
March 1978

This document describes how to use the RT-11 operating system. It
provides the information required to perform ordinary tasks such as
program development, program execution, and file maintenance.

RT-11
System User's Guide

Order No. DEC-11-ORGDA-A-D, DN 1

SUPERSESSION/UPDATE INFORMATION: In con junction with the RT 11 Advanced Programmer's Guide
(DEC-11-ORAPA-A-D), this manual supersedes the RT-11
System Reference Manual, Order N o. DEG-11-O R U GA-C- D,
DN1, DN2, published January 1976. This manual includes
Update Notice No. 1 (DEC-11-ORGDA-A-DN1).

OPERATING SYSTEM AND VERSION: RT-11 V03B

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754.

digital equipment corporation • maynard, massachusetts

First Printing, August 1977
Revised, March 197 8

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsib' 'ty
for any errors that :may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright OC 1977, 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this document requests the user's
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10

4/78-38

CONTENTS

Page

PREFACE xv

PART I RT-11 OVERVIEW I-1

CHAPTER 1 SYSTEM COMPONENTS 1-1
1.1 PROGRAM DEVELOPMENT 1-1
1.2 SYSTEM SOFTWARE COMPONENTS 1-2
1.3 SYSTEM HARDWARE COMPONENTS 1-3

CHAPTER 2 OPERATING ENVIRONMENTS 2-1
2.1 RT-11 SINGLE-JOB MONITOR 2-1
2.2 RT-11 FOREGROUND/BACKGROUND MONITOR 2-1
2.3 RT-11 EXTENDED MEMORY MONITOR 2-1
2.4 FACILITIES AVAILABLE ONLY IN RT-1 ~1 FB 2-2
2.5 FACILITIES AVAILABLE ONLY IN RT-11 XM 2-2

PART II SYSTEM COMMUNICATION II-1

CHAPTER 3 SYSTEM CONVENTIONS 3-1
3.1 SYSTEM STARTUP 3-1
3.2 DATA FORMATS 3-1
3.3 PHYSICAL DEVICE NAMES 3-2
3.4 FILE NAMES AND FILE TYPES 3-2
3.5 DEVICE STRUCTURES 3-2
3.6 SPECIAL FUNCTION KEYS 3-5
3.7 FOREGROUND/BACKGROUND TERMINAL I/O 3-5
3.8 TYPE-AHEAD FEATURE 3-7

CHAPTER 4 INTERACTIVE COMMANDS 4-1
4.1 COMMAND SYNTAX 4-1
4.2 WILDCARDS 4-5
4.3 INDIRECT FILES 4-7
4.3.1 Creating Indirect Files 4-7
4.3.2 Executing Indirect Files 4-10
4.3.3 Startup Indirect Files 4-i 1
4.4 KEYBOARD MONITOR COMMANDS 4-12

APL 4-13
ASSIGN 4-14
B 4-15
BASIC 4-16
BOOT 4-17
CLOSE 4-18
COMPILE 4-19
COPY 4-24
D 4-31
DATE 4-3 2
DEASSIGN 4-33

ui

CON7'EN7'S (ContJ

Page

4.4 KEYBOARD MONITOR COMMANDS (font) 4-12
DELETE 4-34
DIBOL 4-36
DIFFERENCES 4-39
DIRECTORY 4-42
DUMP 4-51
E 4-56
EDIT 4-57
EXECUTE 4-59
FOCAL 4-65
FnRTRAN 4-66
F RUN 4-71
GET 4-72
GT 4-73
HELP 4-74
INITIALIZE 4-76
INSTALL 4-78
LIBRARY 4-79
LINK 4-84
LOAD 4-89
MACRO 4-90
PRINT - 4-94
R 4-96
REENTER 4-97
REMOVE 4-98
RENAME 4-99
RESET 4-101
RESUME 4-102
RUN 4-103
SAVE 4-104
SET 4-105
SHOW 4-112
SQUEEZE 4-114.2
START 4-115
SUSPEND 4-116
TIME 4-117
TYPE 4-118
UNLOAD 4-120

PART III TEXT EDITING III-1

CHAPTER 5 TEXT EDITOR 5-1
5.1 CALLING AND USING EDIT 5-1
5.2 MODES OF OPERATION 5-1
5.3 SPECIAL KEY COMMANDS 5-2
5.4 COMMAND STRUCTURE 5-3
5.4.1 Arguments 5-5
5.4.2 Command Strings 5-5
5.4.3 The Current Location Pointer 5-6

iv March 1978

CONTENTS (ContJ

Page

J '

5.4.4 Character- and Line-Oriented Command Properties 5-6

5.4.5 Command Repetition 5-8

5.5 MEMORY USAGE 5-9

5.6 EDITING COMMANDS 5-10

5.6.1 File Open and Close Commands 5-11

5.6.1.1 Edit Read 5-11

5.6.1.2 Edit Write 5-11
5.6.1.3 Edit Backup 5-12
5.6.1.4 End File 5-13
5.6.2 File Input/Output Commands 5-14
5.6.2.1 Read 5-14
5.6.2.2 Write 5-14
5.6.2.3 Next 5-16
5.6.2.4 EXit 5-16
5.6.3 Pointer Relocation Commands 5-17
5.6.3.1 Beginning 5-17
5.6.3.2 Jump ~ 5-18
5.6.3.3 Advance 5-18
5.6.4 Search Commands 5-19
5.6.4.1 Get 5-19
5.6.4.2 Find 5-20
5.6.4.3 Position 5-21
5.6.5 Text Listing Commands 5-21
5.6.5.1 List 5-21
5.6.5.2 Verify 5-22
5.6.6 Text Modification Commands 5-22
5.6.6.1 Insert 5-23
5.6.6.2 Delete 5-23
5.6.6.3 Kill 5-24
5.6.6.4 Change 5-25
5.6.6.5 eXchange 5-27
5.6.7 Utility Commands 5-27
5.6.7.1 Save 5-27
5.6.7.2 Unsave 5-28
5.6.7.3 Macro 5-28
5.6.7.4 Execute Macro 5-29
5.6.7.5 Edit Version 5-30
5.6.7.6 Upper- and Lower-Case Commands 5-30
5.7 THE DISPLAY EDITOR 5-31
5.7.1 Using the Display Editor 5-32
5.7.2 Setting the Editor to Immediate Made 5-33
5.8 EDIT Ex;AMPLE 5-34
5.9 EDIT ERROR CONDITIONS 5-35

PART IV UTILITY PROGRAMS N-1

CHAPTER 6 COMMAND STRING INTERPRETER 6-1
b. l COMMAND STRING INTERPRETER SYNTAX 6-1
6.2 PROMPTING CHARACTERS 6-2

CONTENT'S (Copt.)

Page

CHAPTER 7 PERIPHERAL INTERCHANGE PROGRAM (PIP) 7-1
7.1 CALLING AND USING PIP 7-1
7.2 PIP OPTIONS 7-2
7.2.1 Operations Involving Magtape and Cassette 7-3
7.2.1.1 Using Cassette 7-3
7.2.1.2 Using Magtape 7-7
7.2.2 Copy Operations 7-8
7.2.2.1 Image Mode 7-9
7.2.2.2 ASCII Mode (/A) 7-9
7.2.2.3 Binary Mode (/B) 7-9
7.2.2.4 The Newfiles Option (/C) 7-9
7.2.2.5 The Ignore Errors Option (/G) 7-9
7.2.2.6 The Copies Option (/K:n) 7-10
7.2.2.7 Noreplace Option (/1~ 7-10
7.2.2.8 The Predelete Option (/O) 7-10
7.2.2.9 The Exclude Option (/P) 7-10
7.2.2.10 The Single-block Transfer Option (/S) 7-10
7.2.2.11 The Setdate Option (/T) 7-10
7.2.2.12 The Concatenate Option (/in 7-11
7.2.2.13 The System Files Option (/~ 7-11
7.2.3 The Delete Operation (/D) 7-11
7.2.4 The Rename Operation (/R) 7-11
7.2.5 The Logging Operation (/V~ 7-12
7.2.6 The Query Option (/Q) 7-12

CHAPTER 8 DEVICE UTILITY PROGRAM (DUP) 8-1
8.1 CALLING AND USING DUP 8-1
8.2 DUP OPTIONS 8-1
8.2.1 The Create Option (/C:m[:n]) 8-?
8.2.2 The Image Copy Option (/I) 8-4
8.2.3 The Bad Block Scan Option (/K) 8-4
8.2.4 The Boot Option (/O) 8-5
8.2.5 The Squeeze Option (/S) 8-6
8.2.6 The Extend Option (/T:n) 8-7
8.2.7 The Bootstrap Copy Option (/in 8-7
8.2.8 The Volume ID Option (/V [:VOL]) 8-8
8.2.9 The Small, Single-disk System Option (/V~ 8-9
8.2.10 The Noquery Option (/~ 8-10
8.2.11 The Directory Initialization Option (/Z [:nJ) 8-10
8.2.11.1 Changing Directory Segments (/N:n) 8-11
8.2.11.2 Storing Volume ID (/~ 8-11
8.2.11.3 Replacing Bad Blocks (/R[:RET]) 8-11
8.2.11.4 Covering Bad Blocks (/B) 8-12

CHAPTER 9 THE DIRECTORY PROGRAM (DIR) ~ 9-1
9.1 CALLING AND USING DIR 9-1
9.2 .DIR OPTIONS 9-1
9.2.1 The Alphabetical Option (/A) 9-3
9.2.2 The Block Number Option (iB) 9-3
9.2.3 The Columns Option (/C : n) 9-3

vi

CONTENTS (Cont.)

Page

9.2.4 The Date Option (/D [:date]) 9-3
9.2.5 The Entire Option (/E) 9-4
9.2.6 The Fast Option (/F) 9~
9.2.7 The Begin Option (/G) 9~
9.2.8 The Since Option (J [:date]) 9-5
9.2.9 The Before Option (/K [:date]) 9-5
9.2.10 The Listing Option (/L) 9-5
9.2.11 The Unused Areas Option (/M) 9-5
9.2.12 The Summary Option (/N) 9-6
9.2.13 The Octal Option (/O) 9-6
9.2.14 The Exclude Option (/P) 9-6
9.2.15 The Deleted Option (/Q) 9-6
9.2.16 The Reverse Option (/R) 9-7
9.2.17 The Sort Option (/S [:xxx]) 9-7
9.2.18 The Volume ID Option (/V) 9-9

CHAPTER 10 MACRO-11 PROGRAM ASSEMBLY 10-1
10.1 INITIATING THE MACRO-11 ASSEMBLER 10-1
10.2 TERMINATING THE MACRO-11 ASSEMBLER 10-2
10.3 TEMPORARY WORK FILE 10-3
10.4 FILE SPECIFICATION OPTIONS 10-3
10.4.1 Listing Control Options 10-5
10.4.2 Function Control Options 10-6
10.4.3 Macro Library File Designation Option 10-7
10.4.4 Cross-Reference (CREF) Table Generation Option 10-7
10.4.4.1 Obtaining across-Reference Table 10-7
10.4.4.2 Handling Cross-Reference Table Files 10-8
10.4.5 Assembly Pass Option 10-9
10.5 MACRO-11 8K VERSION 10-9
10.6 MAC RO-11 ERROR CODES 10-9

CHAPTER 11 LINKER (LINK) 11-1
11.1 CALLING AND USING THE LINKER 11-1
11.2 . OPTIONS SUMMARY 11-2
11.3 MEMORY ALLOCATION 11-4
11.4 GLOBAL SYMBOLS 11-7
11.5 INPUT AND OUTPUT 11-7
11.5.1 Object Modules 11-7
11.5.2 Load Module 11-8
11.5.3 Load Map 11-9
11.5.4 Library Files 11-10
11.6 USING OVERLAYS 11-10
11.7 USING LIBRARIES 11-14.3
11.8 OPTION DESCRIPTIONS 11-17
11.8.0 Alphabetical Option (/A) 11-17 '~
11.8.1 Bottom Address Option (/B:n) 11-17
11.8.2 Continue Option (/C) or (//) 11-17
11.8.3 Extend Program Section Option (/E:n) 11-18
11.8.4 Default FORTRAN Library Option (/F) 11-18
11.8.5 Highest Address Option (/H:n) 11-18
11.8.6 Include Option (/I) 11-19

vii March 1978

CONTENTS (Cont.)

Page

11.8.7 Memory Size Option (/K:n) 11-19
11.8.8 LDA Format Option (/L) 11-19
11.8.9 Modify Stack Address Option (/M [:n]) 11-19
11.8.10 Overlay Option (/O:n) 11-20
11.8.11 Library List Size Option (/P:n) 11-21
11.8.12 REL Format Option (/ R [: n]) 11-21
11.8.13 Symbol Table Option (/S) 11-22
11.8.14 Transfer Address Option (/T [:n]) 11-22
11.8.15 Round Up Option (/U:n) 11-23
11.8.16 Map Width Option (/W) 11-23
11.8.17 Bit Map Inhibit Option (/X) 11-23
11.8.18 Boundary Option (/Y:n) 11-23
11.8.19 Zero Option (/Z : n) 11-23
11.9 LINKER PROMPTS 11-24

CHAPTER 12 LIBRARIAN (LIBR) 12-1
12.1 CALLING AND USING LIBR 12-1
12.2 OPTION COMMANDS AND FUNCTIONS FOR OBJECT LIBRARIES 12-2
12.2.1 Command Continuation Options (/C and //) 12-3
12.2.2 Creating a Library File 12-4
12.2.3 Inserting Modules into a Library 12-4
12.2.4 Delete Option (/D) 12-4
12.2.5 Extract Option (/E) 12-5
12.2.6 Delete Global Option (/G) 12-5
12.2.7 Include Module Names Option (/N) 12-6
12.2.8 Include P-section Names Option (/P) 12-6
12.2.9 Replace Option (/R) 12-7
12.2.10 Update Option (/U) 12-7
12.2.11 Wide Option (/W) 12-7
12.2.12 Listing the Directory of a Library File 12-8
12.2.13 Merging Library Files 12-9
12.2.14 Combining Library Option Functions 12-9
12.3 OPTION COMMANDS AND FUNCTIONS FOR MACRO LIBRARIES 12-10
12.3.1 Command Continuation Options (/C or //) 12-10
12.3.2 Macro Option (/M [:n]) 12-10

CHAPTER 13 DUMP 13-1
13.1 CALLING AND USING DUMP 13-1
13.2 DUMP OPTIONS 13-1
13.3 EXAMPLES 13-2

CHAPTER 14 FILEX 14-1
14.1 FILE FORMATS 14-1
14.2 CALLING AND USING FILEX 14-2
14.3 FILEX OPTIONS 14-2
14.3.1 Transferring Files Between RT-11 and DOS/BATCH (or RSTS) 14-2
14.3.2 Transferring Files Between RT-11 and Interchange Diskette 14-5
14.3.3 Transferring Files to RT-11 from DECsystem-10 14-6
14.3.4 Listing Directories 14-7
14.3.5 Deleting Files From DOS/BATCH (RSTS) DECtapes and Interchange

Diskettes 14-8

viii

R

CONTENTS (Cont.)

Page

CHAPTER 15 SOURCE COMPARE (SRCCOM) 15-1
15.1 CALLING AND USING SRCCOM 15-1

15.2 SRCCOM OPTIONS 15-1
15.3 SRCCOM OUTPUT FORMAT 15-2
15.3.1 Sample Text 15-2
15.3.2 Sample Output Listing 15-3

PART V ALTERING ASSEMBLED PROGRAMS V-1

CHAPTER 16 ON-LINE DEBUGGING TECHNIQUE (ODT) 16-1
16.1 CALLING AND USING ODT 16-1
16.2 RELOCATION 16-4
16.3 COMMANDS AND FUNCTIONS 16-5
16.3.1 Printout Formats 16-5
16.3.2 Opening, Changing, and Closing Locations 16-5
16.3.2.1 The Slash (/) 16-6
16.3.2.2 The Backslash (~) 16-6
16.3.2.3 The LINE FEED Key (LF) 16-6
16.3.2.4 The Circumflex or Up-Arrow (~) 16-7
16.3.2.5 The Underline or Back-Arrow (E-) 16-7
16.3.2.6 Open the Addressed Location (C?) 16-7
16.3.2.7 Relative Branch Offset (>) 16-7
16.3.2.8 Return to Previous Sequence (~ 16-7
16.3.3 Accessing General Registers 0-7 16-8
16.3.4 Accessing Internal Registers 16-8
16.3.5 Radix-50 Mode (X) 16-9
16.3.6 Breakpoints 16-10
16.3.7 Running the Program (r; G and r; P) 16-10
16.3.8 Single Instruction Mode 16-12
16.3.9 Searches 16-12
16.3.9.1 Word Search (r; W) 16-12
16.3.9.2 Effective Address Search (r; E) 16-13
16.3.10 The Constant Register (r; C) M 16-13
16.3.11 Memory Block Initialization (; F and ; I) 16-14
16.3.12 Calculating Offsets (r; O) 16-14
16.3.13 Relocation Register Commands 16-15
16.3.14 The Relocation Calculators nR and n! 16-15
16.3.15 ODT Priority Level, $P 16-16
16.3.16 ASCII Input and Output (r; nA) 16-17
16.4 PROGRAMMING CONSIDERATIONS 16-17
16.4.1 Using ODT with Foreground/Background Jobs 16-17
16.4.2 Functional Organization 16-18
16.4.3 Breakpoints 16-18
16.4.4 Searches 16-20
16.4.5 Terminal Interrupt 16-21
16.5 ERROR DETECTION 16-21

CHAPTER 17 PATCH 17-1
17.1 CALLING AND USING PATCH 17-1
17.1.1 PATCH Options 17-1

CONTENTS (ContJ

Page

17.1.2 Checksum 17-2
17.2 PATCH COMMANDS 17-2
17.2.1 Patching a New File (F) 17-2
17.2.2 Exiting from Patch (E) 17.2
17.2.3 Examining and Changing Locations in the File 1'7.2
17.2.4 Translating and Indirectly Modifying Locations with a File 17-4
17.2.5 Setting Values in the Overlay Handler Tables of a Program 17-6
17.2.6 Including the Old Contents Into the Checksum 17-6
17.2.7 Setting the Bottom Address 17-6
17.2.8 Setting Relocation Registers 17-7
17.3 PATCH Ex:AMPLES 17-7

CHAPTER 18 OBJECT MODULE PATCH UTILITY (PAT) 18-1
18.1 CALLING AND USING PAT 18-1
18.2 HOW PAT APPLIES UPDATES 1 g_2
18.2.1 The Input File 1 g_2
18.2.2 The Correction File 18.2
18.2.3 Creating the Correction File 18-4
18.2.4 How PAT and the Linker Update Object Modules 18-4
18.2.4.1 Overlaying Lines in a Module 18-4
18.2.4.2 Adding a Subroutine to a Module 18-5
18.2.5 Determining and Validating the Contents of a File 18-7

APPENDIX A BATCH A-1
A.1 HARDWARE AND SOFTWARE REQUIREMENTS TO RUN BATCH A-1
A.2 BATCH CONTROL STATEMENT FORMAT A-2
A.2.1 Command Fields A-2
A.2.1.1 Command Names A-2
A.2.1.2 Command Field Options A-2
A.2.2 Specification Fields A.4
A.2.2.1 Physical Device Names A-5
A.2.2.2 File Specifications A-5
A.2.2.3 Wildcard Construction A-6
A.2.2.4 Specification Field Options A-6
A.2.3 Comment Fields A_7
A.2.4 BATCH Character Set A_7
A.2.5 Temporary Files A-9
A.3 GENERAL RULES AND CONVENTIONS A-10
A.4 BATCH COMMANDS A-10
A.4.1 $BASIC Command A-11
A.4.2 $CALL Command A-12
A.4.3 $CHAIN Command A-13
A.4.4 $COPY Command A-14
A.4.5 $CREATE Command A-15
A.4.6 $DATA Command A-15
A.4.6.1 Using $DATA with FORTRAN Programs A-16
A.4.7 $DELETE Command A-16
A.4.8 $DIRECTORY Command A-17
A.4.9 $DISMOUNT Command A-17
A.4.10 $EOD Command A-18

CONTENTS (ContJ

Page

A.4.11 $EOJ Command A-18
A.4.12 $FORTRAN Command A-18
A.4.13 $JOB Command A-20
A.4.14 $LIBRARY Command A-21
A.4.15 $LINK Command A-21
A.4.16 $MACRO Command A-23
A.4.17 $MESSAGE Command A-25
A.4.18 $MOUNT Command A-25
A.4.19 $PRINT Command A-27
A.4.20 $RT11 Command A-27
A.4.21 $RUN Command A-27
A.4.22 $SEQUENCE Command A-28
A.4.23 Sample BATCH Stream A-28
A.5 RT-11 MODE A-30
A.5.1 Communicating with RT-11 A-31
A.5.2 Creating RT-11 Mode BATCH Programs A-31
A.5.2.1 Labels A-32
A.5.2.2 Variables A-32
A.5.2.3 Terminal I/O Control A-34
A.5.2.4 Other Control Characters A-34
A.5.2.5 Comments A-35
A.5.3 RT-11 Mode Examples A-35
A.6 CREATING BATCH PROGRAMS ON PUNCHED CARDS A-36
A.7 OPERATING PROCEDURES A-37
A.7.1 Loading BATCH A-37
A.7.2 Running BATCH A-39
A.7.3 Communicating with BATCH Jobs A~1
A.7.4 Terminating BATCH A-43
A.8 DIFFERENCES BETWEEN RT-11 BATCH AND RSX-11 D BATCH A-43

APPENDIX B MONITOR COMMAND ABBREVIATIONS AND SYSTEM PROGRAM
EQUIVALENTS B-1

APPENDIX C FORMAT UTILITY PROGRAM C-1
C .1 CALLING AND USING FORMAT C-1
C.2 FOR.MAT OPTIONS C-2
C.2.1 The Default Formats C-2
C.2.2 The Single Density Option (/S) C-2
C.2.3 The Wait Option (/VV) C-2
C.2.4 The Noquery Option (/Y) C-3

INDEX Index-1

FIGURES

FIGURE 4-1 Sample Command Syntax Illustration 4-2
4-2 Format of a 12-bit Binary Number 4-105
5-1 Display Editor Format, 12 in. Screen 5-31
10-1 Sample Assembly Listing 10-4

xi March 1978

CONTENTS (Cont.)

FIGURES (ContJ
Page

FIGURE 10-2 Cross-Reference Table 10-10
11-1 Load Map 11-10
11-2 An Overlay Structure for a FORTRAN Program 11-11
11-3 Overlay Scheme 11-12
11-4 The Run-Time Overlay Handler 11-13
11-4.1 Sample Subroutine Calls and Return Paths 11-14
11-4.2 Memory Diagram Showing BASIC Link with Overlay Regions 11-14.2
11-5 Library Searches 11-16
16-1 Linking ODT with a Pro gram 16-1
18-1 Updating a Module Using PAT 18-1
18-2 Processing Steps Required to Update a Module Using PAT 18-3
A-1 EOF Card A-37

TABLES

TABLE 1-1 RT-11 Hardware Components 1-4
3-1 Permanent Device Names 3-3
3-2 Standard File Types 3-4
3-3 Device Structures 3-5
3-4 Special Function Keys ~ 3-6
4-1 Commands Supporting Wildcards 4-6
4-2 Wildcard Defaults 4-6
4-3 Sort Categories 4-47
4-4 Optimization Codes 4-68
4-5 FORTRAN Listing Codes 4-69
4-6 Display Screen Values 4-73
4-7 Default Directory Sizes 4-77
4-8 LIBRARY Execution and Prompting Sequence 4-82
4-9 LINK Prompting Sequence 4-88
4-10 Cross-reference Sections 4-91
4-11 .DSABL and .ENABL Directive Summary 4-91
4-12 .LIST and .NLIST Directive Summary 4-93
4-13 SET Device Conditions 4-105
5-1 EDIT Key Commands 5-2
5-2 EDIT Command Categories 5-3
5-3 Command Arguments 5-5
5-4 EDIT Commands and File Status 5-13
5-5 Write Command Arguments 5-15
5-6 Jump Command Arguments ~ 5-18
5-7 Advance Command Arguments 5-19
5-8 List Command Arguments 5-22
5-9 Delete Command Arguments 5-24
5-10 Kill Command Arguments 5-25
5-11 Change Command Arguments 5-26
5-12 eXchange Command Arguments 5-27
5-13 U Command and Arguments 5-28

xii March 1978

CON7'EN1'S (ContJ

TABLES Cont.)

Page

TABLE 5-14 M Command and Arguments 5-29

5-15 Immediate Mode Commands 5-33

6-1 Prompting Characters 6-2

7-1 PIP Options 7-2

8-1 DUP Options and Categories 8-1

8-2 DUP Options 8-2

8-3 Default Directory Sizes 8-11

9-1 DIR Options 9-2

9.2 Sort Codes 9-7

10-1 Default File Specification Values 10-3

10-2 File Specification Options 10-3

10-3 Valid Arguments for /L and /N Options 10-5

10-4 Valid Arguments for /E and /D Options 10-6

10-5 /C Option Arguments 10-8

10-6 MACRO-11 Error Codes 10-11

11-1 Linker Defaults 11-2

11-2 Linker Options 11-3

11-3 P-section Attributes 11-5

11-4 Section Attributes 11-6

11-5 Global Reference Resolution 11-7

11-6 Linker Prompting Sequence 11-24

12-1 LIBR Object Options 12-2

12-2 LIBR Macro Options 12-10
13-1 DUMP Options 13-1
14-1 Legal FILEX Devices 14-1

14-2 FILEX Options 14-3
15-1 SRCCOM Options 15-2
16-1 Forms of Relocatable Expressions (r) 16-5
16-2 Internal Registers 16-8
16-3 Radix-50 Terminators 16-9
16-4 Single Instruction Mode Commands 16-12
16-5 ASCII Terminators 16-17
17-1 PATCH Options 17-1
17-2 PATCH Commands 17-3
17-3 PATCH Control Characters 17-4
A-1 Command Field Options A-3

A-2 File Types A-6

A-3 Specification Field Options A-7

A-4 Character Explanation A-8

A-5 BATCH Commands A-10

A-6 Operator Directives to BATCH Run-Time Handler A-42

A-7 Differences Between RT-11 and RSX-11 D BATCH A-43

B-1 Monitor Command/System Program Equivalents B-1

C-1 Format Options C-2

xiii March 1978

PREFACE

This manual describes how to use the RT-11 system; it provides enough information for you to perform ordinary

tasks such as program development, program execution, and file maintenance. This manual is appropriate for you if

you ar.e already familiar with computer software fundamentals and have some experience using RT-11. If you have

no RT-11 experience, you should read the Introduction to RT-11 before consulting this manual. If you have experi-

ence with an earlier release of RT-11 (this is version 3), you should read the RT-11 System Release Notes to learn

how RT-11 V03 differs from earlier versions. If you are interested in more sophisticated programming techniques or
in system programming, you should read this manual first and then proceed to the RT-11 Advanced Programmer's

Guide.

The next section, Chapter Summary, briefly describes the chapters in this manual and suggests a reading path to
help you use the manual efficiently.

CHAPTER SUMMARY
The first two chapters make up Part I of this manual, RT-11 Overview. Read Part I to gain an understanding of the
RT-11 system as a whole .

Chapter 1 describes the program development process in general as well as the system software and hardware com-
ponents.

Chapter 2 describes the three monitors that are available with an RT-11 system.

Chapters 3 and 4 compose Part II of the manual, System Communication. Read Part II to become familiar with

RT-11 system conventions and to learn how to interact with the RT-11 monitor directly from the console terminal.

Chapter 3 describes system conventions, such as data formats, file naming conventions, and terminal keyboard
special functions.

Chapter 4 introduces the keyboard monitor commands. These important commands are your means of communicat-

ing with the monitor and performing computer tasks.

Part III, Text Editing, consists of Chapter 5, EDIT. Read Chapter 5 to learn how to manipulate text on the RT-11

system.

Part IV, Utility Programs, consists of 10 chapters that describe the many programs provided with the RT-11 system.

If you are an advanced user, you may want to read Chapters 6 through 15 to learn about the RT-11 system programs

in detail. However, if you are a new user or primarily ahigh-level language programmer, you do not have to under-
stand how these system programs work to make use of them through the monitor command language (described in
Chapter 4).

Chapter 6 describes the Command String Interpreter and explains the command syntax you use to communicate with

the RT-11 syste m programs.

Chapters 7 through 9 describe the RT-11 system utility programs, PIP, DUP, and DIR.

Chapter 10 describes MACRO, the RT-11 assembly language.

xv

P1►~eface

Chapters 11 through 15 describe the RT-11 system utility programs, LINK, LIBR, DUMP, FILEX, and SRCCOM.

Part V, Altering Assembled Programs, explains the use of some sophisticated programming tools.

Chapters 16 through 18 describe the RT-11 programs, ODT, PATCH, and PAT. These three programs can help you
debug programs and make changes to programs that are already assembled.

Appendix A contains a description of RT-11 BATCH. Appendix B contains a table of the keyboard monitor
commands, their abbreviations, and their system program equivalents. Appendix C describes the FORMAT ut' 'ty program.

DOCUMENTATION CONVENTIONS
This section describes the symbolic conventions used throughout this manual. Familiarize yourself with these con-
ventions before you continue reading the manual.

Conventions used in this manual include the following items

1. Examples consist of actual computer output .wherever possible. In the examples, responses entered by a
user are shown in red to distinguish them from computer output, which is shown in black.

2. Unless the manual indicates otherwise, terminate all commands or command strings with a carriage return.
Where necessary, this manual uses the symbol - ' to represent a carriage return, ~F to represent a
line feed, sP for a space, and f~D to represent a tab.

3. Terminal and console terminal are general terms used throughout~~~~T-11 documentation to represent any
terminal device, including DECwriters, displays, and Teletypes' .

4. To produce several characters in system commands you must type a combination of keys concurrently. For
example, hold down the CTRL key and type O at the same time to produce the CTRL/O charact~. Key

• combinations such as this one are documented as CTRL/O, CTRL/C, etc.
5. In descriptions of command syntax, capital letters represent the command name, which you must type.

Lower case letters represent a variable, for which you must supply a value.

Square brackets [)enclose optional choices; you can include the item in brackets, or you can omit it, as
you choose.

Braces { } enclose a group of options from which you can choose only one.

The ellipsis symbol (. . .) represents repetition. You can repeat the item that precedes the ellipsis.

The hyphen (-) is a continuation character. Use it at the end of a line if you continue a command string to
another line.

The following is a typical example of command syntax:

DELETE [/option . . .] filespec [/option . . .]

This example shows that you must type the word DELETE, and that you can follow it with one or more op-
tions of your choice (none are required). You must then leave a space and supply a file specification. The
file specification can also be followed by one or more options (none are required). Here is a typical command
string:

~~~ 1...I~ `1~~: ~f'~I~C~U~:~`r I:~~'a. ¢ ~i`~~":~I...~:. f"~Cl~'~ 

1 Teletype is a registered trademark of the Teletype Corporation. 

xvi March 1978 



PART I 

RT-11 OVERVIEW 

~- RT-11 is a single-user programming and operating system for the PDP-11 series of computers. This system can use a 

wide range of peripherals and can access up to 124K (126,976) words of either solid state or core memory. (4K words 

of the maximum 128K (131,072) words of memory are reserved for device interfacing.) 

Three system monitors are provided by RT-11: the single job monitor (SJ), the foreground/background monitor 

(FB), and the extended memory monitor (XM). 

The. single job monitor allows one program at a time to reside in memory. The program executes until it completes 

or until you interrupt it with a keyboard command. 

The foreground/background monitor allows two independent programs to reside in memory at one time. The fore= 
ground program, however, takes priority over the background program. RT-11 allows the background program to 
execute whenever the foreground program is in a wait state. Typically, the foreground program performs atime-

dependent task, such as sampling material every few seconds and then analyzing the resultant data. A background 
program, on the other hand, usually performs atime-independent task, such as file maintenance or program develop-
ment. This sharing of resources between two tasks greatly increases the efficiency of your RT-11 system. 

The extended memory monitor provides all the features of the foreground/background monitor and, in addition, 
allows you to access up to 124K (126,976) words of memory. The other two monitors are restricted to 28K words 
of main memory. (4K words of the 32K words of memory available are reserved for device interfacing.) 

These three monitors are upward compatible. That is, the foreground/background monitor provides all the features 
of the single job monitor, and the extended memory monitor offers all the features of the foreground/background 
monitor. 

You control the RT-11 system from the console terminal. The monitor commands that you use to direct the system 
are described in Chapter 4 of this manual. 

In addition to the three monitors, RT-11 provides a full complement of system programs that can perform some more 
specific tasks than the keyboard monitor commands ca.n. If you are an average user, though, the keyboard monitor com-
mands should be sufficient for your needs. There is a summary of the system programs in Section 1.2; they are de-
scribed in more detail in individual chapters of this manual. 

RT-11 also supports a variety of language processors including MACRO-11, an assembly language, and several high-
level languages such as FORTRAN IV and BASIC. 

The following two chapters describe system software and hardware components, program development, and the three 
RT-11 monitors. 

I-1 



w 

f 



CHAPTER 1 

SYSTEM COMPONENTS 

This chapter describes briefly the software and hardware components available for you to use with the RT-11 system. 
The software components include the text editor and the many system programs that perform specific tasks. The 
hardware components include system clocks, printing and display terminals, external storage devices (such as magnetic 
tape drives), and other peripheral devices (such as card readers and line printers). 

1.1 PROGRAM DEVELOPMENT 
Computer systems (such as RT-11) are ideal for program development. You can make use of the programming tools 
available on your system to develop programs to suit your needs. The number and type of tools available on any 
given system depend on many factors (including the size of the system, its application, and its cost). Most DIGITAL 
systems, however, provide several basic program development aids. These aids generally include an editor, an assembler;
a linker, a debugger, and a librarian. A high level language, such as FORTRAN or BASIC, is also usually available. 

You can use an editor to create and modify textual material. Text may be the lines of code that make up a source 
program written in some programming language, or it may be other ASCII data. Text may be reports, memos, or, in 
fact, any subject matter you wish. In this respect, using an editor is analogous to using a typewriter; you sit at a key-
board and type text. However, the advantages of an editor far exceed those of a typewriter. Once text has been cre-
ated,you can modify, relocate, replace, merge, or delete it, all by means of simple editing commands. When you are 
satisfied with your text, you can save it on a storage device where it is available for later reference. 

If you use the editor to write a source program, development does not stop with the creation of this program. Since 
the computer cannot understand any language but machine language (which is a set of binary command codes), you 
need an intermediary program to convert source code into the instructions the computer ca.n execute. This is the 
function of an assembler or language translator. 

The assembler accepts alphanumeric representations of PDP-11 coding instructions (i.e., mnemonics), interprets the 
code, and produces as output the appropriate object code. You can direct the assembler to generate a listing of both 
the source code and binary output, as well as more specific listings that are helpful during the program debugging 
process. In addition, the assembler is capable of detecting certain common coding errors and issuing appropriate 
warnings. 

The assembler produces output called object _output because it is composed of object (or binary) code. On PDP-11 
systems, the object output is called a module; it contains your source program in the binary language that is acceptable 
to a PDP-11 computer. 

R 
Source programs may be complete and functional by themselves; however, some programs are written in such a way 
that they must be used with other programs (or modules) to form a complete and logical flow of instructions. For 

• this reason, the object code produced by the assembler must be relocatable. That i~, assignment of memory locations 
must be deferred until the code is combined with all other necessary object modules. The linker performs this function. 

The linker combines and relocates separately-assembled object programs. The output produced by the linker is a load 
module, the final linked program that is ready for execution. You can, at your choice, request a load map that displays 
all addresses assigned by the linker. 

You can very rarely create a program that does not contain at least one unintentional error, either in the logic of the 
program or in its coding. You may discover errors while you are editing your program, or the assembler may find errors 

1-1 



System Components 

during the assembly process and inform you by means of error codes. The linker may also catch certain errors and 
issue appropriate messages. Often, however, it is not until execution that you discover that your program is not 
working properly. Programming errors may be extremely difficult to find, and for this reason, a debugging tool is 
usually available to aid you in determining the cause of your error. 

A debugging program allows you to interactively control the execution of your program. With it, you can examine 
the contents of individual locations, search for specific bit patterns, set designated stopping points during execution, 
change the contents of locations, continue execution, and test the results, all without editing and reassembling the 

_program. 

When programs are successfully written and executed, they are useful to other programmers. Often, routines that are 
common to many programs (such as input and output routines) or sections of code that are used over and over again, 
are more useful if they are placed in a library where they can be retrieved by any interested user. A librarian provides 
such a service by allowing creation of a library file. Once created, the library can be expanded, updated, or listed. 

High-level languages simplify your work by providing an alternate means, other than assembly language mnemonics, 
of writing a source program. Generally, high-level languages are easy to learn. A single command causes the computer 
to perform many machine-language instructions. You do not need to know about the mechanics of the computer to 
use ahigh-level language. In addition, some high-level languages (like BASIC) offer a special immediate mode that 
allows you to solve equations and formulas as though you were using a calculator. You can concentrate on solving 
the problem rather than on using the system. 

These are a few of the programming tools offered by most computer systems. The next section summarizes specific 
programming aids available to you as an RT-11 user. 

1.2 SYSTEM SOFTWARE COMPONENTS 
The following is a brief summary of the specific system programs and programming available to you as an RT-11 user: 

1. The keyboard monitor commands (described in Chapter 4) are your means of controlling the system. You 
can use these English-language commands to perform file maintenance, library maintenance, handler modi-
fication, program development, and program execution. If you are an average user, the keyboard monitor 
commands should be sufficient for your needs. 

2. The text editor (EDIT, described in Chapter 5) creates or modifies source files for use as input to language-
processing programs such as the assembler or FORTRAN. EDIT contains text manipulation commands that 
permit quick and easy editing of a text file. EDIT also allows you to use a VTl 1 or VS60 display processor 
if one is part of the hardware configuration. 

3. The peripheral interchange program (PIP, described in Chapter 7) is the RT-11 file maintenance program. It 
transfers files among all devices that are part of the RT-11 system and renames or deletes files. 

4. The device utility program (DUP, described in Chapter 8) performs general device utilities such as initializing 
devices, duplicating their contents, and reorganizing files on the devices. It operates only on RT-11 file-
structured devices. 

5. The directory program (DIR, described in Chapter 9) produces directory listings. 
6. The MACRO assembler (described in Chapter 10) is a 2-pass assembler that assembles one or more ASCII 

source files of statements and assembler language instructions into a single binary object file. 
7. The linker (LINK, described in Chapter 11) converts a collection of object modules from compiled or as-

sembled programs and subroutines into a memory image file that RT-11 can load and execute. LINK pro-
vides some optional features that 

a. Search library files for subroutines that you specify 
b. Produce a load map that lists the assigned absolute addresses 
c. Provide overlay capabilities to very large programs 
d. Produce files suitable for execution in the foreground. 

1-2 



System Components 

8. The librarian (LIBR, described in Chapter 12) lets you create and maintain libraries of functions and routines. 
These routines are stored on a random access device in library files, where the linker can reference them. You 
can also create MACRO libraries to be used by the MACRO assembler. 

9. DUMP (described in Chapter 13) prints for examination all or any part of a file in octal words, octal bytes, 
ASCII and/or Radix-50 characters. 

10. The file exchange utility (FILEX, described in Chapter 14) transfers files between DECsystem-10, PDP-11 
RSTS, and DOS BATCH on DECtape and disks, and between RT-11 and IBM systems on diskettes. 

11. The source compare utility (SRCCOM, described in Chapter 15) performs acharacter-by-character comparison 
of two ASCII text files. You can request that the differences be listed in an output file or directly on the line 
printer or terminal to ensure that edits have been performed correctly. 

12. On-line debugging technique (ODT, described in Chapter 16) aids you in debugging assembled and linked 
object programs. It can: 

a. Print and optionally change the contents of specified locations 
b. Execute all or part of the object program 
c. Single-step through the program 
d. Search the object program for bit patterns. 

13. The patching utility program (PATCH, described in Chapter 17) performs minor modifications to memory 
image files (output files produced by the linker). 

14. The object module patching program (PAT, described in Chapter 18) performs minor modifications to files 
in object format (output files produced by the FORTRAN compiler or the MACRO assembler). It can merge 
several object files into one. 

15. The RT-11 FORTRAN system subroutine library (described in the RT-I1 Advanced Programmer's Guide) 
is a collection of FORTR:.AN callable routines that make the programmed requests and various utility func-
tions available to you as a FORTRAN programmer. This library also provides a string manipulation package 
and 2-word integer package for RT-11 FORTRAN. 

16. BATCH (Appendix A) is a complete job-control language that allows RT-11 to operate unattended. 

1.3 SYSTEM HARDWARE COMPONENTS 
The smallest RT-11 system, one that uses the SJ monitor exclusively, requires aPDP-11 series computer with at least 
8K words of memory, arandom-access device, and a console terminal. The addition of the FB monitor requires another 
8K words of memory and either a line frequency or a programmable clock. The addition of the XM monitor requires 
a KT11 memory management unit and still another 8K words of memory. 

The RT-11 operating system adapts itself to take advantage of any amount of memory on a system and does not 
need to be reconfigured for a particular memory size. The SJ monitor operates in systems ranging from 8K words 
to 28K words in memory size. The FB monitor operates in systems ranging from 16K words to 28K words in memory 
size. The XM monitor operates in systems ranging from 24K words to 124K (126,976) words in memory size. 

Table 1-1 lists the devices that RT-11 supports. 

1-3 



System Components 

Table 1-1 RT-11 Hardware Components 

Type Controller Device 

Disk 

Cartridge RK11 RKOS/RKOSF 
RK611 RK06 

Fixed-head RF 11 RS 11 
RH11 RJS03, RJSO4 

Removable Pack RP11 RP02, RP03 
Diskette RX11 RXO1 

DECtape TC 11 TUS 6 

Magtape TM 11 /TMA11 TU10, TS03 
RH 11 TJU 16, TU45 

Cassette TA11 TU60 

High-Speed PC11 PC11 (both) 
Paper Tape PR11 PR11 (reader only) 
Reader/Punch 

Line Printer LS11 LS11, LA180 
LV11 LV11 (printer only) 
LPl 1 all LP11 controlled 

printers 

Card Reader CR11 CR11 
CM11 CM11 

Terminal DL11 LT33, LT35, LA30P, 
LA36, LA120, 
VT50, VT52, VT55, 
VTOS 
VT61 

Display Processor VT 11 VR14-L, VR 17-L 
VS60 

Clock KW 11-L, KW 11 P 

Terminal DLl 1-W terminal/clock 
and Clock combination 

1-4 



CHAPTER 2 

OPERATING ENVIRONMENTS 

_. The RT-11 system offers three complete operating environments: single job (SJ) operation, foreground/background 
(FB) operation, and extended memory (XM) operation. You control each environment with the appropriate monitor: 
SJ, FB, and XM. 

You must define your needs before deciding which environment to use and consequently which monitor to run. The 
following sections provide information to help you ascertain which monitor is suitable for your application. 

2.1 RT-11 SINGLE-JOB MONITOR 
The RT-11 single-job monitor provides asingle-user, single-program system that can operate in as little as 8K words 
of memory. The SJ monitor is useful for extensive program development; since the monitor itself requires only 2K 
words of memory, there are at Least 6K words left for your program and its buffers and tables. The SJ environment 
is also suitable for running programs that require a high data transfer rate, since the SJ monitor services interrupts 
quickly. 

You can use all the system programs (listed in Section 1.2) under the SJ monitor. Monitor commands and programmed 
requests are also available to you as an SJ user. 

In summary, the SJ monitor is smaller and faster than the FB and XM monitors; it is most useful when you are con-
cerned with program size versus available memory and when you need a dedicated system. 

2.2 RT-11 FOREGROUND/BACKGROUND MONITOR 
Quite often, the central processor of a computer system spends much of its time waiting for some external event to 
occur. Usually, this event is a real-time interrupt or the completion of an I/O transfer. This situation is particularly 
true of real-time jobs. The foreground/background environment lets you take advantage of the unused processor 
capacity to accomplish lower-priority tasks. 

In a foreground/background system, the foreground job is the time-critical, real-time job, and the FB monitor gives 
it priority over the background job. Whenever the foreground job reaches a state in which no useful processing can 
be done until some external event occurs, the monitor executes the background job, if possible. The background job 
then runs until the foreground job is again ready to execute. The processor then interrupts the background job and 
resumes the foreground job. 

In effect, the RT-11 foreground/background monitor allows atime-dependent job to run in the foreground while a 
time-independent job, such as program development, runs in the background. All RT-11 system programs can run 
as the background job in a FB system. Thus, you ca.n run FORTRAN, BASIC, MACRO, etc. in the background while 
the foreground is collecting, storing, and analyzing data. In addition, the FB monitor gives you the ability to set 
timer routines, suspend and resume FB jobs, and send data and messages between the two jobs. The FB monitor is 
most often used for laboratory work, data acquisition, and real-time applications. 

You can link most of the programs you write for an RT-11 system to run as foreground jobs. There are a few coding 
restrictions, which are explained in the R T-ll Advanced Programmer's Guide. A foreground program has access to 
all of the features available to the background job (opening and closing files, reading and writing data, etc.). 

2.3 RT-11 EXTENDED MEMORY MONITOR 
The extended memory monitor (XM) is an extension of the foreground/background (FB) environment. Generally, 
references in this manual to FB operation also apply to XM operation. The single-job monitor does not support 

2-1 



Operating Environments 

extended memory. The XM monitor permits either foreground or background jobs to extend their effective logical 
program space beyond the 32K word restriction imposed by the 16 bit address word of the PDP-11 processors. 
The XM monitor manages extended memory space as a system resource and dynamically allocates it as you request. 
A program can map selected portions of its addressing space into extended memory by means of a set of programmed 
requests. A detailed description of extended memory and how to use it appears in the RT-11 Advanced Programmer's 
Guide. 

2.4 FACILITIES AVAILABLE ONLY IN RT-11 FB 
Some features available to you as a FB user include 

1. Mark time. The .MRKT programmed request allows your program to set clock timers for specified amounts 
of time. When the timer runs out, the system enters the routine that you specify. You can enter as many 
mark time requests as you need, providing that you reserve system queue space. The mark time feature is 
available to SJ monitor users as a SYSGEN option. 

2. Timed wait. The .TWAIT programmed request allows your program to "sleep" until a period of time that 
you specify elapses. A foreground program, for example, may need to act on sample data and write it to 
mass storage once every few minutes. While the foreground program is idle, the background program ca.n 
run. 

3. Send data, receive data. The .SDAT and .RCVD programmed requests permit the foreground and back-
ground programs to communicate with each other. The send and receive data functions let one program 
send messages or data of variable size blocks to the other program. For example, you can transfer data 
directly from a foreground collection program to a background analysis program. 

4. Channel copy. The .CHCOPY programmed request allows two programs to share the same data file. 
5. Device. The .DEVICE programmed request allows you to turn off specific devices upon program termination. 
6. Protect. The .PROTECT programmed request lets you protect the vectors that one program uses from inter-

ference by another program. 
7. Channel status. The .CSTAT programmed request returns status data about an open channel. 

You ca.n learn more about these programmed requests and how to use them in Chapter 2 of the RT-11 Advanced 
Programmer's Guide. 

2.5 FACILITIES AVAILABLE ONLY IN RT-11 XM 
An optional extension of the FB environment is the extended memory monitor (XM), which permits you to extend 
the logical address space for either foreground or background jobs. Some features available to you only when you use 
the XM monitor are 

1. Create a region. The .CRRG programmed request allows you to allocate a region in extended memory for the 
current program. 

2. Eliminate a region. The .ELRG programmed request eliminates an extended memory region and returns it to 
the free list so it ca.n be used by other programs. 

3. Create an address window. The .CRAW programmed request unmaps and eliminates conflicting address 
windows, creates new windows ,to address extended memory, and maps new windows to the regions you 
specify. It directs the monitor to give the program a window into the region it has created. This request 
allows the program to access the physical memory as if it were local to the program. 

4. Eliminate an address window. The .ELAW programmed request unmaps and eliminates address windows. 
5. Map. The .MAP programmed request lets you map and remap windows. 
6. Status. The .GMCX programmed request returns status data about window mapping. 
7. Unmap. The .SAP programmed request lets you unmap a window. 

You ca.n learn more about these programmed requests and how to use them in Chapter 3 of the RT-11 Advanced 
Programmer's Guide. 

2-2 



PART II 

SYSTEM COMMUNICATION 

The monitor is the center of RT-11 system communications; it provides access to system and user programs, performs 
input and output functions, and enables control of background and foreground jobs. 

You communicate with the monitor through programmed requests and keyboard commands. You can use the key-
board commands (described in Chapter 4) to load and run programs, start or restart programs at specific addresses, 
modify the contents of memory, and assign and deassign alternate device narrles, to name only a few of the func-
tions. 

Programmed requests (described in detail in Chapter 2 of the RT-11 Advanced Programmer's Guide) are source pro-
gram instructions that request the monitor to perform monitor services. These instructions allow assembly language 
programs to use th.e available monitor features. A running program communicates with the monitor through programmed 
requests. FORTRAN programs have access to programmed requests through the system subroutine library. Programmed 
requests can, for example, manipulate files, perform input and output, and suspend and resume program operations. 

The two chapters in this part describe system conventions and contain information that helps you get started with 
RT-11. Chapter 4 introduces the keyboard monitor commands, which are your means of controlling the RT-11 sys-
tem. 





CHAPTER 3 

SYSTEM CONVENTIONS 

This chapter contains information to help you start using the RT-11 system. It describes 

• Startup procedure 
• Data formats 
• Physical device names 
• File names and file types 
• Device structures 
• Special function keys 
• Foreground input and output 
• Monitor type-ahead feature 

Before you operate the RT-11 system, you should be familiar with the special character commands, file naming pro-
cedures and other conventions that are standard to the system. These conventions are described in this chapter. 

3.1 SYSTEM STARTUP 
For information on building the system and loading the monitor, refer to the Introduction to RT-11, to the RT-I1 
System Generation Manual, or to any instructions provided by your DIGITAL representative. 

When the system has been built and you load the monitor into memory, the monitor prints one of the following 
identification messages on the terminal: 

RT-11 SJ Vnnx-nnx 
RT-11 F B Vnnx-nnx 
RT-11 XM Vnnx-nnx 

The message that prints indicates which monitor (SJ, FB, or XM) is loaded; you establish which is to be loaded during 
the system build operation. 

Vnnx represents the version and release number of the monitor —for example, V03, for Version 3 (release A). nnx 
represents the library submission number and the patch level —for example, Ol B, for library number 1 (patch 
level B). 

As soon as a monitor takes control of the system, it attempts to execute keyboard monitor commands from an in- 
direct file called STARTS.COM for the SJ monitor, STARTF.COM for the FB monitor, and STARTX.COM for the 
XM monitor. You can place commands in this startup file to perform routine tasks for you, such as assigning logical 
device names to physical devices or setting the current date. (Indirect files are discussed in Section 4.3.) If the monitor 

,► does not find the appropriate file, it issues a warning message. The system then prints its prompt (.) indicating that it 
is ready to accept commands. You should now write-enable the system device. 

To bring up an alternate monitor while ender control of the one currently running, use the BOOT command described 
in Section 4.4 of this manual. 

3.2 DATA FORMATS 
The RT-11 system stores data in two formats: ASCII and binary. The binary data can be organized in many formats, 
including object, memory image, relocatable image, and load image. 

3-1 



System Conventions 

Files in ASCII format conform to the American National Standard Code for Information Interchange, in which each 
character is represented by a 7-bit code. Files in ASCII format include program source files created by the editor 
and BASIC, listing and map files created by various system programs, and data files consisting of alphanumeric char-
acters. 

Files in binary object format consist of data and PDP-11 machine language code. Object files are the files the assembler 
or FORTRAN compiler outputs; they are used as input to the linker. 

The linker ca.n output files in one of three formats: 1) memory image format (.SAV), 2) relocatable image format 
(.REL), or 3) load image format (.LDA). 

A memory image file (.SAV) is a picture of what memory looks like after you load a program. The file itself requires 
the same number of disk blocks as the corresponding number of 256-word memory blocks. A memory image file 
does not require relocation, and can run in an SJ environment or as a background program under the FB or XM moni-
tor. 

A relocatable image file (.REL) differs from a memory image file. Although the relocatable file is linked as though its 
bottom address were 1000, relocation information is included with its memory image. When you call the program 
with the FRUN command, the file is relocated as it is loaded alto memory. A relocatable image file ca.n run in a 
foreground environment. 

You ca.n produce a load image (.LDA) file for compatibility with the PDP-11 paper tape system. The absolute binary 
loader loads this file. You can load and execute load image files in stand-alone environments without relocating them. 

There are a number of other types of binary data that different parts of the RT-11 system use in addition to the 
more common types listed here. 

3.~ PHYSICAL DEVICE NAMES 
When you request services from the monitor, it is sometimes necessary to specify a physical peripheral device on 
which the service is to be performed. You can reference devices by means of a standard 2-character device name. 
Table 3-1 lists each name and its related device. If you do not specify a unit number for devices with more than one 
unit, the system assumes unit 0. 

In addition to using the fixed names shown in Table 3-1, you can assign logical names to devices. A logical name 
takes precedence over a physical name and thus provides device independence. With this feature, you do not have to 
rewrite a program that is coded to use a specific device if the device becomes unavailable. You associate logical 
names with physical devices by using the ASSIGN command, which is described in Section 4.4. 

3.4 FILE NAMES AND FILE TYPES 
You ca.n reference files symbolically by a name of one to six alphanumeric characters (followed, optionally, by a 
period and a file type of up to three alphanumeric characters). No spaces ~r tabs are allowed in the file name or 
file type. The file type generally indicates the format or contents of a file. It is a good practice to conform to the 
standard file types for RT-11. If you do not specify a file type for an input or output file, most system programs 
assign an appropriate default file type. Table 3-2 lists the standard file types used in RT-11. 

3.5 DEVICE STRUCTURES 
RT-11 devices are categorized according to two characteristics: 1) the device's physical structure and 2) the device's 
method of processing information. All RT-11 devices are either randomly accessed or sequentially accessed. 

Random-access devices allow the system to process blocks of data in random order —that is, independent of the 
data's physical location on the device or its location relative to any other information. All disks and DECtape fall 
into this category. Random-access devices are sometimes called block-replaceable devices, because you can manipu-
late (rewrite) individual data blocks without affecting other data blocks on the device. 

3-2 



System Conventions 

Table 3-1 Permanent Device Names 

Permanent Name I/O Device 

CR: 

CTn: 

DK: 

DKn 

DLn 

DMn 

DPn 

DSn 

DTn 

DXn 

DYn 

EL: 

LP: 

MMn: 

MTn 

NL: 

PC: 

RF 

RKn 

SY: 

SYn 

TT: 

CR11 /CM 11 Card Reader 

TA 11 Cassette (n is 0 or 1) 

The default logical storage device for all files. DK: is initially the same as SY: 

The specified unit of the same device type as DK: if DK: is unassigned 

RLO1 Disk (n is an integer in the range 0-3) 

RK06, RK07 Disk (n is an integer in the range 0-7) 

RP02, RP03 Disk (n is an integer in the range 0-7) 

RJS03/4 Fixed-Head Disks (n is an integer in the range 0-7) 

DECtape (n is an integer in the range 0-7) 

RXO1 Diskette (n is an integer in the range 0-3) 

RX02 Diskette (n is an integer in the range 0-3) 

Error Logging Handler 

Line Printe r 

TJU16/TU45 (industry compatible) Magtape (n is an integer in the range 
0-7) 

TMl l/TMAl l/TS03/TE16 (industry compatible) Magtape (n is an integer in 
the range 0-7) 

Null device 

PC 11 combined High-Speed Paper Tape Reader and Punch 

RF 11 Fixed-Head Disk Drive 

RKOS Disk Cartridge Drive (n is an integer in the range 0-7) 

The default logical system device; the device and unit from which the system 
is bootstrapped 

The specified unit of the same device type as SY: if SY: is unassigned 

Console Terminal Keyboard and Printer 

3-3 March 1 Q78 



System Conventions 

Table 3-2 Standard File Types 

File Type Meaning 

.BAD 

. BAIL 

.BAS 

.BAT 

.COM 

.CTL 

.CTT 

.DAT 

.DBL 

.DIF 

.DIR 

.DMP 

.FOR 

. LDA 

.LOG 

.LST 

.MAC 

.MAP 

.OBJ 

.REL 

.SAV 

.SM L 

.SOU 

.STB 

.SYS 

Files with bad (unreadable) blocks; you can assign this file type whenever bad areas 
occur 

on 

a device. The .BAD file type makes the file permanent in that area, pre-
venting other files from using it and consequently becoming unreadable 

Editor backup file 

BASIC source file (BASIC input) 

BATCH command file 

Indirect file 

BATCH control file generated by the BATCH compiler 

BATCH internal temporary file 

BASIC or FORTRAN data file 

DIBOL source file 

SRCCOM output file 

Directory listing file 

DUMP output file 

FORTRAN IV source file (FORTRAN input) 

Absolute binary file (optional linker output) 

BATCH log file 

Listing file (MACRO, FORTRAN, LIBR, or DIBOL output) 

MACRO source file (MACRO or SRCCOM input) 

Map file (linker output) 

Relocatable binary file (MACRO or FORTRAN output, linker input, LIBR input 
and output) 

Foreground job relocatable image (linker output, default for monitor FRUN com-
mand) 

Memory image; default for R, RUN, SAVE and GET keyboard monitor commands; 
also default for linker output 

System MACRO library 

Temporary source file generated by BATCH 

Symbol table file in object format containing all the symbols produced during a 
link 

System files and handlers 

3-4 



System Conventions 

Sequential-access devices require sequential processing of data; the order in which the system processes the data must 
be the same as the physical order of the data. RT-11 devices that are sequential devices are magtape, cassette, paper 
tape reader and punch, card reader, line printer, terminal, and the null device. 

File-structured devices are those devices that allow the system to store data under assigned file names. RT-11 devices 
that are file-structured include all disk, DECtape, magtape, and cassette devices. Non-file-structured devices, however, 
contain a single logical collection of data. These devices, including the line printer, card reader, terminal, and paper 
tape reader and punch, are generally used for reading and listing information. 

File-structured devices that have a standard RT-11 directory at the beginning are RT-11 directory-structured devices. 
A device directory consists of a series of directory segments that contain the names and lengths of the files on that 
device. The system updates the directory each time a program moves, adds, or deletes a file on the device. The R T-11 
Software Support Manual contains a more detailed explanation of a device directory. RT-11 directory-structured 
devices include all disks and DECtape. Non-RT-11 directory-structured devices are file-structured devices that do not 
have the standard RT-11 directory structure. For example, some devices, such as magtape and cassette, store directory-
type information at the beginning of each file, but the system must read the device sequentially to obtain all informa-
tion about all files. 

The RT-11 Software Support Manual explains methods of interfacing a device with auser-defined directory structure 
to the RT-11 system. 

Table 3-3 shows the relationships among devices, access methods, and structures. 

Table 3-3 Device Structures 

Device 

y

Random- 
Access 

Sequential- 
Access 

File- 
Structured 

Non-fde- 
Structured 

RT-11 
directory- 
Structured 

Non-
RT-11 
directory-
Structured 

Disk x x x 
DECtape x x x 
Magtape x x x 
Cassette 
Paper tape 
Card reader 
Line printer 
Terminal 

x 
x 
x 
x 
x 

x 
x 
x 
x 
x 

x 

3.6 SPECIAL FUNCTION KEYS 
Special function keys and keyboard commands let you communicate with the RT-11 monitor to allocate system re-
sources, manipulate memory images, start programs, and use foreground/background services. 

The special functions of certain terminal keys you need for communication with the keyboard monitor are explained 
in Table 3-4. In the FB system, the keyboard monitor runs as a background job when no other background job is 
running. 

Enter CTRL commands by holding the CTRL key down while typing the appropriate letter. 

3.7 FOREGROUND/BACKGROUND TERMINAL I/O 
Console input and output under FB are independent functions; therefore, you can type input to one job while another 

job prints output. You may be in the process of typing input to one job when the system is ready to print output from 
the other job on the terminal. In this case, the job that is ready to print interrupts you and prints the message on the 

terminal; the system does not redirect input control to this job, however, unless you type aCTRL/B or CTRL/F. If 

3-5 



System Conventions 

Table 3-4 Special Function Keys 

Key Function 

CTRL/A 

CTRL/B 

CTRL/C 

CTRL/E 

CTRL/F 

CTRL/O 

CTRL/A is valid only after you type the monitor GT ON command and use the 
display. CTRL/A, a command that does not echo on the terminal, pages output 
if you use it after aCTRL/S. The system permits console output to resume until 
the screen is completely filled again; text currently displayed scrolls upward off 
the screen. CTRL/A has no special meaning if GT ON is not in effect. 

CTRL/B causes the system to direct all keyboard input to the background job. 
Tlie FB monitor echoes B> on the terminal. The system takes at least one line 
of output from the background job. The foreground job, however, has priority, 
so the system returns control to the foreground job when it has output. CTRL/B 
directs all typed input to the background job until aCTRL/F redirects input to 
the foreground job. CTRL/B has no special meaning when used under asingle-
job monitor or when a SET TT NOFB command is in effect. 

CTRL/C terminates program execution and returns control to the keyboard 
monitor. CTRL/C echoes~C on the terminal. You must type two CTRL/Cs to 
terminate execution unless the program to be terminated is waiting for terminal 
input or is using the TT handler for input. In these cases, one CTRL/C is suffi-
cient to terminate execution. Under the FB monitor, the job that is currently 
receiving input is the job that is stopped (determined by the most recently typed 
command, CTRL/F or CTRL/B). To ensure that the command is directed to the 
proper job, type CTRL/B or CTRL/F before typing CTRL/C. 

The CTRL/E command causes all terminal output to appear on both the display 
screen and the console terminal simultaneously. CTRL/E is valid after you type 
the monitor GT ON command and use the display. The command does not echo 
on the terminal. A second CTRL/E disables console terminal output. CTRL/E 
has no special meaning if GT ON is not in effect. 

CTRL/F causes the system to direct all keyboard input to the foreground job 
and take all output from the foreground job. The FB monitor echoes F> on 
the terminal unless output is already coming from the foreground job. If no 
foreground job exists, the monitor prints an error message and directs control 
to the background job. Otherwise, control remains with the foreground job 
until redirected to the background job (with CTRL/B) or until the foreground 
job terminates. CTRL/F has no special meaning when used under a single job 
monitor, or when a SET TT NOFB command is in effect. 

CTRL/O causes RT-11 to suppress teleprinter output while continuing pro-
gram execution. CTRL/O echoes ~O on the terminal. RT-11 reenables teleprinter 
output when one of the following occurs: 

1. You type second aCTRL/O. 
2. You return control to the monitor by typing CTRL/C or by issuing the .EXIT 

request. 
3. The running program issues a .RCTRLO programmed request (see Chap-

ter 2 of the RT-11 Advanced Programmer's Guide). RT-11 system programs 
reset CTRL/O to the echoing state each time you enter a new command 
string. 

(Continued on next page) 

3-6 



System Conventions 

Table 3-4 (Cont.) Special Function Keys 

Key F uncta~n 

CTRL/Q 

CTRL/S 

CTRL/U 

CTRL/Z 

DELETE 
or 

RUBOUT 

CTRL/Q resumes printing characters on the terminal from the point printing 
previously stopped because of a CTRL/S. CTRL/Q does not echo and has no 
special meaning under the FB monitor if a SET TT NOPAGE command is in 
effect. 

CTRL/S temporarily suspends output to the terminal until you type aCTRL/Q. 
CTRL/S does not echo. Under the FB monitor, CTRL/S is not intercepted by 
the monitor if TT NOPAGE is in effect. 

CTRL/U deletes the current input line and echoes as ~U followed by a car-
riage return at the terminal. (The current line is defined as all characters back 
to, but not including, the most recent line feed, CTRL/C, or CTRL/Z.) 

CTRL/Z terminates input when used with the terminal device handler (TT). 
It echoes ~Z on the terminal. The CTRL/Z itself does-not appear in the input 
buffer. If TT is not being used, CTRL/Z has no special meaning. 

DELETE deletes the last character from the current line and echoes a back-
slash plus the character deleted. Each succeeding DELETE deletes and echoes 
another character. The system prints an enclosing backslash when you type a 
key other than DELETE. This erasure is performed from right to left up to 
the beginning of the current line. If you are using a video display terminal, 
DELETE deletes characters with a backspace, space, backspace sequence. Your 
corrections appear on the screen; RUBOUT does not enclose them with back-
slash characters. 

you type input to one job while the other has output control, the system suppresses the echo of the input until the 
job accepting input gains output control; at this point, all accumulated input echoes. 

If the foreground job and background job are ready to print output at the same time, the foreground job has priority. 
The system prints output from the foreground job until it encounters a line feed. At that point, output from the 
background job prints until a line feed is encountered, and so forth. 

When the foreground job terminates, control reverts automatically to the background job. 

3.8 TYPE-AHEAD FEATURE 
The monitor has atype-ahead feature that lets you enter terminal input while a program is executing. For example: 

• D ~ f~ I~~ C: 'Y' Cl I~ Y / iM' I••~ ~:1~ 'T f 
1+~1~'~'!.~ 

While the first command line is executing, you can type the second line. The system stores this terminal input in a 
buffer and uses it when the system completes the first operation. 

If yo u type a single CTRL/C while the syste m is in this mode ,the syste m put s CTRL/C into the buffer . The program 
currently executing exits when you make a terminal input request. Typing a double CTRL/C returns control to the 
monitor immediately. 

3-7 



System Conventions 

If type-ahead input exceeds the input butter capacity (usually 80 characters), the terminal bell rings and the system 
accepts no characters until a program uses part of the type-ahead buffer, or until you delete characters. No input is 
lost. Type-ahead is particularly useful when you specify multiple command lines to system programs. If you 
terminate a job by typing two CTRL/Cs, the system discards any unprocessed type-ahead. 

If you use type-ahead with EDIT or BASIC, the system does not echo characters on the terminal but stores them in 
the buffer until the system processes a new command. The program echoes the characters only when it actually uses 
them. 

3-8 



CHAPTER4 

INTERACTIVE COMMANDS 

Keyboard commands allow you to communicate with the RT-11 system. You enter keyboard commands at the termi-
nal and the operating system immediately acknowledges and acts upon these requests. 

4.1 COMMAND SYNTAX 
This section describes the syntax conventions this manual uses to discuss the monitor command language . The Preface 
to this manual contains a more detailed list of the symbolic conventions used throughout the manual. You should 
familiarize yourself with the symbols and their meanings before you continue reading this chapter. 

The system accepts commands in two ways: as a complete string containing all the information necessary to execute 
a command, or as a partial string. In the latter case, the system prompts you to supply the rest of the information. 
Terminate each command with a carriage return. 

The general syntax for a command is: 

COMMAND[/option. . .] input-filespec[/option. . .] output-filespec[/option. . .] 

or 

COMMAND [/option. . .] 
PROMPTl?input-filespec[/option. . .) 
PROMPT2? output-filespec[/option. . .] 

where 

COMMAND is the command name. 

/option represents a command qualifier that specifies the exact action to be taken. Any option 
you supply here applies to the entire command string. 

input-filespec represents the file on which the action is to be taken. 

/option represents a file qualifier that specifies more detailed information about that particular 
file . 

output-filespec represents the file that is to receive the results of the operation. 

/option represents a file qualifier that specifies more detailed information about that particular 
file . 

This manual provides a graphic illustration to clarify the syntax for each of the keyboard monitor commands. See 
Figure 4-1 for an illustration of a typical command. The illustrations provide aready-reference list of the options that 
the commands accept, as well as information that makes the commands easier to use .The following list describes the 
conventions that are used in the illustrations. 

4-1 



Interactive Commands 

1. Capital letters represent command names or options, which you- must type as shown. (Abbreviations are 
discussed later in Section 4.1.) 

2. Lower case letters represent arguments or variables for which you must supply values. For options that 
accept numeric arguments, the system interprets the values as decimal, unless otherwise stated. Some 
values, usually memory addresses, are interpreted as octal; these cases are noted in the accompanying text. 

3. Square brackets [] enclose optional choices; you can include the item that is enclosed in the brackets or 
you can omit it, as you choose. If a vertical list of items is enclosed in square brackets, you can combine 
the options that appear in the list. However, if an option is set off from the others by blank lines (see 
/BOOT and /DEVICE in Figure 4-1), you cannot combine that option with any other option in the list. 

4. Braces { } enclose options that are mutually exclusive. You can choose only one option from a group of 
options that appear in braces. 

5. It is conventional to place command options (those qualifiers that apply to the entire command line) imme-
diately after the command. However, it is also acceptable to specify a command option after a file specifica-
tion. File options (those that qualify a particular file specification) must appear in the command line directly 
after the file to which they apply. The illustration for each command shows which options are file qualifiers, 
and whether they must follow input or output file specifications. 

6. Aline such as [NO] QUERY represents two mutually exclusive options: QUERY and NOQUERY. 
7. Underlining indicates default options. 

COPY /BOOT input-filespecs /DOS[/OWNER: [nnn,nnn] ] SP output-filespec 
~ 

/ALLOCATE:size 
/INTERCHANGE /DOS 

/DEVICE /POSITION:n /INTERCHANGE[:size) 
/TOPS /POSITION:n 

( /ASCII 
1 /BINARY 
~ /IMAGE
/CONCATENATE 
/EXCLUDE 
/IGNORE 
/[NO] lOG 
/NEWfILES 
/PACKED 
/PREDELETE 
/(NOJ QUERY 
/INOIREPLACE 
/SETDATE 
/SLOWLY 
/SYSTEM 

Figure 4-1 Sample Command Syntax illustration 

A filespec represents a specific file and the device on which it is stared. Its syntax is: 

dev: filnam.typ 

where 

dev: 

filnam 

.typ 

represents either a logical device name or a physical device name, which is a two- or 
three-character name from Table 3-1. 

represents the one- to six-character alphanumeric name of the file. 

represents the one- to three-character alphanumeric file type, some of which are listed 
in Table 3-2. 

4-2 



Interactt've Commands 

There are several ways to indicate the device on which a file is stored. You can explicitly~type the device name in the 
file specification: 

~~ x ~. : T r::: ~, 'r . ~.. t,'r 

You can omit the device name 

'r ~ r 'r . i... ~ 'r 

Iri this case, the system assumes that the file is stored on device DK:. 

If you want to specify several files on the same device, you can use a technique called factoring: 

~~T~ : t ~~~.~~r . i._:~~r , 'r~~~~rn . ~..~}T r TE ~~r~r~ . ~_.~T ~ 

The command shown above has the same meaning and is easier to use than the next command. 

I:iT~ : T~:~T . L.~T r LiT4 : ~r~::tT~ . l~~~r x I:i~r~ : TE~TL~ . l...~~~ 

When you use factoring, as the example above shows, the device outside the parentheses applies to each file specifica-
tion inside the parentheses. Without factoring, the system interprets each file specification to be DK:filespec unless 
you explicitly specify another device name. 

Factoring is useful for complicated corYunand lines. It is a general method of string replacement that you can use in 
many different situations. The monitor uses the following algorithm to interpret command lines that require 
factoring. 

Format of the command line you type: 

Dl Tl (T3 D3 T4 D4 . . . Tn) T2 D2 

Format of the command line after the monitor performs the factoring: 

D1 T1T3T2 D3 T1T4T2 D4...T1TnT2 D2 

In the skeleton eacamples shown above, the symbols have the following meaning: 

D represents a delimiter. 

Dl is one of the following delimiters: 

comma 
space 
beginning of line 

D2 is one of the following delimiters: 

comma 
space 
slash 
end of line 

4.3 March 1978 



Interactive Commands 

D3 through Dn can be one of the following delimiters: 

comma 
space 

T represents a text string 

The following example shows how a command line expands after factoring. Note that the /SYSTEM option appears 
only once in the resulting output line. 

Original command line 

~.~ 1J ~ i l 11 ♦ 1 • .~ ... .~ y w.. Y ♦.J r~ i~ ~.% 1 ~.~ ! ~.1 Y ~.~ • f ~::: i - 1 1•~ ~t .~. 4 

Resulting command line (after factoring): 

~ Cl ~' Y ~~ X : i~" :~ i... :1. . ,c"~ Y ~ y ~ I:~ X ~ i~" :~ i... ~ . ~'~ ~ s► X:t X : ! ~' :~ i...:3 . ti Y ~:i / ;i Y {:ti 'T i::: i"i f:~ h::i. 

RT-11 does not permit complex factoring of the form: 

(argument 1) T (argument 2) 

In this type of line, T represents T2 to argument 1 and T1 to argument 2. 

For example, the following line shows an illegal use of factoring: 

t I:~ ~ q ~:~ i.~ a : i~" :i: i... i~ . C h~ r'1 G ~ t7 I:i ,.1 ~ 

NOTE 
There is a restriction on the use of factoring in a command 
line. The command string that results from the expansion 
of the line you enter must not exceed 80 characters in 
length. If you use six-character file names and you also use 
factoring, specify only five files in a command line. 

If you omit. the file type in a file specification, the system assumes one of a number of defaults, depending on which 
command you issue. The MACRO command, for example, assumes a file type of .MAC for the input file specification, 
and the PRINT command assumes .LST. Some commands (such as COPY) do not assume a particular file type. If you 
need to specify a file with no file type in a command that assumes a default file type, type a period after the file name. 
For example, to run the file called TEST, type 

~~r~ Y~~~~r~ 

If you omit the period after the file name, the system assumes a .SAV file type and tries to execute a file called 
TEST.SAV. 

You can enter up to six input files and up to three output files for some commands. If the command string does not 
fit on one line of your terminal, use the hyphen (-), followed by a carriage return, as a continuation character and 
break the string into smaller sections. Use a carriage return to terminate the command string. 

Some of the command and file qualifiers are mutually exclusive options. You should avoid using a combination of 
options that gives contradictory instructions to the system. For example 

z:•c:.~..~~r~::fc~~.~~~r-~Y~l~c~r~~~i~ ~Y ~r~:~~r . i...~~r 

4-4 March 1978 



Interactive Commands 

This command is not meaningful. Some mutually exclusive options are less obvious; these are noted, where necessary, 
in the list of options following each command and are enclosed by braces in the graphic representation of the com-
mand syntax. 

The keyboard monitor commands are all English-language words. This feature makes the commands easier for you to 
understand and use. However, it can become tedious to type words like CROSSREFERENCE and ALLOCATE fre-
quently. You can use as abbreviations the minimum number`of characters that are needed to make the command or 
option unique. Table B-1 in Appendix B lists the minimum abbreviations for the commands and options. 

An easy way to abbreviate a command or qualifier, and one that is always correct, is to use the first four characters 
or the first six characters if the qualifier starts with NO. For example 

CONCATENATE can be shortened to CONC 
NOCONCATENATE can be shortened to NOCONC 

The system prints an error message if you use an abbreviation that is not unique. For example, typing the following 
command produces an error, because C could mean COPY or COMPILE. 

~ TEST . I....~'T' 

The prompting form of the command may be easier for you to learn if you are a new user. If you type a command 
followed by a carriage return, the system prompts you for an input file specification 

CQi:'Y/i"tJi~C;~~'rF~l~lr~'r'I::: 
~' r ~ rr~'? 

You should enter the input file specification and a carriage return 

r•x ~ : 41'r~~~' . ~..~aY , 'r'I~:~'~'~ . ~..~~~' ~ 

The system prompts you for an output file specification: 

1' ~ ? 

You should enter the output file specification and a carriage return: 

z:~ ~C ' : ~' I::. w~ ~' . I... ~i 'T 

The command now executes. 

The system continues to prompt for an input and output file specification until you provide them. If you respond to a 
prompt by entering only a carriage return, the prompt prints again. You can combine the normal form of a command 
with the prompting form, as this example shows. 

• CCIF''r' 
Y a '? 

~-a1~t;.~~~;.I.

~c~ ~' r-~ . ~.. ~ 'r 

4-4.1 
March 1978 



Interactive Commands 

The system always prompts you for information if any required part of the command is missing. You can also 
enter just an option in response to a prompt. The two following examples are equivalent. 

~C~~~'Y 

Tca '? ~K♦~~I~ 

rt:l~'Y 

Tra ? ~ . ~~l~ 

4-4.2 March 1978 



Interactt've Commands 

4.2 WILDCARDS 
Some commands accept wildcards (% and *) in place of the file name, file type, or characters in the file name or file 
type. The system ignores the contents of the wild field and selects all the files that match the remaining fields. 

An asterisk (*) can replace a file name 

~C.r'i~~ 

The system selects all files on device DK: that have a .MAC file type, regardless of their name. 

An asterisk (*) can replace a file type 

'~~~~' . ~ 

The system selects all files on device DK: that are named TEST, regardless of their file type. 

An asterisk (*) can replace both a file name and a file type: 

*~~k 

The system selects all files on device DK:. 

An embedded asterisk (*) can replace any number of characters in the input file name or file type 

The system selects all files on device DK: with a file type of .MAC whose file names start with A and end with B. 
For example, AB, AXB, AYYB, etc. would be selected. 

The percent symbol (%) is always considered an embedded wildcard. It can replace a single character in the input 
file name or file type. 

n'~~~a~(~G; 

The system selects all files on device DK: with a file type of .MAC whose file names are three characters long, start 
with A, and end with B. For example, AXB, AYB, AZB, etc. would be selected. 

Table 4-1 lists commands that support wildcards. 

4-5 



Interactive Commands 

Table 4-1 Commands Supporting Wildcards 

Command 
Accepts Wildcards in Input 

File Specification 
Accepts Wildcards in Output 

File Specification 

COPY X X 

DELETE X 

DIRECTORY X 

HELP X 

PRINT X 

RENAME X X 

TYPE X 

For the commands that support wildcards the system has a special way of interpreting the file specifications you 
type. You can omit certain parts of the input and output specifications, and the system assumes an asterisk (*) for 
the omitted item. Table 4-2 shows the defaults that the system assumes for the input and output spec cations of 
the valid commands. 

Table 4-2 Wildcard Defaults 

Command 
Input 
Default 

Output 
Default 

COPY, RENAME 

DIRECTORY 

PRINT, TYPE 

DELETE 

*. * 

DK: *.* 

*.LST 

filnam. 

* . * 

For example, if you need to copy all the files called 1V[YPROG from DK: to DX1: ,use this command: 

E:~~'Y/i~C~t~l.1~'~Y t`~Y~'~'~tJ~ DX~. 

The system interprets this command to mean: 

t C.~~~"'Y/~!~.IC~UE ~Y D~ : ~fY~'~ClG . * LAX 1 : ~ . 

The system copies all the files called MYPROG, regardless of their file type, to device DX1: and gives them the same 
names. 

If you need a directory listing of all the files on device DK:, type the following command: 

• ~i ~ ~~C;'1'tJ~Y 

The system interprets this command to mean: 

r~ x ~ i~ c~ 'r r~ r~ Y ~~ i. 4 ~ p ~ 

4-6 



Interactive Commands 

To list on the printer all the files on device DK: that have a .LST file type, use this command: 

Tlie system interprets this command to mean 

To delete all the files on device DK: called MYPROG, regardless of their file type, use this command: 

.~~~~.. 'T~/~lCJC~IJ~~Y ~IYi='~C~ 

The system interprets this to mean 

You can use the SET WILDCARDS EXPLICIT command (described in Section 4.4) to change the way the system 
interprets these commands. 

4.3 INDIRECT FILES 
You can group together as a file a collection of keyboard commands that you want to execute sequentially. This 
collection is called an indirect command file, or indirect file. Indirect files are best suited for tasks that require a sig-
nificant amount of computer time and that do not require your supervision or intervention. Any series of commands 
that you are likely to type often can also run easily as an indirect file. The indirect file concept is similar to BATCH 
processing. Although indirect files lack some of the capabilities of BATCH, they are easier to use, use the same com-
mands as normal operations, and generally require less memory overhead than the BATCH processor. (RT-11 BATCH 
is described in Appendix A of this manual.) This section describes how to create indirect files and how to execute them. 

4.3.1 Creating Indirect Files 
Create an indirect file by using the EDIT/CREATE command described in Section 4.4. It is conventional to use a 
.COM file type for an indirect file, but you can choose any file name that you wish. Structure the lines of text to- look 
like keyboard input, placing one command on each line of the file and terminating each line with a carriage return. 
Do not include the prompt character (.) in the line. Any keyboard monitor command you can type at the terminal you 
can also include in an indirect file. The following file, for example, prints the date and time, and creates backup copies 
of all FORTRAN source files: 

~~~~' 
~ :~ ~
f~f~i~'Y ~ o F'Cl~' ~ . ~1`

Control returns to the monitor at the console terminal after this indirect file executes.

In addition to using the keyboard monitor commands, you can also run one of the RT-11 system utility programs in an
indirect file. In this case, structure your input to conform to the Command String Interpreter syntax described in Chap-
ter 6. The following file starts the directory system utility program and lists the directory of two devices on the line
printer.

~'~ X:~~~

C,. ~' : M ~~ T ~. 1 ~'t~ 4 :~
~C

Note that the last command line is ~C. This is not the standard CTRL/C sequence you enter by holding down the CTRL
key and typing a C. Rather, it is a readable CTRL/C that consists of two separate characters: a circumflex (uparrow)

4-7

Interactl've Commands

followed by a C. This sequence represents CTRL/C in indirect files because the two-character sequence is easier to read
if you list the contents of the indirect file with the PRINT or TYPE command. This two-character sequence terminates
the directory program so that control returns to the monitor when the indirect file finishes executing. Otherwise, the
directory program would be left waiting for input from the console terminal when the indirect file finishes executing.

Remerr~ber to terminate the last command line with a carriage return, as you would any other line.

Some commands normally require a response from you as they execute. The INITIALIZE command, for example,
prints the ARE YOU SURE? message and waits for you to type Y and a carriage return before it executes. The
DELETE command requests confirmation from you before it deletes a file. There are three ways to control interaction
with the executing command. One way is to use the /NOQUERY option on each command that allows it. This option
suppresses the confirmation messages entirely when you use the command in an indirect file. A second procedure ~is
suitable for a command like INITIALIZE, which has only one confirmation query. INITIALIZE can accept your
response from within the indirect file. Place the Y response on a separate line in the indirect file, as the following
example shows.

Y

A third method of interacting applies to a command like DELETE. This command can have a variable number of con-
firmation queries, especially if you use a wildcard in the file specification. This type of command accepts your responses
directly from the terminal and allows you to make a decision before deleting each file. However, in this case the in-
direct file cannot operate unattended.

There is yet another way to deal with commands that require a response from you. Both the INITIALIZE and LINK
commands have options that prompt you for data. This section describes two methods of responding to these prompts,
when more than just a Y response is required.

The INITIALIZE command with the /VOLUMEID option permits you to specify a volume ID and owner name for a
device. You can place your responses in the indirect file, as this example shows:

~~x'I'~~1...~Z'1:::~ ~~lf~l.1~F~Y~'VC~~..1~1~~E`;'~:1:~ I:~~

~'AYl~~I.~~~

You ca.n change the indirect file so that the prompts appear on the console terminal and you can type your responses
there

~ ~ ~: 'i" ~ ~~~ I: ~:~'~~t~~1.Jt~l=~ Y/IJC~i...t.~i~F:.~ ~: I:~ ft'1' ..,

The ~C informs the system that the responses are to be entered at the terminal. Execution of the indirect file pauses
until you enter the responses.

Similarly, the LINK command lets you specify some data either in the indirect file or from the console terminal. The
following example contains the response to the TRANSFER prompt.

f...:i: ~i~~'T~(-~~1~~'~.~: ~"~Y~~'1~~:1~:~ ~ CJI:e
.I.

You can specify the same information interactively, as this example shows:

,~ ~

4-8

V

l.J

Interactive Commands

The ~C informs the system that- the response to the prompt is to be entered at the terminal. Execution of the indirect
file pauses until you enter your response.

You can specify overlays to the LINK command by either of these two methods. The following indirect file links an
overlaid program consisting of a root module and four overlay modules that reside in two overlay segments.

l~.:~n~l~~~'~o~r'~r l~caca~r
c~ ~ ~ :!. ~ ra : :~
c~ u!~ ~ ~ ca ~ :!.

Note in the above example that two slashes (//) terminate the module list. You can also enter all or part of the overlay
information interactively, as this example shows:

~w x ~l~1w'r~a~~'~r r-~cao~r

.~ c~

The ~C informs the system that more overlay information is to be entered from the terminal. Execution of the indirect
file pauses when the system requires the information. Respond to the asterisk prompt by entering the overlay informa-
tion. Terminate the last overlay line with two slashes (//). Execution of the indirect file then proceeds. Chapter 11
describes the LINK program and explains how to use overlays.

Note that INITIALIZE and LINK are the only two commands that accept the ~C in an indirect file and permit you
to enter information at the terminal.

If you need to link more than six modules, you can specify the extra modules on the next line in the indirect file, as
this example shows:

l_ :!: ~ !~ / ~' ~'~ C1 ~i ~' 'T ~~ :c l~ :l ~ r` ~ l.. ~' r F" ~: I... ~~ : ~' ~: I.- ~ r I~ ' I l.. a r ~' :C ~.. b
~'T1...7 q ~'~1..8/'/

Or, you can enter the extra modules from the terminal:

L. Z ~! !~ / !~' N~ t~ i`~ ! ~' 'T~ F' :~ I.- ~. y ~' :C l... ~' x ~~ ~ l... ;~ q ~" ~ 1.~ ~4 ~ ~' :~ l.. x ~' :l I... E~
.., ~1

Execution of the indirect file pauses until you enter the remaining module names. Remember to follow the last name
by two slashes (//).

You can include comments in an indirect file to help you document your work. 'These comments do not print on the
console terminal when the indirect file executes. Begin a comment with an exclamation point (!). The system ignores
any characters it finds between the exclamation point and the end of the current line. The following example shows
an indirect file that contains comments.

C~ :C I-.

!~' !~ :~ ~ ~~r 'r :r. ~ l:::

l...:c ~ ~r ~:~ :!: !=~ !:~ c:r .~. c~ r~ ~r c:~ i~~ ~:~ !~

i

4-9 March 197 8

Interactt've Commands

4.3.2 Executing Indirect Files
You can execute indirect files under the SJ monitor, or in the background area under the FB or XM monitor.

To execute an indirect file, specify a command string according to the following syntax:

Cfilespec

where

C is the monitor command that indicates an indirect file.

filespec represents the name and file type of the indirect file, as well as the device on which it is
stored. The default file type is .COM.

If you omit the device specification, DK: is assumed. If you specify any other block-replaceable device, the monitor
automatically loads the handler for that device. It is conventional to type the indirect file command directly in response
to the monitor's prompt, as this example shows:

Ca~I~T~CT

However, you can place the indirect command anywhere in a keyboard monitor command string, as long as it is the
last element in the string, not including comments. For example:

,r~I:~~..~ ~r~:~~c:ac~t.~~:~;Y c~:r~r~c~r! c:a~~~~r~~r~

This is a valid command string. The first line of the file should contain the list of files to be deleted. In the example
above, assume the first line of the indirect file is:

*.1;~(~h

This is the command that will actually execute

I:i~l.~k:.'7'r::~i~lClt~t.1~'~`Y ~k.B~l~

Check your indirect file carefully for errors before you execute it. When the monitor or any program that has control
A

of the system encounters an illegal command line, or if an execution error of any kind occurs, that particular line does
not execute properly. Execution of the indirect file does proceed, however, until any program that may be running
relinquishes control to the monitor. Be careful of this if you run a system utility program in an indirect file, as this
example shows:

f:~ X :i. : * . ~ =~ Z~ X ~} : ~ .
Z:~XC):*.~~C:~X:+
~~

If device DXl :becomes full before all the files from DXO: are copied to it, the second line of the indirect file does not
execute completely. Execution then passes to the next line and the system deletes all MACRO files from DXO:. The
~C returns control to the monitor, which aborts the rest of the indirect file. This example shows that it is possible to
destroy files accidentally because of the way indirect files execute. To be safe, use only keyboard monitor commands
in an indirect file. This way the monitor gets control after each operation and can abort the indirect file as soon as it
detects an error. A better way to perform the same operations as the indirect file shown above is as follows:

4-10

Interactive Commands

f; to M"' Y ~~ X C~ : sic . ~K ~:~ X :i. : ~k .

~'~ :~ ~T I~XO : ~ . I...~aT

You can use the SET ERROR command, described in Section 4.4, to define the severity of error that causes an indirect
file to stop executing.

NOTE
MACRO assembly errors do not cause an indirect file to
stop executing unless you use the SET ERROR WARNING
command.

Normally, as each line of an indirect file executes, it echoes on the console terminal so that you can observe the prog-
ress of the job. However, you can use the SET TT QUIET command, described in Section 4.4, to suppress this print-

out. In this case, only the prompting messages, if any, print. You can stop execution of an indirect file at any time

by typing two CTRL/C characters. Control returns to the monitor and you can enter a new command. You can also
abort the indirect file by typing a single CTRL/C in response to a query or prompt. If you use an indirect file to exe-

cute aMACRO program, read Section 2.4.15 of the RT I1 Advanced Programmer's Guide to learn about certain re-
strictions on using the .EXIT call with indirect files.

You can call another indirect file from within an indirect file. This procedure is called nesting. Restrict nesting to

three levels of indirect files. The following example shows two-level nesting. Assume a programmer types this com-

mand at the console terminal in response to the monitor's prompt

~ ~' l ~ ~ ~'

The file FIRST.COM contains these lines:

Z:~ ~ ~' E
T:~~~

fat~~"C;t~i~z:~
~' !~ ~: ~ 'I' f::
~~ :~ ~ ~ t: T ql=~'~ } ~-='r-~ x ~ ~t ~ ~ ~~ is
~~~~_~:~rr.::.r~a~~.1~:~:~~~~ *4~~~~~ 

When this file executes it calls another indirect file, SECOND.COM, which contains this line 

~~~;~'~f~/fil~Cl~~a~~E:F'~~.~4~"fi~f:;l:~ ~•t•k{-f-Ca!l.. ~: ~T 

When file SECOND.COM finishes executing, control returns to file FIRST.COM at the line following the indirect

file specification. FIRST.COM then prints the contents of the file C.LST on the line printer, followed by a directory

listing of device DK:. Then control returns to the monitor at the console terminal.

4.3.3 Startup Indirect Files
Section 3.1 introduced the startup indirect command files: STARTS.COM (for SJ), STARTF.COM (for FB), and

STARTX.COM (for XM). Each monitor automatically invokes its own indirect command file when you bootstrap

the system. You can modify these files to perform standard system configurations for you. Since many of the system

parameters are reset by a bootstrap operation (see the SET command, Section 4.4), you should use the startup in-

direct files to set the system parameters you normally use. For example, if you use the FB monitor and have a visual

display console terminal that supports hardware tabs, add the SET TT: SCOPE and SET TT: TAB commands to

the file STARTF.COM. You could also include a SET TT: QUIET command at the beginning of STARTF.COM and

4-11 March 1978

Interactt've Commands

a SET TT: NOQUIET command at the end to suppress extra type-out at bootstrap time. If you have a list of com-
mands that you need to execute regardless of the monitor you bootstrap, include these commands in a separate in-
direct file, such as COMMON.COM, and invoke this file from all three startup indirect files. The following example
shows a typical STARTF.COM file.

q i::: T 1~' T' : (~ 1.1 :~ F~ T
q~.T 'TT : c~~:(JF~'~~

t~C;q~f~iq~!
qI~T TT: ~lgC~IJI~T

! ~-'F::I"iF~(JM~~'i q(:li"i~'igl~ q~'~::~'~~aT T Cli~;~
! Tl.1~i~ (J~! T'TY F='~~ :1: ~l

.f
:I: ~(:;

If you use BATCH frequently, use a startup indirect file to assign devices and load handlers. You can also use the
startup indirect files to run your own programs, set the date, or do other housekeeping chores.

4.4 KEYBOARD MONITOR COMMANDS
The keyboard monitor commands are your means of communicating with the system and controlling the monitor.
This section lists the keyboard monitor commands in alphabetical order. Each command description includes the
command syntax, a table of valid options, and some sample command lines, as well as a general discussion of how to
use the command.

You can type almost all the commands to any of the three monitors. The exceptions are FRUN, SUSPEND, and
RESUME. These are not legal for the SJ monitor because they apply to foreground programs.

Any reference to the background program applies as well to the program running under the SJ monitor. Any refer-
ence to FB operation also applies to the XM operation.

If you make a mistake in a command line, or if the system cannot perform the action you request, an error message
prints on your terminal. The error message indicates which error occurred; see the RT-11 System Message Manual
for a more complete description of the error and for the recommended action you should take. The error message
also indicates which system utility program detected the error. This is for your information only and requires no
action.

i

4-12 March 1978

Interactive Commands APL

The APL command invokes the APL interpreter.

APL

APL has its own command language. Therefore, the APL command accepts no options and no file specifications.

4-13

ASSIGN Interactive Commands

The ASSIGN command associates the logical name you specify with a physical device.

ASSIGN ASP) physical-device-name ASP) logical-device-name

In the command syntax illustrated above, physical-device-name represents the RT-11 standard permanent name that
refers to a particular device. Table 3-1 contains a list of these names. The term logical-device-name represents an alpha-
numericname, from one to three characters long, that you assign to a particular device. Note that you should not use
spaces or tabs in the logical device name. If you omit the physical device name, the system prompts you with Physical
device name?. If you omit the logical device name, the system prompts you with Logical device name?.

The ASSIGN command can simplify programming. When you write a program, for example, you can request input from
a device called INP: and direct output to a device called OUT:. When you are ready to execute the program, you can as-
sign those logical names to the actual physical devices you need to use for that job. The ASSIGN command is especially
helpful when a program refers to a device that is not available on a certain system; the ASSIGN command allows you to
redirect input and output to an available device.

If the logical device name you supply is already associated with a physical device, the system disassociates the logical
name from that physical device and assigns it to the current device. You can assign only one logical name with each
ASSIGN command, but you can use several ASSIGN commands to assign different logical names to the same device.
You can also use the ASSIGN command to assign FORTRAN logical units to physical devices.

If you are running under the foreground/background monitor (FB), FB is not allowed as a logical device name. How-
ever; it is valid under the single job monitor. Note that the following names are always illegal logical device names: BA,
FG, and EL.

The following command, for example, causes data that you write to device OUT: to print on the line printer.

~ ~ .~ :~ t~ l~ ~.. I~' ~ ~ !.1 'I' e

If your program attempts to access a device by using a logical name (such as OUT:) and you, do not issue an appropri-
ate ASSIGN command, an error occurs in the program.

The following command redirects printer output to the terminal.

The command shown above illustrates how you can run a program that specifically references LP: without using a
line printer.

The next command redefines the default file device.

If you supply a file specification and omit the device name, it now defaults to RK1:. Note that this does not affect
the default system device, SY:.

The last example is typical for a system .that uses a dual drive diskette device .Several users can share the same system
software on DXO: and maintain their own data files on diskettes that they run in drive 1. When you use the following
command, references to files without an explicit device name automatically access DXl ~ .

~w~"i T U~ C:i~ :I. 4 ~:~Iti

Use the SHOW DEVICES comman d to display logical device name assignments on the terminal.

4-14

Interactive Command s

The B (Base) command sets a relocation base. To obtain the address of the location to be referenced, the system adds
this relocation base to the address you specify in a subsequent Examine or Deposit command.

In the command syntax shown above, address represents an octal address that the system uses as a base address for
subsequent Examine and Deposit commands. If the address you supply is an odd number, the system decreases it by
one to make the address even. Note that if you do not specify an address, this command sets the base to zero.

Use the Base command when using the Examine and Deposit commands to reference linked modules. (Note that the
Base command has no effect on program execution.) The system adds the current base address to the value you supply
in an Examine or Deposit command. You can set the current base address to the address where a particular module is
loaded. Then you can use the relocatable addresses printed in the assembler, compiler, or map lisping of that module
to reference locations within the module.

The following command sets the base to 0.

.~

The next two commands both set the base to 1000.

.~ ~aaa
.~{ ~~a~

4-15

BASIC Interactive Commands

The BASIC command invokes the BASIC language interpreter.

BASIC

BASIC has its own command language. Therefore, the BASIC command accepts no options and no file specifications.

4-16

Interactl've Commands BOOT

i,

The BOOT command directs a new monitor to take control of the system. It can also read into memory a new copy
of the monitor that is currently controlling the system.

In the command syntax illustrated above, filespec represents the device or monitor file to be bootstrapped. If you
omit the filespec, the system prompts you with Device or file?. The BOOT command can perform either of two opera-
tions: 1) a hardware bootstrap of a specific device, or 2) a direct bootstrap of a particular monitor file that does not
affect the bootstrap blocks on the device.

To perform a hardware bootstrap, specify only a device name in the command line. The following devices are legal
for this operation: DTO: , RKO : -RK7 : , RF : , SY: , DK : , DPO: -DP7 : , DXO : -DX1: , DMO : -DM7 : ,and DSO : -DS7 :. The
hardware bootstrap operation gives control of the system to the particular monitor whose bootstrap is written on
the device. (You can change this monitor by using the COPY/BOOT command.) This example bootstraps the single-
job monitor, R:KMNSJ, whose bootstrap information is written on device DK:.

•~CICIT Lih:

~iT~ 11 ~,J Va~~'a ~.

To bootstrap a particular monitor file, specify that file name and the device on which it is stored, if necessary, in the
command line. SY: is the default device and .SYS is the default file type. Note that the first two characters of the
physical device name and the monitor file name must be the same, as in the following example .

. ~ca~~r ~~xa : ~jx~~~,J

~~r~ ~. ~ ~.J Va~~a ~

You can use the BOOT command to alternate between the single job and foreground/background monitors. When you
use the BOOT command to change monitors you do not have to reenter the date and time. The system clock, however,
can lose a few seconds during a reboot. The next example bootstraps the foreground/background monitor on device
SY : ,which is currently RKO : .

. ~ClCI'r ~il~Mi~~'~;

~~~ ~. ~. ~~ Va~~•a ~. 

The system recognizes only the RT-11 standard monitor names. You cannot, therefore, bootstrap a monitor file 
that has been given anon-standard name. 

4-17 



CL OSL' Interactive Commartds 

The CLOSE command makes permanent all output files that are currently open in the background job. 

CLOSE 

The CLOSE command accepts no options or arguments. 

You can use the CLOSE command to make tentative open files permanent; otherwise, they do not appear in a normal 
directory listing and the space associated with the files is available for reuse. The CLOSE command is particularly use-
ful after you type aCTRL/C to abort a background job. You can also use it after an unexpected program termination. 
The CLOSE command preserves any new files that were being used by the terminated program. Note that the CLOSE 
command has no effect on a foreground job and that you cannot use CLOSE on files opened on magnetic tape or 
cassette. 

The CLOSE command does not work if your program defines new input or output channels (with the .CDFN pro-
grammed request). Because CTRL/C or .EXIT resets channel definitions, the CLOSE command has no effect on chan-
nels it does not recognize. 

The following example shows how the CLOSE command makes temporary files permanent. 

~C~~ 

. i~ IN. C1 ~ 

4-18 



Interactive Commands COMPILE 

n 

The COMPILE command invokes one or more language processors to assemble or compile the files you specify. 

COMPILE /LIST[:filespec] [/ALLOCATE:size] 
/[NOl OBJECT[:filespec) [/ALLOCATE:size) 

/D I BO L 
/ALPHABETIZE 
/CROSSREFERENCE 
/[NOl LINENUMBERS
/ONDEBUG 
/[NO] WARNINGS 

/FORTRAN 
/CODE:type 
/DIAGNOSE 
/EXTEND 
/HEADER 
/14 
/[NO] LINENUMBERS 
/ONDEBUG 
/[NO) OPTIMIZE [:type] 
/R ECOR D:length 
/SHOW [:valuel 
/STATISTICS 
/[NO] SWAP ______ 
/UNITS:n 
/[NOJ VECTORS 

` /WARNINGS 
/MACRO 

/CROSSREFERENCE[:type[...:type] 
/DISABLE:value [...:value] 
/ENABLE:value [...:value] 
/[NO] SHOW:value 

filespecs /L16RARY 
/PASS:1 

In the command line shown above, filespecs represents one or more files to be included in the compile or assembly. 
The default file types for the output files are .LST for listing files and .OBJ for object files. The defaults for input 
files depend on the particular language processor involved. These defaults include .MAC for MACRO files, .FOR for 
FORTRAN files, and .DBL for DIBOL files. 

To compile (or assemble) multiple source files into a single object file, separate the files by plus (+) signs in the com-
mand line. Unless you specify otherwise, the system creates an object file with the same name as the first input file 
and gives it an .OBJ file type. To compile multiple files in independent compilations, separate the files by commas (,) 
in the command line. This generates a corresponding object file for each set of input files. You can combine up to six 
files for a compilation producing a single object file . 

Language options are position dependent. That is, they have different meanings depending on where you place them 
in the command line. Options that qualify a command name apply across the entire command string. Options that 
follow a file specification apply only to the file (or group of files separated by plus signs) that they follow in the com-
mand string. 

You can specify the entire COMPILE command as one line, or you can rely on the system to prompt you for informa-
tion. The COMPILE command prompt is Files?. 

There are several ways to establish which language processor the COMPILE command invokes. One way is to specify 
a language-name option, such as /MACRO, which Invokes the MACRO assembler. Another way is to omit the 

4-19 



COMPILE Interactive Commands 

language-name option and explicitly specify the file type for the source files. The COMPILE command then invokes 
the language processor that corresponds to that file type. Specifying the file SOURCE.MAC, for example, invokes the 
MACRO assembler. A third way to establish the language processor is to let the system choose a file type of .MAC, 
.DBL, or .FOR for the source file you name. To do this, the handler for the device you specify must be loaded. If 
you specify DX1:A and the DX handler is loaded, the system searches for source files A.MAC and A.DBL, in that 
order. If it finds one of these files, the system invokes the corresponding language processor. If it cannot find one of 
these files, or if the device handler associated with the input file is not resident, the system assumes a file type of .FOR 
and invokes the FORTRAN compiler. 

If the language processor selected as a result of one of the procedures described above is not on the system device 
(SY:), the system issues an error message. 

The following sections explain the options you can use with the COMPILE command. 

/ALLOCATE:size —Use this option with /LIST or /OBJECT to reserve space on the device for the output file. The 
argument, size, represents the number of blocks of space to allocate. The meaningful range for this value is from 1 
to 32767. A value of -1 is a special case that creates the largest file possible on the device. 

/ALPHABETIZE —Use this option with DIBOL to alphabetize the entries in the symbol table listing. This is useful 
for program maintenance and debugging. 

/CODE:type —Use this option with FORTRAN to produce object code that is designed for a particular hardware con-
figuration. The argument, type, represents athree-letter abbreviation for the type of code to produce. The legal values 
are the following: EAE, EIS, FIS, and THR. See Section 1.1.1 of the RT-11 /RSTS/E FORTRANIV User's Guide 
for a complete description of the types of code and their functions. 

/CROSSREFERENCE[:type[ . . . :type] ] —Use this option with MACRO or DIBOL to generate a symbol cross-
reference section in the listing. This information is useful for program maintenance and debugging. Note that the 
system does not generate a listing by default. You must also specify /LIST in the command line to get across-reference 
listing. 

With MACRO, this option takes an optional argument. The argument, type, represents aone-character code that in-
dicates which sections of the cross-reference listing the assembler should include. Table 4-10 summarizes the valid 
arguments and their meaning. 

/DIAGNOSE —Use the option with FORTRAN to help analyze an internal compiler error. /DIAGNOSE expands the 
crash dump information to include internal compiler tables and buffers. Submit the diagnostic printout to DIGITAL 
with an SPR form. The information in the listing can help the DIGITAL programmers locate the compiler error and 
correct it . 

/DIBOL —This option invokes the DIBOL language processor to compile -the associated files. 

/DISABI.E:value[ . . . :value] —Use this option with MACRO to specify a .DSABL directive. Table 4-11 summarizes 
the arguments and their meaning. See Section 6.2 of the PDP-11 MACRO Language Reference Manual fora descrip-
tion of the directive and a list of all legal values. 

/ENABLE:value[ . . . :value] —Use this option with MACRO to specify an .ENABL directive. Table 4-11 summarizes 
the arguments and their meaning. See Section 6.2 of the PDP-I1 MACRO Language Reference Manual fora descrip-
tion of the directive and a list of all legal values. 

/EXTEND —Use this option with FORTRAN to change the right margin for source input lines from column 72 to 
column 80. 

/FORTRAN —This option invokes the FORTRAN language processor to compile the associated files. 

4-20 



Interactive Commands COMPILE 

/HEADER —Use this option with FORTRAN to include in the printout a list of options that are currently in effect. 

/I4 —Use this option with FORTRAN to allocate two words for the default integer data type (FORTRAN only uses 
one-word integers) so that it takes the same physical space as real variables. 

/LIBRARY —Use this option with MACRO to identify the file the option qualifies as a macro library file; use it only 
after a macro library file specification in the command line. The MACRO assembler looks first to any macro libraries 
you specify before going to the default system macro library, SYSMAC.SML, to satisfy references (made with the 
.MCALL directive) from MACRO programs. In the example below, the two files A.FOR and B.FOR are compiled 
together, producing B.OBJ and B.LST. The MACRO assembler assembles C.MAC, satisfying .MCALL references from 
MYLIB.MAC and SYSMAC.SML. It produces C.OBJ and C.LST. 

.. 
..~Cl~i~' ~ ~..~' f1 •~•~~'~~ :~ ~ 7'/C1~~1~C~' ~ i~Yi~ ~ ~/f~ I ~~i~~i Y+~ . t~AC/t~. ~ ~~'/CI~.J~CT 

/LINENUMBERS —Use this option with DIBOL or FORTRAN to include internal sequence numbers in the execut-
able program. These are especially useful in debugging programs. This is the default operation. 

/NOLINENUMBERS —Use tlus option with DIBOL or FORTRAN to suppress the generation of internal sequence 
numbers in the executable program. This produces a smaller program and optimizes execution speed. Use this option 
to compile only those programs that are already debugged; otherwise the DIBOL or FORTRAN error messages are 
difficult to interpret. 

/LIST[:filespec] —You must specify this option to produce a compilation or assembly listing. The /LIST option has 
different meanings depending on where you put it in the command line. 

If you specify /LIST without a file specification in the list of options that immediately follows the command name, 
the system generates a listing that prints on the line printer. If you follow /LIST with a device name, the system cre-
ates alisting file on that device. If the device is afile-structured device, the system stores the listing file on that device, 
assigning it the same name as the input file with a .LST file type. The following command produces a listing on the 
terminal. 

. ~~ll~'f~':~ lM~/~.. ~ ~~' : ~'~' : ~ . ~'Cll~ 

The next command creates a listing file called A.LST on RK3:. 

. C;CIi~~' ~ L.. /~.. ~ ~~' : ~~h~ : ~ . MAC 

If the /LIST option contains a name and file tyke to override the default of .LST, the system generates a listing file 
with that name. The following command, for example, compiles A.FOR and B.FOR together, producing files A.OBJ 
and FILEI.OUT on device DK:. 

C:(~i"il"' ? ~..~/~'C~~~ T~~~/~.. I ~:>~' : ~' ~ lNE i . CIl1~' A•i•~ 

You cannot use a command line like the next one. In this example, the second listing file would replace the first one 
and, therefore, cause an error. 

Another way to specify /LIST is to type it after the file specification to which it applies. To produce a listing file 
with the same name as a particular input file, you ca.n use a command similar to this one 

• CCl~'i~` I 1..~/D x ICJ!_ A•#•~/~.. ~ ~~' : ~I~;~ 

4-21 



COMPILE In terac tt've Commands 

The command shown above compiles A.1~BL and B.DBL together, producing files DK:A.QBJ and RK3:B.LST. If you 
specify a -file name on a /LIST option following a file specification in the ~mmand line, it has the same meaning as 
when it follows the command. The following two commands have the same results. 

Both the commands shown above generate as output files A.OBJ and B.LST. 

Remember that file options apply only to the file (or group of files that are separated by plus signs) that they follow 
in the command string. For example 

This command compiles A.MAC, producing A.OBJ and A.LST. It also compiles B.FOR, producing B.OBJ. However, 
it does not produce any listing file for the compilation of B.FOR. 

/1VIACRO —This option invokes the MACRO assembler to assemble the associated files. 

/OBJECT[:filespec] —Use this option to specify a file name or device for the object file. Because the COMPILE 
command creates object files by default, the following two commands have the same meaning. 

• ~C~~f ~' ~ ~..~~~'tJ~'~'I~~~l~C.1~.JE:C~' ~ 

Both commands compile A.FOR and produce A.OBJ as output. The /OBJECT option functions like the /LIST option; 
it can be either a command or a file qualifier. 

As a command option, /OBJECT applies across the entire command string. The following command, for example, 
assembles A.MAC and B.MAC separately, creating object files A.OBJ and B.OBJ on RK1:. 

~~~F~, :x ~...r~~caz:~,J~::c:~r : ~h ~ : n . ~~c~ ~ ~:{ . ~r~r 

Use /OBJECT as a file option to create an object file with a specific name or destination. The following command
compiles A.DBL and B.DBL together, creating files B.LST and B.OBJ.

• t:Clt'i~':~ I...~~~~ ~ ~~Cll... ,~1•~Z~/1... :1: i:i'~/Cl~-~,J~:t;~'

/NOOBJECT —Use this option to suppress creation of an object file. As a command option, /NOOBJECT suppresses
all object files; as a file option, it suppresses only the object file produced by the related input files. In this command,
for example, the system compiles A.FOR and B.FOR together, producing files A.OBJ and B.LST. It also compiles
C.DBL and produces C.LST, but does not produce C.OBJ.

r~~r~ x ~~~ r~ . ~ c~r~~~~ . r'c~~~~...:~ ~~~' ~ c~ . r.+~~..~t~~a~~a~c~~r~~.. x ~~r

/ONDEBUG —Use this option with DIBOL to include a symbol table in the object file. You can then use a debugging
program to find and correct errors in the object file.

Use /ONDEBUG with FORTRAN to include debug lines (those that have a D in column one) in the compilation. You
do not, therefore, have to edit the file to include these lines in the compilation or to logically remove them. This option
is useful in debugging a program. You can include messages, flags, and conditional branches to help you trace program
execution and find an error.

4-22

Interactive Commands COMPILE

/OP1'IMIZE[:type] —Use this option with FORTRAN to enable certain options that optimize object code for
various conditions. The argument, type, represents the three-letter code for the type of optimization to enable.
Table 4-4 summarizes the codes and their meanings.

/NOOPTIMIZE[:type] —Use this option with FORTRAN to disable certain options that optimize object code
for various conditions. The argument, type, represents the three-letter code for the type of optimization to dis-
able. Table 4-4 summarizes the codes and their meanings.

/PASS:1 —Use this option with MACRO on a prefix. macro file to process that file during pass-1 of the assembly
only. This option is useful when you assemble a source program together with a prefix file that contains only
macro definitions, since these definitions do not need to be redefined in pass-2 of the assembly. The following
command assembles a prefix file and a source file together, producing files PROGI.OBJ and PROGl .LST.

..

/RECORD:length —Use this option with FORTRAN to override the default record length of 132 characters for
ASCII sequential formatted input and output. The meaningful range for the argument, length, is from 4 to 4095.

/SHOW:value —Use this option with FORTRAN to control FORTRAN listing format. The argument, value, repre-
sents acode that indicates which listings the compiler is to produce. Table 4-5 summarizes the codes and their
meanings.

Use this option with MACRO to specify any MACRO .LIST directive. Table 4-12 summarizes the valid arguments
and their meanings. Section 6.1.1 of the PDP 11 MACRO Language Reference Manual explains how to use these
directives.

/NOSHOW:value —Use this option with MACRO to specify any MACRO .NLIST directive. Table 4-12 summarizes
the valid arguments and their meanings. Section 6.1.1 of the PDP-11 MACRO Language Reference Manual explains
how to use these directives.

/STATISTICS —Use this option with FORTRAN to include in the listing compilation statistics, such as amount of
memory used, amount of time elapsed, and length of the symbol table.

/SWAP —Use this option with FORTRAN to permit the USR (user service routine) to swap over the FORTRAN
program in memory. This is the default operation.

/NOSWAP —Use this option with FORTRAN to keep the USR resident during execution of a FORTRAN program.
This maybe necessary if the FORTRAN program uses some of the RT-11 System Subroutine Library calls (see Chapter
4 of the RT-11 Advanced Programmer's Guide). If the program frequently updates or creates a large number of different
files, making the USR resident can improve program execution. However, the penalty for making the USR resident is 2K
words of memory.

/UNITS:n —Use this option with FORTRAN to override the default number of logical units (6) to be open at one
time. The maximum value you can specify for n is 16.

/VECTORS —This option directs FORTRAN to use tables to access multidimensional arrays. This is the default mode
of operation.

f NOVECTORS —This option directs FORTRAN to use multiplication operations to access multidimensional arrays.

/WARNINGS —Use this option to include warning messages in DIBOL or FORTRAN compiler diagnostic error mes-
sages. These messages call certain conditions to your attention, but do not interfere with the compilation. This is the
default operation for DIBOL.

/NOWARNINGS —Use this option with DIBOL to suppress warning messages during compilation. These messages are
for your information only; they do not affect the compilation. This is the default operation for FORTRAN.

4-23

COPY Interactive Commands

The COPY command performs a variety of file transfer and maintenance operations.

COPY /BOOT

/DEVICE

(/ASCII
~ /BINARY
~ /IMAGE
/CONCATENATE
/EXCLUDE
/IGNORE
/[NOI LOG
/NEWFILES
/PACKED
/PREDELETE
/[NO] QUERY
/[NO] REPLACE
/SETDATE
/SLOWLY
/SYSTEM

input-filespecs /DOS[/OWNER: [nnn,nnn]) ~ SP output-filespec /ALLOCATE:size '
/INTERCHANGE /DOS
/POSITION:n /INTERCHANGE [:size]
/TOPS /POSITION:n

The COPY command transfers:

• One file to another file
• A number of files to a single file by concatenation
• One device to another device
• A bootstrap to a device.

In the command syntax shown above, input-filespecs represents the data to copy. The input-filespec can be a
device name, if you use the /DEVICE option. Otherwise, you can specify as many as six files for input. Output-
flespec represents the device or file to receive the data. You can specify only one output device or file.

Normally, commas separate the input files if you specify more than one. However, you can separate them by plus
(+) signs if you want to combine them. In this case, you can also omit the /CONCATENATE option, as the follow-
ing example shows.

This command combines DK:A.FOR with DK:B.FOR and stores the results in DK:C.FOR.

You can use wildcards in the input or output file specification of the command. However, the output file specifica-
tion cannot contain embedded wildcards. Note that for all operations except CONCATENATE, if you use awild-
card in the input file specification, the corresponding output file name or file type must be a *. This example uses
wild cards correctly

In the CONCATENATE operation, the output specification must represent a single file. Therefore, no wildcards are
allowed.

You can enter the COPY command as one line, or you can rely on the system to prompt you for information. The
COPY command prompts are: From? for the input file specification and To? for the output file specification.

4-24

Interactive Commands COPY

The system has a special way of handling system (.SYS) files and files that cover bad blocks (.BAD files). So that

you do not copy system files by accident when you use a wildcard in the file specification, the system requires you
to use the /SYSTEM option when you need to copy system files. To copy a .BAD file, you must specify it by
explicitly giving its file name and file type . Since .BAD files cover bad blocks on a device, you usually do not need

to copy, delete, or otherwise manipulate these files.

The following sections describe the COPY command options and include command examples.

/ALLOCATE:size —Use this option after the output file specification to reserve space on the device for the out-
put file. The argument, size, represents the number of blocks of space to allocate. The meaningful range for this
value is from 1 to 32767. A value of -1 is a special case that creates the largest file possible on the device.

/ASCII —This option copies files in ASCII mode, ignoring nulls and rubout characters. It converts data to the

ASCII 7-bit format, and treats CTRL/Z (32 octal) as the logical end-of-file on input. Files that consist of ASCII-

format data include source files you create with the editor, map files, and list files. The following example copies

a FORTRAN source program from DXO: to DX1:, giving it a new name, and reserves 50 blocks of space for it.

t~Q~`Y/~1~~ ~ ~ DX~ : ~~1T~ ~ X . ~'Cl~ ~~X ~.: TEST . ~'q~/AL~.tJ~AT : ~4

/BINARY —Use this option to copy formatted binary files. These include .OBJ files produced by the assembler

or the FORTRAN compiler, and .LDA files produced by the linker. The system verifies checksums and prints a
warning if a checksum error occurs. If this happens, the copy operation does not complete. Note that you cannot

copy library files with the /BINARY option because of a checksum error. Copy them in image mode. The follow-

ing command copies a binary file from DK: to a diskette.

. C~l~'Y/~ ~ ~tAf~Y Ai~~L.Y~ . q~.J ~~X ~.: ~ .

/BOOT —This option copies bootstrap information from a monitor file to blocks 0 and 2 through 5 of a random

access device. This permits you to use that device as a system device. Note that you cannot combine /BOOT with

any other option. Before you use the /BOOT option, make sure that the appropriate monitor file is already stored

on the disk. To create a bootable system diskette, for example, you could use the foreground/background file

called DXMNFB.SYS. If you copy the monitor file onto the diskette from another device, be careful not to rename

it. The COPY/BOOT operation recognizes only standard RT-11 monitor file names. You can use a procedure similar

to the following to create a system device

1. Initialize the disk. Use the monitor INITIALIZE command to do this.

2. Copy files onto the disk. Use the COPY/SYSTEM command for this step.

3. Use COPY/BOOT to write the monitor bootstrap onto the disk.

The following example shows how to create a system diskette .

.x~l~T~~I~:~Z~ DX~.:

. CCJ~'Y/~Y~T~i~ DX~ : ~ .

~~XC3 a DX~fI~ .J . ~Y~ •bra
~:~Xq : I~'r . ~Y~ •~ca
DXC~+x:iX.~Y~ ~o
~~Xt3 : TT . ~Y •~a
DXq : f...~' . ~Y~ •~ca
Dxa : ~+ ~ ~ . ~r~u t~~
DXa : ~c~~J~' . ~A~ •~~

tiX1:*.*

4-25

Cppy Interactive Commands

TiX~ : ~~{t:. ~i~~
TiXQ:~~11~".~~inC;
T~X4~ I t;T . ~Y~
TiXq : ~' T ~' . ~~U
TiX4~:i~T.~Y~i

T~XC) : t~~~~ .
T.iXq : T~Xi~'i~l~'T~ . "~'Y~~

•~ ra
•~ ~
•~ ra
•~, c~
~: ra
•t c.•~
~~
-h, ra

TAX 1 : AT~~ 4 ~F~~
TiX i : ~A~' . ~~~
TiX ~. : CT . ~Y~
TiX~.:~':i:~'.~AV
TAX 1 : ~T . ~Y~

TAX i I T~X~i~~'T~ .:~Y~

• t;t~~'Y/J~r~C~T TeX ~.: TfXd~i~C`~ .:~Y~ TtX 1

/CONCATENATE -- Use this option to combine several input files into a single output file. Remember that wild-
cards are illegal in the output file specification. This option is particularly useful to combine several object modules
into a single file for use by the linker or librarian. The following command combines all the .FOR files on DX1:
into a file called MERGE.FOR on DXO:.

t.r~~'Y/t..Cl~t;t~1~f.i~~1'~'~" T+X:~ o * . ~"f.l~ T~Xq : l~f~~Cl~. + I~~t~~'~

T~X:1. : n . ~~~t fi,ra TiXC~ : ~f~f~'C : . f~ pf~
T~X:I. :T~.~'Cl~; •~,r.~ xiXO:i~~:~~Ct~».~"Cl~
~:~ X :1. : t :. I~~' ~ C~' .b ~ T~ X q : i~'i ~' ~ ta" IM . M" ~

/DEVICE —This option copies block for block the image of one device to another. You cannot combine any
other option with /DEVICE. This option copies one disk to another without changing the file structure pr the
location of the files on the device. This is convenient in that the bootstrap blocks also remain unchanged. You
can also copy disks that are not in RT-11 format, as long as they have no bad blocks. If the system encounters
a bad block during the COPY/DEVICE operation, it prints an error message. However, it then retries the operation
and performs the copy one block at a time. If only one error message prints, you can assume that the transfer
completed correctly.

If one device is smaller than the other, the system copies only as many blocks as the smaller device contains. It is
possible to copy blocks between disk and magtape, even though magtape is not a random access device. The data
is stored on tape formatted in 1 K word blocks. There is room for only one disk image on a magtape. The following
command copies an image of DXO: to DX1:.

c:ra~'Y/T~~~:~ r.:~~ z:~Xc~ ~ TAX ~.

T~ X :~ : / t~ ca }~.. ~.~ <~ r ~~ ~~ ca ~.~ {:~ ~.~ r F~'~ Y

Respond to the query message by typing Y and a carriage return. Any other response cancels the command and
the COPY operation does not proceed.

/DOS —Use this option to transfer files between RSTS/E or DOS-11 format and RT-11 format. The option must
appear in the command line after the file to which it applies. Valid input devices are DECtape and RKOS; the only
valid output device is DECtape. The only other options allowed with /DOS are /ASCII, /BINARY, /IMAGE, and
/OWNER: [nnn,nnn] .The following command transfers a BASIC source file from aDOS-11 disk to an RT-11 disk.

+ t.,t~~ ' Y ~~/~ ♦ i ' ~tit~t~ 4 ~1"I~f ~'t.lw}/l~~~l.:.~~~~ ♦ ~ w:~~~! ~ w~`!~! .d ~ 1 ♦ •I'

The next command copies a memory image file from an RT-11 disk to a RSTS/E format DECtape.

4-26

Interactive Commands COPY

/EXCLUDE —This option copies all the files on a device except the ones you specify. The following command-
copies all files from DXO: to DX1: except .OBJ and .SAV files.

• t:t:l~'`f ~~~XC;~_1.1~+E:: I:+Xq : t ~ . C~~{,.1 ~ 31c . ~F'~V 3 ~:+X 1 : ~K . ~k

/IGNORE —Use this option to ignore input errors dur~g a copy operation. /IGNORE ~ forces a single-block data
transfer, which you can invoke at any other time with the /SLOWLY option. Use /IGNORE if an input error
occurred when you tried to perform a normal copy operation. This procedure can sometimes recover a file that is
otherwise unreadable. If there is still an error, an error message prints on the terminal, but the copy operation
continues. This option is illegal with /DOS, /TOPS, and /INTERCHANGE.

<"1

/IMAGE — If you enter a command line without an option, or if you use the /IMAGE option, the copy operation
proceeds in image mode. Use this method to transfer memory image files and any files other than ASCII or formatted
binary. Note that you cannot reliably transfer memory image files to or from paper tape, or to the line printer or
console terminal. You ca.n image-copy ASCII and binary data with the following restrictions

1. For ASCII data, there is no check for nulls.
2. For binary data, there is no checksum consideration.

This command copies a text file to a DECtape for storage:

/INTERCHANGE[:size] —This option transfers data in interchange (proposed ANSI standard) format between
RT-11 block-replaceable devices and interchange diskettes that are compatible with IBM 3741 format. The option
must appear in the command line after the-file- to which it applies. If the output file is to be in interchange format,
you can specify the length of each record. The argument, size, represents the record length in characters. The fol-
lowing command transfers the RT-11 file WAIT.MAC from device DK: to device DX1: in interchange format,
giving it the name WAIT.MA. The record length is set to 128 (decimal) bytes.

• t~ t1~'Y W~ l 'I' . ~iAt" Z:+X :l : * . *f :I: ~~"~'MtiCfI--IAi~lti~:: ~. ~ t:3 .

/LOG —This option lists on the terminal the names of the files that were copied by the current command. Normally,
the system prints a log only if there is a wildcard in the file specification. If you specify /QUERY, the system prints
the name of each file and asks you for confirmation before the operation proceeds. In this case, the query messages
replace the log, unless you specifically type /LOG/QUERY in the command line. The following example shows a
copy command line and the resulting log.

~i lei cca~i~~:
I~X ~.: I~ I ~ . ~iAV
I~x i : I+lay , ~AV
r~x~;~'z~•.~AV

try ~:iXQ : Ii x ~ . ~AV
tca I~XQ : Iil.l~' . ~AV
try ~~Xo ~ ~' ~: ~• , ~AV

/NOLOG —This option prevents a list of the files copied from printing on the terminal.

/NEWFILES —Use this option in the command line if you want to copy only those files that have the current date..
The following example shows a convenient way to back up all new files after a session at the computer.

L+I~:A.~'t:l~
I+h:E~.~'gf~
I~h:C.~'Cl~

try I~X ~.: A . ~0~
try ~X ~.: ~ . ~0~
tc~ L+X 1 : t~ . FOfi

4-2 7

COPY Interactive Commands

/OWNER: [nnn,nnnJ —Use this option with /DOS to represent aDOS-11 user identification code (UIC) for a
DOS-11 input device. Note that the square brackets are part of the UIC; you must type them. The initial
default for the UIC is [1,1] . If you supply a UIC, it becomes the default for all future transfers.

/PACKED —This option copies files in PDP-10, DOS, or interchange mode. You can use /PACKED on an input file
specification with the /TOPS, /DOS, or /INTERCHANGE option to transfer files to RT-11 format.

/POSITION:n —Use this option when you copy files to or from magtape or cassette. The /POSITION:n option
lets you direct the tape operation; you can move the tape and perform an operation at the point you specify. For
all operations, omitting the argument, n, has the same effect as setting n equal to 0 (n is interpreted as a decimal
number). Since the option applies to the device and not to the files, you can specify one /POSITION:n option for
the output file and one for the input files.

For magtape read (copy from tape) operations, the /POSI'TION:n option initiates these procedures:

1. If n is 0
The tape rewinds and the system searches for the file you specify. If you specify more than one file, the
tape rewinds before each search. If the file specification contains a wildcard, the tape rewinds only once
and then the system copies all the appropriate files.

2, If n is a positive integer:
The system looks for the file at file sequence number n. If the file it finds there is the one you specify,
the system copies it. Otherwise, the system prints an error message. If you use a wildcard in the file speci-
fication, the system goes to file sequence number n and then begins to look for the appropriate files.

3. Ifnis-1:
The system starts its search at the current position. Note that if the current position is not the beginning
of the tape, it is possible that the file you specify will not be found, even though it does exist on the tape.

For magtape write (copy to tape) operations, the /POSITION:n option has this effect:

1. IfnisO:
The tape rewinds before the system copies each file. A warning message prints on the terminal if the system
finds another file on the tape with the same name and file type.

2. If n is a positive integer:
The system goes to file sequence number n or to the logical end of tape, whichever comes first. Then it
enters the file you specify. If you specify more than one file, or if you use a wildcard in the file specifi-
cation, the tape does not rewind before the system writes each file, and the system does not check for
duplicate file names.

3. Ifnis-l:
The system goes to the logical end of tape and enters the file you specify. It does not rewind, and it does
not check for duplicate file names.

4. If n is - 2:
The tape rewinds between each copy operation. The system enters the file you specify at logical end-of-
tape or at the first occurrence of a duplicate file name.

The system _also has special procedures for handling cassettes. For cassette read (copy from tape) operations, the
/POSITION:n option initiates these procedures:

1. IfnisO:
The cassette rewinds and the system searches for the file you specify. If you specify more than one file,
or if you use a wildcard in the file specification, the cassette rewinds before each search.

4-28 March 1978

Interactt've Commands COPY

2. If n is a positive integer
The system starts from the cassette's present position and searches for the file you specify. If the system
does not find the file you specify before it reaches the nth file from its starting position, it reads the nth
file. Note that if the starting position is not the beginning of the tape, it is possible that the system will
not find the file you specify, even though it does exist on the tape.

3. If n is a negative integer
The cassette rewinds, then the system follows the procedure outlined in step 2 above.

For cassette write (copy to tape) operations, the /POSITION:n option has this effect:

1. IfnisO:
The cassette rewinds and the system writes the file you specify at the logical end-of-tape. The system auto-
matically deletes any file it finds along the way that has the same name and file type as the file you
specify .

2. If n is a positive integer
The system starts from the cassette's present position and searches n files ahead, deleting along the way
any file it finds that has the same name and file type as the file you specify. If the system does not
reach the logical end-of-tape before it reaches the nth file from its starting position, it enters the file you
specify over the nth file and deletes any files beyond it on the tape. If the system reaches the logical end-
of tape before it reaches the nth file, it writes the file you specify at the end-of-tape position.

3. If n is a negative integer
The cassette rewinds, then the system follows the same procedure outlined in step 2 above.

Section 7.2.1 contains more detailed information about operations involving magtape and cassette .

/PREDELETE —This option deletes a file on the output device if you copy a file with the same name to that de-
vice. The system deletes the file on the output device before the copy occurs. Normally, the system deletes a file
of the same name after the copy operation successfully completes. This option is useful for operations involving
devices that have limited space, such as diskette. Be careful when you use the /PREDELETE option; if for any
reason the input file is unreadable, the output file will already have been deleted and you can be left with no
useable version of the file. Cassette and magtape devices are valid for input files but not for output.

/QUERY — If you use this option, the system requests confirmation from you before it performs the operation .
/QUERY is particularly useful on operations that involve wildcards, when you may not be completely sure which
files the system selected for an operation. The /QUERY option is valid on the COPY command only if both input
and output are in RT-11 format. Note that if you specify /QUERY in a copy command line that also contains a
wildcard in the file specification, the confirmation messages that print on the terminal replace the log messages
that would normally appear. You must respond to a query message by typing Y (or anything that begins with a
Y) and a carriage return to initiate execution of a particular operation. The system interprets any other response
as NO and it does not perform the specific operation. The following example copies three of the four .FOR files
stored on DK: to DX1:.

♦ t~ to ~' Y / t:1 U F~: ~ Y Y:~ ft d * . ~' t] ~i 1:~ X ~. : ~ .
~' i 1 ~~ G~~~ :i. c~~~

l:fh : ~1. ~'t:l~ Ica XtX 1 : ~ . ~'CIM~ ~~ Y
x~h : ~ . ~Of~ ~.c:~ ~~X 1 : ~ . ~'Cl~ ~ Y

I~~ : C . ~'Cl~ to IiX 1 : C . ~~F~ ? ~t:l
I~h : I~~i~(a~' 1 . ~'~l~ t~ IiX 1 : Ii~~t~~" 1 . ~'q~'~ Y

/NOQUERY —This option suppresses the confirmation message that the system prints for some operations, such
as COPY/DEVICE. It also suppresses logging of file names if the command line contains a wildcard. You must
explicitly type /LOG to obtain a list of the files copied.

4-29 March 1978

COPY Interactive Commands

/REPLACE —This is the default mode of operation for the COPY command. If a file exists on the output device
with the same name as the file you specify for output, the system deletes that duplicate file after the copy opera-
tion successfully completes.

/NOREPLACE —This option prevents execution of the copy operation if a file with the same name as the output
file you specify already exists on the output device. /NOREPLACE is valid only if both the input and output are
in RT-11 format. Cassette and magtape devices are valid for input files but not for output.

/SETDATE —This option causes the system to put the current date on all files it transfers, unless the current sys-
tem date is zero. Normally, the system preserves the existing file creation date when it copies a file block for
block. This option is invalid for operations involving magtape and cassette because the system always uses the
current date for tape files.

/SLOWLY —This option transfers files one block at a time. On some devices, asingle-block transfer increases
the chances of an error-free transfer. Use this option if a previous copy operation failed because of a read or
write error.

/SYSTEM —Use this option if you need to copy system (.SYS) files. If you omit this option, the .SYS files are
excluded from all operations and a message is printed on the terminal to remind you.

/TOPS —This option transfers files on DECsystem-10 DECtape to RT-11 format. The option must follow the
input file specification. Note that DECtape is the only valid input device. You cannot perform this copy opera-
tion while a foreground job is running. Use /PACKED with /TOPS to convert from TOPS-10 7-bit ASCII format
to standard PDP-11 byte ASCII format . The following command copies in ASCII format all the files named
MODULE from the DECsystem-10 DECtape DTO: to RT-11 device RKO:.

. c.a~~~~~~~~~~::r. ~ z:~~ra 4 ~caz~~~~~r::: o ~f~rr.~i~~~ rzi~o . * . ~

4-30 March 1978

Interactive Commands

The D (Deposit) command deposits values in memory beginning at the location you specify.

D SP address=value [, . . .value]

D

In the command syntax illustrated above, address represents an octal address that, when added to the relocation
base value from the Base command (if you used one), provides the actual address where the system must deposit
the values. The argument, value, represents the new contents of the address. If you do not specify a value, the
system assumes a value of 0. If you specify more than one value and separate the values by commas, the system
deposits the values in sequential locations beginning at the location you specify.

The Deposit command accepts both word and byte addresses, but it always executes the command as though you
specified a word address. (If you specify an odd address, the system decreases it by one to make it even.) The
Deposit command stores all values as word quantities.

Use commas to separate multiple values in the command line. Two or more adjacent commas cause the system to
deposit Os at the location you specify and at the following locations, if indicated.

Note that you cannot specify an address that references a location outside the area of the background job. You
can use the D command with GET and START to temporarily alter a program's execution. Use the SAVE com-
mand before START to make the alteration permanent.

The following command deposits Os into locations 300, 302, 304, and 306.

The next command sets the base address to 0.

s~

The following command deposits 3705 into location 1000.

X:~ 1 Q C} q ~~ ;~ ''l i7 ~;

The next command sets the relocation base to 1000.

~ ~. C) q C)

The last command puts 2503 into location 1500 and 22 into location 1502.

1~~ ~gC)~~~~:iCa:::~ ~ ~'

4-31

i

DATE Interactive Commands

Use the DATE command to set or to inspect the current system date.

In the command syntax shown above, dd represents the day (a decimal number from 1 to 31), mmm represents
the first three characters of the name of the month, and yy represents the year (a decimal number from 73 to 99).

To enter a date into the system, specify the date in the format described above. You should do this as soon as
you bootstrap the system. The system uses this date for newly created files, for files that you transfer to magtape
or cassette, and for listing files. The following example enters the current date.

To display the current system date, type the DATE command without an argument, as this example shows.

• Z:~AT~

The FB and XM monitors automatically increment the date at midnight each day. The SJ monitor increments
the date only if you select timer support as a SYSGEN option.

None of the monitors supports end-of month date rollover. You must issue the DATE command at the beginning
of each month.

4-32 March 1978

Interactive Commands DEASSIGN

The DEASSIGN command disassociates a logical device name from a physical device name.

DEASSIGN [(SPA logical-device•name]

In the command syntax illustrated above, logical-device-name represents an alphanumeric name, from one to three
characters long, that is assigned to a particular device. Note that spaces and tabs are not permitted in the logical
device name .

To remove the assignment of a particular logical device name to a physical device, specify that logical device name
in the command line. The following example disassociates the logical name INP: from the physical device to which
it is assigned.

• I:~~'~~c., :~ Cif! T ~F'

If you specify a logical name that is not currently assigned, the system prints an error message, as this example
shows.

To disassociate all logical names from physical devices, type the DEASSIGN command without an argument . The
following example disassociates all logical device names (except DK: and SY:) from physical devices.

If DK: is assigned to a device (such as DXl :, for example), the following command disassociates DK: from DXl
and restores the default association of DK: to SY:, the system device.

4-33

DELETE Interactive Commands

The DELETE command deletes the files you specify.

DELETE /DOS

/INTERCHANGE

/EXCLUDE
/LOG
/NEWFILES
/POSITION:n
/[NOJ QUERY
/SYSTEM

filespecs

In the command syntax shown above, filespecs represents the files to be deleted. You can specify up to six files;
separate them by commas. You can enter the DELETE command as one line, or you can rely on the system to
prompt you for information. If you omit the file specification, the DELETE command prompts you with Files?.
If you delete a file accidentally, it is possible to recover the file if you act immediately. A procedure for doing
this is described in Chapter 8.

The system has a special way of handling system (.SYS) files and files that cover bad blocks (.BAD files). So that
you do not delete system files by accident when you use a wildcard in the file specification, the system requires
you to use the /SYSTEM option when you need to delete system files. To delete a .BAD file, you must specify it
by explicitly giving its file name and file type. Since .BAD files cover bad blocks on a device, you usually do not
need to copy, delete, or otherwise manipulate these files.

Another feature of the DELETE command is that the system always requests confirmation from you before it
actually deletes a file. You must respond to the query message by typing Y followed by a carriage return in order
to execute the command.

The following sections describe the options you can use with the DELETE command.

/DOS —Use this option to delete a file that is in DOS-11 or RSTS/E format . Remember that the valid devices for
this type of file are disks and DECtape. You cannot combine any other option with /DOS.

/EXCLUDE —This option deletes all the files on a device except the ones you specify. The following command,
~ for example, deletes all files from DXO: except .SAV files. Remember to use /SYSTEM if you need to include

.SYS files in the operation.

• Z:+1:::~"~~T~~/~'XC1...lal:~1::: I:iXQ : ~ . ~~V

I"~ ~. l c~~~ ~~e:l F~•b~r.~
r~xc~ : ~a~~r.:. a~" ~~ ~ Y

Lix{~ : ~~~~G~ . aLI~ ~' Y

/INTERCHANGE —Use this option to delete from a diskette a file that is in interchange (proposed ANSI standard)
format. You cannot combine any other option with /INTERCHANGE.

/LOG —This option lists on the terminal a log of the files that are deleted by the current command. Note that
if you specify /LOG, the system does not ask you for confirmation before execution proceeds. Use both /LOG
and /QUERY to invoke logging and querying.

4-34 March 1978

Interactive Commands DELETE

/NEWFILES —Use this option to delete only the files that have the current system date . This is a convenient
way to remove all the new files that you just created in a session at the computer. The following example deletes
the backup files created today.

.~~~:~..~~~r~l~~w~~ xi...~ ~ ~:~x:~ : * . x;r~~~

/POSITION:n —You can use this option when you delete files from cassette. It permits you to direct the tape
operation; you can move the tape and perform an operation at the point you specify. Omitting the argument, n,
has the same effect as setting n equal to 0 (n is interpreted as a decimal number). The /POSITION:n option has
the following effect

1. Ifnis0:
The cassette rewinds and the system searches for the file you specify. If you specify more than one file,
or if you use a wildcard in the file specification, the cassette rewinds before each search.

2. If n is a positive integer
The system starts from the cassette's present position and searches for the file you specify. If the system
does not find the file you specify before it reaches the nth file from its starting position, it deletes the
nth file. Note that if the starting position is not the beginning of the tape, it is possible that the system
will not find the file you specify, even though it does exist on the tape.

3. If n is a negative integer
The cassette rewinds, then the system follows the procedure outlined in step 2 above.

/QUERY —Use this option to request a confirmation message from the system before it deletes each file. This
option is particularly useful on operations that involve wildcards, when you may not be completely sure which
files the system selected for the operation. This is the default mode of operation. Note that specifying /LOG
eliminates the automatic query; you must specify /QUERY wYth /LOG to retain the query function . You must
respond to a query message by typing Y (or anything that begins with a Y) and a carriage return to initiate execu-
tion of a particular operation. The system interprets any other response as NO and it does not perform the opera-
tion. The following example shows querying. Only one file is deleted.

~':i.1 ~r~ ~~ l ~~Fa~~

/NOQUERY —This option suppresses the confirmation message that the system prints before it deletes each file.

/SYSTEM —Use this option if you need to delete system (.SYS) files. If you omit this option, the system files
are excluded from the delete operation, and a message is printed on the terminal to remind you.

4-35

DIBOL Interactive Commands

The DIBOL command invokes the DIBOL compiler to compile one or more source programs.

DIBOL /LIST [:filespec] .[/ALLOCATE:size]
/[NO] OBJECT[:filespec] [/ALLOCATE size]

/ALPHABETIZE
/CROSSREFERENCE
/[NO] LINENUMBERS
/ONDEBUG
/[NO] WARNINGS

filespecs

In the command syntax illustrated above, filespecs represents one or more files to be included in the compilation.
If you omit a file type for an input file, the system assumes .DBL. Output default file types are .LST for listing
files and .OBJ for object files. To compile multiple source files into a single object file, separate the files by plus
(+) signs in the command line. Unless you specify otherwise, the system creates an object file with the same name
as the first input file and gives it an .OBJ file type. To compile multiple files in independent compilations, separate
the files by commas (,) in the command line . This generates a corresponding object file for each set of input files.

Language options are position dependent. That is, they have different meanings depending on where you place
them in the command line. Options that qualify a command name apply across the entire command string. Op-
tions that follow a file specification apply only to the file (or group of files separated by plus signs) that they
follow in the command string.

You can enter the DIBOL command as one line, or you can rely on the system to prompt you for information.
The DIBOL command prompt is: Files? for the input specification.

The DIBOL-I1 Language Reference Manual contains more detailed information about using DIBOL. The following
sections describe the options you can use with the DIBOL command.

/ALLOCATE:size —Use this option with /LIST or /OBJECT to reserve space on the device for the output file.
The argument, size, represents the number of blocks of space to allocate . The meaningful range for this value is
from 1 to 32767. A value of -1 is a special case that creates the largest file possible on the device.

/ALPHABETIZE —Use this option to alphabetize entries in the symbol and label tables. This is useful for program
maintenance and debugging.

/CROSSREFERENCE —This option generates a symbol cross-reference section in the listing. This options adds as
many as four separate sections to the listing. These sections are: 1) symbol cross-reference table, 2) label cross-
reference table, 3) external subroutirP cross-reference table, 4) COMMON cross-reference table. Note that the
system does not generate a listing by default. You must also specify /LIST in the command line to get across-
reference listing.

/LINENUMBERS —This option generates line numbers for the program during compilation. These line numbers
are referenced by the symbol table segment, label table segment, and the cross-reference listing; they are especially
useful in debugging DIBOL programs. This is the default operation.

/NOLINENUMBERS —This option suppresses the generation of line numbers during compilation . This produces
a smaller program and optimizes execution speed. Use this option to compile only those programs that are already
debugged; otherwise the DIBOL error messages are difficult to interpret.

/LIST[:filespec] —You must specify this option to produce a DIBOL compilation listing. The /LIST option has
different meanings depending on where you place it in the command line.

4-36

Interactive Commands DIBOL

If you specify /LIST without a file specification in the list of options that immediately follows the command name,
the DIBOL compiler generates a listing that prints on the line printer. If you follow /LIST with a device name,
the system creates a listing file on that device. If the device is afile-structured device, the system stores the listing
file on that device, assigning it the same name as the input file with a .LST file type . The following command pro-
duces alisting on the terminal.

~i x ~ CI I~ I I...:~ ~ ~' :1"~' : A

The next command creates a listing file called A.LST on RK3:.

r

If the /LIST option contains a name and file type to override the default of .LST, the system generates a listing
file with that name. The following command, for example, compiles A.DBL and B.DBL together, producing files
A.OBJ and FILEI.OUT on device DK:.

You cannot use a command line like the next one. In this example, the second listing file would replace the first
one and, therefore, cause an error.

Another way to specify /LIST is to type it after the file specification to which it applies. To produce a listing
file with the same name as a particular input file, you can use a command similar to this one

The command shown above compiles A.DBL and B.DBL together, producing files DK:A.OBJ and RK3:B.LST. If
you specify a file name on a /LIST option following a file specification in the command line, it has the same mean-
ing as when it follows the command. The following two commands have the same results:

.~tx~Ol.. A/L.:~::i~':

Both the above commands generate as output files A.OBJ and B.LST.

Remember that file options apply only to the file (or group of files that are separated by plus signs) that they
follow in the command string. For example:

.~~ ~ ~CJi~ A/I.N :~ ~T ~

This command compiles A.DBL, producing A.OBJ and A.LST. It also compiles B.DBL, producing B.OBJ. However,
it does not produce any listing file for the compilation of B.DBL.

r

/OBJECT[:filespec] —Use tli.is option to specify a file name or device for the object file. Because DIBOL creates
object files by default, the following two commands have the same meaning.

4-37

DIBOL Interactive Commands

Both commands compile A.DBL and produce A.OBJ as output. The /OBJECT option functions like the /LIST
option; it can be either a command or a file qualifier.

As a command option, /OBJECT applies across the entire command string. The following command, for example,
compiles A.DBL and ~B.DBL separately, creating object files A.OBJ and B.OBJ on RK1:.

Use /OBJECT as a file option to create an object file with a specific name or destination. The following command
compiles A.DBL and B.DBL together, creating files B.LST and B.OBJ.

/NOOBJECT —Use this option to suppress creation of an object file. As a command option, /NOOBJECT sup-
presses all object files; as a file option, it suppresses only the object file produced by the related input files. In
this command, for example, the system compiles A.DBL and B.DBL together, producing files A.OBJ and B.LST
It also compiles C.DBL and produces C.LST, but does not produce C.OBJ.

.r• r ~c~~.. ~~~~r~. ~: ~~r ~ ~~~c~ra~..~~:c:~ri~. z r~.

/ONDEBUG —This option includes a symbol table in the object file. You can then use a debugging program to
find and correct errors in the object file.

/WARNINGS —Use this option to include warning messages in DIBOL compiler diagnostic error messages. These
messages call certain conditions to your attention, but they do not interfere with the compilation. This is the
default operation.

/NOWARNINGS —Use this option to suppress warning messages during compilation. These messages are for your
information only; they do not affect the compilation.

4-38

Interactive Commands DIFFERENCES

The DIFFERENCES command compares two files and lists the differences between them in a file or on a device.

DIFFERENCES /OUTPUT:filespec[/ALLOCATE size]
/PRINTER
/TERMINAL

/BLANKLINES
/ [NO] COMMENTS
/FORMFEED
/MATCH:n
/[NO] SPACES

filespec 1,filespec 2

In the command syntax shown above, filespecl represents the first file to be compared and filespec2 represents
the second file to be compared. The default output device is the console terminal. The default file type for input
files is .MAC; for output files it is .DIF. You ca.n specify the entire command on one line, or you can rely on the
system to prompt you for information. The DIFFERENCES command prompts are File 1 ? and File 2? .

The DIFFERENCES command is particularly useful when you want to compare two similar versions of a source
program. A file comparison listing highlights the changes made to a program during an editing session. The follow-
ing sections describe the various options you can use with the DIFFERENCES command. Following the descrip-
tions of the options is a sample listing and an explanation of how to interpret it.

/ALLOCATE:size —Use this option with /OUTPUT to reserve space on the device for the output listing file. The
value, size, represents the number of blocks of space to allocate. The meaningful range for this value is from 1 to
32767. A value of -1 is a special case that creates the largest file possible on the device.

/BLANKLINES —Use this option to include blank lines in the file comparison. Normally, the system disregards
blank lines.

/COMMENTS —when you use this option, the system includes in the file comparison all assembly language com-
ments (text on a line preceded by a semicolon) it finds in the two files. This is the default operation.

/NOCOMMENTS —Use this option to exclude comments (text on a line preceded by a semicolon) and spacing
(spaces and tabs) from the comparison . This is useful if you are comparing two MACRO source programs with
similar contents but different formats.

/FORMFEED —Use this option to include form feeds in the output listing. Normally, the system compares form
feeds but does not include them in the output listing.

/MATCH:n —Use this option to specify the number of lines from each file that must agree to constitute a match.
The value, n, is an integer in the range 1 to 200. The default value for n is 3.

/OLTIPUT:filespec —Use this option to specify a device and file name for the output listing file. Normally, the
listing appears on the console terminal. If you omit the file type for the listing file, the system uses .DIF.

/PRINTER —Use this option to print the listing of differences on the printer. Normally, the listing appears on the
console terminal.

/SPACES —This option includes spacing (spaces and tabs) in the file comparison. This is the default operation.
This is particularly useful when you are comparing two text files and must pay careful attention to spacing.

4-39

DIFFERENCES Interactive Commands

/NOSPACES —Use this option to exclude spacing (spaces and tabs) from the file comparison. This is useful when
you are comparing two source programs whose contents are similar but whose formats are different .

/TERMINAL —Use this option to make the list of differences appear on the console terminal. This is the default
operation.

To understand how to interpret the output listing, first look at the following two text files.

M~~~' ~ p ~iJ~'~'I...~ AM~:i AID HCI~~~T ~'~ I ~i~D !
WM~1~' WAD Y~: W I ~N ~~I~ ~~ ~ ~ ~ ~iA~!'~

WI••1~1 I~~1`!~i r I:{~:~'C.l~i !~! ~ ~i !N. x 1~'~ i'~~1Y Ei~l~~ r

T~l~."]~!■y~ ~~T■y~NH '~1'M1•~

~iCl~i~■lyr..l~'■/~~■
~~~ ~'M~:Y ~'~..Y ~ 

■ 1 M' ~ ~ NM ~ • • ~N ~ • • ~ Y NN NI ~ NI ~ ~ ~ ~ ~ • - ~ 
NN N.. 

~i~lD t:0~~~:i I~ICJ~' hY WI••I~i~l ~CJI.lCMT r ~AI`t. 

M.. NN 

,.I t:f ~ • • ~ ~ • • ~ ~ • ~ 

+'r Y r~'r' t~N x ~.. r~ ~ . ~r ~'~r 
~' ~: I.N ~::!. 

1•~~f~~: ' ~ ~ ~CIT'T~N..M ~I~D A~ M~M~~T ~'fi ~ ~:1~D ! 
WM•i(~~' WAD Yf: W ~ ~a!••I ~'CaI•~ ~'i~1:1: i~ r i"i~~~ 

W N•I ~ I~ ~' I~ ~ r ~:{ I:~ I~~' IJ !:~ ~~ i••I :~ ~ iN.:~ ~' C.: ~ ~ Y ~•~ M D r 
W i••I ~ ~' M :~ ~ ~ !••1 ~ !"i ~: ~'i ~ Y X ~ I::: t:l ' t : ~1 ~i ~: r iii (~ i~! ? 

'~' I••I ~' ~! ~ n T' C: I••1 ~' I••! 1::. i"i t~ i"i ~N i~! '~' :a ~ ~ ~' i~I ~: Y ~" I... Y ~ 
~~~~ lJ~ ~" ~'I•-IN~i~~i ~~ Y~: C1~1C3HT ~ ~~1~ : ......N 

~{ ~:: I...:~ ~: U ~: i~f !~ p I-•1 ~ ~'' I"' .0 M I"N ~ .~'.~ ~. ~? ~ INI Y
AM~~ C:Cl~f~~~" MST ~Y Wi••i~i~! ~CII.ltoi••I~' ~ i"i~~t .

N.... :c:it::C)~'~'~~iW it~i~lC~

Notice that FILEI .TXT contains two typing errors. In the fourth line of the song, "shame" should be "share."
In the seventh line, "sly" should be "shy."

The following command compares the two files, creating a listing file called DIFF.TXT.

♦
~:i

:~ ~N. IN. ~:
!~4

~:: ~ t" i~" ~ S ~ ~ n '~' t" M o ~. f t:? lJ ~' f =` l.! ~' : ~~ :~ ~"' ~" . ~' X '~' ~~' I I.N C~ :L + ~' X '1' ~ i~" :~ l.. ~~ ~ . T X ~'

l~ ~ ~..~~ ~~r:~ r~ ~ rN~'~::~I~~~'

The following listing shows file DIFF.TXT.

a~ ~ .I. I•" .~ •.N ~N :I.

4-40

Interactive Commands DIFFERENCES

~. } ~.
1}
**~*
~) 1 W H A'T H I ~a

~) THF.::i~ CA'T'CH

1 } ~. ~f«:l~ I ~U~ ~E ~
1 } A~lli Cai~fE

,~} AHT~ Caivi~"~

WHAT f~ ~
TH~~t MATCH

tHAi~~ f~fAY ~f= a' c;A~f~ ~ f~fAi~'~
'Y'H~ ~'fai"i~~lT';~ Aq TF~~Y ~`I...Y~

gHAf~~: ~fAY ICE a' CAN~~ ~ i~A~!'?
THE i~ai~~~lT~ A~ 'T'I~~f~Y ~~L.Y r

HAf~'~' I H~qq I q qt~.Y r
~laT AY WH~~! ~atJgHT ~ i~A~! .

HAF'fw' I H~q~ I q SHY x
~taT AY WM~~"~ ~a1.1C3HT ~ ~A~! .

If the files are different, the system always prints the first line of each file as identification .

1 } 1 ~'I~f~~.

The numbers at the left margin have the form n)m, where n represents the source file (either 1 or 2) and m repre-

sents the page of that file on which the specific line is located.

The system next prints a blank line and then lists the differences between the two files. The /MATCH:n option

was used in this example to set to 1 the number of lines that must agree to constitute a match.

The first three lines of the song are the same in both files, so they do not appear in the listing. The fourth line

contains the first discrepancy. The system prints the fourth line from the first file, followed by the next matching

line as a reference.

WHAT H x t, SHAME f~AY ~~ a' CAf~f ~ r ~fA~!`~
'THEi~ CATCH THf;~ i~a~i~'f\lT~~ Aq THF~'~ f="I._Y~

The four asterisks terminate the differences section from the first file.

The system then prints the fourth line from the second file, again followed by the next matching line as a refer-
ence

~' } ~. WHAT HIS ~HA~;~ ~fAY ~~~ a' CA~~ ~ iviA~!"~'
~} 'THEE! CATCH THE Ma~i~"i~T~ A5 THE.:' f•=1_Yr

The ten asterisks terminate the listing for a particular difference section.

The system scans the remaining lines in the files in the same manner. When it reaches the end of each file, it

prints the %FILES ARE DIFFERENT message on the terminal.

If you compare two files that are identical, the system does not create an output file or listing, as this example

shows.

1:~ :f: f" f:` f:" f ~~ f::: f~ t : f~: ~~ f~" :f: f... f:~ :f. . 'T X '1' y F~' :C I... f~: :l. . ~ A f

~!0 I~ I E'E'Er~E~i~CE~ t~~lCal.lhlTf~I~1 :Ii

4-41 March 1978

DIRECTOR Y Interactive Commands

The DIRECTORY command lists information you request about a device, a file, or a group of files.

DIRECTORY ^ /OUTPUT:filespec[/ALLOCATE:size]
/PRINTER
/TERMINAL

/BADBLOCKS[/FILES]

/DOS[/OWNER: [nnn,nnn]]

/INTERCHANGE

/TOPS

/VOLUME I D

/BEFORE [date]
/DATE [date]
/NEWFI LES
/SINCE [date]
/ALPHABETIZE [/REVERSE]
/ORDER [:category] [/REVERSE]
/SORT[:category] [/REVERSE]
/BLOCKS
/BRIEF
/COLUMNS:n
/DELETED
/EXCLUDE
/FAST
/FREE
/FULL
/OCTAL
/POSITION
/SUMMARY

SP filespecs [/BEGIN]

In the command syntax shown above, filespecs represents the device, file, or group of files whose directory informa-
tion you request. The DIRECTORY command can list directory information about a specific device, such as the
number of files stored on the device, their names, and their creation dates. It can list details about certain files,
too, including their names, their file types, and their size in blocks. You can specify up to six files explicitly, but
you can obtain directory information about many files by using wildcards in the file specification. The DIRECTORY
command can also print a device directory summary, and it can organize its listings in several ways, such as alpha-
betically or chronologically.

Normally, the DIRECTORY command prints listings in two columns on the terminal. Read these listings as you
would read a book: read across the columns, moving from left to right, one row at a time . Directory listings that
are sorted (with /ALPHABETIZE, /ORDER, or /SORT) are an exception to this. Read these listings by reading
the left column from top to bottom, then reading the right column from top to bottom.

The DIRECTORY command does not prompt you for any information. If you omit the file specification, the
system lists directory information about device DK:, as this example shows.

4-42

Interactive Commands DIRECTOR Y

I:~ l: h M:: t:~ •Y• t:l ~~ Y

1. ~--~~ ~.-. l
I~Xi~~t~..J . ~Y~•a ~8 p~3-••A~ r•••• 7~ AAA• . r~AC ~ ~. 9-••A~- r••-77
~' I X4b3 . ~AV ~ ~9-••..1+.~ :I. --7c~ ABC . ~'fAC; ~ :~ ~--A~-~ r•--77
Ji"il.l~. . Cl~..l :l {)~•--~i~~-••~~ I~~'i~a~'C . ~fAC I ~3--•,.l~r~+•-- ~7
~'TCH . E~Ah 1 q1,~~~~~•-••7~ CT . ~Y~ ~; {)t•:3•-•A~-~ r....•l~
IiX . ~Y~ 3 Ot3--A~ r--~7 ~~~G~ . F~'tal'•~ ~4 ~ ~-••A}~ Y•--77
~iY~'f~gG . i"fAC ~ ~~-.4••-~'~~i•-•77 V'riMiAC . i"fAC ? 3 ~. K~~A+..~~••-1fa
ALN I ~ . QE~.J ~ {)3•--i~'i~~~•-••7 i ~iX . ~Y~i q C)B--A~~ r--77
L~Xi~~~'~ . ~Y5 ~~ Q8•-•A~ r-••7~ I~ I ~ . ~AV ~. E~ n~3--•A~ r--7~
I~UF~' . ~AV ~. 7 ~. ~..NA~., r••-~ 7 f' I ~' . ~AV ~. c~ ~. 4..NA~:, r..-7~

~.~
M

~'i ~.e~
.

r ~8q ~1ca~k.~
1 I ~. r~M. rN~ 1 o~k.~.~

If you specify only a device in the file specification, the system lists directory information about all the files on
that device. If you specify a file name, the system lists information about just that file, as this example shows.

,~:~:c~~~r.:'rc~~Y r+x{)~~Y~'~C~G.~AC

1 ~' i t ~~ r 7~ l c:i~k.~
~. ~~ ~. ~" r e ~ ~a l c:~ c~ I~. <:~

The following sections describe the options you can use with the DIRECTORY command and provide sample
directory listings. Some of the options accept a date or part of a date as an argument. The syntax for specifying
the date is

[:dd] [:mmm] [:yy]

where

dd represents the day (a decimal integer in the range 1-31).

mmm represents the first three characters of the name of the month.

yy represents the year (a decimal integer in the range 73-99).

The default value for the date is the current system date. If you specify just the day, the system interprets it as

the given day of the current month and year. If you specify just the month, the system interprets it as the first

day of the given month in the current year. If you specify only the year, the system interprets it as the start of

that year. If the current system date is not set, it is considered 0 (the same as for an undated file in a directory

listing).

/ALLOCATE:size —Use this option with /OUTPUT to reserve space on the device for the output listing file.

The value, size, represents the number of blocks of space to allocate . The meaningful range for this value is from

1 to 32767. A value of -1 is a special case that creates the largest file possible on the device.

/ALPHABETIZE —This option lists the directory of the device you specify in alphabetical order by file name

and file type. It has the same effect as the /ORDER:NAME option.

~"1~ /BADBLOCKS —Sometimes devices (disks and DECtapes) are manufactured with bad blocks, or they develop

bad blocks as a result of use and age. Use the /BADBLOCKS option to scan a device and locate bad blocks on it.

The system prints the absolute block number of these blocks on the devices that return hardware errors when

DIRECTORY Interactive Commands

the system tries to read them. This procedure does not destroy data that is already stored on the device. Remember
that block numbers are octal and the first block on a device is block 0. If a device has no bad blocks, an informational
message prints on the terminal.

/BEFORE date] —This option prints a directory of files created before the date you specify. The following vom-
mand lists on the terminal all files stored on device DXO: that were created before April 1977.

+Z:~ z ~~~~C:~l't:l~'Yf ~~:~Ca~ti~ : A~`~ ~iXa

~ z X4c~3.8AV ~ ,~?9~••..1~..{:I. ••-~'c~i

4 Fi tee ~ ~~. ~~.rar•i~.~
:L 91 h r ~ ~ ~:~ :1. ra c~ {f.

X~~~f0~'~.i~A~
VTMAC .i~A~

18•~,.1~r~~•~77

/BEGIN —This option lists the directory of the device you specify, beginning with the file you name and includ-
ing all the files that follow it in the directory. The occurrence of file names in the listing is the same as the order
of the files on the device .

The following example lists the file VTMAC.MAC on device DXO: and all the files that follow it in the directory.

~~:~ z ~~c•ra~Y r.~Xa + VTi~At~ . ~A~i~{~~~ z ~

VT~iA~ . ~fAt: ~ ~3:~ ••~A+.~~~~••7b
i~X .8Y8 9 a8•~-A~, r__~7
I~z ~ .8AV ~. ~ a8.._A~ r-~~7
~~ z ~' .8AV :~ ~ :~ ~•~A~- r•~71

~. 9 ~. 1~" r ~ ~~ 1~~ 1 ca c.' {~.

AL z ~ , a~.a
IiXI"iitil~'I:~ . Gi Y8
~~ ~.a ~• . 8 A V

~ a:~~-~~~N~~~
9 ' a8••~A~~ r-• 7~
:I. ~ 1 ~.•••Ar~ r..~7~

/BLOCKS —This option prints a directory of the device you specify and includes the starting block number in
decimal of all the files listed. The following example lists the directory of DXO:, including the starting block
numbers of files.

• 1~~ I F~~~'TCIF~Y/E{L-t~C:f~~ l~~Xa
19•~i~~~.~•~•77

~iX~4i~~iJ.8Y8
F' z X4fa;3.8AV
Ji~ll~. .OEc.J
F'TCH . EcAh
LAX .SYB
i~YF'~'OG.~iAC
ALZE .OEJ
IiXi~i~~'~ . 8Y8
IiIJ~' .8AV
18 ~'i lei r
191 Fr~~

8~3 a8~-A~ r~~ ~7
'9•~J~.a~.~-~c5

~. a~••~t~a~••-7~
;~ a8•~A~r-77

97 a8••~A~ r~••~7
1 ~ 13•~A~-~ r••-~~
8 9 ~ ~. c~ c~ k.

AAA' .~iAC
ABC . ~iAC
r~~r~a~~ . I~AC
CT .8Y5
~E~G~ .~0~
VT~iAC . ~fAC
i~X .8Y8
I~:~~` . rAV
~' z F' . 8 A V

4 19~••A~ r--77
18•~J~r~--~~
a8••~A~ r~-~7

b ~ ~•~A~~ r~-~~
7 :31 •~ A ~.~ ~ ~•• 7 6
9 a8•~•A~ r•~77

1 b a8-~A~ r-~77
1 b 14~•A~ r~-77

10~
~. ab
138
~. a
~. ~ 8
1~1
~. 8 9
3~7'
~~a

/BRIEF —This option lists only file names and file types, omitting file lengths and associated dates. It produces
a 5-column listing, as the following example shows.

4~4 March 1978

Interactive Commands

Ii:L ~Et~TQ~Y/S~ I ~'F' I~Xa
19~•~f~~.~-77

IiXi~i~S..! . SY~i AAF' . ~fAC
I~Ei~O~G . SAC F'TCH . E~At~
~YF'f~OG . i~AC VT~fAC . i~At~
I~ I ~ .SAV I~l.1F' .SAV

18 F'a. lei s► ~~39 E~lack.~
~. 91 F' rem ~ 1 c~cl~.

F" :~ X~b3 . SAV
t~T .SYS
AL I ~ . ilL~,J
F'IF' .SAV

AEG
I~ X
~X

DIRECTOR Y

. i~AC .Jt~l1L . O~.J

.SYS ~i~FiG~:: . ~ CIFi

.SYS IiX~i~lF'~ .SYS

/COLUMNS:n -Use this option to list a directory in a specific number of columns. The value, n, represents an
integer in the range 1-9. Normally, the system uses two columns for regular listings and five columns for brief
listings. The following example lists the directory information for device MTO: in one column.

~. ~~-A~~ Y•-~7~
VTi~AC . i~At~
SYG~lLi . i~AG
I~ I SECT . i~At;
F' I F'SYi~ . i~AC
~' ~ F'aa ♦ i~Ac.~
VT~fAC: . ~fAC;
SYG~IIi .~At~
Ii I ~~~CT . i~A~
F' I F'SY~i . i~AG
F' :~ F'oa . ~iAt~

:~ a F' i ~. r~ ~ 9

~ 1~.;~-A~r~•77
~; :~ ~ •-•• A ~ r -~ 7

1.1. ~' 1 ~"••As~ r.".77

1 •-A~ r~-71

4 1 ~.."A~ r-~7~
~. ~h 1 ~-~A~ r~-~7

~4~5 ~ l c~c~k.~

~iTa:

:~

;~
4
r.

f3

:L {~

In the example shown above, the numbers in the rightmost column represent the magtape file sequence numbers,
which appear because of the /POSITION option.

/DATE date] -Use this option to include in the directory listing only those files with the date you specify. The
following command lists all the files on device DXO: that were created on 8 April 1977.

, D Z F~F:C:'~'Clf~Y/I~A'Tk:.: ~3 : AF`Fi : 7:7 IrXa
19 ...• i"i ~:~ ~:~ •"• 7

DX~i~lS,.1. S'f S S~3 C~S••-A~ r•--• 7~
~:iX .SYS ~ C)S-"A~ r••"7~
T.iXi~i~~"~ .SYS ~~ 7 af3"-A~-~ r"-- 7~

c5 ~'i ~.t~~ ~ ~1~3 L~1r~c"~k.~.
~.~1 F'r•~~ ~~1ac~If.~

CT
~X
z:tl~

.SYS
..~-.aYS
a t)AV

af3~-•A~- r•"-•7~

~. ~ al:-3.."A~~ r""7~

/DELETED -This option lists a directory of the device you specify, listing the file names, types, sizes, creation
dates and starting block numbers in decimal of files that have been deleted but whose file name information has
not been destroyed. The file names that print represent either tentative files or files that have been deleted. This
can be useful in recovering files that have been accidentally deleted. Once you identify the file name and location,
you can use DUP to rename the area. See Section 8.2.1 for this procedure. The following command lists files on de-
vice DT1: that have been deleted.

Li I ~~C'~'Cl~'Y/IiF:I...~~T~~~:~ TiT ~.
15~-~i~~~~•~~7

TEST . i."ST i:~a '7•"•A~~ r-"- I7 48
a ~~. ~~~ ~ a ~~~~~~.~
a F' r~~, ~ 1. cac:.•k.

4-45

DIRECTORY Interactive Commands

Note in the example shown above that, since a deleted file does not really exist, the total number of files,
blocks, and free blocks is 0.

/DOS —Use this option to list the directory of a device that is in RSTS/E or DOS/BATCH format. The only
other options valid with /DOS are /BRIEF, /FAST, and /OWNER. The valid devices are DECtape for RSTS/E and
DOS/BATCH, and RKOS for DOS/BATCH.

/EXCLUDE —This option lists a directory of all the files on a device except those files you specify. The follow-
ing example lists all files on DXO: except the .SAV and .SYS files.

•r• x ~~c::~r~r~~Y/i~:xCi~.~~r.~~~ ~:~xc~ : ~ ~ . ~~~ . * . ~Y~ ~
~a ~•• ~~ ~~ -~• 7 7

A~~' .MAC ~ 19•-~A~-~ r•--- 7 7 ~1~C . SAC
,.1~'ilJ~.. .QB.J ~. q~..~~~~~....77 I~~l~q~'q.i~AC
F'TC~I . BAS :i. Q~•~•~f~~~.~~•-77 ~~~G~ . ~qf~
i~Y~'~gq . ~i~C 7 '~••~~'~~~••••77 VTi~~1C . i~AC

9 ~i 1~~ ~ ~~ l~1gc:.•I~.~
191 I•~' r ~ ~ r:~ 1 c-~ c~ k. ~~

~ 19....A~r..--77
1 q..-..1 ~r•.~•77

Ei ,~ -4 .~- ~ ~~ r, .-~ 7 7
7 3 :L •~• A ~..~ ~ ._. 7 ~

/FAST —This option lists only file names and file types, omitting file lengths and associated dates. This option
is the same as /BRIEF.

/FILES —Use this option with /BADBLOCKS to print the file names of bad blocks. This is particularly useful if
the device is not a standard RT-11 directory-structured device. If the system does not find any bad blocks, it
prints an informational message, as this example shows.

•Ltd:~'t~'t:Tt7l~~Yf~{~~~~I.~t~t:l~:~:i/!~':rl...l~:~i X:~'T:I. :
`~' ri l! ~' _~ •~ ~! c:~ ~ :ti ~:-~ ~~f ~:~ ~. c:~ c:.• I~. s:> f :i F ~ ~f: c:~ c:~ -l: c? ~~i

/FREE —Use this option to print a directory of unused areas and their size. This example lists the unused areas
on device DK:.

•r~I~~CTq~Y/~f~~~
:~ 9~-~ia~.~•~77

': tJ ~! lJ ~ ~: ri :'
IJ~Uq~'ri :'••

': t.! ~! lJ ~ ~ r~
•~ : l.a ~ tJ ~ ~: r~ ::~•
. u~us~r~ :::

~: IJ~IJ~~ri

~~ 1 ~' reca ~:~ ~. ac~`w.~:~

• : lJ~ltJ~i~:r~ 1
•~: Ui~lJq~rt :'••

tJ~ltJ~Er~ :' ~Q

U~lU~~Ii ::~
U~lUq~'ri :'

/FULL —This option lists the entire directory, including unused areas and their sizes in blocks (decimal). The
following example lists the entire directory for device DTO:.

• r~ I f~~CTQ~Y /~'lll~l~
19•~~i~~~•77

~r~ ~ T 1 . ri~'i~
~' 1 X4c~~ . ~~U
~ri1T:~ .r~~~i
~'IJT~T~.q~.J

I~T4:

9 •--..1 ~~i 1 •~- 7 c5
1 Q3•-~i~~~~~••••77
7 14•••-11~~ r~77

~~ri I T~ . ri~~
~':C~..~"1 . TXT
~'q~iT~~.~AV

1 C~;~••-i~~~•~77
~. 19••~i~~~•~77

.~C? ~. C) ~. •—~~~....77
0~~•~ia~•~77

4-46 March 1978

Interactive Commands DIRECTOR Y

~'~qi~~'T . ~AV ~ q~••~i~~~•~~7
f~CIQT .I~~~' :~ G.~~~~•~77

tJV~L.AY . ~~~ i q~..N~i~~sN»~~
~'T~H .~iAC ~. G~~~~'i~~~~»..~7

~' ~ l...E„"' .TXT ~. :l. 9•~M~t.~•••-~~

~,~8 ~' rye ~»~ ~. ask.

G. •...i"i~~••••~~
Q~}..N~ ~~:~•-••~7

1f ~

..M ~ ~ `~ .N. ~ •• j

G"~;~-.~i~~~NN~~

/INTERCHANGE —Use this option to list the directory of a diskette that is in interchange (proposed ANSI

standard) format. The only other options valid with /INTERCHANGE are /BRIEF and /FAST.

/NEWFIL,ES —This option includes in the directory listing only those files that were created today. This is a

convenient way to list the files you created in a session at the computer. The following command lists the new

files on 19 May 1977

+~ I ~~~TCIf~Y/~l~W~" ~ LNG ZiTQ
15~•~i~~~~~~'

~x~~i .TXT ~. :~9~•~i~~~NN7'~
~i lei f ~ ~lc~rk.~

~' ~ I...~w.. .TXT ~. ~. ~""~'i~~~""~~

/OCTAL —This option lists the sizes (and starting block numbers if you also use /BLOCKS) in octal. If the device

you specify is a magtape or cassette, the system prints the sequence numbers in octal. The following example

shows an octal listing of device DXO:.

~. ~....~~:, r ..N7~
~ i c,~.N.~~., r ..N7~

~ :3 :1. ..N~~~t~....~~,

',~C? q~•~~s~ r..N'~~

/ORDER[:category] —This option sorts the directory of a device according to the category you specify. Table

4-3 summarizes the categories and their functions.

Table 4-3 Sort Categories

Category Explanation

DATE

NAME

POSITION

SIZE

TYPE

Sorts the directory chronologically by creation date. Files that have the same date are sorted alphabetically by file name

and file type

Sorts the directory alphabetically by file name. Files that have the same file name are sorted alphabetically by file type

(this has the same effect as the /ALPHABETIZE option).

Lists the files in order by their position on the device. This is the same as using /ORDER with no category.

Sorts the directory based on file size in blocks. Files that are the same size are sorted alphabetically by file name and

file type.

Sorts the directory alphabetically by file type. Files that have the same file type are sorted alphabetically by file name.

4-47

DIRECTOR Y Interactive Commands

The following examples list the directory of device DXO:, in order by each of the categories.

. L~ ~ ~~CTCI~Y/0~~~ :.~ : xiAT~ ~iXa
19—Maw—~7

~' T XQ~i~ . ~AV ~ ~9N•~..1~.~ ~. ••N7c5
VTMAC .MAC 7 :3 ~. ~••A~.~~••-•~~i
~~~MCI~"C.MAC ~ 18~••..1~r•~~••77 
MY~'~CIG .MAC ~ ~~•~F'~~~~-7~ 
CT Y~ afi~••~A~~ r~•7~ 
~~ ~ ~ . ~AV 1 ~i aC~-A~• r•~77 
IiX . Y~ 3 aC~-•A~ rN••~~ 
~~XM~t~'~; . ~Y~a 97 aC~•A~ r•~~7 
IiXM~l~.J . ~Y~ #~#~ a~3-~A~ rN-7~ 
iC ~'~. ~.~~ r ~~39 ~lca~l~.~ 
19 ~. ~' r ~ ~ l~~ ~. ca c' I~. 

19-~i~~~.~•~77 
AAA' .MAC ~' 19•~A~~r-~•7'~ 
ABC .MAC 4 :~ 9~•-~1~-~ r•~~~ 
A~.I~ .O~.J ~ a~•-~M~~s~•77 
CT . ~Y~ a~3•~A~ rNN~~ 

~~~MQ~'C .MAC 113~••~1~iN~•-•~7 
~~ ~ ~ . ~AV 1 b C)f:3~•Ar~ rN••~7
Iil.~~' . ~AV :~ ~ 13••NA~ r•~7~
Z:~X . ~Y~ ~ a~3NNA~ r•~77
~:~XM~l~'~ . ~Y~ 97 a8•~A~ r•~-77

x.91 f~ r~~a 1:.~:1.~c`I~.{~

. ~~ ~ ~~CTCI~iY/q~X:+~~ ; ~'t~~ :~ T :~ Cl~! ~iXq ~9~•M~~~•~~~
~tXMi~S,~ t ~iY~ ~3~3 a~•~A~ r•~•7~
AAA'

.)y

.MAC ~ :1.9•-~A~ yr

■,..N~.l.

X ~ ~ 1M . ~ A ~ ,A •~.. JA •~.. ~ NN ~.~ ~Nt M

..N

f ~!

ABC .MAC ~ 19••NA~ r•~~~

~:~~:M~l~'C .MAC :I. C~••J~~r~•---77
~'TCM . ~Ai~ 1 a~~-M ~~.~•••-77
CT Y~ ~ a~3~-~As~r••N71
IiX Y~ ;~ a~•~A~r,....17

~.~ ~'a. ~.e~ r ~~39 ~1~~k.~
191 ~'re~ ~~ a. rack.

. ~~ x ~iECTt~~ Y/Q~tl~~i~ : ~ I ~:~ ~iXa
19•~M~~~•7~

.JMlJL . CI~,J :l a~••NM~~~•• ~"l'

AAA' .MAC ,~ 19••NA~ r•~~7

AL.. ~ ~ . C1~,.1 ~ a3~•M~~~••N~7

MX
~i l.1 ~'
~'IF'
AAA'
ABC
M~~G~:
A~Nx~
..1MU~..
~'TCM

.~Y~

.~AV

.~AV

.MAC
.MAt.
* ~" Cl I•~
. o~.~
. 0 ~..1
.~Ah

~iXM~l~..l.~Y
~' ~ X~c~:~ . ~AV
,J M lJ LN . Cl ~-~.J
M~'~Ci.~ . ~"t~C~
MX .~Y~
MYF'~f~t~ .MAC
~'x~' . EAU
~'TCH . ~AI~
V'TMAC .MAC

MY~'~CIC~ .MAC
UTMAC .MAC
ALN 1 ~ . C~~!
MX +~Y~
IiXMi~~'~ . 5Y~
~~I~ .SAU

M ~~ I~ C~ ~: . ~~' t~ ~i
MY~'~~~.MAC
VTMAC . MAt:;
M X . ~ Y ~•:~
~~ ~: ~ . EAU

4~8

9 aC•~A~r•~77
1 ~ 13•~A~• r•-77
1 ~4 1 ~•~A~ r~-~'~'

19NNA~ r•~77
~ 19•~A~- r••~77
~ ~~-~A~ r•~~7

a:~•~M~~~~•~~

~#~3 a8~•A~ r•~~~
~c~......li..~:l.....~c~i

1 a.~~••~~~~.N.~~
~ ~4•~A~~ r~-~7
9 afi3--A~ r~-• i 7

1 ~ ~. 4..NA~ rNN~~
1 a~~••M~~..N~ r
7 31 NNA~.~~~•7c~

~, ~~4~NAB r•~~7
~ A~~.N.~

'

~t:~•.N r•~

:3 a~•~•M~~.~-~~~
9 aC•~A~• r~•• ~7

9~ C)f:3~..A~r..N~~
:1. b a~~•A~~ r..N7~
~. ~ 1 ~..NA~.~ r~-77
1 ~ 1 ~NNA~~ r~•77

Nc~NJ
~ ~NN

M

A}~, r, N..
N

7
N

~
NN . : • N~ ~ ~,

..N

I

~~ a ~K

NN~Cf ~.

'!

Interactive Commands

I~X .BYB ~ {}8-~A~r•~77
AI~C . ~iA~ 4 19~-A~~ r~-77
CT . 8Y8 ~ 0~3~ ••A~ r••••7?
IiEi~QF'G . i~A~ ~ 18•"•Jer~-~7?
18 ~ i lei r X89 I~lc~c~l~.~
191 Free ~ 1 r~cl~.

Li 1 ~E~~Y Cl~Y/Cl~~LiC~~~ : T'IF'F: IiX~

19-~e~~?7
F'T~M . E~Ah 1 Q -~e~~?7
~~~GF: . FQ~ b ~4-~A~ r---77 
AAF' . ~iAC ~ ~. 9•~A}~~ r"••77 
AEC . ~iA~ 4 19"-A~ r~•77 
I~~~iCIF"G . ~iAC ~ 18""..lei"~"••?7 

VTI~A~ . i~A~ 7 ~ 1 ••••A~.~~--• 1b 
AL. x 8 . Q~.J 3 03••"~ie~•~77 

18 F':i 1e~ ~ ,~89 ~1iac~k.t~ 
191 Free ~:~ :~ ork.~7 

F' x F' . ~> A V 
I~llF' .BAV 
ItX~ihlBJ.BYB 
I~Xi~~lF'~.BYB 

I~ :~ ~ . B A V 
Iil.1F' .BAV 
F' I X4b3 . BAV 
F' 1 !~' . ~•~ A V 
~T .BYB 
I~X .BYB 
I~X~i~IF'~."~Y;~ 
I~X~i~lBJ.BYB 
~'i'~C . B Y "~ 

DIRECTOR Y 

1? 13~-A~r-77 
88 ~8-"A~~ r"-•77 
97 d8""A~r-~77 

ib A8•~A~r~-?? 

1 b 14•"•A~ r"-•7? 
48•"-A~~r••••7? 

;3 ~8"••A~ r••••77 
97 q8••"A~ r•"-7? 
813 Q8-~A~ r~- i 7 
9 q8""A~ Y..."?7 

/OUTPUT:filespec —Use this option to specify a device and file name for the output listing file. Normally, the 

directory listing appears on the console terminal. If you omit the file type for the listing file, the system uses .DIR. 

/OWNER: [nnn,nnn] —Use this option with /DOS to specify a user identification code (UIC). Note that the square 

brackets are part of the UIC; you must type them. 

/POSITION —Use this option to list the file sequence numbers of files stored on a magtape. See /COLUMNS:n 

for a sample listing. 

/PRINTER —Use this option to print the directory listing on the line printer. The default output device is the 

terminal. 

/REVERSE —This option lists a directory in the reverse order of the sort you specify with /ALPHABETIZE, 

/ORDER, or /SORT. The following example sorts the directory of DXO: and lists it in reverse order by size. 

X.~ I FtiEt;T'O~Y 't~~I:~l:~l-i : c} :I: ,~'~::/1-~~::VF~~ I~:: f~X~ 

~4-~~fa~:{~•?? 
I~Xi~hlF'~ . 8Y8 97 C~8•"-A~ r .".7? t;'~' . BYB ~; 08"..A~ r•"-•?7 
I~Xi~~lB,J .BYB ~3~3 C}~3~-Ar-~ r••"?? LiF:i~~lFc:~ . i~AC: ~ 1 £3"...Jeri"--?? 
I~l1F' .BAV 1 ? ~. ;~-~A~f r•-" 7"% ABC . i~A~ 4 :~ 9~-A~~ r".. i ? 
I~ T ~ .BAV ~. b Q8.".A~., r-~?? AL_ I ~ . ~l~.J ~ q~....~'i~~:~•--•?7 
F' I F' .BAV 1 b 14~-A~~ r•~77 IiX . ~aYB 3 q~3-~A~ r-••77 
~iX .BYB 9 48•~Ar~ r_?7 AAF . ~iAC ~ 19•-"A~ r""7l 

~fYF'r1Q~ . i~AC ? ~4•~F'e~~-?7 F I X4b~ .BAV ~ ~'9~•..1~..~ l -"•7b 
VTi~AC . ~fAC ? 31. •~A~a~•~7b Ji~IJL . Cl~..l 1 0~-~e~""77 

~fE~CE . F'Cl~ b ~4•~A~ r""77 F'TCM . BAt~ ~. a~~~e~~?? 
18 F':i. lei ~ X89 E~lc~r~k.~ 
191 F'r•ee ~ l acs If.~ 

/SINCE[date] —This option lists a directory of all files stored on the device you specify that were created on or 

after the date you specify. The following command lists only those files on DXO: that were created on ~ or after 

3 May 1977. 

4-49 



DIRECTORY Interactive Commands 

• ~I r f=~~c~rc~~~Y~~ z ~c~~ : ~ : r~~aY ~ 77 xlxa 
~.q•~~~~•~77 

..li'~lJ~.. . aE~.J 1 03••• ~i~~••••77 F'TCN . ~~th 1 Q~~•i~a~~77 
~1L x ~ . a~J 3 Q3~•iri~~-~•77 
~ f~ ~.1 e ~ ~ ~ ~:~ ~. ca c k. ~ 

/SORT[:category] —This option sorts the directory of a device according to the category you specify. This is the 
same as /ORDER [ :category] . 

/SUMMARY —This option lists a summary of the segment structure of the device directory. The following example 
lists the segment structure of the directory for device DK:. 

:l q--~I~~ ~.._7 7 

7,;.'. i~' i l mot; :~ I~~ t;~~:mt~r~~ :l 

~ Fi ~ 1 ~. ~' t3 1 I"~ ~:y ~' ~ ITI F? I"~ '~, . ~ 

3 c5 I:` i ~. ~ ~:~ i r•~ ~.~ ~~ ~ n~ ~ r•~ -~. ~ 

~ .~ ~ ~. ~. ~' c:~ :1.1"I ca ~' ~~ ITI ~' I"1 ~~, J 

1. ~; (~ v ~:; i ~. ~ ~:~ :i. c~ ~ Fa ~ ITS ~ 1••~ 'l: ~ ~ x r•~ ~..I {:s ~ 

,~~Q M' i l ~t~ ~ ~ ~4~ ~~ 1 cac~k.r> 
~' ~. 9 ~' T` ~ ~ ~~ 1. r~ c.~ k. t~ 

/TERMINAL —This option lists directory information on the console terminal. This is the default operation. 

/TOPS —Use this option to list the directory of a DECtape that is in PDP-10 format. The only other options 
valid with /TOPS are /BRIEF and /FAST. 

/vOLUMEID —Use this option to display the volume identification of a particular device in addition to listing its 
directory. The following example displays the volume ID of device DX1: and lists its directory. 

1:~ :~ !~ (::: C: 'T t7 I=~ '~~ ; !,~ t:l l... l.J ~ l~::!: I:t z:~ x :I. 

!J ~ 1 ~..I Ire t~ :~ ~:I 
{~ W r'~ ~a T` ~ 

~IXi~'fi~l~,.1.:aY 
I...~' • Yt~ 

~:I 1 I:t . ~; ~'J 
~a ~ t~ F` I~I + ~ ~'J 

tah~~'H .I...~i'T 

'T ~' . ~ Y ; 

I~. T ~ iti . ~ A V 
I~ ~ x43 . ;~~V 

Y ;~ I...:~ ~ . {7 ~~ ..1 
ty ~ ~ ~' I••i . to ~.J 
t~ W (~ F~' . ~ Y :.i 

:~ ~ ~•• ~ ~-1 t~ ~~ 7 7 
~.~•~~~.~~•~77 
:1 ca •••• f~ ~..1 ~ ••~• 7 7 

~~~~I~lgv~-'77 
~. ~ .~. ~1 ~,,~, .~ 7 7

4-50 March 1978

Interactive Commands DUMP

The DUMP command can print on the terminal or line printer, or write to a file all or any part of a file in octal
words, octal bytes, ASCII characters, and/or Radix-50 characters. It is particularly useful for examining directories
and files that contain binary data.

DUMP /OUTPUT:filespec[/ALLOCATE:size]
/PRINTER
/TERMINAL

/[NO] ASCII
/BYTES
/IGNORE
/ON LY: block
/RAD50
[/START:block] [/END:block]
/WORDS

SPA filespec

In the command syntax shown above, filespec represents the device or file you need to examine. If you do not specify
an output file, the listing prints on the line printer. If you do not specify a file type for an output file, the system uses
.DMP. You can specify the entire command on one line, or you can rely on the system to prompt you for information.
The DUMP command prompt is Device or file?.

Notice that some of the options (/ONLY, /START, and /END) accept a block number as an argument . Remember
that all block numbers are in octal, and that the first block of a device or file is block 0. To specify a decimal
block number, follow the number by a decimal point . If you are dumping a file, the block numbers you specify
are relative to the beginning of that file. If you are dumping a device, the block numbers are the absolute (physi-
cal) block numbers on that device .

The system handles operations that involve magtape and cassette differently from operations involving random ac-
cess devices. If you dump an RT-11 file-structured tape and specify only a device name in the file specification,
the system reads only as far as the logical end-of--tape. Logical end-of-tape is indicated by an end-of-file label fol-
lowed by two tape marks. For non-file-structured tape, logical end-of-tape is indicated by two consecutive tape
marks. If you dump a cassette and specify only the device name in the file specification, the results are unpredict-
able. For magtape dumps, tape mark messages appear in the output listing as the system encounters them on the
tape .

The following sections describe the options you can use with the DUMP command. Following the options are some
sample listings and an explanation of how to interpret them.

/ALLOCATE :size —Use this option with /OUTPUT to reserve space on the device for the output listing file . The
value, size, represents the number of blocks of space to allocate. The meaningful range for this value is from 1 to
32767. A value of -1 is a special case that creates the largest file possible on the device.

/ASCII —This option prints the ASCII equivalent of each octal word or byte that is dumped. A dot (.) represents
characters that are not printable. This is the default operation.

/NOASCII —Use this option to suppress the ASCII output, which appears in the right hand column of the listing.
This allows the listing to fit in 72 columns.

/BYTES —Use this option to display information in octal bytes.

/END:block —Use this option to specify an ending block number for the dump. The system dumps the device or

file you specify beginning with block 0 (unless you use /START) and continuing until it dumps the block you

specify with /END.

4-51 March 1978

DUMP Interactive Commands

/IGNORE —Use this option to ignore errors that occur during a dump operation. Use /IGNORE if an input error
occurred when you tried to perform a normal dump operation.

/ONLY:block —Use this option to dump only the block number .you specify.

/OUTPUT:filespec —Use this option to specify a device and file name for the output listing file. Normally, the
listing appears on the line printer. If you omit the file type for the listing file, the system uses .DMP.

/PRINTER —This option causes .the output listing to appear on the line printer. This is the default operation:

/RAD50 -- This option prints the Radix-50 equivalent of each octal word that is dumped.

/START:block —Use this option to specify a starting block number for the dump. The system dumps the device
or file beginning at the block number you specify with /START and continuing to the end of the device or file
(unless you use /END).

/TERMINAL —This option causes the output listing to appear on the console terminal. Normally, the listing
appears on the line printer.

/WORDS —This option displays information in octal words. This is the default operation.

The following command dumps block 1 of the file SYSMAC.MAC. The output listing, which shows octal bytes
and their ASCII equivalent, is stored in file MACLIB.DMP. The PRINT command prints the contents of the file
on the line printer.

~~t.a~~~~ic:~~~~r~~~~~~ 4 ~rar.:i...:r ~{l~{~,r~rr~~:; ~c:~~~..Y ~ ~. :.~~~~~r~c . ~~ar

ox = aYaM~►c , ~Ac
BLOCK NU~1~~R 0000!
000/ e40 tZ4 liT o40 iZ4 !i0 les~iZ3 i0s 040 ii4 lii l03 10S iib iZ3

~ A T K L~ a ~ L ~~ C ~ H a
OZo/ ios o40 iZ4 ias iZZ !is iZ3 X56 04o iZ4 iii 124 ii4 los o4o iZ4

~ T a R ~ a T ~ ~c L ~ ~
040/ 1i1 040 l0i- 116 104 lf40 !17 fZ7 iib 105 iZZ iZ3 iiQ lii iZ0 Q40

0 A N D ~ H N ~ R a N i P
060 / ~ 17 106 440 iZ4 i !~ 0 i Os 04Q 4 !'~ 0 1, Z 07 3 h40 ! Z 3 117 i lib iZ4 i Z7

4 !' T N ~ . . ! a t1 F T W
!00/ 10! iZZ 14S t140 iZ3 110 10i ii4 ii4 440 i01 !Z4 A44 iQi ii4 114

A R R a N A L L A T A L L
i ZO / 040 1 ?4 l i l 115 ~ 43 iZ3 040 1 ZZ 1 Qs its i 0 i 111 116 440 i l i l !!~

T 1 M ~ a R ~ M A I H 1 ~
140/ 0 40 i44 iii 107 111 !Z4 101 114 4sb OiS 017 073 015 412 073 040

D I G t T 1! L . . . ~ . . t
i60/ iZ4 i10 1oS c~4o iii ~l,i~ i06 li7 iZZ ii5 101 1~4 iii 117 its a40

T K L T H !" t1 R M A T I 0 H
Z04/ iii 116 444 iZ4 il0 111 iZ3 -040 lZ3 l~i7 10~ 1?4 iZ7 10i iZZ 105

s N ~ H x a a o ~ T w A R ~
Z?0/ 040 1!i 123 A40 iZ3 its !OZ 1!Z !os l0~ iZ4 04o iZ4 ii7 Ois- oil

I a a U 8 J ~ C T T Q
Z40/ 073 44Q !03 114 301 a16 !07 10S 040 iZ7 !!! 124 ilA !17 125. 124

! C H A N - G ~ W I T H t] U T
?6Q/ 040 116 117 iZ4 111 !03 lOs 04e iQ1 116 !04 A40 !Z3 ~iQ !i7 iZs

H Q T I C ~~ A N l~ a H Q U

4-S 2

Interactive Commands DUMP

X00/ 114 104 040 118 ii7 i24 040 id2 105 040 103 117 !16 i23 !Z4 iZ2
L Q H A ~' E! ~ C A N ~ T R ,.

X20♦ !2s io5 io4 0~~ oiz a73 a4o l0i 12~ a4o loi X40 X03 117 11S ~~~
U ~ .D) A~ g A C ~ ~ M

340/ ! ! ! 124 11~► 1 Q5 i ib ~. Z4 040 i Q2 ~ 3 i 040 i 04 ill. 107 ~ ! ! i 24 ~ 8!
I T M E N T !~ ~' D ~ ~ I T A

3d0/ ii4 04q 1A5 !Z1 125 iii 124 li5 ~,d5 i18 !24 040 103 ii'~ 122 120
L ~ Q u I F ~ ~ N T C n R ~

400/ 117 i22 i01 124 iii ill !15 056 QiS d12 073 ois oil 073 044)Q4
0 R A T I A ~ • t t D

4ZQ/ 1>> !QT 11i 124 141. 1i4 440 !4i 123 123 12'3 1is idS 1Z3 o4a 1i6
I G I ~` A L A 5 S U M E S ~a

440/ ~~~ 040 122 ~c~~ 123 X20 ~~~ i16 X23 iii X02 !li i14 ~~~~ 124 ~~~.
Q R ~ ~ F D H ~ Z 8 T L I T Y

460/ 040 l Ob ! i 7 122 044 i 24 1 i 0 1 OS 040 125 123 i 4S O 1 S 0 ~. 2 07 3 Q4Q
!' D R T K !~ u S ~ . f

500/ !17 122 040 122 105 i14 1i1 10i 102 iii 114 l.ii i24 l3~. A44 117
Q R R ~ L I A 8 I L 1 T Y Q

s20/ ~ Oa 040 iii ~ Z4 123 U40 a 23 i 17 108 124 ! 27 i ai 122 1 ~►5 040 1.17
!` I x 5 ~ ~ ~' T w A R ~ D

S40/ ! ib Q40 145 x.21 12~ 111 1 ~0 ! 15 loS i ib 124 Oi~r QiZ 073 04th i 27
N ~ Q u x P M ~ N T . . ~ w

560/ ii4 iii iO3 lio 04o iii i23 0~o isb li7 i24 o4a i23 iZ5 i20 12Q
K x C H I !~ N A T 6 U R P

600/ i14 l~.i i05 104 04a i02 X31 040 104 11! 107 111 124 loi 1i4 QS6
L I !~ D 5 Y D I G I T ~~ L •

bZo/ Oi5 eiZ o73 Qi5 oil 073 044 io3 iQb OS4 l.i2 iO4 054 !i4 i2o as4
t ~. . t ~ ~` • J D , L F •

5+10/ 102 io3 054 104 iZl~ 054 14~ iZZ a54 iiQ i i2 41S oil oi4 oSb 1 i5
~ C ~ D V , C R • H J • ~

66~/ iQi io3 i22 li7 040 e56 45b 1.26 obi 056 oS6 a1S ail os6 iiS 143
A C R Q ~. V ! . ~ C

70oi t0i ii4 1i4 di1 Q55 05b oSb 103 iiS o64 os4 aSb Osb oSb 1a3 1iS
A L ~ . • C M 0 • . • C

720/ 061 OS4 OSb OSb OSb 1t~3 11S 462 054 OSb OS6 QSb l.43 11S o6I Og4
! • • • C ~ 2 ~ . . C ~ ~ •

740/ A5b 456 Q56 !43 i15 464 4s4 4Sb OSb 036 103 i1S ObS 4a4 456 c~St~

160/ osb io3 116 obb ols t~iZ a66 oSb ova ~z6 Qbi o7s 46~ ova ol~ Oi2

In the printout above, the heading shows which file was dumped and which block of the file follows. The numbers

in the leftmost column indicate the byte offset from the beginning of the block. Remember that these are all

octal values, and that there are two bytes per word. The octal bytes that were dumped appear in the next eight

columns. The ASCII equivalent of each octal byte appears underneath the byte. The system substitutes a dot (.)

for non-printing codes, such as those for control characters.

The last example shows block 6 (the directory) of device RKO:. The output is in octal words with Radix-50

equivalents below each word.

•~il.1~i~~'/i~~:l~~t~:~ I/~AI~ aq/~l~ll~Y : b ~hn

4-5 3

DUMP Interactive Commands

RK01 /N /X /t7 ~ 6
BLOCK HuMSL~t 44446
40AI 00oo2A 00404? 0000is 400004 000446 042040 47!105 OSs2+D2

p ~ K A YX RKM NSJ
Ozo/ 475273 OOQ~130 044415 41z105 002440 47.105 4S416Z t~7.5Z73

l~YS QH M C I / YX RKM NF'8 SYS
44Q/ 00014! OO+J015 OiZ10S OQZOUO Q711oS 453515 075273 4QQiS0

8Q M Cl/ YX RKM NXM SYs SX
060/ 0000is olzios aoz000 ois4Zs 4SSZo2 p7'~2T3 ~.odi3z 400015

M CII YX DMM MaJ 8Ys BJ M
ioo/ oiZlas 402004 415425 os4i62 o7S273 QQoi43 0000is 412!45

C I / YX DMM H~`B sYs BS ~ C z /
iZO/ 40200Q 015425 OSSS15 075ZT3 4o01SZ 400A1S 41~io5 Q020t~4

YX DMM ~fXM axs eZ ~ Cis YX
iao/ o163~s ossz~Z Q~sZ73 444134 OOAnss oiZ~as 402000 0i631s

DXM HRJ SYS QN M Cr/ YX DXM
i6p/ os4i62 075273 40~0i41 0000is 012103 QQ2004 di63is OSSSIs

N!'8 1~YS 8Q M C I / YX DXM NXM
zoos OTSZ7'3 ooQ14i OOOOis 012105 OA200o Q1b055 OSSZ4Z o'fS2T3

SYa s~ ~► C~/ Yx DTM NSJ sxs
zzo/ 000130 0000is of?lOS ooza~oa oi60~S os:4i~z 47SZ73 000!41

s~ M Ct/ Yx o~M H~$ sYa s~
zoo/ 0000is oizios o4z000 o16oSs 0sss~s o73z13 0000is 0000is

M C i / YX DTM ~iXM l~YS 8Y M
z6o/ oiz~os ooz000 o16Qos o3szoz o~sz?3 444134 0000is oi2~0s

Cl/ YX DAM N6J SYS 8N M Cl/
300/ 042444 oi600s 054152 O~SZ73 444141 o0041~ oi2ioS 4az000

Yx DaM N~'8 sYa Ba M c ~ r Yx
3241 oi600s o~s3~3 075Z'~3 Qaoiso 0000is o~zios oozoao o1s61s

Dl~M HXM sY3 SX M C I / YX DPM
340/ OS5Z0z Q73273 4QQ13o OOOOiS 0!2105 40ZaQ0 015515 454162

Ni~J SYs ~M M C I / YX DPI N~'8
360/ o?sz?3 040141 4Q4o1~► 412!43 002004 415615 OSSSiS o~52'f3

SYs RD M Cl/ YX DPM NXM SY5
400/ o0o~s~ 0000~~ 4!2145 oozaoo 4~osTs osszo2 4TSZT3 00030

8Y M C I ! YX RF'M NSJ sYS SH
420/ 0000is OixiAS 442444 Q7o5?~ 454!62 o75ZT3 400141 Oc~oats

M Cl/ YX R~'M ~~S SYS SD M
440! Oi ~ i oS oezoQ4 o7os?S 4S"~5 i ~► c~T3z73 doc~ i so 040015 0 i Z i os

C I / YX R~'M NXM SYS SX M C I /
460/ 04Z►000 471!45 AS6573 0'15273 400123 o0Qoi5 Ot2i4S oAZd44

Yx RKM ~~~c aYs SC ~ C~/ Yx
sooi oid31s os6s73 475273 oQoiz~ 40oQ15 Q1Zio5 00~©00 06040

DXM NslC SYs SG M C I / YX DT
szA/ 044000 O'f5Z13 000002 000015 012143 Q02Q40 415640 oC104o4

!~Yl4 S M Cl/ YX DP
s4o/ o7sz73 000002 a000~5 412105 oozoo0 06304 Qa0000 0762?3

SYl~ S M C I / YX DX sYS
Sso/ 000403 0000is 0ili4s 0QZo0U 470560 000~Dflo o75Z'~3 oc~aoQz

C M Cis YX ~F aY,6
600/ 0000is- 412145 00~00o Q7'1474 000400 oTsz~3 oo~ooz 0000is

M Ct/ YX RK SY~i S M
szo/ 4ialos ooz000 01,5414 000a~4o n?szT3 oonaa4 0000is oiz~4s

Cz/ YX DM SYS D M Cl/
640/ OQ2oo0 OiS7~a 000000 4T~~13 oot~ooz 0000is ol2ios od2~aoa

YX D~ SYS S M Cl/ YX

4-54

Interactt've Commands DUMP

66oi l000~o 00000e o7~Z73 B~OOQZ c~000~s oi2io~ ac~2000 046604
TT ~Y~ ~ ~ Cl/ YX LP

700/ O0000O 47~~73 ~O~oOZ ooQoi6 oi~i46 OO~000 Qi26~0 ~OQQOo
~x~ ~ M ~r~ Yx ~~

~zoi o76Z7) oe000~ oo4ots o~3l0$ 00000 o~~i44 0000ao 07~~~~
aY~ C M CIS Yx M~ aY~

1~oi 0000~o oo~OiS o~~id6 00000 o~i~io aoa000 U7sZ13 o~oo~i
!~ M C T / YX MM ~Y~ I

160/ o00oiS o~Zlo~i Oo~Ooo 04340 04040Q o7~z7~00000~ oQoOiS
M CI♦ YX NL ~Y~ 8

4-55

E Interactive Commands

The E (Examine) command prints in octal the contents of an address on the console terminal.

E SP address [-address]

In the command syntax illustrated above, address represents an octal address that, when added to the relocation
base value from the Base command (if you used one), provides the actual address that the system examines. This
command permits you to open specific locations in memory and inspect their contents. It is most frequently used
after a GET command to examine locations in a program.

The Examine command accepts both word and byte addresses, but it always executes the command as though you
specified a word address. (If you specify an odd address, the system decreases it by one to make it even.)

If you specify more than one address (in the form addressl -addressl), the system prints the contents of addressl
through addressl, inclusive. The second address (addressl) must always be greater than the first address. If you
do not specify an address, the system prints the contents of relative location 0.

Note that you cannot examine addresses outside the background area.

The following example prints the contents of location 1000, assuming the relocation base is 0.

.i~.' :1.q~U

The next command sets the relocation base to 1000.

The following command prints the contents of locations 2000 through 2005.

.~:: :lt)q:I.~Q~a

4-56

Interactive Commands EDIT

The EDIT command invokes the text editor.

EDIT /CREATE SP filespec[/ALLOCATE:sizel
/INSPECT
/OUTPUT:filespec [/ALLOCATE :size)

The text editor is a program that creates or modifies ASCII text files or source files for use as input to programs
such as the MACRO assembler or the FORTRAN compiler. The editor reads ASCII files from any input device,
makes specified changes and writes the file on any output device . It also allows efficient use of VT 11 or VS60 dis-
play hardware, if this is part of the system configuration.

The editor considers a file to be divided into logical units called pages. A page of text is generally 50-60 lines long
(delimited by form feed characters) and corresponds approximately to a physical page of a program listing. The edi-
tor reads one page of text at a time from the input file into its internal buffers where the page becomes available
for editing. You ca.n then use editing commands to

• Locate text to be changed
• Execute and verify the changes
• List an edited page on the console terminal
• Output a page of text to the output file.

In the command syntax illustrated above, filespec represents the file you need to edit. You can enter the EDIT
command on one line, or you can rely on the system to prompt you for information. If you do not supply a file
specification for the file to edit, the system prompts you with File?. If you do not specify any option with the
EDIT command, the text editor performs an edit backup operation on the file you name in the file specification.
To do this, it changes the name of the original file, giving it a file type of .BAK when you finish making your
editing changes. The actual file renaming occurs when you successfully exit by using an EX, EF, or EB command.
You can also perform an edit backup operation while you are working with the text editor by using the Edit
Backup (EB) command, which is described in Chapter 5.

When you invoke the editor to edit an existing file, the editor does not perform any I/O operation as a result of

your command. You must issue the R command to the editor to read the first page of text and make it available
for you to work on. The following example opens an existing file and reads the first page of text:

• ~. Ti I T ~ Y ~ :r 1... k:.. Y X 't
*~~~

When you issue an EDIT command, the system invokes the text editor. It is possible to receive an error or warning
message as a result of this command. If, for example, the file you need to edit does not exist on device DK:, the

editor issues an error message and remains in control.

• E~~ I T/ I ~lc~F~'~::~~' ~::X~i~~'3 . TX'T
'~~~~ ~ T~~'~F' i l ~ r~c~t f ca~~ir~rl
*"`C~~

When a situation like this occurs, you can either issue another command directly to the text editor or enter

CTRL/C followed by two ESCAPEs to return control to the monitor.

4.57 March 1978

EDIT' Interactive Commands

The following sections describe the options you can use with the EDIT command. Amore complete description
of the text editor is contained in Chapter 5.

/ALLOCATE:size —Use this option with /OUTPUT or after the file specification to reserve space on the device
for the output file. The value, size, represents the number of blocks of space to allocate. The meaningful range
for this value is from 1 to 32767. A value of -1 is a special case that creates the largest file possible on the device.

/CREATE —Use this option to build a new file. You can also create a new file while you are working with the text
editor by using the Edit Write (EW) command, which is described in Chapter 5. The following example creates a
file called NEWFIL.TXT on device DK:, inserts one line of text, and then closes the file.

I~'l:il'7'fC:l~~:f~'~'~:: l~ll:~W~:C~...'TX'I'

~~
*~::'.~~

/INSPECT —Use this option to open a file for reading. This option does not create any new output files. You can
also open a file for inspection while you are working with the text editor by using the Edit Read (ER) command,
which is explained in Chapter 5.

The following command opens an existing file for inspection, lists its contents, and then exits.

Iw i:i :i: T' / :1: I~! ~ F' i~: t~ T' ~ I::: W i= :[i_. . 'T' ~; ~
*f~~~

/OUTPUT:filespec — This option directs the text you edit to the file you specify, leaving the input file unchanged.
You can also write text to an output file while you are working with the text editor by using the Edit Write (EVE
command, which is explained in Chapter 5. The following command reads file ORIG.TXT and writes the edited
text to file CHANGE.TXT.

* ~: ~~ :T 'T / CJ 1.1 'T' i~~' t l T ~ t ; I•~ ~ t~ t:; ~' . 'r~ X 'T i:l i~~ is t:; . 'T' X 'T'

4-5 8 March 1978

Interactt've Commands EXEC~1'TE

The EXECUTE command invokes one or more language processors to assemble or compile the files you specify. It
also links object modules and initiates execution of the resultant program.

EXECUTE /EXECUTE [:filespec] [/ALLOCATE:size]
/LIST[:filespec] [/ALLOCATE:size]
/MAP[:filespec] [/ALLOCATE:size] [/WIDE]
IOBJECT[:filespec] [/ALLOCATE:size]

/BOTTOM:n
/DEBUG [:filespec]
/LI N K LI BRAR Y [:filespec]
/[NOl RUN

~ /DI BO L
/ALPHABETIZE
/CROSSREFERENCE
/[NO] LINENUMBERS
/ONDEBUG
/[NO] WARNINGS

/FORTRAN
/CODE:type
/DIAGNOSE
/EXTEND
/HEADER
/14
/[NO] LINENUMBERS
/ONDEBUG
/[NO] OPTIMIZE [:type]
/R ECOR D:length
/SHOW [:value]
/STATISTICS
/[NO] SWAP
/UNITS:n
/[NO] VECTORS

_/WARNINGS _
/MACRO _ ^

/CROSSREFERENCE [:type[...:type]
/DISABLE:value [...:value]
/ENABLE:value [...:value]

r

filespecs /LIBRARY
/PASS:1

In the command line shown above, filespecs represents one or more files to be included in the compilation assembly.

The default file types for the output files are .LST for listing files, .MAP for load map files, .OBJ for object files,

and .SAV for memory image files. The defaults for input files depend on the particular language processor involved.

These defaults include .MAC for MACRO files, .FOR for FORTRAN files, and .DBL for DIBOL files.

To compile (or assemble) multiple source files into a single object file, separate the files by plus (+) signs in the com-

mand line. Unless you specify otherwise, the system creates an object file with the same name as the first input file

and gives it an .OBJ file type. To compile multiple files in independent compilations, separate the files by commas (,)

in the command line. This generates a corresponding object file for each set of input files. The system then links to-

gether all the object files and creates a single executable file. You can combine up to six files for a compilation produc-

ing asingle object file. You can specify the entire EXECUTE command as one line, or you can rely on the system to

prompt you for information. The EXECUTE command prompt is Files?.

There are several ways to establish which language processor the EXECUTE command invokes. One way is to specify

a language-name option, such as /MACRO, which invokes the MACRO assembler. Another way is to omit the language-

name option and explicitly specify the file type for the source files. The EXECUTE command then invokes the. language

processor that corresponds to that file type. Specifying the file SOURCE.MAC, for example, invokes the MACRO as-

sembler. Athird way to establish the language processor is to let the system choose a file type of .MAC, .DBL, or .FOR

for the source file you name.
4-59

EXECUTE Interactive Commands

To do this, the handler for the device you specify must be loaded. If you specify DX1:A, and the DX handler is loaded,
the system searches for source files A.MAC and A.DBL, in that order. If it finds one of these files, the system invokes
the corresponding language processor. If it cannot find one of these files, or if the device handler associated with the
input file is not resident, the system assumes a file type of .FOR and invokes the FORTRAN compiler.

If the language processor selected as a result of one of the procedures described above is not on the system device
(SY:), the system issues an error message.

Language options are position dependent. That is, they have different meanings depending on where you place them
in the command line .Options that qualify a command name apply across the entire command string. Options that
follow a file specification apply only to the file (or group of files separated by plus signs) that they follow in the com-
mand string.

The following sections describe the options you can use with the EXECUTE command.

/ALLOCATE:size —Use this option with /EXECUTE, /LIST, /MAP, or /OBJECT to reserve space on the device for
the output file. The argument, size, represents the number of blocks of space to allocate. The meaningful range for
this value is from 1 to 32767. A value of -1 is a special case that creates the largest file possible on the device.

/ALPHABETIZE —Use this option with DIBOL to alphabetize the entries in the symbol table listing. This is useful
for program maintenance and debugging.

/BOTTOM:n —Use this option to specify the lowest address to be used by the relocatable code in the load module.
The argument, n, represents a 6-digit unsigned even octal number. If you do not use this option, the system positions
the load module so that the lowest address is location 1000 (octal). This option is illegal for foreground links.

/CODE:type —Use this option with FORTRAN to produce object code that is designed for a particular hardware con-
figuration. The argument, type, represents athree-letter abbreviation for the type of code to produce. The legal values
are the following: EAE, EIS, FIS, and THR. See Section 1.1.1, Compiler Generated Code, of the RT-I1 /RSTS/E
FOR TRAN I V User's Guide for a complete description of the types of code an d their function .

/CROSSREFERENCE [:type [. . . :type]] —Use this option with MACRO or DIBOL to generate a symbol cross-
reference section in the listing. This information is useful for program maintenance and debugging. Note that the sys-
tem does not generate a listing by default. You must also specify /LIST in the command line to get across-reference
listing.

With MACRO, this option takes an optional argument. The argument, type, represents cone-character code that indi-
cates which sections of the cross-reference listing the assembler should~nclude. Table 4-10 summarizes the valid argu-
ments and their meaning.

/DEBUG[:filespec] —Use this option to link ODT (online debugging technique, described in Chapter 16) with your
program to help you debug it. If you supply the name of another debugging program, the system links the debugger
you specify with your program. The debugger is always linked low in memory relative to your program.

/DIAGNOSE —Use the option with FORTRAN to help analyze an internal compiler error. /DIAGNOSE expands the
crash dump information to include internal compiler tables and buffers. Submit the diagnostic printout to DIGITAL
with an SPR form. The information in the listing can help the DIGITAL programmers locate the compiler error and
correct it .

/DIBOL —This option invokes the DIBOL language processor to compile the associated files.

/DISABLE:value[. . . :value] —Use this option with MACRO to specify a .DSABL directive. Table 4-11 summarizes
the arguments and their meaning. See Section 6.2 of the PDP-11 MACRO Language Reference Manual for a description
of the directive and a list of all legal values.

4-60

Interactive Commands EXECUTE

/ENABLE value[. . . :value] —Use this option with MACRO to specify an .ENABL directive. Table 4-11 summarizes
the arguments and their meaning. See Section 6.2 of the PDP-11 MACRO Language Reference Manual for a description
of the directive and a list of all legal values.

/EXECUTE[:filespec]~ —Use this option to specify a file name or device for the executable file .Because the EXECUTE
command creates executable files by default, the following two commands have the same meaning:

. ~~:x~~~~~r~ ~Y~'~~c~

. X~CI.I~'N~/rNx~~~'r~~ i~Y~'(~CIC~

Both commands link MYPROG.OBJ and produce MYPROG.SAV as a result. The /EXECUTE option has different

meanings when it follows the command and when it follows the file specification. The following command creates an

executable file called PROGI .SAV on device RKl :.

. ~xr.:~~r~:/~:x~~c~~rr~ : r~i~ ~.: ~'r~a~ ~. ~ r~'~~c:~~

The next command creates an executable file called MYPROG.SAV on device DK:.

. ~xr~c::c.~~rN: ~'r~ ~. ~ a~~r~~~ q ~YiH'~car.~/r~x~:c:~ca'rr:~

/EXTEND —Use this option with FORTRAN to change the right margin for source input lines from column 72 to

column 80.

/FORTRAN —This option invokes the FORTRAN language processor to compile the associated files.

/HEADER —Use this option with FORTRAN to include in the printout a list of options that are currently in effect.

/I4 —Use this option with FORTRAN to allocate two words for the default integer data type (FORTRAN only uses

one-word integers) so that it takes the same physical space as real variables.

/LIBRARY —Use this option with MACRO to identify the file the option qualifies as a macro library file .Use it only

after a library file specification in the command line. The MACRO assembler looks first to the library associated with

the most recent /LIBRARY option to satisfy references (made with the .MCALL directive) from MACRO programs.

It then looks to any libraries you specified earlier in the command line, and it looks last to SYSMAC.SML.

In the example below, the two files A.FOR and B.FOR are compiled together, producing B.OBJ and B.LST. The

MACRO assembler assembles C.MAC, satisfying .MCALL references from MYLIB.MAC and SYSMAC.SML. It

produces C.OBJ and C.LST. The system then links B.OBJ and C.OBJ together, resolving undefined references from

SYSLIB.OBJ and produces the executable file B.SAV. Finally, the system loads and executes B.SAV.

. i~x~~~~~r' .: n~~r~/r~ :c::: '~'~t:~z:{..jr::c::'r y ~Yr.. :r ~i~r~ :r z~~~raF~Y~~c:; . ~ ~~ c::~i... ~ ~~'r'~caz~..~i~:c~ .r.

/LINENUMBERS —Use this option with DIBOL or FORTRAN to include internal sequence numbers in the executable

program. These are especially useful in debugging programs. This is the default operation.

/NOLINENUMBERS —Use this option with DIBOL or FORTRAN to suppress the generation of internal sequence

numbers in the executable program. This produces a smaller program and optimizes execution speed. Use this option

to compile only those programs that are already debugged; otherwise the DIBOL or FORTRAN error messages are

difficult to interpret.

/LINKLIBRARY:filespec —Use this option to include the library file name you specify as an object module library

during the linking operation. Repeat the option if you need to specify more than one library file .

4-61

EXECUTE Interactive Commands

/LIST[:filespec] —You must specify this option to produce a compilation or assembly listing. The /LIST option

has different meanings depending on where you put it in the command line.

If you specify /LIST without a file specification in the list of options that immediately follows the command name,
the system generates a listing that prints on the line printer. If you follow /LIST with a device name, the system
creates a listing file on that device. If the device is afile-structured device, the system stores the listing file on that
device, assigning it the same name as the input file with a .LST file type. The following command produces a listing
on the terminal.

• I:.: X ~:: t:: 1.1 'Y' ~:: ̀ ' ~.. :~ ~; 'r ~ 'I' 'r ~1. ~~ t:l I"~

~'hc; next command creates a listing file called A.LST on RK3:.

If the /LIST option contains a name and file type to override the default of .LST, the system generates a listing file
with that name. The following command, for example, compiles A.FOR and B.FOR together, producing files A.OBJ
and FILEI.OLJT on device DK:. It then links A.OBJ (using SYSLIB.OBJ as needed) and produces A.SAV.

You cannot use a command line like the next one. In this example, the second listing file would replace the first one
and, therefore, cause an error.

.~:x~~u'r~~:il... x ~T : ~~:~ ~..~.: n , ~~~: ~ ~ . ~~ac::

Another way to specify /LIST is to type it after the file specification to which it applies. To produce a listing file with
the same name as a particular input file, you can use a command similar to this one

The command shown above compiles A.DBL and B.DBL together, producing files DK:A.OBJ and RK3:B.LST. It then
links A.OBJ (using SYSLIB.OBJ as needed) and produces DK:A.SAV. If you specify a file name on a /LIST option
following a file specification in the command line, it has the same meaning as when it follows the command. The fol-
lowing two commands have the same results.

*~:x~::t;l.l'r~/i"i~C:~~~l ~/I..,:Lry"~' I ~~

Remember that file options apply only to the file (or group of files that are separated by plus signs) that they follow
in the command string. For example

.~:x~~r«'r~~~~:~~~t~~ ~ . ~nc::~~... :i: ~:~~~' y ~t . ~~~r~

This command compiles A.MAC, producing A.OBJ and A.LST. It also compiles B.FOR, producing B.OBJ. However,
it does not produce any listing file for the compilation of B.FOR. Finally, the system links A.OBJ and B.OBJ together,
producing A.SAV.

/MACRO —This option invokes the MACRO assembler to assemble the associated files.

/MAP[:filespec] -- You must specify this option to produce a load map after a link operation. The /MAP option has
different meanings depending on where you put it in the command line. It follows the same general rules outlined
above for /LIST.

4-62

Interactive Commands EXECUTE

/OBJECT[:filespec] —Use this option to specify a file name or device for the object file. Because the EXECUTE
command creates object files by default, the following two commands have the same meaning:

~X~CUTE/~'t~~iT~~li~ A

~X~~1.1~'~:/~'C1i~~T~iA~!/0~..1~CT A

Both commands compile A.FOR and produce A.OBJ as output. The /OBJECT option functions like the /LIST option;
it can be either a command or a file qualifier.

As a command option, /OBJECT applies across the entire command string. The following command, for example, as=
sembles A.MAC and B.MAC separately, creating object files A.OBJ and B.OBJ on RK1:.

~X~~UT~/O~,JECT : ~i~ ~.: A . i~A~ r ~ . ~A~

Use /OBJECT as a file option to create an object file with a specific name or destination. The following command
compiles A.DBL and B.DBL together, creating files B.LST, B.OBJ, and B.SAV.

~X~CtJT~/~~ 1 ~Of... ~+~/~. I ~T/q~.J~~T/~: X~Ct.1T~

/ONDEBUG —Use this option with DIBOL to include a symbol table in the object file. You can then use a debugging
program to find and correct errors in the object file.

Use /ONDEBUG with FORTRAN to include debug lines (those that have a D in column one) in the compilation. You
do not, therefore, have to edit the file to include these lines in the compilation or to logically remove them. This option
is useful in debugging a program. You can include messages, flags, and conditional branches to help you trace program
execution and find an error.

/OPTIMIZE:type —Use this option with FORTRAN to enable certain options that optimize object code for various
conditions. The value, type, represents the three-letter code for the type of optimization to enable. Table 4-4 sum-
marizes the codes and their meanings.

/NOOPTIMIZE:type —Use this option with FORTRAN to disable certain options that optimize object code for
various conditions. The value, type, represents the three-letter code for the type of optimization to disable. Table 4-4
summarizes the codes and their meanings.

/PASS:1 -- Use this option with MACRO on a prefix macro file to process that file only during pass-1 of the assembly.
This option is useful when you assemble a source program together with a prefix file that contains only macro defini-
tions, since these do not need to be redefined in pass-2 of the assembly. The following command assembles a prefix
file and a source file together, producing files PROGI.OBJ, PROGI .LST, and PROGI .SAV.

~X~~l1T~/i~p~tJ~!/i~AC~CI ~'~~~' ~ X/~~'A~~ : ~. +~'F~CIC~ ~.1i...:C ~T/~l~J~:C~'/~::X~C~~1T~

/RECORD:length —Use this option with FORTRAN to override the default record length of 132 characters for ASCII
sequential formatted input and output. The meaningful range for length is from 4 to 4095.

/RLJN —Use this option to initiate execution of your program if there are no errors in the compilation or the link. This
is the default operation.

/NORUN —Use this option to suppress execution of your program. The system performs only the compilation and
the link.

/SHOW[:value] —Use this option with FORTRAN to control FORTRAN listing format. The argument, value, repre-
sents acode that indicates which listings the compiler is to produce. Table 4-5 summarizes the codes and their meaning.

4-63

EXECUTE Interactive Commands

Use this option with MACRO to specify any MACRO .LIST directive. Table 4-12 summarizes the valid arguments and
their meaning. Section 6.1.1, .LIST and .NLIST Directives, of the PDP I1 MACRO Language Reference Manual ex-
plains how to use these directives.

/NOSHOW:value —Use this option with MACRO to specify any MACRO .NLIST directive. Table 4-12 summarizes
the valid arguments and their meaning. Section 6.1.1, .LIST and .NLIST Directives, of the PDP-11 MACRO Language
Reference Manual explains how to use these directives.

/STATISTICS —Use this option with FORTRAN to include in the listing compilation statistics, such as amount of
memory used, amount of time elapsed, and length of the symbol table.

/SWAP —Use this option with FORTRAN to permit the USR (user service routine) to swap over the FORTRAN pro-
gram in memory. This is the default operation.

/NOSWAP —Use this option with FORTRAN to keep the USR resident during execution of a FORTRAN program.
This maybe necessary if the FORTRAN program uses some of the RT-11 system subroutine library calls (see Chap-
ter 4 of the R T-I1 Advanced Programmer's Guide). If the program frequently updates or creates a large number of
different files, making the USR resident can improve program execution .However, the penalty for making the USR
resident is 2K words of memory.

/iJNITS:n —Use this option with FORTRAN to override the default number of logical units (6) to be open at one
time .The maximum value you can specify for n is 16.

/VECTORS —This option directs FORTRAN to use tables to access multidimensional arrays. This is the default mode
of operation.

/NOVECTORS —This option directs FORTRAN to use multiplication operations to access multidimensional arrays.

/WARNINGS —Use this option to include warning messages in DIBOL or FORTRAN compiler diagnostic error
messages. These messages call certain conditions to your attention, but do not interfere with the compilation .This
is the default operation for DIBOL.

/NOWARNINGS —Use this option with DIBOL to suppress warning messages during compilation. These messages
are for your information only; they do not affect the compilation. This is the default operation for FORTRAN.

/WIDE —Use this option with /MAP to produce a wide load map listing. Normally, the listing is wide enough for
three GLOBAL VALUE columns, which is suitable for paper with 72 or 80 columns. The /WIDE option produces
a listing that is six GLOBAL VALUE columns wide, which is ideal fora 132-column page.

4-64

Interactive Commands FOCAL

n

The FOCAL command invokes the FOCAL language interpreter.

FOCAL

FOCAL has its own command language. Therefore, the FOCAL command accepts no options and no file specifica-
tions.

FORTRAN Interactive Commands

The FORTRAN command invokes the FORTRAN IV compiler to compile one or more source programs.

FORTRAN /LIST[:filespec] [/ALLOCATE:size]
/[NO] OBJECT[:filespec) [/ALLOCATE:size]

/CODE :type
/DIAGNOSE
/EXTEND
/HEADER
/14
/[NOl LINENUMBERS
/ONDEBUG
/[NO) OPTIMIZE [:type]
/RECORD:length
/SHOW [:value]
/STATISTICS
/ [NO] SWAP
/UNITS:n
/[NOl VECTORS
/WARNINGS

filespecs

In the command syntax illustrated above, filespecs represents one or more files to be included in the compilation. If
you omit a file type for an input file, the system assumes .FOR. Output default file types are .LST for listing files and
.OBJ for object files. To compile multiple source files into a single object file, separate the files by plus (+) signs in the
command line. Unless you specify otherwise, the system creates an object file with the same name as the first input
file and gives it an .OBJ file type. To compile multiple files in independent compilations, separate the files by commas
(,) in the command line. This generates a corresponding object file for each set of input files.

Language options are position dependent. That is, they have different meanings depending on where you place them
in the command line. Options that qualify a command name apply across the entire command string. Options that fol-
low afile specification apply only to the file (or group of files separated by plus signs) that they follow in the command
string. You can enter the FORTRAN command as one line, or you can rely on the system to prompt you for informa-
tion.The FORTRAN command prompt is Files? for the input specification.

The R T-11 /RSTS/E FORTRAN I V User's Guide contains more detailed information about using FORTRAN. The fol-
lowing sections describe the options you can use with the FORTRAN command.

/ALLOCATE:size —Use this option with /LIST or /OBJECT to reserve space on the device for the output file. The
argument, size, represents the number of blocks of space to allocate .The meaningful range for this value is from 1 to
32767. A value of -1 is a special case that creates the largest file possible on the device.

/CODE:type -- Use this option to produce object code that is designed for a particular hardware configuration. The
argument, type, represents athree-letter abbreviation for the type of code to produce. The legal values are the follow-
ing: EAE, EIS, FIS, and THR. See Section 1.1.1 of the RT-11 /RSTS/E FORTRANI V User's Guide for a complete ~-
description of the types of code and their functions.

/DIAGNOSE —Use this option to help analyze an internal compiler error. /DIAGNOSE expands the crash dump infor-
mation to include internal compiler tables and buffers. Submit the diagnostic printout to DIGITAL with an SPR form.
The information in the listing can help the DIGITAL programmers locate the compiler error and correct it.

/EXTEND —Use this option to change the right margin for source input lines from column 72 to column 80.

4-66

Interactive Commands FORTRAN

~"1

T

T

/HEADER -- This option includes in the printout a list of options that are currently in effect.

/I4 —Use this option. to allocate two words for the default integer data type (FORTRAN uses one-word integers) so
that it takes the same physical space as real variables.

/LINENUMBERS —Use this option to include internal sequence numbers in the executable program. These are es-
pecially useful in debugging a FORTRAN program. They identify the FORTRAN statements that cause run-time
diagnostic error messages. This is the default operation.

/NOLINENUMBERS -This option suppresses the generation of internal sequence numbers in the executable program.
This produces a smaller program and optimizes execution speed. Use this option to compile only those programs that

_ are already debugged; otherwise the line numbers in FORTRAN error messages are replaced by question marks and
the messages are difficult to interpret.

/LIST[:filespec] —You must specify this option to produce a FORTRAN compilation listing. The /LIST option has
different meanings depending on where you place it in the command line.

If you specify /LIST without a file specification in the list of options that immediately follows the command name,
the FORTR;.A.N compiler generates a listing that prints on the line printer. If you follow /LIST with a device name,
the system creates a listing file on that device. If the device is afile-structured device, the system stores the listing file
on that device, assigning it the same name as the input file with a .LST file type. The following command produces a
listing on the terminal.

• ~'Q~~'~iA~l~~. x ~T : TT : ~

The next command creates a listing file called A.LST on RK3:.

~'Q~Y~Ai~/~. ~ 5T : ~Ir''3 : A

If the /LIST option contains a name and file type to override the default of .LST, the system generates a listing file
with that name. The following command, for example, compiles A.FOR and B.FOR together, producing files A.OBJ
and FILEI.OUT on device DK:.

You cannot use a command line like the next one. In this example, the second listing file would replace the first one
and, therefore, cause an error.

Another way to specify /LIST is to type it after the file specification to which it applies. To produce a listing file with
the same name as a particular input file, you can use a command similar to this one

The above command compiles A.FOR and B.FOR together, producing files DK:A.OBJ and RK3:B.LST. If you specify
a file name on a /LIST option following a file specification in the command line, it has the same meaning as when it
follows the command. The following two commands have the same results.

• ~'O~i~'~A~t A/L I ~T : ~

Both the above commands generate as output f"~les A.OBJ and B.LST.

4.67

FORTRAN Interactive Commands

Remember that file options apply only to the file (or group of files that are separated by plus signs) that they follow
in the command string. For example:

.~'Qf~T'~A~! A/~. ~ ~~' ~ ~~

This command compiles A.FOR, producing A.OBJ and A.LST. It also compiles B.FOR, producing B.OBJ. However,
it does not produce any listing file for the compilation of B.FOR.

/OBJECT[:filespec] —Use this option to specify a file name or device for the object file. Because FORTRAN creates
object files by default, the following two commands have the same meaning.

.~'C~~'7'~Ai~ A

.~'Cl~~'hA~t/CI~.J~C~T A

Both commands compile A.FOR and produce A.OBJ as output .The /OBJECT option functions like the /LIST option ;
it can be either a command or a file qualifier.

As a command option, /OBJECT applies across the entire command string. The following command, for example, com-
piles A.FOR and B.FOR separately, creating object files A.OBJ and B.OBJ on RK1:.

.C"t~C~~'~Al~f tJ~{..1~:C:'T : C~f~ ~.: A ~ B

Use /OBJECT as a file option to create an object file with a specific name or destination. The following command
compiles A.FOR and B.FOR together, creating files B.LST and B.OBJ.

.~'Q~T'C'iAi~! A-~~/L. :C~i~'/tJ~..11:::~.':~'

/NOOBJECT —Use this option to suppress creation of an object file. As a command option, /NOOBJECT suppresses
all object files; as a file option, it suppresses only the object file produced by the related input files. In this command,
for example, the system compiles A.FOR and B.FOR together, producing files A.OBJ and B.LST. It also compiles
C.FOR and produces C.LST, but does not produce C.OBJ.

.~'CJ~Tf~A~ A~-~/i...:i:.~~` ~ ~:/~t~~l~:;,.~~:C;'Y'/I...:C r'r

/ONDEBUG —Use this option to include debug lines (those that have a D in column one) in the compilation. You
do not, therefore, have to edit the file to include these lines in the compilation or to logically remove them. This
option is useful in debugging a program. You can include messages, flags, and conditional branches to help you trace
program execution and find an error.

/OPTIMIZE type —Use this option to enable certain options that optimize object code for various conditions. The argu-
ment,type, represents the three-letter code for the type of optimization to enable .Table 4-4 summarizes the codes and
their meanings.

Table 4-4 Optimization Codes

Code Meaning

BND

CSE

SPD

STR

Global register bindings for inline code generation

Common subexpression elimination

Optimization for speed of execution as opposed to minimal program size

Strength reduction optimization

4-68

Interactr've Commands FORTRAN

/NOOPTIMIZE:type -- Use this option to disable certain options that optimize object code for various conditions.
The argument, type, represents the three-letter code for the type of optimization to disable. Table 4-4 summarizes
the codes and their meanings.

/RECORD:length —Use this option to override the default record length of 132 characters for ASCII sequential
formatted input and output. The meaningful range for length is from 4 to 4095.

/SHOW[:value] —Use this option to control FORTRAN listing output. The argument, value, represents a code that
indicates which listings the compiler is to produce. Table 4-5 summarizes the codes and their meaning. You can com-
bine options by specifying the sum of their numeric codes. For example:

~'~.~I•~iClW4'~

/~HgW:A~.~.

The two options shown above have the same meaning. If you specify no code, the default value is 3, a combination of
SRC and MAP.

or

Table 4-5 FORTRAN Listing Codes

Code Meaning

0

1 or SRC

2orMAP

3

4 or COD

7 or ALL

Lists diagnostics only

Lists source program and diagnostics

Lists storage map and diagnostics

Lists diagnostics, source program, and storage map

Lists generated code and diagnostics

Lists diagnostics, source program, storage map, and generated code

/STATISTICS —Use this option to include compilation statistics in the listing, such as amount of memory used, amount
of time elapsed, and Length of the symbol table.

/SWAP —Use this option to permit the USR (user service routine) to swap over the FORTRAN program in memory.
This is the default operation.

/NOSWAP —This option keeps the USR resident during execution of a FORTRAN program. This may be necessary if
the FORTRAN program uses some of the RT-11 System Subroutine Library calls (see Chapter 4 of the RT-II Advanced
Programmer's Guide). If the program frequently updates or creates a large number of different files, making the USR
resident can improve program execution. However, the penalty for making the USR resident is 2K words of memory.

/UNITS:n —Use this option to override the default number of logical units (6) to be open at one time. The maximum
value you can specify for n is 16.

/VECTORS —This option directs FORTRAN to use tables to access multidimensional arrays. This is the default mode
of operation.

/NOVECTORS —This option directs FORTRAN to use multiplication operations to access multidimensional arrays.

4-69

FORTRAN Interactive Commands

/WARNINGS —Use this option to include warning messages in FORTRAN compiler diagnostic error messages. These
messages call certain conditions to your attention, but do not interfere with the compilation. A warning message
prints, for example, if you change an index within a DO loop, or if you specify a variable name longex than six charac-
ters.

4-70

n

/1

Interactive Commands

The FRUN command initiates foreground jobs.

FRUN SP filespec /N:n
/P
/T:n

FR UN

In the command syntax illustrated above, filespec represents the program to execute. Because this command runs a
foreground job, it is valid for the FB and XM monitors only.

If another foreground job is active when you issue the FRUN command, an error message prints on the terminal. You
can run only one foreground job at a time. If a terminated foreground job is occupying memory, the system reclaims
that region for your program. Then, if the system finds your program and if your program fits in the available memory,
execution begins.

The following sections describe the options you can use with FRUN. Note that the option must follow the file speci-
fication in the command line.

/N:n —Use this option to reserve space in memory over the actual program size. The argument, n, represents the num-
ber of words of memory to allocate. You must use this option to execute a FORTRAN foreground job.

/P —Use this option to help you debug a program. When you type the carriage return at the end of the command
string, the system prints the load address of your program and waits. You can examine or modify the program (by
using ODT, described in Chapter 16) before starting execution. You must use the RESUME command to restart the
foreground job. The following command loads the program DEMOSP.REL, prints the load address, and waits for a
RESUME command to begin execution.

F='~11~ ~:~E:i~'it:~t:iF~'~~'
i~. r.~ ~ r.~ t~ r~ {:~ ~, :1. ' ~ ' 7 tai

~r~~a~~:

/T:n —Use this option to assign a terminal to interact with the foreground job. Your system must have multi-terminal
support, which is a SYSGEN option, before you can use /T :n. The argument, n, represents a terminal logical unit
number. The default value is 0, which represents the original console terminal. By assigning a different terminal to
interact with the foreground job, you eliminate the need for the foreground and background jobs to share the console
terminal. Note that the original console terminal still interacts with the background job and with the keyboard monitor,

unless you use the SET TT: CONSOL command to change this.

4-71 March 1978

GET Interactive Commands

The GET command loads a memory image file into memory.

In the command syntax shown above, filespec represents the memory image file to be loaded. The default file type
is .SAV. Note that magtape and cassette are not block-replaceable devices and, therefore, are not- permitted with the
GET command. Use the GET command for a background job only. You cannot use GET on a virtual program that
executes under the XM monitor. The GET command is useful when you need to modify or debug a program. You
can use GET with the Base, Deposit, Examine, and START commands to test changes. Use the SAVE command to
make these changes permanent .You can combine programs by issuing multiple GET commands, as the following
example shows. This example loads a program, DEMOSP.SAV, loads ODT.SAV (on-line debugging technique, de-
scribed in Chapter 16), and starts the program using the address of ODT's entry point, O.ODT.

~iE:~' ~~~:MCI~r~'

~TA~~'

d ~i'T' V {} 1 . p ~

If more than one program requires the same locations in memory, the program you load later overlays the previous
program. Note that you cannot use GET to load overlay segments of a program; it can load only the root. If the file
you need to GET resides on a device other than the system device, the system automatically loads that device handler
into memory when you issue the GET command. This prevents problems from occurring if you use the START com-
mand and your program is overlaid.

4-7 2

Interactive Commands GT

The GT command enables or disables the VT11 or VS60 display hardware.

GT SP OFF

ON

[/T:n]

When you issue the GT OFF command, you disable the display hardware .The printing console terminal then becomes
the device that transmits your commands to the system.

When you issue the GT ON command, the display screen replaces the printing console terminal. The display screen
offers some advantages over the printing terminal : 1) it is quieter than a printing terminal, 2) it is faster than a printing
terminal, 3) it does not require a supply of paper, and 4) it is the device for which the text editor's immediate mode is
intended. The display screen ca.n speed up the editing process (see Chapter 5 for information on how to use the text
editor). You can use CTRL/A, CTRL/S, CTRL/E, and CTRL/Q to control scrolling. These commands are explained in
Section 3.6. Note that RT-11 does not permit you to use display hardware (with GT ON) in an 8K configuration. You
cannot issue GT ON when a foreground job is active; this causes the system to print an error message. Issue the GT ON
command before you begin execution of the foreground job. ODT (on-line debugging technique, described in Chap-
ter 16) is the only system program that cannot use the display screen. Its output always appears on the console terminal.

Table 4-6 Display Screen Values

Screen Size Lines Top Position

12 in ch 1-31 1-744

17 in ch
(or larger)

1-40 1-1000

The following options let you control the number of lines that appear on the screen and position the first line vertically.

/L:n —Use this option to change the number of lines of text that display on the screen. Table 4-6 shows the valid range
for the argument, n, in decimal. If you do not use this option, the system determines the screen size and automatically
assigns the largest valid value.

/T:n —Use this option to change the top position of the scroll display. Table 4-6 shows the valid range for the argu-
ment, n, in decimal. If you do not use this option, the system determines the screen size and automatically assigns the
largest valid value.

The following command enables the display screen.

•~T' (~~

The next command disables the display screen.

•taT I~F'~"

4-73

HELP Interactive Commands

The HELP command lists useful information.

HELP /PRINTER [SP topic[SP subtopic(:item])
/TERMINAL

In the command syntax shown above, topic represents a specific subject about which you need information. In the
help file supplied with RT-11, the topics are the keyboard monitor commands. The subtopic represents a specific cate-
gory within a topic. In the RT-11 help file, the subtopics are syntax, semantics, options, and examples. The item repre-
sents one member of the subtopic group. You can specify more than one item in the command line if you separate the
items by colons (:).

The HELP command permits you to access the file HELP.TXT. The help file distributed with RT-11 contains information
about the keyboard monitor commands and how to use them. However, the concept of the help file is a general one.
That is, you can create your own help file to supply quick reference material on any subject. Structure your HELP.TXT
file in the same format as the standard RT-11 HELP.TXT. Note that the HELP command reads the file that is specifi-
cally named HELP.TXT. There are only two options you can use with the HELP command. They are /PRINTER and
/TERMINAL.

/PRINTER —Use this option to list helpful information on the line printer.

/TERMINAL —This option lists helpful information on the console terminal. This is the default operation.

The following examples all make use of the standard RT-11 help file.

The following command lists all the topics for which assistance is available.

i-I ~ ~.. I"' ~..:~ ~:> •lf t; ~•~ ~~ ~. }~, ~•` ~.~ :~ :i. r~ ~•' ra r ~~ a •h. ~. n r~
r~l~'f... :~ r~vcalf.t~~:~ •~I'•~c~ ~~'~~ 1 ~~+~~~~.a~~~ i r~t~ r~ r~•bc~ r
~~;:i :f: CIS ~~:}~:}c~c:: ~. t~~;~;:~ ~; :l cap# .~. c.~ ~ ~. r~~v i ~~ r~~m~ w Y •~~ ~ ~•i~~~ i ~a l ~~v i ~~
~~~~ ~ ~: :C r•~~c:~i~.r❖❖~ ~ •lil'•~~ ~~~ :I: t~ ~. t:~r•~~~.~~~~~ ~. rt~C•~ r~ r~•b~ r 

The next command lists all the information about the DATE command. 

I:+~~'~: 

~:i 1~ i~ 'T ~t ~ 

~:i to ~. ~:> c:1 Y' ~:~ :1. `.•~ }:' ~. i:3 ~•~ {a '~ ~i E? t~ ~..! r r t~ 1"1 ~. ~ ~ ~~ ~ ~" IYI ~~ r".3'h, ~ 

~i~~I~~~'~' :1: ti,~~ 
~ :~ ~. r~ ~..+ +Y~ ~: r~ :i. r.: v ~ 1 ~.~ ~~ ~:~ ~ r ~ ~ ~ ~ i r~~ ~ 1 y ~~ +r~ +Y~ r ~ ~ r ~ ~ ~ r~ t ~ •b t~ ~ f x r ~ •~ 
•l~ ~•~ r' c~~ c ~ c:: I"~ ~3 r• {•~ c: •t ~a Y~ ~ ~ •~ ~ ~•~ c»~ r•~ ~:~ nr, ~ c:a •f ̀ •l~ I~ c~ ~~ c:~ +~~ •b I~ . 

4-74 



Interactive Commands HELP 

c~~'T ~ ta~~ 

EXA~i~'I...E:~ 
BATE :~ ~ --•i~AY•-~~~' 

The next command lists all the options that are valid with the DIRECTORY command. 

Cl ~''T :~ to ~ ~i 
Al...I...CJt1ATl::. + ~:> :i ~~~~ 

1.1~;c~, w :i. -h.~~ ~Cll.lT~~'l1T' bra r~•~~~ rvc~ ~~~~~a ~a r ~~~ ~~~~~~a~ l i ~t i r~~ f ~.1 
A~-~"'h~A~':~ET :C ~:E 

c:~ r• •lf ~:> •t1 l•~ ~~ ~~ :i r ~ c~ •~ c~ r ~:~ i r~ ~3 :I. ~•~ ~ ~ ~:~ ~ t x ~ ~ 1 c:~ ~~ ~ e r ~ ~ f :i 1 ~ r•~ ~:; m c~ a i~~ r~ 

•G~~~~ 

The last command lists information about the /BRIEF option for the DIRECTORY command. 

~ ~ ~: ~~ ~• 
l... :i. to •i: t~ c~ r•~ :l ~:s 'f' :i.1 ~ i-~ ~ ~~ ~ ~ ~•~ i~, ~ •i' :i. :~. c-1 t ~ ~ ~ ~ a ~ ~ :i l ~ ~y ~ ~ ~ ~! e a ~ / ~' A ~ T 

4-75 



INITIALIZE Interactive Commands 

Use the INITIALIZE command to clear and initialize a device directory. 

INITIALIZE /DOS[/[NO]QUERY]

/F IL E:filespec 

/INTERCHANGE[/[NO] QUERY]

/[NO] QUERY
/VOWMEID[:ONLY] 
/SEGMENTS:n 
/REPLACE[:RETAINI 
/BADBLOCKS } 

_ _ 

SP device 

In the command syntax illustrated above, device represents the device you need to initialize. The initialize operation 
must always be the first operation you perform on a new device after you receive it from the manufacturer. This pro-
cedure destroys any data that may already exist on a device. After you use the INITIALIZE command, there are no 
files in the directory. If you use the INITIALIZE command with no options, the system simply initializes the device 
directory. You can enter the INITIALIZE command as one line, or you can rely on the system to prompt you for the 
name of the device with Device?. The following sections describe the options you can use with INITIALIZE and give 
some examples of their use. 

/BADBLOCKS —Use this option to scan a device (disk or DECtape) for bad blocks and write .BAD files over them. For 
each bad block the system encounters on the device, it creates a file called FILE.BAD to cover it. After the device is 
initialized and the scan completed, the directory consists only of FILE.BAD entries that cover the bad blocks. This 
procedure ensures that the system will not attempt to access these bad blocks during routine operations. If the system 
finds a bad block in either the boot block or the device directory, it prints an error message and the device is not usable. 
The following command initializes device RKl :and scans for bad blocks. 

. I ~! I T :~ ~!_. I Z~:/~~I~BL.tl~h~ ~i~; ~. 

If you initialize a brand new flexible diskette and the system reports that it has bad blocks, repeat the INITIALIZE/ 
BADBLOCKS command. The initialization process itself removes microscopic pieces of dust and oxide that can make 
a new diskette appear to have bad blocks. 

/DOS —Use this option to initialize a DECtape for DOS-11 format . 

/FILE:filespec —Use this option to initialize a magtape and create a bootable tape. For filespec, substitute 
dev:MBOOT.BOT. This file is distributed with RT-11 for this purpose only. Consult the RT-11 System Generation 
Manual for more information. The following example creates a bootable magtape 

:C ~ :r 'r :C ~a l... ~: ;~ C:: ~' ~~' T L.. ~:: ~ F Cl t~ 1" . fi C} T ~ T ~ 

/INTERCHANGE —Use this option to initialize a diskette for interchange (proposed ANSI standard) format .The fol-
lowing example initializes DX1: in interchange format. 

. I ~ I ~' I ~L I Zk./ I ~!'T~"~t~!-~~~l~t~ I:~X :~ 
LiX i : /Z A~~ YOI.I ~tJ~~'? Y 

4-76 March 1978 



Interactive Commands INITIA, LIZE 

/QUERY —This option prompts you for confirmation before it initializes a device. Respond by typing a Y followed 

by a carriage return to initiate execution of the command. The system interprets a response beginning with any other 

character to mean NO. /QUERY is the default operation. 

/NOQUERY —Use this option to suppress the confirmation message that the system prints before it proceeds with 

the initialization. 

/REPLACE[ :RETAIN] —Use the /REPLACE option to scan the disk for bad blocks when you initialize an RK06, 

RK07, or RLO1. If the system finds any bad blocks, it creates a replacement table so that routine operations access 

good blocks instead of bad ones. Thus, the disk appears to consist of only good blocks. Note, though, that accessing 

this replacement table slows response time for routine input and output transactions. If you use ;RETAIN with 

/REPLACE, the system initializes the disk but does not create a replacement table for bad blocks. Instead, it 
uses the replacement table that is already on the device as a result of a previous initialization. This procedure allows 

the initialization to proceed faster. 

/SEGMENTS:n —Use this option if you need to initialize a disk and change the number of directory segments. The 
number of segments in the directory determines the number of files that can be sorted on a device. The system allows 
a maximum of 72 files per directory segment, and 31 directory segments per device. The argument, n, represents the 
number of directory segments you need to create. The valid range for n is from 1 to 31 (decimal). Table 4-7 shows 
the default values of n for standard RT-11 devices. 

Table 4-7 Default Directory Sizes 

r""1 

Device 
Size (decimal) of 

Directory in Segments 

RK 
DT 
RF 
DS 
DP 
DX 
DM 
DY 
DL 

16 
4 
4 
4 
31 
4 
31 
4 
16 

/VOLUMEID [:ONLY) —Use this option to write a volume identification on a device when you initialize it .This 

identification consists of a volume ID (up to 12 characters long for ablock-replaceable device, up to 6 characters long 

for magtape) and an owner name (up to 12 characters long for ablock-replaceable device, up to 10 characters long for 

magtape). The following example initializes device RK1: and writes a volume identification on it. 

+ :l i~d :l: ~l~ ~: ~''~ 1... :C ;~~ r:: .i ~,~ t:1 l... ~.1 i~ (`: :j:1:~ ~'~ ~: :1. 

iti ~.: ~ :~ r~ i t ~ r ~ ~ c.~ ~..i ~ ~..i r ~'~ '~ 

0~~l~'~ ~AM~? ~:~i~~:t~M::~:~I~lG 

Use /VOLUMEID:ONLY to write a new volume identification on a device without reinitializing the device . 

4.77 Marcr~ 1978 



INSTALL Interactive Commands 

The INSTALL command installs the device you specify into the system. 

INSTALL (SP) device [ , . . .device] 

In the command syntax shown above, device represents the name of the device to be installed. The INSTALL command 
accepts no options. The INSTALL command allows you to install into the system tables a device that was not originally 
built into the system. (A device handler must exist in the system tables before you can use that device.) The device oc-
cupies the first available device slot. Using the INSTALL command does not change the monitor disk image; it only 
modifies the system tables of the monitor that is currently in memory. 

You can enter the command on one line, or you can rely on the system to prompt you for information. The INSTALL 
command prompt is Device? . 

When you specify a device name, the system searches the system device for the corresponding device handler file. For 
SJ and FB systems, if LP: is to be installed, the INSTALL command searches for the file SY:LP.SYS. For XM systems, 
INSTALL searches for SY:LPX.SYS. The INSTALL command does not allow a device handler built for a different 
configuration of the system to be installed in a given system. For example, you cannot install an error logging handler 
if your currently running monitor is not designed for error logging. Note that you cannot install the following device 
names: FG (with FB or XM monitor only), and BA. 

To permanently install a device, include the INSTALL command in the standard system startup indirect command 
file. This file is invoked as an indirect file automatically when you boot the system. The INSTALL command also 
allows you to configure a special system for a single session without having to reconfigure to get back to the standard 
device configuration. Rebooting the system restores the original device configuration .Note that if there are no free 
device slots (use the SHOW DEVICES command to determine this), you must remove an existing device (with the 
REMOVE command) before you can install a new device. 

The following command installs the card reader into the system tables from the file CR.SYS. Note that the colon (:) 
that follows the device handler name is optional. 

The next example installs the line printer, the card reader, and DECtape. 

4-78 



Interactl've Commands LIBRAR Y 

The LIBRARY command lets you create, update, modify, list, and maintain library files. 

LIBRARY /LIST[:filespec] [/ALLOCATE size] 
/[NO] OBJECT[:filespecl [/ALLOCATE size] 

`
/CREATE 
/EXTRACTl 
/INSERT 

~ /MACRO 
/DELETE 
/PROMPT 
/REMOVE 

SP library filespecs /REPLACE 

/UPDATE 

In the command syntax illustrated above, library represents the library file name and filespecs represents the input 
module file names. Separate the library file specification from the module file specifications by a space. Separate 

the module file specifications by commas. The system uses .LST as the default file type for library directory listing 

files. It also uses .OBJ as the default file type for object libraries and object input files, and it uses .MAC for macro 

libraries and macro input files. The default operation, if you do not specify an option, is /INSERT. If you do not 

specify a library file in the command line, the system prompts you with Library?. If you specify /CREATE, 
/INSERT, or /MACRO and omit the module file specification, the system prompts you with Files?. If you specify 
/EXTRACT, the system prompts you with File?. Note that no other options cause the File? or Files? prompts. 

The LIBRARY command can perform all the functions listed above on object library files. It can also create macro 
library files for use with the MACRO-11 assembler. A library file is a direct access file (a file that has a directory) 

that contains one or more modules of the same module type. The system organizes the library files so that the linker 

and MACRO-11 assembler can access them rapidly. Each object library is a file that contains a library header, library 

directory, and one or more object modules. The object modules in a library file can be routines that are repeatedly 

used in a program, routines that are used by more than one program, or routines that are related and simply gathered 

together for convenience. The contents of the library file are determined by your needs. An example of a typical 

object library file is the default system library, SYSLIB.OBJ, used by the linker. An example of a macro library file 

is SYSMAC.SML. 

You access object modules in a library file from another program by making calls or references to their global sym-

bols;you link the object modules with the program that uses them by using the LINK command to produce a single 

executable module. Each input file for an object library consists of one or more object modules, and is stored on a 

device under a specific file name and file type. Once you insert an object module into a library file, you no longer 
reference the module by the file name of which it was a part. Reference it now by its individual module name. For 

example, the input file FORT.OBJ may exist on DT2 : and can contain an object module called ABC .Once you in-

sert the module into a library, reference only ABC and not FORT.OBJ. 

The input files normally do not contain main programs but only subprograms, functions and subroutines. The library 

files must never contain a FORTRAN "BLOCK DATA" subprogram: there is no undefined global symbol to cause 

the linker to load it automatically. 

The following sections describe the LIBRARY command options and explain how to use them. The last section 

under this command describes the LIBRARY prompting sequence and order of execution for commands that com-

bine two or more LIBRARY options. Chapter 12 contains more detailed information on object and macro libraries. 

The following sections describe the options available with the LIBRARY command. 

/ALLOCATE:size —Use this option with /LIST or /OBJECT to reserve space on the device for the output file. The 

argument, size, represents the number of blocks of space to allocate. The meaningful range for this value is from 1 

to 32767. A value of -1 is a special case that creates the largest file possible on the device. 

4-79 



LIBRARY Interactive Commands 

/CREATE —Use this option to create an object library. Specify a library name followed by the file specifications 
for the modules that are to be included in that library. The following command, for example, creates a library called 
NEWLIB.OBJ from the modules contained in files FIRST.OBJ and SECOND.OBJ. 

. ~.I~~iA~Y/~:I~E~AT~ ~l~W~. ~~ F'x~"~T ~ ~E~O~l~ 

/DELETE —Use this option to delete an object module and all its associated global symbols from the library. 
Specify the library name in the command line. The system prompts you for the names of the modules to delete. 
The prompt is 

~ to rd ~.~ ~. a r~ ~ n~ ~'? 

Respond with the name of a module. (Be sure to specify a module name and not a global name.) Follow each module 
name with a carriage return. Enter a carriage return on a line by itself to terminate the list of module names. The 
following example deletes modules SGN and TAN from the library called NEWLIB.OBJ. 

. ~... ~ ~~iA~~Y/D~NL.~T~ ~l~W~. ~ ~ 
~~r~~~ 1 ~ r~~r~~~'? ~~~ 
i~ar.~~.~ 1 e r•~~R~~'? TAi~ 

/EXTRACT —Use this option to extract an object module from a library and store it in a file with the same name 
as the module and a file type of .OBJ. You cannot combine this option with any other option. The system prompts 
you for the name of the object module to be extracted. The prompt is: 

t~ ~ ~ 1~~ ~ ~ '~ 

If you specify a global name, the system extracts the entire module of which that global is a part. Follow each 
global name with a carriage return. Enter a carriage return on a line by itself to terminate the list o f global symbols. 
The following example, which also shows the system prompts, extracts the module ATAN from the library called 
NEWLIB.OBJ, storing it in file ATAN.OBJ on DXl :. 

. ~ ~ ~F~'~1F~Y/ •.X7'~F~CT 
l.. i ~ ra r~~ i~~4Jl... ~ X:{ 

~ 1 a~~~ l ? ~TA~ 
Calc:a~ir;1 ~ 

/INSERT —Use this option to insert an object module into an existing library. Although you can insert two or 
more object modules having the same name, this practice is not recommended because of the difficulty involved in 
replacing or updating these modules. Note that /INSERT is the default operation. If you do not specify any option, 
insertion takes place. The following example inserts the modules contained in the files THIRD.OBJ and 
FOURTH.OBJ into the library called OLDLIB.OBJ. 

. ~. x ~~~~r~ Y/ :~: ~~:~~~~~~r ~~.~,~. x ~ •r~ ~ ~~~ ~ ~raia~~r~~ 

/LIST[:filespec] —Use this option to obtain a directory listing of an object library. The following example obtains 
a directory listing of OLDLIB.OBJ on the terminal (the line printer is the default device). 

. L.. ~ ~~F1~Y/~.. x ~T : TT : ~L..~~I... ~: kt 

The directory listing prints global symbol names. A plus sign (+) in the module column indicates a continued line. See 
Section 12.2.7 for a procedure to include module names in the directory listing. 

4-80 



Interactz've Commands LIBRAR Y 

You can also use /LIST with other options (except /MACRO) to obtain a directory listing of an object library after 

you create or modify it. The following command, for example, inserts the modules contained in the files THIRD.OBJ 
and FOURTH.OBJ into the library called OLDLIB.OBJ, and prints a directory listing of the library on the terminal. 

. ~. ~ ~~A~iY/ ~ i~~~:~T/~. x ~T : T'~' : CJL~~I~ :f. Z:~ TM x ~~~ ~ ~'CIl~~T1~1 

You cannot obtain a directory listing of a macro library (see /MACRO). 

/MACRO —Use this option to create a macro library. Note that this is the only valid function for a macro library. 

You can create a macro library, but you cannot list or modify it. To update a macro library, simply edit the ASCII 

text file and then reprocess the file with the LIBRARY/MACRO command. The following example creates a macro 
library called NEWLIB.MAC from the ASCII input file SYSMAC.MAC. 

. ~. ~ ~~A~Y/~f ACf~O ~l~WL ~ B SY~~iAC 

/OBJECT[ :filespec] —The system creates object library files by default as a result of executing a LIBRARY com-

mand. When you modify an existing library, the system actually makes the changes to the library you specify, thus 

creating a new, updated library that it stores under the same name as the original library. Use this option to give a 

new name to the updated library file and preserve the original library. The following example creates a library called 

NEWLIB.OBJ, which consists of the library OLDLIB.OBJ plus the modules that are contained in files THIRD.OBJ 

and FOURTH.OBJ. 

. ~.. ~ ~~A~Y/ ~ ~l~~:~T/q~J~~T : l~~Wi~ x ~ QL~~~. ~ ~ TN ~ ~L~ ~ ~'t~U~TM 

/NOOBJECT —Use this option to suppress the creation of a new object library as a result of a LIBRARY command. 

/PROMPT —Use this option to specify more than one line of input file specifications in a LIBRARY command. 

This option is valid with all other library functions except the /EXTRACT option. You must specify // as the last 

input in order to properly terminate the input list. The following example creates a macro library called MACLIB.MAC 

from seven input files. 

. ~.. ;~ B~A~Yf~A~~c~i~~~a~~~~~ ~Ac~ z ~ A ~ ~ ~ ~ ! ~~ 
*~~~'~r; 
~// 

/REMOVE —This option permits you to delete a specific global symbol from a library file's directory. Since globals 

are only deleted from the directory (and not from the object module itself), all the globals that were previously 

deleted are restored whenever you update that library, unless you use /REMOVE again to delete them. This feature 

lets you recover a library if you have inadvertently deleted the wrong global. The system prompts you for the names 
of the global symbols to remove. The prompt is: 

~lc~~~1'? 

Respond with the name of a global symbol to be removed. Follow each global symbol with a carriage return. Enter 

a carriage return on a line by itself to terminate the list of global symbols. The following example deletes the globals 

GA, GB, GC, and GD from the library OLDLIB.OBJ. 

G 1 ra~~:~ ̀ ~ ~~ 
~~.~~~1~ Gt; 

~. ~~~ 1'~ ~~~ 

4-81 



LIBRARY Interacn've Commands 

/REPLACE —Use this option to replace modules in an existing object library with modules of the same name con-
tained in the files you specify. If an old module does not exist with the same name as the input module you specify, 
or if you specify /REPLACE with a library file name, the system prints an error message and ignores the command. 
The following example replaces a module called SQRT in the library MATHLB.OBJ with a new module, also called 
SQRT, from the file called MFUNCT.OBJ. 

* L ~ ~f~ARY ~i~1T~l~.~ i„il» l.l~lCT/~~~'I..AC~ 

Note that the /REPLACE option must follow each file specification that contains a module to be inserted into the 
library. 

/UPDATE___- This option combines the functions of /INSERT and /REPLACE. Specify it after each file specification 
to which it applies. If the modules in the input file already exist in the library, the system replaces' those library 
modules. If the modules in the input file do not exist in the library, the system inserts them. The following example 
updates the library OLDLIB.OBJ. 

~.. ~: ~~iA~i Y t~l...~il.. I ~ ~' I ~i~T/~1~'T~AT~ r ~E~CINIi/t)~'~AT~ 

You can combine the LIBRARY options with the exceptions of /EXTRACT and /MACRO, which you cannot com-
bine with most of the other functions. Table 4-8 lists the sequence in which the system executes the LIBRARY 
options and prompts you for additional information. 

Table 4-8 LIBRARY Execution and Prompting Sequence 

Option Prompt 

/CREATE 

/DELETE 

/REMOVE 

/UPDATE 

/REPLACE 

/INSERT 

/LIST 

Module name? 

Global? 

The following example combines several options. 

~. ~~~ ~ •~ ~c~i~~r~ 
~a.~~~:i.r~ 
~T"" ~. ~. ~... ~. B~AM~ T ~~ Vt~~ ~ q,., ~'f~ ~ ~.,.1M....1tJI....M1~7 ~U • C3~ ♦ .7 ~ 

Tr 

~Ci~~~ll~~: 

GQ~ ~x~ 
1:rAT~I~ Tt~T'Ai~~ 
~1T~~! ~'T~1~l~ 

~LO~A~~ 

4-82 



Interactr've Commands LIBRAR Y 

The command executes in the following sequence 

1. Removes global SQRT from NEWLIB 
2. Replaces any duplicates of the modules in the file LIB2.OBJ 
3. Inserts the modules in the file LIB3.OBJ 
4. Lists the directory of NEWLIB.OBJ on the terminal. 

4-83 



LINK Interactive Commands 

The LINK command converts object modules produced by an RT-11 supported language processor into a format 
suitable for loading and execution. 

LINK /[NO] EXECUTE [:filespec] 
/MAP[:filespec] [/ALLOCATE:size] [/WIDE] 

/LDA 

/FOREGROUND [:stacksize] 
[/FI LL:n] 

/BOTTOM: n 
/FI LL:n 
/RUN 
/STACK [: n] 

/BOUNDARY:value 
/DEBUG [:filespec) 
/EXTEND:n 
/INCLUDE 
/LI BRAR Y:filespec 
/LINKLIBRARY:filespec 
/PROMPT 
/ROUND:n 
/SLOWLY 
/TRANSFER [:n] 

® filespecs 

The RT-11 system lets you separately assemble a main program and each of its subroutines without assigning an
absolute load address at assembly time. The linker can then process the object modules of the main program and 
subroutines to relocate each object module and assign absolute addresses. It links the modules by correlating global 
symbols that are defined in one module and referenced in another, and it creates the initial control block for the 
linked program. The linker can also create an overlay structure (if you specify the /PROMPT option) anc~include the 
necessary run-time overlay handlers and tables. The linker searches libraries you specify to locate unresolved global 
symbols, and it automatically searches the default system library, SYSLIB.OBJ, to locate any remaining unresolved 
globals. Finally, the linker produces a load map (if you specify /MAP) that shows the layout of the executable 
module. Read Chapter 11 for a more detailed explanation of the RT-11 linker. 

In the command syntax illustrated above, filespecs represents the object modules to be linked. Each input module 
should be stored on arandom-access device (disk or DECtape); the output device for the load map file can be any 
RT-11 device. The output for an .LDA file (if you specify /LDA) can also be any RT-11 device, even those that are 
not block replaceable, such as paper tape. 

The default file types are as follows 

Load Module .SAV, .REL(/FOREGROUND), :LDA(/LDA) 
Map Output .MAP 
Object Module .OBJ 

If you specify two or more files to be linked together, separate the files by commas. The system creates an execut-
able file with the same name as the first file in the input list (unless you use /EXECUTE to change it). 

4-84 March 1978 , 



In teractt've Commands LINK 

The following sections describe the LINK command options and explain how to use them. The last section under 
this command describes the LINK prompting sequence for commands that combine two or more LINK options. 

/ALLOCATE:size —Use this option with /MAP to reserve space on the device for the output file. The argument, 
size, represents the number of blocks of space to allocate. The meaningful range for this value is from 1 to 32767. A 
value of -1 is a special case that creates the largest file possible on the device. 

/BOTTOM:n —Use this option to specify the lowest address to be used by the relocatable code in the load module. 
The argument, n, represents asix-digit unsigned even octal number. If you do not use this option, the linker positions 
the load module so that the lowest address is location 1000 (octal). This option is illegal for foreground links. 

/BOUNDARY:value —Use the /BOUNDARY option to start a specific program section on a particular address bound-
ary. The system generates a whole number multiple of the value you specify for the starting address of the program 
section. The argument, value, must be a power of 2. The system extends the size of the previous program section to 
accommodate the new starting address for the specific section. When you have entered the complete LINK com-
mand, the system prompts you for the name of the section whose starting address you need to modify. The prompt 
is 

t:1 ~..t rt ~~ ii# Y` ~. c:s Ca C` 't1:1. C) ri ~'.' 

Respond with the appropriate program section name. Terminate your response with a carriage return. 

/DEBUG[ :filespec] —Use this option to link ODT (on-line debugging technique, described in Chapter 16) with your 

program to help you debug it. If you supply the name of another debugging program, the system links the debugger 

you specify with your program. The system links the debugger low in memory relative to your program. 

/EXECUTE[ :filespec] —Use this option to specify a file name or device for the executable file. Because the LINK 
command creates executable files by default, the following two commands have the same meaning. 

!.~ :~ ~ !~: ~ ~ F~' Ft n C~ 

Both commands link MYPROG.OBJ and produce MYPROG.SAV as a result. The /EXECUTE option has different 

meanings when it follows the command and when it follows the file specification. The following command creates an

executable file called PROGI.SAV on device RK1:. 

• i... :!: ~!h/I:~~~ CfIJT'E : Ft~ ~. : F='F<t7t~ i p ~'hn~~ 

The next command creates an executable file called MYPROG.SAV on device DK:. 

~.. ~: ~~ Ft~~~ ~. y F<T~~ ~ ~~rF~'F~~~i~:x~:ruT~ 

/NOEXECUTE —Use this option to suppress creation of an executable file. 

/EXTEND:n —This option allows you to extend a program section to a specific octal value, n. The resultant program 

section size is equal to or greater than the value you specify, depending on the space the object code actually requires. 

When you have entered the complete LINK command,'the system prompts you for the name of the program section 

you need to extend. The prompt is 

Respond with the appropriate program section name. Terminate your response with a carriage return. 

4-85 



LINK Interactc've Commands 

/FILL:n —Use this option to initialize unused locations in the load module and place a specific value in those loca-
tions. The argument, n, represents the octal value to place in the unused locations. Note that the linker automatically 
initializes unused locations in the load module to 0; use this option to place another value in those locations. This 
option can be useful in eliminating random results that occur when a program references uninitialized memory by 
mistake. It can also help you determine which locations have been modified by the program and which are left un-
changed. 

/FOREGROUND[ : stacksize ] —This option produces an executable file in relocatable (.REL) format for use as a 
foreground job under the FB or XM monitor. You cannot use .REL files in the single job system. This option assigns 
the default file tyke .REL to the executable file. The argument, stacksize, represents the number of bytes of stack 
space to allocate for the foreground job. The value you supply is interpreted as an octal number; specify an even 
number. Follow n with a decimal point (n.) to represent a decimal number. The default value is 128 (decimal) bytes 
of stack space. 

/INCLUDE —This option lets you take global symbols from any library and include them in the linked memory image. 
When you have entered the complete LINK command, the system prompts you for a list of global symbols to include 
in the load module. The prompt is: 

Respond by typing the global symbols to be included in the load module. Type a carriage return after each global 
symbol. Type a _carriage return on a line by itself to terminate the list. This provides a method for forcing modules 
(that are not called by other modules) to be loaded from the library. 

/LDA —This option produces an executable file in LDA format. The LDA-format file can be output to any device, 
including those that are not block-replaceable, such as the paper tape punch or cassette. This option assigns the de-
fault file type .LDA to the executable file. This option is useful for files that you need to load with the Absolute 
Binary Loader . 

/LIBRARY —This option is the same as /LINKLIBRARY. It is included for compatibility with other systems. 

/LINKLIBRARY:filespec —You can use this option to include the library file you specify as an object module library 
in the linking operation. This option is not necessary because the system automatically recognizes library files in the 
linking operation; it is provided for compatibility with the EXECUTE command. 

/MAP[ : filespec] —You must specify this option to produce a load map listing. The /MAP option has different 
meanings depending on where you put it in the command line. 

If you specify /MAP without a file specification in the list of options that immediately follows the command name, 
the system generates a listing that prints on the line printer. If you follow /MAP with a device name, the system 
creates a map file on that device. If the device is afile-structured device, the system stores the listing file on that de-

~ vice, assigning it the same name as the first input file with a .MAP file type .The following command produces a load 
map on the terminal. 

~~ :C ~K%t~i~F' : ~r~T : ~fYF~'h'~lC~ 

The next command creates a map listing file called MYPROG.MAP on RK3:. 

' If the /MAP option contains a name and file type to override the default of .MAP, the system generates a listing with 
that name. The following command, for example, links PROG1 and PROG2, producing a map listing file called 
MAP.OUT on device DK:. 

4-86 March 1978 



Interactive Commands LINK 

•L ~ ~lhl~fAF' 1 ~iAF' . gllT' F'~CIG 1. ~ F'FiOG~ 

Another way to specify /MAP is to type it after the file specification to which it applies. To link a file and produce 
a map listing file with the same name, use a command similar to this one. 

•L. ~ t~l~ 1~'~'~CIC~ ~. r F'hCJt"ate/I~ XF:Cl.1~T'~/~iAF' 

The command shown above links PROG 1 and PROG2, producing files PROG2.SAV and PROG2.MAP. If you specify 
a file name on a /MAP option following a file specification in the command line, it has the same meaning as when it 
follows the command. 

/PROMPT —Use this option to enter additional lines of input. The system continues to accept lines of linker input 
until you enter two slashes (//). Chapter 11 describes the commands you can enter directly to the linker. The 
/PROMPT option also gives you a convenient way to create an overlaid program from an indirect file. The file 
HERB.COM contains these lines: 

11rF'I~ t~~~F'T 

{ 1.1 ~{ ?.~ t:l 1 ~. 
~Jt•.1E:x • ~:~l.l~{~ItJ 1 ~. 
// 

The following command produces an executable file, DK: A.SAV, and a-link map on the printer. 

/ROUND:n —This option rounds up the section you specify so that the size of the root segment is a whole number 
multiple of the value, n, you supply. The argument, n, must be a power of 2. When you have entered the complete 
LINK command, the system prompts you for the name of the section that you need to round. The prompt is: 

Respond with the appropriate program section name. Terminate your response with a carriage return. 

/RUN —Use this option to initiate execution of the resultant .SAV file. This option is valid for background jobs only. 

/SLOWLY —This option instructs the system to allow the largest possible memory area for the link symbol table at 
the expense of making the link process slower. Use this option only if an attempt to link a program failed because of 
symbol table overflow. 

/STACK[:n] —This option lets you modify the stack address. This address, location 42, is the address that contains 
the value for the stack pointer. When your program executes, the stack pointer (SP) is automatically set to the con-
tents of location 42. The argument, n, is an even, unsigned six-digit octal number that defines the stack address. When 
you have entered the complete LINK command, the system prints the following prompt message if you did not al-
ready specify a numeric value for n. 

~t~r.~N. ~~n~~~ol'? 

Respond with the global symbol whose value is the stack address. You cannot specify a number at this point. Termi-
nate your response with a carriage return. If you specify a nonexistent symbol, the system prints an error message. 
It then sets the stack address to 1000 (for memory image files) or to the bottom address if you used /BOTTOM. 

4-87 March 1978 



LINK Interactt've Commands 

/TRANSFER[ : n ] —The transfer address is the address at which a program starts when you initiate execution with 
R, RUN, or FRUN. The /TRANSFER option lets you specify the start address of the load module. The argument, 
n, is an even, unsigned six-digit octal number that defines the transfer address. When you have entered the complete 
LINK command, the system prints the following prompt message if you did not already specify a numeric value for 
n: 

~'r~i-~~-}~~~~r ~~~~~:~r~x'~ 

Respond with the global symbol whose value is the transfer address. You cannot specify a number at this point. Ter-
minate your response with a carriage return. If you specify a nonexistent symbol, an error message prints and the 
linker sets the transfer address to 1 so the system cannot execute the program. If the transfer address you specify is 
odd, the program does not execute after loading and control returns to the monitor. 

/WIDE —Use this option with /MAP to produce a wide load map listing. Normally, the listing is wide enough for 
three GLOBAL VALUE columns, which is suitable for paper with 72 or 80 columns. The /WIDE option produces a 
listing that is six GLOBAL VALUE columns wide, which is ideal fora 132-column page. 

This section describes the prompting sequence that occurs when you combine the LINK options. Table 4-9 lists the 
sequence in which the system prompts you for additional information. 

Table 4-9 LINK Prompting Sequence 

Option Prompt 

/TR.ANSFER 

/STACK 

/EXTEND:n 

/BOUNDARY:value 

/ROUND:n 

/INCLUDE 

Transfer symbol? 

Stack symbol? 

Extend section? 

Boundary section? 

Round section? 

Library search? 

If you combine any of the options listed in Table 4-9, the system prompts you for information in the sequence 
shown in the table. Note that the Library search? prompt is always last. This is the only prompt that accepts more 
than one line as a response. For all the prompts, terminate your response with a carriage return. Terminate your list 
of responses to the Library search? prompt by placing a carriage return on a line by itself. Note that if the command 
lines are in an indirect file and the system encounters an end-of--file before all the prompting information has been 
supplied, it prints the prompt messages on the terminal. 

4-88 



Interactive Commands LOAD 

The LOAD command makes a device handler resident in memory for use with BATCH or foreground/background 
jobs. 

LOAD (SP) device [=jobtyp►e] [ , . . .device [=jobtype] ] 

In the command syntax shown above, device represents the device handler to be made resident; jobtype, which can 
have the values B or F, assigns the device handler to the background or foreground job, respectively. The jobtype 
specification is invalid with the SJ monitor. 

The LOAD command helps control system execution by bringing a device handler into memory and optionally 
allocating the device to a job. The system allocates memory for the handler as needed. Before you use a device in a 
foreground program with the FB monitor, or any device at all with the XM monitor, you must first load the device 
handler. A device can be owned exclusively by either the foreground or background job. (Note that BATCH, if 
running, is considered to be a background job under the FB and XM monitors.) This exclusivity prevents the input 
and output of two different jobs from being intermixed on the same non-file-structured device. In the following 
example, magtape belongs to the background job while DECtape is available for use by either the background or 
foreground job; the line printer is owned by the foreground job. All three handlers are made resident in memory. 

.I,..ClA~i I~~ : y ~~' : ~~ ~ I...~' : ~~' 

Different units of the same random-access device controller can be owned by different jobs. Thus, for example, DT1: 
ca.n belong to the background job while DTS : can belong to the foreground job. If no ownership is indicated, the 
device is available for public use. To change ownership of a device, use another LOAD command. It is not necessary 
to first unload the device. For example, if the line printer has been loaded into memory and assigned to the fore-
ground job as in the example above, the following command reassigns it to the background job without unloading 
the handler first. 

.L.~IAD L.~' . w~ 

Note, however, that if you interrupt an operation that involves magtape or cassette, you must unload (with the 
UNLOAD command) then reload the appropriate device handler (MM, MT, or CT). 

You cannot assign ownership of the system unit (the unit you bootstrapped) of a system device, and any attempt to 
do so is ignored. You can, however, assign ownership of other units of the same type as the system device. LOAD is 
valid for use with user-assigned names. For example 

.~1~~ ~ ~~! ~h i : XY 
+L.CIf~Ii XY : ~~' 

If you are using the diskette monitor, loading the necessary device handlers into memory can improve system per-
formance since no handlers need to be loaded dynamically from the diskette. Use the SHOW DEVICES command to 
display on the terminal the status of device handler and device ownership. 

4-89 



MACRO Interactz've Commands 

The MACRO command invokes the MACRO assembler to assemble one or more source files. 

MACRO _/LIST[:filespec] [/ALLOCATE:size] 
/[NO] OBJECT[:filespec] [/ALLOCATE:size] 

/CROSSREFERENCE [:type [...:type] ] 
/DISABLE:value [...:value] 
/ENABLE:value [...:value] 
/[NO] SHOW [:value] 

filespecs /LIBRARY 
/PASS :1 

In the command syntax shown above, filespecs represents one or more files to be included in the assembly. If you 
omit a file type for an input file, the system assumes .MAC. Output default file types are .LST for listing files and 
.OBJ for object files. 

To assemble multiple source files into a single object file, separate the files by plus (+) signs in the command line. 
Unless you specify otherwise, the system creates an object file with the same name as the first input file and gives 
it an .OBJ file type. To assemble multiple files in independent assemblies, separate the files by commas (,) in the 
command line. This generates a corresponding object file for each set of input files. 

Language options are position dependent. That is, they have different meanings depending on where you place them 
in the command line .Options that qualify a command name apply across the entire command string. Options that 
follow a file specification apply only to the file (or group of files separated by plus signs) that they follow in the 
command string. 

You can enter the MACRO command as one line, or you can rely on the system to prompt you for information. 
The MACRO command prompt is Files? for the input specification. The system prints on the terminal the number 
of errors MACRO detects during an assembly, as this printout shows: 

♦ ~if~G~Cl~t~~Cl~~~;~~"~~E~lC~: ~'~CIC~ ~. +~'~tJG~/L. ~ ~TlO~J~~T 
~:~h0~i~~ ~~~"'1'~'t~~' I~ : C? 

Chapter 10 and the PDP-11 MACRO Language Reference Manual contain more detailed information about using 
MACRO. The following sections describe the options you ca.n use with the MACRO command. 

/ALLOCATE:size —Use this option with /LIST or /OBJECT to reserve space on the device for the output file. The 
argument, size, represents the number of blocks of space to allocate. The meaningful range for this value is from 1 
to 32767. A value of -1 is a special case that creates the largest file possible on the device. 

/CROSSREFERENCE:type [ . . . :type ] —Use this option to generate a symbol cross-reference section in the listing. 
This information is useful for program maintenance and debugging. Note that the system does not generate a listing 
by default . You must also specify /LIST in the command line to get across-reference listing. The argument, type, 
represents aone-character code that indicates which sections of the cross-reference listing the assembler should in-
clude. Table 4-10 summarizes the valid arguments and their meanings. 

/DISABLE:value[ . . . :value] —Use this option to specify a MACRO .DSABL directive. See Section 6.2 of the 
PDP-11 MACRO Language Reference Manual for a description of the directive and a list of all legal values. Table 
4-11 summarizes the arguments and their meaning. 

4-90 



Interactl've Commands MACRO 

Table 4-14 Cross-reference Sections 

Argument Section_ Type 

S 

R 

M 

P 

C 

E 

no argument 

User-defined symbols 

Register symbols 

Macro symbolic names 

Permanent symbols (instructions, directives) 

Control sections (.CSECT and .PSECT symbolic names) 

Error codes 

Equivalent to :S:M:E 

Table 4-11 .DSABL and .ENABL Directive Summary 

Argument Default Enables or Disables 

ABS disable Absolute binary output 

AMA disable Assembles all absolute addresses as relative addresses 

CDR disable Treats source columns 73 and greater as comments 

FPT disable Floating point truncation 

GBL disable Treats undefined symbols as globals 

LC disable Accepts lower case ASCII input 

LSB disable Local symbol block 

PNC enable Binary output 

REG enable Mnemonic definitions of registers 

/ENABLE:value[... :value] —Use this option to specify a MACRO .ENABL directive. See Section 6.2 of the 
PDP-11 MACRO Language Reference Manual for a description of the directive and a list of all legal values. Table 
4-11 summarizes the arguments and their meaning. 

/LIBRARY —This option identifies the file it qualifies as a library file; use it only after a macro library file speci-
fication in the command line. The MACRO assembler looks first to the library file or files you specify and then to 
the system library, SYSMAC.SML, to satisfy references (made with the .MCALL directive) from MACRO programs. 
In the example below, the command string includes two user libraries. 

♦ ~i~~~t~ ~iY~. ~ ~ 11~. ~ ~~A~Y~~~~iYLM x ~~/I~.~ ~~F~~Y~-~ 

When MACRO assembles file A, it looks first to the library, MYLIBI .MAC, and then to SYSMAC.SML to satisfy 
.MCALL references. When it assembles file B, MACRO searches MYLIB2.MAC, MYLIBI .MAC, and then 
SYSMAC.SML, in that order, to satisfy references. 

/LIST[:filespec] —You must specify this option to produce a MACRO assembly listing. The /LIST option has dif-
ferent meanings depending on where you place it in the command line. 

If you specify /LIST without a file specification in the list of options that immediately follows the command name, 
the MACRO assembler generates a listing that prints on the line printer. If you follow /LIST, with a device name, the 
system creates a listing file on that device. If the device is afile-structured device, the system stores the listing file on 
that device, assigning it the same name as the input file with a .LST file type . The following command produces a 
listing on the terminal. 

4-91 



MACRO Interactive Commands 

• i~AC:~q/L. x ~T : TT : A 

The next command creates a listing file called A.LST on RK3:. 

If the /LIST option contains a name and file type to override the default of .LST, the system generates a listing file 
with that name. The following command for example, assembles A.MAC and B.MAC together, producing files 
A.OBJ and FILEl.OUT on device DK:. 

• ~'i~C~iCl/~. ~ aT : ~" ~ ~»~ 1 . CIIJT A~~ 

You cannot use a command like the next one. In this example, the second listing file would replace the first one and, 
therefore, cause an error. 

Another way to specify /LIST is to type it after the file specification to which it applies. To produce a listing file 
with the same name as a particular input file, you can use a command similar to this one 

• ~AC~t~ A~~/~. I ~T : ~~~ t 

The above command assembles A.MAC and B.MAC, producing files DK:A.OBJ and RK3:B.LST. If you specify a 
file name on a /LIST option following a file specification in the command line, it has the same meaning as when it 
follows the command. The following two commands have the same results 

i~~C~CI ~1/~. ~ ~T : ~ 

Both the above commands generate as output files A.OBJ and B.LST. 

Remember that file options apply only to the file (or group of files that are separated by plus signs) they follow in 
the command string. For example 

This command assembles A.MAC, producing A.OBJ and A.LST. It also assembles B.MAC, producing B.OBJ. How-
ever, it does not produce any listing file for the assembly of B.MAC. 

/OBJECT[ :filespec] —Use this option to specify a file name or device for the object file. Because MACRO creates 
object files by default, the following two commands have the same meaning. 

• ~AC:I"~Cl A 

• i~I~C~IJ/CI~.JECT A 

Both commands assemble A.MAC and produce A.OBJ as output. The /OBJECT option functions like the /LIST 
option; it can be either a command or a file qualifier. 

As a command option, /OBJECT applies across the entire command string. The following command, for example, 
assembles A.MAC and B.MAC separately, creating object files A.OBJ and B.OBJ on RK1:. 

. ~i~C;~Cl/Q~J~CT : ~h ~.: A ~ ~ 

4-92 



Interactt've Commands MACRO 

Use /OBJECT as a file option to create an object file with a specific name or destination. The following command 
assembles A.MAC and B.MAC together, creating files B.LST and B.OBJ. 

•t~f~C~'~tJ ~-~E/L ~ ~'T/gE,.1~C'I' 

/NOOBJECT —Use this option to suppress creation of an object file. As a command option, /NOOBJECT suppresses 
all object files; as a file option, it suppresses only the object file produced by the related input files. In this command, 
for example, the system assembles A.MAC and B.MAC together, producing files A.OBJ and B.LST. It also assembles 
C.MAC and produces C.LST, but does not produce C.OBJ. 

.~~~h:~ ~~~~~{/~.. z~~~ ~ c/~aa~.~~c~r/i~ x ~T

/PASS:I —Use this option on a prefix macro file to process that file during pass-1 of the assembly only. This option 
is useful when you assemble a source program together with a prefix file (one that contains only macro definitions), 
since these definitions do not need to be redefined in pass-2 of the assembly. The following command assembles a 
prefix file and a source file together, producing files PROG 1.OBJ and PROG 1.LST. 

•~fI~C~Cl 1~'~'~I:~~~':~ X . SAC/~'At~~ : ~. -~~'~CJC~ i /L- T ~T/(J~J~CT 

/SHOW:value —Use this option to specify any MACRO .LIST directive. Section 6.1.1 of the PDP 11 MACRO 
Language Reference Manual explains how to use these directives. Table 4-12 summarizes the valid arguments and 
their meaning. 

Table 4-12 .LIST and .NLIST Directive Summary 

Argument Default Controls listing of 

SEQ list Source line sequence numbers 

LOC list Location counter 

BIN list Generated binary code 

BEX list Binary extensions 

SRC list Source code 

COM list Comments 

MD list Macro definitions, repeat range expansions 

MC list Macro calls, repeat range expansions 

ME nolist Macro expansions 

MEB nolist Macro expansion binary code 

CND list Unsatisfied conditionals, .IF and .ENDC statements 

LD nolist Listing directives with no arguments 

TOC list Table of Contents 

TTM terminal mode Listing output format 

SYM list Symbol table 

/NOSHOW:value —Use this option to specify any MACRO .NLIST directive. Section 6.1.1 of the PDP-I1 MACRO 
Language Reference Manual explains how to use these directives. Table 4-12 summarizes the valid arguments and 
their meaning. 

4-93 



PRINT Interactr've Commands 

The PRINT command lists the contents of one or more files on the line printer. 

PRINT /COPIES:n SP filespecs 
/DELETE 
/[NO] LOG 
/NEWFILES 
/QUERY 

In the command syntax illustrated above, filespecs represents the file or files to be printed. You can explicitly specify 
up to six files as input to the PRINT command. The system prints the files in the order in which you specify them 
in the command line. You can also use wildcards in the file specification. In this case, the system lists the files in the 
order in which they occur in the directory of the device you specify. If you specify more than one file, separate the 
files by commas. If you omit the file type for a file specification, the system assumes .LST. You can specify the en-
tire command on one line, or you can rely on the system to prompt you for information. The PRINT command 
prompt is Files?. Note that if the output device is an LPOS, you must terminate the file with a line feed, form feed, 
or carriage return. 

The following sections describe the PRINT command options and include command examples. 

/COPIES:n —Use this option to print more than one copy of the file. The meaningful range of values for the decimal 
argument, n, is from 2 to 32 (1 is the default). The following command, for example, prints tree copies of the file 
REPORT.LST on the line printer. 

>~'~i I ~Tl~OF' I ~~ ::~ f~~F'Q~iT 

/DELETE —Use this option to delete a file after it prints on the line printer. This option must appear following the 
command in the command line. The PRINT/DELETE operation does not ask you for confirmation before it executes. 
You must use /QUERY for this function. The following example prints a BASIC program on the line printer, then 
deletes it from DXl :. 

i"'F~ I ~!'r/~iE~_~:'r~ x:iX 1 : F'~iQG 1 . ~A~ 

/LOG —This option lists on the terminal the names of the files that are printed by the current command. Normally 
the system prints a log only if there is a wildcard in the file specification. If you specify /QUERY, the query messages 
replace the log, unless you specifically type /LOG/QUERY in the command line .The following example shows a 
PRINT command and the resulting log. 

~'~ z ~Tll~.carl~~~'I...w~:'r~: ~f~:~'r~r-~T 

/NOLOG —This option prevents a list of the files that were printed from typing out on the terminal. You can use 
this option to suppress the log when you use a wildcard in the file specification. 

/NEWFILES —Use this option in the command line if you need to print only those files that have the current date. 
The following example shows a convenient way to print all new files after a session at the computer. 

I~'~~ T ~~r/~~wr~ z Iwr~ * . I~~T 

~'~.1~~ c~c~>~i~~: 
Li h' : Cl lJ T f~ :~ L... L. ~ T t a L F' 
z~h : ~'~"~'C1~T . L.ST t~ L. F' 

4-94 March 1978 



Interactl've Commands PRINT 

/QUERY — If you use this option, the system requests confirmation from you before it performs the operation. 
/QUERY is particularly useful on operations that involve wildcards, when you may not be completely sure which 
files the system selected for an operation. Note that if you specify /QUERY in a PRINT command line that also 
contains a wildcard in the file specification, the confirmation messages that print on the terminal replace the log 
messages that would normally appear. You must respond to a query message by typing Y (or anything that begins 
with Y) and a carriage return to initiate execution of a particular operation. The system interprets any other response 
to mean NO; it does not perform the specific operation. The following example uses /QUERY. 

~~'~ .r. ~lT~C~U~"FAY ~ . ~_~'r 
F'i1~~ co~i~~: 

Leh ~ CIUTF' ~ ~.. I._~T tQ L_F' :'? ~0 
~:ih : ~~F'CI~T . LET tca I...F' :'? Y 

4-95 



R Interactive Commands 

The R command loads a memory image file from the system device into memory and starts execution. 

In the command syntax shown above, filespec represents the program to be executed. The default file type is .SAV. 
The only valid device is SY:. The R command is similar to the RUN command except that the file you specify 
in an R command string must be on the system device (SY:). Use the R command only with background jobs, 
including privileged jobs in XM. (Use FRUN to execute a foreground job under the FB or XM monitor. The follow-
ing command loads and executes MYPROG.SAV from device SY:. 

.~~ ~iY~~'f~t:lC:~ 

The R command is the only monitor command that can execute a background virtual job under the xM monitor. 
The R command creates a virtual memory partition for the job, creates a region 0 and window 0 definition block, 
and sets up the user mapping registers. 

4-96 March 1978 



Interactc've Commands REENTER 

The REENTER command starts the program at its reentry address (the start address minus two). 

REENTER 

The REENTER command accepts no options or arguments. REENTER does not clear or reset any memory areas. 
Use it to avoid reloading the same program for repetitive execution. You can use REENTER to return to a system 
program or to any program that allows for a REENTER after the program terminates. You can also use REENTER 
after you have used two CTRL/Cs to interrupt those programs. 

If you issue the REENTER command and it is not valid for a program, the message ?KMON-F-Illegal command 
prints. You must start that program with an R or RUN command. 

In the following example the directory program (DIR) lists the directory of DK: on the line printer. Two CTRL/Cs 
interrupt the listing and return to the monitor. REENTER starts DIR at its reentry address and DIR prompts for a 
line of input. 

~i ~+ I ~'~ 

... ~. 

n~ 

,~i~~i~T'~~ 

Note in the example above that using REENTER does not continue the directory listing where it was interrupted. 

4-97 



REMO TlE Interactive Commands 

The REMOVE command removes a device from the system tables. 

REMOVE (SP) device[ , . . .device] 

In the command syntax shown above, device represents the device to remove from the system tables. The REMOVE 
command accepts no options. You can enter the REMOVE command on one line, or you ca.n rely on the system to 
prompt you for information. The REMOVE command prompt is Device?. 

Using the REMOVE command does not change the monitor disk image; it only modifies the system tables of the 
monitor currently in core .This allows you to configure a special system for a single session at the computer without 
having to reconfigure to return to your standard device configuration. Bootstrapping the system device restores the 
original device configuration. To permanently REMOVE a device, include the REMOVE command in the standard 
system startup indirect command file. 

You cannot remove the following system devices: SY (the handler for the system device), BA (the BATCH handler), 
and TT (the terminal handler). You can use the INSTALL command to install a new device after using the REMOVE 
command to remove a device (thus creating a free device slot). 

The following command removes the line printer handler and the card reader handler from the system. Note that the 
colons (:)are optional. 

,~1E:~C1V~ 1...~': ~C~iZ 

Use the SHOW DEVICES command to display on the terminal a list of devices that are currently available on your 
system. 

4-98 



Interactl've Commands RENAME 

The RENAME command assigns a new name to an existing file. 

RENAME i[NO] LOG 
/NEWFILES 
/QUERY 
/[NO] REPLACE 
/SETDATE 
/SYSTEM 

input-fiiespecs SP output-filespec 

In the command syntax illustrated above, input-filespecs represents the files to be renamed, and output-filespec rep-
resents the new name. You can specify up to six input files, but only one output file. Note that the device specifica-
tion must be the same for input and output; you cannot rename a file from one device to another. If a file exists with 
the same name and file type as the output file you specify, the system deletes the existing file unless you use the 
/NOREPLACE option to prevent this. 

The system has a special way of handling system (.SYS) files and files that cover bad blocks (.BAD) files. So that you 
do not rename system files by accident when you use a wildcard in the file specification, the system requires you to 
use the /SYSTEM option when you need to rename system files. To rename a .BAD file, you must specify it by ex-
plicitly giving its file name and file type. Since .BAD files cover bad blocks on a device, you usually do not need to 
rename or otherwise manipulate these files. 

The following sections describe the options you can use with the RENAME command. 

/LUG —This option lists on the terminal the files that were renamed by the current command. Normally, the system 
prints a log only if there is a wildcard in the file specification. If you specify /QUERY, the query messages replace 
the log (unless you specifically type /LOG/QUERY in the command line). 

This example demonstrates logging. 

r~~~A~~ r~Xo : Afi . i~A~ r~Xa : * . ~ca~ 
~ ~ ~ ~~ ~~~~~~s~~ 

r'Xa : A~~ . ~fA~ ~~~ r~Xa : ABC . ~'a~ 
r~XU : AAA' . t~A~ ~~ ~iXU : AAA' . ~'Cl~ 

/NOLOG —This option prevents a list of the files that are renamed from appearing on the terminal. 

/NEWFILES -- Use this option in the command line if you want to rename only those files that have the current date. 
This is a convenient way to access all new files after a session at the computer. 

/QUERY — If you use this option, the system requests confirmation from you before it performs the operation. 
/QUERY is particularly useful on operations that involve wildcards, when you may not be completely sure which 
files the system selected for the operation. Note that if you specify /QUERY in a command line that also contains 
a wildcard in the file specification, the confirmation messages that print on the terminal replace the log messages 
that would normally appear. You must respond to a query message by typing Y (or anything that begins with Y) and 
a carriage return to initiate execution of a particular operation. The system interprets any other response to mean 
NO; it does not perform the specific operation. This example demonstrates querying. 

♦~~~lAi~~/C~U~'~~Y x~XO : C ~' T ~' i . ~A~ ~' ~ ~' . ~AV 

~:iXC~ : ~"` ~ ~' ~.. ~A~ to r~XO : ~' ~ ~' . AV ? Y 

4-99 



1~;ENAME Interactz've Commands 

/REPLACE ~ — This is the default mode of operation for the RENAME command . If a file exists with the same name 
as the file you specify for output, the system deletes that duplicate file when it performs the rename operation. 

/NOREPLACE —This option prevents execution of the rename operation if a file with the same name as the output 
file you specify already exists on the same device. The following example uses /NOREPLACE. In this case, the out-
put file already exists and no action occurs. 

• fi~i~A~i~/i~C1~;~~'~..~t;~ ~iXC? * ~'~~T . ~~1U I~XC} ~ ~~lJ~' . ~AV 
?~~ I ~'~W•~Cl~.~~~~.~~ f ~ 1 ~ ~c~~.~r~~ ~ r~ra a~~ rat i are ~~ r~ca rr~~~r~ I~X4 : TESL' . ~AV 

/SETDATE —This option causes the system to put the current date on all files it renames, unless the current system 
date is not set. Normally, the system preserves the existing file creation date when it renames a file. The following 
example renames files and changes their dates. 

~' i l ~~ r~r'~~rr~~~ 
~~XO : ~1~C . ~'Cl~ ~a ~iXU : A~~ . tJL~i 
L~XC~ : ~~E . EC~~ Ica ~XQ : AAA' . Cll».~i 
~~Xo : ~E~~E . E0~ ~a ~~Xo : ~E~GE . 0~~~ 

/SYSTEM —Use this option if you need to rename system (.SYS) files. If you omit this option, the system files are 
excluded from the rename operation and a message is printed on the terminal to remind you of this. This example 
renames MM.SYS to MX.SYS. 

• ~E~~~E/SYSTEi~ ~~XQ ~ ~~ . ~aYS I~XQ : ~iX . ~Y~ 

4-100 



Interactl've Commands RESET 

The RESET command resets several background system tables and does a general clean-up of the background area. 

RESET 

The RESET command accepts no options or arguments. The RESET command causes the system to purge all open 
input/output channels, initialize the user program memory area, and unload any device handlers that were not ex-
plicitly made resident with the LOAD command. It also disables CTRL/O, clears locations 40-53, and resets the 
KMON (keyboard monitor) stack pointer. Use RESET before you execute a program if a device or the monitor needs 
reinitialization, or when you need to discard the results of previously issued GET commands. The RESET command 
had no effect on the foreground job. The following example uses the RESET command before running a program. 

•~~~ET 
•1~ ~tY~'~C~~ 

4-101 



RESUME Interactl've Commands 

The RESUME command continues execution of the foreground job at the point the SUSPEND command was issued. 

RESUME 

No arguments or options are permitted with the RESUME command. When you issue the RESUME command, the 
foreground job enters any completion routines that were scheduled while the job was suspended. Note that RESUME 
is valid only with the FB and XM monitors. The following command resumes execution of the foreground job that 
is currently suspended. 

You can also use the RESUME command to execute a foreground job that you start with FRUN using /P. 

4-102 



Interacn've Commands RUN 

The RUN command loads a memory image file into memory and starts execution. 

RUN SP filespec 

SP argument 

input-list[ SP output-list] 

argument 

In the command syntax illustrated above, filespec represents the program to execute. The system assumes a .SAV 
file type for the executable file, which can reside on any RT-11 block-replaceable device. The default device is DK:. 
The .RUN command automatically loads the device handler for the device you specify if it is not already resident. 
This eliminates the need to explicitly load a device handler when you run an overlaid program from a device other 
than the system device. The RUN command executes only those programs that have been linked to run as back-
ground jobs. (Use FRUN to execute foreground jobs under FB or XM monitor.) 

RUN is a combination of the GET and START commands. First it loads a memory image file from a storage device 
into memory. Then it begins execution at the program's transfer address. You can use RUN to execute a privileged 
job under the XM monitor the same way you execute any other background job in FB or SJ. However, a virtual job 
in XM requires special preparation for execution. You must use the R command to execute a background virtual 
job. The R command creates a virtual memory partition for the job, creates a region 0 and window 0 definition 
block for the partition, and sets up the user mapping registers. 

The following command, for example, executes MYPROG.SAV, which is stored on device DX1:. 

. ~~l.l~! ~iX 1 : ~fY~'~OG 

You can also specify in the RUN command an argument to pass to the program, or a list of input and output specifi-
cations. This allows you to specify a line of input for a user program or for a system utility program (which accepts 
file specifications in the special syntax described in Chapter 6). The system automatically converts the input-list and 
the output-list you specify into a format that the CSI (Command String Interpreter) accepts. For example, to execute 
the directory program (DIR) and obtain a complete listing of the directory of DXl : on the printer, you can use the 
following command. 

This command has the same effect as the following lines. 

sic''` C' 

Note that when you use either an argument or an input-list and output-list with RUN, control returns to the monitor 
when the program completes. 

4-103 March 1978 



SA VE Interactr've Commands 

The SAVE command writes memory areas in memory image format to the file and device that you specify. 

In the command syntax shown above, filespec represents the file to be saved on ablock-replaceable device. If you do 
not specify a file type, the system uses .SAV. The parameters represent memory locations to be saved. 

Parameters are of the form: 

where 

address [- address(2)] [, address(3) [- address(n)] ] 

address is an octal value representing a specific block of memory locations to be saved. If you 
specify more than one address, each address must be higher than the previous one. 

RT-11 transfers memory in 256-word blocks beginning on boundaries that are multiples 
of 256 (decimal). If the locations you specify make a block that is less than 256 words, 
the system saves additional words to make a 256-word block. 

The system saves memory from laocation 0 to the highest memory address specified by the parameter list or to the 
program high limit (location 50 in the system communication area). Initially, the system gives the start address and 
the JSW (Job Status Word) the default value 0 and sets the stack to 1000. If you want to change these or any of the 
following addresses, you can use the Deposit command to alter them and the SAVE command to save the correct 
areas. 

AREA LOCATION 

Start address 40 

Stack 42 

JSW 44 

USR address 46 

High address 50 

Fill characters 56 

If you change the values of the addresses, it is your responsibility to reset them to their default values. For more 
information concerning these addresses refer to the RT-11 Advanced Pwogrammer's Guide. Note that the SAVE 
command does not write the overlay segments of programs; it saves only the root segment. 

The following command saves location 10000 through 11777 and 14000 through 14777. It stores the contents of 
these locations in the file FILEI .SAV on device DK:. 

. ~~U~ ~~ ~ ~.~ ~ ~ oc~oo-~- :~ ~. aaa ~ ~ 4aao~-- ~ a ~ oa 

The next example sets the reenter bit in the JSW and saves locations 1000 through 5777 in file PRAM.SAV on 
device SY:. 

• Ti 4~~=~ oQa 
• ~i~tV~ ~Y : ~'~A~'i :1 aaa•--~~77 

4-104 



Interactz've Commands SET 

The SET command changes device handler characteristics and certain system configuration parameters. 

SET SP physical-device-name 

item 

condition 

In the command syntax illustrated above, physical-device-name represents the device handler whose characteristics 
you need to modify. 

See Table 3-1 for a list of the standard RT-11 permanent device names. The argument, item, represents a system 
parameter that you need to modify. The system items you can change include error handling (SET ERROR) and 
wildcard handling (SET WILDCARDS). Table 4-13 lists the devices and items you can modify as well as the valid 
conditions for these devices and items. If you set more than one condition for a device, separate the conditions by 
commas. With the exception of the SET TT, SET USR, and SET item commands, the SET command locates the file 
SY:device.SYS and permanently modifies it. The SET commands are valid for all three RT-11 monitors unless other-
wise specified. They permanently modify the device handlers (except where noted); this means that the conditions 
remain set even across a reboot. For those SET commands that do not permanently modify the device handlers, the 
conditions return to the default setting after a reboot. To make these settings appear permanent, include the appro-
priate SET commands in your system's startup indirect command file (see Section 4.3.3). The command you enter 
must be completely valid for the modification to take place. If a handler is already loaded when you issue a SET 
command for it, you must unload the handler and install a fresh copy from the system device for the modification 
to have an effect on execution. Note that the colon (:)after each device name is optional. 

PDP-11 WORD 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

UNUSED (ALWAYS O) 
ZONE 

12 
ZONE 

11 
ZONE 

0 
ZONE 

1 
ZONE 

2 
ZONE 

3 
ZONE 

4 
ZONE 

5 
ZONE 

6 
ZONE 

7 
ZONE 

8 
ZONE 

9 

Figure 4-2 Format of a 12-bit Binary Number 

Table 4-13 SET Device Conditions 

Device 
or 

Item Condition Action 

CR: CODE=n Modifies the card reader handler to use either the DEC 026 or DEC 029 
card codes. The argument, n, must be either 26 or 29. The default value 
is 29. 

CR: CRLF Appends a carriage return/line feed combination to each card image. 
This is the normal mode. 

CR: NOCRLF Transfers each card image without appending a carriage return/line feed 
combination. The default is CRLF. 

CR: HANG Waits for you to make a correction if the reader is not ready at the start 
of a transfer. This is the normal mode . 

(Continued on next page) 

4-105 



SET Interactive Commands 

Table 4-13 (Cont.) SET Device Conditions 

Device 
or 
Item Condition Action 

CR: NOHANG Generates an immediate error if the device is not ready at the start of a 
transfer. The handler waits (regardless of how the condition is set) if the 
reader becomes not ready during a transfer (i.e., the input hopper is 
empty, but an end-of-file card has not been read). The default is HANG. 

CR: IMAGE Causes each card column to be stored as a 12-bit binary number, one 
column per word. The CODE option has no effect in IMAGE mode. 
Figure 4-2 illustrates the format of the 12-bit binary number. This format 
allows the system to read binary card images. It is especially useful if you 
use a special encoding of punch combinations. Mark-sense cards can be 
read in this mode. The default is NOIMAGE. 

CR: NOIMAGE Allows the normal translation (as specified by the CODE option) to take 
place. The system packs data one column per byte. It translates invalid 
punch combinations into the error character, ASCII backslash (~), which 
is octal code 134. This is the normal mode. 

CR: TRIM Removes trailing blanks from each card that the system reads. You should 
not use TRIM and NOCRLF together because card boundaries become 
difficult to read. TRIM is the normal mode . 

CR: NOTRIM Transfers a full 80 characters per card. The default is TRIM. 

CT: RAW Performs aread-after-write check for every record written. It retries if an 
output error occurs. If three retries fail, the system indicates an output 
error. The default is NORAW. 

CT: NORAW Writes every record directly without reading it back for verification. This 
setting significantly increases transfer rates at the risk of increased error 
rates. This is the normal mode. 

EDIT EDIT Invokes the text editor EDIT with the keyboard monitor EDIT command. 
This is the normal mode. The system returns to this condition after a 
reboot. 

EDIT TECO Invokes the text editor TECO with the keyboard monitor EDIT command. 
The default is EDIT. The system returns to that condition after a reboot. 

ERROR ERROR Causes indirect command files and keyboard monitor commands that 
perform multiple operations (such as EXECUTE, which combines 
assembling, linking, and running) to abort if errors or severe errors occur. 
An example of an error is an undefined symbol in an assembly. An example 
of a severe error is a device that is write-locked when the system attempts 
to write to it. If either condition occurs, the indirect command file or 
keyboard monitor command aborts the next time the monitor get control 
of the system. This is the normal setting. The system returns to this con-
dition after a reboot. 

(Continued on next page) 

4-106 



Interactt've Commands SET 

Table 4-13 (Cont.) SET Device Conditions 

Device 
or 
Item Condition i Action 

ERROR NONE Allows indirect command files and keyboard monitor commands to 
continue to execute even though they contain significant errors. Most 
monitor fatal errors still cause the indirect command file or keyboard 
monitor command to abort. See SET ERROR ERROR. SET ERROR 
ERROR is the default setting. The system returns to that condition 
after a reboot. 

ERROR SEVERE Causes indirect command files and keyboard monitor commands to 
abort if severe errors occur. See SET ERROR ERROR. SET ERROR 
ERROR is the default setting. The system returns to that condition 
after a reboot. 

ERROR WARNING Causes indirect command files and keyboard monitor commands to 
abort if warnings, errors, or severe errors occur. Use this setting if 
you want indirect files and keyboard monitor commands to abort 
on MACRO assembly errors. See SET ERROR ERROR. SET 
ERROR ERROR is the default setting. The system returns to that 
condition after a reboot. 

L~: CR Sends carriage returns to the printer. To allow overstriking on the 
printer, use this condition for any FORTRAN program that uses 
formatted input and output. Use CR also for any LS11 or LPOS line 
printer to prevent loss of the last line in the buffer. This is the normal 
mode . 

LP: NOCR Prevents the system from sending carriage returns to the printer. This 
setting produces a significant increase in printing speed on LP 11 
printers. The line printer controller causes a line feed to perform the 
functions of a carriage return. The default is CR. 

LP: CTRL Passes all characters, including nonprinting control characters, to the 
printer. Use this condition to pass the bell character to the LA 180 
printing terminal. You can use this mode for LS11 line printers. (Other 
line printers print a space for a control character.) The default is 
NOCTRL. 

LP: NOCTRL Ignores non-printing control characters. This is the normal mode . 

LP: FORMO Issues a form feed before a request to print block 0. This is the normal 
mode . 

LP: NOFORMO Turns off FORMO mode. The default is FORMO. 

LP: HANG Waits for you to make a correction if the line printer is not ready or 
becomes not ready during printing. If you expect output from the line 
printer and the system does not respond or appears to be idle, check to 
see if the line printer is powered on and ready to print. This is the normal 
mode. 

(Continued on next page 

4-107 March 1978 



SET Interactt've Commands 

Table 4-13 (Cont.) SET Device Conditions 

Device 
or 
Item Condition Action 

LP: 

LP: 

LP: 

LP: 

LP: 

LP: 

MM: 

MM 

MM: 

MM 

MT 

NOHANG 

LC 

NOLC 

TAB 

NOTAB 

WIDTH=n 

DEFALT=9 

Generates an immediate error if the line printer is not ready. The default 
is HANG. 

Allows the system to send lower case characters to the printer. Use this 
condition if your printer has a lower case character set. The default is 
NOLC. 

Translates lower case characters to upper case before printing. This is 
the normal mode. 

Sends TAB characters to the LA180 line printer. The default is NOTAB. 

Does not send TAB characters to the line printer. This is the normal 
mode. 

Sets the line printer width to n, where n is an integer between 30 and 
255, inclusive. The system ignores any characters that print past column 
n. The default is 132. 

Returns to default settings for 9-track tape. The 9-track defaults are: 

DENSE=809 
ODDPAR 
NODUMP 

DENSE= [800 or 809 or 1600] 
Sets density for the 9-track tape handler. Do not alter the density setting 
within a volume. A density setting of 1600 bits per inch (BPI) auto-
matically sets parity to odd. The valid density settings for 9-track tape 
are 

ODDPAR 

NOODDPAR 

800 BPI 
1600 BPI 

Sets parity to odd for 9-track tape. DIGITAL recommends this setting. 

Sets parity to even for 9-track tape. DIGITAL does not recommend 
this setting for normal operation, and provides it only for compatibility 
with other systems. 

DEFALT=[7 or 9] 
Returns to default settings for 7- or 9-track tape. The 7-track defaults are: 

DENSE=807 
ODDPAR 
DUMP 

(Continued on next page) 

4-108 March 1978 



Interactr've Commands SET 

Table 4-13 (font.) SET Device Conditions 

Device 
or 
Item Condition Action 

MT: 
(Cont .) 

MT: 

MT: 

MT: 

MT 

TT 

TT 

TT 

DENSE=[200 0 

DUMP 

ODDPAR 

NOODDPAR 

CONSOL=n 

CRLF 

NOCRLF 

The 9-track defaults are 

DENSE=809 
ODDPAR 
NODUMP 

r 556 or 807 or 800 or 809] 
Sets density for 7- or 9-track tape. 807 represents 800 BPI for 7-track 
tape; 800 or 809 represents 800 BPI for 9-track tape . Do not alter the 
density within a tape volume .You must set density to 807 for 7 track 
tape if you want dump mode. The valid density settings for 7 and 9 
track tape are 

7-track: 

9-track: 

200 BPI 
556 BPI 
800 BPI 
800 BPI Dump 

800 BPI 

Writes bytes to 7-track tape. You must also set density to 807. 

Sets parity to odd for 7- or 9-track tape. DIGITAL recommends this 
setting. 

Sets parity to even for 7- or 9-track tape. DIGITAL does not recommend 
this setting for normal operation, and provides it only for compatibility 
with other systems. 

Directs the system to use as the console terminal, the terminal whose 
logical unit number you specify. The default value is 0, which rep-
resents the origunal console terminal. The terminal whose logical unit 
number you specify must not be currently attached by the foreground 
job. The system returns to this default after a reboot. 

Issues a carriage return/line feed combination on the console terminal 
whenever you attempt to type past the right margin. You can change 
the margin with the WIDTH command. This is the normal mode. This 
setting is not valid for the SJ monitor. The system returns to this con-
dition after a reboot. 

Takes no special action at the right margin. This setting is not valid for 
the SJ monitor. The default is CRLF. The system returns to that con-
dition after a reboot. 

(Continued on next page) 

4-109 



SET In teractr've Command s 

Table 4-13 (font.) SET Device Conditions 

DeVlce 
or 
Item Condition Action 

TT: FB Treats CTRL/B and CTRL/F as background and foreground program 
control characters and does not transmit them to your program. This 
is the normal mode. This setting is not valid for the SJ monitor. The 
system returns to this condition after a reboot. 

TT: NOFB Causes CTRL/B and CTRL/F to have no special meaning. Issue SET TT 
NOFB to KMON, which runs as a background job, to disable all com-
munication with the foreground job. To enable communication with the 
foreground job, issue the command SET TT FB. This setting is not valid 
for the SJ monitor. The default is FB. The system returns to that condi-
tion after a reboot. 

TT: FORM Indicates that the console terminal is capable of executing hardware 
form feeds. This setting is not valid for the SJ monitor. 

TT: NOFORM Simulates form feeds by generating eight line feeds. This setting is not 
valid for the SJ monitor. This is the normal mode. The system returns 
to this condition after a reboot. 

TT: HOLD Enables the Hold Screen mode of operation for the VT50 terminal. The 
command has no effect on any other terminal, but it can cause a left 
square bracket ([) to print. This setting is valid for all monitors. This is 
the normal mode. The system returns to this condition after a reboot. 

TT: NOHOLD Disables the Hold Screen mode of operation for the VT50 terminal. The 
command has no effect on any other terminal, but it can cause a back-
slash (\) to print. This setting is valid for all monitors. The default is 
HOLD. The system returns to that condition after a reboot. 

TT: PAGE Treats CTRL/S and CTRL/Q characters as terminal output hold and 
uphold flags and does not transmit them to your program. This setting 
is not valid for the SJ monitor. This is the normal mode . The system 
returns to this condition after a reboot. 

TT: NOPAGE Causes CTRL/S and CTRL/Q to have no special meaning. This setting 
is not valid for the SJ monitor. The default is PAGE. The system returns 
to that condition after a reboot. 

TT: QUIET Prevents the system from echoing lines from indirect files. The default 
is NOQUIET. The system returns to that condition after a reboot. 

TT: NOQUIET Echoes lines from indirect files. This is the default mode. The system 
returns to this condition after a reboot . 

TT: SCOPE Echoes RUBOUT characters as backspace-space-backspace. Use this mode 
if your console terminal is a VT50, VTOS, VT52, VT55, VT61, VT100, or 
if GT ON is in effect. The default is NOSCOPE. The system returns to that 
condition after a reboot. 

4-110 
(Continued on next page) 

March 1978 



Interactive Commands SET 

Table 4-13 (Cont.) SET Device Conditions 

Device 
or 
Item Condition Action 

TT: NOSCOPE Echoes each RUBOUT character as a backslash followed by the character 
deleted. This is the normal mode. The system returns to this condition 
after a reboot. 

TT: TAB Indicates that the console terminal is capable of executing hardware tabs. 
This setting is not valid for the SJ monitor. The default is NOTAB. The 
system returns to that condition after a reboot. 

TT: NOTAB Simulates tab stops every eight positions. VTOS and VT50 terminals 
generally have hardware tabs. This setting is not valid for the SJ monitor. 
This is the normal mode. The system returns to this condition after a 
reboot. 

TT: WIDTH=n Sets the terminal width to n, where n is an integer between 30 and 255. 
The system initially sets the width to 72. This setting is not valid for the 
SJ monitor. (See SET TT CRLF.) The system returns to width 72 after 
a reboot. 

WILDCARDS EXPLICIT Causes the system to recognize file specifications exactly as you type 
them. If you omit a file name or a file type in a file specification the 
system does not automatically replace the missing item with an asterisk 
(*). Wildcards are described in Section 4.2. The default is IMPLICIT. 
The system returns to that condition after a reboot. 

WILDCARDS IMPLICIT Causes the system to interpret missing fields in file specifications of 
certain commands as asterisks (*). Wildcards are described in Section 4.2 
of this manual. Table 4-2 shows how the system interprets commands 
that have missing fields. This is the normal mode. The system returns 
to this condition after a reboot. 

USR SWAP Allows the background job to place the USR in a swapping state. This 
setting is not valid for the XM monitor. This is the normal mode .The 
system returns to this condition after a reboot. 

USR NOSWAP Prevents the background job from placing the USR in a swapping state. 
This setting is not valid for the XM monitor. The default is SWAP. The 
system returns to that condition after a reboot. 

The following examples illustrate the SET command. This command allows the system to send lower case characters 
to the printer: 

~~~T 1..~'' I...0 

The next command sets the system wildcard default to implicit.

}i~:T w x ~.r~c~~rl~ z ~~~~. ~ c~ T

As a result of this command the system inserts an asterisk in place of a missing file name or file type in a file specifi-
cation for certain commands. See Table 4-2 for a list of these commands.

4-111 March 1978

SHOW Interactive Commands

The SHOW command prints information about your RT-11 system on the console terminal.

SHOW SP CONFIGURATION
DEVICES
TERMINALS

The information you can request includes hardware configuration, monitor version, SYSGEN options in effect,
device names and logical device name assignments, terminal characteristics for terminals currently active on a multi-
terminal system, and device handler status.

You can combine the options illustrated above in any order. If you use more than one option, separate the options
by commas (,) in the command line.

If you specify SHOW without an option, SHOW displays your system's device assignments. The devices the system
lists are those known by the RT-11 monitor currently running in memory. This list reflects any additions or deletions
you have made with the INSTALL and REMOVE commands. The listing also includes additional information about
particular devices. The informational messages and their meanings are

(B)
or =B

(F)
or =F

<F REE>

(LOADED)

(RESIDENT)_

logical-device-name(1),
logical-device-name(2) . . .
,logical-device-name(n)

Indicates that the device or unit is assigned to the background job. (For FB
and XM monitors only .)

Indicates that the device or unit is assigned to the foreground job. (For FB
and XM monitors only.)

Shows that the device slot is unused. You can use the INSTALL command
to install a device into the free slot. (create a free slot by using the REMOVE
command to remove a device.

Shows that the handler for the device has been loaded into memory with the
LOAD command.

Indicates that the handler for the device is included in the resident monitor.

Shows that the device or unit has been assigned the indicated logical device
names with the ASSIGN command.

The following example was created under the FB monitor. It shows the status of all devices known to the system.

•~ih~ClW
'T'T C ~~r❖~~ i r~car-,-~.)
~~ f~; C ~: c~ ~ i r.:i c:~ r, ~f

1:~~ Ci...t:~r~r..ic~rd~
~iXC) C~~)
l:i X :1. ~.. fi

4-112 March 1978

Interactive Commands SHOW

4-112.1 March 1978

Interactive Commands SHOW

The listing shows first that TT and RK are resident in memory. The other device handlers known to the system are:

DX, DT, MT, CT, LP, BA, EL, and~NL. There are five free slots in the table. RKO: has the logical name SY: and DX1:

has the logical name DK:. The logical name OUT: is assigned to LP:. The DX handler is loaded and device DXO: be-

longs to the background job. The MT handler is loaded and belongs to the foreground job.

CONFIGURATION —This option displays the monitor version number and patch level, the monitor SET options in

effect, the hardware configuration, and the SYSGEN options in effect (if any). The listing varies, of course, depending

on which monitor and which hardware system you are using.

First, the listing always shows the version number and patch level of the currently running monitor.

(1

Next, information about the monitor is displayed. The first line indicates from which device the system was boot-

strapped. The next line prints the resident monitor's base address, in octal. Then the listing shows whether the USR

is set to SWAP or NOSWAP. Another line prints out if a foreground job is loaded. The listing shows whether TT is

set QUIET or NOQUIET, and whether the indirect file abort level is set to NONE, WARNING, ERROR, or SEVERE.

The indirect file nesting depth prints out as a decimal number.

Next, the listing displays the system hardware configuration. It lists the processor type, which ca.n be one of the
following

LSI-11 Processor
PDP 11 /04 Pro Gesso r
PDP 11 /05,10 Processor
PDP 11 / 15, 20 Processor
PDP 11 /34 Processor
PDP 11 /35, 40 Processor
PDP 11/45, 50, 55 Processor
PDP 11 /60 Processor
PDP 11 /70 Processor

A separate line prints out for each of the following items that is present on your system:

FP11 Hardware Floating Point Unit
Extended Instruction Set (EIS)
Floating Instruction Set (FIS)
KT11 Memory Management Unit
Parity Memory
Cache Memory

If you have graphics hardware (VT11 or VS60), another line prints out to indicate it. The clock frequency (50 or

60 cycles) prints next, followed by a line for the KW 11-P programmable clock, if there is one on your system.

Finally, -the listing either shows that there are no SYSGEN options in effect, or it lists the appropriate options from

the following list

Device I/O time-out support
Error logging support
Multi-terminal support
Memory parity support
SJ timer support
DEC escape sequence support
ANSI escape sequence support

4-113 March 197 8

SHOW Interactive Commands

The following example was created on a PDP-11 /OS processor:

• ~ I•~ t:l G~ t:~ t:l ~ i~" :!: t':l 1.1 ~~ f~ 'r :~ CJ ~~l

I:~ -1• :I. :I. I~' f~ V a ;~ ~ f..~ f..~

~cac~•~~~~i •F rt~fT, I~I~C~
~ti E::' s:> :I. t ~ t»' I"! '~. ~I t:~ 1"i :i. '~: t:~ 1 ̀ ~ :~ i:> t:> t:' :f. t:i :I. ,~ i ::J {~ a

l.1~~F: :i. ~.~ ~F~-~ ~:~W~IN'
Y T :i. s:~ {~r'.~ ~lt:lt~l.1 ~: !~''r
1: r+ f:i :i r• to c:.~ .~ •i` :i. :I. t:~ {:; i::~ c:l r' •~ 1 c~ v c~ ~. :i. ~:~ 1::. I~~ I~~ t7 !~:
:C r•+ ~~ :i. r~ c:' c:~ •l; •C :i. :l. c•:~ f••~ c~ <.:~ •li :i. r~, <~ ~~ c~' }~- •l: ~~i :i. <.:~ ;3

~' ~f F~' :~ :I. / {i :J r :I. {~ I~' ~~ c:~ t:~ t:~ t:> -:~ c:~ r'
'~ T :!. :~ t Y~ {:3 ~~ ~•~ :i. c:' <.:~ l:f :i.

~~+

}.~ :l {:; ~ :3 I•~ {:~ r r.~ w <:; r ~a
~"} l~1 t . 'L»~ t:.` .I. t»' ~i {:S is '~, c~ fTi l...I. c:~ c:: I~.

~t ~ ~ v :i. c:~ t a :C ~ t:l •l::i. fY+ c a c:a +..f •l: ~~ +.~ }:. ~:, c:a r' 'l•:

DEVICES —This option displays the RT-11 device handlers, their status, and their vectors. The possible messages
for handler status are as follows

Installed
Not installed
—Not installed (the handler SYSGEN options do not match the monitor)
Loaded
Resident

The following example uses SHOW DEVICES.

I:f~v i ~~ ~t~~+.a~ V~ctr~ r

xfx x r•,~•~~ a. a. ~~ aaa~~4

~~ ~~t x r•,~ •~~ ~ ~. ~r~ aaa~a4

~.~• rf~,~~~~. ~.~~ aaa~aa
C~ ~t~~ i r•,~~~ l 1 ~~ aaa~3a

~•c r f~,~~c~ ~ a. ~r~ aaaa ~a aaaa 7q

rf~ x r•,~•~~ x ~ ~r~ aaa~ ~. a
rf~ xf~,~~~~~.~~ aaa~:~a
~~. -•~i4c~•~ i r•~ ~~:~ z :l ~~ aaaaaa
rf~' ~ f",~~~ ~. l ~~~ aaa~~,4
rf~ ~ f~•,~~c~ ~. ~. ~~ aaa~~a
~~r ~r,~•~~:1.~.~~r~ aaa~~4

4-114 March 1978

Interactive Commands SHOW

In the preceding example, note that the PC handler has two vectors. One is for the paper tape reader and the other
is for the paper tape punch. Because of its special format, the TT handler is never listed.

TERMINALS —This option indicates the status of and options in effect for currently active terminals on multi-
terminal systems. If your system has only the console terminal, the following message prints

Multi-terminal support is not part of the distributed RT-11 monitors. It is a SYSGEN option.

If your system does have multi-terminal support, SHOW TERMINALS prints a table of the existing terminals and
lists the following information

Unit number: (0-15)

Type IAC~

Remote (dial-up)
Console
S-console (shared by background and foreground)
Is attached to another job (the foreground)

Interface type : DL
DZ

Width: (width in characters, up to 132)

SET options in effect

TAB
CRLF
FORM
SCOPE

Line speed : (baud rate)

The following example shows the terminal status of an RT-11 system.

q~cal~~ ca ~. ~ ~~~.. ~.:3~ ~lc~ Y~~ Ica ~~ i~lA

4-114.1 March 1978

SQUEEZE Interactive Commands

The SQUEEZE command consolidates in a single area all unused blocks on the device you specify.

SQUEEZE /OUTPUT:device

/[NO] QUERY

device

In the command syntax illustrated above, device represents the disk or DECtape to be compressed. To perform a
squeeze operation, the system moves all the files to the beginning of the device you specify, producing a single unused
area after the group of files. The squeeze operation does not change the bootstrap blocks of a device. The system prints
a confirmation message before it performs the squeeze operation. You must type Y followed by a carriage return to
execute the command.

The squeeze operation does not move files with .BAD file types. This feature prevents you from reusing bad blocks
that occur on a disk. The system inserts files before and after .BAD files until the space between the last file it moved
and the .BAD file is smaller than the next file to be moved.

If you perform a squeeze operation on the system device, the system automatically reboots when the compress opera-
tion completes. This reboot takes place in order to prevent system crashes that might occur when the monitor file is
moved.

/OUTPUT:filespec —Use this option to transfer all the files from the input device to the output device in compressed
format. This operation leaves the input device unchanged. The output device must be an initialized disk or DECtape.
(Use the INITIALIZE command to do this.) Note that the system never queries you for confirmation before this opera-
tion proceeds. If the output device is not initialized, the system prints an error message and does not execute the com-
mand. The following example transfers all the files from RKO: to RKl : in compressed format, leaving RKO: unchanged.

• rt~l.lE"~~Z~"/Cll.lT'~'i.J'ir' : ~~h :1. : rtl~C)

/QUERY —This option causes the system to print a confirmation message before it executes a squeeze operation. You
must respond by typing a Y followed by a carriage return for execution to proceed. This is the default operation.
/QUERY is meaningless with the /OUTPUT' option.

/NOQUERY —Use this option to suppress the confirmation message that prints before a squeeze operation executes.
The following command compresses all the files on device DT 1: and does not query.

• ~>~:~llr~l~':~ I~./~lt:lt:~l.a~~I~~Y 1»i'T':l

4-114.2 March 1978

Interactive Commands STAR T

The START command initiates execution of the program currently in memory (loaded with the GET command) at

the address you speafy.

In the command syntax shown above, address is an even octal number representing any 16 bit address. If you omit the

address or if you specify 0, the system uses the starting address that is in location 40. If the address you specify does

not exist or is invalid for any reason, a trap to location 4 occurs and the monitor prints an error message. Note that

this command is valid for background jobs only. The following command loads MYPROG.SAV into memory and be-

gins execution.

. GAT ~Y~'~"C~i~

The next example loads MYPROG.SAV and ODT.SAV into memory, and begins execution at ODT's starting address.

t~~i~' Vn1.04

4-115

SUSPEND Interactive Commands

The SUSPEND command stops execution of the foreground job.

SUSPEND

No arguments or options are accepted with this command. The SUSPEND command is not valid for the SJ monitor.
The system permits foreground input and output that are already in progress to finish; however, it issues no new input
or output requests and enters no completion routines (see the RT-I1 Advanced Programmer's Guide for a detailed ex-
planation of completion routines). You can continue execution of the job by typing the RESUME command. The
following command suspends execution of the foreground job that is currently running.

. ;.~31.1~~'~~lr~

4-116

Interactive Commands

Use the TIME command to set the time of day or to display the current time of day.

TIME

In the command syntax shown above, hh represents hours (from 0 to 23); mm represents minutes (from 0 to 59) and

ss represents seconds (from 0 to 59). The system keeps time on a 24-hour clock.

To enter the time of day, specify the time in the format described above. You should do this as soon as you bootstrap
the system. The following example enters the time, 11:15:00 A.M.

• T ~ ~ ~ 1 ~. : ~.

As this example shows, if you omit one of the arguments the system assumes 0.

To display the current time of day, type the TIME command without an argument, as this example shows.

* 1~ Z ~ !~.
:l. :l.':i..~,:C}1

When the RT-11 system is installed, the clock rate is preset to 60 cycles. Consult the RT 11 System Generation Mafaual
for information on setting the clock to a 50-cycle rate.

The FB and XM monitors automatically reset the time each day at midnight. The SJ monitor resets the time only if
you select timer support as a SYSGEN option.

4-117 March 197 8

TYPE Interactive Commands

The TYPE command types (or prints) the contents of one or more files on the terminal.

TYPE /COPIES:n SP filespecs
/DELETE

/[NO] LOG
/NEWFILES
/QU E R Y

In the command syntax illustrated above, filespecs represents the file or files to be typed. You can explicitly specify up
to six files as input to the TYPE command. The system types the files in the order in which you specify them in the
command line. You can also use wildcards in the file specification. In this case, the system types the files in the order
in which they occur in the directory of the device you specify. If you specify more than one file, separate the files by
commas. If you omit the file type for a file specification, the system assumes .LST. You can specify the entire com-
mand on one line, or you can rely on the system to prompt you for information. Tlie TYPE command prompt is
Files?.

The following sections describe the TYPE command options and include command examples.

/COPIES:n —Use this option to type more than one copy of the file. The meaningful range of values for the decimal
argument, n, is from 2 to 32 (1 is the default). The following command, for example, types three copies of the file
REPORT.LST on the terminal.

/DELETE —Use this option to delete a file after it is typed on the terminal. This option must appear following the
command in the command line. The TYPE/DELETE operation does not ask you for confirmation before it executes.
You must use /QUERY for this function. The following example types a BASIC program on the terminal, then deletes
it from DXl : .

• TY~'>r:!I:iF:I~.~:TE~ 1»~~ 1 : ~'~'~CICi :1. .1~{~~i

/LOG —This option prints on the terminal the names of the files that were typed by the current command. Normally,
the system prints a log only if there is a wildcard in the file specification. If you specify /QUERY, the query message
replaces the log, unless you specifically type /LOG/QUERY in the command line. The following example shows a
TYPE command and the resulting log.

• TY~'r!I...t7t; t~lJ~~~` :Il...+l...ri~T

~:~ i~ : c~ ~.~ T r~ x ~... ~.. r 'r ~ ~~ 'r T

/NOLOG —This option prevents a list of the files that were typed from printing on the terminal. You can use this op-
tion to suppress the log if you use a wildcard in the file specification.

/NEWFILES —Use this option in the command line if you need to type only those files that have the current date. The
following example shows a convenient way to type all new files after a session at the computer.

~'i 1~~ co~:ie~:
xih : ~E~'Qf~T . t_~T to TT

4-118

Interactive Commands TYPE

/QUERY — If you use this option, the system requests confirmation from you before it performs the operation.
/QUERY is particularly useful on operations that involve wildcards, when you may not be completely sure which

files the system selected for an operation. Note that if you specify /QUERY in a TYPE command~line that also con-

tains a wildcard in the file specification, the confirmation messages that print on the terminal replace the log messages
that would normally appear. You must respond to a query message by typing Y (or anything that begins with Y) and
a carriage return to initiate execution of a particular operation. The system interprets any other response as NO and
it does not perform the specific operation.

. TY~'~'/C~L1~~Y/~~~LET~: *.LET
~' a. ~. ~~~ ~r~~ i e~/r~~ 1 et~~

~~ h : O lJ't ~' I ~... ~. ~ T t o T T : '? ~! tJ
rah : ~~'~'O~;T . L.~T to TT : ? Y

UNLOAD Interactive Commands

The UNLOAD command makes handlers that were previously loaded non-resident, thus freeing the memory space they
occupied.

UNLOAD (SP) device [, . . .device]

In the command syntax shown above, device represents the device handler to unload.

UNLOAD clears ownership for all units of the device type you specify. A request to unload the system device handler
clears ownership for any assigned units for that device, but the handler itself remains resident .After you issue the
UNLOAD command, the system returns any memory it frees to a free memory list. The background job eventually re-
claims free memory. Note that if you interrupt an operation that involves magtapes or cassette, you must unload and
then load (with the LOAD command) the appropriate device handler (MM, MT, or CT).

The system does not accept an UNLOAD command while a foreground job is running if the foreground job owns any
units of that device .This is because a handler that the foreground job needs might become nonresident .You can un-
load adevice while a foreground job is running if none of its units belong to the foreground job.

A special function of this command is to remove a terminated foreground job and reclaim memory, since the system
does not automatically return the space occupied by the foreground job to the free memory list. The following
command unloads the foreground job and frees the memory it occupied. This command is valid only if the foreground
job is not running.

II~L. CIAI~ I~'t~

The following command clears ownership of all units of RK. If RK: is the system device, the RK handler itself re-
mains resident.

. l.1~li...t~~~I:i hh

The next command releases the line printer-and DECtape handlers and frees the area they previously held.

. t.1 ~ L- Cl ~ L~ L. F~' : ~ Li 'lr'

4-120 March 1978

PART III

TEXT EDITING

You use an editor to create and modify textual material. PART III describes the RT-11 text editor, EDIT, and ex-
plains how to use it.

♦..

CHAPTER 5

TEXT EDITOR

The text editor (EDIT) is a program that creates or modifies ASCII source files for use as input to other system
programs such as the MACRO assembler or the FORTRAN compiler. EDIT, which accepts commands you type at
the terminal, reads ASCII files from any input device, makes specific changes, and writes on any output device.
EDIT allows efficient use of VT11 or VS60 display hardware, if they are part of the system configuration.

The editor considers a file to be divided into logical units called pages. A page of text is generally 50-601ines long
(delimited by form feed chazacters) and corresponds approximately to a physical page of a program listing. The
editor reads one page of text at a time from the input file into its internal buffers where the page becomes available
for editing. You can then use editing commands to:

• Locate text to be changed

• Execute and verify the changes

• List an edited page on the console terminal

• Output a page of text to the output file.

5.1 CALLING AND USING EDIT
You can call the text editor when you are at monitor level. The syntax of the command is:

EDIT /CREATE SP filespec[/ALLOCATE:size]
/INSPECT
/OUTPUT:filespec [/ALLOCATE size]

See Section 4.4 for a description of the EDIT command and its options.

5.2 MODES OF OPERATION
Normally, the editor operates in either command mode or text mode. In command mode the editor interprets all
input you type on the keyboard as commands to perform some operation. In text mode the editor interprets all
typed input as text to replace, insert into, or append to the contents of the text buffer.

Immediately after being loaded into memory and started, the editor is in command mode. EDIT prints an asterisk
at the left margin of the console terminal page to indicate that it is ready to accept a command. Terminate all com-
mands by pressing the ESCAPE key twice in succession. Execution of commands proceeds from left to right. Should
trllIT encounter an error before it begins execution of a command string, it prints an error message followea oy an
asterisk at the beginning of a new line, indicating that it is still in command mode and awaiting a legal command.
EDIT does not execute the command in error or any succeeding command. You should retype the command
correctly.

5-1

Text Editor

To enter text mode, type a command that must be followed by a text string. These commands insert, replace, ex-
change, or otherwise manipulate text. When you type one of these commands, EDIT recognizes all succeeding
characters as part of the text string until it encounters an ESCAPE character. The ESCAPE terminates the text
string and causes the editor to reenter command mode.

You can use a special editing mode, called immediate mode, whenever the VT-11 display hardware is running.
Section 5.7.2 describes this mode.

5.3 SPECIAL KEY COMMANDS
Table 5-1 lists the EDIT key commands. Type a control command by holding down the CTRL key while typing the
appropriate character.

Table 5-1 EDIT Key Commands

Key Explanation

ESCAPE,
ALTMODE,
or SEL

CTRL/C

Echoes $. A single ESCAPE terminates a text string. A double ESCAPE (two
consecutive ESCAPFs) executes the command string. For example:

The first ESCAPE ($) terminates the text object (MOV A,B) of the Get command.
The double ESCAPE ($$) terminates the Delete com;nand and executes the entire
command string. In this example, the character B will be deleted as a result of
execution.

Echoes at the terminal as ̂ C. If EDIT encounters aCTRL/C as a command in
command mode, it terminates execution and returns control to the monitor. You
can restart the editor by typing R EDIT or REENTER in response to the monitor's
prompt. If EDIT encounters aCTRL/C in a text object, EDIT includes the CTRL/C
in the text object, just like any other character. If the editor is executing a lengthy
command and you want to stop EDIT, type two CTRL/C commands in succession.
This will abort the command, generate the ?EDIT-F-COMMAND ABORTED error
message, and return the editor to command mode. For example:

~K~'"C"'t..'"~~~
*"'~~~

In the first command, the three CTRL/C characters are part of the text object of
the Insert command. EDIT treats them like any other character. In the second
command string, the CTRL/C occurs at command level, and causes the editor to
terminate.

If no commands (other than CLOSE) are executed between the time you terminate
the editor and the time you issue a REENTER command, the text buffer is preserved
exactly as it was at program termination. However, only the text buffer is preserved.
The input and output files are closed, and the save and macro buffers are reinitialized.

If you inadvertently terminate an editing session before the output file can be
closed, you can often use the monitor CLOSE command to make permanent the
portion of the output file that has already been written (see Section 4.4). You
can then reenter the editor, open a new output file, and continue the editing
session.

(Continued on next page)

5-2

Text Editor

Table 5-1 (Copt.) EDIT Key Commands

Key Explanation

CTRL/O

CTRL/U

BUBO UT
or

DELETE

TAB

CTRL/X

Echoes ̂ O and a carriage return. Inhibits printing on the terminal until completion
of the current command string. Typing a second CTRL/O resumes output.

Echoes ~U and a carriage return. Deletes all the characters on the current terminal
input line. (Equivalent to pressing the RUBOUT key until all the characters back
to the beginning of the line are deleted.)

Deletes a character from the current command line; echoes a backslash followed
by the character deleted. Each succeeding RUBOUT you type deletes and echoes
another character. An enclosing backslash prints when you type a key other than
RUBOUT. This erasure is done from right to left. Since EDIT accepts multiple
line commands, RUBOUT can delete past the carriage return/line feed combina-
tion and delete characters on the previous line. You can use RUBOUT in both
command and text modes.

Spaces to the next tab stop. Tab stops are positioned every eight spaces on the
terminal; pressing the TAB key causes the carriage to advance to the next tab
position.

Echoes ̂ X and a carriage return. CTRL/X causes the editor to ignore the entire
command string you are currently entering. The editor prints a carriage return/line
feed combination and an asterisk to indicate that you can enter another command.
For example:

* 'I: ~ ~~ ~" Z:~
F:F~C~~~'",~

A CTRL/U would cause only deletion of EFGH; CTRL/X erases the entire
command.

5.4 COMMAND STRUCTURE
EDIT commands fall into eight general categories. Table 5-2 lists these categories and the commands they include.

Table 5-2 EDIT Command Categories

Category Commands Section

File open and close Edit Backup 5.6.1.3
Edit Read 5.6.1.1
Edit Write 5.6.1.2
End File 5.6.1.4

File input/output EXit 5.6.2.4
Next 5.6.2.3
Read 5.6.2.1
Write 5.6.2.2

(Continued on next page)

5 -3

Text Editor

Table 5-2 (Cont.) EDIT Command Categories

Category Commands Section

Immediate mode ESCAPE 5.7.2
CTRL D 5.7.2
CTRL G 5.7.2
CTRL N 5.7.2
CTRL V 5.7.2
RUBOUT 5.7.2

Pointer location Advance 5.6.3.3
Beginning 5.6.3.1
Jump 5.6.3.2

Search Find 5.6.4.2
Get 5.6.4.1
Position 5.6.4.3

Text listing List 5.6.5.1
Verify 5.6.5.2

Text modification Change 5.6.6.4
Delete 5.6.6.2
eXchange 5.6.b.5
Insert 5.6.6.1
Kill 5.6.6.3

Utility Edit Console 5.7.1
Edit Display 5.7.1
Edit Lower 5.6.7.6
Edit Upper 5.6.7.6
Edit Version 5.6.7.5
Execute Macro 5.6.7.4
Macro 5.6.7.3
Save 5.6.7.1
Unsave 5.6.7.2

The general syntax for all the EDIT commands, with the exception of the immediate mode commands, is:

[n]C[textj $

[n)C$

or

where

n represents one of the legal arguments from Table 5-3.

C represents a 1- or 2-letter command.

text represents a string of successive ASCII characters.

5-4 March 1978

Text Editor

As a rule, commands are separated from one another by a single ESCAPE; however, if the command requires no text,

the separating ESCAPE is not necessary. Commands are terminated by a single ESCAPE; typing a second ESCAPE

begins execution. (You use ESCAPE differently when immediate mode is in effect; Section 5.7.2 details its use in

this case.)

The syntax of display editor commands is somewhat different from the normal editing command format, and is

described in Section 5.7.

5.4.1 Arguments
An argument is positioned before a command letter. It specifies either the particular portion of text to be affected

by the command or the number of times to perform the command. With some commands, this specification is

implicit and no argument is needed; other editing commands require an argument. Table 5-3 lists the possible

arguments and their meanings.

Table 5-3 Command Arguments

y~

Argument Meaning

n

0

Stands for any integer in the range -16383 to +16383 and may, except where
noted, be preceded by a plus (+) or minus (-) sign. If no sign precedes n, it is
assumed to be a positive number. The absence of n implies a 1 (or -1 if a minus
sign precedes a command). n can represent the number of characters or lines
forward or backward (+ or -) to move the pointer, or it can represent the
number of times to execute the operation.

Indicates the text between the beginning of the current line and the reference
pointer (see Section 5.4.3).

Refers to the text between the reference pointer and the end of the text in the
buffer.

Use only with the J, D, and C commands to represent - n, where n is equal to the
length of the last text argument used.

The roles of all arguments are explained more specifically in the following sections.

5.4.2 Command Strings
All EDIT command strings are terminated by two successive ESCAPE characters. Use spaces, carriage returns, and
line feeds within a command string to increase command readability. EDIT ignores them unless they appear in a
text string. Commands to insert text can contain text strings that are several lines long. Each line you enter is
terminated by the carriage return key, which inserts both a carriage return and a line feed character into the text.
The entire command is terminated by a double ESCAPE.

You can string several commands together and execute them in sequence. For example

text object text object text object

.----~~ r, r--~~
`~ ~

second third fifth

command command command

first fourth

command command

5-5

Text Editor

where

B is the first command.

GMOV PC,RO is the second command (MOV PC,RO is the text object).

-2CR1 is the third command (R1 is the text object).

SK is the fourth command.

GCLR C?R2 is the fifth command (CLR ~R2 is the text object).

$ separates the end of each text object from the following command.

$$ executes the commands.

Execution of a command string begins when you type the double ESCAPE and proceeds from left to right. Except
when they are part of a text string, EDIT ignores spaces, carriage returns, line feeds, and single ESCAPEs. For
example

~~ca~c:1~~ i~c~~=wc:~:~...i~ r~ ~. .~ r~~~ta

You can also type this command as:

~CCa~_~ ~ :~ ~~'~
~~ U~~

Execution of the two commands will be the same.

5.4.3 The Current Location Pointer
Most EDIT commands function with respect to a movable reference pointer that is normally located between the
most recent character operated upon and the next character in the buffer. It is important to think of this pointer as
being between two characters and never directly on a character. At the start of editing operations, the pointer
precedes the first character in the buffer, although it is not .displayed on the console terminal. At any given time
during the editing procedure, think of the pointer as representing the current position of the editor in the text. The
pointer moves during editing operations according to the type of editing operation being performed. Refer to text
in the buffer as so many characters or lines preceding or following the pointer.

5.4.4 Character- and Line-Oriented Command Properties
Edit commands are either character-oriented or line-oriented: character-oriented commands affect a specified num-
ber of characters preceding or following the pointer; line-oriented commands operate on entire lines of text.

The argument of character-oriented commands specifies the number of characters in the buffer on which to operate.
If n is unsigned (positive), the command operates in a forward direction. If n is preceded by a minus sign (negative),
the command moves the reference pointer backwards. LF , RET ,and null characters, although not printed.
are embedded in text lines, counted as characters in character-oriented commands, and treated as any other text
characters. When you press the Q~ key, both a carriage return and a line feed character are inserted into the text.
For example, assume the pointer is positioned as indicated in the following text (T represents the current position
of the pointer)

MOV #VECT,R2 Q
CLR @RZ ~R ET~ L F

LF ~

5 -6

Text Editor

The EDIT command -2J moves the pointer back two characters to precede the carriage return character.

MOV #VECT, RZ~RET LF

CLR @R2 ~ LF

The command lOJ advances the pointer forward by ten characters and places it between the ~ and LF characters
at the end of the second line. Note that the tab character preceding C?R2 is also counted as a single character.

MOV #VECT,R2 RET LF
CLR C°~RZ ~,~ LF

Finally, to place the pointer after the C in the first line, use a -14J command. The J (Jump) command is explained
in Section 5.6.3.2.

MOV #VECT,R2 ~ LF

CLR @R2 T~ LF

When you use line-oriented commands, the argument of the commands specifies the number of lines on which to
operate. Because EDIT counts the line-terminating characters to determine the number of lines on which to operate
an argument, n, does not affect the same number of lines forward (positive) as it affects backward (negative). For
example, the argument -1 applies to the line beginning with_the first character following the second previous end-
of-line and ending with the character preceding the pointer. The argument 1 in aline-oriented command, however,
applies to the text beginning with the first character following the pointer and ending at the first end-of-line. Thus,
if the pointer is at the center of the line, the argument -1 affects one and one half lines backwards from the pointer
and the argument 1 affects one half line beyond the pointer.

For example, assume the buffer contains:

MOV PC,R1 RET LF
ADD ~#DRIV-.,RI RET LF
MOV #VECT,RZ RET LF

CLR @R2~ ~F

The command to advance the pointer one line (1 A) causes the following change

MOV PC,R1
ADD #DRIV-.,R1 ~ ~F

~MOV #VECT,RZ RET LF

CLR @R2 ~ LF

LF

The command 2A moves the pointer over two LF combinations to precede the fourth line:

MOV PC,R1 RET LF
ADD #DRIV-.,R1 RET ~F
MOV #VECT,RZ~RET~ LF

,~CLR C°~RZ RET LF

Assume the buffer contains:

MOV PC,R1
ADD #DRIV-.,R1 ~ ~F
MOV #VECT,R2 RET LF

CLR C°~RZ F RET LF

LF

5 -7

Text Editor

A command of -1 A moves the pointer back by one and one-half lines to precede the second line.

MOV PC,Rl RET LF
,ADD #DRIV-.,RI RET LF

MOV #VECT,R2 ~ LF

CLR C°~RZ RET LF

Now a command oI~ -1 A moves the pointer back by only one line.

,~MOV PC,R1 RET LF

ADD #DRIV- .,R1
MOV #VECT,R2
CLR ~R2 LF

LF

LF

5.4.5 Command Repetition
You can execute portions of a command string more than once by enclosing the portion. in angle brackets (<>)
and preceding the left angle bracket with the number of iterations you desire. The syntax is:

nCcommand>

For example

C 1$C2$nCC3$C4$>CS$$

where

C represents a command.

n represents an iteration argument.

Commands C 1 and C2 each execute -once, then commands C3 and C4 execute n times. Finally, command CS
executes once and the command line is finished. The iteration argument (n) must be a positive number (in the
range 1 through 16,383) and, if you do not specify it, it is assumed to be 1. If the number is negative or too large,
an error message prints. You can nest iteration brackets up to 201evels. EDIT checks command lines to make
certain the brackets are correctly used and match prior to execution.

Essentially, enclosing a portion of a command string in iteration brackets and preceding it with an iteration argument
(n) is equivalent to typing that portion of the string n times. For example:

*EC7~A~~.~.f~:~ 1-~c{~...., ~....1:~:~ X:{s1'}......1-~Z:+1 ~~~3~~.1U~{~

These two strings are equivalent.

Similarly, the following two strings are equivalent:

Lt~l:~~z:iV~l:i~11:~',~~l:t~l:~'J{lf~C}

The following bracket structures are examples of legal usage

«C»>C>C>

5-8

Text Editor

The following bracket structures are examples of illegal combinations that will cause an error message since the
brackets are not properly matched:

>C>C
CCC»

During command repetition, execution proceeds from left to right until a right bracket is encountered. EDIT then
returns to the last left bracket encountered, decreases the iteration counter, and executes the commands within the
brackets. When the counter is decreased to 0, EDIT looks for the next iteration count to the left and repeats the
same procedures. The overall effect is that EDIT works its way to the innermost brackets and then works its way
back again. The most common use for iteration brackets is found in commands, such as Unsave (U), that do not
accept repeat counts. For example

Assume you want to read a file called SAMP (stored on device DK:), and you want to change the first four occur-
rences of the instruction MOV #200,R0 on each of the first five pages to MOV #244,R4. Enter the following com-
mand line

ak ~:Et~iAi"E~'~:,• :~l~• :E~~i(:l'J ~~?C~C'~ y i~~C~~G:.~,.1~~::~• :(:iC~~:..:(~~~: . •FX~~
~---~—~

C

 v
B

 v
A

The command line contains three sets of iteration loops (A,B,C) and executes as follows:

Execution initially proceeds from left to right; EDIT opens the file SAMP for input and -reads the first page into
memory. EDIT moves the pointer to the beginning of the buffer and initiates a search for the character string
MOV #200,R0. When it finds the string, EDIT positions the pointer at the end of the string, but the =J command
moves the pointer back, so that it is positioned immediately preceding the string. At this point, execution has passed
through each of the first two sets of iteration loops (A,B) once. The innermost loop (C) is next executed three
times, changing the Os to 4s. Control now moves back to pick up the second iteration of loop B, and again moves
from left to right. When loop C has executed three times, control again moves back to loop B. When loop B has
executed a total of four times, control,moves back to the second iteration of loop A, and so forth, until aII iterations
have been satisfied.

5.5 MEMORY USAGE
The memory area used by the editor is divided into four logical buffers as follows:

5-9 March 1978

Text Editor

MACRO BUFFER

SAVE BUFFER

FREE MEMORY

COMMAND INPUT
BUFFER

TEXT BUFFER

High Memory

Low Memory

The text buffer contains the current page of text you are editing, and the command input buffer holds the command
you are currently typing at the terminal. If a command you are currently entering is within ten characters of exceeding
the space available in the command buffer, the following message prints on the terminal.

~' E: Ti ~' 'I.._. ~ ... C: c:~ ~r+ ir+ ~:~ r'+ ~~ is ti ;..~ •f ~' -t' c.~ Y~ rt :!. ~~~+ c:~ <.:: t -f +..~ :l :1

If you can complete the command within ten characters, you can finish entering the command; otherwise you
should press the ESCAPE key twice to execute that portion of the command line already completed. The message
prints each time you enter a character in one of the last ten spaces.

If you attempt to enter more than ten characters, EDIT prints the following message and aborts the command.

~ ~• T, •~ T r- .~. C: ca ir+ ix+ ~:~ r'+ <: i l~ +.a ~f•' -F c:' r' •I" +..i :~ :l ~ r-+ c:~ c~, ~::~ ~r, tri ~ ~ i~+ rd C f~ 3 F~ ;•; t a c ~ +.a •l. c~~

This will never occur if you heed the preceding warning and terminate the command immediately.

The save buffer contains text stored with the Save (S) command, and the macro buffer contains the command string
macro entered with the Macro (M) command. (Both commands are explained in Section 5.6.7.)

EDIT does not allocate space for the macro and save buffers until an M or S command executes. Once you enter an
M or S command, a OM or OU (Unsave) command returns that space to the free area.

The size of each buffer automatically expands and contracts to accommodate the text you are entering; if there is
not enough space available to accommodate required expansion of any of the buffers, EDIT prints the error message:

? E: ~~ :~ T --~ ~" ~_ ~ r•+ {:} +.~ •!' f :i c~• :~ ~ r~+ •b ir+ c~ t~+ c~ r ~~;

5.6 EDITING COMMANDS
This section describes the commands and procedures required to:

• Read text from the input files to the buffer

• Create a backup version of the file

• List the contents of the buffer on the terminal

• Move the reference pointer

5-10

Text Editor

• Locate specific characters or strings of characters within the text buffer

• Insert, relocate, or delete text in the buffer

• Close the output file

• Terminate the editing session.

The following sections are arranged, in order, by category of command function, as illustrated in Table 5-2.

5.6.1 File Open and Close Commands
You can use file open and close commands to:

• Open an existing file for input and prepare it for editing

• Open a file for output of newly created or edited text

• Open an existing file for editing and create a backup version of it

• Close an open output file.

5.6.1.1 Edit Read ~-- The Edit Read (ER) command opens an existing file for input and prepares it for editing.
Only one file can be open for input at a time.

The syntax of the command is

ERdev: filnam.typ$

The string argument (dev:filnam.typ) is limited to 19 characters and specifies the file to be opened. If you do not

specify a device, DK: is assumed. If a file is currently open for input, EDIT closes the file and opens the new one.

Edit Read does not input a page of text nor does it affect the contents of the other user buffers.

You can use Edit Read on a file that is already open to close that file for input and reposition EDIT at its beginning.
The first Read command following any Edit Read command inputs the first page of the file.

*E~~~T' 1 : ~A~fl~' . ~~1~ ~ ~

This command string, for example, opens the file SAMP.MAC on device DT 1: for input.

NOTE
If you enter EDIT with the monitor EDIT/INSPECT or
EDIT/OUTPUT command, an Edit Read command is
automatically performed on the file named in the EDIT
command.

5.6.1.2 Edit Write — The Edit Write (EW) command opens a file for output of newly created or edited text.
However, no text is output and the contents of the buffers are not affected. Only one file can be open for output
at a time. EDIT closes any output files currently open and preserves any edits made to the file.

The syntax of the command is:

EWdev:filnam.typ [n] $

5-11

Text Editor

The stringy argument (dev: filnam.typ [n]) is limited to 19 characters and is the name you assign to the output file
being opened. If you do not specify a device, DK: is assumed. [n} is an optional decimal number that represents
the length of the file to be opened. Note that the square brackets [] are part of the argument, n. You must type
them. If you do not specify [n] ,the default size will be used. That is, the system will choose the larger of 1) one-
half the largest available space, and 2) the second largest available space. If this is not adequate for the output file
size, you must close this file and open another when this one becomes full. You should use the [n] construction
whenever there is doubt as to whether enough space is available on the device for one output file.

If a file with the same name already exists on the device, EDIT deletes the existing file when you type an Exit,
End File, or another Edit Write command. EDIT prints the warning message:

The following command, for example, opens for output the file FILE.BAS on device DK: and allocates 11 blocks
of space for it.

* ~WF"IL.~.~A~~:11 ~~~

NOTE
If you enter EDIT with the monitor EDIT/CREATE com-
mand, an Edit Write command is automatically performed
on the file named in the EDIT command. If you enter EDIT
with the monitor EDIT/OUTPUT command, an Edit Write
is automatically performed on the file named with the
/OUTPUT option.

5.6.1.3 Edit Backup — Use the Edit Backup (EB) command to open an existing file for editing and at the same
time create a backup version of the file. EDIT closes any input and output file currently opened. No text is read or
written with this command.

The syntax of the command is:

EBdev:filnam.typ [n] $

The device designation, file name, and file type are limited to 19 characters. If you do not specify a device, DK: is
assumed. [n] is optional and represents the length of the file to be opened; if you do not specify [n] ,the default
size will be used. That is, the system will choose the larger of 1) one-half the largest available space, and 2) the
second largest available space.

The file you indicate in the command line must already exist on the device you designate, since text will be read
from this file as input. At the same time, EDIT opens an output file under the same file name and file type. When
the output file is closed, EDIT renames the original file (used as input) with the current file name and a .BAK file
type and deletes any previous file with this file name and a .BAK file type. EDIT closes the new output file and
assigns it the name you specify in the EB command. This renaming of files takes place when an Exit, End File, or
subsequent Edit Write or Edit Backup command executes. If you terminate the editing session with aCTRL/C
command before the output file is closed, the new output file is not made permanent, and the renaming of the
current version to .BAK does not take place.

~ ~~SY: ~A~1. . ~'fA~:~~

This command opens BAS 1.MAC on device SY:. When editing is complete, the old BAS l .MAC becomes BAS 1.BAK,
and the new file becomes BAS l .MAC. EDIT deletes any previous version of BAS 1.BAK.

5-12

Text L'ditor

NOTE
In EB, ER, and EW commands, leading spaces between
the corrunand and the file name are not permitted be-
cause EDIT assumes the file name to be a text string. All
dev: filnam.typ specifications for EB, ER, and EW com-
mands conform to the RT-11 conventions for file naming
and are identical to file names entered in command
strings used with other system programs.

If you enter EDIT with an unqualified monitor EDIT
command, an Edit Backup command is automatically
performed on the file named~in the EDIT command.

5.6.1.4 End File — The End File (EF) command closes the current output file and makes it permanent. you can
use the EF command to create an output file from a section of a large input file or to close an output file that is
full before you open another file. Modifiers are illegal with an EF command. Note that an implied EF command is
included in EW and EB commands.

The syntax of the command is

EF

Table 5-4 illustrates the relationship between the file open and close commands and the buffers and files themselves.

Table 5-4 EDIT Commands and File Status

Command Input File Text Buffer Output File

E R:~~XX$ Opens ~:~~X for input,
closes existing input file,
if any

hne Unc a g d U d nchange

EW~:XX$ Unchanged Unchanged Opens ~:XX for output; closes existing
output file, if any; performs .BAK re-
naming if EB is in effect

EB~:~~X$ Opens x;~~X for input;
closes existing input file,
if any

Unchanged Opens a temporary file for output;
closes existing output file, if any;
performs .BAK renaming if EB is in
effect

EF$ Unchanged Unchanged Closes output file; performs .BAK
renaming if EB is in effect

EX$ Copies to output file Copies to
output file

Closes output file after copying
complete; performs .BAK renaming
if EB is in effect

5-13

Text Editor

5.6.2 File Input/Output Commands
You use file input/output commands to:

• Read text from an input file into the buffer

• Copy lines of text from the buffer into an output file

• Terminate the editing session.

5.6.2.1 Read — Before you can edit text, you must read the input file into the buffer. The Read (R) command
reads a page of text from the input file (previously specified in an ER or EB command) and appends it to the current
contents, if any, of the text buffer.

The command is:

R

No arguments are used with the R command. If text resides in the buffer prior to the R command, the pointer does
not move; however, if no text resides in the buffer, the pointer is placed at the beginning of the buffer. EDIT trans-
fers text to the buffer until one of the following conditions occurs:

1. A form feed character, signifying the end of the page, is encountered.
2. The text buffer is 500 characters from being full. (When this condition occurs, the Read command

inputs up to the next carriage return/line feed combination, then returns to command mode. An
asterisk prints as though the read were complete, but text will not have been fully input).

3. An end-of--file is encountered, (the ?EDIT-F-END OF INPUT FILE message prints when all text in the
file has been read into memory and no more input is available).

The maximum number of characters that you can bring into memory with an R command depends on the system
configuration and the memory requirements of other system components. EDIT prints an error message if the read
exceeds the memory available or if no input is available.

The following example edits a file using the EB and R commands.

This command opens SJKI.BAS on DK: and permits modification.

*fi/I~~~
~rM r ~ r. ~:~ ~~r~~~~ ra~~ o~

This command reads the first page of SJKI.BAS into the buffer. The pointer is placed at the beginning of the buffer.
/L lists the contents of the buffer on the terminal beginning at the pointer and ending with the last character in the
buffer.

5.6.2.2 Write — The Write (nW) command copies lines of text from the text buffer to the output file (as specified
in the EW or EB command). The contents of the buffer are not altered and the pointer is left unchanged (unless an
output error occurs).

NOTE
EDIT uses a system of intermediate buffers to store output
before it actually writes the data to an output file. The Write
command logically writes to the file, but actual output to a

5-14

Text Editor

device does not occur until the intermediate buffer fills.
When the editor closes a file (that is, after you issue an
EF, EB, EX, or EW command), the editor writes from
the buffer to the file and the file is complete. If the
editor does not close a file (if you exit with CTRL/C and
use the CLOSE command), it is possible that the output
file will be missing the last 512 characters.

The syntax of the command is:

nW

The argument you supply with the W command determines the lines of text to copy. Table 5-5 lists the arguments
for the W command and their effect.

Table 5-5 Write Command Arguments

Argument Meaning

n

-n

0

Writes n lines of text beginning at the pointer and ending with the nth end-of-line
character to the output file.

Writes n lines of text to the output file beginning with the first character on the -nth
line and terminating at the pointer.

Writes to the output file the current line up to the pointer.

Writes to the output file the text between the pointer and the end of the buffer.

If the buffer is empty when the write executes, no characters are output.

The following examples illustrate the use of the W command.

*~W~~

This command writes the five lines of text following the pointer into the current output file.

* ~',~W~~

This command writes the two lines of text preceding the pointer into the current output file.

This command writes the entire text buffer to the current output file.

NOTE
If an output file fills while a Write command is executing,
EDIT prints the ?EDIT-F-OUTPUT FILE FULL message.
In this case, EDIT positions the reference pointer after
the last character it wrote successfully. You can then use
the following recovery procedure

1. Close the current output file. (EF command)
2. Open a new output file. (EW command)
3. Delete the characters just written by using -nD or

-nK, where n is any arbitrary number that exceeds the
number of lines or characters in the buffer.

4. Resume output.

5-15

Text Ed itor

5.6.2.3 Next — rThe Next (nN) command writes the contents of the text buffer to the output file, deletes the
text from the buffer, .and reads the next page of the input file into the buffer. The pointer is positioned at the
beginning of the buffer. The syntax of the command is:

nN

If you specify the argument n with the Next command, the sequence is executed n times.

If EDIT encounters the end of the input file when trying to execute an N command, it prints ?EDIT-F-END OF
INPUT FILE to indicate that no further text remains in the input file. Since the contents of the buffer has already
been transferred to the output file, the buffer is empty.

Using the N command is a quick way to write edited text to the output file and set up the next page of text in the
buffer. The N command functions as though it were a combination of the Write, Delete, Read, and Beginning com-
mands. (Delete is a text modification command, described in Section 5.6.6.2; the Beginning command is a pointer
relocation command, described in Section 5.6.3.1.) Using the N command with an argument is a convenient way to
set up text in the buffer, if you already know its page location. The N command operates in a forward direction
only; therefore, you cannot specify negative arguments with an N command.

In the following example, an N command copies an input file with more than one page of text to the output file.

This command opens the file TEST.MAC on device DK: and creates a new file entitled TEST.MAC for output.

*~l~_~~

F' I ~~~: T~' T ♦ i~f1~ .

This command reads the first page of the input file, TEST.MAC, into the buffer and lists the entire page on the
terminal.

'~' ~ Ii I T ~ .~. ~: r~~ ~ ca •~ i i••~ ~f ~.~ •~ f' :i. :l. c~

This command transfers the contents of the buffer to the output file, clears the buffer, and encounters the end of
the file. Because it cannot complete the N sequence, EDIT prints ?EDIT-F-END of INPUT FILE on the terminal.
The buffer is empty and the entire input file has been written to the output file.

5.6.2.4 EXit — Type the Exit (EX) command to terminate an editing session. The Exit command does the
following:

• Writes the text buffer to the output file

• Transfers the remainder of the input file to the output file

• Closes all open files

• Renames the backup file with a .BAK file type if an EB command is in effect

• Returns control to the monitor.

5-16

Text Editor

The command is:

EX

No arguments are accepted. Essentially, Exit copies the remainder of the input file into the output file and returns
to the monitor. Exit is legal only when there is an output file open. If an output file is not open and you want to
terminate the editing session, return to the monitor with CTRL/C.

NOTE
You must issue an EF or EX command in order to make
an output file permanent. If you use CTRL/C to return
to the monitor without issuing an EF command, the cur-
rent output file will not be saved. (You can, however, make
permanent that portion of the text file that has already
been written out by using the monitor CLOSE command.)

An example of the contrasting uses of the EF and EX commands follows. Assume an input file, SAMPLE, contains
several pages of text. The first and second pages of the file will be made into separate files called SAMI and SAM2,
respectively; the remaining pages of text will then make up the file SAMPLE. This can be done using these commands:

~E~~~~:~t~~
~~:a~~n~~le...~~~~<r~

~~w~~r~~~~>~>
~~~r"~~ 
*~w,~~~rN~~~.~~t.~~::~{.~~? 

Note that the EF commands are not strictly necessary in this example since the EW command closes a currently 
open output file before opening another. 

5.6.3 Pointer Relocation Commands 
Pointer relocation commands allow you to change the current location of the reference pointer within the text buffer. 

5.6.3.1 Beginning — The Beginning (B) command moves the current location of the pointer to the beginning of 
the text buffer. 

The command is: 

B 

There are no arguments., 

For example, assume the buffer contains: 

MOVB 5(R 1),C?R2 
ADD R 1,(R2)+ 
C LR C~R2 
MO VB 6(R 1),C~R2 

The B command moves the pointer to the beginning of the text buffer. 

5-17 



Tex t ~'l~'tor 

The text buffer now looks like this: 

,~MOVB 5(Rl),@R2 
ADD Rl,(R2)+ 
CLR @R2 
MOVB 6(R1),@R2 

5.6.3.2 Jump — The Jump (nJ) command moves the pointer past the specified number of characters in the text 
buffer. The syntax of the command is: 

nJ 

Table 5-6 shows the arguments for the J command and their meanings. 

Table 5-6 Jump Command Arguments 

Argument Meaning 

(+or -)n 

0 

Moves the pointer (forward or backward) n characters. 

Moves the pointer to the beginning of the current line (equivalent to OA). 

Moves the pointer to the end of the text buffer (equivalent to /A). 

Moves the pointer backward n characters, where n equals the length of the last text 
argument used. 

Negative arguments move the pointer toward the beginning of the buffer; positive arguments move it toward the end. 
Jump treats carriage returns, line feeds, and form feed characters the same as any other character, counting one buffer 
position for each one. 

The following commands illustrate the use of the J command. 

* ~.J ~.J S!}  ~N 

This command moves the pointer ahead three characters. 

This command moves the pointer back four characters. 

~C~{~.~C~'~~~~'j~> w~..ltti~G 

This command moves the pointer so that it immediately precedes the first occurrence of ABC in the buffer. 

5.6.3.3 Advance — The Advance (nA) command is similar to the Jump command except that it moves the pointer 
a specific number of lines (rather than single characters) and leaves it positioned at the beginning of the line. The 
syntax of the command is: 

nA 

Table 5-7 lists the arguments for the A command and their meanings. 

5-18 



Text Editor 

Table 5-7 Advance Command Arguments 

Argument Meaning 

n 

-n 

0 

Moves the pointer forward n lines and positions it at the beginning of the nth line. 

Moves the pointer backward past n carriage return/line feed combinations and positions 
it at the beginning of the -nth line. 

Moves the pointer to the beginning of the current line (equivalent to OJ). 

Moves the pointer to the end of the text buffer (equivalent to /J). 

Following are examples that use the A command. 

*3A~~ 

This command moves the pointer ahead three lines. 

Assume the buffer contains: 

CLR C~?R~2 

The following command moves the pointer to the beginning of the current line: 

*OA~ffi 

Now the buffer looks like this: 

,~CLR @R2 

5.6.4 Search Commands 
Use search commands to locate specific characters or strings of characters within the text buffer. 

NOTE 
Search commands always have positive arguments. They 
search ahead in the file. This means that you cannot search 
for a character string that has already been written to the 
output file. To do this, you must first close the currently 
open files (with EX) then edit the file that was just used 
for output (with EB). 

5.6.4.1 Get — The Get (nG) command is the basic search command in EDIT. It searches the current text buffer 
for the nth occurrence of a specific text string starting at the current location of the pointer. If you do not supply 
the argument n, EDIT searches for the first occurrence of the text object. The search terminates when EDIT either 
finds the nth occurrence or encounters the end of the buffer. If the search is successful, EDIT positions the pointer 
to follow the last character of the text object. EDIT notifies you of an unsuccessful search by printing ?EDIT-F-
SEARCH FAILED. In this instance, EDIT positions the pointer after the last character in the buffer. 

The syntax of the command is: 

nGtext$ 

The argument (n) must be positive. If you omit it, EDIT assumes it to be 1. 

5-19 



Text Editor 

The text string can be any length and must immediately follow the G command. EDIT makes the search on the 
portion of the text between the pointer and the end of the buffer. 

For example, assume the pointer is at the beginning of the buffer shown below. 

,~MOV PC,R1 
ADD #DRIV- .,R1 
MOV #VECT,R2 
CLR C~R2 
MOVB 5(R 1),C~R2 
ADD R1,(R2)+ 
CLR @R2 
MOVB 6(R1),C~R2 

The following command searches for the first occurrence of the characters ADD following the pointer and places 
the pointer after the searche d characters. 

*GAI~I~~~ 

Now the buffer looks like this: 

MOV PC,R1 
ADDS #DRIV- .,R1 

The next command searches for the third occurrence of the characters CR2 following the pointer and leaves the 
pointer immediately following the text object. 

The buffer is changed to: 

ADD R I ,(RZ)+ 
CLR C~R2,~ 

After successfully completing a search command, EDIT positions the pointer immediately following the text object. 
Using a search command in combination with =J places the pointer in front of the text object, as follows: 

~CT(~~T~~~a.~~~t 

This command combination places the pointer before TEST in the text buffer. 

5.6.4.2 Find — The Find (nF) command starts at the current pointer location and searches the entire input file 
for the nth occurrence of the text string. If EDIT does not find the nth occurrence of the text string in the current 
buffer, it automatically performs a Next command and continues the search on the new text in the buffer. When 
the search is successful, EDIT leaves the pointer immediately following the nth occurrence of the text string. If the 
search fails (i.e., EDIT detects the end-of--file for the input file and does not find the nth occurrence of the text 
string), EDIT prints ?EDIT-F-SEARCH FAILED. In this instance, EDIT positions the pointer at the beginning of an 
empty text buffer. When you use the F command, EDIT deletes the contents of the buffer after writing it to the 
output file. 

The syntax of the command is: 

nFtext $ 

5-20 



TQxt Editor 

~"1 The argument (n) must be positive. EDIT assumes it to be 1 if you do not supply another value. 

You can use an F command to copy all remaining text from the input file to the output file by specifying a non-

existent text object. The Find command functions like a combination of the Get and Next commands. 

The following example uses the F command. 

• _ This command searches the entire input file for the second occurrence of the text string MOVB 6(Rl ),@R2. 

EDIT places the pointer following the text string. EDIT writes the contents of each unsuccessfully searched buffer 

~, to the output file. 

5.6.4.3 Position — The Position (nP) command is identical to the find (F) command with one exception. The F 

command transfers the contents of the text buffer to the output file as each page is unsuccessfully searched, but the 

P command deletes the contents of the buffer after it is searched, without writing any text to the output file. 

The syntax of the command is: 

nPtext$ 

The argument (n) must be positive. If you omit it, EDIT assumes it to be 1. 

The nP command searches each page of the input file for the nth occurrence of the text object starting at the pointer 

and ending with the last character in the buffer. If EDIT finds the nth occurrence, it positions the pointer following 

the text .object, deletes all pages preceding the one containing the text object, and positions the page containing the 

text object in the buffer. 

If the search is unsuccessful, EDIT clears the buffer and does not transfer any text to the output file. EDIT positions 

the pointer at the beginning of an empty text buffer. 

The position command is a combination of the Get, Delete, and Read commands; it is most useful as a means of 

placing the pointer in the input file. For example, if your aim in the editing session is to create a new file from the 

second half of the input file, a position search saves time. 

The following example uses the P command. 

This command searches the input file for the first occurrence of the text object, 3. EDIT positions the pointer after 

the text object. 

*o~.~~ 
x ~~~~~~ ~r ~ :~ ~_ ~~ r~~ra ~~= :~ 

The command lists on the terminal the current line up to the pointer. 

5.6.5 Text Listing Commands 

5.6.5.1 List — The List (nL) command prints at the terminal lines of text as they appear in the buffer. The syntax 

of the command is: 

nL 

5-21 



Text Editor 

An argument preceding the L command indicates the portion of text to .print. For example, the command, 2L, 
prints on the terminal the text beginning at the pointer and ending with the second end-of--line character. The 
pointer is not altered by the L command. Table 5-8 lists arguments and their effect upon the list command. 

Table 5-8 List Command Arguments 

Argument Meaning 

n 

-n 

0 

Prints at the terminal n lines beginning at the pointer and ending with the nth 
end-of-line character. 

Prints all characters beginning with the first character on the -nth line and terminating 
at the pointer. 

Prints the current line up to the pointer. Use this command to locate the pointer 
within a line. 

Prints the text between the pointer and the end of the buffer. 

These examples illustrate the use of the L command. 

~K-.~I.~t.G~.~ 

This command prints all characters starting at the second preceding line and ending at the pointer. 

*~~~~~ 

This line prints all characters beginning at the pointer and terminating at the 4th carriage return/line feed combination. 

Assuming the pointer location is: 

MOVB 5(Rl ),LR2 
ADD, R 1,(R2)+ 

The following command prints the previous one and one-half lines up to the pointer: 

* .... ~. I.- ~> t.~ 

The terminal output looks like this: 

5.6.5.2 Verify — The Verify (V) command prints at the terminal the entire line in which the pointer is located. 
It provides a ready means of determining the location of the pointer after a search completes and before you give 
any editing commands. (The V command combines the two commands OLL.) You can also type the V command 
after an editing command to allow proofreading of the results. No arguments are allowed with the V command. 
The location of the pointer does not change. 

5.6.6 Text Modification Commands 
You can use the following commands to insert, relocate, and delete text in the text buffer. 

5-22 



Text Editor 

5.6.6.1 Insert — The Insert (I) command is the basic command for inserting text. EDIT inserts the text you 
supply at the location of the pointer, then places the pointer after the last character of the new text. 

The syntax of the command is: 

Itext$ 

No arguments are allowed with the insert command, and the text string is limited only by the size of the text buffer 
and the space available. All characters except ESCAPE are legal in the text string. ESCAPE terminates the text string. 

i 

NOTE 
If you forget to type the I command, the text will be 
executed as commands. 

EDIT automatically protects against overflowing the text buffer during an insert. If the I command is the first com-
mand in amultiple command line, EDIT ensures that there will be enough space for the insert to be executed at 
least once. If repetition of the command exceeds the available memory, an error message prints. 

The following example illustrates the use of the I command. 

~It ~ ~iCIV ~~{1.1~~1••~ y F~ 

~CIVE •w :I. C~~) ~i:~~~.~~ 

This command inserts the text at the current location of the pointer and leaves the pointer positioned after R0. 

DIGITAL recommends that you insert large amounts of text into the file in small sections rather than all at once. 
This way, you are less vulnerable to loss of time and effort due to machine failure or human error. This is the rec-
ommended technique for inserting large amounts of text: 

1. Open the file with the EB command 
2. Insert or edit a few pages of text 
3. Insert a unique text string (Like ????) to mark your place 
4. Use the Exit command to preserve the work you have done so far 
5. Start again, using the F command to search for the unique string you used to mark your place 
6. Delete your marker and continue editing. 

By using this procedure, you reduce your loss (should there be a machine or human error) to the few pages of text 
on which you just worked. 

5.6.6.2 Delete — The Delete (nD) command is a chazacter-oriented command that deletes n characters in the text 
buffer beginning at the current location of the pointer. The syntax of the command is: 

nD 

If you do not specify n, EDIT deletes the character immediately following the pointer. Upon completion of the D 
command, EDIT positions the pointer immediately before the first character following the deleted text. Table 5-9 
lists each argument for the D command and its effect. 

5-23 



Text Editor 

Table 5-9 Delete Command Arguments 

Argument Meaning 

n 

-n 

0 

Deletes n characters following the pointer. Places the pointer before the first 
character following the deleted text. 

Deletes n characters preceding the pointer. Places the pointer before the first character 
following the deleted text. 

Deletes the current line up to the pointer. The position of the pointer does not change 
(equivalent to OK). 

Deletes the text between the pointer and the end of the buffer. Positions the pointer 
at the end of the buffer (equivalent to /K). 

Deletes - n characters, where n equals the length of the last text argument used. 

The following examples illustrate the use of the D command. 

*~~Li~~ 

This command deletes the two characters immediately preceding the pointer. 

This command string deletes the text string MOV R1. (=D in combination with a search command deletes the 
indicated text string.) 

Assume the text buffer contains the following: 

ADD Rl,(R2)+ 
CLR T@R2 

The following command deletes the current line up to the pointer: 

~CO~~~~ 

The buffer now contains 

ADD R 1,(R2)+ 
,~C~R2 

5.6.6.3 Kill — The Kill (nK) command removes n lines of text (including the carriage return and line feed 
characters) from the page buffer, beginning at the pointer and ending with the nth end-of--line. The syntax of the 
command is: 

nK 

EDIT places the pointer at the beginning of the line. following the deleted text. Table 5-10 describes each argument 
and its effect upon the Kill command. 

5-24 



Text Editor 

Table 5-10 Kill Command Arguments 

Argument Meaning 

n 

-n 

0 

Removes the character string (including the carriage return/line feed combination) 
beginning at the pointer and ending at the nth end-of--line. 

Removes the character string beginning at the nth end-of-line preceding the pointer 
and ending at the pointer. Thus, if the pointer is at the center of a line, the modifier 
-1 deletes one and one-half lines preceding it. 

Removes the current line up to the pointer (equivalent to OD). 

Removes the characters beginning at the pointer and ending with the last line in the 
text buffer (equivalent to /D). 

The following examples use the K command. 

This command deletes lines starting at the current location of the pointer and ending at the second carriage return/ 

line feed combination. 

Assume the text buffer contains the following: 

ADD R 1,(R2~ 
CLR~, @R2 
MOVB 6(R 1),C~R2 

This command removes the characters beginning at the pointer and ending with the last line in the text buffer: 

* / ''~~ 

The buffer now contains: 

ADD Rl,(R2}+ 
CLR~, 

Kill and Delete commands perform the same function, except that Kill is line-oriented and Delete is character-oriented. 

5.6.6.4 Change — The Change (nC) command changes a specific number of characters following the pointer. The 

syntax of the command is: 

~ nCtext 

A C command is equivalent to a Delete command followed by an Insert command. You must insert a text object 

following the nC command. Table 5-11 lists each argument and its effect upon the C command. 

5-25 



Text Editor 

Table 5-11 Change Command Arguments 

Argument Meaning 

n 

-n 

0 

Replaces n characters following the pointer with the specified text. Places the pointer 
after the inserted text. 

Replaces n characters preceding the pointer with the specified text. Places the pointer 
after the inserted text. 

Replaces the current line up to the pointer with the specified text. Places the pointer 
after the inserted text (equivalent to OX). 

Replaces the text beginning at the pointer and ending with the. last character in the 
buffer. Places the pointer after the inserted text (equivalent to /X). 

Replaces - n characters with the indicated text string, where n represents the length of 
the last text argument used. 

The size of the text is limited only by the size of the text buffer and the space available. All characters are legal 
except ESCAPE, which terminates the text string. 

If the C command is to be executed more than once (i.e., it is enclosed in angle brackets) and if there is enough 
space available for the command to be entered, it will be executed at least once (provided it appears first in the 
command string). If repetition of the command exceeds the available memory, an error message prints. 

The following examples use the C command. 

*~C~U~I~T~~ 

This command replaces the five characters to the right of the pointer with #VECT. 

Assume the text buffer contains the following: 

CLR CR2 
MOVE, 5(Rl),@R2 

The next command replaces the current line up to the pointer with the specified text. 

*QC~1r:~Z:i~~~ 

The buffer now contains: 

CLR @R2 
ADDB~ 5(R 1),CR2 

You can use =C with a Get command to replace a specific text string. Here is an example: 

This command finds the occurrence of the text string FIFTY: and replaces it with the text string FIVE:. 

5-26 



Text Editor 

5.6.6.5 eXchange — The eXchange (nX) command is similar to the change command except that it changes lines 
of text, instead of a specific number of characters. The syntax of the command is: 

nXtext 

The nX command is identical to an nK command followed by an Insert command. Table 5-12 lists each argument 
and its effect upon the eXchange command. 

Table 5-12 eXchange Command Arguments 

Argument Meaning 

n 

-n 

0 

Replaces n lines including the carriage return and line feed characters following the 
pointer. Places the pointer after the inserted text. 

Replaces n lines including the carriage return and line feed characters preceding the 
pointer. Positions the pointer after the inserted text. 

Replaces the current line up to the pointer with the specified text. Positions the 
pointer after the inserted text (equivalent to OC). 

Replaces the text beginning at the pointer and ending with the last character in the 
buffer with the specified text (equivalent to /C). Positions the pointer after the 
inserted text. 

All characters are legal in the text string except ESCAPE, which terminates the text. 

If the X command is enclosed within angle brackets to allow more than one execution, and if there is enough memory 
space available for the X command to be entered, EDIT executes it at least once (provided it is first in the command 
string). If repetition of the command exceeds the available memory, an error message prints. 

The following example uses the X command. 

~L..~i @~ .'. 
~~ 

This command exchanges the two lines to the right of the pointer with the text string. 

5.6.7 Ut' 'ty Commands 
During the editing session, you can store text in external buffers and subsequently restore this text when you need 
it later on in the editing session. The following sections describe the commands that perform this function. 

5.6.7.1 Save — The Save (nS) command lets you store text in an external buffer called a save buffer (described 
previously in Section 5.5), and subsequently insert it in several places in the text. 

The syntax of the command is: 

nS 

The Save command copies n lines, beginning at the pointer, into the save buffer. The S command operates only in 
the forward direction; therefore, you cannot use a negative argument. The Save command destroys any previous 
contents of the save buffer; however, EDIT does not change the location of the pointer or the contents of the text 
buffer. 

5-27 



Text Editor 

If you specify more characters than the save buffer can hold, EDIT prints ?EDIT-F-INSUFFICIENT MEMORY. 
None of the specified text is saved. 

For example, assume the text buffer contains the following assembly-language subroutine 

SUBROUTINE MSGTYP 
WHEN CALLED, EXPECTS RO TO POINT TO AN 
ASCII MESSAGE THAT ENDS IN A ZERO BYTE, 
TYPES THAT MESSAGE ON THE USER TERMINAL 

MSGTYP: TSTB (RO) ;DONE? 
BEQ MDONE ;YES-RETURN 

MLOOP: TSTB C?#177564 ; NO-IS TERMINAL READY? 
BPL MLOOP ; NO-WAIT 
MOVB (RO)+,@#177566 ;YES PRINT CHARACTER 
BR MSGTYP ;LOOP 

MDONE : RTS PC ;RETURN 

The following command stores the entire subroutine in the save buffer (assuming the pointer is at the beginning of 
the buffer) 

* 1~~~~ 

You can insert the contents of the save buffer into a program whenever you choose by using the Unsave command. 

5.6.7.2 Unsave — The Unsave (U) command inserts the entire contents of the save buffer into the text buffer at 
the pointer and leaves the pointer positioned following the inserted text. You can use the U command to move 
blocks of text or to insert the same block of text in several places. Table 5-13 lists the U commands and their meanings. 

Table 5-13 U Command and Arguments 

Command Meaning 

U 

OU 

Inserts the contents of the save buffer into the text buffer. 

Clears the save buffer and reclaims the area for text. 

The only argument the U command accepts is 0. 

The contents of the save buffer are not destroyed by the Unsave command (only by the OU command) and can be 
unsaved as many times as desired. If the Unsave command causes an overflow of the text buffer, the ?EDIT-F-
INSUFFICIENT MEMORY error message prints, and the command does not execute. 

For example: 

* 11~~ 

This command inserts the contents of the save buffer into the text buffer. 

5.6.7.3 Macro — The Macro (M) command inserts a command string into the EDIT macro buffer. Table 5-14 
lists the M commands and their meanings. 

5-28 



Text Editor 

Table 5-14 M Command and Arguments 

Command Meaning 

M/command string/ 

OM or M// 

Stores the command string in the macro buffer. 

Clears the macro buffer and reclaims the area for text. 

The slash (/) represents the delimiter character. The delimiter is always the first character following the M command, 
and can be any character that does not appear in the macro command string itself. 

Starting with the character following the delimiter, EDIT places the macro command string characters into its inter-
nal macro buffer until the delimiter is encountered again. At this point, EDIT returns to command mode. The macro 
command does not execute the macro string; it merely stores the command string so that the Execute Macro (EM) 
command can execute later. The Macro command does not affect the contents of the text or save buffers. 

All characters except the delimiter are legal macro command string characters, including single ESCAPEs to terminate 
text commands. All commands, except the M and EM commands, are legal in a command string macro. 

In addition to using the OM command, you can type the M command immediately followed by two identical 
characters (assumed to be delimiters) and two ESCAPE characters to clear the macro buffer. 

The following examples illustrate the use of the M command. 

* ~//~~ 

This command clears the macro buffer. 

This command stores a macro to change RO to R 1. 

NOTE 
Be careful to choose infrequently-used characters as 
macro delimiters; use of frequently-used characters can 
lead to inadvertent errors. For example: 

* ~ ~~~~ r~a~ ~•c:;~a~~~:~ f~ :~ ~ ~~ 
? ~ Li I ~' .... ~ -.. ~ c~ •f :i. :~ c:-~ c:~ r~ a~ ~~, •t' c:~ r~ :i. r•~ ~~f i..i •~ 

In this case, it was intended that the macro be GMOV 
RO$=CADD R1$ but since the delimiter character (the 
character following the M) is a space, the space following 
MOV is used as the second delimiter, terminating the 
macro. EDIT then returns an error when it interprets the 
R as a Read command. 

5.6.7.4 Execute Macro — The Execute Macro (nEM) command executes the command string previously stored 
in the macro buffer by the M command. 

The syntax of the command is: 

nEM 

5-29 



~'ext Editor 

The azgument (n) must be positive. The macro is executed n times and returns control to the next command in the 
original command string. 

The following example uses the EM command. 

*~{:~ ~4?{1C~~~ 

This command sequence executes the macro stored in the previous example. EDIT prints an error message when it 
reaches the end of the buffer. (This macro changes all occurrences of RO in the text buffer to Rl.) 

This command inserts MOV PC,R1 into the text buffer, then executes the command in the macro buffer twice 
before inserting CLR CR2 into the text buffer. 

5.6.7.5 Edit Version — The Edit Version (EV) command displays the version number of the editor in use on the 
console terminal. 

The command is 

EV 

This example displays the running version of EDIT: 

5.6.7.6 Upper- and Lower-Case Commands — If you have an upper- and lower-case terminal as part of your 
hardware configuration, you can take advantage of the upper- and lower-case capab' 'ty of this terminal. Two editing 
commands, EL and EU, permit this. 

When the editor is first started with the EDIT command, upper-case mode is assumed; all characters you type are 
automatically translated to upper case. To allow processing of both upper- and lower-case characters, enter the Edit 
Lower command. For example 

*~:~..~~ 
~ :i. Y ca ~..~ ~ ci3 i•~i to 1"~ ~k. ~ r` ~: ~:~ :•: •li ~ r~ r~ c:.' t~ t~~ its ~ r~ r;~ ~ :i i-~ lJ ~' F~' ~ F~' ~ r~~ r~ ~. ra w ~ r ~ ~ ~ ~ . ~ ~ 

The editor now accepts and echoes upper- and lower-case characters received from the keyboard and prints text on 
the terminal in upper and lower case. 

To return to upper-case mode, use the Edit Upper command: 

*~1.1~~ 

Control also reverts to upper-case mode upon exit from the editor (with EX or CTRL/C). 

5-30 



Text Editor 

Note that when you issue an EL command, you can enter EDIT commands in either upper or lower case. Thus, the 
following two commands are equivalent: 

~K~T~:X'T~ M~r-~~w ~~;:t~~r~~ 

The editor automatically translates (internally) all commands to upper case independent of EL or EU. 

4 

~t 

NOTE 
When you use EDIT in EL mode, make sure that text 
arguments you specify in search commands have the 
proper case. The command GTeXt$, for example, will 
not match TEXT, text, or any combination other than 
TeXt. 

5.7 THE DISPLAY EDITOR 
In addition to all functions and commands mentioned thus far, the editor can use VT-11 and VS-60 display hardware 
that may be part of the system configuration (GT40, GT44, DECLAB 11 /40, DECLAB 11 /34). The most obvious 
feature is the ability to use the display screen rather than the console terminal for printing all terminal input and 
output. Another feature is that the top of the display screen functions like a window into the text buffer. When all 
the features of the display editor are in use, a 12 in. screen displays text as shown in Figure 5-1. 

10 PRECEDING 
LINES OF TEXT 

CURSOR 
(CURRENT LINE) 

AND 9 
FOLLOWING 
LINES OF TEXT 

SEPARATION 
LINE 

3 PRECEDING 
COMMAND LINES 

CURRENT 
COMMAND LINE 

Figure 5-1 Display Editor Format, 12 in. Screen 

5-31 

WINDOW 
INTO THE 
TEXT BUFFER 



Text Editor 

The major advantage is that you can now see immediately where the pointer is. The pointer appears between characters 
on the screen as a blinking Irshaped cursor and you can see it easily. Remember that pressing the Q~ key causes both 
a carriage return and. a line feed character to be inserted into the text. Note that if the pointer is placed between a 
carriage return and line feed, it appears in an inverted position at the beginning of the next line. 

In addition to displaying the current line (the line containing the cursor), the 151ines of text preceding the current 
line and the 141ines following it are also in view on a 17 in. screen. Each time you execute a command string (with a 
double ESCAPE), EDIT refreshes this portion of the screen so that it reflects the results of the commands you just 
performed. 

The lower section of the 17 in. screen contains eight lines of editing commands. The command line you are currently 
entering is last, preceded by the most recent command lines. A horizontal line of dashes separates this section from 
the text portion of the screen. As you enter new command lines, previous command lines scroll upward off the com-
mand section so that only eight command lines are ever in view. 

A 12 in. screen displays 201ines of text and 4 command lines. 

5.7.1 Using the Display Editor 
The display features of the editor are automatically invoked whenever the system scroller is in use (a monitor GT 
ON command is in effect) and you start the editor. However, if the system does not contain display hardware, the 
display features are not enabled. 

Providing that the system does contain display hardware and that you wish to employ the screen during the editing 
session, you can activate it in one of two ways, whether or not the display is in use. All editing commands and 
functions previously discussed in this chapter are valid for use. 

1. If the scroller is in use (the GT ON monitor command is in effect), EDIT recognizes this and automatically 
uses the screen for display of text and commands. However, it rearranges the scroller so that a window 
into the text buffer appears in the top two-thirds of the screen, while the bottom third displays command 
lines. This arrangement is shown in Figure 5-1. 

You can use the Edit Console command to return the scroller to its normal mode so that text and commands 
use the full screen, and the window is eliminated. 

The command is: 

EC 

This example uses the EC command: 

* E~~~~:~ f-. t~ ~~ 

This command lists the second and third lines of the current buffer on the screen; there is no window 
into the text buffer at this point. 

EDIT ignores subsequent EC commands if the window into the text buffer is not being displayed. 

To recall the window, use the Edit Display command: 

ED 

The screen is again arranged as shown in Figure 5-1. 

5-32 



Text Editor 

2. Assume the scroller is not is use (the GT ON command is not in effect). When you call EDIT with the 
.EDIT command, an asterisk appears on the console terminal. Use the ED command at this time to provide 
the window into the text buffer; however, commands continue to be echoed to the console terminal. 

When you use ED in this case, it must be the first command you issue; otherwise, it becomes an illegal 

command (since the memory used by the display buffer and code, amounting to over 600 words, is 

reclaimed as working space). You cannot use the display again until you load a fresh copy of EDIT. 

While the display of the text window is active, EDIT ignores ED commands. 

Typing the EC command clears the screen and returns all output to the console terminal. 

NOTE 
After an editing session that uses the ED command is over, 
clear the screen by typing the EC command or by returning 
to the monitor and using the monitor RESET command. 
Failure to do this may cause unpredictable results. 

5.7.2 Setting the Editor to Immediate Mode 
An additional mode is available in EDIT to provide easier and faster interaction during the editing session. This mode 

is called immediate mode and combines the most-used functions of the text and command modes —namely, reposi-

tioning the pointer and deleting and inserting characters. 

You can only use immediate mode when the VT-11 display hardware is active and the editor is running. Enter it by 

typing two ESCAPEs (only) in response to the command mode asterisk: 

*~~ 

The editor responds by echoing an exclamation point on the screen. 

The exclamation character remains on the screen as long as control is in immediate mode. 

Once you enter immediate mode, you can use only the commands in Table 5-15. Any other commands or characters 

are treated as text to be inserted. None of these commands echoes, but the text appearing on the screen is constantly 

refreshed and updated during the editing process. 

To return control to the display editor's normal command mode at any time while in immediate mode, type a single 

ESCAPE. The editor responds with an asterisk and you can proceed using all normal editing commands. (Immediate 

mode commands you type at this time will be accepted as command mode input characters.) To return control to the 

monitor while in immediate mode, type ESCAPE to return to command mode, then type CTRL/C followed by two 

ESCAPEs. 

Table 5-15 Immediate Mode Commands 

Command Meaning 

CTRL/N 

CTRL/G 

Advances the pointer (cursor) to the beginning of the next line (equivalent 

to A). 

Moves the pointer (cursor) to the beginning of the previous line (equivalent 

to -A). 

(Continued on next page) 

5-33 



Text Editor 

Table 5-15 (Copt.) Immediate Mode Commands 

Command Meaning 

CTRL/D 

CTRL/V 

RUBOUT or DELETE 

ESCAPE or ALTMODE 

Any character other than 
those above 

Moves the pointer (cursor) forward by one character (equivalent to J). 

Moves the pointer (cursor) back by one character (equivalent to - J). 

Deletes the character immediately preceding the pointer (cursor) (equivalent 
to - D). 

Single character returns control to command mode; double character directs 
control to immediate mode. 

Inserts the character as text positioned immediately before the pointer 
(cursor) —equivalent to I. 

5.8 EDIT EXAMPLE 
The following example illustrates the use of some of the EDIT commands to change a program stored on the device 
DK:. Sections of the terminal output are coded by letter and corresponding explanations follow the example. 

C 

::~ ~~ ~ r~ ~~~ 

i'`1 ~:i to 

i"i t:l 4~ 
~ t:a ~,~ 

. •, 

♦ ~ti Y 'I~ i::: ~.: 
♦ I:{ 't' ~Y' I:.: :I. ~ f 

. X{ Y' '1' I:~ C:~ 

~K l:; {I~ :I. ,. ~ rl ,~:~ X:~ it ~I= 

•N• ~ {:a t:1 ~ ~'~ ~f~ 

I~~` t:f ~ iii ::y t:a 'Y' ~~. I::. 

y F~'Mtt:at:~l~ ~li~ifl: ~: ~l~i:~ '1"I:::~: 'Y' ~~~l.~l~l~~~i:i! I~l'~ :I: i'~I::: 
i`ri~:;(~.1.,~ I~, , .I. 

.YI~~'I:::{:~ 
E •~ . .:.. . .. " ~ I ~ I~~I I::. '1 ~ I::. ;. ~ .~.. I::. I:~ ~:1 ~:: ~ I~~ i ~i ~~ ICJ i. i I~~' I~~, ;:~: ~~ 

±► 1. ~ ~`~ ~~~ I"I I:.. ~Y' I:.. I'~ .I. '~'~ .I. trl . I•~ I' I .I. 1'~ ifs {... `I. '.I~ 

~ ~: t:: ~1~' I-~I I:.: "f' I:..::; 
..t. 

I~'' f~ i:+ t ~ I~~ ~`'~ ~~~ !~~ t:i I~~, I~~' ~:~, :1~ ;i. 

G ~~-~ ~ :t:ti '~~ '1~~ f:.: i:`~ :1~ ~,:+ ~:)~ tip. 

5-34 



Text Editor 

?If :I: 
. I::: i~~ X:~ 

~}Z~~'I...~~If 
~► ~~' F~ l'.~ l'a I~~ ~`i i~ 'T' ~:~ 'r~ I::: ;:~ ~r' I. I X:. Fi' l: ~ 1. ~ 'C' :C ~~! ~:: I"i <:y t:~ 'Y' °~ I~~' ' ' f " if F~' I:" ~:~ 
r • T'HI::: ~~~::;~"r" r'rt'~a~~a~'~ ~~~i Wi:~l~~r~::~ N 

a 

r"1 

I 

;:i ~ r1 I~: r : ~ f.) 4~' ~N~ :I. ~; i~ cl y {:i I"' y .i: ~! .I. Y' .I. ri I... .I. .<'. I::. ;:; Y r*1 t., h 
~i t:1 ~ ~~ iii ~•~ i.~ r I•i C~ ~ I~' t.l .I. ~ 'T' I'i :~ Y t.1 i"i I::.:7 ~ ~ ~y F" 

iii ;~ i:~ : . ~ ~:} i:~ :I: :I: ~ 'Y' i'•I I::: '1 " I::: ~:~ 
.l. 

I~' rt ~:1 t:; I~' ~ ~i W i:l Ft I ~ ;~ ~ 
. X:. i :.l.1::: :I.:~a 

Z Y 'Y" I::: :I. ~::: 

i 

A Calls the EDiT program and prints *. The input file is TEST 1.MAC; the output file is TEST2.MAC. Reads 
the first page of input into the buffer. 

B Lasts the buffer contents. 

C Aaces the pointer at the beginning of the buffer. Advances the pointer one character (past the ;) and 
deletes the TEST. 

D Positions the pointer after PROGRAM and verifies the position by listing up to the pointer. 

E Inserts text. Uses RUBOUT to correct typing error. 

F Seazches for .ASCII/ and changes IT WORKS to THE TEST PROGRAM WORKS. 

G Types CTRL/X to cancel the P command. Searches for .BYTE 0 and verifies the location of the pointer 
with the V command. 

H Inserts text. Returns the pointer to the beguu►ing of the buffer and lists the entire contents of the buffer. 

Closes the input and output files after copying the current text buffer as well as the rest of the input file 
into the output file. EDIT returns control to the monitor. 

5.9 EDIT ERROR CONDITIONS 
The editor prints an error message whenever a detectable error condition occurs. EDIT checks for three general types 
of error conditions: 1) syntax errors, 2) execution errors and, 3) macro execution errors. This section describes the 
error message form for each type of error condition. 

Before it executes any commands, EDIT first scans the entire command string for errors in command syntax, such 
as illegal arguments or an illegal combination of commands. If the editor finds an error of this type, it prints a 
message of this form: 

?EDIT-F-Message; no commands) executed 

You should retype the command. 

5-35 



Text Editor 

If a command string is syntactically correct, EDIT begins execution. Execution errors, such as buffer overflow or 
input and output errors, can still occur. In this case, EDIT prints a message of the form: 

?EDIT-F-Message 

EDIT executes all commands preceding the one in error. It does not execute the command in error or any commands 
that follow it. 

When an error occurs during execution of a macro, EDIT prints a message of the form: 

?EDIT-F-Message in macro; no commands) executed 
or 
?EDIT-F-Message in macro 

Mosx errors are syntax errors. These are usually easy to correct before execution. 

The RT-11 System Message Manual contains a complete list of the EDIT error messages, along with recommended 
corrective action for each error. 

5-36 



PART IV 

UTILITY PROGRAMS 

The following chapters describe in detail the system programs available to you as an RT-11 user. You can take 
advantage of nearly all of the capabilities of the RT-11 system by using the keyboard monitor commands, which 
are described in Chapter 4. However, it is the system utility programs (and not the monitor itself) that actually 
perform many of the system's functions. When you issue a monitor COPY command, for example, it is a system 
utility program (PIP, DUP, or FILEX, in this case) that performs the copy operation. Part IV of this manual, Util-

ity Programs, explains how to carry out utility operations, those not performed directly by the monitor, by run-
ning aspecific system utility program instead of using the keyboard monitor commands. It is not necessary to 
have an understanding of the material contained in Part IV in order to use the RT-11 system. However, the infor-

mation in Part IV may be of interest to you if you have experience with a previous version of RT-11, or if you 
are a systems programmer and need to perform certain functions with the utility programs that are not available 

with the keyboard monitor commands. Note that the syntax the Command String Interpreter requires for input 

and output specifications is different from the syntax you use to issue a keyboard monitor command. Chapter 6, 

the Command String Interpreter, describes the general syntax of the specification string that the system utility 

programs accept, and explains certain conventions and restrictions. Read this chapter carefully before you use any 

of the system utility programs directly, and bear in mind that there are many differences between issuing a monitor 

command and running a utility program. Chapters 7 through 15 describe the system utility programs themselves. 





CHAPTER 6 

COMMAND STRING INTERPRETER 

The Command String Interpreter (CSI) is the part of the RT-11 system that accepts a line of ASCII input, usually 
from you at the console terminal, and interprets it as a string of input specifications, output specifications, and 
options for use by a system utility program. To call a utility program, respond to the dot (.) printed by the key-
board monitor by typing R followed by a program name and a carriage return. This example shows how to call 
the directory program (DIR): 

The Command String Interpreter prints an asterisk (*) at the left margin on the terminal, indicating that it is 
ready to accept a list of specifications and options. The following section describes the syntax of the specifica-
tions and options you can enter. 

6.1 COMMAND STRING INTERPRETER SYNTAX 
Once you have started a system program, you must enter the appropriate information before any operation can 
be performed. You type a specification string in response to the prompting asterisk. The specifications are in the 
following general syntax: 

output-filespe cs/option=input-filespe cs/option 

(A few system programs —EDIT and PATCH, for example -- require you to enter this information slightly dif 
ferently. Complete instructions are provided in the appropriate chapters.) 

In all cases, the syntax for output-filespec is: 

dev:filnam.typ [n] , . . . dev:filnam.typ [n] 

The syntax for input-filespec is: 

dev:f~nam.typ , . . . dev:filnam.typ 

The syntax for /option is: 

/o :oval or /o : dual. 

where 

dev: represents either a logical device name or a physical device name, which is a 2- or 3-
character name from Table 3-1. 

If you do not supply a device name, the system uses device DK:. DK:, or whatever 

device you specify for the first file in a list of input or output files, applies to all the 
files in that input or output list, until you supply a different device name. For example: 

*DTI :FIRST.OBJ,LP:=TASK.I,RKI:TASK.2,TASK.3 

6-1 



Command String Interpreter 

This command is interpreted as follows: 

*DTl :FIRST.OBJ,LP:=DK:TASK.I,RKI:TASK.2,RKI:TASK.3 

File FIRST.OBJ is stored on device DT1:. File TASK.I is stored on default device DK:. 
Files TASK.2 and TASK.3 are stored on device RKl :. Notice that file TASK.1 is on de-
vice DK:. It is the first file in the input file list and the system uses the default device 
DK:. Device DTl : applies only to the file on the output side of the command. 

filnam.typ represents the name of a file (consisting of one to six alphanumeric characters followed 
optionally by a dot and a zero to three character file type). No spaces or tabs are allowed 
in the file name or file type. As many as three output and six input files are allowed. 

[n] is an optional declaration of the number of blocks (n) you need for an output file; n is a 
decimal number (C65,535) enclosed in square brackets immediately following the output 
flnam.typ to which it applies. 

/o:oval or represents one or more options whose functions vary according to the program you are 
/o :dual. using (refer to the option table in the appropriate chapter); oval is either an octal number 

or one to three alphanumeric characters (the first of which must be alphabetic) that the 
program converts to Radix-50 characters; dual. is a decimal number followed by a decimal 
point. 

This manual uses the /o:oval construction throughout, except for the keyboard monitor 
commands, where all values are interpreted as decimal (unless indicated otherwise) and the 
decimal point after a value is not necessary. However, the /o:dval. format is always valid. 
Generally, these options and their associated values, if any, should follow the device and 
file name to which they apply. 

If the same option is to be repeated several times with different values (e.g., /L:MEB/L: 
TTM/L:CND) you can abbreviate the line as /L:MEB:TTM:CND. You can mix octal, 
Radix-50, and decimal values. 

= If required, is a delimiter that separates the output and input fields. You can use the C 
sign in place of the =sign. You can omit the separator entirely if there are no output files. 

6.2 PROMPTING CHARACTERS 
Table 6.1 summarizes the characters RT-11 prints either to indicate that the system is awaiting your response or 
to specify which job (foreground or background) is producing output. 

Table 6-1 Prompting Characters 

Character Explanation 

The keyboard monitor is waiting for a command. 

When the console terminal is being used as an input file, the uparrow (or circumflex) 
prompts you to enter information from the keyboard. Typing aCTRL/Z marks the 
end-of-file. 

The > character identifies (only if a foreground job is active) which job, foreground 
or background, is producing the output that currently appears on the console terminal. 
Each time output from the background job is to appear, B > prints first, followed by 
the output. If the foreground job is to print output, F > prints first. 

The current system utility program is waiting for a line of specifications and options. 

6-2 



CHAPTER 7 

PERIPHERAL INTERCHANGE PROGRAM (PIP) 

The peripheral interchange program (PIP) is a file transfer and file maintenance utility program for RT-I1. You 
can use PIP to transfer files between any of the RT-11 devices (listed in Table 3-1) and to merge, rename, and 
delete files. 

7.1 CALLING AND USING PIP 
To call PIP from the system device, respond to the dot (.) printed by the keyboard monitor by typing: 

R PIP 

The Command String Interpreter prints an asterisk at the left margin of the terminal and waits for you to type 
a command string. If you type only a carriage return at this point, PIP prints its current version number and 
prompts you again for a command string. You can type CTRL/C to halt PIP and return control to the monitor 
when PIP is waiting for input from the console terminal. You must type two CTRL/Cs to abort PIP at any other 
time. To restart PIP, type R PIP or REENTER followed by a carriage return in response to the monitor's dot. 
Chapter 6, Command String Interpreter, describes the general syntax of the command line that PIP accepts. You 
can type as many as six input file names, but only one output file name is allowed. You can put command op-
tions at the end of the command string or type them after any file name in the string. Operations involving mag-
tape are an exception to this rule because the /M option is device dependent, and has a different meaning when 
you specify it on the input or output side of a command line. Type any number of options in a command line, 
as long as only one operation (insertion, deletion, etc.) is represented. You can, however, combine copy and 
delete operations on one line. If you specify a command involving random access devices for which the output 
specification is the same as the input specification, PIP does not move any files. However, it can change the cre-
ation dates on the files if you use /T, or it can rename the files if you use /R. 

Since PIP performs file transfers for all RT-11 data formats (ASCII, object, and image), it does not assume file 
types for either input or output files. You must explicitly specify all file types, where file types are applicable. 

On random access devices, such as disks and DECtape, PIP operations retain a file's creation date. If the file's 
creation date is 0, PIP gives it the current system date. However, in transfers to and from magtape and cassette, 
PIP always gives files the current system date. 

You can use all variations of the wildcard construction for the input file specifications in the PIP command line 
(Section 4.2 describes wildcard usage). Output file specifications cannot contain embedded wildcards. If you use 
any wild character in an input file specification, the corresponding output file name or file type must be an 
asterisk. The concatenate copy operation is an exception to this rule because it does not allow wildcards in the 
output specification. These two lines are examples of wildcard usage: 

The first command string is legal. The second generates an error message because the file name field of the input 
specification contains a wildcard and the output specification is not *. 

The following command, for example, deletes all files with the file type .BAK (regardless of their file names) from 
device DK: 

7-1 March 1978 



Peripheral Interchange Program (PIPS 

The next command renames all files with a .BAK file type (regardless of file names) so that these files now have 
a .TST file type (maintaining the same file names). 

PIP performs operations on files in the order in which you specify them in the command string. However, if the 
specification contains a wildcard, PIP operates on the files in the order in which they appear in the device direc-
tory. PIP ignores system files with the file type .SYS unless you also use the /Y option. PIP prints the error mes-
sage ?PIP-W-NO.SYS ACTION if you omit the /Y option on a command that would operate on .SYS files. 

PIP ignores all files with the file type .BAD unless you explicitly specify both the file name and file type in the 
command string. PIP does not print a warning message when it does not include .BAD files in an operation. Be-
cause of the way PIP handles .BAD files, you cannot use a wildcard (#.BAD) to perform any operation on them. 

This example transfers all files, including system files, (regardless of file name or file type) from device DK: to 
device RK 1:. It does not transfer .BAD files. 

* ~h 1 : ~ . ~K~Y==~ . ~K 

7.2 PIP OPTIONS 
Certain options permit you to perform various operations with PIP. Table 7-1 summarizes the operations that PIP 
performs. If you do not specify an option, PIP assumes that the operation is a file transfer in image mode. The 
following sections are organized by function. Operations involving magtape and cassette are discussed first because 
these operations are treated uniquely by PIP. The other functions (copy, delete, rename, log, and query) are de-
scribed next. Explanations of the options are arranged alphabetically in the discussions of the appropriate functions. 

Table 7-1 PIP Options 

Option Section Explanation 

/A 7.2.2.2 Copies files in ASCII mode, ignoring nulls and rubouts. It converts to 7-bit 
ASCII and treats CTRL/Z (32 octal) as the logical end-of file on input (the 
default copy mode is image). 

/B ?.2.2.3 Copies files in formatted binary mode (the default copy mode is image). 

/C 7.2.2.4 Can be used with another option. It causes PIP to include only files with 
the current date in the specified operation. 

/D 7.2.3 Deletes input files from a specific device. Note that PIP does not automati-
cally query before it performs the operation. If you combine /D with a 
copy operation, PIP performs the delete operation after the copy completes. 
This option is illegal in an input specification with magtape. 

/G 7.2.2.5 Ignores any input errors that occur during a file transfer and continues copy-
ing. 

iK:n 7.2.2.6 Makes n copies of the output files to LP:, TT:, or PC:. 

/M:n 7.2.1 You can use /M:n when I/O transfers involve either cassette or magtape. 
(See Section 7.2.1, Operations Involving Magtape or Cassette.) 

(Continued on next page) 

7-2 



Peripheral Interchange Program (PIPJ 

Table 7-1 (Cont.) PIP Options 

i 

Option Section Explanation 

/N 7.2.2.7 Does not copy or rename a file if a file with the same name exists on the 
output device. This option protects you from accidentally deleting a file. 
This option is illegal for magtape and cassette in the output specification. 

/O 7.2.2.8 Deletes a -file on the output device if you copy a file with the same name 
to that device. The delete operation occurs before the copy operation. 
This option is illegal for magtape and cassette in the output specification. 

/P 7.2.2.9 Copies or deletes all files except those you specify. 

/Q 7.2.6 Use only with another operation. The /Q option causes PIP to print the 
name of each file to be included in the operation you specify. You must 
respond with a Y to include a particular file. 

/R 7.2.4 Renames the file you specify. This operation is illegal for magtape and 
cassette. 

/S 7.2.2.10 Copies files one block at a time. 

/T 7.2.2.11 Puts the current date on all files you copy or rename, unless the current 
date is 0. This option is illegal for magtape and cassette ; operations involy-
ing those devices always use the current date. 

/U 7.2.2.12 Copies and concatenates all files you specify. 

/W 7.2.5 Prints on the terminal a log of copy, rename, and delete operations. 

/Y 7.2.2.13 Includes .SYS files in the operation you specify. You cannot modify or 
delete these files unless you use the /Y option. 

7.2.1 Operations Involving Magtape and Cassette 
PIP handles operations that involve magtape and cassette devices differently from operations that involve random 

access devices, such as disks and DECtape. That is because magtape and cassette are sequential access devices. 

This means that files are stored serially, one after another, on the device and that there 
is 

no directory at the 

beginning of each device that lists the files and gives their location. Because of the serial nature of tape, you 

can access only one file at a time on each device unit. Avoid commands that specify the same device unit number 

for both the input and output files —they are illegal. The /M:n option is designed to make operations that involve 

magtape and cassette more efficient. This option lets you specify different tape handling procedures for PIP to 
follow. The following sections outline the operations that involve magtape and cassette and describe the different 
procedures for using these devices that you can specify with the /M:n option. Remember that when you use the 
/M:n option, n is interpreted as an octal number. You must use n. (n followed by a decimal point) to represent 
a decimal number. 

7.2.1.1 Using Cassette —The cassette is an inexpensive auxiliary storage medium. Cassettes are typically used to 
store data such as text files or source programs. Clear plastic leader indicates the beginning-of tape (BOT) and 
physical end-of-tape (EOT). A special sentinel file marks the end of current data and indicates where new 
data can begin. The /M:n option lets you position the tape a particular way, or rewind it, before beginning an

operation. You can also use it to specify a special procedure for tape handling during cassette operations with PIP. 

The following operations are valid for use with cassettes: /A, /B, /C, /D, /G, /M, /P, /Q, /R, /S, /U, /W, and /Y. 

7-3 



Peripheral Interchange Program (PIP) 

These options are illegal with cassettes: /K, /N, /O, /R, and /T. If you omit the /M:n option in a cassette opera-
tion, the cassette rewinds before each operation. Using /M:0 has the same effect. The character n represents a 
count of the number of files from the present position on the ca.ss~te. Note that the /M:n option has a different 
meaning for cassette and magtape. Section 7.2.1.2 describes how to use /M:n with magtape. 

For cassette read (copy from tape) operations, the /M:n option initiates these procedures: 

1. If n is 0: 

The cassette rewinds and PIP searches for the file you specify. If you specify more than one file, or if 
you use a wildcard in the file specification, the cassette rewinds before PIP searches for each file. 

2. If n is a positive integer 

PIP starts from the cassette's present position and searches for the file you specify. If PIP does not find 
the file by the time it reaches the nth file from its starting position, it uses the nth file for the read 
operation. Note that if PIP's starting position is~ not the beginning of the cassette, it is possible that PIP 
will not find the file you specify, even though it does exist on the tape. 

3. If n is a negative integer: 

The cassette rewinds, then PIP follows the procedure outlined in step 2 above. 

For cassette write (copy to tape) operations, the /M:n option initiates these procedures: 

1. Ifnis0: 

The cassette rewinds and PIP writes the file you specify starting at the logical end-of--tape (LEOT) posi-
tion. PIP automatically deletes any file it finds along the way that has the same name and file type as 
the file you specify. 

2. If n is a positive integer 

PIP starts from the cassette's present position and searches n files ahead, deleting along the way any file 
it finds that has the same name and file type as the file you specify. If it does not reach LEOT before it 
reaches the nth file from its starting position, it enters the file you specify over the nth file and deletes 
any files beyond it on the tape. If PIP reaches LEOT before it reaches the nth file, it writes the file you 
specify at the end-of-tape. 

3. If n is a negative integer: 

The cassette rewinds, then PIP follows the same procedure outlined in step 2 above. 

If you are copying a file to cassette and reach the physical end-of--tape before the copy completes, PIP automati-
cally continues the file on another cassette. The cassette device handler prints the CTn : PUSH REWIND OR 
MOUNT NEW VOLUME message. If you want to halt the copy operation at this point, push the cassette rewind 
button. The tape rewinds, PIP prints an error message, and then PIP prompts you for a new command. However, 
if you want to continue the file on another cassette, remove the first cassette and put another initialized cassette 
in its place. The new cassette rewinds immediately. PIP then continues copying the file. The continued part of 
the file has the same file name and file type as the first part of the f.ile, but PIP adds 1 to its sequence number to 
show that it is a continued file. Make. sure you have a supply of initialized cassettes handy for cassette copy opera-
tions; you cannot interrupt the copy operation to initialize a cassette when PIP is waiting for a new volume. The 
following example shows a copy operation that fills one cassette and continues to another. 

7-4 



Peripheral Interchange Program (PIPJ 

n T 1 : ~ . *~~it : f~ih~ . ~Y~ ~ "/.! . ~Y~/Y/W/I'~ t 1 
~'i lei co~i~r~: 

ft~ : I~h~~~J . ~Y~ ~;c~ CT ~.: ~t~l'~~l~.J . ~iY~ 
CT ~. ~ I~'l~~H ~~~W ~ ~D C~ ~iQ1.11~T ~t~W VCII.NIJIri~: 

fah : ~~T . ~Y~ 
I~ :1~i I~' . ~ Y ~ 

~I~ : LAX . ~Y~ 
~.h~ : ~~" 4 r~Y 
lily :11i~ . ~iY~ 
~h : Did . Y~ 

f~i~:TT.~Yra~ 
f~h:l...~~'.~Y~ 
~;Iti:t:~i..~Y::i 
~I~ : ~iT . r?Y~i 

~r::~II....~Y 
f~ l~ : l"` C . ~ Y ~i 

f;l~ : C:T . ~Y~i 
r~~+~~~.~~Y~ 

~a CT1:~hlrit~l"'~.~Y"~ 
~;c~ CT:~ : DT + ~Y~ 

-~,i~ C~r ~. ~ ~~~ . }Y 
'iri:~ CT 1 : ~~' . ~iY~ 

~~ CT 1 : ~f; . ~`f 
•~ ra C: T ~ : ~i i~'f . ~ Y r 
~a CTS. ~ ~i~a. ~`ft7 

•l: c:~ C T ~.: ~~ I~' . ~'~ 
~t.~a CT 1 : C:I"~ ♦ SY~~ 
~~ c:~r ~ : ~T . ~iY~i 
~~j CT~. ;I~~i.~:iY 
~~~ c~~r:~:~I...~c~Y~ 
~~ c:~ C 'I' :I. ~ ~' t :. ~"a Y t
~;~ tiT:i. : C::l... ~Yt:~
~rf ~~ C 'r ~. ~ c~ 'r . ~:> Y
~ i:~ c~ T ~. ; x~ r-a ~ ri Y ~a

A directory listing of the second cassette shows that the first file, RKMNFB.SYS, is continued from a previous
tape. (The number of blocks in a cassette directory listing is not meaningful; it really represents the total of se-
quence numbers in the directory.)

C 'r ~.

If you are reading a file from cassette that is continued on another volume, the cassette handler also prints the
CTn: PUSH REWIND OR MOUNT NEW VOLUME message when it reaches the end of the first tape. To abort
the operation, push the cassette rewind button; PIP then issues an error message and prompts for a new command.
To continue the read operation, remove the first cassette and mount the second one in its place. The second cas-.
sette rewinds immediately and PIP searches for a file with the correct name and sequence number. PIP
repeats the new volume message if it does not find the correct file. The following example copies a file that is
continued on a second cassette.

*fah ~.: * . ~ ~C'r ~. : ~I~IKiI~!f~ ~ . ~Y~/Y/W
~i ~.~~ ~o~ic~~t~:

C T ~.: i~' l.! ~ I~i ~ ~ W :~ I~ D Cl I"~ I~ C t.l Itil'r ~ ~ k» W U C L U i~i ~
CT ~. ~ ~i~~~~~~ . ~iY~ ~l:c~ I•~Iti ~.: i~hi~'i~l~X:~ . ~Y~

7-5

Peripheral Interchange PJ►~ogram (PIP)

If you type a double CTRL/C during any output operation to cassette, PIP does not write a sentinel file at the
end of the tape. Consequently, you cannot transfer any more data to the cassette unless you follow one of these
two recovery procedures

1. First, rewind the cassette. Then, transfer all good files from the interrupted cassette to another cassette
and initialize the interrupted cassette as the following example shows. Use any arbitrarily large number
for /M : n.

*CT 1 : * . *=CTO : ~i~~'X . ~iAC r ~XA~i~' . ~'0~/~i :10C~C3
~C

• ~ ~iU~'
*CTS:/~/Y

2. Determine the sequential number of the file that was interrupted and use the /M:n construction to enter
a replacement file (either a new file or a dummy) over the interrupted file. PIP writes the replacement
file and a sentinel file (LEOT) after it. The following example assumes the bad file is the fourth file on
the cassette.

*CTC~ : IiUi~~fY . ~" ~ ~.M ~~TA : C~L..CI~A~_ . ~iAC/~f : ~4
*"'C

• ~~ I f~ECTCI~Y CTt~
:~ 9~A~► r~7~

I~~~'X . ~iAC ty i S~~A~ r~-7l
~'XA~f~' . ~"Cl~ C~ :~ ~~A~I1~~7

~ ~" :i. :i. ~ ~.:~ r 4} ~ 1 t~ c~ k.

i~ATCl~ . ~A~
~l~~i~Y . ~' 11~.

A directory listing of the cassette shows three files and the replacement file.

To copy multiple files to a cassette with a wildcard command, use the following:

*CTn : *.*=dev: *.*/M:1

q 1 ~~A~ r~~'7
~ i "~~-A~- r~77

Continue to mount new cassettes in response to the PUSH REWIND OR MOUNT NEW VOLUME message. Do
not abort the process at any time (using two CTRL/Cs) since continuation files may not be completed and no
sentinel file will be written on the cassette.

To read multiple files from a cassette, use a command like the following one. Use any arbitrarily large number
for /M:n.

*dev : * . *=CTn : * . * iM :1000

Whenever PIP detects a continued volume, the PUSH REWIND OR MOUNT NEW VOLUME message appears,
until the entire file has been copied (assuming that you mount each sequential cassette in response to each
occurrence of the message). When PIP copies the final section of a continued file, it returns to command level.
To copy the remaining files on that cassette, reissue the command:

*dev: *.*=CTn:*.*/M:1000

Repeat the process as often as necessary to copy all files. Do not abort the process at any time (using two
CTRL/Cs) since continuation files may not be completed.

7-6

Peripheral Interchange Pwogram (PIPS

7.2.1.2 Using Magtape —Magnetic tape is a convenient au ' 'ary storage medium for large amounts of data. Mag-
tapes are often used as backup for disks. Reflective strips indicate the beginning and end of the tape. A special
label (an EOF 1 or EOV 1 tape label) followed by two tape marks indicates the end of current data and indicates
where new data can begin. The following PIP options are valid for use with magtape: /A, /B, /C, /G, /M, /P, /Q,
/S, /U, /W, and /Y. These options are illegal with magtape: /D, /K, /N, /O, /R, and /T. The /M:n option lets you
direct the tape operation; you can move the tape and perform an operation at the point you specify. The /M:n
option can be different for the output and input side of the command line. Since the option applies to the device
and not to the files, you can specify one /M:n option for the output file and one for the input files. The /M:n
option has a different meaning for cassette and magtape. Section 7.2.1.1 describes how to use /M:n with cassette.

Sometimes PIP begins an operation at the current position. To determine the current position, the magtape handler

backspaces from its present position on the tape until it finds either an EOF indicator or the beginning of tape,

whichever comes first. PIP then begins the operation with the file immediately following the EOF or BOT. The

magtape handler also has a special procedure for locating a file with sequence number n:

1. If the file sequence number is greater than the current position, PIP searches the tape in the forward di-

rection.
2. If the file sequence number is more than one file before the current position, or if the file sequence

number is less than five files from the beginning-of-tape (BOT), the tape rewinds before PIP begins its

search.
3. If the file sequence number is at the current position, or if it is one file past the current position, PIP

searches the tape in the reverse direction.

Whenever you fetch or load a new copy of the magtape handler, the tape position information is lost. The "new"

handler searches backwards until it locates either BOT or a label from which it can learn the position of the tape.

It then operates normally, according to steps 1, 2, and 3 described above.

If you omit the /M:n option, the tape rewinds between each operation. Using /M:0 has the same effect as omitting

/M:n. When n is positive, it represents the file sequence number. When n is negative, it represents an instruction to

the magt ape handler.

For magtape read (Dopy from tape) operations, the /M:n option initiates these procedures:

1. Ifnis0:

The tape rewinds and PIP searches for the file you specify. If you specify more than one file, the tape

rewinds before each search. If the file specification contains a wildcard, the tape rewinds only once and

then PIP copies all the appropriate files.

2. If n is a positive integer:

PIP goes to file sequence number n. If the file it finds there is the one you specify, PIP copies it, Other-

wise, PIP prints the ?PIP-F-FILE NOT FOUND message. If you use a wildcard in the file specification
PIP goes to file sequence number n and then begins to search for matching files.

3. If n is - l

PIP starts the search at the current position. Note that if the current position is not the beginning of the

tape, it is possible that PIP will not find the file you specify, even though it does exist on the tape.

For magtape write (copy to tape) operations, the /M:n option initiates these procedures:

7-7

Peripheral Interchange Program ~PIP~

1. IfnisO:

The tape rewinds before PIP copies each file. PIP prints a warning message if it finds a file with the same
name and file type as the input file and does not perform the copy operation.

2. If n is a positive integer:

PIP goes to the file sequence number n and enters the file you specify. If PIP reaches LEOT before it
finds file sequence number n, it prints the ?PIP-F-FILE SEQUENCE NUMBER NOT FOUND message.
If you specify more than one file or if you use a wildcard in the file specification, the tape does not re-
wind before PIP writes each file, and PIP does not check for duplicate file names.

3. Ifnis-1:

PIP goes to the LEOT and enters the file you specify. It does not rewind, and it does not check for duplicate
file names.

4. Ifnis-2:

The tape rewinds between each copy operation. PIP enters the file at LEOT or at the first occurrence of
a duplicate file name.

If PIP reaches the physical end-of tape before it completes a copy operation, it cannot continue the file on another
tape volume. Instead, it deletes the partial file by backspacing and writing a logical end-of tape over the file's
header label. You must restart the operation and use another magtape.

If you type two CTRL/Cs during any output operation to magtape, PIP does not write a logical end-of tape at
the end of the data. Consequently, you cannot transfer any more data to the tape unless you follow one of the
two following recovery procedures. In addition, if the magtape handler was loaded (with the monitor LOAD com-
mand), you must unload it before you can access the tape.

1. Transfer all good files from the interrupted tape to another tape and initialize the interrupted tape in the
following manner:

devl :.*=dev0:*.*
~C
.R DUP
*devO:/Z/Y

2. Determine the sequential number of the file that was interrupted and use the /M:n construction to enter
a replacement file (either a new file or a dummy) over the interrupted file. PIP writes the replacement
file and a good LEOT after it. The following example assumes the bad file is the fourth file on the tape:

* dev0 : file .new=file .dum/M :4

7.2.2 Copy Operations
The following sections describe the types of copy operation that PIP can perform. PIP copies files in image,
ASCII, and binary format. Other options let you change the date on the files, access .SYS files, combine files, and
perform other similar operations. PIP automatically allocates the correct amount of space for new files in copy
operations (except for concatenation). For block-replaceable devices, PIP stores the new file in the first empty
space large enough to accommodate it. If an error occurs during a copy operation, PIP prints a warning message,
stops the copy operation, and prompts you for another command. You cannot copy .BAD files unless you speci-
fically type each file name and file type.

7-8 March 1978

Peripheral Interchange Program (PIPJ

7.2.2.1 Image Mode — If you enter a command line without an option, PIP copies files onto the destination

device in image mode. Note that you cannot reliably transfer memory image files to or from paper tape, or to

the line printer or console terminal. PIP can image-copy ASCII and binary data but it does not do any of the data

checking described in Sections 7.2.2.2 or 7.2.2.3.

The following command makes a copy of the file named XYZ.SAV on device DK: and assigns it the name
ABC.SAV. (Both files exist on device DK: following the operation.)

*ABC . 5AV•~XY~' . ~AV

The next example copies from DK: all .MAC files whose names are three characters long and begin with A. PIP

stores the resulting files on DX1:.

~KLiX i : ~ . ~=A%% . ~AC~

7.2.2.2 ASCII Mode (/A) —Use the /A option to copy files in 7-bit ASCII mode. PIP ignores nulls and
rubouts in an ASCII mode file transfer. PIP treats CTRL/Z (32 octal) as logical end-of--file if it encounters tha`
character in the input file. The following command copies F2.FOR from device DK: onto device DT1: in ASCII

mode and assigns it the name F1.FOR.

*IiT i t F 1 . ~'CJ~~~' ' . ~'CJ~lA

7.2.2.3 Binary Mode (/B) —Use the /B option to transfer formatted binary files (such as .OBJ files produced

by the assembler or the FORTRAN compiler and .LDA files produced by the linker). The following command,

for example, transfers a formatted binary file from the paper-tape reader to device DK: and assigns it the name

FILE.OBJ.

~icl~i~ : ~' Z 1..~ . q~..1 ~~~'C; : /~

When performing formatted binary transfers, PIP verifies checksums and prints a warning if a checksum error

occurs. If there is a checksum error and you did not use /G to ignore the error, PIP does not perform the copy

operation. You cannot copy library files with the /B option; PIP prints the ?PIP-F-LIBRARY FILE NOT COPIED

message. Copy them in image mode.

7.2.2.4 The Newfiles Option (/C) —Use the /C option in the command line if you want to copy only those

files with the current date. Specify /C only once in the command line. It applies to all the file specifications in

the entire command. The following command copies (in ASCII mode) all files named ITEMI.MAC that also have

the current date. It also copies the file ITEM2.MAC, if it has the current date, from DK: . to DT2 :. It combines

all these files under the name NN3.MAC.

~~•r~:>~~~.~Ac~ ~' :r -r~~:~.MAC~c~r~T~l~~.i~AC~A~I.J

The next command copies all files with the current date (except .SYS and .BAD files) from DK: to DXl :. This

is an example of an efficient way to back up all new files after a session at the computer.

*~~X 1 : * . *~ * . ~~C;

7.2.2.5 The Ignore Errors Option (/G) —Use the /G option to copy files, but ignore all input errors. This option

forces asingle-block transfer, which you can invoke at any other time with the /S option. Use the /G option if an

input error occurred when you tried to perform a normal copy operation. The procedure can sometimes recover a

file that is otherwise unreadable . If an error still occurs, PIP prints the ?PIP-W-INPUT ERROR message and continues

the copy operation. The following command, for example, copies the file TOPISAV in image mode from device DT1:

to device DK: and assigns it the name ABC.SAV.

7-9

Peripheral Interchange Program (PIPJ

The next command copies files FI.MAC and F2.MAC in ASCII mode from device DT1: to device DT2:. This
command creates one file with the name COMB.MAC, and ignores any errors that occur during the operation.

*Z:i'Y'? : C;t:l~'i~{ . i~f~'~(":..: X:i'I' a. : i~=' :i. . ~i/'~t:' y F~'~' . i~At~/A/tai 1.1

7.2.2.6 The Copies Option (/K:n) —The /K:n option directs PIP to generate n copies of the file you specify.
The only legal output devices are the console terminal, the line printer, and paper-tape punch. Normally, each
copy of the file begins at the top of a page; copies are separated by form feeds.

This command, for example, prints three copies of the listing file, FOO.LST, on the line printer.

7.2.2.7 Noreplace Option (/N) —The /N option prevents execution of a copy or rename operation if a file with
the same name as the output file already exists on the output device. This option is valid for magtape and cassette
files for input but not for output. The following example uses the /N option.

~K 1~~~q d C:T . ~~'~~:..:T~I~ ~ t:; T . ~Yti/Y/~!
;~ ~:~ ~ ~:, ._. W .—. t] ~.~ ~ ~~~• ~.~ 'l•. •f :i.1 c:.~ fi c:~ ~.~ r•~ ~~i y r-~ ca c:~ }:. ~ r• ~:~ ~r :i. c~ r~~ s~- c~ r• •F' c:a r• ire c:~ ~~i ~:~ I~ d t~ T . ~i Y ~i

The file named CT.SYS already exists on DXO:, and the copy operation does not proceed.

7.2.2.8 The Predelete Option (/O) —The /O option deletes a file on the output device if you copy a file with
the same name to that device. PIP deletes the file on the output device before the copy operation occurs. Normally,
PIP deletes a file of the same name after the copy completes. This option is valid for magtape and cassette files for
input but not for output. The following example uses the /0 option.

~c~il~ :!. : '1"~'~'T:I. . ~fAt;:..:Z:+T~? : 'T'~:.r'T' + i~i~lt</Cl

If a file named TESTI.MAC already exists on RK1:, PIP deletes it before copying TEST.MAC from DT2: to
TESTI.MAC on RK1:.

7.2.2.9 The Exclude Option (/P) —The /P option directs PIP to transfer all files except the ones you specify.

This command, for example, directs PIP to transfer all files from DX1: to DTO: except the .MAC files.

7.2.2.10 The Single-block Transfer Option (/S) —The /S option directs PIP to copy files one block at a time.
On some devices, this operation increases the chances of an error-free transfer. You can combine the /S option
with other PIP copy options. For example:

* Ftl~ 1 : TEST' . ~iAt:~-~hq ~ T~:~T . ~fA~/r

PIP performs this transfer one block at a time.

7.2.2.11 The Setdate Option (/T) —This option causes PIP to put the current date on all files it transfers,
unless the current date is 0. Normally, PIP preserves the existing file creation date on copy and rename operations.
This option is invalid for operations involving magtape and cassette because PIP always uses the current date for
tape files. The following command puts the current date on all the files stored on device DK:.

7-10 March 1975

Peripheral Interchange Program (PIPJ

Note that the command shown above changes only the dates; PIP does not move or change the files in any other

way.

7.2.2.12 The Concatenate Option (/Ln — To combine more than one file into a single file, use the /U option.
This option is particularly useful to combine several object modules into a single file for use by the linker or

librarian. PIP does not accept wildcards on the output specification. The following examples use the /U option.

* ~h : ~~ . ca~~N r~~r ~ : ~~ . a~~~ ~ ~~ . o~.~ ~ Dz~ . a~~/u

The command shown above transfers files BB.OBJ, CC.OBJ and DD.OBJ to device DK: as one file and assigns
this file the name AA.OBJ.

This command merges ASCII files FILE2.MAC and FILE3.MAC on DT2: into one ASCII file named MERGE.MAC
on device DT3:.

7.2.2.13 The System Files Option (/~ —Use the /Y option if you need to perform an operation on system
files (.SYS). For example:

* * . *~~iT3 : * . */~/Y

This command copies to device DK:, in image mode, all files (including .SYS files) from device DT3:. Because of
the /G option, PIP ignores any input errors.

7.2.3 The Delete Operation (/D)
Use the /D option to delete one or more files from the device you specify. Note that PIP does not automatically
query you before it performs the operation; you must use /Q. Remember to use the /Y option to delete .SYS
files. You cannot delete .BAD files unless you name each one specifically, including file name and file type. You
can specify only six files in a delete operation unless you use wildcards. You must always indicate a file specifica-
tion in the command line. A delete command consisting only of a device name (dev: /D) is invalid. The delete
option is also illegal for magtape. The following examples illustrate the delete operation.

The command shown above deletes FILEl.SAV from device DK:.

* ~X ~.: * . */~
?~' Y F'~-W~-~lca . ~iY~ a~~ i rare

w;

~"1

The command shown above deletes all files from device DX1: except those with a .SYS or .BAD file type. If
there is a file with a .SYS file type, PIP prints a warning message to remind you that this file has not been deleted.

* ~ ~ ~~~~~

This command deletes all files with a .MAC file type from device DK:.

7.2.4 The Rename Operation (/R)
Use the /R option to rename a file you specify as input, giving it the name you specify in the output specification.

You must supply an equal number of input and output files that reside on the same device. PIP prints an error

message if the command specifications are not valid. Use the /Y option with /R if you rename .SYS files. You

cannot use /R with magtape or cassette.

7-11

Peripheral Interchange Program ~PIPJ

The rename command is particularly useful when a file on disk or DECtape contains bad blocks. By renaming
the file, giving it a .BAD file type, you cari ensure that the file permanently resides in that area of the device.
Thus, the system makes no other attempts to use the bad area. Once you give a file a .BAD file type, you
cannot move it during a compress operation. You cannot rename .BAD files unless you specifically indicate
both the file name and file type. The following examples illustrate the rename operation.

* ~T i : ~ ~.. MAC« ItT ~.: ~'q . SAC/~

The command shown above renames FO.MAC to F l .MAC on device DT 1: .

~k LiX 1 : CIIJT . 5Y~~~iX ~.: (~~' . ~Y~/Y/~

This command renames file CT.SYS to OUT.SYS.

7.2.5 The Logging Operation (/~
When you use the /W option, PIP prints a list of all files copied, renamed, or deleted. The /W option is useful if
you do not want to take the time to use the query mode (the /Q option, described in Section 7.2.6), but you do
want a list of the files operated on by PIP.

PIP prints the log for an operation on the terminal beneath the command line. This example shows logging with
the delete operation.

~ x~X ~.: * . */~i/W
~~, ~ ~:,..~~....Wc~ . ~Y~~ ~r~t ~. i:lr,

~' i 1 ~~ ~~~ ~. ~~t~~~
I~X 1 : ~~~T . i~~Cf
L~X1 : F'xX~~i:~. ~f~V
x~X 1 : C;r~iAl~''M~ . ~~~~
L~ X 1 : ~i i4i ~' X . ~ •• t:1
DX ~.: ~ATCW . Z~~l;:a
I~X :~ ~ ~X~~i~' . ~"CJr~
DX 1 : ~f~AN~'M~ ' •• t:l~~
~~X 1 : CI...t~~Al.. ¢ ~i~'~t::
z~X ~.: ~'~~t~~I.~C * ~~C

LiX :I.: ~XA~'i~' . i~'i~1tr

7.2.6 The Query Option (/Q)
Use the /Q option with another PIP operation to list all files and to confirm individually which of these files
should be processed. Typing a Y (or any string that begins with Y) followed by a carrige return causes the named
file to be processed; typing anything else excludes the file. The following example deletes files from DX1:.

~ LAX 1 : ~ . */~/C~
~'i lei r~c~l~t~~:

I~Xi : ~'IX~4c~~. ~AV'?
I~X 1 : GRA~'W . ~A~ '? Y
IiX 1 : ~i~~'X . SAC '?
IiX1:MAT'CM.~A~ '~
~~X 1 : ~XA~i~' . ~'C.l~ •~
~X 1 : Cr~A~'M . ~'0~ ? Y
~X 1 : G~..Q~A~... ~iAC'? Y
IiX ~.: ~'r~Q~~:"C . ~i~1C'' Y
~iX 1 : h~ . SAC '?
IiX 1 : EXAi~~' . ~iAC •?

7-12

CHAPTER 8

DEVICE UTILITY PROGRAM (DUP)

The device ut' 'ty program (DUP) is a device maintenance utility program you can use with the RT-11 system.
DUP creates files on file-structured RT-11 devices (disks, DECtape, magtape, and cassette). It can also extend
files on certain file-structured devices (disks and DECtape), and it can compress, image copy, initialize, or boot
RT-11 file-structured devices. DUP does not operate on non-file-structured devices (line printer, card reader,
terminal, and paper tape).

8.1 CALLING AND USING DUP
To call DUP from the system device, respond to the dot (.) printed by the keyboard monitor by typing:

R DUP

The Command String Interpreter prints an asterisk (~`) at the left margin of the terminal and waits for a command
string. If you enter only a carriage return in response to the asterisk, DUP prints its current version number. You
can type CTRL/C to halt DUP and return control to the monitor when DUP is waiting for input from the console
terminal. You must type two CTRL/Cs to abort DUP at any other time. The /S, /T, and /C operations, however,
lock out the CTRL/C command until the operation completes; these three operations cannot be interrupted with
CTRL/C. To restart DUP, type R DUP or REENTER in response to the monitor's dot. Chapter 6, Command
String Interpreter, describes the general syntax of the command line that DUP accepts. DUP accepts only one input
file specification and one output file specification in the command line.

8.2 DUP OPTIONS
Certain options are available for use with DUP. These options are divided into two categories: 1) Action and 2)
Mode. Action options cause specific operations to occur. You can use these options-alone or with valid mode
options. Usually, you can specify only one action option at a time. Mode options modify action options. Table
&1 illustrates whch mode options you can use with a particular action option.

Table 8-1 DUP Options and Categories

Action Mode

C W,Y
I W,Y
K W,F,H
0 W,Y
S W,X,Y
T W,Y
U W
V W
Z W,B,N,R,V,Y

Note that /V can be either an action or a mode option, depending on how you use it.

You can use DUP action options to create files, copy devices, scan for bad blocks, perform a bootstrap operation,
and so on. You can use the DUP mode options to modify the action options, where necessary. The following
sections describe the various DUP options and give examples of typical uses. Table 8-2 summarizes the options you
can use with DUP.

8-1

Device Utility Program (DUPE

Table 8-2 DUP Options

Option Section Explanation

/B 8.2.11.4 Use with /Z to write files with the file type .BAD over any bad
blocks DUP finds on the disk to be initialized.

/C:m [:n] 8,2.1 Creates a file on the device you specify; m represents the starting
block number (in octal) and n represents the size of the file in
blocks.

/F 8.2.3 Use with the /K option to output the file name containing the bad
block together with the relative block number of the bad block in
the file.

/H 8.2.3 Use with the /K option to read the bad block, write to the bad block,
and then read it again. This operation does not destroy information
already stored on the device.

/I [:rstart 8.2.2 Copies the image of a disk to another disk or magtape or from mag-
:rstop tape to disk. The arguments :rstart, :rstop, and :wstart represent
:wstart] block numbers.

/K [:start 8.2.3 Scans a device for bad blocks and outputs the octal address of the
[:stop]] logical bad blocks to the output device. The arguments :start and

:stop represent block numbers.

/N:n 8.2.11.1 Use with /Z to set the number of directory segments you require if
you do not want the default size ; n is an integer in the range 1-37
(octal).

/O 8.2.4 Boots the device or file you specify.

/R [: RET] 8.2.11.3 Use with /Z to scan the RK06 device for bad blocks and to create a
replacement table on the disk for any bad blocks DUP finds. If you
use : RET, DUP retains the replacement table that is already on the
disk and does not pre-scan the disk for bad blocks.

/S 8.2.5 Compresses a disk (or DECtape) onto itself or onto another disk (or
DECtape); the output device, if any, must be initialized.

/T:n 8.2.6 Extends an existing file by the number of blocks you indicate by :n.

/U 8.2.7 Writes the bootstrap portion of the monitor file in blocks 0 and 2-5
of the target device .

/V[:VOL] 8.2.8, Prints the user ID and owner name. Use it with /Z (as a mode option)
8.2.11.2 to insert a user ID and owner name in block 1 of the initialized disk,

or in the VOL1 header block on magtape (not applicable for cassette).
Using /V:VOL as an action option causes only the ID and owner name
to be changed, and does not initialize the device (not applicable for
cassette).

(Continued on next page)

8-2

Device Utility Program (D UPJ

Table 8-2 (Cont.) DUP Options

Option Section Explanation

/W 8.2.9 Use with any action option (but only one) to initiate an operation
and then pause. This is useful on small, single-disk systems because
it lets you replace the system device with another disk before per-
forming an operation.

/X 8.2.5 Use with /S to inhibit automatic booting of the system device when
it is compressed.

/Y 8:2.10 Use with /C, /I, /O, /S, /T, or /Z to inhibit the dev: /xxxx ARE YOU
SURE? message and the FOREGROUND JOB LOADED, CONTINUE?
message and ensure immediate execution of the operation.

/Z [:n] 8.2.11 Initializes the directory of the device you specify. The size of the
directory defaults to the standard RT-11 size ; use :n to allocate
extra directory words for each entry beyond the default .

8.2.1 The Create Option (/C :m [:n])
The /C option creates a file with a specific name, location, and size on the block-replaceable device that you
specify. This command is useful to recover files that have been deleted. The /C option only creates a directory en-
try for the file. It does not store any data in the file. You must specify both the file name and file type of the file
to be created. The syntax of the command is:

filespec=/C:m[:n]

where

filespec represents the device, file name and file type of the file to be created.

:m represents the numeric value, in octal, of the starting block of the file to be created.

:n represents the size of the file in blocks. If you do not supply a value for n, DUP creates a
1-block file .

You can use the /C option to cover bad blocks on a disk by creating a file with a file type .BAD to cover the

bad area.

Use /C also to recover accidentally-deleted files. In this case, use DIR to obtain a listing of the device. Use the

/E and the /Q options in DIR; obtain a separate listing with each one. DIR lists files, tentative files, empty areas,

and the sizes of all areas. You can then assign a file name to the area that contains the data you lost.

You can also use DUP to set aside a file on disk without performing any input or output operations on the file.

When you use the /C option, make sure that the area in which the file is to be created is empty. If there are more

blocks in the empty than the file you are creating needs, DUP attempts to put the extra blocks in empties that are

contiguous to the file you are creating. If there is not enough room in contiguous empties, the error message

?DUP-F-ILLEGAL CONTIGUOUS FILE prints and DUP does not create the file. The /C option checks for du-

plicate file names. If the file name you specify already exists on the device, DUP issues an error message and does

not create a second file with the same name.

8-3

Device Utility 1'~ogram (DUPJ

This is an example of a command that uses /C:

This command creates a file named FILE.MAC consisting of blocks 140, 141, and 142 on device DK1:.

8.2.2 The Image Copy Option (/I)
The /I option copies block for block from one device to another. (This operation is not applicable for magtape
or cassette.) If DUP encounters a bad block, it prints an error message. However, it retries the operation and
performs the copy one block at a time. If only one error message prints, you can assume that the transfer com-
pleted correctly. The /I option is often used to copy one disk to another without changing the file structure or
location of files on the device. In this case, it is an added convenience that you do not have to copy a boot block
to the device. You can also copy disks that are not in RT-11 format, if they have no bad blocks.

Qualifiers to the /I option let you specify the blocks to be read from the input device; you can also specify a
starting block number on the output device for the write operation. The syntax of the command is:

output-device: [A] =input-device:/I[:rstart:rstop:wstart]

where

A represents a dummy file name, required if the output device is a directory-structureddevice.

:rstart represents the starting block number on the input device for the read operation.

:rstop represents the ending block number on the input device for the read operation.

:wstart represents the starting block number on the output device for the write operation.

The command string must include an input and an output specification; there is no default device. If you need
to specify a block number, you must supply all three block values. The /I operation does not copy to or from.
a device that has logical bad blocks. (Physical bad blocks can be logically replaced or covered, as Sections
8.2.11.3 and 8.2.11.4 describe.) If one device is smaller than the other, DUP copies only the number of blocks
of the smaller device.

You can copy blocks between disk and magtape with /I. DUP stores the data on the tape, formatting it in 1 K
word blocks. It is possible to store only one disk image on a magtape, regardless of the size of the tape.

The following examples use the /I option. The file name A is not significant; it is a dummy file name required
by the Command String Interpreter.

* ~1=~ ~ ~. : A :.~ ~ h U : ~ is

The command shown above copies all blocks from DK: to RKl :.

This command copies blocks 0-500 from RKO: to RK1:, starting at block 501.

8.2.3 The Bad Block Scan Option (/K)
Sometimes devices (disks and DECtapes) are manufactured with bad blocks, or they develop bad blocks as a
result of use and age. You can use the /K option to scan a device and locate bad blocks on it. DUP prints

g.4 March 1978

Device Utility Plrogram (D UP)

the absolute block number of those blocks on the device that return hardware errors when DUP tries to read

them. If you specify an output device (only TT: and LP: are valid), DUP prints the bad block report on that

device. Remember that block numbers are octal and the first block on a device is block 0. If DUP finds no bad

blocks, it prints only the header. A complete scan of a disk pack takes from one to several minutes depending

on the size of the device. It does not destroy data that is stored on the device.

DUP reads only one block at a time when it scans a disk for bad blocks. Errors can occur on a multi-block copy

even if DLJP does not detect any with /K. Copy the data to a scratch disk with the /I option to discover any

other bad blocks. You should scan a device for bad blocks before using /S to compress the device; if a read error

occurs during a compress operation, the device may become unuseable.

You can scan selected portions of a device by specifying a beginning and ending block number. The syntax of

this command is

[output-device:=]input-device:/K[:start[:stop]]

where

:start represents the block number of the first block to be scanned.

:stop represents the block number of the last block to be scanned.

If you specify only a starting block number, DUP scans from the block you specify to the end of the device.

You cannot specify an ending block number unless you also specify a starting block number.

/"1

'~h

r'1

If the device to be scanned has files on it, you can use /F with the /K option to print the name of the file

containing the bad block together with the relative block number within the file that is bad.

You ca.n use /H with /K to read the bad block, write to the bad block, and then read it again. If the block is

still bad, DUP reports a HARD error. If the block recovers, DUP reports a SOFT error. This procedure does not

destroy data already stored on the device.

The following command line uses the /K option to scan the- entire disk, RK1:.

* ~►1~ 1 : /h/~'
~AI~ ~L.CI~I~~ ~' I L.~~lAi~E ~~~ ~L~h TY~'~

fib 15 ~i~~'TY ~.. TAT c4~~7 HA~I~
c5f~4 r E~i~'TY~ . TAT h~~~ I~A~D
~'~~~ Ei~~'TY3.T~T 707 HA~~~

8.2.4 The Boot Option (/O)
The /O option can perform two operations: 1) a hardware bootstrap of a specific device and 2) a bootstrap of a
particular monitor file that does not affect the bootstrap blocks on the device. The command syntax for a device

bootstrap is as follows

dev:/O

This operation has the same results as a hardware bootstrap. Legal devices for the boot operation are DTO:,

RKO:-RK7:, RF:, SY:, DK:, DPO:-DP7:, DXO:-DX1:, DMO:-DM7:, and DSO:-DS7:.

Use the following syntax to boot the monitor you specify without changing the bootstrap on the device.

dev: monitor-name/O

8-5

Device Utility Program (D UPJ

This makes it easy for you to switch from one monitor to another. Whether bootstrapping a specific monitor or
a specific device, DUP checks to see if the bootstrap blocks are correctly formatted. If the boot operation you
request is invalid for any reason, DUP prints an error message and waits for another command.

When you reboot with the /O option, you do not have to reenter the date and time of day with the monitor
DATE and TIME commands. However, the clock does lose a few seconds during the reboot.

The following command reboots the RT-11 system under the single-job monitor:

~k~h0 : ~h~i~lQJ . ~Y~/Q

Notice in this command that the device you specify must be the same device type as the first two characters of
the monitor file indicate. Because of this restriction on the monitor-name bootstrap operation, the following
command is illegal:

*~h0 : ~:iXi~i~l~~~ . ~iY~i/CJ

However, the next command is a valid one:

aK~hA : lil~~'i1ti!!~ ~:~ ..~iY~:i/I:l

8.2.5 The Squeeze Option (/S)
Use the /S option to compress a device (disk or DECtape) onto itself or onto another disk or DECtape. To do
this, DUP moves all the files to the beginning of the device, producing a single, unused area after the group of
files. The squeeze operation does not change the bootstrap blocks of a device. The output device you specify,
if any, must be an initialized device. If you specify an output device, DUP does not query you for confirmation
before it performs the operation. If you do not specify an output device, DUP prints the ARE YOU SURE?
message and waits for your response before proceeding. You must type Y followed by a carriage return to execute
the command. Since it is critical to perform an error-free squeeze operation, be sure to scan a device (with /K)
before you use /S.

The /S option does not move files with .BAD file types. This feature prevents you from reusing bad blocks that
occur on a disk. You can rename files containing bad blocks, giving them a .BAD file type, and DUP then leaves
them in place when you execute a /S. DUP inserts files before and after .BAD files until the space between the
last file it moved and the .BAD file is smaller than the next file to be moved. If an error occurs during a squeeze
operation, DUP continues the operation, performing it one block at a time. If only one error message prints, you
ca.n assume that the operation completed correctly.

The syntax of the command is:

[output-device=] input-device/S

Do not use /S on the system device (SY:) when a foreground job is loaded. A ?DUP-F-CANNOT WRITE SY:
WHILE FJOB LOADED error message results if you attempt this and DUP ignores the /S operation. You must
unload the foreground job before using the /S option.

NOTE
If you perform a compress operation on the system device,
the system automatically reboots when the compress op-
eration is completed. This operation takes place in order
to prevent system crashes that can occur when the
monitor file is moved.

8-6

Device Utility Pwogram (DUPJ

You can use /X with /S to suppress the automatic reboot and leave DUP running. However, you should use /X
only if you are certain that the monitor file will not move. Even then, you should reboot the system when
the squeeze operation completes -if the device handlers have moved. If you specify the /X option but for some
reason the USR cannot be made resident, DUP reboots the system anyway. If you use /X and the system is
not rebooted, the ?DUP-W-REBOOT message prints. This is a warning message; it is for your information only.

The following examples use the /S command

.:> ~ . .:~

The command shown above compresses the files on the system device and reboots the system when the compress
operation completes.

aic Z:~ 'T ~. : ~1 •• 1:1 'r' ~ ' ~ c:i

This command transfers all the files from device DT2: to device DT 1: , leaving DT2: unchanged. The file name

A is not significant; it is a dummy file name required by the Command String Interpreter.

8.2.6 The Extend Option (/T : n)
Use the /T option to extend the size of a file. The syntax of the command is

filespec/T:n

where

filespec represents the device, file name, and file type of the file to be extended.

n represents the number of blocks to add to the file.

You can extend a file in this manner only if it is followed by an unused area at least n blocks long. Any blocks

not required by the extend operation remain in the unused area.

The following example uses the /T option

This command assigns 100 more blocks to the file named ZYZ.TST on device DT1:.

8.2.7 The Bootstrap Copy Option (/U)
In order to use a disk as a system device, you must copy a bootstrap onto the disk: To do this, first make sure.

that the appropriate monitor file is stored on the disk. For a diskette system, for example, you could use the

foreground/background monitor file called DXMNFB.SYS: If you copy the monitor file onto the diskette from

another device, be careful not to rename it. DUP recognizes only standard RT-11 monitor file names in the

bootstrap copy operation. Use the /U option to copy the bootstrap portion of the monitor file into absolute

blocks 0 and 2-5 of the device. You can then use the /O option to boot the device.

To copy a bootstrap for the single job monitor on RKl :, for example, use the following procedure:

8-7

Device Utility Program (DUPJ

i 1. Obtain a formatted disk. (Most disks and DECtapes are formatted by the manufacturer. However,
Appendix C does outline the procedure for reformatting RKOS disks and RX02 diskettes.)

2. Initialize the disk with /Z.

3. Copy files onto the disk.

4. Copy the monitor onto the disk.

5. Copy the monitor bootstrap onto the disk with /U.

The following example shows how to initialize a diskette, copy files to it, and write a bootstrap onto the diskette

*Z:~X1. ~~;~/Y

The command shown above (step 2 of the procedure described above) initializes the diskette.

*I:tX :l : A:.~TiXQ : /~

This command, which combines steps 3 and 4, squeezes all the files from DXO: onto DX1:.

~r~x 1: A=DX i : r~xl~~~~ . ~ysiu

The last command (step 5) writes the bootstrap for the diskette foreground/background monitor onto the boot-
strap blocks (blocks 0 and 2-5) of DX1:. The file name A is not significant; it is a dummy file name required
by the Command String Interpreter.

8.2.8 The Volume ID Option (/V[: VOL])
You can use the /V option as an action option to print the volume ID of a device or to change the volume ID
without initializing the device. The syntax of the command is:

where

device:/V[:VOL]

device: is the device whose volume ID you want to display or change.

If you specify only /V, the volume ID and owner name. of the device you specify print out on the console ter-
minal. If you specify /V:VOL, DUP assumes you need to change the volume ID and owner name. DUP prompts
you for a volume ID:

VOA. I I~?

Respond with a volume ID that is up to 12 characters long for ablock-replaceable device, or up to 6 characters_
long for magtape. Terminate your response with a carriage return. DUP then prompts for an owner name:

OW~f E~ i`lAi~~'?

Respond with an owner name that is up to 12 characters long for ablock-replaceable device, or up to 10 charac-
ters long for magtape. Terminate your response with a carriage return. DUP ignores characters you type beyond
the legal length. The /V: VOL command changes only the volume ID and owner name ; it does not initialize the
device. Section 8.2.11.2 describes how to use /V with the /Z option to initialize a device and write volume iden-
tification on it.

8-8 March 1978

Device Utility Ph~ogram (DUPJ

DUP stores the volume ID and owner name information in block 1 of a disk. The volume ID is stored in words
236-241 (decimal), the owner name is stored in words 242-247, and the format type, which is always DECRTI I A
followed by four spaces, is stored in words 248-253. The remainder of block 1 (words 0-235 and 254-255) is
reserved for the system to use. If you are initializing a magnetic tape, DUP stores the volume identification informa-
tion in the VOL1 header block of the magtape. The volume ID is stored in bytes 5-10 and the owner name is stored
in bytes 41-50. The first byte of the header block is byte 1; DUP stores VOL1 information up to byte 80.

The following example uses the /V:VOL option:

71ct-~i~ i : /V : VOL/Y

V01~ Z I~'? VOl.1C~M~:~~

t]W~~~ ~lAr'f~'~ i~~'AYA~~..r~

This command writes a new volume ID and owner name on device RK1:.

8.2.9 The Small, Single-disk System Option (/W)
The /W option is useful for small (8K), single-disk systems. It is a mode option that you can use with any of the
action options. However, you can perform only one operation at a xime. The /W option initiates execution of a
command, but then pauses and prints the message CONTINUE?. At this time you can remove the system disk and
mount the disk on which you actually want the operation to take place. When the new disk is loaded, type a Y
followed by a carriage return to execute the operation. When the operation completes (except the /O operation,
which boots the system), the "CONTINUE?" message again prints. Replace the system device and type a Y fol-
lowed by a carriage return. The asterisk (~) prompt prints and DUP waits for you to enter another command.
The followuag example uses the /W option

~KL~X i : /h/~'/W
CQ~T :~ ~U~:?Y

'?ItIJF'~ I .~ x r~~~ r~, ~il.l~`~ Y•~~ i r~~r~t .r~ . sale. ~ r.~cai-~~ :~ i~~~.~~'?

This command directs DUP to scan the disk for bad blocks. During the first pause, the system disk is removed
and another disk is mounted. A Y is typed and the scan operation executes. During the second pause, the system
disk (on which DUP is stored} is replaced and another Y is typed. DUP prompts for another command.

NOTE
Because DUP is an overlaid program, it is always necessary
to use the /W option to change disks.

There is one exception to the general usage of /W. You cannot use the /U option to write a bootstrap on another
disk if you have asingle-disk system with only 8K words of memory. Follow t1~is procedure to write a bootstrap
on another disk:

1. Make the USR resident

. ta~~T' l.lrifi ~lCl5W~1N~'

8-9 March 1978

Device Utility Program (~UPJ

2. Call the MDUP program (a program similar to DUP, but smaller):

• f ~~ ~f I'~ l.1 f~~

3. Change disks when MDUP prompts with an asterisk (~`), as shown in step 2.

The new disk must already have the monitor file stored on it. Then enter the /U command to copy the
bootstrap, as this .example shows

~K1=~ I~ C~ p r1 ~..: h iti {? ~ ft I~ ~'i ~ ~:; ,.1. ~:~ Y ~:i % 1.1

When MDUP prints another asterisk, replace the system disk and type CTRL/C to return to the monitor.

8.2.10 The Noquery Option (/Y)
Use the /Y option to suppress the query messages that some commands print. The following options normally
print the FOREGROUND JOB LOADED, CONTINUE? message if a foreground job is loaded when you issue one
of these DUP commands: /C, /I, /O, /S, /T, and /Z. You must respond to the query message by typing Y followed
by a carriage return for the operation to proceed. Some other options (/C, /I, /O, /S, /V, and /Z) print the ARE
YOU SURE? message and wait for your response. If a foreground job is loaded and you specify one of these op-
tions, DUP combines the two query messages into one message and waits for your response. You can suppress all
these messages and the pause associated with them by specifying /Y in the command string.

8.2.11. The Directory Initialization Option (/Z [: n])
You must initialize a device before you can store files on it. Use the /Z option to clear and initialize the directory
of an RT-11 directory-structured device. The /Z operation must always be the first operation you perform on a
new device after you receive it, formatted, from a manufacturer. After you use /Z, there are no files in the direc-
tory.

The syntax of the command is as follows:

device:/Z [:n]

In this command, the optional argument, n, is an octal number (greater than or equal to 1) indicating the change
in size of each directory entry on a .directory-structured device. The size of the directory determines the number
of files that can be stored on a device. The system allows a maximum of 72 files per directory segment, and 31
directory segments per device. Each segment uses two blocks of available disk space. If you do not specify n, each
entry is seven words long (for file name, creation date, and file length information). When extra words are allocated,
the number of entries per directory segment decreases. The formula for determining the number of entries per
directory segment is

512-7/((# of extra words) +7)

For example, if you use /Z:1, you can make 63 entries per segment. RT-11 does not normally support non-standard
directory formats. DIGITAL does not recommend altering the directory format. The number of directory segments
in the directory defaults to the decimal value shown in Table 8-3 for the specified device.

8-10 March 1978

Device Utility Program (DUP)

Table 8-3 Default Directory Sizes

Device
Size (decimal) of

Directory in Segments

RK
DT
RF
DS
DP
DX
DM
DY
DL

16
4
4
4
31
4
31
4
16

8.2.11.1 Changing Directory Segments (/N:n) — If you do not want the default size of the device, use /N
with /Z to set the number of directory segments for entries in the directory. The syntax of the command is as
follows:

/N:n

In this command, n represents the number of directory segments; n is an integer in the range 1-31.

The following example initializes the directory on device RK1: and allocates six directory segments.

* r~ ~::i. : ~ ~ ~ r~ : ~~

8.2.11.2 Storing Volume ID (/V) — When you initialize a disk or magtape, DUP stores a .default device ID

of RT11A in block 1 of the device. You can use the /V option with /Z to insert a user ID and owner name in

block 1 of the device. For example, the following command initializes device RK1: and prompts you for a
volume ID and owner name. Section 8.2.8 illustrates these prompts and shows how to respond to them.

~ti ~t ~. i l ~. 1"I :1. '~: i3 Y` C' ~:i fa ~..I <~ ~..I Y` t~ ~' Y

V t~ I... :~ Zi ~ U t:i ~1 ~:; I~'i I:~: I~'~ cy

8.2.11.3 Replacing Bad Blocks (/R[:RET]) —You can use the /R option with /Z if the device being initialized is
an RK06, RK07, or RLO1. If DUP finds any bad blocks, it builds a replacement table of good blocks for them. The
replacement table is stored in words 0-63 of block 1. (/R supports up to 32 bad blocks for the RK06/07, and up to

10 bad blocks for the RLO1.) The disk then appears to have no bad blocks. Files that span the bad block use a re-

placement block instead of the bad block. The replacement blocks are located in the last cylinder of the disk. Speed

of input and output operations decreases only when the replacement blocks for bad blocks are accessed. You can

avoid this overhead by using the /B option (see Section 8.2.11.4) and not using bad block replacement. If DUP finds

any bad blocks in anon-replaceable part of the disk, DUP reports that the disk is bad. When you initialize a device

and want to retain the bad block replacement table that was created by a previous /R command, use /R: RET. The

/R: RET option makes it easy to reinitialize a disk without rescanning it. After a disk is initialized with the /Z/R

option combination, a scan of the disk with /K should reveal no bad blocks. If DUP finds a bad block during the

/Z/R operation that is in blocks 0 through 5, it reports that the disk is not usable. If DUP finds a bad block that is

8-11 March 1978

Device Utility Program (DUP)

not already marked on the disk as such, it prints the ?DUP-W-~AR:KED BAD BLOCK message. This disk is not
usable and must be reformatted by the manufacturer. If DUP finds bad blocks in the device directory, it prints a
warning message. Bad blocks in the directory can cause considerable overhead and slow system performance on
ENTER, LOOKUP, and CLOSE operations.

8.2.11.4 Covering Bad Blocks (/B) — To scan the disk for bad blocks and write files over them, use the /B
option with /Z. For every bad block DUP encounters on the device, it creates a file called FILE.BAD to cover
it. After the disk is initialized and the scan completed, the directory consists only of file FILE.BAD entries that
cover the bad blocks. If DUP finds a bad block in the boot block or the directory, it prints an error message and
the disk is not usable.

/R and /B are mutually exclusive options. You can use one or the other, but not both.

8-12 March 1978

CHAPTER 9

THE DIRECTORY PROGRAM (DIR)

The directory program (DIR) performs a wide range of directory listing operations. It can list directory information
about a specific device, such as the number of files stored on the device, their names, and their creation dates. DIR
can list details about certain files, too, including their names, their file types, and their size in blocks. DIR can also
print a device directory summary, and it can organize its listings in several ways, such as alphabetically or chrono-
logically .

9.1 CALLING AND USING DIR
To call DIR from the system device, respond to the dot (.) printed by the keyboard monitor by typing:

R DI R

The Command String Interpreter prints an asterisk at the left margin of the terminal and waits for you to enter a
command string. If you enter only a carriage return in response to the asterisk, DIR prints its current version num-
ber. You can type CTRL/C to halt DIR and return control to the monitor when DIR is waiting for input from the
console terminal. You must type two CTRL/Cs to abort DIR at any other time. To restart DIR, type R DIR or
REENTER in response to the monitor's dot. Chapter 6, Command String Interpreter, describes the general syntax
of the command line that DIR accepts. Unless otherwise indicated, numeric arguments are interpreted as octal.
Remember to put a decimal point after a decimal number to distinguish it from an octal number. Some of the DIR
options accept a date as an argument in the command line. The syntax for specifying the date is:

dd.: mmm:yy.

where

dd. represents the day (a decimal integer in the range 1-31).

mmm represents the month (the first three characters of the name of the month).

yy. represents the year (a decimal integer in the range 73-99).

You can specify only one input device and one output device, but you can specify up to six file names on the input
device. The default device for output is the terminal. The default file type for an output file is .DIR. The default
device for input is DK:. If you omit the input specification completely, DIR uses DK: *.*. If you do not supply an
option, DIR performs the /L operation. Note that wildcards are valid with DIR for the input specification only.

Directory listings normally print on the terminal in two columns. Read the entries across the columns, moving from
left to right, one row at a time. Directory listings that are sorted, however, are an exception to this. (Sorted direc-
tories are produced by /A, /R, and /S.) Read these listings by reading the left column from top to bottom, then
reading the right column from top to bottom.

9.2 DIR OPTIONS
You can perform many different directory operations by specifying options in the DIR command line. Table 9-1
summarizes the operations these options permit you to perform with DIR. The following sections describe the
various DIR options and give examples that use the options. The sections are arranged alphabetically by option.

9-1

The Directory Program (DIRJ

Table 9-1 DIR Options

Option Section Explanation

/A 9.2.1 Lists the directory of the device you specify in alphabetical order by file
name and type (this is the same as /S:NAM).

/B 9.2.2 Lists the directory of the device you specify, including file names and
types, creation dates, starting block number in decimal, and the number
of blocks in each file. For magtape, the starting block number is the file
sequence number.

/C:n 9.2.3 Lists the directory in n columns; n is an integer in the range 1-9. The
default value is two columns for normal listings and five columns for
abbreviated listings.

/D[:date] 9.2.4 Includes in the directory listing only those files with the date you specify.
If you do not supply a date, DIR uses the system's current date.

iE 9.2.5 Lists the device directory including unused spaces and their sizes. An
empty space on a cassette directory represents a deleted file.

/F 9.2.6 Prints in five columns a short directory (file names and types only) of the
device you specify.

/G 9.2.7 Lists the file you specify and all files that follow it in the directory. This
option does not list any files that precede the file you specify.

/J [:date] 9.2.8 Prints a directory of the files created on or after the date you specify. If
you do not supply a date, DIR uses the system's current date.

/K[:date] 9.2.9 Prints a directory of files created before the date you specify. If you do
not supply a date, DIR uses the system's current date.

/L 9.2.10 Lists the directory of the device you specify, including the number of
files, their dates, and the number of blocks each file occupies. (This is the
default operation.)

/M 9.2.11 Lists a directory of unused areas of the device you specify.

/N 9.2.12 Lists a summary of the device directory.

/O 9.2.13 Similar to iL but lists the sizes and block numbers of the files in octal.

/P 9.2.14 Prints a directory of the device you specify, excluding the files you list.

/Q 9.2.15 Lists a directory of the device you specify, listing the file names and types,
sizes, creation dates and starting block numbers of files that have been
deleted and whose file name information has not been destroyed.

/R 9.2.16 Lists the files in the reverse order of the sort specified with /A or /S.

/S[:xxx] 9.2.17 Lists the directory of the device you specify in the order you specify;
xxx indicates the order in which DIR sorts the listing (xxx can be DAT,
NAM, POS, SIZ, or TYP).

/V 9.2.18 Lists the volume ID and owner name as part of the directory listing
header.

9-2 March 1978

The Ilirectory Program (DIR)

9.2.1 The Alphabetical Option (/A)
The /A option lists the directory of the device you specify in alphabetical order by file name and type. It has the
same effect as the /S:NAM option. The following example lists the directory of device DXO: in alphabetical order
on the terminal.

* I:iXQ : /A
:L ~ "•• A ~ r ••" 7 ~'

I~ I ~ • ~AV .L ca i..,'•••ivf~ r"••7~ I...F' • .~Y~ '.~~. t):I.~c~ r,«.. l ~
ZIT . ~Y5 ~' q ~. .."f~~ r•w7 ~ ~AC;~C~ . ~AV ~~ {} 1..".i~i~; r,.... ~~
xtl.1F' . ~AV :l ~' q4"-~~ r•~ 77 F`:~ I"' . ~AV :I. fi 1. c~••••i~i~; r-~7~
X~X~'ii~~..1. ~Y{a" "~ :l q ~. --"!"it3 tr•-••• ~ 7 ~Y{ !"f A~ . iMiAC ~' 1 :~ ~....F"~~:~.". ; .;
!~ Zi I T . ~ A V ~ a. q J. "- i~ ~~ r •-- 7 7 'T 'T .:.~ Y :~ ~ q :L -... iii s7 r..." :~ 7

9.2.2 The Block Number Option (/B)
The /B option prints a directory of the device you specify and includes the starting block number in decimal of all
the files listed. The following example lists the directory of device DXO:, including the starting block numbers of
files.

* ~ ~~ ,~ ~l o ~ Z ~

I~ X ~"i r~ ~y ..1. t Y ::i c~ :l. q :I: =~• ~'f ~:; r1 j :i. ~ 'T T . ~i'~' r ~? ~`~ :i. t~ ~:~ r.....1 ~ ~ :i. C~ "~
l... F' . ~ Y wi „~?. t'~ :f. ••-• ~ ~~ r' ---- ~ :~ :l ~) X:~ ~~' .. { Y ~:i ~ ~ ~1:i. ... i~ i~ r,, .•~ :i. to e~

r r.+ ~ T . r n V ~ a. c} :i. ~ r~ r..._ ~ ~ 1. :i. :i. c.. :r. i•! i. 3 ~:~ ~ c ~ ;:~ ~~ ~~ ~..... ~~ t:~ r......, . :i. ;~
X~ tJ F' . ~ A V 1 ~ G 4 ~ ~:~ r.....:r :~ :i.:, l I:i ~:1=~ . t:~ A V :i. ~ y :i. ;::~ -~-- i~~ ::; r, _.. ~ rf :i. f"
1=' I F' . "iAV :I. tai :i. cci....i"i<~ r.... ~ 1 :i. ~~U ~IAC`i~Cl . t:iA~' ~~~ i~ :i.l~i~:? ~,.... ~ .T A,;1~

~aY~ii~iA~ . i~'f~1C: ~' ~' 1. #:1....f:~ra~.,".. ~ ! :}"~~'

9.2.3 The Columns Option (/C : n)
The /C [:n] option lists the directory in the number of columns you specify. The argument, n, represents an integer
in the range 1-9. If you do not use the /C :n option, DIR lists the directory in two columns for normal listings and
five columns for abbreviated listings. The following command, for example, lists on the terminal the directory of
device DX1: in one column.

* i:i X :I. * f't:~ ~ :L
:L :~ .-. A r., Y.....

9.2.4 The Date Option (/D[:date])
The /D[:date] option includes in the directory listing only those files with the date you specify. The default date is
the system's current date. For example, the following command lists on the terminal all the files that were created
on 1 March 1977.

9-3

The Directory Program (DIRJ

., ., ~ ,~ Y. .., ~ r• c. t. c ~ i {:# ~ ... I~ ..3 :.1. ,., ~ ,.; :F ;. :I.

i~'i A f ~i f:l . £:i ~1 V ~ tai C~ :I. Iii {~ Y~:7 :~
~ F~ :i.1. c:~ <.:> ~ :i. ~ ~ ~ :~ to c:t k. <::
~' :f. F r~ ~~ c~ Fa ~. c:ti c:: If. <:.

o ~}~~}
•,

~ :a ::~

. ,:~ r• V

9.2.5 The Entire Option (/E) ,~
The /E option lists the entire directory including the unused areas and their sizes in blocks (decimal). The following
example lists on the terminal the entire directory of device DXl :,including unused areas.

~ ~~ ~ .I. * / I..,

zi ~: I~~ . t~i1~a :I. ~~ C~£:~y }:; ~.,.... f' ~ Z:~t.11~~' . r~~~V :I. ? :~:~~~A}., ~,.... f ~
ABC: . t~i~iC.~ ~ :I. "~....~}~, r ...••,:f A~1F-~ . ~Af: ~' :I. c~... A ~:, ~..... ~.;~

1=' :~ ~' a {:i i'~ V :I. Fi :i. ~ A ~f r' ; .~ i:f f :l l~ ~ ~ ~ .:~ ~t';1 ~~ :i. ~;~ ~ y: j ~,1

~'i I~ ~ f:; ~: 41~=' f:l I~ ~~ A ~ .~. ~ s ~=f ~..... ~ ~ •~:: 1.1 i~! t.i t:~ 1::: X:i ::~• ~~ :i. ~a

9.2.6 The Fast Option (/F)
The /F option lists only file names and file types, omitting file lengths and associated dates. For example, the fol-
lowing command lists on the terminal only file names and types from device DTO:.

~ r~ .~. ~~ 4 ~ r~.

I~I~r~'~ + r~ACf t~A•~f;l-•I ¢ ~;~t~ I:::XA~F~' . I~~~f:11=~ C:II•~~I"'F•I . I~ f:lF~ c,~'f7~~~.. . i"iAf:;
fai.~f~BAI.... ~~lAf:; r~'I~~fa~:al:::~:~ . ~~A~:; I~~:~:{ ¢ i~'iAf:' r::xA~l:-' . I"i~`if:~ ~~-:r.;~~~~~ . ~~A~

9.2.7 The Begin Option (/G)
The /G option lists the directory of the device you specify, beginning with the file you specify and including all the
files that follow it in the directory. Usually, the disk you are using as a system device contains a number of files that
the operating system needs. These files include .SYS monitor files, .SAV utility program files, and various .OBJ,
.MAC, and .BAT files. They are generally grouped together and usually list at the beginning of a normal device
directory. Files that you create and use, such as source files and text files, are also grouped together and follow the
operating system files in the directory. If you specify the name of the last system file vv~th the /G in the command
line, DIR prints a directory of only those files that you created and stored on the device. The following command,
for example, lists the last system file (CT.SYS) and all the user files that follow it.

~.A f:.~,..~~~ ~. ~ .
t: T 4 £:} Y C.~ ::a C~ £:~ i~ ~:: Y•.....:~ "l'

.l.
i": 3C 1~' . ~' ~:i ~' :I. £:3 A' f:31 t3 ~'i ~

1='f:1ClCti . ~tAr~ :~ :~::~....~}~, r ~ ~' Z:t~'iF~'~ . fir-'~f:: ;~ :I. ~..~~~r ~.~.. ~:~
~~ A T C F-I . ~~ A r, :~ ~. ~.; ..~ ,~ }:, r •--• 11 I": X A M 1~=' . F" f:l i~ ~'. :I. .~ A ~:, r...... f '~

t~~~A~'I~I . C"Cl~ ~.'. ~.;:;•~As~ r,.... ~~ f71.~f:1~{A~... I~fAC: ~ :~ ~....At~f r,....~7
I~~'~Cl~~::~.1~'i~it: ~ :1. ;"a.... A ~,~,....~~ f\B .i~Af: 3:3 :L~....~}:,x,....:7'7
I~ XA~"i~' . I'''i~f:r ~ :I.c~~'~ ~'•-~ ~'7 F~ :I: X~Ff:~ . to"~1V ~ ~c~....,.1i..~ ~.'~~i
f~l~`A>:~'h•I . BAS :1. t:3 ~y~•1....,.1<:3r•~.~.

...

~. "~ {~ ~' r~ ~~ c~ I::~ :!. cap c:~ I ~. :>

9-4

lJ

The Directory Program (DAR ~

9.2.8 The Since Option (J [:date))
The /J[:date] option lists a directory of all files stored on the device you specify that were created on or after the
date you supply. The default date is the system's current date. The following command lists on the terminal all
files on device DTO: that were created on or after 28 January 77.

Gf~A~'M . BAh i ~3 '~~" - ,.lr.~r-~~••~' ~ I~T~i~l~,.! . ~Y~ q 1 Q i •~~ 3 r~•~~
~' i t ~~ ~ i Q~ R 1 a~.~k.~.~

39~ ~" r~~ ~ ~. or•I~.

9.2.9 The Before Option (/K[:date])
The /K[:date] option prints a directory of files created before the date you specify. The default date is the system's
current date. The following command lists on the terminal all files stored on device DXl :that were created before
15 March 1977.

i 3•~A~ r•~'7~
~'O~i ~'~iA . SAV 1.9:~ ~i3••~~'~~~«77 ~A~ ~ ~ . SAV ~ 1 ~~•~F'e~i~•?7

3~ ~'r~~ ~lc~cN.t

9.2.10 The Listing Option (/L)
The /L option lists the directory of the device you specify. The listing contains the current date, all files and their
associated creation dates, the number of blocks used by each file, total free blocks on the device (if disk or DECtape),
the number of files listed, and the total number of blocks used by the files. File lengths, number of blocks and num-
ber of files are indicated as decimal values. For example, the following command lists on the line printer the directory
for device DT 1: .

The line printer output looks like this:

~3•MAY•7l
D I R .SAV 16 ~~ •ApR•77 QUp „SAV
AgC •MAC 4 19•AQR•77 AAF .MAC
PIP .SAV 16 i 4 •APR•77 MER~F` . ~QR

~ F'IL~;S, 61 BLOCKS
419 ~' RED BLOC KS

17 ! 3•A~R-77
~ l9•APR•77
~, Z4•APR•77

9.2.11 The Unused Areas Option (/M)
The /M option prints only a directory of unused areas and their size on the device you specify. For example, the
following command lists on the terminal all the unused areas on device DK:.

*/M
..

•~:: U~lIJ~~~~ ::~• lea •~: lJ~lIJ~~Ti ::~• X94
C~ ~' i t ~~ r g B l tat:'k.~

9-5

The Directory Program (DIR J

9.2.12 The Summary Option (/N)
The /N option prints a summary of the device directory. The following command lists on the terminal the summary
of the directory for device DK:.

*/~
13•~A>~r•~•?~

~~,~ ~ ~. ~. t ~ ~ :!. I"1 ~a ~' ~~ ITS is I"~ '~: ~

1 ~ ~~ ~. ~. ~ ~ x I"~ ~~ ~ ~~ nr~ t~ r-~ •G ~

~i ~ V i~ :I. ~. c'~ ~.1.~. t~ ~~ t? ~ IYt E ~ r'1 '~: ~i r ~~ :f. I"I ~"1 t~ E'

~ 1~ i ~. E:' ~ r '~ 141 ~_:l. (:) C: I~. t:i
~i ~~ ~. ~' r t~ ~ ~:~ ~. C.J r` I~. ~:~

9.2.13 The Octal Option (/O)
The /0 option is similar to the /L option, but lists the sizes and starting block numbers (if you use /B) of the files
in octal. If the device you specify is a magnetic tape or cassette, DIR prints the sequence number in octal. For
example, the following command lists on the terminal the directory of device DXO:, with sizes in octal.

*LIXC? : /p
13""A>~r~•~'~ t~~~~~1

IIX~'ii~l~..1. ~Y ~. t~~ ~ ~. .."i"i~~ r••••~ 7 ~"r + ~Y~ ~ ~:1. -."I~i~ r"..~7
I...~' . ~Y~ ~ Q:1. •~•~"i~:~ r.." ~~ ~I'r . ~:iY~ ~ C7 :L •~-~t~ r.."~~
i~D I T . ~AV ~? ~ ~ :1 "..~t~ r.." ~~ I... ~ I~~ . ~~U :~ :I. C7 ~. ~-•~~~ r~••~'~'
~IJF' . ~~V ~ 1 C}~.."1~~~ r .."~? ~I ~ r~ . ~~RJ "'C~ :~ ~~-•~{~ r..".~ 7
I~' ~ I~' ♦ ~J ~ ~ ~ ~} ~. ~} '." ~ i~ r "'. ~ ~ ~ ~ ~. I"1 Q a ~ I~ ~ ~:1 d ~ ~. '"' ~ i~ r. "" J

11 ~x1~~r 411 ~lc-~c~i~.~
;~~7 ~' r~E~ 1~ ~. cac'I~.~a

9.2.14 The Exclude Option (/P)
The /P option lists a directory of all files on a specific device, excluding those that you list. You can specify up to
six file specifications.

03•~irfa~-7'7
AEC ♦ ~A~ 4 19•"'~>-~ r""~7 ~~~" ♦ i"i~C ~.. ~. 9""~~ 1.....7~
~fE~GE . I~ OR c5 ~4••~~r~ r••~'77

3 F'i l~~ ~ i~ L~~.or:k.~
419 ~'re~ r~ ~. ac:~k.~

This command lists on the terminal all files on device DX1: except .SAV files.

9.2.15 The Deleted Option (/Q)
The /Q option lists a directory of the device you specify, listing the file names, types, sizes, creation dates, and
starting block numbers in decimal of files that have been deleted but whose file name information has not been
destroyed. The file names that print represent either tentative files or files that have been deleted. This can be

9-6

The Directory Program (DIR J

useful in recovering files that have been accidentally deleted. Once you identify the file name and location, you can
use DUP to rename the area. See Section 8.2.1 for this procedure.

*Ii I ~ h . T~ :l: ~ __~ l t~

This command creates a file called DISK.DIR on device DK: that contains directory information about unused areas
from device DK:.

Use the monitor TYPE command to read the file

rah : ~:~ ~ ~h . r• ~ ~ ~~:~~ .~. •r•
a~•~~~~~•77

E.Li I Y I:~~~ 1. C}.3~~Mr#~~....77 .3~:3~.~ l:il.li~ ~9~i ~,~•--i'~i<~.~~~ ~ ~ .~f:3f:3A
D~i"fQF':l . t~P..l ~~ ~c~i••-A~-~r••-77 ~:~79 ~~:[5f~: . ~~:C~ ~ 9,7 ~~....~~:~,:~....7"1 ~"?q~}
;~CC1F'E . F' I C X97 {?~•~-~ii~ ~-- 7 7 ~4~~~

t? F' i]. ~ ~ ~ n f~ 1 c~ c:' N.
n F"r~~ U:lr.~c~•k.

9.2.16 The Reverse Option (/R)
The /R option lists a directory in the reverse order of the sort you specify with the /A or /S option.

~T~Xa : /~ : L~A'I'/Ft
1 ~•~A~ r~-77

F' I F' . ~A~! ~. h 1 ~i--•l'~i~ r•-•~77 l._ I ~!h . ~At1 ~'~ G ~.i"i~ r.....7 7
L~I~ . ~AV ib 1~••••i~'f~r•~•77 I...F' .~•aY~ ~ ~~:1. .._i~'it~r~••77
x~UF' . ~AV 1.7 C~~4~••l"fa r•~ 77 i~ACt•~Cl . ~iAV ~~ q ~. •-•-l~~fa r,--77
~Y .~YS ~ Q1•wi~~r•~77 T~ .~Y~ ~ a:l....i~i~r,....1~
~X~f~l~J . ~Y~ 91 0 ~. •-~~ r•~•77 ~Y~i~At~ . ~fAC ~7 1. ~~•~•~'c~t:~-~77
~L~IT . ~AV ~~. q~.~-l~~r•~77

i i Fi x~~ ~ ~~~ Elc~c~l~.~
i1~ F'r~~ ~ila~N.~

This command lists on the terminal the directory of device DXO: in reverse chronological order.

9.2.17 The Sort Option (/S[:xxx])
The /S [:xxx] option sorts the directory of the specified device according to a 3-character code you specify with
:~cx. Table 9-2 summarizes the codes and their functions.

Table 9-2 Sort Codes

Code Explanation

DAT

NAM

POS

SIZ

TYP

Sorts the directory chronologically by creation date . Files that have the same date are sorted
alphabetically by file name and file type .

Sorts the directory alphabetically by file name. Files that have the same file name are sorted
alphabetically by file type (this has the same effect as the /A option).

Lists the files in order by their position on the device. This is the same as using /S with no code.

Sorts the directory based on file size in blocks. Files that are the same size are sorted alphabeti-

cally by file name and file type.

Sorts the directory alphabetically by file type. Files that have the same file type are sorted

alphabetically by file name.

9-7

The Directory Program ~DIR J

The following examples illustrate the /S option.

* r~XC~ : ~~ ~ ~:~AT

~~ Y ~i Ivf A t" $ I~'i A C:
r• T .~Y~:~

I~ r~ :~ T . ~ A V
1...:C i~ !~ . t:~ A U .,
.~ . ~:y Y

* IiXC~ . /~ : I~AI~
13....A }:, r,.... ~ l
r~ :L' ~~ . ;:~ ~~ U
r~ 'r . ~~ Y Via"
J~~l.1F' .~iAU
~:iXt~i~~.J . ~iY~~
i.~ T~ :1: T . c~ A'~~

~. 1 ~ :I. 1 t~ ~i y ~r~~~

A

r~ ~
'7 ,,.. ,., ~.
~:. ,.,

o:I. .".~~~Y`....77
C)1. .'" Iii r:3 r ~ 'l

o J. i"i ~3 r, .". ~
o :i. ••" I~ ~:~ r 7 J

I~fAr.:r~'c~ .~A~
TT .;yY~a
~:~ 1.1 l~' . ~:i A V
Z:~ :C ~~ . ra A U
~':~~' .raAV

~' o1""i~~r••••7~
~. ~ o~"..~{3 r....~ 1

:I. ca ~. ~ .." ~ ~:; r..... 7

••' o ~. ••"l`~i .~ r.... ~~ I"iAC:~iCI . ~AV ~~ o:l .".~i~:~ r.... ~~ ~:. {
:I. "~ 04•...i"i~~ tr.....77 f"' :(F~' .:aAU :I. ~ :I. F~.."i"i~ r,....77
~~ ~. o :I.....i~~ r..".~~ ~Y~iN1A~ . iyiAC~ ~ ~ :i. ~....~-~~r,.... ~~
~':~ o:L .."I"i~:~ r..." 77 TT . ~aY~ ~ o:f. ~-"i~~~ r.... 7~

9 ~. (y :l. I~'i ~:3 r..... ~ 7
C? ~. ~-~ ~ ~~ r .".'~ ~

M C)1 •— i"i ~ r ••••
:I. o :i. .". I"i ~:~ r..... 7 ~

;~' ~i ::i ~{ :f. o c~ If.

* r~XC) : ~~:~ : TY~''
~. ~.."A~; r7

ri :~ r~ . ry A V
r~IJF' . ~a"AV
I.~ r~ :C T . ~i A ~J
I... ~ ~~ . ~AV

:~ C1 ~..." ~'I ~ Y..... '17

~` Ti ;~ C) Q ~' ~:~ ~ ~ ~ 1::~

'rT . ~Y~ A' o:l.i`ri~r.".~~

!~' :C f"' . ttiA~J :I. fy :1. c~a••••l~'i~i r••" 77

Z:il.lr~' .t3AU
r• ~: r~ . ~ A ~,~
r'' ~: r' . ~; A 1~
t~Ac::r~r~ .~A~
~Y~I~AC; . i~AC:

~''~I"' . ~AV

r~Xi~i~l~,J.~Yr~
I".~' ..~sY~~
~'T .~Y~i

~ri:~T .~AV
I... ~ ~I~ . ;.EAU
~Y~~fAt~.~fA~
~AC~Q . ~~AV
Z~ X i~'i ~I ~ .J . ~ Y

9-8

:I. chi ~. ~.".~~ r""7~

~ ~s ~ ~..". t~ ~~ x..." 1

:LcS ~.c5~~~~r~~7
o ~.....1~i ~:~ r .". 7

Q 1....~~~ Y.....77

~?~. oJ.•...~~Y`....f~~
o i ~~~ r•".~~

i 1~....~c,~,....77
~~ o l .."~'1~3 r....7~

The Directory Program ~DIR J

9.2.18 The Volume ID Option (/V)
The /V option prints the device's volume identification and owner name as part of the directory listing header. You
can combine /V with any other option.

*LAX + ; U
~'~~..~r~v~•• l "l'

~lwr•~~ r• ..1I:lYt:~~::
I"' ~l ~ '~' ri l~ . I•~ ~.. I ~' .~ ~. ~ --•• ~ ~.a •••- ~ ~ M~ t~ ~ T' ~ ~1. ~ A V q ~ 1 ~ •~ i~ c~ v ~•• ~ 7

~~?C lei I~! ~ J . ~ Y,a ~3 ~i ~. ,4 "" ~ ~.~ t' '~. 7 ~ Z.+ .I. r•~ ..a A V ~. ~ ~. '4 ~-' A ~..~ ~ •••' 7 7

The command shown above lists a directory of DX:. It prints the volume ID and owner name as part of the header.

9-9 March 1978

lJ

CHAPTER 10

MACRO-11 PROGRAM ASSEMBLY

This chapter describes how to assemble MACRO-11 programs under the RT-11 operating system, assuming that you
have written those programs according to the rules stated in the PDP-11 MACRO-11 Language Reference Manual,
used associated debugging tools and the linker (see Chapter 11), and understand the RT-11 operating system.

The MACRO-11 assembler operates in two distinct phases, or passes. Chapter 1 of the PDP-11 MACRalI Language
Reference Manual contains a detailed description of the two-pass assembler action.

The assembly output includes any or all of the following items

1. A binary object file —the machine-readable logical equivalent of the MACRO-11 assembly language source
code

2. A listing of the source input file
3. Across-reference file listing
4. A table of contents listing
5. A symbol table listing

To use the MACRO-11 assembler correctly under RT-11 control, you should understand how to:

1. Initiate and terminate the MACRO-11 assembler (including how to format command strings to specify files
MACRO-11 uses during assembly)

2. Assign temporary work files to non-default devices, if necessary
3. Use file specification options to override file control directives in the source program
4. Use the small version of MACRO-11 for PDP-11 systems with 8K memory, if necessary
5. Interpret error messages

The following sections describe these topics.

10.1 I1~IITIATING THE MACRO-11 ASSEMBLER
To call the MACRO-11 assembler from the system device, respond to the system prompt (a dot printed by the key-
board monitor) bytyping:

~~; ~'i ~ Cf i~~ t:a

When the assembler responds with an asterisk (*), it is ready to accept command string input. (You can also call the
assembler using the keyboard monitor MACRO command; see Chapter 4 for a description of this command.)

The assembler now expects a command string consisting of the following items, in sequence

1. Output file specifications
2. An equal sign
3. Input file specifications

Format this command string as follows (punctuation is required where shown):

dev:obj,dev:list,dev:cref/s:arg=dev:sourcei, . . . ,dev:sourcen/s:arg

10-1

MACRO-11 P~►~ogram Assembly

where

dev is any legal RT-11 device for output; any file-structured device for input

obj is the file specification of the binary object file that the assembly process produces; the dev for this
file should not be TT or LP

list is the file specification of the assembly and symbol listing that the assembly process produces

cref is the file specification of the CREF temporary cross-reference file that the assembly process pro-
duces. (Omission of device: cref does not preclude across-reference listing, however.)

/s:arg is a set of file specification options and arguments. Section 10.2 describes these options and associ-
ated arguments. Before that section, they are omitted from examples.

sourcei Each sourcei is a file specification for an ASCII MACRO-11 source file or MACRO library file.
These files contain the MACRO language programs that you need to assemble. You can specify as
many as six source files.

The following command string calls for an assembly that uses one source file plus the system MACRO library to pro-
duce an object file BINF.OBJ and a listing. The listing goes directly to the line printer.

All output file specifications are optional. The system does not produce an output file unless the command string
contains a specification for that file.

The system determines the file type of an output file specification by its position in the command string, as deter-
mined by the number of commas in the string. For example, to produce only a listing, and no object file, you must
include an empty object specification.

To omit the object file, you must begin the command string with a comma. The following command produces a
listing, including cross-reference tables, but not binary object files.

~ y !.-F` 4 /t~~~~~(source file specification)

Notice that you need not include a comma after the final output file specification in the command string.

Table 10-1 lists the default values for each file specification.

10.2 TERMINATING THE MACRO-11 ASSEMBLER
If you have typed R MACRO and received the asterisk prompt but have not yet entered the command string, you
ca.n terminate MACRO-11 control by typing CTRL/C once. After you have completed the command string (thus
beginning an assembly) you can halt the assembly process at any time by typing CTRLiC twice. This returns control
to the system monitor, and a system monitor dot prompt appears on the terminal.

To restart the assembly process, type R MACRO in response to the system monitor prompt. You can also restart
using the REENTER command in most cases; however, the RT-11 system does not accept the REENTER command
if the assembler is producing across-reference listing when you halt the assembly.

10-2

MACRO-11 P1►~ogram Assembly

Table 10-1 Default File Specification Values

File
Default
Device

Default File
Name

Default File
Type

Object DK: Must specify .OBJ

Listing Same as for object file Must specify .LST

Cref DK: Must specify .TMP

First source DK: Must specify .MAC

Additional source Same as for preceding source file Must specify .MAC

System MACRO System device SY: SYSMAC .SML
Library

User MACRO
Library

DK: if first file, otherwise same as
for preceding source file

Must specify .MAC

10.3 TEMPORARY WORK FILE
Some assemblies need more symbol table space than available memory can contain. When this occurs the system
automatically creates a temporary work file called WRK.TMP to provide extended symbol table space.

The default device for WRK.TMP is DK. To cause the system to assign a different device, enter the following command:

~ ~ ~i :I: to ~! dev: W I~

The dev parameter is the logical name of afile-structured device. The system assigns WRK.TMP to this device.

10.4 FILE SPECIFICATION OPTIONS
At assembly time you may need to override certain MACRO directives appearing in the source programs. You may
also need to direct MACRO-11 on the handling of certain files during assembly. You ca.n satisfy these needs by in-
cluding special options in the MACRO-11 command string in addition to the file specifications. Table 10-2 lists the
options and describes generally the effect of each.

The general format of the MACRO-11 command string is repeated below for your convenience

dev:obj,dev:list,dev:cref/s:arg=dev:sourcel, . . . ,dev:sourcen/s:arg

Table 10-2 File Specification Options

Option Usage

/L:arg

/N: arg

/E: arg

/D: arg

/M

/C:arg

/P:arg

Listing control, overrides source program directive .LIST

Listing control, overrides source program directive .NLIST

Object file function enabling, overrides source program directive .ENABL

Object file function disabling, overrides source program directive .DSABL

Indicates input file is MACRO library file

Control contents of cross-reference listing

Specifies whether input source file is to be assembled during pass 1 or pass 2

10-3

MACAO-11 Program Assembly

U

C9

a

r
N

m
w

i
z
a

•
~o

m
•

61

a
a
V
4

Z

4
r

•

L

r

0
U

Z
m

......_.

d
W

S
Y

''~
an

l~

E
O

k
L

li
v
fr

;
r

M
,r

,V

0
x u
~i z
i'V `'~

.~+ ~"~

T CL t-~ E''
e-r Z' :sl H

in ~ J V3 •
ia~ ; V?
a ~
•.~ .s J. ~~ • Lz
~-• z o ~ x :~

U Y ~ .a. ;i —~ ~ ~ Ji ~ 7 ~

~ 2 V... a J sl -~ .a ~ .J ~'

s; 3 .v N ►s.l Z d :> ..3 ~ .il . i Z i;i si z •

..

r ;~t
~ ~ ~
ac ~ Z
:~ s ~ ry ~

• 2 c/~ ~ oc, x
~ ~► • r ~ IL

• :~ ac. •~• z .r x 3
z ~ ~~ c~ c~ c~.. a a v~
r., 4 ., t~ oc ..~ ♦ 4, .r ~ H c~ ~ z S~ r
~'' ..~ Z QL L Ls. vat r• LL Oc. ✓2 1. aC ~ r4; V'1 .z

~ Q U O CY ca ~S 5 v~ r]G cL ~ V !•- ~ V ~ :: N F
• V :~• ~ d +~ ~ .Z .-. •.+ ss Vi G. c/~ t/~ A. :x ~ t+ sI3

J
~` C 4 E- c
JCL ~~V ~
~a V c o ~:: aj ~

cvu~ xL..~h:•F>
S • • ~ • • •,~ •g

r

m

m

U

I 1

1
O

-.

__

X

m

,~~ ..~ N /r1 VIA ~D /~ CD 0~ !9 r+ h I'A V' IA ~D ~ m T ~ .r *M

.•. .• .~. .•..r .•.r .•. h f V !M

H
OG
4
E-► s►~
v~ .»

6

9 ~

6r

• • 9

c4 :s ~ r cs t~ s car
~s ~ ar •• In 1s a~ s ~
~ ~ s: !s e¢ rs sr s ~
~ ~ ~ ~4 e9 9 9 ~ ~
6. 19 ~ t9 9 O ~ 6 Z

~ 6~ 6 ~ Se ~ 6. ~ ~ ~

m r es~ n er► tom► r ~+ r• n 1► e~ m ~ ~
~ es m n ~v ~ r ~ .a a ~ ~ n cs
~ h m 6 ~9 •r 1!f N V~ ~ 6 r' m m

l4

G` ~ t9 d~ es er! ~p 'S N ~p rp N d' d~ S V ~ ~ ~
~►meg ~~».~.+NIVNN~~fw~r' a!V ~ IA O

~~S?~Sr516S'St96'i6 963914R'r9~~6~N tai
mc9~~ ~ s►a~~m~am~~ ~4m 9~~ ta.~
9 +9 R~ is ~ ~ 'S Q 9 O ~9 S ~ !~ m ~ eQ 919 ~ m
SI !`~ :'? ~ 3i ~L• ~ d~ ! y '~ ii d: ~ ~ ti Q` 1'Sl i ~ '~ ~

H

•a
2 O
~ m
•t ~

~ o o ~~
d ~ Q O ~ •t/~

m ~ .a a
a ~ x ~► .~ z 1r...a
~ J G yet to C~ 4

~~
C

~] f

N 3 ~
~-e ~ :s G
at F ..:? ..7 Z
:sr ►~/ ~~ iii
•,~ s • •

.. ••
~ Q
W tai
3 ta.
v~ ~,.
Z ~
4 :D

.~

.~

C9

d

* ~
~ i
* ~
* ~
~ ~
~ ~

q W

•» r
ac rx
m ~c.
~ O
~ ~

N

n 5
~ ~
m S
S~ 9
~ m
B ~

N

H

ta. H
aw

n~
me
~~

ac, ac
sa 9
~ h
~ ~
6 ~
m e9
'!~? t9

a~ ac
~ t~
3 6a.
1fJ is.
2 ~
4 m

.._

C
O

P
Y

 O
F

 C
O

M
M

A
N

D
 S

T
R

IN
G

 T
H

A
T

 R
E

Q
U

E
S

T
E

D
 L

IS
T

IN
G

.-.

i;~
4
o. v~

~ww
V

4
~L1•U

w

y ~ ~
ca +o
~ w
o a ••
3oa.

~, «
~ ~
e~
a ..~ vs

S .~s h ~ ~•
~ +s a ~a u

M

sn O H ~
~1 4 Esl
h>~

.. ~ .~ ~.
p J

~i /S? ~O f+ ~ ~. V
61 !~ •~+ V O D ►~
~ !~ 61 Is] ~' ~' .er
l4~9~9H [s7td~
tSUl96?4' ~ ~ V

Q N

V H

• M 4 H O
1/~ OG O ~' h
to C9 O H 4 ~•
~ oa aza

fY ~ •{ a+ J
• d tv > d •

}

Sa
m

pl
e

A
ss

em
bl

y
L

is
ti

ng

10-4

MACRO-11 Program Assembly

r'1 The /M and /P options affect only the. particular source file specification to which they are directly appended in the
command string.

Other options are unaffected by their placement in the command string. The /L option, for example, affects the
listing file, regardless of where you place it in the command string.

The following subsections describe in detail how to use the several file specification options.

10.4.1 Listing Control Options
Two options, /L:arg and /N:arg, pertain to listing control. By specifying these options with a set of selected argu-
ments (see Table 10-3) you can control the content and format of assembly listings. You can override at assembly
time the arguments of .LIST and .NLIST directives in the source program.

Figure 10-1 shows an assembly listing of a small program. This listing shows the more important listing features. It
labels each feature with the mnemonic ASCII argument that determines its appearance on the listing; the argument
SEQ, for instance, controls the appearance of the source line sequence numbers.

Specifying the /N option with no argument causes the system to list only the symbol table, the table of contents,
and error messages.

Specifying the /L option with no arguments causes the system to ignore .LIST and .NLIST directives that have no
arguments.

The following example lists binary code throughout the assembly using the 132-column line printer format, and
suppresses the symbol table listing.

Table 10-3 Valid Arguments for /L and /N Options

Argument Default Controls Listing of

SEQ list Source line sequence number

LAC list Address location counter

BIN list Generated binary code

BEX list Binary extensions

SRC list Source code

COM list Comment

MD list Macro definitions, repeat range expansion

MC list Macro calls, repeat range expansion

ME no list Macro expansions

MEB no list Macro expansion binary code

CND list Unsatisfied conditionals, .IF and .ENDC statements

LD no list List control directives with no arguments

TOC list Table of Contents

TTM no list 132-column line printer format when not specified, terminal mode when specified

SYM list Symbol table

10-5

MACRO-11 Pwogram Assembly

10.4.2 Function Control Options
Two options, /E: arg and /D: arg allow you to enable or disable functions at assembly time, and thus influence the
form and content of the binary object file. These functions can override ENABL and DSABL directives in the source
program .

Table 10-4 summarizes the acceptable /E and /D function arguments, their normal default status, and the functions
• they control.

Table 10-4 Valid Arguments for /E and /D Options

Argument .Default Mode Function

ABS Disable Allows absolute binary output

AMA Disable Assembles all absolute addresses as relative addresses

CDR Disable Treats all source information beyond column 72 as commentary

CRF Enable Allows cross-reference listing. Disabling this function inhibits CREF
output if option /C is active

FPT Disable Truncates floating point values (instead of rounding)

GBL Disable Treats undefined symbols as globals

LC Disable Allows lower case ASCII source input

LSB Disable Allows local symbol block

PNC Enable Allows binary output

REG Enable Allows mnemonic definitions of registers

For example, if you type the following commands the system assembles a file while treating columns 73 through
80 of each source card as commentary.

~K'"i:'
. ~4 ~ ~`~ t:; I~~ Cl

Because MACRO-11 is a two-pass assembler, you cannot read the cards directly from the card reader or other non-
file structured device. You must use PIP (or the keyboard monitor COPY command) to transfer input to a file-
structured device before beginning the assembly.

Use either the function control or listing control option and arguments at assembly time to override corresponding
listing or function control directives in the source program. For example, assume that the source program contains
the following sequence

i~l... :C t:1'Y' ~il:::~{

• (MACRO references)

10-6 March 1978

MACRO-11 Program Assembly

In this example, you disable the listing of macro expansion binary code for some portion of the code and subse-
quently resume MEB listing. However, if you indicate /L:MEB in the assembly command string, the system ignores

both the .NLIST MEB and the .LIST MEB directives. This enables MEB listing throughout the program.

10.4.3 Macro Library File Designation Option
The /M option is meaningful only if appended to a source file specification. It has no arguments, and it designates

its associated source file as a macro library.

If the command string does not include the standard system macro library SYSMAC.SML, the system automatically

- includes it as the last source file in the command string.
v

When the assembler encounters an .MCALL directive in the source code, it searches macro libraries according to

their order of appearance in the command string. when it locates a macro record whose name matches that given in

the .MCALL, it assembles the macro as indicated by that definition. Thus if two or more macro libraries contain

definitions of the same macro name, the macro library that appears leftmost in the command string takes precedence.

Consider the following command string:

~ (output file specification)==~l• ~ ~~ . ~~t~f ~ ~ ~L. ~ ~ 4 ~~C/i~ y X :~ ~:

Assume that each of the two macro libraries, ALIB and BLIB, contain a macro called .BIG, but with different defini-

tions. Then, if source file XIZ contains a macro call .MCALL .BIG, the system includes the definition of .BIG in the

program as it appears in the macro library ALIB.

Moreover, if macro library ALIB contains a definition of a macro called .READ, that definition of .READ overrides

the standard .READ macro definition in SYSMAC.SML.

10.4.4 Cross-Reference (CREF) Table Generation Option
A cross-reference (CREF) table lists all or a subset of the symbols in a source program, identifying the statements that

define and use symbols.

10.4.4.1 Obtaining across-Reference Table — To obtain a CREF table you must include the /C : arg option in the

command string. Usually you include the /C:arg option with the assembly listing file specification. You can in fact

place it anywhere in the command string.

If the command string does not include a cref file specification, the system automatically generates a temporary

file on device DK:. If you need to have a device other than DK: contain the temporary cref file, you must include the

dev: cref field in the command string.

If the listing device is magtape or cassette, load the handler for that device before issuing the command string, using

the monitor LOAD command (described in Chapter 4).

A complete CREF listing contains the following six sections:

1. Across reference of program symbols; that is, labels used in the program and symbols followed by a —
operator.

2. A cross reference of register equate symbols; that is, symbols defined in the program by the construct:

symbol—n

with 0>n>7.

Normally, these symbols include R0, R1, R2, R3, R4, R5, SP, and PC.

10-7

MACRO-11 P1►~ogram Assembly

3. Across reference of MACRO symbols; that is, those symbols defined by .MACRO and .MCALL directives.
4. Across reference of permanent symbols, that is, all operation mnemonics and assembler directives.
5. Across reference of program sections. These symbols include the names you specify as operands of .CSECT

or .PSECT directives.
6. Across reference of errors. The system groups and lists all flagged errors from the assembly by error type.

You can include any or all of these six sections on the cross-reference listing by specifying the appropriate arguments
with the /C option. These arguments are listed and described in Table 10-5.

Table 10-5 /C Option Arguments

Argument CREF Section

S

R

M

P

C

E

User defined symbols

Register symbols

MACRO symbolic names

Permanent symbols including instructions and directives

Control and program sections

Error code grouping

NOTE
Specifying /C with no arguments is equivalent to specifying
iC:S:M:E. That special case excepted, you must explicitly
request each CREF section by including its arguments. No
cross-reference file occurs if the /C option is not specified,
even if the command string includes a CREF file specification.

10.4.4.2 Handling Cross-Reference Table Files i When you request across-reference listing by means of the /C
option, you cause the system to generate a temporary file, DK:CREF.TMP.

If device DK: is write-locked or if it contains insufficient free space for the temporary file, you can allocate another
device for the file. To allocate another device, specify a third output file in the command string; that is, include a
dev: cref specification. (You must still include the /C option to control the form and content of the listing. The
dev: cref specification is ignored if the /C option is not also present in the command string.)

The system then uses the dev:cref file instead of DK:CREF.TMP and deletes it automatically after producing the
CREF listing.

The following command string causes the system to use RK2: TEMP.TMP as the temporary CREF file.

Another way to assign an alternative device for the CREF.TMP file is to enter the following command prior to
entering R MACRO:

~ ~} ~:~ :~ t~ ~~ dev : ~~ r:.

This method is preferred if you intend to do several assemblies, as it relieves you from having to include the dev: cref
specification in each command string. If you enter the ASSIGN dev: CF command, and later include a cref specifica-
tion in a command string, the specification in the command string prevails for that assembly only.

10-8

MACRO-11 Program Assembly

The system lists requested cross-reference tables following the MACRO assembly listing. Each table begins on a new
page. (Figure 10-2 combines the tables to save space, however.)

The system prints symbols and also symbol values, control sections, and error codes, if applicable, beginning at the
left margin of the page. References to each symbol are listed on the same line, left-to-right across the page. The sys-
tem lists references in the form p-1; where p is the page in which the symbol, control section, or error code appears,
and 1 is the line number on the page.

A number sign (#) next to a reference indicates a symbol definition. An asterisk (*) next to a reference indicates a
•~ destructive reference —that is, an operation that alters the contents of the addressed location.

• 10.4.5 Assembly Pass Option
The /P:arg option is meaningful only if appended to a source input file specification. You must specify either of two
arguments with it: 1 or 2.

The specification /P:1 calls for assembly of the file during pass 1 only. Some files consist entirely of code that is com-
pletely assembled at the end of pass 1. By specifying /P: l for these files, you can cause MACRO-I l to skip processing
of these files through pass 2. In some cases this procedure can save considerable assembly time.

The specification /P:2 calls for assembly of the file during pass 2 only. (NOTE: Situations where the /P:2 option
can be meaningfully employed are unusual.)

10.5 MACRO-11 8K VERSION
A subset version of MACRO-11, with file name MAC8K.SAV, is available for systems with 8K words of memory —
that is, systems with insufficient memory to support operation of the full MACRO-11 assembler.

The full assembler (MACRO) requires approximately IOK words of memory, or must be operating on at least a 12K
system using the single job (SJ) monitor.

The subset version (MACSK) requires approximately 6K words of memory, or must be operating on an 8K system
using the baseline SJ monitor.

The subset version differs from the full assembler as follows:

1. All handlers must be resident (that is, loaded) before you call MACBK.
2. The full assembler prints the input command string at the end of the listing; the subset version does not.
3. The subset version does not recognize the following items:

a. The operation codes exclusive to PDP-11 /45 and PDP-11 /70
b. The Commercial Instruction Set (CIS)
c. The FLT2 and FLT4 floating point directives

4. The system device is the only available file medium under MAC8K.
5. The subset version does not support the cross-reference file and ignores attempts to obtain such a listing.

6. Assembly times of the subset version are noticeably longer.
7. The subset version operates only under control of the baseline single job monitor (see the RT-11 System

Generation Manual).

10.6 MACRO-11 ERROR CODES
The MACRO-11 system prints diagnostic error codes as the first character of a source line on which the assembler

detects an error. This error code identifies the type of error; for example, a code of M indicates a multiple definition

of a label. Table 10-6 shows the error codes that might appear on an assembly listing. For detailed information on

error code interpretation and debugging, see the MACRO-I1 Language Reference Manual.

10-9

MACRO-11 Py►~ogram Assembly

•MAIN• MACPO VP~•ia 6•JUN•7T 80tA3iS7 WAGE 5..1
CROSS RE:F'E~RENCE TABLE tCRE.F V01 •d5)

•GL08A 1.6
.TTYIN i•9
ANSWER i•18+ 1.14+1
BVF~'~.R i•9 i•14 1•Z1+~
LF 1•i~► f•li
STARr 1•q~ 1.14 i•ZZ
SUBRi i•b i•iS
SUl3R? i •~ i • 17

• MAIN • MACRO V@3.0~ 6•JUN•77 dNiV!3s57 PAGE, w•l
CROSS KEl~E~PF:NCE TABLE (CRFF YAt•P5)

PC i•iS+ i•17+~
R0 i•iZ~ 1•!i i•18
R? i•9+ 1•i~+ i•1~+~
R3 1.1 4+

• MAih • kACRO VQ3~de 6•JUN•77 d0=A3t57 ~'AGk. M•1
CROSS RE~E;Re:NCE TA6L•E (CPFF V:~i•NS)

.EXIT
~TTX1N
CALL•

1.2~ !•t9
i•2~
i•3~ 1•iS i•17

.MAIN. MACRU VA;.00 6•JUN•77 dA=A~i57 1'A~E P.1
CROSS REF'EPENCE: TABLE (CREF' V01 •fJS)

•BLKB i•21
• ALKw 1 •~?f
.CSECT i•7
• RNA ! •?~
•MACRO i •~
.MCALL 1.2
BC S i • 16
BNE: i•!Z
CLRB i•i3
CMpP 1.11
EMT 1.19
JSR i•15 1.17
MOV i•A i•14 1.18
MOVE 1•ia

•MAIN• MACRO VQ,;.gP 6•JUN•77 dQtP3t57 PRGE C•i
CROSS REFEKENCE; T►8LE (CkE:F Vbi•g5)

a•d
• AeS, d•d
PkOr 1.7

.MpiN• MACPO VP;.aQ~ 6•JUN•77 idAiP3tS7 PAGF, F•!
CROSS REE`ERENCE T118LE (CpEE' V~►i •P5)

A
U

~ •6 i •9 1.11
1.6 i•9 i•tZ 1.15 1.17

Figure 10-2 Cross-Reference Table

10-10

MACRO-11 P~►~ogram Assembly

Table 10-6 MACRO-11 Error Codes

Error Code Meaning

A

B

D

E

I

L

M

N

O

P

Q

R

T

u

Z

Addressing or relocation error. This occurs when an instruction operand has an invalid
address, or when the definition of a local symbol occurs more than 128 words from the
beginning of a local symbol block.

Boundary error. The current setting of the location counter would cause the assembly
of instruction or word data at an odd memory address. The system increments the
location counter by 1 to correct this.

Reference to multiple-definition symbol. The program refers to a non-local label that is
defined more than once.

No END directive. The assembler has reached the end of a source file and found no END
directive. The system generates .END and continues.

Illegal character detected. The assembler has encountered in the source file a character
that is not included in the language character set. The system replaces each illegal charac-
terwith a ? on the assembly listing and proceeds as if the illegal character were not
present.

Link buffer overflow. The assembler has encountered an input line greater than 132 char-
acters. In terminal mode the system ignores additional characters.

Multiple definition of a label. The source program is attempting to define a label equiva-
lent in the first six characters to a label defined previously.

Decimal point missing from decimal number. A number containing the digit 8 or 9 lacks
a decimal point.

Op-code error. A directive appears in an inappropriate context.

Phase error. The definition or value of a label differs from one pass to another, or a local
symbol occurs more than once in a local symbol block.

Questionable syntax. This can have any of several causes, as follows

1. There are missing arguments.
2. The instruction scan is not complete .
3. Aline feed or form feed does not immediately follow a carriage return.

Register-type error. The source program attempts an invalid reference to a register.

Truncation error. A number generates more than 16 significant bits, or an expression
generates more than 8 significant bits while a .BYTE directive is active.

Undefined symbol. A symbol not defined elsewhere in the program appears as a factor
in an expression. The assembler assigns the undefined symbol a constant zero value.

Incompatible instruction (warning). The instruction is not defined for all PDP-11 hard-
ware configurations.

10-11

s

CHAPTER 11

LINKER (LINK)

M

r

~"1

t

n

The RT-11 linker (LINK) converts object modules produced by an RT-11 supported language translator into a for-
mat suitable for loading and execution. If you have no previous experience with the linker, read Chapter 12 of the
Introduction to RT-11 for an introductory-level description of the linking process. You can separately assemble a
main program and each of its subroutines without assigning an absolute load address at assembly time. The linker
processes the object modules of the main program and subroutines to:

• Relocate each object module and assign absolute addresses

• Link the modules by correlating global symbols that are defined in one module and referenced in another

• Create the initial control block for the linked program that the GET, R, RLJN, and FRUN commands use

• Create an overlay structure if specified and include the necessary run-time overlay handlers and tables

• Search libraries you specify to locate unresolved globals

• Automatically search a default system library to locate any remaining unresolved globals

• Produce a load map showing the layout of the load module

• Produce a symbol definition file.

The RT-11 linker requires two passes over the input modules. During the first pass it constructs the symbol table,
including all program section names and global symbols in the input modules. After it processes all non-library files,
the linker scans the library files to resolve undefined globals. It links only those modules that are required into the
root segment (that part of the program that is never overlaid). During the final pass, the linker reads the object
modules, performs most of the functions listed above, and produces a load module (which is in memory image
format for background jobs or for jobs that run in the single job environment, relocatable format for foreground
jobs, and formatted binary for use with the Absolute Loader).

The linker runs in a minimal RT-11 system of 8K words of memory; the linker uses any additional memory to
facilitate efficient linking and to extend the size of the symbol table. The linker accepts input from any random-
access device on the system; there must be at least one random-access device (disk or DECtape) for memory image
or relocatable format output.

11.1 CALLING AND USING THE LINKER
To call the RT-11 linker from the system device, respond to the dot printed by the keyboard monitor by typing:

R LINK

The Command String Interpreter prints an asterisk at the left margin on the console terminal when it is ready to
accept a command line. If you enter only a carriage return at this point, the linker prints its current version number.

Type two CTRL/Cs to halt the linker at any time (or a single CTRL/C to halt the linker when it is waiting for con-
sole terminal input) and return control to the monitor. To restart the linker, type R LINK or REENTER in response
to the monitor's dot.

Linker (LINK

The first command string you enter in response to the linker's prompt has this syntax:

[binout-filespec] , [mapout-filespec] , [stbout-filespec] = obj-filespec [/option . . .] [, . . . obj-filespec [/option ...]]

where

binout-filespec represents the device, name and file type to be assigned to the linker's output load mod-
ule file.

mapout-filespec represents the device, file name and file type of the load map output file.

stbout-filespec represents the device, file name and file type of the symbol definition file.

obj-filespec represents an object module (that can be a library file) to be linked.

/option is one of the options from Table 11-2.

In each filespec above, the device should be a random access device, with these exceptions: the output device for the
load map file can be any RT-11 device, as can the output device for an .LDA file if you use the /L option. If you do
not specify a device, the linker uses default device DK:. Note that the linker load map contains lower case characters.
Use the SET LP LC command to enable lower case printing if your printer has lower case characters.

If you do not specify an output file, the linker assumes that you do not desire the associated output. For example,
if you do not specify the load module and load map (by using a comma in place of each file specification) the linker
prints only error messages, if any occur.

Table 11-1 shows the default values for each specification.

Table 11-1 Linker Defaults

Device File Name File Type

Load Module

Map Output

Symbol Definition Output

Object Module

DK:

Same as load module

DK: or same as previous
output device

DK: or same as previous
object module

none

none

none

none

SAV, REL(/R), LDA(/L)

MAP

STB

OBJ

If you make a syntax error in a command string, the system prints an error message. You can then type a new com-
mand string following the asterisk. Similarly, if you specify a nonexistent file, a warning error occurs; control returns
to the Command String Interpreter, an asterisk prints and you can enter a new command string.

11.2 OPTIONS SUMMARY
Table 11-2 lists the options associated with the linker. You must precede the_letter representing each option by the
slash character. Options must appear on the line indicated if you continue the input on more than one line, but you
can position them anywhere on the line. (Section 11.8 provides a more detailed explanation of each option.)

11-2

Linker (LINK)

Table 11-2 Linker Options

Option Name Command Line Section Explanation

/A first 11.8.0 Lists global symbols in program sections in alphabetical
order .

/B:n first 11.8.1 Changes the bottom address of a program ton (illegal
for foreground links).

/C any but last 11.8.2 Continues input specification on another command line
(you can use /C also with /O; do not use /C with the / /
option).

/E:n first 11.8.3 Extends a particular program section to a specific value.

/F first 11.8.4 Instructs the linker to use the default FORTRAN library,
FORLIB.OBJ; this option is provided only for compati-
bility with previous versions of RT-11.

/H:n first 11.8.5 Specifies the top (highest) address to be used by the
relocatable code in the load module.

/I first 11.8.6 Extracts the global symbols you specify (and their
associated object modules) from the library and links
them into the load module.

/K:n first 11.8.7 Inserts the value you specify (the valid range for n is
from 1 to 28) into word 56 of block 0 of the image file;
this option is provided only for compatibility with the
RSTS operating system.

/L first 11.8.8 Produces a formatted binary output file (illegal for fore-
ground links).

/M or
/M:n

first 11.8.9 Causes the linker to prompt you for a global symbol that
represents the stack address, or sets the stack address to
the value n.

/O:n any but
the first

11.8.10 Indicates that the program is an overlay structure; n
specifies the overlay region to which the module is
assigned.

/P:n first 11.8.11 Changes the default amount of space the linker uses for
a library routines list.

/R [:n] first 11.8.12 Produces output in relocatable format and can indicate
stack size for a foreground job.

/S first 11.8.13 Makes the maximum amount of space in memory avail-
able for the linker's symbol table. (You only need to use
this option when a particular link stream causes a symbol
table overflow.)

(Continued on next page)

11-3 March 1978

Linker (LINK)

Table 11-2 (Cont.) Linker Options

Option Name Command Line Section Explanation

/T or
/T:n

first 11.8.14 Causes the linker to prompt you for a global symbol
that represents the transfer address, or sets the transfer
address to the value n.

/U:n first 11.8.15 Rounds up the section you specify so that the size of
the root segment is a whole number multiple of the
value you supply (n must be a power of 2).

/W first 11.8.16 Directs the linker to produce a wide load map listing.

/X 11.8.17 Dces not output the bitmap if the code is below 400;
this option is provided only for compatibility with the
R.STS operating system.

/Y:n first 11.8.18 Starts a specific program section on a particular address
boundary.

/Z:n first 11.8.19 Sets unused locations in the load module to the value n.

/ / first
and last

11.8.20 Allows you to specify command string input on additional
lines. Do not use this option with /C.

11.3 MEMORY ALLOCATION
The linker allocates the physical memory and address space that the load module requires. The area of memory that
the linker allocates for a load module contains the following elements:

• a system communication area

• hardware vectors

• a stack

• a set of named areas called program sections (p-sections).

Section 11.5.2 describes the system communication area.

The stack is an area that a program can use for temporary storage and subroutine linkage. General register 6, the
stack pointer (SP), references the stack.

The system communication area, the hardware vectors, and the stack areas are all part of the load module area
called the absolute section. The absolute section is often called the ASECT because it is the assembler directive
.ASECT that allows information to be stored there. This section appears in the load map with the name .ABS, and
is always the first section in the listing. The absolute section (ASECT) normally ends at address 1000 (octal).

A program section is an area of the load module that contains code and/or data; you can reference it by name. The
set of attributes associated with each p-section controls the allocation and placement of the section within the load
module.

11-4

Linker (LINK)

A p-section is the basic unit of memory for a program. It is composed of the following elements:

• a name by which it can be referenced

• a set of attributes that defines its contents, mode of access, allocation, and placement in memory

• a length that determines how much storage is reserved for the p-section.

You create p-sections by using the COMMON statement in FORTRAN, or the .PSECT (or .CSECT) directive in
MACRO. You can use the .PSECT (or .CSECT) directive to attach attributes to the section. Note that the attributes
that follow the p-section name are not part of the name; only the name itself distinguishes one p-section from
another. You should make sure, then, that p-sections of the same name that you -want to link together also have
the same attribute list. Do this because the linker uses the first appearance of the .PSECT and its attributes through-
out the operation. If the linker encounters p-sections with the same name that have different attributes, it prints a
warning message.

The linker collects from the input modules scattered references to a p-section and combines them in a single area of
the load module. The attributes, which are listed in Table 11-3, control the way the linker collects and places this
unit of storage.

Table 11-3 P-section Attributes

Attribute Value Explanation

access-code 1 RW Read/Write —data can be read from, and written into, the p-section.

RO Read Only —data can be read from, but cannot be written into, the
p-section.

type-code D Data —the p-section contains data.

I Instruction —the p-section contains either instructions, or data and
instructions.

scope-code GBL Global -- the p-section name is recognized across overlay segment
boundaries. The Linker allocates storage for the p-section from
references outside the overlay segment.

LCL Local —the p-section name is recognized only within each individual
overlay segment. The linker allocates storage for the p-section from
references within the overlay segment only.

reloc-code REL Relocatable —the base address of the p section is relocated relative
to the virtual base address of the program.

ABS Absolute -- the base address of the p-section is not relocated. It is
always 0.

alloc-code CON Concatenate —all allocations to a given p-section name are concaten-
ated. The total allocation is the sum of the individual allocations.

OVR Overlay —all allocations to a given p-section name overlay each other.
The total allocation is the length of the longest individual allocation.

1 Not used by the linker.

11-5

Linker (LINK)

The scope-code and type-code are meaningful only when you define an overlay structure for the program. In an
overlaid program, a global section is known throughout the entire program. Object modules contribute to only one
global section of the same name. If two or more segments contribute to a global section, then the linker allocates
that global section in the root segment of the program. In contrast to global sections, local sections are only known
within a particular program segment. Because of this, several local sections of the same name can appear in different
segments. Thus, several object modules contributing to a local section do so only within each segment. An example
of a global section is named COMI~iON in FORTRAN. An example of a local section is the default blank section
for each macro routine.

The allot-code determines the starting address and length of memory allocated by modules that reference a common
p-section. If the allot-code indicates that such a p-section is to be overlaid, the linker places the allocations from each
module starting at the same location in memory. It determines the total size from the length of the longest reference
to the p-section. The last input module that stores information in a particular location determines which values the
linker stores in the indicated locations of the load module. If the allot-code indicates that a p-section is to be con-
catenated, the linker places the allocations from the modules one after the other in the load module; it determines
the total allocation from the sum of the lengths of the contributions.

The allocation of memory for a p-section always begins on a word boundary. If the p-section has the D (data) and
CON (concatenate) attributes, all storage that subsequent modules contribute is appended to the last byte of the
previous allocation. This occurs whether or not that byte is on a word boundary. For a p-section with the I
(instruction) and CON attributes, however, all storage that subsequent modules contribute begins at the nearest
following word boundary.

The .CSECT directive of MACRO is converted internally by both MACRO and the linker to an equivalent .PSECT
with fixed attributes. An unnamed CSECT (blank section) is the same as a blank PSECT with the following attri-
butes: RW, I, LCL, REL, and CON.

A named CSECT is equivalent to a named PSECT with these attributes: RW, I, GBL, REL, and OVR. Table 11-4
shows these sections and their attributes.

The names assigned to p-sections are not considered to be global symbols; you cannot reference them as such. For
example

~a~ ~~~~~r~~~~a

This statement, where PNAME is the name of a section, is illegal and generates the Undefined global error message
if no global symbol of PNAME exists. A symbol can be the same for both a p-section name and a global symbol.
The linker treats them separately.

The linker determines the memory allocation of p-sections by the order of occurrence of the p-sections in the input
modules. The absolute section (. ABS.) always comes first, followed by the blank section of the input file (if one
exists) and the named section. If there is more than one named section, the named sections appear in the same order
in which they occur in the input files. For example, the FORTRAN compiler arranges the p-sections in the main
program module so that t'he USR can swap over pure code in low memory rather than over data required by the
function making the USR call.

Table 11 ~ Section Attributes

access-code type-code scope-code reloc-code allot-code

CSECT

CSECT name

ASECT

COMMON/name/

RW

RW

RW

RW

I

I

I

D

LCL

GBL

GBL

GBL

REL

REL

ABS

REL

CON

OVR

OVR

OVR

11-6

Linker (LINK)

11.4 GLOBAL SYMBOLS
Global symbols provide the link, or communication, between object modules. You create global symbols with the
,GLOBE or .ENABL GBL assembler directive (or with double colon, ::, or double equal sign, __). If the global
symbol is defined in an object module (as a label using :: or by direct assignment using =_), other object modules
can reference it. If the global symbol is not defined in the object module, it is an external symbol and is assumed
to be defined in some other object module. If a global symbol is used as a label in a routine, it is often called an
entry point. That is, it is an entry point to that subroutine.

As the linker reads the object modules it keeps track of all global symbol defuutions and references. It then modifies
the instructions and data that reference the global symbols. The linker always prints undefined globals on the con-
sole ternvnal after pass-1. If you request a load map on the terminal, they appear at the end of the load map.

Table 11-5 shows how the linker resolves global references when it creates the load module.

Table 11-5 Global Reference Resolution

Module
Name

Global
Definition

Global
Reference

IN1

IN2

IN3

B1
B2

A
Bl

A
Ll
C1
~:~~X

B2

B 1

In processing the first module, IN 1, the linker finds definitions for B 1 and B2, and references to A, L 1, C 1, and
~:~►X. Because no definition currently exists for these references, the linker defers the resolution of these global
symbols. In processing the next module, IN2, the linker finds a definition for A that resolves the previous reference,
and a reference to B2 that can be immediately resolved.

When all the object modules have been processed, the linker has three unresolved global references remaining: C 1,
L1, and ~;~~X. A search of the default system library resolves ~;~~X. The global symbols Cl and L1 remain unresolved
and are, therefore, listed as undefined global symbols.

The relocatable global symbol, B1, is defined twice and is listed on the terminal as a multiply defined global symbol.
The linker uses the first definition of a multiply defined symbol. An absolute global symbol can be defined more
than once without being listed as multiply defined as long as each occurrence of the symbol has the same value.

11.5 INPUT AND OUTPUT
Linker input and output is in the form of modules; the linker uses one or more input modules to produce a single
output (load) module.

11.5.1 Object Modules
Object files, consisting of one or more object modules, are the input to the linker (the linker ignores files that are
not object modules). Object modules are created by an appropriate language translator. The module name item
declares the name of the object module. The first six Radix-50 characters of the .TITLE assembler directive are
used as the name of the object module. These six characters must be Radix-50 characters (the linker ignores any
characters beyond the sixth character). The linker prints the first module name it encounters in the input file
stream (normally the main routine of the program) on the second line of the map following .TITLE. It ignores
additional module names. The linker reads each object module twice. During the first pass it reads each object

11-7

Linker (LINK

module to construct a symbol table and to assign absolute values to the program section names and global symbols.
The linker uses the library files to resolve undefined globals. It places their associated object modules in the root.
On the second and final pass, the linker reads the object modules, links and relocates the modules and outputs the
load module.

11.5.2 Load Module
The primary output of the linker is a load module that you can run under RT-11. The linker creates as a load module
a memory image file (SAV): for use under a single job system or the background job. If you need to execute a pro-
gram in the foreground, use the /R option to produce a relocatable format (REL) foreground load module. The
linker can produce an absolute load module (LDA) if you need to load the module with the Absolute Loader.

The load module for a memory image file is arranged as follows:

Root Segment Overlay Segments
(optional)

For a relocatable image file the load modules are arranged as follows:

Root Segment Overlay Segments
(optional)

Relocation information for root and
overlay segments

The first 256 word block of the root segment (main program) contains the memory usage bit map and the locations
the linker uses to pass program control parameters. The memory usage bit map outlines the blocks of memory the
load module uses; it is located in locations 360 through 377.

The control parameters are located in locations 40 through 50. They contain the following information when the
module is loaded:

Address Information

40 Start address of program
42 Initial setting of SP (stack pointer)
44 Job status word (overlay bit set by LINK)
46 USR swap address (0 implies normal location)
50 Highest memory address in program (high limit)

The linker stores default values in locations 40, 42, and 50, unless you use options to specify otherwise. The /T
option affects location 40, for example, and /M affects location 42. You can also use the .ASECT directive to
change the defaults. The overlay bit is located in the job status word. LINK automatically sets this bit if the program
is overlaid. Otherwise, the linker initially sets location 44 to 0. Location 46 also contains zero unless you specify
another value by using the .ASECT directive.

For a foreground link, the following additional parameters contain information

Address Information

14, 16 (XM only) BPT trap
20, 22 (X11 only) IOT trap
34, 36 TRAP vector
52 Size of root segment in bytes
54 Stack size in bytes (value with /R or default 128)
56 Size of overlay region in bytes
60 Identification that file is in relocatable (REL) format
62 Relative block number for start of relocation information

11-8

Linker (LINK)

You can assign initial values to memory locations 0-476 (which include the interrupt vectors and system communica-
tion area) by using an .ASECT assembler directive. They appear in block 0 of the load module, but there are restric-
tions on the use of ASECTs in this region. You should not perform ASECTs of location 54 or of locations 360-377
because the memory usage map is passed in those locations. In addition, for foreground links, ASECTs of words
52-62 are not permitted because additional parameters are passed to the FRUN command in those locations.

You can set with an .ASECT any location that is not restricted, but be careful if you change the system communica-
tion area. The program itself must initialize restricted areas, such as the region 360-377. There are no restrictions on
ASECTs if the output format is LDA.

Locations in the region 0-476 might not be loaded at execution time even though your program uses an ASECT to
initialize them. For background programs, this is because the R, RLTN, and GET commands do not load addresses
that are protected by the monitor's memory protection map. For foreground programs, the FRUN command loads
only locations 14-22 and 34-50. It ignores all other ASECTs. To initialize a location at run time, use the .PROTECT
programmed request. If it is successful, follow it by a MOV instruction.

11.5.3 Load Map
If you request, the linker produces a load map following the completion of the initial pass. This map, shown in
Figure 11-1, diagrams the layout of memory for the load module.

The load map lists each program section that is included in the linking process. The line for a section includes the
name and low address of the section and its size in bytes. The rest of the line lists the program section attributes,
as shown in Table 11-3. The remaining columns contain the global symbols found in the section and their values.

The map begins with the version of the linker, followed by the date and time the program was linked. The second
line lists the file name of the program, its title (which is determined by the first module name record in the input
file), and the first identification record found. The absolute section is always shown first, followed by any non-
relocatable symbols. The modules located in the root segment of the load module list next, followed by those
modules that were assigned to overlays in order by their region number (see Section 11.6). Any undefined global
symbols then list. The map ends with the transfer address (start address) and high limit or relocatable code in both
octal bytes and decimal words.

NOTE
The load map does not reflect the absolute addresses for
a REL file that you create to run as a foreground job; you
must add the base relocation address determined at FRUN
time to obtain the absolute addresses. The linker assumes
a base address of 1000.

For example, assume the FRUN command is used to run the program CARL:

L.oar~er~ ~t 1,~7~~b

The /P option causes FRLTN to print the load address, which is 127276 in this example. To calculate the actual loca-
tion in memory of any global in the program, first subtract 1000 from that global's value. (The value 1000 represents
the base address assigned by the linker. This offset is not used at load time.) Then add the result to the load address
determined with /P. The final result represents the absolute location of the global. For example, the absolute loca-
tion of TIME (see Figure 11-1) is 127302 (1004-1000+ 127276=127302).

11-9

Linker (LINK

RT•li LINK V03.~f Load Map Fti A3•Jun•77 18:A3i87
CARL ,REL Title; OEMOSP Idl~t= V01.03

Section Addt SiZ~ Global Value Global valy! Globs! Vale!

ABs, ~ea00~ ~~+i Ora C RW, I, G~iL,118s, OVR)
(~+~10~0 I~f 006 C R~~ I • LCL~ REL• CON)

TIMBLK AAi00~! TIME 001004 00LK OA1010
LP 001020 AREA s~010Z4 START a0i036
BUFF 002022

Tra~s~er sddtlss = 001036r High limit = 0l 1036 ~ 2319. cords

Figure 11-1 Load Map

11.5.4 Library Files
The RT-11 linker can automatically search libraries. Libraries consist of library files, which are specially formatted

files produced by the librarian program (described in Chapter 12) that contain one or more object modules. The

object modules provide routines and functions to aid you in meeting specific programming needs. (For example,

FORTRAN has a set of modules containing all necessary computational functions — SQRT, SIN, COS, etc.). You

can use the librarian to create and update libraries. Then you can easily access routines that you use repeatedly or

routines that different programs use. Selected modules from the appropriate library file are linked as needed with

your program to produce one load module. Libraries are further described in Section 11.7 and in Chapter 12.

NOTE
Library files that you combine with the monitor COPY
command or with the PIP /U or /B option are illegal as
input to both the linker and the librarian.

11.6 USING OVERLAYS
The ability of RT-11 to handle overlays gives you virtually unlimited space for an assembly language or a FORTRAN
program. A program using overlays can be much larger than would normally fit in the available memory space, since
portions of the program reside on a backup storage device such as disk or DECtape. To utilize this capability how-
ever, you must define an overlay structure for your .program.

An overlay structure divides a program into segments. For each overlaid program there is one root segment and a
number of overlay segments. Each overlay segment is assigned to a particular area of available memory called an
overlay region. More than one overlay segment can be assigned to a given overlay region. However, each region of
memory is occupied by one (and only one) of its assigned segments at a time. The other segments assigned to that
region are stored on disk or DECtape. They are brought into memory when called, replacing (or overlaying) the
segment previously stored in that region. The root segment, on the other hand, contains those parts of the program
that must always be memory resident. Therefore the root is never overlaid.

Figure 11-2 diagrams an overlay structure for a FORTRAN program. The main program is placed in the root segment
and is never overlaid. The various MACRO subroutines and FORTRAN subprograms are placed in overlay segments.
Each overlay segment is assigned to an overlay region and stored on DECtape until called into memory. For example,
region 2 is shared by the MACRO subroutine A currently in memory and the MACRO subroutine B in segment 4.
When a call is made to subroutine B, segment 4 is brought into region 2 of memory, overlaying or replacing segment
3.

The overlay file, shown on the DECtape in Figure 11-2, is created by the linker when you specify an overlay structure.
The overlay file contains at all times a copy of the root segment and each overlay segment, including those overlay
segments currently in memory.

11-10 March 1978

Linker (LINK

high

low

REGION 3

SEGMENT 6
FORTRAN subprogram

REGION 2

SEGMENT 3
MACRO subroutine A

REGION 1

SEGMENT 2
FORTRAN subprogram

ROOT

FORTRAN main program

memory

Region 3
segment 6

Region 3
segment 5

Region 2
segment 4
MACRO

subroutine B

Region 2
segment 3

Region 1
segment 2

Region 1
segment 1

ROOT
FORTRAN

main program

Figure 11-2 An Overlay Structure for a FORTRAN Program

Block 0
of Overlay File

March 1978

Linker (LINK

You specify an overlay structure to the linker using the /0 option. This option is described fully in Section 11.8.10.
Figure 11-3 is an example of using the /O option to specify an overlay structure.

Command I ine

A=A// =Root
B/0:1 =Segment 1
C/0:1 =Segment 2

D/0:2 =Segment 3
E/0:2 =Segment 4
//

}

= Region 1

= Region 2

Memory:

high

low

Figure 11-3 Overlay Scheme

///////mil
D E

B C

A

Region 2

Region 1

Root

The linker calculates the size of any region to be the size of the largest segment assigned to that region. Thus, to
reduce the size of a program (that is, the amount of memory it needs), you should first concentrate on reducing the
size of the largest segment in each region. The linker delineates the overlay regions you specify, and prefaces your
program with the run-time overlay handling code shown in Figure 11-4. The linker also sets up links between the
overlay handler and program references to routines that reside in overlays. When, at run time, a reference is made
to a section of your program that is not currently in memory, these links cause an overlay to occur. The overlay
segment containing the referenced code becomes resident.

There is no magic formula for creating an overlay structure. You do not need a special code or function call. How-
ever, some general guidelines must be followed. For example, a FORTRAN main program must always be placed in
the root segment. This is true also for a global program section (such as a named COMMON block) that is referenced
by more than one overlay segment.

The assignment of region numbers to overlay segments is crucial. Segments that overlay each other (have the same
region number) must be logically independent; that is, the components of one segment cannot reference the com-
ponents of another segment assigned to the same region. Segments which need to be memory-resident simultaneously
must be assigned to different regions.

When you make calls to routines or subprograms that are in overlay segments, the entire return path must be in
memory. This means that from an overlay segment you cannot call a routine that is in a different segment but in the
same region. If this is done the called routine overlays the segment making the call, and so destroys the return path.

Figure 11-4.1 illustrates a sample set of subroutine calls and return paths. In the example, solid lines represent legal
subroutine calls and dotted lines represent illegal calls.

Suppose the following subroutine calls were made

1. The root calls segment 8
2. Segment 8 calls segment 4
3. Segment 4 calls segment 3

Segment 3 can now call any of the following segments, in any order

1. Itself
2. Segment 4
3 . Segment 8
4. The root

11-12 March 1978

Linker (LINK

.ShTTU SpvKH ThE Ru+v-TIME OVERLAY HANf~LEi~
►TNk ~OL.LO~ING CUUt IS INCLuOEU I'~ TMt USER'S PkpGKeM BY THE
f LINKER wNENEvEH 4VEKLAYS AWE RE(~~1ESTEU t3Y THE USE+ .
;T+~E RUti•TIM~ gvEk~.aY NANn~,E.R is CALLED dY A DUMMY
fSUbRUVTINE CAF ThE FOLLQ~IN% FORM:

t JSR F~S,SOvRH 1CALL TO COMMON CUUt
f .~yGRU cOVERUAY :c~ f # OF UESIREh SEGMEtiT
t . wnKp cEhiTRY At?URs f AGTUAL CORE AQUR

PONE UVMMY ROUTINE OF THE AdavE FOKM IS STORED I'~ THE RESIDENT PORTIQN
;CJF ThE USER'S PROGRAM FOk EACM ENTRY P~]IyT TO ati' OVERLAY SEGMENT
TALL. PEFERttiCtS~ Tp THE ENTRY PQIN1 ARE MooiFZEu dY THE LINKER Tp INSTEAD
jdE REFERENCES TU THE APP~tQPRIATE DUMMY RVUTINE~ EACH OVERLAY SEGMENT
IIS CALLEQ IytO C~IRt AS • ~JNIT AtiU MUST ~E CONTIGuquS IN COKE, AN
:OVERLAY SEGMENT MAY +SAVE ANY NUMd~EF? QF ENTRY POINTS, TO THE LIMITS
jDF CORE MEMpRY. Q~~LY QNF_ SEGMENT AT A TIME MAY OCCUPY AN pVERLAY REGIo~v,

,ENAIiL LSd
SOvTAds1~~,Q♦$UVKME-SpVRh

SQVRM~ Mov k0,-CSP)
M(~V R 1 ~ • C $P)
Mq~ k2~•(SP)

IS'
f MQV (R5)+,R~ ►WICK UP OVERLAY NUMk~ER

EAR 3S :FIRST CALL aN~Y
Mpv Rd, r~l

SQVRMAt AOD *~GVT48-6,R1 ;CALC TABLE AOOW
MOv (k l ~ +, R~ ; GE t CORE ADQR OF uvERL.AY REGION
OMP Rf~, !k2 i IS OVERLAY ALRF AOY RESIDENT?
t3E0 2S ;YES, aRANCN Ta iT
,RtADw ~7,k2, CRT)+r CH1)+ ~REAO FROM pVERLAY FILE
tics 5~

2S: MUv CSR)+,R2 iHESTC~RE USER'S BEGS
Mov CSP) +~ R1
MGv CSp)f,R~
MOV lR5~R5 tGEt ENTRY At~pRESS
RTS R5 tENTEk UvERLAY ROUTINE~ ANO

fRESTGkE USER'S R5

3S: MDv ~ i 250i~. 1 S 1 ~t5TORE s~ ~ TCH i NSTR CMov (R5) +, k0~
I~~OV ~ CPC)+,R1 ;START AUgR FpR CLEAR OPER•TION

$NRDUfi : , wOkU ~ ; M j t;M AODR OF ROQT SkGMENT
MO v C PC) +, r~2 : COUNT

SHQvLY: .wOkO ~ MGM LIMIT OF pVERLAYS
~►$: CL~t (~ 1) + f C~.E•R ALL OVERLAY kkialONS

CMp k1rR2
~Uo v~
t+R !~ :AND RETURN T4 CALL IN PROGRESS

5S: EMt
.hYTE

~QVkM~.Z
,OSABI. ~S~

37b
0,313

iSYSTEM EkROR iQ COvERLAY 1/Q)

f OVE►~LAY St%+MENT TA~3LE FOLI.awS:
f S4vT A~: , wO~p cCgRE !►UDR>, cREL,AT IVE BL.K>, cwaRU COuNT~
:THREE wORu$ PER ktiTRY, ONE ENTRY F'EA pVERLAY SEGMENT,

►ALSO, thtRE I$ t~Nk wuRG PREFIxEO TU EACM UVE~tLAY REGION

=THAT ICE.NTIFIES THE SEGMENT CURRENTLY RESIDENT Iti THAT REGIU~v.
f THIS ~Gf~t~ I5 AN INJEx INTQ THE SOVTAy TABLE.

Figure 11-4 The Run-Time Overlay Handler

11-13 March 1978

Linker (LANK)

These segments and the root, of course, are all currently resident in memory.

Segment 3 cannot call a,ny of the following segments since doing so wipes out its return path:

1. Segments 2 and 1
2. Segment 5
3. Segments 6 and 7

Look at what might happen if one of these illegal calls is made. Assume that segments 3, 4 and 5 all contain MACRO
subroutines. Suppose segment 4 calls segment 3 and segment 3 in turn calls segment 5. Segment 5 is not resident in
region 2, so an overlay occurs: segment 5 is read into memory, thus destroying the memory-resident copy of
segment 4. The subroutine in segment 5 executes and returns control to segment 3. Segment 3 finishes its task and
tries to return control to segment 4. Segment 4, however, has been replaced in memory by segment 5. Segment 4
cannot regain control and the program loops indefinitely, or traps, or random results occur.

region 3

region 2

region 1

root

Figure 11-4.1 Sample Subroutine Calls and Return Paths

11-14 March 1978

Linker ~LINKJ

The guidelines already mentioned and some additional rules for creating overlay structures are summarized below.

1. Overlay segments assigned to the same region must be logically independent; that is, the components of
one segment cannot reference the components of another segment assigned to the same region.

2. The root segment contains the transfer address, stack space, impure variables, data, and variables needed
by many different segments. The FORTRAN main program unit must be placed in the root segment.

3. A global program section (such as a named COMMON block or a .PSECT with the GBL attribute) that is
referenced in more than one segment is placed in the root segment by the linker. This permits common
access across the different segments.

4. Object modules that are automatically acquired from a library file cannot be placed in an overlay segment.
(This means you cannot specify a library file on the same command line as an overlay segment.) The linker
always places library object modules in the root segment. However, you can extract modules from a library

file using the librarian utility program as explained in Chapter 12. Extracted object modules can be placed
in overlay segments.

S . All COMMON blocks that are initialized with DATA statements must be similarly initialized in the segment
in which they are placed.

6. when you make calls to overlay segments, the entire return path to the calling routine must be in memory.

Observing the following rules will ensure this:
a. You can make calls with expected return (as from a FORTRAN main program to a FORTRAN or

MACRO subroutine) from an overlay segment to entries in the same segment, the root segment, or
to any other segment, so long as the called segment does not overlay in memory part of your return

path to the main program.
b. You can make jumps with no expected return (as in a MACRO program) from an overlay segment

to any entry in the program.
c. Calls you make to i entries in the same region as the calling routine must be entirely within the same

segment, not within another segment in the same region.
7. You must make calls or jumps to overlay segments directly to global symbols defined in an instruction

p-section (entry points). For example, if ENTER is a global tag in an overlay segment, the first command
is valid, but the second is illegal:

JMP ENTER
JMP ENTER+6

VALID
ILLEGAL

8. You can use globals defined in an instruction p-section (entry points) of an overlay segment only for

transfer of control and not for referencing data within an overlay segment. The assembler and linker cannot

detect a violation of this rule so they issue no error. However, such a violation can cause the program to use

incorrect data. If you reference these global symbols outside of their defining segment, the linker resolves

them by using dummy subroutines of four words each in the overlay handler. If such a reference occurs, it

is indicated on the load map by a "~" following the symbol.
9. The linker directly resolves symbols that you define in a data p-section. It is your program's responsibility

to load the data into memory before referencing a global symbol defined in a data section.

10. You cannot use a section name to pass control to an overlay. It does not load the appropriate segment into

memory. For example, JSR PC,OVSEC is illegal if you use OVSEC as a .CSECT name in an overlay. You

must use a global symbol to pass control from one segment to the next.

11. In the linker command string, specify overlay regions in ascending order.

12. Overlay regions are read-only. Unlike USR swapping, an overlay handler does not save the segment it is

overlaying. Any tables, variables, or instructions that are modified within a given overlay segment are re-

initialized to their original values in the SAV file if that segment has been overlaid by another segment. You

should place any variables or tables whose values must be maintained across overlays in the root segment.

13. Your program cannot use channel 17 (octal) because overlays are read on that channel.

Refer to Chapter 1, Section 1.4.1 of the R T-11 /RSTS/E FOR TRAN I V User's Guide for additional information.

11-14.1 March 1978

Linker (LINK)

The .ASECT(. ABS) never takes part in overlaying in any way. It is part of the root and is always resident.

The aforementioned sets of rules apply only to communications among the various modules that make up a program
Internally, each module must only observe standard programming rules for the PDP-11 (as described in the PDP-11
Processor Handbook and in the FORTRAN and MACRO-11 Language Reference Manuals).

Note that the condition codes set by your program are not preserved across overlay segment boundaries. You can
still use the C-bit for error returns.

The linker provides overlay services by including a small resident overlay handler in the same file with your program
to be used at program run-time. The linker inserts this overlay handler plus some tables into your program beginning
at the bottom address. The linker moves your program up in memory by an appropriate amount to make room for
the overlay handler and tables, if necessary. This scheme is diagrammed in Figure 11-4.2.

28K

1000

0
ADDRESS

I/O PAGE

MONITOR

,~; free memory ~

OVERLAY REGION 2

optional functions, initialization code, user area

SEGMENT IDENTIFICATION WORD

execute
overlay

OVERLAY

edit
overlay

REGION

file I/O
overlay

-

1
1

error message
overlay

-

DATE/TIM E
conversion

overlay

SEGMENT IDENTIFICATION WORD

ROOT SEGMENT OF PROGRAM

optional functions, initialization code, user area

OVERLAY HANDLER AND TABLES
(INCLUDED BY THE LINKER)

~
SYSTEM AREA

J

..

Figure 11-4.2 Memory Diagram Showing BASIC Link with Overlay Regions

11-14.2 March 197 8

Linker ~LINKJ

11.7 USING LIBRARIES
You specify libraries in a command string in the same way you specify normal modules; you can include them any-

where in the command string, except in overlay lines. If a global symbol is undefined at the time the linker encounters

the library in the input stream, and if a module is included in the library that contains that global definition, then the

linker pulls that module from the library and links it into the load image. Only the modules needed to resolve refer-

ences are pulled from the library; unreferenced modules are not linked.

11-14.3 March 1978

Linker (LINK)

NOTE
Modules in one library can call modules from another
library; however, the libraries must appear in the com-
mand string in the order in which they are called. For
example, assume module X in library ALIB calls Y from
the BLIB library. To correctly resolve all globals, the
order of ALIB and BLIB should appear in the command
line as

Module B is the root. It calls X from ALIB and brings X
into the root. X in turn calls Y which is brought from
BLIB into the root.

The linker selectively relocates and links object modules from specific user libraries that were built by the librarian.
Figure 11-5 diagrams this general process. During pass-1 the linker processes the input files in the order in which
they appear in the input command line. If the linker encounters a library file during pass-1, it makes note of the
library in an internal save status block, and then proceeds to the next file. The linker processes only non-library
files during the initial phase of pass-1. In the final phase of pass-1 the linker processes only library files. This is when
it resolves the undefined globals that were referenced by .the non-library files.

The linker processes library files in the order in which they appear in the input command line. The default system
library (SY: SYSLIB.OBJ) is always last. The processing steps are as follows:

1. If there are any undefined globals, the linker proceeds to step 2.Otherwise, it skips to step 5.
2. The linker reads as much of the library directory as the input buffer can hold.
3. The linker then searches the entire list of undefined globals for a match with the library directory. It places

any globals that match in an internal library module list. If more of the library directory remains to be read,
the linker proceeds to step 2.

4. The linker now processes the modules from the library that are associated with the matching undefined
globals. If this processing results in new undefined globals that can be resolved by the current library, the
linker goes back to step 2.

5. The linker closes the current library and processes the next library file, starting with step 1.

This search method allows modules to appear in any order in the library. You can specify any number of libraries
in a link and they can be positioned anywhere, with the exception of forward references between libraries. The
default system library, SY:SYSLIB.OBJ, is the last library file the linker searches to resolve any remaining undefined
globals.

Some languages, such as FORTRAN, have an Object Time System (OTS) that the linker takes from a library and
includes in the final module. The most efficient way to accomplish this is to include these OTS routines (such as
NHD, OTSCOM, and V2NS for FORTRAN) in SY: SYSLIB.OBJ.

Libraries are input to the linker in the same way as other input files. Here is a sample LINK command string:

~~r~~ha ~ ~ ~.~~ : ~=r~~ s ~ , r~~~~~~

This causes program MAIN.OBJ to be read from DK: as the first input file. Any undefined symbols generated by
program MAIN.OBJ should be satisfied by the library file MEASUR.OBJ specified in the second input file. The
linker tries to satisfy any remaining undefined globals from the default library, SY: SYSLIB.OBJ. The load module,
TASKOI .SAV, is stored on DK: and a load map prints on the line printer.

11-15 March 1978

Linker (LINK

EXIT PASS
NO

NO

STAR T

IS
THERE A FILE

IN THE COMMAND
LINE

IS IT
A LIBRARY

FILE

OPEN FILE

ARE
THERE

UNDEFINED
GLOBALS

READ AS MUCH OF LIBRARY
DIRECTORY AS POSSIBLE

SEARCH FOR UNDEFINED
GLOBALS FROM LIBRARY

MORE
LIBRARY

DIRECTORY
TO READ

PROCESS LIBRARY
MODULES

NEW
UNDEFINED
GLOBALS

CLOSE LIBRARY

Figure 11-5 Library Searches

REPOSITION TO
BEGINNING OF
LIBRARY FILE

11-16

Linker (LINK)

11.8 OPTION DESCRIPTIONS
The options summarized in Table 11-2 are described in detail below.

11.8.0 Alphabetical Option (/A)
The /A option lists global symbols in program sections in alphabetical order.

11.8.1 Bottom Address Option (/B:n)
The /B:n option supplies the lowest address to be used by the relocatable code in the load module. The argument,
n, is a 6-digit unsigned octal number that defines the bottom address of the program being linked. If you do not
supply a value for n, the linke r prints

Retype the command, supplying an even octal value.

When you do not specify /B, the linker positions the load module so that the lowest address is location 1000 (octal).
If the ASECT size is greater than 1000, the size of ASECT is used.

If you supply more than one /B option during the creation of a load module, the linker uses the first /B option
specification. /B is illegal when you are linking to a high address (/H). /B is also illegal with foreground links. These
modules are always linked to a bottom address of 1000 (octal).

NOTE
The bottom value must be an unsigned even octal num-
ber. If the value is odd, the ?LINK-F-/B odd value error
message prints. Reenter the command string specifying
an unsigned even octal number as the argument to the
/B option.

The following command causes the relocatable code from the input file to be linked starting at location 500 (octal).

Tic O u T ~~' t.1 ~' r i.- ~' ::~::f: ~ I~' E.! ~' / 1~ : ~ C} ~

11.8.2 Continue Option (/C) or (//)
The continue option (/C) lets you type additional lines of command string input. Use the /C option at the end of
the current line and repeat it on subsequent command lines as often as necessary to specify all the input modules
in your program. Do not enter a /C option on the last line of input.

The following command indicates that input is to be continued on the next line; the linker prints an asterisk.

An alternate way to enter additional lines of input is to use the //option on the first line. The linker continues to
accept lines of input until it encounters another / /option, which can be either on a line with input file specifica-
tions, or on a line by itself. The advantage of using the // option instead of the /C option is that you do not have
to type the //option on each continuation line. This example shows how the linker itself is linked:

11-17 March 1978

Linker (LINK)

*l~~ht~V:~/Cl::~
* L..i~i~C~~I:~/Cl : :l

*I...~Ih~~UfCI: :~

*!/

You cannot use the /C option and the / /option together in a link command sequence. That is, if you use / / on the
first line, you must use / / to terminate input on the last line. If you use /C on the first line, use /C on all lines but
the last.

11.8.3 Extend Program Section Option (/E:n)
The /E:n option allows you to extend a program section to a specific value. Type the /E:n option at the end of the
first command line. After you have typed all input command lines, the linker prompts with:

E:•:t~r~~ ~~c~ ~ ~. c.~r.~''

Respond with the name of the program section to be extended. The resultant program section size is equal to or
greater than the value you specify depending upon the space the object code actually requires. Note that you can
extend only one section.

The following example extends section CODE to 100 (octal) blocks.

~:•:~~r~~ ~~~r~:i. car•'? C:t~I:~~:

11.8.4 Default FORTRAN Library Option (/F)
By indicating the /F option in the command line, you can link the FORTRAN library (FORLIB.OBJ on the system
device SY:) with the other object modules you specify. You do not need to specify FORLIB explicitly. For example:

The object module AB.OBJ from DK: and the FORTRAN library SY: FORLIB.OBJ are linked together to form a
load module called FILE.SAV.

The linker automatically searches a default system library, SY:SYSLIB.OBJ. The library normally includes the
modules that compose FORLIB. The /F option is provided only for compatibility with other versions of RT-11.
You should not have to use /F.

11.8.5 Highest Address Option (/H:n)
The /H:n option allows you to specify the top (highest) address to be used by the relocatable code in the load module.
The argument, n, represents an unsigned even octal number. If you do not specify n, the linker prints:

?~Nx~h~-~~~iM ~~~~ v~a. ~~~c:~

Retype the command, supplying an even octal number to be used as the value.

If you specify an odd value, the linker responds with:

Retype the command, supplying an even octal number.

11-18 March 1978

Linker (LINK

If the value is not large enough to accommodate the relocatable code, the linker prints:

'?L ~ ~h~~~/H v~ ~. ~.~~ t~c~ 1 yaw

Relink the program with a larger value.

The /H option cannot be used with the /R or %Y or /B options.

11-18.1 March 1978

Linker (LINK)

NOTE
Be careful when you use the /H option. Most RT-11 pro-
grams use the free memory above the relocatable code as
a dynamic working area for I/O buffers, device handlers,
symbol tables, etc. The size of this area differs on different
memory configurations. Programs linked to a specific high
address might not run in a system with less physical mem-
ory because there is less free memory.

11.8.6 Include Option (/I)
The /I option lets you take global symbols from any library and include them in the linking process even when they
are not needed to resolve globals. This provides a method for forcing modules that are not called by other modules
to be loaded from the library. When you specify the /I option, the linker prints:

l.. i ~ r~ r~ ~e~3 rc~?

Reply with the list of global symbols to be included in the load module : type a carriage return to enter each symbol
in the list. A carriage return alone terminates the list of symbols.

The following example includes the global $~~iORT in the load module

L i ~ r~ r~ ~~~ r~t~? ~~h~Gl~`T
Li~r~r~ ~~~r~~?

11.8.7 Memory Size Option (/K:n)
The /K:n option lets you insert a value into word 56 of block 0 of the image file. The argument, n, represents the
number of 1K blocks of memory required by the program; n is an integer in the range 1-28. You cannot use the /K
option with the /R option. The /K:n option is provided mainly for compatibility with the RSTS operating system.
You should not need to use it with RT=11.

11.8.8 LDA Format Option (/L)
The /L option produces an output file in LDA format instead of memory image format. The LDA format file can
be output to any device including those that are not block-replaceable, such as paper tape or cassette. It is useful
for files that are to be loaded with the Absolute Loader. The default file type .LDA is assigned when you use the /L
option. You cannot use the /L option with the overlay option (/O) or the foreground link option (/R). The following
example links files IN and IN2 on device DK: and outputs an LDA format file OUT.LDA to the cassette and a load
map to the line printer.

*;C'T : CUT r 1...~' ::::: T ~ y :i: i4."'/~..

11.8.9 Modify Stack Address Option (/M [: n ~)
The stack address, location 42, is the address that contains the initial value for the stack pointer. The /M option lets
you specify the stack address. Do not combine the /R (foreground link) option with /M. The argument, n, is an even,
unsigned 6-digit octal number that defines the stack address. After all input lines have been typed, the linker prints
the following message if you have not specified a value for n:

In this case, specify the global symbol whose value is the stack address. You cannot specify a number. If you specify
a nonexistent symbol, an error message prints and the stack address is set to the system default (1000 for SAV files)
or to the bottom address if you used /B. If the program's absolute section extends beyond location 1000, the default
stack space starts after the largest .ASECT contribution.

11-19 March 1978

Linker (LINK)

Direct assignment (with .ASECT) of the stack address within the program takes precedence over assignment with
the /M option. The statements to do this in a MACRO program are as follows:

.~1~~CT
.... . ~ ~:.

. WQ~D I ~ ~: ~'~~' r ~ ~ ~'T :~ ~l_ ~~AC~ ~Y~i~al~ VAI~U~

. ~'~~~T ~ ~E'r'lJl:i~! era ~'~V ~ aU~ S~~T' x a>~

The following example modifies the stack address.

*iJU7'F'U~' ~~ ~ ~~'UT/i~

11.8.10 Overlay Option (/O:n)
The /0 option segments the load module so that the entire program is not memory resident at one time. This lets
you execute programs that are larger than the available memory. The argument, n, is an unsigned octal number (up
to six digits in length) specifying the overlay region to which the module is assigned. The /0 option must follow (on
the same line) the specification of the object modules to which it applies, and only one overlay region can be specified
on a command line. Overlay regions cannot be specified on the first command line; that is reserved for the root seg-
ment. You must use /C or / /for continuation.

You specify co-resident overlay routines (a group of subroutines that occupy the overlay region and segment at
the same time) as follows:

*a~..1~~ ~ CI~.J~~a ~ M lt~

All modules that the linker encounters until the next /O option will be co-resident overlay routines. If you specify,
at a later time, the /O option with the same value you used previously (same overlay region), then the linker opens
up the corresponding overlay area for a new group of subroutines. The new group of subroutines occupy the same
locations in memory as the first group, but not at the same time. For example, if subroutines in object modules R
and S are to be in memory together, but are never needed at the same time as T, then the following commands to
the linker make R and S occupy the same memory as T (but at different times):

~Ki"fA ~ ~! ~ I...~' : ~~I~tJa'T~t:
~Kht r bra : 1. ~C:
~T/a:~.

The example shown above can also be written as follows:

~Cf~l~l:1/C
*~/C
~C~'~a:1

The following example establishes two overlay regions.

~a~.~~la;~.
~a~.~~i~~ : ~

~ar~,~x~~a:~~
iii

11-20

Linker (LINK)

You must specify overlays in ascending order by region number. For example

~KA~A~~
*~/Cl :1 /C

~k~i/C~ : ~. /f:
~~ q ~~' ~ t~ d ~'~ / C.;
~Kta I C.1:

The following overlay specification is illegal since the overlay regions are not given in ascending numerical order (an
error message prints in each case):

~.

*x::::l...:CE~~Q/l
~Ki...~~~'~:I.lC.I ::l
~Kl.. ~ ~~~~0 : C)
?~.. r ~h....~..../Cl i ~r~~ red
*l/

In the above example, the overlay option immediately preceding the error message is ignored.

11.8.11 Library List Size Option (/P : n)
The /P:n option lets you change the amount of space allocated for the library routine list. Normally, the default
value allows enough space for your needs. It reserves space for approximately 256 unique library routines, which is
the equivalent of specifying /P:256. (decimal) or /P:400 (octal).

The error message ?LINK-F-Library list overflow, increase size with /P indicates that you need to allocate more
space for the library routine list. You must relink the program that makes use of the library routines. Use the
/P:n option and supply a value for n that is greater than 256.

You can use the /P:n option to correct for symbol table overflow. Specify a value for n that is less than 256. This
reduces the space used for the library routine list and increases the space allocated for the symbol table. If the value
you choose is too small, the ?LINK-F-Library list overflow, increase size with /P message prints. In the following
command, the amount of space for the library routine list is increased to 300 (decimal).

11.8.12 REL Format Option (/R[:n])
The /R[:n] option produces an output file in REL format for use as a foregound job with the FB or XM monitor.
You cannot use .REL files with the SJ monitor. The /R option assigns the default file type .REL to the output file.
The optional argument, n, represents the amount of stack space to allocate for the foreground job. The default value
is 128. (decimal) bytes of stack space. If you also use the /M option, the value or global symbol associated with it
overrides the /R value.

The following command links files FILEI.OBJ and NEXT.OBJ and stores the output on DT2: as FILEO.REL. It
also prints a load map on the line printer.

~r~~r~ : ~~ :~ i~~:c:a ~ j...r~ ~ ~~~ ~: ~.~~::::~ ~ ~~::xr~~ : ~aa

You cannot use the /B, /H, and /L options with /R since a foreground REL job has a temporary bottom address of
1000 and is always relocated by FRLJN. An error message prints if you attempt this. The /K option is also illegal
with /R.

11-21

Linker (LINK)

11.8.13 Symbol Table Option (/S) ,
The /S option instructs the linker to allow the largest possible memory area for its symbol table at the expense of
input and output buffer space, which makes the linking process slower. You should use the /S option only if an
attempt to link a program failed because of symbol table overflow. Often, use of /S allows the program to link.

11.8.14 Transfer Address Option (/T [: n J)
The transfer address is the address at which a program starts when you initiate execution with an R, RUN, or FRUN
command. It prints on the last line of the load map. The /T option lets you specify the start address of the load
module. The argument, n, is a six-digit unsigned octal number that defines the transfer address. If you do not specify
n, the following message prints:

In this case, specify the global symbol whose value is the transfer address of the load module. Terminate your
response with a carriage return. You cannot specify a number in answer to this message. If you specify a nonexistent
symbol, an error message prints and the transfer address is set to 1 so that the program traps immediately if you
attempt to execute it. If the transfer address you specify is odd, the program does not start after loading and control
returns to the monitor.

Direct assignment (.ASECT) of the transfer address within the program takes precedence over assignment with the
/T option. The transfer address assigned with a /T has precedence over that assigned with an .END assembly directive.
To assign the transfer address within a MACRO program, use statements similar to these:

.A~~CT
. =40
. Wp~ir~ ~TAr~T 1 r ~Yl~r~gL VALI~~ ~'Cl~ T~A~lS~'~~ Ar~rir~E~~
. ~'~~CT ~ ~ETl~ri~! Td ~'~i~V I qU~ ~~CT I CIl`t

~TA~T1:

or
STA~T~ : ~ ~~CO~lL~A~Y ~TA~T x ~!C Ar~rifi~~~

. EI~I~ ~TA~iT~

The following example links the files LIBRO.OBJ and ODT.OBJ together and starts execution at ODT's transfer
address.

~K~l...~~i(.~~~T s► I~.~;~itaL~T~wI...I~~Q s► tJr~T/T/W//
~CLJ~~~1/~ll :~

* I... :C E~t~/Cl : :i.
~ I~.:~ ~:; ~ ;:~ / a : 1.
* L~~~~~/t:l : 1 !/
T r ~ r•~ t~ •~ ~ r ~ ~.s ire ~ c:~ :l '~' Cl . i:l Z:i '1'

11-22

Linker (LINK)

11.8.15 Round Up Option (/U:n)
The /U:n option rounds up the section you specify so that the size of the root segment is a whole number multiple
of the value you supply. The argument, n, must be a power of 2. When you specify the /U:n option, the linker
prompts

Reply with the name of the program section to be rounded. The program section must be. in the root segment.
Note that you can round only one program section. The following example rounds up section CHAR.

~~
*~.haa~ ~ ~r-r :::~l...l~aa ~ii~ : ~ as
f~c~+.~r+~~ ~~~•~ :~ rar•+~ C~lAi~~

If the program section you specify cannot be found, the linker prints ?LINK-W-Round section not found. The
linking process continues with no rounding.

11.8.16 Map Width Option (/W)
The /W option directs the linker to produce a wide load map listing. If you do not specify the /W option, the listing
is wide enough for three GLOBAL VALUE columns (normal for paper with 80 columns). If you use the /W com-
mand, the listing is six columns wide, which is ideal fora 132 column page.

n

11.8.17 Bit Map Inhibit Option (/X)
The /X option instructs the linker not to output the bit map if code is below 400. This option is provided only for
compatibility with the RSTS operating system. The bit map is stored in locations 360-377 in block 0 of the load
module. The linker normally stores the program memory usage bits in these eight words. Each bit represents one
256-word block of memory. This information is used by the R, RUN and GET commands when loading the program;
therefore, use care when you use this option.

11.8.18 Boundary Option (/Y:n)
The /Y:n option starts a specific program section on a particular address boundary. The linker generates a whole
number multiple of n, the value you specify, for the starting address of the program section. The argument, n, must
be a power of 2. The linker extends the size of the previous program section to accommodate the new starting ad-
dress. When you have entered all the input lines, the linker prompts:

Respond with the name of the program section whose starting address you are modifying. Terminate your response
with a carriage return. Note that you can specify only one program section for this option. If the program section
you specify cannot be found, the Linker prints ?LINK-W-Boundary section not found. The linking process continues.

The RT-11 monitors have internal 2-block overlays. The first overlay segment, OVLYO, must start on a disk block
boundary:

~cl~'!~~'fi~lci..1. ,~.~ Y.~i:~.C-~l~1':~~''~.J r + ~':~ ~. ~,.1 r F'il~~'~r.J ~ !~l~.~Y ::1. ~aC~

E{c~+..~r•,~~ r~ ~~c.~•~.:i. rar+'~ tJ~1~-YQ

11.8.19 Zero Option (/Z :n)
The /Z:n option fills unused locations in the load module and places a specific value in these locations. The argument,
n, represents the value to be placed in the unused locations. This option can be useful in eliminating random results
that occur when the program references uninitialized memory by mistake. The system automatically zeroes unused
locations. Use the /Z :n option only when you want to store a value other than zero in unused locations.

11-23

Linker (LINK)

11.9 LINKER PROMPTS
Some of the linker operations prompt for more information, such as the names of specific global symbols or sections.
The linker issues the prompt after you have entered all the input specifications, but before the actual linking begins.
Table 11-6 shows the sequence in which the prompts occur.

Table 11-6 Linker Prompting Sequence

Prompt Option

Transfer symbol?

Stack symbol?

Extend section?

Boundary section?

Round section?

Library search?

/T

/M

/E:n

/Y•n

/U:n

/I

The library search prompt is last because it can accept more than one symbol and is terminated by a carriage return
on a line by itself.

Note that if the command lines are in an indirect file and the linker encounters an end-of--file before the prompting
information has been supplied, it prints the prompt messages on the terminal.

The following example shows how the linker prompts for information when you combine options.

~~~..f~aa ~ ~~i...ha~ ~ ~~ri~~~ : ~ c~af~ : ~oai~.~ : A ai :c 
T r ~ r•~ ~ f ~ r ~ ~.~ try lwi ca 1 '? tJ . Cl ~~ T 

~ra~.ar~~~r~ ~~ct:~r~r~'? C~C~~i~ 

~.i~r~r~ ~~~:;r~~~'~ 

11-~4 



CHAPTER 12 

LIBRARIAN (LIBR) 

The librarian utility program (LIBR) lets you create, update, modify, list, and maintain object library files. It also 
lets you create macro library files to use with the V03 MACRO-11 assembler. 

A library file is a direct access file (a file that has a directory) that contains one or more modules of the same module 
type. The librarian organizes the library files so that the linker and MACRO-11 assembler can access them rapidly. 
Each library contains a library header, library directory (or global symbol or macro name table), and one or more 
object modules or macro definitions. The object modules in a library file can be routines that are repeatedly used 
in a program, routines that are used by more than one program, or routines that are related and simply gathered 
.together for convenience. The contents of the library file are determined by your needs. An example of a typical 
object library file is the default system library that the linker uses, SYSLIB.OBJ. An example of a macro library file 
is SYSMAC.SML, which MACRO uses automatically to process programmed requests. 

You access object modules in a library file from another program by making calls or references to their global 
symbols; you then link the object modules with the program that uses them, producing a single load module (see 
Chapter 11). 

Consult the RT-11 Software Support Manual for more information on the internal data structure of a library file. 
However, that information is not necessary for your understanding of this chapter. 

12.1 CALLING AND USING LIBR 
To call the RT-11 librarian from the system device, respond to the dot (.) printed by the keyboard monitor by 
typing: 

R LIBR 

The Command String Interpreter prints an asterisk at the left margin on the console terminal when it is ready to 
accept a command line. Chapter 6, Command String Interpreter, describes the general syntax of the command line 
LIBR accepts. 

H 

Type two CTRL/Cs to halt the librarian at any time (or a single CTRL/C to halt the librarian when it is waiting for 
console terminal input) and return control to the monitor. To restart the librarian, type R LIBR or REENTER in 
response to the monitor's dot. 

Section 12.2 explains how to use the librarian to create and maintain object libraries; Section 12.3 describes how to 
create macro libraries. 

Specify the LIBR command string in the following general format: 

where 

library-filespec [n] ,list-filespec [n] =input-filespecs/options 

library-filespec [n] represents the library file to be created or updated. The optional argument, n, 
represents the number of blocks to allocate for the output file. 

12-1 



Librarian (LIBR ~ 

list-filespec [n] 

input-filespac 

option 

represents a listing file for the library's contents. The optional argument, n, represents 
the number of blocks to allocate for the. listing file. 

represents the input object modules (you can specify up to six input files); it can also 
represent a library file to be updated. 

represents an option from Table 12-1. 

You specify devices and file names in the standard RT-11 command string syntax, with default file types assigned 
as follows 

File File Type 

list file : .LST 
library file : .OBJ 
input files: .OBJ 

If you do not specify a device, the default device (DK:) is assumed. 

Each input file consists of one or more object modules and is stored on a given device under a specific file name and 
file type. Once you insert an object module into a library file you no longer reference the module by the name of the 
file of which it was a part; instead, you reference it by its individual module name. You assign this module name with 
the assembler with either a .TITLE statement in the assembly source program, or with the default name .MAIN, upon 
absence of a .TITLE statement or the subprogram name for FORTRAN routines. Thus, for example, the input file 
FORT.OBJ ca.,n exist on DT2: and can contain an object module called ABC. Once you insert the module into a 
library file, reference only ABC (not FORT.OBJ). 

The input files normally do not contain main programs but rather subprograms, functions, and subroutines. The 
library file must never contain a FORTRAN "BLOCK DATA" subprogram; there is no undefined global symbol to 
cause the linker to load it automatically. 

12.2 OPTION COMMANDS AND FUNCTIONS FOR OBJECT LIBRARIES 
You maintain object library files by using option commands. Functions that you can perform include object module 
deletion, insertion and replacement, library file creation, and listing of an object library file's contents. 

Table 12-1 summarizes the options available for you to use with RT-11 LIBR for object libraries. The following 
sections, which are arranged alphabetically by option, describe the options in greater detail. 

Table 12-1 LIBR Object Options 

Option Command Line Section Meaning 

/C any but last 12.2.1 Command continuation; allows you to type the input 
specification on more than one line. 

/D first 12.2.4 Delete; deletes modules that you specify from a library file. 

/E first 12.2.5 Extract; extracts a module from a library and stores it in an 
.OBJ file. 

/G first 12.2 ~6 Global deletion; deletes global symbols that you specify 
from the library directory. 

/N first 12.2.7 Names; includes the module names in the directory. 

12-2 
(Continued on next page) 



Librarian (LIBRA 

Table 12-1 (Copt.) LIBR Object Options 

Option Command Line Section Meaning 

/P first 12.2.8 P-section names; includes the program section names in the 
directory. 

/R first 12.2.9 Replace; replaces modules in a library file. This option must 
follow the file specification to which it applies. 

/U first 12.2.10 Update; inserts and replaces modules in a library file. This 
option must follow the file specification to which it applies. 

/W first 12.2.11 Indicates wide format for the listing file. 

// first and last 12.2.1 Command continuation; allows you to type the input 
specification on more than one line. 

There is no option to indicate module insertion. If you do not specify an option, the librarian automatically inserts 

modules into the library file. 

12.2.1 Command Continuation Options (/C and //) 
You must use a continuation option whenever there is not enough room to enter a command string on one line. The 

maximum number of input files that you can enter on one line is six; you can use the /C option or the // option to 

enter more. Type the /C option at the end of the current line and repeat it at the end of subsequent command lines 

as often as necessary, so long as memory is available; if you exceed memory, an error message prints. Each continua-

tion line after the first command line can contain only input file specifications (and no other options). Do not specify 

a /C option on the last line of input. If you use the // option, type it at the end of the first input line and again at the 

end of the last input line. 

The following example creates a library file on the default device (DK:) under the file name ALIB.OBJ; it also creates 

a listing of the library file's contents as LIBLST.LST (also on the default device). The file names of the input modules 

are MAIN.OBJ, TEST.OBJ, FXN.OBJ, and TRACK.OBJ, all from DTl :. 

~I... ~ ~ y ~. ~ ~~~t:~~~~~~:~~r ~ : era ~ ~ ~ ~rr~~~r ~ ~-x~/r~ 
~~:~'r~.:~r~~~c~ 

The next example creates a library file on the default device (DK:) under the name BLIB.OBJ. It does not produce 

a listing. Input files are MAIN.OBJ from the default device, TEST.OBJ from RK1:, FXN.OBJ from RKO:, and 
TRACK.OBJ from DT 1:. 

*l~~i~~ : ~~ x~ 
~k X:~ 'I' :1.: J' C~ ~ C~ I~ / / 

Another way of writing this command line is: 

12-3 



Librarian (LIBR ~ 

12.2.2 Creating a Library Fie 
To create a library file, specify a file name on the output side of a command line. 

The following example creates a new library called NEWLIB.OBJ on the default device (DK:). The modules that 
make up this library file are in the files FIRST.OBJ and SECOND.OBJ, both on the default device. 

12.2.3 Inserting Modules into a Library 
Whenever you specify an input file without specifying an associated option, the librarian inserts the modules in the 
file into the library file you name on the output side of the command string. You can specify any number of input 
files. If you include section names (if you use /P) in the global symbol table and if you attempt to insert a i`ile that 
contains a global symbol or PSECT (or CSECT) having the same name as a global symbol or PSECT already existing 
in the library file, the librarian prints a warning message. The librarian does, however, update the library file, ignore 
the global symbol or section name in error, and return control to the CSI. You can then enter another command 
string. 

Although you can insert object modules that exist under the same name (as assigned by the .TITLE statement), this 
practice is not recommended because of the difficulty and ambiguity involved when you need to update these modules 
(Sections 12.2.2.9 and 12.2.2.10 describe replacing and updating). 

NOTE 
The librarian performs module insertion, replacement, 
deletion, merge, and update concurrently with creating 
the library file. Therefore, you must indicate the library 
file to which the operation is directed on both the input 
and output sides of the command line, since effectively 
the librarian creates a "new" output library file each 
time it performs one of -those operations. You must 
specify the library file first in the input field. 

The following command line inserts the modules included in the files FA.OBJ, FB.OBJ, and FC.OBJ on DT1: into a 
library file named DXYNEW.OBJ on the default device. The resulting library also includes the contents of library 
DXY.OBJ. 

* l:i ~ Y iii ~~ !~I :..: f~ X ̀ ~ y fi 'T :i. * r" ~ y i~" I { ~ i~' t 

The next command line inserts the modules contained in files THIRD.OBJ and FOURTH.OBJ into the library 
NEWLIB.OBJ. 

~ i~ r:: W i...1: ~~ ~ ~.. :r t 'T' :::: i~ i::: W I.~ :r T:~ q 'r i-•i ]: i" C:i ~ i:~' E:1 ~.1 ~~ ~' i--i 

Note that the resulting library contains the original library plus some new modules. Note also that the resulting 
library replaces the original library because the same name was used in this example for the input and output library. 

12.2.4 Delete Option (/D) 
The /D option deletes modules and all their associated global symbols from the library. 

When you use the /D option, the librarian prompts: 

Respond with the name of the module to be deleted followed by a carriage return; continue until you have entered 
all modules to be deleted. Type a carriage return immediately after the Module name? message to terminate input 
end initiate execution of the command line. 

12-4 



Librarian (LIBRJ 

The following example deletes the modules SGN and TAN from the library file TRAP.OBJ on DT3:. 

of c ~~ 'r' :3 + •r rt r~ l"' :::: x + ~r ~ a ~r l~ ~ r' / x~ 
~ca~~.~ ~. c~ r•,~tY,~~? {~t~~! 

~ica~.~~.~ 1 ~ r•,~~~,c~~ 

The next example deletes the module FIRST from the library LIBFIL.OBJ; all modules in the file ABC.OBJ replace 
old modules of the same name in the library; it also inserts the modules in the file DEF.OBJ into the library. 

.~ 

y ~'i~~~~..~ ~. ~ r•, ~r~,~~'? 

In the following example, the librarian deletes two modules of the same name from the library file LIBFIL.OBJ. 

~'t c~ r,~ ~.a :I. ~ r, ~ n, ~'~' X 

12.2.5 Extract Option (/E) 
The /E option allows you to extract an object module from a library file and place it in an .OBJ file. 

When you specify the /E option, the librarian prints: 

Respond with the name of the object module to be extracted. If you specify a global name, the librarian extracts 
the entire module of which that global is a part. 

You cannot use the /E option on the same command line with any other option. 

The following example extracts the ATAN routine from the FORTRAN library, SYSLIB.OBJ, and stores it in a file 
called ATAN.OBJ on DX1:. 

C~ ~. c:~ ~:~~ :L '~ 

The next example extracts the $PRINT routine from SYSLIB.OBJ and stores it on DM 1: as PRINT.OBJ. 

r 

:i. c~ ~~ ~:3 :I. ,~ 

The extract option is particularly useful if you need to use a routine in only one overlay segment. Normally, all 
modules that the linker acquires automatically from a library go into the root segment. To circumvent this, you can 
extract a routine with /E, then link it into an overlay segment instead of into the root segment. 

r"1 
12.2.6 Delete Global Option (/G) 
The /G option lets you delete a specific global symbol from a library file's directory. 

When you use the /G option, the librarian prints: 

12-5 



Librarian (LIBR J 

ta" 1 c~ 1: ~ ~ l ,' 

Respond with the name of the global symbol to be deleted followed by a carriage return; continue until you have 
entered all globals to be deleted. Type a carriage return immediately after the Global? message to terminate input 
and initiate execution of the command line. 

The following command instructs the librarian to delete the global symbols NAMEA and NAMEB from the directory 
found in the library file ROLL.OBJ on DK:. 

t~ 3. r~~~t~ 1'? ~lA~'f~:~1 

~:l.c:~~~:lf;~ 

The librarian deletes globals only from the directory (and not from the library itself). Whenever you update a library 
file all globals that you previously deleted are restored unless you use the /G option again to delete them. This feature 
lets you recover if you inadvertently delete the wrong global. 

12.2.7 Include Module Names Option (/N) 
The librarian does not include module names in the directory unless you use the /N option on the first line of the 
command. The linker loads modules from libraries based on undefined globals, not on module names. The linker 
also provides equivalent functions by using global symbols and not module names. Normally, then, it is a waste of 
space and a performance compromise to include module names in the directory. 

If you do not include module names in the directory, the MODULE column of the directory listing is blank unless 
the module requires a continuation line to print all its globals. A plus (+) sign in the MODULE column indicates 
continued lines. The /N option is useful mainly when you create a temporary library in order to obtain a directory 
listing. 

If the library does not have module names in its directory, you must create a new library to include the module 
names. The following example illustrates how to do this. It creates a temporary new library from the current library 
(by specifying the null device for output) and lists its directory on the terminal. The current library OLDLIB remains 
unchanged. 

T~~'i~ '1'lJ~ C}~3--•~i~Y-•• ~ ~ ~C} : ;3c~ : ~C} 

~'iQDiJ1_.~.: tal...t:l~~~..~a Ial...iJB~l...~i t~l.~t:l~{~i...~a 

,Jl~ll~.. ,J~IJI_. 
!.N 

:•al1~~T~ :al1~~T~ 
J~L~1~~ ,J~X:~xi 

12.2.8 Include P-section Names Option (/P) 
The librarian does not include program section names in the directory unless you use the /P option on the first line 
of the command. The linker does not use section names to load routines from libraries; including the names can de-
crease linker performance. Including program section names also causes a conflict in the library directory and sub-
sequent searches, since the librarian treats section names and global symbols identically. 

This option is provided for compatibility with RT-11V2C. DIGITAL recommends that you avoid using it with 
RT-11 V03. 

12-6 



Librarian (LIBR J 

12.2.9 Replace Option (/R) 
Use the /R option to replace modules in a library file.The /R option replaces existing modules in the library file you 
specify as output with the modules of the same names contained in the files) you specify as input. In the command 
string, enter the input library file before the files used in the replacement operation. 

If an old module does not exist under the same name as an input module, or if you specify the /R option on a library 
file, the librarian prints an error message preceded by the module name, and ignores the replace command. /R must 
follow each input file name containing modules for replacement. 

The following command line indicates that the modules in the file INB.OBJ are to replace existing modules of the 
same names in the library file TFIL.OBJ. The object modules in the files INA.OBJ and INC.OBJ are to be added to 
TFIL. All files are to be stored on the default device DK:. 

* ~' F" ~ C.. ~~ 'Y' M~' :C l... ~ :C ~! A p ~ ~ ~; / 1~~ ~ :!: ~! it 

The same operation occurs in the next command as in the preceding example, except that this updated library file 
is assigned the new name XFIL. 

*XI•~ :I: IM::.:'T'~' ~ 1... p :C i~A r :C ~~~/F~ ~ ~ i~tC.: 

12.2.10 Update Option (/U) 
The /U option lets you update a library file by combining the insert and replace functions. If the object modules 
that compose an input file in the command line already exist in the library file, the librarian replaces the old modules 
in the library file with the new modules in the input file. If the object modules do not already exist in the library 
file, the librarian inserts those modules into the library. (Note that some of the error messages that might occur with 
separate insert and replace functions do not print when you use the update function.) /U must follow each input 
file that contains modules to be updated. Specify the input library file before the input files in the command line. 

The following command line instructs the librarian to update the library file BALIB.OBJ on the default device. First 
the modules in FOLT.OBJ and BART.OBJ replace old modules of the same names in the library file, or if none al-
ready exist under the same names, the modules are inserted. The modules from the file TAL.OBJ are then inserted; 
an error message prints if the name of the module in TAL.OBJ already exists. 

~KI~AI...I:I{:~~~Ai._:C~~ ~ I~"t:ll...~'/l1 q T'Al.. y F{AFt~'/U 

In the next example, there are two object modules of the same name (X) in both Z and XLIB; these are first deleted 
from XLIB. This ensures that both the modules called X in file Z are correctly placed into the library. Globals SEC 1 
and SEC2 are also deleted from the directory but automatically return the next time the library XLIB.OBJ is updated. 

*XC.. :I: Z{:.~XI... :C ~:~/Z~ ~► Z/l.1/t3 
~''~ t:1 r.:i t..l .~. to I"1 i:3 IYI C' ̀ !' X 

~ r~ c:i ~..i :1 ~ r•~ ~:~ iY~ F~ ̀ ? X 

ra :i. t:~ ~:~ {3 ~. -~ 
1.~ ~

•M 

... A 

12.2.11 Wide Option (/W) 
The /W option gives you a wider listing if you request a listing file. The wider listing has six GLOBAL columns in-
stead of three, as in the normal listing. This is useful if you list the directory on a line printer or a terminal that has 
132 columns. 

12-7 



Librarian (LIBR) 

12.2.1 Z Listing the Directory of a Library File 
You can request a listing of the contents of a library file (the global symbol table) by indicating both the library file 
and a list file in the command line. Since a library file is not being created or updated, you do not need to indicate 
the file name on the output side of the command line; however, you must use a comma to designate a null output 
library file. 

The command syntax is as follows: 

*,LP : =lib rary-file spec 

*,list-filespec=library-filespec 

or 

where 

library-filespec represents the existing library file. 

LP: indicates that the listing is to be sent directly to the line printer (or terminal, if 
you use TT : ). 

list-filespec represents a list file of the library file's contents. 

The following command outputs to DT2: as LIST.LST, a listing of the contents of the library file LIBFIL.OBJ on 
the default device . 

~~' y l:~ ~' ~ :1... :1: a 1~' ::~ i... ~ ~{ ~ :~ I... 

The next command sends to the line printer a listing of all modules in the library file FLIB.OBJ, which is stored on 
the default device. 

Here is a sample section of a large directory listing: 

~~r~µ:~ :i. i...:r.r~~~~r~r~xr~~ ~c~s~. ~~~ ~r~~~ q~~..~~~Y....~~~ ~ ~.: a~ : a:~ 

~~ r~ ~ ~~~~~ ~r~ ~ ~~; ~r'~~ 

The first line of the listing file shows the version of the librarian that was used and the current date and time. The 
second line prints the library file name and the date and time the library was created. Module names are not included 
in this example. Each line in the rest of the listing shows only the globals that appear in a particular module. If a 
module contains more global symbol names than can print on one line, a new line will be started with a plus (+) sign 
in column 1 to indicate continuation. 

12-5 



Librarian (LIBR J 

12.2.13 Merging Library Files 
You can merge two or more library files under one file name by specifying in a single command line all the library 
files to be merged. The librarian does not delete the individual library files following the merge unless the output 
file name is identical to one of the input file names. 

The command syntax is as follows: 

*library-filespec=input-filespecs 

where 

library-filespec represents the library file that will contain all the merged files. (If a library file 
already exists under this name, you must also indicate it in the input side of the 
command line so that it is included in the merge). 

input-filespec represents a library file to be merged. 

Thus, the following command combines library files MAIN.OBJ, TRIG.OBJ, STP.OBJ, and BAC.OBJ under the 
existing library file name MAIN.OBJ; all files are on the default device DK:. Note that this replaces the old contents 
of MAIN.OBJ. 

~ i~'i ~ I ~! ~= fief ~ x ~! ~ 'r fi :1: Ci u ~~-'i 'f ~::' r ~~ ~ t 

The next command creates a library file named FORT.OBJ and merges existing library files A.OBJ, B.OBJ, and 
C.OBJ under the file name FORT.OBJ. 

~: ~' Cl ~ T' ..:: ~ y ~~ ~ t:; 

NOTE 
Library files that you combine using PIP are illegal as 
input to both the librarian and the linker. 

12.2.14 Combining Library Option Functions 
You can request two or more library functions in the same command line, with the exception of the /E option, which 
cannot be specified on the same command line with any other option. The librarian performs functions (and issues 
appropriate prompts) in the following order: 

1. /C or // 
2. /D 
3. /G 
4. /U 
5. /R 
6. Insertions 
7. Listing 

Here is an example that combines options: 

* ~~' 1: L k" r i... ~' : ~ 1~~' :~ ~.. M:: ~' 1:~ r ~'i t:l ~:~ ~ y ~ d I~ Y / 

~ o ~ +..i ~. ~:~ r-+ ~:~ it+ ~'~ 

12-9 



Librarian (LIBR J 

The librarian performs the functions in this example in order, as follows: . 

1. Deletes modules XYZ and A from the library file FILE.OBJ. 
2. Replaces any duplicate of the modules in the file MODY.OBJ. 
3. Inserts the modules in the file MODX.OBJ. 
4. Lists the directory of FILE.OBJ on the line printer. 

12.3 OPTION COMMANDS AND FUNCTIONS FOR MACRO LIBRARIES 
The librarian lets you create macro libraries. A macro library works with the V03 MACRO-11 assembler to reduce 
macro search time. 

The .MACRO directive produces the entries in the library directory (macro names). LIBR does not maintain a direc-
tory listing file for macro libraries; you can print the ASCII input file to list the macros in the library. 

The default input and output file type for macro files is .MAC. Be careful not to give the library file the same name 
as one of the input files. The libr_axian checks for this error and prints the following error message: 

'~' I... ~: ~{ ~~ .... ~- .... Cl ~.~ •k. ~ ~ ~..t •N~ ~~ r••~ c~ :~. r•~ :~ ~..i •i: •f :i.1. r•~ ~:3 ~r~ t 1•~ ~ ~ ~ a~ 

The librarian removes comments from your source input file except for those comments within a macro (that is, 
between a .MACRO and .ENDM pair of directives). These comments take up space during the assembly and in the 
library. Remove comments wherever possible from the macros before creating a macro library, if saving space and 
shortening assembly time are important to you. 

Table 12-2 summarizes the options you can use with macro libraries. The options are explained in detail in the 
following two sections. 

Table 12-2 LIBR Macro Options 

Options Command Line Section Meaning 

/C any but last 12.3.1 Command continuation; allows you to type the input 
specification on more than one line. 

iM [:n) first 12.3.2 Macro; creates a macro library from the ASCII input file 
containing .MACRO directives. 

// first and last 12.3.1 Command continuation; allows you to type the input 
specification on more than one line . 

12.3.1 Command Continuation Options (iC or //) 
These options are the same for macro libraries as for object libraries. See Section 12.2.1. 

12.3.2 Macro Option (/M [ : n ] ) 
The iM [:n] option creates a macro library file from an ASCII input file that contains .MACRO directives. The op-
tional argument, n, determines the amount of space to allocate for the macro name directory. Remember that n ~is 
interpreted as an octal number; you must follow n by a decimal point (n.) to indicate a decimal number. Each 64 
macros occupy one block of library directory space. The default value for n is 128, enough space for 128 macros, 
which will use 2 blocks for the macro name table. 

12-10 March 1978 



Librarian ~LIBR J 

The command syntax is as follows: 

*library-filespec=input-filespec/M [:n] 

where 

library-filespec represents the macro library to be created. 

12-10.1 March 1978 





Librarian (LIBRA 

input-filespec represents the ASCII input file that contains .MACRO definitions. 

/M[:n] is the macro option. 

The continuation options (/C or //) are the only options you can use with the macro option. 

The following example creates the macro Library SYSMAC.SML from the ASCII input file SYSMAC.MAC. Both 
files are on device DK:. 

12-11 



r 



CHAPTER 13 

DUMP 

DUMP is the RT-11 program that prints on the console or lineprinter, or writes to a file all or any part of a file 
in octal words, octal bytes, ASCII characters, and/or Radix-50 characters. DUMP is particularly useful for examin-
ing directories and files that contain binary data. 

13.1 CALLING AND USING DUMP 
To call the DUMP program from the system device, respond to the dot (.) printed by the keyboard monitor by 
typing: 

R DUMP RET 

The Command String Interpreter prints an asterisk at the left margin on the console terminal when it is ready to 
accept a command line. If you respond to the asterisk by typing only a carriage return, DUMP prints its current 
version number. 

You can type CTRL/C to halt DUMP and return control to the monitor when DUMP is waiting for input from 
the console terminal. You must type two CTRL/Cs to abort DUMP at any other time. To restart DUMP, type 
R DUMP or REENTER and a carriage return in response to the monitor's dot. Chapter 6, Command String 
Interpreter, describes the general syntax of the command line that DUMP accepts. If you do not specify an out-
put file, the listing prints on the line printer. If you do not specify a file type for an output file, the system uses 
.DMP. 

13.2 DUMP OPTIONS 
Table 13-1 summarizes the options that are valid for DUMP. 

Table 13-1 DUMP Options 

Option Explanation 

/B 

/E:n 

/G 

/N 

/O:n 

/S:n 

/T 

IW 

/X 

Outputs octal bytes. 

Ends output at block number n, where n is an octal block number. 

Ignores input errors. 

Suppresses ASCII output . 

Outputs only block number n, where n is an octal block number. With the /0 option, you 
ca.n dump only one block for each command line. 

Starts output with block number n, where n is an octal block number. For random access 
devices, n cannot be greater than the number of blocks in the file. 

Defines a tape as non-RT-11 file-structured. 

Outputs octal words (the default mode). 

Outputs Radix-50 characters. 

13-1 



DUMP 

ASCII characters are always dumped unless you type /N. 

If you specify an input file name, the block numbers (n) you supply are relative to the beginning of that file. If 
you do not specify a file name; that is, if you are dumping a device, the block numbers are the absolute (physical) 
block numbers on that device. Remember that the first block of any file or device is block 0. 

DUMP handles operations that involve magtape and cassette differently from operations involving random access 
devices. 

If you dump an RT-11 file-structured tape and specify only a device name in the input specification, DUMP reads 
only as far as the logical end-of-tape. Logical end-of tape is indicated by an end-of-file label followed by two tape 
marks. For non-file-structured tape, logical end-of tape is indicated by two consecutive tape marks. If you dump a 
cassette and specify only the device name in the input specification, the results are unpredictable. For magtape 
dumps, tape mark messages appear in the output listing as DUMP encounters them on the tape. 

If you use /S :n with magtape, n can be any positive value. However, an error can occur if n is greater than the 
number of blocks written on the tape. For example, if a tape has 100 written blocks and n is 110, an error can 
occur if DUMP accesses past the 100th block. If you specify /E:n, DUMP reads the tape from its starting position 
(block 0, unless you specify otherwise) to block number n or to logical end-of tape, whichever comes first. 

13.3 E~;AMPLES 
This section includes sample DUMP commands and the listings they produce. 

The following command string directs DUMP to print in octal words information contained in block 1 of the file 
DMPX.SAV stored on device DK:. 

*r.~~r-~x. s~~io: i 

DMpX,SAV/0~1 
BLOCK NUME3~R UOOU 1 
00p/ 012700 000430 000261 006101 106100 110024 Q12700 000206 +~p.,.1~A,p,.,Q.,,* 
020/ 006341 001403 1ob100 103774 n00766 400207 052140 423364 *A „ ~Q,~~V•,,C~TT&~ 
0401 022Q30 021424 0153Zb 023747 00400 023747 0067bb 021401 +►,S,~Y,G' „G'V. ~~+► 
060/ 050504 062745 177400 177401 osloa2 440SOS 420104 442515 +~~4~E~',,,'~"READ ME+► 

100/ OZ1041 000000 A00377 OOp001 000376 001000 400400 177777 +►:"~•,,.,•...••.•+► 
iZo/ 000000 000000 000000 000000 000000 000000 oa0000 000000 ~,,,,.~.,,,,,..,,~ 
140/ 000000 0000uo u00000 000000 400000 000000 000000 n00000 +► ................* 
160/ ou0000 a000au oov000 u00000 000000 000000 000000 000000 * ..............*.+~ 
200/ 000000 0000uo 000000 000000 000000 000000 000000 000000 ~ ................~ 
220 000000 000000 ~~oa000 ooaoac~ 000000 000004 000000 000000 ~ R,,,,,,,,,,,,,•,* 
2ao/ 00000e 000000 ou0000 oov000 000000 000000 000000 oov000 ~ ................+► 
260/ 000uoo 000000 000000 000000 000000 000000 004000 u00000 * ................* 
300/ oov000 000000 ao0000 000000 000000 000000 000000 000000 * ................~ 
320/ 000000 000000 000uoo 040000 u00000 000004 000000 400000 +~,,,,,~„ ~ „~,.,,* 
340/ 000040 000000 n00000 oa0000 000000 0000ao 000000 000000 *,,.,,,,,,..~,,,~* 
360/ 000004 OnoUUO Og000p 000000 000000 A00000 40t~000 000400 +~ • ~ , ~ , , , , , , , , , , , ,+~ 
400/ 400000 ooe0uo u00000 000000 400o0u 000000 oov000 000000 *,,,,,,,,,,,,,,,,+~ 
420/ 000000 00040n 00u4U~) 000000 000000 AOA000 004000 UOA000 * .............,,..* 
440/ 000000 000uoo 000000 000000 000000 000000 000000 000000 ~,.,,•..,~.~~,.,,* 
4Fo/ 000000 ouooac~ u00000 000000 000000 000000 000uoo 000c+oo +~ ................* 
500/ 000000 000000 000000 00000e 000000 000000 000000 000000 ~ ................~ 
s2o/ 000uoo oov000 000000 000000 00000e 000000 oov000 000000 ~r,.,,~,.,,.,,,.,,+► 
540 000000 u00000 0000uo 400000 000000 0000c+o 000000 000000 +►" •,,,,,,,,,,,,,* 
560/ 00000 O~0000 u00000 000000 000000 000000 000000 000000 +►,,,,,,,,,,,,,,•,+► 
600/ OOOn04 OOA~~o~ o0t)OOo 000004 000000 400000 ~p0000 000000 *,..,,,~...,.,..,* 
620/ 000000 000000 400000 000000 000000 000004 000000 000000 ~,,,•,.,..••••,.•* 
640/ 000004 000000 000000 000000 000000 000000 A00400 000000 ~ „ * .............* 
660/ 000000 000000 f~UUOop 000000 000000 000000 400000 000000 +~..,+,••••.•••••.~ 
700/ 000000 00000e n00000 000000 000000 000000 n00000 000000 +~ ................* 
7zo/ 000uoo 000000 000000 000000 000000 000000 00000 0000uo * ................* 
740/ 000000 000uaa ouou~u 000000 000000 000000 0000ao 000000 +~ ................* 
760/ 040000 0000uo ao0oo~► an0000 000000 000000 n000o4 000000 *.,,~•,,,,•~,,,,~* 

13-2 



DUMP 

In the printout above, the heading shows which block of _the file follows. The numbers in the leftmost column 
indicate the byte offset from the beginning of the block. Remember that these are all octal values and that there 
are two bytes per word. The octal words that were dumped appear in the next eight columns. The rightmost 
column contains the ASCII equivalent of each octal word. DUMP substitutes a dot (.) for non-printing codes, 
such as those for control characters. 

The next command dumps block 1 of file PIP.SAV. The /N option suppresses ASCII output. 

~cF'zF'. SAV/fit/Q: l 

PIP~SAY/N/0~1 
BLOCK NUMBER OOOUi 
000/ !40101 400000 n00000 
020/ 0000nl 00000? i0olu3 
o40I Oo00o~ 177352 00200 
060/ a00000 100113 00000u 
100/ 000000 0020~~ UOAp4U 
120/ 100117 OOQ404 000000 
140/ 002000 0O100U 100111 
160/ 000000 17760? 001164 
200/ 000000 100124 000000 
220/ 0000uo 000020 c~oaooa 
2ao♦ 100130 000000 oou000 
Z6Q/ 000000 000000 000000 
300/ u04000 000001 c~onoo0 
320/ 000uoo u00000 000000 
340/ X00000 0000~~ c~c~0000 
360/ ou0000 0000uo u~~uoou 
400/ 000000 000000 000000 
ago/ u00000 0000uo u00000 
440/ 000000 u00000 000000 
460/ 0000uo 0000uo c~a0000 
500/ 000uoo 0000uo 000000 
s2o/ 000000 00000c u00000 
540/ 000040 OOo04c) 4p0o(~o 
560/ 000000 000004 00000u 
boo/ e00000 000~o~ ou0000 
6zo/ 000000 00000 000000 
640/ 000000 00000 ou0000 
660/ 000000 QOOAoO 000000 
700/ 000000 000000 u00000 
720/ ~oouao 0000~~o oou000 
740/ 000400 U0o0o~ 000000 
760/ 002314 002407 002426 

000002 
OUQ00~ 
000004 
000000 
100116 
f~G0300 
o000U0 
042000 
QOOU00 
luoi27 
000000 
104115 
oo010n 
000uoo 
000uoo 
000000 
000000 
000000 
000000 
ou0000 
00000c 
000000 
00000 
000000 
000000 
000000 
000000 
000000 
000000 
0~0~00 
000000 
002342 

000001 
000000 
140107 
006002 
000000 
400400 
uo0000 
100123 
000000 
u00000 
000000 
000000 
OOOOOU 
000000 
000000 
000000 
00000c 
000000 
000000 
000000 
000000 
040000 
000000 
000000 
000000 
000000 
400000 
000000 
000000 
000000 
003054 
00246 

looio~ 
000000 
000000 
OA00~0 
000000 
100120 
000000 
000000 
00000 
00000c, 
104131 
000000 
000000 
000000 
000000 
000000 
000000 
000040 
000040 
000000 
004000 
000000 
oou000 
000000 
000000 
000000 
OOc1000 
000000 
000000 
000000 
002543 
002614 

000000 
00000u 
000000 
104115 
000504 
000000 
ou0000 
oou000 
100125 
000000 
400000 
002600 
000uoo 
000000 
000000 
000000 
00000 
000000 
000000 
000000 
000000 
04000 
OUc~Ono 
000000 
000000 
000000 
000000 
000000 
000000 
oou000 
002510 
002676 

000000 
040104 
000400 
pA0000 
00020 
000000 
000122 
000000 
000000 
000000 
000000 
000uoo 
u00000 
000000 
oou000 
000000 
oaoo~o 
QOOOOt~ 
000400 
000000 
U~4004 
000000 
0000oQ 
ou0000 
000000 
000000 
000000 
000000 
o0oeoo 
000000 
02562 
02177 

The following command dumps block 1 of SYSMAC.MAC in octal bytes. ASCII equivalents appear underneath 
each byte. 

*aY~MAC .I~AC/R/Q :1 

3YSMAC.MAC/B/Qti 
BLOCK NUMBER 000 1 
Ooo/ 040 124 ii7 040 

T o 
020/ 105 040 124 145 

E T E 
444/ 117 040 101 116 

0 A ~ 
060/ 117 106 040 124 

0 R T 
100/ 101 122 105 040 

A R E 

124 110 145 123 105 040 114 
T H E S E L 
122 115 123 056 040 124 111 
R M S T I 
104 04Q 117 127 iib 105 122 
A U W ~ E R 
ilo io5 040 Oi5 oil 073 040 
H ~; ~ ~ _ 
i ?.3 110 10 t 114 114 040 10! 
S H A L ~ A 

13-3 

111 103 105 116 
1 C E N 
124 114 105 040 
T L E 
123 lia 111 124 
S H I P 
123 117 106 124 
s a ~ T 
124 040 101 114 
T A L 

123 
S 
12a 
T 
040 

127 
w 
114 
L 



DUMP 

120/ 

140/ 

160/ 

200 / 

220/ 

2ao/ 

260/ 

300/ 

320/ 

340/ 

360/ 

400/ 

oao/ 

440/ 

460/ 

500/ 

520/ 

540/ 

S60/ 

600/ 

620/ 

640/ 

660/ 

700/ 

120/ 

T40/ 

760/ 

040 124 
T 

040 104 
D 

iZ4 i10 
? H 
111 116 
I N 
040 111 

I 
07 3 040 
i 
04~ 1 16 

h 
114 104 
L U 
!25 f 05 
U E 
111 124 
I T 
114 040 
L 
117 !22 
0 R 
111 107 
i G 
117 040 
U 
040 

117 
C 
106 
F 
116 
N 
110 
H 
114 
L 
015 
. 
102 
t~ 
101 
A 
101 
A 
061 
1 
X56 

05b 

106 
F 
122 
R 
040 lii 

I 
145 
E 
l03 
C 
105 
E 
073 
1 
054 

040 

111 
I 
ili 
I 
012 
• 
103 
C • 
103 122 
C R 
114 114 
L L 
034 05b 
• 
OS6 056 

ill 
I 
iii 
I 
105 
E 
040 

123 
S 
103 
C 
117 
0 
~4~ 

io4 
D 
li5 
M 
105 
E 
101 
A 
ill 
I 
iZ2 
R 
117 
4 
oar 

103 
C 

115 
M 

115 105 123 040 122 
M E 3 R 
107 iii iZ4 lUi 114 

I T 4 L 
040 111 116 106 117 

I N F 0 
125 110 lii 123 040 
T K I S 
04o 123 125 l02 lit 

S U 8 J 
110 101 116 107 105 
N A N G E 
!24 111 103 105 040 
T I C E 
116 117 124 040 102 
~+ d T B 
O1S 012 073 040 101 
. , A 
105 116 124 040 102 
~; N T b 
121 125 111 120 115 
Q U I P M 
124 iii 117 116 056 
T i a N ~ 
124 101 114 040 101 
T A L A 
105 123 120 117 116 ili 
E S P U N I 
122 040 124 110 105 125 
R I H E U 
1?2 105 114 111 101 102 ili 
R E L I A B I L 
124 123 040 123 !17 106 i24 127 
T S S 0 F' T W 
i2i 125 iil i2o li5 l05 ii6 124 
0 t1 I P M E N T 
110 040 111 123 040 116 111 124 
H J S N 0 T 
l04 040 102 131 040 104 111 107 
D B Y D 1 G 
~iS 012 073 X40 105 106 054 112 
. . : E F' • J 
104 126 054 103 122 054 110 112 
p V , C R ~ N J 
117 440 O56 OS6 126 Obi 036 OSb 
U . , V 1 . 
011 056 056 OS6 103 ii5 060 

, C M 0 
056 056 lOj 115 Ob2 054 056 

C M 2 , ~ • 
103 115 064 054 056 056 054 103 
C ~ 4 , ~ C 
066 015 012 056 056 056 126 061 
6 . . v 1 

105 115 
E M 
05.6 015 
• 
12Z 
R 
123 
S 
105 

040 

101 
A 
105 

123 
S 
131 
Y 
105 

015 
• 
123 
S 
123 
S 
040 

• 
115 
M 
117 
0 
103 
C 
127 
W 
116 
v 
040 

oao 

040 

115 
N 
Olt 
• 
123 
S 

101 
A 
012 
• 
101 
A 
106 
F 
124 
T 
iii 
I 
104 
D 
103 
C 
101 
A 
104 
D 
124 
T 
073 

125 
U 
102 
d 
123 
S 
!14 

• 
054 
r 
03b 

iil 
I 
X73 
i 
iZ4 
T 
124 
T 
040 

124 
T 
040 

117 
U 
040 

111 
I 
040 

015 
• 
115 
M 
111 
I 
105 
E 
iti 
I 
101 
A 
415 

040 

111 
I 
loa 
Q 
015 

015 

056 
• 
036 
• 
115 
M 
075 

116 040 111 116 
N I y 
015 012 073 040 
• ~ i 
111 117 116 040 
I ~' n N 
127 101 122 105 
W A R ~: 
124 117 O1S 012 
T 0 , , 
110 117 125 124 
H Q U T 
123 110 117 125 
S H U U 
116 123 124 122 
N 8 T R 
103 117 115 115 
C 0 M M 
107 111 124 101 
G I T A 
103 117 122 120 
C 0 R P 
X12 073 O40 104 
, = D 
105 123 040 116 
~: S N 
!14 iii 124 131 
L I T Y 
415 012 073 040 

. f 
124 i ~ 1 04Q 117 
T Y 0 
12l 105 040 117 
R ~; 0 
012 073 040 127 

W 
125 120 120 
U P P 
101 114 05b 
A L . 
114 120 054 

~ L P ~ 
012 014 05ti 115 
. , ~ M 
012 055 115 103 

M C 
056 056 103 !15 

• C M 
103 115 063 054 
C M 3 ~ 
065 OS4 056 056 
5 ~ ~ . 
061 056 015 012 
i . 

. 
123 
S 
124 
T 
054 

f 

The last example shows block 6 (the directory) of device RKO:. The output is in octal words with Radix-50 equiva-
lents below each word. 

*~ho:~~ixio:6 

Rxo:/N/x/ns~ 
BLOCK NUMBER 00006 
000/ 000020 00000a oo0ooa 

P D Q 
020/ 075273 Oo0i3o 0000i5 

SYS BH M 
040/ 000141 000015 010405 

~p M 8,7 

o00uoo 000046 002000 
8 YX 

010405 002000 071105 
B,7 YX RKM 
007000 071105 055515 
YX RKM HXM 

13-4 

071105 055202 
RKM NSJ 
054162 075273 
NP'H SY3 
075273 000130 
SYS 8X 



DUMP 

060/ 000015 010405 002000 015425 055202 075273 Qooi32 000015 
M 8. T Yx aMM c1s~ SYs ~a M 

100/ 010405 002000 015425 054162 075273 000143 000015 010405 
8.7 YX i~MM NFE3 SYS BS M ~3 , 7 

120/ 002000 015425 0555!.5 075273 000152 000015 010405 042000 
YX DMM ~~Xti~ SYS BZ .M. B, 7 YX 

140/ 016315 055202 07527.1 000130 000015 010405 002000 016315 
DXM NSA SYS BH M 8.7 YX DXM 

160/ 054162 075273 Aooi41 OOooiS 010405 Oo2000 oi63i5 055515 
NFB~ 5YS BQ M s,7 YX DXM NXM 

200/ 075273 000141 00015 010405 002000 015055 055202 075273 
SYS BQ M B.7 YX DTM NSJ SYS 

220/ 000130 000015 010405 002000 016085 054162 475273 040141 
8H M 8,7 YX DTM N~'9 SYS Aa 

240/ 000015 010445 002A00 016055 055515 075273 OOOI50 000415 
M B,7 YX DTM NXM SYS 8X M 

260/ 010405 002000 41b405 055202 475273 000130 000015 01045 
B,7 YX DSM NSJ SYS BN M B,7 

300/ 002000 016005 054162 075273 040141 ot~40i5 o1o4u5 002000 
YX DSM NF'H SYS HD M B,7 YX 

320/ olbao5 055515 p75273 C100i50 000015 p1Q405 002000 015615 
DSM NXM SYS BX M B,7 YX DPM 

340/ 055202 475273 000130 004015 010405 0Q2(~00 015615 054162 
HS~7 5YS ~3H M 8,7 YX Op;1 NFB 

360/ 075273 040141 OOOOis 010405 002000 015615 055515 075273 
SYS BQ M 8,7 YX QPM NXM SYS 

400/ 000150 040015 010405 002000 070575 055202 075273 000130 
BX M H,7 YX RFM NSJ SYS 8H 

aao~ 000015 010405 ao2000 070575 4541b1 475273 000141 000015 
M 8,7 YX RF'M NFB SYS BQ M 

440/ 010405 002004 074575 055515 075273 A00150 000015 010405 
B.T YX RFM NXM SYS BX ~M 8.7 

460/ Og2000 07!105 x56573 075273 00012.3 0400!5 010405 002000 
YX RKM N8K SYS 6C M 8,7 YX 

500/ 016315 056573 X75273 000123 Q00015 010405 x02000 Oibo4o 
DXM N8K SYS BC M B,7 YX DT 

520/ 000000 075273 000002 000015 014405 00?OUO 015600 t~00Aot1 
SYS H M B.7 YX DP 

540/ 075273 OOOOQ2 040015 0x0405 oo2uoo 016340 OQOOAO 075273 
SYS i3 M B.7 YX pX SYS 

560/ 000003 O000~5 010405 002000 070560 000000 075273 00000 
C M 8,7 YX RF SYS B 

600/ 000015 0!0405 002000 07107a 000000 0?5273 000002 000015 
M B,7 YX RK 3Y5 B M 

620/ 010405 002000 015410 000000 475273 000404 000015 010405 
B.7 YX DM SYS D M B,7 

640/ 002000 015770 OOG000 075273 000002 000015 010405 042040 
xx as sYs B M X3,7 Yx 

660/ 100040 004000 075273 000002 000015 010405 002000 044604 
TT SYS B M ~i,7 YX LP 

700/ 000000 075273 040002 000415 010405 0020u0 012624 Of10QG0 
SYS B M B, 7 YX C R 

720/ 075273 000003 OOt~015 O1t~405 002000 052140 OOt~p00 X175273 
SYS C [~ a,7 YX MT SYS 

740/ 000010 OOt~015 010403 002004 051510 OOQ4A0 OT5273 000011 
H M B,7 YX M~~ SAC'S I 

760/ 000015 010405 002000 054540 000000 075273 004002 o00c~i5 
M 8,7 YX NL SYS B ~~ 





CHAPTER 14 

FILEX 

The file exchange program (FILEX) is a general file transfer program that converts files from one format to another 
so that you ca.n use them with various operating systems. You can initiate transfers between any block-replaceable 
RT-11 directory-structured device and any device listed in Table 14-1. 

Table 14-1 Legal FILEX Devices 

Device 
Valid as 
Input 

valid as 
Output 

PDP-11 X X 
DOS/BATCH 
DECtape 

DOS/BATCH X 
Disk 

RSTS X X 
DECtape 

DECsystem-10 X 
DECtape 

Interchange X X 
Diskette 

FILEX does not support magtape or cassette in any operation. 

Section 4.2 of this manual describes how to use wildcards. You can use wildcards in the FILEX command string. 
However, you can not use embedded wildcards in any file name or file type. For example, the following line repre-
sents avalid file specification. 

~T 4 ~i"1~ 

The next line is an illegal file specification for FILEX. 

~k'T%~Y.t~~C 

14.1 FILE FORMATS 
FILEX can transfer files created by four different operating systems: RT-11, DECsystem-10, universal interchange 
format (IBM) and DOS/BATCH (PDP-11 Disk Operating System). You can use the following three data formats in 
a transfer: ASCII, image, and packed image. ASCII files conform to the American Standard Code for Information 
Interchange in which each character is represented by a 7-bit code. In ASCII mode, FILEX deletes null and rubout 
characters, as well as parity bits . 

14-1 



FILEX 

Because the file structure and data formats for each system vary, options are needed in the command line to indicate 
the file structures and the data formats involved in the transfer. These options are discussed in Section 14.3. FILEX 
assumes that all devices are RT-11 structured. You can use options from Table 14-2 to indicate otherwise. 

14.2 CALLING AND USING FILEX 
To call FILEX from the system device, respond to the dot (.) printed by the keyboard monitor by typing: 

R FILEX 

The Command String Interpreter prints an asterisk at the left margin of the terminal and waits for you to enter a 
command. If you enter only a carriage return at this point, the current version number of FILEX prints on the 
terminal. 

Type two CTRL/Cs to halt FILEX at any time (or a single CTRL/C to halt FILEX when it is waiting for console 
terminal input) and return control to the monitor. To restart FILEX, type R FILEX or REENTER in response to 
the monitor's dot. 

14.3 FILEX OPTIONS 
Table 14-2 lists the options that initiate various FILEX operations. The table is divided into three sections: transfer 
options, operation options and file structure options. Transfer options direct FILEX to copy data in a certain mode. 
The three transfer modes are : ASCII, image, and packed image. Operation options perform another function in 
addition to the data transfer. These additional functions include deleting files, producing directory listings and 
zeroing device directories. File structure options indicate the formats of devices that are involved in a transfer. These 
formats are DOS/BATCH or RSTS, DECsystem-10, and interchange. FILEX accepts one transfer option and one 
operation option in a single command. You can specify one device option for each file involved in the transfer. The 
device options (/S, /T, and /U) must appear following the device and file name to which they apply; other options 
can appear anywhere in the command line. These options are explained in more detail in the following sections. 

14.3.1 Transferring Files Between RT-11 and DOS JBATCH (or RSTS) 
You can transfer files between block-replaceable devices used by RT-11 and the PDP-11 DOS/BATCH system. Input 
from DOS/BATCH can be either disk or DECtape. You can use both linked and contiguous files. 

If the input device is a DOS/BATCH disk, you should specify aDOS/BATCH user identification code (UIC). The 
UIC is of the form [nnn,nnn] ,where nnn represents an octal integer less than or equal to 377. The first part of the 
code represents auser-group number; the second is the individual user number. The initial default value is [ 1,1 ] . 
The UIC you supply will be the default for all future transfers. If you do not specify a UIC, FILEX will use the 
current default UIC. Note that the square brackets [ ]are part of the UIC; you must type them if you specify a 
UIC. 

Output to DOS/BATCH is limited to DECtape only. You do not need a UIC in a command line when you are 
accessing only DECtape. Individual users do not "own" files on DECtape under DOS. However, no error. occurs if 
you do use a UIC. DECtape used under the RSTS system is legal as both input and output, since its format is identi-
cal to DOS/BATCH DECtape. You can use any valid RT-11 file storage device for either input or output in the 
transfer. The RT-11 device DK: is assumed if you do not indicate a device. 

An RT-11 DECtape.can hold more information than aDOS/BATCH or RSTS DECtape. Be careful when you copy 
files from a full RT-11 tape to a DOS DECtape. Some information might not transfer. In this case, an error message 
prints and the transfer does not complete. 

When a transfer from an RT-11 device to a DOS DECtape occurs, the block size of the file can increase. However, 
if the file is later transferred back to an RT-11 device, the block size does not decrease. 

14-2 



FILEX 

Table 14-2 FILEX Options 

Transfer Options Explanation 

/A 

/I 

/P 

Indicates acharacter-by-character ASCII transfer in which FILEX deletes rubouts 
and nulls. If you use /U with /A, FILEX ignores all sector boundaries on the diskette. 
If you use /T with /A, FILEX assumes that each PDP-10 36-bit word contains five 
7-bit ASCII bytes. If you use /U with /A, FILEX assumes that records are to be 
terminated by a line feed, vertical tab, or form feed. The transfer terminates when a 
CTRL/Z is encountered. (This feature is included for compatibility with RSTS.) 
FILEX does not transfer the CTRL/Z. 

Performs an image mode transfer. If the input is DOS/BATCH, RSTS, interchange 
diskette, or RT-11, the transfer is word-for-word. If the input is from DECsystem-10, 
/I indicates that the file resembles a file created on DECsystem-10 by MACYI 1, 
MACX11, or LNKX11 with the /I option. In this case, each PDP-10 36-bit word will 
contain one PDP-11 8-bit byte in its low-order bits. If input or output is an inter-
change diskette, FILEX reads and writes four diskette sectors for each RT-11 block. 

Performs a packed image mode transfer. If the input is DOS/BATCH, RSTS, or 
RT-11, the transfer is word-for-word. If the input is from DECsystem-10, /P indicates 
that the file resembles a file created on DECsystem-10 by MACY11, MACX11, or 
LNKXI 1 with the /P option. In this case, each PDP-10 36-bit word will contain 
four PDP-11 8-bit bytes aligned on bits 0, 8, 18, and 26. This is the default mode. 
If the input is interchange diskette, the data is assumed to be EBCDIC. If the output 
is interchange diskette, FILEX writes the data as EBCDIC. 

Operation Options Explanation 

/D 

/F 

/L 

/Y 

/Z 

Deletes the file you specify from the device directory. This option is valid only for 
DOS/BATCH, RSTS DECtape, and interchange diskette. 

Produces a brief listing of the device directory on the terminal. It lists only file names 
and file types. 

Produces a complete listing of the device directory on the console terminal, including 
file names, block lengths, and creation dates. 

Suppresses the dev: /Init are you sure? message. 

Initializes the directory of the device you specify in the proper format. This option is 
valid only for DOS/BATCH, RSTS DECtape, and interchange diskette. 

File Structure Options Explanation 

/S 

/T 

/U[:n.] 

Indicates that the device is a legal DOS/BATCH or RSTS block-replaceable device. 

Indicates that the device is a legal DECsystem-10 DECtape. 

Indicates that the device is an interchange diskette; n. represents the length of each 
output record, in characters; n. is a decimal integer in the range 1-128. The default 
value is 80; n. is riot valid with an input file specification, or with /A or /I. 

14-3 March 1978 



FILEX 

To transfer a file from a legal DOS/BATCH block-replaceable device or RSTS DECtape to a legal RT-11 device, use 
this command syntax: 

*output-filespec=input-filespec/S [/option] 

where 

output-filespec 

input-filespec 

/S 

/option 

represents any valid RT-11 device, file name, and file type (if the device is not 
file structured, you can omit the file name and file type). 

represents the DOS/BATCH or RSTS device, UIC, file name and file type to be 
transferred. See Table 14-1 for a list of valid devices. 

is the option from Table 14-2 that designates aDOS/BATCH or RSTS block-
replaceable device. This option must be included in the command line. 

is one of the three transfer options from Table 14-2. 

To transfer files from an RT-11 storage device to a DOS/BATCH or RSTS DECtape, use this command syntax: 

*DTn:output-filename/S [/option] =input'filespec 

where 

DTn:output-filename represents the file name and file type of the file to be created, as well as the 
DOS/BATCH or RSTS DECtape on which to store the file. 

input-filespec represents the device, file name, and file type of the RT-11 file to be transferred. 

/S is the option from Table 14-2 that designates aDOS/BATCH or RSTS DECtape. 
This option must be included in the command line. 

/option is one of the three transfer options from Table 14-2. 

The following examples illustrate the use of the /S option. 

The following command instructs FILEX to transfer a file called SORT.ABC from the RT-11 default device DK: to 
a DOS/BATCH or RSTS format DECtape on unit DT2. The transfer is done in image mode. 

~ r~T~ : ~c:aM~:~r . ~ar~c;/~;:..:~;caF~T . ~r~c~.f .r. 

The next command allows a file to be transferred from DOS/BATCH (or RSTS) DECtape to the papertape punch 
under RT-11. The transfer is done in ASCII mode. 

The next command causes the file MAORI .MAC from the DOS/BATCH disk on unit 1, which is stored under the 
UIC [ 1,2] , to be transferred to the RT-11 device DK:. [ 1,2] becomes the default UIC for any further DOS/BATCH 
operations. 

14-4 



FILEX 

14.3.2 Transferring Files Between RT-11 and Interchange Diskette 
You can transfer files between block-replaceable devices used by RT-11 and interchange format (proposed ANSI 
format) diskettes. Files are transferred in one of the following three formats: ASCII, image, and packed image 
(EBCDIC) mode. 

A universal diskette consists of 77 tracks (some of which are reserved), each containing 26 sectors numbered from 
1 to 26. A sector contains one record of 128 or fewer characters. A record must begin on a sector boundary on an 
interchange diskette in packed image mode. There must be only one record per sector. If a record does not fill 
a sector, the remainder is filled with blanks. Since packed image (EBCDIC) mode is inefficient and wastes space, 
it is only recommended to read or write diskettes that must be compatible with IBM 3741 format. 

Image mode provides an exact copy of a file. Nulls, rubouts, and parity are preserved in a transfer. ASCII and image 
mode perform similar functions; however, for most operations, you should probably use ASCII. Use image mode to 
transfer data when the parity bit or nulls are significant (i.e., when you are not transferring ASCII data). 

Packed image (EBCDIC) mode is generally compatible with IBM 3741 format. (FILEX does not support error 
mapping of bad sectors and multi-volume files.) Packed image (EBCDIC) is the default mode, so you must use one 
of the options from Table 14-2 to specify ASCII or image mode. All records of a file must be the same size. You 
indicate this with the /U:n. option. 

NOTE 
File types are not normally recognized in interchange format; 
instead, a single 8-character file name is used. However, in 
order to provide uniformity throughout RT-11, FILEX has 
been designed to accept a 6-character file name with a 2-
character file type. If you transfer a file from RT-11 to in-
terchange diskette, any 3-character file type is truncated 
to two characters. 

To transfer files from RT-11 format to interchange format, use this command syntax: 

*output-filespec/U[:n.] [/option]=input-filespec 

where 

output-filespec represents the device, file name, and file type of the interchange file to be created. 

/u[:n.~ is the option from Table 14-2 that designates an interchange diskette. This option 
must be included in the command line; n. represents the length of each output record, 
in characters; l < n < 128 (default is 80). 

/option is one of the three transfer options from Table 14-2. 

input-filespec represents the device, file name, and file type of the RT-11 file to be transferred. 

To transfer files from interchange diskette to RT-11 format, use this command syntax: 

*output-filespec=input-filespec/U [/option] 

14-5 



FILEX 

where 

output-filespec 

input-filespec 

/U 

/option 

represents the device, file name, and file type of the RT-11 file to be created. 

represents the device, file name, and file type of the interchange file to be 
transferred. 

is the option from Table 14-2 that designates an interchange diskette. This option 
must be included in the command line . 

is one of the three transfer options from Table 14-2. 

The following command transfers the file, IVAN.CAT from RT-11 RKOS unit 2 to the diskette on unit 1. The 
transfer is done in exact image mode (indicated by /I), ignoring all sector boundaries. 

The next command instructs FILEX to transfer the file BENMAR.FRM from the RT-11 disk unit 2 to the diskette 
on unit 0, and rename it KENJOS.JO. The /U option indicates that the format is to be changed from A5CII to the 
interchange format. There will be one record per sector of 128 or fewer characters. If there are fewer than 128 char-
acters, the remainder of the sector will be filled with spaces. 

The next command transfers the file TYPESET from RT-11 diskette unit 0 to the interchange diskette on unit 2. 
The exchange converts ASCII to interchange format putting a maximum of 7 (indicated by :7.) characters into each 
sector until the entire record has been transferred. Records in excess of seven characters will be broken up and placed 
in succeeding sectors on the diskette. New records always begin on a sector boundary; carriage returns and line feeds 
are discarded. However, if you use /A or /I, FILEX ignores boundary limits and preserves carriage returns and line 
feeds. 

*L~X~ : TY~'~° . c~~~:/ll ~ 7 .::~I~~Xa : 'rY~'~::. ~~'T 

File TYPESET before transfer 

ABCDEFGHIJKLMN 

File TYPESET after transfer: 

ABCDEFG — (spaces up to 128 characters) Sector 1 
HIJKLMN — (spaces up to 128 characters) Sector 2 

The next command copies file IVAN.CA from the interchange diskette on unit 1 to the RT-11 line printer, treating 
the input as ASCII characters. Note that once a record has been divided into sectors, it cannot be transferred back to 
its original large size. 

14.3.3 Transferring Files to RT-11 from DECsystem-10 
Files can not be transferred to RT-11 devices from aDECsystem-10 DECtape when a foreground job is running. This 
restriction is due to the fact that when FILEX reads DECsystem-10 files, it accesses the DECtape control registers 
directly instead of using the RT-11 DECtape control handler. Output can be to any valid RT-11 device. DECsystem-10 
DECtape is the only valid input device. To transfer files from DECsystem-10 format to RT-11 format, use this 
command syntax: 

14-6 



FILEX 

*output-filespec-- input-filespec/T [/option] 

where 

.: 

output-filespec represents any valid RT-11 device, file name, and file type (if the device is not file-
structured, you can omit the file name and file type). 

input-filespec represents the DECtape unit, file name, and file type of the DECsystem-10 file to be 
transferred. 

/T is the option from Table 14-2 that signifies a DECsystem-10 DECtape. when you use 
/T, and especially when you also use /A, the system clock loses time. Examine the 
time and reset it if necessary with the TIME command. 

/option is one of the three transfer options from Table 14-2. 

You can not convert RT-11 files to DECsystem-10 format directly. However, there is a two-step procedure for doing 
this. First, run RT-11 FILEX and convert the files to DOS formatted DECtape. Then run DECsystem-10 FILEX to 
read the DOS DECtape. 

The following command converts the ASCII file STAND.LIS from DECsystem-10 ASCII format to RT-11 ASCII 
format and stores it under RT-11 on DECtape 2 as STAND.LIS. 

Transfers from DECsystem-10 DECtape to RT-11 DECtape can cause an <UNUSED> block to appear after the 
file on the RT-11 device. This is a result of the method by which RT-11 handles the increased amount of information 
on a DECsystem-10 DECtape. 

The next command indicates that all files on DECsystem-10 DECtape 0 with the file type .LIS are to be transferred 
to the RT-11 system device using the same file name and a file type of .NEW. The /P option is the assumed transfer 
mode. 

14.3.4 Listing Directories 
You can list a directory of any of the block-replaceable devices used in a FILEX transfer. The directory listing prints 
on the console terminal. The command syntax is: 

device:/L/option 

where 

device represents the block-replaceable device. These are the valid device types: 

DOS/BATCH, RSTS DTn: or any disk 

DECsystem-10 DTn 

interchange diskette DXn: 

/L is the listing option from Table 14-2. You can substitute /F if you want a brief listing 
of file names only. 

14-7 



FILEX 

/option is /S, /T, or /U[:n.] .These are the valid format and option combinations: 

DOS/BATCH, RSTS 

DECsystem-10 

interchange diskette 

/S 

/T 

/U 

The following example shows the complete disk directory for UIC[1,7] of the device RKl :. The letter C following 
the file size on a DOS/BATCH or RSTS directory listing indicates that the file is a contiguous file. 

~~'h~;i~...~~r.:~. r~~ 

L~U 11 . F'~1~.. ~4~ ~4•~.JIJi.~~-7~ 

The next command lists all files with the file type .PAL that are stored on DECtape unit 1. 

The next command produces a brief directory listing of the interchange diskette on unit 0, giving file names only. 

The following command lists all files on DECsystem-10 formatted DECtape unit 1, regardless of file name or file 
type; a brief directory is requested (/F) in which only file names print. 

14.3.5 Deleting Files From DOS/BATCH (RSTS) DECtapes and Interchange Diskettes 
Use FILEX to delete files from DOS/BATCH and RSTS formatted DECtapes, and from interchange diskettes. 

To delete files, use this command syntax: 

where 

*filespeciD/option 

filespec represents the device, file name and file type of the file to be deleted. 

/D is the delete option from Table 14-2. 

/option can be either /S, for DOS/BATCH and RSTS block-replaceable devices, or /U, for 
interchange diskettes. 

The following command deletes all files with the file type .PAL on DECtape unit 0. 

The next command deletes the file TABLE.OBJ from the DECtape on unit 2. 

14-8 



FILEX 

The next command deletes all files with an .RN file type from the interchange diskette on unit 0. 

aIt r:+ '~C C~ : * d ~ ~ ! Z:+ ! 1.1 

You can also use FILEX to initialize the directories of DOS/BATCH and RSTS DECtapes, and interchange diskettes. 
Use this command syntax: 

*device : /Z/option [/Y] 

where 

device represents the DOS/BATCH or RSTS DECtape, or the interchange diskette to be 
zeroed. 

/Z is the initialize .option from Table 14-2. 

/option can be either /S, for DOS/BATCH and RSTS DECtapes, or /U, for interchange diskettes. 

/Y inhibits the FILEX verification message. 

The following command directs FILEX to initialize the directory of the interchange diskette on unit 0. 

* L+XQ : l;~ltJ 

I~XQ : / ~ r~ i t ~ r~ ~ca~.a ~~.~ r~",~ 

Respond with a Y for initialization to begin. Any other response aborts the command. 

The next command initializes the DECtape on unit 1 in DOS/BATCH (RSTS) format. Note that by using the /Y 
option you suppress the verification message . 

NOTE 
An initialized universal diskette's directory has a single file 
entry, DATA, that reserves the entire diskette. You must 
delete this file before you can write any new files on this 
diskette. This arrangement is necessary for IBM compatibility. 
Do this by using the following command 

*DXO:DATA/D/U 

14-9 March 1978 





CHAPTER 15 

SOURCE COMPARE (SRCCOM) 

The RT-11 source compare program (SRCCOM) compares two ASCII files and lists the differences between them. 
SRCCOM can either print the results or store them in a file. SRCCOM is particularly useful when you need to 
compare two similar versions of a source program. A file comparison listing highlights the changes made to a pro-
gram during an editing session. 

15.1 CALLING AND USIlVG SRCCOM 
To call SRCCOM from the system device, respond to the dot (.) printed by the keyboard monitor by typing: 

R SRCCOM 

The Command String Interpreter prints an asterisk at the left margin of the terminal and waits for you to enter a 
command string. If you respond to the asterisk by entering only a carriage return, SRCCOM prints its current ver-
sion number. The syntax of the command is: 

[output-filespec=] input-filespecl,input-filespec2 [/option . . . 

where 

output-filespec represents the destination device or file for the listing of differences. 

input-filespecl represents the first file to be compared. 

input-filespec2 represents the second file to be compared. 

option is one of the -options from Table 15-1. 

The console terminal is the default output device. The default file type for input files is .MAC. SRCCOM assigns 
.DIF as the default file type for output files. 

You can type CTRL/C to halt SRCCOM and return control to the monitor when SRCCOM is waiting for input 
from the console terminal. You must type two CTRL/Cs to abort SRCCOM at any other time. To restart SRCCOM, 
type R SRCCOM or REENTER and a carriage return in response to the monitor's dot. 

SRCCOM examines the two source files line by line, looking for groups of lines that match. When SRCCOM finds 
a mismatch, it lists the lines from each file that are .different. SRCCOM continues to list the differences until a 
specific number of lines from the first file match the second file. The specific number of lines that constitutes a 
match is a variable that you can set with the /L:n option. 

15.2 SRCCOM OPTIONS 
Table 15-1 summarizes the operations you can perform with SRCCOM. You can place these options anywhere in 
the command string, but it is conventional to place them at the end of the command line. 

15-1 



Source Compare (SR CCOMJ 

Table 15-1 SRCCOM Options 

Option Explanation 

/B Compares blank lines; normally, SRCCOM ignores blank lines. 

/C Ignores comments (all text on a line preceded by a semicolon) and spacing (spaces and tabs). 
A line consisting entirely of a comment is still included in the line count. 

/F Includes form feeds in the output listing; SRCCOM normally compares form feeds, but does 
not include them in the output listing. 

/H Types on the console terminal a list of options available; this is the "help" text. 

/L:n Specifies the number of lines that determines a match; n is an octal integer in the range 
1-310. The default value for n is 3. 

/S Ignores spaces and tabs. 

15.3 SRCCOM OUTPUT FORMAT 
This section describes the SRCCOM output listing format and explains how to interpret it. 

15.3.1 Sample Text 
It will be helpful first to look at a sample text file, DEMO.BAK: 

N E ~ ~ ' ~ A ~ f J 'I' 'T !". ~:: ~=~ !r! 1:+ A ~! N t:l N ~' ~ ~' !~•" i~ :C I•.~ N ~+ i 
wa~A~• wA~+ YI~ W :r. ~!-~ t~"ta~~ ~r~ ~: ~{ r ~~~•~ 

W N A h ~ I~ ~ ~ z~ ~:. I••" t:l i:~ ~::: F•I :~ ~~ !." :1: •• !:~• !`~ ~ Y !~ ~ ~+ r 
W!••! A ~' M•I :~ ~ ~ i I••! (~ Iv! i:~: ~'i ~1'r X:{ 1:~ t:l ' t:: ~'1 i•~ ~: r I<i ~1 i~! ̀ ? 

YH~~! G~~'CN•! T!••I!~" !"iC~I~i•~"~!•Tr~ ~~ 'T't••lC::Y !~ 1."Y ~ 
~ ~ ~+ lJ ~ ~ •r !•~ ~: ~ A :~ Y !: cl c..~ t ~ !•~ 'r r Iii ~ ~ : ."..... 

~NI+ CCJl~I:~r ~lt:l
.r 

~Y W!••ll~:~ ~ t:llJt:~!-•l
.I. 

y i`~r1~. 

This file contains two typing errors. In the fourth line of the song, "shame" should be "share". In the seventh 
line, "sly" should be "shy". Here is a file called DEMO.TxT that has the correct text: 

N~:~~' ~ A ~to'I'`T'l...l ' ~'~~'~1:+ AN I••iCl~l~::~ .~ 
~~•!~ I ~~1~+ t 

W~A~' WAY+ Yt~ W :C ~:yi-•! 1~"t:l~~ ~~ :~ C~ ~ I~A~~!'~ 

W N A ~ ~ I\! ~ r ~ ~:: !"" Cl ri ~:: I••! :C ,~i l... :!: ! "!N. ~ A Y ~:: ~! I:+ ~ 
Wf~AT• h•!:!: ~ c.~F~AI:~I::. !"IAY ~~~~ t:1' t:,'~~l::: ~ ~'~~~~!''' 

'T !••! ~ I`~! ~ ~ ~' C i••! •I' M-I ~ Iii to !~i I::. ~! ~' ~ i A 'lr' !••! !:~' Y I"' l... Y ~ 
F1 !~ 1~t l.! ~ ~~ ~' !••! !:" M ~ ~:i Y r~ Cl lJ l:a #••!'I' r i~ A l~ :.... •~ 

~~~+ c~r.1M~~~ ~ta•r ,~ Y w!•~r::.~ ~t~cJt~!•~•r ~ ~Ac~ , 

15-2

Source Compare (SRCC~OMJ

15.3.2 Sample Output Listing
SRCCOM lists the differences between the two files. The example below compares the original file, DEMO.BAK,
to its edited version, DEMO.TXT:

*D~~o . OAK ~ ~~~~o . TxT~~.: ~
1)1 ~'~I~.~1

)1 ~'~I.~~.~

WHAT H x ~ ~HA~i~ ~iAY E~~ Q' CA~i~ ~ iviAi~'~
TF~~~t CATCI•~ THE ~iCli~Ei~T~ A~ T!•~~Y ~'~..Y ~

~) i WHAT H~~ ~HA~~~' i~AY ~E Q' CA~'~~~ MAi~!'?
~) TH~i~ CATCH THE I~CJ~i~~lT~ A5 TH~~:Y ~'~..Y ~

1 } ~, ESL.. Y EVE ~~ ~ HA~'~' ~ H~~~ r ~ ~1... Y ~
1) A~l~i C:(]trf~:~i HCIT AY WH~~! ;~C11.li~!••i'1' ~ ~"iAI~ .
***~
"' } 1 E~."L_ :L ~Vr:: ~'iL:" r HAh"'~' T. i~lC:ta~ ~ ~i SHY ~

} A ~! I~ C Cl iii ~" c~ ~! C ~' A Y W H ~' i•! ri I:l lJ C I••I 'T' ~ Nf A Iti! .

SRCCOM always prints the first line of each file as identification

1) ~.
}1

f~" :l i... ~` :i.
F~' :C L.. k: A'

The numbers at the left margin have the form n)m, where n represents the source file (either 1 or 2) and m repre-
sents the page of that file on which the specific line is located.

SRCCOM next prints a blank line and then lists the differences between the two files. The /L:n option was used
in this example to set to 1 the number of lines that must agree to constitute a match.

The first three lines of the song are the same in both files, so they do not appear in the listing. The fourth line
contains the first discrepancy. SRCCOM prints the fourth line from the first file, followed by the next matching
Line as a reference.

WF~A'f ~~ ~ ~ ~i-IAMI~: i`~r~ Y E~ IJ ! CA~I~: ~ ~~iHf~

~'I-•i~i~t CA~'CH ~'Hk:: i~ftJi"i~~i`!'1'i:i A~ ~1'I••I~::Y 1~=1...Y~

The four asterisks terminate the differences section from the first file.

SRCCOM then prints the fourth line from the second file, again followed by the next matching line as a reference:

,? 11 WHAT H ~: ~i ~ i`-I A ~ ~' ~ i~ Y 1~ ~: Cl ' t.~ A F~ l::: :r I"i A t~! ̀ ~'
~} THL~~! C:ATC:H 'rHwN i"iCai~ik•~i~T~ A~ 'I~L~f~:Y 1~='l...Y~

The ten asterisks terminate the listing for a particular difference section.

SRCCOM scans the remaining lines in the files in the same manner. When it reaches the end of each file, it prints
the %FILES ARE DIFFERENT message on the terminal.

15-3

Source Compare (SR CC~DM~

The second example is slightly different. The default value for the /L:n option sets to 3 the number of lines that
must agree to constitute a match. The output listing is directed to'the file DIFF.TXT on device DK:.

*I:~ ~ ~"~' . 'TXT ~T~~~CI . l~Ah r ~~"~ICI . 'TXT

%~' I L~~ Aft ~:~ I ~'~'~i~~i~T

The monitor TYPE command lists the information contained in the output file:

. TY~`~ D 1 I~ F' . TXT

1)1 ~'iL~i

1 > 1 WHAT H 1 ~ ~HAi'~~M iriAY ~E Q' CA~i~ r ~iA~I?
1) THEi~ ~AT~H THE i~OiviEi`!T5 A5 THEY ~'l..Y ~
1) Airlli U~~ THEi~ A5 Y~ CIIJGHT r ~Ai~ : ~~
~.) ~~I...1 ~V~ I"i~: y f~lAl='f~' I irll:~~~ x ~i ~iI...Y r
1) Ai~L~ C;QI~i~:~ ~lCJ~' AY WH~~! ~itlUt~F~IT r i'~Ai~ .
1)
~.) ..~~••.~a~CJ~'T I ~iI-I r~C1hlC
1}
~~

} ~. WHAT H 1 ~ ~HA~~ ~fAY ~ Cl' ~A~~ ~ 1~fA~!'?
~) 'TH i~ CATCH THE~ ~iClivih~~!'T~ A~ TF~~Y ~'L..Y ~
~') Ai~lli 1.1~ ~' 'TH~~ A~ Y~: t~l.ltF•IT ~ ~iAi~: ••»~•
:?) ~~'I...:~ ~V~~ i"i~: y HAI:~'~~' :I: l'~ ~~'~.a~:i ~ ~ 5f•IY ~

} Ai~ll~ ~t~MI:::~~ i~lt:l'T AY WM~~~~! ~aCIJi~HT ~ I~'iAi~! .
~}

~}

As in the first example, SRCCOM prints the first line of each file:

i}1 ~'il._~~1

The first three lines of each file are identical and, therefore, constitute a match. Again, the fourth lines differ.
SRCCOM prints the fourth line of the first file, followed by the next matching line

~,)1
~. }

WI•~AT' I.1 I: "~ ~-~HAi~I~: i~AY ~•~~: C~' y■~t~Al~tk~ ~ i~Al~'~
T i-~I ~:: i~l C A'T C, i~-1 T H ~» i~f Cl i"I I::: ~! T ~:~ A r? '. N~ ~. ̀ r I'" I.M Y Y

However, SRCCOM did not find a match (three identical lines) before it encountered the next difference. So, the
second matching line prints, followed by the next differing line from the first file:

:l)
1}

A ~! I:~ i.1 ~~ k
.~

'1' I~I ~:" i~f ~1 i:i 1~' I: IJ lJ ~ I•-I T ~► l"i ~1 i~l : -•N .•~
~ ~ ~N x ~~ V ~~ iii l~: y H A r~' I~' a: ~ ~~ ;~ :~ :r ~~ ~ ~... Y

Again, the next matching line prints:

1 } Ai~Ti C:p~i~"~a i~Cl'T AY WH~~! ~t~tJt:;M~'T r i~iAi~! .

15.4

Source Compare (SR CCOMJ

The /B option to include blank lines in the comparison was not used in this example. Thus, SRCCOM recognizes
only one more line before the end of file. Since the two identical lines do not constitute a match (three are needed).
SRCCOM prints the last line as part of the difference section for the first file

........ ~i C: t7 '~" 'f :L s~ 1••! ~~ ~l ~ t 7

In a similar manner, SRCCOM prints a differences section for the second file, ending the listing with the %FILES
ARE DIFFERENT message.

NOTE
Regardless of the output specification, the differences
message always prints on the terminal. If you compare
two files that are identical and specify a file for the
output listing, the message NO DIFFERENCES EN-
COUNTERED prints on the terminal and SRCCOM
does not create an output file.

15-5

•

PART V

ALTERING ASSEMBLED PROGRAMS

This part of the manual consists of the following three chapters: ODT, PATCH, and PAT. The three programs that
these chapters describe can help you debug programs and make changes to programs that are already assembled.

Chapter i 6 describes the on-line debugging technique (ODT). This program aids you in debugging assembly
language programs. With ODT, you can control your program's execution, examine locations in memory and alter
their contents, and search the object program for specific words.

Chapter 17 describes the PATCH utility program. PATCH can make code modifications to any RT-11 file. You use
PATCH to examine and then change words or bytes in a file . PATCH's checksum feature is particularly useful when
you are making a correction or improvement to an existing executable programs it verifies that the changes you
make are correct .

Chapter 18 describes the object module patching utility (PAT). This program allows you to patch, or update, code
in a relocatable binary object module. PAT accepts a file containing corrections or additional instructions and
applies these corrections and additions to the original object module.

V-1

s

s

U

w

w

CHAPTER 16

ON-LINE DEBUGGING TECHNIQUE (ODT)

RT-11 on-line debugging technique (ODT) is a program (supplied with the system) that aids in debugging assembly

language programs. From your terminal, you direct the execution of your program with ODT. ODT performs the

following tasks:

• Prints the contents of any location for examination or alteration

• Runs all or any portion of an object program using the breakpoint feature

• Searches the object program for specific bit patterns

• Searches the object program for words that reference a specific word

• Calculates offsets for relative addresses

• Fills a single word, block of words, byte or block of bytes with a designated value.

Make sure you have an assembly listing and a link map available for the program you want to debug with ODT. You

can make minor corrections to the program on line during the debugging session, and you can then execute the pro-

gram under the control of ODT to verify the corrections. If you need to make major changes, such as adding a

missing subroutine, note them on the assembly listing and incorporate them in a new assembly.

16.1 CALLING AND USING ODT
ODT is supplied as a relocatable object module. You can link ODT with your program (using the RT-11 linker) for

an absolute area in memory and load it with your program. When you link ODT with your program, it is a good idea
to link ODT low in memory relative to the program. If you link ODT high in memory, you must be sure that the
buffer space for your program is contained within program bounds. Otherwise, if your program uses dynamic buff-
ering, program execution can destroy ODT in memory. Figure 16-1 shows possible relationships between ODT and
the program MYPROG in memory.

HIGH MEMORY

LOW MEMORY

MYPROG
and its
buffers

ODT

MYPROG

ODT

J

Recommended

ODT

MYPROG
and its
buffers

,,,

ODT

MYPROG

~ ~ ---

Also Correct

Figure 16.1 Linking ODT wit's a Program

16-1

MYPROG

Not Recommended

On-line Debugging Technique (ODTJ

Once loaded in memory with your program, ODT has three legal start or restart addresses. Use the lowest (O.ODT)
for normal entry, retaining the current breakpoints. The next (O.ODT+2) is a restart address that clears all break-
points and reinitializes ODT, this saving the general registers and clearing the relocation registers. Use the last
address (O.ODT+4) to reenter ODT. A reenter saves the processor status and general registers, and removes the
breakpoint instructions from your program. ODT prints the bad entry (BE) error message. Breakpoints that were
set are reset by the next ;G command. (;P is illegal after a BE message.) The ;G and ~' commands run a program;
they are explained in Section 16.3.7.

The system uses as an absolute address the address of the entry point O.ODT shown in the linker load map.

NOTE
If you link ODT with an overlay-structured file, it should
reside in the root segment so that it will always be in mem-
ory. Remove all breakpoints from the current overlay
segment before execution proceeds to another overlay
segment. A breakpoint inserted in an overlay is destroyed
if it is overlaid during program execution.

The following examples show how to link and load ODT and how to restart ODT.

1. This example links ODT low in memory relative to MYPROG, creating the executable module
MYPROG.SAV. Running MYPROG causes ODT to start automatically.

. I... :C ~ 1~; ~ ~ r'11~~' 4 '1"Y' o / I:1 !": X's l.! t:i 1~ Y C~'ri Gl G
'i'1:1. 1... :l: ~ I~ V ~) ~3.4) :~ L- c~ ~:~ ~:~ i~ ~ i~ ~ ca r•~ C? ~ ~ ~~ ~:f ~ ~ ~. ~3 : ~, q : ~.,..

~YF'~C~t~ a ~)>~V 'lr' a. 'h• 1. C:a . qII~' I r~F'r'1'~ . X4)1. .4).1.

~= c~ c:' •tf :~ t:~ 1••i ~ ~f ~~ r~ ~ i :I. ;~ c-.~ C~ :I. ca ~ ~ r.1. V ~ 1 ~..! c~ t~ a. a ~ r~ :i. V ~:~ 1. •.J ~~ t y ~. r~ ~~ ~ l V ~ 1 +.~ ~

r1 Z:~ c~ . 4) 4) 4} 4} 4) 4) 4} 4} :1.4} 4`~ 4} t F~ ~~ y .T. ~ t"a ~{ 1... ~ f 1 x:~ ~ i r t~ V r~
4) 41:1. "4? 4? 4} :I. ~~ 1. ;~ ~~ 4 i~ !~~ ,, :C q l.. t: I.- ~ ~'~ ~' 1.- r C: f7 ~ ?

'T' r~ ~~ 1". r> •f't~ Y~ ~:; r:i ~:i Y' c:, ~;; ~ :::: 4.~ 4~ :i. ~' ~' ~' ~ I••I :i. t:# t•~ .I. :i. ITS :i. •l: :::: to 1.71; C} .-. :3 ~ ~3 ~ . w ra r'r.1 {:~

.~t ~IYr~'r~t~r

c:~ z:l •t• V q ~ . 4) ~ ,~

2. This example links MYPROG low in memory relative to ODT and specifies O.ODT as the transfer address.
Running MYPROG causes ODT to start automatically. The advantage to this method is that MYPROG is
loaded at its normal execution-time address.

~. ~r~l:~t~ni~' A .j..r 4 ~Yr~'r~t~r. ~ raxl~•.~~rt"~n~~~r~•~~:I~~
'1' r• i:# 1 •i <.:~ •i' t~ r• s:; ~: i ~:i r• c:' t:~ ::} '? (:1 . Cl

~i .,t.

!:ti'1•.... :I. ~i. I... :1: i~f~ Vt?~~ . 4) ~. ~..ca~r:1 ~a}., ~'icar•~ 4?~....~{~~:f....77 1 ~ : ~;;x : 1 tai
~ Y ~` ~ l.~ t:1 . {:? n V ~~ :I. 'l; .l. t~' ~ ~1 ~:: ~ t~ ri 1"' .~ r~ Fa 1"I '~. i ~ 4} ~. a 4} :1.

F? ~:~ '!f :i. c~ r~~ ~~ ~ ~ { ~ r .:; :i. ~:: c a ~ 1 ca ~ti r~ J. V ~~ 1. ~..1 ~ t 7 :l c~ t ~ ~ :1. V <:; ~. ~-1 c a t~ 1 ~a ~~ <-~ ~. V ~:; :I. •..1 F~

a ~ B c> . 4} 4> 4} {} {} 4} 414} :l. C) 4} 4) 4 ~t W ~ :~ ~ t:;1:~ I... y ~ B ~:i p Cl V N~ }

~' t• ~:~ r•~ ~:} •!` ~:~ r~ ~:; ~:i {:i r~ c~, ::> i:~ ~ :1.1. ~~ U r I••1:i. t:# 1•i :I. :i. 1Y~ :i. •l. .~. 4)1.11.3 4? :~ f3 f3 ~ . w ~:~ Y~ r:~ t:~

16-2

On-line Debugging Technique (ODTJ

. ~~ ~~Yr~'r~c~r.~

r.~z:t~r ~~a ~.. a~

3. This example is similar to Example 2 above, except that execution does not automatically beg'm with ODT.
When you start the program (MYPROG in this case) you must specify the address of O.ODT as shown in
the link map.

~'T~ ~.1 1...1: Ili VC};~ . 01 I...c~~~ ~a~ t~rar~ a9~-~f~~~•-.~ 1 ~. ~3 : ~~; : C}3
I~YF'F~ c~C .`':•i/•~V ~' ~. ~ ~. ~ t ~tEr'iCJ~F' ~ ~~r~~ + Xa ~.. a ~.

~ ~ r~ ~ :i. c:~ t"r ~ ~~ ~~ r ~ ~. ,~ ~ ~ 1 ~ ~ ~ 1 V ~ 1 +.~ ~ ~ ~. ~ ~~ ~ :~ V ~ ~. +.~ F~ C :~ ~ ~ ~ 1 V a ~. +.~ F~

~~;~ . 000000 as ~. aQa C ~W ~ ~ ~ G~~- ~ ~~~ ~ flV~
{}a ~. C}C}(} a ~. ~-:~ :~C} C ~W ~ I y f...GL. r ~1~~~ ~ t~~~ }

T r~t~+ ~f~~ Y~ <~r~~ r~a~.~ ~ ~' C)a ~. q;~fy ~ F-! i. <.~t~ :i. ~. n. ~. ~. ..~ a ~. ~ ~. ;~a ..~ ;3~~~ . wc~ rr~~

4. This example links ODT with a bottom address of 4000, then loads ODT.SAV and MYPROG.SAV into
memory. As in Example 3 above, when you start the program, you must specify the address of O.ODT
as shown in the link map .

1'ti~~....1. :l. I... .~~h V0.3.01 l..i:?ar:i ~r3~
(:1 X:t ~' . i /•a 4~' ~" :i. 't: l ~ : t:l l:i ~' :I: r,~ ~ t-+'F,

N

tai::~?

~~t~, aqC}C}C}{} ga~t}C}a C~Wr 1 ~C~~1~~~1~~~ClV~'}
aa~aaa aa~a~~ c ~;w y ~ ~ ~..c~i... ~ ~~r~~.. ~ c~c:~~ }

'lr' Y` i3 t••~ ~:; ~ t~ Y' ~:; ~~ r.~ Y• c:~ r.; ~.; a C} ~ ~? ~ ~? ~ I•~ i ~ t'~ 1:i.1~+ i •~ .~. {} :L ~ C} 1 ~' ~? r:; f:3 ~ . w c:a r ~:i ~'>

. C11~: T' t:l X:t 'T' . wy f 1 ~,J

. c,~M.r. ~Yr~'~~cac:,.~n~

.:.~~Y~nr~~~ ~~~ ~~~~

CIZ~'1' VC}:I. . {}~

5. You can restart ODT by specifying O.ODT+2 as the start address. This reinitializes ODT and clears all
breakpoints.

16-3

On-line Debugging Technique (ODTJ

~'~'f1Fti'I' 4~~:'4

6. You can reenter ODT by specifying O.ODT+4 as the start address.

:•, .•, ,:~ ,t
a .:r ~ ', ~ ~:» ~.. c.3

If ODT is awaiting acommand, aCTRL/C from the keyboard calls the RT-11 keyboard monitor. The monitor
responds with ^C on the terminal and awaits a command. (You can use the monitor REENTER command to
reenter ODT only if your program has set the reenter bit and ODT is linked high in memory relative to the program;
otherwise, ODT is reentered at address O.ODT+4 as shown in Example 6 in Section 16.1.)

If you type CTRL/U during a search printout, the search terminates and ODT prints an asterisk.

16.2 RELOCATION
When the assembler produces a relocatable object module, the base address of the module is assumed to be location
000000. The addresses of all program locations, as shown in the assembly listing, are relative to this base address.
After you link the module, many of the values and all of the addresses in the program are incremented by a constant
whose value is the actual absolute base address of the module after it has been relocated. This constant is called the
relocation bias for the module. Since a linked program can contain several relocated modules, each with its own re-
location bias, and since, in the process of debugging, these biases have to be subtracted from absolute addresses
continually in order to relate relocated code to assembly listings, RT-11 ODT provides automatic relocation.

The basis of automatic relocation is the eight relocation registers, numbered 0 through 7. You can set them to the
values of the relocation biases at different times during debugging. Obtain relocation biases by consulting the link
map. Once you set a relocation register, ODT uses it to relate relative addresses to absolute addresses. For more in-
formation on the exact nature of the relocation process, consult Chapter 11, Linker.

ODT evaluates a relocatable expression as a 16-bit (6-digit octal) number. You can type an expression in any one of
the three forms presented in Table 16-1. In this table, the symbol n stands for an integer in the range 0 to 7 inclusive,
and the symbol k stands for an octal number up to six digits long, with a maximum value of 177777. If you type
more than six digits, ODT takes the last six digits typed, truncated to the low-order 16 bits. k can be preceded by
a minus sign, in which case its value is the two's complement of the number typed. For example:

k (number typed) Values

1 000001
-1 177777
400 000400
-177730 000050
1234567 034567

Section 16.3.13 describes the relocation register commands in greater detail.

16-4

On-line Debugging Technique (ODTJ

Table 16-1 Forms of Relocatable Expressions (r)

Form Expression Value of r

A) k The value of k.

B) n,k The value of k plus the contents of relocation register n. (If the n part
of this expression is greater than 7, ODT uses only the last octal digit
of n.)

C) C or Whenever you type the letter C, ODT replaces C with the contents of a
C,k or special register called the constant register. (This value has the same role
n,C or as the k or n that it replaces. The constant register is designated by the
C,C symbol $C and can be set to any value, as indicated below.)

16.3 COMMANDS AND FUNCTIONS
When ODT starts (as explained in Section 16.1) it indicates readiness to accept commands by printing an asterisk on
the left margin of the terminal page. You can issue most of the ODT commands in response to the asterisk. You can
examine a word and change it; you can run the object program in its entirety or in segments; you can search memory
for specific words or references to them. The discussion below explains these features.

16.3.1 Printout Formats
Normally, when ODT prints addresses, it attempts to print them in relative form (Form B in Table 16-1). ODT looks
for the relocation register whose value is closest to, but less than or equal to, the address to be printed. It then repre-
sents the address relative to the contents of the relocation register. However, if no relocation register fits the require-
ment, the address prints in absolute form. Since the relocation registers are initialized to -1 (the highest number),
the addresses initially print in absolute form. If you change the contents of any relocation register, it can then,
depending on the command, qualify for relative form.

For example, suppose relocation registers 1 and 2 contain 1000 and 1004 respectively, and all other relocation
registers contain numbers much higher. In this case, the following sequence might occur (the slash command causes
the contents of the location to be printed; the Line feed command, LF, accesses the next sequential location):

~ :i. C~ Cj ~) r ~. 1•i

*i ~~~'~~4~C~4?~ ~F
{I{~C~~~~t~a ~/r/C~~7~ita~~ LF

~ ~)4~t1~}~:~~ ~4~~4~~4~Cy

sets relocation register 1 to 1000
sets relocation register 2 to 1004
opens location 774
opens location 776
opens absolute location 1000
opens absolute location 1002
opens absolute location 1004

The printout format is controlled by the format register, $F. Normally, this register contains 0, in which case ODT
prints addresses relatively whenever possible. You can open $F and change its contents to a non-zero value, however.
In that case, all addresses print in absolute form (see Section 16.3.4, Accessing Internal Registers).

16.3.2 Opening, Changing, and Closing Locations
An open location is one whose contents ODT prints for examination, making those contents available for change. In
a closed location, the contents are no longer available for change. Several commands are used for opening and closing
locations.

Any command (except for the slash and backslash commands) that opens a location when another location is already
open causes the currently open location to be closed. You can change the contents of an open location by typing
the new contents followed by a single character command which requires no argument (i.e., LF, ~, RET, E-, @, >,

~.
16-5

On-line Debugging Technique (ODT)

16.3.2.1 _The Slash (/) — One way to open a location is to type its address followed by a slash. For example:

This command opens location 1000 for examination and makes it ready to be changed.

If you do not want to change the contents of an open location, press the RETURN key to close the location. ODT
prints an asterisk and waits for another command. However, to change the word, simply type the new contents
before giving a command to close the location. For example

~~ aC~~~l C} ~ ~ ~~~} a a. ~.~~~~:«a

This command inserts the new value, 012345, in location 1000 and closes the location. ODT prints another asterisk
indicating its readiness to accept another command.

Used alone, the slash reopens the last location opened. For example

~k/ C} C} ' ~ ~ C)

This command opens location 1000, changes its address to 002340, and then closes the location. ODT prints an
asterisk, indicating its readiness to accept another command. The /character reopens the last location opened and
verifies its value.

Remember that opening a location while another is open automatically closes the currently open location before
opening the new location.

Also note that if you specify an odd-numbered address with a slash, ODT opens the location as a byte and subse-
quently behaves as if you had typed a backslash (see the following paragraph).

16.3.2.2 The Backslash (\) -- In addition to operating on words, ODT operates on bytes. Typing the address of
the byte followed by a backslash character opens the byte. (On the LT33 or LT35 terminal, type \ by pressing the
SHIFT key while typing the L key.) This causes ODT to print the byte value at the specified address, to interpret
the value as ASCII code, and to print the corresponding character, if possible, on the terminal. (ODT prints a ?when
it cannot interpret the ASCII value as a printable character.)

* :i. C} Ca :i. ti ~. ~} 1 ..::

A backslash typed alone reopens the last open byte. If a word was previously open, the backslash reopens its even
byte

16.3.2.3 The LINE FEED Key (LF) — If you type the LINE FEED key when a location is open, ODT closes the
open location and opens the next sequential location:

In this example, the LINE FEED causes ODT to print the address of the next location along with its contents and to
wait for further instructions. After the above operation, location 1000 is closed and 1002 is opened. You can modify
the open location by typing the new contents.

If a byte location is open, typing a line feed opens the next byte location.

16-6

On-line Debugging Technique (ODT~

16.3.2.4 The Circumflex or Up-Arrow (~) — If you type the circumflex (or uparrow) when a location is open
(circumflex is produced on an LT33 or LT35 by typing SHIFT/1~, ODT closes the open location and opens the
previous location. To continue from the example above:

r

...

as i aaa /aa~:'.~~a

This command closes location 1002 and opens location 1000. You can modify the open location by typing the new
contents.

If the opened location is a byte, the circumflex opens the previous byte.

16.3.2.5 The Underline or Back-Arrow (E-) — If you type the underline, or back-avow, (use SHIFT/O on an LT33
or LT35 terminal) to an open word, ODT interprets the contents of the currently open word as an address indexed
by the program counter (PC) and opens the addressed location:

*:I.aOEa/aaaaa~
aa1.a1.~ /C}aa~a~;

Notice in this example that the open location, 1006, is indexed by the PC as if it were the operand of an instruction
with addressing mode 67 (PC relative mode).

You can make a modification to the opened location before you type a line feed, circumflex, or underline. Also, the
new contents of the location will be used for address calculations using the underline command. For example:

*~ as/~aa~ ~~? ~ ~F
a a a 1. a',~ / C} a C} 1.1.1. c~'"
aaal.aa /aaaaa~ ~aa..~
aaa~a~ / 1. ~~~~~

modifies to 4 and opens next location
modifies to 6 and opens previous location
changes to 200 and opens location indexed
by PC

16.3.2.6 Open the Addressed Location (@) — You can use the at (C) symbol (SHIFT/P on the LT33 or LT35
terminal) to optionally modify a location, close it, and then use its contents as the address of the location to open
next. For example

*:~ aah~/ as 1. a~~ C~ opens location 1044 next
as 1. a44 /aaa~aq

*:~aac5 / aa1a~4 ~':I.aal~ modifies to 2100 and opens location
aa~ ~ oa /aaa ~ ~~ 2100

16.3.2.7 Relative Branch Offset (>) — The right-angle bracket, >, optionally modifies a location, closes it, and
then uses its low-order byte as a relative branch offset to the next word to be opened. For example

*1. C>;~~?/ aC}a~C} ~ ;~C} 1.::~• modifies to 301 and interprets as a
aoab~3c~ /aaaa 1. C) relative branch

Note that 301 is a negative offset (-77). ODT doubles the offset before it adds it to the PC; therefore,
1034+(-176)=636.

16.3.2.8 Return to Previous Sequence (<) — The left-angle bracket, <, lets you optionally modify a location,
close it, and then open the next location of the previous sequence that was interrupted by an underline, @, or right-
angle bracket command. Note that underline, C, or right-angle bracket causes a sequence change to the open word.
If a sequence change has not occurred, the left-angle bracket simply opens the next location as a LINE FEED does.
This command operates on both words and bytes.

16-7

On-line Debugging Technique (ODTJ

sic ~. C~;~,~/aaa4a ~ ;~C? :I. ::~°
aaa~~~ iaaaa ~. a •~::
as ~. a~4 /aa ~, a~a I
as 1. C}~4) ~aaa~a~~ \aa;~; :::: . :
aa~a~:~~ ~aa~ ::~rr . :
as ~. a:~~ raa~ ~~

> causes a sequence change
returns to original sequence
@ causes a sequence change
< now operates on byte
< acts I i ke LF

16.3.3 Accessing General Registers 0-7
Open the program's general registers 0-7 with a command in the following format:

$n/

The symbol n is an integer in the .range 0-7 that represents the desired register. When you open these registers, you
can examine them or change their contents by typing in new data as with any addressable location. For example

~~0/gag4}:~,~

~K~h~laaa~~~ 4~~~

examines register 0 then closes it

opens register 4, changes its contents
to 000464, then closes the register

The example above can be verified by typing a slash in response to ODT's asterisk:

sic?aa~~~

You can use the LINE FEED, circumflex, underline or C command when a register is open.

16.3.4 Accessing Internal Registers
The program's status register contains the condition codes of the most recent operational results and the interrupt
priority level of the object program. Open it by typing $S. For example

~K~~i/C~~3~~:1. :1.

$S represents the address of the status register. In response to $S in the example above, ODT prints the 16-bit word,
of which only the low-order eight bits are meaningful. Bits 0-3 indicate whether a carry, overflow, zero, or negative
(in that order) has resulted, and bits 5-7 indicate the interrupt priority level (in the range 0-7) of the object program.
(Refer to the PDP-11 Processor Handbook for the status register format.)

You can also use the $ to open certain other internal locations listed in Table 16-2.

Table 16-2 Internal Registers

Register Section Function

$B 16.3.6 Location of the first word of the breakpoint table

$M 16.3.9 Mask location for specifying which bits are to be examined during a
bit pattern search

$P 16.3.15 Location defining the operating priority of ODT

$S 16.3.4 Location containing the condition codes (bits 0-3) and interrupt
priority level (bits 5-7)

(Continued on next page)

16-8

On-line Debugging Technique (ODTJ

Table 16-2 (Coat.) Internal Registers

Register Section Function

$C 16.3.10 Location of the constant register

$R 16.3.13 Location of relocation register 0, the base of the relocation register
table

$F 16.3.1 Location of the format register

16.3.5 Radix-50 Mode (X)
Many PDP-11 system programs employ the Radix-50 mode of packing certain ASCII characters three to a word.
You can use Radix-50 mode by specifying the MACRO .RAD50 directive. ODT provides a method for examining
and changing memory words packed in this way with the X command.

When you open a word and type the X command, ODT converts the contents of the opened word to its 3-character
Radix-50 equivalent and prints these characters on the terminal. You can then type one of the responses from
Table 16-3.

Table 16-3 Radix-50 Terminators

Response Effect

Closes the currently open location RETURN key (- ")

LINE FEED key (~F) Closes the currently open location and opens the next one in sequence

Circumflex (~) Closes the currently open location and opens the previous one in
sequence

Any three.characters Converts the three characters into packed Radix-50 format. Legal
whose octal code is 040
(space) or greater

Radix-50 characters for this response are

Space
0 through 9
A through Z

If you type any other characters, the resulting binary number is unspecified (that is, no error message prints and the
result is unpredictable). You must type exactly three characters before ODT resumes its normal mode of operation.
After you type the third character, the resulting binary number is available to be stored in the opened location. Do
this by closing the location in any one of the ways listed in Table 16-3. For example

*~ 1.4)C~~}i C~~A?~.~ .I. ~:::~~t ~ G.Z.;~1 RET

NOTE
After ODT converts the three characters to binary, the
binary number can be interpreted in one of many dif-
ferent ways, depending on the command that follows.
For example

16-9

On-line Debugging Technique (ODTJ

Since the Radix-50 equivalent of XIT is 113574, the
final slash in the example causes ODT to open location
113574 if it is a legal address.

16.3.6 Breakpoints
The breakpoint feature helps you monitor the progress of program execution. You can set a breakpoint at any
instruction that is not referenced by the program for data. When a breakpoint is set, ODT replaces the contents of
the breakpoint location with a BPT trap instruction so that program execution is suspended when a breakpoint is
encountered. Then the original contents of the breakpoint location are restored, and ODT regains control.

With ODT, you can set up to eight breakpoints, numbered 0 through 7, at any one time. Set a breakpoint by typing
the address of the desired location of the breakpoint followed by ;B. Thus, r;B sets the next available breakpoint at
location r. (If all eight breakpoints have been set, ODT ignores the r;B command.) You can set or change specific
breakpoints with the r;nB command, where n is the number of the breakpoint. For example:

sets breakpoint 0
sets breakpoint 1
sets breakpoint 2
resets breakpoint 1

The ;B command removes all breakpoints. Use the ;nB command to remove only one of the breakpoints, where n
is the number of the breakpoint. For example:

* "'~~~ ~ ~.. removes the third breakpoint

ODT keeps a table of breakpoints; you can access that table. The $B/command opens the location containing the
address of breakpoint 0. The next seven locations contain the addresses of the other breakpoints in order. You can
sequentially open them by using the LINE FEED key. For example

In this example, breakpoint 0 is set to 1020, breakpoint 1 is set to 1032, breakpoint 5 is set to 1046, and breakpoint
6 is set to 1066. The other breakpoints are not set.

Note that a repeat count in a proceed command (;P) refers only to the breakpoint that ODT most recently encoun-
tered. Execution of other breakpoints is determined by their own repeat counts.

16.3.7 Running the Program (r;G and r;P)
ODT controls program execution. There are two commands for running the program: r;G and r;P. ~'he r;G command
starts execution (go) and r;P continues (proceed) execution after halting at a breakpoint. For example

* :~ {~ Cy q y Cl

16-10

On-line Debugging Technique (ODTJ

This command starts execution at location 1000. The program runs until it encounters a breakpoint or until it

completes. If it gets caught in an infinite loop, it must be either restarted or reentered as explained in Section 16.1.

Upon execution of either the r;G or r;P command, the general registers 0-6 are set to the values in the locations

specified as $0-$6. The processor status register is set to the value in the location specified as $S.

When ODT encounters a breakpoint, execution stops and ODT prints Bn; (where n is the breakpoint number), fol-

lowed by the address of the breakpoint. You can then examine locations for expected data. For example

~~ :I.C)~Oy:~~:~
* 1. t) Cj A ~► t~

~ r C) C} 1 t~ 1. C)

sets breakpoint 3 at location 1010
starts execution at location 1000
stops execution at location 1010

To continue program execution from the breakpoint, type ;P in response to ODT's last prompt (*).

When you set a breakpoint in a loop, you can allow the program to execute a certain number of times through the

loop before ODT recognizes the breakpoint. Set a proceed count by using the k;P command. This command specifies

the number of times the breakpoint is to be encountered before ODT suspends program execution (on the kth en-

counter). The count, k, refers only to the numbered breakpoint that most recently occurred. You can specify a

different proceed count for the breakpoint when it is encountered. Thus:

halts execution at breakpoint 3
resets breakpoint 3 at location 1026
sets proceed count to 4 and
continues execution; the program loops
through the breakpoint three times and halts on
the fourth occurrence of the breakpoint

Following the table of breakpoints (as explained in Section 16.3.6) is a table of proceed command repeat counts
for each breakpoint. You can inspect these repeat counts by typing $B/ and nine line feeds. The repeat count for
breakpoint 0 prints (the first seven line feeds causes the table of breakpoints to be printed; the eighth types the single
instruction mode, explained in the next section, and the ninth line feed begins the table of proceed command repeat
counts). The repeat counts for breakpoints 1 through 7 and the repeat count for the single-instruction trap follow in
sequence. ODT initializes a proceed count to 0 before you assign it a value. After the command has been executed,
it is set to - l .Opening any one of these repeat counts provides an alternative way of changing the count. Once the
location is open, you can modify its contents in the usual manner by typing the new contents followed by the
RETURN key. For example

nnnnnn f C}{~ :L C~;~fa LF

nnnnnn /C}C3c~aFi;:~C) ~F
nnnnnn /OC~C~C}C)C? 1. ~~ LF

nnnnnn /gC)C~C~4~q LF

•

a

nnnnnn ~C)C~CyC~C)C~ ~F

nnnnnn /nnnnnn

address of breakpoint 7
single instruction address
count for breakpoint 0; changes to 15
count for breakpoint 1

count for breakpoint 7
repeat count for single instruction mode

Both the address indicated as the single instruction address and the repeat count for single instruction mode are ex-
plained in the following section.

16-11

On-line Debugging Technique (ODT)

16.3.8 Single Instruction Mode
With this mode, you specify the number of instructions to be executed before ODT suspends the program run. The
proceed command, instead of specifying a repeat count for a breakpoint encounter, specifies the number of succeeding
instructions to be executed. Note that breakpoints are disabled in singe instruction mode. Table 16-4 lists the single
instruction mode commands.

Table 16~ Single Instruction Mode Commands

Command Explanation

~S

n;P

;S

Enables single instruction mode. (n can be any digit and serves only to distinguish
this form from the form ;S). Breakpoints are disabled.

Proceeds with program run for the next n instructions before reentering ODT.
(If n is missing, it is assumed to be 1.) Trapping instructions and associated trap
handlers can affect the proceed repeat count (see Section 16.4.2).

Disables single instruction mode.

When the repeat count for single instruction mode is exhausted and the program suspends execution, ODT prints:

~{~3~ nnnnnn

where nnnnnn is the address of the next instruction to be executed. The $B breakpoint table contains this address
following that of breakpoint 7. However, unlike the table entries for breakpoints 0-7, direct modification has no
effect.

Similarly, following the repeat count for breakpoint 7 is the repeat count for single instruction mode. You can
.modify this table entry directly. This is an alternative way of setting the single-instruction mode repeat count. In
such a case, ;P implies the argument set in the $B repeat count table rather than an assumed 1.

16.3.9 Searches
With ODT, you can search all or any specific portion of memory for any bit pattern or for references to a particular
location.

16.3.9.1 Word Search (r;W) — Before initiating a word search, you must specify the mask and search limits.
The location represented by $M specifies the mask of the search. $M/ opens the mask register. The next two sequen-
tial locations (opened by LINE FEEDs) contain the lower and upper limits of the search. ODT examines in the
search all bits set to 1 in the mask; it ignores other bits.

You must then give the search object and the initiating command, using the r;W command, where r is the search
object. When ODT finds a match, (i.e., each bit set to 1 in the search object is set to 1 in the word ODT searches
over the mask range) the matching word prints. For example

~ ~}~~4}~C}C}0C} 1. :~:~ ~{}C} ~F
nnnnnn ../C}{}4}{~{}C} :I. ~C}C} LF

nnnnnn /C}C}CyC)C}C} :I. {>~aC} RET

~C~~ v" W

tests high-order eight bits
sets low address limit
sets h igh address I im it
initiates word search

16-12

On-line Debugging Technique (ODTJ

n In the above example, nnnnnn is an address internal to ODT; this location varies and is meaningful only for reference
purposes. In the first line above, the slash was used to open $M, which now contains 177400; the LINE FEEDs open
the next two sequential locations, which now contain the upper and lower limits of the search.

In the search process, ODT performs an exclusive OR (XOR) with the word currently being examined and the search
object; the result is ANDed to the mask. If this result is 0, a match has been found and ODT reports it on the termi-
nal. Note that if the mask is 0, all locations within the limits print. This provides a convenient method for dumping
all memory locations within given limits using ODT.

Typing CTRL/U during a search printout terminates the search.

16.3.9.2 Effective Address Search (r;E) -- ODT provides a search for words that reference a specific location.
Open the mask register only to gain access to the low and high limit registers. After specifying the search 'ts (as
explained for the word search), type the command r;E (where r is the effective address) to initiate the search.

Words that are an absolute address (argument r itself), a relative address offset, or a relative branch to the effective
address print after their addresses. For example

~~~trjt~:f~.~:~~n~ ~F 
nnnnnn ./C~C~ 1. C~~C~ :I. t} 1. C~ ~F 
nnnnnn /CSC) :!. C~~C) 1. C}c~}C} t~ 
:k 1. C) .~ "~ v i::. 

opens mask register only to gain 
access to search I i m i is 

initiates search 
relative branch 
relative branch 
initiates a new search 
relative address offset 
absolute address 

Give particular attention to the reported effective address references. A word can have the specified bit pattern of 
an effective address without actually being used as -one. ODT reports all possible references whether they are actually 
used or not. 

Typing CTRL/U during a search printout terminates the search. 

16.3.10 The Constant Register (r;C) 
It is often desirable to convert a relocatable address into its value after relocation or to convert a number into its 
two's complement, and then to store the converted value in one or more places in a program. Use the constant 
register to perform this and other useful functions. 

Typing r;C evaluates the relocatable expression to its 6-digit octal value, prints the value on the terminal, and stores 
it in the constant register. Invoke the contents of the constant register in subsequent relocatable expressions by 
typing the letter C. Examples follow: 

~~~~~~;~~~ y Ci:::::I.~~:~~~~ places the two's complement of 4432 in the 
constant register

C RET stores the contents of the constant register
in location 6632

~ :I. t~ C~ C~ ~ :1. i~~ sets relocation register 1 to 1000

reprints relative location 4272 as an
absolute I ocation and stores it i n the
constant register

16-13

On-line Debugging Technique jODT~

16.3.11 Memory Block Initialization (;F and ;I)
Use the constant register with the commands ;F and ;I to set a block of memory to a specific value. While the most
common value required is 0, other possib' 'ties are + 1, -1, ASCII space, etc.

When you type the command ;F, ODT stores the contents of the constant register in successive memory words
starting at the memory word address you specify in the lower search ' 't and ending with the address you specify
in the upper search limit.

Typing the command ;I stores the low-order eight bits in the constant register in successive bytes of memory
starting at the byte address you specify in the lower search limit and ending with the byte address you specify in the
upper search limit.

For example, assume relocation register 1 contains 7000, 2 contains 10000, and 3 contains 15000. The following
sequence sets word locations 7000-7776 to 0, and byte locations 10000-14777 to ASCII spaces:

nnnnnn ~C}C}CyC}C}C} 1. ~ C~ LF

nnnnnn ~~C}C}C}r'~C} ~~ p~~ ~--~
{~ y t:r ~~ C} Ca C} ~ C} ;~ ,~ ~ ~:..

:'kfij~'i~C}C}C}C}C}~} LF

nnnnnn i C} C} ~ C} C} C}
nnnnnn /C}C}"l'1:~'c~t
~~r} y l.r::::C}C}C}C}fit}

~ v .l.
~K

:.~vC} LF

~.~ y :~. ~R E T~

opens the mask register to gain
access to search I im its
sets the I ower I i-m it to 7000
sets the upper limit to 7776
sets the constant register to zero
sets locations 7000-7776 to zero

sets the I ower I im it to 10000
sets the upper limit to 14777
sets the constant register to 40
space)

sets the byte locations 10000-14777
to the value in the low-order 8
bits of the constant register

16.3.12 Calculating Offsets (r;0)
Relative addressing and branching involve the use of an offset. An offset is the number of words or bytes forward
or backward from the current location to the effective address. During the debugging session it is sometimes neces-
sary to change a relative address or branch reference by replacing one instruction offset with another. ODT calcu-
lates the offsets in response to the r;0 command.

The command r;0 causes ODT to print the 16-bit and 8-bit offsets from the currently open location to address r.
For example

~.~~~a/C}pC)C}~~ ~:~ ~ v ~.l C}C}C}C}~~ C}~~ ~~~? (RET)

This command opens location 346, calculates and prints the offsets from location 346 to location 414, changes the
contents of location 346 to 22 (the 8-bit offset), and verifies the contents of location 346.

The 8-bit offset prints only if it is in the range -128(decimal) to 127(decimal) and the 16-bit offset is even, as was
the case above. In the next example, the offset of a relative branch is calculated and modified so that it branches to
itself.

~:I.~}~~~~ :l.{}~~~':1. :I.C}:~~►~, s"► ~l ~.1~%r~~t~i ,~:7~ ~C}~1. ~~~'7 RET
~ ,: ~ :i. C}:~ '~'1 '~

Note that the modified low-order byte 377 must be combined with the unmodified high-order byte.

16-14

On-line Debugging Technique (ODT)

16.3.13 Relocation Register Commands
The use of the relocation registers is described briefly in Section 16.2. At the beginning of a debugging session, it is

desirable to preset the registers to the relocation biases of those relocatable modules that will be receiving the most

attention. Do this by typing the relocation bias, followed by a semicolon and the specification of relocation registers,

as follows:

r;nR

The symbol r can be any relocatable expression, and n is an integer in the range 0-7. If you omit n, it is assumed to

be 0. For example

:I. C) C) C~ ~ ~.~I~~ puts 1000 into relocation register 5
~k ;:; ~ :~ C) C7 v" " I ~ adds 100 to the contents
~~- of relocation register 5

Once a relocation register is defined, you can use it to reference relocatable values. For example

~ ~ C} Cy ~ r ;~ ~ ~ puts 2000 into relocation register 1
~K;I, y ~'1. '~c~y/UC~~'~i~}~~ examines the contents of location 4176
~'~ :I. y ;~'~ :I. ~:' y Cy :; sets a breakpoint at location 5712

Sometimes programs can be relocated to an address below the one at which they were assembled. This could occur

with PIC code (position independent code), which is moved without using the linker. In this case, the appropriate

relocation bias would be the two's compliment of the actual downward displacement. One method for easily evalu-

ating the bias and putting it in the relocation register is illustrated in the following example.

Assume a program was assembled at location 5000 and was moved to location 1000. Then the following sequence

enters the two's complement of 4000 in relocation register 1.

:l. C) C7 C~ v" .I. h~
~. ,,;:~ C~ ca C~ ~ :l. r~~

Relocation registers are initialized to -1 so that unwanted relocation registers never enter into the selection process

when ODT searches for the most appropriate register.

To set a relocation register to -1, type ;nR. To set all relocation registers to - l ,type ;R.

ODT maintains a table of relocation registers, beginning at the address specified.by $R. Opening $R ($R/) opens
relocation register 0. Successively typing a LINE FEED opens the other relocation registers in sequence, when a

relocation register is opened in this way, you can modify it as you would any other memory location.

16.3.14 The Relocation Calculators, nR and n!
when a location has been opened, it is often desirable to relate the relocated address and the contents of the location

back to their relocatable values. To calculate the relocatable address of the opened location relative to a particular
relocation bias, type

n!

The symbol n specifies the relocation register. This calculator works with opened bytes and words. If you omit n, the

relocation register whose contents are closest to, but less than or equal to, the opened location is selected automati-

cally by ODT. In the following example, assume that these conditions are fulfilled by relocation register 3, which

contains 2000. Use the following command to find the most likely module that a given opened byte is in:

16-15

On-line Debugging Technique (ODTJ

To calculate the difference between the contents of the opened location and a relocation register, type

nR

The symbol n represents the relocation register. If you omit n, ODT selects the relocation register whose contents
are closest to but less than or equal to the contents of the opened location. For example, assume the relocation bias
stored in relocation register 1 is 7000:

The value 2032 is the content of 1,500, relative to the base 7000. The next example shows the use of both reloca-
tion calculators.

If relocation register 1 contains 1000, and relocation register 2 contains 2000, use the following command to cal-
culate the relocatable addresses of location 3000 and its contents relative to 1000 and 2000:

`k:~t~C~C1.~C?~~y~~ :1. ~: :I. ~ ... :f. ~► 4~~~'~}{}~1 ~? I ..::,~ y ~~} :l. t){?C) :I. ~;~:::I. ~ 1'Q :l ~ ~ i~`::::,~ y ~4~ :I. C)

16.3.15 ODT Priority Level, $P
$P represents a location in ODT that contains the interrupt (or processor) priority level at which ODT operates. If
$P contains the value 377, ODT operates at the priority level of the processor at the time ODT is entered. Otherwise,
$P can contain a value between 0 and 7 corresponding to the fixed priority at which ODT operates.

To set ODT to the desired priority level, open $P. ODT prints the present contents, which you can then change:

ail'>I~~~.~'~?C);~~r3c~~ ~ tai lowers the priority to allow interrupts
~~ from the terminal

If you do not change $P, its value is seven.

You must set ODT's priority to 0 if you are using ODT in an FB environment while another job is running.

ODT does not always service breakpoints that are set in routines that run at different priority levels. For example,
a program running at a low priority can use a device service routine that operates at a higher priority level. If you
set $P low, ODT waits for terminal input at a low priority. If an interrupt occurs from a high priority routine, the
breakpoints in the high priority routine are not recognized since they were removed when the earlier breakpoint
occurred. That is, interrupts that are set at a priority higher than the one at which ODT is running are serviced, but
any breakpoints are not recognized. To avoid this problem, set breakpoints at one priority level at a time. That is,
set breakpoints within an interrupt service routine, but not at mainline code level. For a more complete discussion
of how the PDP-11 handles priority and interrupts, refer to the processor handbook for your particular machine.
ODT disables all breakpoints in the program whenever it gains control. Breakpoints are enabled when ;P and ;G
commands are executed. For example

~'''r~ C~ C~ s"~ z:~ ..:. ..

X{~'~~~:~C~:I.~}~~
an interrupt occurs and is serviced

If a higher level interrupt occurs while ODT is waiting for input, the interrupt is serviced, and no breakpoints are
recognized.

16-16

On-line Debugging Technique (ODTJ

n

n

16.3.16 ASCII Input and Output (r;nA)
Inspect and change ASCII text by using a command of this syntax:

r;nA

The symbol r represents a relocatable expression, and n is a character count. If you omit n, it is assumed to be 1.

ODT does not check the magnitude of n. ODT prints n characters starting at loca~cion r, followed by a carriage
return/line feed combination. Table 16-5 lists responses and their effect.

Table 16-5 ASCII Terminators

Response Effect

RETURN key

LINE FEED key (~F)

Up to n characters of text

ODT outputs a carriage return/line feed combination followed by an
asterisk and waits for another command.

ODT opens the byte following the last byte output.

ODT inserts the text into memory, starting at location r. If you type
fewer than n characters, terminate the command by typing CTRL/U.
This causes a carriage return/line feed/asterisk combination to print.
However, if you type exactly n characters, ODT responds with a
carriage return/line feed combination, the address of the next available
byte, and then a carriage return/line feed/asterisk combination.

16.4 PROGRAMMING CONSIDERATIONS
Information in this section is not necessary for the efficient use of ODT. However, it does provide a better under-
standing of how ODT performs some of its functions. In certain difficult debugging situations, this understanding
is necessary.

16.4.1 Using ODT with Foreground/Background Jobs
It is possible to use ODT to debug programs written as either background or foreground jobs. ODT does not debug
virtual tasks that use extended memory. In the background or under the single-job monitor, you can link ODT with
the program as described in Example 1 in Section 16.1. To debug a program in the foreground area, DIGITAL recom-
mends that you run ODT in the background while the program to be debugged is in the foreground. The sequence of
commands to do this is as follows:

,~~~~;~.~~ r~~~~r~r~~r~.
I...~:l~I:~I~~I:~ ~T nnnnnn
4 ~~ ~l i~ Cl Z:~'r

~~ '1' V ~? ~. ♦ 4~ ~.
*nnnnnn ~ {~~'~

~~.hl~~~~O~Cy~}~~} t~
~Q~ nnnnnn ~CaX:{

*~~t:;

~l~il:::cat.al~H"

loads the foreground program
the first address of the job prints
runs ODT in the background
and sets a relocation register
to the start of the job

clears the format register to enable
proper address printing
sets a breakpoint

starts the keyboard monitor again

starts the foreground job

The copy of ODT you use must be linked low enough so that it fits in memory along with the foreground job.

16-17

On-line Debugging Technique (ODTJ

NOTE
Since ODT uses its own terminal handler, it cannot be
used with the display hardware. If GT ON is in effect,
ODT ignores it and directs its input and output only to
the console terminal.

If you use ODT in a foreground/background environment while another job is running, set ODT's priority bit to 0
as follows:

~ ~.I:IN' ~' q C~ ~~ ~y ~~ .r' q ~

This puts ODT into the wait state at level 0, not at level 7. If you leave ODT's priority at 7, all interrupts (including
clock) are locked out while ODT is waiting for terminal input.

16.4.2 Functional Organization
The internal organization of ODT is almost totally modularized into independent subroutines. The internal structure
consists of three major functions: command decoding, command execution, and utility routines.

The command decoder interprets the individual commands, checks for command errors, saves input parameters. for
use in command execution, and sends control to the appropriate command execution routine.

The command execution routines take parameters saved by the command decoder and use the utility routines to
execute the specified command. Command execution routines either return to the command decoder or transfer
control to your program.

The utility routines are common routines such as SAVE-RESTORE and I/O. They are used by both the command
decoder and the command executers.

16.4.3 Breakpoints
The function of a breakpoint is to give control to ODT whenever a program tries to execute the instruction at the
selected address. Upon encountering a breakpoint, you can use all of the ODT commands to examine and modify
the program.

When a breakpoint is executed, ODT removes all the breakpoint instructions from the code so that you can examine
and alter the locations. ODT then types a message on the terminal in the form Bn;r, where r is the breakpoint address
and n is the breakpoint number. ODT automatically restores the breakpoints when execution resumes.

There is a major restriction in the use of breakpoints: the program must not reference the word where a breakpoint
was set since ODT altered the word. You should also avoid setting a breakpoint at the location of any instruction
that clears the T-bit. For example

~'if:a~,J .~- ~~~~:~ q :I. '~"l' i' ~~ y t:i~::'1' 1~=`i"t 1: l~I•~; ~ ~'Y T'ta i...f"~l~:I... :;

NOTE
Instructions that cause or return from traps (e.g., EMT,
RTI) are likely to clear the T-bit, since a new word from
the trap vector or the stack is loaded into the status
register.

A breakpoint occurs when a trace trap instruction (placed in your program by ODT) is executed. When a breakpoint
occurs, ODT operates according to the following algorithm:

1. Sets processor priority to 7 (automatically set by trap instruction).
2. Saves registers and sets up stack.

16-18

On-line Debugging Technique ~ODTJ

3. If internal T-bit trap flag is set, goes to step 13.
4. Removes breakpoints.
5. Resets processor priority to ODT's priority or user's priority.

6. Makes sure a breakpoint or single-instruction mode caused the interrupt.

7. If the breakpoint did not cause the interrupt, goes to step 15.

8. Decrements repeat count.
9. Goes to step 18 if non-zero; otherwise resets count to 1.

10. Saves terminal status.
11. Types message about the breakpoint or single-instruction mode interrupt.

12. Goes to command decoder.
13. Clears T-bit in stack and internal T bit flag.
14. Jumps to the go processor.
15. Saves terminal status.
16. Types BE (bad entry) followed by the address.
17. Clears the T-bit, if set, in the user status and proceeds to the command decoder.

18. Goes to the proceed processor, bypassing the TT restore routine.

Note that steps 1-5 inclusive take approximately 100 microseconds. Interrupts are not permitted at this time, since

ODT is running at priority level 7.

ODT processes a proceed (;P) command according to the following algorithm:

1. Checks the proceed for legality.
2. Sets the processor priority to 7.
3. Sets the T-bit flags (internal and user status).
4. Restores the user registers, status, and program counter.
5. Returns control to the user.
6. when the T-bit trap occurs, executes steps 1, 2, 3, 13, and 14 of the breakpoint sequence, restores break-

points, and resumes normal program execution.

When a breakpoint is placed on an IOT, EMT, TRAP, or any instruction causing a trap, ODT follows this algorithm:

1. When the breakpoint occurs as described above, enters ODT.
2. When ;P is typed, sets the T-bit and executes the IOT, EMT, TRAP, or other trapping instruction.

3. Pushes the current PC and status (with the T-bit included) on the stack.

4. Obtains the new PC and status (no T bit set) from the respective trap vector.
5. Executes the whole trap service routine without any breakpoints.

6. When an RTI is executed, restores the saved PC and PS (including the T-bit). Executes the instruction

following the trap-causing instruction. If this instruction is not another trap-causing instruction, the

T-bit trap occurs; reinserts the breakpoints in the user program, or decrements the single-instruction

mode repeat count. If the following instruction is strap-causing instruction, repeats this sequence

starting at step 3.

NOTE
Exit from the trap handler must be by means of the RTI
instruction. Otherwise, the T-bit is lost. ODT cannot regain
control since the breakpoints have not yet been reinserted.

Note that the ;P command is illegal if a breakpoint has not occurred (ODT responds with ?). ;P is legal, however,

after any trace trap entry.

The internal breakpoint status words have the following format

16-19

On-line Debugging Technique (ODT~

1. The first eight words contain the breakpoint addresses for breakpoints 0-7. (The ninth word contains the
address of the next instruction to be executed in single-instruction mode.)

2. The next eight words contain the respective repeat counts. (The following word contains the repeat count
for single-instruction mode.)

You can change these words at will, either by using the breakpoint commands or by directly manipulating $B.

when program runaway occurs (that is, when the program is no longer under ODT control, perhaps executing an
unexpected part of the program where you did not place a breakpoint) give control to ODT by pressing the HALT
key to stop the computer and then restarting ODT (see Section 16.1). ODT prints an asterisk, indicating that it is
ready to accept a command.

If the program you are debugging uses the console terminal for input or output, the program can interact with ODT
to cause an error since ODT uses the console terminal as well. This interactive error does not occur~when you run
the program without ODT.

Note the following rules concerning the ODT break routine:

1. If the console terminal interrupt is enabled upon entry to the ODT break routine, and no output interrupt
is pending when ODT is entered, ODT generates an unexpected interrupt when returning control to the
program.

2. If the interrupt of the console terminal reader (the keyboard) is enabled upon entry to the ODT break
routine, and the program is expecting to receive an interrupt to input a character, both the expected
interrupt and the character are lost.

3. If the console terminal reader (keyboard) has just read a character into the reader data buffer when the
ODT break routine is entered, the expected character in the reader data buffer is lost.

16.4.4 Searches
The word search lets you search for bit patterns in specified sections of memory. Using the $M/ command, specify
a mask, a lower search limit ($M+2), and an upper search limit ($M+4). Specify the search object in the search com-
mand itself.

The word search compares selected bits (where 1 s appear in the mask) in the word and search object. If all of the
selected bits are equal, the unmasked word prints.

The search algorithm is as follows:

1. Fetches a word at the current address.
2. XORs (exclusive OR) the word and search object.
3. ANDs the result of step 2 with the mask.
4. If the result of step 3 is 0, types the address of the unmasked word and its contents; otherwise, proceeds

to step 5.
5. Adds 2 to the current address. If the current address is greater than the upper limit, types *and returns

to the command decoder; otherwise, goes to step 1.

Note that if the mask is 0, ODT prints every word between the limits, since a match occurs every time (i.e., the
result of step 3 is always 0).

In the effective address search, ODT interprets every word in the search range as an instruction that is interrogated
for a possible direct relationship to the search object. The mask register is opened only to gain access to the search
limit registers.

The algorithm for the effective address search is as follows ((X) denotes contents of X, and K denotes the search
object):

16-20

On-line Debugging Technique (ODTJ

1. Fetches a word at the current address X.
2. If (X~K [direct reference] ,prints contents and goes to step 5.
3. If (X}tX+2=K [indexed by PC] ,prints contents and goes to step 5.
4. If (7~ is a relative branch to K, prints contents.
5. Adds 2 to the current address. If the current address is greater than the upper limit, performs a carriage

retum/line feed combination and returns to the command decoder; otherwise, goes to step 1.

16.4.5 Terminal Interrupt
Upon entering the TT SAVE routine, ODT follows these steps:

1. Saves the ISR status register (TKS).
2. Clears interrupt enable and maintenance bits in the TKS.
3. Saves the TT status register (TPS).
4. Clears interrupt enable and maintenance bits in the TPS.

To restore the TT:

1. Wait for completion of any I/O from ODT.
2. Restore the TKS.
3. Restore the TPS.

NOTES
1. If the TT printer interrupt is enabled upon entry to the

ODT break routine, the following can occur:

a. If no output interrupt is pending when ODT
is entered, an additional interrupt always occurs
when ODT returns control to the user.

b. If an output interrupt is pending upon entry,
the expected interrupt occurs when the user
regains control.

2. If the TT reader (keyboard) is busy or done, the expected
character in the reader data buffer is lost.

3. If the TT reader (keyboard) interrupt is enabled upon
entry to the ODT break routine, and a character is
pending, the interrupt (as well as the character) is lost.

16.5 ERROR DETECTION
ODT detects two types of error: illegal or unrecognizable command and bad breakpoint entry. ODT does not check
for the legality of an address when you command it to open a location for examination or modification. Thus the
command:

..t ...~ ' 7 ...1

references nonexistent memory, thereby causing a trap throug~i the vector at location 4. If the program you are de-
bugging with ODT has requested traps through location 4 with the .TRPSET EMT, the program receives control at
its TRPSET address.

Typing something other than. a legal command causes ODT to ignore the command and to print:

(echoes illegal commands ~'

16-21

On-line Debugging Techni.~►ue (ODT~

and to wait for another command. Therefore, to cause ODT to ignore a command just typed, type any illegal
character (such as 9 or RUBOUT) and the command will be treated as an error and ignored.

ODT suspends program execution whenever it encounters a breakpoint (that is, traps to its breakpoint routine). If
the breakpoint routine is entered and no known breakpoint caused the entry, ODT prints:

F~~~nnnnnn

and waits for another command. BEnnnnnn denotes bad entry from location nnnnnn. A bad entry may be caused
by an illegal trace trap instruction, by a T-bit set in the status register, or by a jump to some random location within
ODT.

16-22

CHAPTER 17

PATCH

You can use the PATCH utility program to make code modifications to any RT-11 file (see Table 3-2 in this manual
for a complete list of RT-11 file types). You use PATCH to interrogate and then to change words or bytes in the
file.

It is always a good idea to create a backup version of the file you want to patch, because PATCH makes changes
directly to the file as you work.

17.1 CALLING AND USING PATCH
To call PATCH from the system device, respond to the dot (.) printed by the keyboard monitor by typing:

R PATCH ~

PATCH then prints:

1 . • • • M.

•M ..M

You should enter the name of the file you want to patch according to this general syntax:

filespec [/option . . .]

where

filespec represents the device, file name, and file type of the file you want to patch.

/option is one of the options listed in Table 17-1.

If you do not specify a file type, PATCH assumes a .SAV file type.

17.1.1 PATCH Options
Table 17-1 summarizes the options that are valid for PATCH at this point in the opening command.

Table 17-1 PATCH Options

Option Meaning

A

/O

/C

/D

Use with a device specification with or without a file specification. Use without a file
specification to repair damaged RT-11 directories on directory-structured devices or to

patch the bootstrap on disk block 0. Use with a file specification when the file is a source

file or has a file type other than .SAV. Use if the file is an RT-11 monitor file.

Use if the file is an overlay-structured file .

Requires you to enter a checksum. If you make no modifications, PATCH ignores the

/C option.

Use if you do not know the checksum for a particular patch. PATCH prints the checksum

for that patch. If you make no modifications, PATCH ignores the /D option.

17-1 March 1978

PATCH

Note that you must enter the complete file specification and accompanying options at this point; they are not legal
at any other time. If you enter a carriage return instead of a file specification, however, PATCH prints its current
running version number. It then repeats the prompt for a file specification.

After you enter the file specification, PATCH prints another asterisk and waits for commands.

17.1.2 Checksum
The checksum option helps you verify your work. It lets you compare the patch that you make to another patch
that is known to be correct. The checksum does not tell you specifically where your error is, but it does tell you
that an inconsistency exists.

PATCH can maintain a running total of the value of each command, argument, and character you enter. This total
is called the checksum for the patch.

For example, if you receive from DIGITAL a patch to improve your system's performance, the patch contains a
checksum value. You should use the /C option in the first PATCH command line, then make the modifications
to your file exactly as shown in the DIGITAL patch. When you exit, PATCH asks you for a checksum. Enter
the value froi~i the DIGITAL patch. If the checksum you enter and the checksum that PATCH generated when
you made your modifications do not match, PATCH prints the ?PATCH-W-CHECKSUM ERROR message. You
then know that you made an error in patching your file, and that you need to try again.

17.2 PATCH COMMANDS
Table 17-2 summarizes the PATCH commands. Upper case characters represent PATCH commands; lower case
characters represent octal values or ASCII characters. The following sections describe the commands in detail.
Section 17.3 provides examples that use PATCH.

17.2.1 Patching a New File (F)
The F command causes PATCH to request you to enter a checksum, or it prints the required checksum (depending
upon the options you specify). It also causes PATCH to close the currently open file and to print an asterisk indi-
catingits readiness to accept another command string. No checksum dialogue is invoked if you have not previously
specified checksum options (with /D or /C).

17.2.2 Exiting from Patch (E)
The E command causes PATCH to close the currently open file after printing the checksum dialogue according
to the options you specify and return control to the RT-11 monitor. As with the F command, the checksum
dialogue is by-passed if you have not specified checksum options.

17.2.3 Examining and Changing Locations in the File
For anon-overlay file, you can open a word address (as with ODT) by typing:

[relocation register,] offset/

PATCH types the contents of the location and waits for you to enter either a new location contents or another
command .

-For an overlay file, the format is:

[segment number:] [relocation register,] offset/

Segment number represents the overlay segment number as it is printed on the link map for the file. If you omit
the segment number, PATCH assumes the root segment. If you make an error in a command string while patching

an overlaid program, you can use CTRL/U to cancel the command. However, PATCH assumes the entire line is

incorrect and preserves only the previously set relocation registers. PATCH preserves the segment number only
across the ^and ~F commands.

17-2

PATCH

Table 17-2 PATCH Commands

Command Section Explanation

v;nR

x;B

r,o/

r,o\

s:r,o/

s: r,o\

ET

LF

F

E

17.2.8

17.2.7

17.2.3

17.2.3

17.2.3

17.2.3

17.2.3

17.2.3

17.2.3

17.2.3

17.2.1

17.2.2

17.2.5

17.2.6

17.2.4

17.2.4

17.2.4

17.2.4

Sets relocation register n to value v.

Sets the bottom address of the overlay file to the value x.

Opens the word location indicated by the contents of relocation
register r plus offset o.

Opens the byte location indicated by the contents of relocation
register r plus offset o.

Opens the word location indicated by the contents of relocation
register r plus offset o in overlay segment s.

Opens the byte location indicated by the contents of relocation
register r plus offset o in overlay segment s.

Closes the currently open word or byte.

'Closes the currently open word or byte and opens the next sequen-
tial word or byte.

Closes the currently open word or byte and opens the previous word
or byte.

Closes the currently open word and opens the word it addresses.

Closes the file currently open and requests a new file specification.

Closes the file currently open and returns control to RT-11 monitor.

Indicates that a value in the overlay handler or its tables is being
modified to the value x and that the overlay structure must be re-
initialized. Avalue of 0 is illegal and generates an error message.

Indicates that PATCH should add the contents of all subsequently
opened locations to the checksum, until it encounters another &
symbol .

Prints the contents of the opened word or byte as ASCII characters
(if a byte is open, one character prints; if a word is open, two charac-
ters print).

Prints the contents of the opened word as an unpacked Radix-50 word.

Resets the contents of the opened word or byte to the ASCII value
you type (if a byte is open, you must type one character; if a word is
open, you must type two characters).

Resets the contents of the currently opened word to the packed Radix-50
value of the three ASCII characters you type (you must type three
characters).

17 -3 March 1978

PATCH

Similarly, you can open a byte address in a file. The format for non-overlay files is:

[relocation register,] offset\

The format for overlay files is:

[segment number:] [relocation register,] offset\

Once a location has been opened, you can optionally type in the new contents in the format:

[relocation register,] octal value

Follow this line by one of the control characters from Table 17-3.

Table 17-3 PATCH Control Characters

Character Function

LF

n

Closes the current location by changing contents to the new contents
(if any) and awaits additional control input.

Closes the current location by changing its content to the new contents
(if any) and opens the next sequential word or byte.

Closes the current location by changing its contents to the new contents
(if any) and opens the previous word or byte.

Closes the current word location and opens the word it addresses (in
the same segment if it is an overlay file).

17.2.4 Translating and Indirectly Modifying Locations with a File
After opening a location within a file, you can translate the contents into ASCII characters or into the equivalent
of a Radix-50 packed word.

To obtain the ASCII equivalent of the opened location, type the following command after PATCH prints the
contents in octal.

A

PATCH then translates the word or byte into two (or one, if a byte is opened) ASCII characters. In this example,
a byte is opened:

sic 1 ~ i ~ Cy ~ ~. ~ ~ ~ »~ ~ L F

PATCH prints only the printable ASCII characters in the opened word or byte (all non-printing characters, such
as ASCII codes 0-37, are represented by the ?character). In this example, a word is opened

~K ~. y :~ Uq~ ~0„~ A w ~~ LF

In the next example, a word is opened, and both ASCII characters are printable:

17-4

PATCH

r'""1
I~these examples, one or both of the characters cannot be printed:

~Kt~ ~ ~pC~/ 4ta~ ~ ~ E~? LF

~ "" ~~ LF

'To unpack a Radix-50 word as three AS(;lt characters, type the following command after PATCH prints the con-

tents of the opened word.

X

PATCH then unpacks the opened word and prints three ASCII characters.

Note that you must open a word and not a byte.

If the word you open contains an illegal Radix-50 word, PATCH. prints ???. If the translated character is not print-

able, PATCH prints ? in place of it.

Neither the A command nor the X command alters the contents of the open location; however, PATCH updates

-the checksum to reflect the fact that you have entered a new command.

You can specify the A and X commands in any order on the same command line without altering the contents

of the open location. For example,

~ U.~., a 3 X ~' i"i A C ~ ~= k. C~

After examining the location with the A or X command, you can change the location if you wish. For example,

~~ ~~b0/~. 41 ~~i ~ ~ ~? X ~ ~X~ ~. ~ ~. ~~ Q~ Or LF

If the same location is reopened, the following change appears:

*4 c~c~C~f ~.,~~.,~~

You can change the contents of a location to the ASCII code of the value you specify by using the C command.
You can use the P command to change a word to the packed Radix-50 word of the three characters you specify.
This example changes an open byte to the ASCII code for the letter Z:

Note that PATCH prints the parentheses itself; you type only the character Z.

when reopened, that byte contains the ASCII code for Z:

S' rly, PATCH inserts the ASCII code for two ASCII characters into the low order and high order bytes,
respectively, of one word. This example changes an open word to the ASCII code for AZ:

17-5

PATCH

If reopened, the location contains the ASCII code for AZ:

You can examine the same location in more conventional ways, as this example shows:

~Kq~ ~q1.1~~ ~.qi ~F

Similarly, you can use the P command to change the contents of an open word to the Radix-50 packed word
equivalent of the three ASCII characters you specify. This example changes the Radix-50 word equivalent of SAV
to REL:

17.2.5 Setting Values in the Overlay Handler Tables of a Program
Use the ;O command to effect any changes to the overlay handler tables in an overlaid program. For example,

~~ ~. ~ 1 ~. q ~a ~ ~. ~. as

This command line increases the size of the referenced overlay region bey 35(8) words or 58(10) bytes, to allow
room for a patch. The value being modified is a value associated with the overlay handler tables, or a value required
by the overlay handler for proper overlay structure initialization. The overlay structure is reinitialized and you can
enter commands to modify the new region on the next line. A value of 0 is not permitted with the ;O command.
If you omit the preceding argument, or use 0, an error message prints on the terminal.

17.2.6 Including the Old Contents Into the Checksum
Sometimes it is important that the present contents of the locations being changed have known specific values.
This is the case when DIGITAL publishes system patches. The &command is designed to aid in implementing
system patches. It automatically includes the old contents of an open location into the checksum. This command
is a simple switch. The first occurrence of the &turns the switch on, the second turns it off. While the switch
is on, the old contents of every location you open and close properly become part of the checksum. To use the
& command, type

Patch then prints a carriage return-line feed sequence and another *indicating its readiness to accept another
command. This switch is then enabled.

If you type the command on a line where a location is currently open, PATCH closes the location and resets the - - -- - -
switch. PATCH then prompts with an asterisk indicating that it is ready to accept additional commands.

17.2.7 Setting the Bottom Address
To patch an overlay file, PATCH must know the bottom address at which the program was linked, if it is different
from the initial stack pointer. This is the case if the program sets location 42 in an .ASECT. To set the bottom
address, type:

bottom address;B

You must issue the B command before you open any locations in an overlay for modification.

17-6

PATCH

17.2.8 Setting Relocation Registers
You set the relocation registers 0-7 (as with ODT) with the R command. The R command has the syntax:

relocation value;relocation registerR

Be careful when you type this command string. If you inadvertently sub stitute a comma (,) for the semicolon (;)
in the R command, PATCH does not generate an error message. However, it does not set the value you specify
in the relocation register.

Once you set one of the eight relocation registers, the expression:

relocation register,octal number

in a command string will have the value:

relocation value +octal number

17.3 PATCH EXAMPLES
This section consists of two patch examples: one example for anon-overlaid file, and one example for an overlaid
file. In each case, the steps that are taken to assemble, link, and patch the files are clearly illustrated.

The following command assembles the MACRO program PROMPT.MAC:

i~'i~C~`t~~l.. X ~'1' ~'h~3~fl~' .1'
~~~~C~hi~ ~~~~'~~T'~~~ ~ {~ 

The following listing is produced on the line printer as a result of the assembly. It consists of two parts: 1) the 
assembly listing of the source program and 2) the symbol table listing. 

PROMPT.MAC MACRO V43.Ou 5•MAY•77 1bt54t30 PAGE i 

1 
2 
3 
a 000000 
5 
6 OUOOOiI (12700 OUOU52 START= 
7 408004 
8 00010 
4 OOA014 12274n nn0040 
14 X40020 1U1367 
ii n4002? ~?27U(~ 404057 
12 nOn02o t~~)i 0i t 
13 nOn030 
14 000034 1?2740 OU4125 
15 000040 001404 
16 004042 
17 000050 EiXITt 
iA 400052 ERROR! 
19 404060 400747 
TO 4040b2 X77 OOU CMDERRt 
21 n0~0F4 ~?16 X12 106 MSGt 
12 
23 ~OG000' 

.TITLE pROMpT.MAC 
.►CALL .PkIr+T, .EXIT 
.MCALL .TTYOU~C,.TTYI!~ 
.CSECT HGHSEG 
.HEIST 8EX 

MOVES •'*,RO PRINT,.~~ 
.TTYOUT ...A PROMPT. 
.TTYIN ACCEPT A CHARACTE:Q FROM THE KEY80AR~ 
CMPA 4• ,RO f 1S IT A COVTROL CHARACTER? 
BNI START y~;S MUST BE A MISTAKEi. 
CMpB ~'/,RO ~~0 - IS IT A "/"? 
E3NE ERROR ~v0 REPORT THE ERROR. 
.TTYIN YE'S GET v~:XP. 
CMPB #~'V, RO IS iT A "V" ChAEtACTk:R? 
BNE ERROR NQ REPORT TtiF ~,~ROR. 
.PRINT ((MSG YE15 PRINT 1HE V~'RSION MESSAGE... 
.EXIT ...AND Tf~E~•I EXIT TO THE RP•11 MOWITOR. 
.PRINT (iCMOERR PRINT THE "?(R~;T) (T,p')", ... 
BR STAR? ,..ANL~ THEN RESTART. 
.ASCIZ /?/ 
.ASCIZ <16><12>/FILE v03.Ui 

.LIST tiEX 

.F;Nt% START 

PROMPT.MAC r4ACRU V03.4u 5-MAY•77 16t54s3o PAGE i•1 
SYMBOL TABi~E 

CMDERR 0000628 ~u2 i~~petOR 0040528 002 F.XI7 A04050R 002 MSG 0000648 401 START AOp000Ft UO2 

~ ABS. ~O~Oon 0~0 
n~4Anc► 0~►t 

HGHSEG ~OA1A7 u0Z 
ERRORS ~ETECTE:p s 0 

VIRTUAL MEMOP.Y USES: 56? wGaoS ( 3 PACES) 
DYNAMIC ME►'~AF~Y AVAILAEILE FOP 5R PAGES 
DK=pROMDT•LPt?RCIMFTapKtPRUMPT,MAC/C 

17-7 



PATCH 

The next command links file PROMPT.OBJ and produces an executable module called PROMPT.SAV. 

The following listing is produced on the line printer as a result of the link operation. 

RT•i 1 LINK V03,01 LtJAt~ MAR 
PROMPT,SAV TITLE: PRQMP'1' IQENT~ 

SECTIGN AQQR SIZE GLC~SAL VALUE 

ABs. o~oQ000 Qo ~ oao 
HGHSEG OtJ 1 Q~Q Q0~ 1 i Q 

THU og•MAX•77 

GLQBAL VALUE 

(Rw, I, GAL, AaS• QVR~ 
c la;w, I, GBL, REL, ovR~ 

!6=S~=ZB 

GLCIRAL VALUE 

TRANSFER ~QDRESS ~ UAlot~t~• HIGi~ L1~[IT ~ 00111 ~ 292, i~ORt~S 

The program PROMPT has an error. On line 21 the characters <16> should really be <15> .The following example 
uses PATCH to correct the error. 

~~ ~' ~ J` ~ I--i 

~' I L.~: ~~~1~.~..... 

~K ~. q ~ ~ ~ 1. ~i 

t::: 

The example shown above uses the /D option, which requests PATCH to print the checksum when the operation 
completes. Next, relocation register 1 is set to the transfer address, which the link map shows is 1000. The next 
command opens relative location 64, which contains the error, as the assembly listing shows at line sequence num-
b er 21. The value 15 is substituted for 16 (by typing 15 followed b y a carriage return) and the exit command is 
issued (with E). PATCH then prints the checksum for the operation. It is 30633. 

The next example verifies the change just made. 

17-8 



PATCH 

As before, relocation register 1 is set to 1000 and location 64 is opened. Now it contains the correct value, 15. 

The rest of the command lines are terminated with aline feed. This closes the open location and opens the next 

one. This example shows the values from line 21 of the assembly listing ~ LF FILE V03.01 ET LF as they 

are stored in memory. 

The following commands assemble two MACRO programs: PTCH.MAC, the main program, and OVRLAY.MAC, 
the overlay. 

. i~~1C~iCJI~~ ~ ~T ~'T~M 
~~~C1~5 ~~~T~~TEL+: U 

• ~i~1C~fJ/~. x ~'1' ~lV~~...AY
~~~Q~~ ~~~T~CT~xf : 4 

The following listings were produced by the two assemblies. 

PTCH,MAC MACPO V03,U~ 5•MAY•77 17s58s35 PAGE 1 

1 
2 
3 X00000 
4 
5 000000 r~~0a~3 
6 n40002 X12700 (1G4~►16' 
7 000006 
8 X00014 ~n4767 000+)OOG 
9 OOnOf 4 

i0 
!1 (►OOOib 015 X12 124 
12 000055 G15 012 t24 
13 
14 l>>OuQ(~• 

.TITL~~ F'TCH,~'AC 
,MCALL .PRINT.,FXIT 
,CSECZ HGHSEG 
.(~LOBL t;r:TRY,MSGi 

START: 9k EXIT BRANCH iMMEDIATF:LY T~ CALL Gvr:RLAY, 
~OV +~MSG.R(► t,LTERtvATIVELY PRItiT A MESSAGE 
,PRINT ; Lt) THE [~R1r:T. 

E:XITs .15R PC,ENTRX ; CALL Iti 1'hE GVERLAY, 
.P:X1T ; q~NE~v F:XIT A~v KF'Ti1k~~, 

,tiLIST FEX 
MSGs ,ASCII <iS><12>/9'HIS IS A 5LCCE:SSF~►L PATCH/<15><12> 
MSGis ,ASCII <15><12>/TtiiS IS Alf OVERLAY'RATCH/cf5><12> 

,LIST HEX 

,END START 

PTCH,MAC MACRO V03.40 5•MAY•77 17s5es35 PAGE i•i 
SYM60G ?APt,F 

ENTRY = +►+►+r+►+~~ G EXiT ~o0oink O~a2 MSG O000i6R UO2 MSGi oo►.►oSSRG ~►01 START n00000R Oo2 

ABS, ~OOOnO !'~00 
nn0000 .,o t 

HGHSEG oU~ii2 ~►U2 

ERRORS DETECTF~s 0 

VIRTUAL MEMOPY ~JSED~ 'S 04 WARDS 
DYNAMIC MEMORY AvAiLABLE FOR 59 
DK:PTCHiLPsPTCHsDKSDTCH 

( Z pAGES) 
pAGES 

OVRLAY.MAC 

i 
~ 

MA4R0 V03,00 5•MAX•77 

3 000000 
4 

5 040000 U(►0403 

6 000002 012700 OOUC140G 
7 000006 
8 000010 AOU2U7 
9 000001 

17s58s57 PAGE ; 

,'TITLE: OVkLAY,MAC 
,MCALL ,PRINT 
,CSECT OVLSEG 
,GLUBL MSGI,ENTRY 

ENTRY= BR RETURN aRANCH IMMEDIATELY TO RETURN. 
MOV ~MSG1•RO ALTERNATIVELY PRt~~T A MESSAGE 
.PRINT 

RETURn1t RTS PC = THEN RETURf~, 
.END 

17-9 



PATCH 

OVRLAY.MAC r"aCRO Vo~~OG 5-MAY•77 17:58s57 PAGE i•i 
SYMA4L TABLE 

LNTRY 000000RG GO? ~~SGi 

. ABS. 000000 000 
OOA000 0(►i 

OVG3EC ~onoi2 002 
ERRORS DETECTEDt 0 

s *****~ G 

VIRTUAL MEMORY USED= 354 woF+US ( 2 PAGES) 
DYNAMIC MEM(1Py AVAILABLE; F'Ok S9 PAGES 
DK;OVRLAY,LPIOVRLAYabK:OVRLAy 

RF'TURN OOOOIOR OU2 

The next command links the module PTCH.OBJ and the overlay module OVRLAY.OBJ, producing the executable 
module ROOT.SAV. 

4 ~~. ~ ~r;i~r~F~`~r~`~~t~~~~`~~~~~~~~u~~ } ~~c~c~~r ~`~rcw~ 

~// 

The following listing is the load map that results from this link. 

RT*11 LINK V03.ui 
RC?QT .SAV TITLE: 

~GCTION ADDR SzZE 

ABs, ooQono a~~ ~ i z2 
HGHSEG 001122 ~+~0112 

s~G~~;NT srz~ 
ov~RLA~ R~GIC» 

ovLs~G oatz~~ 

s~G~ENT s~z~ 

U01234 
Q~oao~ 
Ounu12 

X04012 

L~Ap MAF TAU 05•t~AY•77 1?~59~51 
FTCH.!~ IUE~tT: 

GLOBAL VALUE GLOBAL VALVE GLOBAL YAI~UE 

C R~~ I ~ G~Lr Aa5.OVR~ 
C f~~, I, GBL• REG~ ~VR ~ 

MSGi 00117? 
3 3 ~ ~ ~1gRpS 

SEGME+VT 0~4G41 
C R iN ~ I ~ Gg G,r REL r ~?VR ) 

ENTRY ~ Opi 23b 
~ 5 ~ WORMS 

TRANSFER At~DR~:SS s OQ1122, BIGR LINT s aC~1250 = 340. i~QRDS 

The following example shows how to patch an overlay segment. 

• ~~ ~' A ~' C !•~ 

~'1~l:C~~ :Cra ~~ CJ~~:~I...~Y ~~`~~'C~F~ 

17-10 



PATCH 

The options /O and /C are used in the file specification. /O indicates that the file is overlaid. /C causes PATCH to 
verify that the changes are correct by requesting a checksum value, which it compares to .the actual checksum 
value the changes generate internally. The patch for this example was supplied by an experienced user, and the 
checksum for the correct patch is known to be 45475. 

The first command line sets relocation register 1 to the start of the overlay segment to b e patched. The load 
maps show that overlay segment 1 begins at location 1236. The next command opens the first location in over-
lay segment 1. It contains a branch instruction (403). A no-op instruction is substituted for it (240) followed by 
a carriage return, and E is used to exit. PATCH then requests the checksum value and 45475 is entered. This 
matches the checksum that the changes generated internally, so control returns to the monitor and the patch is 
successful. 

The program is executed by typing: 

R ROOT ~ Q~ 

Control branches immediately to the overlay segment. Since the branch instruction at ENTRY: is now inopera-
tive, control passes to the next line and the message prints on the terminal. 

NOTE 
The linker allocates space for overlay segments in 256-word 
blocks. Each segment b egins on a b lock b ound ary. If a par-
ticular overlay segment's size is less than a whole number 
multiple of 256, you can add patches in the free space that 
exists between the end of that overlay segment and the be-
ginning of the next block. To do this you must first modify 
the word-count word in the overlay handler table so that the 
patches you add are included in the size of the overlay seg-
ment. Be careful not to patch into the next block, though, 
because the next overlay segment begins there. 

r1 





CHAPTER 1S 

OBJECT MODULE PATCH UTILITY (PAT) 

PAT, the RT-11 object module patch utility, allows you to patch, or update, code in a relocatable binary object 
module. PAT does not permit you to examine the octal contents of an object module; use PATCH (described in 
Chapter 17)_to do that. PAT makes the patch to the object module by means of the procedure outlined in Figure 
18-2.One advantage to using PAT is that you can add relatively large patches to an object module without perform-
ing any octal calculations. PAT accepts a file containing corrections or additional instructions and applies these 
corrections and additions to the original object module. You prepare the correction input in MACRO source form 
and assemble it with the MACRO-11 assembler. 

Input to PAT is two files: 1) the original input file and 2) a correction file containing the corrections and additions 
to the input file. The input file consists of one or more concatenated object modules. You can correct only one of 
these object modules with a single execution of the PAT utility. The correction file consists of object code that, 
when linked by the linker, either replaces or appends to the original object module. Output from PAT is the updated 
input file. 

It is always a good idea to create a backup version of the file you want to patch before you use PAT to make the 
changes. 

18.1 CALLING AND USING PAT 
To call PAT from the system device, respond to the dot (.) printed by the keyboard monitor by typing: 

R PAT RET

The Command String Interpreter prints an asterisk at the left margin on the console terminal when it is ready to 
accept a command line. Chapter 6 describes the general syntax of the command line that PAT accepts. 

Type two CTRL/Cs to halt PAT at any time (or a single CTRL/C to halt PAT when it is waiting for console terminal 
input) and return control to the monitor. To restart PAT, type R PAT in response to the monitor's dot. when PAT 
executes an operation it returns control to the RT-11 monitor. 

Figure 18-1 shows how you use PAT to update a f~1e (FILE 1) consisting of three object modules (MOD 1, MOD2, 
and MOD3) by appending a correction file to MOD2. After running PAT, you use the linker to relink the updated 
module with the rest of the file and to produce a corrected executable program. 

FILE1 

MOD1 

MOD2 

MOD3 

UPDATE2 

PAT 

Figure 18-1 Updating a Module Using PAT 

FILE1 

MOD 1 

MOD2 

UPDATE2 

MOD3 

18-1 March 1978 



Object Module Patch Utility (PAT) 

There are several steps you must perform to use PAT to update a file. First, create the correction file using a text 
editor. Then, assemble the correction file to produce an object module. Next, submit the input file and the correc-
tion file in object module form to PAT for processing. Finally, link the updated object module, along with the object 
modules that make up the rest of the file, to resolve global symbols and create an executable program. Figure 1$-2 
shows the processing steps involved in generating an updated executable file by using PAT. 

Specify the PAT command string in the following form 

[output-filespec] =input-filespec [/C~[:n] ] ,correct-filespec [/C [:n] ] 

where 

output-filespec is the file specification for the output file. If you do not specify an output file, 
PAT does not generate one. 

input-filespec is the file specification for the input file. This file can contain one or more con-
catenated object modules. 

correct-filespec is the file specification for the correction file. This file contains the updates being 
applied to a single module in the input file. 

C specifies the checksum option for the associated file. This directs PAT to generate 
an octal value for the sum of all the binary data composing the module in that 
file. (See Section 18.2.5 for more information on checksums.) 

n specifies an octal value. PAT compares the checksum value it computes for a 
module with the octal value you specify. 

18.2 HOW PAT APPLIES UPDATES 
PAT applies updates to a base input module by using the additions and corrections you supply in a correction file. 
This section describes the PAT input and correction files, gives information on how to create the correction file, 
and gives examples of how to use PAT. 

18.2.1 The Input File 
The input file is the file to be updated; it is the base for the output file. The input file must be in object module 
format. When PAT executes, the module in the correction file applies to this file. 

18.2.2 The Correction File 
The correction file must also be in object module format. It is usually created from aMACRO-11 source file in the 
following format: 

.TITLE inputname 

.IDENT updatenum 

inputline 

inputline 

1 g_2 March 1978 



Object Module Patch Utility (PATJ 

COR ECT.MAC 

TEXT 
EDITOR 

CORECT.MAC 

CO R ECT.OBJ 

MYFILE.OBJ 

1. Create a correction file using the 
text editor. 

CORECT.OBJ 

2. Execute the assembler (or compiler► 

to create an object module version 
of the file. 

MYFILE.OBJ 

3. Execute PAT using as input the 
correction file and the module to 
be updated. 

MYFI LE.SAV 

4, a) If the corrected object module is 
part of something that typically 
exists as a program (e.g., BASIC►, 

execute the linker to resolve new 
addresses and create an executable 
program. 

b) If the corrected module is an 
element in a library (e.g., SYSLIB), 
run the librarian and create or 
update the library to contain the 
new (corrected) object module. 

c) If the corrected module is some-
thing that typically exists as an 
object module (e.g., ODT1, you 
need do nothing. Whenever you 
link this module, the corrections 
will be included. 

Figure 18-2 Processing Steps Required to Update a Module Using PAT 

18-3 



Object Module Patch Utility (PA T~ 

where 

inputname 

updatenum 

is the name of the module to be corrected by the PAT update. That is, inputname 
must be the same name as the name on the input file .TITLE directive for a single 
module in the input file. 

is any value acceptable to the MACRO-11 assembler. Generally, this value reflects 
the update version of the file being processed by PAT, as shown in the examples 
below. 

inputline are lines of input for PAT to use to correct and update the input file. 

During execution, PAT adds any new global symbols that are defined in the correction file to the module's symbol 
table. Duplicate global symbols in the correction file supersede their counterparts in the input file, provided both 
definitions are relocatable or both are absolute. 

A duplicate PSECT or CSECT supersedes the previous PSECT or CSECT, provided: 

• both have the same relocatability attribute (ABS or REL): 

• both are defined with the same directive (.PSECT or .CSECT). 

If PAT encounters duplicate PSECT names, it sets the length attribute for the PSECT to the length of the longer 
PSECT and appends a new PSECT to the module. 

If you specify a transfer address, it supersedes that of the module you are patching. 

18.2.3 Creating the Correction File 
As shown in Figure 18-2, the first step in using PAT to update an object file is to generate the correction file. Use 
the editor to build a file that contains these additions and corrections. The correction file must be in object module 
format before PAT can process it. Assemble the correction file with the MACRO-11 assembler to produce an object 
module that PATCH can process. 

18.2.4 How PAT and the Linker Update Object Modules 
The following examples show the source code for an input file and a correction file to be processed by PAT and the 
linker. The examples show as output a single source file that, if assembled and linked, would produce a binary module 
equivalent to the file generated by PAT and LINK. Two techniques are described: one is for overlaying lines in a 
module and the other is for appending a subroutine to a module. 

18.2.4.1 Overlaying Lines in a Module — The first example illustrates a technique for overlaying lines in a module 
by using a patch file. First, PAT appends the correction file to the input file. The linker then executes to replace code 
within the input file. 

The source code for the input file for this example is 

AE~~:: 

. ~' ~ Tl..~: ABC 

.~:~lA~L ~~~~ 

~CIV A~~ 
..1~~ ~'C~XYZ 
~T5 ~'C 
.~~~ 

18-4 



Object Module Patch Utility (PA TJ 

To add the instruction ADD A,B after the JSR instruction, the following patch source file is included: 

. T z T~.~ AI~I~ 

.r.z~~~T /o1.o1i 
.I~i~AE~I.. GILL. 

-~ + ~. '~ •""• „-

A I~ Li A r ~ 
LTG F'C 
. ~ ~! Li 

The patch source is assembled using MACRO-11 and the resulting object file is input to PAT along with the original 
object file. The following source code represents the result of PAT processing: 

T x TL.I~ ABC 

.~i~AT~I.~ GPI._ 
AEG:: 

~t~V ABC; 
,.l~~i ~'C~XY:~ 
C~T~ ~'~ 

.= AEC 
.~.+1~ 

A ~+ ~+ A ~ ~ 

. ~ ~! I~
.

After the linker processes these files, the load image appears as this source-code representation shows: 

.'TITLE AEG 

. Z I~Ei~T /41 . Q 1 / 

. Ei~AE~I_ CBL 
A~~:: 

~t]V A ~ C 
JGf~ ~'C~XY~ 

~iT~ ~C 
. ~: ~! L~ 

The linker uses the .=.+12 in the program counter field to determine where to begin overlaying instructions in the 
program. The linker overlays the RTS instruction with the patch code: 

A ~:~ ~:~ A r B 
f~T~ f='C 

18.2.4.2 Adding a Subroutine to a Module — The second example illustrates a technique for adding a subroutine 
to an object module. In many cases, a patch requires that more than a few lines be added to patch the file. A con-
venient technique for adding new code is to append it to the end of the module in the form of a subroutine. This 
way, you can insert a JSR instruction to the subroutine at an appropriate location. The JSR directs the program to 
branch to the new code, execute that code, and then return to in-line processing. 

f"1 
The source code for the input file for the example is: 

18-5 March 1978 



Object Module Patch Utility (PATJ 

. T T Ti~~ AEC 

. x ~i~~tT /a ~. / 

. ~"i~AE{I.- GE{L-
A~~:: 

~QV ArE~ 
J~~ ~'CrXYZ 
MC~V Cr~ia 
f~T~ F'C 
. ~ ~! Ii 

Suppose you wish to add the instructions: 

~'i t] V Ii r ~i a 
AFL ~a 

between 

i~CIV A~~ 

and 

JSf~ ~'C~XYZ 

The correction file to accomplish this goal is as follows: 

. T I TL.~ Arc 

. I ~~~~T /01, a ~. ~ 

.~~lA~L. c~~ 
J~~ F'cr~'ATCH 
~cF' 
.~'~~GT ~'A~rcH 

PATCH: 
~aV A~~ 
~aV ~~~~~a 
A~~ ~a 
f~T~ F`C; 
.~i`!Z~ 

PAT appends the correction file to the input file, as in the previous example. The linker then processes the file and 
generates the following output file 

. TITL.E Air 

. r r~~~T /a ~. . a z ~ 

.k~~tA~~. G~~L 
AEC:: 

J~f~ F'C~~'ATCH 
~l0~' 
J~~ f~'C~XYZ 
i~pV C~f~a 
~T~ F'C 
. F'S~CT F'ATCH 

18-6 



Object Module Patch Utility (PATJ 

f'1 
F'ATI~H: 

~0V Ark 
~iQV I~f~O 
A~ai~ Fi0 
~T~ F'C 
.~~lL~ 

In this example, the JSR PC,PATCH and NOP instructions overlay the three-word MOV A,B instruction. (The NOP 
is included because this is a case where a 2-word instruction replaces a 3-word instruction. NOP is required to main-
tain alignment.) The linker allocates additional storage for .PSECT PATCH, writes the specified code into this pro-
gram section, and binds the JSR instruction to the first address in this section. Note that the MOV A,B instruction 
replaced by the JSR PC,PATCH is the first instruction the PATCH subroutine executes. 

18.2.5 Determining and Validating the Contents of a File 
Use the checksum option (/C) to determine or validate the contents of a module. The checksum option directs PAT 
to compute the sum of all binary data composing a file. If you specify the command in the form /C :n, /C directs 
PAT to compute the checksum and compare that checksum to the value you specify with n. 

To determine the checksum of a file, enter the PAT command line with the /C option applied to the appropriate 
file (the file whose checksum you need to determine). For example 

PAT responds to this command with the message 

?F'AT-~W— I r~~~a•b n~a~~a ~. ~ ~~~c~ N.~~..irr~ i ~ nnnnnn 

PAT generates a similar message when you request the checksum for the correction file. 

To validate the changes made to a file, enter the checksum option in the form /C:n. PAT compares the value it 
computes for the checksum with the value you specify with n. If the two values do not match, PAT displays a 
message reporting the checksum error but still enters the changes 

?F'AT~-W~- I r-~}~~.at •~ ~. ~. ~ ~ ~~~k.~~.~n~ ~ r ra r 

or 

r F'AT~-W•--C~ r r~c-~t i c~r•~ file ~t~ecN.~~n~ ~ r ra r 

Checksum processing always results in a nonzero value. 

Do not confuse this checksum with the record checksum byte. 

18-7 March 1978 





APPENDIX A 

BATCH 

RT-11 BATCH is a complete job control language that allows RT-11 to operate unattended. RT-11 BATCH processing 
is ideally suited to frequently-run production jobs, large and long-running programs, and programs that require little or 
no interaction with you, the user. Using BATCH, you can prepare your job on any RT-11 input device and leave it for 
the operator to start and run. 

RT-11 BATCH permits you to: 

• Execute an RT-11 BATCH stream from any: legal RT-11 input device 

• Output a log file to any legal RT-11 output device (except magtape or cassette) 

• Execute the BATCH stream with the single job monitor or in the background with the foreground/back-
ground monitor or the extended memory monitor 

• Generate and support system-independent BATCH language jobs 

• Execute RT-11 monitor commands from the BATCH stream. 

RT-I1 BATCH consists of 1) the BATCH compiler and 2) the BATCH run-time handler. The BATCH compiler reads 
the batch input stream you create, translates it into a format suitable for the RT-11 BATCH run-time handler, and 
stores it in a file. The BATCH run-time handler executes this file with the RT-11 monitor. As each command in the 
batch stream executes, BATCH lists the command, along with any terminal output generated by executing the com-
mand, on the BATCH log device. 

A.1 HARDWARE AND SOFTWARE REQUIREMENTS TO RUN BATCH 
You can run RT-11 BATCH on any single job system that is configured with at least 12K words of memory. You 
need a minimum system of 16K words of memory to run BATCH in the background in a foreground/background 
environment. BATCH can run in any extended memory environment. A line printer, although optional, is highly 
desirable as the log device. 

BATCH uses certain RT-11 system programs to perform its operations. For example, the $BASIC command execute; 
the file BASIC.SAV. Make sure that the following RT-11 programs are on the system device, with exactly the fol-
lowing names, before you run BATCH: 

BASIC .SAV 
BA.SYS 
BATCH.SAV 
CREF.SAV 
SYSLIB.OBJ 
FORTRA.SAV 
LINK.SAV 
MAC RO.SAV 
PIP.SAV 
DIR.SAV 

(BASIC users only) 

(MACRO users only) 
(FORTR:.AN and MACRO users) 
(FORTRAN users only) 

(MACRO users only) 

A-1 



BATCH 

A.2 BATCH CONTROL STATEMENT FORMAT 
You can use two forms of input to RT-11 BATCH. Generate a file using the RT-11 editor and input it from any 
RT-11 input device, or input punched cards from the card reader. In both cases, the input consists of BATCH con-
trol statements. A BATCH control statement consists of three fields, separated from one another with spaces: 
1) command fields, 2) specification fields, and 3) comment fields. The control statement has the syntax: 

$command/option specification/option [!comment] 

Each control statement requires a specific combination of command and specification fields and options (see _ _ 
Section A.4). Control statements cannot be longer than 80 characters, excluding multiple spaces, tabs, and com-
ments. You can use a hyphen (-) as a line continuation character to indicate that the control statement is continued 
on the next line (see Table A-4). Even if you use the line continuation character, the maximum control statement 
length is still 80 characters. 

The following example of a $FORTR:AN command illustrates the various fields in a control statement. 

~FQ~T~A~!/L x ~~'/~~lJi`t f~'~OGA/I-. ~ E~~A~Y f~'~iJ~~/~X~ ! ~iJi`! I~ Q~TI~Ai~! 

command/options spec fields/options comment field 

A.2.1 Command Fields 
The command field in a BATCH control statement indicates the operation to be performed. It consists of a command 
name and certain command field options. Indicate the command field with a $ in the first character position and ter-
minate it with a space, tab, blank, or carriage return. 

A.2.1.1 Command Names — The command name must appear first in a BATCH control statement. All BATCH 
command names have a dollar sign ($) in the first position of the command (for example, $JOB). No intervening 
spaces are allowed in the command name. BATCH recognizes only two forms of a command name: the full name 
and an abbreviation~consisting of $and the first three characters of the command name. For example, you can 
enter the $FORTR.AN command as: 

~~'p~iT~AI~ 

or 

~~o~ 

Yo~_~ cannot enter it as 

~F'O~T 

or 

~~a~~~~ 

A."l.l .2 Command Field Options — Options that appear in a command field are command qualifiers. Their 
functions apply to the entire control statement. All option names must begin with a slash (/) that immediately 
follows the command name. Table A-1 describes the command field options that are legal in BATCH and indicates 
the commands on which you can use them. Those option characters that appear in square brackets are optional. 
These are described in greater detail in the sections pertaining to the commands with which you use them. 

A-2 



BATCH 

NOTE 
All /NO options are the defaults, except the /WAIT 
option in the $MOUNT and $DISMOUNT commands 
and the /OBJECT option in the $LINK command. 

Table A-1 Command Field Options 

Option Explanation 

/BAN [NER] 

/NOBarr ~rrER~ 

/cam [F] 

/rrocxE ~F~ 

/DEL [ETE] 

/MODEL [ETE] 

/DOL~L,aRs~ 

/NODOL [CARS] 

/LIB [RARY] 

/NOLIB [RARY] 

/CIS [T] 

/NOLIS [T] 

/MAP 

Prints the header of the job on the log file. BATCH allows this option only 
on the $JOB command. 

Does not print a job header. 

Produces a cross reference listing during compilation; BATCH allows this 
option only on the $MACRO command. 

Does not create a cross reference listing. 

Deletes input files after the operation completes. BATCH allows this option 
on the $COPY and $PRINT commands. 

Does not delete input files after operation completes. 

The data following this command can have a $ in the first character position 
of a line. BATCH allows this option on the $CREATE, $DATA, $FORTRAN, 
and $MACRO commands. BATCH terminates reading data when you use 
one of the following commands or when it encounters a physical end-of-file 
on the BATCH input stream: 

~JO~ 

~EaI~ 
~~a.~ 

Following data cannot have a $ in the first character position; a $ in the first 
character position signifies a BATCH control command. 

Includes the default library in the link operation. BATCH allows this option 
on the $LINK and $MACRO commands. 

Does not include the default library in the link operation. 

Produces a temporary listing file (see Section A.2.5) on the listing device 
(CST:) or writes data images on the log device (LOG:). BATCH allows 
this option on the $BASIC, $CREATE, $DATA, $FORTRAN, $JOB, 
and $MACRO commands. When you use /LIST on the $JOB command, 
/LIST sends data lines in the job stream to the log device (LOG:). 

Does not produce a temporary listing file. 

Produces a temporary link map on the listing device (CST:). BATCH allows 
this option on the $FORTR:AN, $LINK, and $MACRO commands. 

(Continued on next page) 

A-3 



BATCH 

Table A-1 (Cont.) Command Field Options 

Option Explanation 

/NOMAD 

/OBJ [ECT] 

/NOOBJ [ECT] 

/RT11 

/NORT 11 

/RUN 

/rroxtnv 

/TIM [E] 

/NOTIM [E] 

/~I [Q~l 

/Novrri [Q~] 

/WAI [T] 

/NOWAI [T] 

/NOWRI [TE) 

Does not create a MAP file. 

Produces a temporary object file as output from compilation or assembly 
(see Section A.2.5). BATCH allows this option on the $FORTR.AN, $LINK, 
and $MACRO commands. When you use /OBJECT on $LINK, BATCH 
includes temporary files in the link operation. 

Does not produce an object file as output of compilation; with $LINK, does 
not include temporary files in the link operation. 

Sets BATCH to operate in RT-11 mode (see Section A.5). BATCH allows 
this option only on the $JOB command. 

Does not set BATCH to operate in RT-11 mode. 

Links (if necessary) and executes programs compiled since the last "link-and-
go" operation or start of job. BATCH allows this option on the $BASIC, 
$FORTR:AN, $LINK, and $MACRO commands. 

Does not execute or link and execute the program after performing the 
specified command. 

Writes the time of day to the log file when BATCH executes. BATCH allows 
this option only on the $JOB command. 

Does not write the time of day to the log file. 

Checks for unique spelling of options and keynames (see Section A.4.13). 
BATCH allows this option only on the $JOB command. 

Does not check for unique spelling. 

Pauses for operator action. BATCH allows this option on the $DISMOUNT, 
$MESSAGE, and $MOUNT commands. 

Does not pause for operator action. 

Indicates that the operator is to WRITE ENABLE a specified device or 
volume. BATCH allows this option only on the $MOUNT command. 

Indicates that no writes are allowed or that the specified volume is read-only; 
informs the operator, who must WRITE LOCK the appropriate device. 

A.2.2 Specification Fields 
Specification fields immediately follow command fields in a BATCH control statement. Use them to name the 
devices and files involved in the command. You must separate these fields from the command field, and from each 
other, by blanks or spaces. 

A~4 



BA TC~I 

("1 If a specification field contains more than one file to be used in the same operation, separate the fields by a plus (+) 

sign. For example, to assemble files F1 and F2 to produce an object file F3 and a temporary listing file, type: 

~~fAC~iCl/L I ~T ~' 1 ~F'~/~OU~CE ~'~/tJ~.JEC~' 

If you need to repeat a command for more than one field specification, separate the files by a comma (,). For 
example, the following command assembles F 1 to produce F2, a temporary listing file, and a map file F3. It then 
assembles F4 and FS to produce F6 and a temporary listing file. 

~~fAC~O/L I ~T ~' ~. /~OU~CE ~'~/Q~JEi:T E3/~iA~' ~ E4~E~/~QU~CEw• 
~'b/Q~JECT 

Note that the command field options apply to the entire line, but the specification field options apply only to the 
field they follow. 

Depending on the command you use, specification fields can contain a device specification, file specification, or an
arbitrary ASCII string. You can use an appropriate specification field option .(see Table A-3) with any of these three 
items. 

A.2.2.1 Physical Device Names — Represent each device in an RT-11 BATCH specification field with a standard 
2- or 3-character device name. Table 3-1 in Chapter 3 lists each name and its related device. If you do not specify a 
unit number for devices that have more than one unit, BATCH assumes unit 0. 

In addition to the permanent names shown in Table 3-1, you can assign logical device names to devices. A logical 
device name takes precedence over a physical name, thus providing device independence. With this feature, you do 
not need to rewrite a program that is coded to use a specific device if the device is unavailable. For example, DK: is 
normally assigned to the system device, but you can assign that name to diskette unit 1 (DXl :) with an RT-11 
monitor ASSIGN command. 

You must assign certain logical names prior to running any BATCH job. BATCH uses these logical names as default 
devices. These names are 

LOG: BATCH log device (cannot be magtape or cassette) 
IST: Default device for listing files generated by BATCH stream. 

The following are not legal device names in RT-11; if you use them, the operator must assign them as logical names 
with the ASSIGN command. You can use these names in BATCH streams written for other DIGITAL systems. 

DF : Fixe d he ad disk (RF). 
LL: Line printer with upper case and lower case characters. 
M7: 7-track magtape. 
M9: 9-track magtape. 
PS : Public storage (DK : as assigned by RT-11). 

Refer to Sections 4.3 and A.7.1 for instructions on assigning logical names to devices. 

A.2.2.2 File Specifications — You can reference files symbolically in a BATCH control statement with a name 
of up to six alphanumeric characters followed, optionally, by a period and a file type of three alphanumeric charac-
ters. Tabs and embedded spaces are not allowed in either the file name or file type. The file type generally indicates 
the format of a file. It is a good practice to conform to the standard file types for RT-11 BATCH. If you do not 
specify a file type for an output file, BATCH and most other RT-11 system programs assign appropriate default file 
types. If you do not specify a file type for an input file, the system searches for that file name with a default file 
type. Table A-2 lists the standard file types used in RT-11 BATCH. 

A-5 



BATCH 

Table A-2 File Types 

File Type Explanation 

.BAS 

.BAT 

.CTL 

.CTT 

.DAT 

.DI R 

.FOR 

.LST 

.LOG 

.MAC 

.MAP 

.OBJ 

.SOU 

.SAV 

BASIC source file (BASIC input) 

BATCH command file 

BATCH control file generated by the BATCH compiler. 

BATCH temporary file generated by the BATCH compiler. 

BASIC or FORTRAN data file 

Directory listing file 

FORTRAN IV source file (FORTRAN input) 

Listing file 

BATCH log file 

MACRO source file (MACRO or SRCCOM input) 

Link map output from $LINK operation 

Object file output from compilation or assembly 

Temporary source file 

$RUNable file or program image output from $LINK 

A.2.2.3 Wildcard Construction — You can use wildcards in certain BATCH control statements (such as, $COPY, 
$CREATE, $DELETE, $DIRECTORY, $PRINT). You can use the asterisk as a wildcard to designate the entire file 
name or file type. See Chapter 4, Section 4.2, for a complete description of the wild card construction. 

NOTE 
You cannot use embedded wildcards (* or %) in BATCH 
control statements.. However, you can use them in the key-
board monitor commands if you use the RT-11 mode of 
BATCH. 

A.2.2.4 Specification Field Options -- Specification field options follow file specifications in a BATCH control 
statement and designate how the file is to be used. These options apply only to the field in which they appear. Option 
names begin with a slash. The specification field options legal in RT-11 BATCH are listed in Table A-3.Optional 
characters in the option names are in square brackets. 

A-6 



BATCH 

Table A-3 Specification Field Options 

Option Explanation 

/BAS [IC] 

/EXE [CUTABLE] 

/FOR [TRAM] 

/~ ~T~ 

/LIB [BABY] 

/LIS [T] 

/LOG [ICALJ 

/MAC [RO] 

/1bIAP 

/OBJ [ECT] 

/OUT [PUT] 

/PHY [SICAL) 

/SOU [RCEJ 

/VID 

BASIC source file 

Indicates the executable program image file_ to be creaked as the result of a 
link operation 

FORTRAN source file 

Input file; default if you specify no options 

Library file to be included in link operation (prior to default library) 

Listing file 

Indicates that the device is a logical device name; use in $DISMOUNT and 
$MOUNT commands 

MACRO source file 

Linker map file 

Object file (output of assembly or compilation) 

Output file 

Indicates physical device name 

Indicates source file 

Volume identification 

A.2.3 Comment Fields 
Comment fields, which document a BATCH stream, are identified by an exclamation point (!) appearing anywhere 
except the first character position in the control statement. BATCH treats any character following the !and pre-

ceding the carriage return/line feed combination as a comment. For example 

This command runs the RT-11 system program PIP. BATCH ignores the comment. 

You can also include comments as separate comment lines by typing a $ in character position 1, followed immedi-
ately by the !operator and the comment. For example: 

~!~~L~TE ~ILE~ ~~ rah: 

A.2.4 BATCH Character Set 
The RT-11 BATCH character set is limited to the 64 upper case characters (ASCII 40 through 137). The current 

ASCII set is assumed (character 137 is underscore and not left arrow, and character 136 is circumflex, not up-arrow). 
The BATCH j ob control language does not support any control characters other than tab, carriage return, and line 

feed. 

A-7 



BATCH 

Table A-4 shows how BATCH normally interprets certain characters. Character interpretations are different if you 
use RT-11 mode (see Section A.5). 

Table A-4 Character Explanation 

Character Explanation 

blank/space 

i 

►► 

0-9 

A-Z 

Specification field delimiter. It separates arguments in control statements. 
BATCH considers any string of consecutive spaces and tabs (except in quoted 
strings) as a blank (that is, equivalent to a single space). 

Comment delimiter. The input routine ignores all characters after the excla-
mation point, up to the carriage return/line feed combination. 

Passes a text string containing delimiting characters where the normal 
precedence rules would create the wrong action. For example, use it to 
include a space in a volume identification (/VID). 

BATCH control statement recognition character. A dollar sign ($) in the 
first character position of a BATCH input stream line indicates that the line 
is a control statement. 

Delimiter for file type. 

Indicates line continuation if the character after the hyphen is one of the 
following: 

• A carriage return/line feed 
• Any number of spaces or tabs followed by a carriage return/line feed 
• A comment de ' 'ter (!) 
• Spaces followed by a comment delimiter (!). 

If any other character follows the hyphen, the hyphen is assumed to be a 
minus sign indicating a negative value in an option. 

Precedes an option name. An alphanumeric string must immediately follow it. 

Numeric string components. 

Immediately follows a device name. You can also use it to separate an option 
name from its value or to separate an option value from its subvalue (you can 
use :interchangeably with =for this purpose). 

Alphabetic string components. 

Separates an option name from a value. 

Illegal character except when it precedes a directive to the BATCH run-time 
handler from the operator (see Section A.7.3). (To include \ in an RT-11 
mode command, use \\.) 

File delimiter. Separates multiple files in a single specification field. Also 
indicates a positive value in options. 

(Continued on next page) 

A-8 



BATCH 

Table A~4 (Cont.) Character Explanation 

Character Explanation 

CR/LF 

Separates sets of arguments for which the command is to be repeated. 

A wildcard in utility command file specifications. 

Carriage return/line feed. It indicates end-of-line (or end of logical record) 
for records in the BATCH input stream. 

A.2.5 Temporary Files 
When you do not include field specifications in a BATCH command line, BATCH sometimes generates temporary 
files. For example, you can enter a $FORTRAN command that is followed in the BATCH stream by the FORTRAN 
source program as: 

$FORTRAN/RUN/OBJECT/LIST 
FORTRAN source program 

$EOD 

This command generates: 1) a 
file, 3) a temporary listing file, 

BATCH sends temporary files 
If the device is file-structured, 

where 

nnnmmm.LST 
nnnmmm.MAP 
nnnppp.OBJ 
OOOOOO.SAV 
nnnppp.SOU 

nnn 

mmm 

pPp 

temporary source file from the source statements that follow, 2) a temporary object 
and 4) a temporary memory image file. 

to the default device (DK :) or the listing device (LST:) according to their nature . 
BATCH assigns file names and file types as follows: 

for temporary listing files (sent to LST:) 
for temporary map files (sent to LST:) 
for temporary object files (sent to DK:) 
for temporary memory image files (sent to DK:) 
for temporary source files (sent to DK:) 

represents the last three digits of the sequence number assigned to the job by the 
$SEQUENCE command (see Section A.4.22). Thus, a sequence number of 12345 
produces a file name beginning 345. If you do not use the $SEQUENCE command, 
BATCH sets nnn to 000. 

represents the number of listing (or map) files that BATCH generated since the 
BATCH run-time handler (BA.SYS) was loaded. The first such file, listing or map, 
is 000. Each time BATCH generates a new temporary file, it increments the file 
name by 1. Thus, the second listing file produced under job sequence number 12345 
is 345001.LST, and the first map file produced is 345000.MAP. 

represents the number of object or source files in the current BATCH run. The 
first such file (object or source) is 000. Each time BATCH generates a new 
temporary file, it increments the file name by 1. BATCH resets these file names 
to 000 every time that you run BATCH and after every $LINK, $MACRO, or 
$FORTRAN command that uses the temporaries. 

A-9 
March 1978 



BATCH 

A.3 GENERAL RULES AND CONVENTIONS 
You must adhere to the following general rules and conventions associated with RT-11 BATCH processing. 

1. Always place a dollar sign ($) in the first character position of a command line. 
2. Each job must have a $JOB and $EOJ command (or card). 
3. You can spell out command and option names entirely or you can specify only the first three characters 

of the command and required characters of the option. 
4. Specify wildcard construction (*) only for the utility commands ($COPY, $CREATE, $DELETE, 

$DIRECTORY, and $PRINT) and for commands that normally accept wildcards in RT-11 mode. 
5 . Include comments at the end of command lines or in a separate comment line . When you include comments 

in a command line, place them after the command but precede them by an exclamation mark. 
6. Include only 80 characters per control statement (card record), excluding multiple spaces, tabs, and 

comments. 
7. When you omit file specifications from BATCH commands and supply data in the BATCH stream, the 

system creates a temporary file with a default name (see Section A.2.5). 
8. You can use the RT-11 monitor type-ahead feature only with BATCH handler directives (see Section 

A.7.3) to be inserted into a BATCH program. No other terminal input (except input to a foreground pro-
gram) can be entered while a BATCH stream is executing. 

9. You cannot use an indirect command file to call BATCH. 

A.4 BATCH COMMANDS 
Place BATCH commands in the input stream to indicate to the system which functions to perform in the job. All 
BATCH commands have a dollar sign ($) in the first character position (e.g., $JOB). Intervening spaces are not 
allowed in command names. The command name must always start in the first character position of the line (card 
column 1). 

BATCH commands are presented in alphabetical order in this chapter for ease of reference. However, if you are not 
familiar with BATCH, read the commands in a functional order as listed in Table A-5. The characters shown in 
square brackets are optional. 

Table A-5 BATCH Commands 

Command Section Explanation 

$SEQ [UENCE] A.4.22 Assigns an arbitrary identification number to a job. 

$JOB A.4.13 Indicates the start of a job. 

$ EOJ A.4.11 Indicates the end of a job . 

$MOU [NT] A.4.18 Signals the operator to mount a volume on a device and option-
ally assigns a logical device name . 

$DIS [MOUNT] A.4.9 Signals the operator to dismount a volume from a device and 
deassigns a logical device name. 

$FOR[TRAN] A.4.12 Compiles a FORTRAN source program. 

$BAS [IC ] A.4.1 Compiles a BASIC source program. 

$MAC [RO] A.4.16 Assembles a MACRO source program. 

$LIB[RARY] A.4.14 Specifies libraries that BATCH should use in link operations. 

(Continued on next page) 
A-10 



BATCH 

'table A-5 (Copt.) BATCH Commands 

Command Section Explanation 

$LIN[K] A.4.15 Links modules for execution. 

$RUN A.4.21 Causes a program to execute. 

$CAL[L] A.4.2 Transfers control to another BATCH file, executes that BATCH 
file, and returns to the calling BATCH stream. 

$CHA[IN] A.4.3 Passes control to another BATCH file. 

$DAT[A] A.4.6 Indicates the stazt of data. 

$EOD A.4.10 Indicates the end of data. 

$MES [SAGE] A.4.17 Issues a message to the operator. 

$COP[Y] A.4.4 Copies files. 

$CRE [ATE] A.4.5 Creates new files from data included in the BATCH stream. 

$DEL[ETE] A.4.7 Deletes files. 

$DIR[ECTORY] A.4.8 Provides a directory of the specified device. 

$PRI [NTJ A.4.19 Prints files. 

$RT[11] A.4.20 Specifies that the following lines are RT-11 mode commands. 

For each command listed below, the term filespec represents a device name, a file name, and a file type. 

It has this form: 

dev: filnam.typ 

As a general rule, BATCH assumes device DK: if you omit a device specification. 

A.4.1 $BASIC Command 
The $BASIC command calls RT-11 single-user BASIC to execute a BASIC source program. The $BASIC command 
has the following syntax: 

$BASIC [/option . . . ] [filespec/option] ] [!comments] 

where: 

/option indicates an option you can append to the $BASIC command. The options are as
follows: 

/RUN indicates that BATCH should execute the source program. 

/NORUN indicates that BATCH should only compile the program, and send error 
messages to the log file. 

A-11 



BATCH 

/LIST writes data images that are contained in the job stream to the log file 
(LOG :) . 

/NOLIST writes data images to the log file only if you specify $JOB/LIST. 

filespec 

/option 

indicates the name and type of the source file and the device on which it resides. If 
you omit the file type, BATCH assumes .BAS. If you omit this specification, the 
source statements must immediately follow the $BASIC command in the input 
stream. 

Terminate the source program after a $BASIC statement with either a $EOD command 
or with any other BATCH command that starts with a $ in the first position. 

indicates an option that can follow the source file name. BATCH assumes that any 
file name with no option appended is the name of a source file. This option can have 
one of the following values (or you can omit it) 

/BASIC indicates that the file name you specify is a BASIC source program. 

/SOURCE performs the same function as /BASIC. 

/INPUT performs the same function as /BASIC. 

You can follow the $BASIC command with the source program, legal BASIC commands (such as RUN), or data. 
The following two BATCH streams, for example, produce the same results. 

~E~A~ 1 C ~~A~ I C/~tJi~ 
i q I ~!F'UT A 1 a ~ i~F~UT A 
~p F'Fi I ~!T A ~Q F'~ ~ i~T A 
3q E~~ 3~ END 
~~~ ~~iATA 
1~~ ~.,~~
~~OI~ ~~i~~~

A.4.2 $CALL Command
The $CALL command transfers control to another BATCH control file, temporarily suspending execution of the
current control file. BATCH executes the called file until it reaches $EOJ or until the job aborts; control then re-
turns to the statement following the $CALL in the originating BATCH control file. You can nest calls up to 31
levels. BATCH includes the log file for the called file in the log file for the originating BATCH program. (See NOTE
following the $ EOJ command .)

The syntax of the $CALL command is:

$CALL filespec [!comments]

BATCH does not permit options in the $CALL command..BATCH saves $JOB command options across a $CALL;
however, they do not apply to the called BATCH file. If you specify .CTL as the file type, BATCH assumes apre-
compiled BATCH control file. If you do not specify a file type, BATCH assumes .BAT and compiles the called
BATCH stream before execution.

A-12

BATCH

NOTE
If the called program generates temporary files, those files
can supersede currently existing temporary files if the two
jobs have the same sequence number. For example, con-
sider the following two BATCH streams:

~~.x~~~/~~~

The called BATCH file (C.BAT) contains the following:

~.~0~

~~'tJ~/C1~~1 ~ 1
~~. x ~~:/~u~
~~o~

The temporary object files that C.BAT generates change the
behavior of the previous two BATCH statement sequences.
The first temporary file created by C.BAT (OOOOOO.OBJ)
supersedes the temporary file produced by the first
$FORTRAN command (OOOOOO.OBJ). Avoid this situation
by giving the BATCH job C.BAT a unique sequence number
(see Section A.4.22).

A.4.3 $CHAIN Command
The $CHAIN command transfers control to a named BATCH control file but does not return to the input stream
that executed the $CHAIN command. The syntax of the $CHAIN command is:

$CHAIN f~lespec [!comments]

BATCH does not permit options in the $CHAIN command. If you specify .CTL as the file type, BATCH assumes a
precompiled BATCH control file. If you do not specify a file type, BATCH assumes .BAT and compiles the chained
BATCH stream before execution.

A $EOJ command should always follow the $CHAIN command in the BATCH stream.

NOTE
The values of BATCH run-time variables remain constant
across a $CALL, $CHAIN, or return from call. See Section
A.5.2.2 for a description of these variables.

Use the $CHAIN command to transfer control to programs that you need to run only once at the end of a_ BATCH
stream. For example, you could use the following BATCH program (PRINT.BAT) to print and then delete all tem-
porary listing files generated during the current BATCH job.

~~o~

~~a,~

~~ r ~tT A~~ ~. z ~T ~ :~ ~.~~

A-13

BATCH

You could then run PRINT.BAT with the $CHAIN command as follows:

~.~Q~
~~fA~~Cl/~11~! A ALIT/~. ~ ~T
~i~AC~ia/~iUi~ ~ ~L~T/~.. ~ ~T'
~ChIA ~ ~ ~'~ I i~T
~~a.~

A.4.4 $COPY Command
The $COPY command copies files in image mode from one device to another. You can use the wildcard construc-
tion (see Section A.2.2.3) in the input and output file specifications. You can concatenate several input files to form
one output file (as long as the output specification does not contain a wildcard). The $COPY command has the fol-
lowing syntax:

$COPY[/option] output-filespec [. . . ,output-filespec] /OUTPiJT-
input-filespec[. . . ,input-filespec) [/INPUT) [!comments]

where

/option indicates options that you can append to the $COPY command.

/DELETE deletes input files after the copy operation.

/NODELETE does not delete input files after the copy operation.

output-filespec represents an output file. You must specify a file type.

/OUTPUT indicates that a file specification is for an output file .

input-filespec represents a file to be copied.

BATCH copies files to the output file in the order that you .list them (except when
you use wildcards).

/INPUT indicates that a file specification is for an input file. If you do not specify an option,
BATCH assumes INPUT.

The following are examples of the $COPY command:

This command copies all files with the file type .BAS from the DECtape on unit 1 to the default storage device DK:.

~CfJ~'Y ~' I ~..~~ . ~'t:l~/t~IJT'~'t~~' F' x I_.~0 . ~'a~+~' x ~..~ ~.. ~'a~

This command merges the input files FILEO.FOR and FILEI .FOR to form one file called FILE2.FOR and stores
FILE2.FOR on device DK:.

~ca~'Y ~ . ~/r.~u~r ~~T~ : ~ . ~'a~ ~ z~r ~.: ~ . */au~r r~~ro : ~ . ~

This command copies all files with the file type .FOR from DTO: to DK: and all files on DTO: to DT1:.

A-14

BATCH

n A.4.5 $CREATE Command
The $CREATE command generates a file from data records that follow the $CREATE command in the input stream.
An error occurs if the data does not immediately follow the $CREATE command. You cannot precede the data
records with a $DATA command.

You can follow the $CREATE data with a $EOD command to signify the end of data, or you can use any other
BATCH control statement to indicate end of data and initiate a new function. The $CREATE command has the
following syntax:

$CREATE[/option . . .] filespec [!comments]

where:

/option indicates an option you can append to the $CREATE command. The options are:

/DOLLARS indicates that the data following this command can have a $ in the
first character position of a line .

/NODOLLARS indicates that a $cannot be in the first character position of a line.

/LIST writes data image lines to the log file.

/NOLIST does not write data image lines to the log file. If you specify $JOB/
LIST, BATCH ignores this option.

filespec represents the file you want to create.

NOTE
If you use the /DOLLARS option, you must follow the last
data record with a $EOD command (see Table A-1).

The following is an example of the $CREATE command:

~~~~AT~~/L Y ~T I~'I~CIG . I~ CJrt FORTRAN_.
source file 

~ ~ Cl Ii 

The data records following the $CREATE command become a new file (PROG.FOR) on the default device (DK:). 
BATCH generates a listing on logical device LOG:. 

A.4.6 $DATA Command 
Use the $DATA command to include data records in the input stream. Data you include in this manner needs no file 
name. BATCH transfers the data to the appropriate program as though it were input from the console terminal. For 
example, you can follow the $RUN command for a particular program by a $DATA command and the data records 
for the program to process. The data records must be valid data for the program that is to use them. 

The $DATA command has the following syntax: 

$DATA[/option .. .] [!comments] 

Four options that you can use with the $DATA command are as follows: 

/DOLLARS indicates that the data following this command can have a $ in the first character 
position of a line. 

A-15 



BATCH 

/NODOLLARS 

/LIST 

/NOLIST 

indicates that a $cannot be in the first character position of a line. 

writes data image lines to the log file. 

does not write data images to the log file. If you specify $JOB/LIST, BATCH ignores 
this option. 

NOTE 
Any command beginning with a $normally follows the last 
data record. However, if you specify $DATA/DOLLARS, 
you must follow the last data record with $EOD. 

The following example shows data entered into a BASIC program (TESTI .BAS). 

~~A~ z C/~U~t ~E~T ~.. ~A5 
~L~ATA 
,~5~75:1~~~ 14b 
180~~10f~~'Or874 
~EOL~ 

A.4.6.1 Using $DATA with FORTRAN Programs —When you use the $DATA command to provide input to a 
FORTRAN program, you must insert aCTRL/Z into the BATCH file after the last data line and before $EOD (or 
before the next BATCH command if you do not use $EOD). This procedure permits FORTRAN to p~roperiy detect 
an end-of-file after it reads the last data line. For example: 

~~'CIi~T~A~!/t~lJ~! A . ~'Cl~ 
~~~ATA 
1

The above program reads three numbers from the input stream and then detects an end-of file when it attempts to
read a fourth number. If you include an END=n statement in your FORTRAN program, statement n gets control
when the end-of--file is detected. If the CTRL/Z ~ ~F is not present, the program aborts when it reaches $EOD
and never executes the END=n statement.

A.4.7 $DELETE Command
Use the $DELETE command to delete files from the device you specify. This command has the syntax:

$DELETE filespec [. . . , filespec] [!comments]

where

filespec represents the name of a file to be deleted.

The following example deletes all files named TEST1 on the default device DK:.

~L~~L~TE T~~T' 1 .

A-16

BATCH

The following example deletes all files with .FOR file types on DT1:, then deletes all files with .MAC file types on
DK: .

~L~ELETE LET i : * . ~0~ s► * . ~iAC

A.4.8 $DIRECTORY Command
The $DIRECTORY command outputs a directory of the device you specify to a listing file. If you do not specify
a listing file, the listing goes to the BATCH log file. This command has the syntax:

$DIRECTORY [filespec/LIST] [filespec[. . . , filespec]] [/INPUT] [!comments]

where

filespec/LIST indicates the name of the directory listing file.

filespec/INPUT indicates the input files to be included in the directory (default).

The following are examples of the $DIRECTORY command

~T~I~ECTq~Y

This command outputs a directory of the device DK: to the BATCH log file.

~~I~ECTO~Y ~'0~.~~~~/L.IST *.~'C1~

This command creates a directory file (FOR.DIR) on the device DK:. The directory contains the names, lengths,
and dates of creation of all FORTRAN source files on the device DK:.

A.4.9 $DISMOUNT Command
The $DISMOUNT command removes the logical device name assigned by a $MOUNT command. When BATCH
encounters $DISMOUNT while executing a job, it prints the entire $DISMOUNT command line on the console
terminal. This message tells the operator which device to unload. This command has the syntax:

$DISMOUNT[/option] logical-device-name:[/LOGICAL] [!comments]

where:

/option indicates an option you can append to the $DISMOUNT command. The options are:

/WAIT indicates that the job must pause until the operator enters a
response. If you do not specify either /WAIT or /NOWAIT,
BATCH assumes /WAIT. BATCH rings a bell at the terminal,
prints the physical device name to be dismounted followed by a
question mark (?), and waits for a response . (At this point you can
enter input to the BATCH handler. See Section A.7.3.)

/NOWAIT does not pause for operator response, BATCH prints the physical
device name to be dismounted.

logical-device-name: is the logical device name to be deassigned from the physical device.

/LOGICAL identifies the device specification as a logical device name.

A-17

BATCH

The following example instructs the operator to dismount the physical device with the logical device name OUT:
and removes the logical assignment of device OUT:. In this example, OUT: is DTO:. The operator dismounts DTO:
and then types a carriage return.

~~~ I ~~fC~Ui~T/WA ~ T CIUT : /I.tJG ~ ~Al~. 
~T{~? 

A.4.10 $EOD Command 
The $EOD command indicates the end-of--data record or the end of a source program in the job stream. The syntax 
of this command is 

$EOD [!comments) 

The $EOD command can signal the end of data associated with any of the following commands: 

$BASIC 
$CREATE 
$DATA 
$FORTRAN 
$MACRO 

In the following example, the $EOD command indicates the end of a source program that is to be compiled, linked, 
and executed. 

~~'CI~T~A~t/~Ui~ 
source p rog ra m 

~~tJI~ 

A.4.11 $EOJ Command 
The $EOJ command indicates the end of a job. This command must be the last statement in every BATCH job. The 
command has the following syntax: 

$EOJ [!comments] 

If BATCH encounters a $JOB command, a $SEQUENCE command, or a physical end-of-file in the input stream before 
$EOJ, an error message appears in the log file. 

NOTE 
Make sure that the $EOJ command is the last line in a .BAT 
file . 

A.4.12 $FORTRAN Command 
The $FORTRAN command calls the FORTRAN compiler to compile a source program. Optionally, this command 
can provide printed listings or list files and can produce a link map in the listing. The $FORTRAN command has the 
following syntax: 

$FORTRAN[/option . . .] [source-filespec[/option] ] [filespec/OBJECT] [filespec/LIST] -
[filespec/EXECUTE] [tilespec/MAP] [filespec/LIBRARY] [!comments] 

where 

/option indicates an option you can append to the $FORTRAN command. The options are 
as follows: 

A-18 



BATCH 

source-filespec 

/RUN indicates that FORTRAN is to compile the source program, link it 
with the default library, and execute it. The default library is 
SYSLIB.OBJ. You can change it with the $LIBRARY command. 

/NORUN compiles the program only. 

/OBJECT produces a temporary object file. 

/NOOBJECT does not produce a temporary object file. 

/LIST produces a list file on the listing device (LST:). 

/NOLIST does not produce a list file. 

/MAP produces a link map on the listing device (LST:). 

/NOMAD does not create a MAP file. 

/DOLLARS indicates that the data following this command can have a $ in the 
first character position of a line. 

/NODOLLARS indicates that a $cannot be in the first character position of a line. 

indicates the device, file name, and file type of the FORTRAN source file. If you do 
not specify the file name, the $FORTRAN source statements must immediately fol-
low the $FORTR.AN command in the input stream; BATCH generates a temporary 
source file that it deletes after FORTRAN compiles the temporary source file (see 
Section A.2.5). 

You can terminate the source program included after a $FORTRAN statement by 
either a $EOD command or by any other BATCH command. If, however, you use 
dollar signs in the first position in the source program, you must enter the source pro-
gram with $CREATE/DOLLARS. In this case, you cannot use $FORTR:AN/DOLLARS. 

/option represents an option that can have one of the following values: 

/FORTRAN indicates that the file name you specify is a FORTRAN source pro-
gram. BATCH assumes that any file name with no option appended 
is the name of a source file. 

/SOURCE performs the same function as /FORTR;AN. 

/INPUT performs the same function, as /FORTRAAN. 

filespec/OBJECT indicates the device, file name, and file type of the object file produced by compila-
tion. The object file remains on the device you specify after the job finishes. You must 
follow the object file specification, if you include it, by the /OBJECT option. 

If you omit the object file specification but specify $FORTRAN/OBJECT, BATCH 
creates a temporary object file. BATCH includes this temporary file -irr any $LINK 
operations that follow it in the job, and deletes it after the link operation. 

A-19 



BATCH 

filespec/LIST indicates the name you assign to the list file created by the compiler. BATCH does 
not automatically print the list file if you assign LST: to afile-structured device, but 
you can list it using the $PRINT command. Follow the list file specification by the 
/LIST option. 

filespec/EXECUTE indicates the name you assign to a memory image file. Follow the memory image file 
specification by the /EXECUTE option. If you do not include this field, BATCH 
generates a temporary memory image file (see Section A.2.5) and then deletes the 
temporary file . 

filespec/MAP indicates the name you assign to the link map file created by the linker. Follow the 
map specification by the /MAP option. 

filespec/LIBRARY indicates that BATCH must include the file you specify in the link procedure as a 
library before SYSLIB.OBJ. The file must be a library file (produced by the RT-11 
librarian). Follow the library specification bythe /LIBRARY option. 

The following are examples of $FORTR;AN commands: 

~F'i~~~'~Ai~/~~1~! ~'~~l~A . ~'Cl~ 

This command calls FORTRAN to compile and execute a source program named PROGA.FOR. 

~~'0~~'~iA~!/~lOCl~~1/~. I ~~' 
source program 

$~a~ 

This command sequence compiles the FORTRAN program but does not produce an object file. BATCH creates a 
temporary listing file on LST : . 

NOTE 
See Section A.4.6.1 for instructions on using the $DATA 
command with FORTRAN programs. 

A.4.13 $JOB Command 
The $JOB command indicates the beginning of a job. Each job must have its own $JOB command. This command 
has the following syntax: 

$JOB [/option . . . ] [!comments] 

BATCH allows the following options in the $JOB command: 

/BANNER prints a header (a repetition of the $JOB command) on the log file. 

/NOBA►NNER does not print a job header. 

/LIST writes data image lines that are contained in the job stream to the log file. 

/NOLIST writes data image lines to the log file only when a /LIST option exists on a $BASIC, 
$CREATE, or $DATA command that has data lines following it. 

/RT11 if no $appears in column 1 when BATCH expects one, BATCH assumes that the line 
or card is an RT-11 mode command (see Section A.5). 

A-20 



BATCH 

/NORT11 does not process RT-11 mode commands. 

/TIME writes the time of day to the log file when BATCH executes command lines (except 
$DATA command lines). 

/NOTIME does not write the time of day. 

/UNIQUE checks for unique spelling of options and keynames. when you use this option, you 
can abbreviate commands and options to the least number of characters that still 
make their names unique. For example, you can abbreviate the /DOLLARS option to 
/DO since no other option begins with the characters DO. 

/NOUNIQUE checks only for normal option and keyname spellings. 

End each job with a $EOJ command if you want to run it. If an input stream consists of more than one job, BATCH 
automatically terminates one job when it encounters the $JOB command for the next job. BATCH will never run a 
job terminated with another $JOB command; an error message will appear in the log. 

The following $JOB command writes the time of day to the log file before BATCH executes each command beginning 
with a $. It also accepts unique abbreviations of BATCH commands and options. 

~..1ClE~/Y ~ M~/tJ~! ~ C~U~ 

A.4.14 $LIBRARY Command 
The $LIBRARY command lets you specify a list of library files that will be included in FORTRAN links or with 
other link operations that have the /LIBRARY option. By default, the list of libraries contains only SYSLIB.OBJ, 
the RT-11 system library. This command has the syntax: 

$LIBRARY filespec [!comments] 

or 

$LIBRARY filespec+SYSLIB [!comments] 

where 

filespec represents a library file; the default file type is .OBJ. 

SYSLIB is the RT-11 system library that you create at system generation. 

Libraries are linked in order of their appearance in the $LIBRARY command. 

The following example shows two libraries (LIB 1.OBJ and LIB2.OBJ) that are included in FORTRAN links before 
SYSLIB.OBJ. 

~L. I ~~~f~Y ~.. x ~ i . 0~..1~~.. I ~,~ . CJ~~I+SY~iM. Z ~ . Cl~~! 

A.4.15 $LINK Command 
Use the $LINK command to produce memory image files from object files. This command links the files you specify 
(if any) with all temporary object files created since the last link or link-and-go operation (if any). 

Temporary object files are those files you create as a result of a $FORTRAN or $MACRO command without naming 
an object file (with the /OBJECT option) or suppressing an object file (with the /NOOBJECT option). Create perma-
nent object files by using the /OBJECT option on a $FORTRAN or $MACRO file descriptor. 

A-21 



BATCH 

BATCH links files in the following order 

1. First, it links temporary files in the order in which they were compiled. 
2. Then, it links permanent files in the order in which they are specified in the $LINK command. 
3. If the $LINK command specifies a library, BATCH links it next, providing that unresolved references 

remain. 
4. If you specify $LINK/LIBR.ARY, BATCH searches and links the default library list. 

The syntax for this command is: 

$LINK[/option . . . ] [filespec/OBJECT) [filespec/LIBRARY] [filespec/MAP] [filespec/EXECLTfE] -
[!comments] 

where 

/option indicates an option that you can append to the $LINK command. The options are 
as follows 

/LIBRARY includes the RT-11 system library (SYSLIB.OBJ) and any default 
libraries specified in the $LIBRARY command in this $LINK opera-
tion. Use this option when the files being linked do not include any 
temporary FORTRAN object files. You can also use it when you 
specify $FORTRAN without the /RUN or /MAP option, but you 
want to search the default library list for unresolved references. 

iNOLIBRARY does not include the default libraries. 

/MAP produces a temporary load map on the listing device (LST:). 

/NOMAP does not produce a map file. 

/OBJECT includes temporary object files in the link. If you specify neither 
/OBJECT nor /NOOBJECT, BATCH assumes $LINK/OBJECT. 

/NOOBJECT does not include temporary files in the link. 

/RUN executes the memory image files associated with this $LINK com-
mand when the link is complete. 

/NORUN only links the program and does not execute it. 

filespec/OBJECT indicates the name of the object file BATCH must link. If you do not specify 
/OBJECT, BATCH assumes it as the default . 

filespec/LIBRARY indicates that the file you specify is to be included in the link procedure as a library. 
The file you specify must be a library file (produced by the RT-11 librarian). 

filespec/MAP indicates the load map file BATCH must create as a result of the $LINK command. 

filespec/EXECUTE indicates the memory image file BATCH must create as a result of the $LINK 
command. 

A-22 



BATCH 

The following are examples of the $LINK command: 

~~. I ~K/fiUi~ 

This command links all temporary object files created since the last $LINK command or the last $FORTRAN/OBJ 
or $MACRO/OBJ command. 

~~. i ~h~~A~ ~~~o~ ~.. a~~+~~~~~ . a~.~~ca~.~ ~~a~~ . ~~~i~x~ 

This command links the temporary files and the object files PROG 1.OBJ and PROG2.OBJ to form a memory image 
file named PROGA.SAV. It also creates and outputs a temporary map file. 

A.4.16 $MACRO Command 
The $MACRO command calls the MACRO assembler to assemble a source program and, optionally, to provide 
printed listings or list files. You must specify MACRO listing directives, if any, in the source program. You cannot 
enter them at BATCH command level. 

The $MACRO command has the following syntax: 

$MACRO [Joption . . .] [source-filespec [/option] ] [filespec/OBJECT] [filespec/LIST] -
[ffiespec/MAP] [filespec/LIBRARY] [filespec/EXECUTE] [!comments] 

where 

/option indicates an option you can append to the $MACRO command. The options are as 
follows 

/RUN assembles, links, and runs the source program. 

/NORUN only assembles the source program. 

/OBJECT produces a temporary object file. 

/NOOBJECT does not produce a temporary object file. 

/LIST produces a listing file on the listing device (LST_:). 

/NOLIST does not produce a list file. 

/CREF produces a cross reference listing during assembly. 

/NOCREF does not produce a cross reference listing during assembly. 

/MAP produces a link map as part of the listing file on LST:. 

/NOMAD does not create a MAP file . 

/DOLLARS indicates that the data following this command can have a $ in the 
first character position of a line . 

/NODOLLARS indicates that a $cannot be in the first character position of a line. 

/LIBRARY includes the default library (SYSLIB.OBJ) in the link operation. 

A-23 



8A TCH 

/NOLIBRARY does not include the default library in the link operation. 

source-filespec 

/option 

filespec/OBJECT 

filespec/LIST 

filespec/MAP 

filespec/LIBRARY 

filespec/EXECUTE 

indicates the name of the source file. If you do not specify a file name, the $MACRO 
source statements must immediately follow the $MACRO command in the input 
stream. 

You can terminate the source program you include after a $MACRO statement by 
either a $EOD command or by any other BATCH command. If, however, you include 
dollar signs in the first position in the source program, you must use the $CREATE/ 
DOLLARS command to enter the source program . In this case, you cannot use 
$MACRO/DOLLARS. 

can have one of the following values 

/MACRO indicates that the file name you specify is a MACRO source pro-
gram. BATCH assumes that any file name with no option appended 
is the name of a source file. 

/SOURCE performs the same function as /MACRO. 

/INPUT performs the same function as /MACRO. 

indicates the name you assign to the object file produced by compilation. The object 
file remains on the device you specify after the job finishes. If you include an object 
file specification, follow it with the /OBJECT option. 

If you omit the object file specification but specify $MACRO/OBJECT, BATCH 
creates a temporary object file. BATCH also includes the temporary object file in any 
$LINK operations that follow the $MACRO command in the job, and deletes it after 
the link operation (see Section A.2.5). 

indicates the name you assign to the list file created by the assembler. BATCH does 
not automatically print the list file if you assign LST: to afile-structured device, but 
you can list it using the $PRINT command. The /LIST option must follow the list 
file specification. 

indicates the file to which BATCH must output the storage map. 

indicates that BATCH must include the file you specify in the link procedure as a 
library. The /LIBRARY option must follow the library file specification. 

indicates the name you assign to a memory image file. The /EXECUTE option must 
follow the memory image file specification. If you do not include this field but do use 
$MACRO/RUN, BATCH generates a temporary memory image file (see Section A.2.5) 
and runs it . 

The following $MACRO command assembles a program named PROGO.MAC and creates a temporary object file 
and a temporary listing file. 

~~~c~oi~ x sYio~.~~cY ~~~~~n . ~~~ 

A-24

BATCH

n A.4.17 $MESSAGE Command
Use the $MESSAGE command to issue a message to the operator at the console terminal. It provides a means for
the job to communicate with the operator. The $MESSAGE command has the syntax:

$MESSAGE[/option] message [!comments]

where:

/option indicates an option you can append to the $MESSAGE command. The options are:

/WAIT indicates that the job is to pause until the operator either types a
carriage return to continue or enters commands to the BATCH
handler followed by a carriage return (see Section A.7.3).

/NOWAIT does not pause for operator response.

message is a string of characters that must fit on one console line . BATCH prints the message
on the console.

For example, if you include the following message in the input stream:

~~E~~A~E/WAIT ~~lU~lT ~C~ATt~H TA~'~ ~~ i~Tt)

The message

i"iQU~IT SCRATCH TAF'~ Cl~! ~fTn

appears on the console terminal and a bell sounds. The operator mounts the tape and types carriage return to allow
further processing of the job. (See Section A.7.3 for operator interaction with BATCH.)

NOTE
BATCH compresses multiple spaces and tabs in BATCH
command lines; therefore, attempts to format $MESSAGE
output with tabs or spaces do not provide you with the
desired results.

A.4.18 $MOUNT Command
The $MOUNT command assigns a logical device name and other characteristics to a physical device. When BATCH
encounters $MOUNT during the execution of a job, it prints the entire $MOUNT command line on the console
terminal to notify the operator which volume to use.

The $MOUNT command has the syntax:

where

$MOUNT [/option . . .] physical-device-name: [/PHYSICAL] [/VID=x]
[logical-device-name : /LOGICAL] [!comments]

/option indicates an option you can append to the $MOUNT command. The options are

/WAIT indicates that the job is to pause until the operator enters a response.
If you do not specify either /WAIT or /NOWAIT, BATCH assumes
/WAIT. BATCH rings a bell, prints the physical device name and a

A-2 5

BATCH

question mark (?), and waits for a response. (The response can
consist of input for the BATCH handler; see Section A.7.3.)

/NOWAIT does not pause for operator response. BATCH prints the name of
the physical device to be mounted.

/WRITE tells the operator to WRITE ENABLE the volume.

/NOWRITE tells the operator to WRITE PROTECT the volume.

physical-device-name is required and specifies the physical device name and an optional unit number fol-
lowed by a colon (for example, DX1:). If you specify a device name without a unit
number, the operator can enter one in response to the question mark printed by the
$MOUNT command. If you want the operator to supply a unit number, do not use
the /NOWAIT option because it assumes unit 0.

/PHYSICAL identifies the device specification as a physical unit specification. If you do not spec-
ify either /PHYSICAL or /LOGICAL, BATCH assumes /PHYSICAL.

/VID=x provides volume identification. The volume identification is the name physically
/VID="x" attached to the volume. Include it to help the operator locate the volume. Use this

option only on the physical device file specification. If x contains spaces, specify it
as "x".

NOTE
This volume identification is only a visual check for the
operator. Make this volume identification match the
visual label on the volume, not the volume identification
that you wrote onto the volume at initialization time with
the INITIALIZE/VOLUMEID command.

logical-device-name/LOGICAL
is required to identify the logical device name, if any, you assign to the device. The
/LOGICAL option must follow the logical device name specification.

The following command instructs the operator to select a DECtape unit and mount DECtape volume $ATO1 on
that unit, WRITE ENABLED. It informs the operator by printing:

~~ou~T~w~ x Tiw~ ~ T~ ~~T : iU ~ r~~~~T~:~ ~ : i~oo x ~:~~_
ITT?

The operator selects a unit, mounts DECtape volume BATO 1, WRITE ENABLED, and responds to the question
mark by typing the unit number (such as 1) followed by a carriage return. BATCH assigns logical device name 2 to
the physical device (in this case DT1:) and proceeds.

If no unit number response is necessary, as this command shows,

~i~Ot~~lT/WA :~ T/W~ I T~ IiT ~. : ~ : /~.CIG ~ C:AI~
~Ti?

the operator responds with a carriage return after mounting the DECtape and WRITE ENABLING the device.

A-26

BATCH

A.4.19 $PRINT Command
Use the $PRINT command to print the contents of the files you specify on the listing device (LST :) . This command
has the syntax:

$PRINT[/option] filespec [.. . ,filespec] [/INPiJT] [!comments]

where:

/option indicates an option you can append to the $PRINT command. The options are:

/DELETE deletes input files after printing.

/NODELETE does not delete input files after printing.

filespec represents a file to be printed.

JINPiTf indicates that the file is an input file; BATCH assumes /INPUT if you omit it.

The following command prints a listing of ffies with file type .MAC that are stored on default device DK:.

~RRINT ~C.hiAC

The following example creates listing files for the programs A and B, prints the listing files, and then deletes them.

~i~AC~t~ A .MAC A/L I ~T
$~iACl~Q ~ . i~AC ~/~. I ~ ~'
~F`~I~tT/L~EI~~T~ A. L5T ~ ~. ~.~T

A.4.20 $RT11 Command
The $RT11 command allows the BATCH job to communicate directly with the RT-11 system. DIGITAL recommends
that you use RT-11 mode if you use BATCH. This command puts BATCH in RT-11 mode until BATCH encounters
a line beginning with $. In RT-11 mode, BATCH interprets all data images as commands to the RT-11 monitor, to
RT-11 system programs, or to the BATCH run-time system. The $RT11 command has the syntax:

$RTl l [!comments]

See Section A.5 for a complete description of the RT-11 mode.

A.4.21 $RUN Command
The $RUN command executes a program for which a memory image file (.SAV) was previously created. It can also
run RT-11 system programs.

The $RUN command has the syntax:

$RUN filespec [!comments]

where:

filespec represents the file to be executed. If you omit the file type, BATCH assumes .SAV.

A-27

BATCH

For example, you can run DIR to print a directory listing

~~ZIJ~! DID
DATA

L~':~X~h:/L
~EtJT~

A.4.22 $SEQUENCE Command
The $SEQUENCE command is an optional command. If you use it, it must immediately precede a $JOB command.
The $SEQUENCE command assigns a job an arbitrary identification number. BATCH assigns the last three charac-
ters of a sequence number as the first three characters of a temporary listing or object file (see Section A.2.5). If a
sequence number is less than three characters long, BATCH fills it with zeroes on the left.

The syntax of this command is:

$SEQUENCE id [!comments]

where

id represents an unsigned decimal number that indicates the identification number of
a job.

The following are examples of the $SEQUENCE command:

~SEGl1Ei~CE ~ ! ~Et~UE~lCE i~U~iDEFi I ~ qp3
~.JCID

~~EC~UE~lCE 1 Q0 ! ~EC~IJ~Ni~GE ~llJi~DEf~ I ~ 1 tip
~~qD

A.4.23 Sample BATCH Stream
The following sample BATCH stream creates a MACRO program, assembles and links that program, and runs the
memory image file. It then deletes the object, memory image, and source files it created and prints a directory of
DK: showing the files the BATCH stream created.

$.JCI ~
~i~E~~AGE TM ~ ~ I ~ A~! EXA~~`LE ~CATCN ST~EA~f
~i~E5~AGE ~l~1W CREATE A i~AC~O ~'~OG~Ai~
~C~EATE/~. I ~T EXA~iF'L . i~AC
.TITLE EXA~i~'L ~'p~ P~A~'CM

. ~iCALL . ~`~ I i~T r . EX I T
~TA~T : . ~E I ~!T ~ME~~AG

.EXIT
~fE~~AG : . ABC I ~ /EXAI~~L.E ~fAC~CI ~'~QG~A~ ~'tJ~ DATCM/

. E~llr STAET
~EQI~
~i~AC~O EXAi~~'L EXAi~~'L/gDJECT EXAi~EL/LIST ! A~~E~DLE
~L.I~lh EXAM~'L EXA~i~'L/EXEC:IJTE ! Ai~xi Lli~h
~~'~ I ~!T/DELETE EXAi~F'L . L5T
~~fEa~AGE ~lJ~! THE ~iAC~CI ~`~CIG~A~i
~~U~! EXAi~~'L ! A~lI~ EXECUTE
~Z~ELETE EXA~~'L . CID.J+EXA~i~'L . ~AV+EXA~i~'L . SAC
~~E~~AGE ~'~i I ~T A I~ I ~ECTO~~Y
~L~Z~ECTiJ~Y ~~h:EXAI~~'L.~
~~fESSAGE E~~i Q~' THE EXA~iI~~'LNE DATCW ~Tf~EA~f
~Ea.J

A-28

BATCH

To run this batch stream, type the following commands at the console. BATCH prints the messages.

,L.CIAI~ ~ArL.~'
A ~ ~ Z C~!

{
■

~• ~ d.ye ~ L. C~Cy■~
• A ~ MI M~ ~ • - MM f i ~ • ~M ~ i

.R BATCH
*EXA~iPL.

TH I S I S AN EXAi~F'~.E BATCH STREAi~
NOW CREATE A MACRO F'ROGRAi~
RUN THE MACRO PROGRAM
F'RYNT A DIRECTORY
ENL~ OF THE EXA~iF'~.E ~AT~;H STREAi~

ENL~ BATCH

The above sample BATCH stream produces the following log file on the line printer:

NOTE
The amount of free core and the directory format are variable .

*JOB

MESSAGE

MESSAGE

CREATE/LIST

.TITLE

START:

MESSAGS

EXAMPLE
.MCALL
.PRINT
.EXIT
.ASCIZ
.EVEN
.ENL~

THIS IS AN EXAMPLE PATCH STREAM

NOW CREATE A MACRO PROG.

EXAMPL.MAC

FOR PATCH
.PRINT~.EXIT
#MESSAG

/EXAMPLE MACRO PROGRAM

START
0

~EOD

MACRO EXAMPL EXAMF'L/OPJECT

FOR BATCH/

EXAMF'L/LIST !ASSEMPLE

ERRORS LIETECTELI2 0

EXAMPLE FOR PATCH MACRO V03.00 21-JUN--77 00205229 F'AGE 1

1

3 000000
4 000006
5 000010 105 130 101

OOOOi3 115 140 114
OOOOlb 105 040 115
000021 101 103 122
000024 117 040 120
00007 1 ~? 117 i 07
000032 122 101 ii5
000035 040 10b 117
000040 122 040 102
000043 i01 124 103
00004b 110 000

b
7 000000'

.TITLE

START:

MESSAG2

EXAMPLE FOR PATCH
. MCAL_L . PRINT ~ .EXIT
.PRINT #MESSAG
.EXIT
.ASCIZ /EXAMPLE MACRO PROGRAM FOR PATC~

.EVEN

.ENP START

A-29

BATCH

EXAMPLE FOR BATCH MACRO VQ3.00 ~1-JUN-77 00:05:9 F'AGE 1-1
SYME~OL TAFLE

MESSAG 0000108 START 0000008

. ABS. 000000 000
000050 001

ERRORS DETECTEDt 0

VIRTUAL MEMORY USED: 50S WORDS t ? PAGES)
DYNAMIC MEMORY AVAILABLE FOR 4O PAGES
EXAMPL~EXAMPL=EXAMPL

~L 1~ Nh E'XAMF'L_ EXAMF'L/EXECl.1TE !AND L I Nh

SPRINT/DELETE EXAMPL.LST

MESSAGE RUN THE MACRO F'80GRAM

RUN EXAMF'L ! ANIi EXECUTE

EXAMPLE MAC80 PROGRAM FOR E~ATCH

DELETE EXAMPL.ORJ+EXAMPL.SAV+EXAMPL.MAC

*MESSAGE PRINT A DIRECTORY

DIRECTORY IK:EXAMPL.~K

21-JUN-77
EXAMPL.BAK 2 14--JUN-77
EXAMPL.CTL 3 ~1~-JUN-77
3 FILES 7 BLOCKS
1903 FREE BLOCKS

EXAMPL .RAT ~ 21--JUN-77

MESSAGE END OF TNE: EXAMPLE BATCH STREAM

~EOJ

A.5 RT-11 MODE
RT-11 mode lets you enter commands to the RT-11 monitor or to system programs, and lets you create BATCI
programs. You can enter RT-11 mode with either the $JOB/RT11 command or the $RT11 command. If you e~
RT-11 mode with the $JOB/RT11 command, RT-11 mode remains in effect until BATCH encounters the next
command. If you enter RT-11 mode with the $RT11 command, RT-11 mode is in effect until BATCH encount
a $ in the first position of the command line.

The characters . , $, *, and tab or space appearing in the first position of a line (or card column 1) are control cl
asters and indicate the following:

command to the RT-11 monitor, such as

. ~ Pz~~

* data line; any line not intended to go to the RT-11 monitor or to the BATCH run
handler, such as a command to the RT-11 PIP program

~FxL.E~ . D~~r~~:f

NOTE
BATCH does not pass the * as data to the program.
Comment lines (!) cannot appear on data lines as
BATCH would consider them as data.

A-30

BATCH

$ BATCH command. It causes an exit from RT-11 mode if you entered RT-11 mode
with the $RT11 command. For example:

~~Tii
. ~ F' ~ ~'
~~'xl...E1. . DAT~"D

! L..~AV~ ~T•w ~ 1 ~CILtE

space/tab separator to indicate a line directed to the BATCH run-time handler. This separator
is indicated by a TAB in the following descriptions.

A.5.1 Communicating with RT-11
The most common use of RT-11 mode is to send commands to the RT-11 monitor and to run system programs.
For example, you can insert the following commands in the BATCH stream to run PIP and save backup copies of
files on DECtape

~~iTi i
. ~ ~' I ~'
~DT1:~K.~~~.~°t~~'

You must anticipate and include in the BATCH input stream responses that the called program requires, such as the
Y response to DUP's ARE YOU SURE? query. Place a line in your BATCH file consisting of Y and RETURN or use
the DUP /Y option to suppress the query . For example

~ ~ T ~. ~.

*Y

You can communicate directly with the RT-11 monitor by using the keyboard monitor commands that are described
in Section 4.3 . For example

~ ~ T 1.1.
.L~~L~:T~/i~CJ~~1~'~`~ ~~~:t'~k.~i~C

This command deletes all files with a file type of .MAC from device DX1:.

You cannot mix BATCH standard commands with RT-11 mode data lines (lines beginning with an asterisk). For
example, the proper way to do a $MOUNT within a sequence of RT-11 mode data commands is:

~~1ClE~/~T :~ 1.
. ~ ~'f~lC~CI
~~1~-~1.
*~~~A~
~~it~ll~tT DTt~ 1 /~'F~Y~ ~ ~A~
.~ ~AC~CI

~~~~~fT:B,~ 

A.5.2 Creating RT-11 Mode BATCH Programs 
Advanced system programmers can use RT-11 mode to create BATCH programs. These BATCH programs consist of 
standard RT-11 mode commands (monitor commands, data lines for input to system programs, etc.) plus special 
RT-11 mode commands. The BATCH run-time handler interprets these special commands to allow dynamic calcula-
tions and conditional execution of the RT-11 mode standard commands. The following can help you create BATCH 
programs and dynamically control their execution at run-time 

A-31 



BATCH 

• Labels 

• Variable modification 

1) equating a variable to a constant or character (LET statement) 
2) incrementing the value of a variable by 1 
3) reading a value into a variable 
4) conditional transfers on comparison of variable values with numeric or character values (IF and GOTO 

statements) 

• Commands to control terminal I/O 

• Other Control Characters 

• Comments 

A.5.2.1 Labels —You define labels in RT-11 mode to provide a symbolic means of referring to a specific location 
within a BATCH program. If present, a label must begin in the first character position, must be unique within the 
first six characters, and must terminate with a colon (:) and a carriage return/line feed combination. 

A.5.2.2 Variables — A variable in RT-11 mode is a symbol representing a value that can change during program 
execution. The 26 variables BATCH permits in a BATCH program have the names A-Z; each variable requires one 
byte of physical storage. You can assign values to variables in a LET statement. You can then test these values by an
IF statement to control the direction of program execution. 

Assign values to variables with a LET statement of the following form: 

LET x="c 

where 

x represents a variable name in the range A-Z. 

"c indicates the ASCII value of a character. 

For example 

TAB L. ~ T ~1. » " C~ 

This example indicates that the value of variable A is the 7-bit ASCII value of the character 0 (60). 

The LET statement can also specify an octal value in the form: 

TAB LET A=n 

where 

n represents an 8-bit signed octal value in the range 0-377. Positive numbers range from 
0-177; negative numbers range from 200-377 (- 200 to -1). 

You ca.n use variables to introduce control characters, such as ESCAPE, into a BATCH stream. For example, wher-
ever `A' appears in the following BATCH stream, BATCH substitutes the contents of variable A (the code for an 
ESCAPE): 

A-32 



BATCH 

«C T i"1"".~t~ 

T11 / 
/►. / I ~ ~ 

~~:+ x ~r r~~ r. i.~~:: Ta c~ra~c~~: T~~~ ~,~~~~ :r. c:~~ ~«~~~~ Try 

Increment the value of a variable by 1 by placing a percent sign (%) before the variable. For example 

TAB % A 

This command indicates that BATCH must increase the unsigned contents of variable A by 1. 

Indicate with an IF statement conditional transfers of control according to the value of a variable. The IF statement 

has the syntax: 

TAB IF(x- "c) labell ,label2, label3 

or 

TAB IF(x-n) labell ,label2, label3 

where 

x represents the variable to be tested. 

"c is the ASCII value to be compared with the contents of the variable. 

n is an octal integer in the range 0- 377 . 

labell 
label2 
label3 

represent the names of labels included in the BATCH stream. 

When BATCH evaluates the expression (x- "c) or (x- n), the BATCH run-time handler transfers control to: 

• labell if the value of the expression is less than zero. 

• label2 if the value of the expression is equal to zero. 

• label3 if the value of the expression is greater than zero. 

If you omit one of the labels, and the condition is met for the omitted label, control transfers to the line following 

the IF statement. 

NOTE 
Since this comparison is a signed byte comparison, 377 is 
considered to be -1. 

A-3 3 March 1978 



BATCH 

The characters +and -allow you to control where BATCH begins searching for labell , label2, and label3. If you 
precede the label by a minus sign (-), BATCH starts the label search just after the $JOB command. If a plus sign 
(+) or no sign precedes the label, the label search starts after the IF statement. For example: 

r ~ c ~ ~ . q ~ ~ ~_ c~o~~ ~ t». oa~~ ~. 

This statement transfers program control to the label LOOP following the $JOB command if the contents of variable 
B are less than the ASCII value of 9. It transfers control to the label LOOPI following the IF statement if B is equal 
to ASCII 9. If the contents of variable B are greater than the ASCII value of 9, program control goes to the next 
BATCH statement in sequence. 

The GOTO statement unconditionally transfers program control to a label you specify as the argument of the state-
ment. You can use one of the following three forms of this statement: 

GOTO label transfers control to the first occurrence of label that appears after this GOTO state-
ment in the BATCH stream. 

TAB GOTO +label same as GOTO label. 

TAB GOTO -label transfers control to the first occurrence of label that appears after the $JOB command. 

The following GOTO statement transfers control unconditionally to the next label LOOP if such a label appears in 
the BATCH stream following the GOTO statement. 

TAB G(~Ta ,,,Claw' 

NOTE 
If BATCH cannot find a label (for example, if you unintentionally 
omit a minus sign) the BATCH handler searches until it reaches 
the end of the .CTL file and ends the job. 

A.5.2.3 Terminal I/O Control —You can issue commands directly to the BATCH run-time handler to control 
logging console terminal input and output. If you do not enter any of the following commands, BATCH assumes 
TTYOUT. 

TAB NOTTY does not write terminal input and output to the log file. Comments to the log are 
still logged. 

TAB TTYIN writes only terminal input to the log file . 

TAB) TTYIO writes terminal input and output to the log file. (You should enter this command if 
you are using RT-11 mode so that RT-11 mode commands go to the log file.) 

TTYOUT writes only terminal output to the log file (default). 

A.5.2.4 Other Control Characters —The system permits other control characters in an RT-11 mode command that 
begins with a period (.) or an asterisk (*). Following are these control characters and their meanings: 

`text' command to BATCH run-time handler, where text can be one of the following: 

CTY 

FF 

accepts input from the console terminal; notifies the operator that 
action is required by ringing a bell and printing a question mark (?). 

outputs the current log buffer. 

A-34 



BATCH 

NL inserts a new line (line feed) in the BATCH stream. 

x inserts the contents of a variable where x is an alphanumeric variable 
in the range A through Z. It indicates that BATCH should insert the 
contents of the variable as an ASCII character at this place in the 
command string. 

"message" directs the message to the console terminal. 

The following commands allow the operator to enter the name of a MACRO program to be assembled. The BATCH 
stream contains: 

.~ ~AC~~ 
~k' " E~TE~i ~~C~~ CCi~~A~I~ ~T~ I ~~ " : ~ ~;~'Y' 

The operator receives the following message at the terminal and types a response, followed by carriage return; 
BATCH processing continues. 

E~lTE~ I~AC~O CCI~f i~A~lT~ STfi Y ~~ 

To run the same BATCH file on several systems with different configurations you need to assign a device dynamically 
The following RT-11 mode command lets you request that the listing device name be entered by the operator. 

. A~~~I~~ ' "~~'L~~"~~:.' TY~'~ ~.~T LiEVIt~~ ~l~~~" • E' CTY' l..t:~7' 

The operator receives the message and responds with the device to be used as the listing device (DT2:). 

F`LEA~E TYKE L.ST T+~:V I CE ~tAi~E 
"?L~ T 

A.5.2.5 Comments —You can include comments in RT-11 mode as separate comment statements. Include com-
ments by typing a separator followed by a !and the comment. For example 

! a~'Et~ATCI~ ACT I Oft I ~ ~ECUESTELi ~ ~ TH x ~ ,.1~1~ . ~E ~'~E~'A~E ~:i . 

A.5.3 RT-11 Mode Examples 
The following are examples of BATCH programs using the RT-11 mode. 

This BATCH program assembles, lists, and maps 10 programs with only 12 BATCH commands. 

~..lt~~~''~~` ~. ~ ~ ~1~~~!"iB1...L: r i... L ~T ~ ~~~' ~'~Qt~~ trra ~'~'~;+ilC~S~ 
TTY~~ 
! ~~ I ~'~ T~~~ L ~~I... ~; f ~ ~~ THE I,..f~G ~' I ~..~ 
~..ET ~l.~ " ~ 

~,. ~ ~ ~' 
.~ ~f~ChCi 

. ~ L. L ~ 

f~ 
! L ~C~~~~~T VAFi L Ail-~ i~ 
I ~' t ~~ " ~) ~lw~~q~' ~ -~~~CJC~~' ~ ~~L~ 

T~~~' ~C~ ~~L~ 
~~L~~ 
~~Cl~ 

A-35 



BATCH 

The following program lets you set up a master control stream to run several BATCH jobs with one call to BATCH. 
First set up a BATCH job (INIT.BAT~ that performs a $CHAIN to the master control stream: 

~..1tJB/~~`~.I. 
L~` ~~~~ 
~ x~ITIAf-I~~ ~~~+~X 

~C~IA ~ ~ ~ASTE~; ! ~Q ~'Cl ~A57'E~ 
~~~J 

The following is the master control stream (MASTER.BAT) to which INIT chains.

~~OB~~T ~ 1 i I~A~7~~' ~~~Tfi~~l~ ~Y~~:A~
~~

E~ATC~I
~~`~I~i ~~~ A ~~~A~'

! F~l.l~~ ~~t1~1•--~,.1f~B~
~hlZ~:
~~~~~A~~ ~~~~ fly' ~{A`l'Ci••I ~~lJ~! 
~~t~.J 

Each job that MASTER.BAT runs must contain the following: 

~ ,.J fl E 
! FA~I°~f-~ ~::C~~4~A~~~~ 

~C~IA l ~ ~A~~~~ 
~~C~..1 

Activate the master control stream by calling BATCH as follows: 

.~" BATCH 

A.6 CREATING BATCH PROGRAMS ON PUNCHED CARDS 
To create a BATCH program on punched cards, punch into the cards the commands described in Section A.4. Each 
command line occupies a single punched card. Only one card, the EOF card, is different from the standard BATCH 
commands. The EOF (end-of-file) card terminates the list of jobs from the card reader. 

To create the EOF card, hold the MULT PCH key on the keypunch keyboard while typing the following characters: 

-& 0 1 6 7 8 9 

This procedure produces an EOF card with holes punched in the first column (see Figure A-1). 

To run multiple jobs from the card reader, simply combine the jobs into a single card deck. Ensure that each job has 
its own $JOB and $EOJ card. Then follow the last $EOJ card with two EOF cards. 

Although in general, you terminate BATCH jobs on cards by placing two EOF cards after the last .$EOJ card, some 
card readers require that you type \F followed by a carriage return. Put two EOF cards and a blank card in the reader 
and ensure that the card reader is ready. Note that a small card deck (less than 512 characters) can require more than 
two EOF cards to terminate the deck. 

A-3 6 



BATCH 

i 

 1 

~0000000000000000000000000000000000~00000000000000000000000000000000000000000000 
1 2 3 4 5 6 1 8 9 1011 12~3141~iG1T1819~1i2i 22 23 21 25 26 21Z8:93031323J3/35J~:s1 :19 13 40 /1 /2~J///5 16 41 88 /9 5J3152535~S5~b~15859606~62 63 6/65 16 61 68 69 1:'1112131i1S~o11181980 

~i l l l l l i t i l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l i l l l l l l l l l l i l i l l l l l l l i l l l l l l l l l l l l l 

212222222??222222222222222222222222222222222222222222222222222222222222222222222 

333333333333333333333333333~3333333►33333333333333333333333333333333333333333333 

444444444444444r~~~~i4444444~+4444444y44444A4444444444!1444444444444444444444444446 

S555S5555S55555S5S555SS55SS5S5555555SS555S55S55555S5S5555555555555555555SS555555 

~666666666E66666G65,r,6666666~b6566666666666666666666of666666G66o666666666~5566665E 

~lllTlll1111111111111111111:1111111111111111111111111111111111111111111111111111 

~b88868888~8aE8~88886888888~9868888R86B8888886688EBE8R868888889898386888~8888~6a 

~y5y9999999999599999y999999599999q°93499999999999939S9999999999999999999999~9y99 
~ 3 ~ 5 6 A '! 10 I I '7 i3 I~+ i5 .6 t: 18 t'; 2C 2t '1 ? 23 2d ZS ?b 2' ') 29 ?0 7i .l? ?1 :14 ;5 ': !1 .? c <r ~' '2 13 1115 ah 3i' :, .y ~.; ~+~ 5t :! ;a `:i Si ii 53 19 b+i.,1 52 63 6d 65 6E C: 513 69 1C Ii T ~ '~'e Tc '~~ ; r ~:i 'n aq~ 

iew (,lei] 

Figure A-1 EOF Card 

A.7 OPERATING PROCEDURES 

A.7.1 Loading BATCH 
After you bootstrap the RT-11 system and enter the date and time, you must make the BATCH run-time handler 

resident by typing the RT-11 LOAD command as follows: 

• L. I~ ~1 Ii ~ A 

You detach and unload the BATCH run-time handler with the /U option in the BATCH compiler command line 

(see Section A.7.2). 

NOTE 
If BATCH crashes, you must unload BATCH with the 
UNLOAD command and then reload BATCH with the 
LOAD command. This ensures that the BATCH handler 
is properly initialized when you rerun BATCH. 

You must make the BATCH log device resident unless the log device is SY:, or unless it is a device for which the 

handler is already resident. Load the log device by typing: 

.LOAD log 

where 

log 

For example 

• L.. Cl A ~~ L.. ~` 

represents the device to which BATCH must write the log file. 

You can, of course, load device handlers with a single LOAD command. For example: 

•~..aA~:i ~A : ~ ~..~' 

A-37 



BATCH 

You must then assign the logical device name LOG to the log device. Use the RT-11 monitor ASSIGN command in 
the form: 

.ASSIGN log LOG 

For example, if LP: is the log device, type 

•A~~ x G~ L~' : ~CJC 

Then assign the logical device name LST: lasing the RT-11 ASSIGN command in the form: 

.ASSIGN list-device LST 

where 

list-device represents the physical device BATCH must use for listings. 

If, for example, you want to produce listings on the line printer, type 

•ASS I C~ l...~' ~ ~..~T' 

NOTE 
Do not use the DEASSIGN command with no arguments in 
a BATCH program since it deassigns the log and list devices, 
possibly causing the BATCH job to terminate. 

You must also make resident the BATCH run-time handler input device (compiler output device). If this device is 
already resident or is SY:, you do not need to load it. For example, to load the DECtape handler as the input device, 
type 

•l..ClA~i 1:~~: 

If the input file to the BATCH compiler is on cards, load the card reader handler by typing: 

•l..~IAL~ C~ 

NOTE 
If input is on cards, you must use the RT-11 monitor SET 
command (before loading the handler) to specify CRLF and 
NOIMAGE modes. That is, the following command appends 
a carriage return/line feed combination to each card image. 

•~i~~' Cf~: C~iL~' 

The following command translates the card by packing card 
code into ASCII data, one column per byte. 

•~~~' C~ ~ ~lCl I ~~C~: 

If card images do not properly translate to ASCII, you may 
have to change the card translation codes by using one of the 
following commands: 

or 

•~~T C~: COI~~:M~~i 

See Section 4.4. 

A-3 8 



BATCH 

A.7.2 Running BATCH 
When you have loaded all necessary handlers, run the BATCH compiler as follows: 

f~ ~~TCH 

BATCH responds by printing an asterisk (*) to indicate its readiness to accept commands. In response to the * ,type 
the output file specifications for the control file followed by an equal sign. Then type the input file specifications 
for the BATCH file as follows: 

[[output-filespec] [,log-filespec] [/option . .. ] _ ]input-filespec [ . . . ,input-filespec] [/option . . .J 

where: 

output-filespec is the BATCH compiler output device and file the BATCH run-time handler must use. 
The device you specify must be random-access. Your BATCH job should not delete 
or move this file. Your BATCH job should avoid compressing the system volume with 
the SQUEEZE command or the DUP /S option. If you omit the output-filespec, 
BATCH generates a file on the default device DK: with the same name as the first in-
put file but with a .CTL file type. If you do not specify a file type in the output-file-
spec, BATCH assumes .CTL. 

log-file spe c 

input-filespec 

is the log file created by the BATCH run-time handler. If you do not specify a log 
device, BATCH assumes LOG:. The device name you specify for log-filespec must be 
the same as you assign to LOG:. 

You can change the size of a log file on afile-structured device from the default size of 
64 (decimal) blocks. To make this change, enclose the required size in square brackets. 
For example: 

* , FILE.LOG [10] =FILE 

The default file type for the log-filespec is .LOG. 

represents an input file. If you do not specify a file type, BATCH assumes .BAT. If 
you specify a .CTL file, BATCH assumes a precompiled file that must be the only file 
in the input list. 

/option is an option from the following 'st: 

/N 

/T:n 

/U 

compiles but does not execute. This option creates a BATCH control 
file (.CTL), generates an ABORT JOB message at the beginning of 
the log file, and returns to the RT-11 monitor. 

if n=0, sets the /NOTIME option as the default on the $JOB com-
mand. If n=1, the default option on the $JOB command is /TIME. 

indicates that the BATCH compiler must detach the BATCH run-time 
handler from the RT-11 monitor and unload the handler. 

NOTE 
You need not specify the RT-11 monitor UNLOAD BA 
command to actually remove the handler. Specifying /U 
to BATCH causes the handler to detach and unload. 

A-39 



BATCH 

/X indicates that the input is a precompiled BATCH program. Use this 
option when you do not specify the .CTL file type. 

ET prints the version number of the BATCH compiler. 

The following example calls BATCH to compile and execute the three input files (PROGl.BAT, PROG2.BAT, 
PROG3.BAT) to generate on DK: the compiler output files, and to generate on LOG: a log file. 

.~ ~ATCN 
*F~~O~ ~. , SAT ~ ~~a~~ . SAT ~ ~~a~~ . SAT 

The following commands print the version number of BATCH, then compile and run SYBILD.BAT. 

.~ ~ATCN 
* ET 

BATCH V4S . Q.~ 

The following commands compile PROTO.BAT to create PROTO.CTL but do not run the compiled program. 

.f~ ~ATC~~ 
~~'~QTO/fit 

Type the following commands to unlink BA.SYS from the monitor and to unload it. 

.~ BATCH 
*/ lJ 

The following commands compile FILE.BAT from magtape to create FILE.CTL on RKl :.They execute the com-
piled file and create a log file named FILE.LOG (of size 20) on LOG:. 

~i BATCH 
*~ihi : ~'~1..~ ~ ~'rl...~:C~O:~ ~i~T: ~'IIM.E 

The following commands execute a precompiled job called FILE.TST. 

,~ ~ATC~1 
*~` I ~.~' . Tai'/~ 

The following commands execute a precompiled job called FILE.CTL. 

BATCH 
*~' I L~/X 

The following commands accept input from the card reader to create a file called TEMP.CTL. BATCH stores this 
file on DK: and executes it. 

BATC~I 
*C ~' 

The following commands accept input from the card reader to create a file called JOB.CTL. BATCH stores the file 
on DK: and executes it. 

,~ ~A~rC~ 
~C,JO~~C:F'~: 

A-40 



BATCH 

A.7.3 Communicating with BATCH Jobs 
During the execution of a BATCH stream, BATCH can request the operator to service a peripheral device, to provide 
information, or to insert a command line into the BATCH stream. The operator does this by typing directives to the 
BATCH handler on the console terminal. 

NOTE 
These directives are equivalent to the compiler output that 
BATCH generates in the .CTL file. The .CTL file is an ASCII 
file that you can list by using the PRINT or TYPE commands 
or by running PIP. 

These directives have the form: 

\dir 

where: 

dir represents one of the directives listed in Table A-6. 

To use these directives, the operator must get control of the BATCH run-time handler. This can be done as a result 
of a /WAIT or a CTY in the BATCH stream, or by typing a carriage return on the console terminal. Note that in the 
latter case the operator does not know exactly where the BATCH stream has been interrupted. When BATCH 
executes a command, it acknowledges the carriage return and prints a carriage return/line feed combination at the 
terminal. The operator can then enter a directive from Table A-6. The most useful directives are marked with an
asterisk (*). Some directives are not particularly useful in this mode, but are listed in order to fully explain the 
BATCH compiler output . 

In the following example, the operator must interrupt the BATCH handler to enter information from the console. 
As a result of a /WAIT or `CTY' in the BATCH stream, the following message appears at the terminal: 

~~fEOOAGE/WAIT Wf~ I TF ~lECEOOAI=~Y f :c I...EO 'TQ I~ I Oh 

To divert BATCH stream input from the current file to the console terminal, the operator types a \E, enters com-
mands to the RT-11 monitor, then types a \B. Control then returns to the BATCH stream. The following example 
illustrates this procedure. 

.~ E~ATCM 
~ki`IEXT 

W~ I TE ~lECE~iOA~Y F' I LEO TO Ii I OIL 
?~A~E 

♦ECOF'Y ITT 1 : F I LE . i~AC f~f\ 

F'ILEO COF'IEI~: 
IiT i : F' I LE . I~fAC TCl ~h : E I LE . SAC 

♦E~F'~~ 

E~I~ BATCH 

A-41 March 1978 



BATCH 

Table A-6 Operator Directives to BATCH Run-Time Handler 

Directive Explanation 

\@ 

*\A 

*\B 

*\C 

*\D 

*\E 

*\F 

\G 

\~ 

Send the characters that follow to the console terminal. 

Change the input source to be the console terminal. 

Change the input source to be the BATCH stream. 

Send the following characters to the log device. 

Consider the following characters as user data. 

Send the following characters to the RT-11 monitor. 

Force the output of the current log block. If this directive is followed by any 
characters other than another BATCH backslash (\) directive, the BATCH job 
prints an error message and terminates; control returns to the RT-11 monitor. 

Get characters from the console terminal until a carriage return is encountered. 

Help function to change the logging mode where n specifies the following 

0 Log only .TTYOUT and .PRINT 
1 Log .TTYOUT, .PRINT, and .TTYIN 
2 Do not log .TTYOUT, .PRINT, and .TTYIN 
3 Log only .TTYIN 

\Ivxlabell ?label2?label3? 
IF statement which causes conditional transfer, where v is a variable name in the 
range A-Z; x is a value for the signed 8-bit comparison (v-x); and labell ,label2, 
label3 are 6-character labels to which control is transferred under certain conditions. 
(All labels must be six characters in length; if too short, pad with spaces.) If v-x is 
less than 0, control transfers to labell ; if v-x is equal to 0, control goes to label2; 
if v-x is greater than 0, control goes to label3. The direction for the label search is 
indicated by ?; if ? is 0, the search begins at the beginning of this job; if ? is 1, the 
label search begins after the IF statement. 

\Jlabel? 

\Kv0 

\Kvin 

\Kv2 

\Llabel 

Jump, unconditional transfer; where label is a 6-character label and ? is 0 or 1. (All 
labels must be six characters in length; if too short, pad with spaces.) If ?=0, label 
is a backward reference; if ?=1, label is a forward reference. 

Increment variable v where v is a variable name in the range A-Z. 

Store the 8-bit number n in variable v. 

Take the value in variable v and return it to the program (via .TTYIN). 

Insert label as a 6-character alphanumeric string in the BATCH stream. (All labels 
must be six characters in length; if too short, pad with spaces.) Labels must not 
include backslash characters. Characters beyond six are ignored. 

A-42 March 1978 



BATCH 

r"1 
The following BATCH program lets you make frequent edits to a file and list only the edits. First, create a BATCH 
program that assembles with a listing and then link the file. This BATCH program, called COMPIL.BAT, contains: 

~..1QE~/~~T11 
TTYIO 
! W~ I TE T~:~-ii"i :~ ~lAL x /Cl Tp LOG ~' I LE 

. ~ i~AG~iO 
! C~L~~ 'rF~E ~i~t:~Cl A~~E~fE~~..E~ 

FILE r FILE/CFILE 
~~iES~AGE/WA :~ T (]h TCl TY~~'E Ez:i 1 T GO~~A~lli~ 
. ~ ~. I ~! h 

! G~I...l... TIE ~T~ ~. ~ L I ~lKE:~ 
~kFILE r LQG: ~~FILE 
~ E CI.J 

At run-time, you can insert commands into the BATCH stream from the console terminal. These commands search 
for the section of the listing file that has been edited then lists this section to the log. You must insert the command 
after the R MACRO command but before the R LINK command. The following example illustrates this procedure. 

.1=~ ~ ~ 
.~. 

C: I~~I 
* t:: t:l I~ F' :C L_ 

i~h T(~ 'T'YI~~'~' G:~:~:1'T t::t:ll"i~A~X:~~:~ 
'~\~\f-~ 

~ r:~ r~ I~: ~~ :C ~T' 

~~-hF:[ I...I::: . I...~:~T~~t~ 

i~~ ~: T Fi Y : Q 
~1.Fi7U :1.17aca4 

r.l 
() () d () () ~.~~.'~ 

():Lc~i:iG~ ()QC~()~ 
;:; ' t)pUO~ Oq~i ()4 
~.i:3 p0()()~~ 

~ M:[UH QF~IiF:F~ L~I'T IJ~E::x~ 
~fnV 
i"f C~ V 
1'~OV 
~~F 
A~N~ 
~ Fi 

~WFa~ 

Ft:th ' C~E~~aCT' ~N F~'I~iI:~~Fif::~"a~i F'I...~C 
F~ I~ C; C1 ~:: r h ::a r t:i E: ~r' C1 f ~' 

~ h... r •~~:. 

I~~~ r I ~OL..~TE 
h~ 
h~ 
~~ ~ 

A-42.1 March 1978 





BATCH 

~a 0000~~ o~a~ ~o~a o:i. •~~~r arc ~~'~c:•~:: ~.~aaoa::=• ~ ~~ 
:;.7 A~Qp4h qQ«~0-4 ~~ ;;'~ y k:.i~T'F.Ft t~ 

~F~:X~~ 

\"tit:\fit 

~~x~ ~A'TCh~ 

A.7.4 Terminating BATCH 
When BATCH terminates normally, it prints the following message and returns control to the RT-11 monitor 

~~I~ E~A~'~H 

To abort BATCH while it is executing a BATCH stream, interrupt the BATCH handler by typing a carriage return. 
When BATCH executes the next command after the carriage return, it prints a carriage return/line feed combination 
at the console terminal. You then gain control of the system. Type \F followed by a carriage return. The BATCH 
handler responds with the FE (forced exit) error message and writes the remainder of the log buffer. Control returns 
to the RT-11 monitor. 

Typing two CTRL/Cs interrupts and terminates BATCH immediately. Use two CTRL/Cs when BATCH is in a loop 
or when a long assembly is running. In these cases, BATCH does not respond promptly (or at all) to your carriage 
return interrupt. 

A.8 DIFFERENCES BETWEEN RT-11 BATCH AND RSX-11D BATCH 
Some programmers run their RT-11 BATCH programs under RSX-11 D. Note the differences between the two 
BATCH implementations listed in Table A-7. BATCH programs that run under both systems must be compatible 
with both RT-11 and RSX-11 D BATCH. 

Table A-7 Differences Between RT-11 and RSX-11 D BATCH 

Characteristic RT-11 RSX-11 D 

File descriptors filespec/option SY: filnam.typ/option 

Default listir~a file type .LST(or .LIS) .LIS 

Executable file type .SAV .EXE 

Incompatible commands $BASIC $MCR 
$CALL 
$CHAIN 
$LIBRARY 
$RT11 
$SEQUENCE 

Incompatible options $COPY/DELETE 
$CREATE/DOLLARS 
$CREATE/LIST 
$DATA/DOLLARS 
$DATA/LIST 
$DIR file/LIST $DIR file/DIRECTORY 
$DISMOUNT/WAIT 
$DISMOUNT lun: /LOGICAL 
$FORTRAN/DOLLARS 
$FORTRAN/MAP 

(Continued on next page) 
A-43 



BATCH 

Table A-7 (Cont.) Differences Between RT-11 and RSX-11D BATCH 

Characteristic RT-11 RSX-11 D 

Incompatible options $JOB/BANNER. $JOB/NAME 
(Cont.) $JOB/LIST $JOB/LIMIT 

$JOB/RT11 $JOB/MCR 
$JOB/TIME 
$JOB/UNIQUE 
$LINK/LIBRARY $LINK/MCR 
$LINK/OBJECT 
$MACRO/CREF 
$MACRO/DOLLARS 
$MAC RO/LIBRARY 
$MACRO/MAP 
$MESSAGE/WAIT 
$MESSAGE/WRITE 
$PRINT/DELETE 

$DATA input appears as if from input appears as if from a file named 
FOROOI.DAT 

Logical device names in $MOUNT and $DISMOUNT logical unit numbers only 

$RUN you must specify file name RSX11 DBAT.EXE is default 

A-44 



APPENDIX B 

MONITOR COMMAND ABBREVIATIONS AND 

SYSTEM PROGRAM EQUIVALENTS 

This appendix provides a table of correspondence (Table B-1) between the keyboard monitor commands with their 
options and the system utility programs with their options. Remember that the syntax you use to issue a keyboard 
monitor command is different from the syntax that the Command String Interpreter requires for input and output 
specifications for the system utility programs. Bear in mind that there are many differences between issuing a moni-
tor command and running a utility program. Table B-1 lists all the keyboard monitor commands and options. A 
dash under the corresponding system program or option column indicates that the command has no real system pro-
gram equivalent, that the function is inherent in the keyboard monitor, or that the function is the default mode of 
operation. The minimum abbreviation for each command and option is underlined. 

Table B-1 Monitor Command/System Program Equivalents 

Monitor 
Command Option 

System Utility 
Program Option 

APL R APL —
ASSIGN — —
B — —
BASIC R BASIC —
BOOT DUP /O 
CLOSE — —
COMPILE — — 

/ALLOCATE :size — [n] 
/ALPHABETIZE DIBOL /A 
/CODE :type FORTRAN /I 
/CROSSREFERENCE [:type [. . ..:type] ] MACRO, DIBOL /C 
/DIAGNOSE FORTRAN /B 
/DIBOL — —
/DISABLE:value [. . . :value] MACRO /D 
/ENABLE:value [. . . :value] MACRO /E 
/EXTEND FORTRAN /E 
/FORTRAN — — 
/HEADER FORTRAN /0 
/I4 FORTRAN /T 
/LIBRARY MACRO /M 
/LINENUMBERS — —
/NOLINENUMBERS DIBOL, 

FORTRAN 
/0 
/S 

/LIST [ : filespec] — —
/MACRO — —
/OBJECT [ : filespec] — —
/NOOBJECT — —
/ONDEBUG DIBOL, FORTRAN /D 
/OPTIMIZE [:type] FORTRAN /P 
/NOOPTIMIZE [ :type ] FORTRAN /M 
/PASS:1 MACRO /P 

(Continued on next page) 
B-1 



Monitor Command Abbreviatt'ons and System Program Equivalents 

Table B-1 Monitor Command/System Program Equivalents (Cont.) 

Monitor 
Command Option 

System Ut' 'ty 
Program Option 

/RECORD:length FORTRAN /R 
/SHOW:value FORTRAN, MACRO /L 
/NOSHOW: value MACRO /N 
/STATISTICS FORTRAN /A 
/SWAP — —
/NOSWAP FORTRAN /U 
/UNITS : n FORTRAN /N 
/VECTORS — —
/NOVECTORS FORTRAN /V 
/WARNINGS FORTRAN /W 
/NOWARNINGS DIBOL /W 

COPY — —
/ALLOCAT~:size — [n] 
/ASCII PIP /A 
/BINARY PIP /B 
/BOOT DUP /U 
/CONCATENATE PIP /U 
/DEVICE DUP /I 
/DOS FILEX f S 
/EXCLUDE PIP /P 
/IGNORE PIP /G 
/IMAGE — —
/INTERCHANGE [:size] FILEX /U 
/LOG PIP /W 
/NOLOG — —
/NEWFILES PIP /C 
/OWNER: [nnn, nnn] FILEX UIC 
/PACKED FILEX /P 
/POSITION:n PIP /M 
/PREDELETE PIP /O 
/QUERY PIP /Q 
f NOQUERY — —
/REPLACE — —
/NOREPLACE PIP /N 
/SETDATE PIP /T 
/SLOWLY PIP /S 
/SYSTEM PIP /Y 
/TOPS FILEX /T 

D — —
DATE — —
DEASSIGN — —
DELETE — —

f DOS FILEX /S 
/EXCLUDE PIP /P 
/INTERCHANGE FILEX /U 
/LOG PIP /W 

(Continued on next page) 

B-2 



Monitor Command Abbreviations and System Program Equivalents 

Table B-1 Monitor Command/System Program Equivalents (Cont.) 

Monitor 
Command Option 

System Ut' 'ty 
Program Option 

/NEWFILES PIP /C 
/POSITION:n PIP /M 
/QUERY PIP /Q 
/NOQUERY — — 
/SYSTEM PIP /Y 

DIBOL R DIBOL —
/ALLOCATE :size — [n ] 
/ALPHABETIZE DIBOL /A 
/CROSSREFERENCE DIBOL /C 
/LINENUMBE RS — —
/NOLINENUMBERS DIBOL /O 
/LIST[:filespec] — —
/OBJECT [ :filespec] — —
/NOOBJECT — —
/ONDEBUG DIBOL /D 
/WARNINGS — —
/NOWARNINGS DIBOL /W 

DIFFERENCES R SRCCOM —
/ALLOCATE:size — [n] 
/BLANKLINES SRCCOM /B 
/COMMENTS — —
/NOCOMMENTS SRCCOM /C 
/FORMFEED SRCCOM /F 
/MATCH: n SRCCOM /L 
/OUTPUT: filespec — —
/PRINTER — —
/SPACES — —
/NOSPACES SRCCOM /S 
/TERMINAL — —

DIRECTORY R DIR —
/ALLOCATE:size — [n] 
/ALPHABETIZE DIR /A 
/BADBLOCKS DUP /K 
/BEFORE [date] DIR /K 
/BEGIN DIR /G 
/BLOCKS DIR /B 
/BRIEF DIR, FILEX iF 
/COLUMNS:n DIR /C 
/DATE [date] DIR /D 
/DELETED DIR /Q 
/DOS FILEX /S 
/EXCLUDE DIR /P 
/FAST DIR, FILEX /F 
/FILES DUP /F 
/FREE DIR /M 
/FULL DIR /E 
/INTERCHANGE FILEX /U 

(Continued on next page) 

B-3 



Monitor Command Abbreviations and System Program Equivalents 

Table B-1 Monitor Command/System Program Equivalents (font.) 

Monitor 
Command Option 

System Utility 
Program Option 

/NEWFILES DIR /D 
/OCTAL DIR /O 
/ORDER [:category] DIR /S 
/OUTPUT: filespec — —
/OWNER: [nnn, nnn] FILEX UIC 
/POSITION DIR /B 
/PRINTER — —
/REVERSE DIR /R 
/SINCE [date] DIR /J 
/SORT [:category] DIR /S 
/SUMMARY DIR /N 
/TERMINAL — — 
/TOPS FILEX /T 
/VOLUMEID DIR /V 

DUMP R DUMP —
/ALLOCATE:size — [n] 
/ASCII — —
/NOASCII DUMP /N 
/BYTES DUMP /B 
/END:block DUMP /E 
/IGNORE DUMP /G 
/ONLY:block DUMP /O 
/OUTPUT: filespec — —
/PRINTER — —
/RAD50 DUMP /X 
/START:block DUMP /S 
/TERMINAL — —
/WORDS DUMP /W 

E — —
EDIT EDIT EB 

/ALLOCATE:size — [n] 
/CREATE EDIT EW 
/INSPECT EDIT ER 
/OUTPUT: filespec EDIT EW 

EXECUTE — —
/ALLOCATE:size — [n] 
/ALPHABETIZE DIBOL /A 
/BOTTOM:n LINK /B 
/CODE:type FORTRAN /I 
/CROSSREFERENCE [:type [. . . :type] ] DIBOL, MACRO /C 
/DEBUG [ :filespec] — —
/DIAGNOSE FORTRAN /B 
/DIBOL — —
/DISABLE:value [. . . :value] MACRO /D 
/ENABLE:value [. . . :value] MACRO /E 
/EXECUTE [:filespec] — —
/EXTEND FORTRAN /E 

(Continued on next page) 

B-4 March 1978 



Monitor Command Abbreviations and System Program Equivalents 

Table B-1 Monitor Command/System Program Equivalents (Cont.) 

Monitor 
Command Option 

System Ut' 'ty 
Program Option 

/FORTRAN — — 
/HEADER FORTRAN /O 
/14 FORTRAN /T 
/LIBRARY MACRO /M 
/LINENUMBERS — —
/NOLINENUMBERS DIBOL, 

FORTRAN 
/0 
/S 

/LINKLIBRARY: filespec — —
/LIST [:filespec] — —
/MACRO — —
/MAP [:filespec] — —
/OBJECT [:filespec] — —
/ONDEBUG DIBOL, FORTRAN /D 
/OPTIMIZE: type FORTRAN /P 
/NOOPTIMIZE: type FORTRAN /M 
/PASS: l MACRO /P 
/RECORD:length FORTRAN /R 
/RUN — —
/NORUN — —
/SHOW [:value] FORTRAN, MACRO /L 
/NOSHOW:value MACRO /N 
/STATISTICS FORTRAN /A 
/SWAP — —
/NOSWAP FORTRAN /U 
/UNITS:n FORTRAN /N 
/VECTORS — —
/NOVECTORS FORTRAN /V 
/WARNINGS FORTRAN /W 
/NOWARNINGS DIBOL /W 
/WIDE LINK /W 

FOCAL R FOCAL —
FORTRAN R FORTRAN —

/ALLOCATE:size — [n] 
/CODE:type FORTRAN /I 
/DIAGNOSE FORTRAN /B 
/EXTEND FORTRAN /E 
/HEADER FORTRAN /O 
/14 FORTRAN /T 
/LINENUMBERS — —
/NOLINENUMBERS FORTRAN /S 
/LIST[:filespec] — —
/OBJECT [:filespec] — —
/NOOBJECT — —
/ONDEBUG FORTRAN /D 
/OPTIMIZE: type FORTRAN /P 
/NOOPTIMIZE:type FORTRAN /M 
/RECORD:length FORTRAN /R 
/SHOW [:value] FORTRAN /L 

ontulued on next 

B-5 



Monitor Command Abbreviations and System Program Equivalents 

Table B-1 Monitor Command/System Program Equivalents (Copt.) 
. 

Monitor 
Command 

- 

Option 
System Utility 

Program 

-

Option 

/STATISTICS FORTRAN /A 
/SWAP — —
/NOSWAP FORTRAN /U 
/UNITS : n FORTRAN iN 
/VECTORS — —
/NOVECTORS FORTRAN /V 
/WARNINGS FORTRAN /W 

FRUN — —
iN;n — —
/P — —
/T:n — —

GET — — 
GT OFF — —
GT ON -- —

/L:n — —
/T:n — — 

HELP — —
f PRINTER — —
iTERMINAL — —

INITIALIZE 
____ 

-- -

/BADBLOCKS DUP /B 
/DOS FILEX f S 
f FILE:filespec — —
iINTERCHANGE FILEX /U 
/QUERY — —
/NOQUERY DUP, FILEX /Y 
/REPLACE [:RETAIN] DUP /R 
/SEGMENTS : n DUP /N 
iVOLUMEID [ :ONLY] DUP /V 

INSTALL -- —
LIBRARY R LIBR — 

/ALLOCATE: size -- [n] 
/CREATE — —
/DELETE LIBR /D 
/EXTRACT LIBR /E 
/INSERT — —
/LIST [: filespec] — —
/MACRO LIBR /M 
/OBJECT [ : filespec] -- -
/NOOBJECT — —
/PROMPT LIBR // 
/REMOVE LIBR /G 
/REPLACE LIBR /R 
/UPDATE LIBR iU 

LINK R LINK —
_.___ 

/ALLOCATE:size — [n] 
/BOTTOM:n LINK /B 

(Continued on next page) 

B-6 



Monitor Command Abbreviations and System Program Equivalents 

Table B-1 Monitor Command/System Program Equivalents (Cont.) 

Monitor 
Command Option 

System Utility 
Program Option 

/BOUNDARY:value LINK /Y 
/DEBUG [:filespec] — —
/EXECUTE [:filespec] — —
/NOEXECUTE — —
/EXTEND:n LINK /E 
/FILL: n LINK /Z 
/FOREGROUND [: stacksize] LINK /R 
/INCLUDE LINK /I 
/LDA LINK /L 
/LIBRARY: filespec — —
/LINKLIBRARY:filespec — —
/MAP [ :filespec] — —
/PROMPT LINK // 
/ROUND: n LINK /U 
/RUN — —
/SLOWLY LINK /S 
/STACK [: n] LINK /M 
/TRANSFER [: n] LINK /T 
/WIDE LINK /W 

LOAD — —
MACRO R MACRO —

/ALLOCATE:size — [n] 
/CROSSREFERENCE[:type[. . . :type] ] MACRO /C 
/DISABLE:value [. . . :value] MACRO /D 
/ENABLE:value [. . . :value] MACRO /E 
/LIBRARY MACRO /M 
/LIST [:filespec] — —
/OBJECT [:filespec] — —
/NOOBJECT — —
/PASS: l MACRO /P 
/SHOW:value MACRO /L 
/NOSHOW:value MACRO /N 

PRINT — —
/COPIES:n PIP /K 
/DELETE PIP /D 
/LOG PIP /W 
/NOLOG — —
/NEWFI LES PIP /C 
/QUERY PIP /Q 

R — —
REENTER — —
REMOVE — —
RENAME — — 

/LOG PIP /W 
/NOLOG — —
/NEWFILES PIP /C 
/QUERY PIP /Q 

(Continued on next page) 

B-7 



Monitor Command Abbreviations and System Program Equivalents 

Table B-1 Monitor Command/System Program Equivalents (Cont.) 

Monitor 
Command Option 

System Utility 
Program Option 

/REPLACE 
____ 

— —
/NOREPLACE PIP /N 
/SETDATE PIP /T 
/SYSTEM PIP /Y 

RESET — —
RESUME — —
RUN — —
SAVE — —
SET — —
SHOW — — —

/CONFIGUR.ATION RESORC /Z 
/DEVICES RESORC /D 
/TERMINALS RESORC /T 

SQUEEZE — —
/OUTPUT:filespec — —
/QUERY — —
/NOQUERY DUP /Y 

START — — 
SUSPEND — 
TIME — —
TYPE —

/COPIES:n PIP /K 
/DELETE PIP /D 
/LOG PIP /W 
/NOLOG — —
/NEWFILES PIP /C 
/QUERY PIP /Q 

UNLOAD — 

B_g March 1978 



APPENDIX C 

FORMAT UTILITY PROGRAM 

The FORMAT utility program sets media density marks for diskettes and writes headers for RKOS disks. You can 
use FORMAT to set single surface diskettes to either single or double density mode. You can use only single density 
diskettes with an RXO 1 device (DX: ); you can use either single or double density diskettes with an RX02 device 
(DY: ), if that option is part of your DY handler. 

Sometimes disks and diskettes develop bad blocks as a result of age and use (or misuse). Reformatting these disks 
often makes them suitable again for use with RT-11. 

.NOTE 
FORMAT destroys any data that currently exists on the disk. 

Gl CALLING AND USING FORMAT 
To call FORMAT from the system device, respond to the dot (.) printed by the keyboard monitor by typing: 

R FORMAT 

The Command String Interpreter prints an asterisk (*) at the left margin of the terminal and waits for a command 
string. If you enter only a carriage return in response to the asterisk, FORMAT prints its current version number. 
You can type CTRL/C to halt FORMAT and return control to the monitor when FORMAT is waiting for input 
from the console terminal. You cannot type two CTRL/Cs to halt FORMAT during an operation. 

If you interrupt the program during a formatting operation by some other means, the disk or diskette involved is 
not completely formatted. You must restart the operation on the same disk or diskette and allow it to run to 
completion. 

Chapter 6, Command String Interpreter, describes the general syntax of the command line that system utility pro-
grams accept. FORMAT accepts one device specification (either a physical or a logical device name) followed, if 
necessary, by one or more options. An RKOS disk you wish to format can be located in any unit (0-7) of device RK:. 
A diskette you need to format must be mounted on an RX02 device (device DY:), but it can be located in any unit 
(0-3) of that deivice. You cannot format diskettes on an RXO1 device. 

FORMAT automatically prints the "device-name:/Are you sure?" message before it begins any operation. The device 
name that prints out in the message is the physical name of the device you specify in the command line. Therefore, 
if you use a logical device name in the command line, the device name that FORMAT displays in the verification 
message is different from the name you type. If you want the operation to continue, type a Y followed by a carriage 
return in response to the verification message. Any other response prevents the formatting operation from occurring 
and causes FORMAT to print its prompting asterisk again. 

You can use FORMAT from an indirect command file. To satisfy the "device-name:/Are you sure?" message, enter 
a Y as the next line of the indirect file immediately following the FORMAT command line. You can suppress the 
verification message completely by using the /Y option in the FORMAT command line. If you use /Y, you do not 
need to enter the Y on the following line. 

After you format a disk, you should use the INITIALIZE command to prepare the volume for use with RT-11. See 
Chapter 4 for more information on the INITIALIZE command. 

C-1 March 1978 



Format Utility Program 

C.2 FORMAT OPTIONS 
Options that you specify in a command line to the FORMAT program perform several functions. Table C-1 sum-
marizes these options and the operations they perform. You can combine these options, if necessary, in any order. 
More detailed explanations of the options are arranged alphabetically by option name in the following sections. 

Table C-1 FORMAT Options 

Option Section Explanation 

r
none C.2.1 The default operation. If you specify DY: ,the operation that occurs is 

double density diskette formatting. If you specify RK:, the operation is RKOS 
formatting. You can use /Y and /W with the default operation. 

/S C.2.2 Single density option. This option formats the diskette in single density 
format. 

/W C.2.3 Wait option. This option permits you to substitute another disk for the 
volume you specify in the command line, format the second volume, then 
replace the original volume. 

/Y C.2.4 Noquery option. This option suppresses the "Are you sure?" message that 
FORMAT automatically prints before each operation. 

C.2.1 The Default Formats 
To format a diskette in double density mode, specify the device name in the command line. You can also use /Y to 
suppress the query message and /W to pause for a volume substitution. The following example formats the diskette 
in DY: device unit 1 as a double density diskette. 

~ T~ '~/ 1. 
~iY1 : /I~ t~~~~~'..../•1r.c~ .+:sc:~~..~ ~:>•.arta'!'Y 
'? F p !;; ~ ~ ~' •-• :C •••• F r.~ r' ~~ <~ •~ •l::i. i-~ ~~ c:~ c:~ ire ~~, ~. Fa •l•, c•. 

To format an RKOS disk, specify the device name in the command line. You can also use /Y to suppress the query 
message and /W to pause for a volume substitution. The following example formats the disk in RK: device unit 1: 

* ~ K :I. 

'~ ~' ~l ~ ~ ~ '~ .~. •~ -.. F~' c:~ r ~r~ ~ •~ •r, :i. r•~ ~:~ c: c:~ ire }:f :I. ~:a •~, c~ 

C.2.2 The Single Density Option (/S) 
Use /S to format a diskette in single density mode. You can also use /Y to suppress the query message and /W to 
pause for a volume substitution. The following example formats the diskette in DY: device unit 1 as a single density 
diskette. 

* i~ Y 1 : / ~i 
LiY i : /~'O~i~~'1'.~.~ rc~~ ~c:~~.~ ~~..i rtc:'''`'Y 
'~ F p ~ i~ ~ •~' .~. ~ ~. ~:: c~ r m ~.~ 't. •~ ~. r•~ ~ ~ ~ c:~ iY~ ~ :~ ~ •~ i 

C.2.3 The Wait Option (/W) 
Use /W to pause before formatting begins in order to substitute a second volume for the disk you specify in the 
command line. This is useful for single-disk systems. After the FORMAT program accepts your command line, 

C-2 March 1978 



Format Utility Program 

it pauses while you exchange volumes. Type a Y followed by a carriage return in response to the "Continue?" 
prompt when you are ready for formatting to begin. When formatting completes, the program pauses again while 
you replace the original volume. Respond to the "Continue?" prompt with a Y followed by a carriage return. You 
can combine /W with any other option. The following example formats the diskette in DY: device unit 1 as a single 
density diskette. 

~K~~Y ~. : /W/~i 
..s c~ .~ .:~ ..i Y c~ ~! Y 

I rise r~ vca ~. ~.a~~~a ~:~c:y~~~ w ~. ~~~-~ Ica ~t"t~ rrr~~:~•~.. C;il~!'r :I: ~~l.11~ C Y/i~~ ~ 'i' Y 
~~ ~ ~ l a c ~ car :i. {~ a. r•~ c; :~ ~ ca ~. ~.~ n~ ~ . C: C? i~! '1' :I: ~ ll ~~ t Y) '~' Y 
?~` i:. ~ ~ ._. ~ ~ " ca r nrf ~~ ~~ ~: i r•~ j ~ c:~ ~ nr~ ~~ ~. t:~ •t•, c~ 

C.2.4 The Noquery Option (/Y) 
Use /Y to suppress the "Are you sure?" query message that FORMAT automatically prints before each operation 
begins. When you use /Y, formatting begins as soon as FORMAT accepts and interprets your command line. The 
following example formats the diskette in DY: device unit 1 as a double density diskette. 

*DY i : /Y 
'?F'Cl~i~'i~1~'••~ ~: ~I~~ca r~~~tt i r~~ ccam~ 1 e~~ 

C-3 March 1978 





INDEX 

// option, 
LIBR, 12-3 
LINK, 11-17 

@ character, 4-10 

/A option, 
DIR, 9-3 
FILEX, 14-7 
LINK, 11-3 
PIP, 7-9 

Abbreviations, 
keyboard monitor commands, 4-4.1, B-1 

Absolute address, 11-1 . 
Absolute base address, 16-4 
Absolute section, 

see ASECT 
Adding a subroutine, 18-5 
Address, 

absolute, 11-1 
absolute base, 16-4 
bottom, 17-6 
relative, 16-4 
start , 

see Transfer address 
transfer, 11-22 

Address search, 16-13 
~~ddressed location, 

opening the, 16-7 
Advance command (A), 

EDIT, 5-18 
/ALLOCATE option, 

COMPILE, 4-20 
COPY, 4-25 
DIBOL, 4-36 
DIFFERENCES, 4-39 
DIRECTORY, 4-43 
DUMP, 4-51 
EDIT, 4-58 
EXECUTE, 4-60 
FORTRAN, 4-66 
LIBRARY, 4-79 
LINK, 4-85 
MACRO, 4-90 

Allocation, 
memory, 11-4 

/ALPHABETIZE option, 
COMPILE, 4-20 
DIBOL, 4-3b 

DIRECTORY, 4-43 
EXECUTE, 4-60 
LINK, 11-17 

ALT, 
see ESCAPE 

ALTMODE, 
see ESCAPE 

APL command, 4-13 
Area, 

system communication (SYSCOM), 11-4 
ASCII, 16-17, 17-4 
ASCII characters, 

dumping, 1-3 
ASCII format, 3-1, 3-2, 14-1 
/ASCII option, 

COPY, 4-25 
DUMP, 4-51 

ASCII text files, 
comparing, 1-3 

ASECT, 11-9, 11-14.2, 11-22 
Assembler, 1-1 

see also MACRO-11 assembly language, 
Assembly language 

Assembler, 
MACRO-11, 1-2, 1-3, 10-1 
see also Assembler, Assembly language 

Assembly language, 1-2 
see also MACRO-11, Assembler 

ASSIGN command, 4-14 
Assignment, 

direct, 
see ASECT 

Asterisk (*), 4-5 
At sign (C~), 4-10 
Attributes, 

program section, 11-5 

B command, 
see Base command 

/B option, 
DIR, 9-3 
DUMP, 13-1 
DUP, 8-12 
LINK, 11-17 
PIP, 7 -9 
SRCCOM, 15-2 

Backarrow (~) character, 16-7 
Background virtual job, 4-96 

Index-1 



INDEX (Cont.) 

Backslash character (~), 16-5 
/BADBLOCKS option, 

DIRECTORY, 4-43 
INITIALIZE, 4-76 
see also Replacing bad blocks 

Bad blocks, 
covering, 8-12 
replacing, 8-11 

BAD files, 7-2 
Base address, 

absolute, 16-4 
Base (B) command, 4-15 
$BASIC command, 

BATCH, A-11 
BASIC command, 4-16 
BATCH, A-1 
BATCH, 

differences between RSX-11 D and RT-11, 
A-43 

loading, A-37 
RT-11 mode, A-30 
RT-11 mode control characters, A-34 
RT-11 mode example, A-35 
running, A-39 
terminating, A~3 

BATCH characters, A-7 
table, A-8 

BATCH command options, A-2 
table, A-3 

BATCH command syntax, A-2 
BATCH commands, A-10 
BATCH commands, 

$BASIC, A-11 
$CALL, A-12 
$CHAIN, A-13 
$COPY, A-14 
$CREATE, A-15 
$DATA, A-15 
$DELETE, A-16 
$DISMOUNT, A-17 
$EOD, A-18 
$EOJ, A-18 
$FORTRAN, A-18 
$JOB, A-20 
$LIBRARY, A-21 
$LINK, A-~ 1 
$MACRO, A-23 
$MESSAGE, A-25 
$MOUNT, A-25 
$PRINT, A-27 

BATCH commands (Cont.l, 
$RT11, A-27 
$RUN, A-27 
$SEQUENCE, A-28 

BATCH compiler, A-1 
BATCH device names, A-5 
BATCH example, A-28 
BATCH file specifications, A-5 
BATCH file types, A-6 
BATCH hardware requirements, A•1 
BATCH jobs, 

communicating with, A-41 
BATCH operating procedures, A-37 
BATCH programs on punched cards, A-36 
BATCH rules and conventions, A-10 
BATCH run-time handler, A-1 

operator directives to, A-41 
BATCH software requirements, A-1 
BATCH specification options, A-6 

table, A-7 
BATCH stream, A-41 
BATCH temporary files, A-9 
BATCH wildcards, A-6 
/BEFORE option, 

DIRECTORY, 4-44 
/BEGIN option, 

DIRECTORY, 4-44 
Beginning command (B), 

EDIT, 5-17 
Bias, 

relocation, 16-4 
Binary format, 3-1, 3-2 
Binary object file, 

see Object module 
Binary object format, 

see Binary format 
/BINARY option, 

COPY, 4-25 
Bitmap, 11-23 
/BLANKLINES option, 

DIFFERENCES, 4-39 
Block number, 4-44 
Block-replaceable device, 

see Random-access device 
/BLOCKS option, 

DIRECTORY, 4-44 
BOOT command, 4-17 
/BOOT option, 

COPY, 4-26 
Bottom address, 11-17, 17-6 

Index-2 



IlVDEX (Cont.) 

/BOTTOM option, 
EXECUTE, 4-60 
LINK, 4-85 

/BOUNDARY option, 
LINK, 4-85 

Branch offset, 
relative, 16-7 

Breakpoints, 16-10, 16-18 
/BRIEF option, 

DIRECTORY, 4-44 
Buffer, 

macro, 5-10 
save, 5-10 
text, 5-10 

/BYTES option, 
DUMP, 4-51 

/C option, 
DIR, 9-3 
DUP, 8-3 
LIBR, 12-3 
LINK, 11-17 
MACRO-11, 10-7 
PIP, 7-9 
SRCCOM, 15-2 

Calculating offsets, 16-14 
Calculators, 

relocation, 16-15 
$CALL command, 

BATCH, A-12 
Calling and using, 

DIR, 9-1 
DUMP, 13-1 
DUP, 8-1 
EDIT, 5-1 
FI LEX, 14-2 
FORMAT, C-1 
LIBR, 12-1 
LINK, 11-1 
MACRO-11, 10-1 
ODT, 16-1 
PAT, 18-1 
PATCH, 17-1 
PIP, 7-1 
SRCCOM, 15.1 

Cassette, 7-3 
$CHAIN command, 

BATCH, A-13 
Change command (C), 

EDIT, 5-25 

Changing locations, 
ODT, 16-5 
PATCH, 17-2 

Changing monitors, 4-17 
Character-oriented commands, 

EDIT, 5-6 
Characters, 

BATCH, A-7 
table, A-8 

BATCH RT-11 mode control, A-34 
dumping ASCII, 1-3 
dumping Radix-50, 1-3 
PATCH control, 17-4 
prompting, 6-2 

CHCOPY programmed request, 2-2 
Checksum, 

PAT, 18-7 
PATCH, 17-2, 17-6 

Circumflex (~), 16-7 
CLOSE command, 4-18, 5-2 
Closing locations, 16-5 
Code, 

error , 1-2 
object, 

see Object module 
/CODE option, 

COMPILE, 4-20 
EXECUTE, 4-60 
FORTRAN, 4-66 

/COLUMNS option, 
DIRECTORY, 4-45 

Combining library options, 12-9 
Commands, 

BATCH, A-10 
character-oriented, 5-6 
EDIT key, 5 -2 
keyboard monitor, 

see Monitor commands 
interactive, 

see Monitor commands 
line-oriented, ~-6 
monitor, 

see Monitor commands 
ODT, 16-5 
PATCH, 17-2 
relocation register, 16-15 

Command abbreviations, 
monitor, B-1 

Command continuation, Preface, 
11-17, 12-3, 12-10 

Index-3 



INDEX (Coot.) 

Command mode, 
EDIT, 5-1 

Command options, 
BATCH, A-2 

table, A-3 
Command repetition, 

EDIT, 5-8 
Command strings, 

EDIT, 5-5 
Command String Interpreter (CSI), 6-1 
Command syntax, 

BATCH, A-2 
EDIT, 5-1 
MACRO-11, 10-1 
monitor, 4-1 

/COMMENTS option, 
DIFFERENCES, 4-39 

Communicating with BATCH jobs, A-41 
Communications, 

system, II-1 
Communication area, 

system (SYSCOM), 11-4 
Comparing files, 4-39 
COMPILE command, 4-19 
Compiler, 

BATCH, A-1 
Components, 

system hardware, 1-3 
table, 1-4 

system software, 1-2 
Compressing a device, 

see SQUEEZE 
/CONCATENATE option, 

COPY, 4.2 6 
/CONFIGURATION option, 

SHOW, 4-113, B-8 
Constant register, 16-13 
Continuation, 

command, Preface, 11-17, 12-3, 12-10 
Control characters, 

see also CTRL, Up-arrow 
BATCH RT-11 mode, A-34 
PATCH, 17-4 

/COPIES option, 
PRINT, 4-94 
TYPE, 4-118 

$COPY command, 
BATCH, A-14 

COPY command, 4-24 

Copy operations, 
PIP, 7-8 

Copying files, 4-24 
Correction file, 

PAT, 18-2, 18-4 
Count, 

proceed, 16-11 
repeat, 16-11 

CRAW programmed request, 2-2 
$CREATE command, 

BATCH, A-15 
/CREATE option, 

EDIT, 4-58 
LIBRARY, 4-80 

Creating a file, 4-58 
Creating indirect files, 4-7 
Creating a library file, 12-4 
Creating a macro library, 4-81 
Creating an object library, 4-80 
CREF 

see /CROSSREFERENCE option, Cross-reference 
listing 

/CROSSREFERENCE option, 
COMPILE, 4-20 
DIBOL, 4-36 
EXECUTE, 4-60 
MACRO, 4-90 

Cross-reference listing, 10-7 
sample, 10-10 

CRRG programmed request, 2-2 
CSECT, 11-5, 11-14.1, 18-4 
CSI, 

see Command String Interpreter 
CSTAT programmed request, 2-2 
CTRL, 3-5 

see also Control characters, Up-arrow 
CTRL/A, 3-6 
CTRL/B, 3-6 
CTRL/C, 3-6, 5 -2 
CTRL/D, 5-34 
CTRL/E, 3-6 
CTRL/F, 3-6 
CTRL/G, 5-33 
CTRL/N, 5-33 
CTRL/O, 3-6, 5-3 
CTRL/Q, 3-7 
CTRL/S, 3-7 
CTRL/U, 3-7, 5-3 
CTRL/V, 5-34 

Index-4 



INDEX (Copt.) 

CTRL (Cont.), 
CTRL/X, 5-2 
CTRL/Z, 3-7 

Current location pointer, 5-6 

D command, 
see Deposit command 

/D option, 
DIR, 9-3 
FIL, 14-8 
LIBR, 12-4 
MACRO-11, 10-6 
PIP, 7-11 

$DATA command, 
BATCH, A-15 

Data formats, 3-1 
Date, 

entering the, 4-32 
DATE command, 4-32 
/DATE option, 

DIRECTORY, 4-45 
DEASSIGN command, 4-33 
/DEBUG option, 

EXECUTE, 4-60 
LINK, 4-8 5 

DebuggingTechnique, 
On-line, 1-3, 16-1 
see also /ONDEBUG 

DECsystem-10, 
transferring files from, 14-6 

DECsystem-10 file format, 14-1 
DECsystem-10 file transfers, 1-3, 14-6 
Default format, C-2 
Default system subroutine library, 

see SY: SYSLIB.OBJ 
$DELETE command, 

BATCH, A-16 
DELETE command, 4-34 
Delete command (D), 

EDIT, 5-23 
DELETE key, 3-7, 5-3, 5-34 
/DELETE option, 

LIBRARY, 4-80 
PRINT, 4-94 
TYPE, 4-118 

/DELETED option, 
DIRECTORY, 4-45 

Deleting files, 4-34 
Deleting DOS-11 files, 14-8 
Deleting interchange files, 14-8 
Density, C-1 
Deposit (D) command, 4-31 
Dev : , 6-1 
Development, 

program, 1-1 
Device, 

block-replaceable, 
see Random-access device 

compressing, 
see SQUEEZE 

directory-structured, 3-S 
file-structured, 3-5 
FILEX-supported, 14-1 
random-access, 1-3, 3-2 
sequential-access, 3-5 

Device directory, 3-5 
Device handlers, 

1 oa ding, 4-89 
unloading, 4-120 

Device names, 
BATCH, A-5 
logical, 3-2, 4-14, 4-33 
permanent, 3-2 

table, 3-3 
physical, 3-2, 4-14, 4-33 

/DEVICE option, 
COPY, 4-26 
SHOW, 4-113, B-8 

DEVICE programmed request, 2-2 
Device structures, 3-2 
Device utility program (DUP), 

see DUP 
/DIAGNOSE option, 

COMPILE, 4-20 
EXECUTE, 4-60 
FORTRAN, 4-66 

DIBOL command, 4-36 
/DIBOL option, 

COMPILE, 4-20 
EXECUTE, 4-60 

Differences between BATCH and RSX-11 D BATCH, 

A-43 
DIFFERENCES command, 4-39 
DIR, 1-2, 9-1 
DIR, 

calling and using, 9-1 

Index-5 



DIR options, 9-1 
table, 9-2 

Direct-access file, 12-1 
Direct assignment , 

see ASECT 
Directory-structured device, 3-5 
Directory, 

device, 3-5 
library, 12-1 
listing, 4-42, 14-7 
listing a library, 12-8 
initializing aDOS-11, 14-9 
initializing an interchange, 14-9 

DIRECTORY command, 4-42 
Directory program (DIR), 

see DIR 
/DISABLE option, 

COMPILE, 4-20 
EXECUTE, 4-60 
MACRO, 4-90 

Disk, 3-3, C-1 
Diskette, 3-3, 4-76, C-1 
$DISMOUNT command, 

BATCH, A-17 
Display editor, 5-31, 5-32 
Display hardware, 5-2, 5-31 
/DOS option, 

COPY, 4-26 
DELETE, 4-34 
DIRECTORY, 4-46 
1NITIAL~ZE, 4-76 

DOS-11, 
initializing a directory, 14-9 
transferring files between RT-11 and, 

DOS-11 file format, 14-1 
DOS-11 file transfers, 1-3, 14-2 
DOS-11 files, 

deleting, 14-8 
Double density mode, C-1 
DSABL directive, 4-20, 4-60 

table, 4-91 
DUMP, 1-3, 13-1 
DUMP, 

calling and using, 13-1 
DUMP command, 4-51 
DUMP opt ions, 13-1 
DUMP utility program (DUMP), 

see DUMP 
DUP, 1-2, 8-1 

IlVDEX (Cont.) 

DUP, 
calling and using, 8-1 

DUP options, 8-2 

E command, 
see Examine command 

/E option, 
DIR, 9-4 
DUMP, 13-1 
LIBR, 12-5 
LINK, 11-18 
MACRO-11, 10-6 

EBCDIC, 
see Packed image format 

EDIT, 1-2, 5-1 
EDIT, 

calling and using, 5-1 
Edit Backup command (EB), 

EDIT, 5-12 
EDIT command, 4-57 
EDIT command strings, 5-S 
EDIT command syntax, 5-1 , 5-4 
Edit Console command (EC), 

EDIT, 5-32 
Edit Display command (ED), 

EDIT, 5-32 
EDIT error conditions, 5-35 
EDIT key commands, 5-2 
Edit Lower command (EL), 

EDIT, 5-30 
EDIT program (EDIT), 

14-2 see EDIT 
Edit Read command (ER), 

EDIT, 5-11 
Edit Upper command (EU), 

EDIT, 5-30 
Edit Version command (EV), 

EDIT, 5-30 
Edit Write command (EW), 

EDIT, 5-11 
Editing files, 4-5 7 
Editor, 

display, 5-31 
text, 1-1, 5-1 

FLAW programmed request, 2-2 
ELRG programmed request, 2-2 
.ENABL directive, 4-20, 4-61 

table, 4-91 

Index-6 



INDEX (Cont.) 

/ENABLE option, 
COMPILE, 4-20 
EXECUTE, 4-61 
MACRO, 4-91 

End File command (EF), 
EDIT, 5 -13 

/END option, 
DUMP, 4-51 

Entering the date, 4-32 
Entering the time, 4-117 
Entry points, 16-2 
$EOD command, 

BATCH, A-18 
$EOJ command, 

BATCH, A-18 
Error codes, 1-2 
Error codes, 

MACRO-11, 10-9 
table, 10-11 

Error conditions, 
EDIT, 5-35 

Error detection, 
ODT, 16-21 

ESC, 
see ESCAPE 

ESCAPE, 5-2, 5-33, 5-34 
Examine (E) command, 4-5 6 
Examining locations, 

PATCH, 17-2 
Exchange command (X), 

EDIT, 5-27 
Exchange program, 

file, 
see FILEX 

/EXCLUDE option, 
COPY, 4-27 
DELETE, 4-34 
DIRECTORY, 4-46 

Executable module, 1-1 , 11-8 
Executable program, 18-1 
EXECUTE command, 4-59 
/EXECUTE option, 

EXECUTE, 4-61 
LINK, 4-85 

Execute Macro command (EM), 
EDIT, 5-29 

Executing indirect files, 4-10 
Executing programs, 4-103 
Execution, 

program (ODT), 16-10 

Exit command (EX), 
EDIT, 5-16 

Exiting from PATCH, 17-2 
Expression, 

relocatable, 16-4 
/EXTEND option, 

COMPILE, 4-20 
EXECUTE, 4-61 
FORTRAN, 4-66 
LINK, 4-85 

Extended memory monitor (XM), I-1, 2-1 
Extended memory monitor, 

memory requirements, 1-3 
/EXTRACT option, 

LIBRARY, 4-80 

/F option, 
DIR, 9-4 
DUP, 8-5 
FILEX, 14-8 
LINK, 11-18 
SRCCOM, 15-2 

Factoring, 4-3 
/FAST option, 

DIRECTORY, 4~4b 
FB, 

see Foreground/background monitor 
File, 

ASCII text, 
comparing, 1-3, 4-39, 15-1 

binary object, 
see Object module 

creating a, 4-57 
creating a library, 12-4 
direct-access, 12-1 
library, 1-3, 12-1 
load image (LDA), 3-2 
memory image (SAV), 1-2, 3-2 
PAT correction, 18-2, 18-4 
PAT input, 18-2 
patching a new, 17-2 
prefix macro, 4-23, 4-63 
relocatable image (REL), 3-2 
startup, 3-1 
symbol definition, 11-1 

Files, 
BAD, 7-2 
BATCH temporary, A-9 
comparing, 4-39, 15.1 
copying, 4-24, 7-1, 14-1 

Index-7 



INDEX (ContJ 

Files (Cont.), 
deleting, 4-34, 14-8 
editing, 4-57, 5-1 
indirect command, 4-7 
library, 11-10, 12-9 
renaming, 4-99 
startup indirect, 4-11 
SYS, 7-11 
transferring, 14-2, 14-5, 14-6 

/FILES option, 
DIRECTORY, 4~6 

File directory, 
listing a, 4-42 

File exchange program, 
see FILEX 

File format, 
DECsystem-10, 14-1 
DOS -11, 14-1 
IBM , 14-1 
RT-11, 14-1 
universal interchange, 14-1 

File names, 3-2 
/FILE option, 

INITIALIZE, 4-76 
File specifications, 

BATCH, A-5 
File-structured device, 3-5 
File types, 3-2 

BATCH, A-6 
LIBR, 12-2 
PATCH, 17-1 
standard, 3-4 

FILEX, 1-3, 14-1 
calling and using, 14-2 

FILEX devices, 14-1 
FILEX options, 14-2 

table, 14-3 
/FILL option, 

LINK, 4-86 
Filnam, 6-2 
FOCAL command, 4-65 
/FOREGROUND option, 

LINK, 4-86 
see also Relocatable image file 

Foreground/background monitor 
Foreground/background monitor 

memory requirements, 1-3 
Foreground/background terminal I/O, 3-5 
Foreground jobs, 

using ODT with, 16-17 

(XM), I-1, 2-1, 2-2 

Foreground program, 
running a, 4-71 

FORLIB.OBJ, 11-18 
Format, 

ASCII, 3-1, 3-2, 14-1 
binary, 3- l , 3-2 
data, 3-1 
DECsystem-10 file, 14-1 
DOS-11 file, 14-1 
IBM file , 14-1, 14-5 
image, 14-1 
object, 1-3 
packed image, 14-1, 14-5 
RT-11 file, 14-1 
universal interchange file, 14-1 

FORMAT utility program, C-1 
Formatted disk, 8-8 
/FORMFEED option, 

DIFFERENCES, 4-39 
$FORTRAN command, 

BATCH, A-18 
FORTRAN callable routines, 1-3 
FORTRAN command, 4-66 
FORTRAN library option, 11-18 
FORTRAN optimizations, 

table, 4-68 
see also /OPTIMIZE option 

/FORTRAN option, 
COMPILE, 4-20 
EXECUTE, 4-61 

FORTRAN overlays, I1-10 
Free memory list, 4-120 
/FREE option, 

DIRECTORY, 4-46 
FRUN command, 3-2, 4-71, 11-9 
/FULL option, 

DIRECTORY, 4-46 
Function control, 

MACRO-11, 10-6 
Function keys, 

special, 3-5 
table, 3-6 

/G option, 
DIR, 9-4 
DUMP, 13-1 
LIBR, 12-5 
PIP, 7-9 

General registers, 16-8 

Index-8 



INDEX (Cont.) 

Get command (G), 
EDIT, 5-19 

GET command, 4-72 
Global program section, 11-12 

Global symbols, 11-1, 11-7 
Global symbol table, 12-1 
GMCX programmed request, 2-2 
Graphic illustrations, 

monitor commands, 4-1 
sample , 4-2 

GT OFF command, 4-73 
GT ON command, 4-73 

/H option, 
DUP, 8-5 
LINK, 11-18 
SRCCOM, 15-2 

Handler, 
see Device handler 

Handler , 
BATCH run-time, A-1 
overlay table, 17-1, 17-6 

Hardware, 
display, 5-2, 5-31 
system, 1-3 

Hardware components, 1-4 
Hardware requirements, 

BATCH, A-1 
Hardware vector, 11-4 
Header, 

library, 12-1 
/HEADER option, 

COMPILE, 4-21 
EXECUTE, 4-61 
FORTRAN, 4-67 

HELP command, 4-74 
High-level language, 1-2 

/I option, 
DUP, 8-4 
FILEX, 14-5 
LINK, 11-19 

/I4 option, 
COMPILE, 4-21 
EXECUTE, 4-61 
FORTRAN, 4-67 

IBM file format , 14-1 
IBM file transfers, 1-3 

/IGNORE option, 
COPY, 4-27 
DUMP, 4-5 2 

Image format , 14-1 
packed, 14- l , 14-5 

/IMAGE option, 
COPY, 4-27 

Immediate mode, 1-2, 5-1, 5-33 
Immediate mode commands, 5-33 
/INCLUDE option, 

LINK, 4-86 
Indirect command files, 

creating, 4-7 
executing, 4-10 
startup, 4-11 

INITIALIZE command, 4-76, C-1 
Initialization, 

memory block, 16-14 
Initializing aDOS-11 directory, 14-9 
Initializing an interchange directory, 14-9 
Input file, 

PAT, 18-2 
Input specification, 6-1 
Insert command (I), 

EDIT, 5-23 
/INSERT option, 

LIBRARY, 4-80 
Inserting modules into a library, 12-4 
/INSPECT option, 

EDIT, 4-58 
INSTALL command, 4-78 
Instruction mode, 

single, 16-12 
Interchange diskette, 

initializing a directory, 14-9 
transferring files on, 14-5 

Interchange file, 
deleting, 14-8 

Interchange file format, 
universal, 14-1 

/INTERCHANGE option, 
COPY, 4-27 
DELETE, 4-34 
DIRECTORY, 4-47 
INITIALIZE, 4-76 

Interchange program, 
peripheral, 
see PIP 

Internal registers, 16-8 

Index-9 



INDEX (ContJ 

Interpreter, 
Command String, 6-1 

Interrupts, 16-16, 16-21 
Interactive commands, 

see Keyboard monitor commands 
I/O, 

foreground/background terminal, 3-5 

/J option, 
DIR, 9-5 

$JOB command, 
BATCH, A-20 

Job control language, 
see BATCH 

Jump command (J), 
EDIT, 5-18 

/K option, 
DIR, 9-5 
DUP, 8 -4 
LINK, 11-19 
PIP, 7-10 

Key commands, 
EDIT, 5-2 

Keyboard monitor commands, 
see Monitor commands 

Keys, 
special function, 3-5 

table, 3-6 
Kill command (K), 

EDIT, 5-24 

/L option, 
DIR, 9-5 
FILEX, 14-7 
GT ON command, 4-73 
LINK, 11-19 
MACRO-11, 10-5 
SRCCOM, 15-2 

Language, 
assembly, 1-2 

see also MACRO-11, Assembler 
high-level, 1-2 
job control, 

see BATCH 
Language translator, 1-1 
LDA file, 

see Load image file 

/LDA option, 
LINK, 4-86 

Length, 
program section, 11-5 

LIBR, 1-2, 1-3, 12-1 
calling and using, 12-1 

LIBR command syntax, 12-1 
LIBR file types, 12-2 
LIBR macro options, 12-10 
LIBR object options, 12-2 
Librarian utility program (LIBR), 

see LIBR 
Libraries, 

using with LINK, 11-14.3 
Library, 

creating a macro, 4-81 
creating an object , 4-80 
default, 

see SYSLIB.OBJ 
inserting modules into, 12-4 
macro, 4-21 
system subroutine, 

see SYSLIB.OBJ 
$LIBRARY command, 

BATCH, A-21 
LIBRARY command, 4-79 
Library directory, 12-1 
Library file directory listing, 12-8 
Library files, 1-3, 4-79, 11-10, 12-1 

copying, 4-25 
creating, 12-4 
macro, 10-7 
merging, 12-9 

Library header, 12-1 
/LIBRARY option, 

COMPILE, 4-21 
EXECUTE, 4-61 
LINK, 4-86 
MACRO, 4-91 

Library options, 
combining, 12-9 

Line-oriented commands, 5-6 
/LINENUMBERS option, 

COMPILE, 4-21 
DIBOL, 4-36 
EXECUTE, 4-61 
FORTRAN, 4-67 

LINE FEED, 16-5 
LINK, 1-2, 4-84, 11-1 

calling and using, 11-1 

Index-10 



INDEX (Cont.) 

$LINK command, 
BATCH, A-21 

LINK command, 4-84 
LINK command syntax, 11-2 
Link map, 

see Load map 
LINK options, 11-2, 11-17 

table, 11-3 
LINK prompts, 11-24 
Linker, 

see LINK 
Linking object modules, 4-84 
Linking ODT, 16-2 
/LINKLIBRARY option, 

EXECUTE, 4-61 
LINK, 4-86 

List command (L), 
EDIT, 5-?1 

.LIST directive, 4-23, 4-63 
table , 4-69 , 4 9 3 

/LIST option, 
COMPILE, 4-21 
D1BOL, 4-36 
EXECUTE, 4-62 
FORTRAN, 4-67 
LIBRARY, 4-80 
MACRO, 4-91 

Listing control, 
MACRO-11, 10-5 

Listing directories, 4-42, 12-8, 14-7 
LOAD command, 4-89 
Load image file (LDA), 3-2 
Load map, 1-1, 4-86, 11-1, 11-9 
Load module, 

see Executable module 
Loading BATCH, A-37 
Loading device handlers, 4-89 
Location pointer, 

EDIT, 5-6 
Locations, 

changing, 16-5, 17-2 
closing, 16-5 
examining, 17-2 
modifying, 17-4 
opening, 16-5 
opening the addressed, 16-7 
translating, 17-4 

/LOG option, 
COPY, 4-27, 4-29 
DELETE, 4-34 

/LOG option (Cont.), 
PRINT, 4-94 
RENAME, 4-99 
TYPE, 4-118 

Logical device names, 3-2, 4-14, 4-33 
Logical end of tape, 4-28 

/M option, 
DIR, 9-5 
LIBR, 12-10 
LINK, 11-19 
MAC RO-11, 10-7 
PIP, 7-3, 7-7 

MACRO-11 assembly language, 1-2, 1-3, 4-90 , 
10-1 

MACRO-11, 
calling and using, 10-1 
see also Assembler, Assembly language 

MACRO-11 8K version, 10-9 
MACRO-11 command syntax, 10-1 
MACRO-11 error codes, 10-9 

table, 10-11 
MACRO-11 function control, 10-6 
MACRO-11 listing control, 10-5 
MAC RO-11 options, 10-3 
MACRO-11 program assembly, 10-1 
MACRO-11 work file, 10-3 
$MACRO command, 

BATCH, A-23 
Macro command (M), 

EDIT, 5-28 
MACRO command, 4-90 
Macro buffer, 5-10 
Macro definitions, 12-1 
Macro file, 

prefix, 4-23, 4-63 
Macro library, 1-3, 4-21 

creating a, 4-81 
Macro library file, 10-7 
Macro name table, 12-1 
/MACRO option, 

COMPILE, 4-22 
EXECUTE, 4-62 
LIBRARY, 4-81 

Macro options, 
LIBR, 12-10 

Magtape, 7-7 
Main program, 11-10 

Index-11 



INDEX (Cont.) 

Map, link, 
see Load map 

Map, 
load, 1-1, 11-1, 11-9 

/MAP option, 
EXECUTE, 4-62 
LINK, 4-86 

MAP programmed request, 2-2 
/MATCH option, 

DIFFERENCES, 4-39 
MDUP program, 8-10 
Media density marks, C-1 

Memory allocation, 11-4 
Memory block initialization, 16-14 
Memory image file (SAV), 1-2, 3-2, 4-103 
Memory requirements, 

extended memory monitor, 1-3 
foreground/background monitor, 1-3 
single job monitor, 1-3 

Merging library files, 12-9 
$MESSAGE command, 

BATCH, A-2 5 
Mode, 

command, 5-1 
immediate, 5-2 
single instruction, 16-12 
text, 5 -1 

Modifying locations with PATCH, 17-4 
Module, 

executable, 1-1, 11-8 
load, 

see Executable module 
object, 1-1, 11-7, 12-1, 16-4, 18-1 
object patching program, 

see PATCH 
Modules, 

inserting into a library, 12-4 
linking object, 4-84 

Monitor, 
extended memory (XM), I-1, 2-1 
foreground/background (FB), I- l , 2- l , 2-2 
keyboard, 

commands, 
see Monitor commands 

single job (SJ), I-1, 2-1 
Monitor commands, 1-2, 4- l , 4-12 

APL, 4-13 
ASSIGN, 4-14 
Base, 4-15 
BASIC, 4-16 

Monitor commands (Cont.), 
BOOT, 4-17 
CLOSE, 4-18 
COMPILE, 4-19 
COPY, 4-24 
Deposit, 4-31 
DATE, 4-32 
DEASSIGN, 4-33 
DELETE, 4-34 
DI BOL, 4-3 6 
DIFFERENCES, 4-39 
DIRECTORY, 4-42 
DUMP, 4-51 
Examine, 4-56 
EDIT, 4-57 
EXECUTE, 4-59 
FOCAL, 4-65 
FORTRAN, 4-66 
FRUN, 4-71 
GET, 4-7 2 
G T, 4-7 3 
HELP, 4-74 
INITIALIZE, 4-76 
INSTALL, 4-78 
LIBRARY, 4-79 
LINK, 4-84 
LOAD, 4-89 
MACRO, 4-90 
PRINT, 4-94 
R, 4-96 
REENTER, 4-97 
REMOVE, 4-98 
RENAME, 4-99 
RESET, 4-101 
RESUME, 4-102 
RUN, 4-103 
SAVE, 4-104 
SET, 4-105 
SHOW, 4-112 
SQUEEZE, 4-114.2 
START, 4-115 
SUSPEND, 4-116 
TIME, 4-117 
TYPE, 4-118 
UNLOAD, 4-120 

Monitor command abbreviations, 4-4.1, B-1 
Monitor command, 

graphic illustrations,. 4-1 
sample, 4-2 

Monitor command syntax, 4-1 

Index-12 



INDEX (Cont.) 

Monitor version, 4-113 
Monitors, 

changing, 4-17 
$MOUNT command, 

BATCH, A-2 5 
MRKT programmed request, 2-2 
Multi-terminal support, 4-71 
Mutually exclusive options, 4-4 

/N option, 
DIR, 9-6 
DUMP, 13-I 
DUP, 8-11 
F RUN command , 4-71 
LIBR, 12-6 
MACRO-11, 10-5 
PIP, 7-10 

Name, 
file, 3-2 
permanent device, 3-3 
program section, 11-4 

/NEWFILES option, 
COPY, 4-27 
DELETE, 4-3 5 
DIRECTORY, 4-47 
PRINT, 4-94 
RENAME, 4-99 
TYPE, 4-118 

New file, 
patching a, 17-2 

Next command (N), 
EDIT, 5-16 

.NLIST directive, 4-23, 4-64 
table, 4-93 

/NOASCII option, 
DUMP, 4-51 

/NOCOMMENTS option, 
DIFFERENCES, 4-39 

/NOEXECUTE option,. 
LINK, 4-85 

/NOLINENUMBERS option, 
COMPILE, 4-21 
DIBOL, 4-36 
EXECUTE, 4-61 
FORTRAN, 4-67 

/NOLOG option, 
COPY, 4-27 
PRINT, 4-94 

/NOLOG option (Cont.), 
RENAME, 4-99 
TYPE, 4-118 

/NOOBJECT option, 
COMPILE, 4-22 
DIBOL, 4-38 
FORTRAN, 4-68 
LIBRARY, 4-81 
MACRO, 4-93 

/NOOPTIMIZE option, 
COMPILE, 4-23 
EXECUTE, 4-63 
FORTRAN, 4-69 

/NOQUERY option, 
COPY, 4-29 
DELETE, 4-3 5 
INITIALIZE, 4-77 
SQUEEZE, 4-114.2 

/NOREPLACE option, 
COPY, 4-30 
RENAME, 4-100 

/NORUN option, 
EXECUTE, 4-63 

/NOSHOW option, 
COMPILE, 4-23 
EXECUTE, 4-64 
MACRO, 4-93 

/NOSPACES option, 
DIFFERENCES, 4-40 

/NOSWAP option, 
COMPILE, 4-23 
EXECUTE, 4-64 
FORTRAN, 4-69 

/NOVECTORS option, 
COMPILE, 4.23 
EXECUTE, 4-64 
FORTRAN, 4-69 

/NOWARNINGS option, 
COMPILE, 4-23 
DIBOL, 4-38 
EXECUTE, 4-64 

/O option, 
DIR, 9-6 
DUMP, 13-1 
DUP, 8-5 
LINK, 11-20 
PIP, 7-10 

Object code, 
see Object module 

Index-13 



INDEX (Cont.) 

Object file, 
binary, 

see Object module 

Object format, 1-3 
Object library, 

creating a, 4-80 
Object module, 1-1, 11-7, 12-1, 18-1 
Object modules, 

linking, 4-84 
relocatable, 16-4 

Object module patching utility program 
(PATCH), 

see PATCH 
/OBJECT option, 

COMPILE, 4-22 
DIBOL, 4-37 
EXECUTE, 4-63 
FORTRAN, 4-68 
LIBRARY, 4-81 
MACRO, 4-92 

Object options, 
LIBR, 12-2 

Object program, 
see Object module 

Object Time System (OTS), 
see OTS 

/OCTAL option, 
DIRECTORY, 4-47 

ODT, 1-3, V-1 , 16-1 
ASCII in, 16-17 
calling and using, 16-1 
linking, 1~6-2 
organization of, 16-18 
program execution with, 16-10 
Radix-50 in, 16-~ 
restarting, 16-2 
using with FB jobs, 16-17 

ODT address search, 16-13 
ODT breakpoints, 16-10, 16-18 
ODT commands, 16-5 
ODT constant register, 16-13 
ODT entry points, 16-2 
ODT error detection, 16-21 
ODT general registers, 16-8 
ODT internal registers, 16-8 
ODT interrupts, 16-16 
ODT memory block initialization, 16-14 
ODT offset calculation, 16-14 
ODT printout formats, 16-5 
ODT priority level, 16-16 

ODT proceed count, 16-11 
ODT programming considerations, 16=17 
ODT relative branch offset, 16-7 
ODT relocation calculators, 16-15 
ODT relocation register commands, 16-15 
ODT repeat count, 16-11 
ODT returns to previous sequence, 16-7 
ODT searches, 16-20 
ODT single-instruction mode, 16-12 
ODT terminal interrupt, 16-21 
ODT word search, 16-12 
Offset, 

calculating, 16-14 
relative branch, 16-7 

On-line Debugging Technique (ODT), 
see ODT 

iONDEBUG option, 
COMPILE, 4-22 
DIBOL, 4-38 
EXECUTE, 4-63 
FORTRAN, 4-68 

/ONLY option, 
DUMP, 4-52 

Opening locations, 16-5, 16-7 
Operating environments, 

see Single job monitor, Foreground/ 
background monitor, Extended 
memory monitor 

Operating procedures, 
BATCH, A-37 

Operating system, 
RT-11, I-1 

Operator directives to BATCH run-time 
handler, A-42 

/OPTIMIZE option, 
COMPILE, 4-23 
EXECUTE, 4-63 
FORTRAN, 4-68 

Option, 6-1 
Options, 

BATCH command, A-2 
table, A-3 

combining library, 12-9 
DIR, 9-1 
DUMP, 13-1 
DUP, 8-2 
FILEX, 14-3 
LIBR, 12-2, 12-10 
LINK, 11-3, 11-17 
monitor command, 

see Monitor commands 

Index-14 



IlVDEX (Cont J 

Options (Cont.), 
mutually exclusive, 4-4 
PIP, 7-2 
SRCCOM, 15-2 

/ORDER option, 
DIRECTORY, 4-47 

Organization of ODT, 16-18 
OTS, 11-15 
/OUTPUT option, 

DIFFERENCES, 4-39 
DIRECTORY, 4-49 
DUMP, 4-5 2 
EDIT, 4-5 8 
SQUEEZE, 4-114.2 

Output specification, 6-1 
Oval, 6 -2 
Overlays, 11- l , 11-6 

see also Root segment 
Overlays, 

FORTRAN, 11-10 
using with LINK, 4-87, 11.10 

Overlay handler table, I7-6, I7-11 
Overlay segment, 11-8, 17-11 
Overlay structure, 11-10, 11-11 

summary of guidelines for, 11-14.1 
Overlaying lines with PAT, 18-4 
/OWNER option, 

COPY, 4-28 
DIRECTORY, 4-49 

/P option, 
DIR, 9-6 
FILEX, 14-3 
FRUN command, 4-71 
LIBR, 12-6 
LINK, 11-21 
MACRO-11, 10-9 
PIP, 7-10 

P-section, 
see Program section 

Packed image format, 14-1, 14-5 
/PACKED option, 

COPY, 4-2 8 
Page, 4-57, 5-1 
/PASS :1 option, 

COMPILE, 4-23 
EXECUTE, 4-63 
MACRO, 4-93 

PAT, 1-3, V-1, 18-1 
adding a sub routine with, 18-5 
calling and using, 18-1 
overlaying lines with, 18-4 

PAT checksum, 18-7 
PAT command syntax, 18-2 
PAT correction file, 18-2, 18-4 
PAT input file, 18-2 
PAT processing steps, 18-3 
PATCH, 1-3, V-1, 17-1 

ASCII in, 17-4 
calling and using, 17- I 
changing locations with, 17-2, 17-4 
examining locations with, 17-2 
exiting from, 17-2 
translating locations with, 17-4 

PATCH bottom address, 17-6 
PATCH checksum, 17-2, 17-6 
PATCH commands, 17-2 

table, 17-3 
PATCH command syntax, 17-1 
PATCH control characters, 17-4 
PATCH file type, 17-1 
Patch level, 4-113 
PATCH options, 17-1 
PATCH relocation registers, 17-7 
Patching a new file, 17-2 
Patching utility program, 

see PATCH 
PDP-11 RSTS file transfers, 1-3 
Percent symbol (%), 4-5 
Peripheral Interchange Program (PIP), 

see PIP 
Permanent device names, 3-2 

table, 3-3 
Physical device name, 4-14, 4-33 
PIP, 1-2, 7-1 

calling and using, 7-1 
PIP options, 7-2 
Pointer, 

see Current location pointer 
Position command (P), 

EDIT, 5-21 
/POSITION option, 

COPY, 4-28 
DELETE, 4-35 
DIRECTORY, 4-49 

/PREDELETE option, 
COPY, 4-29 

Prefix macro file, 4-23, 4-63 

Index-15 



INDEX (Copt.) 

Previous sequence, 
returning t o, 16-7 

$PRINT command, 
BATCH, A-27 

PRINT command, 4-94 
/PRINTER option, 

DIFFERENCES, 4-39 
DIRECTORY, 4-49 
DUMP, 4-52 
HELP, 4-74 

Printout format, 
ODT, 16-5 

Priority level, 16-16 
Proceed count, 16-11 
Processing steps, 

PAT, 18-3 
Program, 

debugging, 1-2 
see also ODT, /ONDEBUG option 
device utility, 

see DUP 
directory, 

see DIR 
dump utility, 

see DUMP 
executable, 18-1 
executing a, 4-103 
file exchange, 

see FILEX 
librarian utility, 

see LIBR 
object, 

see Object module 
object module patching utility, 

see PATCH 
peripheral interchange, 

see PIP 
running a foreground, 4-71 
source compare utility, 

see SRCCOM 
Program development, 1- l , 1-2 
Program development aids, 

see Programming tools 
Program execution with ODT, 16-10 
Program section, 11-4 

see also PSECT 
Program section attributes, 11-5 

table, 11-5 , 11-6 
Program section length, 11-5 
Program section name, 11-5 

Programmed requests, 1-3, 2-2 
Programming considerations, 

ODT, 16-17 
Programming tools, 1-1 to 1-3 
/PROMPT option, 

LIBRARY, 4-81 
LINK, 4-87 

Prompting characters, 6-2 
Prompting command format, 4-4.1 
Prompts, 

LINK, 11-24 

PROTECT programmed request, 2-2 
.PSECT, 11-5, 18-4 

see also Program section 
Punched cards, 

BATCH, A-36 

/Q option, 
DIR, 9-6 
PIP, 7-12 

/QUERY option, 
COPY, 4-29 
DELETE, 4-3 5 
INITIALIZE, 4-77 
PRINT, 4-95 
RENAME, 4-99 
SQUEEZE, 4-114.2 
TYPE, 4-119 

R command, 4-57, 4-96 
/R option, 

DIR, 9-7 
DUP, 8-11 
LIB, 12-7 
LINK, 11-21 
PIP, 7-11 

RAD50, 
see Radix-50 characters 

/RAD50 option, 
DUMP, 4-52 
see also Radix-50 characters 

Radix-50 characters, 1-3, 16-9, 17-4 
see also /RAD50 option 

Random-access device, 1-3, 3-2 
RCVD programmed request, 2-2 
Read command (R), 

EDIT, 5-14 
/RECORD option, 

COMPILE, 4-23 

Index-16 



INDEX (Copt J 

/RECORD option (Copt.), 

EXECUTE, 4-63 
FORTRAN, 4-69 

REENTER command, 4-97, 5-2 
Reference pointer, 

see Current location pointer 
Registers, 

constant, 16-13 
general, 16-8 
internal, 16-8 
relocation, 16-4, 17-7 

REL file, 
see Relocatable image file 

Relative address, 16-4 
Relative branch offset, 16-7 
Relocatable image file, 3-2 

see also /FOREGROUND option 
Relocatable expression, 16-4 
Relocatable object module, 16-4 
Relocation, 16-4 
Relocation bias, 16-4 
Relocation calculators, 16-15 
Relocation registers, 16-4, 16-15, 17-7 
REMOVE command, 4-98 
/REMOVE option, 

LIBRARY, 4-81 
RENAME command, 4-99 
Renaming files, 4-99 
Repeat count, 16-11 
Repetition, 

EDIT command, 5-8 
/REPLACE option, 

COPY, 4-30 
INITIALIZE, 4-77 
LIBRARY, 4-82 
RENAME, 4-100 

Replacing bad blocks, 8-11 
see also /BADBLOCKS option 

Replacement table, 4-77, 8-11 
Requests, 

see Programmed requests 
RESET command, 4-101 
Restarting ODT, 16-2 
Return path, 11-12, 11-14 
Returning to previous sequence, 16-7 
RESUME command, 4-102 
/REVERSE option, 

DIRECTORY, 4-49 
Root segment, 11-8 

see also Overlays 

/ROUND option, 
LINK, 4-87 

Routines, 
FORTRAN callable, 1-3 

RSTS, 
see DOS-11 

RSX-11 D BATCH, A-43 
RT-11 file transfers, 

DECsystem-10, 14-6 
DOS-11, 14-2 
interchange diskette, 14-5 

$RT 11 command, 
BATCH, A-27 

RT-11 file format, 14-1 
RT-11 mode, 

BATCH, A-30 
RT-11 mode control characters, 

BATCH, A-34 
RT-11 operating system, I-1 
RUBOUT, 3-7, 5-2, 5-34 
Run-time handler, 

BATCH, A-1, 
operator directives, A-41 

Run-time overlay handler, I 1-13 
$RUN command, 

BATCH, A-27 
RUN command, 4-103 
/RUN option, 

EXECUTE, 4-63 
LINK, 4-87 

Running BATCH, A-39 
Running a foreground program, 4-71 
Running programs, 

see Executing programs 

/S option, 
DIR, 9-7 
DUMP, 13-1 
DUP, 8-6 
FILEX, 14-8 
FORMAT. C-2 
LINK, 11-2 2 
PIP, 7 -10 
SRCCOM, 15-2 

SAV file, 
see Memory image file 

Save buffer, 5-10 
Save command (S), 

EDIT, 5-27 
SAVE command, 4-104 

Index-17 



INDEX (Cont.) 

SDAT programmed request, 2-2 
Searches, 

address, 16-13 
ODT, 16-20 
word, 16-12 

Section, 
program, 11-4 
see also PSECT 

Segment, 
overlay, 11-8, 17-11 
root, 11-8 

/SEGMENTS option, 
INITIALIZE, 4-77 

SEL, 
see ESCAPE 

Sequence, 
returning to previous, 16-7 

$SEQUENCE command, 
BATCH, A-28 

Sequential-access device, 3-5 
SET command, 4-105 
SET ERROR WARNING command, 

/SETDATE option, 
COPY, 4-3 0 
RENAME, 4-100 

SHOW command, 4-112 
/SHOW option, 

COMPILE, 4-23 
EXECUTE, 4-63 
FORTRAN, 4-69 
MACRO, 4-93 

/SINCE option, 
DIRECTORY, 4-49 

Single density mode, C-1 
Single-job monitor (SJ), I-1, 2-1 
Single job monitor, 

memory requirements, 1-3 
Single instruction mode, 16-12 
SJ, 

see Single job monitor 
Slash character (/), 16-6 
/SLOWLY option, 

COPY, 4-30 
LINK, 4-87 

Software, 
system, 

components, 1-2 
Software requirements, 

BATCH, A-1 

/SORT option, 
DIRECTORY, 4-50 

Source compare utility program, 
see SRCCOM 

/SPACES option, 
DIFFERENCES, 4-39 

Special function keys, 3-5 
table, 3-6 

Specification, 
input, 6-1 
output, 6-1 

Specification options, 
BATCH, A-6 

table, A-7 
SQUEEZE command, 4-114.2 
SRCCOM, 1-3, 15-1 
SRCCOM, 

calling and using, 15-1 
SRCCOM command syntax, 15-1 
SRCCOM options, 15-1 

table, 15-2 
4-11 Stack, 11-4 

Stack address, 11-19 
/STACK option, 

LINK, 4-87 
Standard file types, 3-4 
Start address, 11-22 
START command, 4-115 
/START option, 

DUMP, 4-52 
Startup, 

system, 3-1 
Startup indirect files, 3- l , 4-11 
STARTF.COM, 3- l , 4-11 
STARTS.COM, 3-1, 4-11 
STARTX.COM, 3- l , 4-11 
/STATISTICS option, 

COMPILE, 4-23 
EXECUTE, 4-64 
FORTRAN, 4-69 

String replacement, 43 
Strings, 

EDIT command, 5-5 
Steps, 

PAT processing, 18-3 
Structures, 

device, 3-2 
Subroutine, 

adding with PAT, 18-5 

Index-18 



INDEX (Cont.) 

Subroutine calls, 11-14 
Sub routine library, 

see SYSLIB.OBJ 
/SUMMARY option, 

DIRECTORY, 4-50 
SUSPEND command, 4-116 
/SWAP option, 

COMPILE, 4-23 
EXECUTE, 4-64 
FORTRAN, 4-69 

Swapping, 
see /SWAP,, /NOSWAP 

Symbols, 
global, 11-7 

Symbol definition file, 11-1 
Syntax, 

BATCH command, A-2 
Command String Interpreter, 6-1 
EDIT command, 5-1, 5-4 
LIBR command, 12-1 
LINK command, 11-2 
monitor command, 4-1 
PAT command, 18-2 
PATCH command, 17-1 
SRCCOM command, 15-1 

SYS files, 7-11 
SYSCOM area, 

see System communication area 
SYSGEN options, 4-113 
SYSLIB.OBJ, 1-3, 11-15, 11-18, 12-1 
SYSMAC.SML, 12-1 
System communication area, 11-4 
System communications, II-1 
System hardware components, 1-3 
/SYSTEM option, 

COPY, 4-30 
DELETE, 4-35 
RENAME, 4-100 

System software components, 1-2 
System startup, 3-1 
System Subroutine Labrary, 

see SYSLIB.OBJ 
SY: SYSLIB.OBJ, 11-15 

/T option, 
DUMP, 13-1 
DUP, 8-7 
FILEX, 14-7 
FRUN command, 4-71 
GT ON command, 4-7 3 

f T option (Cont.), 
LINK, 11-22 
PIP, 7-10 

TAB, 5-2 
Table, 

global symbol, 12-1 
macro name, 12-1 
overlay handler, 17-6, 17-11 

Technique, 
On-line Debugging, 
see ODT 

Temporary files, 
BATCH, A-9 

Terminal interrupt, 16-21 
/TERMINAL option, 

DIFFERENCES, 4-40 
DIRECTORY, 4-50 
DUMP, 4-5 2 
HELP, 4-74 
SHOW, 4-113, B-8 

Terminating BATCH, A-43 
Text buffer, 5-10 
Text editor, 1-1, 5-1 
Text mode, 5-1 
TIME command, 4-117 
Time, 

entering the, 4117 
Timer support, 4-3 2, 4-117 

/TOPS option, 
COPY, 4-3 0 
DIRECTORY, 4-50 

Transfer address, 4-103, 11-22 
/TRANSFER option, 

LINK, 4-88 
Transferring files to RT-11 from DECsystem-10, 

14-6 
Transferring files between RT-11 and DOS-11, 

14-2 
Transferring files between RT-11 and inter-

change diskette, 14-5 
Translating locations with PATCH, 17-4 
Translator, 

language, 1-1 
TWAIT programmed request, 2-2 
Typ, 6-2 
Type-ahead, 3-7 
TYPE command, 4-118 
Types, 

file, 3-2 
table, 3-4 

Index-19 



INDEX (Coot.) 

/U option, 
DUP, 8-7 
FILEX, 14-5 
LIBR, 12-7 
LINK, 11-2 3 
PIP, 7-11 

Underline (_), 16-7 
/UNITS option, 

COMPILE, 4-23 
EXECUTE, 4-64 
FORTRAN, 4-69 

Universal interchange file format, 14- l 
UNLOAD command, 4-120 
Unloading device handlers, 4-120 
UNMAP programmed request, 2-2 
Unsave command (U), 

EDIT, 5-28 
Up-arrow (T), 16-7 

see also CTRL, control characters 
/UPDATE option, 

LIBRARY, 4-82 
User mapping register, 4-103 
Using libraries with LINK, 11-14.3 
Using ODT with FB jobs, 16-17 
Using overlays with LINK, 11-10 
Utility program, 

device, 
see DUP 

dump, 
see DUMP 

file exchange, 
see FILEX 

librarian, 
see LIBR 

object module patching, 
see PATCH 

source compare 
see SRCCOM 

/V option, 
DIR, 9-9 
DUP, 8-8, 8-11 

Vector, 11-4 
/VECTORS option, 

COMPILE, 4-23 
EXECUTE, 4-64 
FORTRAN, 4-69 

Verify command (V), 
EDIT, 5-22 

Virtual memory partition, 4-103 
Volume identification, 9-9 
Volume substitution, C-2 
/VOLUMEID option, 

DIRECTORY, 4-50 
INITIALIZE, 4-77 

/W option, 
DUMP, 13-1 
DUP, 8-9 
FORMAT, C-2 
LIBR, 12-7 
LINK, 11-23 
PIP, 7-12 

/WARNINGS option, 
COMPILE, 4-23 
DIBOL, 4-38 
EXECUTE, 4-64 
FORTRAN, 4-70 

/WIDE option, 
EXECUTE, 4-64 
LINK, 4-88 

Wildcard s, 4-5, 7-1, 14-1 
Wild cards, 

BATCH, A-6 
setting the default, 11-1 

Word search, 16-12 
/WORDS option, 

DUMP, 4-52 
Write command (W), 

EDIT, 5-14 
Work file, 

MACRO-11, 10-3 

/X option, 
DUMP, 13-1 
DUP, 8-7 
LINK, 11-23 

XM, 
see Extended memory monitor 

/Y option, 
DUP, 8-10 
FILEX, 14-3, 14-9 
FORMAT, C-1 
LINK, 11-23 
PIP, 7-11 

Index-20 



INDEX (Cont.) 

/Z option, 
DUP, 8-10 
FILEX, 143, 14-9 

/Z option (Cont.), 
LINK, 11-23 

Index-21 





i 

i 

Pl
ea

se
 c
ut

 a
lo

ng
 t
hi
s 
li

ne
. 

RT-11 
System User's Guide 
DEC-1 I -ORGDA-A-DN1 

READER'S COMMENTS 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the 
company's discretion. Problems with software should be reported on a Software Performance Report 
(SPR) form. If you require a written reply and are eligible to receive one .under SPR service, submit 
your comments on an SPR form. 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs required for use of the software described in this 
manual? If not, what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

p Assembly language programmer 
p Higher-level language programmer 
~ Occasional programmer (experienced) 
p User with little programming experience 
~ Student programmer 
p Non-programmer interested in computer concepts and capab' 'ties 

Name Date 

Organization 

Street 

City State -Zip Code 
or 

Country 



Fold Here --j--

Do Not Tear -Fold Here and Staple 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage wilt be paid by: 

d 9 9 

Software Documentation 
146 Main Street ML 5-5/ F,39 
Maynard,. Massachusetts 01754 


