) 2 < FFFFFFD2> I ENTER! < 2> I ENTER! displays < FFFFFFDO>

I EXAMPLE!

To add $FF74 to
$C022:

1 FF 7 4 ENTER
CO2 2 ENTER -- - - - -- ---

To subtract $3276
from $EEC6:

2 EEC 6 ENTER
3 2 7 6 ENTER--- - - - -----

- 16 -

10101011.lblFl9\6I ADDRESS

INSTRUCTION I I I I I 0000000000000000
EXTENSION I I I I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
80000000 STATUS

00000000

· lo!olololblcl5lol ADDRESS

INSTRUCTION I I I I I 0000000000000000
EXTENSION I II I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
eooooooo sTATUs

00000000

Example: Addition and subtraction

- 17 -

Setting the Display/Change Mode (Key 3)

SUMMARY
To change the mode between instruction, 8 bit data, 16 bit data and 32 bit
data, and register. ·

[] [Q] mode is changed to: memory as 68000 machine code.
[] [] mode is changed to: memory as 8 bit data
[]~mode is changed to: memory as 16 bit data
[][]mode is changed to: memory as 32 bit data
[] G] mode is changed to: 68000 registers

Most of Petebug's instructions operate on a certain size of data, and Petebug
must know the size it is using for it to perform correctly. For example, trying to put a
32 bit value into memory while Petebug is in 8 bit mode would take 4 separate opera
tions, whereas it would only take one operation if Petebug were in the 32 bit mode.

The mode instruction is listed first because it applies to almost all of Petebug's
commands. The commands affected are: Change, Display, Forward, Backward and
Auto. In the Change and Auto commands it prevents entering the wrong length of
data, or using binary mode when inappropriate. In the Forward, Backward and Display
commands, it causes the data to be displayed in the correct format. In the Forward,
Backward and Auto commands, it causes the increment to the next piece of data to be
the correct number of bytes.

The command is always a two key command, the first is [] , and the following
key sets the actual mode. Valid second keys and their corresponding modes are
shown in the summary box. The current mode is displayed in three LEDs in the
status line. The following table shows the correspondence between the LEDs in the
status display and the mode, where LED 7 is the leftmost LED in the group.

7 6 5 4 3 2 1 0 Mode
X X X 0 0 0 X X Memory (Instruction)
X X X 0 0 1 X X Memory (8 bit)
X X X 0 1 0 X X Memory (16 bit)
X X X 0 1 1 X X Memory (32 bit)
X X X 1 0 0 X X Registers

\

!EXAMPLE!

Press:

3 3

To set to 32
bit mode.

Press:

3 4

To set to
register mode.

- 18 -

lslalololol lulPI ADDRESS

INSTRUCTION I I I I I 0000000000000000
EXTENSION I I I I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
80008800 STATUS

00000000

lslalololol iulPI ADDRESS

INSTRUCTION I I I I I 0000000000000000
EXTENSION 1 I I I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
80080000 STATUS

00000000

Example: Change Mode command

- 19 -

Binary input in Instruction mode

SUMMARY
!HEX/BINI causes Petebug to switch from Hexadecimal to Binary, or from•
Binary to Hexadecimal. Can be used at command level, or while data entry
cursor is at a nibble boundary when changing or entering an instruction.
@] causes binary cursor bit to move left one bit.
lli] causes binary cursor bit to move right one bit.
[Q] and [] enter data in binary mode.

When using the change or auto commands in the instruction mode, there are two
forms of input available: hexadecimal or binary. To switch from one mode to the
other, use the I HEX/BINI key. This can be done when at the command level, or when
changing or entering a number. There is a restriction; if switching out of binary
mode, it must be done on a nibble boundary. A nibble is four bits, so the boundaries
fall at the end of every hexadecimal digit. The current mode is displayed in one of the
status LEDs.

While entering data in the binary mode, there are also several extra commands.
There are two commands for moving the flashing binary cursor; one to move it left
one bit, and one to _move it right one bit.

Once in the correct position, individual bits may be entered using the [Q] and []
keys. These enter the appropriate bit, and advance the cursor one bit to the right.

)EXAMPLE!

Press:

RESET

to bring to HEX

to bring to BIN

to return to HEX

- 20 -

lslalololol lulPI ADDRESS

INSTRUCJIOi'." I I I I I 0000000000000000
EXTENSION I I I I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
•0•00000 STATUS

00000000

lslalololol lulPI ADDRESS

INSTRUCTION I I I I I 0000000000000000
EXTENSION 1 I I I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
80000000 STATUS

00000000

Example: Use of Binary mode (see change instruction command)

- 21 -

Running User Programs

SUMMARY
[ID < address> I ENTERI starts running a user program with the current register
set at the address given.

This command is used to run user programs. Before jumping to the given
address, the registers are loaded with the values that can be seen with the display
register command.

Before jumping, the display is cleared and a user program LED in the status
group is lit.

IEXAMPLEI

To avoid entering
a program, run
the demo program
(at address FF8038).

8 FF8038

Depress RESET
to stop the
demo program.

- 22 -

I I I 10.1 I I I I ADDRESS

INSTRUCTION I I I IS.I 0000000000000000
EXTENSION I I I I 18.1 00000000••••••••
EXTENSION 2 I I I le.I 0000000000000000
EXTENSION 3 I I I laJ 00000000••••••••

I I I leJ
00000000 STATUS

00000000

Isla lo lolol lulP I ADDRESS

INSTRUCTION I I I I I 0000000000000000
EXTENSION 1 I I I l I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
80000000 STATUS

00000000,

Example: Running a user program

- 23 -

Single Stepping a User Program

SUMMARY
[2] executes a single instruction from the current user program counter. All
registers may be examined following this command.

Using the step command causes a single instruction to be executed, and control
then returns to Petebug. The instruction is at the current value of PC, and the regis
ters are loaded with their proper values before executing the instruction.

Following the instruction, the registers are saved, and can be examined with the
display register command. The PC value after the execution is displayed immediately
to show where the program is operating.

Any number of step commands may be done in sequence, or with other interven
ing commands.

!EXAMPLE!

Using the demo #1
program as an
example for single
stepping.

Set register mode.

3 4

Display the PC.

D 2

Change to $FF8038.

C F F 8 0 3 8 ENTER

Now single step.

~ ~ ~ ... ~ (SINGLE STEP)

- 24 -

IPlcl I I I I I I ADDRESS

INSTRUCTION 1010IFIFI 0000000000000000
EXTENSION I lalol 3lal 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
80080000 STATUS

00000000

Example: Single stepping a user program

- 25 -

. Entering Streams of Data - Auto

SUMlVIARY
IA] < address> [I ENTERI < data> I ENTER!] ... I BREAK!
allows the entry of any number of 8, 16 or 32 bit words, or instructions or
registers into sequential locations. (Must be terminated with I BREAK! or
!RESET!).

The auto command is in fact a conglomeration of the display, change and forward
commands. It works in any mode, with each individual operation taking on slightly
different meanings in different modes.

Once the address is keyed in, followed by the I ENTER! key, the address is
displayed, along with the data that is currently in the word; a cursor is in the leftmost
position. Data is stored following subsequent presses of the I ENTER! key. The entire
operation is terminated with the I BREAK! key. Thus if the data being entered for the
current word is no longer desired, then it can be aborted before it is stored.

When used in the instruction mode, the registers come in the order shown in the
table from the display register instruction with wraparound.

When in one of the memory data modes, the correct length is used for the for
ward operation. In addition, only the correct number of bytes may be entered.

When in the instruction mode, the binary input mode is also usable,' and can be
switched on and off at nibble boundaries as in the change instruction. In addition, the
number of words that is stored is the number that is keyed, while the number of
words to the next instruction is calculated by disassembling the instruction, so it ·is
possible to key more or less than the number of words moved forward.

This instruction can make the keying of a large quantity of data a faster task than
using the forward and change instructions.

IEXAMPLEI

Objective:
To enter the

following string
of bytes at $1200.

23, 48, 45, 4C, 4C, 4F,
23,0D,0A

First set to byte
mode.

3 1

Now enter Auto
mode at 1 200.

A 1 2 0 0 ENTER

Now enter the
data, each
followed by ENTER,
the whole string
followed by ABORT.

2 3 ENTER
4 a ENTER
4 s ENTER
4 c ENTER
4 c ENTER
4 i= ENTER
2 3 ENTER
o 5 ENTER
o A ENTER BREAK __ _

This can now be
examined with:

Mode: 31 < ENTER >
Display:Q
Address: 1200 < ENTER >

f: f: ~ .~:-f(FORWARD)

- 26 -

10101010111210111 ADDRESS

INSTRUCTION

141-1 I I
I I I I I

0000000000000000
EXTENSION I

0000000000000000
EXTENSION 2

I I I I I 0000000000000000

EXTENSION 3

I I I I I
I I I I I

0000000000000000

Q00008Q0 STATUS

00000000

Example: Auto command

- 27 -

Moving Forward or Backward in Memory or Registers

SUMMARY
[E displays next higher register, instruction or fixed length data word.
ill] displays previous register or fixed length data word. (not allowed in instruc
tion mode)

The forward and backward commands operate on the current address and current
register variables, as set by the display and auto commands. It also depends on the
current mode (see the change mode command to set the mode). These commands are
single key commands, and require no additional parameters.

For memory data modes, the forward command adds the length of the current
data size to the current address, and then displays the contents of that location. For
example if the mode is set to 32 bit data, and the current address is hexadecimal 8046,
then the current address would be set to 804A, and the contents of 804A would be
displayed as a 32 bit value. The value, as in the display command, is displayed in the
hexadecimal displays only. For memory data modes, the backward command operates
in an analogous way, the only difference is that the length is subtracted from the
current address instead of being added to it. Overflows, both negative and positive,
are ignored so that the address arithmetic is done modulo 2 to the 32nd power.

For the instruction mode, the length that is determined by Petebug (by disassem
bling the instruction) is added to the current address, and then the contents of the
new address are displayed as an instruction in both the hexadecimal and binary
displays. The contents of the new current address are disassembled before display so
that the correct number of word will be displayed, as in the display command. If the
address overflows, the carry is ignored, and the lower 32 bits are taken as the new
current address. Since it is very difficult to correctly disassemble instructions going
backwards, this command is not allowed, and will result in the error message "HUH?"
being displayed by Petebug.

For the register mode, the new current register is taken as the previous or next
register in the table presented in the display register command. The list is treated in a
circular fashion; USP is one forward of A6, and A6 is one backward of USP.

I EXAMPLE!

First set to
instruction mode.

3 0

Now set the
current address.

D F F 8 6 A Z ENTER

Now move to next
forward instruction.

F

First set to 1 6
bit data mode.

3 2

Now set current
address by
displaying.

D F F 8 0 4 8 ENTER

Now move backward
one word.

B

- 28 -

lololFIFl0lslAl2I ADDRESS

INSTRUCTION

14121Alcl oeooooeooo•o•eoo
EXTENSION I

101010141 0000000000000800
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
80000000 STATUS

00000000

jo[o[F[F [0[0[4[81 ADDRESS

INSTRUCTION lo 18 lol 2 0000000000000000
EXTENSION 1

I I I I
I I I I

0000000000000000
EXTENSION 2

0000000000000000
EXTENSION 3

I I I I
0000000000000000

I I I I
aoooeooo sTATus

00000000

Example: Forward and Backward commands

- 29 -

Changing Memory in Instruction Mode

SUMMARY
~ < data> I ENTER! causes the data, entered in hex or binary, as < data> to
be stored at the current address. The current address is read back after storing
the data, and the result is displayed. (must be in the memory instruction
mode)

The change command takes the entered value, and stores it at the current
address. There is only one change command with different modes, so the correct
mode must be selected before starting the change command. To change to mode, see
the change mode command. This description applies to changing memory, represented
as machine instructions.

After entering the~ of the change command, the data area is cleared, and a cur
sor is placed in the first byte of the data area, or the first bit of the binary display,
depending on the input mode. The data may be entered in either in hexadecimal or
binary, depending on the input mode, but in either case the data must be terminated
with the I ENTER! key.

Any digits or bits that are entered remain in the position they area entered, and
are not moved (unlike the change command in data modes).

Once the I ENTER! key is pressed, the data is stored at the current address. Fol
lowing the store operation, the contents of the current address are read, and then
displayed in the data field of the displays. When the data is re-displayed, Petebug does
not disassemble the instruction, but displays the number of digits entered.

When writing into RAM, the data read back should be the same as the data
stored. If attempting to store into ROM, the value of the ROM locations will not
change, so the displayed value will be the same both before and after the store.

/EXAMPLE/

First set to
instruction mode.

3 0

Now set current
address and
display location
$1000.

D 1 0 0 0 ENTER

Now change the
first two nibble
in hexadecimal to
$4E. Then change
the third and
fourth nibbles to
$75.

C 4 E HEX/BIN
01110101
ENTER- - - - -

And return to
hexadecimal
(optional)

Now change this
instruction to
$4E59, using
binary mode.

Note: 6 is the Cursor
Right Command for
binary input

- 30 -

10101010111010101 ADDRESS

INSTRUCTION

14 1El7 15 1 oeooeeeooeaeoaoa
EXTENSION I I I I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

Note: The starting display

I I I I I may differ; change will

• . . . _ produce the same result.

aooooooo sTATus

00000000

10101010 11010101 ADDRESS

INSTRUCTION

l4IEl5l9 080088900808800&
EXTENSION 1

I I I I
0000000000000000

EXTENSION 2

I I I I
0000000000000000

EXTENSION 3

I I I I
0000000000000000

I I I I
80000000 STATUS

00000000

Example: Change of Memory in Instruction mode

- 31 -

Changing Memory in Memory Data Modes

SUMMARY
[g < data> I ENTERI causes the data, entered in hex, as < data> to be stored
at the current address. The current address is read back after storing the data,
and the result is displayed. (must be in one of the memory data modes)

The change command takes the entered value, and stores it at the current
address. There is only one change command with different modes, so the correct
mode must be selected before starting the change command. To change to mode, see
the change mode command. This description applies in the modes treating memory as
8, 16 or 32 bit quantities.

After entering the [g of the change command, the data area is cleared, and a cur
sor is placed in the first byte of the data area. The data must be entered in hexade
cimal, followed by the I ENTERI key. If fewer than the maximum number of digits are
keyed, it is assumed that the digits keyed go in the least significant digits, while the
remaining digits (the most significant) are filled with zeroes. (This is opposite to the
instruction mode.)

Once the I ENTER! key is pressed, the data is stored at the current address. Fol
lowing the store operation, the contents of the current address are read, and then
displayed in the data field of the displays.

When writing into RAM, the data read back should be the same as the data
stored. If attempting to store into ROM, the value of the ROM locations will not
change, so the displayed value will be the same both before and after the store. When
writing to certain registers in the ACIAs and PIAs, it is useful to be able to see the
immediate effect of the changes.

IEXAMPLEI

First set to 8 bit
data mode.

3 1

Now set current
address to RAM.

D 1 0 0 0 ENTER - - - - - -----
Location $1 000,
contents unknown,
is displayed.
Now change to $45

C 4 5 ENTER - - ---

First set to 32
bit data mode.

3 3

Now set current
address to RAM.

D 1 0 0 0 ENTER

Location $1 000 is
displayed. Now
change to
$80010221

C 8 0 0 1 0 2 2 1 ENTER

- 32 -

1010101011 1010101 ADDRESS

INSTRUCTION

14151 I I 0000000000000000
EXTENSION I I I I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
eooooaoo STATUS

00000000

1010101011 1010101 ADDRESS

INSTRUCTION

10101011
10121211

0000000.000000000
EXTENSION 1

0000000000000000
EXTENSION 2

I I I I 0000000000000000
EXTENSION 3

I I I I
0000000000000000

I I I I
aoooaaoo sTATus

00000000

Example: Change of Memory in data mode

- 33 -

Changing Registers

SUMMARY
~ < data> I ENTERI causes the data, entered in hex, as < data> to be stored
in the current register. The current register is displayed at the end of the com
mand. (must be in the register mode)

The change command takes the entered value, and stores it at the current regis
ter. There is only one change command, with different modes, so the correct mode
must be selected before starting the change command. To change to mode, see the
change mode command. This description applies in the modes treating memory as 8,
16 or 32 bit quantities.

After entering the~ of the change command, the data area is cleared, and a cur
sor is placed in the first byte of the data area. The data must be entered in hexade
cimal, followed by the I ENTERI key. If fewer than the maximum number of digits are
keyed, it is assumed that the digits keyed go in the least significant digits, while the
remaining digits (the most significant) are filled with zeroes.

Once the I ENTERI key is pressed, the data is stored in the current register. The
register is displayed in full 32 bit (16 for SR) form following the I ENTERI key.

IEXAMPLEI

Set to register
mode.

3 4

Display data
register 4 (D4).

DD 4

Change to
$00001010.

C0000101
§ g~rfB.- - - -

- 34 -

Id 14 I I I I I I I ADDRESS

INSTRUCTION lololo 10 I 0000000000000000
EXTENSION I lolo lo 10 I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
80080000 STATUS

00000000

I d I 41 I I I I I I ADDRESS

INSTRUCTION

10101010 I 0000000000000000
EXTENSION 1

11 1011 101 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
80080000 STATUS

00000000

Example: Change of Registers

- 35 -

Displaying Memory as Instructions

SUMMARY
While in the instruction mode, use the display instruction command to display
the contents of memory as disassembled instructions in both hexadecimal and
binary displays.

(Must be in instruction mode)
[!21 < address> I ENTERI displays the contents of< address>

All display commands are essentially similar, and they depend on the mode for
correct operation (see change mode command for setting the mode). The display
instruction command takes the address given to it, and displays the contents of it as
68000 machine instructions. The instruction is disassembled by Petebug to find its
length, the length is used to display the correct number of 16 bit words in both the 7
Segment hexadecimal displays and the binary LED groups.

The address used for the display command must be given in hexadecimal. It may
be from 0 to 8 hex digits in length, but due to the 24 bit addressing used by the
68000, the uppermost two digits in an 8 digif address will be ignored. Since 68000
instructions are 16 bits, the address given must be even, or an error will be displayed.
Address input must be terminated by the ENTER key. If no address is given, it is
presumed to be 0.

Using the display command sets the current address to the value given by the
user. The current address is used by the forward, backward and change commands.

I EXAMPLE!

Press:

3 0

To set to
instruction mode

D F F 8 1 5 E ENTER

To display the
instruction at

$ F F 8 1 5 E

- 36 -

lololFIFlsl1 lslEI ADDRESS

INSTRUCTION l2I0I? le I ooeoooooo•••••oo
EXTENSION I 101010101 0000000000000000
EXTENSION 2 lolalol2 I ooooeooooooooo8o
EXTENSION 3 I I I I I 0000000000000000

I I I I I
•0000000 STATUS

00000000

Example: Display Instruction command

- 37 -

Displaying Memory as Data (8/16/32 bit)

SUMMARY
While in the appropriate data mode (modes 1 through 3), use use the display
data command to display the contents of memory as data of that size.

(Must be in modes 1-3)
mJ < address> I ENTER! displays the contents of < address>

All display commands are essentially similar, and they depend on the mode for
correct operation (see change mode command for setting the mode). The display data
command takes the address given to it, and displays the contents of it as 1,2 or 4 bytes
in the hexadecimal displays only.

The address used for the display command must be given in hexadecimal. It may
be from 0 to 8 hex digits in length, but due to the 24 bit addressing used by the
68000, the uppermost two digits in an 8 digit address will· be ignored. For the 16 and
32 bit modes, the address given must be even, since 68000 words always start at even
addresses. Address input must be terminated by the ENTER key. If no address is
given, it is presumed to be 0.

Using the display command set the current address, which is used by the forward,
backward and change commands.

\EXAMPLE!

Press:

3 3

To set to 32
bit mode

D F F 8 1 5 E ENTER - - - - - - - -----
To display data
at FF81 5E as 32
bit data.

Press:

3 1

To set to 8
bit mode.

D F F 8 1 5 E ENTER

To display data
at FF815E as 8
bit data.

- 38 -

lololF IF Isl 1 Isl El ADDRESS

INSTRUCTION

121017 1c1 0000000000000000
EXTENSION I

101010101 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
00000000 STATUS

00000000

lololFIF al1 lslEI ADDRESS

INSTRUCTION

12111 I
0000000000000000

EXTENSION 1

I I I I
0000000000000000

EXTENSION 2

I I I I
0000000000000000

EXTENSION 3

I I I I
0000000000000000

I I I I I
00000000 STATUS

00000000
Example: Display Data command

- 39 -

Displaying the 68000 Registers

SU:Ml\1ARY
While in the register mode, use the display register command to display the con
tents of 68000 registers.

(Must be in register modes)
[Q] < register name> displays the contents of < address>

All display commands are essentially similar, and they depend on the mode for
correct operation (see change mode command for setting the mode). The display regis
ter command displays the contents of the given register as a 32 bit value in the hexa
decimal displays only. (The status register is only displayed as 16 bits).

The register name is not terminated, as they are unique. For uses of the forward
and backward commands, the registers are presumed to be in an order. The order can
be read from the following table by reading down the left column, and then the right
column. The register names must be taken from the following table.

Keys Register Keys Register
0 USP D, 6 D6
1 SSP D, 7 D7
2 PC A, 0 AO
3 SR A, 1 Al
D, 0 DO A, 2 A2
D, 1 D1 A, 3 A3
D, 2 D2 A, 4 A4
D, 3 D3 A, 5 AS
D, 4 D4 A, 6 A6
D, 5

Using the display command sets the current register, which is used by the forward,
backward and change commands.

0

2

A4

A o

A2 --+- -- DO

A . 01

A AC\<. 02

06 05 04

IEXAMPLEI

Press:

To set to
register mode.

To display
address
register O.

Press:

34

To set to
register mode.

D 1

To display
the superviser
stack pointer.

- 40 -

IAIOI I I I I 11 ADDRESS

INSTRUCTION 101010101 0000000000000000
EXTENSION I

101010 lo I 0000000000000000
EXTENSION 2 I . I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
aooeoooo sTATus

00000000

1s1s [Pl I II I I ADDRESS

INSTRUCTION 10101010 0000000000000000
EXTENSION 1 IOJ4IFIC 0000000000000000
EXTENSION 2 I I I I 0000000000000000
EXTENSION 3 I I I I 0000000000000000

I I I I
aooeoooo sTATus

00000000

Example: Display Register command

-41-

Saving Data in EEROM

SUMMARY
I]] <startin addressofdatatobestoredinEEROM> I ENTER I <numberofbytesto
be stored> ENTER <offset address in EEROM at which data is to be stored>
! ENTER I causes data to be transferred to EEROM for retention even with
power off.

Upon depressing [[J , the prompt "START __ " will appear. This request is for the
starting address at which the data to be stored is presently residing. Upon depressing
! ENTER I , the prompt "BYTES? __ " will appear. This request is for the number of bytes
to be transferred to EEROM. Upon depressing I ENTER j , the prom pt "EEADDR? __ " will
appear. This request is for the relative (offset) EEROM address (000-7FF) at which data is to
be stored. 000 is the first address in EEROM, 7FF is the last address in EEROM. Upon
depressing ! ENTER I , the message "DONE" will appear, indicating that the transfer of
data has been successfully completed.

!EXAMPLE I

First put some
recognizable data at
memory location $1 000
(8digits)

5 100 0 ENTER ------
$1000 is the first
address of data to
be moved to EEROM.

4 ENTER --
Four bytes
(eight hex digits)
of data to
be moved.

-42-

lsltlAlrltl I I I ADDRESS

INSTRUCTION 111010101 0000000000000000
EXTENSION 1 I-I I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
00000000 STATUS

00000000

lb lvlt IEISl?.I I I ADDRESS

INSTRUCTION

141_1
I I 0000000000000000

EXTENSION 1 I I I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
00000000 STATUS

00000000

Example: Saving data in EEROM

EXAMPLE

0 ENTER --
Move the data to
EEROM starting at
the first address
in EEROM.

Indicates that
the transfer has
been successfully
completed.

-43-

IEIEIAjdjdjrj?.i I ADDRESS

INSTRUCTION lol-l I I 0000000000000000
EXTENSION 1 I I I I I 0000000000000000
EXTENSION. 2

I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
00000000 STATUS

00000000

Id Io In IE I I I I I ADDRESS

INSTRUCTION lol-l I I 0000000000000000
EXTENSION 1 I I I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3

I
1 1

I I 0000000000000000

I I I I I
00000000 STATUS

00000000

Example: Saving data in EEROM

-44-

Retrieving Data from EEROM

SUMMARY
[zJ <starting address of data to be retrieved from EEROM> ! ENTER! <number of
bytes to be retrieved> l ENTER I <offset address in EEROM from which data is to be
retrieved> ! ENTER I causes data to be transferred from EEROM to RAM.

Upon depressing [zJ, the prompt "START __ " will appear. This request is for the
starting address in RAM at which data from the EEROM is to be stored. Upon
depressing l ENTER i , the prompt "BITES? __ " will appear. This re uest is for the num
ber of bytes to be transferred from EEROM. Upon depressing ENTER . the prompt
"EEADDR? __ " will appear. This request is for the relative (offset) EEROM address
(000-7FF) from which data is to be transferred. 000 is the first address in EEROM. 7FF is
the last address in EEROM. Upon depressing l ENTER! . the message "DONE"will appear.
indicating that the transfer of data to RAM has been successfully completed.

EXAMPLE

Recall the first
4 bytes (8 hex digits) . -
from EEROM and put it
at address $1200 in RAM.

7 1 2 O O ENTER ------
$1200 is the first
RAM address where EEROM
data is to be stored.

4 ENTER --
Four bytes
(eight hex digits)
of data tobe
transferred.

-45-

!Sit !Air it I I I I ADDRESS

INSTRUCTION 111210101 0000000000000000
EXTENSION 1 I-I I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
00000000 STATUS

00000000

lblvftlElsl?I I I ADDRESS

INSTRUCTION

141_1 I I 0000000000000000
EXTENSION 1 I I I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
00000000 STATUS

00000000

Example: Retrieving Data from EEROM

EXAMPLE

0 ENTER

Move the data from
EEROM starting at
the first address
in EEROM.

Indicates that the
EEROM data has been
successfully transferred
to RAM memory.

-46-

IEIEIAld Id lrl?I I ADDRESS

INSTRUCTION IOI-I I I 0000000000000000
EXTENSION 1 I . I I I I 0000000000000000
EXTENSION 2 I I I I . I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
00000000 STATUS

00000000

Id lo In IE I I I I I ADD••··
INSTRUCTION [ol-l I I 0000000000000000
EXTENSION 1 I I I I I 0000000000000000
EXTENSION 2 I I I I I 0000000000000000
EXTENSION 3 I I I I I 0000000000000000

I I I I I
00000000 STATUS

00000000

Example: Retrieving Data in EEROM

CSA Uaera Manual <CSA-UMM68KTA>
for. CSA TRAINER <CSA-M6aOOOTA>
CHAPTER 4 Page 47

SUMMARY

The Petebug Comaands are much easier to learn if practiced
with the Trainer. The CSA Laboratory Manual contains several
exercises that are simple to perform, yet improve keyboard and
Petebug Command understanding through use. As suggestepd in
Chapter 2, Master Mind is an ideal aethod £or learning and
practicing some £undeaental commands and becoming £aailiar with
the CSA Trainer's response. Some suggestions to improve User
interaction with the CSA Trainer and Petebug are as £ollows:

1. Use RESET to begin all new operations or to start an operation
over again £rom the beginning.

2. Always use BREAK (abort> 1£ the MPU registers and Trainer
status are to be saved <not cleared>.

3. Visually check the display prior to pressing <ENTER> while
inputting keyboard instructions or data, to ensure that your
input is correct.

4. During the early learning process, slips of paper between each
group 0£ £our (4) LEDs will simpli£y understanding the LED
indicators.

5. Practice with the FWD and BACK coaaands.
command. These coaaands will save time
instruction input when used properly.

aa well as the AUTO
and ease data or

6. Use the STEP command to debug programming problems. This
command allows the User to display register status immediately
£ollowing the execution 0£ an instruction.

7. When entering a group of data or instructions and an error
occurs. no need to start over. use the CHANGE coaaand to correct
the error and proceed.

8. As User progress and coaplexity of input
involved. plan the input prior to keyboard entry.
what you need to do.

beco•es aore
Know exactly

9. Follow directions exactly when entering prograaa £rom the CSA
Laboratory Manual or User programs. While operating at the
hexadecimal or binary level to input to the MPU, the~re is no
latitude for error.

10. Pay attention to detail. use notes to track progress. and
know the options and capabilities 0£ the CSA Trainer system.

In the Chapters that follow <S. 6. and 7> the Motorola
Speci£ication Sheets will be presented. These spec sheets are the

CSA Uaera Manual <CSA•UMM68KTA>
£or- CSA TRAINER <CSA-M68000TA>
CHAPTER 4 Page 48

saae as those used by engineers and designers in industry.
Although the material contained in the Spec Sheets is available
in other User re£erences, it is presented in this manual £or
quick re£erence while engaged in programaing the MPU end working
with the CSA Trainer.

CSA Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 5

INTRODUCTION

CHAPTER 5 Page 1

** MC68000 ARCHITECTURE - This chapter contains the latest
Motorola MC68000 timing, control signal, and MC68000 operation
Data Sheets. This information is clearly presented, complete,
yet brief in presentation and of the same format and content that
students will normally use in their careers. These sheets are
the most frequent form of updates and changes to microprocessor
characteristics that are made available. Students, especially
future design engineers, would increase their career
opportunities by becoming familiar with the manner that data and
information is presented in these types of "Spec Sheets."

To aid in use and provide quick access, the Spec Sheets have
been divided into three groups, as follows:

Chapter 5 - MC68000 Architecture
Chapter 6 - MC68000 Instruction Set
Chapter 7 - MC68000 Support Chips

Each group (chapter) is preceded by a CSA introductory
paragraph and a "Quick Reference Guide." The introductory
paragraph will identify the type of data that is contained within
the chapter. The Quick Reference Guide is designed to locate the
exact data the User is seeking.

The data contained in this chapter is related to the MPU
internal timing cycles and external bus control cycles.
Particular attention is directed to the READ, WRITE, Bus
Arbitration, and Exception Processing cycles. It is imperative
that these functions be understood to properly program the MPU.
Almost as important are the Memory and Data organization, the
Exception Vectors and External Interrupt operations. A Quick
Reference Guide is provided for access to the data in this
chapter.

CSA Users Manual (CSA-UMM68KTA)
for, CSA TRAINER (CSA-M68000TA)

CHAPTER 5 Page 2

Quick Reference Guide MC 68000 Architecture

Data

Identity and Physical Characteristics (Registers and
Pin Out)

Ratings and Electrical Characteristics
Loading and Clock Time
AC Electrical Specifications
Read Cycle Timing
Write Cycle Timing
Bus Arbitration
Signal Description
Register and Data Organization
Data Organization in Memory
Word/Byte Flow Charts/Timing Cycles
Read-Modify-Write Flow Chart
Bus Arbitration Cycle Flow Chart
Bus Arbitration Control
Bus Error And Halt Operation
Exception Sequence
*DTACK, *BERR, and *HALT
RESET Operation
Processing/Privilege States
Exception Processing
Exception Vector Assignments
Exceptions/RESET/Interrupts
Interrupt Acknowledge Sequence Flow Chart
Interrupts/Traps/Tracing/Bus Error
Address Error/Interface MC68000 Peripherials
M6800 Interfacing Flow Chart
M6800 Timing Diagram (Best)
M6800 Timing Diagram (Worst)
Interrupt Operation
Data Types/Addressing Modes
*MC68000 Dimensions

Page

1
2
3
4
5
6
7
8
10
11
13
16
17
18
18
20
23
24
24
25
26
27
28
29
30
31
32
33
34
35
50

